Oracle Financial Services Interest Rate Curves

Oracle Financial Services Interest Rate Curves, Release 25A

G33628-01

Copyright © 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Get Help	
1.1 Get Help in the Applications	1-1
1.2 Learn About Accessibility	1-1
1.3 Get Support	1-1
1.4 Get Training	1-1
1.5 Join Our Community	1-2
1.6 Share Your Feedback	1-2
1.7 Before You Begin	1-2
Interest Rates	
2.1 Creating an Interest Rate Curve	2-2
2.1.1 Terms & Attributes	2-4
2.1.2 Parameters Tab	2-6
2.1.3 Historical Rates	2-8
2.1.3.1 Add Historical Rates	2-8
2.1.3.2 Deletion of Historical Rates	2-8
2.1.3.3 Excel Import or Export	2-8
2.1.4 Hybrid Interest Rate Curves	2-9
2.1.4.1 Define Hybrid Curve	2-10
2.1.4.2 Generate Hybrid Rates	2-11
2.1.5 Managed Rates	2-12
2.2 IRC Data Migration	2-19

1

Get Help

Topics:

- Get Help in the Applications
- Learn About Accessibility
- Get Support
- Get Training
- Join Our Community
- Share Your Feedback
- Before You Begin

1.1 Get Help in the Applications

Use Help icons to access help in the application.

Note that not all pages have Help icons. You can also access the Oracle Help Center to find guides and videos.

Additional Resources

- Community: Use Oracle Cloud Customer Connect to get information from experts at Oracle, the Partner Community, and other users.
- Training: Take courses on Oracle Cloud from Oracle University.

1.2 Learn About Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program. Videos included in this guide are provided as a media alternative for text-based topics also available in this guide.

1.3 Get Support

You can get support at My Oracle Support.

For accessible support, visit Oracle Accessibility Learning and Support.

1.4 Get Training

Increase your knowledge of Oracle Cloud by taking courses at Oracle University.

1.5 Join Our Community

Use Cloud Customer Connect to get information from industry experts at Oracle and in the Partner Community. You can join forums to connect with other customers, post questions, and watch events.

1.6 Share Your Feedback

We welcome your feedback about Oracle Applications User Assistance. If you need clarification, find an error, or just want to tell us what you found helpful, we did like to hear from you.

You can email your feedback to My Oracle Support.

Thanks for helping us improve our User Assistance!

1.7 Before You Begin

Refer to following Documents:

See What's New

Interest Rates

The quality and availability of Interest Rate information vary throughout the world. In many markets, gathering comprehensive rate information is a challenge because of insufficient security types, inconsistent quoting conventions, and lack of liquidity. The Interest Rate Curve in Cloud Service allows you to define and manage complex Yield Curve definitions using multiple Rate Formats and other Rate Attributes to give you data storage capabilities appropriate to your market. The Interest Rate Curve supports the creation and maintenance of Historical Rate Data for each Yield Curve you define.

Historical Interest Rate Data is utilized in the Cloud Service to generate the Transfer Rates, add-On Rates, rates for market value calculations, Option Costs, and Forecasted Interest Rate Scenarios.

Interest Rate Rule Summary

This page is the gateway to all Interest Rate Rules and related functionality. You can navigate to other pages relating to Interest Rate Rules from this point.

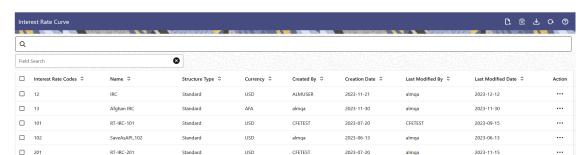


Figure 2-1 Interest Rate Curves Summary

Search Interest Rate Rule

Prerequisites: Predefined Interest Rate Rule

To search for an Interest Rate Rule:

Click **Search** after entering the search criteria. The search results are displayed in a table containing all the Interest Rate Rules that meet the search criteria.

Or

An alternative method to search an Interest Rate Rule is through the **Field Search** option. This is an inline wildcard UI search that allows you to enter a search value (such as code, name, etc.) partially or fully. Rows that contain the string you are searching for are fetched and displayed in the Interest Rate Rule Summary. You can enter the **Interest Rate Code**, **Name**, **Currency**, **Rate Format**, and **Structure Type** of the Interest Rate Rule and click **Search**.

The Interest Rate Rule Summary displays the following information:

Add: Click the Add icon on the page header to build a new Interest Rate Rule.

Multiple Delete: Enables you to select and delete one or multiple rules in the table simultaneously.

Download: Enables you to download the Interest Rate Summary report in .csv format.

- Interest Rate Code: The Interest Rate Curve's Code. The code is a unique number in the range of 1 to 9999999. Hover on a row in the pane to display the Interest Rate Curve's detailed description.
- Name: The Interest Rate Curve's short name.
- Structure Type: The Structure Type (Standard, Hybrid) of the Interest Rate Curve.
- Currency: The Currency (Reference Currency) for which Interest rate curve is defined.
- Created By: The Name of the user who created the Interest Rate Curve.
- Creation Date: The Date and Time when Interest Rate Curve was created.
- Last Modified By: The user who last modified the Interest Rate Rule.
- · Last Modified Date: The Date and Time when the Interest Rate Rule was last modified.
- Access Type: The access type of the rule. It can be Read-Only or Read/Write.
- Action: Click this icon to view a list of actions that you can perform on the Interest Rate Rule.
 - View/Edit: Based on the user privilege assigned, you can either only view or edit existing Interest Rate Rules. To edit a rule, you must have Read/Write privilege.
 - Save As: You can reuse an Interest Rate Rule by saving it under a new name thus saving time and effort in entering data multiple times; it also leads to reduced data entry errors.
 - Delete: You can delete Interest Rate Rules that you no longer require. Note that only Interest Rate Rule owners and those with Read/Write privileges can delete Interest Rate Rules. An Interest Rate Rule that has a dependency cannot be deleted. A rule cannot be retrieved after deletion.
 - Dependency Check: You can perform a dependency check to know where a
 particular Interest Rate Rule has been used. Before deleting a rule, it is always a good
 practice to do a dependency check to ensure you are not deleting Interest Rate Rules
 that have dependencies. A report of all rules that utilize the selected Interest Rate Rule
 is generated.

This is functionality will intended for a future release.

Also See:

Create Interest Rate Rule

2.1 Creating an Interest Rate Curve

To create an Interest Rate Curve, perform the following steps:

- 1. Click Add from the Interest Rate Curve Summary page.
- Enter the following information in the Interest Rate Curve Details window.

- Interest Rate Code: When constructing a new Yield Curve, you must specify an Interest Rate Code between 1 and 9999999. Interest Rate Codes are used internally to uniquely identify Yield Curves. When working with Cloud service, you reference Yield Curves by Name, not by Interest Rate Codes. Interest Rate Codes are embedded within your instrument data (for example, the INTEREST_RATE_CD columns within the Instrument Data are populated with Interest Rate Codes). After you have saved a Yield Curve, you cannot modify its Interest Rate Code.
- Name: Provide a unique Name for the Interest Rate Curve.
- Description: You can enter a description for the Interest Rate Curve. You can modify this description at any time using the Edit action.
- Display for All Currencies: This flag allows you to designate certain Interest Rate
 Curves to make them available for assumption mapping to any currency. Assumption
 Rules filter the list of Interest Rate Codes based on the currency when defining
 assumptions for a specific Product/Currency combination. When this option is enabled,
 the Interest Rate Curve appears in assumption rules for all currencies.
- Reference Currency: Select a Reference Currency for your Interest Rate Curve. You can change the Reference Currency for previously saved Interest Rate Curves though such changes are unlikely. An Interest Rate Curve's Reference Currency is the currency for which your market rates are valid. For example, the Reference Currency for a Prime Rate Yield Curve would be US Dollars. The Reference Currencies dropdown list displays only Active currencies. For more information on Active and Inactive currencies, see the Currency Documentation.
- Date Based Term Points: This toggle switch is applicable only for Standard Structure
 Type. If you select Structure Type as Hybrid, the toggle switch is disabled. When you
 select the Date Based Term Points, and add a Term Point, the Historical Rates Tab
 allows you to define a Custom Date and Rate for each Term Point. By default, the Date
 is inserted based on the Term that you define. You can change the Date to a custom
 Date and define the Rate.
- Risk-Free: (Optional) This flag is for tagging the Interest Rate Curve as risk-free. That
 is Edit Table in new and Edit Modes. It is available for Non-Hybrid Curves and Hybrid
 Curves.
- Structure Type: This attribute is required for each Yield Curve. Structure Type supports Standard, Hybrid Yield Curve, and Managed Rates Definitions. Hybrid Yield Curves are re-expressions of one or more pre-existing Standard Yield Curves. For more information, see Hybrid Term Structure. Managed Rates are free form, user-defined formula, that is, equation based objects. For more information, see Managed Rates. Standard Interest Rate Curves are used to define the Yield Curve and to add, edit, or delete Historical Interest Rate Data. After you have saved the Yield Curve, you cannot change the selected Structure Type.

Note:

IRC Structure Type Managed Rates is applicable only to ALMCS.

- The Interest Rate Curve tabs are:
 - Terms & Attributes
 - Historical Rates
 - Parameters
 - Hybrid Term Structure

Managed Rates

For new Yield Curves, you must begin with the **Terms & Attributes** tab. After you have selected the term structure and attributes for a Yield Curve, you cannot edit them. After assigning the attributes, navigate to the Terms tab to define a term structure for your Yield Curve, for example, an overnight rate, a one-month rate, a three-month rate, and so on. Click **Apply** after defining the term structure and attributes to the Interest Rate Curve.

Note:

You must specify an Interest Rate Code and Name in the **Interest Rate Curve Details** window before navigating to the **Terms & Attributes** tab.

The first time you navigate to the **Terms & Attributes** tab, an initial 1-month term point is provided, but even if this is the only term point you want for the curve, you must click **Apply** to finish term structure specification. In future revisions to the Curve's Definition, navigate directly to the **Historical Rates** tab, but if you modify the term structure, you must always click **Apply** on the **Terms & Attributes** tab before navigating to the **Historical Rates** tab.

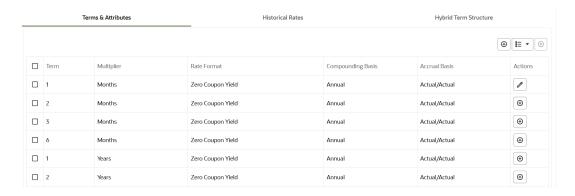
The **Historical Rates** Tab is used to input historical interest rate data. This Tab is used for maintaining the Interest Rates Database. To navigate to the Historical Rates Tab, either click **Apply** on the **Terms & Attributes** tab or select the **Historical Rates** tab if you have already defined your term structure.

Note:

You must specify the following before navigating to the **Historical Rates** tab:

- An Interest Rate Code, Name, and Reference Currency in the Interest Rate Code Details window.
- A term structure in the Terms & Attributes tab.

2.1.1 Terms & Attributes


The Terms & Attributes Tab displays the following fields:

Adding New Term Points: Click Add to add a new row. (New term points by entering a
Term value and selecting a Multiplier (such as 7 days, 2 months, 5 years, and so on). Rate
Format, Compounding Basis, and Accrual Basis can be selected for the term point. Zero
Coupon Yield, Annual, Actual/Actual are the pre-selected values in UI which you can
modify.

One Yield Curve can have two combinations of attributes. For example, first 3 term points have Zero Coupon Yield, Annual, Actual/Actual attributes and remaining term points are Yield to Maturity, Annual and 30/360.

Figure 2-2 Terms and Attributes Tab

Click "+" at the term point where you want to modify attributes. Rate Format, Compounding Basis, and Accrual Basis fields are enabled for modification.

- Rate Format: You should select either the Zero Coupon Yield or Yield to Maturity Rate Format. Rates entered in the Historical Rates Tab are always entered in the nominal form, such as 5.125% or 6.875%, not as discount factors.
- Compounding Basis: Select a Compounding Basis for the term point:
 - Daily
 - Monthly
 - Quarterly
 - Semiannual
 - Annual
 - Simple
 - Continuous
 - At Maturity
- Accrual Basis: Select an Accrual Basis for the Yield Curve.
 - 30/360
 - Actual/360
 - Actual/Actual
 - 30/365
 - 30/Actual
 - Actual/365
 - Business/252
- Deleting Existing Term Points: To delete an existing term, select the term point (or terms), and click Delete.

You can also click **Add Multiple Rows** to select the number of multiple rows that you want to add.

You can construct the Yield Curve's Term Structure. You can specify as many Yield Curve Terms from the 1 day to 100 years range. However, the UI allows only two combinations of Rate Format, Compounding Basis, and Accrual Basis per one Interest Rate Curve Definition.

The Interest Rate Curve Definition Module automatically selects the combination of Rate Format, Compounding Basis, and Accrual Basis when a new Term Point is greater than the already defined Term Points. For example, if you define two Term Points with 15 Days, one Month Multipliers, and another Term Point with 2 Years Multiplier. When you define a new Term Point with 45 Days Multiplier, the Interest Rate Curve Definition Module automatically selects the combination of Rate Format, Compounding Basis, and Accrual Basis that is selected for the first two Term Points. Similarly, if you define a Term Point, which is greater than the 2 Years Multiplier, then the module selects the combination of Rate Format, Compounding Basis, and Accrual Basis that is selected for the 2 Years Term Point.

2.1.2 Parameters Tab

Fixed income instruments are used for forecasting and simulating the Cash Flows. The Cash Flow Engine needs interest rate models to simulate the evolution of interest rates. The Cash Flow Engine uses these models as part of the stochastic engine. You can enter the parameters for these models in the following ways:

- System-generated calculations through Parameter Estimation
- Direct input into the UI
- Excel Import
- Data Loader

The following interest rate models are available:

- Extended Vasicek
- Ho and Lee
- Merton
- Vasicek

Parameter Estimation

This section explains the procedure to calculate the estimated parameters.

Conditions for Parameter Estimation

If the following conditions are met, you can calculate parameters for any Term Structure Model for a given Effective Date, based on your relative look back term and a sufficient number of observations (available historical rates) for the IRC. If you rerun with a different look-back term, it will overwrite the existing parameters for the selected Term Structure Model on that IRC's Effective Date.

- Term point: Underlying historical rates must be available for a 30-Day or 1-Month term point.
- Minimum Number of historical rates: A total of at least 10 historical rates (observations) are required, on appropriate look-back dates.
- Lookback Dates: Historical rates must be available on dates looking back from the Parameter's Effective Date (the End Date), in 30-day intervals moving backward from End Date to Start Date, for a minimum of 10 intervals.

For example: If the first rate's Effective Date is 1 Jan. 2013, then the second rate's date must be 2 Dec. 2012 (1 Jan. 2013, 30 days = 2 Dec. 2012), and so on. If a rate is not found for the required date, the engine looks for a rate within the neighborhood of 5 days up or down (therefore a total range of 10 days), searching iteratively starting with Date -1, then Date +1, through Date +5, then Date -5. The next rate lookup would be 60 days before the End Date, and so on.

The minimum relative term for all lookbacks must be at least 300 Days (that is, to accommodate a minimum of ten 30-day intervals). Using the above logic, if a rate is not found for the lookup date (or date within the neighboring range), an error will be logged, user can check the error in the 'view logs'.

To define the Parameter Estimation, follow these steps:

1. Navigate to Parameters tab of Interest Rate Curve.

Figure 2-3 Parameters Tab on Interest Rate Curve window

- 2. Enter the Effective Date Range filter.
- After clicking Add, default parameters for the Extended Vasicek Model are displayed for one Effective Date (the System Date on which the Interest Rate Code was created). You can edit these parameters or add new parameters using Add.
- 4. Enter the **Effective Date**. Note that the **Effective Date** cannot be greater than the **Current System Date**.
- Select the Model from the Term Structure Model drop-down list. Effective Date and Term Structure Model combination must be unique within this IRC.
- 6. The following term structure models of interest rates:
 - Extended Vasicek
 - Ho and Lee
 - Merton
 - Vasicek
- **7.** The following parameters needed by the models:

Table 2-1 List of supported parameters for Models Term structure models in Interest Rate

Model	Parameter 1	Parameter 2 Parameter 3
Extended Vasicek	Volatility	Mean Reversion Speed
Ho and Lee	Volatility	
Merton	Volatility	
Vasicek	Volatility	Mean Reversion Speed Long Run Rate

8. Enter values for Long Run Rate and Volatility in percentages. For example, a Long Run Rate of 5% is displayed as 5.000. To maintain the integrity of data, Rate Management restricts the accepted input values. The valid range and the default setting for each parameter.

Table 2-2 Valid Range and Default Values of Interest Rate Parameters

Parameter	Valid Range	Default Value
Volatility	0% to 500%	0.01
Mean reversion speed	0.00 to 500	0.0
Long run rate	0.00% to 500%	0.0

9. Click Apply.

2.1.3 Historical Rates

Use the Historical Rates Tab to define, modify, or view Interest Rate Data. Enter data in simple percentages (such as 5.125, 4.875, and so on).

The **Rate Data Source** Column shows from where the rates are taken from, they are either entered through the User Interface, loaded through the Data Loader, or generated using the Generate Rates of Hybrid IRC.

You can perform the following tasks:

- Add Historical Rates
- Excel Import or Export
- Deletion of Historical Rates

FTP engine supports rate lookup from a future date as well, if engine looks for any particular effective date and that is not found, then next it looks for most recent date available in the past, even if that is not available, then it can pick the rate from most recent future date also.

2.1.3.1 Add Historical Rates

By default, the **Historical Rates** Tab displays Interest Rate Data for the past month (for example, for the 30 days leading up to the current date). Click the **Effective Date Range** dropdown list to expand your view to the last 3 months, 6 months, one year, 3 years, 6 years, or all rate data.

2.1.3.2 Deletion of Historical Rates

To delete Historical Rates entered, select one or more rows and then click **Delete**.

2.1.3.3 Excel Import or Export

To aid in data entry, use the Excel Import or Export functionality to add or edit rate data to Historical Rates. This is an optional step.

Excel Export:

To export the data, perform the following steps:

 Click Export to export data for the chosen selected effective date range. Within the same block, select Export to Excel, which launches the Excel application and displays the Data Window including headers.

Excel Import:

The excel file exported above can be used as a template to import the Historical Rates.

Ensure that the date format is yyyy-MM-dd in the excel file. For example, 2022-06-13.

- 1. On the Interest Rates toolbar, click the **Import** icon. Select the file containing the Historical Rates.
- 2. Data from the file is displayed on the UI. If appending data that pre-existed for the same effective date, the import will overwrite existing data.
- Add or edit data if required.
- 4. Click Apply to save.

2.1.4 Hybrid Interest Rate Curves

Hybrid Term Structures allows you to specify the following types of Hybrid Yield Curves:

- Merge
- Spread
- Moving Average
- Custom Weighted Average

Hybrid Yield Curves are built up from either one or more Standard Yield Curves. When you add, modify, or delete any historical rate data from a Standard Yield Curve, the data associated with any related Hybrid Yield Curve must be updated. After defining, the Hybrid Yield Curves can be used like any other Interest Rate Curve in the system. You can reference these curves within the Cloud Service Business Rules that allow the selection of an Interest Rate Code.

Hybrid Curve Type Spread: A Spread Hybrid Yield Curve is defined as the difference between two standard yield curves. The Spread type of hybrid yield curve is useful in establishing liquidity risk or basis risk yield curves.

- Merge: Merge hybrid yield curves represent a blending of two or more underlying yield curves. In constructing a Merge type of Hybrid Yield Curve, specify the percentage weighting applied to each of the underlying Standard Hybrid Yield Curves.
- Spread: A Spread hybrid yield curve is defined as the difference between two standard yield curves. The Spread type of Hybrid Yield Curve is useful in establishing liquidity risk or basis Risk Yield Curves.
- Moving Average: Moving average Hybrid Yield Curves represent moving average data of a single underlying Standard Yield Curve. These curves are used in Funds Transfer Pricing.
- Custom Weighted Average: Custom Weighted Average Rate is the sum of weighted rates as per the defined Custom Weights for the Historical Rates.

2.1.4.1 Define Hybrid Curve

Defining a Hybrid Curve supports the following different definitions based on the Hybrid Curve Type:

- Hybrid Curve Type as Merge
- Hybrid Curve Type as Spread
- Hybrid Curve Type as Moving Average
- Hybrid Curve Type as Custom Weighted Average

2.1.4.1.1 Defining a Hybrid Curve with Hybrid Curve Type as Merge

To define a Hybrid Curve, perform the following steps:

- 1. Select the Structure Type as Hybrid, and then select the Hybrid Curve Type as Merge.
- Select the Interest Rate Curves for the hybrid type and click Apply. You must select at least two Interest Rate Curve Definitions.
 - The screen displays the Hybrid Term Structure Weights for the selected Interest Rate Curves and the Merge type Hybrid Curve.
- By default, all the Term Points are selected and displayed. You can uncheck one or more Term Points.
- 4. You can click on the icon next to the Selected Term Structure to see the Term Points for the Interest Rate Curve. A box displays the Term and Multiplier for the select Interest Rate Curve.
- Enter the Weights for the selected Terms.
- 6. Click Apply to save the Weights in the grid.

2.1.4.1.2 Defining a Hybrid Curve with Hybrid Curve Type as Spread

To define a Hybrid Curve, perform the following steps:

- 1. Select the Structure Type as Hybrid, and then select the Hybrid Curve Type as Spread.
- 2. Select the **Interest Rate Curves** for the hybrid type and click **Apply**. Only two Interest Rate Curves are allowed for selection.
- 3. Click the **Swap** icon to re-order the Interest Rate Curves.
 - The screen displays the Hybrid Term Structure Weights for the selected Interest Rate Curves and the Merge type Hybrid Curve.
- By default, all the Term Points are selected and displayed. You can uncheck one or more Term Points.
- 5. Click **Apply** to save the selected Terms.

2.1.4.1.3 Defining a Hybrid Curve with Hybrid Curve Type as Moving Average

To define a hybrid curve, perform the following steps:

- Select the Structure Type as Hybrid, and then select the Hybrid Curve Type as Moving Average.
- 2. Select the **Interest Rate Curves** for the hybrid type and click **Apply**. Only one Interest Rate Curve Definition is allowed for selection.

- The screen displays the Hybrid Term Structure Weights for the selected Interest Rate Curves and the Merge type Hybrid Curve.
- By default, all the Term Points are selected and displayed. You can uncheck one or more Term Points.
- 4. Enter the Terms and Multipliers for each of the selected Terms.
 - OR Optionally, you can select the **Moving Average Term** toggle switch to define the Terms and Multipliers for the selected terms at once.
- 5. Click **Apply** to save the Terms in the grid.

2.1.4.1.4 Defining a Hybrid Curve with Hybrid Curve Type as Custom Weighted Average

To define a Hybrid Curve, perform the following steps:

- Select the Structure Type as Hybrid, and then select the Hybrid Curve Type as Custom Weighted Average.
- 2. Select the **Interest Rate Curves** for the Hybrid Type and click **Apply**. Only one Interest Rate Curve Definition is allowed for selection.
 - The screen displays the Hybrid Term Structure Weights for the selected Interest Rate Curves and the Merge type Hybrid Curve.
- 3. By default, all the Term Points are selected and displayed. You can uncheck one or more Term Points.
- 4. Enter the Terms and Multipliers for each of the selected Terms.
 - OR Optionally, you can select the **Moving Average Term** toggle switch to define the Terms and Multipliers for the selected terms at once.
- 5. Enter the Weights for the each term and respective Historical Effective Dates. By default, all the Weights are zero. You can change the values as per your requirement.
- 6. Click **Apply** to save the Terms in the grid.

2.1.4.2 Generate Hybrid Rates

After a Hybrid Curve is defined, generate the Historical Rates as far back as the Rate Source Curves allow. The Generate Frequency determines the frequency of the historical rates populated with the Generate function. If you select the Generate Frequency as monthly, it generates month-end values only. If you select daily, it generates the maximum number of Historical Values. By default, the Interpolation is selected as Linear and you cannot change it.

To generate the rates, perform the following steps:

- Select the Generate Frequency (Daily, Weekly, Bi-Weekly, or Monthly) and enter the Specific Date Range (From Date and To Date). For Custom Weighted Average Hybrid Curve Type, you need to select only the From Date.
- 2. Click **Generate**. The rates will be populated and you will be directed to the Historical Rates Tab to view the results.

Generating Hybrid Rates using Scheduler

You can also generate the Hybrid rates using the Scheduler Service.

To generate the Hybrid rates:

1. From the LHS menu, navigate to Operations and Processes, select Scheduler, and then select Create Batch. For more details, Define Batch.

- From the LHS menu, navigate to Operations and Processes, select Scheduler, and then select Ceate Task. For more details, see Define Tasks.
 - a. Task Type: REST
 - b. Component: IRC Hybrid Scheduler
- 3. Select the seeded batch and click **Edit Parameters**. In the Dynamic Parameters pop-up window, change the date to the relevant As-of-Date, and then save the batch.
- 4. From the LHS menu, navigate to **Operations and Processes**, select **Scheduler**, and then select **Execute Batch**.
- From the LHS menu, navigate to Operations and Processes, select Scheduler, and then select Monitor Batch. For more information, see Monitor Batch.
- Select the Batch and then select the MISDATE and the Batch name. There may be multiple executions of the Hybrid rates batch. Select the latest execution and click Start Monitor.

The UI displays the Status of the batch.

2.1.5 Managed Rates

Managed rates are IRC objects that are based on a logical and/or mathematical formula instead of being based on a yield curve. This is useful if you do not have a straight forward application function that generates a rate based on a formula. Managed Rates are formula-driven IRC (interest rate curve or yield curve) objects. The Managed Rates UI provides the following functionalities:

- Allows to create a managed rates formula with the help of equation builder.
- You can create a managed rates formula by using existing IRC, Currency, Economic Indicator objects and combining it with various mathematical operators.
- Execute managed rates using Scheduler Service

Managed Rate Formulas

Managed Rates are free form, user-defined formula, that is, equation based objects. You can use a variety of mathematical, logical, or reference functions to define a Managed Rate. Regardless of the complexity of the function, it always return only one numerical value every time when it is evaluated.

For example, there are three basic inputs for Market Rates formulas:

Numerical and mathematical values, including embedded functions (for example, "SUM" or "AVERAGE").

Existing Rate Management objects such as interest rate curves, economic indicators, and foreign currencies

Reference in time specification, that is, a relative or absolute reference in time either in the past, present, or future.

Note:

Formulas are statements. These can be mathematical, logical, or reference one or more Application objects, but it returns a *single* numerical value.

For example:

Formula input: 1+1

Returns: 2

It is not mandatory to include the "=" symbol in the expression as this is already implied.

There is no nominal value of the rate, that is, it cannot be an accrual, day count, compounding, or other rate identities; it is simply a number.

Basic syntax is required if other service objects are reference, then you must specify three distinct components:

- 1. Object type code or name
- 2. Object ID
- 3. Tenor
- 4. Place in time in the forecast

[Object type code].[Object ID].[Tenor if IRC, 0 if anything else].[Place in time]

For example, suppose you want a formula that refers to an interest rate curve's 1 month tenor on a current basis, then its syntax would look something like this:

Figure 2-4 Example of Managed Rate

Here,

[IRC_202] is the IRC code (Object ID)

[1M] is the Term.

[0] is time. This calculates Past, present or future dates/rates with ease for any term/ tenor and forecast method definition. The default value is 0. [0] means the now. [-1] refers to back one period. [\$] refers to constrained time period.

Note:

If the time value falls outside of provided numbers, the Application will refer to the closest matching value. If no value can be retrieved or if the value is null, then the Managed Rate formula will not be evaluated.

Managed Rate Processes

When you validate Managed Rates, it is processed under two conditions:

1. Managed Rates for Historical Values

You can use the entered managed rate to derive one or more historical values as specific points in time at or before the current As-of Date.

Function is executed at the Rate Management level for Managed Rate functions. Specify one or more historical dates that you want to processed and then execute a batch to derive the associated values. All historical values would be stored in a managed rate historical table.

If a Managed Rate formula has time references that are constrained, the formula will default to the last available value provided. If no value is provided (e.g. value cannot be retrieved or is null), then no rate will be provided for that historical date.

2. Managed Rates for Forecasted Values

For forecasted values in an ALM process as established in Forecast Rates. Managed Rates will be forecasted using the forecasted base objects like IRC, Currency and Economic Indicator.

For more information, see Interest Rate Forecast Methods.

To define Managed Rate, follow these steps:

- Select Structure Type as Managed Rates.
- Navigate to Managed Rates tab.

This tab will be active only when **Structure Type** is selected as **Managed Rates**.

- 3. Select the Function type as Interest Rate Curve, Currency, or Economic Indicator to define a formula.
- 4. Double-click the Function code to move it to Formula section.
- 5. Update the formula. Use arithmetical operator from Operator to define formula if required.

Figure 2-5 Formula section

Interest Rate Curve

This function evaluates rate of selected term point of Interest Rate Curve, in the past, present or future

IRC(Name, Term Point, Time Reference)

- Name: Must be an existing IRC
- Term Point: Must be an existing term point of named IRC
- **Time_Reference**: Time_Reference indicates the rate to be forward or backward looking. This should be zero or positive/negative whole number. If left null, replace with zero. 0 indicates current period, positive value indicate forward time and negative value indicates prior period. It can also be relative (moving) or absolute (fixed). Use '\$' symbol for absolute Term Reference.

Currency

This function evaluates exchange rate of selected currency pair in the past, present or future

CCY(From Currency, To Currency, Time Reference)

- From Currency: Three letter code of active currency
- To Currency: Three letter code of reporting currency
- Time_Reference: Time_Reference indicates the rate to be forward or backward looking. This should be zero or positive/negative whole number. If left null, replace with zero. 0 indicates current period, positive value indicate forward time and negative value indicates prior period. It can also be relative (moving) or absolute (fixed). Use '\$' symbol for absolute Term Reference.

Economic Indicator

This function evaluates value of selected Economic Indicator in the past, present or future ECOIND(Name,Time_Reference)

- Name: Must be an existing Economic Indicator
- Time_Reference: Time_Reference indicates the rate to be forward or backward looking. This should be zero or positive/negative whole number. If left null, replace with zero. 0 indicates current period, positive value indicate forward time and negative value indicates prior period. It can also be relative (moving) or absolute (fixed). Use '\$' symbol for absolute Term Reference.

Aggregate

This includes the following functions:

Menu	Description
Average	Calculates the average (mean) value of an expression in a result set.
	AVG(expr)
	<i>expr</i> is any expression that evaluates to a numerical value.
Max	Calculates the maximum value (highest numeric value) of an expression in a result set. MAX(expr)
	expr is any expression that evaluates to a numerical value.
Min	Calculates the minimum value (lowest numeric value) of an expression in a result set. MIN(expr)
	<i>expr</i> is any expression that evaluates to a numerical value.
Median	Calculates the median (middle) value of an expression in a result set. MEDIAN(expr)
	expr is any expression that evaluates to a numerical value.
StdDev	Returns the standard deviation for a set of values.
	STDDEV(expr)
	<i>expr</i> is any expression that evaluates to a numerical value.
Sum	Calculates the sum obtained by adding up all values satisfying the numeric expression argument. SUM(expr)
	expr is any expression that evaluates to a numerical value.
Geometric Mean	Calculates the the geometric mean of an array or range of positive numeric data. GEOMEAN(expr)
	expr is any expression that evaluates to a numerical value.

At least two values/expression are required to calculate above aggregate functions.

Math

Menu Description

Abs Calculates the absolute value of a numerical

expression.

ABS(expr)

expr is any expression that evaluates to a

numerical value.

Log Calculates the natural logarithm of an

expression.

LOG(expr)

expr is any expression that evaluates to a

numerical value.

Log10 Calculates the base 10 logarithm of an

expression.

LOG10(expr)

expr is any expression that evaluates to a

numerical value.

Mod Divides the first numerical expression by the

second numerical expression and returns the

remainder portion of the quotient.

MOD(expr, divisor)

expr is any expression that evaluates to a

numerical value.

divisor is any expression or number by which you

want to divide

Power Takes the first numerical expression and raises it

to the power specified in the second numerical

expression.

POWER(expr, power)

expr is any expression that evaluates to a

numerical value.

power is the exponent, to which the base

expression or number is raised

Round Rounds a numerical expression to n digits of

precision.

ROUND(expr, num_digits)

expr is any expression that evaluates to a

numerical value.

num_digits is the number of digits to which you want to round. Negative rounds to the left of the decimal point; zero or omitted, to the nearest

integer.

Round Down Rounds down a number to either a decimal place

or a whole number.

ROUNDDOWN(expr, num_digits)

expr is any expression that evaluates to a

numerical value.

num_digits is the number of digits to which you want to round. Negative rounds to the left of the decimal point; zero or omitted, to the nearest

integer.

Round Up	Rounds up a number to either a decimal place or a whole number.
	ROUNDUP(expr, num_digits)
	<i>expr</i> is any expression that evaluates to a numerical value.
	<i>integer</i> is any positive integer that represents the number of digits of precision.
Sqrt	Calculates the square root of the numerical expression argument.
	SQRT(expr)
	<i>expr</i> is any expression that evaluates to a nonnegative numerical value.
Product	Multiplies all numerical expressions given as arguments and returns the product.
	PRODUCT(expr1, expr2)
	<i>expr</i> is any expression that evaluates to a numerical value.
Quotient	Returns one numerical expression divided by numerical expression, without the remainder.
	QUOTIENT(expr1, expr2)
	<i>expr</i> is any expression that evaluates to a numerical value.
	Example: QUOTIENT(5,2). This will return 2, unlike division which returns 2.5
Exponent	Calculates e raised to the power of the numerical expression argument.
	EXP(expr)
	<i>expr</i> is any expression that evaluates to a numerical value.

Expression

Menu	Description
Case(If)	This form of the Case statement evaluates each WHEN condition and if satisfied, assigns the value in the corresponding THEN expression. If none of the WHEN conditions are satisfied, it assigns the default value specified in the ELSE expression. If no ELSE expression is specified, the system will automatically add an ELSE NULL.
	CASE WHEN request_condition1 THEN expr1 ELSE expr2 END
	exprs is any valid expression.

- **6.** Click **Validate**. A successful formula validation message is displayed.
- 7. After defining and verifying the Managed Rates, execute the IRC using scheduler service.

Executing Managed Rates using Scheduler

To execute the batch, navigate to Operations and Processes and select Scheduler. Select Schedule Batch and search for **Historical Managed Rates** and execute.

OR

You can also define new batch to execute the Managed Rates by the following these steps:

- 1. Navigate to Operations and Processes, select Scheduler, and then select Define Batch.
- 2. Create a new Batch with a new Task with Component as IRC Managed Rates.
- From the LHS menu, navigate to Operations and Processes, select Scheduler, and then select Schedule Batch to execute the batch. Select the batch and click Execute. For more details about Scheduler processes, see the Scheduler Services.
- 4. From the LHS menu, navigate to Operations and Processes, select Scheduler, and then select Monitor Batch. There may be multiple executions of the batch. Select the latest execution and click Start Monitor.
 The UI displays the status of the batch.

2.2 IRC Data Migration

On-prem to SaaS Migration

Data Export from On-prem

Users have to connect to the database and export the data in the prescribed CSV format. Name of the Data File must follow the format as given below:

- A prefix as INPUT_YYYYMMDD where the date format is related to the As of Date (i.e., 02-October-2023 becomes 20231002).
- A suffix as _FILENAME.CSV.
- An example of Data File Name could be: INPUT_20231002_IRC_<DATAFILENAME>.csv.
 The order of the columns in the input file must be as follows:
 - INTEREST_RATE_NAME
 - EFFECTIVE DATE (Date format: MM-DD-YYYY)
 - INTEREST_RATE_TERM
 - INTEREST_RATE_TERM_MULT
 - INTEREST_RATE
 - RATE_DATA_SOURCE_CODE

Data Import to SaaS

For more information on importing the data, see Interest Rates Loader.

SaaS to SaaS Migration

Data Export from SaaS

Users have to export data using the Data Maintenance Interface and select the VW_FSI_IRC_RATE_HIST view. For more information about how to export data using the Data Maintenance Interface, see Data Maintenance Interface.

Data Import to SaaS

For importing the data, see Interest Rates Loader.

