

Oracle® Food and Beverage

Oracle Linux for MICROS

Integrators
Reference Guide

Release 19.5
F79454-02
September 2023

Oracle Hospitality Product Name Reference Guide Release 19.5

F79454-02

Copyright © 2010, 2023, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of
the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use.
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or
hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

 iii

Contents

Preface iv

1 Introduction 1-1

Scope of Document 1-1

2 Oracle Linux for MICROS Platform 2-1

Why Linux? 2-1
Appliance vs Custom Model 2-2
Genesis of Oracle Linux for MICROS 2-2
Principles and Constraints 2-3

3 Oracle Linux for MICROS Platform 3-1

Workstation 3xx/4xx/6xx 3-1
Workstation 5A 3-1

4 Runtime Environment 4-1

SIM / Extensibility Platform 4-1

5 Deployment 5-1

Installing Packages 5-1
Platform Differences 5-1
General Syntax 5-2
CAL Startup Commands Reference 5-3

6 Development Strategies 6-1

Multi-platform .NET Assembly Development 6-1

7 Use Cases 7-1

Hardware Integrations 7-1
Kiosk 7-2
Payment 7-3

 Preface

 iv

Preface

The latest version of Oracle MICROS Simphony now runs on Oracle Linux for MICROS.

Integrators wishing to run code on Workstations running Linux will want to take

advantage of the unique capabilities offered by the platform and need to adhere to the

constraints inherent by the platform.

Purpose

This guide explains those capabilities and constraints, starting with the foundations of the

operating system platform, its genesis and business goals, and then moving on to the

best practice guidelines to facilitate successful development and deployment of code

extensions to Simphony on a workstation running Linux.

Audience

This document is intended for Integrators developing solutions to extend the capabilities

of Simphony by running code on workstations running Oracle Linux for MICROS. This

document does not apply for third party workstation hardware.

Customer Support

To contact Oracle Customer Support, access the Customer Support Portal at:

https://iccp.custhelp.com

When contacting Customer Support, please provide the following:

 Product version and program/module name

 Functional and technical description of the problem (include business impact)

 Detailed step-by-step instructions to re-create

 Exact error message received and any associated log files

 Screen shots of each step you take

Documentation

Oracle MICROS Simphony product documentation is available on the Oracle Help Center

at http://docs.oracle.com/en/industries/food-beverage/

Revision History

Date Description of Change

March 2023 Initial publication.

September 2023 Update to Preface.

https://iccp.custhelp.com/
http://docs.oracle.com/en/industries/food-beverage/

Chapter 1
Introduction

 1-1

1
Introduction

The latest version of Oracle MICROS Simphony now runs on the Oracle Linux for

MICROS operating system, offering restaurants a simpler platform on which to run their

business.

One of the many benefits of Oracle Linux is the lack of Microsoft Windows updates,

which slow down workstations and consume valuable hard-drive space. With Linux, the

maintenance is streamlined; Oracle manages the hardware and provides a single

channel for operating system, software, hardware, maintenance, and support. Linux

updates are sent down via the Client Application Loader (CAL), the same tool that

distributes Simphony software updates. The lightweight Linux OS requires less

computing power, freeing up more resources for Simphony and Integrator solutions to

use, resulting in an improved point of sale performance.

Scope of Document

This document serves as a guidance for integrators of the Oracle Linux for MICROS

Workstation Platform. It covers principles and guidance in the following areas:

 Oracle Linux for MICROS Platform Benefits and Principles

 Appliance Mission: Appliance vs Custom Model

 Hardware Considerations

 Runtime Environment

 Deployment

 Select Use Cases

Chapter 2
Oracle Linux for MICROS Platform

 2-1

2
Oracle Linux for MICROS Platform

Oracle Linux for MICROS was introduced in Simphony 19.1. Some features useful for

Integrators were added in Simphony 19.2, notably the HTML5 Custom Dialogs.

Why Linux?

Several factors motivated the move to Linux for Simphony:

1. Simple platform in comparison to the multiple Microsoft Windows platforms currently
supported.

2. Lower hardware resource requirements enable Oracle MICROS to support older,
and/or more cost-effective hardware, such as the Workstation 5A.

3. Lower licensing cost.

4. Alignment with industry and company direction.

5. Provides an upgrade path for RES 3700 & E7 customers using existing Workstations.

6. Enhanced security posture.

Key Benefits
 A complete solution (including hardware, software, and operating system) designed,

maintained, and supported by Oracle.

 Oracle now manages and delivers platform updates through the Client Application

Loader (CAL).

 Linux reduces computing resource, improving point-of-sale application performance.

 Appliance-like environment creates a more user-friendly, secure, and dedicated

point-of-sale experience. This eliminates the potential for users to run other

applications on the point-of-sale hardware.

 Reduced cost and time for implementation.

 Supports conversion path for the Workstation 5A series, providing customers that use

the most popular legacy MICROS workstation a pathway to Simphony without having

to upgrade hardware.

An Appliance
The Oracle Linux for MICROS platform was designed with the goal of an operating

platform that acts and performs as if it was an appliance, with every device manufactured

and provisioned identically, including the base OS image and installed Simphony

software. Customizations are allowed only in strict circumstances, with defined

constraints for specific intended use cases.

Chapter 2
Oracle Linux for MICROS Platform

 2-2

Appliance vs Custom Model

Consider the two different models for the Linux based Workstation. In one model, the

device is an appliance, signifying no changes and no customizations beyond the Oracle

signed software. Enabling this simplicity is one of the motivations for the new Linux

platform. To be considered an appliance, or to exhibit appliance like behavior and

benefits, requires only core Simphony software on the device and Oracle approved and

certified components.

The following section is a high-level overview between the two models, explaining the

constraints of the Appliance Model, and the flexibility offered by the Custom Model.

Currently, the Appliance vs Custom model distinction is an unenforced concept which is

subject to change in the future. We suggest that Integrators and customers decide which

model they wish to adhere, to maintain compatibility moving forward.

Appliance Mode
Will only run:

1. Core Simphony software installed by the CAL software loader.

2. Oracle signed extensibility software installed by the Oracle CAL software loader.
Example: Fiscal extensibility apps.

Locked down security model.

Custom Model
The Custom Model includes the following capabilities and characteristics:

 Download and use custom CAL packages, all extensibility apps, and SIM scripts.

 EMC controls authorizing and signing extensibility apps and SIM scripts. In other

words, responsibility, and control for authorizing and signing custom software is

expanded to include not only Oracle, but also a high privilege EMC user.

 Hashing verification of custom software package downloads.

 Ability to revert to Appliance Mode with a reimage.

Genesis of Oracle Linux for MICROS

The OS image used for Simphony on the new Linux workstations is a custom image of

Oracle Enterprise Linux. Much of the customization involves hardening the security

posture and slimming it down, which results in removing unnecessary components and

allowing a more compact OS image to preserve RAM for the Simphony application,

database, and associated components.

The outcome is a custom image known as Oracle Linux for MICROS. This section covers

the principles, guidelines, and constraints imposed by the choices made for the custom

image. The OS image is the same across all workstations.

Chapter 2
Oracle Linux for MICROS Platform

 2-3

Principles and Constraints

The following is a list of principles and constraints for Oracle Linux for MICROS in a

production environment.

1. No desktop installed. The Linux workstation does not use a desktop; the POS display
runs in a single dedicated X session. Standard Microsoft Windows practices, such as
minimizing the application to access the OS or run a file explorer, are unavailable.
Linux integrators must use the Linux shell to troubleshoot issues. Furthermore,
integrators cannot install their own GUI applications on the Linux appliance.

2. No on-screen keyboard available.

3. No interactive root login available.

4. All software run under unprivileged “posuser” account with the following exception:

 COM port enabled (including USB virtualized COM port)

5. No direct access to the database. Data access is protected by security policy. Data
access for integrators is provided solely through published Simphony APIs.

6. User interface is in HTML5; no XAML/WPF available within Mono.

7. Certificate handling on Linux with Mono is different.

 This is relevant for Integrators connecting to external TLS endpoints. Refer to

Certificate Handling for more information.

8. Unmanaged Microsoft Windows code do not work under Mono on Linux.

 Microsoft Windows specific .NET assemblies do not load on Mono.

 Unmanaged code is possible outside Mono, e.g., for extensibility. Microsoft

Windows extensibility applications can call into native Microsoft Windows DLLs.

Linux extensibility applications can call into native Linux DLLs. Documentation

exists on the internet outlining how to use the mono Interop facility (search “linux

mono call native dll”).

9. Simphony 19.2 HTML5 dialog enhancements. See Chapter 4 for more information.

10. The Oracle Simphony CAL must install everything.

Chapter 3
Oracle Linux for MICROS Platform

 3-1

3
Oracle Linux for MICROS Platform

There are two relevant categories of workstation hardware, primarily based on available

RAM. Most workstations have 2GB+ or RAM, which is enough to allow integrators the

suitable space to run most solutions.

However, for Workstation 5A, its RAM is extremely constrained (512MB) and only

supports the most lightweight integrator solutions with very small RAM footprints. This

section lays out the differences and notes the constraints between the different

workstations.

Workstation 3xx/4xx/6xx

This section covers all Workstations supporting Linux that are not the Workstation 5A.

That includes the following:

 Workstation 610, 620, 650

 Compact Workstation 3 Series

 Workstation 625E, 625X, 655X

 KDC 210

 Express Station 4xx Series

Relevant characteristics and hardware access for these workstations include:

 Memory: 2GB on KDC unit. 4GB-8GB on 3xx/4xx/6xx.

 Storage: 64GB – 256GB.

 64-bit BIOS required. See upgrade docs for instructions.

 Standard port access (Serial, USB, IP). See guidelines in ‘Use Cases’ section.

 Proprietary I/O support (cash drawer, customer display, mag card reader). See

guidelines in ‘Use Cases’ section.

Workstation 5A

The Workstation 5A is a special case, due to the limited memory size, and extremely

limited amount of RAM available for integrator use (approximately 30MB). This available

RAM space varies depending on deployment configuration. Because of this, consider the

Workstation 5A as an appliance, with limited to no ability to customize outside core

Simphony features and components.

Differences between the Workstation 5A and other hardware include:

1. 512MB RAM total.

2. SQLite database instead of MySQL.

Chapter 3
Oracle Linux for MICROS Platform

 3-2

 While this is a distinction, it is irrelevant to an integrator since they are unable to

access the database in this case. It helps Simphony core components to fit within

the 512MB total memory available.

3. CAPS and KDS Controller do not run on a Workstation 5A.

 Instead, CAPS and KDS Controller run on another machine, with a greater

amount of RAM, allowing more RAM headroom to run integrator solutions. Due

to this, another machine must run integrator solutions (for the entire location, and

not on every workstation on location)

Chapter 4
Runtime Environment

 4-1

4
Runtime Environment

The Simphony extensibility is the primary avenue through which Integrators will develop

code to run on Simphony workstations.

SIM / Extensibility Platform

Linux integrators should be mindful of the platform differences between Microsoft

Windows, Linux, and Android platforms, as summarized here:

Feature
Microsoft

Windows
Linux Android

OpsContext core dialogs X X X

HTML5 UI/dialogs X X X

SIM X X X

.NET Extensibility X X

WPF dialogs X

.NET WinForms dialogs X

Custom Styles xaml CSS CSS

.NET Framework 4.6.2 Mono 6

C/C++ Native DLLs X

C/C++ Native Executables X X

Custom Dialog Extensibility

Custom HTML5 Dialogs in Extensibility can be assumed to be available in all platform

deployments (denoted by the “HTML5 UI/dialogs” line in the above table). This module

was created in Simphony 19.2 specifically to allow cross-platform integration

compatibility.

Simphony extensibility (SIM/C#) has traditionally only had very primitive user interface

functionality. The SIM “Window” feature is limited to form entry and C# has no built-in

user interface functionality.

Microsoft Windows extensibility applications can use .net forms/WPF to build complex

user interfaces. These technologies are not available on Linux or Android.

Simphony 19.2 introduced a new feature which provides an extensibility API for

displaying complex dialogs across all platforms.

The technology to achieve this is HTML5 running isolated in an iframe or separate

browser instance. The benefits to this design are:

Chapter 4
Runtime Environment

 4-2

1. HTML5 is a standard and familiar technology, with industry wide population of
HTML5 capable developers.

2. HTML5 renders rich, animated UI experiences.

3. HTML5 is platform independent. HTML5 dialogs render identically on Microsoft
Windows, Android, and Linux.

4. Isolating the HTML5 dialog gives the extensibility a safer sandbox to execute code.

5. The renderer is CEF (Chromium embedded framework). This technology is standard
for most browsers.

HTML5 Extensibility API Details

More information on this topic is available in the HTML5 Extensibility Developer

Reference Guide. The document covers the following topics:

 API Basics

 Raising the Dialog, with sample code

 Example HTML5: simple dialog, functioning centered dialog, dialog styling,

database image references, custom and unknown resource event

 Extensibility Callbacks: calling method, results status, system keyboard

 Web Directory Dialogs

Application Launch
 The CAL Service is the only process automatically started by the OS when the

Workstation boots. At startup, CAL checks to see if any updated packages are

available before its launches the autostart apps. Do not install or run any other

OS service or daemon process.

 The CAL service runs applications using the unprivileged 'posuser' account.

 The CAL allows multiple applications to be launched (for example, ServiceHost

and KDS Controller). This is an enhancement from Microsoft Windows CAL

which only allows a single app to be automatically launched. However, unlike

Microsoft Windows, there will only ever be a single instance of ServiceHost itself.

Chapter 4
Runtime Environment

 4-3

Considerations on Oracle Linux for MICROS
1. In Linux, all UI interaction is through a Chromium browser showing Ops or the KDS

Display in a single X display (there is no Desktop or Windows manager). XAML/WPF
is not available.

2. The Linux client uses mySQL (or SQLite - see below) for its database.

For the Workstation 5A, Linux computing resources are low, and SQLite operates as

a database. Both may restrict possible functionality.

3. Managed 'non-UI' code moves quite well to Linux but it may need review, as Mono is
not a 100% implementation of the .Net Framework.

4. Microsoft Windows native code / native DLLs do not transfer directly to Linux.

5. IP network ports lock down but can open for use in cases that need them via custom
CAL packages. Refer to the CAL reference document for details on opening
additional ports. Standard open ports are documented in the Simphony Security
Guide.

6. TLS Certificate handling is different on Linux. Refer to the section below for more
details.

7. Do not run anything with a root privilege. The POS apps only run as the restricted
posuser.

8. Security-Enhanced Linux (SELinux): Enabled by default in Enforce mode.

9. Workstation firewall locked down with ‘deny all’ by default, and a collection of ‘allow’
entries for specific enumerated needs. This includes outbound as well as inbound
traffic.

10. Linux does not allow more than one ‘UI’ application to be started (that is, KDS
Display and ServiceHost applications cannot run concurrently.

11. There are six Linux virtual consoles available:

a. VC1 and VC2 are reserved for CAL and Simphony.

Chapter 4
Runtime Environment

 4-4

b. VC3 is reserved for future Oracle use.

c. VC4 through VC6 are available for use by Integrators.

d. VC Switching: During the development process, virtual console switching can be
accomplished with Ctrl Alt F1-F6 on a physical keyboard.

12. 64-bit OS:

Note 64-bit BIOS required. See hardware upgrade docs for instructions.

13. There is no native registry on Linux. Mono provides registry emulation using XML
files.

Certificate Handling
This section is relevant for Integrators who connect to external TLS endpoints that have

non-standard certificate utilization not covered by pre-installed certificates.

 NOTE:

Changing the security posture of the workstation is a privileged operation and
should be carefully considered.

Under Microsoft Windows, .NET integrates with the Microsoft Windows certificate store.

In Linux, there is no single Certificate Store. Simphony focuses on TLS communications

using the Mono framework. Current Mono versions (v6 in our case) use Boring TLS for

TLS communications by default, and this has its own Certificate storage and structure.

Additional low-level details are out of scope for this document and are not needed for

Integrators. The following sections are a summary for the Mono scenario and some

others.

Best Practices and Guidance:

1. Mono 6

a. Add cert to ‘system’ Certificate Store as below

b. Run Mono utility cert-sync which will synchronize to Mono Store

2. Chromium

a. Obtain Root CA certificate (and intermediate certificate if applicable)

b. Convert to PEM format (use openssl if required)

c. Use certutil to import into NSS store

3. System Certificate Store (assuming suitable CAL permissions)

a. Get Root CA certificate (and intermediate certificate if applicable)

b. Convert to PEM format (use openssl if required)

c. Put PEM format version of the certificate into /etc/pki/ca-trust/source/anchors

d. Run update-ca-trust

Chapter 4
Runtime Environment

 4-5

 NOTE:

Oracle MICROS Food and Beverage does not recommend use of self-signed

certificates in production workstations.

Standard Linux Considerations
This is a list of notable differences when moving Windows Integrator code to run on

Linux:

1. Linux is case-sensitive for pathing and file names.

2. Directory separator, use System.IO.Path to generate paths.

3. Runtime directory is different for Linux/Windows.

4. Linux user permissions lock down more than Windows.

5. Path names use only forward slashes.

Chapter 5
Deployment

 5-1

5
Deployment

As it is the only method with privileges to install software, the Oracle Simphony CAL
(Client Application Loader) must install everything. CAL packages are a logical grouping
of loose files that reside on the CAL application server. These files typically include client
software that needs copying and/or executing. In Simphony, all packages exist in the
database.

Installing Packages

A special UTF-8 encoded text file named setup.dat is required for each CAL

package. This file contains all the instructions needed to perform the installation of the

software included within a package.

CAL client requests this file for any package that requires installation on the client

device. After the file transfers locally, each line of a setup.dat file processes

synchronously until reaching the end of the file.

Lines beginning with a recognized command process immediately. All operations

associated with the command found in the current line must complete successfully before

the next line processes. Some commands can override this behavior. If a command did

not complete successfully, the entire package installation aborts. Once a package

installation has failed, the setup.dat processes from the beginning of the file once the

CAL client (or device) restarts.

Lines are ignored without generating an error when:

 they begin with a comment character

 the command name is unrecognized

 the required parameters for the command are not provided

Platform Differences

Application Root
This is a significant change from Windows for Integrators and aligns with the Appliance

concept mentioned earlier.

Background

Windows CAL allows the install folder to be defined using a combination of setup.dat

commands and the 'Application Root' field in the CAL UI. The install location can be

changed at any time, which potentially can lead to inconsistent installs with software

scattered around the system.

Chapter 5
Deployment

 5-2

Linux Application Root

The Change: All software will be installed in a fixed, predefined directory:

/opt/oracle/simphony.

Integrator Root

Integrator binaries and all data files will exist under the Integrator root directory:

/opt/{integrator}, where {integrator} is the integration company or product name. Within

this directory, there are the following sub-directories:

 Binaries shall be placed in /opt/{integrator}/bin

 Logs shall be placed in /opt/{integrator}/log

 Temp files shall be placed in /opt/{integrator}/tmp

 Persistent data (including databases) shall be placed in /opt/{integrator}/data

We recommend that Integrators regularly perform the following:

 Remove old binaries after upgrade

 Remove temp files when done with them

 Trim logs

 Auto-purge databases

Failed Packages
Failed packages are handled differently between the Linux and Microsoft Windows

platforms:

 On Microsoft Windows, a failed package displays an error message, which

requires the user to dismiss manually before any package processing can

continue.

 On Linux, a failed package does not display any error message if another

application has taken control of the display. Failed packages are still marked as

failed, but any subsequent packages requiring installation continue processing

without user intervention.

General Syntax

The CAL client utilizes a simple language with only two types of production rules:

commands and single line comments. The grammar for a single command consists of the

command name and up to four parameters, all delimited by a ‘,’ character, as shown

below:

[COMMAND NAME],[parameter1],[parameter2],[parameter3],[parameter4]

Command names are predefined case sensitive values. Each command may have zero

or more required and/or optional parameters. Leading commas are only required for

command parameters.

Comments start with the ‘#’ character followed the comment text.

Chapter 5
Deployment

 5-3

CAL Startup Commands Reference

CAL Startup command details are available as a reference document on My Oracle

Support (MOS).

Additional Notes

1. Cannot install a custom Linux OS service.

2. Workstation IP ports can open via a custom CAL package. Refer to CAL
documentation for details on opening ports.

Chapter 6
Development Strategies

 6-1

6
Development Strategies

Extensibility application developers can write their extensions for the Simphony POS

using .net assemblies or SIM. SIM is available on all platforms: Microsoft Windows,

Linux, and Android. .NET assemblies are available only on Microsoft Windows and Linux.

It is important to consider that .NET assemblies do not load on Android.

Multi-platform .NET Assembly Development

It is possible to write a single .NET assembly that will run on both Microsoft Windows and

Linux. As with any multi-platform development, make sure to either abstract out any OS-

specific logic in the same assembly, or refactor into a different assembly.

If you are starting an extensibility application from scratch, then we recommend

partitioning the code to account for platform differences.

Porting from Microsoft Windows to Linux
If a Microsoft Windows application already exists, porting it to run on both Linux and

Microsoft Windows may be a challenge. This is true for all multiplatform development,

and not just Simphony.

Many applications are replete with Microsoft Windows-specific code, from trivial (directory

separators) to architectural (dozens of WPF dialogs and Microsoft Windows device

drivers). While it may be desirable to maintain one assembly for your application, time

and resource constraints may force the application to have a Microsoft Windows

assembly and a Linux assembly.

Scenario: A developer develops an extensibility application for Microsoft Windows and

now wants to port it to Linux. The DLL will not run on Linux as-is because it references

Microsoft Windows-specific assemblies. Possible solutions are:

1. Create two separate versions of the same application and mark them as Microsoft
Windows-only or Linux-only in the EMC configuration.

2. Create one application assembly that runs on both Linux and Microsoft Windows and
abstract out the OS-specific functionality into separate assemblies. (The Simphony
core code uses this strategy).

3. Make runtime decisions in code based on OS type.

4. Take advantage of .NET runtime for directory separator, combining paths.

There is no universal best practice strategy for refactoring assemblies to run on Linux

and Microsoft Windows. The decision depends in part on how tightly the application is

bound to Microsoft Windows and how much effort can be devoted to refactoring.

Chapter 6
Development Strategies

 6-2

Building a Cross-Platform Assembly
Troubleshooting Strategy

Developing and troubleshooting extensibility applications is more difficult on Linux than

Microsoft Windows. Frequently, extensibility assemblies have Microsoft Windows-specific

references, but they are hard to reconcile. To determine if code will load on Linux, we

recommend downloading the mono compiler on Microsoft Windows and building the

extensibility application solution. Any Microsoft Windows-specific references then result in

a compile-time error.

In general, if the same extensibility solution successfully compiles using Visual Studio

and Mono, then it should load on both platforms. The custom HTML5 dialog feature

works identically on Microsoft Windows as it does on Linux. Speed up development by

first testing the custom dialog on Microsoft Windows and then on Linux.

Chapter 7
Use Cases

 7-1

7
Use Cases

Hardware Integrations

For Integrators accessing and using hardware peripherals connected to Linux

Workstations, such as:

 Coin changers

 Scales

 RFID readers

 Liquor dispensing/tracking

 Scanners

 Automated coffee machines

Communication to connected hardware peripherals and food prep hardware with APIs can

be accomplished through standard device ports (serial, USB, IP), or through proprietary

I/O. The following sections provide more detail.

Standard ports (Serial, USB, IP)
 Use standard Linux access. IP open ports are limited. Refer to the Simphony Security

Guide for specifics.

 The port ranges from 8200-8400 is reserved for

integration use.

 Access for additional ports can be enabled in one of two ways:

- Through custom CAL package. See CAL discussion elsewhere in this document

for details.

- EMC Workstation configuration.

Proprietary I/O
Examples: cash drawer, customer display, mag card reader.

Best Practice Recommendation and Notes

Concurrent Access: Only access peripherals for which you are the only application

accessing that peripheral. Access conflicts will occur if two different applications or

components attempt to access the same peripheral concurrently. This includes

attempting to access a peripheral that the Simphony application itself is configured to

utilize.

Chapter 7
Use Cases

 7-2

API Options:

 PCWS API (Preferred).

Note the Concurrent Access comment above.

 Updated JavaPOS drivers. Allows Integrators using Java to use industry standard

calls rather than integrate to PCWS API.

Note the Concurrent Access comment above.

 There is no OPOS for Linux.

Kiosk

A kiosk integrator builds their solution directly on top of a platform similar to a headless

Simphony workstation, comprising of Oracle hardware, Oracle Linux for MICROS, and

Simphony. The differences that make it a kiosk include:

 Custom CAL package with Integrator kiosk application

 Simphony Ops UI configured to not start on boot. Configured in EMC.

 Chromium will start kiosk URL on boot. Configured via custom CAL.

The Integrator developed app runs on the above platform, and utilizes the following UI

and API pattern:

 UI via HTML5 on Chromium browser (Chromium Embedded Framework).

This is a direct HTML5 in Chromium, and not a Simphony HTML5 Custom Dialog

Extensibility.

 STS API endpoint consumption on local host. STS Location API can be enabled for

the kiosk workstation through EMC.

Chapter 7
Use Cases

 7-3

Payment

Payment integrations complete by consuming the Simphony Payment Interface (SPI)
API.

No Footprint Solution
In the preferred no footprint approach, there is no integrator code footprint running on the

workstation. The payment device interfaces directly to the SPI API through a network IP

connection on the workstation. This approach is suitable when interfacing to the resource

constrained Workstation 5A.

Payment Connector Solution
If the no footprint solution is not feasible, a lightweight extensibility object acting as a
payment driver/connector between the payment device and SPI. On the payment device
side, connect using the ‘Hardware Integrations’ use case pattern. On the SPI side,
consume the standard SPI API.

 NOTE:

Lightweight needs to be quite light if the Workstation 5A is a target hardware
platform. See the Workstation 5A section for more details on constraints,
especially due to the limited available RAM for integrations.

