

Oracle® MICROS Simphony
Transaction Services API Document

Release 19.3
F46310-02
April 2022

ii

Oracle MICROS Simphony Transaction Services API Document, Release 19.3

F46310-02

Copyright © 2010, 2022, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of
the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use.
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or
hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

iii

Contents
Preface v

1 Introduction 1-1

Simphony Architecture 1-1
Hosting Method 1-3
Quick Installation Roadmap 1-5
Error Logging 1-6
TS API Class Hierarchy 1-6
2 Transaction Operations 2-1

Calculate Totals 2-1
Post Transaction 2-2
Add to Transaction 2-4
Void Transaction 2-6
Check Print Job Status 2-6
3 Guest Check Operations 3-1

Get Check Summary 3-1
Get Check Detail 3-1
Get Printed Check 3-2
4 Configuration Operations 4-1

Get Configuration Information 4-1
5 Fiscal Operations 5-1

Sanity Check 5-1
6 Structure Reference 6-2

SimphonyPosAPI_CheckSummary 6-2
SimphonyPosAPI_CheckSummaryEx 6-3
SimphonyPosAPI_OpenChecks 6-4
SimphonyPosAPI_GuestCheck 6-4
SimphonyPosAPI_CheckRequest 6-5
SimphonyPosAPI_CheckResponse 6-6
SimphonyPosAPI_CheckDetailRequest 6-6
SimphonyPosAPI_CheckDetailResponse 6-6
SimphonyPosAPI_MenuItem 6-6
SimphonyPosAPI_MenuItemEx 6-7
SimphonyPosAPI_MenuItemDefinition 6-7
SimphonyPosAPI_MenuItemDefinitionEx 6-9
SimphonyPosAPI_ComboMeal 6-10
SimphonyPosAPI_ComboMealEx 6-11
SimphonyPosAPI_Discount 6-11
SimphonyPosAPI_DiscountEx 6-11
SimphonyPosAPI_SvcCharge 6-11
SimphonyPosAPI_SvcChargeEx 6-12
SimphonyPosAPI_TmedDetailItemEx 6-12
SimphonyPosAPI_TmedDetailItemEx2 6-12
SimphonyPosApi_Extensibility 6-13

iv

SimphonyPosAPI_EPayment 6-13
SimphonyPosAPI_TotalsResponse 6-15
SimphonyPosAPI_TotalsResponseEx 6-15
SimphonyPosAPI_ConfigInfoRequest 6-16
SimphonyPosAPI_ConfigInfo 6-16
SimphonyPosAPI_ConfigInfoResponse 6-16
SimphonyPosAPI_CheckPrintResponse 6-19
SimphonyPosAPI_PrintJobStatus 6-19
SimphonyPosAPI_OperationalResult 6-20
SimphonyPosAPI_SanityCheckResponse 6-21
CheckTaxDataPerRate 6-21
7 Example and Code Snippets 7-1

Calculate Totals of a Transaction 7-1
Create a Guest Check 7-12
Add an Item to an Open Guest Check 7-17
Void All Items of an Open Guest Check 7-18
Get Status of a Print Job 7-19
Get Summary of All Open Guest Checks 7-20
Get Open Guest Checks with RVC Object Number 7-22
Get Open Guest Checks from a Specific RVC 7-23
Get Summary and KDS Order Status of Open and Closed Guest Checks 7-24
Get Check Detail 7-26
Get Printed Texts of a Guest Check 7-27
Get Configured Information (Method 1 - GetConfigurationInfo) 7-28
Get Configured Information (Method 2 - GetConfigurationInfoEx) 7-30
8 Simphony Platform Requirements 8-1

Simphony Software Version 8-1
Offline Transaction Support 8-1
Printing Services 8-1
Calling Conventions 8-1
9 Demo Client for Transaction Services API 9-1

Application Path 9-1
Prerequisites 9-1
Initial Setup 9-1
Demonstration 9-2
10 Extending Transaction Services Through Plug-ins 10-1

Preface

v

Preface
This document is intended for use by software engineers developing applications that
interface with Simphony using Transaction Services (TS) API.

Purpose

Introduction to the document.

Audience

This document is intended for the following audiences:

• Installers/Programmers

• Dealers

• Customer Service

• Training Personnel

• MIS or IT Personnel

Prerequisite Knowledge

This document assumes the reader has the following knowledge or expertise:

• Operational understanding of PCs

• Understanding of basic network concepts

• Experience in configuring workstation clients in the Simphony EMC

Glossary

Acronym/Abbreviation Full Text

API Application Programming Interface

CAL Client Application Loader

CAPS Check and Posting Service

DB Database

EMC Enterprise Management Console

IIS Microsoft Internet Information Services

OPS Operations Software (POS Client)

PC Personal Computer

PDA Personal Digital Assistance

POS Point of Sale

RVC Revenue Center

SQL Structured Query Language

SVC Stored Value Card

TS Transaction Services

Preface

vi

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

• Exact error message received and any associated log files

• Screenshots of each step you take

Documentation

Oracle Food and Beverage product documentation is available on the Oracle Help Center
at https://docs.oracle.com/en/industries/food-beverage/pos.html

Revision History

Date Description of Change

September 2021 • Initial publication.

April 2022 • Updated the Simphony Architecture
section in Chapter 1.

https://support.oracle.com/
https://docs.oracle.com/en/industries/food-beverage/pos.html

Chapter 1
Introduction

 1-1

1
Introduction

Transaction Services (TS) API is a web service that helps integrate a third-party
application with the Simphony Point-Of-Sale (POS) system. It leverages core business
functionalities of the Simphony POS and exposes them via web methods for third-party
integration. This web service provides methods to perform the following POS operations.

1. Calculate total amounts of a transaction

2. Create a guest check for a transaction in the Simphony POS database

3. Add one or more items, such as menu, discount, service charge, tender, and so on to
any existing open guest check

4. Void all items of an open guest check

5. Retrieve a summary of all open guest checks from a specific or all revenue centers of
a property

6. Retrieve a printed version of a guest check (print receipt for a guest check)

All guest checks posted via Transaction Services API can be opened with the POS client
user interface, which is configured to run on any workstation from the same property.

The following are sample business scenarios in which Transaction Services API can be
used to integrate a third-party application with the Simphony POS.

• Remote ordering from a kiosk or mobile phone application

• Remote ordering or centralized order dispatch via a web application

• Guest payment approval using mobile phones or PDAs

Transaction Services web service is installed on each workstation where the Simphony
CAL package is executed. The CAL package downloads the required file contents from
the Simphony application server to the actual workstation and installs it. As part of the
installation, the CAL package creates a shortcut to ServiceHost.exe on the desktop.
Launching ServiceHost.exe ensures that the TS web service is hosted (along with other
services and the POS client user interface) and is ready to process requests from any
client.

Simphony Architecture
The POS client provides a user interface for all POS operations in the Simphony
system. The order taker can log on to the POS client using valid credentials and add a
transaction to create a guest check. As part of a transaction, he or she can add menu
items, discounts, service charges, multiple tax rates, and tender details to the guest
check and save it to the POS database. The guest checks that are created on one
workstation of the property can be accessed from other workstations of the same
property using the CAPS (Check and Posting) service.

Chapter 1
Introduction

 1-2

TS web service uses the same underlying business libraries that are used by the POS
client for all POS operations. Technically TS web service is a version of the POS client
without the UI.

The guest check created through the Transaction Services API posts to the enterprise
database (MCRSPOS) for reporting purposes via CAPS. All transactions made through
the TS web service or POS client UI is first stored in the local POS database named
DataStore. The CAPS which owns the CheckAndPostingDB database posts all
transactional data to the enterprise database (MCRSPOS) with the help of the
EGateway service, which is hosted on the Simphony application server.

All configuration changes made by the EMC application at the enterprise server are
downloaded to the local POS database of each workstation using a DB Sync
component. By default, the DB Sync operation runs every 30 minutes. Thus, any
configuration changes made at the enterprise server for a specific property or
workstation will be available for Transaction Services and the POS client within 30
minutes. The DB Sync can also be manually initiated anytime using a function button in
the POS client.

The following image shows the Simphony system architecture, including Transaction
Services API/web service. The image depicts how data flows from a TS client application
to the reporting database.

Chapter 1
Introduction

 1-3

Figure 1-1 - Simphony Architecture

Direct Posting Service

Database
Download
Handler

EMC Handler

Sequencer
Service

Posting
Handler

Data Transfer Service

Portal Info Delivery Handler

Portal Handler

CAL
Handler

E
g
a
t
e
w
a
y
S
e
r
v
i
c
e

Transaction
Application Server

J B

Reporting
Application Server

MCRSPOS

Reporting Databases

Transaction Databases

RTA PORTALDB

COREDBLOCATION_
ACTIVTY_DB

MCRSCACH
E

Quarz BiRepos

OPS Data Store
Local Defs

Local Checks
Local Reports

Workstation 1

SERVICE HOST

Check & Posting
Service

Printing Service

OPS
UI

OPS Data Store
Local Defs

Local Checks
Local Reports

Workstation 2

SERVICE HOST

Printing Service

OPS
UI

CAPS Data
Store

Property Defs
Property Checks
Property Reports

TS API
(web service)

Store Datacenter

TS API Client
(e.g. mobile / kiosk

app)

Internet

1

1

2

3

4

5

Direct Posting Services is a Windows service that runs on the application server to
upload data from the transaction database (MCRSPOS) to one of the reporting
databases named LOCATION_ACTIVITY_DB. Any workstation in a store can be
configured to host TS API. In this example, Workstation 1 hosts the TS API.

Hosting Method
The Transaction Services web service is pre-installed on each workstation or application
server where the Simphony installation media or CAL package was executed.
Configuring a proper workstation client of type POS API from the EMC application will
allow for the successful hosting of Transaction Services web service at the POS
workstation.

The Service Host, which is configured via EMC to run on a workstation, hosts the
Transaction Services API as a web service by default at port number 8080. The format of
the web service URL is:

http://<<WorkstationIPAddress>>:8080/EGateway/SimphonyPosApiWeb.asmx

Any client machine that has access to a given POS workstation can consume
Transaction Services by referring to the correct URL of the TS web service.

To configure a POS API client for the TS web service:

1. Log on to the EMC application.

Chapter 1
Introduction

 1-4

2. Select a property to configure.

3. Click the Setup tab.

4. Click the Workstation link under Hardware/Interfaces.

5. Insert a new workstation as a POS API client (for example, TS API).

6. Double-click the record to open the created workstation in form view.

7. On the General tab under the General Settings section, select 3 - POSAPI Client
from the Type drop-down list. This enables the workstation to run only TS inside the
Service Host process without the POS client.

8. If the POS client needs to run on the same workstation that is run by a Service Host,
you need to create two workstations: one for the POS workstation client and another
for the TS client type. From the Service Host link, select the Service Host of the POS
client when the drop-down list appears during Pos Api client WS type selection. This
ensures that there will be two workstation identities - one WorkstationID for the POS
client and another API_Workstation ID for the TS workstation.

9. Click Save.

To confirm that the TS web service is hosted correctly:

1. Launch ServiceHost.exe on the POS workstation.

2. Go to the web service URL above using any web browser. If WSDL details are shown
in the web browser, the web service is hosted properly.

Apart from this method (that is, hosting TS web service on Service Host), TS web service
can be hosted on the application server as well, but it will never be applied because the
application server is beyond the boundary of third-party clients. By default, the Simphony
application server has the TS web service installed and hosted after successful execution
of Simphony installation media. This web service can be accessed with the right URL to
the application server. It is normally hosted on the following URL. Replace the
placeholder with the IP address of the application server below.
http://<SimphonyAppServerIPAddress>:8080/EGateway/SimphonyPosApiWeb.asmx

To create a stub or proxy or WSDL for the client application to integrate with the TS web
service, software engineers can add a reference to this web service. Later, the URL can
be changed to point at the instance that is hosted on the workstation.

Chapter 1
Introduction

 1-5

Quick Installation Roadmap

Log on to EMC and select a property that needs
to be configured

Click Setup tab, click Workstation link under
Hardware/Interfaces

Add a new workstation for POS API client,
on General tab select 3 – POSAPI Client for

Type

If POS client UI does not need to be hosted by
Service Host, click Save, to make TS without UI

If POS client UI is needed, select the Service
Host ID of corresponding POS client from

Service Host ID drop-down list of Service Host
fields section that appears after changing type

of WS to POS API Client

Launch ServiceHost.exe and then navigate to
the web service URL given below using a web

browser to see if TS API hosted properly

http://<<SimphonyAppServerIPAddress>>:808
0/EGateway/SimphonyPosApiWeb.asmx

Let CAL download ServiceHost.xml, then go to
Web.config.txt located under MICROS > Simphony >
EGatewayService in Workstation to confirm the type

change made through as new entry api_workstationID is
displayed

Chapter 1
Introduction

 1-6

Error Logging
Transaction Services API writes all errors and other informational messages to a flat file
in the following folder on the POS workstation for diagnostics purposes. “Simphony Pos
Api:” is appended before any logs in TS.
<ROOT_INSTALL_DRIVE>\MICROS\Simphony\WebServer\wwwroot\EGateway\EgatewayL
og\

Example path: C:\MICROS\Simphony\WebServer\wwwroot\EGateway\EgatewayLog\

TS API Class Hierarchy
Table 1-1 - Interfaces Table

Interface Description

ITransactionServices Interface The main interface that supports
transaction related operations (for
example, calculating transaction totals,
posting a transaction to create a guest
check in the POS database, adding items
to an existing guest check, voiding a
transaction/check, and retrieving status of
any print job).

IGetCheckInfo Interface Interface that provides support for
fetching all open/closed guest checks,
retrieving printed lines of guest check and
configuration related information from the
POS database.

SimphonyPosAPI_CheckSummary
Structure

Structure that defines summary of a guest
check.

SimphonyPosApi_CheckSummaryEx
Structure

This structure derives from
SimphonyPosAPI_CheckSummary and
holds a couple of fields on KDS order
status.

SimphonyPosAPI_OpenChecks Structure Structure that represents check summary
of all open checks.

SimphonyPosAPI_GuestCheck Structure Structure that defines guest check details
such as Check ID, Order Type, Guest
Count, Table Number, and so on.

SimphonyPosApi_CheckRequest
Structure

Structure that defines input parameters
required to call GetChecks web method.

SimphonyPosApi_CheckResponse
Structure

Structure that holds the response of
GetChecks web method.

SimphonyPosApi_CheckDetailRequest
Structure

Structure that defines input parameters
required to call GetCheckDetail web
method.

Chapter 1
Introduction

 1-7

Interface Description

SimphonyPosApi_CheckDetailResponse
Structure

Structure that holds the response of
GetCheckDetail web method.

SimphonyPosAPI_MenuItem Structure Structure that holds the definition of menu
item and its condiments.

SimphonyPosAPI_MenuItemDefinition
Structure

Structure that defines details of a menu
item, such as menu item object number,
price, discount, and so on.

SimphonyPosAPI_ComboMeal Structure Structure that defines a Combo Meal
(main and side items).

SimphonyPosAPI_Discount Structure Structure used to represent a discount in
the Simphony POS system.

SimphonyPosAPI_SvcCharge Structure Structure used to represent a Service
Charge in the Simphony POS system.
This has details such as service charge
amount or percentage.

SimphonyPosAPI_EPayment Structure Structure that defines Advanced
Electronic Payment details such as credit
card account, tip amount, cash back
amount, and so on.

SimphonyPosAPI_TmedDetailItemEx
Structure

Structure to represent a tender media
which has mode of payment.

SimphonyPosAPI_TotalsResponse
Structure

Structure that holds various totals, such
as subtotal, due amount, tax amount and
automatic service charges of a
transaction.

SimphonyPosApi_ConfigInfoRequest
Structure

Structure that defines input parameters
required to call GetConfigurationInfoEx
web method.

SimphonyPosApi_ConfigInfo Structure Structure that holds filter criteria to be
used to retrieve configuration data using
GetConfigurationInfoEx method.

SimphonyPosApi_ConfigInfoResponse
Structure

Structure that holds configuration details
of items, such as menu item definitions,
menu item price, currency, discounts,
employees, order type, revenue centers,
tender media, service charge, and so on.

SimphonyPosApi_CheckPrintResponse
Structure

Structure that holds the response of Get
Printed Check method call. This structure
holds operation (success/failure) results
along with printed check lines.

SimphonyPrintApi_PrintJobStatus
Structure

Structure that holds the response of Get
Printed Job Status method call. This
structure holds the operation result
(success/failure) along with details of print

Chapter 1
Introduction

 1-8

Interface Description

jobs and status code and error/success
message.

SimphonyPosAPI_OperationalResult
Structure

Structure used to represent result
(success or failure) of a method call. In
case of failure, this structure will provide
error code along with error message that
tells the cause of failure.

SimphonyPosApi_SanityCheckResponse
Structure

Structure that holds the response of the
Sanity Check method call. This structure
holds two sets of results (success or
failure, in case of failure with error code
and message). One result for the
operational aspect of the method call, and
the other for the sanity check validation,
which is performed based on the provided
sanity code.

Chapter 2
Transaction Operations

 2-1

2
Transaction Operations

TS API provides several transaction related POS operations. As the parameters required
by an operation are updated, the operation name is extended by adding to the operation
name. For example CalculateTransactionTotals and CalculateTransactionTotalsEx both
perform the same operation; however, the newer “Ex” method accepts different
parameters to support additional functionality.

Calculate Totals
The calculate totals operation is used to compute totals of an order without creating a
guest check in the Simphony POS database.

The following Calculate Totals method is available in Simphony version 2.7 and later.

void CalculateTransactionTotals
(

 string vendorCode,
ref SimphonyPosApi_MenuItem[] ppMenuItems,
ref SimphonyPosApi_ComboMeal[] ppComboMeals,
ref SimphonyPosApi_SvcCharge pSvcCharge,
ref SimphonyPosApi_Discount pSubtotalDiscount,
 int revenueCenter,
 short orderType,
 int employeeNumber,
ref SimphonyPosApi_TotalsResponse pTotalsResponse

)

The following Calculate Totals method is available beginning with Simphony version 18.2.
This version of the method has updated structures that add support for multiple
discounts, the ability to specify menu item quantity and definition sequence, and specify
extension data with menu items.

void CalculateTransactionTotalsEx
(

ref SimphonyPosApi_MenuItemEx[] ppMenuItemsEx,
ref SimphonyPosApi_ComboMealEx[] ppComboMealsEx,
ref SimphonyPosApi_SvcChargeEx pSvcChargeEx,
ref SimphonyPosApi_DiscountEx[] pSubTotalDiscountEx,
 int revenueCenterObjectNum,
 short orderType,
 int employeeObjectNum,
 int checkGuestcount,
ref SimphonyPosApi_TotalsResponseEx pTotalsResponseEx

)

Chapter 2
Transaction Operations

 2-2

Parameters
vendorCode Vendor code for license validation. In Simphony

version 2.7 MR3 or later, set this parameter to an
empty string.

revenueCenterObjectNum Object number of given revenue center.

orderType Number of the order type for the transaction (for
example, Dine-in or Carry-out).

employeeObjectNum Object number of employee authorized to
perform the operation.

checkGuestCount The number of guests on the guest check. This
value is used to compute automatic service
charges.

The guest check is defined by creating a set of menu items, combo meals, service
charge, and discount. Refer to the Structure Reference chapter for details on how they
are specified.

Response
The method calculates discounts (subtotal, item, and automatic discounts), service
charges and taxes. The results of the calculations are returned in the same structures
used in the request parameters and indicate the price of items and the results of applying
discounts and service charges.

The pTotalsResponse/Ex parameter contains the success or failure result of operations,
results of tax calculations, and summary totals.

Post Transaction
The post transaction operation is used to create a new guest check.

The following post transaction method is available in Simphony version 2.7 and later.

void PostTransactionEx
(
 string vendorCode,
ref SimphonyPosApi_GuestCheck pGuestCheck,
ref SimphonyPosApi_MenuItem[] ppMenuItems,
ref SimphonyPosApi_ComboMeal[] ppComboMeals,
ref SimphonyPosApi_SvcCharge pServiceChg,
ref SimphonyPosApi_Discount pSubTotalDiscount,
ref SimphonyPosApi_TmedDetailItemEx pTmedDetail,
ref SimphonyPosApi_TotalsResponse pTotalsResponse,
ref string[] ppCheckPrintLines,
ref string[] ppVoucherOutput

)

The following Post Transaction method is available beginning with Simphony version
18.2. This version of the method has updated structures that add support for multiple

Chapter 2
Transaction Operations

 2-3

discounts, the ability to specify menu item quantity and definition sequence, and specify
extension data with menu items.

void PostTransactionEx2
(
ref SimphonyPosApi_GuestCheck pGuestCheck,
ref SimphonyPosApi_MenuItemEx[] ppMenuItemsEx,
ref SimphonyPosApi_ComboMealEx[] ppComboMealsEx,
ref SimphonyPosApi_SvcChargeEx pSvcChargeEx,
ref SimphonyPosApi_DiscountEx[] pSubTotalDiscountEx,
ref SimphonyPosApi_TmedDetailItemEx2[] pTmedDetailEx2,
ref SimphonyPosApi_TotalsResponseEx pTotalsResponseEx,
ref string[] ppCheckPrintLines,
ref string[] ppVoucherOutput,
 SimphonyPosApi_Extensibility[] checkExtensibilityDetails

)

Parameters
vendorCode Vendor code for license validation. In Simphony

version 2.7 MR3 or later, set this parameter to an
empty string.

revenueCenterObjectNum Object number of given revenue center.

orderType Number of the order type for the transaction (for
example, Dine-in or Carry-out).

employeeObjectNum Object number of employee authorized to
perform the operation.

The guest check is defined by creating a set of menu items, combo meals, service
charges, and discounts. The pGuestCheck parameter is used to specify additional
attributes for the guest check, Guest Count, Check ID, Event Number, and so on.

A tender media is required. If a tender media of type Service Total is supplied, the guest
check is created in the open state. If a tender media of type Payment is supplied, the
check is closed.

Refer to the Structure Reference chapter for details on how they are specified.

Response
The guest check is printed to the local and remote order devices defined for the POS API
workstation. The printed check details are returned in the ppCheckPrintLines parameter,
while credit voucher details are filled in the ppVoucherOutput parameter.

The price of menu items, discounts, and service charges are returned in the same
structures used to create the request. The pGuestCheckThe pTotalsResponse/Ex
parameter contains a summary of totals.

The system does not create the guest check if payment or another interim operation fails.
Inspect the OperationalResult property of the pGuestCheck structure in the response to
verify that the operation has completed successfully.

Chapter 2
Transaction Operations

 2-4

When the operation completes successfully, the CheckNum and CheckSeq properties
are set on the pGuestCheck parameter. These values are used to reference the guest
check in subsequent operations.

Add to Transaction
This operation is used to add items or payments to a guest check previously created
using a post transaction operation. This operation can be used to

• add one or more menu items or combo meals to an existing open guest check

• apply partial or full payment on an existing open guest check

• applied a coupon discount to an existing open guest check

The following post transaction method is available in Simphony version 2.7 and later.

void AddToExistingCheckEx
(
 string vendorCode,
ref SimphonyPosApi_GuestCheck pGuestCheck,
ref SimphonyPosApi_MenuItem[] ppMenuItems,
ref SimphonyPosApi_ComboMeal[] ppComboMeals,
ref SimphonyPosApi_SvcCharge pServiceChg,
ref SimphonyPosApi_Discount pSubTotalDiscount,
ref SimphonyPosApi_TmedDetailItemEx pTmedDetail,
ref SimphonyPosApi_TotalsResponse pTotalsResponse,
ref string[] ppCheckPrintLines,
ref string[] ppVoucherOutput

)

The following post transaction method is available beginning with Simphony version 18.2.
This version of the method has updated structures that add support for multiple
discounts, the ability to specify menu item quantity and definition sequence, and specify
extension data with menu items.

void AddToExistingCheckEx2
(
ref SimphonyPosApi_GuestCheck pGuestCheck,
ref SimphonyPosApi_MenuItemEx[] ppMenuItemsEx,
ref SimphonyPosApi_ComboMealEx[] ppComboMealsEx,
ref SimphonyPosApi_SvcChargeEx pSvcChargeEx,
ref SimphonyPosApi_DiscountEx[] pSubTotalDiscountEx,
ref SimphonyPosApi_TmedDetailItemEx2[] pTmedDetailEx2,
ref SimphonyPosApi_TotalsResponseEx pTotalsResponseEx,
ref string[] ppCheckPrintLines,
ref string[] ppVoucherOutput,
 SimphonyPosApi_Extensibility[] checkExtensibilityDetails

)

Parameters
vendorCode Vendor code for license validation. In Simphony

version 2.7 MR3 or later, set this parameter to an
empty string.

Chapter 2
Transaction Operations

 2-5

revenueCenterObjectNum Object number of given revenue center.

orderType Number of the order type for the transaction (for
example, Dine-in or Carry-out).

employeeObjectNum Object number of employee authorized to
perform the operation.

The guest check is defined by creating a set of menu items, combo meals, service
charges, and discounts. The pGuestCheck parameter is used to specify additional
attributes for the guest check, Guest Count, Check ID, Event Number, and so on.

A tender media is required. If a tender media of type Service Total is supplied, the guest
check is created in the open state. If a tender media of type Payment is supplied, the
check is closed.

When this method is invoked, the guest check structure (pGuestCheck) is evaluated and
changed where appropriate. The following properties of SimphonyPosApi_GuestCheck
can be modified and updated to reflect the new information during execution of this
method:

• CheckID

• CheckTableObjectNum (when supported)

• CheckOrderType

• CheckEmployeeObjectNum

• CheckDateToFire

• pCheckInfoLines

The CheckNum, CheckSeq and CheckRevenueCenterObjectNum properties are not
modified by this method.

Refer to the Structure Reference chapter for details on how they are specified.

Response
The price of menu items, discounts, and service charges are returned in the same
structures used to create the request. The pGuestCheckThe pTotalsResponse/Ex
parameter contains a summary of totals.

The guest check is printed to the local and remote order devices defined for the POS API
workstation. The printed check details are returned in the ppCheckPrintLines parameter,
while credit voucher details are filled in the ppVoucherOutput parameter.

The operation does not complete if payment or another interim operation fails. Inspect the
OperationalResult property of the pGuestCheck structure in the response to verify that
the operation completed successfully.

When the operation completes successfully, the CheckNum and CheckSeq properties
are set on the pGuestCheck parameter. These values are used to reference the guest
check in subsequent operations.

Chapter 2
Transaction Operations

 2-6

Void Transaction
This operation voids all items (for example, menu items, tender media, service charge,
and discount) in the given guest check and then closes the check. This method works
only if the guest check is in the open state. This method fails if the check is already in the
closed state.

The following post transaction method is available in Simphony version 2.7 and later.

void VoidTransaction
(
 string vendorCode,
ref SimphonyPosApi_GuestCheck pGuestCheck

)

Parameters
vendorCode Vendor code for license validation. In Simphony

version 2.7 MR3 or later, set this parameter to an
empty string.

The request must specify both the CheckNum and CheckSeq properties of the
pGuestCheck parameter. All other properties of pGuestCheck can be set to their default
values.

Response
Check the OperationalResult property of the pGuestCheck parameter from the response
to verify that the operation succeeded.

Check Print Job Status
This method is used to obtain the status of a specific print job (for example, guest check
print and credit voucher print) of a transaction.

The following post transaction method is available in Simphony version 2.7 and later.

void CheckPrintJobStatus
(
 string vendorCode,
 int ppJobId,
ref SimphonyPrintApi_PrintJobStatus ppJobStatus

)

Chapter 2
Transaction Operations

 2-7

Parameters
vendorCode Vendor code for license validation. In Simphony

version 2.7 MR3 or later, set this parameter to an
empty string.

ppJobId The ID of a print job for which status is retrieved. This
value comes from the PPrintJobIds property of the
SimphonyPosApi_GuestCheck structure.

ppJobStatus The response contains the status of the print job.

Response
This method gets the status of a specified print job. It also gets the complete list of print
jobs and stores it in the PrintJobList field of parameter ppJobStatus. The following is an
exhaustive list of job status:

• Job Pending

• Job Complete

• Job Aborted

• Job Sent to backup printer

• Job Failed

• Job Not found

The status of the print job is returned in the ppJobStatus parameter.

Chapter 3
Guest Check Operations

 3-1

3
Guest Check Operations

TS API provides support for two check related and one configuration related operations.
One web method is exposed to support each of these operations. The following table
describes the web methods.

Get Check Summary
void GetOpenChecks (string vendorCode, int employeeObjectNum,

ref SimphonyPosAPI_OpenChecks openChecks)

Gets summary of all open guest checks from all revenue centers of the property
from Simphony POS database

void GetOpenChecksEx (string vendorCode, int employeeObjectNum,

ref SimphonyPosAPI_OpenChecks openChecks)

Gets summary of all open guest checks from all revenue centers of the property from Simphony POS
database. The only difference between GetOpenChecks and this method is that GetOpenChecks
populates CheckRevenueCenterObjectNum member with ID of revenue center while this
method populates Object Number of revenue center.

void GetOpenChecksByRVC (string vendorCode, int employeeObjectNum, int
revenueCenterObjectNum,

ref SimphonyPosAPI_OpenChecks openChecks)

Gets summary of open guest checks for a specific revenue center from Simphony POS database

 void GetChecks (SimphonyPosApi_CheckRequest ppCheckFilter, ref
SimphonyPosApi_CheckResponse

 ppChecksResponse)

Gets summary of both open and closed guest checks after applying given filter condition

Get Check Detail
 void GetCheckDetail (SimphonyPosApi_CheckDetailRequest ppCheckDetailFilter, ref

 SimphonyPosApi_CheckDetailResponse ppCheckDetailResponse)

Gets completes details of a guest check in xml format

Chapter 3
Guest Check Operations

 3-2

Get Printed Check
void GetPrintedCheck (string vendorCode, int CheckSeq, int EmplObjectNum, int
TmedObjectNum,

ref SimphonyPosApi_CheckPrintResponse ppCheckPrintLines)

Gets printed texts of an open guest check

The following sections provide details about each operation.

Get Summary of All Open Guest Checks
void GetOpenChecks

(

string vendorCode,

int employeeId,

ref SimphonyPosAPI_OpenChecks openChecks

)

Business Purpose
The user wants to view a summary of all open guest checks from all revenue centers
within the property.

Method Description
This method gets a summary of all open guest checks from all revenue centers within the
property from the POS database. Guest checks that are created by a specific employee
can be fetched by passing the appropriate value to the employeeId parameter. However,
when 0 is passed to employeeId, it fetches all open guest checks irrespective who
created the check. The CheckRevenueCenterObjectNum field of the
openChecks.SimphonyPosApi_CheckSummary structure is mislabeled; it holds the value
of Revenue Center ID instead of Revenue Center Object Number. If this field is expected
to hold Object Number of Revenue Center, the new method named GetOpenChecksEx
can be used instead.

Parameters
vendorCode Vendor code for license validation. In Simphony

version 2.7 MR3 or later, set this parameter to an
empty string.

employeeId Employee ID of employees to filter open guest
checks based on who created it. Pass specific
employee ID to fetch open checks created by
that specific employee. Pass zero to fetch all
open checks irrespective of who created the
check.

openChecks Holds open checks retrieved from the POS
database (output parameter).

Chapter 3
Guest Check Operations

 3-3

Return Value
Void. Result is encapsulated in openChecks reference parameter.

Get Open Guest Checks With RVC Object Number
void GetOpenChecksEx
(

string vendorCode,
int employeeObjectNum,
ref SimphonyPosAPI_OpenChecks openChecks

)
Business Purpose
The user wants to view a summary of all open guest checks from all revenue centers
within the property, and wants to have the object number of the revenue center (instead
of ID) for each guest check. The object number of the revenue center is different from
that of ID.

Method Description
This method is another version of the GetOpenChecks method that is described in the
previous section. This was introduced in Simphony version 2.7 MR5 to retrieve all open
guest checks from all revenue centers within the property. The only difference compared
to the GetOpenChecks method is that the CheckRevenueCenterObjectNum property of
openChecks.SimphonyPosApi_CheckSummary holds the Revenue Center Object
Number instead of the Revenue Center ID. All open guest checks created by a specific
employee can be fetched by passing the appropriate value to the employeeObjectNum
parameter. However, when 0 is passed to employeeObjectNum, it fetches all open guest
checks irrespective of who created them.

Parameters
vendorCode Vendor code for license validation. In Simphony

version 2.7 MR3 or later, set this parameter to an
empty string.

employeeObjectNum Object number of employees to filter open guest
checks based on who created it. Pass specific
employee object numbers to fetch open checks
created by that specific employee. Pass zero to
fetch all open checks irrespective of who created
the check.

openChecks Holds open checks retrieved from the POS
database (output parameter).

Return Value
Void. Result is encapsulated in the openChecks reference parameter.

Get Open Guest Checks From a Specific RVC
Void GetOpenChecksByRVC
(

String vendorCode,
Int employeeObjectNum,
Int revenueCenterObjectNum
ref SimphonyPosAPI_OpenChecks openChecks

)

Chapter 3
Guest Check Operations

 3-4

Business Purpose
The user wants to view a summary of open guest checks from a specific revenue center.

Method Description
This method was introduced in Simphony version 2.7MR4 to get all open guest checks in
a specific revenue center from the Simphony POS database. All open guest checks
created by a specific employee in a specific revenue center can be fetched by passing
the appropriate value to the employeeObjectNum and revenueCenterObjectNum
parameters. However, when 0 is passed for employeeObjectNum, it fetches all open
guest checks from the specified revenue center irrespective of who created it. Also, note
that the other two related methods named GetOpenChecks and GetOpenChecksEx
return a summary of all open checks from all revenue centers within the property.

Parameters
vendorCode Vendor code for license validation. In Simphony

version 2.7 MR3 or later, set this parameter to an
empty string.

employeeObjectNum Object number of employees to filter open guest
checks based on who created it. Pass specific
employee object numbers to fetch open checks
created by that specific employee. Pass zero to
fetch all open checks irrespective of who created
the check.

revenueCenterObjectNu
m

Object number of revenue center for which
checks needs to be retrieved.

openChecks Holds open checks retrieved from the POS
database (output parameter).

Return Value
Void. Result is encapsulated in the openChecks reference parameter.

Get Printed Texts of a Guest Check
void GetPrintedCheck
(

string vendorCode,
int CheckSeq,
int EmplObjectNum,
int TmedObjectNum,
ref SimphonyPosAPI_CheckPrintResponse ppCheckPrintLines

)

Business Purpose
The user wants to reprint a guest check for a customer using an external printer.

Method Description
This method gets printed texts of an open guest check. This method works only on open
guest checks and throws an exception for a closed guest check.

This method requires the tender media as input because it has several printing options
that assist in the formatting of the final guest check.

Chapter 3
Guest Check Operations

 3-5

Parameters
vendorCode Vendor code for license validation. In Simphony

version 2.7 MR3 or later, set this parameter to an
empty string.

CheckSeq Check number of the guest check (and not the
check sequence number as the name implies).

EmplObjectNum Object number of the employee who wants to
perform this operation.

TmedObjectNum Object number of the tender media to print the
check with.

ppCheckPrintLines This holds an array of printed lines of the check
along with response code.

Return Value
Void. Result is encapsulated in the ppCheckPrintLines reference parameter.

Get Summary and KDS Order Status of Open and/or Closed
Guest Checks

Void GetChecks

(

SimphonyPosApi_CheckRequest ppCheckFilter,

ref SimphonyPosApi_CheckResponse ppChecksResponse

)

Business Purpose
The user wants to view a summary of both open and closed guest checks that satisfy one
or more filter conditions. This method can also be used when the user wants to know the
KDS order status of one or more guest checks.

Method Description
This method was introduced in Simphony version 18.1 to get a summary of both open
and closed guest checks that satisfy one or more filter conditions. If no filter is passed,
this method will return all open guest checks that are created on the current business
date in the default revenue center assigned to the POS API workstation. If closed checks
need to be returned too, the field IncludeClosedCheck of ppCheckFilter should be set to
True. This method applies filters based on data passed to following fields of
ppCheckFilter:

• CheckNumbers
Pass one or more check numbers to filter checks based on check numbers

• EmloyeeObjectNum
Pass Object Number of an employee to get only checks created by that particular
employee

• RvcObjectNum
Pass Object Number of an RVC that is currently assigned to a POS API workstation
to get only checks created in that RVC

Chapter 3
Guest Check Operations

 3-6

• OrderTypeID
Pass Object Number of an Order Type to get guest checks created for that specific
order type

• KdsOrderStatus
Pass one or more KDS Order Status ID to retrieve checks that hold those status ID
as their current KDS order status. Possible KDS order status IDs include:

- 30 means DS_SENT (order has been sent to the kitchen with at least 1 menu
item)

- 50 means DS_PREP_DONE (order has been prepared by at least one station)

- 60 means DS_READY (order has been expo done and is ready to be distributed
to the customer)

- 100 means DS_CANCELLED (order cancelled)

• LookupStartDate
Pass a date to retrieve only checks that were created after that given date

• IncludeClosedCheck
Pass True to retrieve closed checks too. When False or value not specified, this
method will return only open guest checks.

None of these fields mandates input data and the caller of this method can pass input
data to one or more of these fields to filter the guest checks as needed.

The field VendorCode of ppCheckFilter is reserved for future use and is not currently
used for any purpose.

Parameters
ppCheckFilter Criteria based on which guest checks need to be

filtered.

ppChecksResponse Holds status of operation along with a summary
of filtered guest checks. The summary includes
KDS order status as well.

Return Value
Void. Result is encapsulated in ppChecksResponse reference parameter.

Chapter 4
Configuration Operations

 4-1

4
Configuration Operations

Get Configuration Information
void GetConfigurationInfo (string vendorCode, int employeeObjectNum, int[]
configurationInfoType,

int revenueCenter, ref SimphonyPosApi_ConfigInfoResponse configInfoResponse)

Gets configuration data for one or more types from POS database.

Note: This method returns all the records of specified configuration data type and it may throw
“timeout” error when the POS database has a huge volume of configuration data for one or more
types. The integrator can use the new method named GetConfigurationInfoEx (introduced in 2.9) in
such cases to retrieve configuration data batch by batch by specifying ranges in the input parameter.

void GetConfigurationInfoEx (SimphonyPosApi_ConfigInfoRequest configInfoRequest,

ref SimphonyPosApi_ConfigInfoResponse configInfoResponse)

A new version of GetConfigurationInfo method to retrieve configuration data from POS database
batch by batch by specifying ranges. This new method can be used instead of GetConfigurationInfo if
the volume of configuration data is huge. Because, the other method named GetConfigurationInfo
may throw “timeout” error when it tries to pull huge volume of records in one request.

Get Configured Information (method 1)
void GetConfigurationInfo
(

string vendorCode,
int employeeObjectNum,
ARRAY(int) configurationInfoType,
int revenueCenter,
ref SimphonyPosAPI_ConfigInfoResponse configInfoResponse

)

Business Purpose
The user wants to fetch configuration data from the Simphony POS database.

Method Description
This method returns configuration data, such as menu item definition and menu item
price found in the POS database. If the volume of configuration data is found to be large,
this method may throw a timeout error. In such cases, the client application can call a
new version of this method named GetConfigurationInfoEx that is explained in the next
section. The new method returns configuration data for only a specified range of records.
The caller has to call this new method multiple times to retrieve a complete list of records.
Review the next section for more details on the new version of this method. The following
list of configuration data can be retrieved using the GetConfigurationInfo method.

Chapter 4
Configuration Operations

 4-2

1. Menu Item Definitions

2. Menu Item Prices

3. Menu Item Classes

4. Service Charges

5. Discounts

6. Tender Media

7. Order Types

8. Family Groups

9. Major Groups

10. Revenue Center Parameters

11. Revenue Center Configurations

12. Interfaces

13. Menu Item Masters

14. Serving Periods

15. Currencies

16. Product Version

17. Employees

18. Dining Tables

19. Languages

20. Menu Level Set

21. Menu Item SLU

22. Main Menu Levels

23. Sub Menu Levels

24. Event Types

25. Event SubTypes

26. Event Definitions

27. TAX

Parameters
vendorCode Vendor code for license validation. In Simphony

version 2.7 MR3 or later, set this parameter to an
empty string.

employeeObjectNum Object number of employee who wants to
perform this operation.

configurationInfoType Array of information types for which details need
to be fetched from the POS.

revenueCenter Object number of revenue center.

Chapter 4
Configuration Operations

 4-3

configInfoResponse Structure that holds the results. This holds
configuration information along with the
operation result. There is one field for each
information type requested.

Return Value
Void. Result is encapsulated in the configInfoResponse reference parameter.

Get Configured Information (method 2)
void GetConfigurationInfoEx
(

SimphonyPosAPI_ConfigInfoRequest configInfoRequest,
ref SimphonyPosAPI_ConfigInfoResponse configInfoResponse

)

Business Purpose
The user wants to fetch configuration data for a specified range of records from the
Simphony POS database.

Method Description
As mentioned in the previous section, this is a new version of the GetConfigurationInfo
method. The main difference between these two methods is that this new method returns
configuration data for only a specified range of records, while GetConfigurationInfo
returns all records by default. This new method can be used if the given system has a
large volume of configuration data for one or more types (for example, menu item
definition has more than 30,000 records).

Parameters
configInfoRequest Request parameter that holds filter conditions to

be applied while retrieving configuration data.
This includes configuration data type and ranges
(for example, StartIndex and MaxRecordCount).

configInfoResponse Structure that holds the results. This holds
configuration information along with the
operation result. There is one field for each
information type requested.

Return Value
Void. Result is encapsulated in the configInfoResponse reference parameter.

Chapter 5
Fiscal Operations

 5-1

5
Fiscal Operations

TS API provides the ability to the end-user to validate their current session to help ensure
that they remain fiscally compliant in their country of operation. This API works in
conjunction with an ‘Extension Plugin’ DLL designed to be country-specific, for which a
separate documentation shall be provided by the Fiscal Development Team. The
‘Extension Plugin’ shall exist with TS on the workstation and operate between the ‘1. TS
API Client’ and the ‘2. TS API’ illustrated in Figure 1-1 – Simphony Architecture.

Sanity Check
void SanityCheck (string sanityCode, ref SimphonyPosApi_SanityCheckResponse
pSanityCheckResponse)

Gets the result of the sanity check validation performed

Business Purpose
The user wants to validate that check operations can be safely performed with their
current session while remaining fiscally compliant in their country of operation.

Method Description
This method returns the result of the country-specific validation performed on the current
session (Sanity Check). A code needs to be provided as a parameter to determine ‘what’
validation is to be performed. This ‘Sanity Code’ is dependent on the ‘Extension Plugin’
that is initiated with the TS, and would therefore be provided in the documentation
accompanying the ‘Extension Plugin’ designed for that particular country.

Parameters

sanityCode Code that determines the country-specific
validation to be performed.

pSanityCheckResponse Structure that holds the results. This holds both
the operational result, and the result of the
sanity check validation performed, which is
defined by the sanityCode parameter.

Return Value
Void. Result is encapsulated in the pSanityCheckResponse reference parameter.

Chapter 6
Structure Reference

 6-2

6
Structure Reference

This section describes the various structures used for pass data for request and
response.

SimphonyPosAPI_CheckSummary
This structure is to encapsulate summary details of a check.

Public Attributes

int CheckSeq

Check sequence is a number that identifies a check in the Simphony POS database. The
sequence number will be assigned to a check when it’s created by the system.

int CheckNum
Check number is a number to identify a check in a particular workstation. This number will
be assigned to a check by the system when the check is created. Minimum and maximum
range for check number can be configured in EMC for any workstation.

int CheckEmployeeObjectNum

ID of employee who created the check

int CheckRevenueCenterObjectNum

ID of revenue center this check is currently active

int CheckLastWorkstationOwner

Object number of workstation that owned the check last time

int CheckCurrentlyOpenOnWorkstation

Object number of workstation that has this check currently opened

int CheckTableObjectNum

Object number of dining table for which the check created.

int CheckTableGroup

ID of table group in which dining table of this check falls under

int CheckOrderType

Order type ID of the check. E.g. Dine In and Eat Out

string CheckID

Name to identify a check. Duplicate check names on open checks are not allowed.

string CheckTotalDue

Due or balance amount to be paid by the customer for the check

DateTime CheckLastServiceTime

The time when the check was submitted last time to POS database

Chapter 6
Structure Reference

 6-3

DateTime CheckOpenTime

The time when the check was opened/created on POS database

DateTime CheckAutoFireTime

The time when check will be fired

short CheckInTraining

A flag that indicates whether the check is opened on training mode or not. Always 0 is
populated.

short CheckInsufficientBeverage

A flag that indicates whether insufficient beverage found on the check (i.e. beverage count
is less than total guest count). Always 0 is populated.

short CheckTransferedToDriver

A flag that indicates status of the check as having been assigned to a driver. This is no
longer in use. Always 0 is populated.

short CheckIsDelayedOrder

A flag that indicates status of the check as being a Delayed Order. This is no longer in
use. Always 0 is populated.

short CheckIsFutureOrder

A flag that indicates status of this check as having been assigned to a driver. Always 0
is populated.

SimphonyPosAPI_CheckSummaryEx
This structure is an extended version of SimphonyPosAPI_CheckSummary structure.
This extended version is created to hold a couple of additional fields on the KDS order
status. This structure inherits all fields from SimphonyPosAPI_CheckSummary.

Public Attributes

SimphonyPosApi_KdsOrderStatus LastKnownKdsOrderStatus

Last status reported by KDS device (e.g. DS_SENT, DS_PREP_DONE, DS_CANCELLED)

ARRAY(SimphonyPosApi_KdsOrderStatus) KdsOrderStatusHistory

List of order status reported by KDS for the history of the order

Chapter 6
Structure Reference

 6-4

SimphonyPosAPI_OpenChecks
This structure is to encapsulate details of all open checks.

Public Attributes

ARRAY(SimphonyPosAPI_CheckSummary) CheckSummary

A structure to hold summary of all open checks

SimphonyPosAPI_OperationalResult OperationalResult

A structure that indicates whether the current operation succeeded or not. In case of failure, this will
have appropriate error code and error message

SimphonyPosAPI_GuestCheck
This structure is to encapsulate the details of a guest check.

The guest check structure is a collection of elements that are passed as a parameter.
This shared structure is used to communicate key elements of the transaction to the API
and for the API to return key elements to the API consumer.

It is possible to create a future check (a.k.a. auto fire check), by mentioning the
appropriate value for CheckStatusBits property. The system will apply all applicable
automatic discounts and service charges while creating the guest check. In addition, the
system calculates the tax amount based on how the order type is configured in the EMC.

The details, such as Check Number and Check Sequence Number of the created check,
will be filled in the pGuestCheck parameter. This method prints the guest check and
credit voucher if configured to do so in EMC for the given workstation.

Public Attributes

string CheckID

Name to identify a check. Duplicate check names on open checks are not allowed

int CheckTableObjectNum

Object number of dining table for which the check opened

int CheckRevenueCenterID

Object number of revenue center

int CheckOrderType

Order type ID of the check. E.g. Dine In and Eat Out

int CheckEmployeeObjectNum

Object number of employee who opened the check

int CheckSeq

Check sequence is a number that identifies a check in the POS database. The number is assigned to the
check is opened. This is used as a parameter while adding items to an existing check.

int CheckNum

Chapter 6
Structure Reference

 6-5

Check number is a number to identify a check in a particular workstation. This number will be assigned
to a check by the system when the check is created. Minimum and maximum range for check number
can be configured in EMC for any workstation.

DateTime CheckDateToFire

Time when check should fire. This will permit an order to be delayed on the current business date

int CheckGuestCount

Total number of guest in a transaction

int CheckStatusBits

Check status identifier. E.g. “Rush Order” or ”VIP”.

ARRAY(string) PCheckInfoLines

Information lines that are added to guest check

ARRAY(int) PPrintJobIds

List of print job ID that resulted from the transaction. The method CheckPrintJobStatus can be used
to get the status of any print job later

int EventObjectNum

Object Number of an event definition that needs to be associated to given guest check

SimphonyPosAPI_OperationalResult OperationalResult

A structure that indicates whether current operation succeeded or not. In case of failure, this will
have appropriate error code and message

SimphonyPosAPI_CheckRequest
This structure is to encapsulate the input parameters of the GetChecks method.

Public Attributes

string VendorCode

Vendor code for license validation (pass an empty value for Simphony version 2.7 MR3 or later).

Int[] CheckNumbers

Check Number(s)

int EmployeeObjectNum

 Object Number of an employee

int RvcObjectNum

 Object Number of a Revenue Center

int OrderTypeID

 Object Number of an Order Type

Int[] KdsOrderStatus

 Status ID of KDS Order

DateTime LookUpStartDate

 Lookup start date. All checks that were created on/after this date would be returned in the result.

Chapter 6
Structure Reference

 6-6

bool IncludeClosedCheck

 A boolean flag to specific whether or not closed checks need to be included in the result

SimphonyPosAPI_CheckResponse
This structure is to encapsulate the response of the GetChecks method.

Public Attributes

SimphonyPosApi_OperationalResult OperationalResult

A structure that indicates whether current operation succeeded or not. In case of failure, this will have
appropriate error code and message

SimphonyPosApi_CheckSummaryEx Checks

Extended summary of guest checks that includes KDS order status

SimphonyPosAPI_CheckDetailRequest
This structure is to encapsulate the input fields of the GetCheckDetail method.

Public Attributes

string VendorCode

Vendor code for license validation (pass an empty value for Simphony version 2.7 MR3 or later).

int CheckNumber

Guest Check Number

int CheckSeqNumber

Sequence Number of Guest Check

SimphonyPosAPI_CheckDetailResponse
This structure is to encapsulate the response of the GetCheckDetail method.

Public Attributes

SimphonyPosApi_OperationalResult OperationalResult

A structure that indicates whether current operation succeeded or not. In case of failure, this will have
appropriate error code and message

string CheckDetail

Check Detail in XML format

SimphonyPosAPI_MenuItem
This structure is to encapsulate the details of a menu item along with its condiments.

Chapter 6
Structure Reference

 6-7

The menu item is comprised of the desired main item and an array of condiments. An
example may be a Cheeseburger (main item), Well Done, and Extra Pickles (condiment
array).

Public Attributes

SimphonyPosAPI_MenuItemDefinition MenuItem

Structure that defines details of a main menu item. The details include object number of menu item,
price, discount etc.

ARRAY(SimphonyPosAPI_MenuItemDefinition) Condiments

List of a structure that defines details of condiment added to menu item

SimphonyPosAPI_MenuItemEx
This structure is to encapsulate the details of a menu item along with its condiments.

The menu item is comprised of the desired main item and an array of condiments. An
example may be a Cheeseburger (main item), Well Done, and Extra Pickles (condiment
array).

This structure is similar to SimphonyPosAPi_MenuItem. However, it uses the newer
“Ex” structure for MenuItem and Condiments and adds support for the Extensibility
attribute.

Public Attributes

SimphonyPosAPI_MenuItemDefinitionEx MenuItem

Structure that defines details of a main menu item. The details include object number of menu item,
price, discount etc.

SimphonyPosAPI_MenuItemDefinitionEx[] Condiments

Array of a structure that defines details of condiment added to menu item

SimphonyPosApi_Extensibility[] Extensibility

Array of a structure that defines extensibility detail that can be added to the menu item.

SimphonyPosAPI_MenuItemDefinition
This structure is to encapsulate the details of a menu item.

Public Attributes

int MiObjectNum

Object number of given menu item

int MiMenuLevel

Main level to be used while picking up a menu definition from definition list. This must be a value
between 1 and 8 (if not 0). When 0 is specified, system will pick up first menu definition
irrespective of whether it’s active or not on given Main level

Chapter 6
Structure Reference

 6-8

int MiSubLevel

Sub level to be used while picking up a menu definition from definition list. This must be a value
between 1 and 8 (if not 0). When 0 is specified, system will pick up first menu definition
irrespective of whether it’s active or not on given Sub level

int MiPriceLevel

Sequence number to be used while picking up a price definition from the list. This is not
currently supported in Transaction Services web service. That is, price definition will
always be picked up based on the value of Sub level or Main level mentioned above

string MiOverridePrice

Price to override default value of the item. This field can be left empty if default price is desired. If
left empty this will be populated with default price by this method.

string MiWeight

Weight of given item. This is not currently supported in the API.

string MiReference

A text that needs to be added as reference to given menu item

SimphonyPosApi_Discount ItemDiscount

Discount that needs to applied to given menu item

Remarks

The MiReference value can contain extra data to control additional behavior. This is used
to specify a quantity, to override active tax rates, and to indicate a default condiment.

Format: <ExtraData><!-- extra data specified here --></ExtraData>reference-text

Example: <ExtraData><MiQuantity>3</MiQuantity></ExtraData>VIP

List of Extra Data Elements

MiQuantity

Used in v1 of API to specify quantity other than one. If not specified, the default quantity
of 1 is used.

Example: <MiQuantity>2</MiQuantity>

TaxOverride

Used to override tax rates active for menu item. The value is a string of up-to 64 zeros
or ones. A one indicates the tax rate for the ordinal position is enable, whereas zero
indicates the rate is disabled. If value are only provided for the first 10 rates, the
remaining rates use the configured behavior.

Example: <TaxOverride>101.....</TaxOverride>

AsDefaultCondiment

Use to indicate condiment is a default condiment. This extra data only applies to
Condiments.

Example: <AsDefaultCondiment/>

Chapter 6
Structure Reference

 6-9

Here is a more complete example:

“<ExtraData><MiQuantity>3</MiQuantity></ExtraData>”

In this example, 3 is the quantity. The regular reference text can be specified before or
after the above XML. For example:

“<ExtraData><MiQuantity>3</MiQuantity></ExtraData>Make it spicy”

In the example above, the text “Make it spicy” will be treated as the reference text for the
given menu item and the XML that defines quantity will not appear on the screen. Refer
to the code snippet section of this document for more details.

SimphonyPosAPI_MenuItemDefinitionEx
This structure is to encapsulate the details of a menu item.

Public Attributes

int MiObjectNum

Object number of given menu item

int MiMenuLevel

Main level to be used while picking up a menu definition from definition list. This must be a value
between 1 and 8 (if not 0). When 0 is specified, system will pick up first menu definition
irrespective of whether it’s active or not on given Main level

int MiSubLevel

Sub level to be used while picking up a menu definition from definition list. This must be a value
between 1 and 8 (if not 0). When 0 is specified, system will pick up first menu definition
irrespective of whether it’s active or not on given Sub level

int MiPriceLevel

Sequence number to be used while picking up a price definition from the list. This is not
currently supported in Transaction Services web service. That is, price definition will
always be picked up based on the value of Sub level or Main level mentioned above

string MiOverridePrice

Price to override default value of the item. This field can be left empty if default price is desired. If
left empty this will be populated with default price by this method.

string MiWeight

Weight of given item. This is not currently supported in the API.

string MiReference

A text that needs to be added as reference to given menu item

decimal MiQuantity

The quantity of item to add to the guest check.

int MiDefinitionSeqNum

The number of the definition to use when ordering the item. Different definitions may have different
behavior, prices depending on configuration in EMC.

SimphonyPosApi_DiscountEx[] ItemDiscount

Chapter 6
Structure Reference

 6-10

List of discount to apply to a given menu item. In the response, this attributes indicates the
discounts applied to this item by coupon and/or automatic discounts.

Remarks

The MiReference value can contain extra data to control additional behavior. See the
Remarks section for SimphonyPosAPI_MenuItemDefinition for more information.

List of Extra Data Elements

TaxOverride

Used to override tax rates active for menu item. The value is a string of up-to 64 zeros
or ones. A one indicates the tax rate for the ordinal position is enable, whereas zero
indicates the rate is disabled. If value are only provided for the first 10 rates, the
remaining rates use the configured behavior.

Example: <TaxOverride>101.....</TaxOverride>

AsDefaultCondiment

Use to indicate condiment is a default condiment. This extra data only applies to
Condiments.

Example: <AsDefaultCondiment/>

SimphonyPosAPI_ComboMeal
This structure is to encapsulate the details of a combo meal (main and side menus).

Public Attributes

SimphonyPosAPI_MenuItem ComboMealMenuItem

Combo Meal Menu Item (e.g. Burger Combo)
SimphonyPosAPI_MenuItem ComboMealMainItem

Combo Meal Main Item (e.g. Hamburger)

ARRAY(SimphonyPosAPI_MenuItem) SideItems

Combo Meal Side Items (e.g. French Fries, Coke etc.)

int ComboMealObjectNum

Combo Meal Object Number

Remarks

When ordering combo meals, TS API is strict in checking all combo meal linkages. The
combo meal menu item passed along must be linked to a combo meal object number.
Additionally, the combo meal side items that are passed along must be correctly linked to
a combo meal as defined in the target database. This means that side items must be
passed in order. All items in orders must be filled correctly for combo meals.

Chapter 6
Structure Reference

 6-11

SimphonyPosAPI_ComboMealEx
This structure is to encapsulate the details of a combo meal (main and side menus).

Public Attributes

Inherits all attributes from SimphonyPosAPI_ComboMeal, and includes the following
additional attributes.

SimphonyPosApi_Extensibility Extensibility

Provides extra information about detail.

SimphonyPosAPI_Discount
This structure is to encapsulate the details of a discount.

Public Attributes

int DiscObjectNum

Discount Object Number
string DiscAmountOrPercent

Amount or Percentage to be discounted. API expects value for this property in case of “Open
Discount”.

However, in case of “Closed Discount”, discount amount or percent will be taken from POS
database

with the help of Discount Object Number.

string DiscReference

Reference text to be added to given discount for reference purpose

SimphonyPosAPI_DiscountEx
This structure is to encapsulate the details of a discount to be applied on a guest check.

Public Attributes

Inherits all attributes from SimphonyPosAPI_Discount, and includes the following
additional attributes.

SimphonyPosApi_Extensibility Extensibility

Provides extra information about detail.

SimphonyPosAPI_SvcCharge
This structure is to encapsulate the details of a service charge to be applied on a guest
check.

Public Attributes

int SvcChgObjectNum

Chapter 6
Structure Reference

 6-12

 Object Number of Service Charge that needs to be applied on guest check

string SvcChgAmountOrPercent

 Amount or percentage to be applied as Service Charge. API expects value for this property in
case of “Open Service Charge”. However, in case of “Predefined Service Charge", the
amount or percent will be taken from POS database with the help of Service Charge Object
Number.

string SvcChgReference

 Reference text to be added to given Service Charge item

SimphonyPosAPI_SvcChargeEx
This structure is to encapsulate the details of a service charge to be applied on a guest
check.

Public Attributes

Inherits all attributes from SimphonyPosAPI_SvcCharge, and includes the following
additional attributes.

SimphonyPosApi_Extensibility Extensibility

Provides extra information about detail.

SimphonyPosAPI_TmedDetailItemEx
This structure is to encapsulate the details of tender media for a payment operation.

Public Attributes

int TmedObjectNum

Object number of tender media chosen for payment

string TmedPartialPayment

This indicates the amount tendered by the customer in cash for payment. This amount does not
include tips.

Leave this field empty in case of paid-in-full. This field is applicable for only cash payment.

string TmedReference

Tender Media reference information

SimphonyPosAPI_EPayment TmedEPayment

Electronic Payment details

SimphonyPosAPI_TmedDetailItemEx2
This structure is to encapsulate the details of tender media for a payment operation.

Public Attributes

Inherits all attributes from SimphonyPosAPI_TmedDetailItemEx, and includes the
following additional attributes.

Chapter 6
Structure Reference

 6-13

SimphonyPosApi_Extensibility Extensibility

Provides extra information about detail.

SimphonyPosApi_Extensibility
This structure is to encapsulate the details of extension data that can be added to menu
items, discounts, service charges, or tender detail items.

Public Attributes

string DisplayName

A string displayed and/or printed if this items is displayed or printed.

string ExtensibilityAppName

A string indicating the name of the application associated with this data.

string ExtensibilityDataName

A string selected by the user that names the data stored by this extensibility item.

string ExtensibilityDataType

A string selected by the user that describes the type of data stored by this extensibility item.

string PrintOptionBits

This attribute is not currently used.

string StringData

This attributed is used to store the data payload for the extensibility data.

string DataID

This attribute is not currently used.

SimphonyPosAPI_EPayment
This structure is to encapsulate the details of electronic payment on a guest check.

Public Attributes

EPaymentDirective PaymentCommand

Enumeration on payment method (for example, credit authorization only, credit
authorization and pay, debit authorization only, debit authorization and pay, SVC
authorization, SVC redeem). Possible values are:

• NO_E_PAYMENT
• AUTHORIZE_AND_PAY
• DEBIT_AUTHORIZE_AND_PAY

Note: Transaction Services only supports the MCreditDebit Payment driver for
credit/debit card payment.

EAccountDataSource AccountDataSource

Enumeration on source of payment details (for example, magnetic stripe, RFID card, or
manually keyed). Possible values are:

• SOURCE_UNDEFINED

Chapter 6
Structure Reference

 6-14

• RFID_TRACK_DATA_RULES
• RFID_M_CHIP_RULES
• MANUALLY_KEYED_TRACK_1_CAPABLE
• MANUALLY_KEYED_TRACK_2_CAPABLE
• MANUALLY_KEYED_NO_CARD_READER

EAccountType AccountType

Type of account (for example, checking and savings). Possible values are:

• ACCOUNT_TYPE_UNDEFINED
• CHECKING
• SAVINGS

string AcctNumber

Account number of payment card.

string AuthorizationCode

Authorization code of payment card.

DateTime StartDate

Start date as mentioned in payment card.

short IssueNumber

Issue number as mentioned in payment card.

string Track1Data

Magnetic stripe data for Track 1.

string Track2Data

Magnetic stripe data for Track 2.

string Track3Data

Magnetic stripe data for Track 3.

string BaseAmount

Base amount to be debited. This does not include tip or cash back amount.

string TipAmount

Amount to be debited for tip.

string CashBackAmount

Cash back amount.

string KeySerialNum

Debit key serial number for given transaction. Maximum length is 20 characters.

string DeviceId

Device Identifier

DateTime ExpirationDate

Expiration date as mentioned in payment card.

string PinBlock

Pin Number of payment card in encrypted format. This is used only with debit card
payment.

string CVVNumber

Chapter 6
Structure Reference

 6-15

Card Verification Value (CVV) number of payment card

string AddressVerification

Address for verification

string InterfaceName

Interface name of stored value card

string SvcResponse

Stored value card response message. This contains descriptive error message in case of
payment failure.

string SvcAccountType

Stored value account. Maximum of 32 characters.

SimphonyPosAPI_TotalsResponse
This structure is to encapsulate the details on totals of a transaction.

Public Attributes

string TotalsSubTotal

Subtotal amount of current transaction.

string TotalsTaxTotals

Total tax applied on current transaction.

string TotalsOtherTotals

Service charge applied on current transaction.

string TotalsAutoSvcChgTotals

Automatic service charge applied on current transaction.

string TotalsTotalDue

Total amount due.

SimphonyPosAPI_OperationalResult OperationalResult

A structure that indicates whether the current operation succeeded or failed. In case of failure,
this will have appropriate error code and message.

SimphonyPosAPI_TotalsResponseEx
This structure is to encapsulate the details on totals of a transaction.

Inherits all attributes from SimphonyPosAPI_TotalsResponse, and includes the following
additional attributes.

Public Attributes

CheckTaxDataPerRate[] CheckTaxDataPerRate

List of tax rate data for each tax rate.

Chapter 6
Structure Reference

 6-16

SimphonyPosAPI_ConfigInfoRequest
This structure is to encapsulate the input parameters, such as Vendor Code, Employee
Object Number, RVC Object Number, and Configuration Info Types with range
conditions.

Public Attributes

string VendorCode

The vendor code for license validation (pass empty for Simphony version 2.7 MR3 or later.

int EmployeeObjectNumber

Employee object number for validation purposes only.

int RVCObjectNumber

Object number of the revenue center for which configuration data is needed.

ARRAY(SimphonyPosApi_ConfigInfo) ConfigurationInfo

This holds the IDs of configuration data type along with start index and maximum records to be
returned for each configuration data type.

SimphonyPosAPI_ConfigInfo
This structure is to encapsulate the input parameters, such as Configuration Info Type
and ranges of records to be retrieved.

Public Attributes
EConfigurationInfoType ConfigurationInfoTypeID

The type of configuration data that needs to be fetched from the Simphony POS database (for
example, menu item definition, service charge definition, discount definition, and so on).

int StartIndex

Index of first record to be fetched from the POS database.

int MaxRecordCount

Maximum number of records to be fetched.

SimphonyPosAPI_ConfigInfoResponse
This structure is to encapsulate the configured details for menu, price, currency,
discounts, employees, order type, revenue center, tender media, service charge, and so
on.

Public Attributes
ARRAY(EConfigurationInfoType) ConfigInfoType

List of type of configuration information for which details need to be fetched from the Simphony
POS database (for example, menu item definition, service charge definition, discount definition,
and so on). Possible enumeration values are:

• UNDEFINED = 0

Chapter 6
Structure Reference

 6-17

• MENUITEMDEFINITIONS = 1
• MENUITEMPRICE = 2
• MENUITEMCLASS =3
• SERVICECHARGE = 4
• DISCOUNTDEFINITIONS = 5
• TENDERMEDIA = 6
• ORDERTYPE = 7
• FAMILYGROUP = 8
• MAJORGROUP = 9
• REVENUECENTERPARAMETER = 10
• REVENUECENTERS = 11
• INTERFACES = 12
• MENUITEMMASTERS = 13
• SERVINGPERIODS = 14
• CURRENCY = 15
• VERSION = 16
• EMPLOYEES = 17
• TABLES = 18
• LANGUAGEINFORMATION = 19
• MENULEVEL = 20
• MENUITEMSLU = 21
• MAINMENULEVEL = 22
• SUBMENULEVEL = 23
• EVENTDEFINITIONS = 24
• TAX = 25

string MenuItemDefinitions

Details of all menu item definitions configured in the EMC for a given revenue center.

string MenuItemPrice

Details of all menu item price records (for example, menu item definition ID, price, preparation
cost, and so on) configured in the EMC.

string MenuItemClass

Details of all menu item classes (for example, tax class, sales, discount and service charge itemizers,
pricing calculation, and so on) as configured in the EMC.

string ServiceCharge

Details of service charges (for example, service charge amount/percent, tips)

string Discounts

Details of all discounts configured in the EMC at the enterprise level.

string TenderMedia

Details of tender media configured in the EMC for payment (for example, cash and credit cards)

Note: Transaction Services only supports the MCreditDebit Payment driver for
credit/debit card payment.

string OrderType

Details of order types (for example, Dine-in and Carry out) configured in the EMC for a given
property.

string FamilyGroups

Details of all Family Groups (that is, category of menu items) configured in the EMC.

Chapter 6
Structure Reference

 6-18

string MajorGroup

Details of all Major Groups configured in the EMC for menu items (for example, food and
beverages).

string RevenueCenterParameter

Details of revenue center parameters that are configured in the EMC (for example, secondary print
language, minimum and maximum check number, database update frequency, options, and so on).

string RevenueCenters

Details of revenue centers configured in the EMC for a given property.

string Interfaces

Details of all interfaces configured in the EMC at the enterprise level.

string MenuItemMasters

Details of all menu item master records (that is, property level menu item record).

string ServingPeriod

Details of serving period (for example, Breakfast 4am to 11am)

string Currency

Details of all currencies (for example, US Dollar, Peso) configured in the EMC at enterprise level.

string Version

Current version of the Transaction Services web service (for example, 2.700.0.77).

string Employees

Details of all employees configured in the EMC at the enterprise level.

string Tables

Details of dining tables configured in the EMC for a given property.

string LanguageInformation

Details of languages (for example, English, Spanish) that are configured in the EMC.

string MenuLevel

Details of menu level sets configured (for example, Main, Sub, and Custom levels).

 string MenuItemSlu

Details of menu item SLU names (user can configure a maximum of 127 SLU names).

string MainMenuLevel

Details of main menu levels (user can configure a maximum of 8 main levels).

string SubMenuLevel

Details of sub menu levels (user can configure a maximum of 8 sub levels).

string EventDefinitions

Details of event definitions created at property levels.

string TAX

Chapter 6
Structure Reference

 6-19

Details of tax rates configured in the EMC at enterprise and property levels (maximum of 64 tax
rates).

SimphonyPosApi_OperationResult OperationalResult

A structure that indicates whether the current operation succeeded or failed. In case of failure, this
will have appropriate error code and message.

SimphonyPosAPI_CheckPrintResponse
This structure is to encapsulate the details of response on printing a guest check.

Public Attributes

ARRAY(string) CheckPrintLines

Printed lines of a guest check.
SimphonyPosAPI_OperationalResult OperationalResult

A structure that indicates whether the current operation succeeded or failed. In case of failure,
this will have appropriate error code and message.

SimphonyPosAPI_PrintJobStatus
This structure is to encapsulate the details of response on retrieving the status of a print
job.

Public Attributes

SimphonyPrintApi_Status Status

An enumerator that indicates the current status of a specified print job. Possible values are:

• JobPending = 0
• JobComplete = 1
• JobAborted = 2
• JobSentToBackup = 3
• JobFailed = 4
• JobNotFound = 5

string StatusMsg

Current status of a specified print job in string format.

String SystemStatusMsg

This is for future use. Currently this holds the status of a specified print job in string format like
StatusMsg field.

ARRAY(int) PrintJobList

List of print jobs on the POS system.

SimphonyPosAPI_OperationalResult OperationalResult

A structure that indicates whether the current operation succeeded or failed. In case of failure,
this will have appropriate error code and message.

Chapter 6
Structure Reference

 6-20

SimphonyPosAPI_OperationalResult
This structure is to encapsulate the result of an operation.

Public Attributes

bool Success

Indicates whether or not the operation has succeeded. This will be True if there is no exception or
errors; otherwise False.

TransactionServices_ErrorCode ErrorCode

Error code that represents the reason for failure. Possible values are:

AmountNotEntered
AppInitInProgress
CCAuthDeclined
CCAuthDeclinedWithMessage
CCServerDown
CheckEmployeeNumberMismatch
CheckNotFound
CheckListNotFound
CheckOpenedOnSystem
CheckTableNumberMismatch
ComboMealNotFound
ConnectionDown
DataOutOfRange
DetailDoesNotSupportTriggeredEvents
DiscountNotFound
DiscountAmountRequired
DiscountAmountTooLarge
DiscountAmountZero
DiscountItemNotAllowed
DiscountNotAllowedFilterActive
DiscountOnParentCombo
DuplicateLineNumber
EGatewayClientStartError
EGatewayClientStopError
EGatewayConnectionError
EGatewayConnectionNotInPool
EGatewayWaitConnectionTimeout
EmployeeClockIOStatusMismatch
EmployeeIDMismatch
EmployeeNotFound
EmployeeRVCMismatch
ErrorCreatingGuestcheck
ErrorInvalidWorkstation
ErrorReadingCheck
ErrorPickupCheck

InvaildAuthCode
InvalidCheckNumber
InvalidCreditCardExpirationDate
InvalidCreditCardHost
InvalidCreditCardNumber
InvalidClientName
InvalidClosedDays
InvalidConfigInfoRequestType
InvalidConfigInfoType
InvalidCustomerInfo
InvalidDetailLine
InvalidDetailLineType
InvalidEmployeeNumber
InvalidGuestCount
InvalidLineNumber
InvalidMenuItemPrice
InvalidOrderTypeNumber
InvalidPropertyNum
InvalidRvcNum
InvalidServingPeriod
InvalidTableNumber
InvalidTranslationSpecifier
ItemDiscountNeedsParentItem
LicensingFailed
MenuItemOutOfOrder
MissingDetailLinesElement
MissingTransactionElement
MissingTransactionHeaderElement
NoRequestHeader
NoSalesForDiscount
NotImplemented
NoSalesToApplyServiceCharge
NullInput
PaidPartially
PaymentAborted

Chapter 6
Structure Reference

 6-21

FailedDataStoreInitialization
FailedDbSettingLoad
FailedErrorTranslationInitial
FailedPostCARequest
FailedInitialization
FailedLoggerInitialization
FailedSecurityAPIInitialization
FailedSubmitPrintJob
InternalCommunicationError
InternalProcessingError
InvalidArguments
AbortFromExtensionPlugin
NotFoundExtensionPlugin

PriceMenuItemWithZeroAmount
SecurityInitFailed
ServiceChargeTaxClassNotFound
Success
TenderTypeNotFound
TransactionEmployeeNotFound
TranslationFileNotAvailable
UnhandledException
UnknownCreditCardType
UnknownExceptionCode
TransactionLocked
FailedExtensionPlugin
SanityCodeNotFound

string ErrorMessage

Texts that further explains the exception and reason for failure.

SimphonyPosAPI_SanityCheckResponse
This structure is to encapsulate the result of the operation and the result of the sanity
check performed.

Public Attributes

SimphonyPosApi_OperationalResult OperationalResult

A structure that indicates whether the current operation succeeded or failed. In case of failure, this
will have appropriate error code and message.

bool SanitySuccess

Indicates whether or not the sanity check performed based on provided sanity code has succeeded.
Acceptable sanity code is defined per ‘Extension Plugin’ and is therefore country-specific. A failure
shall return an error code and error message.

string SanityErrorCode

Error code if sanity check validation failed. Error code is defined per ‘Extension Plugin’ and is
therefore country-specific.

string SanityErrorMessage

Error message if sanity check validation failed. Error message is defined per ‘Extension Plugin’ and is
therefore country-specific.

CheckTaxDataPerRate
This structure is to encapsulate the details of tax applied for a tax rate.

Public Attributes

int Index

The tax rate number (range 1 – 64).
decimal Tax

The total amount of tax applied for this rate.

Chapter 6
Structure Reference

 6-22

bool Exempt

When True, indicates that tax for this rate has been exempted.
bool AnyApplied

When True, indicates that tax for this rate has been applied to one or more items.

Chapter 7
Example and Code Snippets

 7-1

7
Example and Code Snippets

Calculate Totals of a Transaction
The following scenario describes a user who wants to find out the total amount of a
transaction for items that are being ordered by the customer.

• Add two menu items

- Add two condiments to the first menu item, and add one condiment to the second
menu item

- Quantity of 1st menu item is 3, and 2nd menu item is 1

- Override the price of the 1st menu item

- For the 1st menu item, instead of the default definition, pick up a specific menu
item definition based on main and sub menu levels

- Apply an open discount to the 1st menu item

- Add a reference text to the 1st menu item

• Add a combo meal

• Apply an Open service charge

- Add a reference text on the service charge

• Apply a Closed discount on the subtotal (that is, at the check level)

S. No Type of Data Parameter Name Sample Data
1 Vendor code vendorCode yzsroioq

2 Menu Items and
Condiments along
with item level
Discount

ppMenuItems Object number of two menu items are 110003 and 110004

Object numbers of two condiments of first menu item are
41103 and 44502. Object number of condiment of second
menu item is 41103.

Overridden price for first menu item is $10

Menu levels to pick up first menu item is

Main Menu Level - 2 and Sub Menu Level - 3

Open discount percent for first menu item is 7%

Reference text for first menu item is “Chef's favorite”

3 Combo Meal ppComboMeals Combo meal details

Object number of combo meal is 10

Object number of main item is 110003

Object numbers of side items are 41103 and 44502

Chapter 7
Example and Code Snippets

 7-2

Order type is Dine-in

The following sample data is provided for the scenario mentioned above.

The method CalculateTransactionTotals can be used in this situation. Here is the
signature of the method for quick reference.

Calculate Transaction Totals Method Signature
void CalculateTransactionTotals

(
string vendorCode,
ref ARRAY(SimphonyPosAPI_MenuItem) ppMenuItems,
ref ARRAY(SimphonyPosAPI_ComboMeal) ppComboMeals,
ref SimphonyPosAPI_SvcCharge pServiceChg,
ref SimphonyPosAPI_Discount pSubTotalDiscount,
int revenueCenterObjectNum,
short orderType,
int employeeObjectNum,
ref SimphonyPosAPI_TotalsResponse pTotalsResponse

)

The following code snippet demonstrates how data for input parameters of the
CalculateTransactionTotals method can be constructed and used to invoke the
method.

SimphonyPosAPIWebSoapClient mTSApi = new SimphonyPosAPIWebSoapClient();

string vendorCode = "lzsroioq";
int revenueCenterObjectNum = 3016;
int employeeObjectNum = 90001;
short orderType = 1; // e.g. Dine-in

public void InvokeCalculateTransactionTotalMethod()
{
 SimphonyPosApi_MenuItem[] ppMenuItems = GetMenuItemList();
 SimphonyPosApi_ComboMeal[] ppComboMeals = GetComboMealList();
 SimphonyPosApi_SvcCharge pSvcCharge = GetServiceCharge(true);
 SimphonyPosApi_Discount pSubtotalDiscount = GetSubtotalDiscount(true);
 SimphonyPosApi_TotalsResponse pTotalsResponse = new SimphonyPosApi_TotalsResponse();

Object number of drink is 110004

4 Service Charge pServiceChg Open service charge is 6%

Reference text is “6% service charge including tips”

5 Subtotal Discount pSubTotalDiscount Open subtotal discount amount is $5

6 Revenue Center
object number

revenueCenterObje
ctNum

3016

7 Order Type orderType 1 (for example, Dine-in)

8 Employee Number employeeObjectNu
m

90001

9 Total Response pTotalsResponse N/A (This parameter is to hold output.)

Chapter 7
Example and Code Snippets

 7-3

 mTSApi.CalculateTransactionTotals(vendorCode, ref ppMenuItems, ref ppComboMeals,
 ref pSvcCharge,ref pSubtotalDiscount, revenueCenterObjectNum, orderType,
 employeeObjectNum, ref pTotalsResponse);

 if (pTotalsResponse.OperationalResult.Success)
 {
 Console.WriteLine("Calculate Transaction Total succeeded...");

 Console.WriteLine("Total Due: " + pTotalsResponse.TotalsTotalDue);
 Console.WriteLine("Subtotal: " + pTotalsResponse.TotalsSubTotal);
 Console.WriteLine("Total Auto Service Charge: " +
 pTotalsResponse.TotalsAutoSvcChgTotals);
 Console.WriteLine("Total Service Charge (Manual): " +
 pTotalsResponse.TotalsOtherTotals);
 Console.WriteLine("Total Tax: " + pTotalsResponse.TotalsTaxTotals);
 }
 else
 {
 Console.WriteLine(String.Format(
 "Calculate Transaction Total failed. Error Code: {0}, Error Message: {1}",
 pTotalsResponse.OperationalResult.ErrorCode,
 pTotalsResponse.OperationalResult.ErrorMessage));
 }
}

The following sections explain constructing data for each input parameter with the sample
data provided above.

Vendor Code
Vendor Code is no longer supported beyond Simphony version 2.7 MR3. This should
be an empty value from clients. Vendor Code or Vendor Activation Code is a string value
that uniquely identifies a vendor for Transaction Services. This was introduced to validate
the license of TS API. The Vendor Activation Code should have been configured in the
EMC in the following location for TS API to work properly.

Enterprise level, Setup tab, Parameters section, Enterprise Parameters module,
Licensing tab.

This requirement was removed in Simphony version 2.7 MR3 and later. However, this
parameter still exists in the latest Transaction Services API for backward compatibility.
Client applications that integrate with Transaction Services API with Simphony version
2.7 MR3 or later can pass an empty value to this parameter, while prior versions can
pass a valid Vendor Code that was distributed to them.

The following image shows the EMC dialog where you can configure the Vendor
Activation Code for the Transaction Services API.

Chapter 7
Example and Code Snippets

 7-4

Parameter Signature

String vendorCode

e.g.

string vendorCode = "yzsroioq";

Menu Items and Condiments
This parameter represents the list of menu items with required condiments for those
menu items. Each menu item and condiment is identified by an Object Number. Menu
items and condiments are configured at the enterprise, property, or revenue center level
in the EMC using the following module.

Enterprise level, Configuration tab, Menu Items section, Menu Item Maintenance
module.

Parameter Signature

ref ARRAY(SimphonyPosAPI_MenuItem) ppMenuItems

SimphonyPosAPI_MenuItem Signature

public class SimphonyPosApi_MenuItem
{

public SimphonyPosApi_MenuItemDefinition[] Condiments;
public SimphonyPosApi_MenuItemDefinition MenuItem;

}

A menu item is the core foundation of all POS transactions. Everything ordered or added
to the system is a menu item. In restaurant revenue centers, drinks and entrees are
menu items. In retail revenue centers, shirts and hats are also considered menu items.
Therefore, in Simphony, it can be said that any item being sold is a menu item.

The following code snippet demonstrates how to construct input data for the menu item
list parameter. This code adds two menu items and respective condiments to the list as
required. It also applies a discount (at the item level) to the first menu item.

Chapter 7
Example and Code Snippets

 7-5

private SimphonyPosApi_MenuItem[] GetMenuItemList()
{
 List<SimphonyPosApi_MenuItem> menuItemList = new List<SimphonyPosApi_MenuItem>();

 SimphonyPosApi_MenuItem firstMenuItem = new SimphonyPosApi_MenuItem();
 firstMenuItem.MenuItem = GetFirstMenuItem();
 firstMenuItem.MenuItem.ItemDiscount = GetItemDiscount(true);
 firstMenuItem.Condiments = new SimphonyPosApi_MenuItemDefinition[2];
 firstMenuItem.Condiments[0] = GetFirstCondimentItem();
 firstMenuItem.Condiments[1] = GetSecondCondimentItem();
 menuItemList.Add(firstMenuItem);

 SimphonyPosApi_MenuItem secondMenuItem = new SimphonyPosApi_MenuItem();
 secondMenuItem.MenuItem = GetSecondMenuItem();
 secondMenuItem.Condiments = new SimphonyPosApi_MenuItemDefinition[1];
 secondMenuItem.Condiments[0] = GetFirstCondimentItem();
 menuItemList.Add(secondMenuItem);

 return menuItemList.ToArray();
 }

The following code demonstrates how to construct two menu items with given input data.
Each menu item and condiment is identified by a unique identifier called Menu Item
Object Number. The first and second menu items have Object Numbers 110003 and
110004 respectively. In this example, the price of the first menu item is overridden by $7.
It is possible that any menu item or condiment is configured to have more than one
definition with a different price record for each definition. When no menu levels are
specified, it picks up the first definition by default. In this example, both main and sub
menu levels are specified for the first menu item in order to pick up a particular definition
instead of the default. A reference text is also added to the first menu item for reference.

private SimphonyPosApi_MenuItemDefinition GetFirstMenuItem()
{
 SimphonyPosApi_MenuItemDefinition menuItemDefn = new
 SimphonyPosApi_MenuItemDefinition();
 menuItemDefn.MiObjectNum = 110003;
 menuItemDefn.MiOverridePrice = "7";
 menuItemDefn.MiMenuLevel = 2;
 menuItemDefn.MiSubLevel = 3;

 // Specify 3 as quantity and ‘Make it spicy’ as reference text
 menuItemDefn.MiReference = "<ExtraData><MiQuantity>3</MiQuantity></ExtraData>Make
it spicy";
 return menuItemDefn;
}

private SimphonyPosApi_MenuItemDefinition GetSecondMenuItem()
{
 int menuItemObjectNum = 110004;
 SimphonyPosApi_MenuItemDefinition menuItemDefn = new
 SimphonyPosApi_MenuItemDefinition();
 menuItemDefn.MiObjectNum = menuItemObjectNum;
 return menuItemDefn;
}

Chapter 7
Example and Code Snippets

 7-6

The following code demonstrates how to construct an object for two condiment menu
items with given input data.

private SimphonyPosApi_MenuItemDefinition GetFirstCondimentItem()
{
 int menuItemObjectNum = 41103;
 SimphonyPosApi_MenuItemDefinition menuItemDefn = new
 SimphonyPosApi_MenuItemDefinition();
 menuItemDefn.MiObjectNum = menuItemObjectNum;
 return menuItemDefn;
}

private SimphonyPosApi_MenuItemDefinition GetSecondCondimentItem()
{
 int menuItemObjectNum = 44502;
 SimphonyPosApi_MenuItemDefinition menuItemDefn = new
 SimphonyPosApi_MenuItemDefinition();
 menuItemDefn.MiObjectNum = menuItemObjectNum;
 return menuItemDefn;
}

The following code demonstrates how to construct a discount object for given input data.
Each discount configured in the EMC is identified by a unique identifier called Discount
Object Number. For a preset discount, the amount or percentage of the discount is taken
from a value configured in the EMC. However, for an open discount, the amount or
percentage of the discount should be supplied by the caller. The property
DiscAmountOrPercent could be an amount or percent based on how the given discount
is configured using the EMC. This example demonstrates that 10 is the Discount Object
Number of an open discount and the caller is applying a 7% discount to a menu item. All
manual discounts should be added to applicable menu items explicitly in this way, while
API applies an automatic discount implicitly by itself.

private SimphonyPosApi_Discount GetItemDiscount(bool isOpenDiscount)
{
 SimphonyPosApi_Discount discount = new SimphonyPosApi_Discount();
 discount.DiscObjectNum = 10;

 // percentage or amount based on how it's configured in EMC
 if (isOpenDiscount)
 discount.DiscAmountOrPercent = "7";

 discount.DiscReference = "Mother’s day discount";
 return discount;
}

Combo Meal
A combo meal is a combination meal (for example, a burger with fries and a drink, or
pancake with ham and coffee) offered at a lower price than the menu item’s cost
individually. Configure a combo meal in the EMC before adding it through the TS API.

Combo meals can be found in EMC at the Property level, Configuration tab, Sales
section, Combo Meals module.

Chapter 7
Example and Code Snippets

 7-7

To configure a combo meal:

1. Create a menu item.

2. Create a Combo Meal Menu Item class.

3. Add the menu item to the Combo Meal class.

4. Create a Combo Meal Group.

5. Add a Main, Drink, and Side Item.

Parameter Signature

ref ARRAY(SimphonyPosAPI_ComboMeal) ppComboMeals

SimphonyPosApi_ComboMeal Signature

public class SimphonyPosApi_ComboMeal
{

public SimphonyPosApi_MenuItem ComboMealMainItem;
public SimphonyPosApi_MenuItem ComboMealMenuItem;
public int ComboMealObjectNum;
public SimphonyPosApi_MenuItem[] SideItems;

}

The following code snippet demonstrates how to construct a combo meal object for
given input data. This example adds a main menu item, two side items, and a drink to
form a combo meal. Each combo meal is identified by a unique identifier called
Combo Meal Object Number. Log in to the EMC to obtain the object numbers of the
combo meal and related items.

private SimphonyPosApi_ComboMeal[] GetComboMealList()
{

SimphonyPosApi_ComboMeal[] comboMeal = new SimphonyPosApi_ComboMea
l[1];

 SimphonyPosApi_ComboMeal comboMeal1 = new SimphonyPosApi_Combo
Meal();
 comboMeal1.ComboMealObjectNum = 10;

 // Add a Main item
 SimphonyPosApi_MenuItem mainItem = new SimphonyPosApi_MenuItem
();
 mainItem.MenuItem = new SimphonyPosApi_MenuItemDefinition();
 mainItem.MenuItem.MiObjectNum = 110003;
 comboMeal1.ComboMealMainItem = mainItem;

 // Add 2 Side items
 SimphonyPosApi_MenuItem[] sideItemList = new SimphonyPosApi_Me
nuItem[2];
 SimphonyPosApi_MenuItem firstSideItem = new SimphonyPosApi_Men
uItem();
 firstSideItem.MenuItem = new SimphonyPosApi_MenuItemDefinition
();

Chapter 7
Example and Code Snippets

 7-8

 firstSideItem.MenuItem.MiObjectNum = 41103;
 sideItemList[0] = firstSideItem;
 SimphonyPosApi_MenuItem secondSideItem = new SimphonyPosApi_Me
nuItem();
 secondSideItem.MenuItem = new SimphonyPosApi_MenuItemDefinitio
n();
 secondSideItem.MenuItem.MiObjectNum = 44502;
 sideItemList[1] = secondSideItem;
 comboMeal1.SideItems = sideItemList;

 // Add a Drink
 SimphonyPosApi_MenuItem menuItem = new SimphonyPosApi_MenuItem
();
 menuItem.MenuItem = new SimphonyPosApi_MenuItemDefinition();
 menuItem.MenuItem.MiObjectNum = 110004;
 comboMeal1.ComboMealMenuItem = menuItem;

 comboMeal[0] = comboMeal1;
 return comboMeal;
}

Service Charge
A service charge is an amount that is added to a sales transaction for a service rendered.
There are two ways to add a service charge to the transaction:

• Automatic Service Charge

• Manual Service Charge

An automatic service charge is a service charge that applies to all items in the Menu Item
Class with the Add to Automatic Service Charge Itemizer option enabled, without entry
by operator intervention.

A manual service charge should be added to the input parameter of the TS API.

Configure a service charge in the EMC at the Enterprise or Property level,
Configuration tab, Sales, Service Charges module

Parameter Signature

ref SimphonyPosAPI_SvcCharge pServiceChg

SimphonyPosApi_SvcCharge Signature

public class SimphonyPosApi_SvcCharge
{

public string SvcChgAmountOrPercent;
public int SvcChgObjectNum;
public string SvcChgReference;

}

The following code demonstrates how to construct a service charge object for a given
input data. Each service charge configured in the EMC is identified by a unique identifier
called Service Charge Object Number. For a preset service charge, the amount or
percentage of the service charge is taken from a value configured in the EMC. For an
open service charge, the amount or percentage of the service charge should be supplied

Chapter 7
Example and Code Snippets

 7-9

by the caller. The field SvcChgAmountOrPercent can be an amount or percent based on
how it is configured in EMC. This example demonstrates that 12 is the Service Charge
Object Number of an open service charge and the caller is applying a 6% service charge
on the guest check. Any manual service charge should be added to the guest check
explicitly in this way, while API applies an automatic service charge implicitly by itself.

private SimphonyPosApi_SvcCharge GetServiceCharge(bool isOpenServic
eCharge)
{

SimphonyPosApi_SvcCharge serviceCharge = new SimphonyPosApi_SvcChar
ge();
 serviceCharge.SvcChgObjectNum = 12;

 if (isOpenServiceCharge)
 serviceCharge.SvcChgAmountOrPercent = "6"

 serviceCharge.SvcChgReference = "6% service charge including ti
ps";

 return serviceCharge;
}

Subtotal Discount
A discount reduces the price of an item or items on a check. Discounts are generally
used for promotional purposes (for example, a coupon for a free dessert) or for customer
satisfaction. Discounts can be configured as Subtotal Discounts or Item Discounts. An
Item Discount is used to discount a single item, whereas Subtotal Discounts apply to one
or more items on the check based on the configuration of the discount in the EMC.

By default, all discounts are Subtotal Discounts, which means that the discount applies to
all items on a check that belong to a Menu Item Group or Itemizer Group affected by the
discount. A discount is a subtotal discount when the This is an Item Discount option is
disabled in EMC.

There are three different types of activation for discounts:

1. Manual

A manual discount is applied by the user to a check. This type of discount is a
traditional discount.

2. Automatic

An automatic discount is applied by the discount engine when certain criteria of the
transaction are met. As a user adds items, the workstation continually looks for items
that will trigger an automatic discount, and then the award amount is applied to the
check if necessary.

3. Coupon

An automatic coupon discount is an automatic discount with one difference: the user
must first apply the discount to the check, letting the discount engine know that the
discount is available for the check.

Chapter 7
Example and Code Snippets

 7-10

Parameter Signature

ref SimphonyPosAPI_Discount pSubTotalDiscount

SimphonyPosApi_Discount Signature

public class SimphonyPosApi_Discount
{

public string DiscAmountOrPercent;
public int DiscObjectNum;
public string DiscReference;

}

The following code snippet demonstrates how to construct a Subtotal discount object with
the given input data. Each discount configured in EMC is identified by a unique identifier
called Discount Object Number. For a Preset discount, the amount or percentage of the
discount will be taken from a value configured in EMC. For an Open discount, the amount
or percentage of the discount should be supplied by the caller. The property
DiscAmountOrPercent could be an amount or percent based on how the discount is
configured in EMC. This example demonstrates that 11 is the Discount Object Number of
an open Subtotal discount and the caller is applying a 5% discount to the guest check for
all triggered menu item groups. All manual Subtotal discounts should be added to the
guest check explicitly in this way, while API applies automatic Subtotal discounts
implicitly.

private SimphonyPosApi_Discount GetSubtotalDiscount(bool isOpenDisc
ount)
{

SimphonyPosApi_Discount subTotalDiscount = new SimphonyPosApi_Disco
unt();
 subTotalDiscount.DiscObjectNum = 11;

 // percentage or amount based on how it's configured in EMC
 if (isOpenDiscount)
 subTotalDiscount.DiscAmountOrPercent = "5";

 subTotalDiscount.DiscReference = "Weekend discount";
 return subTotalDiscount;
}

Revenue Center Object Number
Revenue centers are a distinctly identifiable department, division, or unit of a firm that
generates revenue through the sale of goods and/or services. For example, the rooms
department and food-and-beverages department of a hotel are revenue centers. Each
revenue center of a property is identified by a unique identifier called Revenue Center
Object Number.

Revenue center can be found in the EMC at the Property level, Setup tab, Property
Configuration, RVC Configuration module. In the following example, 3016 is the Object
Number of a revenue center.

Chapter 7
Example and Code Snippets

 7-11

Parameter Signature
int revenueCenterObjectNum

e.g.,

int revenueCenterObjectNum = 3016;

Order Type ID
An order type is a configurable menu item sales category. Order types can be used to
control tax rates that are active during a transaction. Dine-out and Dine in are common-
order types.

Parameter Signature
short orderType

e.g., short orderType = 1; //e.g., Dine-in

Employee Object Number
Each employee at a property is identified by a unique identifier called Employee Object
Number. This object number of an employee should be passed to the API for this
operation to associate an employee for a given transaction.

Employee details, including their object number can be found in EMC:

Property level, Configuration tab, Personal, Employee Maintenance module.

In this example, 90001 is the object number of an employee called David and is assigned
to revenue center 3016.

Parameter Signature
int employeeObjectNum

e.g., int employeeObjectNum = 90001;

API Response
The response of the method call can be found in the pTotalsResponse parameter. The
value of OperationalResult property of pTotalsResponse object indicates whether or not
the operation succeeded. If the operation succeeded, data for subtotal, total due, tax
amount, auto and manual service charge amounts can be found in the respective
properties of pTotalsResponse. If the operation failed, OperationalResult.ErrorCode
property will hold the error code while the detailed error message can be found in
OperationalResult.ErrorMessage property.

Parameter Signature

ref SimphonyPosAPI_TotalsResponse pTotalsResponse

Chapter 7
Example and Code Snippets

 7-12

SimphonyPosApi_TotalsResponse Signature

public class SimphonyPosApi_TotalsResponse
{
 public SimphonyPosApi_OperationalResult OperationalResult;
 public string TotalsTotalDue
 public string TotalsSubTotal
 public string TotalsTaxTotals
 public string TotalsAutoSvcChgTotals
 public string TotalsOtherTotals
}

Create a Guest Check
After the user calculates and reviews the total amount of a transaction, he or she may
want to post that transaction and create a guest check in the Simphony POS database by
providing tender/payment details. The tender can be of any type (for example, cash or
credit/debit).

 NOTE:

Transaction Services only supports the MCreditDebit Payment driver for
credit/debit card payment. There is no Stored Value Card (SVC) support for
Transaction Services.

The method PosTransactionEx can be used for this purpose.

TS API supports the auto-fire feature on guest checks. Auto-fire means that the guest
check will be immediately created in the system, but it will fire only when the time
specified to fire at the time of guest check creation is attained. This example
demonstrates the auto-fire feature by firing the guest check only after 12 hours from
when the guest check is posted. The auto-fire feature is used in hotels where a guest
wants to order food in the morning to be consumed at dinner. In this case, the guest
check will be created in the system as soon as the transaction posts, but will fire only at
the specified time in the evening, so that the chef can prepare ordered food for dinner for
the specific customer.

The input data for menu items, combo meals, discounts, and service charges are
described in the previous section for calculating totals. The example is taken for this
method as well. However, this method needs data for the following additional parameters.

Tender/Payment Details

The Post Transaction method posts current transactions to the Simphony POS database
to create a guest check. Like CalculateTransactionTotals, this method calculates the
transaction totals. If the payment/tender media is of Service Total, the system will create
the guest check and keep it in the Open state. When the tender media with appropriate
payment details (cash, credit/debit) are passed for full payment, the check will be created
and changed to a Closed state at the end of the call. A tender with partial payment will
still have the created check in the Open state only. Another tender with payment for the
balance amount can be added later to that check using a method called
AddToExistingCheckEx to close the check.

Chapter 7
Example and Code Snippets

 7-13

Post Transaction Method Signature

void PostTransactionEx
(

String vendorCode,
ref SimphonyPosAPI_GuestCheck pGuestCheck,
ref ARRAY(SimphonyPosAPI_MenuItem) ppMenuItems,
ref ARRAY(SimphonyPosAPI_ComboMeal) ppComboMeals,
ref SimphonyPosAPI_SvcCharge ServiceChg,
ref SimphonyPosAPI_Discount pSubTotalDiscount,
ref SimphonyPosAPI_TmedDetailItemEx pTmedDetailEx,
ref SimphonyPosAPI_TotalsResponse pTotalsResponse,
ref ARRAY(string) ppCheckPrintLines,
ref ARRAY(string) ppVoucherOutput

)

The following code snippet demonstrates how data for input parameters of the
PostTransactionEx method can be constructed and used to invoke the method. This
example demonstrates creating a guest check with the same input data mentioned in the
previous section for calculate totals.

SimphonyPosAPIWebSoapClient mTSApi = new SimphonyPosAPIWebSoapClient();

string vendorCode = "lzsroioq";
int revenueCenterObjectNum = 3016;
int employeeObjectNum = 90001;
short orderType = 1; // e.g. Dine-in

public void InvokePostTransactionEx()
{
 bool isAutoFireCheck = true;

 SimphonyPosApi_GuestCheck guestCheck = new SimphonyPosApi_GuestCheck();
 guestCheck.CheckOrderType = orderType;
 guestCheck.CheckEmployeeObjectNum = employeeObjectNum;
 guestCheck.CheckRevenueCenterID = revenueCenterObjectNum;

 // Optional parameters
 guestCheck.CheckGuestCount = 2; // Number of guests
 guestCheck.CheckTableObjectNum = 5; // Dining table number

 if (isAutoFireCheck)
 {
 // 0x10 is the status bit for auto fire (a.k.a. future order)
 // Note: 0x1 - Rush Order, 0x2 - VIP Order, 0x10 - Auto fire Order
 guestCheck.CheckStatusBits |= 0x10;
 // Check fires after 12 hours
 guestCheck.CheckDateToFire = DateTime.Now.AddHours(1);
 }

 string[] ppCheckPrintLines = new string[] { "" }; // Output parameter
 string[] ppVoucherOutput = new string[] { "" }; // Output parameter

Chapter 7
Example and Code Snippets

 7-14

 SimphonyPosApi_MenuItem[] ppMenuItems = GetMenuItemList();
 SimphonyPosApi_ComboMeal[] ppComboMeals = GetComboMealList();
 SimphonyPosApi_SvcCharge pSvcCharge = GetServiceCharge(true);
 SimphonyPosApi_Discount pSubtotalDiscount = GetSubtotalDiscount(true);
 SimphonyPosApi_TmedDetailItemEx tenderMedia = GetTenderMedia(
 TenderMediaType.CreditCard);
 SimphonyPosApi_TotalsResponse pTotalsResponse = new
 SimphonyPosApi_TotalsResponse();

 mTSApi.PostTransactionEx(vendorCode, ref guestCheck, ref ppMenuItems,
 ref ppComboMeals, ref pSvcCharge, ref pSubtotalDiscount, ref tenderMedia,
 ref pTotalsResponse, ref ppCheckPrintLines, ref ppVoucherOutput);

 if (guestCheck.OperationalResult != null && guestCheck.OperationalResult.Success)
 {
 Console.WriteLine("Post Transaction operation has succeeded...");

 Console.WriteLine("Guest Check ID: " + guestCheck.CheckID);
 Console.WriteLine("Guest Check Number: " + guestCheck.CheckNum);
 Console.WriteLine("Guest Check Sequence Number: " + guestCheck.CheckSeq);

 Console.WriteLine("Total Due: " + pTotalsResponse.TotalsTotalDue);
 Console.WriteLine("Subtotal: " + pTotalsResponse.TotalsSubTotal);
 Console.WriteLine("Total Auto Service Charge: " +
 pTotalsResponse.TotalsAutoSvcChgTotals);
 Console.WriteLine("Total Service Charge (Manual): " +
 pTotalsResponse.TotalsOtherTotals);
 Console.WriteLine("Total Tax: " + pTotalsResponse.TotalsTaxTotals);
 }
 else
 {
 Console.WriteLine(String.Format("Post Transaction operation has failed.
 Error Code: {0}, Error Message: {1}",
 pTotalsResponse.OperationalResult.ErrorCode,
 pTotalsResponse.OperationalResult.ErrorMessage));
 }
}

The following sections explain the parameters that are not listed in the Calculate Totals
Transaction method in the previous section. Refer to the previous section for all other
parameters.

Guest Check
For post transaction operations, the caller of the method is expected to pass data for the
following mandatory properties of the guestCheck parameter:

• CheckEmployeeObjectNum

• CheckRevenueCenterID

• CheckOrderType

The following properties are optional:

• CheckGuestCount

Chapter 7
Example and Code Snippets

 7-15

• CheckTableObjectNum

• CheckStatusBits

• CheckDateToFire

The following properties will be populated by the API when the operation succeeds. In
case of failure, only OperationalResult will populate to hold data for error code and error
message:

• CheckID

• CheckNum

• CheckSeq

• OperationalResult

• PCheckInfoLines

• PPrintJobIds

Check Number and Check Sequence Number are used to identify the created guest
check uniquely and they can be used in the future for updating a specific guest check.
For example, this method can create a guest check with a partial payment, and another
method called AddToExistingCheckEx can be invoked later to add another tender for the
balance amount to the same check by specifying the Check Number and Check
Sequence Number of that check. An example of the AddToExistingCheckEx method is
provided in the next section.

Tender/Payment
Tender media is a form of payment or a service total used on a guest check. Each tender
media is identified by a unique identifier called Tender Media Object Number. Tender
media must be configured in EMC before it can be used in the TS API.

The following code snippet demonstrates how tender media with sample data can be
constructed based on the tender media type. This code indicates the data expected by
the payment driver while creating a guest check.

private SimphonyPosApi_TmedDetailItemEx GetTenderMedia(TenderMediaType tmType)
{
 SimphonyPosApi_TmedDetailItemEx tenderMedia = new SimphonyPosApi_TmedDetailItemEx();
 SimphonyPosApi_EPayment ePayment = new SimphonyPosApi_EPayment();
 switch (tmType)
 {
 case TenderMediaType.Cash:
 {
 tenderMedia.TmedObjectNum = 12;
 tenderMedia.TmedPartialPayment = "30"; // tendered amount excluding tip

 // indicates cash payment
 ePayment.PaymentCommand = EPaymentDirective.NO_E_PAYMENT;
 ePayment.TipAmount = "5"; // tendered amount for tip

 tenderMedia.TmedEPayment = ePayment;
 tenderMedia.TmedReference = "Total amount tendered (including tip) is $35";
 break;

Chapter 7
Example and Code Snippets

 7-16

 }
 case TenderMediaType.CreditCard:
 {
 tenderMedia.TmedObjectNum = 30;
 ePayment.PaymentCommand = EPaymentDirective.CREDIT_AUTHORIZE_AND_PAY;

 // Track2 has most of the data required by the payment driver
 ePayment.Track2Data = "7777666655554444=00010002000370783149";
 ePayment.BaseAmount = "30"; // Base amount excluding tip
 ePayment.TipAmount = "5"; // Amount for tip
 ePayment.CashBackAmount = "15";

 tenderMedia.TmedReference =
 "Total amount to be deducted from CREDIT CARD is $50";
 break;
 }
 case TenderMediaType.DebitCard:
 {
 tenderMedia.TmedObjectNum = 31;
 ePayment.PaymentCommand = EPaymentDirective.DEBIT_AUTHORIZE_AND_PAY;

 // Track2 has most of the data required by the payment driver
 ePayment.Track2Data = "8888777766665555=00020003000470783249";
 ePayment.BaseAmount = "30"; // Base amount excluding tip
 ePayment.TipAmount = "5"; // Amount for tip
 ePayment.CashBackAmount = "15";

 tenderMedia.TmedReference =
 "Total amount to be deducted from DEBIT CARD is $50";
 break;
 }
 case TenderMediaType.StoredValueCard:
 {
 tenderMedia.TmedObjectNum = 35;
 ePayment.PaymentCommand = EPaymentDirective.STORED_VALUE_CARD_REDEEM;

 // Track2 has most of the data required by the payment driver
 ePayment.Track2Data = "9999888877776666=10020003000470783249";
 ePayment.BaseAmount = "30"; // Base amount excluding tip
 ePayment.TipAmount = "5"; // Amount for tip
 ePayment.CashBackAmount = "15";

 tenderMedia.TmedReference =
 "Total amount to be deducted from SVC CARD is $50";
 }
 case TenderMediaType.ServiceTotal:
 {
 tenderMedia.TmedObjectNum = 49;
 tenderMedia.TmedReference = "Payment is not done yet";
 break;
 }
 }
 return tenderMedia;
}

Chapter 7
Example and Code Snippets

 7-17

For details on other input parameters of this method, refer to the Calculate Transaction
Totals Method Signature section of this document.

API Response
If the post transaction operation succeeded, the output details (for example, Check ID,
Check Number, and Check Sequence Number) of the created check will be populated in
the appropriate fields of the pGuestCheck parameter. The operation also populates the
print receipt of the guest check in the ppCheckPrintLines property of pGuestCheck, while
it populates the credit voucher of the current transaction in the ppVoucherOutput property
of the same parameter. If this method encounters a problem (for example, payment
failure), it will not create a guest check and will throw an appropriate exception to the
caller. In addition, the OperationalResult property of pTotalsResponse parameter will hold
the appropriate error code and message in that case.

Add an Item to an Open Guest Check
After the user posts a transaction or check to the Simphony POS database, sometimes,
he or she may need to update it. For example, when a transaction was posted to create a
guest check with a Service Total as tender media. That is, payment has not been made
yet for the transaction. In this case, the user may want to add a tender to the guest check
later, in order to make payment for the amount due. In such cases, the
AddToExistingCheckEx method can be used.

The following code snippet demonstrates adding a tender media to an existing open
guest check to make payment so the check can be closed. Smilar to a tender media,
other items such as menu item, combo meal, service charge, or discount can be added to
an open guest check.

SimphonyPosAPIWebSoapClient mTSApi = new SimphonyPosAPIWebSoapClient();
string vendorCode = "lzsroioq"; // This can be empty from 2.7MR3 onwards

public void AddTenderToExistingGuestCheck()
{
 SimphonyPosApi_GuestCheck guestCheck = new SimphonyPosApi_GuestCheck();
 guestCheck.CheckEmployeeObjectNum = 90001;
 guestCheck.CheckRevenueCenterID = 3016;
 guestCheck.CheckNum = 1043;// Check Number of Guest Check to which tender needs to applied

 guestCheck.CheckSeq = 534418293; // Sequence Number of Guest Check

 string[] ppCheckPrintLines = new string[] { "" };
 string[] ppVoucherOutput = new string[] { "" };

 SimphonyPosApi_MenuItem[] ppMenuItems = new SimphonyPosApi_MenuItem[0];
 SimphonyPosApi_ComboMeal[] ppComboMeals = new SimphonyPosApi_ComboMeal[0];
 SimphonyPosApi_SvcCharge pSvcCharge = new SimphonyPosApi_SvcCharge();
 SimphonyPosApi_Discount pSubtotalDiscount = new SimphonyPosApi_Discount();
 SimphonyPosApi_TmedDetailItemEx tenderMedia =
 GetTenderMedia(TenderMediaType.DebitCard);
 SimphonyPosApi_TotalsResponse pTotalsResponse = new SimphonyPosApi_TotalsResponse();

 mTSApi.AddToExistingCheckEx(vendorCode, ref guestCheck, ref ppMenuItems,

Chapter 7
Example and Code Snippets

 7-18

 ref ppComboMeals, ref pSvcCharge, ref pSubtotalDiscount, ref tenderMedia,
 ref pTotalsResponse, ref ppCheckPrintLines, ref ppVoucherOutput);

 if (pTotalsResponse.OperationalResult.Success)
 {
 Console.WriteLine("Add To Existing Check succeeded...");

 Console.WriteLine("Total Due: " + pTotalsResponse.TotalsTotalDue);
 Console.WriteLine("Subtotal: " + pTotalsResponse.TotalsSubTotal);
 Console.WriteLine("Total Auto Service Charge: " +
 pTotalsResponse.TotalsAutoSvcChgTotals);
 Console.WriteLine("Total Service Charge (Manual): " +
 pTotalsResponse.TotalsOtherTotals);
 Console.WriteLine("Total Tax: " + pTotalsResponse.TotalsTaxTotals);
 }
 else
 {
 Console.WriteLine(String.Format("Add To Existing Check failed.
 Error Code: {0}, Error Message: {1}",
 pTotalsResponse.OperationalResult.ErrorCode,
 pTotalsResponse.OperationalResult.ErrorMessage));
 }
}

Like the tender media given in this example, one or more items such as a menu item,
combo meal, service charge, and subtotal discount can be added to an existing open
guest check using this method. However, this method can operate only on open guest
checks and will throw an exception if the caller tries to add an item a closed check.

For details on all input parameters of this method, see the Calculate Transaction Totals
Method Signature and Create a Guest Check sections of this document.

API Response
Adding an item to an existing open guest check will close the original check and create a
new check with all items internally. When this method is invoked, pGuestCheck
parameter will be interrogated and fields such as Check ID, Check Number, and Check
Sequence Number will be updated with details of the new guest check.

Void All Items of an Open Guest Check
Sometimes a user may need to cancel a posted transaction or check due to incorrect
order entry or other reasons. In such cases, the VoidTransaction method can be used to
achieve it. This method can operate on only open guest checks. It voids each item in the
check and keeps the check open. To identify the check, the caller is expected to pass
both Check Number and Check Sequence Number to this method.

Chapter 7
Example and Code Snippets

 7-19

VoidTransaction Method Signature
void VoidTransaction
(

string vendorCode,
ref SimphonyPosAPI_GuestCheck pGuestCheck

)

The following code snippet demonstrates invoking the VoidTransaction method with
sample input data.

SimphonyPosAPIWebSoapClient mTSApi = new SimphonyPosAPIWebSoapClient();
string vendorCode = "lzsroioq"; // This can be empty from 2.7MR3 onwards

public void InvokeVoidTransaction()
{
 SimphonyPosApi_GuestCheck guestCheck = new SimphonyPosApi_GuestCheck();
 guestCheck.CheckNum = 1008; // Check Number of the Guest Check
 guestCheck.CheckSeq = 315015863; // Sequence Number of the Guest Check

 mTSApi.VoidTransaction(vendorCode, ref guestCheck);

 if (guestCheck.OperationalResult.Success)
 {
 Console.WriteLine("Void Transaction succeeded...");
 }
 else
 {
 Console.WriteLine(String.Format("Void Transaction failed. Error Code: {0},
 Error Message: {1}",guestCheck.OperationalResult.ErrorCode,
 guestCheck.OperationalResult.ErrorMessage));
 }
}

API Response
If the operation succeeded, the OperationalResult.Success field will hold True. In addition
the, OperationalResult.ErrorCode will hold the error code, while
OperationalResult.ErrorMessage holds the reason for failure.

Get Status of a Print Job
When a transaction is posted to the POS database using the PostTransactionEx method,
at the end of posting, the method creates a print job to print the guest check. The ID of
the print job is stored and returned to the caller via the PPrintJobIds field of the
SimphonyPosApi_GuestCheck parameter. The job IDs are accumulated in the
PPrintJobIds parameter. The last job ID present in the PPrintJobIds array indicates the
print job ID of the last guest check that was posted to the Simphony POS database.

If a guest check did not print due to any reason, the status of the corresponding print job
can be retrieved using the CheckPrintJobStatus method of TS API. This method accepts
the ID of the print job as one of the parameters and returns the status of that job.

The following code snippet demonstrates how to retrieve the status of a print job.

Chapter 7
Example and Code Snippets

 7-20

SimphonyPosAPIWebSoapClient mTSApi = new SimphonyPosAPIWebSoapClient();
string vendorCode = "lzsroioq"; // This can be empty from 2.7MR3 onwards

public void InvokeCheckPrintJobStatus()
{
 // Print Job Id corresponding to a Guest Check that didn't print
 int printJobId = 1052;
 SimphonyPrintApi_PrintJobStatus printJobStatus =
 new SimphonyPrintApi_PrintJobStatus();

 mTSApi.CheckPrintJobStatus(vendorCode, printJobId, ref printJobStatus);

 if (printJobStatus.OperationalResult.Success)
 {
 Console.WriteLine("Checking status of print job succeeded...");
 onsole.WriteLine("Print job status:" + printJobStatus.Status.ToString());
 }
 else
 {
 Console.WriteLine("Checking status of print job failed. Error Code: {0},
 Error Message: {1}", printJobStatus.OperationalResult.ErrorCode,
 printJobStatus.OperationalResult.ErrorMessage);
 }
}

API Response
If the operation succeeds, the OperationalResult.Success field will hold True. The
printJobStatus will hold the status of queries print job. The following enumerator has
potential status of any print job.

 public enum SimphonyPrintApi_Status
 {
 JobPending = 0,
 JobComplete = 1,
 JobAborted = 2,
 JobSentToBackup = 3,
 JobFailed = 4,
 JobNotFound = 5,
 }

Get Summary of All Open Guest Checks
At times, the user may want to get a summary of all open guest checks from all revenue
centers of the property.

Chapter 7
Example and Code Snippets

 7-21

GetOpenChecks Method Signature
void GetOpenChecks
(

string vendorCode,
int EmployeeObjectNum,
ref SimphonyPosAPI_OpenChecks openChecks

)

The following code snippet demonstrates retrieving a summary of all open guest checks
created by a specific employee whose Employee Object Number is 90001. The caller has
to pass 0 (zero) to the Employee Object Number parameter if he or she wishes to fetch
all open checks irrespective of the owner who created the check.

SimphonyPosAPIWebSoapClient mTSApi = new SimphonyPosAPIWebSoapClient();
string vendorCode = "lzsroioq"; // This can be empty from 2.7MR3 onwards
int employeeObjectNum = 90001; // Pass 0 to fetch all open checks irrespective of Check
Owner

public void InvokeGetOpenChecks()
{
 SimphonyPosApi_OpenChecks openChecks = new SimphonyPosApi_OpenChecks();

 mTSApi.GetOpenChecks(vendorCode, employeeObjectNum, ref openChecks);

 if (openChecks.OperationalResult.Success)
 {
 Console.WriteLine("Get Open Check succeeded...");

 foreach (SimphonyPosApi_CheckSummary check in openChecks.CheckSummary)
 {
 Console.WriteLine("Check Number:" + check.CheckNum);
 Console.WriteLine("Check Sequence Number:" + check.CheckSeq);
 Console.WriteLine("Check Total Due:" + check.CheckTotalDue);
 // The field CheckRevenueCenterObjectNum returns RVC ID (not Object Number)
 Console.WriteLine("RVC ID:" + check.CheckRevenueCenterObjectNum);
 }
 }
 else
 {
 Console.WriteLine("Get Open Check failed. Error Code: {0},
 Error Message: {1}",
 openChecks.OperationalResult.ErrorCode,
 openChecks.OperationalResult.ErrorMessage);
 }
}

API Response
If the operation succeeds, the OperationalResult.Success field will hold True and a
summary of open guest checks will be populated in the openChecks parameter. The field
CheckRevenueCenterObjectNum of SimphonyPosApi_CheckSummary structure is
mislabeled and it will return Revenue Center ID and not Revenue Center Object Number
as the name suggests.

Chapter 7
Example and Code Snippets

 7-22

In case of failure, the OperationalResult.Success field will hold False, while the
OperationalResult.ErrorCode holds the error code and OperationalResult.ErrorMessage
holds reason for failure.

Get Open Guest Checks with RVC Object
Number

If the caller expects the field CheckRevenueCenterObjectNum of
SimphonyPosApi_CheckSummary to hold RVC Object Number (instead of RVC ID), the
GetOpenChecksEx method can be used instead of GetOpenChecks, which is explained
in the previous section. GetOpenChecks populates CheckRevenueCenterObjectNum
with the ID of the revenue center, while GetOpenChecksEx populates the same field with
Object Number.

GetOpenChecksEx Method Signature
void GetOpenChecksEx
(

string vendorCode,
int employeeObjectNum,
ref SimphonyPosAPI_OpenChecks openChecks

)

The following code snippet demonstrates retrieving a summary of all open guest checks
created by a specific employee whose Employee Object Number is 90001. The caller has
to pass 0 (zero) to the Employee Object Number parameter if he or she wishes to fetch
all open checks irrespective of the owner who created the check. The property
CheckRevenueCenterObjectNum of response object returns the object number of RVC
instead of ID. Object number is different from ID.

SimphonyPosAPIWebSoapClient mTSApi = new SimphonyPosAPIWebSoapClient();
string vendorCode = "lzsroioq"; // This can be empty from 2.7MR3 onwards
int employeeObjectNum = 90001; // Pass 0 to fetch all open checks irrespective of Check
Owner

public void InvokeGetOpenChecks()
{
 SimphonyPosApi_OpenChecks openChecks = new SimphonyPosApi_OpenChecks();
 mTSApi.GetOpenChecksEx(vendorCode, employeeObjectNum, ref openChecks);
 if (openChecks.OperationalResult.Success)
 {
 Console.WriteLine("Get Open Check succeeded...");
 foreach (SimphonyPosApi_CheckSummary check in openChecks.CheckSummary)
 {
 Console.WriteLine("Check Number:" + check.CheckNum);
 Console.WriteLine("Check Sequence Number:" + check.CheckSeq);
 Console.WriteLine("Check Total Due:" + check.CheckTotalDue);
 Console.WriteLine("RVC Object Number:" + check.CheckRevenueCenterObjectNum);
 }
 }
 else

Chapter 7
Example and Code Snippets

 7-23

 {
 Console.WriteLine("Get Open Check failed. Error Code: {0}, Error Message: {1}",
 openChecks.OperationalResult.ErrorCode,
 openChecks.OperationalResult.ErrorMessage);
 }
}

API Response
If the operation succeeds, the OperationalResult.Success field will hold True and a
summary of open guest checks will be populated in the openChecks parameter. The field
CheckRevenueCenterObjectNum of SimphonyPosApi_CheckSummary structure will
return Revenue Center Object Number as the name implies.

In case of failure, OperationalResult.Success field will hold False, while
OperationalResult.ErrorCode holds error code and OperationalResult.ErrorMessage
holds the reason for failure.

Get Open Guest Checks from a Specific RVC
Sometimes a user may want to view a summary of all open guest checks from a specific
revenue center within the property. The following method can be used.

GetOpenChecksByRVC Method Signature
void GetOpenChecksByRVC
(

string vendorCode,
int EmployeeObjectNum,
int revenueCenterObjectNum,
ref SimphonyPosAPI_OpenChecks openChecks

)

The following code snippet demonstrates retrieving a summary of all open guest checks
from RVC #3016 that are created by a specific employee whose Employee Object
Number is 90001. The caller has to pass 0 (zero) to the Employee Object Number
parameter if he or she wishes to fetch all open checks irrespective of the owner who
created the check.

Chapter 7
Example and Code Snippets

 7-24

SimphonyPosAPIWebSoapClient mTSApi = new SimphonyPosAPIWebSoapClient();
string vendorCode = "lzsroioq"; // This can be empty from 2.7MR3 onwards
int employeeObjectNum = 90001; // Pass 0 to fetch all open checks irrespective of Check
Owner
int revenueCenterObjectNum = 3016;

public void InvokeGetOpenChecksByRVC()
{
 SimphonyPosApi_OpenChecks openChecks = new SimphonyPosApi_OpenChecks();

 mTSApi.GetOpenChecksByRVC(vendorCode, employeeObjectNum, revenueCenterObjectNum,
 ref openChecks);

 if (openChecks.OperationalResult.Success)
 {
 Console.WriteLine("Get Open Check succeeded...");

 foreach (SimphonyPosApi_CheckSummary check in openChecks.CheckSummary)
 {
 Console.WriteLine("Check Number:" + check.CheckNum);
 Console.WriteLine("Check Sequence Number:" + check.CheckSeq);
 Console.WriteLine("Check Total Due:" + check.CheckTotalDue);
 // The field CheckRevenueCenterObjectNum returns RVC ID (not Object Number)
 Console.WriteLine("RVC ID:" + check.CheckRevenueCenterObjectNum);
 }
 }
 else
 {
 Console.WriteLine("Get Open Check failed. Error Code: {0}, Error Message: {1}",
 openChecks.OperationalResult.ErrorCode,
 openChecks.OperationalResult.ErrorMessage);
 }
}

API Response
If the operation succeeds, the OperationalResult.Success field will hold True and a
summary of open guest checks will be populated in the openChecks parameter. In case
of failure, the OperationalResult.Success field will hold False, while
OperationalResult.ErrorCode holds the error code and OperationalResult.ErrorMessage
holds the reason for failure.

Get Summary and KDS Order Status of Open and
Closed Guest Checks

If a user wants to view a summary of guest checks that satisfies few filter conditions, the
following method can be used.

Chapter 7
Example and Code Snippets

 7-25

GetChecks Method Signature
void GetChecks
(

SimphonyPosApi_CheckRequest ppCheckFilter,
SimphonyPosApi_CheckResponse ppChecksResponse

)

The following code snippet demonstrates how to retrieve both open and closed guest
checks that were created in the last 5 days by an employee whose Employee Object
Number is 90001.

SimphonyPosAPIWebSoapClient mTSApi = new SimphonyPosAPIWebSoapClient();

public void InvokeGetChecks()
{
 const int NUMBER_OF_DAYS = 5;

 // Construct request object
 SimphonyPosApi_CheckRequest request = new SimphonyPosApi_CheckRequest();
 request.LookUpStartDate = DateTime.Today.AddDays(-1 * NUMBER_OF_DAYS);
 request.IncludeClosedCheck = true; // get closed checks too
 request. EmployeeObjectNum = 90001;

 // Construct response object
 SimphonyPosApi_CheckResponse response = new SimphonyPosApi_CheckResponse();

 // Call web service method
 mTSApi.GetChecks(request, ref response);
 if (response.OperationalResult.Success)
 {
 foreach (SimphonyPosApi_CheckSummaryEx check in response.Checks)
 {
 Console.WriteLine("Check Number:" + check.CheckNum);
 Console.WriteLine("Check Sequence Number:" + check.CheckSeq);

 Console.WriteLine("KDS Order Status Code:" + check.LastKnownKdsOrderStatus);
 }
 }
 else
 {
 Console.WriteLine("GetChecks failed. Error Code: {0}, Error Message: {1}",
 response.OperationalResult.ErrorCode,
 response.OperationalResult.ErrorMessage);
 }
}

API Response
If the operation succeeds, the OperationalResult.Success field will hold True and a
summary of filtered guest checks will be populated in the response.Checks parameter. In
case of failure, OperationalResult.Success field will hold False, while
OperationalResult.ErrorCode holds the error code and OperationalResult.ErrorMessage
holds the reason for failure.

Chapter 7
Example and Code Snippets

 7-26

Get Check Detail
If a user wants to view complete details of a guest check or most recent status of the
order, the following method can be used.

GetCheckDetail Method Signature
void GetCheckDetail
(

SimphonyPosApi_CheckDetailRequest ppCheckDetailFilter,
SimphonyPosApi_CheckDetailResponse ppChecksDetailResponse

)

The following code snippet demonstrates retrieving complete details of a guest check in
XML format and printing the most recent status of the order.

SimphonyPosAPIWebSoapClient mTSApi = new SimphonyPosAPIWebSoapClient();

public void InvokeGetCheckDetail()
{
 SimphonyPosApi_CheckDetailRequest request = new SimphonyPosApi_CheckDetailRequest();
 request.CheckNumber = 104;
 request.CheckSeqNumber = 123456789;

 SimphonyPosApi_CheckDetailResponse response = new SimphonyPosApi_CheckDetailResponse();

 mTSApi.GetCheckDetail(request, ref response);
 if (response.OperationalResult.Success)
 {
 Console.WriteLine("Check XML:" + response.CheckDetail);

 XmlDocument checkXML = new XmlDocument();
 checkXML.LoadXml(response.CheckDetail);

 XmlNode checkNumber = checkXML.SelectSingleNode("CheckNumber");
 Console.WriteLine("Check Number - " + checkNumber.InnerText);

 XmlNode dueAmount = checkXML.SelectSingleNode("Due");
 Console.WriteLine("Check Due - " + dueAmount.InnerText);

 // Read the most recent status of the order from extensibility data
 string extensibilityAppName = "OIS"; // this name is configured in EMC
 XmlNodeList xnl = checkXML.SelectNodes(string.Format(
 "//extensibility_data[ExtensibilityAppName = \"{0}\"]", extensibilityAppName));

 if (xnl != null && xnl.Count > 0)
 {
 string mostRecentOrderStatus = string.Empty;
 DateTime mostRecentTimeStamp = DateTime.MinValue;

 foreach (XmlNode node in xnl)
 {
 XmlNode stringData = node.SelectSingleNode("StringData");
 // Read the value of ‘Timestamp’ property from stringData
 DateTime timeStamp = GetOrderTimeStamp(stringData.InnerText);

Chapter 7
Example and Code Snippets

 7-27

 if (timeStamp > mostRecentTimeStamp)
 {
 mostRecentOrderStatus = node.SelectSingleNode("DisplayName").InnerText;
 mostRecentTimeStamp = timeStamp;
 }
 }

 Console.WriteLine("Most Recent Order Status - " + mostRecentOrderStatus);
 Console.WriteLine("Timestamp - " + mostRecentTimeStamp);
 }
 }
 else
 {
 Console.WriteLine("GetCheckDetail failed. Error Code: {0}, Error Message: {1}",
 response.OperationalResult.ErrorCode,
 response.OperationalResult.ErrorMessage);
 }
}

API Response
If the operation succeeds, the OperationalResult.Success field will hold True and the
check XML will be populated in the response.CheckDetail parameter. In case of failure,
OperationalResult.Success field will hold False, while OperationalResult.ErrorCode holds
error code and OperationalResult.ErrorMessage holds reason for failure.

Get Printed Texts of a Guest Check
The print lines of an open guest check can be retrieved by specifying the Check Number
and a few other required details. This is often required where an external printer is used
to print an open guest check. The method GetPrintedCheck can be used for this purpose.
This method will retrieve the print lines in the output parameter without actually printing
the guest check on a printer. This method works only on open guest checks.

GetPrintedCheck Method Signature
void GetPrintedCheck
(

string vendorCode,
int CheckSeq,
int EmplObjectnum,
int TmedObjectNum,
ref SimphonyPosApi_CheckPrintResponse ppCheckPrintLines

)

The following code snippet demonstrates retrieving print lines of a guest check.

SimphonyPosAPIWebSoapClient mTSApi = new SimphonyPosAPIWebSoapClient();
string vendorCode = "lzsroioq"; // This can be empty from 2.7MR3 onwards
int employeeObjectNum = 90001; // for authentication

public void InvokeGetPrintedCheck()
{

Chapter 7
Example and Code Snippets

 7-28

 int checkNumber = 1052; // Check Number for which print lines required
 int tenderMediaObjNum = 49; // Tender Media Object Number of Service Total
 SimphonyPosApi_CheckPrintResponse checkPrintLines =
 new SimphonyPosApi_CheckPrintResponse();

 mTSApi.GetPrintedCheck(vendorCode, checkNumber, employeeObjectNum,
 tenderMediaObjNum, ref checkPrintLines);

 if (checkPrintLines.OperationalResult.Success)
 {
 Console.WriteLine("Get Printed Check succeeded...");

 Console.WriteLine("Printed check lines:");
 foreach (string printLine in checkPrintLines.CheckPrintLines)
 {
 Console.WriteLine(printLine);
 }
 }
 else
 {
 Console.WriteLine("Get Printed Check failed. Error Code: {0},
 Error Message: {1}", checkPrintLines.OperationalResult.ErrorCode,
 checkPrintLines.OperationalResult.ErrorMessage);
 }
}

API Response
If the operation succeeds, the OperationalResult.Success field will hold True, and print
lines of the guest check will populate in the checkPrintLines parameter. In case of failure,
the OperationalResult.Success field will hold False, while the
OperationalResult.ErrorCode holds error code and OperationalResult.ErrorMessage
holds reason for failure.

Get Configured Information (Method 1 -
GetConfigurationInfo)

Some of the data configured in the EMC can be retrieved from the POS database via TS
API.

The client application can retrieve the configuration data such as menu item definition,
family group, interfaces, menu item master, menu item price, major group, revenue
center parameter, tender media, currency, employees, menu item class, serving periods,
service charge, discounts, dining tables, order types, revenue centers, menu levels,
language information, application version, menu levels, menu item SLU, main menu
levels, sub menu levels, event types, event sub types and event definition from the
Simphony POS database using the GetConfigurationInfo method. This method returns all
records of the specified configuration data type. The integrator can use another version of
this method (explained in the next section) named GetConfigurationInfoEx to retrieve
records batch by batch when the volume of configuration data is large.

Chapter 7
Example and Code Snippets

 7-29

GetConfigurationInfo Method Signature
void GetConfigurationInfo
(

String vendorCode,
Int employeeObjectNum,
ARRAY(int) configurationInfoType,
Int revenueCenter,
ref SimphonyPosAPI_ConfigInfoResponse configInfoResponse

)

The following code snippet demonstrates retrieving configured data for menu item
definition, menu item price, tender media, currency, and service charge.

SimphonyPosAPIWebSoapClient mTSApi = new SimphonyPosAPIWebSoapClient();
string vendorCode = "lzsroioq"; // This can be empty from 2.7MR3 onwards
int employeeObjectNum = 90001; // for authentication
int revenueCenterObjectNum = 3016;

public void InvokeGetConfigurationInfo()
{
 int[] configurationInfoType = new int[] {
 (int)EConfigurationInfoType.MENUITEMDEFINITIONS,
 (int)EConfigurationInfoType.MENUITEMPRICE,
 (int)EConfigurationInfoType.TENDERMEDIA,
 (int)EConfigurationInfoType.CURRENCY,
 (int)EConfigurationInfoType.SERVICECHARGE };

 SimphonyPosApi_ConfigInfoResponse configInfoResponse = new
 SimphonyPosApi_ConfigInfoResponse();

 mTSApi.GetConfigurationInfo(vendorCode, employeeObjectNum, configurationInfoType,
 revenueCenterObjectNum, ref configInfoResponse);

 if (configInfoResponse.OperationalResult.Success)
 {
 Console.WriteLine("Get Configuration Info succeeded...");
 Console.WriteLine("Menu item definitions: " +
 configInfoResponse.MenuItemDefinitions);
 Console.WriteLine("Menu item price: " + configInfoResponse.MenuItemPrice);
 Console.WriteLine("Tender media: " + configInfoResponse.TenderMedia);
 Console.WriteLine("Currency: " + configInfoResponse.Currency);
 Console.WriteLine("Service Charge: " + configInfoResponse.ServiceCharge);
 }
 else
 {
 Console.WriteLine("Get Configuration Info failed. Error Code: {0},
 Error Message: {1}", configInfoResponse.OperationalResult.ErrorCode,
 configInfoResponse.OperationalResult.ErrorMessage);
 }
}

Chapter 7
Example and Code Snippets

 7-30

API Response
If the operation succeeds, the OperationalResult.Success field will hold True, and
configured data for queried type can be found in the appropriate fields of the
configInfoResponse object. In case of failure, the OperationalResult.Success will hold
False, while OperationalResult.ErrorCode holds error code and
OperationalResult.ErrorMessage holds reason for failure.

Get Configured Information (Method 2 -
GetConfigurationInfoEx)

GetConfigurationInfoEx is a new version of the GetConfigurationInfo method to retrieve
configuration data batch by batch or in full. This method is useful when the POS
database has a large volume of configuration data for one or more types, such as Menu
Item Definition, Menu Item Master, and so on. This method is designed to return all
records for a configuration data type when no ranges are specified in the input
parameters. In other words, this method will behave exactly like the old method
(GetConfigurationInfo) when no ranges (start index and maximum records count) are
specified.

GetConfigurationInfoEx Method Signature
void GetConfigurationInfoEx
(

SimphonyPosApi_ConfigInfoRequest configInfoRequest,
ref SimphonyPosAPI_ConfigInfoResponse configInfoResponse

)

The following code snippet demonstrates retrieving configured data for the menu item
definition and menu item price.

SimphonyPosAPIWebSoapClient mTSApi = new SimphonyPosAPIWebSoapClient();

string vendorCode = "lzsroioq"; // This can be empty from 2.7MR3 onwards
int employeeObjectNum = 90001; // for authentication
int revenueCenterObjectNum = 3016;

private const int MAX_RECORD_COUNT= 5000; // Indicates the maximum number of records to be retrieved

private static string[] CONFIG_DATA_NODE_NAMES = new string[] { "DbMenuItemMaster",
 "DbMenuItemPrice" };

public void InvokeGetConfigurationInfo()
{
 SimphonyPosApi_ConfigInfoRequest request = new SimphonyPosApi_ConfigInfoRequest();
 request.EmployeeObjectNumber = employeeObjectNum;
 request.RVCObjectNumber = revenueCenterObjectNum;

 List<SimphonyPosApi_ConfigInfo> configTypeList = new List<SimphonyPosApi_ConfigInfo>();

 // Menu Item Master

Chapter 7
Example and Code Snippets

 7-31

 SimphonyPosApi_ConfigInfo miMasterType = new SimphonyPosApi_ConfigInfo();
 miMasterType.ConfigurationInfoTypeID = EConfigurationInfoType.MENUITEMMASTERS;
 miMasterType.MaxRecordCount = MAX_RECORD_COUNT;
 miMasterType.StartIndex = 1; // 1 is just an initial value; this will be incremented each
 // time GetConfigurationInfoEx method is called.
 configTypeList.Add(miMasterType);

 // Menu Item Price
 SimphonyPosApi_ConfigInfo miPriceType = new SimphonyPosApi_ConfigInfo();
 miPriceType.ConfigurationInfoTypeID = EConfigurationInfoType.MENUITEMPRICE;
 miPriceType.MaxRecordCount = MAX_RECORD_COUNT;
 miPriceType.StartIndex = 1; // 1 is just an initial value; this will be incremented each
 // time GetConfigurationInfoEx method is called.
 configTypeList.Add(miPriceType);

 request.ConfigurationInfo = configTypeList.ToArray();
 int miMasterRecordsCount = 0;
 int miPricecRecordsCount = 0;

 while (true) // call GetConfigurationInfoEx method in a loop until it return all
 // the records of requested configuration data type
 {
 SimphonyPosApi_ConfigInfoResponse response = new SimphonyPosApi_ConfigInfoResponse();

 // Call the TS method and check the response
 mTSApi.GetConfigurationInfoEx(request, ref response);
 if (response.OperationalResult.Success)
 {
 bool bFoundData = false;

 // Menu Item Master
 if (!string.IsNullOrWhiteSpace(response.MenuItemMasters))
 {
 // add it to the output list
 XmlDocument tempXmlDoc = new XmlDocument();
 tempXmlDoc.LoadXml(response.MenuItemMasters);
 XmlNodeList miMasterList =
 tempXmlDoc.GetElementsByTagName(CONFIG_DATA_NODE_NAMES[0]);

 if (miMasterList != null && miMasterList.Count > 0)
 {
 bFoundData = true;
 miMasterRecordsCount += miMasterList.Count;

 // TODO: Save these records to a file or memory for consolidation
 }
 }

 // Menu Item Price
 if (!string.IsNullOrWhiteSpace(response.MenuItemPrice))
 {
 // add it to the output list
 XmlDocument tempXmlDoc = new XmlDocument();
 tempXmlDoc.LoadXml(response.MenuItemPrice);

Chapter 7
Example and Code Snippets

 7-32

 XmlNodeList miPriceList =
 tempXmlDoc.GetElementsByTagName(CONFIG_DATA_NODE_NAMES[1]);

 if (miPriceList != null && miPriceList.Count > 0)
 {
 bFoundData = true;
 miPricecRecordsCount += miPriceList.Count;

 // TODO: Save these records to a file or memory for consolidation
 }
 }

 if (bFoundData == false)
 {
 break; // all records are already returned by TS, so come out of the loop now.
 }

 // increment the start index so that GetConfigurationInfoEx can be
 // called again to get next set of records.
 IncrementStartIndex(configTypeList.ToArray(), MAX_RECORD_COUNT);
 }
 }

 System.Console.WriteLine("Operation completed successfully.");
 System.Console.WriteLine("MI Master count - " + miMasterRecordsCount);
 System.Console.WriteLine("MI Price count - " + miPricecRecordsCount);

 System.Console.ReadLine();
}

private static void IncrementStartIndex(SimphonyPosApi_ConfigInfo[] configTypeList,
 int maxRecordCount)
{
 foreach(SimphonyPosApi_ConfigInfo configInfo in configTypeList)
 {
 configInfo.StartIndex += maxRecordCount;
 }
}

API Response
If the operation succeeds, the OperationalResult.Success field will hold True, and
configured data for queried type can be found in the appropriate fields of the
configInfoResponse object. In case of failure, OperationalResult.Success will hold False,
while OperationalResult.ErrorCode holds error code and
OperationalResult.ErrorMessage holds reason for failure.

Chapter 8
Simphony Platform Requirements

 8-1

8
Simphony Platform Requirements

Simphony Software Version
This release of the Simphony POS API requires Simphony version 2.7 or later.

Offline Transaction Support
The Simphony Transaction Services can never be in an offline state. It does not have an
offline feature. As it is hosted by either a ServiceHost or IIS, the lazy playback
mechanism posts the checks to the Check and Posting Server (CAPS). If CAPS is offline,
checks will not be posted to the CAPS machine unless it is restarted.

Printing Services
The API supports printing to remote and local order devices. When a check is opened
through the TS API and posted to the Simphony database, the menu items will print on
the remote and local devices based on the default workstation definition and the assigned
Menu Item Print Class. There should be no difference between how an API check prints
versus a check opened directly by the user on the POS devices. Local guest check
printing is not supported at this time through the API. The Print Controller service must be
running for printing to work.

Calling Conventions
There are two types of parameters passed to the API: ref and non-ref parameters. All
parameters are mandatory. However, if you do not wish to use one of the parameters,
simply create the structure and set all of its members to zero.

For example, if a check does not contain a Subtotal discount, you can pass the address
of this structure to the API; everything will be zero. To add a discount, fill in the
appropriate members of the discount object.

Chapter 9
Demo Client for Transaction Services API

 9-1

9
Demo Client for Transaction Services API

The Demo client is a Windows application used to demonstrate or test the features of the
TS API. This application is distributed with Simphony install media. This application builds
data for input parameters based on values provided by the user, and sends a request to
TS API and displays the response in the UI.

Application Path
The demo client application is located in the following folder of install media:

<InstallMediaFolder>\Install\Simphony2\Tools\PosAPIDemoClient

Prerequisites
A workstation is configured using the EMC and is runs Service Host application to host
the Transaction Services web service. Navigate to the URL of the TS web service using a
web browser to see if the TS web service is running.

Initial Setup
To configure and run the demo client application:

1. Copy the PosAPIDemoClient folder from install media to a local folder.

2. Launch POSAPI_WebClient.exe.

3. Enter the full address of the workstation hosting the TS service in the text box
(highlighted in the following image).

Chapter 9
Demo Client for Transaction Services API

 9-2

Demonstration
Calculate Totals of a Transaction
The Demo client has a Calculate Totals button to invoke the CalculateTransactionTotals
method of TS API.

To pass input data through the UI and invoke the method:

1. Select the MenuItem option from the Type drop-down list.

2. Enter the menu item’s Object Number 110003 in the Number field, and then click the
Add Item button.
You can obtain the Menu Item Object Number from the EMC, at the Property level,
Configuration tab, Menu Items, Menu Item Maintenance module.

3. Enter 3016 in the RVC # textbox.
You can obtain the RVC number from the EMC, Property level, Setup tab, Property
Configuration, RVC Configuration module.

4. Enter 90001 in the Employee # textbox.
You can obtain the Employee Number from the EMC, Property level, Configuration
tab, Personnel, Employee Maintenance module.

5. Enter a valid vendor code in the License Activation Code field. This can be left
blank for Simphony version 2.7 MR3 or later.

6. Click the Calculate Totals button to send the request to the TS API.

The status of the operation will appear in the lower area of the UI, while results appear in
the block highlighted in green as shown in the following image.

Chapter 9
Demo Client for Transaction Services API

 9-3

Create a Guest Check
Use the Post Transaction button to send a request to create a new guest check in the
Simphony database.

1. Select MenuItem from the Type drop-down list.

2. Enter the menu item’s Object Number 110003 in the Number field, and then click the
Add Item button.

3. Select RequiredCondiment from c.

4. Enter the Object Number 41103 in the Number textbox, and then click the Add Item
button.

5. For payment, select Tender from the Type drop-down list.

a. For a cash payment, enter the Tender Media Object Number of Cash (for
example, 2) in the Number field. Then enter the amount (for example, 10) in the
Value textbox.

b. For a debit or credit payment, enter the Tender Media Object Number of
Credit/Debit, and then click the Credit Auth button to provide payment card
details in the popup.

 NOTE:

Transaction Services only supports the MCreditDebit Payment driver for
credit/debit card payments.

6. To add tender details, click the Add Item button.

7. If you are using versions earlier than Simphony 2.7 MR3, enter values in the RVC #,
Employee #, and License Activation Code fields.

8. To send a request to the TS API, click the Post Transaction button. The result is
populated in the fields highlighted in green as shown in the following image.

Chapter 9
Demo Client for Transaction Services API

 9-4

Add an Item to an Open Guest Check
Use the Add to Check button to add one or more items to an existing guest check.

This example creates a guest check using Post Transaction first and then adds one
menu item to the check using the Add To Check button.

1. Select the MenuItem option from the Type drop-down list.

2. Enter the menu item’s Object Number 110003 in the Number field, and then click the
Add Item button.

3. Select RequiredCondiment from the Type drop-down list.

4. Enter the Object Number 44502 in the Number field, and click then the Add Item
button.

5. Select Tender from the Type drop-down list.

6. Enter the Tender Media Object Number of Service Total in the Number field, and
then click the Add Item button.

7. If you are using versions earlier than Simphony 2.7 MR3, enter values in the RVC #,
Employee #, and License Activation Code fields.

8. Click the Post Transaction button to create the guest check. As the tender type is
Service Total, the check that is created will be in the Open state. One or more items
can be added to the open check by following further steps below.

Chapter 9
Demo Client for Transaction Services API

 9-5

9. Click the Clear MI details button to clear current details.

10. Select MenuItem from the Type drop-down list, and then add a menu item to the
existing guest check.

11. Enter the menu item’s Object Number 110004 in the Number field and then click the
Add Item button.

12. Select RequiredCondiment from the Type drop-down list.

13. Enter the Object Number 41103 in the Number field, and then click the Add Item
button.

14. Ensure that the value of Check Sequence Number and Check Number of original
check still appears in the Check Seq and the Check # fields.

15. Click the Add to Check button.

Chapter 9
Demo Client for Transaction Services API

 9-6

Combo Meal Ordering
The following steps describe how to add a combo meal to the check. Ensure that a
combo meal is already configured in the EMC so that it can be added on the POS API.

1. Select ComboMeal from the Type drop-down list, enter the combo meal Object
Number in the Number field, enter the Object Number in the Combo Menu Item
Number field, and then click the Add Item button.

2. To add a main item, select ComboMain from the Type drop-down list.

Chapter 9
Demo Client for Transaction Services API

 9-7

3. Enter the combo meal’s Object Number in the Number field, and then click the Add
Item button.

4. To add side items, select ComboSide from the Type drop-down list.

5. Enter the side item’s Object Number in the Number field, and click the Add Item
button.

6. Click the Calculate Totals button to calculate the price of the combo meal or add a
tender, and then click the Post Transaction button to create a guest check.

Void All Items of an Open Guest Check
Use the Void Check button to send a request to void all items of a guest check.

Enter the Check Sequence Number and the Check Number of the guest check in the
relevant fields (highlighted in red in the following image) to void all items of the guest
check. No other input is required to perform this operation.

To send a void request to TS API, click the Void Check button.

Chapter 9
Demo Client for Transaction Services API

 9-8

Get Summary of All Open Guest Checks
Use the Get Open Checks button to send a request to TS API to retrieve a summary of
all open guest checks from all or a specific revenue center of the property from the
Simphony POS database. This button calls different method (GetOpenChecks,
GetOpenChecksEx, GetOpenChecksByRVC) of TS API based on input given to the
Revenue Center field of the FormGuestCheckParams dialog, as described below.

1. If you are using versions earlier than Simphony 2.7 MR3, enter the value for the
License Activation Code field, and then click the Get Open Checks button.

Chapter 9
Demo Client for Transaction Services API

 9-9

The following dialog appears:

2. Enter the Employee Object Number in the Employee number field to filter checks

based on the employee who created it (or enter 0 to get all open checks irrespective
of who created them).

3. Enter the appropriate value in the Revenue Center field, and enable the check box:

a. Enter -1 to retrieve open checks from all revenue centers of the property and
display ID (instead of Object Number) of Revenue Center for each check in the
output window.

b. Enter -2 to retrieve open checks from all revenue centers of the property and
display Object Number (instead of ID) of Revenue Center for each check in the
output window.

c. Enter the Object Number of any RVC to retrieve all open checks from that
specific revenue center and display ID (instead of Object Number) of Revenue
Center for each check in the output window.

Chapter 9
Demo Client for Transaction Services API

 9-10

The following image shows a summary of all open checks.

Chapter 9
Demo Client for Transaction Services API

 9-11

Get Summary of Open and Closed Guest Checks
Use the Get Checks button to send a request to TS API to retrieve a summary of all
open and closed guest checks from default or a specific revenue center of the property
from the Simphony POS database. This button calls the GetChecks method of TS API.

1. Click the Get Checks button from the main window to open the following window.

2. Enter data for one or more filters as needed (for example, Check Number(s),

Employee Object Number, RVC Object Number, Order Type ID, KDS Order Status
ID(s), LookupStartDate). Select the Include Closed Check checkbox if closed
checks need to be retrieved.

The Check Sequence Number field is not applicable to this operation, so it is
disabled.

3. Click the Send Request button.

Chapter 9
Demo Client for Transaction Services API

 9-12

4. The summary of returned checks appears in the area highlighted in green in the

image above.

5. To view the complete details of returned checks, open the
LastResponseTransaction.xml file that is created by this demo client application in
the folder where this application is installed.

Chapter 9
Demo Client for Transaction Services API

 9-13

Get Check Detail
Use the Get Check Detail button to send a request to TS API to retrieve the full detail of
any open or closed guest check. This button calls the GetCheckDetail method of TS API.

1. Click the Get Check Detail button from the main window to open the following
window.

2. Enter the Check Number and Check Sequence Number fields. Other fields, such

as Employee Object Number, RVC Object Number, and so on are not applicable to
this operation.

3. Click the Send Request button.

The area highlighted in green appears if the check has extensibility data. To see the
entire check detail, open the LastResponseTransaction.xml file that is created by this
demo client application in the folder where this application is installed.

Chapter 9
Demo Client for Transaction Services API

 9-14

Get Printed Texts of a Guest Check
Use the Get Printed Check button to open posted checks by supplying the check
number and the tender number.

1. If you are using versions earlier than Simphony 2.7 MR3, enter the License
Activation Code.

2. Click the Get Printed Check button.

Chapter 9
Demo Client for Transaction Services API

 9-15

3. Enter the Employee number, Check Number (or Check Sequence), and Tender
Media Object Number, and then click OK.

Chapter 9
Demo Client for Transaction Services API

 9-16

Get Configured Information
1. Enter the RVC Object Number value in the Rvc # field.

2. If you are using versions earlier than Simphony 2.7 MR3, enter the License
Activation Code.

3. Click the Get Config Info button.

4. Enter the Employee Object Number in the Employee number field, and then enter
configuration data type IDs in the Configuration Number textbox. The configuration
numbers should be separated by a comma when data for more than one
configuration data type needs to be fetched.

5. If a specific range of records are required for given configuration data type, select the
Get records by index? checkbox. Specify the start index and maximum number of
records required in the Start Index and Max Records Count textboxes. When the
checkbox Get records by index? is not selected, the TS API returns all records for
the specified configuration data types.

6. Click the OK button to send a request to the TS API.

Chapter 9
Demo Client for Transaction Services API

 9-17

The following image shows the configuration data returned by TS API.

Chapter 9
Demo Client for Transaction Services API

 9-18

Tax Override
Use the Tax Override button to override a menu item’s existing tax rate. These items
include menu items, combo meals, combo sides, combo main, required condiment, and
allowed condiments. It is assumed that there are one or more tax rates preconfigured in
EMC at the enterprise or property level.

1. After adding a menu item to the check, click the Tax Override button.

2. Place a checkmark next to the tax rate to apply to this item.

Chapter 9
Demo Client for Transaction Services API

 9-19

3. Click the Generate button, and then click the Save button.

In the following image, 64 zeros appear between <TaxOverride></TaxOverride>.
Each digit represents one of the programmable 64 tax rates in EMC. A number 1
indicates that the particular tax rate record is enabled.

4. Clicking Calculate Totals will apply the new rate to the item and add the taxable

amount to the Tax Total field.

Chapter 9
Demo Client for Transaction Services API

 9-20

Finally, the user should be able to tender the check and the check printout should display
the correct taxed amount.

Perform Sanity Check
Use the SanityCheck button to perform a sanity check validation by providing a Sanity
Code for the ‘Extension Plugin’ currently initiated with TS.

1. Click on the Fiscal tab to display the Fiscal API section containing the user interface
for performing Sanity Check.

Chapter 9
Demo Client for Transaction Services API

 9-21

2. Consult the documentation of the country-specific ‘Extension Plugin’ being initiated
on the workstation, and enter a valid Sanity Code value in the text box (e.g. ‘999’).

3. Press the SanityCheck button and the results shall display in the output textbox
found at the bottom area of the application window.

Menu Item Quantity for PostTransactionEx API
Setting the quantity of menu item, combo meal, combo main, and combo side when
testing PostTransactionEx API required manual entry of a case-sensitive xml snippet in
the Reference field. A utility function is provided to avoid human error.

1. Enter the quantity in the Ref. Quantity field and press Insert Ref. button. The
<MiQuantity> xml snippet will be inserted in the Reference field.

2. Set the Menu Item by entering the object number in Number field and proceed to add

menu item using Add Item button.

3. Press Clear Ref. button to clear the Reference field.

4. Set the Tender Media by selecting Tender in Type dropdown and enter the object
number in Number field. Press Add Item button.

Chapter 9
Demo Client for Transaction Services API

 9-22

5. Press the General tab to display standard functions, then proceed to press
PostTransactionEx API button.

6. Confirm in the print out that the menu item quantity is correctly registered in the

system.

Check Detail Definition Selector
This feature fills the Number field with the object number of Menu Item, Service Charge,
Discount, and Tender Media definition records that has been selected from a list. The
check detail definition records are obtained using the GetConfigurationInfo /
GetConfigurationInfoEx API.

1. Ensure appropriate value is entered in Rvc# and Employee# fields. Selected
employee must have access to the definition records.

2. Press Fiscal tab and select the configuration/definition type from the Config/Def

Type dropdown. Then proceed to press the Select Record button. Note: Only
Configuration/Definition Types MENUITEMDEFINITION, SERVICECHARGE,

Chapter 9
Demo Client for Transaction Services API

 9-23

DISCOUNTDEFINITION and TENDERMEDIA are currently supported.

3. A window with a list of definition records will display. From this list, select one

definition record and press Set Number Field button. The window will close and the
Number field will be updated with the object number of the definition record selected.
Note: the Type field will not be adjusted automatically, please ensure the Type field
matches the configuration/definition type defined at step 2 before pressing the Add
Item button.

Chapter 10
Extending Transaction Services Through Plug-ins

 10-1

10
Extending Transaction Services Through
Plug-ins

Transaction Services operations do not raise Extension Application events. There is,
however, a mechanism for integrators to extend core behavior of receipt printing, order
device output, and check numbering.

When ServiceHost.exe initializes Transaction Services, it looks in the web.config.txt
configuration file to see if a plug-in is defined that it can load.

The plug-in can implements one or more of the following interfaces:

• SimphonyPosApi.ICustomReceiptPlugin

• SimphonyPosApi.ICupLabelPlugin

• SimphonyPosApi.IAlternateCheckNumberPlugin

The Visual Studio project attached to this page can be used as a reference on how to
implement these interfaces.

Once the project is build is the following steps to install and configure the Transaction
Services extensions.

1. Build DLL and deploy to the Handlers folder

2. Register the plug-in by editing the web.config.txt file

3. If the ICupLabelPlugin interface is implemented, set the Custom Instruction to a value
for the order device (image below)

Web.config.txt Updates
<add key="CupLabelClassFile"
value="TransactionServicesEventHandlers.dll,TransactionServicesEventHandlers.CupLa
belPluginImplementation" />

<add key="CustomReceiptClassFile"
value="TransactionServicesEventHandlers.dll,TransactionServicesEventHandlers.Custo
mReceiptPluginImplementation" />

<add key="CustomReceipt2ClassFile"
value="TransactionServicesEventHandlers.dll,TransactionServicesEventHandlers.Custo
mReceipt2PluginImplementation" />

<add key="AlternateCheckNumberFile"
value="TransactionServicesEventHandlers.dll,TransactionServicesEventHandlers.Alterna
teCheckNumberPluginImplementation" />

If only the ICupLabelPlugin interface is implemented/used then only the first line is
needed.

The key names are special and recognized by Simphony.

Chapter 10
Extending Transaction Services Through Plug-ins

 10-2

The key value is the name of the DLL, followed by a comma, followed by the Namespace
qualified name of the class that implements the interface.

Once this is done, restart service host.

The Transaction Services client will load the libraries on the first transaction. The
ICupLabelPlugin interface is called each time a print job is sent by the API.

 // interface implemented for CupLabelClassFile
 public interface ICupLabelPlugin
 {
 string Name { get; }
 object CustomFormatting(EXTOPS::DeviceType target,
List<EXTOPS::ExtensibilityOpsDisplayDetail> dtl, string customName,
Dictionary<string, string> currentState);
 }

 // interface implemented for CustomReceiptClassFile
 public interface ICustomReceiptPlugin
 {
 string Name { get; }
 bool CustomReceiptPrintFormat(EventMonitorArgs args, List<SortedDetailBase> list);
 }

 // interface implemented for CustomReceipt2ClassFile
 public interface ICustomReceiptPlugin2
 {
 string Name { get; }
 bool CustomReceiptPrintFormat(EventMonitorArgs args, List<SortedDetailBase> list,
Dictionary<string, string> currentState);
 }

 // interface implemented for AlternateCheckNumberFile
 public interface IAlternateCheckNumberPlugin
 {
 string Name { get; }
 bool GetAlternateCheckNumber(EventMonitorArgs args);
 }

Chapter 10
Extending Transaction Services Through Plug-ins

 10-3

Current State Dictionary
The currentState Dictionary passed by the ICupLabelPlugin and
ICustomerReceiptPlugin2 interface contains the following keys:

CheckNumber:

 number of current check

WorkstationNum:

 workstation number

CheckID:

 Check ID added/set by the transaction-service client application

CheckInfoLine[n]:

 [n] is identifier of check-information-line, can have one or more of these

[ExtensionDetailName]:

 key is the data-name assigned to the extension detail, value is the string-data of the extension detail

RevenueCenterNum:

 revenue center number

RevenueCenterName:

 revenue center name

OrderType:

 order type number of the transaction

OrderTypeName:

 order type name

Sample Project
This sample project shows how to implement interfaces in .NET C# assembly:

TransactionServicesEventHandlers.zip

https://docs.oracle.com/cd/E65545_01/simphony/TransactionServicesEventHandlers.zip

	Contents
	Preface
	1 Introduction
	Simphony Architecture
	Hosting Method
	Quick Installation Roadmap
	Error Logging
	TS API Class Hierarchy

	2 Transaction Operations
	Calculate Totals
	Parameters
	Response

	Post Transaction
	Parameters
	Response

	Add to Transaction
	Parameters
	Response

	Void Transaction
	Parameters
	Response

	Check Print Job Status
	Parameters
	Response

	3 Guest Check Operations
	Get Check Summary
	Get Check Detail
	Get Printed Check
	Get Summary of All Open Guest Checks
	Business Purpose
	Method Description
	Parameters
	Return Value

	Get Open Guest Checks With RVC Object Number
	Business Purpose
	Method Description
	Parameters
	Return Value

	Get Open Guest Checks From a Specific RVC
	Business Purpose
	Method Description
	Parameters
	Return Value

	Get Printed Texts of a Guest Check
	Business Purpose
	Method Description
	Parameters
	Return Value

	Get Summary and KDS Order Status of Open and/or Closed Guest Checks
	Business Purpose
	Method Description
	Parameters
	Return Value

	4 Configuration Operations
	Get Configuration Information
	Get Configured Information (method 1)
	Business Purpose
	Method Description
	Parameters
	Return Value

	Get Configured Information (method 2)
	Business Purpose
	Method Description
	Parameters
	Return Value

	5 Fiscal Operations
	Sanity Check
	Business Purpose
	Method Description
	Parameters
	Return Value

	6 Structure Reference
	SimphonyPosAPI_CheckSummary
	SimphonyPosAPI_CheckSummaryEx
	SimphonyPosAPI_OpenChecks
	SimphonyPosAPI_GuestCheck
	SimphonyPosAPI_CheckRequest
	SimphonyPosAPI_CheckResponse
	SimphonyPosAPI_CheckDetailRequest
	SimphonyPosAPI_CheckDetailResponse
	SimphonyPosAPI_MenuItem
	SimphonyPosAPI_MenuItemEx
	SimphonyPosAPI_MenuItemDefinition
	SimphonyPosAPI_MenuItemDefinitionEx
	SimphonyPosAPI_ComboMeal
	SimphonyPosAPI_ComboMealEx
	SimphonyPosAPI_Discount
	SimphonyPosAPI_DiscountEx
	SimphonyPosAPI_SvcCharge
	SimphonyPosAPI_SvcChargeEx
	SimphonyPosAPI_TmedDetailItemEx
	SimphonyPosAPI_TmedDetailItemEx2
	SimphonyPosApi_Extensibility
	SimphonyPosAPI_EPayment
	SimphonyPosAPI_TotalsResponse
	SimphonyPosAPI_TotalsResponseEx
	SimphonyPosAPI_ConfigInfoRequest
	SimphonyPosAPI_ConfigInfo
	SimphonyPosAPI_ConfigInfoResponse
	SimphonyPosAPI_CheckPrintResponse
	SimphonyPosAPI_PrintJobStatus
	SimphonyPosAPI_OperationalResult
	SimphonyPosAPI_SanityCheckResponse
	CheckTaxDataPerRate

	7 Example and Code Snippets
	Calculate Totals of a Transaction
	Calculate Transaction Totals Method Signature
	Vendor Code
	Menu Items and Condiments
	Combo Meal
	Service Charge
	Subtotal Discount
	Revenue Center Object Number
	Order Type ID
	Employee Object Number
	API Response

	Create a Guest Check
	Guest Check
	Tender/Payment
	API Response

	Add an Item to an Open Guest Check
	API Response

	Void All Items of an Open Guest Check
	VoidTransaction Method Signature
	API Response

	Get Status of a Print Job
	API Response

	Get Summary of All Open Guest Checks
	GetOpenChecks Method Signature
	API Response

	Get Open Guest Checks with RVC Object Number
	GetOpenChecksEx Method Signature
	API Response

	Get Open Guest Checks from a Specific RVC
	GetOpenChecksByRVC Method Signature
	API Response

	Get Summary and KDS Order Status of Open and Closed Guest Checks
	GetChecks Method Signature
	API Response

	Get Check Detail
	GetCheckDetail Method Signature
	API Response

	Get Printed Texts of a Guest Check
	GetPrintedCheck Method Signature
	API Response

	Get Configured Information (Method 1 - GetConfigurationInfo)
	GetConfigurationInfo Method Signature
	API Response

	Get Configured Information (Method 2 - GetConfigurationInfoEx)
	GetConfigurationInfoEx Method Signature
	API Response

	8 Simphony Platform Requirements
	Simphony Software Version
	Offline Transaction Support
	Printing Services
	Calling Conventions

	9 Demo Client for Transaction Services API
	Application Path
	Prerequisites
	Initial Setup
	Demonstration
	Calculate Totals of a Transaction
	Create a Guest Check
	Add an Item to an Open Guest Check
	Combo Meal Ordering
	Void All Items of an Open Guest Check
	Get Summary of All Open Guest Checks
	Get Summary of Open and Closed Guest Checks
	Get Check Detail
	Get Printed Texts of a Guest Check
	Get Configured Information
	Tax Override
	Perform Sanity Check
	Menu Item Quantity for PostTransactionEx API
	Check Detail Definition Selector

	10 Extending Transaction Services Through Plug-ins
	Web.config.txt Updates
	Current State Dictionary
	Sample Project

