Oracle FCCM Cloud Service Matching Guide

Oracle FCCM Cloud Service Matching Guide, Release 24.02.01

G11377-02

Copyright © 2015, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Prefac	, c 	
Audience	Э	,
Help		,
Related	Resources	,
Diversity	and Inclusion	,
	ntation Accessibility	•
Convent	ions	V
Commer	nts and Suggestions	V
Introd	uction	
Gener	al matching strategy	
2.1 Ide	entifier Preparation	2-:
2.2 Cl	ustering	2-3
2.3 Ma	atching	2-3
Scorin	ng Method	
	ro Winkler	2.7
	venshtein	3-: 3-:
	dividual Name	3-2
	dividual SAN	3-!
	dividual PEP	3-5
	dividual EDD	3-6
	ntity Name	3-6
	ntity SAN	3-
	ntity PEP	3-
	Entity EDD	3-
Rules	ets	
	ut of the Box Rulesets	4-:

	4.1	1 Match Rules	4-2
	4.1	2 Merge Rules	4-2
	4.1	3 Data Survival	4-2
	4.2	Create Ruleset	4-3
	4.2	2.1 Match and Merge Ruleset	4-3
	4.2	2.2 Data Survival Rules	4-3
5	Trans	sliteration	
	5.1	Original Script Matching	5-1
	5.2 I	nput fields for Individual screening	5-1
	5.3 I	nput fields for Entity screening	5-2

Preface

Matching Guide provides a flexible and customizable strategy for matching customer records to watch list records for Oracle Financial Crime and Compliance Management Customer Screening Cloud Service.

Audience

This document is intended for users who are responsible for provisioning and activating Oracle FCCM Cloud services or for adding other users who would manage the services, or for users who want to develop Oracle Cloud applications.

Help

Use Help Icon to access help in the application. If you don't see any help icons on your page, click your user image or name in the global header and select Show Help Icons. Not all pages have help icons. You can also access the https://docs.oracle.com/en/ to find guides and videos.

Related Resources

For more information, see these Oracle resources:

- Oracle Public Cloud: http://cloud.oracle.com
- Community: Use https://community.oracle.com/customerconnect/ to get information from experts at Oracle, the partner community, and other users.
- Training: Take courses on Oracle Cloud from https://education.oracle.com/oracle-cloud-learning-subscriptions.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a diverse workforce that increases thought leadership and innovation. As part of our initiative to build a more inclusive culture that positively impacts our employees, customers, and partners, we are working to remove insensitive terms from our products and documentation. We are also mindful of the necessity to maintain compatibility with our customers' existing technologies and the need to ensure continuity of service as Oracle's offerings and industry standards evolve. Because of these technical constraints, our effort to remove insensitive terms is ongoing and will take time and external cooperation.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention	Meaning
boldface Boldface type indicates graphical user interface elements associate action, or terms defined in text or the glossary.	
italic Italic type indicates book titles, emphasis, or placeholder variables for you supply particular values.	
monospace Monospace type indicates commands within a paragraph, URLs, coexamples, text that appears on the screen, or text that you enter.	

Comments and Suggestions

Please give us feedback about Oracle Applications Help and guides! You can send an e-mail to: https://support.oracle.com/portal/.

1

Introduction

Oracle Financial Crime and Compliance Management Cloud Service makes use of the Cloud Matching Service, which provides a flexible and customizable strategy for matching customer records to watch list records. Sanctions screening typically requires the business to employ tightly-defined, zero-tolerance matching policies that will identify every possible match against a sanctions list. In these cases, the additional review work of lower probability matches will be necessary.

By contrast, a business carrying out PEP screening may choose a strategy of finding and investigating only the most likely matches against the PEP list, and the additional work required to confirm or eliminate weaker matches may not be cost-effective for the business.

Oracle Financial Crime and Compliance Management employs matching rules widget to configure the rules for screening.

These can be enabled and disabled as needed, to tune the behavior of Oracle Financial Crime and Compliance Management Cloud Service to your requirements. The matching rules are built around name matching.

Other identifiers are also used in the matching rules, but their main purpose is to rank matches by strength, and thereby to enable a most-likely approach to review potential matches.

For example, strong matches to Sanctions lists should be regarded as the most urgent matches, requiring immediate attention. Strong matches to PEP records will require follow-up, but may not be so urgent. Looser matches to PEP records may not be worth the time and operational cost of review.

In general, the looser the match rule, the more likely it is to raise false positives. It is not possible to eliminate all false positives, especially if there is a requirement to identify all true matches.

Tuning the matching strategy is, therefore, a trade-off between the proportion of true matches that are not detected and the work required to manually eliminate false positives. This will be evident in the examples in this document.

2

General matching strategy

Provides a brief description of the general strategy used in Oracle Financial Crime and Compliance Management Cloud Service.

It consists of three main components: identifier preparation, clustering, and matching.

2.1 Identifier Preparation

There are some differences between the structure of data sets that always need to be normalized before clustering and matching, so that the matching process does not need to repeat the configuration of transformations on each comparison.

Identifier Preparation is used to ensure that the records conform to a pre-defined data structure which can be used by the rest of the matching process, and to eliminate common forms of variance between the records (such as spelling variants of given names and abbreviations of frequently used tokens).

2.2 Clustering

Clustering is used to minimize the work that must be performed by the final stage of matching. It works by splitting the working and reference data into wide tranches (clusters), based on similarities in significant data fields. Only subsets of the data which share similar characteristics, and will, therefore, be placed in the same cluster, will be compared on a record-by-record basis later in the matching process.

If very wide clusters are used, there will be a large number of records in each cluster. This means that there is a reduced risk that true matches will be missed, but also that a greater amount of processing power is required to compare all the clustered records by brute force. A tighter clustering strategy will result in smaller clusters, with fewer records per cluster. This results in reduced processing requirements for row-by-row comparisons but increases the likelihood that some true matches will not be detected.

2.3 Matching

Each match rule defines a set of criteria, specified as comparisons, that the pair of records must satisfy in order to qualify as a match under that rule. The match rule also defines a decision to be applied to any records which satisfy the conditions of the rule. Most rules have a Review decision, meaning matches that hit the rule need to be reviewed. However, there are also elimination rules, where if the records being compared meet the rule's criteria, a No Match decision is reached, and the two records will not be considered a match.

The rules are applied as a decision table, so if a pair of records qualifies as a match under a rule higher in the table, it will not be compared using any rules below that. All rules are configured to operate on a case-insensitive basis. Unless stated otherwise, all noise and whitespace characters are removed or normalized before matching.

Matches are generated based on a defined set of attributes for each rule. A weighted average of the score is generated for each of the attribute level matches.

There are two types of Matching services:

- Real-Time Processing
- Batch Processing

Source for this document means the customer dataset. Target for this document means the watchlist.

In Real-Time processing, the values in the respective tags of Swift/Fedwire/ISO20022 messages, are matched against a column in the target table. The screening application explicitly passes the strings as values in the request which forms "the strings to be matched" against "all the values in a column name". Then, based on the matches received for the source string from search engine, the score and the feature vector for the matched strings (source and target) are generated. Scores which exceed the configured thresholds are taken and collected.

How it works

Consider the following match details:

- Evaluation Logic-> 46,4,26
- Evaluation score -> 0.88
- Word Match count (WMC_1) >= 2
- Abbreviated and CMP >=66

If the first name in **Mapping Source Attribute** column and **Target Attribute** column matched with a score of 0.88 and the Set threshold value is 0.75. The first name score is greater than the threshold value. Then 0.88x100x weightage (0.8) is provided in matching rule which gives you the score -> 70.4.

If **Mapping Source Attribute** column and **Target Attribute** column has the city data and the score value does not cross the provided threshold then it will not contribute to the score. Score is still 70.4

If city data cross the provided threshold, then it will contribute to the score as 100 (exact match). Then 100x0.05x weightage (0.05) => 5 is provided in matching rule which gives you the score 75.8.

If **Mapping Source Attribute** column and **Target Attribute** column has no city data, then score will cross the provided threshold. Then $50x0.05 \Rightarrow 2.5$ is provided in matching rule which gives you the score 72.9.

Similarly, if other column data matches and score crosses the threshold, then the score will be added.

Table 2-1 Match Types Descriptions and Examples

Ruleset Name	Source Node Type	Target Node Type
Exact	Considers two values and determines whether they match exactly. Applies only if Exact Match is selected. It does not apply when using Fuzzy Match.	If the source attribute is "John smith" and target attribute is "John smith", then the match is an exact match.

Table 2-1 (Cont.) Match Types Descriptions and Examples

Ruleset Name	Source Node Type	Target Node Type
Character Edit Distance (CED)	Considers two String tokens and determines how closely they match each other by calculating the minimum number of character edits (deletions, insertions and substitutions) needed to transform one value into the other.	For entities, stop words are not considered. If the source attribute is "John smith" and target attribute is "Jon smith", then the CED is 1 since the letter 'h' is missing between the source attribute and target attribute. If the entity names are Oracle Financial Corporation and Finance Orcl Pvt. Ltd., then only Oracle Financial and Finance Orcl are considered for matching as corporation, Pvt., and Ltd. are stop words.
		for finance is 3, so the overall CED is 3.
Character Match Percentage (CMP)	Determines how closely two values match each other by calculating the Character Edit Distance between two String tokens and considering the length of the shorter of the two tokens, by character count.	If the source attribute is "John smith" and target attribute is "John smith", then the CMP is calculated using the formula (length of shorter string – CED) * 100 / length of longer string. In this case, it is (9-1) * 100/8 = 77.77%.

Table 2-1 (Cont.) Match Types Descriptions and Examples

Ruleset Name	Source Node Type	Target Node Type
Word Edit Distance (WED)	Determines how well multi-word String values match each other by calculating the minimum number of word edits (word insertions, deletions and substitutions) required to transform one value to another.	If the source attribute is "John smith" and target attribute is "John smith", then the WED is calculated by checking the number of words that did not match with the target words after allowing for character tolerance, which is the number of words in the source attribute that did not match the target attribute.
		For example, the source string is Yohan Russel Smith and target string is Smith Johaan Rusel. First, we determine the CED for each word: Yohan matches with Johann with a CED of 2. Russel matches with Rusel with a CED of 1. Smith matches with Smith with a CED of 0. If we consider a character tolerance of 1, we can observe the following: Russel with a character tolerance of 1 match with Rusel. Smith with a character tolerance of 0 matches with Smith. Yohan with a character tolerance of 2 does not match with Johann as the character tolerance is 1. Based on these observations, we can conclude that one word does not match. This means that the WED is 1.
Word Match Percentage (WMP)	Determines how closely, by percentage, two multi-word values match each other by calculating the Word Edit Distance between two Strings and taking into account the length of the longer or the shorter of the two values, by word count.	The WMP is calculated using the formula (WMC/minimum word length) * 100. If the source attribute is "John smith" and target attribute is "Jon smith", then the WMP is calculated as (2/5) * 100 = 40 %.

Table 2-1 (Cont.) Match Types Descriptions and Examples

Ruleset Name	Source Node Type	Target Node Type
Word Match Count (WMC	Determines how closely two multi-word values match each other by calculating the Word Edit Distance between two Strings and taking into account the length of the longer or the shorter of the two values, by word count.	2 words and WED gives the
Exact String Match	Considers two String values and determines whether they match exactly.	
Abbreviation	Checks if the first character matches with the first character of source and target values.	
Starts With	Compares two values and determines whether either value starts with the whole of the other value. It therefore matches both exact matches and matches where one of the values starts the same as the other but contains extra information.	
Jaro Winkler or Reverse Jaro Winkler	The Jaro Winkler similarity is the measure of the edit distance between two strings. Click here for more information. In the Reverse Jaro Winkler, matches are generated even if the string is reversed. For example, if the source string is Mohammed Ali and the target string is Ali Mohammed, then the similarity = 1.	If the source string is Mohammed Ali and the target string is Mohammed Ali, then the similarity = 1.
Levenshtein	The Levenshtein Distance (LD) or edit distance provides the distance, or the number of edits (deletions, insertions, or substitutions) needed to transform the source string into the target string. Click here for more information.	For example, if the source string is Mohamed and the target string is Mohammed, then the LD = 1, because there is one edit (insertion) required to match the source and target strings.

Date Matching

The following steps occurs in Date Matching:

- Derive Year of Birth (v_yob) from date of births attributes.
- Find minimum (v_min_yob) and maximum (v_max_yob) values from v_yob.
- Replace null/empty for v_min_yob with 9999 and v_max_yob with 1111.
- Match customer records against watchlist records within +/- 5 years range.

- For SAN records score is boosted if a match is within range of (v_min_yob 5) to (v_max_yob + 5) years.
- For PEP/EDD records matches are eliminated if it is outside the range of (v_min_yob 5) to (v_max_yob + 5) years.

Table 2-2 Example of Processing of Watchlist Records

V_DATE_OF_BIRTHS	V_YOB	V_MIN_YOB	V_MAX_YOB
1953-02-16	1953	1953	1953
1973-07	1973	1973	1973
1975-01-30	1975	1975	1975
(null)	(null)	9999	1111
1958-01-01;1952-12-31; 1956-10-28	1958;1952;1956	1952	1958

Table 2-3 Example of Date Matches

Source DOB	Target DOB	Match
1953-02-16	1953-01-01;1952-12-31;1956-10- 28	True
1953-02-16	1958;1959	True
1953-02-16; 1954-02-16	1961-01-02	False
1953-02-16	Null	True
Null	1958-01-01	True
Null	Null	True

Processing Null Values

Null values are considered a way of hiding information. Whenever there is a Null value in any column in the Source or Target, the Matching Engine will give half the weightage for those attributes.

Scoring Method

The scoring methods used in the entity resolution component are as follows:

- Jaro Winkler
- Levenshtein
- Individual Name
- Individual SAN
- Individual PEP
- Individual EDD
- Entity Name
- Entity SAN
- Entity PEP
- Entity EDD

3.1 Jaro Winkler

This algorithm gives high scores for the following strings:

- The strings contain the same characters but within a certain distance from one another.
- The order of the matching characters is the same.

To be precise, the distance of finding a similar Character is one Character less than half of the length of the longest string. So if the longest string has a length of five, a character at the start of string 1 must be found before or on $((5/2)-1) \sim 2$ nd position in the string 2. This is considered a good match. Hence, the algorithm is directional and gives a high score if matching is from the beginning of the strings.

For example:

- textdistance.jaro winkler("mes", "messi") 0.86
- textdistance.jaro winkler("crate", "crat") 0.96
- textdistance.jaro winkler("crate", "atcr") 0.0

In the first case, as the strings match from the beginning, a high score is given. Similarly, in the second case, only one Character was missing, and that is also at the end of string 2, a very high score is given. In the third case, the last two Characters of string 2 are rearranged by bringing them at the front, resulting in 0% similarity.

3.2 Levenshtein

The Levenshtein Distance (LD) or edit distance provides the distance or the number of edits (deletions, insertions, or substitutions) needed to transform the source string into the target string. For example, if the source string is Mohamed and the target string is Mohammed, the

LD = 1 because one edit (insertion) must match the source and target strings. For more information, see the Website.

3.3 Individual Name

This is a bespoke rules-based algorithm that has been optimized for determining individual name matches. Generation of the final matching score for Individual Name is based on the combination of scores generated by the following feature vector in the scoring method:

 Abbreviation: Checks if the first Character matches with the first Character of source and target tokens.

Example:

- String 1: "S Turner"
- String 2: "Steve Turner"

String1 is an abbreviated string for string2.

 Character Edit Distance (CED): The Character Edit Distance comparison compares two String tokens and determines how closely they match each other by calculating the minimum, and the maximum number of character edits (deletions, insertions, and substitutions) needed to transform one value into the other.

It compares each token in a string with each token of another string and finds the minimum edits we need to convert one token to another. Maximum CED score that is required to convert one token to another token in a string.

The stopwords for Individual Names are Mr., Mrs, and Ms.

Example:

- String1: "Mr Jerrod Benito Carrera"
- String2: "JOSE BENITO CABRERA"
- Stopword: Mr.

Jerrod matches with JOSE à CED: 5 (CED_MAX))

Benito matches with BENITO à CED: 0 (CED MIN)

Carrera matches with CABRERA à CED: 1

Character Match Percentage (CMP): The Character Match Percentage comparison
determines how closely two values match each other by calculating the Character Edit
Distance between two String tokens and taking into account the shorter length of the two
tokens by character count.

CMP = (MCL - CED) * 100 / MCL

- CMP = Character match percentage
- MCL = Maximum character Length
- **Exact String Match**: The Exact String Match comparison is a simple comparison that determines whether or not two String values match. Checks if all the tokens are exact to each other. It can be in any order.

Example:

- String 1: Ram Lakshaman
- String 2: Lakshaman Ram
- String 3: Ram Lakshaman

String 1, String 2, and string 3 are exact.

• Starts With: The Starts With comparison compares two values and determines whether either value starts with the whole of the other value. It, therefore, matches both exact matches and matches where one of the values starts the same as the other but contains extra information.

Checks if all the tokens start with the respective token in the target tokens.

Whichever token is smaller (either in source or target), that token will be considered compared with the other token (of longer length). It should be in order.

- Starts With First: It is similar to Starts With. Starts with the first token only.
- **Metaphone**: Checks if strings sound like. It is similar for hearing, but spelling may be different. It encodes a string into a double Metaphone value.
- **Tokenize Jaro**: Checks similarity is the measure between two strings. It tokenizes source and target strings, then uses the Jaro Winkler algorithm to calculate the score between tokens, and then consolidates the scores to a single score by taking the average.
- Word Edit Distance (WED): The Word Edit Distance comparison determines how well
 multi-word String values match each other by calculating the minimum number of word
 edits (word insertions, deletions, and substitutions) required to transform one value to
 another.

So WED is similar to CED, where instead of character edits, we find the word edits.

In WED, we have an additional parameter called "character tolerance." Character tolerance allows the user to have a character tolerance in words, i.e. how many Character edits can it allow in each token for one token to match another one.

WED in simple words is: Number of words that did not match with the target words (after allowing the character tolerance)

Example:

- String 1: "Yohan Russel Smith"
- String 2: "Smith Johaan Rusel"

Yohan matches with Johann - CED: 2

Russel matches with Rusel - CED: 1

Smith matches with Smith - CED: 0

- If we have a character tolerance of "1,". The number of WED will be: 1
 - Russel, with a character tolerance of 1 matches with Rusel.
 - Smith with character tolerance of 0 matches with Smith.
 - Yohan with character tolerance of 2 does not match with Johann as character tolerance is 1.

One token did not match. WED = 1.

- If we have a character tolerance of "2,". The number of WED will be : 0
 - Russel, with a character tolerance of 1 matches with Rusel.
 - Smith with character tolerance of 0 matches with Smith.

* Yohan, with a character tolerance of 2, does match with Johann.

All tokens matched. WED = 0.

Word Match Percentage (WMP): The Word Match Percentage comparison determines
how closely two multi-word values match each other by calculating the Word Edit Distance
between two Strings and considering the length of the longer or longer or longer, the
shorter of the two values, by word count.

In mathematical terms, the Word Match Percentage comparison uses the following formula to calculate its results as the Number of tokens matched:

WMP = (WMC / WL) *100

- WMP: Word Match Percentage
- MWL: Maximum Word Length (i.e., the maximum number of words in the two values being compared)
- WED: Word Edit Distance between two String values, and
- WL: Minimum Word Length, relating to shorter input option
- Word Match Count (WMC): The Word Match Percentage comparison determines how
 closely two multi-word values match each other by calculating the Word Edit
 Distance between two Strings and taking into account the length of the longer or, the
 longer shorter of the two values, by word count.

WMC, in simple words, is the Number of words that did match with the target words (after allowing the character tolerance).

WMC compliments WED, as WMC gives the number of matches between 2 words and WED gives the number of mismatches between 2 words.

Based on the Year of birth, if the match falls beyond +/- 5 years, then the match is eliminated. This is applicable for the Individual PEP and the EDD records.

Example 1:

- String 1: "Yohan Russel Smith"
- String 2: "Smith Johaan Rusel"

Yohan matches with Johann - CED: 2

Russel matches with Rusel - CED: 1

Smith matches with Smith - CED: 0

- If we have a character tolerance of "1,". The number of WED will be: 2
 - * Russel, with a character tolerance of 1 matches with Rusel.
 - Smith with character tolerance of 0 matches with Smith.
 - Yohan with character tolerance of 2 does not match with Johann as character tolerance is 1.

One word did not match. So WMC = 2.

- If we have a character tolerance of "2,". The number of WMC will be: 3
 - * Russel, with a character tolerance of 1 matches with Rusel.

- * Smith with character tolerance of 0 matches with Smith.
- * Yohan, with a character tolerance of 2, does match with Johann.

All tokens matched. WMC = 3.

Example 2:

- String 1: "Mr Jerrod Benito Carrera"
- String 2: "JOSE BENITO CABRERA"
- Stopword: Mr. (It will not be considered for calculating the scrore)

The individual feature vector scores with final scrore for the match:

```
{"ced_list": [5, 0, 1], "ced_min": 0, "ced_max": 5, "cmp": 68.42105,
"wed_1": 1, "wed_2": 1, "wmc_1": 2, "wmc_2": 2, "wmp_1": 66.0, "wmp_2":
66.666664, "metaphone": 1, "starts_with": 0, "abbreviation": 1,
"tokenize jaro": 0.8301587, "exact": 0, "inorderMaxPos": 0, "score": 0.88}
```

Figure 3-1 Individual Name Score

	Mr Jerrod Benito Carrera	JOSE BENITO CABRERA		
	Will served belinto curreru	SOSE BENTTO CABRETA		
CED	Jerrod	Jose	5	
	Benito	BENITO	0	
	Carrera	CABRERA	1	
	Benito	BENITO	CED_MIN	0
	Jerrod	Jose	CED_MAX	5
			CMP	68.4210
			WED, tolerance=1	1
			WED, tolerance=2	1
			WMC_1	2
			WMC_2	2
			WMP_1	66
			WMP_2	66.6666
	Benito	Benito	Metaphone:	1
	JBC	JBC	Abbreviation	1
			Starts With	0
			Exact	0
			Tokenize_jaro	0.830159
			Individual Name score:	0.88

3.4 Individual SAN

This is a bespoke rules-based algorithm that has been optimized for determining Individual Sanctions name matches. The process and methods to generate feature vector are similar to Individual Name. For more details, see Individual Name.

3.5 Individual PEP

This is a bespoke rules-based algorithm that has been optimized for determining Individual PEP name matches. The process and methods to generate feature vector are similar to Individual Name. For more details, see Individual Name.

3.6 Individual EDD

This is a bespoke rules-based algorithm that has been optimized for determining Individual EDD name matches. The process and methods to generate feature vector are similar to Individual Name. For more details, see Individual Name.

3.7 Entity Name

This is a bespoke rules-based algorithm that has been optimized for determining organization name matches. For example, BLUE SKYE COLLECTIONS LTD.

The process and methods to generate feature vector are similar to **Individual Name**. For more details, see **Individual Name**.

The process to derive the final score from the feature vector is different from Individual Name. The stopwords are not considered for computing the score. The stopwords for Entity Name are different from Individual Name.

Example:

- String 1: "BLUE SKYE COLLECTIONS LTD"
- String 2: "BLUE SKY THREE LTD"
- Stopword: LTD (It will not be considered for calculating the scrore)

The individual feature vector scores with overall scrore for the match:

```
{"ced_list": [0, 1, 9, 0], "ced_min": 0, "ced_max": 9, "cmp": 54.545456,
"wed_1": 1, "wed_2": 1, "wmc_1": 3, "wmc_2": 3, "wmp_1": 75.0, "wmp_2": 75.0,
"metaphone": 3, "starts_with": 0, "abbreviation": 0, "tokenize_jaro":
0.8026768, "exact": 0, "inorderMaxPos": 0, "score": 0.95}
```

Figure 3-2 Individual Name Score

	Mr Jerrod Benito Carrera	JOSE BENITO CABRERA		
CED	Jerrod	Jose	5	
	Benito	BENITO	0	
	Carrera	CABRERA	1	
	Benito	BENITO	CED_MIN	0
	Jerrod	Jose	CED_MAX	5
			CMP	68.42105
			WED, tolerance=1	1
			WED, tolerance=2	1
			WMC_1	2
			WMC_2	2
			WMP_1	66
			WMP_2	66.66666
	Benito	Benito	Metaphone:	1
	JBC	JBC	Abbreviation	1
			Starts With	0
			Exact	0
			Tokenize_jaro	0.830159
			Individual Name score:	0.88

3.8 Entity SAN

This is a bespoke rules-based algorithm that has been optimized for determining Sanctions organization name matches. The process and methods to generate feature vector are similar to Individual Name. For more details, see Individual Name.

3.9 Entity PEP

This is a bespoke rules-based algorithm that has been optimized for determining PEP organization name matches. The process and methods to generate feature vector are similar to Individual Name. For more details, see Individual Name.

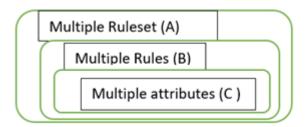
3.10 Entity EDD

This is a bespoke rules-based algorithm that has been optimized for determining Entity EDD organization name matches. The process and methods to generate feature vector are similar to Individual Name. For more details, see Individual Name.

4

Rulesets

The Ruleset facilitates identifying the similarity between two entities (customer, account, and so on) and derives a match. A Ruleset is a set of rules applied to the defined source and target entities and compares the entities' attributes to derive a match. OFS Cloud Service provides ready-to-use rulesets; however, you can modify these rulesets or create your own rulesets.


The process of creating Match Rule (s) is as follows:

The sum of weightage for mappings and groups for each rule must be 1.

Each Ruleset comprises multiple rules. The Ruleset compares the attributes defined in the rules for the source entity with the target entity and applies one of the match scoring mechanisms described in this document. The threshold value is defined in each level.

- Ruleset (A): All the matches from the rules should cross this threshold.
- Rule (B): All the attribute thresholds should cross this threshold.
- Attribute (C): Based on the match, it checks across the threshold. Once it crosses the threshold, the record will be considered.

4.1 Out of the Box Rulesets

This topic provides the details of Out of the Box (OOB) match and merge rulesets, Data Survival.

Topics:

- Match Rules
- Merge Rules
- Data Survival

4.1.1 Match Rules

Each Ruleset contains the pre-defined source and target node types. Each Ruleset compares the parameters/attributes of the source and target node types to obtain a match.

Table 4-1 List of Rulesets

Ruleset Name	Source Node Type	Target Node Type
Customer To Ext Panama	Customer	Offshore
Customer To Ext Bahamas	Customer	Panama
Customer To Ext Paradise	Customer	Bahamas
Customer2Ext PanamaAddr	Customer	Paradise
Customer2ExtOffshoreAddr	Customer	ICIJ- Panama Address
Customer To Derived Entity Match	Customer	ICIJ- Offshore Address
Customer to Customer Match	Customer	Derived Entity
Derived Entity To Derived Entity Match	Customer	Customer
Customer to Customer Match	Derived Entity	Derived Entity
Customer2ExtBahamasAddr	Customer	Customer
ER - Customer to Customer Match	Customer	ICIJ- Bahamas Address
ER - Customer to Customer Match	Pre Staging - Party Data 808	Pre Staging - Party Data 808
Customer2ExtParadiseAddr	Pre Staging - Party Data 81201	Pre Staging - Party Data 81201
Customer To Ext Panama	Customer	ICIJ- Paradise Address

4.1.2 Merge Rules

Table 4-2 List of Rulesets

Ruleset Name	Source Node Type	Target Node Type
Customer to Customer Merge	Pre Staging - Party Data 808	-
ER - Customer to Customer Merge	ER - Pre Staging - Party Data 81201	-

4.1.3 Data Survival

The OOB Data Survival Rule are as follows:

- FSDF 808:
 - Rule Name: Entity Resolution Pre-staging Party Data 808 Data Survival
 - Dataset: Customer808
- FSDF 812:
 - Rule Name: Entity Resolution Pre-staging Party Data 81201 Data Survival
 - Dataset: Customer812

4.2 Create Ruleset

This section provides details on creating rulesets.

Topics:

- Match and Merge Ruleset
- Data Survival Rules

4.2.1 Match and Merge Ruleset

Each Ruleset comprises multiple rules. The Ruleset compares the attributes defined in the rules for the source entity with the target entity. For example, Customer to Customer, Customer to Derived Entity, Derived Entity to Derived Entity, and so on.

Every Entity has attributes such as email IDs, the date of birth, jurisdiction, and so on. To derive a match and create a similarity edge on the graph or merge records in FSDF, you must apply the conditions for these attributes, such as match type, scoring method, threshold score, and weightage.

4.2.2 Data Survival Rules

The Rule facilitates storing the master record/final output tables based on the dataset survival rule stored against pipeline id.

Compliance Studio provides ready-to-use rules; however, you can modify these rules or create your rules:

- Use Data Survival
- Create Data Survival

You can enable or disable the ready-to-use rules. You can also modify description and ER type attributes for these Rules and remove rulesets from the existing list.

Transliteration

Transliterating a word does not tell you the meaning of the word. It tells you how the how the word is pronounced in a foreign language. This makes the language a little more accessible to people who are unfamiliar with the alphabet of the foreign language. This is opposed to translation, which, put in simple terms, gives you the meaning of a word that's written in another language. For example, the greeting in Arabic is translated as شكر in the Arabic script but is transliterated in the Latin script as shukraan.

General transforms provide a general-purpose package for processing Unicode text. They are a powerful and flexible mechanism for handling a variety of different tasks, including:

- Uppercase, lowercase, or title-case conversions
- Normalization
- Hex and character name conversions
- Script-to-script conversion

The reference data sources supported by Customer Screening are all provided in the Latin character set, and some in the original scripts. The screening process can also be used with non-Latin data. Non-Latin data can be screened against the Latin reference data sources which are supported by performing transliteration of data from the non-Latin character set to the Latin character set.

Non-Latin customer data can be screened against non-Latin reference data without any changes to the product, although certain fuzzy text matching algorithms may not be as effective when used to match data with the non-Latin character set. Text is processed on a left-to-right basis.

Topics:

- Original Script Matching
- Input fields for Individual screening
- Input fields for Entity screening

5.1 Original Script Matching

To match the original script data against reference data, prepare customer and external entity data such that non-Latin names are populated in the Original Script Name fields.

5.2 Input fields for Individual screening

This section lists the REST input fields used when screening individuals via the real-time process. The following input attributes are available for the individual screening process. They are available for any additional inputs required by your screening process.

Table 5-1 Input fields for Individual screening

Expected Data Format
String

The individual matching process is based primarily on the name supplied for the individual.

5.3 Input fields for Entity screening

This section lists the REST input fields used when screening entities via the real-time process. The following input attributes are available for the entity screening process. They are available for any additional inputs required by your screening process.

Table 5-2 Input fields for Entity screening

Field Name	Expected Data Format []
v_org_nm_bus_strip	String
v_last_nm	String
v_full_nm	String
v_org_nm	String
v_alias_nm	String
v_aliases	String
v_first_nm	String

