
Oracle Health Sciences Data
Management Workbench
Study Builder Recommendations

Release 3.2
F56168-01
April 2022

Oracle Health Sciences Data Management Workbench Study Builder Recommendations, Release 3.2

F56168-01

Copyright © 2017, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 General recommendations

Create and modify study objects in the DEV lifecycle only 1-1

Use the DMW user interface to work with objects in the DMW_DOMAIN 1-1

Do not perform tasks in the DMW_DOMAIN work areas if check out required 1-2

2 InForm integration

After a LIVE deployment, do not remove forms or items from your InForm study 2-1

After a LIVE deployment, do not modify form or item RefNames 2-1

Re-load study data after each round of testing 2-2

Keep the InForm data model in sync between the Development and QC lifecycles 2-2

Do not promote standard libraries or templates to Production 2-2

Run a full data model installation after an InForm UAT study reset 2-3

3 Clinical One integration

Work with two-section form data in DMW 3-1

4 External data loads

Set up file watchers and load data to Development and QC before you promote 4-1

Create input data models for new data sources by loading an externally-created MDD file 4-1

Accurately define data sources 4-1

5 Clinical data models

In DEV and QC, run a full data model installation only to revert destructive changes 5-1

Install and promote data models after every change 5-1

Check out the associated transformation when you update a target data model 5-2

Limit data model size 5-2

Check out a data model to remove or update its business areas 5-2

Include a SUBJECTVISIT table 5-3

iii

Use SDTM Identifiers for as many columns as possible 5-3

6 Transformations

Use the Regenerate program definitions option to rebuild program definitions in a
transformation 6-1

Remove a source model from its transformations before deleting it 6-1

Avoid using the Undo Checkout feature for transformations 6-1

Use unique aliases 6-2

Do not copy a transformation that needs an upgrade 6-2

Wait to create staging tables 6-2

7 Custom listings

Do not modify private custom listings 7-1

Do not modify a public listing after you promote it 7-1

Do not use staging tables as a source for custom listings 7-1

8 Validation checks

Make sure to select a relevant discrepant column 8-1

Avoid renaming columns in VC listings 8-1

Verify the validity of a validation check batch before you copy it 8-1

Copy valid validation checks 8-2

Copy blinded validation checks to blinded tables 8-2

Do not remove a source table from a validation check 8-2

Do not use staging tables as a source for validation checks 8-2

9 Custom programs and functions

Avoid using custom programs 9-1

To create table descriptions for a custom program, copy existing table definitions in LSH 9-1

Use cloning to create study-specific custom programs 9-2

Include only columns for the Listing user interface in a custom program for a validation
check 9-2

Specify a static reference for secondary source code 9-2

iv

1
General recommendations

• Create and modify study objects in the DEV lifecycle only

• Use the DMW user interface to work with objects in the DMW_DOMAIN

• Do not perform tasks in the DMW_DOMAIN work areas if check out required

Create and modify study objects in the DEV lifecycle only
You should only create and modify study object in the Development lifecycle as described:

• Recommendation: Use the Development lifecycle to build your study, then promote
objects to QC and Production.

• Rationale: Underlying LSH functionality supports this usage model. QC is the only place
where you have a reasonable ability to verify how objects will behave when you promote
them to Production. In addition, when you check an object out of the QC or Production
lifecycle, you need to re-promote it to QC and back to Production.

• Additional information: If you check out a model, transformation or validation check in
QC or Production, the existing installed version of the object in the QC and Production
lifecycles continues to function until you promote the new version to QC or Production
and install it there.

We recommend that you use each lifecycle in the following ways:

• Development: Create clinical data models, transformation programs, and validation
checks. You can create them manually or from a library, a study, or a study template.
Load data into the Development lifecycle schema, and do initial testing there.

• QC: Formally test study components (optional). This is equivalent to the UAT InForm
environment.

• Production: Load, review, and clean production study data. The system prevents
destructive changes to tables and models in a production environment.

Use the DMW user interface to work with objects in the
DMW_DOMAIN

• Recommendation: When working with the DMW_DOMAIN and the DMW_UTILS sub-
domain, do only the following in the LSH user interface:

– Create therapeutic areas as sub-domains of the DMW_DOMAIN

– In the DMW_UTILS sub-domain:

* Create custom functions.

* Store custom program definitions.

* Create LSH tables and programs that you want to use in your DMW studies.

1-1

For all other tasks, use the DMW user interface.

• Rationale: Working outside of the DMW user interface to update underlying LSH
objects or create objects in DMW's hierarchy is not supported. Doing so can
cause:

– Synchronization issues between DMW and the underlying database objects.

– Instability in the LSH/DMW environment.

• Additional information: Never create any objects, including data marts, load
sets, tables, programs workflows or business areas in DMW_DOMAIN.
Provided with the correct security, data stored in DMW is still accessible to domain
hierarchy outside the DMW_DOMAIN that can establish Views to DMW_DOMAIN
tables. As a result, data marts and other LSH objects can be used against the data
that's stored and cleaned in DMW.

DMW creates all necessary application areas, work areas, programs, tables and
additional objects to function as described in the Oracle documentation.

Do not perform tasks in the DMW_DOMAIN work areas if
check out required

In general, do not perform a task in the DMW_DOMAIN work areas if the task requires
you to check out a work area as described:

• Recommendation: The exception to this rule is any task that requires you to
check out a work area that is used for a custom function, and the work area exists
in an application area in the DMW_UTILS sub-domain.

• Rationale: DMW cannot anticipate its underlying database objects being checked
out from outside its application. The unexpected object states cause system
instability.

• Additional information: Only perform actions in the DMW_DOMAIN under direct
instruction from Oracle Support or Oracle Product Engineering when they
determine it is necessary for the resolution of a Service Request.

Chapter 1
Do not perform tasks in the DMW_DOMAIN work areas if check out required

1-2

2
InForm integration

• After a LIVE deployment, do not remove forms or items from your InForm study

• After a LIVE deployment, do not modify form or item RefNames

• Re-load study data after each round of testing

• Keep the InForm data model in sync between the Development and QC lifecycles

• Do not promote standard libraries or templates to Production

• Run a full data model installation after an InForm UAT study reset

After a LIVE deployment, do not remove forms or items from
your InForm study

• Recommendation: Do not remove forms or items after you deploy your InForm study to
LIVE.

• Rationale: When you remove a form or item after a LIVE deployment, the database
column that corresponds to the removed form or item is removed from the reporting
schema for the study. This causes destructive changes to the InForm data model in the
DMW Production lifecycle.

• Additional information: Instead of removing a form:

– Add a global condition to the study, and include a triggering condition for the form that
can't be met. As a result, the form is not triggered to appear for additional subjects.

For example:

this.<visitrefname>.<formrefname>.<sectionrefname>.<itemrefname>.Empty && 1==2
– Make sure that the refpath that you use is for a valid item in the study so that the

expression is properly validated and attached to the study design.

Instead of removing an item:

– Create an in-place study revision and configure the following properties for the item:

* Display Override - Hidden

* SDV Required - False

* Required - False

After a LIVE deployment, do not modify form or item RefNames
• Recommendation: Do not modify form or item RefNames.

2-1

• Rationale: If you modify a study object's RefName, its column is removed from the
reporting database schema, and a new column is created for the new RefName.
This is a destructive change to the integrated InForm data model in DMW.

• Additional information: Instead of modifying a form or item RefName in the study
design, rename its corresponding column in the target data model in DMW.

Re-load study data after each round of testing
• Recommendation: If you integrate InForm UAT or TRN studies with DMW in the

Development or QC lifecycles, re-load study metadata after each round of testing
to ensure that you are always using the latest study version.

• Rationale: InForm UAT or TRN studies might contain columns that don't exist in
the Production study, or column properties that differ substantially. If there is a
mismatch between the metadata in DMW and the metadata in the study's
database, DMW doesn't allow you to promote the study to the Production lifecycle.

• Additional information: You can run the Meta Data Difference Report to
determine if there are differences between the InForm Production database and
the InForm data model in the DMW QC lifecycle.

Keep the InForm data model in sync between the
Development and QC lifecycles

• Recommendation: Refrain from promoting your InForm data model until you are
ready to QC all data models and transformations. After you promote, make sure to
continue promoting all changes so that the study in each lifecycle is consistent.

• Rationale: It is important to keep the InForm study versions as consistent as
possible between lifecycles. Interim changes that are not promoted to higher
lifecycles can cause deprecated object references, which creates objects in invalid
states in the InForm QC data model.

• Additional information: If you add or remove forms during review rounds, each
lifecycle that has a defined data model should see the different metadata versions
in order to properly manage the changes in each lifecycle.

Do not promote standard libraries or templates to Production
• Recommendation: Use standard libraries and templates in Development and QC

lifecycles only.

• Rationale: When you promote a study to the Production lifecycle, you can no
longer make destructive changes to it. However, because standards are updated
often, there is a reasonable expectation that you might want to make changes that
aren't allowed in Production. Maintaining these libraries and templates in QC
provides you with the freedom to make those significant changes.

• Additional information: Standard libraries are not intended to collect Production
data, so this recommendation should not limit the functionality of those studies.

Chapter 2
Re-load study data after each round of testing

2-2

Run a full data model installation after an InForm UAT study
reset

• Recommendation: If you perform an InForm UAT study reset, we recommend that you
run a full installation for the InForm data model.

• Rationale: An InForm UAT reset wipes out metadata and clinical data from the UAT
study so that a new study design can be tested. In DMW, when you run a full installation,
DMW drops and recreates all tables, and their data. As a result, you can make sure that
objects and data that were removed in InForm are removed in DMW.

• Additional information: Good InForm SDLC dictates that UAT should be a simulation of
the Live InForm study configuration. In order to keep this accurate, you must reset the
InForm study in between rounds of testing so that only Central Designer deployments
that were deployed or will potentially be deployed to Production are present and installed
in the UAT study. These InForm resets wipe all data from the InForm study between
rounds of testing, and when you redeploy, new unique IDs are created for metadata
columns like VISITID, FORMID, ITEMSETID, etc.

In DMW, tables in the InForm data model and in the InForm operational views do not
drop data that was deleted in InForm after the study reset. The only way to make sure
DMW data accurately reflects the current state of the InForm study is to run a full install
to load the latest metadata has been loaded. The correct procedure for this is as follows:

1. Reset the InForm UAT study.

2. Deploy packages from Central Designer to InForm.

3. In DMW, reload metadata changes to the Development lifecycle.

4. Run a Full Installation in the Development lifecycle.

5. Import clinical data to the Development lifecycle.

6. Promote the study to the QC lifecycle.

7. Run a Full Installation in the QC lifecycle.

8. Import clinical data to the Development lifecycle.

Note that you only need to promote the changes to QC and perform that Full install if you
have already promoted InForm to QC before the change. This recommendation also
assumes that both DEV and QC lifecycles are integrated to the same InForm UAT study.

Chapter 2
Run a full data model installation after an InForm UAT study reset

2-3

3
Clinical One integration

• Work with two-section form data in DMW
When you create a two-section form in Clinical One and have it flow from Datahub to
DMW, the data is condensed into a single table, viewable in DMW on the listings
interface.

Work with two-section form data in DMW
When you create a two-section form in Clinical One and have it flow from Datahub to DMW,
the data is condensed into a single table, viewable in DMW on the listings interface.

Lab and two-section forms can be comprised of a flat section and a repeating section. The
flat section of the form has a set number of questions with corresponding answers. The
repeating part of the form allows whoever is entering the data to enter multiple instances of
the question. For example, a two-section form collecting data about adverse effects to
medicine may have a flat section containing questions about the medication name and
dosage while the repeating part of the form allows a user to add several different items
relating to the symptoms.

Since the data is flattened into a single grid in the listings view, it's important for you to know
how to interpret the data correctly, as creating a discrepancy or a validation check using
wrong type of form data could cause a discrepancy to end up in an irreversible purgatory
between Clinical One and DMW.

Tip:

The NONREPEATING column is a quick way to check whether you're working with
flat section data or repeating form data. The flat section form data rows are marked
as "Y" in the NONREPEATING column and repeated form data rows are marked as
"N".

Guidelines for working with two-section and lab forms

We recommend that you adhere to the following guidelines to ensure clean data and an
uninterrupted flow between Clinical One and DMW:

• To create a discrepancy on a piece of data collected from the flat section of a form, make
sure that the discrepancy is created on a row marked with Y in the NONREPEATING
column. Flat section data is duplicated to the repeating section rows so it can be easy to
create a discrepancy on the wrong record!

• Make sure you create discrepancies for the repeating form data on the combined record
by looking for the N in the NONREPEATING column.

• Create separate Validation Checks for creating discrepancies on flat section vs. repeating
section columns. Make sure to include NONREPEATING = Y/N in the Validation Check
criteria accordingly.

3-1

• Take all of the above into consideration when you design transformations or
custom joins for downstream data models. For example, if you create a
downstream transformation data model which only has combined records
(NONREPEATING column is marked as N) but is used to create discrepancies on
flat section columns, the discrepancies would be internally linked to the repeating
row. If the repeated row is subsequently deleted, the discrepancy would
automatically close, even though it was created on the flat section column.

What if I want to create a discrepancy on flat section column data but
accidentally select a record in a combined (NONREPATING = N) row?

A discrepancy created on a flat column but in a repeating row will display correctly in
the DMW and Clinical One interfaces. However, the discrepancy will be internally
linked to the repeating row record. If the repeating row record is deleted in Clinical
One, the discrepancy is automatically closed.

What if I want create a discrepancy on data in the repeating column but end up
selecting a record in a flat-only (NONREPEATING =Y) row?

A discrepancy created on a repeating column but in a flat-only record will only be
visible in DMW. The discrepancy will only appear on the right-hand side panel of
Queries listed on the subject visit page in the Clinical One interface.

Chapter 3
Work with two-section form data in DMW

3-2

4
External data loads

• Set up file watchers and load data to Development and QC before you promote

• Create input data models for new data sources by loading an externally-created MDD file

• Accurately define data sources

Set up file watchers and load data to Development and QC
before you promote

• Recommendation: Follow the workflow of loading data to the Development and QC
lifecycles before you promote to Production.

• Rationale: Loading data into all source models and performing a fully qualified system
test in the QC lifecycle is the most effective way to determine whether a study is ready for
Production.

• Additional information: The QC lifecycle is meant to be used as a validation lifecycle,
and allows you to verify working objects beyond initial setup within the Development
lifecycle.

Create input data models for new data sources by loading an
externally-created MDD file

• Recommendation: When you add a data source whose metadata hasn't previously been
used in a specified DMW environment, create the source data model by loading an
externally-created MDD file.

• Rationale: It's quicker and less error prone to define columns and other data model
properties in an MDD. In addition, it's relatively easy to modify and re-load an existing
MDD file if you need to make changes.

• Additional information: Oracle Health Sciences Consulting has worked with customers
to develop several different MDD generation macros and utilities to further increase the
ease of working with MDDs outside of DMW.

Accurately define data sources
• Recommendation: Make sure to define data sources and associate them with the

correct vendor.

• Rationale: Defining data sources for file-watched data, and assigning the correct vendor
to the files they provided improves DMW's filtering functionality discrepancy handling.

4-1

• Additional information: You can select discrepancies with a common data
source, and select Send to Spreadsheet to produce a file that lists the
discrepancies for a single vendor. Properly defining data sources for input data
models prevents cross-contamination of data issues from different vendors and
the manual effort that is required to distribute discrepancies to the correct
recipients.

Chapter 4
Accurately define data sources

4-2

5
Clinical data models

• In DEV and QC, run a full data model installation only to revert destructive changes

• Install and promote data models after every change

• Check out the associated transformation when you update a target data model

• Limit data model size

• Check out a data model to remove or update its business areas

• Include a SUBJECTVISIT table

• Use SDTM Identifiers for as many columns as possible

In DEV and QC, run a full data model installation only to revert
destructive changes

• Recommendation: When you install data models in the DEV or QC lifecycle, run a full
installation only to revert destructive changes.

• Rationale: A regular data model installation modifies existing structures, and a full
installation performs a drop and recreate action on the structures.

DMW does not allow you to make destructive changes to data models in the Production
lifecycle. As a result, you should not need to run a full installation in the Production
lifecycle.

• Additional information: When you're working in the Production lifecycle, we do not
recommend using the full data model installation. However, you might need to run a full
data model installation if you made several changes, deletions, or modifications to the
data structure in the DEV or QC lifecycle.

When you run a regular installation to install data models, DMW updates or upgrades
updated tables. When you run a full installation to install data models:

– DMW drops and recreates all tables.

– DMW does not drop and recreate the data model schema.

– LSH drops and recreates the data model schema.

– LSH drops and recreates Business Area (BA) objects.

Install and promote data models after every change
• Recommendation: Each time you update a data model (for example by adding a table or

column), run a regular data model installation, then promote and install to the QC
lifecycle.

5-1

• Rationale: Installing and promoting data models after each update ensures that
changes are installable, both individually and incrementally.

• Additional information: Installing and promoting ensures that the same versions
of the data models exist in both the DEV and QC lifecycles. Keeping the lifecyles
in sync can help to improve performance and reduce errors that can occur if you
promote cumulative data model changes at one time.

Check out the associated transformation when you update a
target data model

• Recommendation: When you update a target data model, check out its
associated transformation as well.

• Rationale: When you update a target data model, if check out its associated
transformation, DMW automatically upgrades the transformation to use the latest
version of the data model. As a result, you do not need to manually upgrade the
transformation, and you can easily ensure that the transformation uses the most
up-to-date version of the target data model.

• Additional information: You are still required to upgrade maps if you modify the
transformation's source data models.

Limit data model size
• Recommendation: Create data models with 100 tables or fewer.

• Rationale: Data models with more than 100 tables can cause performance issues.

• Additional information: If you need to, you can create smaller data models and
leverage transformations to move the data. If your InForm study's source data
model contains more than 100 tables:

1. Divide the InForm Buffer Model so that each direct transformation between
InForm and the Buffer handles fewer than 100 tables.

This configuration allows several jobs to share the load and results in
improved performance.

2. Create a Union for common data sets (for example., the InForm ECG or PK
sample forms) to a smaller number of target tables.

This allows you to consolidate the multiple Buffer models into a single
Aggregation layer.

For more information about buffer models and aggregation layers, see the
data model plan recommendations in the Guidance for DMW Implementation
and Configuration document (Document ID: 2469980.1) on My Oracle
Support.

Check out a data model to remove or update its business
areas

• Recommendation: If you need to modify a business area (BA):

Chapter 5
Check out the associated transformation when you update a target data model

5-2

https://support.oracle.com
https://support.oracle.com

1. Check out its associated data model in the Development lifecycle.

2. Update the data model in the Development lifecycle.

3. Install the changes in the Development lifecycle.

4. Promote and install to QC and Production, as needed.

• Rationale: A business area is a property of a data model, and you can only change it by
creating a new version of the data model.

• Additional information: Avoid modifying the business area schema in the LSH user
interface. This is consistent with recommendations In DEV and QC, run a full data model
installation only to revert destructive changes and Install and promote data models after
every change.

Include a SUBJECTVISIT table
• Recommendation: To include a SUBJECTVISIT table in your study:

1. Select one table in one of your study's data models, and set its SDTM Identifier
property to SUBJECTVISIT.

2. In the SUBJECTVISIT table, select a column to use for each of the following SDTM
Identifiers:

– USUBJID

– VISITNUM

– SUBJID

– VISIT

3. In the SUBJECTVISIT table, set the SDTM Identifier property for as many additional
columns as you can.

• Rationale: The SUBJECTVISIT table is required to support discrepancy handling,
filtering, and Unit Of Work processing.

• Additional information: We do not recommend defining more than one SUBJECTVISIT
table per study, due to potential Unit Of Work considerations.

Use SDTM Identifiers for as many columns as possible
• Recommendation: For each table, assign SDTM Identifiers to as many columns as

possible.

– We recommend assigning USUBJID and SUBJID for subject-level tables.

– We recommend assigning USUBJID, VISITNUM, SUBJID, and VISIT for subject-
visit-level tables.

• Rationale: DMW/LSH indexes are based on the identifiers.

• Additional information: Mapping columns to SDTM Identifiers increases the filtering
capability in the DMW Data Management user interface.

Chapter 5
Include a SUBJECTVISIT table

5-3

6
Transformations

• Use the Regenerate program definitions option to rebuild program definitions in a
transformation

• Remove a source model from its transformations before deleting it

• Avoid using the Undo Checkout feature for transformations

• Use unique aliases

• Do not copy a transformation that needs an upgrade

• Wait to create staging tables

Use the Regenerate program definitions option to rebuild
program definitions in a transformation

• Recommendation: We recommend that you select Regenerate program definitions
when you run a regular transformation installation if you want DMW to rebuild program
definitions based on the latest version of the source and target data models in the
transformation.

• Rationale: If you select Regenerate program definitions when you run a regular
transformation installation, DMW does the following:

– Rebuilds the program definitions based on the latest version of the source and target
data models.

– Regenerates portions of the program that were missing prior to the modifications.

• Additional information: If you are running a full transformation installation, we
recommend that you only select Regenerate program definitions if absolutely necessary.

Remove a source model from its transformations before deleting
it

• Recommendation: If you need to remove a data model from a study:

1. Check out transformations that use the data model as a source model.

2. For each transformation, click Add or Remove Source Models.

3. In the Add Model dialog box, deselect the source model that you want to delete.

4. Delete the data model from the study.

Avoid using the Undo Checkout feature for transformations

6-1

• Recommendation: Instead of using the Undo Checkout option for a
transformation, check the transformation in and then check it out again.

• Rationale: When you use the Undo Checkout option, DMW might remove custom
functions associated with the transformation. In addition, other issues related to
expressions could occur.

• Additional information: We recommend tracking all changes as new versions in
DMW. You can always roll objects back to their most recent Production version.

Use unique aliases
• Recommendation: When you use the auto-map feature, we recommend that you

select a single target table. We do not recommend using the auto-map feature to
map at the data model level.

• Rationale: Poor performance occurs when you auto-map more than one table at a
time, and is worsened when you map to 10 or more tables at a time.

• Additional information: To ensure the best performance when you auto-map,
use the Column Mapping user interface, and use the Shift+Select keyboard
shortcut to run auto-mapping only for columns in a single table that have known
map matches.

Do not copy a transformation that needs an upgrade
• Recommendation: When you copy a transformation from one study to another

using the Copy from Another Transformation option, make sure that the
transformation you want to copy does not require an upgrade.

• Rationale: A transformation that requires an upgrade references old data model
definitions. As a result, if you copy it, you'll likely need to perform manual updates
to the copy.

• Additional information: To further reduce the likelihood that you'll need to make
manual changes to the copied transformation, we recommend that you copy
transformations that were created by templates or study libraries. However, we
also recommend that you manually confirm that the transformation doesn't contain
maps that need to be upgraded.

Wait to create staging tables
• Recommendation: Create staging tables only when the Aggregation Layer and

the desired Consumer model are defined, and the transformation is known.

Avoid defining staging tables on the fly within the target data model.

• Rationale: The Create Staging Table functionality has limitations. As a result, we
do not recommend using it.

• Additional information: The Guidance for DMW Implementation and
Configuration document contains details for creating staging data models that
partition the intermediate steps from the target models that are intended for
consumption.

Chapter 6
Use unique aliases

6-2

7
Custom listings

• Do not modify private custom listings

• Do not modify a public listing after you promote it

• Do not use staging tables as a source for custom listings

Do not modify private custom listings
• Recommendation: Do not modify private custom listings. Instead, if you encounter an

issue with a private custom listing, delete it or discontinue its use, and create a new one.

• Rationale: Private custom listings become unreliable when they are created ad hoc and
then modified.

• Additional information: Private custom listings are intended for individual, short-term
use. We recommend that you use the Test Listing feature when you build a custom
listing.

Do not modify a public listing after you promote it
• Recommendation: Do not modify a public listing after you promote it to a new lifecycle.

Instead, if you encounter an issue with a public listing, delete it or discontinue its use, and
create a new one.

• Rationale: Custom listings become unreliable when they are modified after promotion.

• Additional information: To make a change to a public listing that you promoted, you can
copy the existing listing, and modify the copy.

Do not use staging tables as a source for custom listings
• Recommendation: When you create a custom listing, do not include columns from

staging tables as its source.

• Rationale: Staging tables are intermediate steps in a data transformation. They are not
intended to be used for data review.

• Additional information: If you use staging tables, we recommend that you use them to
explicitly define the intermediate tables in a separate staging model, as specified in the
Guidance for DMW Implementation and Configuration document.

We don't recommend using staging tables due to the limitations of the feature.

7-1

8
Validation checks

• Make sure to select a relevant discrepant column

• Avoid renaming columns in VC listings

• Verify the validity of a validation check batch before you copy it

• Copy valid validation checks

• Copy blinded validation checks to blinded tables

• Do not remove a source table from a validation check

• Do not use staging tables as a source for validation checks

Make sure to select a relevant discrepant column
• Recommendation: The discrepant column should always be selected as a column that

is present in the listing.

• Rationale: When you select the Discrepant Table and Column for a validation check,
DMW allows you to select any table and column, not just the ones that make sense in the
context of the validation check.

Avoid renaming columns in VC listings
• Recommendation: In a VC listing, do not rename the columns. Instead, use the default

Oracle name of the underlying data model column for the column names.

• Rationale: Renaming columns in a VC listing can lead to validation check performance
issues, and the inability to modify the validation checks.

• Additional information: You might need to rename columns if:

– Column names are not unique.

– You need to handle self-referencing queries.

In these cases, renaming is allowed.

Verify the validity of a validation check batch before you copy it
• Recommendation: Before you copy a validation check batch, to make sure that it's valid,

verify that the columns in the source data model exist in the target data model.

• Rationale: DMW allows you to copy a validation check batch that does not have valid
columns in the destination data model. We recommend that you ensure that the
validation check is valid before you copy it.

• Additional information: We recommend that you only copy validation checks from
approved templates or study libraries. In addition, if a validation check is deprecated, we

8-1

recommend that you put in place a documented process to make sure that they
aren't propagated to other studies.

Copy valid validation checks
• Recommendation: Avoid copying validation checks that are disabled or that

require an upgrade.

• Rationale: Validation checks that require an upgrade might not include necessary
columns from the data models, or have other un-resolvable issues.

• Additional information: We recommend that you only copy validation checks
from approved templates or study libraries. In addition, if a validation check is
deprecated, we recommend that you put in place a documented process to make
sure that they aren't propagated to other studies.

Copy blinded validation checks to blinded tables
• Recommendation: Copy blinded validation checks to blinded tables and non-

blinded validation checks to non-blinded tables.

• Rationale: Columns in a VC listing retain the blinding properties of their underlying
data model. If there is a mismatch between the blinding of the validation check and
its tables, DMW will report errors.

• Additional information: We recommend that you define libraries with a blinded
and unblinded validation check definition. You can then copy the validation check
with the appropriate blinding setting for your purposes.

Do not remove a source table from a validation check
• Recommendation: If you need to remove all of the columns in a table from a

validation check, do not modify the validation check. Instead, disable the existing
validation check and create a new validation check that excludes the table.

• Rationale: The validation check program does not gracefully remove source
tables when you update the validation check.

Do not use staging tables as a source for validation checks
• Recommendation: When you create a validation check, do not include columns

from staging tables as its source.

• Rationale: Staging tables are intermediate steps in a data transformation. They
are not intended to be used to raise discrepancies.

• Additional information: If you use staging tables, we recommend that you use
them to explicitly define the intermediate tables in a separate staging model, as
specified in the Guidance for DMW Implementation and Configuration document.

We don't recommend using staging tables due to the limitations of the feature.

Chapter 8
Copy valid validation checks

8-2

9
Custom programs and functions

• Avoid using custom programs

• To create table descriptions for a custom program, copy existing table definitions in LSH

• Use cloning to create study-specific custom programs

• Include only columns for the Listing user interface in a custom program for a validation
check

• Specify a static reference for secondary source code

Avoid using custom programs
• Recommendation: Whenever possible, define a transformation using the DMW user

interface, including standard Oracle SQL and custom functions, as opposed to custom
programs.

• Rationale: If you use custom programs, you are responsible for the coding. This isn't a
scalable approach. In addition, custom programs are not as re-usable as transformations
that you define in the DMW user interface.

• Additional information: For more information about using custom functions, see the
Guidance for DMW Implementation and Configuration document.

The only scenario in which we recommend using a custom program is when defining the
Filter Drive table, which is marked with the table SUBJECTVISIT SDTM Identifier. In an
ideal study design, that is the only custom program used.

To create table descriptions for a custom program, copy existing
table definitions in LSH

• Recommendation: To create table descriptors for a custom program, in LSH, copy the
study's existing target and source table definitions to the local application area. Do not
use the existing definitions from the study application area for the custom program.

Note:

You do not need to do this if the source and target tables are the same table
definition.

• Rationale: The study's existing target and source table definitions typically provide the
most accurate description of the tables. In addition, following this guidance allows for a
consistent approach when underlying table definitions are updated.

9-1

• Additional information: When you reference a study-specific table to create a
table descriptor, make sure that the table descriptor does not reference the study,
and that you copy the definition to the local application area.

This method is a reliable, efficient, and repeatable way to create table descriptors.
If you need to update or recreate them, you can recreate the exact process and
the definition is a reliable description of the circumstance in the study.

If you used the same definition for the source and target tables, load an MDD file
that describes the table as the table descriptor for both source and target.

Use cloning to create study-specific custom programs
• Recommendation: To create a study-specific custom program, clone an existing

custom program to a study-specific application area in the DMW_UTIS domain,
and update the clone with the study-specific information.

• Rationale: When you clone a custom program, you can update table descriptors
that are specific to a particular study without modifying the initial custom program
or creating one from scratch.

• Additional information: Do not use one application area as a common repository
for all studies. Instead, use LSH cloning to duplicate the core program definition for
specific studies.

Include only columns for the Listing user interface in a
custom program for a validation check

• Recommendation:

• Rationale: When you define a custom program for a validation check, include only
the columns that you want to appear in the Listings user interface. Additional
columns can cause processing issues.

• Additional information: You must include PK and _SKEY columns in the custom
program.

Specify a static reference for secondary source code
• Recommendation: When you add secondary source code to a custom program in

LSH, make sure to select Yes for the Static Reference field.

Note:

Yes is not selected by default.

• Rationale: If you do not specify a static reference, LSH defines a new definition,
which is typically not the intent of secondary source code.

Chapter 9
Use cloning to create study-specific custom programs

9-2

	Contents
	1 General recommendations
	Create and modify study objects in the DEV lifecycle only
	Use the DMW user interface to work with objects in the DMW_DOMAIN
	Do not perform tasks in the DMW_DOMAIN work areas if check out required

	2 InForm integration
	After a LIVE deployment, do not remove forms or items from your InForm study
	After a LIVE deployment, do not modify form or item RefNames
	Re-load study data after each round of testing
	Keep the InForm data model in sync between the Development and QC lifecycles
	Do not promote standard libraries or templates to Production
	Run a full data model installation after an InForm UAT study reset

	3 Clinical One integration
	Work with two-section form data in DMW

	4 External data loads
	Set up file watchers and load data to Development and QC before you promote
	Create input data models for new data sources by loading an externally-created MDD file
	Accurately define data sources

	5 Clinical data models
	In DEV and QC, run a full data model installation only to revert destructive changes
	Install and promote data models after every change
	Check out the associated transformation when you update a target data model
	Limit data model size
	Check out a data model to remove or update its business areas
	Include a SUBJECTVISIT table
	Use SDTM Identifiers for as many columns as possible

	6 Transformations
	Use the Regenerate program definitions option to rebuild program definitions in a transformation
	Remove a source model from its transformations before deleting it
	Avoid using the Undo Checkout feature for transformations
	Use unique aliases
	Do not copy a transformation that needs an upgrade
	Wait to create staging tables

	7 Custom listings
	Do not modify private custom listings
	Do not modify a public listing after you promote it
	Do not use staging tables as a source for custom listings

	8 Validation checks
	Make sure to select a relevant discrepant column
	Avoid renaming columns in VC listings
	Verify the validity of a validation check batch before you copy it
	Copy valid validation checks
	Copy blinded validation checks to blinded tables
	Do not remove a source table from a validation check
	Do not use staging tables as a source for validation checks

	9 Custom programs and functions
	Avoid using custom programs
	To create table descriptions for a custom program, copy existing table definitions in LSH
	Use cloning to create study-specific custom programs
	Include only columns for the Listing user interface in a custom program for a validation check
	Specify a static reference for secondary source code

