
Oracle® Health Sciences Central
Designer
Rules Reference Guide

Release 7.0
F56112-04

Oracle Health Sciences Central Designer Rules Reference Guide, Release 7.0

F56112-04

Copyright © 2019, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation accessibility x

Related resources x

Diversity and Inclusion x

Access to Oracle Support x

Additional copyright information xi

1 Rule expressions

About the rule expression language 1-1

Components of the rule expression language 1-2

Mappings in rules 1-3

Conversion to different units in rules 1-4

Rules with multiple conditions 1-4

Dynamic prompts in the Expression workspace 1-6

Selecting a rule model object from a dynamic expression prompt 1-7

Rule templates 1-7

Creating, modifying, and deleting a rule template? 1-8

Create a rule template 1-9

Modify a rule template 1-9

Delete a rule template 1-9

Other descriptions for the New Rule Template dialog box 1-9

Default rule templates 1-11

_CheckTextLength 1-11

_DateTimeRangeCheck 1-12

_FutureDateCheck 1-12

_PartialCompletenessCheck 1-12

_RangeCheck 1-13

_RangeCheckInclusive 1-13

ValidBPCheck 1-14

2 Data

Data tab 2-1

iii

Using data in rules and rule templates 2-1

Icons used on the Data tab 2-2

Rule model properties for study events, forms, and sections 2-3

[Name of review stage] 2-4

[Name of review state] 2-4

CurrentIndex 2-4

Count 2-5

HasData 2-6

IsDeleted 2-7

RelatedData[] 2-8

ReviewStates 2-9

Rule model properties for items 2-9

[Alias or code of codelist item] 2-10

[Name of codelist] 2-10

Cloud Reference Topic Title 2-11

AllValues[] 2-12

Completed 2-14

CurrentAllObjectsIndex 2-15

CurrentAllValuesIndex 2-15

CurrentObjectsIndex 2-15

CurrentValuesIndex 2-16

Empty 2-16

EnteredUnit 2-17

EnteredValue 2-19

Objects[] 2-20

Selected[] 2-22

Value 2-23

Value[] 2-24

ValueLabel 2-24

Values[] 2-25

Rule model properties for DateTime items 2-27

Year 2-27

YearEmpty 2-28

YearUnknown 2-28

Month 2-28

MonthEmpty 2-29

MonthUnknown 2-29

Day 2-29

DayEmpty 2-30

DayUnknown 2-30

Hour 2-30

HourEmpty 2-31

iv

HourUnknown 2-31

Minute 2-31

MinuteEmpty 2-32

MinuteUnknown 2-32

Second 2-32

SecondEmpty 2-33

SecondUnknown 2-33

Methods for repeating study objects 2-33

[] [Indexer] 2-34

Current() 2-34

Examples--Using the Current() method and IsValueInArray function 2-35

Current(Integer) 2-37

GetValue 2-37

Methods for non-repeating study objects 2-39

GetReviewStates 2-39

HasReviewStates 2-40

HasState(Integer) 2-40

Example--Methods for non-repeating study objects 2-41

3 Functions

Functions tab of the rule wizard 3-1

Functions in rules and rule templates 3-2

Dynamic prompts in the Expression workspace 3-2

Viewing and editing a function 3-3

Deleteing a function 3-3

About predefined functions 3-3

Date time processing 3-4

Exceptions 3-5

Predefined functions in the system library 3-5

_CalculateBMI 3-7

_CalculateBSA 3-8

_CalculateDateTime 3-9

_CalculateWaistHipRatio 3-11

_CheckPatientInitials 3-12

_CompareDates 3-12

_CompareDatesWithRange 3-13

_Count 3-15

_Count(String, Array, Boolean) 3-15

_Count(Date, Array) 3-15

_Count(Integer, Array) 3-16

_Count(Float, Array) 3-16

v

_GetCurrentDate 3-16

_GetDateDifference 3-17

GetScreeningNumber 3-18

GetSiteLocale 3-19

GetSiteMnemonic 3-19

GetSiteTime 3-19

GetTrialName 3-20

GetUserName 3-20

GetSubjectNumber 3-21

_IsValueGreaterThanArray 3-21

_IsValueGreaterThanArray (PFDateTime, Array) 3-21

_IsValueGreaterThanArray (Float, Array) 3-22

_IsValueGreaterThanArray (Integer, Array) 3-22

_IsValueGreaterThanOrEqualToArray 3-23

_IsValueGreaterThanOrEqualToArray (PFDateTime, Array) 3-23

_IsValueGreaterThanOrEqualToArray (Float, Array) 3-24

_IsValueGreaterThanOrEqualToArray (Integer, Array) 3-24

_IsValueInArray 3-25

_IsValueInArray (PFDateTime, Array) 3-25

_IsValueInArray (Float, Array) 3-26

_IsValueInArray (Integer, Array) 3-26

_IsValueInArray (Text, Array) 3-27

_IsValueLessThanArray 3-27

_IsValueLessThanArray (PFDateTime, Array) 3-27

_IsValueLessThanArray (Float, Array) 3-28

_IsValueLessThanArray (Integer, Array) 3-29

_IsValueLessThanOrEqualToArray 3-29

_IsValueLessThanOrEqualToArray (PFDateTime, Array) 3-29

_IsValueLessThanOrEqualToArray (Float, Array) 3-30

_IsValueLessThanOrEqualToArray (Integer, Array) 3-30

_NormalizeDate 3-31

_NormalizeDate (PFDateTime, PFDateTime) 3-31

_NormalizeDate (PFDateTime, PFDateTime, PFDateTime) 3-32

_NormalizeDateToMax 3-33

_NormalizeDateToMax (Date) 3-33

_NormalizeDateToMax (Array) 3-34

Randomize 3-36

Example—Using the Randomize function 3-38

_SaveToDb (String, String) 3-40

About user-defined functions 3-41

Function definition requirements 3-42

Recommendations for creating user-defined functions 3-43

vi

Creating a user-defined function 3-44

Importing a user-defined function 3-44

Attributes of user-defined functions 3-45

DesignerFunctionClassification 3-45

DesignerFunction 3-45

DesignerParameter 3-46

Signing user-defined function assemblies 3-46

Securing user-defined functions 3-47

Sample function definition code 3-48

4 Constants

Constants tab of the Rule Wizard 4-1

Using constants in rules and rule templates 4-1

Predefined constants in the System Library 4-2

Creating a constant 4-3

Constants tab - Option descriptions 4-4

New Constant dialog box - Option descriptions 4-4

Deleting a constant 4-5

5 Data mappings

Data Mappings tab 5-1

Using data mappings in rules and rule templates 5-1

Icons used on the Data Mappings tab 5-2

Rule model properties for data series 5-3

Count 5-4

Values[] 5-4

Variables[] 5-6

Empty 5-6

Value 5-7

Methods for data sets 5-7

StudyEvent(StudyEvents) 5-8

StudyEvent(StudyEvents, Integer) 5-8

Forms(Forms) 5-9

Form(Forms, Integer) 5-9

Section(Sections) 5-10

Section(Sections, Integer) 5-10

Item(Items) 5-11

[NameOfCustomDataDimension 5-11

Examples—Data set methods in rule expressions 5-12

CurrentStudyEvent() 5-13

vii

Additional study objects in the Data Mappings tab 5-13

Study events 5-14

Forms 5-15

Sections 5-16

Items 5-17

6 Methods, operators, and literals

Methods 6-1

Math methods 6-1

Abs 6-2

Ceiling 6-2

DivRem 6-2

Exp 6-3

Floor 6-3

IEEERemainder 6-3

Log 6-4

Log10 6-4

Max 6-4

Min 6-5

Pow 6-5

Round 6-5

Sqrt 6-6

Truncate 6-6

Examples—Math methods in rule expressions 6-6

Methods for study objects 6-7

Data set methods 6-7

Operators and literals 6-7

Frequently used operators 6-8

Frequently used literals 6-10

7 Sample expressions for data-entry rules

Sample expresions that use operators 7-1

Sample data-entry rule that uses the Data tab 7-1

Sample data-entry rule that uses rule model properties 7-3

Sample data-entry rules that use methods 7-3

Sample data-entry rule that uses constants 7-6

Sample data-entry rules that use functions 7-7

Sample calculation rules 7-10

Sample data-entry rules that use mappings 7-12

viii

8 Option descriptions

Rule expressions 8-1

New Rule Template dialog box—Option descriptions 8-1

Rule Templates tab—Option descriptions 8-2

Functions 8-3

Functions tab on the Study and Library information Explorer bars 8-3

Functions tab—Option descriptions 8-3

Edit Function dialog box—Option descriptions 8-4

Constants 8-5

Constants tab on the Study and Library Information Explorer bars 8-5

Constants tab—Option descriptions 8-6

New Constant dialog box—Option descriptions 8-6

ix

Preface

This preface contains the following sections:

• Documentation accessibility

• Related resources

• Diversity and Inclusion

• Access to Oracle Support

• Additional copyright information

Documentation accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Related resources
All documentation and other supporting materials are available on the Oracle Help Center.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through
Support Cloud.

Contact our Oracle Customer Support Services team by logging requests in one of the
following locations:

• English interface of Oracle Health Sciences Customer Support Portal (https://
hsgbu.custhelp.com/)

• Japanese interface of Oracle Health Sciences Customer Support Portal (https://hsgbu-
jp.custhelp.com/)

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://docs.oracle.com/en/industries/health-sciences/central-designer/index.html
https://hsgbu.custhelp.com/
https://hsgbu.custhelp.com/
https://hsgbu-jp.custhelp.com/
https://hsgbu-jp.custhelp.com/

You can also call our 24x7 help desk. For information, visit http://www.oracle.com/us/support/
contact/health-sciences-cloud-support/index.html or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

Additional copyright information
This documentation may include references to materials, offerings, or products that were
previously offered by Phase Forward Inc. Certain materials, offerings, services, or products
may no longer be offered or provided. Oracle and its affiliates cannot be held responsible for
any such references should they appear in the text provided.

Preface

xi

http://www.oracle.com/us/support/contact/health-sciences-cloud-support/index.html
http://www.oracle.com/us/support/contact/health-sciences-cloud-support/index.html
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Rule expressions

In this chapter:

• About the rule expression language

• Dynamic prompts in the Expression workspace

• Rule templates

About the rule expression language
Use the rule expression language to create the expression component of a data-entry rule,
workflow rule, or global condition.

You create rule expressions in:

• The Expression tab of the Rule Wizard.

• The Expression workspace of the dialog boxes used to create or edit a workflow rule or
global condition.

As you type, a list of the rule model components that you can use in the expression (study
objects and their properties, functions, constants, and data mappings) appears in the
Expression workspace. When you select a rule model component, a tooltip appears to indicate
its usage (for example, the parameters and their data types required for using a function). The
list changes dynamically to support the contents of the expression as you create it.

You can also use the following methods for creating a rule expression:

• Drag rule model components into the Expression workspace from the tabs that appear on
the right side of the workspace.

• Type an expression directly in the Expression workspace.

A rule expression can include any valid C# expression that can appear on the right side of the
equals sign (=), including:

• Operators and literals.

• Study objects and their rule model properties.

• Functions.

• Constants defined for the study.

• Data mapping study objects and their rule model properties.

• Methods. You can use any method, including:

– Math methods.

– Data set methods.

– Methods for repeating study objects.

A rule expression cannot include:

• Complex structures, such as if statements (conditionals are allowed) and looping
statements.

1-1

Use functions to build more complex rule expressions. For more information, see
Functions tab of the rule wizard.

• Multi-line expressions.
The rule expression does not allow flow-of-control operators, such as like, if, then, for, or
while. You can use parentheses to provide better readability and grouping.

• Semi-colons in rule comments. If a semi-colon is included, deployment fails.

Note:

Rules must include an item reference or attachment to be properly included in the
Oracle InForm application.

An expression must evaluate to one of the following types:

• Integer

• Float

• Boolean

• Text

• Date time

Note:

A rule expression is similar to a switch statementin C++, C#, or Java.

For more information, see:

• Components of the rule expression language

• Mappings in rules

• Conversion to different units in rules

• Rules with multiple conditions

Components of the rule expression language

Component Description

Operators and literals Operators and literals connect information in the
rule expression.

Use standard C# and Java operators and literals to
create rule expressions.

Data Data includes the following:

• Values provided for study objects within the
scope of the rule.

• Values of rule model properties of study
objects within the scope of the rule.

• Methods for repeating study objects.

Chapter 1
About the rule expression language

1-2

Component Description

Functions A function is a reusable piece of code that extends
the behavior of a rule. Functions allow experienced
programmers to build complex rule expressions
and make them available in libraries or studies. A
function can be part or all of a rule expression.

If a function has parameters, you must specify their
substitution values after you drag the function into
the rule expression. You can use the following to
specify parameter substitution values:

• Numeric values.
• Values of study objects and their rule model

properties.
• Constants.
• Another function.
• Global study objects and their rule model

properties.

Constants A constant is a value that is defined in a library or
study and that can be referenced by any rule.

Data mappings Study objects and properties that have a global
scope for rule creation are called data mappings.
The following data mappings can be used in any
rule in the study in which you are working:

• RefNames of the following study objects in the
study or library:
– Mappings.
– Data sets.
– Data series.
– Items added to data series.

• Methods for data sets.
Methods are automatically available for all data
sets.

• Rule model properties for data series.
If the data series contains one or more items
that collect more than one value, then the rule
model properties for data series appear so you
can specify the value to use.

Methods A method is a block of code that is called by a rule
and that is used to manipulate data. You can use
any method, including:

• Math methods.
• Methods for repeating study objects.
• Data set methods.

Mappings in rules
About data mappings
Study objects and properties that are related to mappings are called data mappings. You add
data mappings to rule expressions in the Rule Wizard using the dynamic expression prompts
in the Expression tab or by dragging them from the Expression tab > Data Mappings tab. The
Data Mappings tab lists:

• RefNames of the data mappings, data sets, and data series in the study or library.

Chapter 1
About the rule expression language

1-3

• Rule model properties for data series.
A data series has the properties of the item that is mapped to it. If a data series contains
an item that collects more than one value, the rule model properties for repeating study
objects appear so you can access an array of all of the values of the item.

• Methods for data sets.
A method appears if you select the corresponding standard data dimension of the data
set. You can use data set methods to return a subset of the data in the data set.

• Study events, forms, sections, and items that are mapped to each data set.
Study objects appear if you select the corresponding standard data dimension of the data
set. The properties of the study objects are used as parameters of data set methods.

Managing data mappings
You manage data mappings in the Project Explorer, where you create mappings, data sets,
and data series and add items to data series. For more information, see Data Mappings tab.

Mappings and data-entry rules
Adding items to a data series in a mapping allows you to:

• Use vector arithmetic to examine a range of values.
When an item appears on multiple forms or is part of a repeating form or repeating study
event, an array of values is collected for the item.

• Use the items in any data-entry rule in the study, regardless of the level at which the rule
is created or the scope of the study object.
To reuse the data-entry rule in another study, all items must be in the mapping in the other
study.

Conversion to different units in rules
In the Oracle Health Sciences InForm application, when the base unit of an item is in one unit,
such as kilograms, but the item allows users to enter different units, such as pounds, the value
for the item is stored in the database in two ways—as the entered value (pounds) and the
normalized value (pounds converted to kilograms).

For example, if a user types 154 and selects pounds, the value is stored as 154 pounds (for
the entered value) and 70 kilograms (for the normalized value). The conversion process from
the entered unit to the base unit is called normalization.

Some rules and functions require specific units for item values. For example, a BMI rule might
require a weight value to be in kilograms. If a weight item uses pounds instead of kilograms as
the base unit, a conversion from pounds to kilograms has to be done in the rule expression.

If the BMI rule is created on a VitalSigns form with Height, Weight, and BMI items, the rule
expression with the conversion information could appear as follows:

(this.Weight.Value * 0.45359) / ((this.Height.Value) * (this.Height.Value))
Alternately, you can define a constant that performs the conversion. For example, you can
define a LbToKg constant that equals 0.45359 and use the constant in the expression:

(this.Weight.Value * LbtoKg) / ((this.Height.Value) * (this.Height.Value))

Rules with multiple conditions
You can create a rule with multiple conditions using the ? : operator. The operator allows you
to mimic an if/then/else control structure and present multiple conditions to determine whether
a rule passes or fails.

Chapter 1
About the rule expression language

1-4

The following is an example of a rule that returns a Boolean value. However, you can create a
rule to return any data type—for example, a Boolean value, an integer, or a string—for which
you can provide a corresponding action.

For example, a rule is used to determine the following information:

• Is the subject pregnant? (True or False)

• Has a severe or life-threatening adverse event occurred? (True or False)

If both are false, the rule passes. If one is true and the other is false, the rule passes. If both
are true, the rule checks that the correct termination code was entered when the subject was
terminated from the study.

• If the correct termination code was entered, the rule passes.

• If an incorrect termination code was entered, the rule fails, and a query is issued, indicating
that the correct termination code must be selected.

The rule checks data on the following forms:

• Demographics form—To determine if the subject is pregnant.

• AE (Adverse Events) form—To determine if the adverse event that occurred was severe
or life threatening.

• Termination form—To check the termination code that was used when the subject was
terminated from the study.

This rule is created at the study design level because the three forms are in the scope of the
study design. The query is created on the Termination form.

Example 1-1 A rule with multiple conditions

evaluate on Form Submission
value = this.InitialVisit.Pregnancy.Pregnant.Value ==
this.InitialVisit.Pregnancy.Pregnant.YesNoCodes.YesNoCode1 &&
(this.AECM.AdverseEvents.Current().Severity.Value ==
this.AECM.AdverseEvents.Current().Severity.SeverityCodes.SeverityCode3 ||
this.AECM.AdverseEvents.Current().Severity.Value ==
this.AECM.AdverseEvents.Current().Severity.SeverityCodes.SeverityCode4) ?
this.Termination.TerminationForm.TerminationReason.Value ==
this.Termination.TerminationForm.TerminationReason.TerminationCodes.Terminatio
nCodePREGSEV : true
when value is false
issue query on this.Termination.TerminationForm.TerminationReason: If the
patient is pregnant and a severe or life-threatening AE occurs, Termination
Reason must be filled out with a value of “Severe AE during Pregnancy”

In the previous example, the values collected for items (such as the Pregnancy item) are
compared to the codelist item names, not the actual values of the codelist items. You can
simplify the rule expression by providing the codelist item values in place of the codelist item
names (shown in the following example). However, Oracle recommends that you provide
RefNames when writing rules, as this eliminates the need for re-work if study object values
change.

The following codes are used in the study:

• In the YesNo codelist:

– Yes = 1.

Chapter 1
About the rule expression language

1-5

• In the SeverityCodes codelist:

– Severe = 3.

– Life-Threatening = 4.

• In the TerminationCodes codelist:

– Severe AE during Pregnancy = PREGSEV

Example 1-2 A simplified rule expression in a rule with multiple conditions

Using these values, you could simplify the rule syntax:

evaluate on Form Submission
value = this.InitialVisit.Pregnancy.Pregnant.Value == 1 &&
(this.AECM.AdverseEvents.Current().Severity.Value == 3 ||
this.AECM.AdverseEvents.Current().Severity.Value == 4) ?
this.Termination.TerminationForm.TerminationReason.Value == PREGSEV : true
when value is false
issue query on this.Termination.TerminationForm.TerminationReason: If the
patient is pregnant and a severe or life-threatening AE occurs, Termination
Reason must be filled out with a value of “Severe AE during Pregnancy”

Dynamic prompts in the Expression workspace
When you create an expression, you can type directly in the Expression workspace, and you
can drag rule model objects from the tabs at the right side of the windows where you create a
data-entry rule, workflow rule, or global condition.

When you type in the Expression workspace, prompts appear dynamically as you type, listing
the rule model objects that are available for you to use based on the scope of the rule and the
content of the expression. As an alternative to dragging rule model objects from the tabs, you
can select the objects from the prompts.

A dynamic expression prompt appears when you type a period. The prompt contains a list of
rule model objects that you can select.

• To use the value of a study object or rule model property, type this., and select the
study object or property from the dynamic expression prompt.

• To use a function, type Functions., and select the function from the dynamic expression
prompt.

• To use a constant, type Constants., and select the constant from the dynamic
expression prompt.

• To use a data mapping study object or a rule model property, type DataMappings., and
select the study object or rule model property from the dynamic expression prompt.

When you select a rule model object that requires parameter values (for example, a function or
method), an open parenthesis mark follows the name of the rule model object, and a tooltip
indicates the parameters and their data types. The tooltip also appears when you point to the
name of the rule model object.

The following illustration shows a dynamic expression prompt and tooltip that appear when you
create a rule expression with a function on a study event that includes several forms. The Rule
Wizard tabs containing the same options are visible on the right.

Chapter 1
Dynamic prompts in the Expression workspace

1-6

Figure 1-1 Dynamic expression prompt and tooltip

1—Dynamic expression prompt. Constants, functions, data mappings, and child study objects
are available for selection.

2—Standard Rule Wizard tabs.

3—Tooltip showing format and data types of required parameters for the function.

For more information, see:

• Selecting a rule model object from a dynamic expression prompt

Selecting a rule model object from a dynamic expression prompt
When a dynamic expression prompt appears, perform one of the following:

• Double-click a rule model object.

• Select a rule model object, and press the Tab or Enter key.

Note:

You can navigate the list in the dynamic expression prompt with arrow keys or by
typing the first letter of a rule model object.

Rule templates
To simplify the process of creating rules, experienced programmers can create rule templates
to define the most common rules. Non-programmers can then use the rule templates to create
rules. A rule created using a rule template is called an intrinsic rule. Intrinsic rules are typically
used for simple, item-level checks.

Chapter 1
Rule templates

1-7

A rule templateis a function that is defined on a study object, study object template, or study
object type and can be used as the expression clause of a rule.

A rule template defines only the expression clause of an intrinsic rule. You must supply the
precondition clause, action clause, and parameters for an intrinsic rule in the Rule Wizard to
form a complete rule.

Rule templates are especially useful when they are part of a study object template or type
because the rule template is part of all study objects created from the template or type. For
example, a rule template that tests the value of an item against a minimum or maximum value
can be part of the integer item type. Then, when you create an integer item, the rule template
is part of the item. A user who works on the rule can create an intrinsic rule based on the rule
template.

Note:

If you modify a rule template, you must re-validate existing rules that use the
template, and make necessary changes.

Rule Templates tab

Rule templates are created and managed using the Rule Templates tab. The Rule Templates
tab displays a list of all rule templates that are attached to the study object and a toolbar for
adding, modifying, or deleting a rule template.

The Rule Templates tab appears in the Form Editor, Section Editor, and Item Editor. The tab
provides a summary of all the rule templates that are attached to the selected study object. You
can create rule templates for:

• Forms

• Form templates

• Sections

• Section templates

• Items

• Item templates

• Item types

For more information, see:

• Creating, modifying, and deleting a rule template?

• Default rule templates

Creating, modifying, and deleting a rule template?
You cannot delete a Rule templates if an existing rule is based on the template.

For more information, see:

• Create a rule template

• Modify a rule template

• Delete a rule template

• Other descriptions for the New Rule Template dialog box

Chapter 1
Rule templates

1-8

Create a rule template
To create a rule template:

1. In the Project Explorer, select a form, section, or item.

The editor for the study object appears in the workspace.

2. Select the Rule Templates tab.

3. Click Add.

The New Rule Template dialog box appears.

4. Fill in the fields in the dialog box.

5. Click OK,

Modify a rule template
To modify a rule template:

1. In the Project Explorer, select a form, section, or item.

The editor for the study object appears in the workspace.

2. Select the Rule Templates tab.

3. In the grid, select the rule template to modify.

4. Click Edit.

The Edit Rule Template dialog box appears.

5. Modify the template as necessary.

Delete a rule template
To delete a rule template:

1. In the Project Explorer, select a form, section, or item.

The editor for the study object appears in the workspace.

2. Select the Rule Templates tab.

3. In the grid, select the rule template to delete.

4. Click Delete.

The template is removed from the form or item.

Other descriptions for the New Rule Template dialog box

Option Description

Properties tab –

Name Name of the rule template.

Classification User-defined term used to organize rule templates.

Description Description of the rule template.

Chapter 1
Rule templates

1-9

Option Description

Display Text Text that appears in the Rule Summary section of
the Rule wizard after the When Value Is
information.

If this field is blank, the contents of the Expression
workspace are used. If the expression contains
parameters, the name of the parameter and the
value of the parameter appear. For example, if the
expression is value must be between {a} and {b},
and the value of a is 10 and the value of b is 100,
the parameters appear as a:10 and b:100.

Definition tab –

Return Type drop-down list Return type of the rule template; one of the
following: Integer, Float, String, Boolean, Date/
Time, or Array (A list of values, all of the same
type).

Expression Expression of the rule.

Parameters (Optional) –

Parameter Name of the parameter.

Data Type Return type of the parameter; one of the following:
Integer, Float, String, Boolean, Date/Time, or Array
(A list of values, all of the same type).

Default Value Specified value of the parameter.

References –

Data tab Lists study objects in the scope of the rule.
Optionally, to view the rule model properties of all
of the study objects, select Show all.

Functions tab Lists functions registered in a study and the
libraries that appear in the Libraries List in the
Study Editor. Any rule in the study can reference a
function.

Constants tab Lists constants created in the study and the
libraries that appear in the Libraries List in the
Study Editor. Any rule in the study can reference a
constant.

Chapter 1
Rule templates

1-10

Option Description

Data Mappings tab Lists:

• RefNames of the data mappings, data sets,
and data series in the study or library.

• Rule model properties for data series.
A data series has the properties of the item
that is mapped to it. If a data series contains
an item that collects more than one value, the
rule model properties for repeating study
objects appear so you can access an array of
all of the values of the item.

• Methods for data sets.
A method appears if you select the
corresponding standard data dimension of the
data set. You can use data set methods to
return a subset of the data in the data set.

• Study events, forms, sections, and items that
are mapped to each data set.

• Study objects appear if you select the
corresponding standard data dimension of the
data set. The properties of the study objects
are used as parameters of data set methods.

Default rule templates
In this section:

• _CheckTextLength

• _DateTimeRangeCheck

• _FutureDateCheck

• _PartialCompletenessCheck

• _RangeCheck

• _RangeCheckInclusive

• ValidBPCheck

_CheckTextLength

Characteristic Description

Availability Text items

Description Checks whether the value entered in the item is
less than the maximum length. The maximum
length is 255 by default, but you can specify any
value when you create a rule based on the
template.

Returns • True—The value entered contains fewer than
255 characters.

• False—The value entered contains 255
characters or more.

Display text this.Value.Length < MaxLength

Chapter 1
Rule templates

1-11

_DateTimeRangeCheck

Characteristic Description

Availability Date time items

Description Checks whether a date falls within a specified
range of another date.

When you create a rule based on the template, you
specify the two date time items, the date part to
compare (by default, days), and the minimum and
maximum range.

Returns • True—Date1 is within the specified range of
Date2.

• False—Date1 is not within the specified range
of Date2.

Display text _CompareDatesWithRange(date1,date2,datePart,r
angeMin,rangeMax)

_FutureDateCheck

Characteristic Description

Availability Date time items

Description Checks whether the specified date and time is in
the future, as compared to the site date and time.

Site information is based upon the time zone of the
data-entry site rather than the time zone of the
InForm server.

Returns • True—The entered date and time are in the
future, compared to the site date and time.

• False—The entered date and time is empty or
is in the past, compared to the site date and
time.

Display text !this.Empty && _CompareDates(Value,
GetSiteTime()) > 0

_PartialCompletenessCheck

Characteristic Description

Availability Compound and blood pressure items

Description Checks whether child items within a compound
item are partially complete. A partially complete
compound item consists of one or more empty
child items and one or more complete child items.

Returns • True—Child items within a compound item are
partially complete (one or more child items are
empty, and one or more child items are
complete).

• False—Child items within a compound item
are all either empty or complete.

Display text !this.Empty && !this.Complete

Chapter 1
Rule templates

1-12

_RangeCheck

Characteristic Description

Availability Integer and float items

Description Checks whether the value for an integer or float
item is greater than a minimum value and less than
a maximum value.

By default, the minimum value is:

• 0 for an integer.
• 0.0 for a float.
By default, the maximum value is:

• 100 for an integer.
• 100.0 for a float item.
You can change these values when you create a
rule based on the template.

Returns • True—The value of the item is greater than the
minimum value and less than the maximum
value.

• False—The value of the item is less than the
minimum value or greater than the maximum
value.

Display text Value must be between {MinValue} and {MaxValue}

_RangeCheckInclusive

Characteristic Description

Availability Integer and float items

Description Checks whether the value of a float or integer item
is greater than or equal to a minimum value and
less than or equal to a maximum value.

By default, the minimum value is:

• 0 for an integer.
• 0.0 for a float.
By default, the maximum value is:

• 100 for an integer.
• 100.0 for a float item.
You can change these values when you create a
rule based on the template.

Returns • True—The value of the item is greater than or
equal to the minimum value and less than or
equal to the maximum value.

• False—The value of the item is less than the
minimum value or greater than the maximum
value.

Display text Value must be greater than or equal to {MinValue},
and less than or equal to {MaxValue}

Chapter 1
Rule templates

1-13

ValidBPCheck

Characteristic Description

Availability Blood pressure items

Description Checks whether the entered systolic value is
greater than the entered diastolic value.

Returns • True—The systolic value is greater than the
diastolic value.

• False—The systolic value is less than the
diastolic value.

Display text this.SystolicVariable.Value >
this.DiastolicVariable.Value

Chapter 1
Rule templates

1-14

2
Data

In this chapter:

• Data tab

• Using data in rules and rule templates

• Icons used on the Data tab

• Rule model properties for study events, forms, and sections

• Rule model properties for items

• Rule model properties for DateTime items

• Methods for repeating study objects

• Methods for non-repeating study objects

Data tab
A rule expression can include data from a study, including:

• The values of study objects.

• The values of the rule model properties of study objects.
Data collected in the InForm application has properties, such as Empty and Required, that
you can select. These and other properties, collectively called rule model properties, are
visible in the Rule Wizard and can be used in rule expressions.

• Review states and review stages.

• A method used to identify an instance of a repeating study object.

Using data in rules and rule templates
To add data to rule expressions, use one of the following:

• For workflow rules—Workflow Expression Editor dialog box.

• For rule templates—Edit Rule Template dialog box > Definition tab.

• For data-entry rules—Rule Wizard Expression tab > Data tab.

• For global conditions—Edit Global Conditions dialog box > Data tab.

Note:

Rule expressions use RefNames, not titles. Therefore, RefNames appear in the Rule
Wizard and in the rule expression.

In the Data tab (in the Expression tab of the Rule Wizard), the RefName of the study object to
which you are adding a rule always appears at the top of the tree. The information that appears
below the study object depends on whether Show all is selected.

2-1

• Show all not selected.
The RefNames of all children of the study object are listed below the study object. Only
study objects within the scope of the rule are listed.

You can use the values of any of the study objects in the rule expression.

• Show all selected.
The following information appears:

– RefNames of all children of the study object.
Only study objects within the scope of the rule are listed. You use the values of the
study objects and properties in the rule expression.

– Rule model properties of the children of the study object. Rule model properties are
available for study events, forms, sections, and items.

– Methods for repeating study objects.

To use the value of a study object or the value of a rule model property in a rule expression:

• Drag the study object or property from the Data tab to the Expression workspace.

Icons used on the Data tab
The icons that appear depend on the level on which a rule is created and whether Show all is
selected.

Icon Description

Study design.

Study element.

Study event.

Form.

• DateTime item.
or

• Rule model property with a DateTime return
type.

• Float item.
or

• Rule model property with a Float return type.

• Integer item.
or

• Rule model property with a Integer return type.

• Text item.
or

• Rule model property with a Text return type.

Chapter 2
Icons used on the Data tab

2-2

Icon Description

Compound item.

Method.

Used for some rule model properties for items.

Rule model property with a Boolean return type.

[Name of codelist] rule model property.

[Name of codelist item] rule model property.

Rule model properties for study events, forms, and sections
You add rule model properties to an expression in the Rule Wizard in the Expression tab >
Data tab.

Note:

The types for rule model properties are .NET base types.

Note:

All arrays start at 0.

For more information, see:

• [Name of review stage]

• [Name of review state]

• CurrentIndex

• Count

• HasData

• IsDeleted

• RelatedData[]

• ReviewStates

Chapter 2
Rule model properties for study events, forms, and sections

2-3

[Name of review stage]

Characteristic Description

Icon

Availability Appears for forms when at least one review state
has been defined in the study.

Description Review stage in a custom review state. You can get
the review stage of a form using the
GetReviewState method. You can check for the
review stage of a form using the HasReviewState
method.

[Name of review state]

Characteristic Description

Icon

Availability Appears for forms.

This property is a container for the stages defined
for a custom review stage and cannot be dragged
to the Expression workspace. You can drag the
named review stages that appear below the
property.

CurrentIndex

Characteristic Description

Icon

Chapter 2
Rule model properties for study events, forms, and sections

2-4

Characteristic Description

Availability Repeating study events, repeating forms, and
repeating sections.

Note:

To view this property,
you must select the
parent study object.
For example, to view
the property on a
study event, you must
select its parent
(either a study
element or a study
design).

Return type Int32 (for Oracle Central Designer Integer and
YesNo types).

Description The index of the current study events, form, or
section. The index starts at 0.

Purpose Use this property to determine the section, form, or
study event for which someone is currently entering
or modifying data. For example, you might want to
perform a rule action for the first form for which
data was entered and another rule action for
subsequent instances of the form.

Count

Characteristic Description

Icon

Availability Repeating study events, repeating forms, and
repeating sections.

Note:

To view this property,
you must select the
parent study object.
For example, to view
the property on a
study event, you must
select its parent
(either a study
element or a study
design).

Chapter 2
Rule model properties for study events, forms, and sections

2-5

Characteristic Description

Return type Int32 (for Oracle Central Designer Integer and
YesNo types).

Description The current number of instances of the repeating
study event, form, or section.

Purpose Use this property to determine the number of
sections, forms, or study events in a study. For
example, you might want to know the number of
adverse events that exist for a subject.

HasData

Characteristic Description

Icon

Availability Non-repeating forms and sections.

Return type Boolean.

Description True or False. When True, a value for the item has
been provided.

Purpose Use this property to determine whether a form has
data on it. For example, if an Adverse Events form
indicates that a subject was hospitalized, you could
check whether the hospitalization form has been
filled out yet.

value =
this.AE.Current().itmHospitalized ==
‘Y’ ?
this.Hospitalization.HasData : true
when value is false
 issue query on
this.AE.Current().itmHospitalized:
 If patient was hospitalized,
Hospitalization form must be filled
out.

Chapter 2
Rule model properties for study events, forms, and sections

2-6

Characteristic Description

Notes

Note:

The functionality
available with
HasData is now
available with
HasState. If you are
using HasData,
consider converting it
to
HasState(Constants.
FormStates.HasData)
.

IsDeleted

Characteristic Description

Icon

Availability Repeating forms and sections.

Return type Boolean.

Description True or False. When True, the form or section has
been deleted.

Purpose Use this property to determine whether an itemset
(in the Oracle Central Designer application, a
section) or a form has been deleted in the InForm
application.

Notes

Note:

The functionality
available with
IsDeleted is now
available with
HasState. If you are
using HasData,
consider converting it
to
HasState(Constants.
FormStates.Deleted).

Chapter 2
Rule model properties for study events, forms, and sections

2-7

RelatedData[]

Characteristic Description

Icon

Availability Repeating, associated form.

Return type • Form instances for the associated form.
or

• An array of item values from associated forms.

Description Returns instances of associated forms, sorted by
form index, and allows access to arrays of item
values from the associated forms.

Example If the AE and CM forms are associated, and you
are creating a rule on a study event that contains
both of them:

• To return an array of associated AE
forms:this.CM.Current().RelatedData

• To return an array of associated CM
forms:this.AE.Current().RelatedData

• To return the value of the Verbatim item on the
first AE
form:this.CM.Current().RelatedData[0]
.Verbatim.Value

• To return an array of values for the drugName
item from all instances of the CM form that are
associated with the current instance of the AE
form:this.AE.Current().RelatedData.dr
ugName.Values

Notes Trigger dependencies are created in the Oracle
Health Sciences InForm application for a data-entry
rule using associated forms. When the expression
of a data-entry rule references the RelatedData
rule model property, a trigger dependency is
created for both the item that is explicitly referenced
and the item that is referenced through the
RelatedData property.

• When you submit either of the associated
forms, the rule runs.

• When you associate two forms in the Oracle
Health Sciences InForm application, a trigger
dependency causes rules to run.

• When you remove a form association in the
Oracle Health Sciences InForm application,
rules do not run.

Chapter 2
Rule model properties for study events, forms, and sections

2-8

ReviewStates

Characteristic Description

Icon

Availability Appears for forms when at least one custom review
state has been defined in the study.

This property is a container for custom review
states and cannot be dragged to the Expression
workspace. You can drag the named review states
that appear below the property.

Rule model properties for items
Rule model properties are different from standard and custom properties, which are properties
of the study design and are visible in the Properties Browser.

You add rule model properties to an expression in the Rule Wizard in the Expression tab >
Data tab. The properties in this section are available for items of all data types, except where
noted.

Note:

The types for rule model properties are .NET base types.

Note:

All arrays start at 0.

For more information, see:

• [Alias or code of codelist item]

• [Name of codelist]

• Cloud Reference Topic Title

• AllValues[]

• Completed

• CurrentAllObjectsIndex

• CurrentAllValuesIndex

• CurrentObjectsIndex

• CurrentValuesIndex

• Empty

• EnteredUnit

• EnteredValue

Chapter 2
Rule model properties for items

2-9

• Objects[]

• Selected[]

• Value

• Value[]

• ValueLabel

• Values[]

[Alias or code of codelist item]

Characteristic Description

Icon

Availability Items with a codelist.

Return type One of the following:

• String (for Oracle Central Designer string
types).

• Double (for Oracle Central Designer float
types).

• Int32 (for Oracle Central Designer Integer and
YesNo types).

Description Codelist item in the codelist that is associated with
the item.

When you use a codelist item in a rule expression,
the value of the codelist item is used.

Purpose The alias of a codelist item is useful because you
can use the alias in place of the code in the
codelist. The Rule Wizard allows you to drag the
codelist item as a replacement for the code, so you
do not have to memorize it or close the Rule
Wizard to determine the value.

[Name of codelist]

Characteristic Description

Icon

Availability Appears for items that have a codelist.

This property is a container for codelist items and
cannot be dragged to the Expression workspace.
You can drag the codelists that appear below the
property.

Chapter 2
Rule model properties for items

2-10

Cloud Reference Topic Title

Characteristic Description

Icon

Availability An item that is a child of one of the following:
• Form that is part of a repeating study event.
• Repeating form.
• Repeating section.

Return type object[]

Description Returns an array of values from item instances that
are part of a repeating study event, repeating form,
or repeating section.

Included in the array • Values of undeleted items. An item is
undeleted if someone has provided a value for
it, and the form or section that contains the
item has not been deleted.

• Values of deleted items. An item is deleted if
the form or section that contains it is deleted
from a study.

• Values of empty items. An item is empty if the
form has been created but a value has not
been provided for the item.

Example A study contains the following repeating forms,
which contain the AEDate item:
• First instance of the form—Someone has

entered a value for the AEDate item.
• Second instance—Someone has filled in

values for other items but not the AEDate item
(the item is empty).

• Third instance—Someone entered a value for
the AEDate item and deleted the form (the
item is deleted).

• Fourth instance—Someone has entered a
value for the AEDate item.

When you use this property, the following instances
are returned:
• First instance
• Second instance
• Third instance
• Fourth instance

Chapter 2
Rule model properties for items

2-11

Characteristic Description

Notes

Note:

Values[], AllValues[],
Objects[], and
AllObjects[] all return
an array of data.
Consider the
following scenarios
when deciding upon
the property to use:
• To include

deleted values,
use either
AllValues[] or
AllObjects[].

• To include null
values, use
Objects[] or
AllObjects[].

Additionally, consider that the following
CurrentIndex properties are also available:
• CurrentAllObjectsIndex
• CurrentAllValuesIndex
• CurrentObjectsIndex
• CurrentValuesIndex

AllValues[]

Characteristic Description

Icon

Availability An item that is a child of one of the following:
• Form that is part of a repeating study event.
• Repeating form.
• Repeating section.

Return type • If an integer type—Int[].
• If a float type—Double[].
• If a text type—String[].
• If a date time type—PFDateTime[].

Description Returns an array of values from item instances that
are part of a repeating study event, repeating form,
or repeating section.

Chapter 2
Rule model properties for items

2-12

Characteristic Description

Included in the array • Values of undeleted items. An item is
undeleted if someone has provided a value for
it, and the form or section that contains the
item has not been deleted.

• Values of deleted items. An item is deleted if
the form or section that contains it is deleted
from a study.

Not included in the array Values of empty items. An item is empty if the form
has been created but a value has not been
provided for the item.

Example A study contains the following repeating forms,
which contain the AEDate item:
• First instance of the form—Someone has

entered a value for the AEDate item.
• Second instance—Someone has filled in

values for other items but not the AEDate item
(the item is empty).

• Third instance—Someone entered a value for
the AEDate item and deleted the form (the
item is deleted).

• Fourth instance—Someone has entered a
value for the AEDate item.

When you use this property, the following instances
are returned:
• First instance
• Third instance
• Fourth instance

Chapter 2
Rule model properties for items

2-13

Characteristic Description

Notes

Note:

Values[], AllValues[],
Objects[], and
AllObjects[] all return
an array of data.
Consider the
following scenarios
when deciding upon
the property to use:
• To include

deleted values,
use either
AllValues[] or
AllObjects[].

• To include null
values, use
Objects[] or
AllObjects[].

Additionally, consider that the following
CurrentIndex properties are also available:
• CurrentAllObjectsIndex
• CurrentAllValuesIndex
• CurrentObjectsIndex
• CurrentValuesIndex

Completed

Characteristic Description

Icon

Availability Compound items.

Return type Boolean.

Description

Note:

Items that are
conditional on child
items of the
compound item are
not evaluated.

• True—All child items of the conditional item
are not empty.

• False—At least one child item of the
conditional item is empty.

Chapter 2
Rule model properties for items

2-14

Characteristic Description

Purpose This property allows you to simplify the expressions
of data-entry rules that check to see if controls that
have been started are completed. Typically these
expressions also use the Empty rule model
property.

CurrentAllObjectsIndex

Characteristic Description

Icon

Availability An item that is a child of one of the following:
• Form that is part of a repeating study event.
• Repeating form.
• Repeating section.

Return type Int32 (for Central Designer Integer and YesNo
types).

Description Returns the current position in the array that is
returned by the AllObjects[] rule model property.
The index is 0 based.

CurrentAllValuesIndex

Characteristic Description

Icon

Availability An item that is a child of one of the following:
• Form that is part of a repeating study event.
• Repeating form.
• Repeating section.

Return type Int32 (for Oracle Central Designer Integer and
YesNo types).

Description Returns the current position in the array that is
returned by the AllValues[] rule model property. The
index is 0 based.

CurrentObjectsIndex

Characteristic Description

Icon

Chapter 2
Rule model properties for items

2-15

Characteristic Description

Availability An item that is a child of one of the following:
• Form that is part of a repeating study event.
• Repeating form.
• Repeating section.

Return type Int32 (for Oracle Central Designer Integer and
YesNo types).

Description Returns the current position in the array that is
returned by the Objects[] rule model property. The
index is 0 based.

CurrentValuesIndex

Characteristic Description

Icon

Availability An item that is a child of one of the following:
• Form that is part of a repeating study event.
• Repeating form.
• Repeating section.

Return type Int32 (for Oracle Central Designer Integer and
YesNo types).

Description Returns the current position in the array that is
returned by the Values[] rule model property. The
index is 0 based.

Empty

Characteristic Description

Icon

Availability A data series that contains a single item that is
used only once in a study.

Available below the Variables[] property.

Return type Boolean.

Description True or False.

When True, a value for the item has not been
provided.

Chapter 2
Rule model properties for items

2-16

EnteredUnit

Characteristic Description

Icon

Availability An item with a base unit selected on the Design tab
for the item.

Return type String (for Oracle Central Designer string types).

Description Returns the localized name of the unit, or null if a
unit was not selected. For example, you can use
this property in query or email text.

Chapter 2
Rule model properties for items

2-17

Characteristic Description

Purpose If you allow Oracle Health Sciences InForm users
to choose between metric and imperial units but
want to require that the user is consistent within a
form, use this property to check that the values are
from the same measurement system. Consider that
values entered in the Oracle Health Sciences
InForm application are normalized to their base
unit. For example, if kg is the base unit, a value of
150 lbs. is stored in the database as 68.0388555
kg.

Some unit conversions are not absolute, which can
make writing rules difficult. For example, converting
mmol/L requires knowledge of a chemical’s
molecular weight.
• To convert mmol/L of glucose to mg/dL, you

multiply by 18.
• To convert mmol/L of LDL cholesterol to

mg/dL, you multiply by 39.

You have the following options for recording this
information:
• If you use a single item, you must create

separate unit definitions for each chemical that
is measured.

• If you use a compound item, with one child to
store the value and one child to store the unit,
you must perform a conversion to normalize
the values for reporting or CDD purposes.

• If you use EnteredValue and EnteredUnit, you
can store the true normalized value in a hidden
field, which you can use for reporting or CDD.

The following rule example uses EnteredUnit and
EnteredValue to convert glucose from mmol/L to
mg/dL, and stores that value in the
itmNormalizedGlucose item. Consider that a
conversion is not done if another unit is chosen; if
the base unit is selected, EnteredValue and Value
are the same.

value = this.itmGlucose.EnteredUnit
== "mmol/L" ?
this.itmGlucose.EnteredValue * 18 :
this.itmGlucose.Value
always
 set this.itmNormalizedGlucose =
value

You can write a similar rule to convert cholesterol,
triglycerides, and other measurements.
Additionally, you can replace numerical values,
such as 18 and 39, with constants such as
Constants.Conversions.Glucose and
Constants.Conversions.Cholesterol. You define the
constants in the study or a library.

Chapter 2
Rule model properties for items

2-18

EnteredValue

Characteristic Description

Icon

or

Availability An item with a base unit selected on the Design tab
for the item.

Return type One of the following:
• Int32 (for Oracle Central Designer Integer and

YesNo types).
• Double (for Oracle Central Designer float

types).

Description Returns the entered value for an item for which a
base unit was selected.

Chapter 2
Rule model properties for items

2-19

Characteristic Description

Purpose Some unit conversions are not absolute, which can
make writing rules difficult. For example, converting
mmol/L requires knowledge of a chemical’s
molecular weight.
• To convert mmol/L of glucose to mg/dL, you

multiply by 18.
• To convert mmol/L of LDL cholesterol to

mg/dL, you multiply by 39.

You have the following options for recording this
information:
• If you use a single item, you must create

separate unit definitions for each chemical that
is measured.

• If you use a compound item, with one child to
store the value and one child to store the unit,
you must perform a conversion to normalize
the values for reporting or CDD purposes.

• If you use EnteredValue and EnteredUnit, you
can store the true normalized value in a hidden
field, which you can use for reporting or CDD.

The following rule example uses EnteredUnit and
EnteredValue to convert glucose from mmol/L to
mg/dL, and stores that value in the
itmNormalizedGlucose item. Consider that a
conversion is not done if another unit is chosen; if
the base unit is selected, EnteredValue and Value
are the same.

value = this.itmGlucose.EnteredUnit
== "mmol/L" ?
this.itmGlucose.EnteredValue * 18 :
this.itmGlucose.Value
always
 set this.itmNormalizedGlucose =
value

You can write a similar rule to convert cholesterol,
triglycerides, and other measurements.
Additionally, you can replace numerical values,
such as 18 and 39, with constants such as
Constants.Conversions.Glucose and
Constants.Conversions.Cholesterol. You define the
constants in the study or a library.

Objects[]

Characteristic Description

Icon

Chapter 2
Rule model properties for items

2-20

Characteristic Description

Availability An item that is a child of one of the following:
• Form that is part of a repeating study event.
• Repeating form.
• Repeating section.

Return type object[]

Description Returns an array of values from item instances that
are part of a repeating study event, repeating form,
or repeating section.

Included in the array • Values of undeleted items. An item is
undeleted if someone has provided a value for
it, and the form or section that contains the
item has not been deleted.

• Values of empty items. An item is empty if the
form has been created but a value has not
been provided for the item.

Not included in the array Values of deleted items. An item is deleted if the
form or section that contains it is deleted from a
study.

Example A study contains the following repeating forms,
which contain the AEDate item:
• First instance of the form—Someone has

entered a value for the AEDate item.
• Second instance—Someone has filled in

values for other items but not the AEDate item
(the item is empty).

• Third instance—Someone entered a value for
the AEDate item and deleted the form (the
item is deleted).

• Fourth instance—Someone has entered a
value for the AEDate item.

When you use this property, the following instances
are returned:
• First instance
• Second instance
• Fourth instance

Chapter 2
Rule model properties for items

2-21

Characteristic Description

Notes

Note:

Values[], AllValues[],
Objects[], and
AllObjects[] all return
an array of data.
Consider the
following scenarios
when deciding upon
the property to use:
• To include

deleted values,
use either
AllValues[] or
AllObjects[].

• To include null
values, use
Objects[] or
AllObjects[].

Additionally, consider that the following
CurrentIndex properties are also available:
• CurrentAllObjectsIndex
• CurrentAllValuesIndex
• CurrentObjectsIndex
• CurrentValuesIndex

Selected[]

Characteristic Description

Icon

Availability Available for items with multi-select codelists.

Return type Boolean.

Description For the codelist item that is specified in the
brackets, returns a value that indicates if the
checkbox for the codelist item is selected.

You can also use this property to select or deselect
the checkbox for a codelist item.

Chapter 2
Rule model properties for items

2-22

Characteristic Description

Purpose Use this property to determine whether a checkbox
has been selected. For example, to disqualify
subjects who are using aspirin, you can create a
list of common OTC drugs with a checkbox next to
each.

value =
this.itmOTCMeds.Selected[this.itmOTCM
eds.clOTCMeds.Aspirin]
when value is true
 issue query on this.itmOTCMeds:
 Subjects on an aspirin regimen
are not eligible for the study.

You can also use the property to programmatically
select items. To select an item, use a SetValue
action, setting the value to True for a selected
checkbox or False for a deselected checkbox.

Value

Characteristic Description

Icon

,

,

, or

Availability A data series that contains a single item that is
used only once in a study.

Return type One of the following:
• String (for Oracle Central Designer string

types).
• DateTime (for Oracle Central Designer date

time types).
• Double (for Oracle Central Designer float

types).
• Int32 (for Oracle Central Designer Integer and

YesNo types).

Description Value of the item in the data series.

Chapter 2
Rule model properties for items

2-23

Value[]

Characteristic Description

Icon

Availability All items with multi-select codelists.

Return type • If an integer type—Int[].
• If a float type—Double[].
• If a text type—String[].

Description Returns an array of values for the item.

Purpose Use this property to process all of the boxes that
are selected in a checkbox group. To use a single
checkbox item, use Selected[].

For example, if you have a codelist with
checkboxes and want to make sure that no more
than three checkboxes are selected, use this
property to return an array of the selected
checkboxes, and use the Length property of the
array to determine the number of selected
checkboxes.

value =
this.itmConcomMeds.Value.Length
when value > 3
 issue query on this.itmConcomMeds:
 Subject should not be on more than
three
 concomitant meds at time of
enrollment

ValueLabel

Characteristic Description

Icon

Availability All items with a codelist

Return type String (for Oracle Central Designer string types).

Description Returns the text value of the selected radio button
or item in a drop-down list.

If a value is not selected, the rule stops running.

Chapter 2
Rule model properties for items

2-24

Characteristic Description

Purpose This property prevents you from needing to
memorize codes for codelist items and drag
codelist item aliases. For example, if you have a
Route of Administration drop-down list for
medications and you are using the FDA codes,
Spinal corresponds to 356. You can write the
expression in the following way:

value =
(this.itmRouteOfAdministration.Value
== 356)

However, this expression requires that you know
the value of the code. This property allows you to
write the expression in the following way:

value =
(this.itmRouteOfAdministration.ValueL
abel == "Spinal")

Alternatively, you can perform multiple rule actions:

value =
this.itmRouteOfAdministration.ValueLa
bel
when value is "Spinal"...
when value is "Oral"...
when value is "Intravenous"...

Values[]

Characteristic Description

Icon

Availability An item that is a child of one of the following:
• Form that is part of a repeating study event.
• Repeating form.
• Repeating section.

Return type • If an integer type
• If a float type—Double[].
• If a text type
• If a date time type

Description Returns an array of values from item instances that
are part of a repeating study event, repeating form,
or repeating section.

Chapter 2
Rule model properties for items

2-25

Characteristic Description

Included in the array Values of undeleted items. An item is undeleted if
someone has provided a value for it, and the form
or section that contains the item has not been
deleted.

Not included in the array • Values of deleted items. An item is deleted if
the form or section that contains it is deleted
from a study.

• Values of empty items. An item is empty if the
form has been created but a value has not
been provided for the item.

Example A study contains the following repeating forms,
which contain the AEDate item:
• First instance of the form—Someone has

entered a value for the AEDate item.
• Second instance—Someone has filled in

values for other items but not the AEDate item
(the item is empty).

• Third instance—Someone entered a value for
the AEDate item and deleted the form (the
item is deleted).

• Fourth instance—Someone has entered a
value for the AEDate item.

When you use this property, the following instances
are returned:
• First instance
• Fourth instance

Notes

Note:

Values[], AllValues[],
Objects[], and
AllObjects[] all return
an array of data.
Consider the
following scenarios
when deciding upon
the property to use:
• To include

deleted values,
use either
AllValues[] or
AllObjects[].

• To include null
values, use
Objects[] or
AllObjects[].

Additionally, consider that the following
CurrentIndex properties are also available:
• CurrentAllObjectsIndex
• CurrentAllValuesIndex
• CurrentObjectsIndex
• CurrentValuesIndex

Chapter 2
Rule model properties for items

2-26

Rule model properties for DateTime items
In this section:

• Year

• YearEmpty

• YearUnknown

• Month

• MonthEmpty

• MonthUnknown

• Day

• DayEmpty

• DayUnknown

• Hour

• HourEmpty

• HourUnknown

• Minute

• MinuteEmpty

• MinuteUnknown

• Second

• SecondEmpty

• SecondUnknown

Year

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime items.

This property appears only when Allow is selected
for the Year property of the item.

Return type Int32 (for Oracle Central Designer Integer and
YesNo types).

Description Value of the Year component of the DateTime item.

Chapter 2
Rule model properties for DateTime items

2-27

YearEmpty

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime items.

This property appears only when Required is not
selected for the Year iproperty of the item.

Return type Boolean.

Description True or False. When True, a value for the part of
the date time item has not been provided.

YearUnknown

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime.

This property appears only when Allow unknown
is selected for the Year property of the item.

Return type Boolean.

Description True or False. When True, the Unknown value was
selected for the date time part.

Month

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime items.

This property appears only when Allow is selected
for the Month property of the item.

Return type Int32 (for Oracle Central Designer Integer and
YesNo types).

Description Value of the Month component of the DateTime
item.

Chapter 2
Rule model properties for DateTime items

2-28

MonthEmpty

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime items.

This property appears only when Required is not
selected for the Month property of the item.

Return type Boolean.

Description True or False. When True, a value for the part of
the date time item has not been provided.

MonthUnknown

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime.

This property appears only when Allow unknown
is selected for the Month property of the item.

Return type Boolean.

Description True or False. When True, the Unknown value was
selected for the date time part.

Day

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime items.

This property appears only when Allow is selected
for the Day property of the item.

Return type Int32 (for Oracle Central Designer Integer and
YesNo types).

Description Value of the Day component of the DateTime item.

(Optional) Enter reference information in this section.

Chapter 2
Rule model properties for DateTime items

2-29

DayEmpty

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime items.

This property appears only when Required is not
selected for the Day property of the item.

Return type Boolean.

Description True or False. When True, a value for the part of
the date time item has not been provided.

DayUnknown

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime.

This property appears only when Allow unknown
is selected for the Day property of the item.

Return type Boolean.

Description True or False. When True, the Unknown value was
selected for the date time part.

Hour

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime items.

This property appears only when Allow is selected
for the Hour property of the item.

Return type Int32 (for Oracle Central Designer Integer and
YesNo types).

Description Value of the Hour component of the DateTime
item.

Chapter 2
Rule model properties for DateTime items

2-30

HourEmpty

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime items.

This property appears only when Required is not
selected for the Hour property of the item.

Return type Boolean.

Description True or False. When True, a value for the part of
the date time item has not been provided.

HourUnknown

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime.

This property appears only when Allow unknown
is selected for the Hour property of the item.

Return type Boolean.

Description True or False. When True, the Unknown value was
selected for the date time part.

Minute

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime items.

This property appears only when Allow is selected
for the Minute property of the item.

Return type Int32 (for Oracle Central Designer Integer and
YesNo types).

Description Value of the Minute component of the DateTime
item.

Chapter 2
Rule model properties for DateTime items

2-31

MinuteEmpty

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime items.

This property appears only when Required is not
selected for the Minute property of the item.

Return type Boolean.

Description True or False. When True, a value for the part of
the date time item has not been provided.

MinuteUnknown

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime.

This property appears only when Allow unknown
is selected for the Minuteproperty of the item.

Return type Boolean.

Description True or False. When True, the Unknown value was
selected for the date time part.

Second

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime items.

This property appears only when Allow is selected
for the Second property of the item.

Return type Int32 (for Oracle Central Designer Integer and
YesNo types).

Description Value of the Second component of the DateTime
item.

Chapter 2
Rule model properties for DateTime items

2-32

SecondEmpty

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime items.

This property appears only when Required is not
selected for the Second property of the item.

Return type Boolean.

Description True or False. When True, a value for the part of
the date time item has not been provided.

SecondUnknown

Characteristic Description

Icon

Availability Available under the Value rule model property for
DateTime.

This property appears only when Allow unknown
is selected for the Secondproperty of the item.

Return type Boolean.

Description True or False. When True, the Unknown value was
selected for the date time part.

Methods for repeating study objects
You use methods for rules that refer to repeating study events, repeating forms, and repeating
sections. The data collected for repeating study objects comprise an array. To include
information about a repeating study object in a rule, you must use a method to specify the
instance in the array.

Methods for repeating study objects appear in the Rule Wizard in the Expression tab > Data
tab.

To use a method in a rule expression:

1. Double-click the method.

If the method has one or more parameters, the Invoke Function dialog box appears.

2. Drag a study object from the References tab to the Values field to define a value for each
parameter.

For more information, see:

• [] [Indexer]

• Current()

• Current(Integer)

Chapter 2
Methods for repeating study objects

2-33

• GetValue

[] [Indexer]

Characteristic Description

Icon

Availability Repeating study events, repeating forms, and
repeating sections.

Return type and description Indexer method.

Returns an instance of a repeating study object.

Syntax NameOfStudyObject[index]

Parameters • Parameter—index.
• Definition—An integer from 0 to the length of

the array minus 1 (Count - 1).
• Data type—Integer.

Example If form RefName is ConMed, the following example
returns the first instance of the repeating form:

ConMed[0]

Purpose This method is useful when you are working with
an array of values. For example, use the following
expression to determine the date on which the first
adverse event was entered:

this.frmAE[0].itmDateOfOnset.Value

To determine the date on which the last adverse
event was entered, use the following expression:

this.frmAE[this.frmAE.Count -
1].itmDateOfOnset.Value

Current()

Characteristic Description

Icon

Availability Repeating study events, repeating forms, and
repeating sections.

Return type and description Returns the current instance of the repeating study
object.

Syntax NameOfStudyObject.Current()

Parameters No parameters.

Chapter 2
Methods for repeating study objects

2-34

Characteristic Description

Example If form RefName is ConMed:

ConMed.Current()
For more information, see Examples--Using the
Current() method and IsValueInArray function.

Best practices for rules • To create a rule that uses a repeating study
object's current instance to determine if the
conditions of the rule are satisfied, you need to
determine whether all instances or a single
instance of the repeating study object should
be considered in the rule logic.

• If the rule logic considers more than one
instance of the repeating study object, Oracle
recommends that you use an array of the
repeating study object, using the
IsValueInArray function. In the expression,
Oracle recommends checking whether the
array has any values before using it for
comparison.

• The target of the rule action must be a child
study object of the study object referenced by
the Current() method. In addition, validation
considers the lowest level of Current() that you
use. For example, for Visit1 and Form1:
– The following expression is valid only if

you apply the rule to a child study object
of Visit1.
this.Visit1.Current().Form1.I1 == 1

– The following expression is valid only if
you apply the rule to a child study object
of Section1.
this.Visit1.Current().Form1.Current().Se
ction1.Current()I1 == 1

– The following expression is valid only if
you apply the rule to a child study object
of Form1.
this.Visit1.Current().Form1.Current().I1
== 1

For more information, see:

• Examples--Using the Current() method and IsValueInArray function

Examples--Using the Current() method and IsValueInArray function
The following examples show the following:

• Rule expressions that use the Current() rule method.

• For each correct rule expression that uses the Current() method, an alternative rule
expression that uses the IsValueInArray function. Each example that uses the
IsValueInArray function is correct, and passes validation.

The examples use the following abbreviations for study objects:

• evt—Study event

• frm—Form

Chapter 2
Methods for repeating study objects

2-35

• sct—Section

• int—Integer item

• float—Float item

• yn—Yes/No codelist

Example—Data-entry rule:

Rule expression Correct—Rule passes
validation

Incorrect—Validation error
occurs

Data-entry rule – –

this.frm1a.Current().int1.Value ==
1

query on
this.frm1a.Current().sctbc.float1:
query text

query on this.frm1.float1: query
text

Data-entry rule using an array – –

this.frm1a.int1.Values.Count>0
&&
Functions._IsValueInArray(1,this.f
rm1a.int1.Values) == true

query on
this.frm1a.Current().sctbc.float1:
query text

N/A

– query on this.frm1.float1: query
text

N/A

Example—Workflow rule:

Rule expression Correct—Rule passes
validation

Incorrect—Validation error
occurs

Workflow rule – –

this.evt6.Current().frm2a.sct2b.yn
2.Value ==
this.evt6.Current().frm2a.sct2b.yn
2.YesNoCodelist2.YesCodelistIte
m2

You can use this rule expression
to trigger a form in study event
evt6.

You cannot use this rule
expression to trigger a form in a
study event other than evt6.

Workflow rule using an array – –

this.evt6.frm2a.sct2b.yn2.AllValue
s.Count>0 &&
Functions._IsValueInArray(this.ev
t6[0].frm2a[0].sct2b[0].yn2.YesNo
Codelist2.YesCodelistItem2,this.e
vt6.frm2a.sct2b.yn2.AllValues)==t
rue

You can use this rule expression
to trigger any study event.

N/A

Example—Global condition:

Rule expression Correct—Rule passes
validation

Incorrect—Validation error
occurs

Global condition – –

this.evt1a.Current().frm3.yn1.Valu
e ==
this.evt1a.Current().frm3.yn1.Yes
NoCodelist.YesCodelistItem

You can use this rule expression
to trigger form frm1 in study
event evt1a.

You cannot use this rule
expression to trigger form frm1 in
a study event other than evt1a.

Global condition using an array – –

Chapter 2
Methods for repeating study objects

2-36

Rule expression Correct—Rule passes
validation

Incorrect—Validation error
occurs

this.evt1a.frm3.yn1.Values.Count
>0 &&
Functions._IsValueInArray(this.ev
t1a[0].frm3.yn1.YesNoCodelist.Ye
sCodelistItem,this.evt1a.frm3.yn1
.Values)== true

You can use this rule to trigger:

• Form frm1 in study event
evt1a

• Form frm1 in study event
evt2

N/A

Current(Integer)

Characteristic Description

Icon

Availability Repeating study events, repeating forms, and
repeating sections.

Return type and description Allows you to choose the instance relative to the
current instance of the repeating study object. This
method skips deleted instances.

Syntax NameOfStudyObject.Current(relativeIndex
)

Parameters • Parameter—relativeIndex.
• Definition—(Optional) An integer with a range

of (–CurrentIndex) to (Count – CurrentIndex –
1).

• Data type—Integer.

Example If form RefName is ConMed:

ConMed.Current(-1)
Purpose Use Current with the relative index to compare

values across repeating study events and forms.
For example, to confirm that the DOV for each
unexpected visit is after the DOV for the previous
visit, use the following expression:

value =
_CompareDates(this.Current().frmDOV.i
tmDOV.Value,
this.Current(-1).frmDOV.itmDOV.Value)
when value = -1
 issue query on
this.Current().frmDOV.itmDOV: DOV
 for this visit must be later than
the previous visit.

GetValue
Appears as one of the following, depending on the type of the study object:

• GetValue(Integer)

Chapter 2
Methods for repeating study objects

2-37

• GetValue(Date)

• GetValue(String)

• GetValue(Float)

Characteristic Description

Icon

Availability All items.

Return type and description If the Empty property of the item is True—
Returns the replacement value (a parameter of the
method).

If the Empty property of the item is False—
Returns the value of the item.

Syntax (If rule is created on a study design)

StudyEventRefName.FormRefName.ItemRefNa
me.GetValue(replacementValue)

Note:

If the item is a child of
a repeating study
object, method
information is
included in the rule
expression to indicate
the item instance to
which you are
referring.

Parameters • Parameter—replacementValue.
• Definition—The replacement value for the

item.
• Data type—Data type of the item.

Example If:
• Study event RefName is Death
• Form RefName is DeathForm
• Item RefName is RelatedToDevice
• Codelist item RefName that you specify for the

parameter is RelatedCode3
Death.DeathForm.RelatedToDevice.GetV
alue(Death.DeathForm.RelatedToDevice
.RelatedCodes.RelatedCode3)

Chapter 2
Methods for repeating study objects

2-38

Characteristic Description

Purpose This method is useful for replacing a null value with
a value that is usable for calculations, or for
causing a rule to run even if a value has not been
entered. For example, a BMI calculation typically
does not run until the InForm user enters both a
Height and Weight value for a subject. However,
you can use this method to store a value of 0 in the
BMI field if either Height or Weight is missing.

Below is a typical rule expression for calculating
BMI:

value = this.itmHeight.Value != 0 ?
_CalculateBMI(this.itmWeight.Value,
this.itmHeight.Value) : 0

This rule expression does not calculate the BMI
until both values are present.

Below is the same expression, except it uses
GetValue

value = this.itmHeight.GetValue(0)
== 0 ?
_CalculateBMI(this.itmWeight.GetValu
e(0), this.itmHeight.Value) : 0

This expression calculates BMI upon submission of
the form, regardless of whether the values for
Height and Weight were entered.

In both cases, the expression checks whether
Height is 0. If Height is 0, a divide-by-zero error
occurs.

Methods for non-repeating study objects
In this section:

• GetReviewStates

• HasReviewStates

• HasState(Integer)

• Example--Methods for non-repeating study objects

GetReviewStates

Characteristic Description

Icon

Availability All non-deleted forms.

Chapter 2
Methods for non-repeating study objects

2-39

Characteristic Description

Return type and description Integer.

Returns the review stage that a form is in within a
specified review state.

Syntax GetReviewState(Name of review
state.Name of review stage)

Parameters • Parameter—state.
• Definition—Review state of the form.
• Data type—Integer.

Example The following example returns the review stage that
the form is in within the QA Review review state:

GetReviewState(this.ReviewStates.QARevi
ew)

Purpose Use this method to obtain the review stage that a
form is in within a specified review state.

HasReviewStates

Characteristic Description

Icon

Availability All non-deleted forms.

Return type and description Boolean.

Returns true if the form is in the review stage
specified in the parameter. Review stages appear
in the folder for the form.

Syntax HasReviewState(Name of review stage)
Parameters • Parameter—stage.

• Definition—Review stage of the form.
• Data type—Integer.

Example The following example returns True if the form is in
the NeedsReview stage of the QA Review review
state:

HasReviewState(this.QAReview.NeedsRevie
w)

Purpose Use this method to check whether a form is in a
particular review stage.

HasState(Integer)

Characteristic Description

Icon

Availability All non-deleted forms.

Chapter 2
Methods for non-repeating study objects

2-40

Characteristic Description

Return type and description Boolean.

Returns True if the form is in the state that is
specified in the parameter. Specify the state using
one of the following constants. The constants
appear on the Constants tab and have a data type
of integer.
• Deleted—(Available only for repeating forms)

The repeating form instance has been deleted.
• Frozen—The form is frozen.
• HasComment—The form has a comment at

the form level.
• HasData—The form has data.
• HasMissingData—The form has missing data.
• HasQueries—The form has queries.
• Locked—The form is locked.
• SdvComplete—The form has been marked

source verified.
• SdvPartial—The form has been partially

source verified.
• SdvReady—The form has been marked ready

for source verification.
• Signed—The form has been signed.
• Skipped—The form has been marked not

completed with a form-level comment.
• Started—The form was started with patient

data, comments, or queries.

Syntax HasState(NameOfConstant)
Parameters • Parameter—formState.

• Definition—State of the form.
• Data type—Integer.

Example The following example returns True if the form is
locked:

HasState(Constants.FormStates.Locked)
Purpose Use this method to return the status of InForm

forms.

Example--Methods for non-repeating study objects
The following example is for a rule named rulDemoReviewDM that runs when the
Demographics form is submitted. If data is entered or modified for the Date of Birth item on the
Demographics form, the rule sets the Data Management Review stage to the following:

Current value Value after the rule runs

Initial Follow Up

Follow Up Final

Final Follow Up

Chapter 2
Methods for non-repeating study objects

2-41

Rule summary

evaluate on Form Submission
value = !this.sctDM.itmDOB.Empty ?
this.HasReviewState(this.DataManagmentReview.InitialReview)
?
0
:
this.HasReviewState(this.DataManagmentReview.FollowUp)
?
1
:
this.HasReviewState(this.DataManagmentReview.FinalReview)
?
2
:
99
:
99
when value == 0
this.SetReviewState(DataManagmentReview.FollowUp,"")
when value == 1
this.SetReviewState(DataManagmentReview.FinalReview,"")
when value == 2
this.SetReviewState(DataManagmentReview.FollowUp,"")

Chapter 2
Methods for non-repeating study objects

2-42

3
Functions

In this chapter:

• Functions tab of the rule wizard

• Functions in rules and rule templates

• Dynamic prompts in the Expression workspace

• Viewing and editing a function

• Deleteing a function

• About predefined functions

• About user-defined functions

Functions tab of the rule wizard
A function is a reusable piece of code that extends the behavior of a rule. A function provides
part or all of a rule expression. Without functions, a rule can support simple expressions with
no control-flow statements or compound statements. Functions make possible or greatly
simplify complex calculations or decision-making functionality in rule expressions. Functions
are global. They do not have a scope and can be used in any rule created in a study or library
as long as they are part of the study or library.

Functions allow users with different levels of programming experience to participate in rule-
building:

• Experienced programmers with the ability to program in a .NET language (for example,
C#) and create .NET assemblies build complex function code outside of the Oracle Central
Designer application and import it into libraries or studies.

• Users who are not familiar with programming languages can create rules or rule templates
that use functions.

The Oracle Central Designer application includes predefined functions (for example, several
functions handle checking the components of date time fields).

You can use functions in a library or study:

• In a library—User-defined functions that you imported into a library are available after you
publish them. You can use a function in a library when:

– You are working in the library.

– You are working in a study for which the library appears in the Library List.

Note:

If you are working in a study, you can use predefined functions that were created
in the System Library when the System Library appears in the Library List.

• In a study—You can use user-defined functions that you imported into a study.

3-1

Functions in rules and rule templates
To add functions to rule expressions, use one of the following:

• For workflow rules—Workflow Expression Editor dialog box.

• For rule templates—Edit Rule Template dialog box > Definition tab.

• For data-entry rules—Rule Wizard Expression tab > Functions tab.

• For global conditions—Edit Global Conditions dialog box > Functions tab.

You can use the functions that are registered in a study and in the libraries that appear in the
Libraries List in the Study Editor. Both predefined and user-defined functions appear in these
locations:

• In the Expression workplace. As you type, a list of the rule model components that you can
use in the expression appears dynamically in the Expression workspace. When you select
Functions and type a period, an alphabetical list of functions appears and is available for
selection.

• In the Functions tab. Predefined functions are listed by category. For more information, see
Predefined functions in the system library.

You can incorporate functions in an expression using either location or by combining function
information from both locations. Both dynamic expression prompts and the Functions tab
appear in:

• Expression tab of the Rule Wizard.

• Workflow Expression Editor dialog box.

• Edit Global Conditions dialog box.

• Definition tab of the Edit Rule Template dialog box.

The list of functions is ordered in the following way:

1. Functions in the study.

2. Functions published in the first library on the Library List.

3. Functions published in the second library on the Library List (and so on).

Dynamic prompts in the Expression workspace
Use either or both of the following methods:

• Select the function using the dynamic prompts that appear in the Expression workspace as
you type.

For more information, see Dynamic prompts in the Expression workspace.

• Drag the function from the Functions tab to the Expression workspace.If parameters are
associated with the function, the Invoke Function dialog box appears.

Chapter 3
Functions in rules and rule templates

3-2

Note:

The expression contains the name of the function, followed by parameters, which
are enclosed by parentheses. Optionally, you can type the name of the function
and its parameters.

Viewing and editing a function
1. Perform one of the following:

• In a study, select the Study Information Explorer bar.

• In a library, select the Library Information Explorer bar.

2. Select InForm.

3. Select the Functions tab.

4. Perform one of the following:

• Select or right-click the function, and click Edit.

• Double-click the function.

The Edit Function dialog box appears.

5. Edit the function as necessary, and click OK when you are finished.

Deleteing a function
1. Perform one of the following:

• In a study, select the Study Information Explorer bar.

• In a library, select the Library Information Explorer bar.

2. Select InForm.

3. Select the Functions tab.

4. Select or right-click the function, and click Delete.

A confirmation dialog box appears.

5. Click OK.

About predefined functions
A function is a reusable piece of code that extends the behavior of a rule. Many predefined
functions are available by default in the System Library.

This section describes the predefined functions in the Oracle Central Designer application. The
description of each function includes:

• Purpose of the function.

• Syntax, including parameters.

• Name, description, and data type of each parameter.

• Description of what the function returns.

Chapter 3
Viewing and editing a function

3-3

• Notes about how the function works.

For more information, see:

• Date time processing

• Exceptions

• Predefined functions in the system library

• _CalculateBMI

• _CalculateBSA

• _CalculateDateTime

• _CalculateWaistHipRatio

• _CheckPatientInitials

• _CompareDates

• _CompareDatesWithRange

• _Count

• _GetCurrentDate

• _GetDateDifference

• GetScreeningNumber

• GetSiteLocale

• GetSiteMnemonic

• GetSiteTime

• GetTrialName

• GetUserName

• GetSubjectNumber

• _IsValueGreaterThanArray

• _IsValueGreaterThanOrEqualToArray

• _IsValueInArray

• _IsValueLessThanArray

• _IsValueLessThanOrEqualToArray

• _NormalizeDate

• _NormalizeDateToMax

• Randomize

• _SaveToDb (String, String)

Date time processing
Functions that process date time items use a customized version of the .NET DateTime data
type to enable the handling of incomplete date time fields. In the descriptions of functions, this
customized data type is called PFDateTime.

To handle incomplete date time fields (where at least one part of the date time field has the
value UNK, for UNKNOWN), date time fields are normalized. Normalization makes sure that
UNK date parts have no effect on date computations or comparisons by setting the unknown

Chapter 3
About predefined functions

3-4

part of all dates that are involved in the computation to a neutral value. Normalization is
performed by all functions that perform date time comparisons or calculations.

During normalization:

• The appropriate date time part value from a template is substituted for each UNK date time
part or for a date time field that does not allow entry in all date time parts (for example, a
date time field that accepts only dates and no times).
The default template used in date time functions is 2000-01-01-12:00:00 (Year-Month-Day-
Hour-Minute-Second). If you need to perform date time calculations that use a different
template for normalization, you can use the _NormalizeDate functions to specify a custom
template.

• When using date comparison functions, an additional normalization step occurs to account
for the possibility that different date time parts could be marked UNK in the two date time
fields. In this case, if a date time part in either date time field has the value UNK, the date
time parts in both fields are assigned values from the template.

The following examples use the default template of 2000-01-01-12:00:00.

Date time type Before normalization After normalization

One date time field 2007-04-UNK-16:20:UNK 2007-04-01-16:20:00

Two date time fields with same
UNK date time part

07:22:UNK

15:14:UNK

07:22:00

15:14:00

Two date time fields with different
UNK date time parts

2006-12-UNK

2007-UNK-15

2006-01-01-12:00:00

2007-01-01-12:00:00

Exceptions
When the execution of a function results in an exception:

• Processing of the rule stops.

• An Oracle Health Sciences InForm Server Error occurs in the Oracle Health Sciences
InForm client application.

• An entry is posted in the Event log on the Oracle Health Sciences InForm server computer.

Predefined functions in the system library
(Optional) Use sections to add and organize related content if another section heading is
needed.

Classification Function Purpose

Clinical Functions _CalculateBMI Calculates the Body-Mass Index,
based on height and weight.

– _CalculateBSA Calculates the body surface area.

– _CalculateWaistHipRatio Calculates the waist-to-hip ratio.

Clinical Validation Functions _CheckPatientInitials Checks the format of the subject
initials.

Chapter 3
About predefined functions

3-5

Classification Function Purpose

Date Manipulation Functions _CalculateDateTime Calculates a new date and time
by adding an interval to or
subtracting an interval from
another date and time. The
interval is based on a date part,
for example, a number of days.

– _CompareDates Compares two date times to
determine whether the first date
time is less than, equal to, or
greater than the second date
time.

– _CompareDatesWithRange Compares two date times to
determine whether they are within
a specified range of each other.

– _GetCurrentDate Returns the current date and time
on the Oracle Health Sciences
InForm server.

– _GetDateDifference Returns the number of units
between two specified dates,
based on the requested date
part.

– _NormalizeDate Normalizes a date based on the
specified template.

– _NormalizeDateToMax Normalizes UNKNOWN or
EMPTY date time parts to the
maximum values for those parts.

Date/Time, Float, Integer, or Text
Array Comparison Functions

These functions take different
parameters depending on the
data type of the value to which
you are comparing the values in
the array.

_Count Counts the number of
occurrences of a specified value
in an array.

– _IsValueGreaterThanArray Checks whether a specified value
is greater than all values in an
array.

– _IsValueGreaterThanOrEqualToA
rray

Checks whether a specified value
is greater than or equal to at least
one of the values in an array.

– _IsValueInArray Checks whether a specified value
is equal to one of the values in an
array.

– _IsValueLessThanArray Checks whether a specified value
is less than all values in an array.

– _IsValueLessThanOrEqualToArra
y

Checks whether a specified value
is less than or equal to at least
one of the values in an array.

EDC GetScreeningNumber Returns the screening number of
the subject in the Oracle Health
Sciences InForm application.

– GetSiteLocale Returns the locale of the study
site, such as en-US or ja-JP.

Chapter 3
About predefined functions

3-6

Classification Function Purpose

– GetSiteMnemonic Returns the mnemonic
(abbreviated site name, specified
in the Admin area of the Oracle
Health Sciences InForm
application) for the site of the
current subject.

– GetSiteTime Returns the current time at the
data-entry site.

– GetSubjectNumber Returns the number of the
subject in the Oracle Health
Sciences InForm application.

– GetTrialName Returns the name of the trial in
the Oracle Health Sciences
InForm application.

– GetUserName Returns the name of user who is
currently logged in to the Oracle
Health Sciences InForm
application.

– Randomize Returns a drug kit number based
on the randomization type and
the sequence and drug kit
numbers stored in the
randomization source database
on the Oracle Health Sciences
InForm host computer.

Rule Event Functions _SaveToDb (String, String) Determines whether to send data
to the Oracle Health Sciences
InForm Publisher queue.

_CalculateBMI
Calculates the Body-Mass Index, based on height and weight.

Syntax

_CalculateBMI(height,weight)

Parameters

Parameter Definition Data type

height Height of the subject, in
centimeters.

Float

weight Weight of the subject, in
kilograms.

Float

Returns

BMI measurement (Float).

Notes

Chapter 3
About predefined functions

3-7

• The Body-Mass index is calculated using the following formula:

 weight / (height * height)

• Height is assumed to be in centimeters, and weight is assumed to be in kilograms.

Exceptions

An exception of type Argument Exception is returned if the height measurement equals zero.
This exception results in:

• Failure of the rule execution.

• An Oracle Health Sciences InForm Server Error in the Oracle Health Sciences InForm
client application.

• An entry in the Event log on the Oracle Health Sciences InForm server computer.

Example

The following rule is created at the form level on the Vital Signs form, which has items Weight
and BMI. The rule also refers to the item Ht in a mapping called RulesLS.

Note:

Oracle recommends that you include rule logic to clear the calculated value if a
referenced item value is cleared. For example, if a rule calculates BMI based on the
values entered in the Height and Weight items, the rule should clear the BMI value if
the data in the Height item is deleted. For an example of the appropriate rule logic,
see Sample data-entry rules that use methods.

evaluate on Form Submission
 value = _CalculateBMI (RulesLS.DSRules.Ht.Value, this.Weight.Value)
always
 set this.BMI.Value = value

_CalculateBSA
Calculates the body surface area.

Syntax

_CalculateBSA(height,weight)

Parameters

Parameter Definition Data type

height Height of the subject, in
centimeters.

Float

weight Weight of the subject, in
kilograms.

Float

Returns

Body surface area (Float).

Chapter 3
About predefined functions

3-8

Notes

• Calculates the BSA using the following formula:

 (Float) (0.007184 * Math.Pow(height,0.725) * Math.Pow(weight,0.425));

(Math.Pow is a method that raises a value to the specified power.)

• Height is assumed to be in centimeters, and weight is assumed to be in kilograms.

• Oracle recommends that you include rule logic to clear the calcualted value if a referenced
item value is cleared. For example, if a rule calculates BMI based on the values entered in
the Height and Weight items, the rule should clear the BMI value if the data in the Height
item is deleted. For more information on appropriate rule logic, see Sample data-entry
rules that use methods.

_CalculateDateTime
Calculates a new date and time by adding an interval to or subtracting an interval from another
date and time. The interval is based on a date part, for example, a number of days.

Syntax

_CalculateDateTime(date,interval,datePart)

Parameters

Parameter Definition Data type

date Original date and time. PFDateTime

interval Time interval to add to or subtract
from the original date time.

Integer

datePart Date part to which the value
specified in the interval parameter
is added.

Integer

Returns

New date time (PFDateTime).

Notes

• Date intervals are calculated in the following way:

– Years are measured in 365- or 366-day increments, depending on the number of
calendar days in the year:

Note:

If the time period includes a February month with 29 days, then 366 days
equal 1 year. Otherwise, 365 days equal 1 year.

* Fewer than 365 (or, as mentioned above, 366 days)—0 years.

* 365 (or 366) to 729 (or 730) days—1 year

* 729 (or 730) to 1094 (or 1095) days—2 years.

Chapter 3
About predefined functions

3-9

– Months are measured in 28-, 29-, 30-, or 31-day increments, depending on the number
of days in the month.
For example, if a start date is in a month with 31 days, then 31 days from the start date
is one month. If the date range goes from February until September, then each
month's number of days is used for the calculation. For example, 28 (or 29, if February
has 29 days) days from the start date in February is one month; 31 days from the date
in March is another month; 30 days from the date in April is another month; and so on.

For increments that are fewer than 28, 29, 30, or 31 days, depending on the month,
the range is 0 months.

– Days are measured in 24-hour increments. For example:

* Fewer than 24 hours—0 days.

* 24 to 47 hours—1 day.

* 48 to 71 hours—2 days.

• The new date time is based on the sum of the original date time and the interval.

• Before the interval is added, the date is normalized. For more information, see Date time
processing.

• Valid dateParts are taken from the DateTimeParts enumerator, which returns an integer
constant. (An enumerator is a variable type that represents a restricted list of values.) To
reference a date part, type DateTimeParts.datePart, where datePart is one of the
following:

– Years

– Months

– Days

– Hours

– Minutes

– Seconds

Example

This example sets a date for follow-up that is four weeks after the initial date entered. Both
items are on the same form, so the rule is created at the form level. There is no enumeration
for weeks in DateTimeParts, so the rule uses twenty-eight days instead of four weeks.

Note:

Oracle recommends that you include rule logic to clear the calculated value if a
referenced item value is cleared. For example, if a rule calculates BMI based on the
values entered in the Height and Weight items, the rule should clear the BMI value if
the data in the Height item is deleted. For an example of the appropriate rule logic,
see Sample data-entry rules that use methods.

evaluate on Form Submission
 value = _CalculateDateTime(this.InitialExamDate.Value, 28,
DateTimeParts.Days)
always
 set this.FollowupExamDate.Value = value

Chapter 3
About predefined functions

3-10

_CalculateWaistHipRatio
Calculates the waist-to-hip ratio.

Syntax

_CalculateWaistHipRatio(waist,hip)

Parameters

Parameter Definition Data type

waist Waist measurement of the
subject.

Float

hip Hip measurement of the subject. Float

Returns

Waist-to-hip ratio (Float).

Notes

• Waist-to-hip ratio is calculated as waist/hip.

• Both measurements must be in the same units. For example, if one measurement is in
centimeters, the other must be, as well.

Exceptions

An exception of type Argument Exception is returned if the hip measurement equals zero. This
exception results in:

• Failure of the rule execution.

• An Oracle Health Sciences InForm Server Error in the Oracle Health Sciences InForm
client application.

• An entry in the Event log on the Oracle Health Sciences InForm server computer.

Example

The following rule is attached to the Vital Signs form and does not need any objects from
outside the form. The form includes a waistCircumference item to record the measurement of
waist circumference and a hipCircumference item to record the measurement of hip
circumference. Both allow the value to be recorded in centimeters or inches, but both values
are normalized to centimeters.

Note:

Oracle recommends that you include rule logic to clear the calculated value if a
referenced item value is cleared. For example, if a rule calculates BMI based on the
values entered in the Height and Weight items, the rule should clear the BMI value if
the data in the Height item is deleted. For an example of the appropriate rule logic,
see Sample data-entry rules that use methods.

evaluate on Form Submission
 value = _CalculateWaistHipRatio(this.waistCircumference.Value,

Chapter 3
About predefined functions

3-11

this.hipCircumference.Value)
alwys
 set this.whRatio.Value = value

_CheckPatientInitials
Checks the format of the subject initials.

Syntax

_CheckPatientInitials(initials)

Parameters

Parameter Definition Data type

initials Subject initials. Text

Returns

True or False (Boolean), indicating whether the subject initials are in the correct format.

Notes

The entered string is validated to make sure that it consists of three letters or two letters with a
dash in the middle to indicate that no middle name was provided.

_CompareDates
Compares two date times to determine whether the first date time is less than, equal to, or
greater than the second date time.

Syntax

_CompareDates(date1,date2)

Parameters

Parameter Definition Data type

date1 First date to use. PFDateTime

date2 Second date to use. PFDateTime

Returns

One of the following (Integer):

• -1—If date1 is less than date2.

• 0—If date1 equals date2.

• 1—If date1 is greater than date2.

Notes

Both dates are normalized before comparison. For more information, see Date time
processing.

Example

Chapter 3
About predefined functions

3-12

This example of a constraint rule uses both the GetSiteTime and _CompareDates functions to
check whether the date entered is in the future. It is attached at the item level to a DOV item.

evaluate on Form Submission
 value = _CompareDates(this.Value, GetSiteTime())
when value == 1
 issue query: Date cannot be in the future compared to System Date

You could also write the rule to evaluate to true or false instead of to a numeric value:

evaluate on Form Submission
 value = _CompareDates(this.Value, GetSiteTime()) == 1
when value is true
 issue query: Date cannot be in the future compared to System Date

_CompareDatesWithRange
Compares two date times to determine whether they are within a specified range of each other.

Syntax

_CompareDatesWithRange(date1,date2,datePart,rangeMin,rangeMax)

Parameters

Parameter Definition Data type

date1 First date to use. PFDateTime

date2 Second date to use. PFDateTime

datePart Date part used to calculate the
interval between date1 and
date2.

Integer

rangeMin Minimum number in the range to
compare with the interval
between date1 and date2.

Integer

rangeMax Maximum number in the range to
compare with the interval
between date1 and date2.

Integer

Returns

True or False (Boolean), indicating whether the first date time is within the specified range of
the second date time.

Notes

• Date intervals are calculated in the following way:

– Years are measured in 365- or 366-day increments, depending on the number of
calendar days in the year.

Chapter 3
About predefined functions

3-13

Note:

If the time period includes a February month with 29 days, then 366 days
equal 1 year. Otherwise, 365 days equal 1 year.

* Fewer than 365 (or, as mentioned above, 366 days)—0 years.

* 365 (or 366) to 729 (or 730) days—1 year.

* 729 (or 730) to 1094 (or 1095) days—2 years.

– Months are measured in 28-, 29-, 30-, or 31-day increments, depending on the number
of days in the month.
For example, if a start date is in a month with 31 days, then 31 days from the start date
is one month. If the date range goes from February until September, then each
month's number of days is used for the calculation. For example, 28 (or 29, if February
has 29 days) days from the start date in February is one month; 31 days from the date
in March is another month; 30 days from the date in April is another month; and so on.

For increments that are fewer than 28, 29, 30, or 31 days, depending on the month,
the range is 0 months.

– Days are measured in 24-hour increments. For example:

* Fewer than 24 hours—0 days.

* 24 to 47 hours—1 day.

* 48 to 71 hours—2 days.

• The method compares the interval between the specified datePart in each date time and
determines whether the interval is within the range indicated by the rangeMin and
rangeMax parameters. This method is useful when determining whether the age of a
subject is within a specific age range. The minimum and maximum ranges are inclusive.

• Both dates are normalized before comparison. For more information, see Date time
processing.

• Valid dateParts are taken from the DateTimeParts enumerator, which returns an integer
constant. (An enumerator is a variable type that represents a restricted list of values.) To
reference a date part, type DateTimeParts.datePart, where datePart is one of the
following:

– Years

– Months

– Days

– Hours

– Minutes

– Seconds

Example

This example checks whether a reported adverse event lasts for more than six months. The
rule is defined at the form level and checks the StartDate and EndDate items in that form. This
rule creates a query when an adverse event lasts more than six months.

evaluate on Form Submission
 value = _CompareDatesWithRange(this.StartDate.Value, this.EndDate.Value,

Chapter 3
About predefined functions

3-14

DateTimeParts.Months, 0, 6)
when value is false
 issue query on this.EndDate: Adverse Event lasted more than six months.

_Count
Counts the number of occurrences of a specified value in an array. This function takes different
parameters depending on the data type of the value you are counting.

For more information on these different parameters, see:

• _Count(String, Array, Boolean)

• _Count(Date, Array)

• _Count(Integer, Array)

• _Count(Float, Array)

_Count(String, Array, Boolean)
Counts the number of occurrences of a string value in an array.

Syntax

_Count(valueToCount,valueList,caseSensitive)

Parameters

Parameter Definition Data type

valueToCount Value to count String

valueList Array of values to search Array of String values

caseSensitive Case sensitive search flag, True
or False. If the value is True, the
function takes case into
consideration when searching for
strings that match the value to
count. For example, if
caseSensitive is True, ABC is not
counted as an occurrence of the
string abc.

Boolean

Returns

The number of occurrences of a string value in an array.

_Count(Date, Array)
Counts the number of occurrences of a date time value in an array.

Syntax

_Count(valueToCount,valueList)

Parameters

Chapter 3
About predefined functions

3-15

Parameter Definition Data type

valueToCount Value to count PFDateTime

valueList Array of values to search Array of PFDateTime values

Returns

The number of occurrences of a given date time value in an array.

_Count(Integer, Array)
Counts the number of occurrences of an integer value in an array.

Syntax

_Count(valueToCount,valueList)

Parameters

Parameter Definition Data type

valueToCount Value to count Integer

valueList Array of values to search Array of Integer values

Returns

The number of occurrences of a given integer value in an array.

_Count(Float, Array)
Counts the number of occurrences of a float value in an array.

Syntax

_Count(valueToCount,valueList)

Parameters

Parameter Definition Data type

valueToCount Value to count Float

valueList Array of values to search Array of Float values

Returns

The number of occurrences of a given float value in an array.

_GetCurrentDate
Returns the current date and time on the InForm server.

Syntax

_GetCurrentDate()

Returns

Chapter 3
About predefined functions

3-16

Current date and time at the location of the InForm server computer.

Notes

To get the current time in the time zone of the data-entry site, use _GetCurrentDate.

_GetDateDifference
Returns the number of units between two specified dates, based on the requested date part.

Syntax

_GetDateDifference(date1,date2,units)

Parameters

Parameter Definition Data type

date1 First date to use. date1 is
subtracted from date2.

PFDateTime

date2 Second date to use. PFDateTime

units Unit to use when computing the
difference. Units are taken from
DateTimeParts:

Years, Months, Days, Hours,
Minutes, Seconds.

Integer

Returns

A positive, zero, or negative interval length depending on whether the first date is earlier than,
equal to, or later than the second date. Unknown date parts are normalized. Results are
rounded down.

Notes

• GetDateDifference returns positive value if date1 is before date2 and returns a negative
value when date 2 is before date 1.

• Date intervals are calculated in the following way:

– Years are measured in 365- or 366-day increments, depending on the number of
calendar days in the year.

Note:

If the time period includes a February month with 29 days, then 366 days
equal 1 year. Otherwise, 365 days equal 1 year.

* Fewer than 365 (or, as mentioned above, 366 days)—0 years.

* 365 (or 366) to 729 (or 730) days—1 year.

* 729 (or 730) to 1094 (or 1095) days—2 years.

– Months are measured in 28-, 29-, 30-, or 31-day increments, depending on the number
of days in the month.
For example, if a start date is in a month with 31 days, then 31 days from the start date
is one month. If the date range goes from February until September, then each
month's number of days is used for the calculation. For example, 28 (or 29, if February

Chapter 3
About predefined functions

3-17

has 29 days) days from the start date in February is one month; 31 days from the date
in March is another month; 30 days from the date in April is another month; and so on.

For increments that are fewer than 28, 29, 30, or 31 days, depending on the month,
the range is 0 months.

– Days are measured in 24-hour increments. For example:

* Fewer than 24 hours—0 days.

* 24 to 47 hours—1 day.

* 48 to 71 hours—2 days.

• Valid dateParts are taken from the DateTimeParts enumerator, which returns an integer
constant. (An enumerator is a variable type that represents a restricted list of values.) To
reference a date part, type DateTimeParts.datePart, where datePart is one of the
following:

– Years

– Months

– Days

– Hours

– Minutes

– Seconds

• Dates are normalized before the number of units is calculated. For more information, see
Date time processing.

• The entire date is used in the calculation, not only the specified date part. Results are
rounded down to the nearest integer. For example, if _GetDateDifference runs with the
following data, it returns 0, not 1:
_GetDateDifference (new DateTime(2007,1,10,0,0,0), new DateTime (2007,2,1,0,0,0),
DateTimeParts.Months)

Example

The _GetDateDifference function is used to determine how long an adverse event lasts and to
store the result in an item. This rule is attached to the AE form, which contains the OnsetDate
and EndDate items, as well as an AEDuration item to store the calculated value.

evaluate on Form Submission
 value = _GetDateDifference(this.OnsetDate.Value, this.EndDate.Value,
DateTimeParts.Days)
always
 set this.AEDuration.Value = value

If OnsetDate is January 1, 2008, and EndDate is January 6, 2008, the function returns 5.

GetScreeningNumber
Returns the screening number of the subject in the Oracle Health Sciences InForm application.

Syntax

GetScreeningNumber()

Returns

Chapter 3
About predefined functions

3-18

Screening number of the subject in the Oracle Health Sciences InForm application.

GetSiteLocale
Returns the locale of the study site, such as en-US or ja-JP. You select locales in the Study
Editor.

Syntax

GetSiteLocale()

Returns

Locale of the study site.

Notes

You can use the site locale to format a date time or floating point number. For example, you
can write a user-defined function that uses the locale that is returned by this function and the
date time value that a user enters in the Oracle Health Sciences InForm application to format
the date time value according to the standard formatting of the locale.

GetSiteMnemonic
Returns the mnemonic (abbreviated site name, specified in the Admin area of the Oracle
Health Sciences InForm application) for the site of the current subject.

Syntax

GetSiteMnemonic()

Returns

Mnemonic of the site of the current patient.

GetSiteTime
Returns the current time at the data-entry site.

Syntax

GetSiteTime()

Returns

Current time at the data-entry site.

Notes

The function returns the current time in the time zone of the data-entry site, not the time zone
of the location of the Oracle Health Sciences InForm server. To get the current time at the
Oracle Health Sciences InForm server computer, use _GetCurrentDate.

Example

This example of a constraint rule uses both the GetSiteTime and _CompareDates functions to
check whether the date entered is in the future. It is attached at the item level to a DOV item.

evaluate on Form Submission
 value = _CompareDates(this.Value, GetSiteTime())

Chapter 3
About predefined functions

3-19

when value == 1
 issue query: Date cannot be in the future compared to System Date

You could also write the rule to evaluate to true or false instead of to a numeric value:

evaluate on Form Submission
 value = _CompareDates(this.Value, GetSiteTime()) == 1
when value is true
 issue query: Date cannot be in the future compared to System Date

GetTrialName
Returns the name of the trial in the Oracle Health Sciences InForm application.

Syntax

GetTrialName()

Returns

Name of the trial in the Oracle Health Sciences InForm application.

Notes

This function is particularly useful for populating email parameters, writing query text, and
writing user-defined functions. For example, you can display the study name in the query text
of a rule or in the email subject and body.

GetUserName
Returns the name of user who is currently logged in to the Oracle Health Sciences InForm
application.

Syntax

GetUserName()

Returns

Name of the currently logged-on user in the Oracle Health Sciences InForm application.

Notes

The GetUserName() function is supported in the following Oracle Health Sciences InForm
releases:

• Release 4.6 SP2 and above, except release 4.7.

• Release 5.0 and above.

Note:

If a rule containing the function runs in an unsupported release, the rule returns an
empty string.

Chapter 3
About predefined functions

3-20

GetSubjectNumber
Returns the number of the subject in the Oracle Health Sciences InForm application.

Syntax

GetSubjectNumber()

Returns

Number of the subject in the Oracle Health Sciences InForm application.

Notes

• This function calls the GetPatientNumber() method in the Oracle Health Sciences InForm
application. The number is assigned to the subject during enrollment.

• In the Rule Test Cases dialog box, rules that use this function return TestSubjectNumber.

_IsValueGreaterThanArray
Checks whether a specified value is greater than all values in an array. This function takes
different parameters depending on the data type of the value to which you are comparing the
values in the array.

For more information on these different data type parameters, see:

• _IsValueGreaterThanArray (PFDateTime, Array)

• _IsValueGreaterThanArray (Float, Array)

• _IsValueGreaterThanArray (Integer, Array)

_IsValueGreaterThanArray (PFDateTime, Array)
Checks if a date time value is greater than all of the date times in a list.

Syntax

_IsValueGreaterThanArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Date time value with which to
compare the values in the list.

PFDateTime

valueList Array of date time values against
which to compare the value
specified in the valueToTest
parameter.

Array of PFDateTime values

Returns

True or False (Boolean), indicating whether the date time to test is greater than all of the date
times in the array.

Notes

Chapter 3
About predefined functions

3-21

• The valueToTest value is compared to each element of the array. If the value is greater
than every element of the array, the method returns True. If at least one element is less
than or equal to the value, the method returns False.

• All comparisons are done using the _CompareDates method and are normalized. For more
information, see Date time processing.

_IsValueGreaterThanArray (Float, Array)
Checks if a float value is greater than all of the date times in an array.

Syntax

_IsValueGreaterThanArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Float value with which to
compare the values in the array.

Float

valueList Array of float values against
which to compare the value
specified in the valueToTest
parameter.

Array of Float values

Returns

True or False (Boolean), indicating whether the float value to test is greater than all of the
elements in the array.

Notes

The valueToTest value is compared to each element of the array. If the value is greater than
every element of the array, the method returns True. If at least one element is less than or
equal to the value, the method returns False.

_IsValueGreaterThanArray (Integer, Array)
Checks if an integer value is greater than all of the date times in an array.

Syntax

_IsValueGreaterThanArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Integer value with which to
compare the values in the array.

Integer

valueList Array of integer values against
which to compare the value
specified in the valueToTest
parameter.

Array of Integer values

Returns

Chapter 3
About predefined functions

3-22

True or False (Boolean), indicating whether the integer value to test is greater than all of the
elements in the list.

Notes

The valueToTest value is compared to each element of the array. If the value is greater than
every element of the array, the method returns True. If at least one element is less than or
equal to the value, the method returns False.

_IsValueGreaterThanOrEqualToArray
Checks whether a specified value is greater than or equal to at least one of the values in an
array. This function takes different parameters depending on the data type of the value to
which you are comparing the values in the array.

For more information on the different data type parameters, see:

• _IsValueGreaterThanOrEqualToArray (PFDateTime, Array)

• _IsValueGreaterThanOrEqualToArray (Float, Array)

• _IsValueGreaterThanOrEqualToArray (Integer, Array)

_IsValueGreaterThanOrEqualToArray (PFDateTime, Array)
Checks if a date time value is greater than or equal to all of the date times in an array.

Syntax

_IsValueGreaterThanOrEqualToArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Date time value with which to
compare the values in the array.

PFDateTime

valueList Array of date time values against
which to compare the value
specified in the valueToTest
parameter.

Array of PFDateTime values

Returns

True or False (Boolean), indicating whether the date time to test is greater than or equal to all
of the date times in the array.

Note:

• The valueToTest value is compared to each element of the array. If the value is
greater than or equal to every element of the array, the method returns True. If at
least one element is less than the value, the method returns False.

• All comparisons are done using the _CompareDates method and are normalized.
For more information, see Date time processing.

Example

Chapter 3
About predefined functions

3-23

This example checks whether the date of termination is greater than or equal to all visit dates
for the patient and issues a query if the date of termination is less than any of the patient visit
dates. The rule is created at the item level and uses the mapping “RulesLS” and the data set
and series within that mapping. All of the visit dates in a data series called VisitDates within the
RulesLS mapping.

evaluate on Form Submission
 value = _IsValueGreaterThanOrEqualToArray(this.Value,
RulesLS.DateCollection.VisitDates.Values)
when value is false
 issue query: Termination date must be later than any visit date.

_IsValueGreaterThanOrEqualToArray (Float, Array)
Checks if a float value is greater than or equal to at least one of the values in an array.

Syntax

_IsValueGreaterThanOrEqualToArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Float value with which to
compare the values in the array.

Float

valueList Array of float values against
which to compare the value
specified in the valueToTest
parameter.

Array of Float values

Returns

True or False (Boolean), indicating whether the float value to test is greater than all of the
elements in the array.

Notes

The valueToTest value is compared to each element of the array. If the value is greater than or
equal to every element of the array, the method returns True. If at least one element is less
than the value, the method returns False.

_IsValueGreaterThanOrEqualToArray (Integer, Array)
Checks if a specified integer value is greater than or equal to at least one of the integer values
in an array.

Syntax

_IsValueGreaterThanOrEqualToArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Integer value with which to
compare the values in the array.

Integer

Chapter 3
About predefined functions

3-24

Parameter Definition Data type

valueList Array of integer values against
which to compare the value
specified in the valueToTest
parameter.

Array of Integer values

Returns

True or False (Boolean), indicating whether the integer value to test is greater than all of the
elements in the array.

Notes

The valueToTest value is compared to each element of the array. If the value is greater than or
equal to every element of the array, the method returns True. If at least one element is less
than the value, the method returns False.

_IsValueInArray
Checks whether a specified value is equal to one of the values in an array. This function takes
different parameters depending on the data type of the value to which you are comparing the
values in the array.

For more information on the different data type parameters, see:

• _IsValueInArray (PFDateTime, Array)

• _IsValueInArray (Float, Array)

• _IsValueInArray (Integer, Array)

• _IsValueInArray (Text, Array)

_IsValueInArray (PFDateTime, Array)
Checks if a specified date time value is equal to one of the date time values in an array.

Syntax

_IsValueInArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Date time value with which to
compare the values in the array.

PFDateTime

valueList Array of date time values against
which to compare the value
specified in the valueToTest
parameter.

Array of PFDateTime values

Returns

True or False (Boolean), indicating whether the date time value to test is in the array of date
times.

Notes

Chapter 3
About predefined functions

3-25

• The valueToTest value is compared to each element of the array. If the value is equal to at
least one element of the array, the method returns True. Otherwise, the method returns
False.

• All comparisons are done using the _CompareDates method and are normalized. For more
information, see Date time processing.

_IsValueInArray (Float, Array)
Checks if a specified float value is equal to one of the float values in an array.

Syntax

_IsValueInArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Float value with which to
compare the values in the array.

Float

valueList Array of float values against
which to compare the value
specified in the valueToTest
parameter.

Array of Float values

Returns

True or False (Boolean), indicating whether the float value to test is in the array of float values.

Notes

The valueToTest value is compared to each element of the array. If the value is equal to at
least one element of the array, the method returns True. Otherwise, the method returns False.

_IsValueInArray (Integer, Array)
Checks if a specified integer value is equal to one of the integer values in an array.

Syntax

_IsValueInArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Integer value with which to
compare the values in the array.

Integer

valueList Array of integer values against
which to compare the value
specified in the valueToTest
parameter.

Array of Integer values

Returns

True or False (Boolean), indicating whether the integer value to test is in the array of integer
values.

Notes

Chapter 3
About predefined functions

3-26

The valueToTest value is compared to each element of the array. If the value is equal to at
least one element of the array, the method returns True. Otherwise, the method returns False.

Example

In this example of a global condition, when a user indicates in the AE form that a patient died
as the result of an adverse event, a form called Death is enabled. Because the AE form is a
common form that does not have reference to specific visits, the Outcome field from the AE
form is collected in a mapping.

_IsValueInArray(“Death”, RulesLS.DSRules.Outcomes.Values)

This condition returns true or false. When the condition is applied to the Death form, the Death
form appears when the expression is true.

_IsValueInArray (Text, Array)
Checks if a specified text value is equal to one of the text values in an array.

Syntax

_IsValueInArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Text value with which to compare
the values in the array.

Text

valueList Array of text values against which
to compare the value specified in
the valueToTest parameter.

Array of Text values

Returns

True or False (Boolean), indicating whether the text value to test is in the array of text values.

Notes

The valueToTest value is compared to each element of the array. If the value is equal to at
least one element of the array, the method returns True. Otherwise, the method returns False.

_IsValueLessThanArray
Checks whether a specified value is less than all values in an array. This function takes
different parameters depending on the data type of the value to which you are comparing the
values in the array.

For more information on the different data type parameters, see:

• _IsValueLessThanArray (PFDateTime, Array)

• _IsValueLessThanArray (Float, Array)

• _IsValueLessThanArray (Integer, Array)

_IsValueLessThanArray (PFDateTime, Array)
Checks if a specified date time value is less than all date time values in an array.

Chapter 3
About predefined functions

3-27

Syntax

_IsValueLessThanArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Date time value with which to
compare the values in the array.

PFDateTime

valueList Array of date time values against
which to compare the value
specified in the valueToTest
parameter.

Array of PFDateTime values

Returns

True or False (Boolean), indicating whether the specified date time value is less than all date
time values in an array.

Notes

• The valueToTest value is compared to each element of the array. If the value is less than
every element of the array, the method returns True. If at least one element is greater than
or equal to the value, the method returns False.

• All comparisons are done using the _CompareDates method and are normalized. For more
information, see Date time processing.

_IsValueLessThanArray (Float, Array)
Checks if a specified float value is less than all float values in an array.

Syntax

_IsValueLessThanArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Float value with which to
compare the values in the array.

Float

valueList Array of float values against
which to compare the value
specified in the valueToTest
parameter.

Array of Float values

Returns

True or False (Boolean), indicating whether the specified float value is less than all float values
in an array.

Notes

The valueToTest value is compared to each element of the array. If the value is less than every
element of the array, the method returns True. If at least one element is greater than or equal
to the value, the method returns False.

Chapter 3
About predefined functions

3-28

_IsValueLessThanArray (Integer, Array)
Checks if a specified integer value is less than all integer values in an array.

Syntax

_IsValueLessThanArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Integer value with which to
compare the values in the array.

Integer

valueList Array of integer values against
which to compare the value
specified in the valueToTest
parameter.

Array of Integer values

Returns

True or False (Boolean), indicating whether the specified integer value is less than all integer
values in an array.

Notes

The valueToTest value is compared to each element of the array. If the value is less than every
element of the array, the method returns True. If at least one element is greater than or equal
to the value, the method returns False.

_IsValueLessThanOrEqualToArray
Checks whether a specified value is less than or equal to at least one of the values in an array.
This function takes different parameters depending on the data type of the value to which you
are comparing the values in the array.

For more information on different data type parameters, see:

• _IsValueLessThanOrEqualToArray (PFDateTime, Array)

• _IsValueLessThanOrEqualToArray (Float, Array)

• _IsValueLessThanOrEqualToArray (Integer, Array)

_IsValueLessThanOrEqualToArray (PFDateTime, Array)
Checks if a specified date time value is less than or equal to at least one of the date time
values in an array.

Syntax

_IsValueLessThanOrEqualToArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Date time value with which to
compare the values in the array.

PFDateTime

Chapter 3
About predefined functions

3-29

Parameter Definition Data type

valueList Array of date time values against
which to compare the value
specified in the valueToTest
parameter.

Array of PFDateTime values

Returns

True or False (Boolean), indicating whether the specified date time value is less than or equal
to at least one of the date time values in an array.

Notes

• The valueToTest value is compared to each element of the array. If the value is less than or
equal to every element of the array, the method returns True. If at least one element is
greater than the value, the method returns False.

• All comparisons are done using the _CompareDates method and are normalized. For more
information, see Date time processing.

_IsValueLessThanOrEqualToArray (Float, Array)
Checks if a specified float value is less than or equal to at least one of the float values in an
array.

Syntax

_IsValueLessThanOrEqualToArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Float value with which to
compare the values in the array.

Float

valueList Array of Float values against
which to compare the value
specified in the valueToTest
parameter.

Array of Float values

Returns

True or False (Boolean), indicating whether the specified float value is less than or equal to at
least one of the float values in an array.

Notes

The valueToTest value is compared to each element of the array. If the value is less than or
equal to every element of the array, the method returns True. If at least one element is greater
than the value, the method returns False.

_IsValueLessThanOrEqualToArray (Integer, Array)
Checks if a specified integer value is less than or equal to at least one of the integer values in
an array.

Syntax

Chapter 3
About predefined functions

3-30

_IsValueLessThanOrEqualToArray(valueToTest,valueList)

Parameters

Parameter Definition Data type

valueToTest Integer value with which to
compare the values in the array.

Integer

valueList Array of integer values against
which to compare the value
specified in the valueToTest
parameter.

Array of Integer values

Returns

True or False (Boolean), indicating whether the specified integer value is less than or equal to
at least one of the integer values in an array.

Notes

The valueToTest value is compared to each element of the array. If the value is less than or
equal to every element of the array, the method returns True. If at least one element is greater
than the value, the method returns False.

_NormalizeDate
Normalizes a date based on the specified template. For more information, see Date time
processing.

For more information on these specific templates, see:

• _NormalizeDate (PFDateTime, PFDateTime)

• _NormalizeDate (PFDateTime, PFDateTime, PFDateTime)

_NormalizeDate (PFDateTime, PFDateTime)
Normalizes a single date by replacing the parts that are entered as UNK with the date part
values in the specified template.

Syntax

_NormalizeDate(dateToNormalize,template)

Parameters

Parameter Definition Data type

dateToNormalize Date time value to normalize by
replacing UNK date time parts
from a template.

PFDateTime

template Date time value containing the
date and time part values with
which to replace UNK date and
time parts. This template contains
no unknown parts.

PFDateTime

Returns

Chapter 3
About predefined functions

3-31

A normalized date time in which all UNK parts are replaced with the corresponding part from
the template.

Notes

During normalization, the appropriate date time part value from the specified template, in Year-
Month-Day-Hour-Minute-Second format, is substituted for each UNK date time part. Any date
time parts that are not allowed in the definition of the date time field are replaced with values
from the template. For example, if the value of the dateToNormalize is 1987-04-UNK and the
value of the template is 1980-01-01, the normalized value is 1987-04-01.

Example

In this example, the Start Date and End Date of an adverse event are compared to make sure
that the End Date is after the Start Date. However, the patient may not know the exact start
and end dates of the adverse event, so the Day part of the date time fields is set to Allow
Unknown. A valid comparison requires that the dates first be normalized. Then the rule uses
the _CompareDates function to compare the dates and creates a query if StartDate is later
than EndDate. When normalizing, the function substitutes 1 when the day is omitted.

evaluate on Form Submission
 value = _CompareDates(
 _NormalizeDate(this.EndDate.Value, new DateTime(2007, 1, 1, 0, 0, 0)),
 _NormalizeDate(this.StartDate.Value, new DateTime(2007, 1, 1, 0, 0, 0))
)
when value == -1
 issue query on this.EndDate: End Date cannot be prior to Start Date

_NormalizeDate (PFDateTime, PFDateTime, PFDateTime)
Normalizes a specified date and a reference date by replacing the parts that are entered as
UNK with the date part values in the specified template. This function is used to normalize two
dates that are being compared. It makes sure that the unknown parts in both dates are
considered when determining which parts to normalize.

Syntax

_NormalizeDate(dateToNormalize,referenceDate,template)

Parameters

Parameter Definition Data type

dateToNormalize Date time value to normalize by
replacing UNK date time parts
from a template.

PFDateTime

referenceDate Second date time value to
normalize by replacing UNK date
time parts from a template. This
date can be compared to the
dateToNormalize after both dates
are normalized.

PFDateTime

template Date time value containing the
date and time part values with
which to replace UNK date and
time parts.

PFDateTime

Returns

Chapter 3
About predefined functions

3-32

A new date with all UNK parts replaced with the corresponding part from the template.

Notes

This function uses a second date as a reference. If either the date to normalize or the
reference date has any UNK parts, those parts will be replaced with the corresponding part
from the template. For example:

• dateToNormalize—2007/2/5.

• referenceDate—2006/5/UNK.

• template—2005/1/1.

• Normalized result for dateToNormalize—2007/2/1, even though its Day part is not
unknown.

Since the reference date has an unknown Day part, both dates are normalized. For more
information, see Date time processing.

Example

In the following example, the _NormalizeDate function is used within the _CompareDates
function to normalize two dates that have unknown parts:

• date1—1987-0-UNK-14:45.

• date2—1987-2-7-10:UNK.

• template—1981-10-1-0:0:0.

_CompareDates ((_NormalizeDate (date1, date2, new DateTime (1981,10,1,0,0,0)),
(_NormalizeDate (date2, date1, new DateTime (1981,10,1,0,0,0))).

Step Result

The first date, date1, is normalized against the
template 1981,10,1,0,0,0 with date 2 as a
reference.

normalized date1 = 1987-0-1-14:0:0.

The second date, date2, is normalized against the
template 1981,10,1,0,0,0 with date 1 as a
reference.

normalized date2 = 1987-2-1-10:0:0.

The two normalized results are compared. 1 (date2 is greater than date1).

_NormalizeDateToMax
Normalizes UNKNOWN or EMPTY date time parts to the maximum values for those parts. This
function takes different parameters for an array of date times and a single date time.

For more information on these different parameters, see

• _NormalizeDateToMax (Date)

• _NormalizeDateToMax (Array)

_NormalizeDateToMax (Date)
Normalizes a single date time value by replacing any parts that are UNKNOWN or EMPTY with
the maximum value for that part.

Syntax

Chapter 3
About predefined functions

3-33

_NormalizeDateToMax(dateToNormalize)

Parameters

Parameter Definition Data type

dateToNormalize The date time to normalize. PFDateTime

Returns

A new date time with all UNKNOWN or EMPTY parts replaced with their respective maximum
values:

• Year—9999

• Month—12

• Day—(Last day of the month that year)

• Hour—23

• Minute—59

• Second—59

Notes

The _NormalizeDateToMax function accounts for leap years and returns the correct number of
days in February of any year.

Example

The requirement in this example is to find the duration of a previous disease by subtracting the
disease start date from the disease end date in the medical history. An unknown month and
day are allowed for both start date and end date. An additional requirement is to substitute
unknown date parts with the earliest number for start date and with the latest number for end
date so that the longest possible duration of disease is assumed.

To accomplish this:

• Normalize the start date to January 1 of any year.

• Normalize the end date to one of the following:

– December 31 of any year.

– The last day of the given month if the month is known.

_GetDateDifference(
 _NormalizeDateToMax (this.EVTSTART.Value, new DateTime(1,1,1)),
 _NormalizeDate(this.EVTSTART.Value, new DateTime(1,1,1)),
 DateTimeParts.Days)

_NormalizeDateToMax (Array)
Normalizes an array of date times by replacing any parts that are UNKNOWN or EMPTY with
the maximum value for that part.

Syntax

_NormalizeDateToMax(datesToNormalize)

Parameters

Chapter 3
About predefined functions

3-34

Parameter Definition Data type

datesToNormalize The array of date times to
normalize.

Array of PFDateTime values

Returns

A new array of date times, with all UNKNOWN or EMPTY parts replaced with their respective
maximum values:

• Year—9999

• Month—12

• Day—(Last day of the month that year)

• Hour—23

• Minute—59

• Second—59

Notes

The _NormalizeDateToMax function accounts for leap years and returns the correct number of
days in February of any year.

You can use arrays called by either the Values() or Objects() property.

Example

The requirement in this example is to find the latest date among all dates in a repeating form,
using the MaxValueInArrayDate function. If the date on the repeating form allows users to enter
UNKNOWN for days or months, comparing dates without normalizing them can be
unpredictable and depends on the sequence of dates in the array. Therefore, use the
_NormalizeDateToMax(Array) function to return normalized dates with predictable UNKNOWN
parts.

Consider the following arrays of dates, in which the only difference in content is the value of the
Day part, which causes the order of the dates to be different in each array:

Table 3-1 ArrayOfDate1

– Day Month Year

Date1 18 10 2008

Date2 UNK 10 2008

Table 3-2 ArrayOfDates2

– Day Month Year

Date1 UNK 10 2008

Date2 18 10 2008

Chapter 3
About predefined functions

3-35

Table 3-3 Sample function calls

Function call Returned value

MaxValueInArrayDate(ArrayOfDates1) Date1

MaxValueInArrayDate(ArrayOfDates2) Date2

MaxValueInArrayDate(_NormalizeDateToMax
(ArrayOfDates1))

Date2

MaxValueInArrayDate(_NormalizeDateToMax
(ArrayOfDates2))

Date2

MaxValueInArrayDate(_NormalizeDate(ArrayOfDat
es1, new DateTime(1,1,1)))

Date1

MaxValueInArrayDate(_NormalizeDate(ArrayOfDat
es2, new DateTime(1,1,1)))

Date1

Randomize
Returns a drug kit number based on the randomization type and the sequence and drug kit
numbers stored in the randomization source database on the InForm host computer.

Syntax

Randomize(source,type)

Parameters

Parameter Definition Data type

source Randomization source list name,
or stratification.

String

Chapter 3
About predefined functions

3-36

Parameter Definition Data type

type Randomizatoin type:

• Simple Central—The study
uses one list of drug kits.
Each new patient is assigned
the next sequential drug kit
number on the list.

• Central Stratified—The
study has multiple lists of
drug kits. Each new subject
is assigned to a drug kit list
based on entered subject
data. Then, the subject is
assigned the next sequential
drug kit number on that list.

• Simple Site—Each site has
a different drug kit list. Each
new subject is assigned the
next sequential drug kit
number on the list for the site
of the subject.

• Stratified by Site—Each site
has multiple lists of drug kits.
Each new subject is first
assigned to the set of lists for
the site of the subject. Then,
the subject is assigned to
one of the site drug kit lists
based on entered subject
data. Finally, the subject is
assigned the next sequential
drug kit number on that list.

String

Returns

Drug kit number (String), in the format sequence/drug_kit

Notes

Using the Randomize function requires special configuration in the study design and on the
computer hosting the Oracle Health Sciences InForm study:

• The rule using the Randomization function must calculate the value of an item with the
Special Fields custom property value of Randomization field (Randomization).

• The following configuration is required on the computer hosting the Oracle Health Sciences
InForm study:

– Define a randomization sequence for each different list of drug kits used in the study
and install it in the study database using the MedML Installer tool.

– Configure the randomization data source manager.

– Configure the format of each randomization sequence.

– Set up a randomization source database.

– Create an ODBC connection for the randomization source database.

For more information, see the Oracle Health Sciences InForm documentation.

• Example—Using the Randomize function

Chapter 3
About predefined functions

3-37

Example—Using the Randomize function
The randomization feature in the Oracle Health Sciences InForm application allows you to
assign a drug kit to a subject based on a randomization scheme that has been chosen for a
study. After randomization configuration is complete, one of the forms in the study contains a
Drug Kit section. When a user clicks the Randomize button, the Oracle Health Sciences
InForm application returns a drug kit number, along with associated information about the drug
kit, in the Drug Kit section of the form.

For the randomization feature to work, you must create a randomization item. The
randomization item must be on a form with at least one other item that will be completed before
the treatment information can be populated. The following example illustrates creating study
objects for randomization and using the Randomize function.

1. Create the following form on the Baseline study event.

• Title—Randomization

• RefName—frmRandomization

• Short Title—RAND

2. Create the following items on the frmRandomization form.

• Title—Ready to randomize

• RefName—itmRandReady

• Type—Integer

• Question—Are you ready to dispense treatment to this patient?

• Codelist—clYes

• Codelist item—citmYes

• Display override—Read Only

• Title—Treatment Assignment

• RefName—itmRandTreatment

• Question—Treatment Assignment

• Type—Text

• Display override—Hidden

• Special Field Property—Randomization Field (Randomization)

3. Generate form layout.
For example:

Chapter 3
About predefined functions

3-38

4. Create a rule on itmRandTreatment.
The rule expression for the Randomization function uses the following format:

Randomize([listname], [randomization type])

Note:

The value of [randomization type] can be one of the following (use the spacing
that is specified):

• “Simple Central”

• “Central Stratified”

• “Simple Site”

• “Stratified by Site”

See the following example for more details.

A Simple Central randomization with one list called "SimpleList" uses the following expression.

Description Rule expression

–
evaluate on Form Submission

–
value = Randomize(“SimpleList”,
“Simple Central”)

The following action sets the value of the
itmRandTreatment item to the Description and
Sequence Number that is returned by the
randomization process.

always
set this.Value = value.Description +
“ “ + value.SequenceNumber

Chapter 3
About predefined functions

3-39

Description Rule expression

The following action sets the value of the
itmRandTreatment item to the Description that is
returned by the randomization process.

always
set this.Value = value.Description

_SaveToDb (String, String)
Determines whether to send data to the Oracle Health Sciences InForm Publisher queue.

Syntax

_SaveToDB(<Message>,<Trialname>)

Parameters

Chapter 3
About predefined functions

3-40

Parameter Definition Data type

message Parameter that triggers the
Oracle Health Sciences InForm
Publisher application to do one of
the actions listed below. The rule
expression loads the message
parameter with a value based on
the value of specific items in the
form.

The text of the message
parameter is fixed. The library in
the Oracle Health Sciences
InForm and Oracle Argus Safety
integration package includes the
following constants defining
enumerations for the required
strings. Using these
SafetyConstants enumerations to
specify the required strings is
strongly recommended.

• IsReadyToSend—Sends
safety event data to the
Oracle Argus Safety
application immediately

• IsReportableOrSerious—
Marks the safety event as
serious and sends it to the
Oracle Argus Safety
application after a time
interval that is configured in
the Oracle Health Sciences
InForm Publisher application

• IsCancelled—Does one of
the following:
– Cancels a pending

submission
– Sends a nullification

submission to the Oracle
Argus Safety application
if the safety event was
submitted previously

– Does nothing if the
safety event was not
marked serious
previously

String

trialname Name of the study, populated by
the GetTrialName() predefined
function.

String

Example

_SaveToDB('SafetyConstants.IsReportableOrSerious',GetTrialName());

About user-defined functions
An experienced programmer can create a user-defined function using a programming
language such as C# and make the function available to Oracle Health Sciences Central

Chapter 3
About user-defined functions

3-41

Designer users for use in rules. In rule processing, a user-defined function is treated as a local
method on the study object class.

Assemblies that contain user-defined functions that are used in a study are included in the
deployment package.

To associate user-defined functions with libraries or studies, you must import the functions in
the Functions tab of a study or library. For more information, see Importing a user-defined
function.

For more information, see:

• Function definition requirements

• Recommendations for creating user-defined functions

• Creating a user-defined function

• Importing a user-defined function

• Attributes of user-defined functions

• Signing user-defined function assemblies

• Securing user-defined functions

• Sample function definition code

Function definition requirements
All standard .NET classes and facilities are available to a function definition. The following
requirements apply:

• The function must be defined as a public static method in a .NET class, compiled into
a .NET assembly, and saved as a DLL.

• The function must reference the full paths to the following files in the compiler settings:

– ExternalFunctions.dll (required)

– PrebuiltFunctions.dll (optional)

The files appear in the Oracle Health Sciences Central Designer client installation folder.

• The assembly containing user-defined function definitions must be self-contained. It cannot
reference any other assemblies other than standard .NET framework assemblies.

• The method must return a value of one of the following types:

– Boolean.

– Double.

– Int32.

– String.

– PFDateTime. PFDateTime is a customized version of the .NET DateTime data type
that allows date time functions to handle incomplete date time fields. For more
information, see Date time processing. Note that user-defined functions cannot use
System.DateTime as a parameter.

– An array of any of the listed types.

• Each parameter for the method must be of one of the listed types.

• The method cannot directly address any study objects or any other global value. It can
operate only on its parameters.

Chapter 3
About user-defined functions

3-42

• The name of the method must be the same as the name of the user-defined function.

• The function must return a value. Functions returning void are not permitted.

• The function signature must be unique for each function. (More than one function can have
the same name as long as the signature is unique.) The signature of a function consists of
the:

– Function name.

– Return type and order of the function parameters.

• Two functions that differ only in return type are not permitted because the function
signature does not include the return type.

• If a study contains a user-defined function that performs a task such as reading from or
writing to a file, accessing the database or the registry, making web service calls, running
an external application, sending an email, or using the event log directly, the assembly for
the user-defined function must be signed with a strong named signature that is valid and
trusted in order for the function to work in the Oracle Health Sciences InForm application.
For more information, see Securing user-defined functions.

• Function overloading is supported in accordance with C# overloading rules. The C#
compiler determines the function to call based on the best match of actual parameters with
the formal parameters of the overloaded function definitions. Automatic type promotion and
conversion is used when resolving a function call to the appropriate definition.

• For user-defined functions that are used in studies deployed to Oracle Health Sciences
InForm release 6.0 or later and require database access, apply the Read Only User
Solution, which includes:

– Read Only User Manager—Forms and command line utility to set up a read only user
and save encrypted connection information to a file and registry.

– Read Only User Connection Provider—Assembly called
Oracle.HSGBU.ServicesSolutions.ROConnectionProvider.dll that
contains a method to provide a database connection object for a read only user based
on study name. The assembly includes the function DummyFunction() that allows the
assembly to be imported into the Oracle Health Sciences Central Designer application
and deployed with the study. Do not use this function in rules.

For more information, contact your Oracle Services representative.

Recommendations for creating user-defined functions
• Try to make user-defined functions as generic as possible to increase the likelihood that

the function will be reused. For example, if you must create a very complex function,
consider splitting it up into two or three small functions that are more likely to be reused.

• Do not create user-defined functions in a production study or library. Instead, create them
in a test study or development library.

• If you create a user-defined function, you must add the assembly as a reference in your
function project and add a namespace for the assembly. The namespace is:
Designer.UserDefinedFunctions

• Use C# attributes to categorize user-defined functions. Attributes are already defined in
predefined functions.

• Oracle recommends testing the following parts of a user-defined function:

– The user-defined function must encapsulate the logic that is required.

– The correct data points must have been used as parameters.

Chapter 3
About user-defined functions

3-43

– The function must be deployed to the Oracle Health Sciences InForm application and
tested with real values.

• Consider creating a repository of user-defined functions that all users can access. A
central repository is especially useful if users are working in different locales or if any part
of the study is being outsourced.

Creating a user-defined function
You can create user-defined functions using a process design application such as the Microsoft
Visio application.

1. Create a .NET Class Library project.

2. Specify the Target Framework as .NET Framework 4.6.2.

3. Rename the default class and the class file for the function.

4. Remove references that are not required.

5. Provide a unique name such as <Study name>.<Function name> for the function.

6. Include a reference to the Oracle.Designer.ExternalFunctions.dll assembly.

a. Locate the assembly in < Installation
Directory>\Bin\ExternalFunctions.

b. Copy the assembly to your project.

c. Add a code statement to declare the namespace.

7. If the function performs a task such as reading from or writing to a file, accessing the
database or the registry, making web service calls, running an external application,
sending an email, or using the event log directly, sign the function with a strong named
signature that is valid and trusted.

For more information, see Signing user-defined function assemblies.

8. Import the function into a library or study.

For more information, see Importing a user-defined function.

Importing a user-defined function
Before you can use a function that is created outside of the Oracle Health Sciences Central
Designer application, you must import it to a study or library.

1. Perform one of the following:

• In a study, select the Study Information Explorer bar.

• In a library, select the Library Information Explorer bar.

2. Select InForm.

3. Select the Functions tab.

4. Click Import Function.

The Function File dialog box appears.

5. Locate the .NET assembly (a DLL file) containing the functions to import, and click Open.

The functions included in the .NET assembly are stored in the Oracle Health Sciences
Central Designer database and are added to the list of functions in the grid.

Chapter 3
About user-defined functions

3-44

Attributes of user-defined functions
The following Oracle Health Sciences Central Designer function attributes are defined in the
Oracle Health Sciences Central Designer assembly Oracle.Designer.ExternalFunctions.dll,
which is required in the project references for user-defined function definitions.

For more information, see Sample function definition code.

See also:

• DesignerFunctionClassification

• DesignerFunction

• DesignerParameter

DesignerFunctionClassification
Required: No.

Valid on: The static method of the function on the class containing a collection of function
definitions.

Purpose: Defines the classification of the function, which is used to group functions in the:

• Functions tab of the Study Editor.

• Function tab of the References section of the Rule Wizard and related dialog boxes.

If you do not include a DesignerFunctionClassification attribute, the classification of a function
is either:

• The classification defined for the class that contains the function.

• The name of the class, if no classification is defined for the class that contains the function,

Parameter:

Name Type Description

Description String Classification name

DesignerFunction
Required: Yes.

Valid on: The static method that defines a Central Designer function.

Purpose: Identifies the static method as a user-defined Central Designer function and supplies
the descriptive text that appears with the function in the Central Designer application. Only
public static functions with this attribute are treated as user-defined function definitions.

Parameter:

Chapter 3
About user-defined functions

3-45

Name Type Description

Description String • Description of the function.
This text appears in the:
– Functions tab of the

Study Editor.
– Rule Wizard and related

dialog boxes.

DesignerParameter
Required: No.

Valid on: Function parameters.

Purpose: Provides the parameter description that is displayed in the Invoke Function dialog
box.

Parameter:

Name Type Description

Description String Description of the parameter. This
text appears in the Invoke
Function dialog box.

Signing user-defined function assemblies
If a study contains a user-defined function that performs a task such as reading from or writing
to a file, accessing the database or the registry, making web service calls, running an external
application, sending an email, or using the event log directly, the assembly for the user-defined
function must be signed with a strong named signature that is valid and trusted in order for the
function to work in the Oracle Health Sciences InForm application. For more information, see
Securing user-defined functions.

Note:

For Oracle Health Sciences InForm studies hosted by Oracle, all user-defined
function assemblies that require signing must be signed by Oracle Services prior to
deployment.

When you create a user-defined function with an assembly that you want to secure and sign,
on each machine in your environment that builds assemblies, use the following procedure to
install a PFX signing file to a crypto service (CSP) certificate container. The PFX file is then
used to secure and sign the assembly for the user-defined function.

1. Add the following to the AssemblyInfo.cs file for your project:

// Tell compiler to use whatever key pair is stored in <container name>
CSP container. Ignore
// warning that this can be done via command-line switch
#pragma warning disable 1699

Chapter 3
About user-defined functions

3-46

[assembly: AssemblyKeyName("<container name>")]
#pragma warning restore 1699

where:

• container name—CSP container name.

2. Open a Command Prompt window.

3. Navigate to the directory where your PFX file is located.

4. Run the following command:

sn -i <PFX file name> <container name>.

where:

• PFX file name—PFX signing file name.

• container name—CSP container name.

5. Build the user-defined function assembly.

Securing user-defined functions
If a study contains a user-defined function that performs a task such as reading from or writing
to a file, accessing the database or the registry, making web service calls, running an external
application, sending an email, or using the event log directly, the assembly for the user-defined
function must be signed with a strong named signature that is valid and trusted in order for the
function to work in the Oracle Health Sciences InForm application.

To ensure that the user-defined functions and assemblies in your study projects and library
projects are secure, Oracle recommends that you sign user-defined function assemblies using
a strong named, valid and trusted signature. You must create a key pair, extract the public key,
and place the key file:

• On the Oracle Health Sciences Central Designer application server. If you are using the
Oracle Health Sciences Central Designer application in a web farm environment, place the
key on all the application servers in the web farm.

• On all the Oracle Health Sciences InForm application servers where studies using the
assembly will be deployed.

Note:

For Oracle Health Sciences InForm studies hosted by Oracle, all user-defined
function assemblies that require signing must be signed by Oracle Services prior to
deployment.

For more information, see Signing user-defined function assemblies.

In addition, user-defined functions that use the Log4Net application must use the latest version
of Log4Net or theOracle Health Sciences Central Designer Log4Net wrapper. The Log4Net
wrapper allows untrusted custom functions to use Log4Net logging, and shields users from
future Log4Net upgrades. In addition, the wrapper elevates permissions so that the following
loggers can run properly:

• Console

• ADO.NET

Chapter 3
About user-defined functions

3-47

• EventLog

The wrapper is available in the Oracle.Designer.ExternalFunctions.dll assembly, and contains
the following classes and interface:

• PhaseForward.Designer.Shared.Functions.Log4Net.LogManager

• PhaseForward.Designer.Shared.Functions.Log4Net.Log

• PhaseForward.Designer.Shared.Functions.Log4Net.ILog

The methods provided in the classes and interface match those in the Log4Net documentation.

Sample function definition code
The following code examples illustrate the definition of user-defined functions.

Body Mass Index (BMI) function

The following code sample illustrates the definition of a function that returns the body-mass
index (BMI) based on the values of height and weight. The function has a classification of
Clinical. It takes two parameters, height and weight. Descriptive text for the function and its
parameters appears in the Rule Wizard and the Invoke Function dialog box.

Note:

Oracle Health Sciences Central Designer attributes are shown in bold.

using System;
using Oracle.Designer.ExternalFunctions;
namespace Customer.Designer.ClinicalData.Functions
{
/// <summary>
/// Summary description of Clinical
/// </summary>
[DesignerFunctionClassification("Clinical")]
public class Clinical
{
 private Clinical()
 {
 }
 /// <summary>
 /// Returns the body-mass index based on height and weight
 /// </summary>
 /// <param name="height">Height of the patient</param>
 /// <param name="weight">Weight of the patient</param>
 /// <returns></returns>
 [DesignerFunction ("Returns the body-mass index based on height and
weight")]
 public static float BMI (
 [DesignerParameter ("Patient height")]
 float height,
 [DesignerParameter ("Patient weight")]
 float weight)
 {
 return weight / (height * height);

Chapter 3
About user-defined functions

3-48

 }
 }
}

Date Time difference function

The following code sample illustrates the definition of a function that returns the length of the
interval between any two date time parts. If there are any unknown date time parts, the dates
are normalized, and the results are rounded down. This function has a classification of Date
Manipulation Function. It takes two dates and a date part as parameters. Descriptive text for
the function and its parameters appears in the Rule Wizard and the Invoke Function dialog
box.

Note:

Oracle Health Sciences Central Designer attributes are shown in bold.

 using System;
 using Oracle.Designer.ExternalFunctions;
 namespace Customer.Designer.DateTime.Functions
{
 /// <summary>
 /// Returns the number of units between two dates, based on the requested
interval.
 /// The units sign will be negative if date1 is before date2
 /// </summary>
 /// <param name="date1">The earlier date</param>
 /// <param name="date2">The later date</param>
 /// <param name="units">The interval to calculate</param>
 /// <returns>The integer number of interval units. The value will be
negative if date1 is before date2.</returns>
 /// <remarks>Valid units are taken from the DateTimeParts enumerator, and
include:
 /// <list type="bullet">
 /// <item>Years</item>
 /// <item>Months</item>
 /// <item>Days</item>
 /// <item>Hours</item>
 /// <item>Minutes</item>
 /// <item>Seconds</item>
 /// </list>
 /// Dates are normalized if either date has any UNKNOWN parts. Results
are rounded down
 /// to the nearest integer. For example, <code>_GetDateDifference (new
DateTime(2007,1,10,0,0,0),
 /// new DateTime (2007,2,1,0,0,0), DateTimeParts.Months)</code> will
return 0, not one</remarks>
 [DesignerFunctionClassification("Date Manipulation Functions")]
 [DesignerFunction("Returns the length of the interval between two dates.
The dates are normalized if there are any unknown parts. Results are rounded
down.")]
 public static int _GetDateDifference (
 [DesignerParameter("Date 1 for compare")]

Chapter 3
About user-defined functions

3-49

 PFDateTime date1,
 [DesignerParameter("Date 2 for compare")]
 PFDateTime date2,
 [DesignerParameter(". Valid intervals are taken from DateTimeParts
enum: Years, Months, Days, Hours, Minutes, Seconds")]
 int units)
 {
 if (date1 == null || date2 == null)
 {
 throw new ArgumentException("null parameter to GetDateDifference");
 }

 double difference = 0.0;

 DateTime normalizedEarlierDate = (DateTime)_NormalizeDate(date1,
date2, new DateTime(2000,1,1,12,0,0));
 DateTime normalizedLaterDate = (DateTime)_NormalizeDate(date2, date1,
new DateTime(2000,1,1,12,0,0));
 if (normalizedEarlierDate > normalizedLaterDate)
 {
 DateTime temp = normalizedEarlierDate;
 normalizedEarlierDate = normalizedLaterDate;
 normalizedLaterDate = temp;
 sign = -1;
 }
 TimeSpan ts = (DateTime) normalizedLaterDate - (DateTime)
normalizedEarlierDate;
 switch (units)
 {
 case DateTimeParts.Hours:
 difference = ts.TotalHours;
 break;
 case DateTimeParts.Minutes:
 difference = ts.TotalMinutes;
 break;
 case DateTimeParts.Seconds:
 difference = ts.TotalSeconds;
 break;
 case DateTimeParts.Days:
 difference = ts.TotalDays;
 break;
 // Rounds down to nearest month
 case DateTimeParts.Months:
 case DateTimeParts.Years:
 difference = (normalizedLaterDate.Year -
normalizedEarlierDate.Year)*12 + (normalizedLaterDate.Month -
normalizedEarlierDate.Month);
 if (normalizedLaterDate.Day < normalizedEarlierDate.Day)
 {
 difference -= 1;
 }
 break;
 }
 if (units == DateTimeParts.Years)
 {
 difference /= 12;

Chapter 3
About user-defined functions

3-50

 }
 int ret = ((int)difference * sign);
 return ret;
 }

Chapter 3
About user-defined functions

3-51

4
Constants

In this chapter:

• Constants tab of the Rule Wizard

• Using constants in rules and rule templates

• Predefined constants in the System Library

• Creating a constant

• Deleting a constant

Constants tab of the Rule Wizard
A constant is a value that is defined in a library or study and that can be referenced by any
rule.

You can define a constant in a library and change the value as needed for each study where
you use it. For example, you might have a red blood cell count rule on a Hematology form.
Because the value for the red blood cell count would be different for a Phase I arthritis trial and
a Phase II leukemia trial, you could create a constant (for example, rbcMinCount) and change
the value of the constant for each study.

User-defined constants are global. They do not have a scope and can be used in any rule
created in a study or library.

You add constants to the Oracle Health Sciences Central Designer application:

• In a library project—In the Constants tab of the Library Editor.
Constants created in a library are available after they have been published. You can use
constants from the library in a study if the library appears on the Library List for the study.

• In a study project—In the Constants tab of the Study Editor.
Constants created in a study are available only in that study.

Using constants in rules and rule templates
To add constants to rule expressions, use one of the following:

• For workflow rules–Workflow Expression Editor dialog box.

• For rule templates–Edit Rule Template dialog box > Definitions tab.

• For data-entry rules–Rule Wizard Expression tab > Constants tab.

• For global conditions–Edit Global Conditions dialog box > Constants tab.

4-1

Note:

RefNames for constants used in both a study and a library are not updated in both
places if you update the RefName of the constant. If you update a RefName in one
location, you must manually update it in the other.

The Constants tab (on the Expression tab of the Rule Wizard) lists all constants created in the
study and in the libraries that appear in the Libraries List in the Study Editor. Any rule on any
study object can reference any constant that appears.

Constants are organized in folders according to their classification. A classification is a user-
defined value provided when a constant is created.

The list of constants is ordered in the following way:

1. Constants defined in the study.

2. Constants published in the first library on the Library List.

3. Constants published in the second library on the Library List (and so on).

You can publish special versions of constants from different libraries and allow the order of
libraries in the Library List to determine which constant appears first.

For example, if you have two constants with matching names and data types, you see only the
constant from the higher library in the Library List (or, if you have a local copy, in the study).

To include a constant in a rule expression:

• Drag the constant from the Constants tab to the Expression workspace.

Predefined constants in the System Library
Predefined constants appear in:

• The Constants tab of the System Library.

• The Rule Wizard > Expression tab > Constants tab in the System Library or in a study.
Predefined constants do not appear in this location for user-created libraries.

When your Libraries Browser searches include the System Library, the predefined constants
are included in the search.

In the Rule Wizard, when you drag a function to the Expression workspace, the Invoke
Function dialog box appears. In the dialog box, you can expand the Constants tab, and drag
the appropriate constant to the Value field for the parameter.

DateTimeParts constants—Use the following constants to specify a parameter in a
predefined function that requires a date part. For example, the following functions include date
part parameters:

• _CalculateDateTime

• _CompareDatesWithRange

• _GetDateDifference

Chapter 4
Predefined constants in the System Library

4-2

Name Description Data type

Years, Months, Days, Hours,

Minutes, Seconds

Date time part for years,
months, days, hours, minutes,
or seconds.

Integer

FormStates constants—Use the following constants to specify a form state using
HasState(Integer).

Name Description Data type

Deleted (Available only for repeating
forms) The repeating form
instance has been deleted.

Integer

Frozen The form is frozen. Integer

HasComment The form has a comment at the
form level.

Integer

HasData The form has data. Integer

HasMissingData The form has missing data. Integer

HasQueries The form has queries. Integer

Locked The form is locked. Integer

SdvComplete The form has been marked
source verified.

Integer

SdvPartial The form has been partially
source verified.

Integer

SdvReady The form has been marked ready
for source verification.

Integer

Signed The form has been signed. Integer

Skipped The form has been marked not
completed with a form-level
comment.

Integer

Started The form was started with subject
data, comments, or queries.

Integer

Creating a constant
1. In the upper-left corner of the Project Explorer, click the View Project/View Groups icon

so that you see the Project view. (When the Project view appears, the tooltip for the icon is
View Groups.)

2. Select a study or library.

The Study or Library Editor appears.

3. Select the Constants tab.

4. Click New Constant.

The New Constant dialog box appears.

5. Fill in the fields of the dialog box, and click OK.

For more information, see:

• Constants tab - Option descriptions

• New Constant dialog box - Option descriptions

Chapter 4
Creating a constant

4-3

Constants tab - Option descriptions

Option Description

Fields

Note:

Not all fields appear
in the default view.
Optionally, you can
add the other fields to
the browser view, and
you can rearrange
the order of fields. For
more information, see
Showing and hiding a
field in the User
Guide.

Classification User-defined text used to group, sort, and filter
constants.

Data Type Return type of the constant:

• Integer—Contains only numbers.
• Float—Contains numbers and a decimal point.
• String—Contains alphanumeric characters.
• Boolean—True or False.
• Date/Time—Contains date and time

information.

Description Description of the constant.

Name Name of the constant. The name must:

• Begin with a letter.
• Contain only letters and digits.
• Be unique.

Published (only in libraries) Indicates that the study object has been published.

Value Value of the constant.

Toolbar buttons –

New Constant

Delete

Create and delete a constant.

Publish (only in libraries) Publish the selected constant. This button is
enabled for library objects that have been saved.

New Constant dialog box - Option descriptions

Option Description

Name Name of the constant.

Data Type Data type of the constant, such as Integer, Float,
String, Boolean, or Date/Time.

Classification User-defined classification of the constant.

Chapter 4
Creating a constant

4-4

Option Description

Description Description of the constant.

Value Value of the constant. The value must be
compatible with its data type.

Deleting a constant
1. In the upper-left corner of the Project Explorer, click the View Project/View Groups icon

so that you see the Project view. (When the Project view appears, the tooltip for the icon is
View Groups.)

2. Select a study or library.

The Study or Library Editor appears.

3. Select the Constants tab.

4. Select the constant to delete.

5. Perform one of the following:

• Click Delete.

• Right-click, and select Delete.

Chapter 4
Deleting a constant

4-5

5
Data mappings

In this chapter:

• Data Mappings tab

• Using data mappings in rules and rule templates

• Icons used on the Data Mappings tab

• Rule model properties for data series

• Methods for data sets

• Additional study objects in the Data Mappings tab

Data Mappings tab
Study objects and properties that are related to mappings are called data mappings. You add
data mappings to rule expressions in the Rule Wizard using the dynamic expression prompts
in the Expression tab or by dragging them from the Expression tab > Data Mappings tab. The
Data Mappings tab lists:

• RefNames of the data mappings, data sets, and data series in the study or library.

• Rule model properties for data series.
A data series has the properties of the item that is mapped to it. If a data series contains
an item that collects more than one value, the rule model properties for repeating study
objects appear so you can access an array of all of the values of the item.

• Methods for data sets.
A method appears if you select the corresponding standard data dimension of the data set.
You can use data set methods to return a subset of the data in the data set.

• Study events, forms, sections, and items that are mapped to each data set.

• Study objects appear if you select the corresponding standard data dimension of the data
set. The properties of the study objects are used as parameters of data set methods.

You manage data mappings in the Project Explorer, where you create mappings, data sets,
and data series and add items to data series.

Using data mappings in rules and rule templates
To add data mapping study objects to rule expressions, use one of the following:

• For workflow rules—Workflow Expression Editor dialog box.

• For rule templates—Edit Rule Template dialog box > Definition tab.

• For data-entry rules—Rule Wizard Expression tab > Data Mappings tab.

• For global conditions—Edit Global Conditions dialog box > Data Mappings tab.

5-1

Note:

Rule expressions use RefNames, not titles. Therefore, RefNames appear in the Rule
Wizard and in the rule expression.

The Data Mappings tab (on the Expression tab of the Rule Wizard) lists:

• RefNames of the data mappings, data sets, and data series in the study or library.

• Rule model properties for data series.
A data series has the properties of the item that is mapped to it. If a data series contains
an item that collects more than one value, the rule model properties for repeating study
objects appear so you can access an array of all of the values of the item.

• Methods for data sets.
A method appears if you select the corresponding standard data dimension of the data set.
You can use data set methods to return a subset of the data in the data set.

• Study events, forms, sections, and items that are mapped to each data set.

• Study objects appear if you select the corresponding standard data dimension of the data
set. The properties of the study objects are used as parameters of data set methods.

To include a data mapping study object or property in a rule expression:

• Drag the data mapping study object or study object property from the Data Mappings tab to
the Expression workspace.

Icons used on the Data Mappings tab

Icon Description

Mapping.

Data set.

Data series.

Note:

If only one item is
mapped to a data
series, and that item
occurs in the study in
only one form and
study event, the icon
that appears is the
rule model properties
icon for the return
type that matches the
item's data type.

Chapter 5
Icons used on the Data Mappings tab

5-2

Icon Description

Methods.

Rule model properties with a DateTime return type.

Rule model properties with a Float return type.

Rule model properties with an Integer return type.

Rule model properties with a Text return type.

Rule model properties with a Boolean return type.

Values[] and Variables[] rule model property.

Groups of study events, forms, or items.

Individual study events, forms, or items in groups.

Rule model properties for data series
Rule model properties are available for a data series in the Expression tab > Data Mappings
tab in the Rule Wizard.

For more information, see:

• Count

• Values[]

• Variables[]

• Empty

• Value

Chapter 5
Rule model properties for data series

5-3

Count

Characteristic Description

Icon

Availability Repeating study events, repeating forms, and
repeating sections.

Note:

To view this property,
you must select the
parent study object.
For example, to view
the property on a
study event, you must
select its parent
(either a study
element or a study
design).

Return type Int32 (for Oracle Central Designer Integer and
YesNo types).

Description The current number of instances of the repeating
study event, form, or section.

Purpose Use this property to determine the number of
sections, forms, or study events in a study. For
example, you might want to know the number of
adverse events that exist for a subject.

Values[]

Characteristic Description

Icon

Availability An item that is a child of one of the following:
• Form that is part of a repeating study event.
• Repeating form.
• Repeating section.

Return type • If an integer type
• If a float type—Double[].
• If a text type
• If a date time type

Description Returns an array of values from item instances that
are part of a repeating study event, repeating form,
or repeating section.

Chapter 5
Rule model properties for data series

5-4

Characteristic Description

Included in the array Values of undeleted items. An item is undeleted if
someone has provided a value for it, and the form
or section that contains the item has not been
deleted.

Not included in the array • Values of deleted items. An item is deleted if
the form or section that contains it is deleted
from a study.

• Values of empty items. An item is empty if the
form has been created but a value has not
been provided for the item.

Example A study contains the following repeating forms,
which contain the AEDate item:
• First instance of the form—Someone has

entered a value for the AEDate item.
• Second instance—Someone has filled in

values for other items but not the AEDate item
(the item is empty).

• Third instance—Someone entered a value for
the AEDate item and deleted the form (the
item is deleted).

• Fourth instance—Someone has entered a
value for the AEDate item.

When you use this property, the following instances
are returned:
• First instance
• Fourth instance

Notes

Note:

Values[], AllValues[],
Objects[], and
AllObjects[] all return
an array of data.
Consider the
following scenarios
when deciding upon
the property to use:
• To include

deleted values,
use either
AllValues[] or
AllObjects[].

• To include null
values, use
Objects[] or
AllObjects[].

Additionally, consider that the following
CurrentIndex properties are also available:
• CurrentAllObjectsIndex
• CurrentAllValuesIndex
• CurrentObjectsIndex
• CurrentValuesIndex

Chapter 5
Rule model properties for data series

5-5

Variables[]

Characteristic Description

Icon

Availability A data series that contains:

• Two or more items
or

• An item that is used more than once in a study.

Return type Array.

Description Array of items that are mapped to the data series.

Note:

To indicate the first
value in the array, use
0.

Empty

Characteristic Description

Icon

Availability A data series that contains a single item that is
used only once in a study.

Available below the Variables[] property.

Return type Boolean.

Description True or False.

When True, a value for the item has not been
provided.

Chapter 5
Rule model properties for data series

5-6

Value

Characteristic Description

Icon

,

,

, or

Availability A data series that contains a single item that is
used only once in a study.

Return type One of the following:
• String (for Oracle Central Designer string

types).
• DateTime (for Oracle Central Designer date

time types).
• Double (for Oracle Central Designer float

types).
• Int32 (for Oracle Central Designer Integer and

YesNo types).

Description Value of the item in the data series.

Methods for data sets
Data sets can contain multiple data series, which can contain multiple items. You use data set
methods to return a data set that is a subset of the original data set. Data set methods always
return a data set, not a single value.

Methods for data sets appear in the Rule Wizard in the Expression tab > Data Mappings tab.
The list of methods that appear is based on the selection of standard data dimensions and the
creation of custom data dimensions in the definition of the data set. In addition to the data set
methods listed in the following table, one method appears for each custom dimension that is
created for the data set.

To use a method in a rule expression:

1. Double-click the method.
If the method has one or more parameters, the Invoke Function dialog box appears.

2. Drag a study object from the References tab to the Values field to define a value for each
parameter.

For information on these standard data dimensions, see

• StudyEvent(StudyEvents)

Chapter 5
Methods for data sets

5-7

• StudyEvent(StudyEvents, Integer)

• Forms(Forms)

• Form(Forms, Integer)

• Section(Sections)

• Section(Sections, Integer)

• Item(Items)

• [NameOfCustomDataDimension

• Examples—Data set methods in rule expressions

• CurrentStudyEvent()

StudyEvent(StudyEvents)

Characteristic Description

Icon

Availability When the Event standard data dimension is
selected for the data set.

Returns A data set subset with data from only the study
event.

Syntax NameOfDataSet.StudyEvent(StudyEvents.studyEv
ent)

Parameters • Parameter—studyEvent.
• Definition—Study event on which to filter.
• Data type—Integer.

StudyEvent(StudyEvents, Integer)

Characteristic Description

Icon

Availability When the Event and Event Index standard data
dimensions are selected for the data set.

Note:

The Event Index
standard data
dimension is
necessary for data
sets that contain
repeating study
events.

Chapter 5
Methods for data sets

5-8

Characteristic Description

Returns A data set subset with data from only the study
event.

Syntax NameOfDataSet.StudyEvent(StudyEvents.studyEv
ent, studyEventIndex)

Parameters • Parameter—studyEvent.
• Definition—Study event on which to filter.
• Data type—Integer.

– • Parameter—studyEventIndex.
• Definition—Index of the repeating study

event, from 0 to a maximum value, which
equals the count of the repeating study event
instances.

• Data type—Integer.

Forms(Forms)

Characteristic Description

Icon

Availability When the Form standard data dimension is
selected for the data set.

Returns A data set subset with data from only the form.

Syntax NameOfDataSet.Form(Forms.form)

Parameters • Parameter—form.
• Definition—Form on which to filter.
• Data type—Integer.

Form(Forms, Integer)

Characteristic Description

Icon

Chapter 5
Methods for data sets

5-9

Characteristic Description

Availability When the Form and Form Index standard data
dimensions are selected for the data set.

Note:

The Form Index
standard data
dimension is
necessary for data
sets that contain
repeating study
events.

Returns A data set subset with data from only the form.

Syntax NameOfDataSet.Form(Forms.form, formIndex)

Parameter Definition Data type

form Form on which to filter. Integer

formIndex Index of the repeating form, from
0 to a maximum value, which
equals the count of the repeating
form instances.

Integer

Section(Sections)

Characteristic Description

Icon

Availability When the Section standard data dimension is
selected for the data set.

Returns A data set subset with data from only the section.

Syntax NameOfDataSet.Section(Sections.section)

Parameters • Parameter—section.
• Definition
• Data type—Integer.

Section(Sections, Integer)

Characteristic Description

Icon

Chapter 5
Methods for data sets

5-10

Characteristic Description

Availability When the Section and Section Indexstandard
data dimensions are selected for the data set.

Note:

The Section Index
standard data
dimension is required
for data sets that
contain repeating
sections.

Returns A data set subset with data from only the section.

Syntax NameOfDataSet.Section(Sections.section,
sectionIndex)

Parameters • Parameter—section.
• Definition—Section on which to filter.
• Data type—Integer.

– • Parameter—sectionIndex.
• Definition—Index of the repeating section,

from 0 to a maximum value, which equals the
count of the repeating section instances.

• Data type—Integer.

Item(Items)

Characteristic Description

Icon

Availability When the Item standard data dimension is
selected for the data set.

Returns A data set subset with data from only the item.

Syntax NameOfDataSet.Item(Items.item)

Parameters • Parameter—item.
• Definition—Item on which to filter.
• Data type—Integer.

[NameOfCustomDataDimension

Note:

A method is generated for every custom data dimension that is created for a data set.

Chapter 5
Methods for data sets

5-11

Characteristic Description

Icon

Availability When a custom data dimension is created for a
data set.

Returns A data set subset with data from only the custom
data dimension.

Syntax NameOfDataSet.dimension(ValueOfDimension)

Parameters • Parameter—dimension.
• Definition—Name of the custom dimension on

which to filter.
• Data type—String or Integer, depending on

the data type of the custom data dimension.

Examples—Data set methods in rule expressions
The examples use the following study object names:

• Study event–Visit1

• Form–Vitals

• Item–Pulse

• Data set–VitalSigns

Structure

You must use the following structure when you use a method in a rule expressions.

1—Name of the data set.

2—Name of the method.

3—Filtering information created when you provide a value for the parameter or parameters of
the method.

To use a method in a rule expression:

1. Double-click the method.
If the method has one or more parameters, the Invoke Function dialog box appears.

2. Drag a study object from the References tab to the Values field to define a value for each
parameter.

Examples

The following table provides examples of rule expressions that you can use to obtain a subset
of a data set. The examples use the study object names defined for the examples.

Chapter 5
Methods for data sets

5-12

Rule expression Returns a data set subset with data from..

VitalSigns.StudyEvent(StudyEvents.Visit1) Visit1 only.

VitalSigns.StudyEvent(StudyEvents.Visit1).Form(F
orms.Vitals)

The Vitals form in Visit1 only.

VitalSigns.StudyEvent(StudyEvents.Visit1).Form(F
orms.Vitals). Item(Items.Pulse)

The Pulse item on the Vitals form in the Visit1
study event.

VitalSigns.Form(Forms.Vitals) The Vitals form in any study event.

VitalSigns.StudyEvent(StudyEvents.Visit1).Item(Ite
ms.Pulse)

The Pulse item on any form in the Visit1 study
event.

CurrentStudyEvent()

Characteristic Description

Icon

Availability When the Event and Event Index standard data
dimensions are selected for the data set.

Note:

• CurrentStudyEve
nt() is only
available for
Query and
Calculation rules.

• CurrentStudyEve
nt() is only
available for
rules on a study
event or lower.

Returns A data set subset with data from only the current
study event.

If the study object you map to the data set has
multiple values (for example, if you map an item on
a repeating form), you might get an array or many
values, rather than just one value.

Syntax NameOfDataSet.CurrentStudyEvent()

Parameters None.

Additional study objects in the Data Mappings tab
In addition to rule model properties and methods, the Data Mappings tab displays study
events, forms, sections, and items that are part of the data set that is expanded in the
References section. Study objects appear if they are selected as standard data dimensions of
a data set. For example, if you select the Form standard dimension, the Forms node appears
under the data set and under the Form(Forms) method.

Chapter 5
Additional study objects in the Data Mappings tab

5-13

You can use the study events, forms, sections, and items to define values of parameters for
methods. When you double-click a method to use it in the rule expression, the Invoke Function
dialog box appears, prompting you to define values for the parameters of the method. You can
drag a study object to the Value field for each parameter.

For more information, see

• Study events

• Forms

• Sections

• Items

Study events

Characteristic Description

Icons

—For a collection of study events.

—For individual study events.

Note:

The collective lists of
study objects cannot
be used in a rule
expression. You can
use only individual
study objects in a rule
expression.

Availability All study events that are part of the expanded data
set appear in the list.

Available as:

• Properties of data series.
• Properties of data set methods.

Description Use individual study events to define the values of
parameters for methods.

Chapter 5
Additional study objects in the Data Mappings tab

5-14

Forms

Characteristic Description

Icons

—For a collection of forms.

—For individual forms.

Note:

The collective lists of
study objects cannot
be used in a rule
expression. You can
use only individual
study objects in a rule
expression.

Availability All forms that are part of the expanded data set
appear in the list.

Available as:

• Properties of data series.
• Properties of data set methods.

Description Use individual forms to define the values of
parameters for methods.

Chapter 5
Additional study objects in the Data Mappings tab

5-15

Sections

Characteristic Description

Icons

—For a collection of sections.

—For individual sections.

Note:

The collective lists of
study objects cannot
be used in a rule
expression. You can
use only individual
study objects in a rule
expression.

Availability All sections that are part of the expanded data set
appear in the list.

Available as:

• Properties of data series.
• Properties of data set methods.

Description Use individual sections to define the values of
parameters for methods.

Chapter 5
Additional study objects in the Data Mappings tab

5-16

Items

Characteristic Description

Icons

—For a collection of items.

—For individual items.

Note:

The collective lists of
study objects cannot
be used in a rule
expression. You can
use only individual
study objects in a rule
expression.

Availability All items that are part of the expanded data set
appear in the list.

Available as:

• Properties of data series.
• Properties of data set methods.

Description Use individual items to define the values of
parameters for methods.

Chapter 5
Additional study objects in the Data Mappings tab

5-17

6
Methods, operators, and literals

In this chapter:

• Methods

• Operators and literals

Methods
A method is a block of code that is called by a rule and that is used to manipulate data.

You can use standard C# methods, including math methods, as well as methods that are
automatically generated for certain study objects, to create rule expressions. For example, you
can use a count method to return the number of instances created for a repeating form.

You can use any method in a rule expression.

For more information, see

• Math methods

• Methods for study objects

• Data set methods

Math methods
A math method performs a mathematical operation on a value or set of values and can be
used in a rule expression. Math methods are provided by the Microsoft .NET framework.

Note:

When you use a math method in a rule expression, you must precede it with Math.
(Math followed by a period). For example, the Pow method, which is used to return a
value raised to a specific power, becomes Math.Pow.

For a comprehensive list of math methods, see a C# programming guide.

For more information, see

• Abs

• Ceiling

• DivRem

• Exp

• Floor

• IEEERemainder

• Log

6-1

• Log10

• Max

• Min

• Pow

• Round

• Sqrt

• Truncate

• Examples—Math methods in rule expressions

Abs

Characteristic Description

Returns Absolute value of a specified number.

Return type Data type of the parameter that you enter.

Syntax Math.Abs(a)

Parameters • Parameter—a.
• Definition—A number for which an absolute

value is to be found.
• Data type—Any numeric data type.

Ceiling

Characteristic Description

Returns Smallest integer greater than or equal to the
specified number.

Return type Int32 (for Oracle Health Sciences Central Designer
Integer and YesNo types).

Syntax Math.Ceiling(a)

Parameters • Parameter—a.
• Definition—A number for which the smallest

integer greater than or equal to it is to be
found.

• Data type—Any numeric data type.

DivRem

Characteristic Description

Returns Quotient of two numbers and also the remainder in
an output parameter.

Return type • Quotient—Int32 (for Oracle Health Sciences
Central Designer Integer and YesNo types).

• Remainder—Int32 (for Oracle Health
Sciences Central Designer Integer and YesNo
types).

Syntax Math.DivRem(a, b, c)

Chapter 6
Methods

6-2

Characteristic Description

Parameters • Parameter—a
• Definition—Dividend
• Data type—Int32

– • Parameter—b
• Definition—Divisor
• Data type—Int32

– • Parameter—c
• Definition—Remainder
• Data type—Int32

Exp

Characteristic Description

Returns e raised to the specified power.

Return type Double (for Oracle Health Sciences Central
Designer float types).

Syntax Math.Exp(a)

Parameters • Parameter—a
• Definition—Number specifying a power.
• Data type—Any numeric data type.

Floor

Characteristic Description

Returns Largest integer less than or equal to the specified
number.

Return type Int32 (for Oracle Health Sciences Central Designer
Integer and YesNo types).

Syntax Math.Floor(a)

Parameters • Parameter—a
• Definition—A number for which the largest

integer less than or equal to it is to be found.
• Data type—Any numeric data type.

IEEERemainder

Characteristic Description

Returns Remainder resulting from the division of a specified
number by another specified number.

Return type Double (for Oracle Health Sciences Central
Designer float types).

Syntax Math.IEEERemainder(a, b)

Parameters • Parameter—a
• Definition—Dividend.
• Data type—Any numeric data type.

Chapter 6
Methods

6-3

Characteristic Description

– • Parameter—b
• Definition—Divisor.
• Data type—Any numeric data type.

Log

Characteristic Description

Returns Logarithm of a specified number.

Return type Double (for Oracle Health Sciences Central
Designer float types).

Syntax Math.Log(a)

Parameters • Parameter—a
• Definition—A number for which a logarithm is

to be found.
• Data type—Any numeric data type.

Log10

Characteristic Description

Returns Base 10 logarithm of a specified number.

Return type Double (for Oracle Health Sciences Central
Designer float types).

Syntax Math.Log10(a)

Parameters • Parameter—a
• Definition—A number for which a logarithm is

to be found.
• Data type—Any numeric data type.

Max

Characteristic Description

Returns Larger of two specified numbers.

Return type Data type of the parameter you enter.

Syntax Math.Max(a, b)

Parameters • Parameter—a
• Definition—The value of the first number to

compare.
• Data type—Any numeric data type.

– • Parameter—b
• Definition—The value of the second number

to compare.
• Data type—Any numeric data type.

Chapter 6
Methods

6-4

Min

Characteristic Description

Returns Smaller of two specified numbers.

Return type Data type of the parameter you enter.

Syntax Math.Min(a, b)

Parameters • Parameter—a
• Definition—The value of the first number to

compare.
• Data type—Any numeric data type.

– • Parameter—b
• Definition—The value of the second number

to compare.
• Data type—Any numeric data type.

Pow

Characteristic Description

Returns Specified number raised to the specified power.

Return type Double (for Central Designer float types).

Syntax Math.Pow(a, b)

Parameters • Parameter—a
• Definition—The number to be raised to a

power.
• Data type—Any numeric data type.

– • Parameter—b
• Definition—The number that specifies a

power.
• Data type—Any numeric data type.

Round

Characteristic Description

Returns Value rounded to the nearest integer or specified
number of decimal places.

Return type Int32 (for Oracle Health Sciences Central Designer
Integer and YesNo types).

or

Double (for Oracle Health Sciences Central
Designer float types).

Syntax Math.Round(a, b)

Parameters • Parameter—a
• Definition—A number to be rounded.
• Data type—Any numeric data type.

Chapter 6
Methods

6-5

Characteristic Description

– • Parameter—b
• Definition—The number of decimal places

(precision) in the return value.
• Data type—Integer

Sqrt

Characteristic Description

Returns Square root of a specified number.

Return type Double (for Oracle Health Sciences Central
Designer float types).

Syntax Math.Sqrt(a)

Parameters • Parameter—a
• Definition—A number for which a square root

is to be found.
• Data type—Any numeric data type.

Truncate

Characteristic Description

Returns Integral part of a number.

Return type Int32 (for Oracle Health Sciences Central Designer
Integer and YesNo types).

Syntax Math.Truncate(a)

Parameters • Parameter—a
• Definition—A number for which the integral

part is to be found.
• Data type—Any numeric data type.

Examples—Math methods in rule expressions
For example, you might want to raise a query when the value of an item is a specific distance
from a known mean value. You can create constants called Mean and Range for the mean and
the range from the mean value. The rule might look like this:

evaluate on Form Submission
value = (Mean + Range) >= item.Value && item.Value >= (Mean – Range)
when value is false
query “Value is out of range”

However, because the difference between the mean value and the range could be positive or
negative, you must check the absolute value against the range. In that case, you can use the
math method that returns an absolute value. Your rule might look like this:

evaluate on Form Submission
value = Math.Abs(Mean – item.Value) <= Range

Chapter 6
Methods

6-6

when value is false
query “Value is out of range”

Methods for study objects
For a list of methods for repeating and non-repeating study objects, see:

• Methods for repeating study objects.

• Methods for non-repeating study objects.

Data set methods
Data sets can contain multiple data series, which can contain multiple items. You use data set
methods to return a data set that is a subset of the original data set. Data set methods always
return a data set, not a single value.

Methods for data sets appear in the Rule Wizard in the Expression tab > Data Mappings tab.
The list of methods that appear is based on the selection of standard data dimensions and the
creation of custom data dimensions in the definition of the data set. In addition to the data set
methods listed in the following table, one method appears for each custom dimension that is
created for the data set.

Standard data dimensions selected Data set method in Data Mappings tab

Event StudyEvent(StudyEvents)

Event and Event Index StudyEvent(StudyEvents, Integer)

Form Forms(Forms)

Form and Form Index Form(Forms, Integer)

Section Section(Sections)

Section and Section Index Section(Sections, Integer)

Item Item(Items)

Note:

You cannot use a data set method more than once in a rule expression.

Operators and literals
You can use operators:

• To create rule expressions.

• To include an expression in the parameters of a function.

• To include an expression in the "when" part of a rule.

For more information, see:

• Frequently used operators

• Frequently used literals

Chapter 6
Operators and literals

6-7

Frequently used operators
For more information, see a C# or Java programming reference.

Operator category Operator Use Description

Arithmetic + x + y Adds x and y.

– - x - y Subtracts y from x.

– * x * y Multiplies x by y.

– / x / y Divides x by y.

– % x % y Returns the remainder of
integer division of x and
y.

Logical (Boolean and
bitwise)

& x & y Evaluates both x and y
and returns the logical
conjunction ("AND") of
their results. If x and y
are integers, the logical
conjunction is performed
bitwise.

– | x | y Evaluates x and y and
returns the logical
disjunction ("OR") of
their results. If x and y
are integers, the logical
disjunction is performed
bitwise.

– ^ x ^ y Returns the exclusive or
("XOR") of their results.
If x and y are integers,
the exclusive or is
performed bitwise.

– ! !x Evaluates x and returns
the negation ("NOT") of
the result.

• If x evaluates to
false, it returns true.

• If x evaluates to
true, it returns false.

– ~ ~x Evaluates x and returns
the bitwise negation of
the result. ~x returns a
value where each bit is
the negation of the
corresponding bit in the
result of evaluating x.

Chapter 6
Operators and literals

6-8

Operator category Operator Use Description

– && x && y Evaluates x.

• If the result is false,
it returns false.

• Otherwise, it
evaluates and
returns the results
of y.

Note that if evaluating y
would hypothetically
have no side effects, the
results are identical to
the logical conjunction
performed by the &
operator.

– || x || y Evaluates x.

• If the result is true, it
returns true.

• Otherwise, it
evaluates and
returns the results
of y.

Note that if evaluating y
would hypothetically
have no side effects, the
results are identical to
the logical disjunction
performed by the |
operator.

– () – Used to group
information.

String concatenation + x + y Concatenates strings.

Relational == x == y • If x and y have the
same value, it
returns true.

• Otherwise, it returns
false.

– != x != y Returns the logical
negation of the operator
==.

• If x is not equal to y,
it returns true.

• If x is equal to y, it
returns false.

– < x < y • If x is less than y, it
returns true.

• Otherwise, it returns
false.

– > x > y • If x is greater than y,
it returns true.

• Otherwise, it returns
false.

Chapter 6
Operators and literals

6-9

Operator category Operator Use Description

– <= x <= y • If x is less than or
equal to y, it returns
true.

• Otherwise, it returns
false.

– >= x >= y • If x is greater than
or equal to y, it
returns true.

• Otherwise, it returns
false.

Member access . this.Value Used to form long
names.

Indexing [] – Used to access array
elements.

Conditional ?: x ? y : z • If x is true, it returns
y.

• Otherwise, it returns
z.

Assignment = x = y Assigns the value of y to
x.

Frequently used literals
Literals are like constants that you can include in expressions.

Literal type Literal Description

Boolean true A literal for true and false.

– false –

String “xxx” A group of characters. Strings are
delimited with double quotes (").
To quote within a string, use a
backslash (\) to precede the
double quotes.

– “xx\”x” –

Integer Example: 13 A number without a decimal point
or exponent.

Float Example: 13.2 A number with a decimal point or
exponent.

Chapter 6
Operators and literals

6-10

7
Sample expressions for data-entry rules

In this chapter:

• Sample expresions that use operators

• Sample data-entry rule that uses the Data tab

• Sample data-entry rule that uses rule model properties

• Sample data-entry rules that use methods

• Sample data-entry rule that uses constants

• Sample data-entry rules that use functions

• Sample calculation rules

• Sample data-entry rules that use mappings

Sample expresions that use operators

Example: Expression:

x is greater than y x > y

x is less than or equal to z x <= z

x is greater than y and x is less than or equal to z (x > y) && (x <= z)

x is greater than y or x is less than or equal to z (x > y) || (x <= z)

x is equal to 3 or x is equal to 6.4 (x = =3) || (x = =6.4)

x is not more than ten percent greater than y x <= y*1.1

!(x>y*1.1)

If x is greater than y, then value is 100, else value is
200.

x>y?100:200

If x is not greater than y, then check if y is greater
than z. Otherwise, return false.

!(x>y)?y>z:false

x>y?false:y>z

x<=y?y>z:false

Sample data-entry rule that uses the Data tab
Example 1

Characteristic Description

Description Create a rule named rulCompareQTcQRS that
checks that the QTc interval (on the ECG form) is
greater than (exclusive) the QRS interval. If false,
issue a query on the QTc item that says QTc must
be greater than QRS. Please verify.

Scope ECG form

7-1

Characteristic Description

Study structure ECG (form)

• QTcInt (item)

• QRSDur (item)

Rule summary
evaluate on Form Submission

value = this.itmQTcInt.Value >
this.itmQRSInt.Value

when value is false
issue query on this.QTcInt: QTc
interval must be greater than QRS
interval. Please verify.

Example 2

Characteristic Description

Description Create a rule named rulExclusionCheck1
that checks for a response other than No for a
question on the Exclusion form. If the response is
not No, fire a query. (Use the codelist item from the
Data tab.)

Scope Exc1 item

Study structure Excl (form)

• Exc1 (item)
– YesNoCodes (codelist)

* Yes (codelist item)

* No (codelist item)

Rule summary
evaluate on Form Submission

value = this.Value ==
this.clYesNoCodelist.citmclNo

when value is false
issue query: The answer to this
question indicates that the patient
is not eligible for the study.
Please clarify or correct.

Chapter 7
Sample data-entry rule that uses the Data tab

7-2

Sample data-entry rule that uses rule model properties

Characteristic Description

Description Create a rule named
rulCheckCompletionDate that checks that a
study completion date has been entered if Yes is
selected for Study complete?. Issue a query when
the rule evaluates to true.

Scope Study Completion form

Study structure CompletionStatus (form)

• CompDate (item)
• CompletionStatus (item)

– YesNoCodes (codelist)
* Yes (codelist item)
* No (codelist item)

Rule summary
evaluate on Form Submission

value =
this.itmCompletionStatus.Value ==
this.itmCompletionStatus.clYesNoCodel
ist.citmYes ?
this.itmCompDate.Empty : false

when value is true
issue query on
this.itmCompletionStatus: Study
completetion date cannot be empty,
if study completion status is
complete. Please verify.

Sample data-entry rules that use methods
Example 1

Characteristic Description

Description Use a math method to round the result of the
existing rule, rulCalcBMI, to two decimal
places.

Scope Baseline event

Study structure • Baseline (study event)
– Demog (form)

* HT (item)

– Vitals (form)
* Weight (item)

* BMI (item)

Chapter 7
Sample data-entry rule that uses rule model properties

7-3

Characteristic Description

Rule summary
evaluate on Form Submission

value =
Math.Round(_CalculateBMI(this.frmDemo
graphics.itmHeight.Value,this.frmVita
ls.itmWeight.Value),2)

always
set this.frmVitals.itmBMI.Value =
value

Note:

The solution above is
the simplest solution,
but not the best, as it
does not clear the
BMI field if Height or
Weight are
subsequently cleared,
and it will cause an
ISE if Height is 0.0. A
better solution
follows.

evaluate on Form Submission

value = !
this.frmDemographics.itmHeight.Empty
&& !this.frmVitals.itmWeight.Empty
?
(this.frmDemographics.itmHeight.Value
 != 0 ?
1:
(!this.frmVitals.itmBMI.Empty ?
2 : 3)) :
(!this.frmVitals.itmBMI.Empty ?
2 : 3)

when value == 1
 set this.frmVitals.itmBMI.Value
=
Math.Round(_CalculateBMI(this.frmDemo
graphics.itmHeight.Value,this.frmVita
ls.itmWeight.Value),2)
 when value == 2

Chapter 7
Sample data-entry rules that use methods

7-4

Characteristic Description

set this.frmVitals.itmBMI.Empty =
true

Characteristic Description

Description Create a rule named rulTabsDispensed that
checks that the sum of tablets dispensed is greater
than zero and less than 500. The sum of tablets
should use 0 as a replacement value. If false, fire a
query.

Scope Dispensing Record section

Study structure • DISPREC (section)
– Tabs (compound item)

* onemg (item)

* twomg (item)

* threemg (item)

Rule summary
evaluate on Form Submission

value =
(this.itmTabNum.itmonemg.GetValue(0)
+
this.itmTabNum.itmthreemg.GetValue(0)
 +
this.itmTabNum.itmtwomg.GetValue(0))
> 0 &&
(this.itmTabNum.itmonemg.GetValue(0)
+
this.itmTabNum.itmthreemg.GetValue(0)
 +
this.itmTabNum.itmtwomg.GetValue(0))
< 500

when value is false
 issue query on this.itmTabNum:
The total number of tablets
dispensed {TabsDisp} is not within
the expected range. Please clarify
or correct.

Chapter 7
Sample data-entry rules that use methods

7-5

Sample data-entry rule that uses constants

Characteristic Description

Description Create a rule named
rulTempRangeCheckInclusive that checks
that the Temperature item is >=36.1 and <=37.8. If
not create a query: The entered temperature
{EnteredTemp} {EnteredTempUnit} is outside the
expected range. Use the TempMin and TempMax
constants that you created in the expression. Use
the EnteredValue and EnteredUnit rule model
properties to construct the query text.

Scope Temperature item on the Vitals form

Study structure • Vitls (form)
– Pulse (item)

Chapter 7
Sample data-entry rule that uses constants

7-6

Characteristic Description

Rule summary
evaluate on Form Submission

value = Value must be greater than
or equal to
{MinValue:Constants.TemperatureRange.
TempMin}, and less than or equal to
{MaxValue:Constants.TemperatureRange.
TempMax}

when value is false
issue query: The entered temperature
{EnteredTemp} {EnteredTempUnit} is
outside the expected range of
{TempMin} to {TempMax}

OR
evaluate on Form Submission

value = this.Value >=
(Constants.TemperatureRange.TempMin)
&&
this.Value
<=(Constants.TemperatureRange.TempMax
)

when value is false
 issue query: The entered
temperature {EnteredTemp}
{EnteredTempUnit} is outside the
expected range.

Note:

In the first solution,
the rule is defined as
an intrinsic rule that
uses the range check
rule template. In the
second solution, the
rule is defined as a
constraint rule that
does not use a
template.

Sample data-entry rules that use functions
The _GetDateDifference function uses twenty-four hour periods, not calendar days, to compute
the differences in days. If the DOV item contained date and time information, there are two
possible solutions. The first solution uses the complete DOV date/time and the

Chapter 7
Sample data-entry rules that use functions

7-7

_GetDateDifference function and therefore evaluates days as twenty-four hour periods. The
alternate solution evaluates the differences between DOVs using calendar days by creating
new DateTime objects that contain no Time information from the DOVs and passing those new
DateTime objects to the _GetDateDifference function. Each of the solutions uses the
predefined constant DateTimeParts.Days.

Example 1

Characteristic Description

Description Create a rule named rulWeekSeqCk that checks
that there are 7 days between Week 1B and Week
2B visits. Issue a query on the Week 2B DOV item
(in Treatment Arm B), if the DOV on the Week 2B
study event is less than 7 days after the DOV on
the Week 1B study event.

Scope Treatment Arm B study element

Study structure • Week 1
– frmDOV (form)

* DOV (item)

• Week 2
– frmDOV (form)

* DOV (item)

Rule summary
evaluate on Form Submission

value = _GetDateDifference
(this.evtWeek1B.frmDOV.sctDOV.itmDOV.
Value,
this.evtWeek2B.frmDOV.sctDOV.itmDOV.V
alue,
Constants.DateTimeParts.Days)>=7

when value is false
 issue query on
this.evtWeek2B.frmDOV.sctDOV.itmDOV:
Date of Visit is less than a week
after the Date of Visit given at
Week 1. Please clarify or correct.

Chapter 7
Sample data-entry rules that use functions

7-8

Characteristic Description

Alternate rule summary
evaluate on Form Submission

value = _GetDateDifference
(new
DateTime(this.evtWeek1B.frmDOV.sctDOV
.itmDOV.Value.Year,
this.evtWeek1B.frmDOV.sctDOV.itmDOV.V
alue.Month,
this.evtWeek1B.frmDOV.sctDOV.itmDOV.V
alue.Day, 00, 00, 00),
new
DateTime(this.evtWeek2B.frmDOV.sctDOV
.itmDOV.Value.Year,
this.evtWeek2B.frmDOV.sctDOV.itmDOV.V
alue.Month,
this.evtWeek2B.frmDOV.sctDOV.itmDOV.V
alue.Day, 00, 00, 00),
DateTimeParts.Days) >= 7

when value is false
 issue query on
this.evtWeek2B.frmDOV.sctDOV.itmDOV:
Date of Visit is less than a week
after the Date of Visit given at
Week 1. Please clarify or correct.

Characteristic Description

Description Create a rule named
rulDateCompareWithRange that checks
that the DOV in Week 2A is within 6-8 days after
the DOV in Week 1A (in Treatment Arm A).

Scope Treatment Arm A study element

Structure • Week1A
– frmDOV (form)

* DOV (item)

• Week2A
– frmDOV (form)

* DOV (item)

Chapter 7
Sample data-entry rules that use functions

7-9

Characteristic Description

Rule summary
evaluate on Form Submission

value =
_CompareDatesWithRange(this.evtWeek1A
.frmDOV.sctDOV.itmDOV.Value,this.evtW
eek2A.frmDOV.sctDOV.itmDOV.Value,Cons
tants.DateTimeParts.Days,6,8)

when value is false
issue query on
this.Week2A.frmDOV.sctDOV.itmDOV:
The date of the Week 1A visit and
the date of the Week2A visit are not
within 6-8 days of each other.
Please clarify or correct.

Alternate rule summary
evaluate on Form Submission

value =
_CompareDatesWithRange(this.evtWeek1A
.frmDOV.sctDOV.itmDOV.Value,this.evtW
eek2A.frmDOV.sctDOV.itmDOV.Value,Cons
tants.DateTimeParts.Days,6,8)

when value is false
 issue query on
this.Week2A.frmDOV.sctDOV.itmDOV:
The date of the Week 1A visit and
the date of the Week2A visit are not
within 6-8 days of each other.
Please clarify or correct.

Sample calculation rules
Example 1

Characteristic Description

Description Using the CalcAge function, create a rule named
rulCalcAge that calculates a subject's age and
populates the age field. Use the DOV from the visit
containing the DEM form.

Scope Baseline study event

Chapter 7
Sample calculation rules

7-10

Characteristic Description

Study structure • Baseline (study event)
– frmDOV (form)

* DOV (item)

– Demog (form)
* DOB (item)

* AGE (item)

Rule summary
evaluate on Form Submission

value = !
this.frmDOV.sctDOV.itmDOV.Empty &&
!this.frmDemographics.itmDOB.Empty ?
1
:(!
this.frmDemographics.itmAGE.Empty ?
2:3)

when value == 1
 set
this.frmDemographics.itmAGE.Value =
_CalcAge(this.frmDemographics.itmDOB.
Value,
this.frmDOV.sctDOV.itmDOV.Value)

when value == 2
 set
this.frmDemographics.itmAGE.Empty =
true

Example 2

Characteristic Description

Description Create a rule named rulBMIRangeCheck that
checks that the BMI is between 18.5 and 30.
Specify an action to issue a query if the BMI is out
of range.

Scope Baseline event

Study structure • Baseline (study event)
– Vitals (form)

* Weight (item)

* BMI (item)

– Demog (form)
* HT (item)

Chapter 7
Sample calculation rules

7-11

Characteristic Description

Rule summary
evaluate on Form Submission

value = (this.Value >=
Constants.BMIRange.BMILow)&&
(this.Value <=
Constants.BMIRange.BMIHigh)

when value is false
 issue query on this: BMI
{CalculatedBMI} is out of range.
Please verify.

Sample data-entry rules that use mappings
Example 1

Characteristic Description

Description Create a rule called
rulCompletionLaterThanDOV that checks
whether the completion date is later than any of the
visit dates entered. If not, issue a query.

Scope Global; rule is on the Study Completion form, using
data from every instance of the DOV form.

Study structure • fmStudyCompletion (form)
– itmCompletionDate (item)

• fmDOV (form in each study event)
– itmDOV (Item)

• VisitDates (mapping)
– VisitDatesDataSet (data set)

* DOVs (data series with itmDOV item
mapped using the Always mapping
type so the item is available in every
form and every study event where it
occurs)

Rule summary
evaluate on Form Submission

value =
_IsValueGreaterThanOrEqualToArray
(this.Value,this.VisitDatesDataSet.DO
Vs.Values)

when value is false
 issue query: Termination Date
must be later than any visit date.

Chapter 7
Sample data-entry rules that use mappings

7-12

Example 2

Characteristic Description

Description Create a rule called rulHemoglobinRange
that checks whether the entered hemoglobin range
is between 140 and 180 for males or between 120
and 160 for females. If not, issue a query.

Scope Global; rule is on the Hematology form, using data
from the Demographics form.

Study structure • fmHematology (form)
– itmHgb (item)

• fmDemog (form)
– itmGender (item)

• Demog (mapping)
– DemogDataSet (data set)

* GenderDataSeries (data series with
itmGender item mapped)

Rule summary
evaluate on Form Submission

this.DemogDataSet.GenderDataSeries.Ge
nderCodes.Female &&
this.Value >=
Constants.HgbRanges.HgbLowF &&
this.Value
<=Constants.HgbRanges.HgbHighF) ||
(this.DemogDataSet.GenderDataSeries.V
alue ==
this.DemogDataSet.GenderDataSeries.Ge
nderCodes.Male &&
this.Value
>=Constants.HgbRanges.HgbLowM &&
this.Value <=
Constants.HgbRanges.HgbHighM)

when value is false
 issue query: This {EnteredValue}
is outside valid hemoglobin range
for {EnteredGender}s.

Chapter 7
Sample data-entry rules that use mappings

7-13

8
Option descriptions

In this appendix:

• Rule expressions

• Functions

• Constants

Rule expressions
In this section:

• New Rule Template dialog box—Option descriptions

• Rule Templates tab—Option descriptions

New Rule Template dialog box—Option descriptions

Option Description

Properties tab –

Name Name of the rule template.

Classification User-defined term used to organize rule templates.

Description Description of the rule template.

Display Text Text that appears in the Rule Summary section of
the Rule wizard after the When Value Is
information.

If this field is blank, the contents of the Expression
workspace are used. If the expression contains
parameters, the name of the parameter and the
value of the parameter appear. For example, if the
expression is value must be between {a} and {b},
and the value of a is 10 and the value of b is 100,
the parameters appear as a:10 and b:100.

Definition tab –

Return Type drop-down list Return type of the rule template; one of the
following: Integer, Float, String, Boolean, Date/
Time, or Array (A list of values, all of the same
type).

Expression Expression of the rule.

Parameters (Optional) –

Parameter Name of the parameter.

Data Type Return type of the parameter; one of the following:
Integer, Float, String, Boolean, Date/Time, or Array
(A list of values, all of the same type).

Default Value Specified value of the parameter.

8-1

Option Description

References –

Data tab Lists study objects in the scope of the rule.
Optionally, to view the rule model properties of all
of the study objects, select Show all.

Functions tab Lists functions registered in a study and the
libraries that appear in the Libraries List in the
Study Editor. Any rule in the study can reference a
function.

Constants tab Lists constants created in the study and the
libraries that appear in the Libraries List in the
Study Editor. Any rule in the study can reference a
constant.

Data Mappings tab Lists:

• RefNames of the data mappings, data sets,
and data series in the study or library.

• Rule model properties for data series.
A data series has the properties of the item
that is mapped to it. If a data series contains
an item that collects more than one value, the
rule model properties for repeating study
objects appear so you can access an array of
all of the values of the item.

• Methods for data sets.
A method appears if you select the
corresponding standard data dimension of the
data set. You can use data set methods to
return a subset of the data in the data set.

• Study events, forms, sections, and items that
are mapped to each data set.

• Study objects appear if you select the
corresponding standard data dimension of the
data set. The properties of the study objects
are used as parameters of data set methods.

Rule Templates tab—Option descriptions
The grid displays rule templates created on the study object selected in the Project Explorer.

Option Description

Rule templates grid –

Data Type Return type of the rule template.

Description Description of the rule template.

Display Text Text that appears in the Rule Summary section of
the Rule wizard after the When Value Is
information.

Id Identification information for the rule.

Expression Rule expression of the rule template.

Parameters Specified parameters of the rule template,
separated by semicolons.

Template Name Name of the rule template.

Chapter 8
Rule expressions

8-2

Option Description

Type Indicates that the rule was created using the Oracle
Central Designer rule expression language.

Functions
In this section:

• Functions tab on the Study and Library information Explorer bars

• Functions tab—Option descriptions

• Edit Function dialog box—Option descriptions

Functions tab on the Study and Library information Explorer bars
The Functions tab displays imported, user-defined functions that you can use with rules and
rule templates in a study or library. Functions defined in the Functions tab are available study-
or library-wide, regardless of the scope of any rules.

A function is a reusable piece of code that extends the behavior of a rule. Many predefined
functions are available by default in the System Library.

The Functions tab is available in the following locations:

• Study Information Explorer bar > study node.

• Library Information Explorer bar > library node.

Functions tab—Option descriptions

Option Description

Fields

Note:

Not all fields appear
in the default view.
Optionally, you can
add the other fields to
the browser view, and
you can rearrange
the order of fields. For
more information, see
Showing and hiding a
field in the User
Guide.

Class The class in which the function is included.

Classification User-defined text used to group, sort, and filter
functions.

Chapter 8
Functions

8-3

Option Description

Data Type Return type of the function, either Integer, Float,
String, Boolean, Date/Time, or Array (A list of
values, all of the same type).

Description Description of the function.

Filename Name of the assembly file that contains the
function.

ID Unique identifier for the function.

Language Language in which the function was written.

Name Name of the function.

Parameters Parameters for the function.

Published (only in libraries) Indicates that the study object has been published.

Title Title of the function.

Type Function type. All functions are .NET class
functions.

Toolbar buttons –

Import function Import an existing function.

Edit Open the selected function to view or edit it.

Delete Delete the selected function.

Publish (only in libraries) Publish the selected function. This button is
enabled for library objects that have been saved.

Edit Function dialog box—Option descriptions

Option Description

Properties tab –

Name Name of the function.

Classification User-defined text used to group, sort, and filter
functions.

Description Description of the function.

Definition tab –

Return Type Data type for the returned value for the function.
One of the following: Integer, Float, String,
Boolean, Date/Time, or Array (A list of values, all of
the same type).

Assembly Name of the assembly file that contains the
function.

Browse Locate the assembly for the function.

Class The class in which the function is included.

Chapter 8
Functions

8-4

Option Description

Parameters section In the parameters section, you can provide one or
more parameters for the function.

Note:

Not all fields appear
in the default view.
Optionally, you can
add the other fields to
the browser view, and
you can rearrange
the order of fields. For
more information, see
Showing and hiding a
field in the User
Guide.

Data Type, Default Value, Description, Parameter Data type, default value, description, and name of
the parameter.

Constants
In this section:

• Constants tab on the Study and Library Information Explorer bars

• Constants tab—Option descriptions

• New Constant dialog box—Option descriptions

Constants tab on the Study and Library Information Explorer bars
In the Constants tab of the Study and Library Editors, you can define constants to be used in
rules in the study or library. Constants defined in the Constants tab are available study- or
library-wide, regardless of the scope of any rules.

A constant is a value that is defined in a library or study and that can be referenced by any
rule.

Chapter 8
Constants

8-5

Constants tab—Option descriptions

Option Description

Fields

Note:

Not all fields appear
in the default view.
Optionally, you can
add the other fields to
the browser view, and
you can rearrange
the order of fields. For
more information, see
Showing and hiding a
field in the User
Guide.

Classification User-defined text used to group, sort, and filter
constants.

Data Type Return type of the constant:

• Integer—Contains only numbers.
• Float—Contains numbers and a decimal point.
• String—Contains alphanumeric characters.
• Boolean—True or False.
• Date/Time—Contains date and time

information.

Description Description of the constant.

Name Name of the constant. The name must:

• Begin with a letter.
• Contain only letters and digits.
• Be unique.

Published (only in libraries) Indicates that the study object has been published.

Value Value of the constant.

Toolbar buttons –

New Constant

Delete

Create and delete a constant.

Publish (only in libraries) Publish the selected constant. This button is
enabled for library objects that have been saved.

New Constant dialog box—Option descriptions

Option Description

Name Name of the constant.

Data Type Data type of the constant, such as Integer, Float,
String, Boolean, or Date/Time.

Chapter 8
Constants

8-6

Option Description

Value Value of the constant. The value must:

• Follow C# variable standards.
• Start with a letter or an underscore.
• Contain only letters, numbers, and

underscores.

Classification (Optional) User-defined classification of the
constant.

Description (Optional) Description of the constant.

Chapter 8
Constants

8-7

	Contents
	Preface
	Documentation accessibility
	Related resources
	Diversity and Inclusion
	Access to Oracle Support
	Additional copyright information

	1 Rule expressions
	About the rule expression language
	Components of the rule expression language
	Mappings in rules
	Conversion to different units in rules
	Rules with multiple conditions

	Dynamic prompts in the Expression workspace
	Selecting a rule model object from a dynamic expression prompt

	Rule templates
	Creating, modifying, and deleting a rule template?
	Create a rule template
	Modify a rule template
	Delete a rule template
	Other descriptions for the New Rule Template dialog box

	Default rule templates
	_CheckTextLength
	_DateTimeRangeCheck
	_FutureDateCheck
	_PartialCompletenessCheck
	_RangeCheck
	_RangeCheckInclusive
	ValidBPCheck

	2 Data
	Data tab
	Using data in rules and rule templates
	Icons used on the Data tab
	Rule model properties for study events, forms, and sections
	[Name of review stage]
	[Name of review state]
	CurrentIndex
	Count
	HasData
	IsDeleted
	RelatedData[]
	ReviewStates

	Rule model properties for items
	[Alias or code of codelist item]
	[Name of codelist]
	Cloud Reference Topic Title
	AllValues[]
	Completed
	CurrentAllObjectsIndex
	CurrentAllValuesIndex
	CurrentObjectsIndex
	CurrentValuesIndex
	Empty
	EnteredUnit
	EnteredValue
	Objects[]
	Selected[]
	Value
	Value[]
	ValueLabel
	Values[]

	Rule model properties for DateTime items
	Year
	YearEmpty
	YearUnknown
	Month
	MonthEmpty
	MonthUnknown
	Day
	DayEmpty
	DayUnknown
	Hour
	HourEmpty
	HourUnknown
	Minute
	MinuteEmpty
	MinuteUnknown
	Second
	SecondEmpty
	SecondUnknown

	Methods for repeating study objects
	[] [Indexer]
	Current()
	Examples--Using the Current() method and IsValueInArray function

	Current(Integer)
	GetValue

	Methods for non-repeating study objects
	GetReviewStates
	HasReviewStates
	HasState(Integer)
	Example--Methods for non-repeating study objects

	3 Functions
	Functions tab of the rule wizard
	Functions in rules and rule templates
	Dynamic prompts in the Expression workspace
	Viewing and editing a function
	Deleteing a function
	About predefined functions
	Date time processing
	Exceptions
	Predefined functions in the system library
	_CalculateBMI
	_CalculateBSA
	_CalculateDateTime
	_CalculateWaistHipRatio
	_CheckPatientInitials
	_CompareDates
	_CompareDatesWithRange
	_Count
	_Count(String, Array, Boolean)
	_Count(Date, Array)
	_Count(Integer, Array)
	_Count(Float, Array)

	_GetCurrentDate
	_GetDateDifference
	GetScreeningNumber
	GetSiteLocale
	GetSiteMnemonic
	GetSiteTime
	GetTrialName
	GetUserName
	GetSubjectNumber
	_IsValueGreaterThanArray
	_IsValueGreaterThanArray (PFDateTime, Array)
	_IsValueGreaterThanArray (Float, Array)
	_IsValueGreaterThanArray (Integer, Array)

	_IsValueGreaterThanOrEqualToArray
	_IsValueGreaterThanOrEqualToArray (PFDateTime, Array)
	_IsValueGreaterThanOrEqualToArray (Float, Array)
	_IsValueGreaterThanOrEqualToArray (Integer, Array)

	_IsValueInArray
	_IsValueInArray (PFDateTime, Array)
	_IsValueInArray (Float, Array)
	_IsValueInArray (Integer, Array)
	_IsValueInArray (Text, Array)

	_IsValueLessThanArray
	_IsValueLessThanArray (PFDateTime, Array)
	_IsValueLessThanArray (Float, Array)
	_IsValueLessThanArray (Integer, Array)

	_IsValueLessThanOrEqualToArray
	_IsValueLessThanOrEqualToArray (PFDateTime, Array)
	_IsValueLessThanOrEqualToArray (Float, Array)
	_IsValueLessThanOrEqualToArray (Integer, Array)

	_NormalizeDate
	_NormalizeDate (PFDateTime, PFDateTime)
	_NormalizeDate (PFDateTime, PFDateTime, PFDateTime)

	_NormalizeDateToMax
	_NormalizeDateToMax (Date)
	_NormalizeDateToMax (Array)

	Randomize
	Example—Using the Randomize function

	_SaveToDb (String, String)

	About user-defined functions
	Function definition requirements
	Recommendations for creating user-defined functions
	Creating a user-defined function
	Importing a user-defined function
	Attributes of user-defined functions
	DesignerFunctionClassification
	DesignerFunction
	DesignerParameter

	Signing user-defined function assemblies
	Securing user-defined functions
	Sample function definition code

	4 Constants
	Constants tab of the Rule Wizard
	Using constants in rules and rule templates
	Predefined constants in the System Library
	Creating a constant
	Constants tab - Option descriptions
	New Constant dialog box - Option descriptions

	Deleting a constant

	5 Data mappings
	Data Mappings tab
	Using data mappings in rules and rule templates
	Icons used on the Data Mappings tab
	Rule model properties for data series
	Count
	Values[]
	Variables[]
	Empty
	Value

	Methods for data sets
	StudyEvent(StudyEvents)
	StudyEvent(StudyEvents, Integer)
	Forms(Forms)
	Form(Forms, Integer)
	Section(Sections)
	Section(Sections, Integer)
	Item(Items)
	[NameOfCustomDataDimension
	Examples—Data set methods in rule expressions
	CurrentStudyEvent()

	Additional study objects in the Data Mappings tab
	Study events
	Forms
	Sections
	Items

	6 Methods, operators, and literals
	Methods
	Math methods
	Abs
	Ceiling
	DivRem
	Exp
	Floor
	IEEERemainder
	Log
	Log10
	Max
	Min
	Pow
	Round
	Sqrt
	Truncate
	Examples—Math methods in rule expressions

	Methods for study objects
	Data set methods

	Operators and literals
	Frequently used operators
	Frequently used literals

	7 Sample expressions for data-entry rules
	Sample expresions that use operators
	Sample data-entry rule that uses the Data tab
	Sample data-entry rule that uses rule model properties
	Sample data-entry rules that use methods
	Sample data-entry rule that uses constants
	Sample data-entry rules that use functions
	Sample calculation rules
	Sample data-entry rules that use mappings

	8 Option descriptions
	Rule expressions
	New Rule Template dialog box—Option descriptions
	Rule Templates tab—Option descriptions

	Functions
	Functions tab on the Study and Library information Explorer bars
	Functions tab—Option descriptions
	Edit Function dialog box—Option descriptions

	Constants
	Constants tab on the Study and Library Information Explorer bars
	Constants tab—Option descriptions
	New Constant dialog box—Option descriptions

