
Oracle® Healthcare Data Repository
Programmer's Guide

Release 8.1.3
F52477-02
July 2022

Oracle Healthcare Data Repository Programmer's Guide, Release 8.1.3

F52477-02

Copyright © 2018, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation accessibility xi

Diversity and Inclusion xi

1 HDR Components

Services 1-2

Service Categories 1-2

Java APIs 1-3

Client-side Service Classes 1-3

Integrating the Healthcare Enterprise (IHE) 1-4

Messaging Interface 1-4

Inbound Messaging Services 1-4

Concurrent Program Service for Scheduling Jobs 1-4

Enterprise Terminology Services 1-5

Profile Option Services 1-5

Create, Set, and Update Profile Options 1-6

Creating Profile Options 1-6

Updating Profile Options 1-6

Create and Update New Profile Option Values 1-6

Audit Services 1-6

Enabling Audit Services 1-7

RIM Service 1-7

2 Design Recommendations

Use Version-Aware References 2-1

Follow J2EE Best Practices 2-1

Choose an Appropriate Deployment Model 2-2

Package Custom Server-side Code in its Own EAR File 2-2

Design Your Own Business Level Services on Top of HDR 2-3

Design Your Own Domain Model to Take Full Advantage of GUI Frameworks 2-3

Consider Threading Issues 2-3

iii

Avoid Treatment of Your ServiceLocator as a Handle to a Session 2-4

Avoid Deprecated Methods 2-4

Use Oracle Identity Manager for Single Sign-On 2-4

Use HTTP Form Authentication 2-4

3 Set Up Client-side Libraries

Client-side Libraries 3-1

4 Use the Service Locator to Create HDR Sessions

The Service Locator 4-1

Configure Service Locator 4-1

Create a New Session 4-2

Set the Client Mode 4-3

Authorization Considerations 4-3

ServiceLocator.login 4-3

JAAS Authentication in WebLogic Server 4-4

JAAS and the ServiceLocator 4-4

5 Audit Events and Log Errors

HDR Audit Services 5-1

Initializing Existing Audit Event Types 5-2

Creating New Audit Event Types 5-2

Invoking HDR Audit Services 5-2

Attribute Values in Audit Events 5-3

Log Error Messages 5-3

Teminology 5-3

Log Message 5-4

Level 5-4

Log4j Logging Configuration 5-4

Log Configuration Parameters 5-4

6 ID and Profile Option Services

HDR OID Service 6-1

HDR Object Identifiers 6-1

HDR Profile Option Service 6-2

Define Profile Options 6-3

Create Profile Options 6-5

Set Profile Option Values 6-6

iv

Retrieve Profile Option Values 6-6

7 RIM Services

Submit a Query 7-1

HDR HL7 Domain Constants 7-1

HDR Factories 7-3

Factories 7-3

Data Type Factory 7-3

RIM Object Factories 7-4

Query Component Factory 7-4

Reference Modifiers 7-5

HDR Query 7-5

Scenario 7-6

Fetches 7-7

Flexible Retrieval 7-7

Set Criteria on Fetches 7-7

Add Detail Fetches 7-8

Incremental Fetches 7-8

Order Fetch Results 7-9

Cyclic (Recursive) Fetches 7-9

Criteria 7-10

Attribute Criteria 7-11

Query-by-Example (QBE) APIs 7-11

Query-by-Criteria (QBC) APIs 7-13

CodedTypeCriteria APIs 7-13

Querying-by-Equivalence 7-14

Connective Criteria 7-15

Navigate the Result Graph 7-18

Core RIM Navigational APIs 7-18

HDR RIM Extensions 7-20

Versioning and Query 7-21

Versioning and Fetches 7-21

Versioning and Criteria 7-21

Retrieving the Current Version 7-21

Retrieving a Specific Version 7-22

Detail Criteria Versioning Behavior 7-22

Detail Fetches 7-22

Detail Criteria 7-22

ControlAct Querying 7-22

Person Merge Querying 7-23

v

Owned Roles 7-23

Original Coded Attributes 7-30

DCTB Subqueries 7-30

-DCTB_SUBQRY_OPT_METHOD=NONE 7-30

-DCTB_SUBQRY_OPT_METHOD=EXISTS 7-30

-DCTB_SUBQRY_OPT_METHOD=JOIN 7-30

HDR RIM Services 7-30

Use RIM Services 7-31

Use The RIM Service 7-31

Reference Modifiers 7-33

Exception Handling 7-34

Use Master Catalog API 7-35

Master Catalog Entries 7-36

Concepts 7-36

Focal Class State Transitions 7-39

HDR HL7 Data Types 7-41

Use the DataTypeFactory 7-42

Creating Constants 7-42

Abstract Types (ANY, BIN, QTY) 7-42

HL7 Null Flavors 7-42

Unsupported Operations 7-42

Coded Types 7-43

Collections (SET, BAG, LIST, IVL) 7-44

HL7 Timing Specification (GTS, PIVL, EIVL, IVL<TS>, TS) 7-44

RIM Service Examples 7-44

Use CD Qualifiers 7-44

Query Based on Observation Value Attribute 7-46

Constraints on the HL7 V3 RIM Model 7-49

HL7 V3 Datatype Constraints 7-50

RIM Query API Constraints 7-50

8 Enterprise Terminology Server (ETS)

Generic Terminology Model 8-1

Verify Different Terminology Versions Using Change Files 8-4

Loading and Activating Coding Scheme Versions 8-6

Preparing Terminology Content and Control Files 8-7

Creating New Generic Coding Schemes 8-8

Loading a Coding Scheme Version 8-8

Using Oracle Database Scheduler (DBMS_SCHEDULER) 8-8

Publishing a Coding Scheme Version 8-8

vi

Using Oracle Database Scheduler (DBMS_SCHEDULER) 8-8

Activating a New Terminology Version 8-9

Interterminology Mapping 8-9

Interterminology Mapping Using Cross Maps 8-9

Guidelines: Cross Maps 8-10

Loading Cross Maps Provided by the College of American Pathologists 8-10

ETS Object Model 8-11

ETS Concept Lists 8-12

Creating and Updating a Concept List 8-14

Adding Concepts to a Concept List 8-15

Adding Concepts to a Concept List 8-16

Specializing a Concept List 8-17

Subsetting a Concept List 8-18

Subsetting a User Concept List 8-18

Subsetting a Concept List of any Extensibility Type 8-18

ETS Editable Terminologies 8-19

Reference 8-19

Adding Components 8-20

Changing Component Status 8-20

Adding and Removing Attributes 8-20

ETS Classifications 8-22

Classifications can be Linked Hierarchically 8-26

Testing Containment 8-26

Creating and Populating Classifications 8-26

Creating a Classification 8-28

Building a Classification with the HDR Maintenance Job 8-29

Updating Published Coding Scheme Versions 8-29

Running the HDR Maintenance Job 8-29

Scheduling the Maintenance Job 8-30

ETS Equivalence 8-30

Intraterminology Equivalence 8-31

Interterminology Equivalence 8-31

Combining Intraterminology and Interterminology Equivalence 8-32

HDR Terminology Jobs 8-34

ETS Multiple Language Support (MLS) 8-34

Understanding Language (Locale) Mappings 8-36

Scenario 8-36

Locale Enabled APIs 8-37

Errors 8-38

vii

9 HDR Messaging Services

HDR Inbound Message Processor 9-1

Configuring Interactions 9-6

Configuring Sender, Sender Interaction, and Side Effect 9-7

Invoke Inbound Messaging Services 9-8

IMP Configuration API Usage 9-9

Sender Configuration Attributes 9-10

Sender Interaction Configuration Attributes 9-10

Sender Side Effect Configuration Attributes 9-11

Sender Configuration Search Parameters 9-12

IMP Sender Interaction Configuration Administration Service 9-12

Side Effect Configuration Rules 9-15

HDR Message Submission Unit 9-17

Message Submission Unit 9-17

Submission Unit Interface 9-17

Submission Unit Service Interface Methods 9-17

HDR RIM Service Hook 9-18

Event and Subscription 9-19

Subscription Code Sample 9-20

HDR Messaging Toolkit 9-21

MTK Workflow 9-22

Validating Inputs 9-23

Generating Configuration Reports 9-23

Generating Instances 9-24

Testing Instance 9-24

Setting Up Message Type 9-24

Messaging Toolkit (MTK) Services 9-24

HL7 Message Development Process 9-25

Implement a New Message Type 9-25

Procedure 9-26

Test a New Message Type 9-26

Using the MTK Services for Testing 9-28

Verify the Test Files 9-28

Set Up Message Types 9-28

Load Message Types 9-28

Use the MTK Services for Testing 9-29

Configure IMP and OMP 9-29

Use the MTK Services 9-29

Test Custom Message Types 9-29

Setting Up a New Message Type 9-33

viii

Sample Exercise Using MTK Services 9-36

Prerequisites and Tools 9-36

Creating a New Message Type or Modifying an Existing Message Type 9-36

Generate Schema (XSD) and MIF Files for the Modified Messages 9-38

Generate Test Messages Using MTK Service 9-39

Generating Custom Message Types 9-39

Generating Custom Artifacts Using RMIM 9-40

Generating Custom Artifacts Without Using RMIM 9-40

Logic for Instance Generation 9-40

Master Catalog and Side Effect Configuration Reports 9-42

Master Catalog Reports 9-42

Act 9-43

Role: Non-owned Role without Entities 9-43

Role: Non-owned Role with Entities 9-43

ROLE: Owned Role without Non-Owning Entity 9-43

ROLE: Owned Role with Non-Owning Entity 9-43

Master Catalog Reporting Logic 9-43

Side Effect Configuration Report 9-44

MTK Message Types Construct Processing 9-44

Constructs in External Artifacts (Message Type and CMETs) 9-45

Constructs Within Oracle Published CMETS 9-53

XML Snippets of Seeded Data 9-56

Expected Differences in Instances 9-62

Extra Internal ID Elements 9-62

Extra XML Attributes in Coded Values 9-63

Order Differences in Collection Attributes 9-63

Order Differences Due to Choice Elements 9-63

Differences in the Order of XML Attributes 9-64

Differences Due to Time Zones 9-65

Differences Due to Vocabulary Configuration 9-65

Differences in the Message Wrapper 9-65

Sample Test Message and Corresponding Generated Message 9-67

Error Messages 9-79

10

HDR Exception Handling

Optimistic Locking Exceptions 10-1

Bundled Exceptions 10-2

ix

11

Integrating the Healthcare Enterprise

Cross-Enterprise Document Sharing-b (XDS.b) 11-1

IHE Actors 11-1

Affinity Domain 11-2

Integrating the Healthcare Enterprise Cross-Enterprise Document Sharing-b Web Service 11-2

HDR's IHE XDS.b Solution Overview 11-2

Supported IHE XDS.b Transactions 11-3

Synchronous Provide and Register Document Set-b 11-3

Prerequisite 11-3

Providing/Registering Documents 11-3

Document Storage Mode 11-3

Synchronous Retrieve Document Set 11-4

Asynchronous XDS.b Web Services 11-4

Key Differences in the Asynchronous XDS.b Web Services 11-4

Asynchronous Provide and Register Document Set-b 11-4

Audit Trail and Event Logs 11-5

12

HDR Clinical Document Architecture (CDA) Persistence

Overview 12-1

WSDL CDA Persistence Implementation 12-2

WS-Security for CDA Persistence Web Service 12-2

x

Preface

This preface contains the following sections:

Documentation accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

1
HDR Components

• Services

• Java APIs

• Integrating the Healthcare Enterprise (IHE)

• Messaging Interface

• Concurrent Program Service for Scheduling Jobs

• Enterprise Terminology Services

• Profile Option Services

• Audit Services

• RIM Service

Figure 1-1 Example of a typical HDR solution:

Oracle Healthcare Data Repository (HDR) includes solution components critical to the
creation of applications that support the management and provision of care in diverse
healthcare settings. The associated functionality includes content from administrative, clinical

1-1

and financial healthcare domain areas. This Programmer's Guide complements Oracle
Healthcare Data Repository API documentation.

HL7 Reference Information Model (RIM) Version 3 provides a model of the healthcare
domain, including compatibility with XML messaging. By focusing on standard
interfaces, HDR makes it easy to build applications using industry standard tools
(thanks to J2EE) and to interoperate with other healthcare systems (thanks to HL7).

The Java API is used by programmers to develop healthcare applications. The
messaging interface is used to exchange data with other computing systems. HDR-
based applications typically use both systems.

At an architectural level, HDR has three key interfaces with other software:

• The Java Application Programming Interface (API): The Java API lets
customers write applications using HDR services. Because services are exposed
as Remote and Local EJBs, client code can either be co-located on the middle-tier
with HDR, or reside on its own tier, communicating via Java RMI. See "Java APIs".

• HL7 version 3 Based Messages: HDR supports the transmission of well formed
HL7 version 3 messages that conform with the Oracle Healthcare Data Repository
HL7 Version 3 Messaging Conformance Specification. This interface supports
interoperability between HDR based applications and third party applications. See
"Messaging Interface".

• Services: The service interfaces are a standards based collection of Enterprise
Javabeans (EJBs), each of which provides a functional service. Its architecture is
driven by two complementary standards: Java 2 Platform, Enterprise Edition
(J2EE) and HL7 Version 3. J2EE provides industry standard interfaces and
protocols for the plumbing of the system. See "Services".

Services

Service Categories
• Client-side Classes: Represent the HDR public Java Applications Programming

Interface, which includes an implementation of the HL7v3 Reference Information
Model (RIM) and abstract data types specification.

• Foundation Services: Provide repositories for domain information. Enterprise
Terminology Services (ETS) provide a centralized repository for storing coded
medical terminologies. RIM Services provide a repository for storing any element
of medical information that can be modeled in accordance with the RIM.

• Application Services: Provide higher level services based on the foundation
services. HDR supplies the following application services:

– Inbound Message Processor (IMP): Provides for the receipt of HL7v3
messages.

• Configuration Services: Provide Java APIs for configuring various HDR aspects.

• Audit Services: Provide auditing of critical HDR functions.

Service interfaces are not EJB interfaces by themselves; they are implemented by
bean wrapper classes that wrap EJB Local and Remote bean interfaces. Similarly, the
server-side EJB implementations delegate to core Java Persistence Layer. The EJBs
themselves are stateless with container managed transactions.

Chapter 1
Services

1-2

This architecture provides several benefits:

• Bean Wrapper classes hide the differences between Remote and Local mode EJBs. This
lets application developers switch deployment models with minimal impact on their own
code.

• Container Managed Transactions (with some exceptions) let application developers use
the Java Transaction API (JTA) to manage distributed transactions involving HDR and
their own services.

• Stateless EJBs provide superior middle-tier scalability to stateful approaches.

Java APIs
HDR services are exposed to programmers through Java APIs, which include the following
elements:

Client-side Service Classes
The classes described below are called client classes because in remote deployments they
reside on the client application side of the network, while the service implementations
themselves reside within an application server on a remote computer. All client classes
required to use any HDR services are packaged together into a zip file hdr-client-1.0.0-
SNAPSHOT.zip in the client directory of hdr-1.0.0-SNAPSHOT.zip. This file must exist in the
class path of any application that uses HDR, along with supporting EJB classes.

• Data Transfer or Value Objects (DTOs): These objects represent snapshots of HDR's
internal data model and are used to exchange data between HDR and client applications.
Note that for the HL7 package these objects are called RIM objects and reside in the
oracle.hsgbu.hdr.hl7.rim package.

• Factories: Factory classes are used to create data transfer objects for submission to
HDR services. Different services use different factories, and some may use multiple
factories.

• Service Interface: Each service has at least one corresponding Java interface. These
interfaces contain methods that provide the functionality of the service. Services typically
provide CRUD-style operations for some part of the HDR data model, but may also
define higher-level business logic. The service interfaces do not provide business logic;
business logic is defined by client-developed applications based on HDR.

• Fetches and Criteria Objects: These objects support the complex search and retrieval
operations supported by many services. A criteria object defines a filter that specifies
which objects to retrieve. Criteria are analogous to a SQL WHERE clause. A fetchmap
defines the kind of data to be returned. It is analogous to a SQL SELECT clause. Criteria
and fetches can refer to different (albeit related) objects. For example, a query may be
defined to retrieve all encounters (the fetch) for a given patient (the criteria).

Client applications use the ServiceLocator class to retrieve a handle to a service, rather than
instantiating services directly. The ServiceLocator provides a single point from which clients
establish connections to HDR and access its services. Instantiating the ServiceLocator and
establishing a session with HDR is described in "The Service Locator".

Chapter 1
Java APIs

1-3

Integrating the Healthcare Enterprise (IHE)
HDR supports sharing documents that conform to IHE standards across healthcare
enterprises. The documents are stored in an HDR repository, and metadata identifying
the documents is stored in a Document Registry.

See also:

• Integrating the Healthcare Enterprise

Messaging Interface
HDR can send and receive HL7 version 3 messages that conform with the Oracle
Healthcare Data Repository HL7 Version 3 Messaging Conformance Specification,
and HDR provides services that can parse and construct XML messages. These
services are exposed in essentially the same way as normal HDR services and have a
Java API that can be called programmatically by ISV (Independent Software Vendor)
code.

HDR messaging services (IMP) can also be accessed through an interface engine and
an adapter such as HDR Gateway, which is in turn responsible for the transport-layer
issues of sending and receiving messages over the network. This is the typical way
that messaging is used by an HDR application. The Implementation Guide describes
how to configure the HDR Gateway.

Inbound Messaging Services
Healthcare enterprises typically operate a number of departmental systems such as
ADT, diagnostic departments, pharmacy, and others that may be acquired from
multiple vendors. Such systems require messaging services to communicate events
and request actions from applications throughout the enterprise.

To route the message from the source system, an external interface engine that
handles HL7 message translation and routing must be implemented for IMP (Inbound
Message Processor) to function. Although a single interface engine is typically
required, multiple interface engines can be implemented. An interface engine is not
included with HDR. However, Oracle B2B/BPEL can be used as an Interface Engine.

The Inbound Message Processor (IMP) provides message interpretation, persistence,
and acknowledgement services to HDR applications for processing inbound messages
from external systems. IMP supports XML formatted inbound messages that conform
to the HL7 version 3 messaging standard and compliant with messaging schemas of
HDR supported message types.

See also:

• HDR Messaging Services

Concurrent Program Service for Scheduling Jobs
HDR provides a JMS queue based job scheduler service called
ConcurrentProgramService, which is exposed on ServiceLocator as a stateless
session bean. ConcurrentProgramService is used to schedule the following jobs.

Chapter 1
Integrating the Healthcare Enterprise (IHE)

1-4

Loading Messaging Metadata

Messaging metadata load can be scheduled as a background job using the
ConcurrentProgramService.loadMessagingMetadata() API call. The API returns a request ID
that can be used to monitor the job status using the
ConcurrentProgramService.getJobStatus() API.

Loading MTK Schema to HDR Server

Messaging Toolkit (MTK) schemas from a local directory specified in the profile option value
for profile code CTB_MTK_SCHEMA_DIR_PATH, can be loaded to HDR server location
using the ConcurrentProgramService.loadMTKCustomSchema() API.

Loading MTK Interaction Schema to HDR Server

Composite message schema can be created using the Messaging Toolkit (MTK) custom
interaction schemas using the
ConcurrentProgramService.loadMTKCustomInteractionSchema() API.

Enterprise Terminology Services
Enterprise Terminology Services (ETS) is a core component of HDR that incorporates a
range of terminology systems and provides extensive terminology services to HDR
applications, including the following principal features:

• Consistent and real-time access to all terminology content - whether standards-based or
user-defined.

• Support for standards-based terminologies:

– SNOMED, LOINC, and FDB terminologies through a specialized model (referred as
Core terminologies in ETS).

– Other terminologies like ICD9, CPT4, and HCPCS through a generic model.

• Support for user-defined terminologies.

• High level of terminology integration - between different terminologies and between
different versions of the same terminology.

• Support for user-defined containers of terminology content such as Concept Lists and
Classifications. These containers can be used for building application interfaces,
constraining and validating attribute values, and generating context-sensitive reports.

• Multi language support (MLS) on concept descriptions (except Classifications and
editable terminologies).

See also:

• The Implementation Guide for the prerequisites and procedures necessary for the
implementation of ETS Services.

Profile Option Services
Profile options are configurable preferences that affect the way an Oracle application looks
and behaves. System administrators can control HDR behavior by setting profile option
values. Application developers can control application behavior by programming their
applications to perform in accordance with customized profile option values.

Examples of typical profile options include the following:

Chapter 1
Enterprise Terminology Services

1-5

• Language: Determines the language in which the application is displayed to users.

• Date Format: Determines the format (mmddyyyy, ddmmyy...) for date displays.

System administrators can set profile options at the following levels:

• User (highest level)

• Site (lowest level)

The profile option values set at each level define runtime values for each user's profile
options. An option's runtime value is the highest level setting for that option.

A profile option can be set at more than one level. When a profile option is set to more
than one level, an order of precedence applies: Site has the lower priority, which is
superseded by User. A profile option value entered at the Site level can thus be
overridden by value entered at the Org level, and value entered at the Org level can
thus be overridden by the value entered at the User level.

See also:

• The Implementation Guide for the prerequisites and procedures necessary for the
implementation of Profile Option Services.

Create, Set, and Update Profile Options
The HDR ProfileOptionService enables users to manager profile options and its
associated values at various profile levels.

Creating Profile Options
Create new profile options using the ProfileOptionService.createProfileOption API.

For example, a physician order entry application could define a profile option that
defines the default sort order of patient problem lists (by date, severity,...).

Updating Profile Options
Update profile options using the ProfileOptionService.updateProfileOption API.

Create and Update New Profile Option Values
Create new profile option values for the already created profile options using the
ProfileOptionService.setProfileOptionValue API.

You can update existing profile option values for the already created profile options
using the ProfileOptionService.setProfileOptionValue API.

Audit Services
HDR auditing services let you log and monitor all HDR activities, to monitor security
policy and regulation compliance by recording actions taken by users during sessions.
Such actions could include invoking an API, performing a custom function, or other
defined events.

HDR Configuration Manager, a GUI tool, lets security administrators define auditing
policies. Implementation of HDR Audit Services includes the following steps:

Chapter 1
Audit Services

1-6

• Enabling HDR Audit Services

• Initializing existing audit event types

• Creating new audit event types

• Invoking HDR Audit Services

Enabling Audit Services
The HDR Audit Service [AuditService] is a core HDR interface that lets you log and monitor
HDR activities, to monitor security policy and regulation compliance—by recording actions
taken during user sessions. Such event records can help detect actual or attempted
violations of policy and operation procedures.

HDR Audit Services can be enabled (turned on) or disabled (turned off) globally. When
enabled, audit events of all seeded and user-defined audit event types can be audited. When
disabled, Audit Services is not operative.

Auditing is turned on or off by setting the profile option CTB: Auditing ON to Y or N
respectively. By default, CTB: Auditing ON is set to Y on install. Use the ProfileOptionService
to update this value. The profile option service API to update this profile option is:

ProfileOptionService.setProfileOptionValue

RIM Service
HL7 Reference Information Model (RIM) Version 3 provides a model of the Healthcare
Domain, including compatibility with XML messaging. By focusing on standard interfaces,
HDR makes it easy to build applications using industry standard tools (thanks to J2EE) and to
interoperate with other Healthcare systems, thanks to HL7.

Chapter 1
RIM Service

1-7

2
Design Recommendations

• Use Version-Aware References

• Follow J2EE Best Practices

• Choose an Appropriate Deployment Model

• Package Custom Server-side Code in its Own EAR File

• Design Your Own Business Level Services on Top of HDR

• Design Your Own Domain Model to Take Full Advantage of GUI Frameworks

• Consider Threading Issues

• Avoid Treatment of Your ServiceLocator as a Handle to a Session

• Avoid Deprecated Methods

• Use Oracle Identity Manager for Single Sign-On

• Use HTTP Form Authentication

Use Version-Aware References
Oracle recommends the use of version aware references wherever feasible to avoid issues
associated with version agnostic references.

Oracle Healthcare Data Repository lets you update existing objects without prior retrieval if
the object id is known. HDR can also create an object if it does not exist, or do nothing or
update it if it does. While useful, careless use of these features may result in corrupt data,
and technology limitations may cause further unexpected errors. These concepts also apply
to messaging side effects because they use version agnostic references internally.

References are created by the makeReference method of the Resource, Role to Actor, Role,
and Entity factories. References may be version aware or version agnostic. Version aware
references are created by specifying the version number of the object being referenced when
creating the reference, and only apply the updates to the version of the object specified. If
that version is not the latest one an error occurs. Version agnostic references have no version
specified and thus always apply to the latest version of the object, but note that there are
problems in HDR with the implementation of version agnostic references.

Follow J2EE Best Practices
HDR is based on Java 2 Enterprise Edition (J2EE). J2EE is an established family of
technologies with a substantial amount of published reference information. You should
leverage this information when designing your applications.

This provides two important benefits. First, it lets programmers easily compare the
performance implications for using remote or local mode in their applications. Second, it can
speed development in situations where programmers share an HDR instance. With a shared
instance, programmers can develop and test their components in remote mode, letting each

2-1

work within separate containers, while sharing a common HDR instance running in its
own container. It would be better for each developer to have a separate HDR instance,
but this is not always possible.

Note:

• Oracle Technology Network, OTN, includes information describing good
use of the Application Server, particularly the J2EE Design Pattern
Samples

• Sun Microsystems Enterprise BluePrints also provide valuable
information

It is particularly important that you minimize the number of round-trips required by your
application. HDR provides a number of mechanisms to assist with this, such as the
bulk retrieval capabilities of the Rim Service.

Choose an Appropriate Deployment Model
HDR supports access to its services through local and remote EJBs. In remote mode,
HDR runs in its own application server instance and client code communicates with it
through RMI. In local mode, HDR and the client code are co-located on the same
application server. Selection of the appropriate deployment model depends on the
requirements of your application.

HDR hides the differences between the two deployment modes—thus permitting the
same code to be executed largely without change in either mode (although some
minor changes are required to set the mode to local.

For production purposes, the choice comes down to a balance between performance
and flexibility. Accessing HDR in local mode performs better than remote mode in
terms of throughput and latency. However, local deployment requires your application
code to be co-located on the same application server. For many Web based
applications, this may be acceptable, but there are other applications (such as rich
clients) where this is not possible. In such cases, remote deployment may be
preferable.

However, the choice between local and remote access is not absolute. HDR exposes
all of its services as remote and local EJBs. In this way, it is possible to interact with
HDR in different modes from within the same application. For example, you could split
your business logic between a rich client-tier application in remote mode, and a
customer middle-tier session bean in local mode, both of which could access HDR.

Package Custom Server-side Code in its Own EAR File
Client code that accesses HDR in local mode should be packaged into its own EAR
file, and appropriate deployment options configured to connect the client code's EAR
file to the HDR EAR file. You should never extract and add your own code to the HDR
EAR file.

Chapter 2
Choose an Appropriate Deployment Model

2-2

Design Your Own Business Level Services on Top of HDR
HDR supports a wide variety of applications, from message processing to patient admissions
GUIs. It is therefore necessarily generic. For applications that are more specific, we
recommend that you develop your own interfaces that encapsulate the business logic of your
application. In doing so, you should consider the following:

• HL7's RIM Objects (and by extension HDR's objects) are very generic and may provide
fields and cardinalities that are of no relevance to your application. In such cases,
defining your own simplified versions of RIM Objects may significantly reduce the
complexity and increase the usability of your API.

• Be careful of API granularity. If it is too fine-grained, it may require your code to make an
excessive number of calls, eroding performance; if it is too coarse, it may be difficult to
build on.

• Use stateless rather than stateful designs. Stateless designs (where all necessary
information is supplied to a service) are typically more scalable than stateful designs.

Design Your Own Domain Model to Take Full Advantage of GUI
Frameworks

Current generation GUI frameworks such as Oracle's ADF provide excellent support for
connecting GUI views and controllers with simple models based on Java Beans, and
standard Java types such as String and BigDecimal.

HDR's RIM Objects use classes that implement the HL7 abstract data type specification.
These data types are not JavaBeans and cannot be used directly by GUI frameworks without
writing conversion routines. Because HDR RIM Objects are defined in terms of RIM
Datatypes this also precludes their direct use by many GUI frameworks.

An obvious solution to this problem is to write the appropriate conversion utilities. The details
describing how to do this vary from one GUI framework to another. This approach therefore
has the potential to tie your application to a particular GUI framework, although you avoid the
overhead of creating your own model.

An alternative approach is to convert HDR Objects into JavaBeans that are defined in terms
of other JavaBeans and standard Java types. This framework-friendly model could then be
used with any GUI framework that supports JavaBean components for its model. This model
does not require a 1:1 mapping with the RIM; it might well represent a simplified model used
by your business interfaces.

All things being equal, we recommend taking the second approach. Defining your own
domain model using JavaBeans lets your business logic layer be more easily ported from one
GUI framework to another, and you will have a ready made, simplified set of objects to pass
to your business interfaces.

Consider Threading Issues
HDR's client-side components are not synchronized and are intended for use by one thread
at a time. For most web applications this is not an issue, as each request receives a single
thread and the programming model forbids spawning additional threads. We recommend that
you take advantage of your development framework to avoid having to write your own thread

Chapter 2
Design Your Own Business Level Services on Top of HDR

2-3

handling code. If this is not possible, you should take the usual precautions that you
would for an unsynchronized java.util.Collection, or any other regular, unsynchronized
Java object.

Avoid Treatment of Your ServiceLocator as a Handle to a
Session

Do not pool or otherwise cache ServiceLocators to maintain HDR sessions. Pooling or
caching ServiceLocators to maintain HDR sessions can give rise to complicated,
unnecessary schemes to cache ServiceLocators.

Avoid Deprecated Methods
HDR uses Java standard syntax to indicate deprecated methods. You should never
use deprecated methods for new code because they may be dangerous, obsolete, or
unsupported. Existing code should be migrated as soon as possible, as Oracle
reserves the right to remove deprecated methods and classes completely from the
HDR interface. Deprecated methods are identified in the following publications; refer to
these documents for more details including alternative methods. Many development
environments highlight the use of deprecated methods. We recommend that you make
use of such features.

See also:

• Oracle Healthcare Data Repository API Documentation to identify deprecated
HDR methods.

Use Oracle Identity Manager for Single Sign-On
HDR is deployed on WebLogic application server. HDR uses the standard J2EE
application security mechanisms. Users, accessing the DR services, can configure
security providers such as Oracle Identity Manager, LDAP, Single Sign-On, or custom
security implementation to manage WebLogic security principals and credentials.

See also:

• Oracle Healthcare Data Repository Implementation Guide for more information
about configuring user accounts.

• Understanding WebLogic Security section in WebLogic Server Documentation.

Use HTTP Form Authentication
Single sign-on authentication is the preferred mechanism for deploying HDR and
HDR-based web applications.

When single sign-on is not configured, we recommend using HTTP form
authentication rather than HTTP basic authentication. With HTTP basic authentication,
each client call to the web application performs login validation at least two times: once
to determine if the client has permissions to access the web resource, and again
during HDR API calls. With HTTP form authentication, the HTTP login form displays
upon the first web access, and an HTTP cookie transparently authenticates the user.

Chapter 2
Avoid Treatment of Your ServiceLocator as a Handle to a Session

2-4

3
Set Up Client-side Libraries

Note:

Oracle Healthcare Data Repository Implementation Guide for further information
about HDR implementation and setup of an HDR instance.

Client-side Libraries
All HDR application specific Client-side libraries are packages in the form of hdr-client-8.1.0-
SNAPSHOT.zip file. Add all jars in the client class-path.

Client-side Libraries

<HDR Product Install Home>/weblogic/hdr/client/hdr-client-8.1.0-SNAPSHOT.zip

<HDR Product Install Home>/weblogic/hdr/ets/lib/*.jar

3-1

4
Use the Service Locator to Create HDR
Sessions

• The Service Locator

• Configure Service Locator

• Create a New Session

• Set the Client Mode

• Authorization Considerations

• JAAS Authentication in WebLogic Server

The Service Locator
ServiceLocator is the primary entry point into HDR and helps create HDR sessions. Although
ServiceLocator is used in the same way for remote or local access to HDR, its usage varies
depending on whether it is used inside or outside of a container. Use it for the following
functions:

• Establishing HDR sessions

• Configuring the access mode (local or remote)

• Retrieving handles to services through JNDI (Java Naming and Directory Interface)

Each ServiceLocator is associated with a single HDR session. Each HDR session defines an
application-level context in which processing occurs. Services retrieved through a particular
ServiceLocator instance receive that ServiceLocator session as their own. A ServiceLocator
is used to establish a new HDR session.

Configure Service Locator
ServiceLocator is configured by properties passed to the getInstance factory method. Three
types of properties can be configured: JNDI properties, client mode, and authentication
properties. The following table lists typical configuration parameters and their possible values.
JNDI parameter values are used with an Oracle Application Service JNDI client library:

Service Locator Configuration Properties

Property Name Description Values

javax.naming.Context.INITIAL_C
ONTEXT_FACTORY

Specifies the factory class used
to instantiate context factory that
is required by JNDI to establish
initial connection.

For remote mode:
"weblogic.jndi.WLInitialContextFa
ctory"; not required in local
mode.

4-1

javax.naming.Context.PROVIDE
R_URL

Specifies the location of the JNDI
context containing HDR bean
bindings.

For remote mode: "t3://
hostname:port" where
"hostname" is the host running
HDR and port is the WebLogic
admin port configured for the
Application Service; not required
in local mode.

javax.naming.Context.SECURIT
Y_PRINCIPAL

Specifies the JNDI principal; is
set by ServiceLocator.login when
a session is created.

When creating a ServiceLocator
for an existing session, the value
must be identical to the
username passed to
ServiceLocator.login when the
session was established.

javax.naming.Context.SECURIT
Y_CREDENTIALS

Specifies the JNDI credential; is
set by ServiceLocator.login when
a session is created.

When creating a ServiceLocator
for an existing session, the value
must be identical to the
password passed to
ServiceLocator.login when the
session was established.

ServiceLocator.CLIENT_MODE Specifies whether the
ServiceLocator should attempt to
connect to Remote or Locale
EJBs

ServiceLocator.REMOTE or
ServiceLocator.LOCAL. The
default is
ServiceLocator.REMOTE.

JNDI properties (named in table, with names starting with javax.naming.Context) can
be configured by Java System properties, a jndi.properties file in the classpath, or by
setting the values programmatically on the Properties passed to
ServiceLocator.getInstance. The order of precedence is that programmatic properties
override jndi file properties that in turn override Java System properties. We
recommend that you always configure
javax.naming.Context.INTIAL_CONTEXT_FACTORY and
javax.naming.Context.PROVIDER_URL using Java System properties or
jndi.properties to avoid unexpected behavior, and the need for extra configuration in
your application code. You should configure the remaining configuration options on the
Properties object that you pass to ServiceLocator.getInstance.

Note:

Always configure javax.naming.Context.INTIAL_CONTEXT_FACTORY and
javax.naming.Context.PROVIDER_URL implicitly using jndi.properties or
other Java System properties. Please refer to your Application Service
documentation for more information.

Create a New Session
Example 4-1 illustrates typical usage of the ServiceLocator. The ServiceLocator is
configured by creating a Properties class and configuring the JNDI and HDR client
mode properties. The application then calls the login method that establishes a
session between client and server. The application retrieves a service from the service
locator by calling getRimService().

Chapter 4
Create a New Session

4-2

Example 4-1 Outline of Service Locator Usage for a New Session

Properties properties = ...;
ServiceLocator serviceLocator = ServiceLocator.getInstance(properties);
serviceLocator.login(username, password);
RimService rimService = serviceLocator.getRimService();
...

Set the Client Mode
This mode specifies which kind of EJB the ServiceLocator should attempt to retrieve from
JNDI. In local mode, the ServiceLocator attempts to retrieve EJB local home interfaces and
beans. In remote mode, the ServiceLocator attempts to retrieve EJB remote home interfaces
and Beans. The two supported modes are defined the constants LOCAL and REMOTE on
the ServiceLocator class. REMOTE is used by default if no other mode is specified. Each
instance of ServiceLocator can function in only one mode.

Example 4-2 Setting the Client Mode

// Configure an Instance of ServiceLocator
// Configure an Instance of ServiceLocator
Properties properties = new Properties();
properties.setProperty(ServiceLocator.CLIENT_MODE, ServiceLocator.LOCAL);
ServiceLocator serviceLocator = ServiceLocator.getInstance(properties);
serviceLocator.login(username, password);
// Retrieve a service
RimService rimService = serviceLocator.getRimService();

Authorization Considerations
This section describes the different behaviors of the ServiceLocator.login method in local and
remote mode, and the effect of the Java Authentication and Authorization Service (JAAS) on
HDR authentication.

ServiceLocator.login
The behavior of ServiceLocator.login depends on whether or not the calling code is protected
by the application server:

• If ServiceLocator.login is called from code running outside of a container, the identity and
credentials passed to login are presented as the user name and password for the user
when authenticating.

• If ServiceLocator.login is called from code running outside of a container, the identity and
credentials passed to login are presented as the user name and password for the user
when authenticating.

• If ServiceLocator.login is called from code running inside of a container (always the case
in local mode), the behavior depends upon whether or not the application server has
been configured to manage access to the component. If the component is protected by
the container, the user name and password values are ignored; the ServiceLocator uses
the user name and password of the current EJB session context
(javax.ejb.SessionContext), which is established by the application server before it
permits access to the component. The behavior for unprotected components is more
complicated and is described below.

Chapter 4
Set the Client Mode

4-3

Note:

ServiceLocator.login ignores the user name and password passed to it when
executing within a protected component within an application server, and
uses the user name associated with the current EJB SessionContext. That
user has to be authorized to access HDR functionality by both JAAS and the
HDR Security Service. Session initiation otherwise fails and a Session could
not be created authorization exception is thrown.

When calling ServiceLocator.login from code running inside of a container, the
ServiceLocator.login call only succeeds if made from within a component whose EJB
SessionContext includes details of an authenticated user. Users are associated with
an EJB SessionContext when they first attempt access to a protected component. The
deployment configuration of your application and WebLogic determine which
components are protected. If a component is protected, the application server
authenticates any user before permitting access to the component. For web
applications, this is typically achieved through a login screen.

Once authenticated, the user identity can be propagated between components. This
essentially means that a call to ServiceLocator.login may fail if it is called from an
unprotected component and no authentication has occurred. You should thus ensure
that you protect the entry points to your applications with an appropriate security
constraint in your WebLogic deployment descriptors.

Example 4-3 Use ServiceLocator by Calling Login From a Remote Client

This code sample uses ServiceLocator by calling Login from an RMI Client outside of
an WebLogic:

Properties properties = new Properties();
properties.setProperty(ServiceLocator.CLIENT_MODE, ServiceLocator.REMOTE);
ServiceLocator serviceLocator = ServiceLocator.getInstance(properties);
serviceLocator.login("userName", "password");
RimService rimService = serviceLocator.getRimService();
IMPService impService = serviceLocator.getIMPService();

JAAS Authentication in WebLogic Server
Before accessing HDR Services you must connect to and authenticate with HDR. The
authentication process is carried out through JAAS by the WebLogic, the underlying
application server. JAAS in turn delegates these requests to a provider that
authenticates users against a repository, and determines authorization based on EJB
deployment descriptors and other application server configuration files. JAAS also
provides access authorization to particular EJBs and EJB methods.

JAAS and the ServiceLocator
The following key fundamentals relate to the behavior and use of the ServiceLocator:

• JAAS authentication is a function of establishing a session with the application
server. If authentication is successful, the authenticated user details are used to
authenticate with JAAS when attempting to access protected EJB components.

Chapter 4
JAAS Authentication in WebLogic Server

4-4

• JAAS authorization occurs whenever a user attempts access to a protected resource (for
example, an HDR Service EJB). JAAS authorization is in addition to that provided by
HDR Authorization mechanisms.

• JAAS is configured with a separate repository of user names as passwords (such as an
LDAP server), outside of HDR. External user repositories such as Oracle Identity
Management Suite can be integrated with WebLogic server.

See also:

• The WebLogic application server documentation. For more information about available
JAAS providers, JAAS configuration, and use by WebLogic, follow this link: https://
docs.oracle.com/middleware/12213/wls/SCPRG/fat_client.htm#SCPRG224.

Chapter 4
JAAS Authentication in WebLogic Server

4-5

https://docs.oracle.com/middleware/12213/wls/SCPRG/fat_client.htm#SCPRG224
https://docs.oracle.com/middleware/12213/wls/SCPRG/fat_client.htm#SCPRG224

5
Audit Events and Log Errors

• HDR Audit Services

• Log Error Messages

HDR Audit Services
The HDR Audit Service [AuditService] is a core HDR interface that lets you log and monitor
HDR activities, to monitor security policy and regulation compliance—by recording actions
taken during user sessions. Such event records can help detect actual or attempted
violations of policy and operation procedures.

The AuditService.createEventLog method lets you record an audit event record in the table
OHF_HDR_AU_ACCESS_LOG. You can use a reporting tool of your choice to generate auditing
reports by querying this table for audit record details of a relevant event.

The EventLog value object has two attributes that are mandatory and validated; the rest are
optional and not validated:

EventLog Value Object Attributes

Value Object Attribute Mandatory / Optional Validated

EventLog EventOutcome Mandatory Not Validated

EventLog EventType Mandatory As a valid HDR profile option

When createEventLog is called, the following checks are made to determine whether to
record an event or to ignore the request:

1. If the CTB profile option CTB: Auditing On (CTB_AU_AUDIT_FLAG) is not set to Y, the
audit event is not recorded.

2. If the Break-The-Glass profile option is turned on and the CTB profile option CTB: Audit
All When in Break-The-Glass (CTB_AU_ALL_WHEN_BTG) is not set to Y, the audit
event is not recorded.

3. If the attribute EventType of value object EventLog is a valid CTB profile option and the
profile option is set to Y, the audit event is recorded.

Example 5-1 Create an Audit Event Record

The following code sample creates an audit event record:

AuditingHelper
auditHelper = new AuditingHelper();
AuditService = mServiceLocator.getAuditService();
EventLog eventLog = auditHelper.newEventLog();

// "MyEventType" is a valid CTB profile option
eventLog.setEventType("MyEventType");
// mEventOutcome is a valid membership code in the CTB_AU_EVENT_OUTCOME
conceptlisteventLog.setEventOutcome(mEventOutcome);

5-1

DataTypeFactory dataTypeFac
= DataTypeFactory.getInstance(mServiceLocator);
II ii = dataTypeFac.newII(mUID), dataTypeFac.newST(mST);
SET_II iis = dataTypeFac.newSET_II(ii);

// finally
mAuditService.createEventLog(eventLog);

Initializing Existing Audit Event Types
Audit event types can selectively be turned on or off. When both the global auditing
flag and a particular audit event type are turned on, events of this particular type are
audited by HDR Audit Service.

Following is the list of HDR audit event types is seeded for HDR use. By default, these
event types are turned on.

1. CTB: Audit Receive Message

2. CTB: Audit Resending of Message

3. CTB: Audit Update OID

4. CTB: Audit Skipping of Message

5. CTB: Audit Generation of Message

6. CTB: Audit Query on Personal Health Information

7. CTB: Audit Insert/Update of Personal Health Information

Creating New Audit Event Types
Applications developed on the HDR Platform can define business audit event types in
addition to the seeded event types.

For example, an Admitting application might define an audit event type asAdmit
Patient, and monitor events of this type.

Note:

Although HDR provides the mechanism to audit business events, it is your
responsibility to implement the appropriate audit calls to log such events.

To create a new audit event type, use ProfileOptionService.createProfileOption to
create a new profile option with the new audit event type as the profile option code.

Invoking HDR Audit Services
After defining new audit event types, applications can log audit events of these types
by calling the Audit Services interface.

Reference

Oracle Healthcare Data Repository Javadoc

Chapter 5
HDR Audit Services

5-2

Table 5-1 Service and Methods: Audit Services

Level Detail

Package oracle.hsgbu.hdr.auditing

Class AuditService

Methods createEventLog

Prerequisite

Creating New Audit Event Types

Login

This is an API-based implementation procedure.

Responsibility

Any responsibility.

Navigation

This is an API-based implementation procedure.

Steps

1. Turn on HDR Audit Services and the audit event type.

• Enabling Audit Services

• Initializing Existing Audit Event Types

2. In the application code, call the createEventLog method with the new event type as the
value of the EventType attribute.
See also:

• Oracle Healthcare Data Repository Javadoc

Attribute Values in Audit Events
Every entry in the audit trail has the attributes listed by the attributes table included in
oracle.hsgbu.hdr.auditing.EventLog. This can be found in the Oracle Healthcare Data
Repository Javadoc.

Log Error Messages
Oracle HDR uses the JDK Logging Framework to provide the ability to log error messages for
debugging, error reporting and alerting purposes, as discussed in the following sections:

• Teminology

• Log Configuration Parameters

Teminology
Terminologies used by JDK Logging Framework:

Chapter 5
Log Error Messages

5-3

Log Message
A log message contains the application messages in different formats supported by
the JDK Logging Framework. The log message format is configurable in the JDK
logging properties file logging.properties.

Level
A logging level is a threshold set by the system administrator to control message
logging. The logging level can be set to any level supported by the JDK Logging
Framework. Once set, only messages having a severity greater than or equal to the
defined level are logged.

Example: Setting the level to SEVERE results in the logging of only error messages;
setting the level to FINEST results in the logging of all messages.

Log4j Logging Configuration
HDR logging can be configured to use either JDK Logging or Log4J Logging
Framework. Th user has to specify which logging framework he would want to use
through a system property: HDR_LOG_PROVIDER. The possible list of values for this
property are JDK, LOG4J, jdk or log4j. This property should be included in the
WebLogic Server startup script as a JVM argument. In case the user doesn't supply
this property then, the application falls back on JDK Logging.

To use Log4j Logging, the following steps are required:

1. Download log4j-api-2.10.0.jar and log4j-core-2.10.0.jar files from the Apache
website and copy them to ${WL_DOMAIN_HOME}/lib directory.

2. Create the log4j2.properties configuration file and copy it to the $
{WL_DOMAIN_HOME} directory. A sample configuration file can be found here.

3. Add the -Dlog4j.configurationFile=log4j2.properties JVM argument to WebLogic
Server startup script.

4. Add the JVM argument -DHDR_LOG_PROVIDER=LOG4J.

5. Restart the WebLogic Server.

Log Configuration Parameters
By default, the HDR installer creates the JDK logging properties file logging.properties
in the hdr_domain directory. The logging.properties sets the default logging to file
logging with log file name hdr.log. The default log level WARNING is configured in the
log module CTBAppsLogger.

HDR Terminology jobs use ETSJobLogger for generating job log files. The default log
level is FINEST (configurable using logging.properties) and the default handler is file
handler which takes name of log file from HDR Terminology PROGRAM_ARGUMENT
(this is to maintain specific log file names for specific types of jobs.

HDR Terminology jobs use an internal logger for generating Execution report. This
logger is internally configured and its attributes are not configurable.

Chapter 5
Log Error Messages

5-4

https://logging.apache.org/log4j/2.0/download.html
https://logging.apache.org/log4j/2.x/manual/configuration.html#Properties

6
ID and Profile Option Services

• HDR OID Service

• HDR Profile Option Service

HDR OID Service
HL7 defines OID as a globally unique string representing an ISO Object Identifier (OID), in a
form that consists only of numbers and dots (Example: 2.16.840.1.113883.3.1). According to
ISO, OIDs are paths in a tree structure, with the left-most number representing the root and
the right-most number representing a leaf. OIDs are created in HDR through the
DataTypeFactory.newOID method.

HDR Object Identifiers
All HDR objects are uniquely identifiable, based on internal identifiers that are system
generated at the time of creation. Each such identifier takes the form of an Instance Identifier
DataType, which consists of a root and an extension that together uniquely identify an HDR
object.The root uniquely identifies the implementing organization represented by this instance
of HDR. The extension uniquely identifies this specific instance of the HDR object (e.g. an
act, role or entity). Note, user defined or externally supplied instance identifiers may also be
persisted for an object. These are in addition to the system-generated identifier. The root of
these IIs is modeled as InternalOID RootId. InternalOID has two mandatory attributes,
namely RootName and RootId. RootName can be one of the string constants defined in
OIDService. RootId is of type OID. ConfigurationFactory methods can be used to create a
blank instance of InternalOID.

A set of InternalOIDs must be configured during implementation to enable HDR to generate
identifiers. The OIDService interface is used to configure the InternalOID values. HDR will
suffix the root with the appropriate extension, to provide the unique identifier for the object.

See also:

• The, HL7 web site current version-3 ballot documentation for details about OID and II
data types, and http://www.hl7.org/oid/ for more information about OIDs.

• ISO/IEC 8824 standard standard for the ISO standard for further details on OIDs.

• Oracle Healthcare Data Repository Implementation Guide for information about HDR
Internal OIDs.

Examples: This section contains the following code samples:

• Set up OID Service and Required Factories (see Example 6-1)

• Create an Internal OID (see Example 6-2)

• Query an Internal OID (see Example 6-3)

• Query All Internal OIDs (see Example 6-4)

• Update an Internal OID (see Example 6-5)

6-1

http://www.hl7.org/
http://www.hl7.org/oid/
https://www.iso.org/home.html

Example 6-1 Set up OID Service and Required Factories

The following code sample shows how to set up the service and factories required:

// Get the OID service
OIDService oidService = mServiceLocator.getOIDService();
// Create the configuration factory instance
ConfigurationFactory configFactory = ConfigurationFactory.getInstance();
// Create the datatype factory instance
DataTypeFactory.getInstance();

Example 6-2 Create an Internal OID

The following code sample shows how to configure an Internal OID with a new root id.
Use the appropriate factory methods to create the instance of OID and InternalOID:

// Create an OID datatype instance using the datatype factory
OID rootOID = dataTypeFactory.newOID("9.989898.5");
// Create the Internal OID object using the configuration factory
InternalOID internalRootOID = configFactory.newInternalRootOID();
// set the root for the Internal OID
internalRootOID.setRootId(rootOID);
// create the Internal OID using the service
oidService.registerOID(internalRootOID);

Example 6-3 Query an Internal OID

The following code sample shows how to query an Internal OID. Pass the appropriate
Root Name constant as the parameter to this service method. All Root Name
constants are defined in OIDService:

// Find the InternalOID using the get method
InternalOID internalOID = oidService.getOID(OIDService.INTERNAL_ROOT);

Example 6-4 Query All Internal OIDs

The following code sample shows how to query all Internal OIDs. This method returns
all InternalOIDs configured in the system:

// Find all the InternalOIDs using the get all methodInternalOID[] new line/
Enter internalOIDs = oidService.getAllOIDs();

Example 6-5 Update an Internal OID

The following code sample shows how to configure an Internal OID by updating its root
value. This same method is used for update and to create operations. Update is not
allowed if some RIM objects are already using the root:

// Create an OID datatype instance using the datatype factory
OID rootOID = dataTypeFactory.newOID("9.989898.9");
// Create the Internal OID object using the configuration factory
InternalOID internalRootOID = configFactory.newInternalRootOID();
// set the root for the Internal OID
internalRootOID.setRootId(rootOID);
// update the Internal OID using the service
oidService.registerOID(internalRootOID);

HDR Profile Option Service
Profile options are configurable preferences that affect the way an application
behaves. Application developers can control how their HDR based applications

Chapter 6
HDR Profile Option Service

6-2

operate by defining new profile options using Oracle Self Service Web Applications and
programming the applications to inspect their values at run time to determine behavior.
System Administrators can then use Oracle Self Service Web Applications to control
operational aspects by setting the values of relevant profile options for specific organizations
and users.

The primary use of the Profile Option service ProfileOptionService is to retrieve profile option
values at run time. The Profile Option Service also provides methods to let you define profile
options and set their values at multiple levels. Typically you define and set profile options
using Oracle Self Service Web Applications rather than defining them programmatically.

There are two profile option levels:

• Site

• User

These sections help you to:

• Define Profile Options (see Define Profile Options)

• Create Profile Options (see Create Profile Options)

• Set Profile Options Values (see Set Profile Option Values)

• Retrieve Profile Option Values (see Retrieve Profile Option Values)

See also:

• Oracle Healthcare Data Repository Implementation Guide for information about
implementing Profile Option Services using Oracle Self Service Web Applications.

Examples: The following code samples help you to:

• Create a Profile Option (see Example 6-6)

• Set a Profile Option Value at Site Level (see Example 6-7)

• Set a Profile Option Value at User Level (see Example 6-8)

• Retrieve a Profile Option Value for Current User (see Example 6-9)

• Retrieve a Profile Option Value at any Level (see Example 6-10)

Define Profile Options
When you define a new profile option, you specify constraints to describe valid values for that
profile option, and you can also specify whether your end users can change the value of a
profile option. The ProfileOption value object is constructed using the ConfigurationHelper
factory class.

If a profile option value type is LOOKUP, you should specify an active concept list that
belongs to the LOOKUPS_GROUP group. No validations are performed against the profile
option value if the value type is not LOOKUP.

Profile options have system administrator access settings and user access settings to control
who can view and change values at certain levels. System administrator settings control
which values are visible to and updateable by a user in a system administrator role. A system
administrator has default access to all values at all levels. Access settings specify updateable
and visible flags for each level for each profile option. When updateable flags are set to Y,
visible flags must be set to Y. User access settings are similar but are restricted to the user
level. Therefore there is only one set of user access updateable and visible flags per profile
option and they default to Y. These flags control whether a user can view or update personal

Chapter 6
HDR Profile Option Service

6-3

values for this profile option. You can use the getProfileOptions method to retrieve a
list of profile options that are accessible by system administrator or other user.

Table 6-1 Profile Options for HDR:

PROFILE_OPTION
_CODE

PROFILE_OPTION_N
AME

DESCRIPTION Permitted
Values

ETS_MLS_LANGUA
GE_CODE

ETS MLS Language
Code

Default language code. ISO 639
alpha-2
Language
Code

ETS_MLS_COUNT
RY_CODE

ETS MLS Country
Code

Default country code. ISO 3166
alpha-2
Country Code

CTB_AU_AUDIT_FL
AG

CTB: Auditing On Flag to switch ON/OFF
Auditing.

Y/N

CTB_AU_RECEIVE
_MSG

CTB: Audit Receive
Message

Flag to specify if IMP should
create an audit log for message
received. Set to 'Y' to audit; set
to 'N' otherwise.

Y/N

CTB_MS_STORE_
MESSAGE

CTB: Store Incoming
Message

Flag to specify if IMP should
store incoming message. Set to
'Y' to store; set to 'N' otherwise.

Y/N

CTB_AU_UPDATE_
OID

CTB: Audit Update
OID

Flag to specify if any change in
HDR OID configuration should
be audited. Set to 'Y' to audit;
set to 'N' otherwise.

Y/N

CTB_MTK_SCHEM
A_DIR_PATH

CTB: MTK schema
upload path

Location where the custom
schema and MIF files will be
uploaded in the HDR server.

Valid middle
tier server
location to
upload MTK
custom
schema.

CTB_XDS_B_REGI
STRY_ASYNC_URL

CTB: XDSb Registry
Asynchronous
Endpoint URL

XDSb Document Registry's
Asynchronous URL.

URL

CTB_XDS_B_REGI
STRY_URL

CTB: XDSb Registry
URL

XDSb Document Registry's
URL.

URL

CTB_XDS_DOCUM
ENT_IMPORT

CTB: XDSb Document
Import

Flag to specify if IHE XDS.b
document import mode should
be turned on. Set to 'Y' to
enable document import; set to
'N' otherwise.

Y/N

CTB_XDS_AUDIT_
SERVER_PORT

CTB: XDSb Audit
Server Port

ATNA audit logging server port
number. Either UDP or TLS
port based on
CTB_XDS_AUDIT_SERVER_T
RANSPORT_PROTOCOL
value.

Port number

CTB_XDS_AUDIT_
SERVERNAME

CTB: XDSb Audit
Server Name

ATNA audit logging server
hostname or IP address.

Hostname or IP
address

Chapter 6
HDR Profile Option Service

6-4

Table 6-1 (Cont.) Profile Options for HDR:

PROFILE_OPTION
_CODE

PROFILE_OPTION_N
AME

DESCRIPTION Permitted
Values

CTB_XDS_AUDIT_
SERVER_TRANSP
ORT_PROTOCOL

CTB: XDSb Audit
Server Transport
Protocol

The protocol to be used for IHE
ATNA audit logging.

UDP or TLS

CTB_XDS_REPOSI
TORY_UNIQUE_ID

CTB: XDSb
Repository Unique Id

IHE XDS.b document
repository unique id.

Valid OID

CTB_XDS_WS_ATO
MIC_TRANSACTIO
N

CTB: XDSb WS-
Atomic Transaction

Flag to specify if XDS.b
Document Registry is invoked
using WS-Atomic Transaction
Protocol. Set to 'Y' to enable;
set to 'N' otherwise.

Y/N

CTB_EN_USE_VAL
_CRITERIA

CTB: Validation
Criteria for EN_USE

Depending on this criteria, the
concept list for validating EN
will be picked. 0 for
CL_EN_USE, 1 for
CL_EN_USE_EXT and 2 for
CL_EN_USE union
CL_EN_USE_EXT.

0,1 or 2

Create Profile Options
Example 6-6 Create a Profile Option

This code sample creates a profile option within the following constraints. Its purpose is to
create a profile option for use in the subsequent examples in this section. You should use
Oracle Self Service Web Applications and avoid programmatic creation of a new profile
option. Note that the example can be executed only once for any given ProfileOptionCode.

• Value type is LOOKUP; use the concept list CTB_YES_NO.

• System Administrator access only.

• Site level and User level are updateable and visible.

 ConfigurationHelper configHelper = new ConfigurationHelper();

ProfileOptionService profileOptionService = serviceLocator.getProfileOptionService();

//Construct profile option value object
ProfileOption profileOption = configHelper.newProfileOption();
//Set the profile option code. scenarioProfileOptionCode is a String variable, and
must be unique.
profileOption.setProfileOptionCode(scenarioProfileOptionCode);
profileOption.setProfileOptionName("Scenario Profile Option");
profileOption.setDescription("Profile option created by programmers guide.");
//Setting value type constraint. Valid value is null or LOOKUP
profileOption.setValueTypeCode("LOOKUP");
//Lookup type is any concept list in the LOOKUP_GROUP group
profileOption.setConstraint1("CTB_YES_NO");
//By default, all levels are Y. So you must turn off other levels.
profileOption.setOrgVisibleFlag("N");
//This profile option only allows system administrator role to view and change
//the profile option value. The user access flag must be turned off.
profileOption.setUserAccessVisibleFlag("N");

Chapter 6
HDR Profile Option Service

6-5

profileOption.setUserAccessUpdateableFlag("N");

//Create the profile option now
profileOptionService.createProfileOption(profileOption);

Set Profile Option Values
After the profile option is created, a system administrator or other user can set profile
option values at each profile level by calling the
setProfileOptionValue(ProfileOptionValue) method. Whenever you set profile option
values, the prior values are overwritten. An exception is thrown when constraints set in
the profile option are not met. Refer to setProfileOptionValue(ProfileOptionValue) (in
the Oracle Healthcare Data Repository API Documenation) for more information about
exceptions thrown by this method. The ProfileOptionValue value object is constructed
using the ConfigurationHelper factory class.

Example 6-7 Set a Profile Option Value at Site Level

The following code sample sets a profile option value at the Site level for the profile
option [scenarioProfileOptionCode] created in Example 6-7. Its purpose is to set the
Site level option used in the later examples in this section. The Site level option values
affect the way all applications run at a given installation and should be set using Oracle
Self Service Web Applications rather than setting the values programmatically.

ProfileOptionValue siteLevelProfOptionVal = configHelper.newProfileOptionValue();
siteLevelProfOptionVal.setProfileOptionCode(scenarioProfileOptionCode);
//Set the level value. The valid values are SITE and USER.
siteLevelProfOptionVal.setProfileOptionLevelCode("SITE");
//The profile option value must be a valid value in the CTB_YES_NO concept list.
siteLevelProfOptionVal.setProfileOptionValue("N");
profileOptionService.setProfileOptionValue(siteLevelProfOptionVal);

Example 6-8 Set a Profile Option Value at User Level

The following code sample sets a profile option value at user-level (sysadmin) for the
profile option [scenarioProfileOptionCode] created in Example 6-7. Its purpose is to set
the User level option used in the later examples in this section. The User level option
values affect the way the application runs for a given user and should be set using
Oracle Self Service Web Applications rather than setting the values programmatically.

ProfileOptionValue userLevelProfOptionVal = configHelper.newProfileOptionValue();
userLevelProfOptionVal.setProfileOptionCode(scenarioProfileOptionCode);
//Set the level value. The valid values are SITE and USER.
userLevelProfOptionVal.setProfileOptionLevelCode("USER");
//The profile option level value must be a valid user account login identity.
userLevelProfOptionVal.setProfileOptionLevelValue("SYSADMIN");
//The profile option value must be a valid value in the CTB_YES_NO concept list.
userLevelProfOptionVal.setProfileOptionValue("Y");
profileOptionService.setProfileOptionValue(userLevelProfOptionVal);

Retrieve Profile Option Values
Your HDR-based application can retrieve profile option values in two ways:

• By retrieving a profile option value at a level such as User for a particular instance
of that level, such as user name(login identity).

Chapter 6
HDR Profile Option Service

6-6

• By retrieving a profile option value without specifying any level. In this case, the system
automatically accounts for level precedence, and returns the most appropriate value.
User level has higher precedence than Site level.

Example 6-9 Retrieve a Profile Option Value for Current User

The following code sample retrieves the value of profile option [scenarioProfileOptionCode]
created in Example 6-8 for the current login user. It retrieves the profile option value of Y set
in Example 6-9.

//Get the current login user's login identity
SessionService sessionService = serviceLocator.getSessionService();
String value =
profileOptionService.getProfileOptionValueForLevel(scenarioProfileOptionCode,"USER"
'SYSADMIN');
//Retrieve the value set in Example 6-9
String value =
profileOptionService.getProfileOptionValueForLevel(scenarioProfileOptionCode,"USER",log
inId);

Example 6-10 Retrieve a Profile Option Value at any Level

The following code sample retrieves the value of profile option [scenarioProfileOptionCode]
created in Example 6-7 without specifying a level:

String value = profileOptionService.getProfileOptionValue(scenarioProfileOptionCode);

The Site and User level option values were set for [scenarioProfileOptionCode] in Example
6-8 and Example 6-9. This method returns the current login User's value of Y because the
User level has higher precedence than the Site level.

Chapter 6
HDR Profile Option Service

6-7

7
RIM Services

• Submit a Query

• HDR HL7 Domain Constants

• HDR Factories

• HDR Query

• DCTB Subqueries

• HDR RIM Services

• Use Master Catalog API

• HDR HL7 Data Types

• RIM Service Examples

• Constraints on the HL7 V3 RIM Model

The oracle.hsgbu.hdr.hl7 package contains a single interface [RIM Service] that provides the
main entry point into HDR's query functionality and RIM object persistence.

Submit a Query
Example 7-1 Submit a Query

Use the following RimService APIs to query Acts, ActRelationships, Participations, Roles and
Entities directly:

• queryActs(ServiceLocator s1, ActFetch fetch) throws HDRRimException

• queryParticipations(ServiceLocator s1, ParticipationFetch fetch) throws
HDRRimException

• queryRoles(ServiceLocator s1, RoleFetch fetch) throws HDRRimException

• queryEntities(ServiceLocator s1, EntityFetch fetch) throws HDRRimException

• queryActRelationships(ServiceLocator s1, ActRelationshipFetch fetch) throws
HDRRimException

The results of a query are an Iterator of Acts, ActRelationships, Participations, Roles and
Entities respectively.

HDR HL7 Domain Constants
Domain constants provide consistent definitions for structural codes. The names of the
classes correspond to HL7 vocabulary domains that are coded no exceptions (CNE). Domain
constants should be used wherever possible.

• Import the ActStatus Domain Class (see Example 7-2)

• Use the ActStatus Domain Class to Set Status Code (see Example 7-3)

7-1

Example 7-2 Import the ActStatus Domain Class

Import the ActStatus Domain Class

import oracle.hsgbu.hdr.hl7.rim.domain.ActStatus;

Example 7-3 Use the ActStatus Domain Class to Set Status Code

Use the ActStatus domain class to set the status code on an act that is being created
or updated.

act.setStatusCode(ActStatus.ACTIVE);

The following domain classes are available:

• AcknowledgementCondition

• AcknowledgementType

• ActClass

• ActMood

• ActRelationshipCheckpoint

• ActRelationshipJoin

• ActRelationshipSplit

• ActRelationshipType

• ActStatus

• ActUncertainty

• BinaryDataEncoding

• CommunicationFunctionType

• ContextControl

• EntityClass

• EntityDeterminer

• EntityStatus

• LocalMarkupIgnore

• ManagedParticipationStatus

• ModifyIndicator

• NullFlavor

• ParticipationSignature

• ParticipationType

• ProcessingID

• ProcessingMode

• QueryPriority

• QueryResponse

• QueryStatusCode

• RelationalOperator

Chapter 7
HDR HL7 Domain Constants

7-2

• RelationshipConjunction

• ResponseLevel

• ResponseModality

• RoleClass

• RoleLinkType

• RoleStatus

• Sequencing

HDR Factories
This section contains the following topics:

• Factories

• Data Type Factory

• RIM Object Factories

• Query Component Factory

• Reference Modifiers

Factories
Classes in this package provide factory methods for creating instances of the following data
types and classes:

• Data Type Factory

• RIM Object Factories

• Query Component Factory

A reference to ServiceLocator is required to get an instance of each factory. Factories are
thus tied to a specific HDR session, and should not be cached and reused across different
login sessions.

Note:

Do not use Java's new operator to construct instances of HDR classes. Use
factories instead— to ensure that RIM objects or data types that require a service
locator for their operation will have access to one.

Data Type Factory
Because the Code System UID is mandatory on coded datatypes (CD, CE, CV), factory
methods that do not include the code system UID (Example: methods that take the code
system name instead) incur a performance penalty while the factory method requests the UID
from ETS.

To achieve optimal performance, provide the code system UID explicitly. You can retrieve the
complete mapping of code system names to UIDs by querying the corresponding ETS coding
system.

Chapter 7
HDR Factories

7-3

Note:

You can also retrieve the complete mapping of code system names to UIDs
in the following way:

• For coding systems registered with HL7, an online OID Registry is
provided as a free service by the HL7 website.

RIM Object Factories
You can create RIM objects through one of the three available factories: ActFactory,
EntityFactory, or RoleFactory.

Each factory contains one generic factory method, for creating Act, Entity, and Role
objects respectively:

• ActFactory.newAct

• EntityFactory.newEntity

• RoleFactory.newRole

In addition, there are numerous convenience methods within each class for creating
various subtypes of Acts, Entities and Roles.

Examples:

• Create RIM Observations Using the Generic Factory Method (see Example 7-4).

• Create RIM Observations Using the Convenience Factory Method (see
Example 7-5).

Example 7-4 Create RIM Observations Using the Generic Factory Method

DataTypeFactory dtf = DataTypeFactory.getInstance();
ActFactory af = ActFactory.getInstance(serviceLocator);
Observation observation = (Observation) af.newAct(ActClass.OBS,
ActMood.EVN, dtf.nullCD(NullFlavor.NI), dtf.nullSET_II(NullFlavor.NI));

Example 7-5 Create RIM Observations Using the Convenience Factory Method

The following example illustrates the preferred method for creating RIM objects:

DataTypeFactory dtf = DataTypeFactory.getInstance();
ActFactory af = ActFactory.getInstance(serviceLocator);
Observation observation = af.newObservation(ActMood.EVN,
dtf.nullCD(NullFlavor.NI),
dtf.nullSET_II(NullFlavor.NI));

Query Component Factory
See also:

• HDR Query for information about creating criteria and fetch objects using this
factory, submitting them to RIM Service, and interpreting results returned.

Chapter 7
HDR Factories

7-4

Reference Modifiers
In addition to factory classes, the oracle.hsgbu.hdr.hl7.rim.factories package contains
the ReferenceModifier class, a typed enumeration of all possible values for RIM class
reference modifiers.

See also:

• Use RIM Services for information about how RIM service persistence uses
ReferenceModifier values.

HDR Query
• Fetches

• Criteria

• Navigate the Result Graph

• HDR RIM Extensions

• Original Coded Attributes

The query framework provides a RIM-like Java interface to retrieve data from the HDR
repository. This document introduces constructs and features included with the query
framework to retrieve information.

At the high level, a query is defined in terms of fetch and criteria objects. A fetch corresponds
to a request for a certain type of information (for example, an ActFetch is a request for act
information). Fetches are used in combination with criteria, which specify conditions objects
must meet if they are to be retrieved by the query. In SQL query terms, a fetch corresponds to
the SELECT/FROM clause and the criteria to the WHERE clause.

The code samples below help you do the following:

• Retrieve the Patient ID (see Example 7-6)

• Construct Patient Role (see Example 7-7)

• Associate Patient Role Criteria with Role Fetch (see Example 7-8)

• Incremental Fetch / Ordering (see Example 7-9)

• Using QBE API to Set Class Code Criteria (see Example 7-10)

• Using QBE API to Set Instance Identifier Criteria (see Example 7-11)

• Implicit AND Behavior: Restricting Retrieved Results (see Example 7-12)

• Submit a Query (see Example 7-1)

• Retrieve Ultimate Survivor of an Entity (see Example 7-13)

• Patient Query by ID Code Sample (see Example 7-14)

• Query for Identified Patient Roles and Player Entities (see Example 7-15)

Query Submission Diagram Conventions:

• Fetches are represented by red boxes.

• Criteria are represented by boxes that correspond to standard RIM diagram colors for
their object type.

Chapter 7
HDR Query

7-5

• Text adjacent to links distinguishes between link types where necessary (such as
Player vs Scoper).

Scenario
This scenario illustrates the following query fundamentals:

• Submitting a query.

• Combining fetches and criteria to retrieve data.

• Resulting object graph and the fetch graph symmetry.

• Navigating object graph results.

Figure 7.5.1 describes how to retrieve a patient (including the playing entity) based on
the patient id. The following information must be retrieved:

• The patient role with the id attribute.

• The playing person entity with the name, address, birth time and administrative
gender code attributes.

Figure 7-1 Scenario Description

Chapter 7
HDR Query

7-6

Fetches
A fetch is a request for information. Queries consist of one or more connected fetches that
request some combination of Act, ActRelationship, Participation, Entity and Role data. These
sections describe important fetch functions used in querying:

• Flexible Retrieval

• Set Criteria on Fetches

• Add Detail Fetches

• Incremental Fetches

• Order Fetch Results

• Cyclic (Recursive) Fetches

Flexible Retrieval
Flexible retrieval is the ability to specify a subset of attributes to retrieve in a query. This lets
you optimize performance by retrieving only the data necessary to satisfy application
requirements. For each fetch there are several retrieve<AttributeName>(boolean bool)
methods that can be used to specify which attributes should be retrieved.

Example 7-6 Retrieve the Patient Id

The following code line requests the retrieval of the patient id:

patRoleFetch.retrieveId(true);

By default, no attributes are retrieved so you must call the appropriate retrieve method for all
of the attributes you require. For convenience, fetches include a retrieveAll() method that
specifies that all attributes of the class should be retrieved. There is also a retrieveNone()
method that acts in reverse to the retrieveAll() method. The retrieve methods used by a fetch
specify the minimum set of data that the system must retrieve to fulfill the query; the platform
may retrieve additional data beyond that requested.

Set Criteria on Fetches
Criteria are used in combination with fetches to constrain the data retrieved by a query. You
can associate criteria with a fetch in two ways:

• Pass the criteria as a parameter to the factory method for the fetch. Each fetch factory
method is overloaded to accept a criteria object of the corresponding HL7 type (Example
7-16).

• Call setTopLevel<HL7Class>Criteria, which associates a criteria with a preexisting fetch.

Note:

Use of either method (Examples 7-16, 7-17) is discretionary; there is no functional
difference between the two methods.

Chapter 7
HDR Query

7-7

Example 7-7 Construct Patient Role

In the introductory scenario the patient role fetch was constructed with the role criteria
using the following code line:

RoleFetch patRoleFetch = queryComponentFactory.newRoleFetch(patRoleCriteria);

Associating Patient Role Criteria with Role Fetch: Each fetch has a
setTopLevel<HL7Class>Criteria(...) method that associates criteria with a pre-
constructed fetch.

Example 7-8 Associate Patient Role Criteria with Role Fetch

To associate the patient role criteria with a pre-constructed role fetch, use the following
code:

RoleFetch patRoleFetch =
queryComponentFactory.newRoleFetch();patRoleFetch.setTopLevelRoleCriteria(patRole
Criteria);

Add Detail Fetches
Fetches can be linked together to retrieve related Act, ActRelationship, Participation,
Role and Entity data in a single query. The added fetches are called detail fetches.
Detail fetches behave like normal fetches allowing specific attributes to be retrieved
and criteria to be specified, but they only retrieve data associated with their master.

Detail fetches are added using the add<RelatedObject>Fetch(...) APIs on the fetch
class. These APIs are specific to each fetch to restrict the query results to a RIM
consistent structure. As the API name suggests, it is possible to add multiple detail
fetches of the same type to a master, each having their own set of attributes to
retrieve, with their own criteria. This lets you group detail objects by criteria. For
example, you can retrieve the subject participations and attending physician
participations of an act separately by adding two participation detail fetches (one with
criteria for subject participations and the other with criteria for the attending physician
participations) to the main act fetch.

Detail fetches also play an important role in navigating the result graph, as every result
object is related to the fetch that caused it to be retrieved.

Note:

Navigate the Result Graph for more information about detail fetches.

Incremental Fetches
The query framework has a pseudo-incremental fetch mechanism that lets you retrieve
blocks of results by a fetch. This is useful to improve query response time and to page
through results when processing large result sets.

Developers specify the size of the result set (window size) required using the
setRetrievalWindow(int first, int last) API on the top level fetch. To implement a paging
solution, submit the same fetch graph to the RimService multiple times modifying the
retrieval window accordingly. To ensure that subsequent queries return consistent
results, you should apply an ordering directive on the fetch (described in the next

Chapter 7
HDR Query

7-8

section). Sample code demonstrating a paging solution follows the ordering fetch results
discussion (see Example 7-18).

Note:

Read consistency is not guaranteed between calls. If data that matches the query
criteria is persisted between subsequent fetches the newly persisted data is
retrieved.

Order Fetch Results
To facilitate incremental fetching, the query framework lets you order results in ascending or
descending order of a subset of attributes. This is to ensure that the result set is ordered, so
that subsequent incremental fetch results are consistent.

Specify the set of ordering attributes by using the addOrderBy(String attribute, int order API
on the top level fetch. Results can be ordered by a restricted set of attributes represented by
constants in QueryComponentFactory (look for ORDER_BY_<ATTRIBUTE_NAME>
constants).

Example 7-9 Incremental Fetch / Ordering

The following example illustrates how to use the incremental fetch and ordering features of
the query framework to retrieve ten acts at a time:

// create Act fetch and criteria
 // order the fetch by 1 or more orderable act attributes
 actFetch.addOrderBy(QueryComponentFactory.ORDER_BY_ACT_EXISTENCE_TIME_LOW,
 QueryComponentFactory.ORDER_BY_ASCENDING);
 // set the intial window size
 actFetch.setRetrievalWindow(1, 10);
 // execute the query
 Iterator firstTenResults = rimService.queryActs(serviceLocator, actFetch);
 // display first 10 results
 ...
 // set the next window size
 actFetch.setRetrievalWindow(11, 20);
 // execute the results
 Iterator secondTenResults = rimService.queryActs(serviceLocator, actFetch);
 // display second 10 results
 ...

Cyclic (Recursive) Fetches
Fetches can be linked in cycles to retrieve data that is recursively related. This lets you avoid
coding individual fetches for each component in the recursive relationship. This is particularly
useful for retrieving a series of related acts.

Chapter 7
HDR Query

7-9

Figure 7-2 Cyclic Recursive Fetches

Figure 7-2 illustrates how cyclic fetches can be used to retrieve an entire chain of acts,
avoiding the need to code an entire chain of fetch/criteria objects:

Note:

Exercise care when using this feature; the query response time and memory
consumption is relative to the depth of recursion and there is no mechanism
to restrict the level of results retrieved. If you have data that exists in a
deeply recursive structure and you only want to recurse to a certain level it
may be better to explicitly code the expanded fetch graph rather that use the
cyclic fetch functionality.

Criteria
Query criteria are used to specify conditions HL7 objects must satisfy to be retrieved
by a particular query–a criteria graph is analogous to the WHERE clause in a SQL
Select statement.

Criteria exist for the main HL7 objects (Acts, ActRelationships, Participations, Roles
and Entities) as well as the more complex datatypes that provide a high degree control
in restricting the data being retrieved.

There are two fundamental types of criteria:

• Attribute criteria, which let you set restrictions on attributes such as an Act class
code.

• Connective criteria, which allow attribute criteria to be ANDed and ORed together
to construct more complex conditions.

Chapter 7
HDR Query

7-10

Criteria described in further detail:

• Attribute Criteria

• Query-by-Example (QBE) APIs

• Query-by-Criteria (QBC) APIs

• CodedTypeCriteria APIs

• Querying-by-Equivalence

Attribute Criteria
AttributeCriteria are used to specify conditions that object attributes must satisfy to be
retrieved by a query. Specific criteria classes exist for the core HL7 objects and for datatypes
where necessary. The criteria classes provide a combination of query-by-criteria (QBC) and
query-by-example (QBE) APIs depending upon the type of attribute. The following table lists
all of the attribute types and indicates whether a QBE or QBC interface is exposed for each
type:

Attribute Types

Query-by-Example Types Query-by-Criteria Types

BL AD

CS ADXP

CD/CE CD/CE

II EN

INT ENXP

REAL GTS

ST IVL<DATATYPE>

TS MO

URL PQ

RTO<DATATYPE, DATATYPE>

SC

TEL

ED

Query-by-Example (QBE) APIs
Query-by-example interfaces are provided for attributes where constraints can be adequately
specified using an example datatype. The following attribute types fall into this category:

• BL

• CS

• CD

• CE

• II

• INT

• REAL

Chapter 7
HDR Query

7-11

• ST

• TS

• URL

Where the attribute is represented by a single datatype the interface has the following
form:

public void set<AttributeName>(SearchOperator op, <DataType> value);

where SearchOperator is one of the following:

• EQUALS

• NOT_EQUALS

• GREATER_THAN

• LESS_THAN

• GREATER_THAN_OR_EQUAL

• LESS_THAN_OR_EQUAL

• IS_NULL

• IS_NULL

• IS_NOT_NULL

• LIKE

• NOT_LIKE

Example 7-10 Using QBE API to Set Class Code Criteria

The following code sample illustrates the usage of this style of API for setting a class
code criteria for an entity:

entityAttributeCriteria.setClassCode(SearchOperator.EQUALS, EntityClass.PSN);

The following interface is exposed for set based attributes (SET<CS>, SET<CD>,
SET_II etc):

public void set<AttributeName>(SetSearchOperator op, <DataType>[] values);

The following special operators are provided to support set based searching: ALL and
ANY. The ALL operator is used to specify that the target search object must have all of
the values passed in the array type. The ANY operator means that the object must
have at least one of the values passed in the array to match.

Example 7-11 Using QBE API to Set Instance Identifier Criteria

The following code sample illustrates typical usage of this form of API when setting
Instance Identifier criteria for an object:

II[] patientIIs = new II[1];
...

patientIIs[0] = dataTypeFactory.newII(dataTypeFactory.newUID("ROOT"),
 dataTypeFactory.newST("EXTENSION"),
 dataTypeFactory.newBL(true));
 patRoleCriteria.setId(SetSearchOperator.ANY, patientIIs);

Chapter 7
HDR Query

7-12

Query-by-Criteria (QBC) APIs
Query-by-Criteria interfaces are provided for attributes represented by complex datatypes-
those where using an example datatype to specify a constraint is not flexible enough to meet
common uses. For example, there is a criteria interface for EN attributes because it consists
of a set of use codes (SET<CS>), a list of name parts (LIST<ENXP>), a formatted string
(ST), and a valid time (IVL<TS>, all of which require individual constraints to be set in various
use cases. This cannot be specified with a QBE interface. The attribute sets that fit into this
category are represented by the following datatypes:

• AD

• ADXP

• ED

• EN

• ENXP

• GTS

• IVL<INT>

• IVL<MO>

• IVL<PQ>

• IVL<REAL>

• IVL<TS>

• MO

• PQ

• RTO<MO,PQ>

• RTO<PQ>

• SC

• TEL

...where the attribute is represented by a complex datatype the interface has the following
form:

public void set<AttributeName>Criteria(<Datatype>Criteria criteria);

The API differs from the QBC interface for complex datatypes by accepting a versioning type
parameter. This is used to specify whether the neighboring criteria should be applied to the
version that is directly related to the master object (version dependent), or to any version of
the detail object (version independent). Versioning and query are discussed in more detail in
Versioning and Query.

CodedTypeCriteria APIs
You can use CodedTypeCriteria expose functionality, in the API, to query by qualifiers,
classifications, and equivalence. Classifications and equivalence are defined in ETS
(Enterprise Terminology Services). You can combine three types of queries using
ConnectiveCriteria. You can apply only one type of query on any single Criteria object.

Querying-by-Qualifiers

Chapter 7
HDR Query

7-13

Queries on CD.qualifier follow the Query-by-Criteria pattern described in the Criteria
section. The following operators can be used for qualifier queries:

• SearchOperator.IS_NULL

• SetSearchOperator.ANY

• SetSearchOperator.NONE

• SetSearchOperator.ALL

CodedTypeAttributeCriteria.includeEquivalentCodes(boolean, String, boolean) cannot
be used with the CodedTypeAttributeCriteria.setQualifier(SearchOperator, CR[])
method.

CodedTypeAttributeCriteria codedTypeCriteria =
queryComponentFactory.newCodedTypeAttributeCriteria(); // use the DataTypeFactory
to instantiate the data types codedTypeCriteria.setCode(parentCode);
codedTypeCriteria.setCodeSystem(parentCodeSystem);
codedTypeCriteria.setQualifier(SearchOperator.IS_NULL, new CR[] { });

// null values are passed in for the II, the StatusCode and the CurrentVersionFlag,
because we are not // querying using these attributes RoleAttributeCriteria roleCriteria
= queryComponentFactory.newRoleAttributeCriteria(RoleClass.ACCESS, roleCode,
null, null, null);

roleCriteria.setTargetSiteCode(codedTypeCriteria); RoleFetch roleFetch =
queryComponentFactory.newRoleFetch(roleCriteria); roleFetch.retrieveAll(); Iterator
fetchedRoles = rimService.queryRoles(localServiceLocator, roleFetch);

Querying-by-Classifications

Classification queries are constructed using ClassificationCriteria, which is a subclass
of CodedTypeCriteria. Only ClassificationAttributeCriteria.setCode(ST) applies to a
query by classification. Other methods inherited from CodedTypeAttributeCriteria are
not applicable. This is because the value is predetermined to be one appropriate to the
code system that contains classifications or because the method does not apply to this
type of query.

ClassificationAttributeCriteria classificationCriteria =
qcf.newClassificationAttributeCriteria();

// Set the classification code; no code system is needed because classifications are all

// stored in a specific code system that is known to the system.

classificationCriteria.setCode(classificationCode);

ActAttributeCriteria actCriteria =
this.queryComponentFactory.newActAttributeCriteria();
actCriteria.setCode(codedTypeAttrCriteria); actCriteria.setId(SetSearchOperator.ALL,
ii); ActFetch actFetch = this.queryComponentFactory.newActFetch(actCriteria);
actFetch.retrieveAll(); Iterator fetchedActs = rimService.queryActs(localServiceLocator,
actFetch);

Querying-by-Equivalence
Equivalence queries must use
CodedTypeAttributeCriteria.includeEquivalentCodes(boolean, String, boolean)
method. These queries must specify a code and code system. The

Chapter 7
HDR Query

7-14

setQualifierMethod(SearchOperator, CR[]) method cannot be invoked on a
CodedTypeAttributeCriteria instance where includeEquivalentCodes(..) has been called.

CodedTypeAttributeCriteria codedTypeAttrCriteria =
this.queryComponentFactory.newCodedTypeAttributeCriteria();
codedTypeAttrCriteria.setCode(actCode);
codedTypeAttrCriteria.setCodeSystem(actCodeSystem);
codedTypeAttrCriteria.includeEquivalentCodes(true, null, true);
ActAttributeCriteria actCriteria =
this.queryComponentFactory.newActAttributeCriteria();
actCriteria.setCode(codedTypeAttrCriteria);
actCriteria.setId(SetSearchOperator.ALL, ii);
ActFetch actFetch = this.queryComponentFactory.newActFetch(actCriteria);
actFetch.retrieveAll(); Iterator fetchedActs =
rimService.queryActs(localServiceLocator, actFetch);
Implicit AND Behavior for Attribute Criteria

When multiple criteria are set on an instance of an AttributeCriteria (regardless of the type),
they are implicitly ANDed together. For example, see Example 7-21:

Example 7-12 Implicit AND Behavior: Restricting Retrieved Results

In this code sample, the retrieved results are restricted to those Acts that have a ...

actAttributeCriteria.setMoodCode(SearchOperator.EQUALS, ActMood.EVN);
...
ctAttributeCriteria.setClassCode(SearchOperator.EQUALS, ActClass.OBS);

ConnectiveCriteria can be used to build more complex criteria where ANDs and ORs can be
used.

Connective Criteria
Connective criteria are used to AND and OR attribute criteria together, permitting more
complex queries to be constructed. You must use connective criteria with attribute criteria of
the same type. For example, you can use an ActConnectiveCriteria to AND/OR multiple Act
criteria (attribute or connective) together. You should exercise care with regard to the level the
connective is applied; otherwise the results may not be what you expected.

Chapter 7
HDR Query

7-15

Figure 7-3 Retrieve active encounter event and observation event Acts:
Example 1:

Figure 7-3 illustrates the use of connective criteria. In this example, two equivalent
fetch diagrams show that the same result can be achieved in different ways. In the first
diagram, an OR connective is used between two act attribute criteria to fetch the
required results. The result of the query will be the union of the results returned by the
execution of the two attribute criteria independently. The criteria on the left retrieves all
active encounter event acts, and the criteria on the right retrieves all active observation
events. The resulting set of retrieved acts will be the union of the two sets.

The second diagram is semantically equivalent but achieves the result using a
combination of AND and OR connectives. The left side of the AND connective
retrieves all active acts in EVN mood and the right side retrieves all acts of class ENC
or OBS. The end result is the intersection of the two individual sets-all active
encounter and observation events.

Chapter 7
HDR Query

7-16

Figure 7-4 Retrieve encounter events that have a subject participation to an identified
patient role with an attending participation to an identified employee role: Example 2:

As in Example 1, you must exercise care to ensure that the connective is made at the correct
level.

Figure 7-4 shows two branches of criteria connected at the top level by an AND connective.
The result of the query will be the intersection of the results returned by the execution of the
two branched independently. The left branch retrieves all encounter events that have an SBJ
participation to a PAT role. The right branch retrieves all encounter events that have an ATND
participation to an EMP role.

Chapter 7
HDR Query

7-17

Figure 7-5

Figure 7-5 shows a typical mistake of specifying the above criteria with the connective
at the participation level. Logically this can be thought of as asking for encounter
events that have a participation with a class code of SBJ and ATND-an impossible
construct that returns no results.

Navigate the Result Graph
Complex queries that consist of several fetches return a RIM object structure that
replicates the fetch graph that was submitted (assuming that existing data matches the
criteria specified). The core RIM classes contain specific APIs that let you navigate
from the master object to its related details. The following table lists the complete set
of core RIM navigational APIs:

Core RIM Navigational APIs

Class Navigational API Description

Act getParticipations(...) Returns act participations fetched by
a detail participation fetch.

getIBActRelationships(...) Returns inbound act relationships
fetched by a detail inbound act
relationship fetch.

getOBActRelationships(...) Returns outbound act relationships
fetched by a detail outbound act
relationship fetch.

Chapter 7
HDR Query

7-18

ActRelationship getSource(...) Returns the source act that was
fetched by a detail act fetch.

getTarget(...) Returns the target act that was
fetched by a detail act fetch.

Participation getAct(...) Returns the act that was fetched by a
detail act fetch.

getRole(...) Returns the role that was fetched by
a detail role fetch.

Role getParticipations(...) Returns participations fetched by a
detail participation fetch

getPlayerEntity(...) Returns entities fetched by a detail
player entity fetch

getScoperEntity(...) Returns entities fetched by a detail
scoper entity fetch

Entity getPlayedRoles(...) Returns roles fetched by a detail
played role fetch

getScopedRoles(...) Returns roles fetched by a detail
scoped role fetch

getOwnedPlayedRoles(...) Returns roles fetched by a detail
owned played role fetch

getOwnedScopedRoles(...) Returns roles fetched by a detail
owned scoped role fetch

Note:

Fetches have additional navigation methods for HDR extensions such as control act
and merge navigations, discussed in HDR RIM Extensions.

Two types of navigational APIs provide flexibility when navigating the result graph. The
simplest form accepts no parameters and returns all details retrieved regardless of which
particular fetch was responsible for the result being retrieved.

The overloaded form accepts a fetch parameter and returns results directly related to the
execution of the detail fetch passed in. This API is used when multiple detail fetches of the
same type are added to a fetch.

For example, to retrieve an act, subject and attending physician participations you could have
an act fetch and add separate subject and attending physician participation fetches. To
navigate from the act to the participations, you can retrieve both concurrently by calling the
no parameter getParticipations method, or you can access each participation individually by
calling the navigation method that takes a participation fetch parameter passing in the
particular fetch.

Chapter 7
HDR Query

7-19

Figure 7-6

Figure 7-6 illustrates Fetch and Result Graphs.

HDR RIM Extensions
• Versioning and Query

• Versioning and Fetches

• Versioning and Criteria

• Retrieving the Current Version

• Retrieving a Specific Version

• Detail Criteria Versioning Behavior

• Detail Fetches

Chapter 7
HDR Query

7-20

• Detail Criteria

• ControlAct Querying

• Person Merge Querying

• Owned Roles

Versioning and Query
The query framework provides several APIs on the core fetch and criteria classes that let you
fetch particular versions of objects and specify criteria on the different object versions. These
APIs are described below.

Versioning and Fetches
In the context of fetches, the versioning behavior determines whether all versions or the
referenced version of a detail object are retrieved by a detail fetch. The version of a detail
object to retrieve is specified on the detail fetch by using the fetch factory methods (on
QueryComponentFactory) that accept a versioning parameter. The QueryComponentFactory
defines two versioning constants to be used with the following factory methods:

• QueryComponentFactory.VERSION_DEPENDENT
• QueryComponentFactory.VERSION_INDEPENDENT
It is possible to use the same factory methods to construct the top level fetch. However, the
versioning constant supplied is ignored as it only applies to detail fetches. To specify
particular versions for the top level fetch you must set the version on the criteria for that fetch.

Note:

By default, navigations are version dependent. Detail navigations that retrieve a
single object, such as Participation to Role, return an undefined version of the detail
object unless a specific version is requested (via a criteria with
setCurrentVersion(...) or setVersionNum(...) methods).

Versioning and Criteria
The core attribute criteria classes provide APIs for specifying particular versions of objects as
well as versions of detail objects. These APIs are described in the following sections.

Retrieving the Current Version
To restrict retrieval to the most current version of an object you can use the following
AttributeCriteria method:

setCurrentVersion(boolean currentVersionFlag);
This method, combined with a version independent detail navigation, effectively retrieves the
most current version of a related object. Alternatively, this method can be used to retrieve all
but the current version of an object by passing false as the argument.

Chapter 7
HDR Query

7-21

Retrieving a Specific Version
To retrieve a specific version of an object, use the following API:

setVersionNum(int versionNumber);
As with any other criteria specified, if the version specified does not exist no results
are returned.

Detail Criteria Versioning Behavior
The criteria setters for neighboring core objects accept a versioning parameter that
specifies whether the detail criteria is applied to the referenced version or any version
of the detail object.

Detail Fetches
Assuming patient role version 1 and both versions of the player entity match the
criteria, to retrieve patient and person information a detail player entity fetch is
attached to the role fetch. When constructing the entity fetch you can specify either the
VERSION_DEPENDENT or VERSION_INDEPENDENT constant for the versioning
parameter (provided you use the EntityFetch newEntityFetch(EntityCriteria criteria, int
versioningType) API on QueryComponentFactory). If you construct the entity fetch with
the VERSION_DEPENDENT constant the person directly linked to the role is
returned–in this case, version 1 of the person. If you construct the entity fetch with the
VERSION_INDEPENDENT constant the current version (version 2) of the person is
returned.

Detail Criteria
Assuming you have a role criteria that matches version 1 of the patient role, you can
add a detail player entity criteria and specify either the VERSION_DEPENDENT
orVERSION_INDEPENDENT constant for the versioning parameter. If you added a
detail player entity criteria that matched person entities with name John Smith, the role
would only be fetched if its playing entity has that name.

ControlAct Querying
You can retrieve or base queries on the ControlAct associated with an object using
methods in the fetch and criteria interfaces. To fetch the creating/updating ControlAct,
add a detail fetch using the following API:

addControlActFetch(ActFetch actFetch);
To specify criteria based on the creating or updating ControlAct, add a dependent
criteria using the following API:

setControlActCriteria(ActCriteria actCriteria);
Both of these APIs work in the same way as other dependent fetch/criteria setter
methods except that they exclude any versioning behavior; there is only one version of
ControlActs associated with a particular version of an object.

Chapter 7
HDR Query

7-22

Person Merge Querying
Person merge is the ability to collate data from a number of person entities (typically entered
in different systems) into a single person that contains the superset of data. The single entity
at the end of a potential chain of merges is typically called the ultimate survivor and the group
of entities involved in a set of merge operations (including the ultimate survivor) is called the
merge peers group.

The query framework exposes methods on the entity fetch and criteria classes that let you
fetch and specify criteria for the merge group. To fetch members of the merge group, add a
detail fetch using the following API:

addMergePeersEntityFetch(EntityFetch fetch);
To specify criteria for the merge group, add a detail criteria using the following API:

setMergePeersCriteria(EntityCriteria entityCriteria);
The EntityAttributeCriteria class also contains the following method that lets you specify
whether or not the entity is the ultimate survivor of a merge:

setUltimateSurvivor(boolean ultimateSurvivor);
The ultimate surviving person of a set of potential merges can be found efficiently by
combining the merge peers navigation with the setUltimateSurvivor(...) criteria specification.

Example 7-13 Retrieve Ultimate Survivor of an Entity

The following example shows how to retrieve the ultimate survivor of an entity:

// create the ultimate survivor fetch and criteria
 EntityAttributeCriteria ultimateSurvivorCriteria =
mQueryComponentFactory.newEntityAttributeCriteria();
 ultimateSurvivorCriteria.setUltimateSurvivor(true);
 EntityFetch survivorFetch =
mQueryComponentFactory.newEntityFetch(ultimateSurvivorCriteria,
 QueryComponentFactory.VERSION_INDEPENDENT);
 survivorFetch.retrieveId(true);

 // create the fetch and criteria for an entity that has been merged
 EntityAttributeCriteria entityACriteria =
mQueryComponentFactory.newEntityAttributeCriteria();
 entityACriteria.setCurrentVersion(true);
 entityACriteria.setId(SetSearchOperator.ANY, new II[]{sEntityAII});
 EntityFetch entityAFetch = mQueryComponentFactory.newEntityFetch(entityACriteria);
 entityAFetch.retrieveId(true);

 // add the ultimate survivor fetch
 entityAFetch.addMergePeersEntityFetch(survivorFetch);

Owned Roles
Owned roles are a HDR extension to the RIM that lets your create roles that do not directly
participate in an act (the role is linked to or owned by an entity). The query framework
supports the retrieval of owned roles specifically through detail fetch and criteria methods in
the entity fetch and criteria classes respectively. To fetch an owned role, add a detail fetch to
an EntityFetch using the following API:

addOwned<Played/Scoped>RoleFetch(RoleFetch ownedplayedroleFetch);

Chapter 7
HDR Query

7-23

To specify criteria for an owned role, add a detail criteria using the following API:

setOwned<Played/Scoped>RoleCriteria(RoleCriteria roleCriteria, int
versioningType);

Note:

The query framework does not distinguish between typical roles and owned
roles when the standard fetch and criteria APIs are used. In a role fetch
where both normal and owned roles match the criteria they are all returned
by the query. To return only owned roles you must use the detail fetch and
criteria APIs on the entity fetch and criteria interfaces illustrated above.

Example 7-14 Patient Query by ID Code Sample

Find a person associated with a known patient Id, retrieving basic demographic
information:

/**
 * Finds roles with the following attributes:
 * - class code = PAT
 * - id = id of the particular patient
 *
 * and must meet the following detail criteria:
 *
 * 1. be played by a PSN entity
 *
 * The query should return the patient, the player entity.
 *
 */
package oracle.hsgbu.hdr.sample.scenarios;

import java.io.IOException;
import oracle.hsgbu.hdr.exception.HDRRimException;
import oracle.hsgbu.hdr.hl7.query.EntityAttributeCriteria;
import oracle.hsgbu.hdr.hl7.query.SearchOperator;
import oracle.hsgbu.hdr.hl7.query.EntityFetch;
import oracle.hsgbu.hdr.hl7.query.RoleAttributeCriteria;
import oracle.hsgbu.hdr.hl7.query.SetSearchOperator;
import oracle.hsgbu.hdr.hl7.query.RoleFetch;
import oracle.hsgbu.hdr.hl7.rim.domain.EntityClass;
import oracle.hsgbu.hdr.hl7.rim.domain.RoleClass;
import oracle.hsgbu.hdr.hl7.rim.factories.QueryComponentFactory;
import oracle.hsgbu.hdr.hl7.rim.factories.DataTypeFactory;
import oracle.hsgbu.hdr.hl7.rim.types.II;
import oracle.hsgbu.hdr.hl7.rim.Role;
import oracle.hsgbu.hdr.hl7.rim.Entity;

import java.util.Iterator;
import java.util.Properties;
import oracle.hsgbu.hdr.exception.CommonException;
import oracle.hsgbu.hdr.fwk.servicelocator.common.ServiceLocator;

public class PatientSearchById
{
 public void executeScenario() throws HDRRimException, CommonException,

Chapter 7
HDR Query

7-24

IOException
 {
 ServiceLocator serviceLocator = getServiceLocator();
 QueryComponentFactory queryComponentFactory = QueryComponentFactory.getInstance();
 DataTypeFactory dataTypeFactory = DataTypeFactory.getInstance();

 // create an EntityAttributeCriteria and specify that the class code should equal
PSN
 EntityAttributeCriteria eCriteria =
queryComponentFactory.newEntityAttributeCriteria();
 eCriteria.setClassCode(SearchOperator.EQUALS, EntityClass.PSN);

 // create a person Entity fetch with the PSN entity criteria and specify that the
name, administrative gender
 // code, birth time, code and addr attributes should be retrieved.
 EntityFetch entityFetch = queryComponentFactory.newEntityFetch(eCriteria,
 QueryComponentFactory.VERSION_DEPENDENT);
 entityFetch.retrieveId(true);
 entityFetch.retrieveName(true);
 entityFetch.retrieveAdministrativeGenderCode(true);
 entityFetch.retrieveBirthTime(true);
 entityFetch.retrieveCode(true);
 entityFetch.retrieveAddr(true);

 // create the patient II which will be used in the role criteria
 II[] patientIIs = new II[1];
 patientIIs[0] = dataTypeFactory.newII(dataTypeFactory.newUID("1.2.3.4"),
 dataTypeFactory.newST("PAT_ROLE_1_II_EXT"),
 dataTypeFactory.newBL(true));

 // create an EntityAttributeCriteria and specify that the class code should equal
PAT and that the id
 // should be one of the id's in the II array
 RoleAttributeCriteria patRoleCriteria =
queryComponentFactory.newRoleAttributeCriteria();
 patRoleCriteria.setClassCode(SearchOperator.EQUALS, RoleClass.PAT);
 patRoleCriteria.setId(SetSearchOperator.ANY, patientIIs);

 // create the patient Role fetch with the PAT role criteria and specify that the
id should be retrieved
 RoleFetch patRoleFetch = queryComponentFactory.newRoleFetch(patRoleCriteria);
 patRoleFetch.retrieveId(true);
 patRoleFetch.retrieveClassCode(true);

 // link the person fetch to the patient fetch
 patRoleFetch.addPlayerEntityFetch(entityFetch);

 // submit the query
 Iterator patientRoles = serviceLocator.getRimService().queryRoles(serviceLocator,
patRoleFetch);

 System.err.println("PatientSearchById Query Results:");
 System.err.println("********************************");
 for(;patientRoles.hasNext();)
 {
 Role patientRole = (Role)patientRoles.next();
 System.err.println("Role Id: " + patientRole.getId());
 System.err.println("Role Class: " + patientRole.getClassCode());

 Entity playerEntity = patientRole.getPlayerEntity(entityFetch);
 System.err.println("Entity Id: " + playerEntity.getId());

Chapter 7
HDR Query

7-25

 System.err.println("Entity Version Number: " +
playerEntity.getVersionNum());
 System.err.println("Entity Class Code: " +
playerEntity.getClassCode());
 }
 }

 private ServiceLocator getServiceLocator() throws IOException,
CommonException {
 Properties props = new Properties();

props.load(this.getClass().getClassLoader().getResourceAsStream("jndi.properties"
));
 return ServiceLocator.getInstance(props);
 }
}

Example 7-15 Query for Identified Patient Roles and Player Entities

This code sample queries for new or active encounters admitted by a known staff
member; retrieves the associated subject patient with basic demographics, as well as
the location of the encounter:

/**
 * The roles must have the following attributes:
 * - class code = ENC
 * - mood code = EVN
 * - status code = NEW or ACTIVE
 * - code = ???
 * - current version = true
 *
 * and must meet the following criteria:
 *
 * 1. have an ADM participation to either a EMP or ASSIGNED role where the role
id is that of the staff practitioner
 * 2. have an SUBJ participation to a PAT role played by a PSN entity
 * 3. have a LOC participation to a SDLOC role
 *
 * The query should return the encounters along with the ADM, SUBJ and LOC
participations
 * along with their corresponding roles and player entities.
 *
 */

package oracle.hsgbu.hdr.sample.scenarios;

import java.io.IOException;
import oracle.hsgbu.hdr.exception.HDRRimException;
import oracle.hsgbu.hdr.hl7.rim.types.II;
import oracle.hsgbu.hdr.hl7.rim.types.CD;
import oracle.hsgbu.hdr.hl7.query.RoleAttributeCriteria;
import oracle.hsgbu.hdr.hl7.query.SetSearchOperator;
import oracle.hsgbu.hdr.hl7.query.SearchOperator;
import oracle.hsgbu.hdr.hl7.query.ParticipationAttributeCriteria;
import oracle.hsgbu.hdr.hl7.query.ActAttributeCriteria;
import oracle.hsgbu.hdr.hl7.query.ActFetch;
import oracle.hsgbu.hdr.hl7.query.RoleFetch;
import oracle.hsgbu.hdr.hl7.query.ParticipationFetch;
import oracle.hsgbu.hdr.hl7.query.EntityAttributeCriteria;
import oracle.hsgbu.hdr.hl7.query.EntityFetch;
import oracle.hsgbu.hdr.hl7.query.ActCriteria;

Chapter 7
HDR Query

7-26

import oracle.hsgbu.hdr.hl7.rim.domain.RoleClass;
import oracle.hsgbu.hdr.hl7.rim.domain.ParticipationType;
import oracle.hsgbu.hdr.hl7.rim.domain.ActClass;
import oracle.hsgbu.hdr.hl7.rim.domain.ActMood;
import oracle.hsgbu.hdr.hl7.rim.domain.ActStatus;
import oracle.hsgbu.hdr.hl7.rim.domain.EntityClass;
import oracle.hsgbu.hdr.hl7.rim.factories.QueryComponentFactory;
import oracle.hsgbu.hdr.hl7.rim.factories.DataTypeFactory;
import oracle.hsgbu.hdr.hl7.rim.Act;
import oracle.hsgbu.hdr.hl7.rim.Participation;
import oracle.hsgbu.hdr.hl7.rim.Role;
import oracle.hsgbu.hdr.hl7.rim.Entity;

import java.util.Iterator;
import java.util.Properties;
import oracle.hsgbu.hdr.exception.CommonException;
import oracle.hsgbu.hdr.fwk.servicelocator.common.ServiceLocator;
import oracle.hsgbu.hdr.hl7.rim.domain.NullFlavor;

public class EncountersByStaffPractitioner {

 public void executeScenario() throws HDRRimException, CommonException, IOException
{
 ServiceLocator serviceLocator = getServiceLocator();
 QueryComponentFactory queryComponentFactory =
QueryComponentFactory.getInstance();
 DataTypeFactory dataTypeFactory = DataTypeFactory.getInstance();

 // create the staff II which will be used in the role criteria
 II[] practitionerIIs = new II[1];
 practitionerIIs[0] = dataTypeFactory.newII(dataTypeFactory.newUID("1.2.3.4"),
 dataTypeFactory.newST("STAFF_ROLE_1_II_EXT"),
 dataTypeFactory.newBL(true));

 // practitioner role
 RoleAttributeCriteria rAssignedCriteria =
queryComponentFactory.newRoleAttributeCriteria();
 rAssignedCriteria.setClassCode(SearchOperator.EQUALS, RoleClass.ASSIGNED);
 rAssignedCriteria.setId(SetSearchOperator.ANY, practitionerIIs); //Particular
practitioner
 RoleAttributeCriteria rEmpCriteria =
queryComponentFactory.newRoleAttributeCriteria();
 rEmpCriteria.setClassCode(SearchOperator.EQUALS, RoleClass.EMP);
 rEmpCriteria.setId(SetSearchOperator.ANY, practitionerIIs); //Particular
practitioner
 RoleAttributeCriteria rCriteria = (RoleAttributeCriteria)
queryComponentFactory.or(rAssignedCriteria, rEmpCriteria);

 // ADM participation
 ParticipationAttributeCriteria pCriteria =
queryComponentFactory.newParticipationAttributeCriteria();
 pCriteria.setRoleCriteria(rCriteria,
QueryComponentFactory.VERSION_INDEPENDENT);
 pCriteria.setTypeCode(SearchOperator.EQUALS, ParticipationType.ADM);

 // act criteria
 ActAttributeCriteria aCriteria =
queryComponentFactory.newActAttributeCriteria();
 aCriteria.setCurrentVersion(true);
 aCriteria.setClassCode(SearchOperator.EQUALS, ActClass.ENC);
 aCriteria.setMoodCode(SearchOperator.EQUALS, ActMood.EVN);

Chapter 7
HDR Query

7-27

 // aCriteria.setCode(SearchOperator.EQUALS, actCd);
 aCriteria.setParticipationCriteria(pCriteria,
QueryComponentFactory.VERSION_INDEPENDENT);

 // create an act criteria to retrieve new and active acts
 ActAttributeCriteria activeActStatus =
queryComponentFactory.newActAttributeCriteria();
 activeActStatus.setStatusCode(SearchOperator.EQUALS, ActStatus.ACTIVE);
 activeActStatus.setClassCode(SearchOperator.EQUALS, ActClass.ENC);
 activeActStatus.setMoodCode(SearchOperator.EQUALS, ActMood.EVN);
 CD actCd = dataTypeFactory.newCD(dataTypeFactory.newST("AMB"),
 dataTypeFactory.nullUID(NullFlavor.NI),
dataTypeFactory.newST("ActCode"), dataTypeFactory.nullST(NullFlavor.NI),
 dataTypeFactory.nullED(NullFlavor.NI));

 activeActStatus.setCode(SearchOperator.EQUALS, actCd);
 activeActStatus.setCurrentVersion(true);
 activeActStatus.setParticipationCriteria(pCriteria,
QueryComponentFactory.VERSION_INDEPENDENT);
 ActAttributeCriteria newActStatus =
queryComponentFactory.newActAttributeCriteria();
 newActStatus.setStatusCode(SearchOperator.EQUALS, ActStatus.NEW);
 newActStatus.setClassCode(SearchOperator.EQUALS, ActClass.ENC);
 newActStatus.setMoodCode(SearchOperator.EQUALS, ActMood.EVN);
 newActStatus.setCurrentVersion(true);

 newActStatus.setCode(SearchOperator.EQUALS, actCd);
 newActStatus.setParticipationCriteria(pCriteria,
QueryComponentFactory.VERSION_INDEPENDENT);
 ActCriteria activeOrNewStatus = (ActCriteria)
queryComponentFactory.or(activeActStatus, newActStatus);

 ActFetch actFetchMain =
queryComponentFactory.newActFetch(activeOrNewStatus,
 QueryComponentFactory.VERSION_INDEPENDENT);
 actFetchMain.retrieveId(true);

 // Add location to a fetch
 RoleAttributeCriteria lrCriteria =
queryComponentFactory.newRoleAttributeCriteria();
 lrCriteria.setClassCode(SearchOperator.EQUALS, RoleClass.SDLOC);
 RoleFetch lrFetch = queryComponentFactory.newRoleFetch(lrCriteria,
 QueryComponentFactory.VERSION_INDEPENDENT);
 lrFetch.retrieveId(true);
 lrFetch.addPlayerEntityFetch(queryComponentFactory.newEntityFetch());
 ParticipationAttributeCriteria lpCriteria =
queryComponentFactory.newParticipationAttributeCriteria();
 lpCriteria.setTypeCode(SearchOperator.EQUALS, ParticipationType.LOC);
 ParticipationFetch lpFetch =
queryComponentFactory.newParticipationFetch(lpCriteria,
 QueryComponentFactory.VERSION_INDEPENDENT);
 lpFetch.addRoleFetch(lrFetch);

 actFetchMain.addParticipationFetch(lpFetch);

 // Add patient to a fetch
 EntityAttributeCriteria eCriteria =
queryComponentFactory.newEntityAttributeCriteria();
 eCriteria.setClassCode(SearchOperator.EQUALS, EntityClass.PSN);
 EntityFetch eFetch = queryComponentFactory.newEntityFetch(eCriteria);

Chapter 7
HDR Query

7-28

 eFetch.retrieveName(true);
 eFetch.retrieveAdministrativeGenderCode(true);
 eFetch.retrieveBirthTime(true);
 eFetch.retrieveCode(true);
 RoleAttributeCriteria patRoleCriteria =
queryComponentFactory.newRoleAttributeCriteria();
 patRoleCriteria.setClassCode(SearchOperator.EQUALS, RoleClass.PAT);
 RoleFetch patRoleFetch = queryComponentFactory.newRoleFetch(patRoleCriteria,
 QueryComponentFactory.VERSION_INDEPENDENT);
 patRoleFetch.retrieveId(true);
 patRoleFetch.addPlayerEntityFetch(eFetch);
 ParticipationAttributeCriteria patPartCriteria =
queryComponentFactory.newParticipationAttributeCriteria();
 patPartCriteria.setTypeCode(SearchOperator.EQUALS, ParticipationType.SBJ);
 ParticipationFetch patPartFetch =
queryComponentFactory.newParticipationFetch(patPartCriteria,
 QueryComponentFactory.VERSION_INDEPENDENT);
 patPartFetch.addRoleFetch(patRoleFetch);

 actFetchMain.addParticipationFetch(patPartFetch);

 Iterator fetchedActs = ServiceLocator.getInstance().queryActs(serviceLocator,
actFetchMain);

 System.err.println("EncountersByStaffPractitioner Query Results:");
 System.err.println("**");
 for (; fetchedActs.hasNext();) {
 Act fetchedAct = (Act) fetchedActs.next();
 System.err.println("Act class code: " + fetchedAct.getClassCode());
 System.err.println("Act mood code: " + fetchedAct.getMoodCode());
 System.err.println("Act status code: " + fetchedAct.getStatusCode());

 Iterator fetchedPatientParticipations =
fetchedAct.getParticipations(patPartFetch);
 for (; fetchedPatientParticipations.hasNext();) {
 Participation fetchedPatientParticipation = (Participation)
fetchedPatientParticipations.next();
 System.err.println("Participation type code: " +
fetchedPatientParticipation.getTypeCode());

 Role fetchedPatientRole = (Role)
fetchedPatientParticipation.getRole(patRoleFetch);
 System.err.println("Role class code: " +
fetchedPatientRole.getClassCode());

 Entity fetchedPlayerEntity =
fetchedPatientRole.getPlayerEntity(eFetch);
 System.err.println("Player entity class code: " +
fetchedPlayerEntity.getClassCode());
 }
 }
 }

 private ServiceLocator getServiceLocator() throws IOException, CommonException {
 Properties props = new Properties();

props.load(this.getClass().getClassLoader().getResourceAsStream("jndi.properties"));
 return ServiceLocator.getInstance(props);
 }
}

Chapter 7
HDR Query

7-29

Original Coded Attributes
Coded attributes are commonly coerced into equivalent concepts during persistence
into HDR. By default these coerced concepts are retrieved by Rim Query. You can
retrieve the original data, using the
oracle.hsgbu.hdr.hl7.util.CodedTypeUtility.getOriginalAttributes(CD) method.

Since qualifiers are not copied from original to coerced code, qualifiers can only be
retrieved from CD datatypes that have been obtained via the getOriginalAttributes
method.

See also:

• oracle.hsgbu.hdr.hl7 package for further information about HDR HL7 interfaces.

• oracle.hsgbu.hdr.hl7.query package for further information about HDR Query
interfaces.

DCTB Subqueries
The SQL queries generated by the RIM query API can be optimized in three different
ways. By default, in all nested SELECT sub queries, the WHERE conditions will be
generated as a SQL IN condition. This can be modified by configuring the HDR
managed server start-up JVM argument CTB_SUBQRY_OPT_METHOD with one of
the values NONE, EXISTS, or JOIN. Based on the database version and
configuration, you can choose an option that results in the best database SQL
execution plans for the HDR generated SQL queries.

-DCTB_SUBQRY_OPT_METHOD=NONE
This is the default behavior where all nested select sub queries in the where condition
will be generated as the SQL IN condition.

-DCTB_SUBQRY_OPT_METHOD=EXISTS
By setting sub-query optimization method to EXISTS, all nested select sub queries in
the where condition will be generated as the SQL EXISTS condition.

-DCTB_SUBQRY_OPT_METHOD=JOIN
By setting sub-query optimization method to JOIN, all nested select sub queries in the
where condition will be converted to the SQL JOIN condition.

HDR RIM Services
Core functions:

• Use RIM Services

• Use Master Catalog API

Chapter 7
DCTB Subqueries

7-30

Use RIM Services
• Use The RIM Service

• Reference Modifiers

• Exception Handling

Use The RIM Service
The RimService provides the primary mechanism to persist or query Entities, Roles, Acts and
related objects through HDR. Both persist and query operations are supported through the
RimService.submit(ControlAct) method.

The control act passed to submit is expected to contain one outbound ActRelationship with a
typeCode of SUBJ with an instance of a subclass of Act as its target, which can similarly be
related to other objects to form a graph of objects to be persisted. If the target Act of the Act
Relationship is an instance of a QueryAct, a data query results; see Section 7.5 for more
information about querying.

These code samples help you to:

• Create an Organization Using a Registry Event (see Example 7-16)

• Create an Encounter Using a CREATE_OR_UPDATE Reference to a Patient Object (see
Example 7-17)

• Pass an Invalid Code to Generate an Exception (see Example 7-18)

• Rim Validation Exception Output (see Example 7-19)

Example 7-16 Create an Organization Using a Registry Event

The following example illustrates the registration of an Entity—in this case an Organization is
created. To create any Entity in HDR you must provide a Role and an Act; typically an
AssignedEntity Role is used, and a RegistryEvent is used for the Act.

// Create the ORG Entity to be registered
 SET_II orgId = dataTypeFactory.newSET_II("9.989898.5.3.1", "ORG002", true);
 Organization organization = entityFactory.newOrganization(
 dataTypeFactory.nullCE(NullFlavor.NI),
 EntityDeterminer.INSTANCE, orgId);

 // Build up the organization name using
 SET<CS> orgNameUseCode= dataTypeFactory.newSET_CS(dataTypeFactory.newCS("L"));
 ENXP orgNameUsePart = dataTypeFactory.newENXP("Pro Health Systems", null,
 dataTypeFactory.nullSET<CS>(NullFlavor.NI));
 ENXP[] orgNameUsePartArray = new ENXP[] {orgNameUsePart};
 ON orgName = dataTypeFactory.newON(orgNameUsePartArray, orgNameUseCode,
 dataTypeFactory.nullIVL<TS>(NullFlavor.NI));

 // Set the organization name, desc and status
 organization.setName(dataTypeFactory.newBAG<EN>(orgName));
 organization.setStatusCode(EntityStatus.ACTIVE);

 // build a TEL type and addto the telecom attribute.
 SET<CS> orgTelUseCode= dataTypeFactory.newSET_CS(dataTypeFactory.newCS("H"));
 TEL orgTel = dataTypeFactory.newTEL("tel", "1-510-555-1234",
 dataTypeFactory.nullGTS(NullFlavor.NI),orgTelUseCode);
 organization.addTelecom(orgTel);

Chapter 7
HDR RIM Services

7-31

 // build an ADXP type and add the address
 ADXP adxp1 = dataTypeFactory.newADXP("100 Oracle Parkway",
dataTypeFactory.newCS("SAL"));
 ADXP adxp2 = dataTypeFactory.newADXP("Redwood Shores",
dataTypeFactory.newCS("CTY"));
 ADXP adxp3 = dataTypeFactory.newADXP("CA",
dataTypeFactory.newCS("STA"));
 ADXP adxp4 = dataTypeFactory.newADXP("94065",
dataTypeFactory.newCS("ZIP"));
 ADXP adxp5 = dataTypeFactory.newADXP("US", dataTypeFactory.newCS("CNT"));

 ADXP[] addrPartArray = new ADXP[] {
 adxp1,
 adxp2,
 adxp3,
 adxp4,
 adxp5
 };

 AD addr = dataTypeFactory.newAD(addrPartArray,
 dataTypeFactory.newSET<CS>(dataTypeFactory.newCS("WP")),
 dataTypeFactory.nullGTS(NullFlavor.NI));

 organization.addAddr(addr);

 // Create an ASSIGNED Role for the organization,
 // with the organization as the player
 // CD roleCode = dataTypeFactory.newCD("000172","HDR Supplemental");
 SET_II assignedRoleId = dataTypeFactory.newSET_II("9.989898.5.49.1",
"ASSIGNED0002", true);
 Role role =

roleFactory.newAssignedEntity(dataTypeFactory.newCE("000174","2.16.840.1.113894.1
004.100.100.2.5"),
 organization, null, assignedRoleId);

 // Create the registry act. Registry acts are used to denote a
 // registration of a Role or Entity, in this case an ORG Entity.
 // The registry act will later be associated with the control act
 // using an act relationship
 SET_II regActId = dataTypeFactory.newSET_II("9.989898.5.42.1",
"REG0012", true);
 Act regAct = actFactory.newRegistryAct(ActMood.EVN,
dataTypeFactory.nullCD
 (NullFlavor.NI), regActId);

 // Create a "SBJ" Participation between the registry act
 // and the identified role
 regAct.addParticipation(ParticipationType.SBJ, role);

 // Create the control act, providing an Id and a null trigger event
 SET_II ctrlActId = dataTypeFactory.newSET_II("9.989898.5.28.1",
"CACT0012", true);
 ControlAct controlAct =
actFactory.newControlActEvent(dataTypeFactory.nullCD
 (NullFlavor.NI), ctrlActId);

 // Create an outbound Act Relationship between the control act
 // and registry act

Chapter 7
HDR RIM Services

7-32

 controlAct.addOBActRelationship(ActRelationshipType.SUBJ, regAct);

 // Submit the control act. The returned control act will be
 // null unless a query act was specified in the act relationship
 // on the control act
 ControlAct returnedControlAct = rimService.submit(controlAct);

In addition to illustrating the basic structure of a submission, Example 7-16 highlights the
following:

• Construction of datatypes: AD, ADXP, CD, CS, ENXP, EN, II, ON, TEL.

• Construction of sets of datatypes: SET_CS, SET_II.

• Construction of NullFlavor objects as the appropriate datatype class.

• Elements of Organizations that are necessary to pass TCA validation. For example:
Organization Name use code of H; Telecom Scheme of TEL.

Reference Modifiers
In the prior example, all objects are newly created. To update an object, fetch it using the
query mechanism and use the createNewVersion method to create a new version.

HDR also provides a mechanism to create a reference to an object that already exists and to
permit an object to be created or updated without first querying the object. This is achieved
by making a reference to an object using the ReferenceModifier class. This approach may
also improve an application's performance because it eliminates the need to fetch the
affected objects to the client tier prior to updating.

The simplest reference that can be created is the MustExist reference. A MustExist reference
mandates that an object with a specified Instance Identifier has already been created. It is
useful when creating ActRelationships or Participations to objects that have already been
persisted.

Two other reference types worth discussing in more detail are the CreateOrOverlay and the
CreateOrUpdate types. These reference types either create the object with the supplied
attributes if it does not already exist, or they cause the creation of a new version of the object
with attributes set in a manner consistent with the reference modifier used. For more
information about the difference between the CreateOrOverlay and CreateOrUpdate
methods, and for information about other reference types see the ReferenceModifier class
description.

Example 7-17 Create an Encounter Using a CREATE_OR_UPDATE Reference to a
Patient Object

// Create the Patient II
 SET_II patientId = dataTypeFactory.newSET_II("9.989898.5.2","PAT1001", true);

 // Use a Create Or Update reference for the Patient
 Patient patientRole = (Patient)roleFactory.makeReference(
 ReferenceModifier.CREATE_OR_UPDATE, RoleClass.PAT,
 dataTypeFactory.nullCE(NullFlavor.NP),
 null, null, patientId, 0);

 // Create the Patient Encounter Event (Class Code:ENC)
 // The Encounter will later be associated with the control act
 // using an act relationship
 SET_II encActId = dataTypeFactory.newSET_II("9.989898.5.6.100","ENC1001",
true);

Chapter 7
HDR RIM Services

7-33

 // Use "ActCode" for the codingscheme; UID is 2.16.840.1.113883.5.4
 Act encAct = actFactory.newPatientEncounter(ActMood.EVN,
 dataTypeFactory.newCD("IMP","2.16.840.1.113883.5.4"), encActId);

 // Create a "SBJ" Participation between the registry act
 // and the identified role
 encAct.addParticipation(ParticipationType.SBJ, patientRole);

 // Create the control act, providing an Id and a null trigger event
 SET_II ctrlActId = dataTypeFactory.newSET_II
 ("9.989898.5.28", "CACT001032", true);
 ControlAct controlAct = actFactory.newControlActEvent(
 dataTypeFactory.nullCD(NullFlavor.NP), ctrlActId);

 // Create an outbound Act Relationship between the control act
 // and registry act
 controlAct.addOBActRelationship(ActRelationshipType.SUBJ, encAct);

 // Submit the control act. The returned control act will be
 // null unless a query act was specified in the act relationship
 // on the control act
 ControlAct returnedControlAct = rimService.submit(controlAct);

Exception Handling
Invalid objects submitted in a graph cause HDR to bundle validation exceptions. These
bundles consist of one exception per validation error; there may be multiple exceptions
relating to an object. The exceptions contain methods to return the Ids of the related
invalid object.

Example 7-18 Pass an Invalid Code to Generate an Exception

// Create the Patient Encounter Event (Class Code:ENC)
 // The Encounter will later be associated with the control act
 // using an act relationship
 SET_II encActId = dataTypeFactory.newSET_II("9.989898.5.6.100",
"ENC1001", true);

 // UNKNOWN_CODE is expected to cause validation to fail
 Act encAct = actFactory.newPatientEncounter(ActMood.EVN,
 dataTypeFactory.newCD("UNKNOWN_CODE","2.16.840.1.113883.5.4"), encActId);

 // Create the control act, providing an Id and a null trigger event
 SET_II ctrlActId = dataTypeFactory.newSET_II("9.989898.5.28",
"CACT001032", true);
 ControlAct controlAct =
actFactory.newControlActEvent(dataTypeFactory.nullCD
 (NullFlavor.NP), ctrlActId);

 // Create an outbound Act Relationship between the control act
 // and registry act
 controlAct.addOBActRelationship(ActRelationshipType.SUBJ, encAct);
 try
 {
 // Submit the control act. The returned control act will be
 // null unless a query act was specified in the act relationship
 // on the control act
 ControlAct returnedControlAct = rimService.submit(controlAct);
 }

Chapter 7
HDR RIM Services

7-34

 catch (HDRRimException e)
 {
 CommonException[] exceptions = e.getBundledExceptions();
 for (int i=0; i<exceptions.length; i++)
 {
 if(exceptions[i] instanceof RimObjectException)
 {
 System.out.println(
 ((RimObjectException)exceptions[i]).getIds());
 }
 }
 e.printStackTrace();
 }

This code generates the following output:

{9.989898.5-34789202; 9.989898.5.6.100-ENC1001}

...where 9.989898.5-34789202 is the internal Instance Indicator created on all objects by
HDR and 9.989898.5.6.100-ENC1001 is the II submitted with the Encounter object.
Additionally, the full exception stack trace is< printed, and the exception details attributes that
fail validation.

Example 7-19 Rim Validation Exception Output

oracle.hsgbu.hdr.exception.HDRRimException
CODE = CMN_001: Multiple exception occured while processing. Please see the individual
exceptions for details.
MESSAGE = HDR_CMN_001: Multiple exception occured while processing. Please see the
individual exceptions for details.
 [1] oracle.hsgbu.hdr.base.persist.exception.CorePersistenceValidationException
 CODE = HDR_CORE_UNKNOWN_CODE
 MESSAGE = HDR_CPS_PVE006: Unknown Code for attributeName:CODE,
code:UNKNOWN_CODE, codeOid:2.16.840.1.113883.5.4, codeSystemName:null,
codeVersionName:2.01.4 and token:EncounterEventResource

...
Child Exceptions:

oracle.hsgbu.hdr.exception.HDRRimException
CODE = HDR_CORE_UNKNOWN_CODE
MESSAGE = HDR_CPS_PVE006: Unknown Code for attributeName:CODE, code:UNKNOWN_CODE,
codeOid:2.16.840.1.113883.5.4, codeSystemName:null, codeVersionName:2.01.4 and
token:EncounterEventResource

Original Stacktrace:
HDR_CPS_PVE006: Unknown Code for attributeName:CODE, code:UNKNOWN_CODE,
codeOid:2.16.840.1.113883.5.4, codeSystemName:null, codeVersionName:2.01.4 and
token:EncounterEventResource
...
...

Use Master Catalog API
• Master Catalog Entries

• Focal Class State Transitions

Chapter 7
Use Master Catalog API

7-35

Master Catalog Entries
During persistence all Acts, Entities, and Role objects are validated against the Master
Catalog. Master Catalog defines the ETS values for class code, mood code,
determiner code, code, player entity, and/or scoper entity that are allowed for these
objects. HDR supports three types of ETS values: (1) explicit values specifying the ID
of the concept, (2) null values when no values are required, or (3) any value when all
ETS concepts are valid.

To ensure that Master Catalog entries exist for all objects being persisted prior to
submission, HDR provides APIs to query and create Master Catalog data.

HDR provides MasterCatalogService APIs to create, update, and query Master
Catalog entries.

See also:

• Oracle Healthcare Data Repository Implementation Guide (Implementing Master
Catalog) for more information about Master Catalog API.

Outbound Message Processor (OMP) uses the Masters Catalog identifiers to create
the Act Concept Configuration; see section 10.2.1 for more details.

Concepts
Master Catalog entry defines constraints based on:

• Act: Class Code, Mood Code and Code.

• Entity: Class Code, Determiner Code and Code.

• Role: Class Code, Code and the Player and Scoper Master Catalog IDs.

All Master Catalog entries define a code type—ID, ANY, or NULL.

• ID: Code attribute of the entity should be a valid ETS concept code.

• ANY: Code attribute of the entity should be null.

• NULL: Code attribute of the entity should be null.

For all Master Catalog getXxx() search operations, if the codeType is ID, then the
getXxx() operation goes by the following order of precedence:

• Looks for the exact concept code.

• If the exact code not found, it looks for equivalent concept code.

• If equivalent concept code not found, it looks for code type ANY.

The Master Catalog supports concept equivalence. It considers a concept valid if it is
equivalent to a concept used in an entry. You need not update the Master Catalog
when new a coding scheme or version is loaded in ETS, provided equivalence
information is also loaded with the new coding scheme or version. Concept
equivalence is also used to verify whether user is trying to set up a duplicate Master
Catalog entry. If one Master Catalog entry exists for a concept, no other entry with its
equivalent concepts is permitted.

See also:

Chapter 7
Use Master Catalog API

7-36

• Oracle Healthcare Data Repository API Documenation for more information about Master
Catalog interfaces.

• Oracle Healthcare Data Repository Implementation Guide for more information about
Master Catalog validations.

Example 7-20 Check for the Existence of a Master Catalog Entry Matching the
Control Act

// Find the Master Catalog Entry with parameters:
 // class code = CACT (From the ActClass Domain)
 // mood code = EVN (From the ActMood Domain)
 // code = null
 // code type = "NULL"
 MasterCatalog mc =
masterCatalogService.getMasterCatalogActEntry(ActClass.CACT, ActMood.EVN,
 null, "NULL");
 if (mc.getMasterCatalogId() != null)
 {
 System.out.println("Master Catalog Record found. ID: " +
mc.getMasterCatalogId());
 }
 else
 {
 System.out.println("No Master Catalog Record found");
 }

Example 7-21 Check for the Existence of a Master Catalog Entry Matching the Person

// Find the Master Catalog Entry with parameters:
 // class code = PSN (From EntityClass Domain)
 // determiner code = INSTANCE (From EntityDeterminer Domain)
 // code = null
 // code type = "NULL"
 MasterCatalog mc = masterCatalogService.getMasterCatalogEntityEntry
 (EntityClass.PSN, EntityDeterminer.INSTANCE, null, "NULL");
 if (mc.getMasterCatalogId() != null)
 {
 System.out.println("Master Catalog Record found. ID: " +
mc.getMasterCatalogId());
 }
 else
 {
 System.out.println("No Master Catalog Record found");
 }

 If suitable entries do not exist, use the persistMasterCatalog API to create
one.

Example 7-22 Create a Master Catalog Entry for a Diagnostic Image

// Create a Master Catalog Entry with parameters:
 // class code = DGIMG (From the ActClass Domain)
 // mood code = EVN (From the ActMood Domain)
 // code = null
 // code type = "NULL"
 MasterCatalog mc = masterCatalogFactory.newMasterCatalog();
 mc.setClassCode(ActClass.DGIMG);
 mc.setCodeType(MasterCatalog.NULL_CODE_TYPE);
 mc.setMoodCode(ActMood.EVN);

Chapter 7
Use Master Catalog API

7-37

 mc.setEntryTypeCode(MasterCatalog.ACT_ENTRY_TYPE_CODE);
 mc.setActiveFlag(true);

 masterCatalogService.persistMasterCatalogEntry(mc);

Example 7-23 Create an Array of Master Catalog Entries

You can create or update an array of MasterCatalog entries using MC bulk persists
API. For each entry in array, the API checks, if it is a valid entry, as follows and
persists it. In the case of one or more invalid entries, the API rejects all of them.

MasterCatalog mc1 = masterCatalogFactory.newMasterCatalog();
 MasterCatalog mc2 = masterCatalogFactory.newMasterCatalog();

// For each master catalog entry defined above, to set the values follow the
steps described in Example 7-32.

//Create an array of mastercatalog with the above mentioned entries
MasterCatalog [] mcArray = new MasterCatalog [] {mc1,mc2};

//Call bulk persist method
 masterCatalogService.persistMasterCatalogEntries(mcArray);

Example 7-24 Search Master Catalog Entries Using Query Criteria

You can retrieve MasterCatalog entries based on MasterCatalogQueryCriteria using
this API, which takes the MasterCatalogQueryCriteria as the parameter.
MasterCatalogQueryCriteria defines methods that can be used to build a query for
retrieving MasterCatalog records based on the criteria.

// Defining the MasterCatalogQueryCriteria to find Master Catalog Entry, for
code type = "ID" and coding scheme
// name = "HDR Supplemental", coding scheme version name = "HDR Supplemental
(2005-04-08)" and concept code = "001827"

// get an instance of the Master Catalog Criteria

MasterCatalogQueryCriteria masterCatalogSearchCriteria =
masterCatalogFactory().newMasterCatalogQueryCriteria();
SearchTerm searchTerm = masterCatalogSearchCriteria.equalsCode("HDR
Supplemental", "HDR Supplemental (2005-04-08)", "001827");

// set the code type to ID
searchTerm = masterCatalogSearchCriteria.and(searchTerm,
masterCatalogSearchCriteria.equalsCodeType(MasterCatalog.ID_CODE_TYPE));

// set the root search term
masterCatalogSearchCriteria.setRootSearchTerm(searchTerm);

// retrieve master catalog entry
MasterCatalog [] fetchedMasterCatalog =
masterCatalogService.findMasterCatalogEntries(masterCatalogSearchCriteria);

Example 7-25 Remove Master Catalog Entries from Cache

The Master Catalog API uses the CTBCacheService for caching the Master Catalog
and Master Catalog Focal Class State Transition entries. The following table lists the
cache names used to store the object:

Cache Names

Chapter 7
Use Master Catalog API

7-38

Cache Name Description Key

CtbCoreMcActEntriesCache Cache name for Master Catalog Act
entries

ClassCode

CtbCoreMcEntityEntriesCache Cache name for Master Catalog Entity
entries

ClassCode

CtbCoreMcRoleEntriesCache Cache name for Master Catalog Role
entries

ClassCode

CtbCoreMcStTrnstnsCache Cache name for Master Catalog Focal
Class State Transition entries

ControlActMasterCatalo
gId

Example 7-26 Remove Master Catalog Entries from Cache

There are 2 APIs, which you can use to remove Master Catalog entries from the cache.

//This will remove all the entries from the Act Master Catalog cache, here we only
supply the cache name as parameter.

cacheService.invalidate("CtbCoreMcActEntriesCache");

//There is also an option to selectively delete entries from the cache using the key.
//Here the class code is being used as a key for the Act Master Catalog entries cache.
//This will remove all the act master catalog entries having that class code from the
cache.

cacheService.invalidate("CtbCoreMcActEntriesCache", "OBS");

Focal Class State Transitions
Focal Class State Transitions define the valid state transitions for a given combination of the
Control Act Master Catalog ID and the Focal Class Master Catalog ID. These transitions must
be a subset of the valid transitions for the RIM object type (Act, Entity, and Role). These
transitions should be valid according to the generic state transition rules. The following are
the possible state transition scenarios during creation or update of Act, Entity, and Role
objects.

• null -> null (Always allowed and is never validated)

• not null -> not null (Allowed only after validation)

• null -> not null (Allowed only after validation)

• not null -> null (Not Allowed)

The examples below illustrate how to query for the existence of a Focal Class State
Transition, and how to create a required Focal Class State Transition.

See also:

• Oracle Healthcare Data Repository API Documentation for focal class description.

• Oracle Healthcare Data Repository Implementation Guide for more information about
Focal Class State Transitions.

Example 7-27 Check for Existence of a Focal Class State Transition (for Control Act
and Focal Class)

String controlActMasterCatalogId = "";
 String focalClassMasterCatalogId = "";

Chapter 7
Use Master Catalog API

7-39

 // Find the Master Catalog Entry for the Control Act
 MasterCatalog mc = masterCatalogService.getMasterCatalogActEntry(
 ActClass.CACT, ActMood.EVN, null, "NULL");
 controlActMasterCatalogId = mc.getMasterCatalogId();

 // Find the Master Catalog Entry for the Focal Class
 mc = masterCatalogService.getMasterCatalogEntityEntry(
 EntityClass.PSN, EntityDeterminer.INSTANCE, null, "NULL");
 focalClassMasterCatalogId = mc.getMasterCatalogId();

 // Retrieve the Focal Class State Transition for the given
 // Control Act, Focal Class where
 // Focal Class start state = "null" and
 // Focal Class end state = "active"
 MasterCatalogFocalClassStateTransition mcfcst =
 masterCatalogService.getFocalClassStateTransitionEntry(
 controlActMasterCatalogId, focalClassMasterCatalogId,
 "null","active");
 if (mcfcst != null)
 {
 System.out.println("Valid Focal Class State Transition found.");
 }
 else
 {
 System.out.println("Focal Class State Transition not found.");
 }

Example 7-28 Create a Focal Class State Transition

// Create a Focal Class State Transition for the
 // Master Catalog entry for DGIMG, EVN, NULL

 // Find the Control Act Master Catalog Entry
 MasterCatalog mcCact =
masterCatalogService.getMasterCatalogActEntry(
 ActClass.CACT,
 ActMood.EVN, null,
 "NULL");
 // Find the DGIMG Act Master Catalog Entry
 MasterCatalog mcDgimg =
masterCatalogService.getMasterCatalogActEntry(
 ActClass.DGIMG,
 ActMood.EVN, null,
 "NULL");

 MasterCatalogFocalClassStateTransition mcfcst =
 masterCatalogFactory.newMasterCatalogFocalClassStateTransition();
 mcfcst.setControlActMasterCatalogId(mcCact.getMasterCatalogId());
 mcfcst.setFocalClassMasterCatalogId(mcDgimg.getMasterCatalogId());
 mcfcst.setActiveFlag(true);
 mcfcst.setStartState("any");
 mcfcst.setEndState("any");

 masterCatalogService.persistFocalClassStateTransitionEntry(mcfcst);

 // Now check it was persisted
 mcfcst =
 masterCatalogService.getFocalClassStateTransitionEntry(
 mcCact.getMasterCatalogId(),
 mcDgimg.getMasterCatalogId(),

Chapter 7
Use Master Catalog API

7-40

 "any", "any");
 if (mcfcst == null) throw new HDRConfigException(
 "Master Catalog Focal Class State Transition not found");

Example 7-29 Create an Array of Focal Class State Transition Entries

You can create or update an array of MasterCatalogFocalClassStateTransition entries using
MC bulk persists API. For each entry in the array, the API checks if it is a valid entry as
follows and persist it. If the API finds one or more invalid entries, it rejects all of them.

MasterCatalogFocalClassStateTransition mcfcst1 =
masterCatalogFactory.newMasterCatalogFocalClassStateTransition();
MasterCatalogFocalClassStateTransition mcfcst2 =
masterCatalogFactory.newMasterCatalogFocalClassStateTransition(); // For each
mastercatalogfocalstatetransition entry defined above, to set the values follow
the steps
// described in Example 7-37. //Create an array of
mastercatalogfocalstatetransition with the above mentioned entries
MasterCatalogFocalClassStateTransition [] mcfcstArray =
MasterCatalogFocalClassStateTransition[] { mcfcst1, mcfcst1 }; //Call bulk
persist method
masterCatalogService.persistFocalClassStateTransitionEntries(mcfcstArray);

HDR HL7 Data Types
This package contains an implementation of a subset of the HL7 Data Types specification, to
meet HDR RIM interface requirements. The attributes (id, class, status,...) of the HL7 version
3 RIM objects are defined in terms of these Data Types, as are the parameters and return
types of the RIM API. In accordance with the specification, these data type objects are
immutable—their value cannot be changed once created.

You can do the following:

• Use the DataTypeFactory (see Use the DataTypeFactory)

• HL7 Null Flavors (see HL7 Null Flavors)

• Unsupported Operations (see Unsupported Operations)

• Coded Types (see Coded Types)

• Collections (SET, BAG, LIST, IVL) (see Collections (SET, BAG, LIST, IVL))

• HL7 Timing Specification (GTS, PIVL, EIVL, IVL<TS>, TS) (see HL7 Timing Specification
(GTS, PIVL, EIVL, IVL<TS>, TS))

See also:

The UML class diagram at the HL7 website for information about available Data Types; refer
to the following tips to view the diagram:

• Select View > Full Screen [F11] to expand to a full screen.

• Choose the Expand button to view the diagram; use the Windows scroll bars to navigate.

• Use the Windows back-arrow to return.

Chapter 7
HDR HL7 Data Types

7-41

Use the DataTypeFactory
New Data Type objects should always be instantiated using the DataTypeFactory
methods exclusively. Most of the factory methods throw CommonException or
ETSException if there is a problem creating the new instance.

Creating Constants
As the factory methods throw checked exceptions, we do not recommend defining
static final constants for Data Type values. If you find it useful to define constants, it is
preferable to declare them as final member variables that can be initialized in the
constructor (where exceptions can be handled more easily).

The CNE Domain Constants (defined in the package oracle.hsgbu.hdr.hl7.domain)
define values for the CS type RIM coded attributes.

Abstract Types (ANY, BIN, QTY)
There are no factory methods for the ANY Data Type, because it is an abstract type.
No value can be just an ANY without belonging to one of the concrete Data Types. For
RIM attributes of type ANY (such as Observation.value, call the factory method for the
appropriate concrete type (ST, ED, CD, GTS, etc.) and pass that type as the
parameter to the RIM API.

Similarly, there is no factory method available for the Data Type BIN. It is a protected
type that is only declared within the HL7 Data Type Specification. For properties of
type BIN, you can substitute either ED or ST as the parameter to the factory method.

QTY is another example of an abstract type with no factory method. The specific
subtype of Quantity (PQ, INT, REAL, and so on.) should be substituted instead.

HL7 Null Flavors
The Data Types Specification defines a hierarchy of different kinds of exceptional
values, or null values. You can use the isNull method to determine whether a Data
Type is one of these exceptional values; the nullFlavor method returns a CS code that
specifies what kind of exceptional value it is.

In general, a Java null should never be passed to any of the parameters of the Data
Types methods. You should use the DataTypeFactory to create an object with the
appropriate HL7 null flavor instead. NI is the default null flavor, and should be used if
you are uncertain about whether any of the more specific flavors of null are applicable.

The null flavor factory methods are guaranteed to return a valid Data Type with a null
flavor, and never throw an exception. The CS codes for the null flavor values
themselves are provided as convenience constants in the HL7.domain package.

Unsupported Operations
The present implementation of the HL7 Data Types Specification is only partially
complete. Several methods throw a runtime UnsupportedOperationException, such as
the arithmetic and comparison operations on Quantities, and many of the properties of
the Timing Specification (GTS, PIVL, ...).

Chapter 7
HDR HL7 Data Types

7-42

Coded Types
The HL7 Coded Types (CD, CE, CV and so on.) are stored in both HDR and ETS.
Accordingly, several types of factory methods are provided for each coded type:

• Methods that accept any of the HL7 properties (Examples: newCE(ST code, UID
codeSystem, ST codeSystemName, ST codeSystemVersion, ED originalText)) (Example
7-41).

• Methods that simply accept an ETS ID (Examples: newCE(String etsID)). The
DataTypeFactory uses the ServiceLocator to retrieve the corresponding properties from
ETS (Example 7-42); note that use of this method should be avoided because of the
additional communication overhead with the server.

• Convenience methods that accept only the mandatory attributes, and default all of the
others to null flavors (Examples: newCE(String code, String codeSystem). Note that the
second parameter of this method is the code system OID, and not the code system name
(Example 7-43).

The complete mapping of code system names to OIDs can be retrieved in the following ways:

• By viewing corresponding coding schemes in ETS UI (preferred).

• For code systems registered with HL7, an online OID repository is provided as a free
service.

These code samples help you do the following:

• Create Coded Data Type through Full Set of Properties (see Example 7-30)

• Create Coded Data Type through ETS ID (Not Recommended) (see Example 7-31)

• Create Coded Data Type through Code and Code System OID (see Example 7-32)

• Create Coded Data Type through Code and Code System Name (see Example 7-33)

Example 7-30 Create Coded Data Type through Full Set of Properties
(Recommended)

DataTypeFactory dtf = DataTypeFactory.getInstance();
 CD code = df.newCD(df.newST("233604007"), df.newUID("2.16.840.1.113883.6.96"),
 df.newST("SNOMED-CT"), df.newST("v1"), df.newST("Pneumonia"));

Example 7-31 Create Coded Data Type through ETS ID (Not Recommended)

DataTypeFactory dtf = DataTypeFactory.getInstance(); CD code = df.newCD("CON-2217");

Example 7-32 Create Coded Data Type through Code and Code System OID

DataTypeFactory dtf = DataTypeFactory.getInstance(); CD code = df.newCD("233604007",
"2.16.840.1.113883.6.96");

Example 7-33 Create Coded Data Type through Code and Code System Name

DataTypeFactory dtf = DataTypeFactory.getInstance();
 CD code = df.newCD(df.newST("233604007"), df.nullUID(NullFlavor.NI),
 df.newST("SNOMED-CT"), df.newST("v1"), df.newST("Pneumonia"));

Chapter 7
HDR HL7 Data Types

7-43

Collections (SET, BAG, LIST, IVL)
The factory methods for aggregate Data Types accept an array of elements (such as
newSET_II(II[] identifiers)). The promotion operation is also provided, from a single
Data Type into a trivial collection containing only that one element: newSET_II(II
element).

HL7 Timing Specification (GTS, PIVL, EIVL, IVL<TS>, TS)
The factory methods for the time-related Data Types accept a literal string formatted
according to the syntax defined in the HL7 specification. This literal is parsed to extract
the properties (boundaries of an Interval, elements of a GTS) of the Data Type. If there
is a syntax error in the string, a CommonException is thrown by the factory method.

RIM Service Examples
• Use CD Qualifiers

• Query Based on Observation Value Attribute

The code samples below help you do the following:

• Use CD Qualifiers (see Example 7-34)

• Query PQ Values (see Example 7-35)

• Query CE/CD Values (see Example 7-36)

• Query BL Values (see Example 7-37)

• Query INT values (see Example 7-38)

• Query TS values (see Example 7-39)

Use CD Qualifiers
Example 7-34 Use CD Qualifiers

// Creates an Observation Event showing the use of qualifiers
 // on coded data to provide additional information about the code
 // Uses the SNOMED-CT coding scheme, which must be loaded to pass
validation

 // Use Act Code of DISDX/ActCode.
 // DISDX represents a "Discharge Diagnosis"
 // ActCode OID is 2.16.840.1.113883.5.4
 CD actCode = dataTypeFactory.newCD("DISDX", "2.16.840.1.113883.5.4");
 Observation obs = actFactory.newObservation(ActMood.EVN, actCode,
 dataTypeFactory.nullSET_II(NullFlavor.NA));

 obs.setText(dataTypeFactory.newST("Acute sudden-onset severe
appendicitis, first episode."));

 // Construct a code for observation value with qualifiers
 // Code is Appendicitis/SNOMED-CT
 // Qualifiers represent the following name - value information -
 // Severity (246112005) - Severe (24484000)

Chapter 7
RIM Service Examples

7-44

 // Clinical Course (263502005) - Acute Onset (373933003)
 // Episodicity (246456000) - First Episode (255217005)
 // All qualifiers use the SNOMED-CT coding scheme

 // It is expected that qualifiers will normally be taken from the same
 // coding scheme as the code. However, HDR does not validate this.

 CR[] qualifiers =
 {
 dataTypeFactory.newCR(
 dataTypeFactory.newCV("246112005", "2.16.840.1.113883.6.96"),
 dataTypeFactory.newCD("24484000", "2.16.840.1.113883.6.96"),
 dataTypeFactory.newBN(false)),
 dataTypeFactory.newCR(
 dataTypeFactory.newCV("263502005", "2.16.840.1.113883.6.96"),
 dataTypeFactory.newCD("373933003", "2.16.840.1.113883.6.96"),
 dataTypeFactory.newBN(false)),
 dataTypeFactory.newCR(
 dataTypeFactory.newCV("246456000", "2.16.840.1.113883.6.96"),
 dataTypeFactory.newCD("255217005", "2.16.840.1.113883.6.96"),
 dataTypeFactory.newBN(false))
 };

 // use Appendicitis (74400008) from SNOMED-CT coding scheme
 CD code = dataTypeFactory.newCD(
 dataTypeFactory.newST("74400008"),
 dataTypeFactory.newUID("2.16.840.1.113883.6.96"),
 dataTypeFactory.nullST(NullFlavor.NA),
 dataTypeFactory.nullST(NullFlavor.NA),
 dataTypeFactory.nullED(NullFlavor.NA),
 dataTypeFactory.newLIST<CR>(qualifiers));
 obs.setValue(code);

 // Add participations to a Medical Practitioner and to a Patient
 // Participation to the Patient is typically SBJ
 // Participation to the Provider is typically AUT

 // Omitting the Person (player) and Organization (scoper)
 // for the purposes of the example
 Patient pat = roleFactory.newPatient(dataTypeFactory.nullCE(NullFlavor.NA),
 null, null, dataTypeFactory.nullSET_II(NullFlavor.NA));
 LicensedEntity prov = roleFactory.newHealthcareProvider(
 dataTypeFactory.nullCE(NullFlavor.NA),
 null, null, dataTypeFactory.nullSET_II(NullFlavor.NA));

 obs.addParticipation(ParticipationType.SBJ,pat);
 obs.addParticipation(ParticipationType.AUT,prov);

 // Attach the Observation to a Control Act and submit
 ControlAct cact = actFactory.newControlActEvent(
 dataTypeFactory.nullCD(NullFlavor.NA),
 dataTypeFactory.nullSET_II(NullFlavor.NA));
 cact.addOBActRelationship(ActRelationshipType.SUBJ,obs);

 rimService.submit(cact);

Chapter 7
RIM Service Examples

7-45

Query Based on Observation Value Attribute
The data type specification defines a hierarchy of various exceptional values or null
values. You can use the isNull method to determine whether a data type is an
exceptional value. The nullFlavor method returns a CS code that specifies the type of
exceptional value.

Example 7-35 Query PQ Values

Query for all patients with a "Post-Prandial Blood Glucose Measurement" greater than
180 mg/dL (OBS.EVN.302788006//SNOMED-CT with Observation.value (PQ) =
greater than 180 mg/dL).

// Show how to perform a query on Observation Value.
 // It is normal to specifiy the Class Code, Mood code, code and value
 // attributes for such queries

 // Build a Role Fetch to bring back the Patient
 RoleFetch rf = queryComponentFactory.newRoleFetch();

 // Decide which attributes to retrieve on the Patient Role
 rf.retrieveId(true);

 // Build a Participation Fetch,with a ParticipationCriteria
 // specifying that the participation type is SBJ
 ParticipationAttributeCriteria pc =
queryComponentFactory.newParticipationAttributeCriteria();
 pc.setTypeCode(ParticipationCriteria.EQUALS,ParticipationType.SBJ);
 ParticipationFetch pf =
queryComponentFactory.newParticipationFetch(pc,queryComponentFactory.VERSION_DEPE
NDENT);
 pf.addRoleFetch(rf);

 // Put together act critera, specifying class code, mood code, code
 // and value attributes
 ActAttributeCriteria ac =
queryComponentFactory.newActAttributeCriteria();
 ac.setClassCode(ActCriteria.EQUALS,ActClass.OBS);
 ac.setMoodCode(ActCriteria.EQUALS,ActMood.EVN);

 // Build code and value criteria objects
 CodedTypeAttributeCriteria ctac =
queryComponentFactory.newCodedTypeAttributeCriteria();
 ctac.setCode(dataTypeFactory.newST("302788006"));
 ctac.setCodeSystem(dataTypeFactory.newUID("2.16.840.1.113883.6.96"));
 ac.setCode(ctac);

 PQAttributeCriteria pqac =
queryComponentFactory.newPQAttributeCriteria();

pqac.setValue(PQAttributeCriteria.GREATER_THAN,dataTypeFactory.newREAL("180"));
 pqac.setUnit(PQAttributeCriteria.EQUALS,dataTypeFactory.newCS("mg/dL"));
 ac.setValue(pqac);

 ActFetch af = queryComponentFactory.newActFetch(ac,
queryComponentFactory.VERSION_DEPENDENT);
 af.addParticipationFetch(pf);
 af.retrieveAll();

Chapter 7
RIM Service Examples

7-46

 Iterator iter = rimService.queryActs(serviceLocator,af);
 while (iter.hasNext())
 {
 Observation obs = (Observation)iter.next();
 System.out.println("== Observation ==");
 System.out.println("== id ==>" + obs.getId());
 System.out.println("== code ==>" + obs.getCode());
 System.out.println("== value ==>" + ((PQ)obs.getValue()).literal());
 Iterator partIter = obs.getParticipations();
 while (partIter.hasNext())
 {
 Role role = ((Participation)partIter.next()).getRole();
 System.out.println("== Role id ===> " + role.getId());
 }
 }

Example 7-36 Query CE/CD Values

Query for all patients with a diagnosis of "Asthma" or "Pneumonia" (OBS.EVN.DISDX//
ActCode with Observation.value (CE) = 195967001// SNOMED-CT or 233604007//
SNOMED-CT).

// use the same fetch and criteria objects as before.
 // change the code and value attributes for the different criteria
 ctac = queryComponentFactory.newCodedTypeAttributeCriteria();
 ctac.setCode(dataTypeFactory.newST("DISDX"));
 ctac.setCodeSystem(dataTypeFactory.newUID("2.16.840.1.113883.5.4"));
 ac.setCode(ctac);

 CodedTypeAttributeCriteria asthmaCriteria =
queryComponentFactory.newCodedTypeAttributeCriteria();
 asthmaCriteria.setCode(dataTypeFactory.newST("195967001"));
 asthmaCriteria.setCodeSystem(dataTypeFactory.newUID("2.16.840.1.113883.6.96"));

 CodedTypeAttributeCriteria pneumoniaCriteria =
queryComponentFactory.newCodedTypeAttributeCriteria();
 pneumoniaCriteria.setCode(dataTypeFactory.newST("233604007"));

pneumoniaCriteria.setCodeSystem(dataTypeFactory.newUID("2.16.840.1.113883.6.96"));

ac.setValue((CodedTypeAttributeCriteria)queryComponentFactory.or(asthmaCriteria,
pneumoniaCriteria));

 af = queryComponentFactory.newActFetch(ac,
queryComponentFactory.VERSION_DEPENDENT);
 af.addParticipationFetch(pf);
 af.retrieveAll();

 iter = rimService.queryActs(serviceLocator,af);
 while (iter.hasNext())
 {
 Observation obs = (Observation)iter.next();
 System.out.println("== Observation ==");
 System.out.println("== id ==>" + obs.getId());
 System.out.println("== code ==>" + obs.getCode());
 System.out.println("== value ==>" + obs.getValue());
 Iterator partIter = obs.getParticipations();
 while (partIter.hasNext())
 {
 Role role = ((Participation)partIter.next()).getRole();
 System.out.println("== Role id ===> " + role.getId());

Chapter 7
RIM Service Examples

7-47

 }
 }

Example 7-37 Query BL Values

Query for all patients with a positive "Mantoux Test" (OBS.EVN.268376005//SNOMED-
CT with Observation.value (BL) = true).

ctac = queryComponentFactory.newCodedTypeAttributeCriteria();
 ctac.setCode(dataTypeFactory.newST("268376005"));
 ctac.setCodeSystem(dataTypeFactory.newUID("2.16.840.1.113883.6.96"));
 ac.setCode(ctac);

 ac.setValue(ActAttributeCriteria.EQUALS,dataTypeFactory.newBL(true));

 af = queryComponentFactory.newActFetch(ac,
queryComponentFactory.VERSION_DEPENDENT);
 af.addParticipationFetch(pf);
 af.retrieveAll();

 iter = rimService.queryActs(serviceLocator,af);
 while (iter.hasNext())
 {
 Observation obs = (Observation)iter.next();
 System.out.println("== Observation ==");
 System.out.println("== id ==>" + obs.getId());
 System.out.println("== code ==>" + obs.getCode());
 System.out.println("== value ==>" + ((BL)obs.getValue()).literal());
 Iterator partIter = obs.getParticipations();
 while (partIter.hasNext())
 {
 Role role = ((Participation)partIter.next()).getRole();
 System.out.println("== Role id ===> " + role.getId());
 }
 }

Example 7-38 Query INT values

Query for all patients with a zero "Missing Tooth Count" (OBS.EVN.251317003//
SNOMED-CT with Observation.value (INT) = 0).

ctac = queryComponentFactory.newCodedTypeAttributeCriteria();
 ctac.setCode(dataTypeFactory.newST("251317003"));
 ctac.setCodeSystem(dataTypeFactory.newUID("2.16.840.1.113883.6.96"));
 ac.setCode(ctac);

 ac.setValue(ActAttributeCriteria.EQUALS,dataTypeFactory.newINT(0));

 af = queryComponentFactory.newActFetch(ac,
queryComponentFactory.VERSION_DEPENDENT);
 af.addParticipationFetch(pf);
 af.retrieveAll();

 iter = rimService.queryActs(serviceLocator,af);
 while (iter.hasNext())
 {
 Observation obs = (Observation)iter.next();
 System.out.println("== Observation ==");
 System.out.println("== id ==>" + obs.getId());
 System.out.println("== code ==>" + obs.getCode());

Chapter 7
RIM Service Examples

7-48

 System.out.println("== value ==>" + ((INT)obs.getValue()).literal());
 Iterator partIter = obs.getParticipations();
 while (partIter.hasNext())
 {
 Role role = ((Participation)partIter.next()).getRole();
 System.out.println("== Role id ===> " + role.getId());
 }
 }

Example 7-39 Query TS values

Query for all patients with a "Time of Onset" greater than or equal to 00:02:01
(OBS.EVN.263501003//SNOMED-CT with Observation.value (TS) = 00:02:01).

ctac = queryComponentFactory.newCodedTypeAttributeCriteria();
 ctac.setCode(dataTypeFactory.newST("263501003"));
 ctac.setCodeSystem(dataTypeFactory.newUID("2.16.840.1.113883.6.96"));
 ac.setCode(ctac);

 try
 {
 ac.setValue(ActAttributeCriteria.EQUALS,dataTypeFactory.newTS(new
SimpleDateFormat("yyMMddHHmmss").parse("080101000201")));
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 af = queryComponentFactory.newActFetch(ac,
queryComponentFactory.VERSION_DEPENDENT);
 af.addParticipationFetch(pf);
 af.retrieveAll();

 iter = rimService.queryActs(serviceLocator,af);
 while (iter.hasNext())
 {
 Observation obs = (Observation)iter.next();
 System.out.println("== Observation ==");
 System.out.println("== id ==>" + obs.getId());
 System.out.println("== code ==>" + obs.getCode());
 System.out.println("== value ==>" + ((TS)obs.getValue()).literal());
 Iterator partIter = obs.getParticipations();
 while (partIter.hasNext())
 {
 Role role = ((Participation)partIter.next()).getRole();
 System.out.println("== Role id ===> " + role.getId());
 }
 }

Constraints on the HL7 V3 RIM Model
The constraints to some of the HL7 V3 data types allow HDR to have a physical data model
that gives a significant boost to the API performance.

Chapter 7
Constraints on the HL7 V3 RIM Model

7-49

HL7 V3 Datatype Constraints
ED.Reference.Use

HDR allows only one use code for ED.Reference instead of many. ED.Reference is
generally used to store the external URL of an image or document represented by this
ED. Since URL is a type of addressing mechanism, HL7 allows Use based on the base
definition of an address. HDR allows just a single Use to be specified on the
ED.Reference to cater to any use cases where an Use may be needed on
ED.Reference.

AD.Use

HDR allows only 3 use codes for AD.Use. A single address may be used as home,
office, and the third one can be used for another purpose.

AD.ADXP

The following additional constraints are placed on the number of ADXP values used in
AD datatype:

1. Only 5 street address lines (ADXP with part type SAL) are supported. Each street
address line can have a maximum of 240 characters.

2. There can be only one ADXP each with part type other than SAL. For example,
there can be only one building number or one country in the address.

EN.Use

HDR allows only 3 use codes for EN.Use. A single name may be used as legal, call-by,
and the third one can be used for another purpose.

EN.ENXP

There can be only one ENXP each with any part type. For example, there can be only
one given name in the name. Each name part can have a maximum length of 1000
characters.

RIM Query API Constraints
• The top-level RIM fetch object must have criteria with RIM structural codes

specified.

• Criteria is optional in child fetches but is strongly recommended in all cases where
the queried RIM object model is well defined.

• Criteria on any fetch object cannot be connective criteria specifying different
structural attributes, for example: a different class code. The recommended
approach to restructure such queries is to create different fetch objects for each
class code. Connective criteria can still be used at any level provided the RIM
structural codes are same on each of the attribute criteria. Each structural code
represents a particular type of clinical information such as encounter or an
observation and HDR mandates that one fetch is used for each type of clinical
data retrieved.

Chapter 7
Constraints on the HL7 V3 RIM Model

7-50

8
Enterprise Terminology Server (ETS)

• Generic Terminology Model

• Interterminology Mapping

• ETS Object Model

• ETS Concept Lists

• ETS Editable Terminologies

• ETS Classifications

• ETS Equivalence

• HDR Terminology Jobs

• ETS Multiple Language Support (MLS)

Enterprise Terminology Services (ETS) provides a repository for coded vocabulary content
used across the HDR platform, and an API suite used by applications to access its content.
At its core, ETS manages collections of concepts that function as a single representation of a
distinct idea. ETS provides services that include versioning of terminologies, maintenance of
changes between versions, mapping between terminologies, and management of concept
domains into concept lists.

This section provides an overview of core terminology entities in ETS and describes how
programmers can use them.

Generic Terminology Model
ETS uses a generic terminology model that captures the essential features of disparate
terminology systems. The generic terminology model provides:

• Real-time access to terminology content.

• A generic API that provides basic terminology services for all terminologies.

• A data model for custom terminologies.

Terminologies are represented in ETS as Coding Schemes. A Coding Scheme is a generic
structure that contains terminology meta-data, such as name, description, and active
versions. Actual terminology content is loaded and stored in a Coding Scheme Version.
Names of Coding Scheme Versions are decided by the user and are specified when the
version is loaded. You can load new Coding Scheme Versions as required. For Coding
Schemes that have multiple versions, exactly one version can be designated as default. Note
that editable terminologies have only one version; Concepts in an editable terminology can
be modified without loading a new version.

A Coding Scheme Version contains a definite set of Concepts, Descriptions, Attributes, and
Relationships. A concept is the basic unit of information in a coding scheme version: It
corresponds to a specific unit of meaning in the native terminology. Every concept has a
Concept Code, which is the code given to it by the terminology. ETS identifies concepts and
other ETS components (Descriptions and Relationships) using a system-generated identifier
called ETS ID. Concepts (and other components) from different versions of a terminology

8-1

have different ETS IDs, as the concept code may not correctly identify a concept in a
different version.

A concept may have one or more textual descriptions. ETS supports multiple
descriptions for a concept in the languages supported by that coding scheme version –
whether defined by the terminology, or added later by the user. For concepts that have
multiple descriptions, exactly one description must be designated as the preferred
description for every language supported by the Coding Scheme Version. All other
descriptions of a given language, associated with that concept are designated as
synonyms. An application may use specific descriptions for designated contexts. This
is done by defining Usage Contexts and associating local descriptions to those
contexts.

Managing Usage Contexts

Usage Contexts let an HDR solution specify and determine which concept list or local
description (of a specific ETS concept) should be used in a given application context.
Usage contexts are an attribute of concept lists and local descriptions. A user may
specify a usage context when a concept list or a local description is created or later.

When accessing a concept list or local description, HDR solutions may specify a
usage context. Based on the specified usage context, HDR retrieves a matching
concept list or local description. For example, a Utilization Review department may
require diagnoses to be displayed as short names or abbreviations. For this to be
implemented in HDR, first a usage context with a name such as Utilization Review
must be created. Then, the required local descriptions (short names or abbreviations)
with the Utilization Review usage context can be created for the appropriate concepts.
Subsequently, applications developed for the department can use ETS APIs with the
Utilization Review usage context to display the required local descriptions.

Each local description of a concept must have a single usage context that is unique for
that concept. If a local description is assigned a usage context and a local description
for that concept already exists with the same usage context, the operation succeeds—
but the usage context is removed from the first local description.

A usage context can similarly be used by a concept list. associated with an
organization can by an application. For example, a healthcare enterprise might have a
concept list of medical services called ENT_MED_SERVICES. A hospital owned by
the enterprise may require a specialization of that concept list that contains a subset of
the original values. For this to be implemented in HDR, first create a usage context
with a name such as Fair Oaks, and associate it with a hospital unit. Then, a
specialization of the ENT_MED_SERVICES concept list can be created, with a name
such as FAIR_OAKS_MED_SERVICES, and associated with the Fair Oaks usage
context.

Use ETS API to manage usage context.

Associating a Usage Context with an Organization

Use the following method to associate a usage context with an organization:

associateUsageContextWithExternalOwner.

A Relationship represents a directed relation between two concepts: from a source
concept to a target concept. Relationships can be defined between concepts in the
same Coding Scheme Version. These are usually provided as part of the terminology
itself.

Chapter 8
Generic Terminology Model

8-2

The generic terminology model serves as the base for a number of standard-based
terminologies for which ETS provides special support. These terminologies are referred to as
core terminologies in HDR. The following terminologies are referred to as core terminologies
in ETS:

• FDB4

• HL7 v3 Code Systems (Seeded)

• LOINC

• SNOMED CT

Special support for core terminologies is in the form of:

• Terminology-specific APIs (in addition to the generic APIs).

• Specific loaders (and associated integrity checking) for loading the terminologies into
ETS.

As core terminologies are based on the generic terminology model, they support all features
of generic terminologies, such as local descriptions, usage contexts, equivalence, attributes,
and cross maps. However, core terminologies are not editable: new Coding Scheme Versions
have to be loaded and activated to update the terminology content.

Note:

The following terminologies supported by ETS cannot be designated as editable.
They are created as non-editable by default when ETS is installed:

• CPT4

• FDB4

• HCPCS-2

• HL7 v3 Code Systems (Seeded)

• ICD-10

• ICD-9-CM-DRG

• ICD-9-CM-MDC

• ICD-9-CM-V1

• ICD-9-CM-V3

• LOINC

• SNOMED CT

Although editable coding schemes can be updated using ETS APIs, editable coding schemes
cannot be updated by loading a new version, because they can have only one version.

Caution:

Do not attempt to load new versions for an editable coding scheme, other than the
original version.

Chapter 8
Generic Terminology Model

8-3

Verify Different Terminology Versions Using Change Files
Change files are used to document the differences between successive versions of a
terminology that are loaded into ETS, in a format that is acceptable for loading
purposes. Change files are loaded at the same time as the terminology version data
using the same loader and importer. Change files contain the following types of
information:

• Reassignment: The meaning of one concept is occasionally reassigned to
another concept represented by a different concept code. Following are some of
the situations in which reassignment occurs:

– Duplicate concepts are detected. One of them is elected to continue
representing the meaning while the other is retired or deleted and reassigned
to the retained concept.

– A concept is detected to be erroneous. The erroneous concept is retired or
deleted and reassigned to a correct concept.

– The classification of a concept is changed. If the concept codes are
hierarchical (as in ICD-9-CM), the change in classification translates to a
change in concept code, necessitating reassignment.

– A reassignment is indicated in a change file by a row containing an entry of
type S (semantic reassignment), followed by a source concept code (the
concept whose meaning is being reassigned to another code), and a target
concept code (the concept whose code now captures the meaning).

See also:

– /ets/hdr-ets-1.0.0-SNAPSHOT/db/execute/readme/
Change_File_Formats_General.txt from hdr-1.0.0-SNAPSHOT.zip for more
information about the format of the change file.
If both the source and target concepts of a reassignment are from the new
version, the reassignment is said to be intra-version. For example, in
SNOMED-CT, if a duplicate or erroneous concept is detected, the new version
carries forward the duplicate or erroneous concept in an inactive status. The
reassignment in this case is from the inactive concept in the new version to an
active concept in the new version.

If the source of a reassignment is from the previous version and the target is
from the new version, the reassignment is said to be inter-version. For
example, in ICD-9-CM, if an erroneous concept is detected, it is deleted and
excluded from the new version. A correct concept is provided in the new
version and a reassignment is created between the concepts in the previous
version and the new version. To process an inter-version reassignment
contained in a change file, the ETS importer looks for the source code in the
non-quarantined version (of the terminology in question) that has the latest
load date. The non-quarantined version can be either active or retired.

– Reuse: Occasionally, a concept code used in the previous version is reused to
represent a concept with a different meaning in the new version. Note that this
is considered bad terminology practice and should only be used to account for
inadvertent errors. Unless a reuse is explicitly called out in the change file, a
concept in the previous version is always considered equivalent to a concept
with the same concept code in the new version.

Change files are preseeded for the following terminologies:

Chapter 8
Generic Terminology Model

8-4

• HL7

• HDR Supplemental

For each of the following terminologies, new versions and their change files are available to
customers, possessing licenses, from the vendor of the terminology:

• IETF RFC 1766

• ISO 3166-1 alpha2

• NUBC-UB92

• CPT-4

• FDB

• HCPCS-2

• ICD-10

• ICD-9-CM-DRG

• ICD-9-CM-MDC

• ICD-9-CM-V1

• ICD-9-CM-V3

• LOINC

• SNOMED-CT

For all other terminologies that are loaded into ETS, change files must be created separately
and loaded for each new version.

Note that change files must be loaded concurrently with the new version of a terminology. It is
not possible to load a change file for a version of a terminology after both versions have been
loaded.

Note also that a change file can only equivalence concepts between two consecutively
imported versions of a terminology. Hence the order in which versions are imported is
significant if change files are being used. The following scenarios illustrate this constraint:

• A concept (concept code X) exists in version 1 of a coding scheme. The concept neither
appears in version 2 nor is reassigned to an equivalent version 2 concept. A concept with
code X reappears in version 3 with the same meaning as in version 1. It is not possible to
indicate to ETS that concept X from version 1 is equivalent to concept X from version 3-
because it spans a version.

• A concept (concept code X) exists in version 1 of a coding scheme. The concept neither
appears in version 2 nor is reassigned to an equivalent version 2 concept. In version 3,
another concept (concept code Y) is created that is equivalent to concept X from version
1. It is not possible to indicate to ETS that concept X from version 1 is equivalent to
concept Y from version 3.

Note:

To support concept equivalence, the ETS importer does not import a second
quarantined version of a terminology if one already exists. This facilitates
verification of equivalence between the quarantined version and the previous
version of the terminology before the quarantined version is published.

Chapter 8
Generic Terminology Model

8-5

See also:

• Loading and Activating Coding Scheme Versions

• The Implementation Guide for a detailed procedure on how to define
interterminology mapping using cross maps.

Loading and Activating Coding Scheme Versions
Terminologies have to be loaded into ETS (as coding scheme versions), imported, and
activated before they are used. This includes initial versions of core terminologies,
which have to be loaded, imported and activated at implementation.

ETS provides terminology loader and importer jobs that load and import a terminology
after performing required validations. ETS provides custom loader and importer jobs
for core terminologies, and generic loader and importer jobs for generic and custom
terminologies.

Note:

New versions of the following terminologies can be loaded if required; HDR
does not seed versions of these terminologies (they are available from
Apelon, Inc.):

• IETF RFC 1766

• ISO 3166-1 alpha-2

• NUBC-UB92

New versions of the following terminologies can be loaded if required; HDR does not
seed versions of these terminologies (they are available from Apelon, Inc.).

Caution:

Do not load versions of terminologies that are seeded in HDR. These
include:.

• HL7

• HDR Supplemental

If you have already loaded such versions, mark them as retired and non-
default.

The procedure for implementing a new coding scheme version is the same for both
generic and core terminologies. To load and activate coding scheme versions, perform
the following steps:

Steps

1. Prepare the terminology files.

2. Load the terminology into ETS as a coding scheme version.

Chapter 8
Loading and Activating Coding Scheme Versions

8-6

3. Publish the coding scheme version.

4. Activate the coding scheme version.

You can use HDR Terminology Jobs to load and publish coding scheme versions.

See also:

• /ets/hdr-ets-1.0.0-SNAPSHOT/db/execute/readme from hdr-1.0.0-SNAPSHOT.zip for
additional information about loading.
The notes can be categorized into DBA, General, and Terminology related notes.

– DBA Notes: Gives a brief description of some common database management issues
related to ETS, such as sizing issues, rollback adjustments for loads and imports,
intermedia text indexes, and load/import performance, as well as a general
description of database access patterns of ETS.

– General Notes: Gives the basic principals common to all terminology file formats.
This section must be read before moving on to the details of specific loader file
formats.

– Terminology Notes: Gives additional information relating to the core terminologies
supported in ETS. Each of the core terminologies have a separate notes file. These
files are to be referenced for information relating to the respective loader file formats.

Preparing Terminology Content and Control Files
To create the terminology files and move them into the correct folder, perform the following
steps:

Steps

1. If the terminology is a generic terminology, create the terminology files in the format
expected by the ETS generic loader. Otherwise, ensure that the files are in the format
expected by the appropriate terminology loader. (If the terminology is supported by
Apelon, this step is not required.)

See also:

• /ets/hdr-ets-1.0.0-SNAPSHOT/db/execute/readme from hdr-1.0.0-SNAPSHOT.zip, for
details regarding file formats required by ETS terminology loaders.

• /ets/hdr-ets-1.0.0-SNAPSHOT/db/execute/readme/
Change_File_Formats_General.txt from hdr-1.0.0-SNAPSHOT.zip, for details about
change files.

Note:

• To load equivalence information for the terminology version being loaded,
the change file must be specified while loading the version-ETS does not
support retrospective loading of change information.

• For equivalence processing to be performed correctly, versions must be
loaded in order. Equivalence processing assumes that the codes
referenced in the change file are from the version currently being loaded
and its immediate predecessor.

Chapter 8
Loading and Activating Coding Scheme Versions

8-7

2. Move the terminology files to a directory in the same file system as the
Applications instance-a directory that is accessible by the Oracle Database
Scheduler (DBMS_SCHEDULER).

3. Create a control file that reflects the locations of the terminology files and move it
to a directory in the same file system as the Applications instance-a directory that
is accessible by the Oracle Database Scheduler (DBMS_SCHEDULER).

Creating New Generic Coding Schemes
ETS lets users define and implement custom terminologies for specific needs. Custom
terminologies must be based on the generic ETS terminology model. Coding schemes
that implement the generic terminology model are known as generic coding schemes.

See also:

• Coding Scheme

Loading a Coding Scheme Version
To load a new coding scheme version, use the Oracle Database Scheduler
(DBMS_SCHEDULER).

See also:

• /ets/hdr-ets-1.0.0-SNAPSHOT/db/execute/readme from hdr-1.0.0-SNAPSHOT.zip,
for information about control files.

Using Oracle Database Scheduler (DBMS_SCHEDULER)
Select the HDR Loader Job, and enter values for the Control File (absolute path),
Coding Scheme Name, and Coding Scheme Version Name parameters.

Publishing a Coding Scheme Version
A loaded terminology is staged for importation into ETS. Use HDR Importer Job
directly for publishing a coding scheme version.

The published coding scheme version is in the quarantined state by default. The
coding scheme version must be activated before it can be used.

Note:

In order to support concept equivalence, the HDR Importer job process does
not publish a second quarantined version of a coding scheme if one already
exists. This facilitates verification of equivalence between the quarantined
version and the previous version of the terminology before the quarantined
version is published.

Using Oracle Database Scheduler (DBMS_SCHEDULER)
For publishing a staged coding scheme version, select the HDR Importer job, and
enter values for the Load Sequence Number and Dry Run Mode parameters. You can

Chapter 8
Loading and Activating Coding Scheme Versions

8-8

get the Load Sequence Number from the log file of the HDR Loader job that has successfully
loaded the data (coding scheme versions, classifications, and cross maps).

See also:

• Oracle Applications System Administrator's Guide

Note:

In order to support concept equivalence, the HDR Importer job does not publish a
second quarantined version of a terminology if one already exists. This facilitates
verification of equivalence between the quarantined version and the previous
version of the terminology before the quarantined version is published.

See also:

• /ets/hdr-ets-1.0.0-SNAPSHOT/db/execute/readme, for details regarding file formats for
ETS terminologies and loaders.

Activating a New Terminology Version
A quarantined coding scheme version must be activated before it can be used. A quarantined
version can be activated only ETS API.

Interterminology Mapping
Inter-terminology Mapping provides support for any type of relationship, including
equivalence, between two different terminologies. Relationships that can be defined include
(but not restricted to) broader-than, narrower-than, and clinical-to-administrative relationships.

Inter-terminology Mapping is implemented using cross maps. A cross map defines the
relationship between a source concept and a target concept. A number of cross maps are
aggregated into a Map Set. ETS specifies file formats for map sets and cross maps. The
HDR Loader job loads these files into ETS tables.

Interterminology Mapping Using Cross Maps
Interterminology mapping provide a mechanism by which concepts from a source version in
one terminology can be mapped to concepts from a target version in another terminology.
Mappings are typically tailored for a specific application. For example, a data-aggregating or
reporting application may require a mapping between specialized SNOMED-CT codes and
coarse ICD-9-CM codes. A data retrieval application may use mappings with the opposite
semantics (from less granular classifier codes to more detailed codes). These examples
serve to illustrate that mappings serve multiple purposes, and not all cross maps indicate
equivalence. Those cross maps that truly do indicate equivalence must be explicitly flagged
by the author of the cross maps. This section describes the steps you should follow to
indicate equivalence between concepts from two different terminologies using
interterminology mapping files.

See also:

• The Implementation Guide for a detailed procedure on how to define interterminology
mapping using cross maps and how to load the map set files.

Chapter 8
Interterminology Mapping

8-9

Guidelines: Cross Maps
The ETS Cross mapping model is based on the SNOMED CT cross mapping model.
Cross-mapping mechanisms provide support for the following:

• Mapping a single concept to a target code (a one-to-one mapping).

• Mapping to a set of Target codes (a one-to-many mapping).

The current structure does not support:

• Mapping a set of Concepts to a Target.

The relationship between these tables is shown by the following chart:

Figure 8-1 ETS Cross Mapping Relationship

A map set defines a mapping between two coding scheme versions, such as
Terminology A version 2003 and Terminology B version 2.01. Each map set is
composed of multiple cross maps. Each cross map consists of a source concept and
one or more target concepts, such as a source concept from Terminology A and one or
more target concepts from Terminology B—to which it maps.

Loading Cross Maps Provided by the College of American Pathologists
The principal difference between cross map files distributed by the College of
American Pathologists (with SNOMED CT) and those expected by ETS loaders is that
the SNOMED CT files could contain data regarding multiple map sets in a single file.
The map set file may contain multiple rows, each pertaining to a different map set. The
cross map file may contain cross maps relating to multiple map sets, and the map
targets file may contain targets used by multiple map sets (targets related to multiple
coding schemes).

To make the SNOMED CT files suitable for ETS loading, split the files into map sets.
The map set file should contain only one row, representing one map set. The cross
maps file should contain only rows containing the map set ID of the chosen map set.
The map targets file should contain only targets related to the target coding scheme
specific to the map set.

See also:

Chapter 8
Interterminology Mapping

8-10

• /ets/hdr-ets-1.0.0-SNAPSHOT/db/execute/readme from hdr-1.0.0-SNAPSHOT.zip for the
cross-map table structures.

ETS Object Model
The ETS base code consists of a core set of objects and services required for ETS to
operate. The following sections provide a brief review of some of these core terminology
objects:

• Coding Scheme

• Coding Scheme Version

• Concept

• Concept Description

• Relationship

• Usage Context

Coding Scheme

A coding scheme is a representation of a single terminology across all of its versions. CPT-4,
ICD-9, LOINC and SNOMED are examples of common coding schemes. Coding schemes
can be created as needed by calling the createCodingScheme method in the
ETSAdministrationService. Coding Schemes can be added into the repository but can never
be removed.

Coding Scheme Version

A coding scheme version represents a single release of a coding scheme. A new coding
scheme version is added every time a new release of a coding scheme is loaded into HDR.
The 2004 release of CPT-4 and the v2.10 release of LOINC are examples of coding scheme
versions. Coding scheme versions are created by running the HDR Terminology Jobs using a
set of terminology files. Although coding scheme versions can never be removed from the
system, they can be retired. The number of coding scheme versions in a system typically
grows over time.

Concept

A concept is a single representation of an idea in a terminology and is associated with the
coding scheme version that defines it. For example, a concept with concept code ACTN is
included in version 2.01.4 of coding scheme ActClass. The number of concepts in a coding
scheme version can range from less than a hundred to thousands. A concept is required to
have a content-publisher defined concept code, which must be unique within a coding
scheme version. A concept cannot be removed from a system, but its parent coding scheme
version can be retired.

Concept Description

A concept description, sometimes also called a description, is a human-readable text
description for a single concept. There are two types of concept descriptions: terminology-
specified and locally-specified. A terminology-specified concept description is supplied by a
terminology provider and populated by the ETS Loader/Importer. Terminology-specified
concept descriptions are immutable once they are in the system and cannot be deleted.
Every concept is required to have exactly one preferred terminology-specified description that
can be used as the default when displaying a concept without any other contextual
information. For example, concept ACTN in version 2.01.4 of coding scheme ActClass has

Chapter 8
ETS Object Model

8-11

the terminology-specified description action. In contrast, locally-specified descriptions
are supplied by an organization using ETS. A locally-specified concept description can
be associated with a UsageContext to aid the application by providing a contextually-
appropriate description of a concept.

Relationship

A relationship is a connection that ties concepts together into graphs representing
ontological information. Relationships can be used to represent hierarchies,
classifications, or arbitrarily connected graphs within terminologies. Relationships are
built as a combination of three concepts: a source concept, a relationship type
concept, and a target concept. BACTERIAL PNEUMONIA (source), IS TREATED_BY
(relationship type), ANTIBIOTIC (target) is an example of a typical relationship.

Some coding schemes, such as SNOMED-CT, contain explicit relationship information.
Others have implicit relationships, which can be derived from other fields. In ICD-9, for
example, a hierarchical relationship is implicitly defined by the ICD-9 concept codes. In
another example, Concept 710.x, is automatically known as a child of concept 710.

Usage Context

A usage context is a mechanism that lets customers define an application specific
context for descriptions and customized child concept lists. Concepts provide a
method for getting a description based on a usage context; concept lists have a
method, getChildConceptList(UsageContext), to get the child concept list based on the
usage context. The number of usage contexts in a typical system is expected to be
small (less than 50).

ETS Concept Lists
An ETS concept list is a container for ETS concepts; each concept is associated with a
membership code that is distinct within that list. This container abstraction has many
practical applications within HDR and for customers interacting with ETS directly. A
concept list is useful for presenting a commonly used list of values to a user, such as a
list of valid lab tests, a list of commonly prescribed pain medications, or a list of
surgical procedures. The concepts inside a concept list can be derived from any ETS
coding scheme version. This permits the construction of a concept list to represent
Concepts that represent Influenza, for example, containing one concept from each
relevant terminology loaded into ETS.

ETS supports a number of advanced concept list features such as concept list groups,
access restrictions (extensibility), and parent-child relationships between lists including
inheritance options, specialization of lists, and integration with concept equivalence.
Concept list objects can be specialized by implementing usage contexts linking a
specialized child concept list to its parent concept list . Concept list objects have
activation and retirement dates for the membership of their concept members, stored
as a time stamp rounded to the nearest second.

Concept list objects have access restrictions, which are stored as extensibility values.
Third-party developers do not have access to set the extensibility of a concept list.
Concept list objects can be defined as system, extensible, and user. System-defined
concept list objects are created and seeded with each HDR release. Customers
cannot add, remove, or update concept list objects within this list. User-defined
concept objects are created by customers and permit the addition and modification of
concept objects. Extensible concept list objects are delivered with HDR, but let
customers add concept objects into the list.

Chapter 8
ETS Object Model

8-12

Parent-child concept list relationships are implemented in ETS. The child concept list can be
restricted. Restricted concept list objects can only add concept objects or have concept
objects that are already included in their parent concept list objects. Child concept list objects
can also inherit additions or deletions of concept objects from their parent concept lists.

Figure 9-2 illustrates the inheritance behavior of restricted members.

Chapter 8
ETS Object Model

8-13

Figure 8-2 Inheritance of Activation/Retirement Dates

Creating and Updating a Concept List
Use ETS API to create a concept list. For more information on Concept Lists API, refer
to the Oracle Healthcare Data Repository Javadoc.

Chapter 8
ETS Object Model

8-14

Adding Concepts to a Concept List
Concepts can be added to extensible concept lists. Concepts to be added to a concept list
must be contained in a coding scheme version that has already been loaded into ETS.
Determine if the concept exists in ETS and the coding scheme version in which it is
contained.

Perform the steps described in this section to add concepts to a concept list.

Caution:

Certain extensible concept lists are empty and must be populated with concepts
before using their respective functionality.

Chapter 8
ETS Object Model

8-15

Adding Concepts to a Concept List

A concept cannot be added under the following conditions: the concept is already
active or pending in the selected list; the selected list is the parent of an additive child
specialization and the concept is already active or pending on the child; the selected
list is a SYSTEM list; or the selected list is a restricted child specialization and the
concept is not active or pending on the parent lists.

• If any (but not all) concepts chosen for addition are not addable, a warning
diagnostic lists the concepts that will not be added. You can elect to continue or
return to list selection.

Chapter 8
ETS Object Model

8-16

• If all concepts selected for addition are not addable, the List Selection window is reloaded
with an information box listing these concepts. To continue, select another list.

If any of these conditions exist, select a new membership code or activation date as
appropriate, and click Next. You can alternatively click Back to return to the List Selection
page, or click Cancel to exit the addition process.

Note:

If the concept is being added to a restricted specialization, and the selected
activation date would cause the concept's active period to exceed that of the
corresponding concept in the parent list, an exception occurs; a dialog warns you
that the concept has not been added.

See also:

• Oracle Healthcare Data Repository Javadoc

Caution:

We strongly recommend that wherever possible, you only add concepts from the
same terminology to a single concept list. Concept meanings can be sensitive to the
context in which they are included in a terminology; mixing them with concepts from
other terminologies may distort those meanings.

Specializing a Concept List
Concept lists can be specialized. A specialization of a concept list is a child concept list that
initially inherits the active members of the parent list. It is a separate concept list, distinct from
the parent list. Subsequent behavior of the specialization (a child concept list) with respect to
the parent concept list depends upon the setting of its inheritance type:

• Addition Inheritance: Any concept added to the parent list is added to the child list.

• Deletion Inheritance: Any concept retired from the parent list is retired from the child list.

• Restricted Inheritance: A child list cannot contain any concept not contained in its parent
list; before a concept is added to the child list it must first either exist in the parent list or
be added to the parent list. A concept in a restricted child list also inherits certain
changes to the activation and retirement dates of the corresponding concept in the parent
list.

The inheritance types are not mutually exclusive. A restrictive list must also exhibit deletion
inheritance. You can update a list's addition inheritance and deletion inheritance by turning
them on or off, but you cannot update its restricted inheritance.

A specialization can be associated with a usage context, as can a concept local description.
A usage context can in turn be associated with an organization. Accordingly, a concept list
can have multiple specializations, each associated with a particular organization.

A concept list specialization is created in the same manner as any other concept list (Steps).

Values in a concept list specialization can be added or retired as for any concept list.

Chapter 8
ETS Object Model

8-17

Subsetting a Concept List
It may be desirable to subset a concept list—using only a subset of a concept list's
members, for UI display purposes, or for validating data to be stored by an application.
The following sections describe how to subset a concept list:

Subsetting a User Concept List
A concept list of extensibility type User can be subsetted by retiring unwanted
members from the list. A member is retired by updating its retirement date and time.

Note:

This subsetting procedure does not apply to System or System extensible
concept lists.

Subsetting a Concept List of any Extensibility Type
A concept list of any extensibility type (including user) can be subsetted using either of
two additional procedures. These procedures are especially useful if the list to be
subsetted is a System or System Extensible list, from which members cannot be
retired (two methods):

Method 1: Using the Core Member Setting of List Members

The core set of members in the list can then be retrieved using the method:

getCoreSet

Checks of individual members of the list can be performed using the method:

isCoreMember

Method 2: Using a Specialization of the Concept List and Retiring Members

Reference

Oracle Healthcare Data Repository Javadoc

Table 8-1 Service and Methods: Specializing Concept Lists

Level Detail

Package oracle.hsgbu.ets.base

Class ConceptList

Methods getChildConceptList

To subset a concept list of any extensibility type using Procedure-2, do the following:

Create a specialization of the concept list, and specify a usage context for the child list.
You can then subset the child concept list, and you can use the subsetted list as
required by your application.

Access the specialization using the method:

Chapter 8
ETS Object Model

8-18

getChildconceptList

See also:

• HDR Concept Lists Index for further information about HDR supported concept lists.

• HDR ConceptList Interface for further information about the ConceptList_Class.

ETS Editable Terminologies
Editable terminologies let developers add contents to a coding scheme identified as editable.
After creating an editable coding scheme, you can add concepts, descriptions and
relationships to a version of this coding scheme. An editable coding scheme can have only
one version.

Editable Coding Scheme

Using the HDR API, you can create an editable coding scheme by creating a new generic
coding scheme with the editable attribute set to true. After the coding scheme is created, you
can edit the original version, but a new version is not permitted.

Editable Terminology

An initial version of the editable coding scheme must be created and loaded before it is used.
Use the generic terminology loader to load an editable coding scheme version.

Editable Coding Scheme

Editing concepts, descriptions, and relationships is limited to addition and removal of
attributes, changing status, and changing a description's preferred status. Other changes are
made by retiring a component and adding a new component in its place. For example, a
description's text cannot be changed, but the description can be retired and a new description
added to replace it. The new description can optionally be designated preferred.

Equivalence

As an editable terminology has only a single version, equivalence in an editable terminology
must be intraversion – in other words, equivalence may only be declared between concepts
in the same version. In the initial version load, equivalence may be declared using a change
file, just as for any terminology being loaded with intraversion equivalence information. After
the initial load, reassignments (introduction of a new concept that has the same meaning as
an existing concept but has a different concept code than the existing concept) may be
declared when a new concept is added. The new concept's code may be declared, using the
relevant API, to be a reassignment from an existing concept's code.

No reuse of codes (introduction of a concept whose concept code is the same as an existing
code, but where the concept has a different meaning than the existing code represents) is
permitted in an editable terminology.

See also:

• Implementing Interterminology and Intraterminology Equivalence

• Implementing Interterminology Mapping Using Cross Maps

Reference
Oracle Healthcare Data Repository API Documentation

Chapter 8
ETS Object Model

8-19

The following table provided information about the ETSAuthoringService interface
used to implement editable terminologies:

Oracle Healthcare Data Repository Javadoc

Table 8-2 Service and Methods: Editable Terminologies

Level Detail

Package oracle.hsgbu.ets.authoring

Interface ETSAuthoringService

Methods • addAttributes
• addConcepts
• addConceptDescriptions
• addRelationships
• changeStatus
• removeAttributes

Refer to the following sections to edit the components of an Editable Coding Scheme:

• Adding Components

• Changing Component Status

• Adding and Removing Component Attributes

Note:

These changes are exclusive; any other changes to concepts, descriptions,
and relationships can only be made by retiring the component and adding a
new one.

Adding Components
Use the addConcepts, addConceptDescriptions, and addRelationships methods to
add concepts, descriptions, relationships and attributes to an editable coding scheme.
Candidate components are created first and passed to the add methods.

Changing Component Status
Components such as concepts, relationships and descriptions of an editable coding
scheme cannot be edited or removed directly. To modify a component, it must be
retired and replaced. A component can be retired or made active by changing the
status flag associated with the component. Use the changeStatus method to change
component status.

Adding and Removing Attributes
Use the addAttributes and removeAttributes methods to add and remove attributes,
respectively.

The code samples below help you to:

• Create an Editable Coding Schema (see Example 8-1)

Chapter 8
ETS Object Model

8-20

• Create a Coding Scheme Version and making it the Default (see Example 8-2)

• Create a Concept (see Example 8-3)

• Create a Relationship between Two Concepts (see Example 8-4)

Note:

The RelationshipTypecode of the IS_A concept used in Example 9-4 should be set
to CandidateConcept.REL._TYPE_YES.

Example 8-1 Create an Editable Coding Scheme

etsAdministrationService.createCodingScheme
(codingSchemeName, codingSchemeDescription,CodingScheme.CODINGSCHEME_MODEL_GENERIC,
oid , true);

Example 8-2 Create a Coding Scheme Version and Making it the Default

CodingSchemeVersion csv =
etsAuthoringService.createCodingSchemeVersion(codingSchemeVersionName,
codingSchemeVersionDescription , codingScheme);etsAdmin.makeDefaultVersion(csv);

Example 8-3 Create a Concept

CandidateConcept[] candConcepts = new CandidateConcept[1];
candConcepts[0] = etsAuthoringService.newCandidateConcept();
CandidateConceptDescription[] candDescs = new CandidateConceptDescription[1];

candDescs[0] = etsAuthoringService.newCandidateConceptDescription();
candDescs[0].setStatusCode('A');
candDescs[0].setTermText(conceptDescription);
candDescs[0].setPreferredDescription(true);
candConcepts[0].setCandidateDescriptions(candDescs);

candConcepts[0].setConceptCode(conceptCode);
candConcepts[0].setStatusCode('A');
candConcepts[0].setRelationshipType(relationshipType);

etsAuthoringService.addConcepts(csv, candConcepts, false);

Example 8-4 Create a Relationship between Two Concepts

String sourceConceptId = csv.getConceptByConceptCode(conceptCode).getETSID();

Concept targetConcept = csv.getConceptByConceptCode("TargetConcept");
String targetConceptId = targetConcept.getETSID();

Concept relationshipConcept = csv.getConceptByConceptCode("IS_A");
String relationshipConceptId = relationshipConcept.getETSID();

CandidateRelationship[] candRelation = new CandidateRelationship[1];
candRelation[0] = etsAuthoringService.newCandidateRelationship();

candRelation[0].setSourceConceptID(sourceConceptId);
candRelation[0].setTargetConceptID(targetConceptId);
candRelation[0].setRelationshipTypeConceptID(relationshipConceptId);
candRelation[0].setStatusCode('A');

Chapter 8
ETS Object Model

8-21

etsAuthoringService.addRelationships(csv, candRelation, false);

See also:

• Oracle Healthcare Data Repository API Documenation for more information about
using ETS APIs.

ETS Classifications
ETS Classifications are containers for grouping existing ETS concepts from different
coding scheme and versions. Classifications are intended for large categorizations of
concepts, while concept lists are intended for smaller sets for the purposes of
validation or display. ETS Classifications provide the following features:

• Classifications describe a set of concepts that are all part of the same category.
For example, the classification Antibiotics might include concepts for penicillin and
telithromycin, among others.

• Classifications can be arranged in a hierarchy.

• Tests for containment in a classification search down the levels of the hierarchy.

• Classifications can be created and populated through an API or through creating
and loading text files.

• Classification contents incorporate equivalence.

• Concepts added to an ETS Classification retain their equivalence information and
characteristics.

• ETS Classifications are themselves ETS Concepts--components of a special,
predefined editable terminology called ETSClassifications. Accordingly the
following applies:

– A classification has a concept identifier.

– A classification can have multiple descriptions, including local descriptions.

– A classification's local descriptions can be associated with usage contexts.

• ETS Classifications can be defined using the API or using the HDR Loader job and
HDR Importer job.

• Classification contents are created with declarations that can leverage ontological
relationships already present in many terminologies.

• All members of a classification implicitly include their semantic equivalents.

• Classifications are computed asynchronously by a new feature of the HDR
Maintenance Job, supporting fast runtime response to classification queries.

Every classification created is backed by an ETS concept, and inherits all functionality
that ETS concepts provide. Classification concepts are created on demand in a special
coding scheme.

The following table summarizes the principal interfaces referenced by this section:

Table 8-3 Service and Methods: ETS Classifications

Level Detail

Package oracle.hsgbu.ets.base

Chapter 8
ETS Object Model

8-22

Table 8-3 (Cont.) Service and Methods: ETS Classifications

Class ETSAdministrationService

Methods • addConceptToConceptList
• addDeclarationToClassification
• createClassification
• createCodingScheme
• createConceptList
• removeDeclarationFromClassification

Class ETSService

Methods • findClassificationByCode
• findcodingScheme
• findCodingSchemeVersion
• findConcept
• findConcepts
• isEquivalent

Class Classification

Methods • contains
• findChildClassifications
• findConceptsInClassification

Large amounts of healthcare data are difficult to use unless they are well organized. Creating
classifications is the most common means of organizing healthcare data. As institutions
generally use a combination of (standard and local) terminologies, classifications need to
incorporate concepts from different coding schemes and versions.

ETS Classifications provide a mechanism for grouping concepts from different coding
schemes and versions, and arranging the groups in hierarchies navigable by the ETS API.
ETS Classifications facilitate:

• Viewing a large number of concepts

• Selection of concepts

• Class-based query of information

For example, a classification called cardiovascular diseases could be created and populated
with concepts that represent different cardiovascular diseases from different terminologies.
The following chart shows this classification:

Chapter 8
ETS Object Model

8-23

Figure 8-3 Simple ETS Classification

ETS Classifications are internally represented as concepts in an editable generic
coding scheme called ETSClassification. In this example, the classification,
cardiovascular diseases is stored as a concept in the coding scheme
ETSClassification.

But you could also create another classification such as heart diseases and make it a
child classification of the cardiovascular diseases classification. Thereafter, any
concept in the heart diseases classification, such as congestive heart failure, would be
considered by the Classifications interface to be implicitly contained in the
cardiovascular diseases classification.

Chapter 8
ETS Object Model

8-24

Figure 8-4 Parent and Child ETS Classification

ETS Classifications are basically containers of ETS concepts. In this chart, the concepts in
each classification node could derive from different coding schemes.

ETS classification interfaces are oblivious to relationships between the classification concepts
in their native terminologies. For example, in this chart, congestive heart failure and
congenital cardiac failure are children of heart failure in their native terminology, but the heart
disease ETS Classification views its contents as a flat list of concepts. There is no
classification interface that is aware of relationships between the classification concepts in
their native terminologies. However, those relationships can be navigated by querying the
individual concepts, using the ETS generic terminology interface or a terminology-specific
interface.

Classifications are themselves ETS Concepts – components of a special, pre-defined
editable terminology called ETSClassifications. Creating a new classification actually is

Chapter 8
ETS Object Model

8-25

creating a new concept in the ETSClassifications terminology. Since classifications are
concepts:

• A classification may have multiple descriptions, one of which is designated
preferred

• Local descriptions may be associated with usage contexts

• A classification has an ETS ID

Classifications can be Linked Hierarchically
Classifications may be linked in strict or multiple hierarchies (a classification may have
multiple parent classifications) to form a network of linked classifications forming an
acyclic graph.

Testing Containment
ETS classifications support testing of containment across levels of a hierarchy. For
example, given the hierarchy in the chart Sample ETS Classification, if the concept
congestive heart failure is in the heart disease classification, and the heart disease
classification is a child of the cardiovascular diseases classification, you can test if
congestive heart failure is a cardiovascular disease, and the answer will be Yes.

Equivalence is incorporated into Classifications.

The concepts contained in an ETS Classification retain their equivalence information.
For example, what is actually considered as included in cardiovascular diseases are
groups of concepts that are equivalent to heart failure, congenital cardiac failure,
congestive heart failure, and arterial anuerysm. Consequently, if concept X is
equivalent to congestive heart failure, and the question “Does ‘cardiovascular
diseases' contain X?" is asked, the answer will be “yes".

Creating and Populating Classifications
Classifications are created by generating a hierarchical network of classification nodes
and populating those nodes with individual ETS concepts. An individual classification
node may contain concepts from multiple terminologies.

A single concept can be used in multiple classifications, including multiple sub-
classifications of the same parent classification, but it cannot appear more than once
in the same sub-classification. However, equivalent concepts can be inserted into the
same sub-classification. As for all ETS concepts, concepts in a classification can have
multiple text representations.

Classifications may be created and populated by two methods:

• Specifying classification data in files, and loading the files using HDR Terminology
Jobs

• Using ETS APIs directly

A new classification will have a pending state when it is created and loaded. It will
become effective only when the HDR Maintenance job is run. Until then, the new
classification will be unusable. This enables new classifications to be created and
readied for use without requiring a downtime.

Whenever changes are made that could affect classification contents (declarations are
added or removed, a version of a terminology that contains classification concepts is

Chapter 8
ETS Object Model

8-26

loaded, or a mapping involving a version that contains classification concepts is loaded), the
classification moves from the active state to a dirty state. In this state the classification in its
former active state is still usable. The effects of the changes that placed the classification into
the dirty state will not be usable until the classification is moved from the dirty state to the
active state. Classifications are moved from the dirty state to the active state by running the
HDR Maintenance Job.

Note:

Classification contents are defined declaratively. This enables a short-cut for adding
concepts declared a terminology to be children of another concept. For example,
the concepts heart failure, congenital cardiac failure, and congestive heart failure
could have been added to heart diseases by a single statement(add heart failure
and its descendents to heart diseases). This adds heart failure and its children as
defined within its native terminology. A declaration can also add a concept and only
those concepts deemed to be direct children in its native terminology, add a
concept's descendents but not the concept itself, or add a concept's direct children
but not the concept itself. The various insertion choices are called insert options.

See also:

• Oracle Healthcare Data Repository Javadoc
A declaration with an insert option of concept only adds a single concept ((the concept
with none of its children). The contents of a classification amount to a series of
declarations. Classification contents are augmented or reduced by adding or removing
declarations.

To retrieve a concept's children when implementing a declaration, the ETS classification
build process must know which relationships in the concept's native terminology
represent parent-child relationships. Accordingly, for each core terminology, HDR has
identified certain relationships as defining parent-child associations. The ETS
classification build process queries for such relationships when called upon to find a
concept's children. For generic terminologies, the build process queries for relationships
in which the relationship type concept is identified as type IS_PARENT_OF or
IS_CHILD_OF.

See also:

• Documentation at the Apelon, Inc. web site for descriptions of the treatment of specific
terminologies.

• /ets/hdr-ets-1.0.0-SNAPSHOT/db/execute/readme /
Terminology_File_Formats_Generic.txt from hdr-1.0.0-SNAPSHOT.zip

Note:

Each ETS concept defined in a generic terminology must be identified as being
valid or invalid for use as a relationship type, and is indicated by the
RELATIONSHIPTYPEFLAG column in the Concepts fie. This flag can contain one
of the following values (Table):

Chapter 8
ETS Object Model

8-27

Table 8-4 Concept File: RELATIONSHIPTYPEFLAG Legal Values

Value Description

N The concept cannot be used as a relationship type.

Y The concept can be used as a relationship type.

IS_PARENT_OF The concept can be used as a relationship type, and the type
indicates that the source concept is the parent of the target.

IS_CHILD_OF The concept can be used as a relationship type, and the type
indicates that the source concept is the child of the target.

Those concepts designated as valid relationship types in the concepts file can
subsequently be used in the relationships file in the
RELATIONSHIPTYPECONCEPTCODE column.

Use the following HDR interfaces to define and use ETS classifications:

• ETSAdministrationService

• ETSService

• Classification

Creating a Classification
To create and populate a classification via the loader, perform the following steps:

Steps

1. Create a Classifications file. This file lists the classifications to be created and their
properties.

2. Create a Classifications descriptions file: This file lists the descriptions to be
associated with the classifications and their properties. Just as multiple
descriptions for a concept can be listed in a terminology descriptions file, multiple
descriptions can be created for a classification.

3. Create a Classifications declarations file. This file lists the declarations (each
declaration consisting of a concept and an insert option) that will be added to
classifications. The classifications referenced in this file can be new classifications
listed in the classifications file, or pre-existing classifications.

Note:

Declarations must be removed through an API call; they cannot be
removed through the loader.

4. Create a control file specifying the Classifications, Classification Descriptions, and
Classification Declarations files.
See also:

• /ets/hdr-ets-1.0.0-SNAPSHOT/db/execute/readme/
Terminology_File_Formats_Classifications.txt from hdr-1.0.0-SNAPSHOT.zip
for file formats.

Chapter 8
ETS Object Model

8-28

5. Load the classification. The procedure for loading a classification is the same as that for
loading a Coding Scheme Version. Enter ETSClassifications in the Coding Scheme
Name field on the Parameters page. Enter any text for the Coding Scheme Version Name
(this field must contain text, but the actual text is ignored by the loader).

6. Import the classification. The procedure for importing a classification is the same that for
importing a Coding Scheme Version.

7. Run the Healthcare HDR Maintenance Job to build the classification.

Building a Classification with the HDR Maintenance Job
To build a classification run the HDR Maintenance Job with CLASSIFICATIONS in run mode.

Note:

Run the HDR Maintenance job in the full mode whenever a significant amount of
new classification data is created (including the first time classifications are created
and populated in ETS.

Updating Published Coding Scheme Versions
After a coding scheme version is imported (published), you can update its properties
(description, status, and default status) through the ETS API.

Running the HDR Maintenance Job
The HDR maintenance Job performs several database tasks. These tasks include:

• Maintaining the ETS stage tables. For example, cleanup of incomplete or obsolete data in
the staged tables.

• Maintaining the ETS data in the active tables. For example, cleanup of failed imports in
the active tables.

• Building classifications by processing data for classifications in the pending or dirty state.

• Building and synchronizing intermedia indexes.

• Gathering statistics for the Cost-based Optimizer.

• Ensuring that there is an entry in the language mapping table for each combination of
coding scheme version and installed languages.

The maintenance job must be run in either FULL mode or CLASSIFICATIONS mode to move
a classification from the 'dirty' or pending state to the active state. In general, it is a good idea
to run the maintenance job periodically to keep ETS running optimally.

Note:

You should run the HDR Maintenance Job in the FULL mode:

• Each time you apply a patch to ETS.

Chapter 8
ETS Object Model

8-29

• Whenever a significant amount of new classification data is created (including the
first time classifications are created and populated in ETS).

Scheduling the Maintenance Job

Note:

In job arguments, select the desired Run Mode. The available choices are:

• CLASSIFICATIONS: Builds classifications by matching definitions of classifications
in the pending or dirty state. Classifications that have been created since the last
time the maintenance job was run in CLASSIFICATIONS or FULL mode will be in
the pending state. Classifications that have been modified since the last time the
maintenance job was run in CLASSIFICATIONS or FULL mode will be in the dirty
state. Successfully processed classifications obtain the active state.

• CLEAN_ACTIVE: Performs maintenance on the ETS data in the active tables.
Removes data from failed imports in the active tables, and rebuilds the intermedia
indexes, if necessary. Ensures that there is an entry in the language mapping table
for each combination of coding scheme version and installed languages.

• CLEAN_STAGE: Performs maintenance on ETS stage tables. Removes
incomplete or obsolete data from the staged tables, and rebuilds the intermedia
indexes, if necessary.

• DEFAULT: Performs maintenance on ETS stage, active, and language mapping
tables, but does not build classifications. This mode is composed of
CLEAN_ACTIVE and CLEAN_STAGE modes of the maintenance job.

• FULL: Performs all operations, including maintenance of stage, active and
language mapping tables, and building of classifications. This mode is composed
of CLEAN_ACTIVE, CLEAN_STAGE, and CLASSIFICATION modes of the
maintenance job.

• TRUNCATE_STAGE: Removes all staged contents, regardless of their status. This
mode is faster than CLEAN_STAGE for large datasets.

Caution:

The TRUNCATE_STAGE option can cause data that could have been
used by the importer to be lost.

See also:

• Oracle Applications System Administrator's Guide

• HDR ConceptList Interface for more information about the ETS ConceptList Class.

• HDR Concept List Index for more information about ETS supported concept lists.

ETS Equivalence
ETS manages changes to terminology data over time by maintaining complete copies
of each version of a terminology. ETS equivalence provides a mechanism to determine

Chapter 8
ETS Object Model

8-30

all of the instances of concepts that have the same semantic meaning, both within the history
of a coding scheme and across coding schemes.

Equivalence may be Intra-terminology or Inter-terminology. Intra-terminology equivalence is
defined between concepts from the same terminology. For example, the concept Cholera is
represented in ICD-9-CM 2002 and in ICD-9-CM 2003 by the same concept code
[001_CHOLERA]. Because both concepts have the same meaning, they can be treated as
equivalents---ETS treats them as equivalent by default, as they belong to the same coding
scheme and have the same concept code.

ETS allows concepts from two different terminologies to be defined as semantic equivalents.
Equivalence between concepts from different terminologies, or Inter-terminology equivalence,
is defined using cross maps. For example, the concept for the disease Cholera in the ICD-9-
CM terminology (2002 version), and the concept representing the same disease in the
SNOMED-CT terminology (2002 version), can be defined as equivalents using a cross map.

The information used to determine equivalence is provided by terminology vendors, either as
an integral part of the terminology data, or as a separate change file. There are two types of
equivalences in ETS:

• Intra-terminology equivalence captures exact, unambiguous equivalence between
concepts in the same terminology. Declaring two concepts semantically equivalent
indicates that their meaning is identical.

• Inter-terminology equivalence uses mappings to capture explicit equivalence between
concepts from different terminologies.

Intraterminology Equivalence
Intraterminology equivalence deals with identical concepts (those with the same meaning)
within a single terminology. When a new version of a terminology is released, there may be
several changes to the representation and meaning of concepts when compared to the
previous version. Because there is no way for ETS to automatically determine these
changes, by default it treats concepts from the previous and new versions as distinct and
unrelated. However, it is possible to explicitly indicate the changes that have occurred
between a prior version and a new version in a change file that is loaded with the new
version. Using this information, Intraterminology equivalence services can determine whether
two concepts from the previous version and the new version have the same meaning.

Given a concept from a version of a terminology, ETS can retrieve equivalent concepts from
all contiguous versions that have change files loaded. Given two concepts from different
versions of a terminology, ETS can verify if they are equivalent, provided that the more recent
version and all the intermediate versions have change files loaded.

Interterminology Equivalence
Interterminology equivalence deals with identical concepts (those with the same meaning)
from different terminologies. Concepts from two different terminologies can vary widely in
their granularity and coverage of a domain. Because there is no way for ETS to automatically
determine these differences, by default it treats concepts from the two terminologies as
distinct and unrelated. However, it is possible to explicitly indicate equivalence between
concepts from two versions of different terminologies in the form of an Interterminology
Mapping. Using this information, Interterminology equivalence services can determine
whether two concepts from different terminologies have the same meaning.

Chapter 8
ETS Object Model

8-31

Combining Intraterminology and Interterminology Equivalence
Equivalence between concepts is a transitive relationship. In the following chart, if
Concept A1 is equivalent to Concept A2, and Concept A2 is equivalent to Concept A3,
it can be inferred that Concept A1 is equivalent to Concept A3. Consistent with this
logic, Concept Equivalence services in ETS can determine if concepts from two
terminologies are equivalent—provided that an inter terminology mapping exists
between versions of the two terminologies, and, change files have been loaded for all
versions.

Concept Equivalence Model

Chapter 8
ETS Object Model

8-32

In this chart, ETS transitively combines intraterminology equivalence and interterminology
equivalence information to infer that Concept A1 is equivalent to Concept B1.

Example 8-5 Using ETS Equivalence

import java.util.Properties;
import oracle.hsgbu.ets.base.*;
import oracle.hsgbu.ets.authoring.*;
import oracle.hsgbu.ets.fwk.servicelocator.common;

public class ProgrammerGuideTest2 {

public static void main(String argv[]) throws Exception {
 /* Add a concept with concept code "REPC_TE000005" into a concept list,
 which has a name of "CL_TEL_USE" and belongs to a group "HTB_RIM".
 The steps will be:

 1. find the concept and the concept list in the system;
 2. check to see if the concept (and its equivalent concept) is already in the concept
list;
 3. if not, add the concept into the concept list.*/

addConceptToConceptList("REPC_TE000005","CL_TEL_USE","HTB_RIM");
 }

public static void addConceptToConceptList(String conceptCode,String
conceptListName, String groupName) throws Exception{

 Properties props = new Properties();
 props.setProperty(ServiceLocator.CLIENT_MODE,
 ServiceLocator.REMOTE); //Specify Client mode: Local or Remote
 ServiceLocator slocator = ServiceLocator.getInstance(props);
 slocator.login("sysadmin","sysadmin");
 ETSService ets = slocator.getEtsService();
 //get the ETSService through ServiceLocator
 ETSAdministrationService etsAdmin =
 ets.getAdministrationServiceInstance();
 //get the getAdministrationService
 //1. find the CodingScheme and its default version by calling
 ets.getCodingScheme(String) and cs.getDefaultVersion();

 // if using this example code in your own code, replace "My Terminology"
 with the terminology name in which you are interested
 CodingSchemeVersion csv = ets.getCodingScheme("My Terminology").getDefaultVersion();

 //2. find the concept by calling csv.getConceptByConceptCode(String)
 Concept con = csv.getConceptByConceptCode(conceptCode);

 //3.find the concept list by calling ets.getConceptList(String, String)
 ConceptList cl = ets.getConceptList(conceptListName, groupName);

 //4. validation: check to see if the concept list contains this concept
 by calling cl.contains(Concept,int)

 //5. if not, add the concept to the concept list by calling
 etsAdmin.addConceptToConceptList(Concept,String,ConceptList)
 if (!cl.contains(con,Concept.EQUIVALENCE_TYPE_MAPPING))
 {
 etsAdmin.addConceptToConceptList(con,conceptCode,cl);
 // here we use the concept code as the membership code, but you may use
 something else

Chapter 8
ETS Object Model

8-33

 }
 }
}

Note:

ETS does not support authoring of equivalence information. Equivalence
must be provided to ETS in one of the specified ETS file formats.

Intra-terminology equivalence information is provided to ETS as a “change file", when
loading a new version of a terminology. Change files identify reuse of codes (codes
that represent different meanings than the previous version), and reassignment of
codes (meanings that are now represented with different codes).

Note:

ETS does not support the authoring of change files.

HDR Terminology Jobs
ETS includes a set of DB SCHEDULER jobs that let you load and import terminology
data files, perform routine database maintenance, and delete unwanted map sets. You
can run these jobs through the scripts provided.

• Loader: Running the HDR Loader Job is the first step in the process of populating
terminology data into the ETS active repository. The loader job is used to load
terminology data from flat, textual files into terminology staging tables. The loader
interprets or converts data from its native format into a format that aligns with the
internal ETS representations, and it also validates the format of the files being
loaded.

• Importer: The HDR Importer Job takes data from a set of stage tables (populated
by the loader), runs a series of validation checks on it, and publishes it to the ETS
active tables.

• Maintenance: The HDR Maintenance Job cleanses data from the stage and
active tables, gathers statistics for the stage and active tables, rebuilds intermedia
indexes, and builds classifications.

ETS Multiple Language Support (MLS)
• Understanding Language (Locale) Mappings

• Locale Enabled APIs

ETS lets concepts to be described in any language. ETS languages are derived by
appending the ISO Language code (in UPPER case) to the ISO Territory code (in
UPPER case). The territory represents either a geographic region or a language
dialect. For example, ENGB represents the English language used in Great Britain.

You can use one of the following methods to create a description in a different
language than the base language:

Chapter 8
ETS Object Model

8-34

• Use the HDR Loader Job

• Create local descriptions

This is achieved by locale enabling a subset of APIs. These locale enabled APIs permit
retrieval of concepts and creation of descriptions in specific locales. The non-locale enabled
APIs return descriptions in the base language. However, you can only create editable
terminologies in the base language.

Mappings exist for every coding scheme version, ISO Language code and ISO Territory code.
This resolves situations where a description does not exist for the installed language. For
example, if Simplified Chinese is mapped to American English, American English
descriptions are returned when requesting descriptions in Simplified Chinese. Local
descriptions are an exception to this rule. Simplified Chinese local descriptions are returned
when requesting descriptions in Simplified Chinese.

• Terminology-specified concept descriptions of non-editable terminologies.

• Locally-specified concept descriptions of terminologies (editable and non-editable) and
Classifications.

MLS in ETS lets you load Coding Scheme versions with Concept descriptions in multiple
languages. Each Coding Scheme version can support Concept descriptions in multiple
languages, but every Concept in a Coding Scheme version must be supplied with a
terminology-preferred description in the languages supported by that version.

You can create local descriptions in multiple languages. Concept descriptions (both
terminology-specified and local) based on a language can be obtained by calling methods
that accept a language.

Creating Local Descriptions

You can specify local descriptions for any ETS concept. These descriptions can be used in
place of terminology-specified descriptions for display purposes. You can assign a single
usage context to each local description.

The usage context for each local description must be unique; no two local concept
descriptions share the same usage context.

Note:

Local descriptions of a concept can be created for any language, not just for
languages loaded with the coding scheme version.

Use ETS API to create local description. You can create local descriptions for retired or active
concepts, but the typical procedure is to create a description for concepts in the active default
version of the terminology.

Chapter 8
ETS Object Model

8-35

Note:

• The terminology-specified Concept descriptions of editable terminologies
and Classifications are created in the base language of the HDR
installation.

• ETS will not translate terminology content - whether seeded or loaded.

• ETS does not perform any validation to ascertain whether a description
is actually in the language that it claims to be in. You can load pseudo
translated text as concept descriptions for a supported language along
with the real description text. For example, you can load the data given
in the following table as Concept descriptions into ETS without getting
any errors:

Table 8-5 Sample Concept Descriptions

Version ID Concept ID Description Text Language

v20070101 A25.66 Fracture of Femur American English

v20070101 A25.66 Fracture of Femur Korean

v20070101 A25.66 Fracture of Femur Spanish

v20070101 A25.66 Fracture of Femur Japanese

v20070101 A25.66 Fracture of Femur German

Understanding Language (Locale) Mappings
Mappings let ETS return descriptions even though the terminology may not contain
descriptions in the requested language. For example, the mappings can be set up so
that if British English descriptions are requested, American English descriptions are
returned. Every coding scheme version has a set of mappings that let the system
determine which language to return.

Mappings can be created through one of the following mechanisms:

• By migration (upgrading from a prior version).

• By the HDR Loader Job.

• By using the HDR Maintenance Job.

See also:

• The HDR Loader Job Readme files for information about loading terminologies,
including language mapping setup.

You can use the HDR Maintenance Job to create missing mappings. For example, you
can run the maintenance program after installing a language to create mappings from
the new language to the base language.

Scenario
Assume an installation in London, England with base (or default) language in
American English.

Chapter 8
ETS Object Model

8-36

Assume a terminology that includes French and American English descriptions but not British
English. Users requesting British English are given an American English description because
no British English description exists. This is represented in the following table:

Mappings

Requested Locale Description Locale

en_GB en_US

fr_FR fr_FR

en_US en_US

When a description is requested in a particular locale, ETS locates this mapping and
determines which language to return. In this scenario:

• If a British English description is requested, ETS returns an American English description.

• If a French description is requested, ETS returns a French description.

• If an American English description is requested, ETS returns an American English
description.

If a description is requested and the locale is not specified (non locale enabled APIs), ETS
assumes that the requested locale is in the base language and uses the mapping to
determine which language the description should return. In this scenario, the American
English description is returned because the base language (American English) maps to
American English.

To provide British English descriptions, create British English local descriptions. When a
description is requested in British English, ETS returns the British English local description
and ignores the mapping.

Locale Enabled APIs
• getLocale

• findConcepts

• createLocalConceptDescription

• getDescription

• getLocallyPreferredDescription

• getTerminologyPreferredDescription

• getAllDescriptions

A code sample below can help you to:

• Use a Locale-Enabled API (see Example 8-6)

Mixing calls to Locale enabled and non-Locale enabled APIs is not recommended. For
example, calling getLocallyPreferredDescription() without a Locale and then calling it with a
Locale.

There are two constructors for a java.util.Locale: one that accepts a language code and a
country code, and one that also accepts a variant code. Locale variants are not supported by
ETS; parameter constructor 3 should never be used to construct a parameter for the ETS
API. Both the ISO 639 language code and the ISO 3166 country code are mandatory for a
java.util.Locale that is passed to ETS. For example, it is valid to pass new Locale("en", "US")

Chapter 8
ETS Object Model

8-37

for American English or Locale("en", "GB") for British English, but not Locale("en", null)
or Locale("en", "")

Errors
Locale enabled APIs may throw the following exceptions for MLS specific reasons.

• An ETSBadParameterException is thrown when the Locale is not valid. The
following Locales are considered invalid:

– Locales where the language code or territory code is missing.

– Locales that contain a variant.

• An ETSDataException is thrown when the language mapping is missing.

Example 8-6 Use a Locale-Enabled API

ServiceLocator slocator = ...;
 ETSService etsService = slocator.getEtsService();
 Locale locale = new Locale("en","US");

 String codingSchemeName = "A Terminology";
 CodingScheme codingScheme = etsService.getCodingScheme(codingSchemeName);
 CodingSchemeVersion csv = codingScheme.getDefaultVersion();
 String conceptCode = "A Concept Code";
 Concept concept = csv.getConceptByConceptCode(conceptCode);

 // get descriptions in the locale of the current session
 ConceptDescription[] descriptions = concept.getAllDescriptions(locale);

 System.out.println("Description of conceptCode: " + conceptCode + " is " +
descriptions[0].getTerm());

See also:

• Implementing Master Catalog

• HDR Concept Lists Index, Oracle Healthcare Data Repository Javadoc (click HDR
Concept Lists link at bottom of Javadoc pages), for seeded concept lists and
values.

See also:

• Character Sets & Conversion - Frequently Asked Questions (This information is on
MOS in article 227330.1.)

• Unicode character sets in the Oracle database (This information is on MOS in
article 260893.1.)

• IETF RFC 3066 (This information is on MOS in article 458871.1.)—The
terminology data files that are processed by the ETS Loader validate against RFC
3066 (2-letter language—hyphen—2-letter territory). This representation is the
combination of ISO 639-1 alpha-2 language codes and ISO 3166-1 alpha-2
territory codes.

• ISO 639-1 (alpha-2 codes)

• ISO 3166-1 (territory codes)

• java.util.Locale

Chapter 8
ETS Object Model

8-38

https://support.oracle.com/epmos/faces/DocumentDisplay?id=227330.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=260893.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=458871.1
https://www.loc.gov/librarians/standards
https://www.iso.org/home.html
https://docs.oracle.com/javase/7/docs/api/java/util/Locale.html

9
HDR Messaging Services

• HDR Inbound Message Processor

• HDR Message Submission Unit

• HDR RIM Service Hook

• HDR Messaging Toolkit

HDR Inbound Message Processor
The Inbound Message Processor (IMP) lets HDR receive inbound HL7 version 3.0
messages, compliant with HDR messaging schema, from sending systems and persist
information to the HDR repository.

IMP provides a processMessage API to persist a HL7 V3 message, which returns a Result
object containing the acknowledgement. IMP provides an invalidateCache API that will
invalidate the configuration cache.

To persist a message, user must configure sender, sender interaction, and side effect for the
message and create the receiver of the message as an organization in HDR. You can use
Messaging Configuration Service or IMP Configuration Administration Service to do IMP
configuration.

IMP extracts Sender, Receiver, and Interaction Id available in the message, and picks up the
associated side effect configuration. Based on the side effect configuration, IMP sets the
Reference Modifier on RIM Objects of the message. Based on which, RIM objects available
in the message is created, updated, overlaid or ignored. There are certain rules that influence
the value of Reference Modifier to be set on RIM Objects, which is described in the section
Side Effect Configuration Rules.

After persisting the message, IMP returns a successful acknowledgment (AA), if the message
is persisted successfully. IMP rejects a message with an Application Error (AE) typecode, if
the content or format of the message is incorrect (such as identified object validation failed,
mandatory code attribute missing). IMP rejects a message with an Application Reject (AR)
typecode, if message processing fails for any reason unrelated to the content or format of the
message (such as system down, internal error, and so on).

Messaging Schema

HDR includes messaging schemas for all supported message types. Messaging schema
includes the following for each message type:

• Schema (XSD Files) for the Payload of the Message Type

• Composite Message Schema (XSD File) for each Interaction ID of the Message Type

• Model Interchange Files (MIF files) for the Payload of the Message Type

In addition, messaging schema contains a common Vocabulary schema and data type
schema for all message types.

9-1

The Composite Message Schema (CMS) has three parts: Message Wrapper, Control
Act Wrapper, and Payload Reference. If there are three Interaction IDs seeded for the
same Payload, there will be three composite message schemas; one for each
Interaction ID and all of them will refer to the same Payload.

For samples, refer to the schemas for Lab Result available at the following locations:

• Payload Schema for a Message Type (Lab Result)
<hdr_domain_home>/config/hdr/message/defs/rim214101/schemas/
POLB_MT004000HT01.xsd

• Composite Message Schema for Interaction Ids POLB_IN004003,
POLB_IN004004 (Lab Result)
<hdr_domain_home>/config/hdr/message/defs/rim214101/schemas/
POLB_IN004003.xsd

<hdr_domain_home>/config/hdr/message/defs/rim214101/schemas/
POLB_IN004004.xsd

• Common Data Type Schemas
<hdr_domain_home>/config/hdr/message/defs/rim214101/coreschemas/
datatypes.xsd

<hdr_domain_home>/config/hdr/message/defs/rim214101/coreschemas/
datatypes-base.xsd

• Common Vocabulary Schemas
<hdr_domain_home>/config/hdr/message/defs/rim214101/coreschemas/
datatypes.xsd

<hdr_domain_home>/config/hdr/message/defs/rim214101/coreschemas/
datatypes-base.xsd

For more information on message types supported, refer to the Oracle Healthcare
Data Repository HL7 Version 3 Conformance Specification.

Acknowledgement Processing

Upon receipt of a message from the sending application (the source of the message),
IMP synchronously processes the message into HDR, and returns an Application
Acknowledgment (AA), an Application Error (AE), or an Application Reject (AR).

• Application Acknowledgement (AA): An AA response indicates that the
message was successfully processed and persisted in HDR.

• Application Error (AE): An AE response indicates an error reported by HDR,
including error information in message content or format (error type code, error
detail code, free text). It is the responsibility of the interface engine to determine if
the acknowledgement message is returned to the sending system or if the
message should be resent to HDR or skipped (abandoning the message). IMP
does not support sequence number protocol--the interface engine is responsible
for assuring that messages are delivered in order.

• Application Reject (AR): An AR response indicates that the message is rejected,
for reasons unrelated to its content or format (system or network down, network
transmission errors). For most such problems, the receiving system may be able
to accept the message at a later time. The sending system or interface engine
must decide on an application-specific basis whether the message should be sent
again. Ultimately, the AR is resolved to either an AA (upon successful
retransmission) or an AE--which thence generates a call to error processing.

The acknowledgement message contains the following XML segments:

Chapter 9
HDR Inbound Message Processor

9-2

Table 9-1 XML Segments in an Acknowledgement Message

Components XPATH Sample values

Acknowledgement Type MCCI_MT002300HT01.Message/
acknowledgement/typeCode/
@code

<typeCode code="AA"/> ,
<typeCode code="AE"/>,
<typeCode code="AR"/>

Acknowledgement
Detail Code

MCCI_MT002300HT01.Message/
acknowledgement/
acknowledgementDetail/ code/
@code

<code code="NS250"
codeSystemName="AcknowledgementDet
ailCode"/>

Acknowledgement Error
Text

MCCI_MT002300HT01.Message/
acknowledgement/
acknowledgementDetail/ text

<text mediaType="text/plain"
encoding="TXT">
Application: CTB, Message Name:
CTB_MS_INVALID_PROCESS_MD_CD.
Tokens: PROCESSING_MODE_CODE = T1;
</text>

Acknowledgement Error
Location

MCCI_MT002300HT01.Message/
acknowledgement/
acknowledgementDetail/location

<location>
CTB_MS_IMP_EXCEPTION_LOCATION2
:Error occurred while processing
XML
data located at line 6, column
30. XPATH: /PRPA_IN400000[1]
COMPLEX_TYPE:
MCCI_MT000100HT04.Message</
location>

HDR Error Code MCCI_MT002300HT01.Message/
acknowledgement/
acknowledgementDetail/text

CTB_MS_INVALID_PROCESS_MD_CD

Responder Information MCCI_MT002300HT01.Message/
sender/device/id

<sender
type="CommunicationFunction">
<typeCode code="SND"/>
<device type="Device"
classCode="DEV"
determinerCode="INSTANCE">
<id root="9.989898.5.100"
extension="ORG1000"/>
<asAgent type="RoleHeir"
classCode="AGNT">
<representedOrganization
type="Organization"
classCode="ORG"
determinerCode="INSTANCE">
<id root="9.989898.5.100"
extension="ORG1000"/>
</representedOrganization>
</asAgent>
</device>
</sender>

Sender Configuration

Chapter 9
HDR Inbound Message Processor

9-3

Before processing a message, the message type must be configured for the sender.
IMP extracts Sender, Receiver, and Interaction Id available in the message, and picks
up the associated side-effect configuration. If Interaction ID is not configured for the
Sender and Receiver, IMP rejects the message.

Based on the side-effect configuration, IMP sets the reference modifier on RIM objects
available in the message. If a particular RIM object is not configured for side-effect,
IMP defaults the value of reference modifier for the RIM object to MUST_EXIST. There
are certain side-effect rules in IMP that influences the value of reference modifier of a
RIM Object.

Message Validation

In addition to being compliant with messaging schema, IMP imposes certain
validations on messages before processing the message. Major validations that affect
messages are described in this section.

Identified Object Processing

All RIM objects containing ids are identified objects. If a message instance contains
repeating objects with same ids, IMP merges the information of repeating objects and
persists union of data from different instances into HDR Repository. This is called
Identified Object Processing. If the repeating objects in the message contain
inconsistent information, IMP rejects the message. For example, if the age of a
particular person (having same II) has different values at different segments of the
message, IMP rejects the message. For information on complete set of rules to merge
information of repeating objects, refer to the Oracle Healthcare Data Repository
Programmer's Guide and Oracle Healthcare Data Repository Conformance
Specification Guide.

Media Type and MIME Type Validation for CDA Messages

For CDA Message Types, IMP supports only certain Media Type and MIME Type.
Refer to the CDA Message Type section of the Oracle Healthcare Data Repository
Message Conformance Specification V6.1.

Master Catalog Validation

Master Catalog entries must exist in HDR Repository for all Acts, Entities, and Roles
submitted to HDR for persistence.

Vocabulary Validation

Code System Names used in the message must be loaded into ETS and the Codes
used should be part of Coding Scheme.

State Transition Validation

All Acts, Entities, and Roles submitted to HDR for persistence is subjected to Generic
State Transition validation. The Focal object in the message is subjected to focal class
state transition.

Immutable Attributes Validation

An update message cannot modify values of structural attributes and code (example,
act.ClassCode) of an already persisted object.

RIM Service Validation

Every message is persisted as a control act graph in HDR Repository and subjected to
the validations done by RIM Persistence Service.

Chapter 9
HDR Inbound Message Processor

9-4

Messaging Metadata

To process a message, IMP needs the following RMIM schematic information about the
message elements:

• Name of RIM Foundation Class of the RIM Object available in the message element.

• Type of RIM Association.

• Constrained RIM Data Type of the attribute.

• If the association is a choice.

The RMIM schematic information is not available in the schemas for message types, but
present in the MIF files for the same message type. The information is extracted from the MIF
file and loaded into the database after installing HDR. This information is known as
Messaging Metadata.

To load Messaging Metadata, use ConcurrentProgService.loadMessagingMetadata() API.

Profile Options and System Properties

Use the CTB: Store Incoming Message profile option to indicate whether the incoming
message has to be stored or not. The valid values are Y and N. If the value is Y, the incoming
message is stored in the submission unit table. If the value is N, the incoming message is not
stored.

The following system properties impacts behavior of the IMP engine:

Table 9-2 IMP System Properties

Property Name Valid Values Description

IgnoreUnrecognizedEle
ments

Y or N With value 'N' throws an exception when an
unrecognized RIM attribute is encountered. With 'Y',
just skips it. If N, IMP throws an exception when an
unrecognized RIM attribute is encounters. If Y, IMP
skips the validation. The default value is N.

IMP_NONDESTRUCTI
VE_MODE

Y or N If Y, IMP rollbacks all transactions and does not
update the audit log. The default value is N.

IMP_BUNDLED_MODE Y or N If Y, IMP collects all non-runtime exceptions, and
continues processing. If N, each exception aborts
processing immediately. The default value is N.

See also:

• Oracle Healthcare Data Repository Javadoc

• Oracle Healthcare Data Repository Conformance Specification

Procedures

The following chart provides an overview of the implementation process for Inbound
Messaging Services:

Chapter 9
HDR Inbound Message Processor

9-5

Figure 9-1 Implementation Process: Inbound Messaging Services

To implement Inbound Messaging Services, refer to the following procedure table:

Table 9-3 HDR Implementation Procedures: Inbound Messaging Services

Task-Step Description Optional? Interface

9-1 Configuring Interactions Yes API

9-2 Configuring Sender, Sender Interaction,
and Side Effect

No API

9-3 Invoke Inbound Messaging Services Yes API

Configuring Interactions
IMP extracts Interaction Id and Trigger Event Code from the incoming message and
checks whether it is configured or not. The following table lists the location of the
parameters in the message

Table 9-4 Location of the Parameters in the Message

Parameter XPath

Chapter 9
HDR Inbound Message Processor

9-6

Table 9-4 (Cont.) Location of the Parameters in the Message

Interaction Id Top Level Element in the message. Example, PRPA_IN400000

Trigger Event Code PRPA_IN400000/controlActProcess/code/@code

Interaction Ids for all supported message types are seeded. Refer to the Oracle Healthcare
Data Repository HL7 Version 3 Conformance Specification for the list of seeded interaction
ids. You can also configure new Interactions Id for supported messages. Use the Interactions
window to configure new Interaction Id. For more information on the Interactions window,
refer to Oracle Healthcare Data Repository User Interface Guide.

When you configure a new Interaction Id, an Interaction schema is generated by the
Healthcare Data Repository User Interface and stored at the following location with the name
of {InteractionId}.xsd::

<hdr_domain_home>/config/hdr/message/defs/customSchema/newMessageType/interaction.

Configuring Sender, Sender Interaction, and Side Effect
IMP extracts the following information (in the table) from the message and validates them for
the configuration:

Table 9-5 Information Extracted and Validated by IMP

Parameter XPath

Interaction Id Top Level Element in the message. Example, PRPA_IN400000

Sender Root PRPA_IN400000/sender/device/ id/@root

Sender Extension PRPA_IN400000/sender/device/id/@extension

Receiver Root PRPA_IN400000/receiver/device/asAgent/representedOrganization /id/@root

Receiver Extension PRPA_IN400000/receiver/device/as Agent/representedOrganization/id/
@extension

Trigger Event Code PRPA_IN400000/controlActProcess/code/@code

If the Sender Root and Extension and Receiver Root and Extension is not configured, IMP
rejects the message. This configuration thus controls a valid sender and HDR enterprises
authorized to send messages. This is called the Sender Configuration.

Important: You must only use Organization's external II while creating sender configuration.
You must not use any of the Internal IIs that are automatically generated in HDR.

Upon validation of the Sender Configuration, IMP uses its configuration to determine if the
Interaction Id is valid for the Sender Configuration. If it is not configured for that Sender
Configuration, IMP rejects the message. This configuration thus controls which types of
Interaction Id a sender is permitted to send to a receiver. This is called the Sender Interaction
Configuration.

Upon validation of the Sender Configuration and Sender Interaction Configuration
combination, IMP processes the message payload. The focal object is created or updated in
the HDR Repository. However, for non-focal objects, IMP inspects its side effect configuration
to determine its behavior. You can configure IMP to let each non-focal object type create or
not create the object if it is not present in the repository, and to update or overlay or not

Chapter 9
HDR Inbound Message Processor

9-7

update or overlay the object if it is present in the repository. This configuration of side
effects is called the Side Effect Configuration.

Use the IMPConfigAdminIntrService to configure sender and side effects.

See also:

• Oracle Healthcare Data Repository HL7 Version 3 Conformance Specification for a
list of side effect configuration records required for each message type.

Invoke Inbound Messaging Services
Reference

• Oracle Healthcare Data Repository Javadoc

• Oracle Healthcare Data Repository HL7 Version 3 Conformance Specification

The following table lists the principal IMP service and methods:

Table 9-6 Service and Methods: IMP

Level Detail

Package oracle.hsgbu.hdr.message.improcessor

Class IMPService

Methods • processMessage

Class RawIMPService

Methods • processMessage

Class Result

Methods • getResponseXML
• getStatus
• getControlActId
• getTriggerEvent

Login

This is an API-based implementation procedure.

Navigation

This is an API-based implementation procedure.

Steps

1. Use the Service Locator to access the IMP Service.

Note:

RawIMPService is implemented as a container-managed transactions
(CMT) bean, and does not create SubmissionUnit. Use RawIMPService if
you want to use the Java Transaction API (JTA) support of IMP.

Chapter 9
HDR Inbound Message Processor

9-8

2. Use the processMessage method with an HDR-compliant message (see following Note)
as a parameter to invoke message processing services; a Result object is returned.

3. Use the following methods to inspect the result of processing the message:

• getResponseXML

• getStatus

Note:

IMP supports XML formatted inbound messages that conform to the HL7 version 3
messaging standard. The messages must conform to the messaging schema for
the message types supported in HDR. The schemas for all supported message type
is available at the following location:

• <hdr_domain_home>/config/hdr/messge/defs/rim214101/schemas
The list of supported message types is provided in Oracle Healthcare Data
Repository HL7 Version 3 Conformance Specification. Using Messaging Tool Kit,
additional message types can be supported. For more information, refer to Oracle
Healthcare Data Repository Messaging Tool Kit User Guide.

See also:

• Oracle Healthcare Data Repository HL7 Version 3 Conformance Specification, for
information about message types supported by IMP.

• Oracle Healthcare Data Repository Implementation Guide describes how to implement
and configure messaging services, including HDR Gateway.

• Oracle Healthcare Data Repository HL7 Version 3 Messaging Conformance Specification
describes the HL7 message types supported by the current HDR release.

Note:

IMP provides Java Transaction API (JTA) support through RawIMPService.
RawIMPService provides the same functionality as IMPService except that
RawIMPService is implemented as a container-managed transactions (CMT) bean,
and does not create SubmissionUnit. Use RawIMPService if you want to use the
Java Transaction API (JTA) support of IMP.

IMP Configuration API Usage
The Interaction ID based IMP Configuration Administration Service provides functions to
create, remove, and find Sender Configurations. HDR Configuration Service also provides
same functionality. To update a Sender Configuration, the client application removes it and
creates the new Sender Configuration, including all of its child objects (sender interaction
configuration and sender side effect configuration). HDR APIs support the following:

• Moving configuration data from one environment to another

• Writing loader applications

This section contains the following topics:

Chapter 9
HDR Inbound Message Processor

9-9

• Sender Configuration Attributes

• Sender Interaction Configuration Attributes

• Sender Side Effect Configuration Attributes

• Sender Configuration Search Parameters

• IMP Sender Interaction Configuration Administration Service

Note:

• The client application must call the Master Catalog Service to resolve
Master Catalog IDs.

• You can use Messaging Configuration Service for updates.

Sender Configuration Attributes

Attribute Name Field Type Length Mandatory Description

Sender Id Root String 240 Yes Root part of the
OID of the
sending device

Sender Id
Extension

String 240 Yes Extension part of
the OID of the
sending device

Receiver Id Root String 240 Yes Root part of the
OID of a valid
organization
registered in the
system

Receiver Id
Extension

String 240 No Extension part of
the OID of a
valid
organization
registered in the
system

Sender
Interaction
Configuration

SenderInteract
ionConfigurati
on[]

- No An array of
Sender
Interaction
Configurations
for this Sender
Configuration

Sender Interaction Configuration Attributes

Attribute Name Field Type Length Mandatory Description

Interaction Id String 80 Yes Valid Interaction
Id for this Sender
Interaction
Configuration

Chapter 9
HDR Inbound Message Processor

9-10

Sender Side
Effect
Configuration

SenderSideEffe
ctConfiguratio
n[]

- No An array, of
Sender Side
Effect
Configurations,
that defines
permissions
(create if/create
or overlay/
update/must
exist/create or
update) on
referenced
objects

Sender Side Effect Configuration Attributes

Attribute Name Field Type Length Mandatory Description

Master Catalog Id String - Yes The Master
Catalog ID of the
RIM object for
which the side
effect is configured.
You can retrieve
the Master Catalog
details from the
MasterCatalogSe
rvice

Object Reference
Modifier Code

String - No Object reference
modifier code
value: CREATE_IF,
OVERLAY,
CREATE_OR_OVERL
AY, MUST_EXIST,
UPDATE,
CREATE_OR_UPDAT
E

Player Reference
Modifier Code

String - No Player reference
modifier code
value: CREATE_IF,
OVERLAY,
CREATE_OR_OVERL
AY, MUST_EXIST,
UPDATE,
CREATE_OR_UPDAT
E

Scoper Reference
Modifier Code

String - No Scoper reference
modifier code
value: CREATE_IF,
OVERLAY,
CREATE_OR_OVERL
AY, MUST_EXIST,
UPDATE,
CREATE_OR_UPDAT
E

Chapter 9
HDR Inbound Message Processor

9-11

Figure 9-2 Sender Configuration Objects

Sender Configuration is the top-level object, with Sender Interaction Configuration
object as its direct child. Sender Interaction Configuration object in turn has Sender
Side Effect Configuration object as its child. The client application must create the
complete hierarchy before invoking the create functionality. Before removing a Sender
Configuration, the client application must invoke the finder API to get the handle
associated with the target configuration item to delete.

Sender Configuration Search Parameters
SenderConfigSearchConfig is a criteria object passed to the finder API as a
parameter. It provides methods to set search attributes used for retrieving the Sender
Configuration and associated Sender Interaction Configurations and Sender Side
Effect Configurations, based on the following parameters:

• Sender Id Root
• Sender Id Extension
• Receiver Id Root
• Receiver Id Extension
Because Receiver Id Extension can have a null value, in order to support a query
where in the client application searches specifically for items with Receiver Id
Extension as null value, a boolean flag ReceiverIdExtensionIsNull can be set to
True. If ReceiverIdExtensionIsNull is not set or set to False, the criteria matches the
given root and any extension.

IMP Sender Interaction Configuration Administration Service
The IMP Sender Interaction Configuration Administration Service lets the client
application create, remove, and find Sender Configurations. The code samples that
follow illustrate each of these use cases:

• Create Function

Chapter 9
HDR Inbound Message Processor

9-12

• Find Function

• Remove Function

Note:

SenderConfigFactory class is not available from 8.0.

Create Function

This code sample creates a new sender:

Example 9-1 Sample Code to Create Sender Configuration Using the newXXX
Functions Returning Empty Objects

public SenderConfiguration createSenderConfiguration()
{
SenderConfiguration senderConfig = new SenderConfigurationImpl();
 senderConfig.setSenderIdRoot(SND_ROOT);
 senderConfig.setSenderIdExtension(SND_EXTN);
 senderConfig.setReceiverIdRoot(RCV_ROOT);
 senderConfig.setReceiverIdExtension(RCV_EXTN);
 SenderInteractionConfiguration senderIntrConfig = new
SenderInteractionConfigurationImpl();
 senderIntrConfig.setInteractionId(INTERACTION_ID[0]);
 SenderSideEffectConfiguration sseConfig = new
SenderSideEffectConfigurationImpl();

sseConfig.setObjectRefModifierCode(SenderSideEffectConfiguration.CREATE_OR_OVERLAY);

sseConfig.setPlayerRefModifierCode(SenderSideEffectConfiguration.CREATE_OR_OVERLAY);
 sseConfig.setMasterCatalogId(MC_IDS[0]);
 SenderSideEffectConfiguration[] sseConfigs = { sseConfig };
 senderIntrConfig.setSenderSideEffectConfiguration(sseConfigs);
 SenderInteractionConfiguration[] senderIntrConfigs = { senderIntrConfig };
 senderConfig.setSenderInteractionConfigurations(senderIntrConfigs);
 SenderConfiguration createReturn =
configService.createSenderConfiguration(senderConfig);
 return createReturn;

It is not mandatory to set the Receiver Extension on the Sender Configuration because this
attribute is nullable. If a reference modifier code is not set, the value, the values defaults to
null.

Find Function

This code sample lets the client application retrieve a Sender Configuration using the Sender
Configuration Search Criteria:

Example 9-2 Sample Code to Find Sender Configuration Using the newXXX
Functions Returning Empty Search Criteria

public SenderConfiguration[] findSenderConfiguration()
{
 SenderConfigSearchCriteria criteria = new SenderConfigSearchCriteriaImpl();
 criteria.setReceiverIdRoot(RCV_ROOT);
 criteria.setReceiverIdExtension(RCV_EXTN);
 criteria.setSenderIdRoot(SND_ROOT);

Chapter 9
HDR Inbound Message Processor

9-13

 criteria.setSenderIdExtension(SND_EXTN);
 SenderConfiguration[] queriedSenderConfigs =
configService.findSenderConfiguration(criteria);
 return queriedSenderConfigs;

Because all Search Criteria setters are optional, all of the records are returned if you
do not set any criteria. The Receiver Extension is the only attribute that is nullable, and
is thus treated differentially here. You must either set the Receiver Id Extension to a
particular non-null value or set the flag using the function
setReceiverIdExtensionIsNull(boolean). Setting both results in a query that ignores
the value set by setReceiverIdExtension(String). The boolean flag thus takes
precedence over setting of the ReceiverId Extension to a particular value. Failing to
set of them either lets the user search for all records-records with both null value and
non-null value Receiver Id Extension attributes.

Remove Function

This code sample permits the deletion of a particular Sender Configuration and all its
child elements. The client application is expected to invoke the find function to get a
handle on the Sender Configuration it wants to delete.

Example 9-3 Sample Code to delete Sender Configuration

public void removeSenderConfiguration()
{
 SenderConfigSearchCriteria criteria = new SenderConfigSearchCriteriaImpl();

 criteria.setReceiverIdExtension(RCV_EXTN);
 criteria.setSenderIdRoot(SND_ROOT);
 criteria.setSenderIdExtension(SND_EXTN);
 criteria.setReceiverIdExtensionIsNull(false);
 (RCV_ROOT, RCV_EXTN, SND_ROOT,SND_EXTN, false);
criteria.setReceiverIdRoot(RCV_ROOT);
 SenderConfiguration[] senderConfigs =
configService.findSenderConfiguration(criteria);
 if (senderConfigs != null && senderConfigs.length > 0)
 {
 for (int i = 0; i < senderConfigs.length; i++)
 {
 configService.removeSenderConfiguration(senderConfigs[i]);
 }
 }
}

Examples: This section contains the following examples:

• Persist a Sample Message (see Example 9-4)

• A Sample Acknowledgement Message (see Example 9-5)

Example 9-4 Persist a Sample Message

Perform the following steps to persist a sample encounter message:

1. Create the Receiver Organization (root="9.989898.5.100" extension =
"ORG1000"), using RIM Service.

2. Load sender and side effect configuration for the message using Bulk Load
Service.

Chapter 9
HDR Inbound Message Processor

9-14

3. Execute the program to persist the message. On successful persistence, IMP returns an
acknowledgment.

Side Effect Configuration Rules
Following are the side effect processing rules enforced by IMP:Also, there are additional rules
applied by RIM Services.

1. RIM objects without IDs are always created.

2. If side effect is not configured for a RIM Object, IMP defaults the reference modifier to
MUST_EXIST.

3. For Focal Objects, IMP overrides any side effect configuration with reference modifier to
CREATE_OR_OVERLAY.

4. If Focal Object is a role, player and scoper of the role are processed as per the side
effect configuration for these entities, except Person and Unmerge messages. IMP
overrides the configuration for player and scoper attached to the Focal Role of Person
and Unmerge messages, with CREATE_OR_UPDATE.

5. All side effect processing follows the traversal path through the message model. This
means that side effect processing is disabled for objects downstream from an object that
has been configured as MUST EXIST.

6. If a backward/inbound participation to a role is referenced, the act that directly
participates with that participation is processed as if CREATE_OR_UPDATE modifier is set on
the act.

7. Owned roles are processed following the side effect processing of the Owning Entity. If
the Owning Entity is configured for the side effect reference modifier as:

• CREATE_IF, and if it exists, the Owned Role and the associated entity are ignored.

• MUST_EXIST, the Owned Role and the associated entity are ignored.

• For other configurations, the Owned Role is always created or overlaid.

8. While processing Identified Objects, the merged object is assigned with the side effect of
the object with the most restrictive side effect configuration.

Example 9-5 A Sample Acknowledgement Message

Acknowledgement message returned by IMP is compliant with HL7 V3 standard. The
message contains the following elements:

• Receiver (same as respond to in the processed message).

• Sender (same as receiver in the processed message).

• Acknowledgement typecode.

– AA - Message processed successfully.

– AE - Message processing failed.

– AR - Failed to process (reject) the message for reasons unrelated to its content or
format (system down, internal error, and so on).

• Error message, if message processing fails.

• acknowledgementDetail. The element may be repeated couple of times, if there are
multiple errors in the message. This element contains the following attributes:

– Code: corresponding HL acknowledgement detail code.

Chapter 9
HDR Inbound Message Processor

9-15

– Location: contains XPATH, XSD Complex Type Name, and line number of the
message element responsible for the error.

– Text: contains error message. The error text message is represented in the
following format: {ERROR CODE NAME}: {ERROR MESSAGE TEXT}.

The following is a complete xml message, as it appears in an acknowledgment
message:

<MCCI_MT002300HT01.Message xmlns="urn:hl7-org:v3" type="Message"
xmlns:htb="http://xmlns.oracle.com/apps/ctb/messaging">
 <id root="Messsage Id root value" extension="Message Id extension value"/>
 <creationTime value="Acknowledgement creation time"/>
 <responseModeCode code="D"/>
 <interactionId root="Interaction Id root value" extension="Interaction Id
extension value"/>
 <processingMode code="P"/>
 <processingModeCode code="T"/>
 <acceptAckCode code="NE"/>
 <acknowledgement type="Acknowledgement">
 <typeCode code="Type Code (AA or AE)"/>

 <!--Use <acknowledgementDetail> only for typecode = AE, skipped for typecode
= AA -->
 <acknowledgementDetail type="AcknowledgementDetail">
 <typeCode code="E"/>
 <code code="Error Code" codeSystemName="AcknowledgementDetailCode"/>
 <text mediaType="text/plain" encoding="TXT">Error Text</text>
 <location>Error location</location>
 </acknowledgementDetail>
 <targetMessage type="Message">
 <id root="Inbound Wrapper Message Id root value"
 extension="Inbound Wrapper Message Id extension value"/>
 </targetMessage>
 </acknowledgement>
 <receiver type="CommunicationFunction">
 <typeCode code="RCV"/>
 <device type="Device" classCode="DEV" determinerCode="INSTANCE">
 <id root="Inbound Wrapper Respond To Application Id root value"
 extension="Inbound Wrapper Respond To Application Id extension value"/>
 <asAgent type="RoleHeir" classCode="AGNT">
 <representedOrganization type="Organization" classCode="ORG"
determinerCode="INSTANCE">
 <id root="Inbound Wrapper Respond To Enterprise Id root value"
 extension="Inbound Wrapper Respond To Enterprise Id extension value"/>
 </representedOrganization>
 </asAgent>
 </device>
 </receiver>
 <sender type="CommunicationFunction">
 <typeCode code="SND"/>
 <device type="Device" classCode="DEV" determinerCode="INSTANCE">
 <id root="Inbound Wrapper Target Enterprise Id root value"
extension="Inbound Wrapper Target Enterprise Id extension value"/>
 <asAgent type="RoleHeir" classCode="AGNT">
 <representedOrganization type="Organization" classCode="ORG"
determinerCode="INSTANCE">
 <id root="Inbound Wrapper Receiver Organization Id root value"
 extension="Inbound Wrapper Receiver Organazation Id extension value"/>
 </representedOrganization>
 </asAgent>
 </device>

Chapter 9
HDR Inbound Message Processor

9-16

 </sender>
 </MCCI_MT002300HT01.Message>

HDR Message Submission Unit
The HDR Message Submission Unit defines a structure that contains messages processed
by OMP or messages received and processed by IMP. The Submission Unit is used to audit
information that is related to the processing of an xml message by IMP or OMP. Every
SubmissionUnit is uniquely identified by the Instance Identifier message attribute.

This package consists of two interfaces: SubmissionUnit and SubmissionUnitService. The
SubmissionUnitService interface defines the mechanism for finding and updating a persisted
submission unit. The SubmissionUnit interface provides methods for accessing and updating
the attributes of the SubmissionUnit.

See the following section for more information about Message Submission Unit interfaces:

Message Submission Unit
This package includes two interfaces [SubmissionUnit, SubmissionUnitService] that can be
used to audit the information related to the processing of an XML message by IMP or OMP.
These interfaces are described in the following sections:

• Submission Unit Interface

• Submission Unit Service Interface Methods

Task:

Find Submission Unit: Check and Resend (see Example 9-6)

Submission Unit Interface
The SubmissionUnit interface defines a structure t'hat contains the messages processed by
IMP or OMP. It contains get methods that can be used to track both inbound and outbound
message processing.

The IMPService.processMessage method creates and updates the SubmissionUnit with the
message id, acknowledgement typecode, acknowledgement message text,
acknowledgement date, send date, sender id, receiver id, responder id, control act id, control
act author id, original message, trigger event code, name of the application that submitted the
SubmissionUnit and other related attributes. The processMessage method updates
SubmittedByAppName to HTBIMP.

You can use SubmissionUnitService find methods to find a SubmissionUnit for a particular
submission unit identifier or control act identifier.

Submission Unit Service Interface Methods
The SubmissionUnitService interface defines the methods for finding and updating a
persisted submission unit. It contains the following finder methods to find persisted
SubmissionUnits:

Submission Unit Service Interface Method

Method Description

Chapter 9
HDR Message Submission Unit

9-17

findSubmissionUnitByControlAct(II
controlActId)

Returns a SubmissionUnit object with the
specified control act identifier; throws
ETSException

findSubmissionUnitById(java.lang.String
submissionUnitId)

returns a SubmissionUnit object with the specified
submission unit id; throws ETSException

findSubmissionUnitByMessage(II
messageId)

Returns a SubmissionUnit object with the
specified submission unit id; throws
ETSException

updateSubmissionUnit(SubmissionUnit
submissionUnit)

Updates SubmissionUnit; throws
ETSException

createSubmissionUnit(SubmissionUnit
submissionUnit)

Persists SubmissionUnit; throws
ETSException

Example 9-6 Find Submission Unit: Check and Resend

Find the submission unit and check if the message generated successfully; if failed,
resend the modified payload back to the receiver:

public void resendMessage(String submissionUnitId, II receiverId, II messageId)
 throws CustomerApplicationException
 {
 try {
 // Find SubmissionUnit for particular submission unit id
 SubmissionUnit subUnit =
 mSubmissionUnitService.findSubmissionUnitById(submissionUnitId);
 String ackTypeCode = subUnit.getAckTypeCode(); // If submission unit
acknowledgement type code is AE, modify original message payload and
 send it back.
 if ("AE".equals(ackTypeCode)) {
 // Get original message
 String originalMessageText = subUnit.getOriginalMessageText();
 // Modify original message
 String payload = modifyPayload(originalMessageText);
 // Resend the message
 String subId = mOMPService.resendMessage(payload, receiverId, messageId);
 }
 } catch (ETSException ETSException) {
 throw new CustomerApplicationException(ETSException.getMessage());
 }
 } public String modifyPayload(String originalMessageText) {
 ...
 ...
 return payload;
 }

HDR RIM Service Hook
RIM Services raise workflow business events to which applications can subscribe. You
can write subscription classes to listen to such events. This provides a loose coupling
with the RIM Service that lets you integrate or disintegrate unique functionality by
subscribing or unsubscribing to business events.

With this hook, you can code a Subscription Class subscribed to a business event; you
are expected to include custom functionality in this class. The following sequence

Chapter 9
HDR RIM Service Hook

9-18

figure 10.4.1 illustrates the interaction between an application persisting data and a custom
Subscription class:

Figure 10-2

Figure 9-3 Interaction between App Persisting Data and Custom Subscription Class

The following sections describe the RIM Service Event and Subscription, and include a
Subscription Code Example:

Event and Subscription
The RIM Service raises event oracle.hsgbu.hdr.hl7.persist.event.ControlActSubmissionPost
on submit. It passes trigger event and control act identifiers of the persisted data to the event
in key-value pairs:

Keys

Key Description

TRG_EVNT Trigger event of persisted message

CONTROL_ACT_ID Control act identifier root of persisted message

CONTROL_ACT_EXT Control act identifier extension of persisted
message.

Example 9-7 Event and Subscription

When RIM Service raises the event
oracle.hsgbu.hdr.hl7.persist.event.ControlActSubmissionPost, workflow calls the
onBusinessEvent method of the customer subscription class. All of the forgoing parameters
are bundled in the BusinessEvent object and passed to the subscription class. The
Subscription class can read those parameters in its onBusinessEvent method as illustrated in
the following example:

public void onBusinessEvent(Subscription eo, BusinessEvent event, WorkflowContext
wfCxt)
 throws BusinessEventException
 {
 try {

Chapter 9
HDR RIM Service Hook

9-19

 String TriggerEvent = event.getStringProperty("TRG_EVNT");
 String ControlActId_Root = event.getStringProperty("CONTROL_ACT_ID");
 String ControlActId_Extension = event.getStringProperty("CONTROL_ACT_EXT");
 ...
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Subscription Code Sample
The RIM Service receives an HL7 message, persists and resends the message to all
organizations registered for that trigger event.

The functionality to resend the message to all organizations registered for the trigger
event can be implemented in a subscription class to be executed when the RIM
Service persists that message.

Example 9-8 Subscription Code Example

package oracle.hsgbu.hdr.sample.scenario;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.util.Properties;
import oracle.hsgbu.hdr.fwk.base.common.ETSException;
import oracle.hsgbu.hdr.fwk.serviceLocator.common.ServiceLocator;
import oracle.hsgbu.hdr.hl7.domain.NullFlavor;
import oracle.hsgbu.hdr.hl7.factories.DataTypeFactory;
import oracle.hsgbu.hdr.hl7.types.II;
import oracle.hsgbu.hdr.hl7.types.ST;
import oracle.hsgbu.hdr.hl7.types.UID;
import oracle.hsgbu.hdr.message.omprocessor.ControlActRequest;
import oracle.hsgbu.hdr.message.omprocessor.OMPHelper;
import oracle.hsgbu.hdr.message.omprocessor.OMPService;
import oracle.hsgbu.hdr.security.Responsibility;
import oracle.hsgbu.hdr.security.SessionContext;
import oracle.hsgbu.hdr.security.SessionService;
import oracle.apps.fnd.wf.bes.BusinessEvent;
import oracle.apps.fnd.wf.bes.BusinessEventException;
import oracle.apps.fnd.wf.bes.SubscriptionInterface;
import oracle.apps.fnd.wf.bes.server.Subscription;
import oracle.apps.fnd.wf.common.WorkflowContext;
 public class WorkflowListenerSubscription implements SubscriptionInterface {
 protected ServiceLocator mServiceLocator = null;
 public void onBusinessEvent(Subscription eo,
 BusinessEvent event,
 WorkflowContext wfCxt)
 throws BusinessEventException
 {
 try {
 // Get OMPService
 OMPService mOMPService = getServiceLocator().getOMPService();
 // Read parameres passed by RIM Service persistence.
 String triggerEvent = event.getStringProperty("TRG_EVNT");
 String controlActId_Root = event.getStringProperty("CONTROL_ACT_ID");
 String controlActId_Ext = event.getStringProperty("CONTROL_ACT_EXT");
 DataTypeFactory mDataTypeFactory =
DataTypeFactory.getInstance(getServiceLocator());

Chapter 9
HDR RIM Service Hook

9-20

 UID uidVal = mDataTypeFactory.newUID(controlActId_Root);
 ST extVal = mDataTypeFactory.newST(controlActId_Ext);
 II controlActId = mDataTypeFactory.newII(uidVal, extVal,
mDataTypeFactory.nullBL(NullFlavor.NI));
 // Create ControlActRequest
 OMPHelper ompHelper = new OMPHelper();
 ControlActRequest ompCACTRequest = ompHelper.newControlActRequest();
 ompCACTRequest.setControlActId(controlActId);
 ompCACTRequest.setTriggerEvent(triggerEvent);
 // Generate message
 mOMPService.generateMessage(ompCACTRequest);r
 } catch (Exception e) {
 throw new BusinessEventException(e.getMessage());
 }
 }
 protected ServiceLocator getServiceLocator() throws ETSException,IOException {
 if (mServiceLocator != null) {
 return mServiceLocator;
 }
 ClassLoader loader = Thread.currentThread().getContextClassLoader();
 Properties props = new Properties();
 props.load(loader.getResourceAsStream("jndi.properties"));
 //Specify Client mode: Local or Remote
 props.setProperty(ServiceLocator.CLIENT_MODE, ServiceLocator.REMOTE);
 ServiceLocator mServiceLocator = ServiceLocator.getInstance(props);
 mServiceLocator.login("sysadmin","sysadmin");
 return mServiceLocator;
 }
 }

See also:

• Oracle Workflow Administrator's Guide

• Oracle Workflow API Reference

• Oracle Workflow Developer's Guide

• Oracle Workflow User's Guide

HDR Messaging Toolkit
Oracle Healthcare Data Repository (HDR) is a healthcare application development platform
that exchanges healthcare information with external applications using the HL7 Version 3
Messaging Standard.

HDR ships with predefined message specifications for a comprehensive set of domains
(subject areas), such as Encounter Management, Patient Care, Lab, and Public Health. Each
such specification is called a Message Type. For each predefined Message Type, the
inbound and outbound message processors have access to Message Type related files and
data (XSD, MIF, Composite Message Schema, cmetinfo.coremif, and seeded metadata) that
help them use and generate conformant XML instances.

The HDR Messaging Toolkit (MTK) provides you with a mechanism to specify custom
message types, to facilitate HDR interoperation with other healthcare applications, and to suit
your specific business requirements. MTK lets you perform validation and setups necessary
to support custom messages types.

Chapter 9
HDR Messaging Toolkit

9-21

MTK Workflow
The following figure displays the process for creating and persisting custom message
types using MTK:

Figure 9-4 Workflow for Creating and Persisting Custom Message Types Using
MTK

To create and persist a new custom Message Type using MTK:

1. Create an RMIM for a custom message type in any one of the following ways:

• Designing the RMIM from scratch.

• Modifying an Oracle-published artifact to suit your business requirements. For
more information on Oracle-published artifacts, refer to the Oracle Healthcare
Data Repository Conformance Specification.

• Using an HL7 normative artifact. For more information, refer to the HL7
website (www.hl7.org).

2. Generate the associated schema and MIF files. If the Message Type has any
Common Message Element Type (CMET) references (either Oracle-published or
custom) you must create a cmetinfo.coremif file.

3. Load the XSD and MIF files into MTK. MTK performs some tasks as described in
the following sections and generates reports.

4. Use these reports to configure HDR to support these custom Message Types.

For more information on how to implement a new Message Type, refer to the
Implement a New Message Type section.

Note:

The process of testing a custom message using MTK does not affect the
data in HDR or existing configurations of HDR.

MTK accepts the XSD, MIF, and cmetinfo.coremif files of a custom message type as
the input and performs the following:

Chapter 9
HDR Messaging Toolkit

9-22

1. Validates inputs.

2. Generates the configuration reports.

3. Generates instances with minimal manual intervention.

4. Tests the instances for compatibility with HDR.

5. Sets up Message Type.

Validating Inputs
MTK validates the inputs for the following:

• The Message Type must have both the XSD and MIF files.

• The custom CMETS referenced by Message Types must be present.

• The cmetinfo.coremif file must be provided if the Message Type has any reference to the
CMETs.

• The contents of the corresponding XSD and MIF files must match.

After successful input validation, MTK loads the submitted artifacts into a test folder and
generates related metadata.

Generating Configuration Reports
MTK generates configuration reports to help you port (or create) configurations related to the
custom message into the production environment. These reports are generated in plain text
or CSV format. The downloaded configuration can be loaded into a different HDR instance by
using the respective messaging configuration service or by converting the data into SQL
loader format.

Note:

Use these reports as an aid for creating the configuration reports to set up the
message type in the production environment. These reports are not to be
considered as the actual report.

Configuration Reports

Report Name Report Format Description

Master Catalog CSV Lists the Acts, Roles, and Entities missing from Master
Catalog for a given Message Type. You can use this
report to create the appropriate Act Concept
configurations in the production environment.

Side Effect
Configuration

CSV Lists all objects that require side effect configurations
for a given Message Type. This report lists the side
effect configurations for a given Message Type with the
master catalog entries relating to the code type ANY.
The reference modifier used in the report for the
objects will be Create or Overlay. You can use this
report to create the appropriate Act Concept
configurations in the production environment.

Chapter 9
HDR Messaging Toolkit

9-23

Act Concept
Configuration

Plain Text Lists the ambiguous complexes found in the Custom
Message Type Schema. You can use this report to
create appropriate Act Concept configurations in the
production environment.

Generating Instances
Based on the constructs available, MTK generates one or more message instances.
MTK uses dummy data to generate message instance. The data for the message
instance will be drawn from the data seeded in HDR. MTK follows certain rules and
logic while generating the instance.

Testing Instance
MTK tests the instance for the following:

• Generation of configuration data: Inbound Message Processor (IMP) and
Outbound Message Processor (OMP) configurations required by HDR to process
a Message Type are created by MTK. These configurations will be rolled back
after completing the test. For information on Sender, Receiver, Interaction, and
Trigger event ID, refer to the Oracle Healthcare Data Repository HL7 Version 3
Conformance Specification.

• Persistence of the generated MTK message instance into HDR using IMP: Once
the instance(s) are generated, MTK invokes the IMP services to persist the
message.

• Generation of OMP instance: After persisting the message instance(s)
successfully using IMP, MTK invokes OMP services to generate outbound
instances.

• Logging of output status along with Test ID: A unique Test Id will be generated for
each test requested. The format of the Test Id is {ArtifactID}_{User ID}_{Test Date}.

Setting Up Message Type
MTK also helps users to upload the successfully tested Message Type's files onto the
production environment. The Message Types loaded on the production environment
can be browsed and managed using MTK Services.

Messaging Toolkit (MTK) Services
Use the oracle.apps.ctb.message.mtk package for this purpose.

Following are the MTK services:

• oracle.apps.ctb.message.mtk.MtkTestService
• oracle.apps.ctb.message.mtk.MtkProductionLoadService
For detailed description of the APIs provided by these MTK services, refer to the HDR
Javadoc.

Chapter 9
HDR Messaging Toolkit

9-24

HL7 Message Development Process
To utilize MTK to set up custom message types, you must understand the HL7 V3 process by
which message types are specified.

The following steps summarize the MTK process for specifying message types:

1. Develop storyboards and use cases that provide requirements for the content and
transactions of messages.

2. Use the HL7 RMIM Designer to produce an RMIM for a message type based on the
content requirements from the previous step. Refer to the HL7 website (www.hl7.org) for
more information on RMIM Designer.

3. Use the HL7 Schema Generator to convert RMIM Designer output into XML schema
definition files (XSDs) and Message Interchange Format files (MIF). Refer to the HL7
website (www.hl7.org) for more information on Schema Generator.

Note:

For each type of message specified, one pair of XSD and MIF files are produced
that define the structure and constraints of the message. In addition, if CMETs were
used in defining the message a cmetinfo.coremif file is generated.

Implement a New Message Type
A new Message Type can be implemented in HDR using the MTK Services.

The following are the prerequisites for using MTK:

• Tools

Either download the tools provided by HL7 or use your own tools to generate the Schema
and MIF files of a new Message Type. The tools used to generate a schema must also
generate the required MIF files.

Note:

MTK is tested with artifacts created on:

– HL7 RIM repository v2.14.1

– RMIM Designer - 4.3.2

– RoseTree - 4.0.12

– Schema Generator - 3.0.4

• Concept Lists

Identify from the Javadoc the Concept List used by the attributes of the new Message
Type's objects. Ensure those Concept List have concepts in them.

Chapter 9
HDR Messaging Toolkit

9-25

http://www.hl7.org/
http://www.hl7.org/

Note:

If any of the Concept List used by a new Message Types Object attribute
is empty, an error is thrown by MTK and the Message Type is not
processed.

• Datatypes and VOC files

datatypes.xsd, datatypes-base.xsd, and voc.xsd files are available for download
from the Test Message Types window of the MTK Service. You can use these files
in the schema generation tool to create a Schema and MIF files for the new
Message Type.

Procedure
The following figure illustrates the process of implementing a new message type.

Figure 9-5 Implement New Message Type Using MTK

Test a New Message Type
Use the MTK Service Functions or MTK Services to test a new Message Type. Ensure
that you have the following inputs for the testing process:

• Message Type's Schema and MIF files.

• Schema and MIF files of the custom CMETs referenced by the Message Type.

• cmetinfo.coremif file listing all the CMETS (Oracle published and custom)
referenced by the Message Type. Note that the entries of the non-referenced
CMET in the cmetinfo.coremif file are ignored.

• Comments relating to the test.

MTK uses the following process to test a new Message Type:

1. Initial Validation:

Once the input files are submitted, MTK validates if:

Chapter 9
HDR Messaging Toolkit

9-26

• Message Type is present.

• Message Type has the XSD and MIF files.

• Custom CMETs referenced by Message Type are present.

• cmetinfo.coremif file with proper entries is provided.

2. Loading onto Server:

MTK loads the test files provided on the server in a test folder. This folder will be named
in the format {Artifact ID}_{User ID}_{Test Date}.

3. Generating Metadata:

Metadata of those files is generated and persisted in the server.

4. Interaction:

A test interaction ID based on the artifact ID is created and inserted in the interaction
table.

5. Composite Message Schema

Using the test interaction created Composite Message Schema is generated.

6. Metadata for Composite Message Schema:

From the Composite Message Schema, metadata for the Composite Message Schema is
generated and stored in the server.

7. Reports:

Reports for ambiguous complex types, missing Master Catalog entries, sender side effect
configurations is generated.

8. Generating Test Instance:

Data for instance will be fetched from:

• Schema for the structural attribute;

• Database for non-structural, non-identity, and non-coded attributes (Use the data
snippets seeded in HDR);

• Concept list for coded attributes tied to a concept list;

• Coding scheme based on their type for coded attributes not tied to a concept list.

9. Generating and Loading Configurations:

• Missing Master Catalog Data: Based on the schema file the Master catalog entries
are scanned to check if any of the entries are missing. The master catalog entries
scanned is of the ID type ANY. If they are found missing, those entries are created.

• Act Concept: If the Message Type has any ambiguous complex types, Act Concept
configurations for those complexes will be created in the server.

• Sender and Receiver Configurations: Using the test Sender and Receiver IDs,
records relating to sender and receiver configurations will be created.

10. Persisting and Generating Instance Into and From HDR:

Invoke the HDR IMP Service to persist the MTK generated instance. HDR supports
object attributes, datatype and its attributes, and vocabulary content.

Invoke the HDR OMP service to generate the persisted MTK instance.

11. Display the Status:

Chapter 9
HDR Messaging Toolkit

9-27

If the test is successful, a message indicating that the message type has been
tested successfully is displayed. If some error occurs during the processes
described above, error message is displayed.

Hyperlinks to download the files generated by the process (including test status
file, IMP, and OMP instances of the test message type) are displayed.

Using the MTK Services for Testing
For more information on the services you can use for testing, refer to the Using the
MTK Services section.

Verify the Test Files
This step is the final step in testing the Message Type and is required to verify if the
instance generated from MTK and the one generated from HDR using OMP are the
same with the exception of known differences. Once the test process is successful,
download the MTK and OMP generated instance using the hyperlinks displayed in the
MTK Service. Use a file compare utility, to verify the instances.

Note:

MTK does not provide an option or tools to compare MTK and OMP
generated instances.

Set Up Message Types
Setting up Message Types is required if messages based on the Message Type have
to be processed by HDR. To set up successfully tested Message Types in HDR:

• Loading Message Types

• Configuring IMP and OMP

Load Message Types
For messages to be processed, the files relating to the Message Type must be loaded
onto the server. To load Message Type provide the following inputs:

• XSD and MIF files of the Message Types.

• XSD and MIF files of the CMETS referenced by the Message Types. Note that
only custom CMETS must be provided. Do not provide any Oracle published
CMETS if the Message Type references these.

• cmetinfo.coremif file must have a list of all the CMETS (Oracle published and
custom) referenced by the Message Type.

• MTK Services: Refer to the Setting Up a New Message Type section for details on
loading successfully tested custom Message Types onto a production server using
Java API.

Chapter 9
HDR Messaging Toolkit

9-28

Use the MTK Services for Testing
For more information on the services you can use for loading Message Types, refer to the
Using the MTK Services section.

Configure IMP and OMP
In IMP, configure the following:

• Trigger Event

• Interactions

• Sender

• Sender Interaction

• Sender Side Effect

In OMP, configure the following:

• Receiver

• Receiver vocabulary

• Act Concept

Note:

See the Oracle Healthcare Data Repository Implementation and System
Administrator Guide for more information on configuring IMP and OMP.

Use the MTK Services
This section lists details of services that help to test custom Message Types and setup
custom Message Types, along with code samples. For more information on MTK Services,
refer to Oracle Healthcare Data Repository Javadoc.

Test Custom Message Types
To test a custom Message Type, perform the following steps:

1. Initialize the ServiceLocator.

2. Create MtkTestService.

3. Invoke the testCustomMessageType() method of MtkTestService.

If the Message Type testing is successful, the method returns an unique Test Id. If the testing
is not successful, the method throws CTBException and the Test Id can be obtained from
TEST_ID parameter of the CTBException instance. The files submitted for testing as well the
ones generated by MTK will be loaded in a folder with the test ID name.

The following table summarizes the service and methods referenced by this section:

Service and Methods: Testing Message Type

Chapter 9
HDR Messaging Toolkit

9-29

Level Detail

Package oracle.apps.ctb.message.mtk
Class MtkTestService
Methods • downloadTestFilesForATest

• getMatchingTestIds
• getTestStatus
• removeTestFilesForATest
• testCustomMessageType

Note:

Oracle Healthcare Data Repository Javadoc
(oracle.apps.ctb.message.mtk.MtkTestService)

Example 9-9 Use the MTKTestService API

//Initializing Service Locator:
 ServiceLocator serviceLocator = ServiceLocator.getInstance();
 serviceLocator.login("username", "password");

 //Payload Xsd and Mif
 String payloadXsdName = {“prpa_mt203000ht04.xsd"};
 String payloadMifName = {“prpa_mt203000ht04.mif"};

 //Cmet Xsds and Mifs, referred by the Payload.
 String [] cmetXsdNames = { “coct_mt030202ht04.xsd",
 “coct_mt030200ht04.xsd", “coct_mt150002ht02.xsd",
 “coct_mt150000ht04.xsd", “coct_mt030202ht04.xsd"};

 String [] cmetMifNames = { “coct_mt030202ht04.mif",
 “coct_mt030200ht04.mif", “coct_mt150002ht02.mif",
 “coct_mt150000ht04.mif", “coct_mt030202ht04.mif"};

 //CoreMif name.
 String coreMifName ="cmetinfo.coremif";

 //Initializing SchemaInformation
 SchemaInformation [] schemaInfo = new SchemaInformation [7];

 //Populating SchemaInformation List with values.
 for(int i=0; i< cmetXsdNames.length; i++)
 {
 String xsdContent = readFileContent(cmetXsdNames[i]);
 String mifContent = readFileContent(cmetMifNames[i]);
 String artifactID = cmetXsdNames[i].replaceAll(“.xsd", “");
 schemaInfo[i] = new SchemaInformation();
 schemaInfo[i].setXsd(xsdContent);
 schemaInfo[i].setMif(mifContent);
 schemaInfo[i].setSchemaType(SchemaInformation.CMET);
 schemaInfo.setArtifactID(artifactID);
 }

 //Populating payload.

Chapter 9
HDR Messaging Toolkit

9-30

 String xsdContent = readFileContent(payloadXsdName);
 String mifContent = readFileContent(payloadMifName);
 String artifactID = payloadXsdName.replaceAll(“.xsd",“");
 schemaInfo[i] = new SchemaInformation();
 schemaInfo[i].setXsd(xsdContent);
 schemaInfo[i].setMif(mifContent);
 schemaInfo[i].setSchemaType(SchemaInformation.PAYLOAD);
 schemaInfo.setArtifactID(artifactID);

 //Populating CoreMif.
 i++;
 String coreMifContent = readFileContent(coreMifName);
 schemaInfo[i] = new SchemaInformation();
 schemaInfo[i].setMif(coreMifContent);
 schemaInfo[i].setSchemaType(SchemaInformation.CORE_MIF);
 schemaInfo[i]. setArtifactID(coreMifName);

 String testDesc = “PRPA_MT203000HT04 - Message Type testing on 16-Jan-2008.";
 boolean generateReport = true;
 String testID = null;
 MtkTestService mtkTestService = null;

 //calling MtkTestService#testCustomMessageType()
 try
 {
 mtkTestService = serviceLocator.getMtkTestService();
 testID =
 mtkTestService.testCustomMessageType(schemaInfo,testDesc,
 generateReport);
 }
 catch(CTBException ctbException)
 {
 //Incase of CTBException, the TEST_ID can be retrieved from
 // CTBException instance.
 testID = (String)ctbException.getParameter(“TEST_ID");
 }

Example 9-10 Searching for Test ID

//Initializing Service Locator:
 ServiceLocator serviceLocator = ServiceLocator.getInstance();
 serviceLocator.login("username", "password");
 //search key
 String searchKey = “%PRTS%MT%";
 String [] matchingTestIDs = null;
 MtkTestService mtkTestService = null;

 //invoke getMatchingTestIDs() API.
 try
 {
 mtkTestService = serviceLocator.getMtkTestService();
 matchingTestIDs = mtkTestService.getMatchingTestIDs(searchKey);
 }
 catch(CTBException ctbException)
 {
 //handle or re-throw the exception
 }

Chapter 9
HDR Messaging Toolkit

9-31

Example 9-11 Downloading Test ID Files

//Initializing Service Locator:
 ServiceLocator serviceLocator = ServiceLocator.getInstance();
 serviceLocator.login("username", "password");

// Input Test ID
String testID = “PRTS_MT000008TK01_611521202";
TestIDData testIDData = null;
 MtkTestService mtkTestService = null;

//Invoke downloadTestFilesForATest() API
 try
 {
 mtkTestService = serviceLocator.getMtkTestService();
 testIDData = mtkTestService.downloadTestFilesForATest(testID);
}
catch(CTBException ctbException)
{
 //handle or re-throw the exception
}

//retrieving data from TestID object
String messageTypeID = testIDData.getPayloadID();
String masterCatalogReportContent = testIDData.getMasterCatalogReport();
String sIDeEffectReportContent = testIDData. getSIDeEffectReport();
String actConceptReportContent = testIDData.getAmbiguousComplexTypeReport();
String userComments = testtIDData.getUserComment();
TestMessage[] testMessage = testIDData.getTestMessage();

 for (int i = 0; i < testMessage.length; i++)
 {
 String testMessage = testMessage[i].getTestMessage();
 String generatedMessage = testMessage[i].getGeneratedMessage();
 }
 SchemaInformation[] schemaInfo = testIDData.getSchemaInformation();

Example 9-12 Deleting Test ID Files

//Initializing Service Locator:
 ServiceLocator serviceLocator = ServiceLocator.getInstance();
serviceLocator.login("username", "password");

//Input Test ID
String testID = “PRTS_MT000008TK01_611521202";
MtkTestService mtkTestService = null;

//Invoke removeTestFilesForATest() API
try
{
mtkTestService = serviceLocator.getMtkTestService();
mtkTestService. removeTestFilesForATest(testID);
}
catch(CTBException ctbException)
{
//handle or re-throw the exception
}

Chapter 9
HDR Messaging Toolkit

9-32

Setting Up a New Message Type
To load and manage the successfully tested new Message Types onto a new environment,

1. Initialize ServiceLocator.

2. Create MtkProductionLoadService.

The following table summarizes the service and methods referenced by this section:

Service and Methods: Setting Up a New Message Type

Level Detail

Package oracle.apps.ctb.message.mtk
Class MtkProductionLoadService
Methods • createCompositeMessageSchema

• deleteInteractionSchema
• deleteSchemas
• fetchCompositeMessageShemasByPayload
• fetchCustomCMETsForPayload
• fetchSchemas
• loadCustomMessageTypeToProductionServer
• loadSchemas

Note:

Oracle Healthcare Data Repository Javadoc
(oracle.apps.ctb.message.mtk.MtkProductionLoadService)

Example 9-13 Search for Message Types

//Initializing Service Locator:
 ServiceLocator serviceLocator = ServiceLocator.getInstance();
serviceLocator.login("username", "password");

//Message Type ID
String [] messageTypeID= { “PRPA_MT203000HT04"};
SchemaInformation [] schemaInfo = null;

try
 {
 //Getting MtkProductionLoadService
 mtkProductionLoadService = serviceLocator.getMtkProductionLoadService();

 //Calling fetch API
 schemaInfo = mtkProductionLoadService.fetchSchemas (messageTypeID) ;
}
catch(CTBException ctbException)
{
 //…handle or re-throw the exception
}

Chapter 9
HDR Messaging Toolkit

9-33

if (schemaInfo.length == 0) // If Message Type not already uploaded.
{
//…Invoke loadCustomMessageTypeToProductionServer() API
}

Example 9-14 Loading Custom Message Types

//Initializing Service Locator:
 ServiceLocator serviceLocator = ServiceLocator.getInstance();
 serviceLocator.login("username", "password");

 //Payload Xsd and Mif
 String payloadXsdName = {“prpa_mt203000ht04.xsd"};
 String payloadMifName = {“prpa_mt203000ht04.mif"};

 //Cmet Xsd and Mif, referred by the Payload.
 String [] cmetXsdNames = { “coct_mt030202ht04.xsd", “coct_mt030200ht04.xsd",
“coct_mt150002ht02.xsd", “coct_mt150000ht04.xsd", “coct_mt030202ht04.xsd"};
String [] cmetMifNames = { “coct_mt030202ht04.mif", “coct_mt030200ht04.mif",
“coct_mt150002ht02.mif", “coct_mt150000ht04.mif", “coct_mt030202ht04.mif"};

 //CoreMif name.
 String coreMifName ="cmetinfo.coremif";

 //Initializing SchemaInformation
 SchemaInformation [] schemaInfo = new SchemaInformation [7];

 //Populating SchemaInformation List with values.
 for(int i=0; i< cmetXsdNames.length; i++)
{
 String xsdContent = readFileContent(cmetXsdNames[i]);
 String mifContent = readFileContent(cmetMifNames[i]);
 String artifactID = cmetXsdNames[i].replaceAll(“.xsd", “");
 schemaInfo[i] = new SchemaInformation();
 schemaInfo[i].setXsd(xsdContent);
 schemaInfo[i].setMif(mifContent);
 schemaInfo[i].setSchemaType(SchemaInformation.CMET);
 schemaInfo.setArtifactID(artifactID);
 }

 //Populating payload.
 String xsdContent = readFileContent(payloadXsdName);
 String mifContent = readFileContent(payloadMifName);
 String artifactID = payloadXsdName.replaceAll(“.xsd",“");
 schemaInfo[i] = new SchemaInformation();
 schemaInfo[i].setXsd(xsdContent);
 schemaInfo[i].setMif(mifContent);
 schemaInfo[i].setSchemaType(SchemaInformation.PAYLOAD);
 schemaInfo.setArtifactID(artifactID);

// Populating CoreMif.
 i++;
 String coreMifContent = readFileContent(coreMifName);
 schemaInfo[i] = new SchemaInformation();
schemaInfo[i].setMif(coreMifContent);
 schemaInfo[i].setSchemaType(SchemaInformation.CORE_MIF);
schemaInfo[i]. setArtifactID(coreMifName);

 MtkProductionLoadService mtkProductionLoadService = null;
 try
 {

Chapter 9
HDR Messaging Toolkit

9-34

 //Getting MtkProductionLoadService
 mtkProductionLoadService = serviceLocator. getMtkProductionLoadService();
 //Calling upload API
 mtkProductionLoadService.loadCustomMessageTypeToProductionServer(schemaInfo);
 }
 catch(CTBException ctbException)
 {
 //handle or re-throw the exception
 }

Example 9-15 Fetch Custom CMETs

String messageTypeID= "POXX_MT111000HT02";
SchemaInformation [] schemaInfo = null;
MtkProductionLoadService mtkProductionLoadService = null;

try
{
//Getting MtkProductionLoadService
mtkProductionLoadService = serviceLocator.getMtkProductionLoadService();
//Calling fetch API
schemaInfo = mtkProductionLoadService. FetchCustomCMETsForPayload
(messageTypeID) ;
}
catch(CTBException ctbException)
{
//…handle and re-throw the exception
}

Example 9-16 Fetch Composite Message Schema

String messageTypeID= "POXX_MT111000HT02";
SchemaInformation [] schemaInfo = null;
try
{
//Getting MtkProductionLoadService
mtkProductionLoadService = serviceLocator.getMtkProductionLoadService();
//Calling fetch API
schemaInfo = mtkProductionLoadService. FetchCompositeMessageShemasByPayload
(messageTypeID) ;
}
catch(CTBException ctbException)
{
//…handle and re-throw the exception
}

Note:

SchemaInformation object will not contain MIF content for an Interaction Schema.

Example 9-17 Deleting a Schema

String [] schemas = { "coct_mt930002ht03.xsd", "poxx_mt111000ht02.xsd"};

MtkProductionLoadService mtkProductionLoadService = null;

try
{
 //Getting MtkProductionLoadService

Chapter 9
HDR Messaging Toolkit

9-35

 mtkProductionLoadService = serviceLocator.getMtkProductionLoadService();
 //Calling delete API
 mtkProductionLoadService. deleteSchemas (schemas) ;
}
catch(CTBException ctbException)
{
 //…handle or re-throw exception
 }

Sample Exercise Using MTK Services
• Prerequisites and Tools

• Creating a New Message Type or Modifying an Existing Message Type

• Generating Schema (XSD) and MIF Files for the Modified Messages

Prerequisites and Tools
The following tools are used in the process of testing a custom message and
generating message instances for the custom messages.

• Microsoft® Visio 2002 SP - 2 version 10.0.6871

• HL7 RIM repository version 2.14.1

• HL7 RMIM Designer version 4.3.2

• HL7 Schema Generator version 3.0.4

Note:

The steps described in the following sections were performed using the tools
listed above, and may not produce expected results if executed using
versions other than those specified above.

Creating a New Message Type or Modifying an Existing Message Type
For the purpose of this sample exercise, a modified version of the HDR-published
domain Message Type Person Registry (PRPA_RM201000HT03) and a modified
version of the HDR-published CMET E_Person (COCT_RM030202HT04) are used.

1. Use the RMIM Designer to modify the CMET E_Person (COCT_RM030202HT04)
as follows:

a. In the focal class Person, add an attribute educationLevelCode: CE CWE
[0..1] < EducationLevel

b. Change the name of the CMET to E_Person_Custom and the CMET code ID
to COCT_RM030202TK01

Chapter 9
HDR Messaging Toolkit

9-36

Figure 9-6

c. Validate and save the Visio file as COCT_RM030202TK01.vsd. When you save the
Visio file, the RMIM designer will automatically create the
COCT_RM030202TK01.xml file.

2. In the CMETInfo.txt file that is referred by RMIM designer, include an entry for the custom
CMET as follows:
E_Person_Custom,COCT_MT030202TK01,PSN,Entity,Custom Person CMET for testing
MTK,identified/confirmable.

3. Modify the message domain Person Registry (PRPA_RM201000HT03) as follows:

a. In the class Employment (Person => Employment), add the following attributes:

salaryTypeCode: CE CWE [0..1] < EmployeeSalaryType
salaryQuantity: MO [0..1]

b. Replace all references to the CMET E_Person (PSN) [identified/confirmable]
(COCT_MT030202HT04) with E_Person_Custom (PSN) [identified/confirmable]
(COCT_MT030202TK01).

c. Change the name of the RMIM to Person Registry Custom and the RMIM IDcode to
PRPA_RM201000TK01.

Chapter 9
HDR Messaging Toolkit

9-37

Figure 9-7 Custom Message Person_Registry_Custom
(PRPA_RM201000TK01)

d. Validate and save the Visio file as ‘PRPA_RM201000TK01.vsd'.

e. Verify that Visio automatically generates a file ‘PRPA_RM201000TK01.xml'.

Generate Schema (XSD) and MIF Files for the Modified Messages
Use the Schema Generator generate schema and MIF files for the modified messages
as follows:

1. Copy the files PRPA_RM201000TK01.xml and COCT_RM030202TK01.xml in the
following folder:

<Schema Generator Root Folder>\InputFiles\VisioModelXmlFiles\
Note that this folder must contain the xml files corresponding to all the CMETs that
are used directly or indirectly by the message PRPA_RM201000TK01.

2. Modify the file <Schema Generator Root
Folder>\InputFiles\CommonSourceFiles\cmetInfoExport.txt to include following
entry:

Chapter 9
HDR Messaging Toolkit

9-38

E_Person_Custom,COCT_MT030202TK01,PSN,Entity,Custom Person CMET for testing
MTK,identified/confirmable

3. Ensure that the file <Schema Generator Root Folder>\InputFiles\configuration.txt
includes the following setting:

generateSchemas = true
4. Execute the file <Schema Generator Root Folder>\runlogged.bat
5. Upon completion of execution, view the file <Schema Generator Root

Folder>\OutputFiles\generator.log for any errors and rectify them.

6. After successful execution:

• Schema Generator should generate the schema and MIF files for custom messages
in following folders:

<Schema Generator Root Folder>\OutputFiles\Schemas\
<Schema Generator Root Folder>\OutputFiles\MIF\
Verify that Schema Generator has generated following files:

PRPA_MT201000TK01.xsd, PRPA_MT201000TK01.mif

COCT_MT030202TK01.xsd, COCT_MT030202TK01.mif

• Schema Generator should automatically update the following file:

<Schema Generator Root Folder>\OutputFiles\MIF\cmetinfo.coremif
and include a new entry for the custom CMET ‘COCT_RM030202TK01'

Verify that appropriate details of the custom CMET are included in the file
cmetinfo.coremif

Generate Test Messages Using MTK Service
Refer to the Use the MTK Services section to test the newly created message type artifacts
and retrieve the test messages generated by MTK test API.

Generating Custom Message Types
You can create custom artifacts either by using RMIM or by using the artifacts published by
HL7. Ensure that you give valid names for the custom messages. You must ensure that:

• Realm code in the artifact ID must be other than HT.

• CMET names must be different from the Oracle-published CMET names.

Chapter 9
HDR Messaging Toolkit

9-39

Note:

• Oracle will not provide tools to design artifacts and its associated files.
You have to use the tools provided by HL7 or create your own tools.

• The tools used to generate schema must also generate MIF files.

• MTK is tested with artifacts created on:

– HL7 RIM repository v2.14.1

– HL7 RMIM Designer v4.3.2

– RoseTree v4.0.12

– HL7 Schema Generator v3.0.4

Generating Custom Artifacts Using RMIM
RMIMs can be created in one of the following ways:

• Modifying the RMIM of the Oracle-published Message Types.

• Downloading and modifying the RMIM of the HL7-published normative Message
Types.

• Creating a new RMIM for a Message Type RMIM.

Once the RMIMs are created, save the RMIM in a repository. Provide the XML of the
RMIM as input to the tools generating the Schema.

Generating Custom Artifacts Without Using RMIM
To generate a custom Artifact without using an RMIM, you can do one of the following:

• Modify Oracle-published XSD and MIF files.

• Download and modify HL7-published XSD and MIF files.

Logic for Instance Generation
MTK uses the following logic to generate a test instance:

• Custom Message Types and CMETs are filled with default data even if they are
optional items.

• CMETs that are mandatory are filled with data irrespective of whether they are
Oracle published or custom CMETs.

• Items (Classes, CMETs, and Attributes) in custom artifacts (Message Type,
CMETs) are handled using the following logic:

Mandatory Items

– Classes and CMETs with {1..1, 1..N, and 1..*} cardinality are filled only once.

– Recursions with {1..1, 1..N, and 1..*} cardinality are filled once and only one
level is filled.

– Coded Attributes with {1..1, 1..N, and 1..*} cardinality are filled only once.

Chapter 9
HDR Messaging Toolkit

9-40

– Non-coded attributes with {1..1} cardinality are filled only once.

– Non-coded attributes with {1..N and 1..*} cardinality are filled twice.

– Choices with 0..* or 1..* are repeated as many number of times as the number of
objects in the choice to fill all the objects within the choice.

Optional Items

– Classes and CMETs with {0..1, 0..N, and 0..*}, cardinality are filled once.

– Recursions with {0..1, 0..N, and 0..*} cardinality are filled once and only one level is
filled.

– Attributes (Coded and Non-Coded) with {0..1, 0..N, and 0..*} cardinality are not filled.

– Choices with {0..1, 0..N, and 0..*}cardinality are filled only once.

• Items (Classes, CMETs, and Attributes) relating to Oracle-published CMETs are handled
using the following logic:

Mandatory Items

– Classes and CMETs with {1..1, 1..N, and 1..*}, cardinality are filled only once.

– Within the mandatory CMETs, only mandatory classes with {1..1, 1..N, and 1..*}
cardinality are filled with data, and only the attributes with {1..1, 1..N, and
1..*}cardinality are populated with data.

– Recursions with {1..1, 1..N, and 1..*} cardinality are filled once and only one level is
filled.

– Coded Attributes with {1..1, 1..N, and 1..*} cardinality are filled only once.

– Non-coded attributes with {1..1} cardinality are filled only once.

– Non-coded attributes with {1..N and 1..*} cardinality are filled twice.

– Choices with {1..1, 1..N, and 1..*}cardinality are filled only once.

Optional items

– Classes and CMETs with {0..1, 0..N, and 0..*} cardinality are not filled.

– Recursions with {0..1, 0..N, and 0..*} cardinality are not filled.

– Attributes (Coded and Non-Coded) with {0..1, 0..N, and 0..*} cardinality are not filled.

– Choices with {0..1, 0..N, and 0..*} cardinality are not filled.

• Data for Clone class attributes are populated using the following logic:

– Data for the structural attributes is populated from the respective schema.

– A unique test ID is assigned for each clone class object.

– For coded attributes bound to concept lists, data is taken from the respective concept
list within ETS and populated. Note that if the concept list is empty, an error is thrown

– For coded attributes not bound to concept lists, a value from the appropriate HL7
coding scheme is populated based on their types (For example, code attribute of Act
class has code from ActCode Code System)

– Non-Coded attributes like address, name, and others are populated with data from
the sample snippets seeded in HDR.

– Attributes with Any datatype are defaulted to ST and a default value is populated.

• Message Wrapper and Control Act wrapper:

Chapter 9
HDR Messaging Toolkit

9-41

– Data for the Message wrapper, Act Payload Control wrapper, and Role
Payload Control wrapper is seeded in HDR.

– The Interaction ID, Trigger event code, and Sender and Receiver II attribute
values are generated during each instance generation.

Note:

– The objective of instance generation is to cover all the objects of
custom artifacts (Message Type and CMETs) irrespective of whether
they are optional or not.

– Within an instance, if the object of external artifact is covered once,
the same object is not repeated unless it is mandatory.

– External artifacts with Roles having entity choices either as Player or
Scoper will always result in more than one instance. Each of the
Player/Scoper choice is included in one of the instances.

– The order of the objects in the instance generated depend on their
order in the schema file.

Master Catalog and Side Effect Configuration Reports
• Master Catalog Reports

• Side Effect Configuration Report

Master Catalog Reports
This section details the validation logic followed by MTK for Master Catalog
validations, and also the logic used to generate the Master Catalog report.

Master Catalog Validation Rules

MTK follows the rules listed below to validate the schema against the Master Catalog
entries to verify if the entries exist:

General Rules

• If the object in the schema has a code attribute,

– If the code attribute is mandatory in the schema, MTK checks if an entry for
that object exists in the Master Catalog (MC) configuration with Code Type as
ANY. If it is not present, MTK includes that object in the MC Report.

– If the code attribute is optional in the schema, MTK checks if an entry for that
object exists in the MC Configuration with Code Type as ANY. If it does not
exist, MTK includes that object in the MC Report. In addition, MTK also checks
if an entry exists for that object in the MC Configuration with Code Type as
NULL. It it does not exist, MTK includes that object in the MC Report.

• If the object in the schema does not have a code attribute, MTK checks if an entry
for that object exists in the MC Configuration with Code Type as NULL. If it is not
present, MTK includes that object in the MC Report.

Chapter 9
HDR Messaging Toolkit

9-42

Act
The general rules apply to all objects in the schema that are Acts.

Role: Non-owned Role without Entities
The general rules apply to all objects in the schema that are Non-owned Roles without
Entities.

Role: Non-owned Role with Entities
In addition to the general rules, MTK also checks if the corresponding Entity entry exists for
the Non-owned Role in the MC configuration. The general rules apply for checking an
individual Entity entry in the MC Configuration. If the entry does not exist, MTK includes that
object in the MC Report.

ROLE: Owned Role without Non-Owning Entity
For Owned Role, in addition to the general rules, MTK also checks if the corresponding
Owning Entity entry exists for the Owned Role in the MC Configuration. The general rules
apply for checking an individual Entity entry in the MC configuration. If the entry does not
exist, MTK includes all the corresponding objects (both missing role and the missing entities)
in the MC Report.

ROLE: Owned Role with Non-Owning Entity
For Owned Role, in addition to the general rules, MTK also checks if the corresponding
Owning and Non-Owning Entity for the Owned Role has appropriate entries in the MC
Configuration. The general rules apply for checking an individual Entity entry in the MC
Configuration. If the entry does not exist, MTK includes all corresponding objects (both
missing role and the missing entities) in the MC Report.

Note:

In case of Owned Roles, MTK also checks if the entry in the
ROLE_OWNER_CODE (in the MC Configuration) has P or S, depending on
whether the Owning Entity is a Player or a Scoper. If the entry does not exist, MTK
includes that object in the MC Report.

Master Catalog Reporting Logic
MTK populates a report based on the rules described in the Master Catalog Validation Rules
section, and then based on the value in the Report column (Yes or No). If the Report column
contains the value Yes, the following logic is applied while creating an entry in the Master
Catalog report:

Act

• With mandatory code attribute: Create an entry with code type ANY.

• With optional code attribute: Create entries with code type ANY and Null.

Chapter 9
HDR Messaging Toolkit

9-43

• Without code attribute: Create an entry with code type Null.

Non-Owned Role with Entities

• With mandatory code attribute: Create an entry with code type ANY, and with
appropriate Entity entries.

• With optional code attribute: Create entries with code type ANY and Null, and
with appropriate Entity entries.

• Without code attribute: Create an entry with code type Null, and with appropriate
Entity entries.

Non-Owned Role without Entities

• With mandatory code attribute: Create an entry with code type ANY, and without
any entities.

• With optional code attribute: Create entries with code type ANY and Null, and
without any entities.

• Without code attribute: Create an entry with code type Null, and without any
entities.

Owned Role with non-owning Entity

• With mandatory code attribute: Create an entry with code type ANY, and with
appropriate non-owning Entity entry.

• With optional code attribute: Create entries with code type ANY and Null, and
with appropriate non-owning Entity entry.

• Without code attribute: Create an entry with code type Null, and with appropriate
non-owning Entity entry.

Entity

• With mandatory code attribute: Create an entry with code type ANY.

• With optional code attribute: Create entries with code type ANY and Null.

• Without code attribute: Create an entry with code type Null.

Side Effect Configuration Report
MTK applies the following rules while creating the Side Effect Configuration report:

• Act: Create or Overlay

• Non-Owned Role without Entities: Create or Overlay.

• Non-Owned Role with Entities: Create or Overlay for both Role and its entities.

• Owned Role without non-owning Entity: No entry.

• Owned (Type II) Role with non-owning Entity: Null for Role and owning Entity.
Create or Overlay for non-owning Entity.

MTK Message Types Construct Processing
• Constructs in External Artifacts (Message Type and CMETS)

• Constructs Within Oracle Published CMETS

Chapter 9
HDR Messaging Toolkit

9-44

Note:

The order of the objects in the instance generated depend on their order in the
schema file. The objects listed in the examples might change when compared to
actual instances.

Constructs in External Artifacts (Message Type and CMETs)
Act> ActChoice with {0..1 or 1..1 or 0..n or 1..n}

MTK generates n instances where n is the number of objects in the choice (and is not same
as *). MTK generates two instances if a message type that has the construct described in
Figure E.1. For each object within the choice, a message instance is generated.

• First message instance has ClinicalTrialEvent > inFulfillmentOf > ObservationEvent

• Second message instance has ClinicalTrialEvent > inFulfillmentOf > ProcedureEvent

Figure 9-8 Act > ActChoice with {1..1}

Act> ActChoice with {0..* or 1..*}

MTK generates one instance with two inFulfillmentOf ActRelationship, if a message type has
the construct shown in Figure E.2. For each object within the choice, an inFulfillmentOf
ActRelationship is generated.

• First instance of inFulfillmentOf ActRelationship would have ClinicalTrialEvent >
inFulfillmentOf > ObservationEvent

• Second instance of inFulfillmentOf ActRelationship would have ClinicalTrialEvent >
inFulfillmentOf > ProcedureEvent

Chapter 9
HDR Messaging Toolkit

9-45

Figure 9-9 Act > ActChoice with {1..*}

Act> ActChoice with {0..1 or 1..1 or 0..n or 1..n}> Act with {0..1 or 1..1 or 0..n or
1..n or 0..* or 1..*}

MTK generate n instances where n is the number of objects in the first choice. MTK
generate two instances if a message type has the construct described in Figure E.3.
For each object within the choice, a message instance is generated along with the
target pertinentInformation ActRelationship.

• First message instance has ClinicalTrialEvent > inFulfillmentOf >
ObservationEvent > pertinentInformation > ObservationInfo

• Second message instance has ClinicalTrialEvent > inFulfillmentOf >
ProcedureEvent > pertinentInformation > ObservationInfo

Figure 9-10 Act > Choice with {1..1} > Act with {1..1}

Act > ActChoice with {0..* or 1..*} > Act with {0..1 or 0..* or 0..n or 1..n or 1..1 or
1..*}

MTK generates one instance with two inFulfillmentOf ActRelationship, if a message
type has the construct described in Figure E.4. For each object within the choice, an
inFulfillmentOf ActRelationship is generated along with one target pertinentInformation
ActRelationtionship.

• First instance of inFulfillmentOf ActRelationship has ClinicalTrialEvent >
inFulfillmentOf > ObservationEvent > pertinentInformation > ObservationInfo

• Second instance of inFulfillmentOf ActRelationship has ClinicalTrialEvent >
inFulfillmentOf > ProcedureEvent > pertinentInformation > ObservationInfo

Chapter 9
HDR Messaging Toolkit

9-46

Figure 9-11 Act > ActChoice with {1..*} > Act with {1..1}

Act > ActChoice with {0..1 or 1..1 or 0..n or 1..n} > ActChoice with {0..1 or 1..1 or 0..n or
1..n}

MTK generates n instances where n is the number of objects in the first choice. MTK
generates two instance if a message type has the construct described in Figure E.5. For each
object within the fulfillmentActChoice, a message instance is generated along with an object
from target pertinentActChoice.

• First message instance has ClinicalTrialEvent > inFulfillmentOf > ObservationEvent >
pertinentInformation > ObservationInfo

• Second message instance has ClinicalTrialEvent > inFulfillmentOf > ProcedureEvent >
pertinentInformation > ProcedureInfo

Figure 9-12 Act > ActChoice with {1..*} > ActChoice with {1..1}

Act > ActChoice with {0..* or 1..*} > ActChoice with {0..1 or 1..1 or 0..n or 1..n}

MTK generate one instance with two inFulfillmentOf ActRelationship, if a message type has
the construct described in Figure E.6. For each object within the choice, an inFulfillmentOf
ActRelationship is generated along with an object from the target choice.

• First instance of inFulfillmentOf ActRelationship has ClinicalTrialEvent > inFulfillmentOf >
ObservationEvent > pertinentInformation > ObservationInfo

• Second instance of inFulfillmentOf ActRelationship has ClinicalTrialEvent >
inFulfillmentOf > ProcedureEvent > pertinentInformation > ProcedureInfo

Chapter 9
HDR Messaging Toolkit

9-47

Figure 9-13 Act > ActChoice with {1..*} > ActChoice with {1..1}

Act > ActChoice with {0..1 or 1..1 or 0..n or 1..n} > ActChoice with {0..* or 1..*}:

MTK generates n instances where n= number of objects is in the first choice. MTK
generates two instance if a message type has the construct described in Figure E.7.
For each object within the inFulfillmentOf, a message instance is generated along with
two pertinentInformation ActRelationships.

• First message instance has ClinicalTrialEvent > inFulfillmentOf >
ObservationEvent:

1. pertinentInformation > ObservationInfo

2. pertinentInformation > ProcedureInfo

• Second message instance has ClinicalTrialEvent > inFulfillmentOf >
ProcedureEvent:

1. pertinentInformation > ObservationInfo

2. pertinentInformation > ProcedureInfo

Figure 9-14 Act > Choice with {1..1} > ActChoice with {1..*}

Act > ActChoice with {0..* or 1..*} > ActChoice with {0..*}

MTK generates one instance with two inFulfillmentOf ActRelationship, if a message
type has the construct described in Figure E.8. The first inFulfillmentOf
ActRelationship instance has the objects from the target pertinentActChoice. The other
inFulfillmentOf ActRelationship instance does not have it.

• First instance of inFulfillmentOf ActRelationship has ClinicalTrialEvent >
inFulfillmentOf > ObservationEvent:

1. pertinentInformation > ObservationInfo

2. pertinentInformation > ProcedureInfo

• Second instance of fulfillmentActChoice ActRelationship has ClinicalTrialEvent >
inFulfillmentOf > ProcedureEvent

Chapter 9
HDR Messaging Toolkit

9-48

Figure 9-15 Act > ActChoice with {1..*} > ActChoice with {0..*}

Act > ActChoice with {0..* or 1..*} > ActChoice with {1..n or 1..*}

MTK generates one instance with two inFulfillmentOf ActRelationship, if a message type has
the construct described in Figure E.9. For each object within FullfillmentActChoice, a
inFulfillmentOf ActRelationship is generated along with the object from the target
pertinentActChoice.

• First instance of inFulfillmentOf ActRelationship has ClinicalTrialEvent > inFulfillmentOf >
ObservationEvent:

1. pertinentInformation > ObservationInfo

2. pertinentInformation > ProcedureInfo

• Second instance of inFulfillmentOf ActRelationship has ClinicalTrialEvent >
inFulfillmentOf > ProcedureEvent (one of the below):

1. pertinentInformation > ObservationInfo

2. pertinentInformation > ProcedureInfo

Figure 9-16 Act > ActChoice with {1..*} > ActChoice with {1..*}

Act > Role with {0..1 or 0..n or 0..* or 1..1 or 1..n or 1..*} > Player with {0..1 or 1..1} and
Scoper with {0..1 or 1..1}

MTK generates only one instance if a message type has the construct described in Figure
E.10. The message instance has:

• Message Instance: ObservationGeneral > subject > IdentifiedEntity > ScopingEntity and
PlayingEntity

Chapter 9
HDR Messaging Toolkit

9-49

Figure 9-17 Act > Role with {0..*} > Player with {0..1} and Scoper with {1..1}

Act > Role with {0..1 or 0..n or 0..* or 1..1 or 1..n or 1..*} > Player with {0..1 or 1..1}
and Scoper with {0..1 or 1..1} > Playedrole with {0..1 or 0..n or 0..* or 1..1 or 1..n
or 1..*} > Scoper with {0..1 or 1..1}

MTK generates only one instance if a message type has the construct described in
Figure E.11. The instance generated has the following:

• Message instance: ObservationGeneral > subject > IdentifiedEntity >
ScopingEntity and Playingentity<

1. PlayingEntity > HealthChart > ScopingEntity2

Figure 9-18 Act > Role with {0..*} > Player with {0..1} and Scoper with {1..1} >
Playedrole with {0..*} > Scoper with {0..1}

Act > Role with {0..1 or 0..n or 0..* or 1..1 or 1..n or 1..*} > PlayerChoice with {0..1
or 1..1} and ScoperChoice with {0..1 or 1..1} > PlayedRole with {0..1 or 0..n or 0..*
or 1..1 or 1..n or 1..*} > Scoper with {0..1 or 1..1}

Chapter 9
HDR Messaging Toolkit

9-50

MTK generates n instances where n is the maximum number of entities present in a single
choice. In the construct described in Figure E.12, MTK generates two instances. The
instances generated might be:

• First Instance: ObservationGeneral > subject > IdentifiedEntity > ScopingEntity and
PlayingEntity

1. Playingentity > HealthChart > ScopingEntity2

• Second Instance: ObservationGeneral > subject > IdentifiedEntity > Organization and
Person

1. Person > HealthChart > ScopingEntity2

Figure 9-19 Act > Role with {0..*} > PlayerChoice with {0..1} and ScoperChoice with
{1..1} > Playedrole with {0..*} > Scoper with {0..1}

Note:

Even if the cardinality of participation is 0..*, MTK generates multiple instances of
the above structure to incorporate all the entities. This behavior is different from
ActRelationships.

Act> Role with {0..1 or 0..n or 0..* or 1..1 or 1..n or 1..*}> PlayerChoice with {0..1} and
ScoperChoice with {0..1 or 1..1}> PlayedRole with {0..1 or 0..n or 0..* or 1..1 or 1..n or
1..*}> Scoper with {0..1 or 1..1}

MTK generates n instances where n is the number of entities in the choice with Max entities.
In the construct described in Figure E.13, MTK generates three instances:

• Instances with player entities has the Owned role

Chapter 9
HDR Messaging Toolkit

9-51

• One of the instances has only the scoper for IdentifiedEntity role. This instance
does not have any Player as (i) the cardinality is 0..1 (ii) both the player entities
would have been covered in the previous two messages.

The instance generated might be:

• First Instance: ObservationGeneral > subject > IdentifiedEntity > Entity and Person

1. Person > HealthChart > ScopingEntity2

• Second Instance : ObservationGeneral > subject > IdentifiedEntity > Organization
and Entity

1. Entity > HealthChart > ScopingEntity2

• Third Instance : ObservationGeneral > subject > IdentifiedEntity > Place

Figure 9-20 Act > Role with {0..*} > PlayerChoice with {0..1} and ScoperChoice
with {1..1} > Playedrole with {0..*} > Scoper with {0..1}

Act> Role with {0..1 or 0..n or 0..* or 1..1 or 1..n or 1..*}> PlayerChoice with {1..1}
and ScoperChoice with {0..1 or 1..1}> PlayedRole with {0..1 or 0..n or 0..* or 1..1
or 1..n or 1..*}> Scoper with {0..1 or 1..1}

MTK generates n instances where n is the number of entities in the choice with Max
entities. In the construct described in Figure E.14, MTK generates three instances. All
the three instances have the Owned role due to the cardinality on the PlayerChoice.

The instance generated might be:

• First Instance: ObservationGeneral > subject > IdentifiedEntity > Entity and Person

1. Person > HealthChart > ScopingEntity2

• Second Instance: ObservationGeneral > subject > IdentifiedEntity > Organization
and Entity

1. Entity > HealthChart > ScopingEntity2

Chapter 9
HDR Messaging Toolkit

9-52

• Third Instance: ObservationGeneral > Subject > IdentifiedEntity > Place and Person

1. Person > HealthChart > ScopingEntity2

Figure 9-21 Act > Role with {0..*} > PlayerChoice with {1..1} and ScoperChoice with
{0..1} > PlayedRole with {0..*} > Scoper with {0..1}

Constructs Within Oracle Published CMETS
Act> ActChoice with {1..1 or 1..n or 1..*}

MTK will generate one instance. The generated instance will be one of the following:

• ClinicalTrialEvent > inFulfillmentOf > ObservationEvent

• ClinicalTrialEvent > inFulfillmentOf > ProcedureEvent

Note:

If the choice is {0..1 or 0..*}, the generated instance will not have the
fulfillmentActChoice ActRelationship.

Chapter 9
HDR Messaging Toolkit

9-53

Figure 9-22 Act > ActChoice with {1..1}

Act> ActChoice with {1..1 or 1..n or 1..*}> Act with { 1..1 or 1..n or 1..*}

MTK generates one instance. The instance will have one of the following:

• ClinicalTrialEvent > inFulfillmentOf > ObservationEvent > pertinentInformation >
ObservationInfo

• ClinicalTrialEvent > inFulfillmentOf > ProcedureEvent > pertinentInformation >
ObservationInfo

Note:

• If the inFulfillmentOf has {0..1 or 0..*}, then the generated instance will
not have the inFulfillmentOf ActRelationship and the other associated
relationships

• If the inFulfillmentOf has {1..1 or 1..*} and observationInfo has {0..1 or
0..*} then the generated instance will have inFulfillmentOf
ActRelationship but not the pertinentInformation relationships

Figure 9-23 Act > ActChoice with {1..1} > ActChoice with {1..1}

Act> ActChoice with {1..1 or 1..n or 1..*}> ActChoice with {1..1 or 1..n or 1..*}

MTK generates one instance, if a message type has the construct described in Figure
E.17. The generated message instance has one of the following:

Chapter 9
HDR Messaging Toolkit

9-54

• ClinicalTrialEvent > inFulfillmentOf > ObservationEvent > pertinentInformation >
ObservationInfo

• ClinicalTrialEvent > inFulfillmentOf > ProcedureEvent > pertinentInformation >
ProcedureInfo

Note:

• If the inFulfillmentOf has {0..1 or 0..*}, then the generated instance will not have
the inFulfillmentOf ActRelationship and the other associated relationships.

• If the inFulfillmentOf has {1..1 or 1..*} and if pertinentInformation has {0..1 or
0..*} then the generated instance will have inFulfillmentOf ActRelationship but
not the pertinentInformation relationships.

Figure 9-24 Act > Role with {1..*} > Player with {1..1} and Scoper with {1..1}

Act > Role with {1..1 or 1..n or 1..*} > PlayerChoice with {1..1} and ScoperChoice with
{1..1} > PlayedRole with {1..1 or 1..n or 1..* } > Scoper with {1..1}

In the construct described in Figure E.19, MTK generates one instance. The instance
generated might be:

• ObservationGeneral > subject > IdentifiedEntity > ScopingEntity and PlayingEntity

• 1. Playingentity > HealthChart > ScopingEntity2

• ObservationGeneral > subject > IdentifiedEntity > Organization and Person

• 1. Person > HealthChart > ScopingEntity2

Chapter 9
HDR Messaging Toolkit

9-55

Note:

• If the subject has {0..1 or 0..*} then the generated instance will not have
the subject and its associated associations.

• If the subject has {1..1 or 1..*} and Scoper and Player choice with {0..1}
then the generated instance will have: ObservationGeneral > subject >
IdentifiedEntity

• If the subject has {1..1 or 1..*}, Player choice with {1..1} along with
HealthChart with {1..1}, and ScoperChoice with {0..1} then the generated
instance will have one of the below:

• 1. ObservationGeneral > subject > IdentifiedEntity > PlayinngEntity >
HealthChart > ScopingEntity2

2. ObservationGeneral > subject > IdentifiedEntity > Person >
HealthChart > ScopingEntity2

Figure 9-25 Act > Role with {1..*} > PlayerChoice with {1..1} and ScoperChoice
with {1..1} > Playedrole with {1..*} > Scoper with {1..1}

XML Snippets of Seeded Data
Data seeded in HDR for MTK to generate instance for the provided Message Type
schema file:

Datatypes Value 1 Value 2

Chapter 9
HDR Messaging Toolkit

9-56

AD <[attribute] use="H" >
<delimiter partType="DEL">;</
delimiter> <country
partType="CNT">US</
country> <state
partType="STA">CA</state>
<city
partType="CTY">Fountain
Hills</city> <postalCode
partType="ZIP">85268</
postalCode>
<streetAddressLine
partType="SAL">15542
OliveWest</
streetAddressLine>
<houseNumberNumeric
partType="BNN" >999777</
houseNumberNumeric>
<houseNumber
partType="BNR">999777</
houseNumber> <direction
partType="DIR">N</direction>
<streetName
partType="STR">Church
Street</streetName>
<streetNameBase
partType="STB">Church
Street</streetNameBase>
<streetNameType
partType="STTYP">Avenue</
streetNameType> <unitID
partType="UNID">222222</
unitID> <censusTract
partType="CEN">testCensusV
alue</censusTract> <unitType
partType="UNIT">Apartment</
unitType> <useablePeriod
xsi:type="IVL_TS" > <low
value="20070127"
inclusive="true"/> <high
value="20070526"
inclusive="false"/> </
useablePeriod> </[attribute]>

<[attribute] use="H">
<delimiter partType="DEL">;</
delimiter> <country
partType="CNT">US</
country> <state
partType="STA">CA</state>
<city
partType="CTY">Fountain
Hills</city> <postalCode
partType="ZIP">852</
postalCode>
<streetAddressLine
partType="SAL">142
OliveWest</
streetAddressLine>
<houseNumberNumeric
partType="BNN" >9977</
houseNumberNumeric>
<houseNumber
partType="BNR">9997</
houseNumber> <direction
partType="DIR">N</direction>
<streetName
partType="STR">Church
Street</streetName>
<streetNameBase
partType="STB">Church
Street</streetNameBase>
<streetNameType
partType="STTYP">Avenue</
streetNameType> <unitID
partType="UNID">222234</
unitID> <censusTract
partType="CEN">testCensusV
alue</censusTract> <unitType
partType="UNIT">Apartment</
unitType> <useablePeriod
xsi:type="IVL_TS" > <low
value="20070128"
inclusive="true"/> <high
value="20070527"
inclusive="false"/> </
useablePeriod> </[attribute]>

ANY <[attribute]
xsi:type="ST">MTK Test1</
[attribute]>

<[attribute]
xsi:type="ST">MTK Test2</
[attribute]>

BL <[attribute] value="true"/> <[attribute] value="false"/>

BN <[attribute] value="true"/> <[attribute] value="true"/>

Chapter 9
HDR Messaging Toolkit

9-57

ControlActWrapper <controlActProcess
classCode="CACT"
moodCode="EVN"> <subject
typeCode="SUBJ"></
subject></controlActProcess>

<controlActProcess
classCode="CACT"
moodCode="EVN"> <subject
typeCode="SUBJ">
<registrationEvent
classCode="REG"
moodCode="EVN"> <code
code="T"
codeSystemName="ActCode"/
> <subject typeCode="SBJ">
</subject> </
registrationEvent> </subject>
</controlActProcess>

ED <[attribute] mediaType="text/
plain" language="en-US">
<reference value="http://
example.org/xrays/
128s8d9ej229se32s.png">
<useablePeriod
xsi:type="IVL_TS"> <low
value="200007200845"/>
<high
value="200008200845"/> </
useablePeriod> </
reference>ED.Text1 </
[attribute]>

<[attribute] mediaType="text/
plain" language="en-
US">ED.Text2 <reference
value="http://example.org/
xrays/
128s8d9ej229se32s.png">
<useablePeriod
xsi:type="IVL_TS"> <low
value="200007200846"/>
<high
value="200008200846"/> </
useablePeriod> </
reference>ED.Text2 </
[attribute]>

EIVL <[attribute]
xsi:type="EIVL_TS"> <event
code="AC"
codeSystem="2.16.840.1.113
883.5.139"
codeSystemName="TimingEv
ent"/> <offset> <low
value="10" unit="h"/> <high
value="20" unit="h"/> </offset>
</[attribute]>

<[attribute]
xsi:type="EIVL_TS"> <event
code="ACD"
codeSystem="2.16.840.1.113
883.5.139"
codeSystemName="TimingEv
ent"/> <offset> <low
value="11" unit="h"/> <high
value="21" unit="h"/> </offset>
</[attribute]>

EN <[attribute] use="L"> <family
partType="FAM">John</
family> <given
partType="GIV">Doe</given>
<validTime
xsi:type="IVL_TS"> <low
value="20070127"
inclusive="true"/> <high
value="20070526"
inclusive="false"/> </
validTime> </[attribute]>

<[attribute] use="L"> <family
partType="FAM">John</
family> <given
partType="GIV">Doe</given>
<validTime
xsi:type="IVL_TS"> <low
value="20070129"
inclusive="true"/> <high
value="20070529"
inclusive="false"/> </
validTime> </[attribute]>

II <[attribute]
root="9.989898.5.100.10"
extension="MTK1"
assigningAuthorityName="OR
ACLE"/>

<[attribute]
root="9.989898.5.100.10"
extension="MTK1"
assigningAuthorityName="OR
ACLE"/>

INT <[attribute] xsi:type="INT"
value="204" />

<[attribute] xsi:type="INT"
value="205" />

Chapter 9
HDR Messaging Toolkit

9-58

IVL_INT <[attribute]
xsi:type="IVL_INT"> <low
value="10"/> <high
value="20"/> </[attribute]>

<[attribute]
xsi:type="IVL_INT"> <low
value="10"/> <high
value="20"/> </[attribute]>

IVL_MO <[attribute]
xsi:type="IVL_MO"> <low
value="200"
currency="USD"/> <width
value="205"
currency="USD"/> </
[attribute]>

<[attribute]
xsi:type="IVL_MO"> <low
value="1000"
currency="USD"/> <width
value="2000"
currency="USD" /> </
[attribute]>

IVL_PQ <[attribute]
xsi:type="IVL_PQ"> <low
value="10" unit="g"/> <high
value="20" unit="g"/> </
[attribute]>

<[attribute]
xsi:type="IVL_PQ"> <low
value="1100" unit="g"/> <high
value="2200" unit="g"/> </
[attribute]>

IVL_REAL <[attribute]
xsi:type="IVL_REAL"> <low
value="10.05"/> <high
value="20.05"/> </[attribute]>

<[attribute]
xsi:type="IVL_REAL"
value="10.05">

IVL_TS <[attribute] xsi:type="IVL_TS">
<low value="20070127"
inclusive="true"/> <high
value="20070526"
inclusive="false"/> </
[attribute]>

<[attribute] xsi:type="IVL_TS">
<low value="20070127"
inclusive="true"/> <width
value="2" unit="h"/> </
[attribute]>

MO <[attribute] value="204"
currency="USD"/>

<[attribute] value="204"
currency="INR"/>

ON <[attribute] use="L"> <prefix
partType="PFX">Prime
Health</prefix> <suffix
partType="SFX">Clinic</
suffix> </[attribute]>

<[attribute] use="L"> <prefix
partType="PFX">Prime
Health</prefix> <suffix
partType="SFX">Speciality
Center</suffix> </[attribute]>

PIVL <[attribute]
xsi:type="PIVL_TS"
alignment="DW"
institutionSpecified="false">
<phase> <low
value="20070319"
inclusive="true"/> <high
value="20070324"
inclusive="false"/> </phase>
<period value="1" unit="wk"/>
</[attribute]>

<[attribute]
xsi:type="PIVL_TS"
alignment="HD" operator="A">
<phase> <low
value="200703190900"
inclusive="true"/> <high
value="200703191700"
inclusive="false"/> </phase>
<period value="1" unit="d"/> </
[attribute]>

PN <[attribute] use="L"> <family
partType="FAM">Levin</
family> <given
partType="GIV">Henry Jr</
given> </[attribute]>

<[attribute] use="L"> <family
partType="FAM"
qualifier="VV">Levin</family>
<given partType="GIV">Henry
Sr</given> </[attribute]>

PQ <[attribute] xsi:type="PQ"
value="204" unit="g"/>

<[attribute] xsi:type="PQ"
value="205" unit="g"/>

REAL <[attribute] xsi:type="REAL"
value="204" />

<[attribute] xsi:type="REAL"
value="205" />

Chapter 9
HDR Messaging Toolkit

9-59

RTO_INT <[attribute]
xsi:type="RTO_INT">
<numerator value="204"/>
<denominator value="204"/>
</[attribute]>

<[attribute]
xsi:type="RTO_INT">
<numerator value="205"/>
<denominator value="205"/>
</[attribute]>

RTO_MO_PQ <[attribute]
xsi:type="RTO_MO_PQ">
<numerator value="204"
currency="USD"/>
<denominator value="204"
unit="g"/> </[attribute]>

<[attribute]
xsi:type="RTO_MO_PQ">
<numerator value="205"
currency="USD"/>
<denominator value="205"
unit="g"/> </[attribute]>

RTO_PQ <[attribute]
xsi:type="RTO_PQ_PQ">
<numerator xsi:type="PQ"
value="2" unit="g"/>
<denominator xsi:type="PQ"
value="1" unit="1"/> </
[attribute]>

<[attribute]
xsi:type="RTO_PQ_PQ">
<numerator xsi:type="PQ"
value="4" unit="g"/>
<denominator xsi:type="PQ"
value="2" unit="1"/> </
[attribute]>

RTO_PQ_PQ <[attribute]
xsi:type="RTO_PQ_PQ">
<numerator xsi:type="PQ"
value="2" unit="g"/>
<denominator xsi:type="PQ"
value="1" unit="1"/> </
[attribute]>

<[attribute]
xsi:type="RTO_PQ_PQ">
<numerator xsi:type="PQ"
value="4" unit="g"/>
<denominator xsi:type="PQ"
value="2" unit="1"/> </
[attribute]>

RTO_QTY_QTY <[attribute]
xsi:type="RTO_QTY_QTY">
<numerator xsi:type="PQ"
value="2" unit="g"/>
<denominator xsi:type="PQ"
value="1" unit="1"/> </
[attribute]>

<[attribute]
xsi:type="RTO_QTY_QTY">
<numerator xsi:type="PQ"
value="4" unit="g"/>
<denominator xsi:type="PQ"
value="2" unit="1"/> </
[attribute]>

ST <[attribute]>MTK Test1</
[attribute]>

<[attribute]>MTK Test2</
[attribute]>

SXCM_TS <[attribute]
xsi:type="SXPR_TS"> <comp
xsi:type="IVL_TS"> <low
value="20050603" /> <high
value="20050603" /> </comp>
<comp xsi:type="PIVL_TS"
operator="A"
institutionSpecified="true">
<period value="6" unit="h" />
</comp> </[attribute]>

<[attribute]
xsi:type="SXPR_TS"> <comp
xsi:type="IVL_TS"> <low
value="20050604" /> <high
value="20050604" /> </comp>
<comp xsi:type="PIVL_TS"
operator="A"
institutionSpecified="true">
<period value="7" unit="h" />
</comp> </[attribute]

TEL <[attribute]
value="tel:1-690-555-1111"
use="H" />

<[attribute]
value="tel:1-690-555-2222"
use="WP" />

TN <[attribute]>Babel Fish</
[attribute]>

<[attribute]>Red Herring</
[attribute]>

Chapter 9
HDR Messaging Toolkit

9-60

TransmissionWrapper <MCCI_MT000100HT04.Mess
age xmlns:xsi="http://
www.w3.org/2001/
XMLSchema-instance"
xmlns="urn:hl7-org:v3"
xmlns:xsip="urn:hl7-org:v3"
xmlns:htb="http://
xmlns.oracle.com/apps/ctb/
messaging" ITSVersion=
"XML_1.0"> <creationTime
value="20040719080000-0800
"/> <responseModeCode
code="C"/> <versionCode
code="V3PR1"/>
<interactionId
root="9.989898.5.100"
extension="PRPA_HN400000"
/> <profileId
root="9.989898.5.1"
extension="v2.14.1.01"/>
<processingCode code="P"/>
<processingModeCode
code="T"/> <acceptAckCode
code="AL"/> <receiver
typeCode= "RCV"> <device
classCode="DEV"
determinerCode="INSTANCE"
> <id root="9.989898.5.100"
extension="DEV1000"/>
<asAgent classCode="AGNT"
> <representedOrganization
classCode="ORG"
determinerCode="INSTANCE"
> <id root="9.989898.5.100"
extension="ORG1000"/> </
representedOrganization> </
asAgent> </device> </
receiver> <respondTo
typeCode ="RSP"> <device
classCode="DEV"
determinerCode="INSTANCE"
> <id root="9.481456.5.1"
extension="DEV1001"/>
<asAgent classCode="AGNT"
> <representedOrganization
classCode="ORG"
determinerCode="INSTANCE"
> <id root="9.481456.5.1"
extension="ORG1001"/> </
representedOrganization> </
asAgent> </device> </
respondTo> <sender
typeCode ="SND"> <device
classCode="DEV"
determinerCode="INSTANCE"
> <id root="9.481456.5.6"
extension="MTKTest"/>
<asAgent classCode="AGNT"
> <representedOrganization
classCode="ORG"

Chapter 9
HDR Messaging Toolkit

9-61

determinerCode="INSTANCE"
> <id root="9.481456.5.1"
extension="ORG1001"/> </
representedOrganization> </
asAgent> </device> </sender>
</
MCCI_MT000100HT04.Messa
ge>

TS <[attribute]
value="20070719080000-0800
" />

<[attribute]
value="20070719080000-0801
" />

URL <[attribute]
value="www.Oracle.com"/>

<[attribute] value="http://
www.hl7.org/"/>

Expected Differences in Instances
• Extra Internal ID Elements

• Extra XML Attributes in Coded Values

• Order Differences in Collection Attributes

• Order Differences Due to Choice Elements

• Differences in the Order of XML Attributes

• Differences Due to Time Zones

• Differences Due to Vocabulary Configuration

• Differences in the Message Wrapper

• Sample Test Message and Corresponding Generated Message

Extra Internal ID Elements
The objects in the generated message can contain one extra ID attribute when
compared to the corresponding object in the input message. This is not an issue,
provided this extra id attribute represents the internal id of the object.

For person and organization entity objects, three IDs are generated and for other
elements two IDs are generated.

Tasks:

Example 9-18 Input XML Element

<Person type="Person" classCode="PSN" determinerCode="INSTANCE"
htb:association="player">
<id root="9.989898.5.1" extension="PSN9002"/>
<name use="L">
<family partType="FAM" encoding="TXT">Mart</family>
<given partType="GIV" encoding="TXT">Bob</given>
</name>
</Person>

Example 9-19 Corresponding Output

<Person type="Person" classCode="PSN" determinerCode="INSTANCE"
htb:association="player">

Chapter 9
HDR Messaging Toolkit

9-62

<id root="9.101010.5" extension="23617" displayable="false"/>
<id root="9.989898.5.1" extension="PSN9002"/>displayable="false"/>
<id root="9.989898.5" extension="5321906" displayable="false"/>
<name use="L"><family partType="FAM" encoding="TXT">Mart</family>
<given partType="GIV" encoding="TXT">Bob</given>
</name>
</Person>

Extra XML Attributes in Coded Values
The XML representations of coded values will contain their full complement of attributes in
the generated message, even though some of these attributes were absent in the persisted
message. This is not an issue.

Tasks:

Example 9-20 Input XML Element

<code code="PORR_TE100001" codeSystemName="HDR Supplemental"/>

Example 9-21 Corresponding Output

<code code="PORR_TE100001"
codeSystemName="HDR Supplemental"
codeSystem="2.16.840.1.113894.1004.100.100.2.5"
codeSystemVersion="HDR Supplemental (2005-02-28)"
displayName="Christian: Assembly of God"/>

Order Differences in Collection Attributes
The order of the constituent elements in collection attributes (those of type SET or BAG) may
not be preserved in the generated message.

Tasks:

Example 9-22 Input XML Element

<statusCode code = "active"/><telecom value="tel:1-690-555-1111" use="H" /><telecom
value="tel:1-690-555-1111" use="WP"/>

Example 9-23 Corresponding Output

<statusCode code = "active"/>
<telecom value="tel:1-690-555-1111" use="WP" />
<telecom value="tel:1-690-555-1111" use="H"/>

Order Differences Due to Choice Elements
When a ActRelationship has cardinality greater than one, and the target's type is a choice,
then the order of the output elements may not match the order of the input elements.

Tasks:

Example 9-24 Input XML Element

<PORR_MT100001HT01.InvestigationEvent …>
…
<component typeCode="COMP" >
<SubstanceAdministrationEvent classCode="SBADM" moodCode="EVN" negationInd="false"">
…
</SubstanceAdministrationEvent>

Chapter 9
HDR Messaging Toolkit

9-63

</component>
<component typeCode="COMP" >
<SpecimenObservationEvent classCode="SPCOBS" moodCode="EVN" negationInd="false" >
…
</SpecimenObservationEvent>
</component>
<component typeCode="COMP" >
<ObservationEventGeneral classCode="OBS" moodCode="EVN" negationInd="false" >
…
</ObservationEventGeneral>
</component>
<component typeCode="COMP" >
<EncounterEvent classCode="ENC" moodCode="EVN" >
…
</EncounterEvent>
</component>
…
</PORR_MT100001HT01.InvestigationEvent >

Example 9-25 Corresponding Output

<PORR_MT100001HT01.InvestigationEvent …>
…
<component typeCode="COMP" >
<SpecimenObservationEvent type="Observation" classCode="SPCOBS" moodCode="EVN"
negationInd="false" >
…
</SpecimenObservationEvent>
</component>
<component typeCode="COMP" >
<SubstanceAdministrationEvent classCode="SBADM" moodCode="EVN"
negationInd="false" >
…
</SubstanceAdministrationEvent>
</component>
<component typeCode="COMP" >
<EncounterEvent classCode="ENC" moodCode="EVN" >
…
</EncounterEvent>
</component>
<component typeCode="COMP" >
<ObservationEventGeneral type="Observation" classCode="OBS" moodCode="EVN"
negationInd="false" >
…
</ObservationEventGeneral>
</component>
…
</PORR_MT100001HT01.InvestigationEvent >

Differences in the Order of XML Attributes
The order of XML attributes of an element may be different in the input and output
messages. The order of the attributes of an XML element is not significant.

Tasks:

Example 9-26 Input XML Element

<telecom value="tel:1-490-555-2222" use="H"/>
<POXX_MT121000HT02.SpecimenObservationOrder moodCode="RQO" classCode="SPCOBS"
negationInd="false" >

Chapter 9
HDR Messaging Toolkit

9-64

Example 9-27 Corresponding Output

<telecom use="H" value="tel:1-490-555-2222"/>
<POXX_MT121000HT02.SpecimenObservationOrder classCode="SPCOBS" moodCode="RQO"
negationInd="false">

Differences Due to Time Zones
A generated message may contain different literal values for time values than is present in
the input message, as the generated time values are represented in the time zone of the
database.

Example 9-28 Input XML Element

<id root="9.481456.5.30" extension="NC001"/>
 <creationTime value="20040719080000-0800"/>
 <versionCode code="V3PR1"/>
 <profileId root="9.989898.5.1" extension=" v2.14.1.01"/>
 <processingCode code="P"/>

Example 9-29 Corresponding Output

<id root="9.481456.5.30" extension="NC001"/>
 <creationTime value="20070719080000-0800"/>
 <versionCode code="V3PR1"/>
 <profileId root="9.989898.5.1" extension=" v2.14.1.01"/>
 <processingCode code="P"/>

Differences Due to Vocabulary Configuration
OMP can be configured to translate coded attributes before sending them out. In such cases,
the input and output values for the coded attribute will be different.

Tasks:

Example 9-30 Input XML Element

<raceCode code="15754" codeSystemName="HL7"/>

Example 9-31 Corresponding Output

<raceCode code="15643001 " codeSystemName="SNOMED-CT"
codeSystem="2.16.840.1.113883.6.96 " codeSystemVersion="2.01.4" displayName="White"/>

Differences in the Message Wrapper
Message wrapper of the input message is not persisted by inbound message processor. So,
Outbound Message Processor will not generate the same message wrapper again.

MTK generates the test instance by using a seeded message wrapper. This message
wrapper is the same for all the test messages. The only difference is the message ids. As
outbound message generator does not know what is the content of the inbound message,
there will be difference between the following attribute values in both the messages:

• Message id

• creationTime

• responseModeCode

• interactionId

Chapter 9
HDR Messaging Toolkit

9-65

• acceptAckCode

• receiver.device.id

• respondTo.device.id

• sender.deviceid

• receiver. representedOrganization .Id

• profileId

Tasks:

Example 9-32 Input XML Element

<MFFI_IN000101 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:hl7-org:v3" xmlns:xsip="urn:hl7-org:v3" xmlns:htb="http://
xmlns.oracle.com/apps/ctb/messaging" ITSVersion= "XML_1.0">
<id root = "1.2.3" extension = "158933102"/>
<creationTime value="20040719080000-0800"/>
<responseModeCode code="C"/>
<versionCode code="V3PR1"/>
<interactionId root="9.989898.5.100" extension="PRPA_HN400000"/>
<processingCode code="P"/>
<processingModeCode code="T"/>
<acceptAckCode code="AL"/>
<receiver typeCode= "RCV">
<device classCode="DEV" determinerCode="INSTANCE" >
<id root="9.989898.5.100" extension="DEV1000"/>
<asAgent classCode="AGNT" >
<representedOrganization classCode="ORG" determinerCode="INSTANCE" >
<id root="9.989898.5.100" extension="ORG1000"/>
</representedOrganization>
</asAgent>
</device>
</receiver>
<respondTo typeCode ="RSP">
<device classCode="DEV" determinerCode="INSTANCE" >
<id root="9.481456.5.1" extension="DEV1001"/>
<asAgent classCode="AGNT" >
<representedOrganization classCode="ORG" determinerCode="INSTANCE">
<id root="9.481456.5.1" extension="ORG1001"/>
</representedOrganization>
</asAgent>
</device>
</respondTo>
<sender typeCode ="SND">
<device classCode="DEV" determinerCode="INSTANCE" >
<id root="9.481456.5.6" extension="MTKTest"/>
<asAgent classCode="AGNT" >
<representedOrganization classCode="ORG" determinerCode="INSTANCE">
<id root="9.481456.5.1" extension="ORG1001"/>
</representedOrganization>
</asAgent>
</device>
</sender>

Example 9-33 Output XML Element

< MFFI_IN000101 xmlns="urn:hl7-org:v3" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xmlns:xsip="urn:hl7-org:v3" xmlns:htb="http://
xmlns.oracle.com/apps/ctb/messaging" ITSVersion="XML_1.0">

Chapter 9
HDR Messaging Toolkit

9-66

 <id root="9.989898.5" extension="MTKTest"/>
 <creationTime value="20071129155115-0800"/>
 <responseModeCode code="D"/>
 <versionCode code="V3PR1"/>
 <interactionId root="9.989898.5" extension="MFPM_IN010000"/>
 <profileId root="9.989898.5" extension="2.14.1.01"/>
 <processingCode code="P"/>
 <processingModeCode code="T"/>
 <acceptAckCode code="NE"/>
 <receiver typeCode="RCV">
 <device classCode="DEV" determinerCode="INSTANCE">
 <id root="9.989898.5.100" extension="ORG1000" displayable="false"/>
 <asAgent classCode="AGNT">
 <representedOrganization classCode="ORG" determinerCode="INSTANCE">
 <id root="9.989898.5.100" extension="ORG1000" displayable="false"/>
 </representedOrganization>
 </asAgent>
 </device>
 </receiver>
 <respondTo typeCode="RSP">
 <device classCode="DEV" determinerCode="INSTANCE">
 <id root="9.989898.5" extension="1"/>
 <asAgent classCode="AGNT">
 <representedOrganization classCode="ORG" determinerCode="INSTANCE">
 <id root="9.989898.5" extension="1"/>
 </representedOrganization>
 </asAgent>
 </device>
 </respondTo>
 <sender typeCode="SND">
 <device classCode="DEV" determinerCode="INSTANCE">
 <id root="9.989898.5" extension="1"/>
 <asAgent classCode="AGNT">
 <representedOrganization classCode="ORG" determinerCode="INSTANCE">
 <id root="9.989898.5" extension="1"/>
 </representedOrganization>
 </asAgent>
 </device>
 </sender>

Sample Test Message and Corresponding Generated Message
Task Examples:

Example 9-34 Input XML Element

<MFFI_IN000101 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="urn:hl7-
org:v3" xmlns:xsip="urn:hl7-org:v3" xmlns:htb="http://xmlns.oracle.com/apps/ctb/
messaging" ITSVersion= "XML_1.0">
<id root = "1.2.3" extension = "158933102"/>
<creationTime value="20040719080000-0800"/>
<responseModeCode code="C"/>
<versionCode code="V3PR1"/>
<interactionId root="9.989898.5.100" extension="PRPA_HN400000"/>
<profileId root="9.989898.5.1" extension="v2.14.1.01"/>
<processingCode code="P"/>
<processingModeCode code="T"/>
<acceptAckCode code="AL"/>
<receiver typeCode= "RCV">
<device classCode="DEV" determinerCode="INSTANCE" >

Chapter 9
HDR Messaging Toolkit

9-67

<id root="9.989898.5.100" extension="DEV1000"/>
<asAgent classCode="AGNT" >
<representedOrganization classCode="ORG" determinerCode="INSTANCE" >
<id root="9.989898.5.100" extension="ORG1000"/>
</representedOrganization>
</asAgent>
</device>
</receiver>
<respondTo typeCode ="RSP">
<device classCode="DEV" determinerCode="INSTANCE" >
<id root="9.481456.5.1" extension="DEV1001"/>
<asAgent classCode="AGNT" >
<representedOrganization classCode="ORG" determinerCode="INSTANCE">
<id root="9.481456.5.1" extension="ORG1001"/>
</representedOrganization>
</asAgent>
</device>
</respondTo>
<sender typeCode ="SND">
<device classCode="DEV" determinerCode="INSTANCE" >
<id root="9.481456.5.6" extension="MTKTest"/>
<asAgent classCode="AGNT" >
<representedOrganization classCode="ORG" determinerCode="INSTANCE">
<id root="9.481456.5.1" extension="ORG1001"/>
</representedOrganization>
</asAgent>
</device>
</sender>
<controlActProcess classCode="CACT" moodCode="EVN">
<code code = "MFFI_TE000101" codeSystemName = "HDR Supplemental"/>
<subject typeCode="SUBJ">
<registrationEvent classCode="REG" moodCode="EVN">
<code code="T" codeSystemName="ActCode"/>
<subject typeCode="SBJ">
<employmentStaff classCode="EMP">
 <id root = "1.2.3" extension = "158931102"/>
 <code code = "DEPEN" codeSystemName = "RoleCode"/>
 <addr use="H" ><delimiter partType="DEL">;</delimiter>
<country partType="CNT">US</country>
<state partType="STA">CA</state>
<city partType="CTY">Fountain Hills</city>
<postalCode partType="ZIP">85268</postalCode>
<streetAddressLine partType="SAL">15542 OliveWest</streetAddressLine>
<houseNumberNumeric partType="BNN" >999777</houseNumberNumeric>
<houseNumber partType="BNR">999777</houseNumber>
<direction partType="DIR">N</direction>
<streetName partType="STR">Church Street</streetName>
<streetNameBase partType="STB">Church Street</streetNameBase>
<streetNameType partType="STTYP">Avenue</streetNameType>
<unitID partType="UNID">222222</unitID>
<censusTract partType="CEN">testCensusValue</censusTract>
<unitType partType="UNIT">Apartment</unitType>
<useablePeriod xsi:type="IVL_TS" >
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="false"/>
</useablePeriod>
</addr>
 <addr use="H">
<delimiter partType="DEL">;</delimiter>
<country partType="CNT">US</country>
<state partType="STA">CA</state>

Chapter 9
HDR Messaging Toolkit

9-68

<city partType="CTY">Fountain Hills</city>
<postalCode partType="ZIP">852</postalCode>
<streetAddressLine partType="SAL">142 OliveWest</streetAddressLine>
<houseNumberNumeric partType="BNN" >9977</houseNumberNumeric>
<houseNumber partType="BNR">9997</houseNumber>
<direction partType="DIR">N</direction>
<streetName partType="STR">Church Street</streetName>
<streetNameBase partType="STB">Church Street</streetNameBase>
<streetNameType partType="STTYP">Avenue</streetNameType>
<unitID partType="UNID">222234</unitID>
<censusTract partType="CEN">testCensusValue</censusTract>
<unitType partType="UNIT">Apartment</unitType>
<useablePeriod xsi:type="IVL_TS" >
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="false"/>
</useablePeriod>
</addr>
 <telecom value="tel:1-690-555-1111" use="H" />
 <telecom value="tel:1-690-555-1111" use="WP"/>
 <statusCode code = "active"/>
 <effectiveTime xsi:type="IVL_TS">
 <low value="20070127"/>
 <high value="20070526"/>
</effectiveTime>
 <employeePerson determinerCode="INSTANCE" classCode="PSN">
 <id root = "1.2.3" extension = "158931402"/>
 <id root = "1.2.3" extension = "158931502"/>
 <name use="L">
 <family partType="FAM" >Levin</family>
 <given partType="GIV" >Henry Jr</given>
</name>
 <name use="L">
 <family partType="FAM" qualifier="VV">Levin</family>
 <given partType="GIV">Henry Sr</given>
</name>
 <desc mediaType="image/png" language="en-US" compression="GZ"
integrityCheck="3454bfb019d0e7d47a253b59cf234bc49a0e0cf8">
 <reference value="http://example.org/xrays/128s8d9ej229se32s.png">
 <useablePeriod xsi:type="IVL_TS">
 <low value="200007200845"/>
 <high value="200008200845"/>
 </useablePeriod>
 </reference>
 <thumbnail mediaType="image/jpeg" language="en-US" representation="B64"/>
 MNYD83jmMdomSJUEdmde9j44zmMir6edjzMMIjdMDSsWdIJdksIJR3373jeu83
 6edjzMMIjdMDSsWdIJdksIJR3373jeu83MNYD83jmMdomSJUEdmde9j44zmMir
 omSJUEdmde9j44zmMiromSJUEdmde9j44zmMirdMDSsWdIJdksIJR3373jeu83
 4zmMir6edjzMMIjdMDSsWdIJdksIJR3373jeu83==</desc>
 <statusCode code = "active"/>
 <telecom value="tel:1-690-555-1111" use="H" />
 <telecom value="tel:1-690-555-1111" use="WP"/>
 <administrativeGenderCode code = "F" codeSystemName = "AdministrativeGender"/>
 <birthTime value="20060719080000-0800" />
 <deceasedInd value="true"/>
 <deceasedTime value="20060719080000-0800" />
 <multipleBirthInd value="true"/>
 <multipleBirthOrderNumber xsi:type="INT" value="204"/>
 <organDonorInd value="true"/>
 <addr use="H" ><delimiter partType="DEL">;</delimiter>
<country partType="CNT">US</country>
<state partType="STA">CA</state>

Chapter 9
HDR Messaging Toolkit

9-69

<city partType="CTY">Fountain Hills</city>
<postalCode partType="ZIP">85268</postalCode>
<streetAddressLine partType="SAL">15542 OliveWest</streetAddressLine>
<houseNumberNumeric partType="BNN" >999777</houseNumberNumeric>
<houseNumber partType="BNR">999777</houseNumber>
<direction partType="DIR">N</direction>
<streetName partType="STR">Church Street</streetName>
<streetNameBase partType="STB">Church Street</streetNameBase>
<streetNameType partType="STTYP">Avenue</streetNameType>
<unitID partType="UNID">222222</unitID>
<censusTract partType="CEN">testCensusValue</censusTract>
<unitType partType="UNIT">Apartment</unitType>
<useablePeriod xsi:type="IVL_TS" >
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="false"/>
</useablePeriod>
</addr>
 <addr use="H">
<delimiter partType="DEL">;</delimiter>
<country partType="CNT">US</country>
<state partType="STA">CA</state>
<city partType="CTY">Fountain Hills</city>
<postalCode partType="ZIP">852</postalCode>
<streetAddressLine partType="SAL">142 OliveWest</streetAddressLine>
<houseNumberNumeric partType="BNN" >9977</houseNumberNumeric>
<houseNumber partType="BNR">9997</houseNumber>
<direction partType="DIR">N</direction>
<streetName partType="STR">Church Street</streetName>
<streetNameBase partType="STB">Church Street</streetNameBase>
<streetNameType partType="STTYP">Avenue</streetNameType>
<unitID partType="UNID">222234</unitID>
<censusTract partType="CEN">testCensusValue</censusTract>
<unitType partType="UNIT">Apartment</unitType>
<useablePeriod xsi:type="IVL_TS" >
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="false"/>
</useablePeriod>
</addr>
 <maritalStatusCode code = "A" codeSystemName = "MaritalStatus"/>
 <disabilityCode code = "1" codeSystemName = "PersonDisabilityType"/>
 <livingArrangementCode code = "G" codeSystemName = "LivingArrangement"/>
 <religiousAffiliationCode code = "1001" codeSystemName =
"ReligiousAffiliation"/>
 <raceCode code = "1008-2" codeSystemName = "Race"/>
 <ethnicGroupCode code = "2135-2" codeSystemName = "Ethnicity"/>
 <languageCommunication>
 <languageCode code = "EncounterStatus" codeSystemName = "HDR
Supplemental"/>
 <modeCode code = "ESGN" codeSystemName = "LanguageAbilityMode"/>
 <proficiencyLevelCode code = "E" codeSystemName =
"LanguageAbilityProficiency"/>
 <preferenceInd value="true"/>
 </languageCommunication>
 </employeePerson>
 <employerOrganization determinerCode="INSTANCE" classCode="ORG">
 <id root = "1.2.3" extension = "158931702"/>
 <id root = "1.2.3" extension = "158931802"/>
 <code code = "NDA17" codeSystemName = "EntityCode"/>
 <name use="L">
 <prefix partType="PFX" >Prime Health</prefix>
 <suffix partType="SFX" >Clinic</suffix>

Chapter 9
HDR Messaging Toolkit

9-70

</name>
 <name use="L">
 <prefix partType="PFX" >Prime Health</prefix>
 <suffix partType="SFX" >Speciality Center</suffix>
</name>
 <desc mediaType="image/png" language="en-US" compression="GZ"
integrityCheck="3454bfb019d0e7d47a253b59cf234bc49a0e0cf8">
 <reference value="http://example.org/xrays/128s8d9ej229se32s.png">
 <useablePeriod xsi:type="IVL_TS">
 <low value="200007200845"/>
 <high value="200008200845"/>
 </useablePeriod>
 </reference>
 <thumbnail mediaType="image/jpeg" language="en-US" representation="B64"/>
 MNYD83jmMdomSJUEdmde9j44zmMir6edjzMMIjdMDSsWdIJdksIJR3373jeu83
 6edjzMMIjdMDSsWdIJdksIJR3373jeu83MNYD83jmMdomSJUEdmde9j44zmMir
 omSJUEdmde9j44zmMiromSJUEdmde9j44zmMirdMDSsWdIJdksIJR3373jeu83
 4zmMir6edjzMMIjdMDSsWdIJdksIJR3373jeu83==</desc>
 <statusCode code = "active"/>
 <telecom value="tel:1-690-555-1111" use="H" />
 <telecom value="tel:1-690-555-1111" use="WP"/>
 <addr use="H" ><delimiter partType="DEL">;</delimiter>
<country partType="CNT">US</country>
<state partType="STA">CA</state>
<city partType="CTY">Fountain Hills</city>
<postalCode partType="ZIP">85268</postalCode>
<streetAddressLine partType="SAL">15542 OliveWest</streetAddressLine>
<houseNumberNumeric partType="BNN" >999777</houseNumberNumeric>
<houseNumber partType="BNR">999777</houseNumber>
<direction partType="DIR">N</direction>
<streetName partType="STR">Church Street</streetName>
<streetNameBase partType="STB">Church Street</streetNameBase>
<streetNameType partType="STTYP">Avenue</streetNameType>
<unitID partType="UNID">222222</unitID>
<censusTract partType="CEN">testCensusValue</censusTract>
<unitType partType="UNIT">Apartment</unitType>
<useablePeriod xsi:type="IVL_TS" >
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="false"/>
</useablePeriod>
</addr>
 <addr use="H">
<delimiter partType="DEL">;</delimiter>
<country partType="CNT">US</country>
<state partType="STA">CA</state>
<city partType="CTY">Fountain Hills</city>
<postalCode partType="ZIP">852</postalCode>
<streetAddressLine partType="SAL">142 OliveWest</streetAddressLine>
<houseNumberNumeric partType="BNN" >9977</houseNumberNumeric>
<houseNumber partType="BNR">9997</houseNumber>
<direction partType="DIR">N</direction>
<streetName partType="STR">Church Street</streetName>
<streetNameBase partType="STB">Church Street</streetNameBase>
<streetNameType partType="STTYP">Avenue</streetNameType>
<unitID partType="UNID">222234</unitID>
<censusTract partType="CEN">testCensusValue</censusTract>
<unitType partType="UNIT">Apartment</unitType>
<useablePeriod xsi:type="IVL_TS" >
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="false"/>
</useablePeriod></addr>

Chapter 9
HDR Messaging Toolkit

9-71

 <standardIndustryClassCode code = "001662" codeSystemName = "HDR
Supplemental"/>
 <asPartOfWhole classCode="PART">
 <id root = "1.2.3" extension = "158932002"/>
 <id root = "1.2.3" extension = "158932102"/>
 <code code = "DEPEN" codeSystemName = "RoleCode"/>
 <statusCode code = "active"/>
 <effectiveTime xsi:type="IVL_TS">
 <low value="20070127"/>
 <high value="20070526"/>
</effectiveTime>
 </asPartOfWhole>
 <contactParty classCode="CON">
 <id root = "1.2.3" extension = "158932302"/>
 <id root = "1.2.3" extension = "158932402"/>
 <code code = "DEPEN" codeSystemName = "RoleCode"/>
 <telecom value="tel:1-690-555-1111" use="H" />
 <telecom value="tel:1-690-555-1111" use="WP"/>
 <contactPerson determinerCode="INSTANCE" classCode="PSN">
 <name use="L">
 <family partType="FAM" >Levin</family>
 <given partType="GIV" >Henry Jr</given>
</name>
 <name use="L">
 <family partType="FAM" qualifier="VV">Levin</family>
 <given partType="GIV">Henry Sr</given>
</name>
 <telecom value="tel:1-690-555-1111" use="H" />
 <telecom value="tel:1-690-555-1111" use="WP"/>
 <asPersonDomain classCode="IDENT">
 <id root = "1.2.3" extension = "158932602"/>
 <code code = "DEPEN" codeSystemName = "RoleCode"/>
 </asPersonDomain>
 </contactPerson>
 </contactParty>
 </employerOrganization>
</employmentStaff>
</subject>
</registrationEvent>
</subject>
</controlActProcess>
</MFFI_IN000101>

Example 9-35 Output XML Element

<MFPM_IN000101 xmlns="urn:hl7-org:v3" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xmlns:xsip="urn:hl7-org:v3" xmlns:htb="http://
xmlns.oracle.com/apps/ctb/messaging" ITSVersion="XML_1.0">
 <id root="9.989898.5" extension="MTKTest"/>
 <creationTime value="20071129155115-0800"/>
 <responseModeCode code="D"/>
 <versionCode code="V3PR1"/>
 <interactionId root="9.989898.5" extension="MFPM_IN010000"/>
 <profileId root="9.989898.5" extension="2.14.1.01"/>
 <processingCode code="P"/>
 <processingModeCode code="T"/>
 <acceptAckCode code="NE"/>
 <receiver typeCode="RCV">
 <device classCode="DEV" determinerCode="INSTANCE">
 <id root="9.989898.5.100" extension="ORG1000" displayable="false"/>
 <asAgent classCode="AGNT">

Chapter 9
HDR Messaging Toolkit

9-72

 <representedOrganization classCode="ORG" determinerCode="INSTANCE">
 <id root="9.989898.5.100" extension="ORG1000" displayable="false"/>
 </representedOrganization>
 </asAgent>
 </device>
 </receiver>
 <respondTo typeCode="RSP">
 <device classCode="DEV" determinerCode="INSTANCE">
 <id root="9.989898.5" extension="1"/>
 <asAgent classCode="AGNT">
 <representedOrganization classCode="ORG" determinerCode="INSTANCE">
 <id root="9.989898.5" extension="1"/>
 </representedOrganization>
 </asAgent>
 </device>
 </respondTo>
 <sender typeCode="SND">
 <device classCode="DEV" determinerCode="INSTANCE">
 <id root="9.989898.5" extension="1"/>
 <asAgent classCode="AGNT">
 <representedOrganization classCode="ORG" determinerCode="INSTANCE">
 <id root="9.989898.5" extension="1"/>
 </representedOrganization>
 </asAgent>
 </device>
 </sender>
 <controlActProcess classCode="CACT" moodCode="EVN">
 <id root="9.989898.5" extension="158933802" displayable="false"/>
 <code code="EncounterStatus" codeSystemName="HDR Supplemental"
codeSystem="2.16.840.1.113894.1004.100.100.2.5" codeSystemVersion="HDR Supplemental
(2005-07-28)" displayName="EncounterStatus"/>
 <subject typeCode="SUBJ">
 <registrationEvent classCode="REG" moodCode="EVN">
 <id root="9.989898.5" extension="158933702" displayable="false"/>
 <code code="T" codeSystemName="ActCode" codeSystem="2.16.840.1.113883.5.4"
codeSystemVersion="2.01.4" displayName="tea only"/>
 <subject typeCode="SBJ">
 <employmentStaff classCode="EMP">
 <id root="1.2.3" extension="158931102" displayable="false"/>
 <code code="DEPEN" codeSystemName="RoleCode"
codeSystem="2.16.840.1.113883.5.111" codeSystemVersion="2.01.4" displayName="DEPEN"/>
 <addr use="H">
 <delimiter partType="DEL" representation="TXT">;</delimiter>
 <country partType="CNT" representation="TXT">US</country>
 <state partType="STA" representation="TXT">CA</state>
 <city partType="CTY" representation="TXT">Fountain Hills</city>
 <postalCode partType="ZIP" representation="TXT">85268</postalCode>
 <streetAddressLine partType="SAL" representation="TXT">15542
OliveWest</streetAddressLine>
 <houseNumberNumeric partType="BNN" representation="TXT">999777</
houseNumberNumeric>
 <houseNumber partType="BNR" representation="TXT">999777</
houseNumber>
 <direction partType="DIR" representation="TXT">N</direction>
 <streetName partType="STR" representation="TXT">Church Street</
streetName>
 <streetNameBase partType="STB" representation="TXT">Church
Street</streetNameBase>
 <streetNameType partType="STTYP" representation="TXT">Avenue</
streetNameType>
 <unitID partType="UNID" representation="TXT">222222</unitID>

Chapter 9
HDR Messaging Toolkit

9-73

 <censusTract partType="CEN"
representation="TXT">testCensusValue</censusTract>
 <unitType partType="UNIT" representation="TXT">Apartment</
unitType>
 <useablePeriod xsi:type="IVL_TS">
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="false"/>
 </useablePeriod>
 </addr>
 <addr use="H">
 <delimiter partType="DEL" representation="TXT">;</delimiter>
 <country partType="CNT" representation="TXT">US</country>
 <state partType="STA" representation="TXT">CA</state>
 <city partType="CTY" representation="TXT">Fountain Hills</
city>
 <postalCode partType="ZIP" representation="TXT">852</
postalCode>
 <streetAddressLine partType="SAL" representation="TXT">142
OliveWest</streetAddressLine>
 <houseNumberNumeric partType="BNN"
representation="TXT">9977</houseNumberNumeric>
 <houseNumber partType="BNR" representation="TXT">9997</
houseNumber>
 <direction partType="DIR" representation="TXT">N</direction>
 <streetName partType="STR" representation="TXT">Church
Street</streetName>
 <streetNameBase partType="STB" representation="TXT">Church
Street</streetNameBase>
 <streetNameType partType="STTYP"
representation="TXT">Avenue</streetNameType>
 <unitID partType="UNID" representation="TXT">222234</unitID>
 <censusTract partType="CEN"
representation="TXT">testCensusValue</censusTract>
 <unitType partType="UNIT" representation="TXT">Apartment</
unitType>
 <useablePeriod xsi:type="IVL_TS">
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="false"/>
 </useablePeriod>
 </addr>
 <telecom use="H" value="tel:1-690-555-1111"/>
 <telecom use="WP" value="tel:1-690-555-1111"/>
 <statusCode code="active"/>
 <effectiveTime xsi:type="IVL_TS">
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="true"/>
 </effectiveTime>
 <employeePerson classCode="PSN" determinerCode="INSTANCE">
 <id root="9.101010.5" extension="1086238"
displayable="false"/>
 <id root="1.2.3" extension="158931502" displayable="false"/>
 <id root="1.2.3" extension="158931402" displayable="false"/>
 <id root="9.989898.5" extension="158933405"
displayable="false"/>
 <name use="L">
 <family partType="FAM" representation="TXT"
qualifier="VV">Levin</family>
 <given partType="GIV" representation="TXT">Henry Sr</
given>
 </name>
 <name use="L">

Chapter 9
HDR Messaging Toolkit

9-74

 <family partType="FAM" representation="TXT">Levin</family>
 <given partType="GIV" representation="TXT">Henry Jr</given>
 </name>
 <desc mediaType="image/png" compression="GZ"
integrityCheck="3454bfb019d0e7d47a253b59cf234bc49a0e0cf8"
representation="TXT">MNYD83jmMdomSJUEdmde9j44zmMir6edjzMMIjdMDSsWdIJdksIJR3373jeu83
 6edjzMMIjdMDSsWdIJdksIJR3373jeu83MNYD83jmMdomSJUEdmde9j44zmMir
 omSJUEdmde9j44zmMiromSJUEdmde9j44zmMirdMDSsWdIJdksIJR3373jeu83
 4zmMir6edjzMMIjdMDSsWdIJdksIJR3373jeu83==<reference value="http://example.org/
xrays/128s8d9ej229se32s.png"><useablePeriod xsi:type="IVL_TS"><low
value="200007200845" inclusive="true"/><high value="200008200845" inclusive="true"/></
useablePeriod></reference><thumbnail mediaType="image/jpeg" representation="B64"></
thumbnail></desc>
 <statusCode code="active"/>
 <telecom use="H" value="tel:1-690-555-1111"/>
 <telecom use="WP" value="tel:1-690-555-1111"/>
 <administrativeGenderCode code="F"
codeSystemName="AdministrativeGender" codeSystem="2.16.840.1.113883.5.1"
codeSystemVersion="2.01.4" displayName="Female"/>
 <birthTime value="20060719080000-0800"/>
 <deceasedInd value="true"/>
 <deceasedTime value="20060719080000-0800"/>
 <multipleBirthInd value="true"/>
 <multipleBirthOrderNumber value="204"/>
 <organDonorInd value="true"/>
 <addr use="H">
 <delimiter partType="DEL" representation="TXT">;</delimiter>
 <country partType="CNT" representation="TXT">US</country>
 <state partType="STA" representation="TXT">CA</state>
 <city partType="CTY" representation="TXT">Fountain Hills</city>
 <postalCode partType="ZIP" representation="TXT">85268</
postalCode>
 <streetAddressLine partType="SAL" representation="TXT">15542
OliveWest</streetAddressLine>
 <houseNumberNumeric partType="BNN"
representation="TXT">999777</houseNumberNumeric>
 <houseNumber partType="BNR" representation="TXT">999777</
houseNumber>
 <direction partType="DIR" representation="TXT">N</direction>
 <streetName partType="STR" representation="TXT">Church Street</
streetName>
 <streetNameBase partType="STB" representation="TXT">Church
Street</streetNameBase>
 <streetNameType partType="STTYP" representation="TXT">Avenue</
streetNameType>
 <unitID partType="UNID" representation="TXT">222222</unitID>
 <censusTract partType="CEN"
representation="TXT">testCensusValue</censusTract>
 <unitType partType="UNIT" representation="TXT">Apartment</
unitType>
 <useablePeriod xsi:type="IVL_TS">
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="false"/>
 </useablePeriod>
 </addr>
 <addr use="H">
 <delimiter partType="DEL" representation="TXT">;</delimiter>
 <country partType="CNT" representation="TXT">US</country>
 <state partType="STA" representation="TXT">CA</state>
 <city partType="CTY" representation="TXT">Fountain Hills</city>
 <postalCode partType="ZIP" representation="TXT">852</

Chapter 9
HDR Messaging Toolkit

9-75

postalCode>
 <streetAddressLine partType="SAL"
representation="TXT">142 OliveWest</streetAddressLine>
 <houseNumberNumeric partType="BNN"
representation="TXT">9977</houseNumberNumeric>
 <houseNumber partType="BNR" representation="TXT">9997</
houseNumber>
 <direction partType="DIR" representation="TXT">N</
direction>
 <streetName partType="STR" representation="TXT">Church
Street</streetName>
 <streetNameBase partType="STB"
representation="TXT">Church Street</streetNameBase>
 <streetNameType partType="STTYP"
representation="TXT">Avenue</streetNameType>
 <unitID partType="UNID" representation="TXT">222234</
unitID>
 <censusTract partType="CEN"
representation="TXT">testCensusValue</censusTract>
 <unitType partType="UNIT"
representation="TXT">Apartment</unitType>
 <useablePeriod xsi:type="IVL_TS">
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="false"/>
 </useablePeriod>
 </addr>
 <maritalStatusCode code="A" codeSystemName="MaritalStatus"
codeSystem="2.16.840.1.113883.5.2" codeSystemVersion="2.01.4"
displayName="Annulled"/>
 <disabilityCode code="1"
codeSystemName="PersonDisabilityType" codeSystem="2.16.840.1.113883.5.93"
codeSystemVersion="2.01.4" displayName="Vision impaired"/>
 <livingArrangementCode code="G"
codeSystemName="LivingArrangement" codeSystem="2.16.840.1.113883.5.63"
codeSystemVersion="2.01.4" displayName="Group Home"/>
 <religiousAffiliationCode code="1001"
codeSystemName="ReligiousAffiliation" codeSystem="2.16.840.1.113883.5.1076"
codeSystemVersion="2.01.4" displayName="Adventist"/>
 <raceCode code="1008-2" codeSystemName="Race"
codeSystem="2.16.840.1.113883.5.104" codeSystemVersion="2.01.4"
displayName="Algonquian"/>
 <ethnicGroupCode code="2135-2" codeSystemName="Ethnicity"
codeSystem="2.16.840.1.113883.5.50" codeSystemVersion="2.01.4"
displayName="Hispanic or Latino"/>
 <languageCommunication>
 <languageCode code="EncounterStatus" codeSystemName="HDR
Supplemental" codeSystem="2.16.840.1.113894.1004.100.100.2.5"
codeSystemVersion="HDR Supplemental (2005-07-28)" displayName="EncounterStatus"/>
 <modeCode code="ESGN"
codeSystemName="LanguageAbilityMode" codeSystem="2.16.840.1.113883.5.60"
codeSystemVersion="2.01.4" displayName="Expressed signed"/>
 <proficiencyLevelCode code="E"
codeSystemName="LanguageAbilityProficiency" codeSystem="2.16.840.1.113883.5.61"
codeSystemVersion="2.01.4" displayName="Excellent"/>
 <preferenceInd value="true"/>
 </languageCommunication>
 </employeePerson>
 <employerOrganization classCode="ORG"
determinerCode="INSTANCE">
 <id root="1.2.3" extension="158931702" displayable="false"/>
 <id root="9.989898.5" extension="158933406"

Chapter 9
HDR Messaging Toolkit

9-76

displayable="false"/>
 <id root="1.2.3" extension="158931802" displayable="false"/>
 <id root="9.101010.5" extension="1086239" displayable="false"/>
 <code code="NDA17" codeSystemName="EntityCode"
codeSystem="2.16.840.1.113883.5.1060" codeSystemVersion="2.01.4" displayName="NDA17"/>
 <name use="L">
 <prefix partType="PFX" representation="TXT">Prime Health</
prefix>
 <suffix partType="SFX" representation="TXT">Clinic</suffix>
 </name>
 <name use="L">
 <prefix partType="PFX" representation="TXT">Prime Health</
prefix>
 <suffix partType="SFX" representation="TXT">Speciality Center</
suffix>
 </name>
 <desc mediaType="image/png" compression="GZ"
integrityCheck="3454bfb019d0e7d47a253b59cf234bc49a0e0cf8"
representation="TXT">MNYD83jmMdomSJUEdmde9j44zmMir6edjzMMIjdMDSsWdIJdksIJR3373jeu83
 6edjzMMIjdMDSsWdIJdksIJR3373jeu83MNYD83jmMdomSJUEdmde9j44zmMir
 omSJUEdmde9j44zmMiromSJUEdmde9j44zmMirdMDSsWdIJdksIJR3373jeu83
 4zmMir6edjzMMIjdMDSsWdIJdksIJR3373jeu83==<reference value="http://example.org/
xrays/128s8d9ej229se32s.png"><useablePeriod xsi:type="IVL_TS"><low
value="200007200845" inclusive="true"/><high value="200008200845" inclusive="true"/></
useablePeriod></reference><thumbnail mediaType="image/jpeg" representation="B64"></
thumbnail></desc>
 <statusCode code="active"/>
 <telecom use="H" value="tel:1-690-555-1111"/>
 <addr use="H">
 <delimiter partType="DEL" representation="TXT">;</delimiter>
 <country partType="CNT" representation="TXT">US</country>
 <state partType="STA" representation="TXT">CA</state>
 <city partType="CTY" representation="TXT">Fountain Hills</city>
 <postalCode partType="ZIP" representation="TXT">852</
postalCode>
 <streetAddressLine partType="SAL" representation="TXT">142
OliveWest</streetAddressLine>
 <houseNumberNumeric partType="BNN" representation="TXT">9977</
houseNumberNumeric>
 <houseNumber partType="BNR" representation="TXT">9997</
houseNumber>
 <direction partType="DIR" representation="TXT">N</direction>
 <streetName partType="STR" representation="TXT">Church Street</
streetName>
 <streetNameBase partType="STB" representation="TXT">Church
Street</streetNameBase>
 <streetNameType partType="STTYP" representation="TXT">Avenue</
streetNameType>
 <unitID partType="UNID" representation="TXT">222234</unitID>
 <censusTract partType="CEN"
representation="TXT">testCensusValue</censusTract>
 <unitType partType="UNIT" representation="TXT">Apartment</
unitType>
 <useablePeriod xsi:type="IVL_TS">
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="false"/>
 </useablePeriod>
 </addr>
 <addr use="H">
 <delimiter partType="DEL" representation="TXT">;</delimiter>
 <country partType="CNT" representation="TXT">US</country>

Chapter 9
HDR Messaging Toolkit

9-77

 <state partType="STA" representation="TXT">CA</state>
 <city partType="CTY" representation="TXT">Fountain
Hills</city>
 <postalCode partType="ZIP" representation="TXT">85268</
postalCode>
 <streetAddressLine partType="SAL"
representation="TXT">15542 OliveWest</streetAddressLine>
 <houseNumberNumeric partType="BNN"
representation="TXT">999777</houseNumberNumeric>
 <houseNumber partType="BNR" representation="TXT">999777</
houseNumber>
 <direction partType="DIR" representation="TXT">N</
direction>
 <streetName partType="STR" representation="TXT">Church
Street</streetName>
 <streetNameBase partType="STB"
representation="TXT">Church Street</streetNameBase>
 <streetNameType partType="STTYP"
representation="TXT">Avenue</streetNameType>
 <unitID partType="UNID" representation="TXT">222222</
unitID>
 <censusTract partType="CEN"
representation="TXT">testCensusValue</censusTract>
 <unitType partType="UNIT"
representation="TXT">Apartment</unitType>
 <useablePeriod xsi:type="IVL_TS">
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="false"/>
 </useablePeriod>
 </addr>
 <standardIndustryClassCode code="001662"
codeSystemName="HDR Supplemental"
codeSystem="2.16.840.1.113894.1004.100.100.2.5" codeSystemVersion="HDR
Supplemental (2005-07-28)" displayName="Snack"/>
 <asPartOfWhole classCode="PART">
 <id root="1.2.3" extension="158932002"
displayable="false"/>
 <id root="1.2.3" extension="158932102"
displayable="false"/>
 <code code="DEPEN" codeSystemName="RoleCode"
codeSystem="2.16.840.1.113883.5.111" codeSystemVersion="2.01.4"
displayName="DEPEN"/>
 <statusCode code="active"/>
 <effectiveTime xsi:type="IVL_TS">
 <low value="20070127" inclusive="true"/>
 <high value="20070526" inclusive="true"/>
 </effectiveTime>
 </asPartOfWhole>
 <contactParty classCode="CON">
 <id root="1.2.3" extension="158932302"
displayable="false"/>
 <id root="1.2.3" extension="158932402"
displayable="false"/>
 <code code="DEPEN" codeSystemName="RoleCode"
codeSystem="2.16.840.1.113883.5.111" codeSystemVersion="2.01.4"
displayName="DEPEN"/>
 <telecom use="H" value="tel:1-690-555-1111"/>
 <telecom use="WP" value="tel:1-690-555-1111"/>
 <contactPerson classCode="PSN" determinerCode="INSTANCE">
 <name use="L">
 <family partType="FAM" representation="TXT">Levin</

Chapter 9
HDR Messaging Toolkit

9-78

family>
 <given partType="GIV" representation="TXT">Henry Jr</
given>
 </name>
 <name use="L">
 <family partType="FAM" representation="TXT"
qualifier="VV">Levin</family>
 <given partType="GIV" representation="TXT">Henry Sr</
given>
 </name>
 <telecom use="H" value="tel:1-690-555-1111"/>
 <telecom use="WP" value="tel:1-690-555-1111"/>
 <asPersonDomain classCode="IDENT">
 <id root="1.2.3" extension="158932602"
displayable="false"/>
 <code code="DEPEN" codeSystemName="RoleCode"
codeSystem="2.16.840.1.113883.5.111" codeSystemVersion="2.01.4" displayName="DEPEN"/>
 </asPersonDomain>
 </contactPerson>
 </contactParty>
 </employerOrganization>
 </employmentStaff>
 </subject>
 </registrationEvent>
 </subject>
 </controlActProcess>
</ MFPM_IN000101 >

Error Messages

Note:

The & sign in the Error Message column of the above table indicates variable name.
MTK displays the value of these variable at runtime.

Error Code Exception Type Error Message Error Description

CTB_MTK_NO_SC
HEMA_INFO

CTBValidationRunti
meException

There is no SCHEMA
in the list provided to
test. Client application
has passed a null
SCHEMAINFORMATIO
N object.

This error shows that
schemainformation object is not
passed to the API .Please create
schemainformation object array of
xsds and mifs which are to be
tested and pass it to the API.

CTB_MTK_NO_MI
F_CONTENT

CTBValidationRunti
meException

The content of the MIF
file &MIF_FILE_NAME
is empty.

In schemainformation object only
MIF file name is set but the content
of the file is not set . Please set the
MIF file content as well on the
schemainformation object.

CTB_MTK_NO_XS
D_CONTENT

CTBValidationRunti
meException

The content of the XSD
file &XSD_FILE_NAME
is empty.

In schemainformation object only
XSD file name is set but the
content of the file is not set . Please
set the XSD file content as well on
the schemainformation object.

Chapter 9
HDR Messaging Toolkit

9-79

CTB_MTK_NO_MI
F_AND_XSD_CON
TENT

CTBValidationRunti
meException

Both XSD
&XSD_FILE_NAME and
MIF &MIF_FILE_NAME
are not present.

In schemainformation object both
XSD and MIF file name is set but
the content of the files are not set .
Please set the XSD and MIF file
content as well on the
schemainformation object.

CTB_MTK_INVALI
D_SCHEMA_TYP
E

CTBValidationRunti
meException

Validation of input
parameters failed.
SCHEMA
INFORMATION TYPE
&SCHEMA_INFO_TYPE
is not supported.

SchemaInformation object requires
a SCHEMA INFORMATION TYPE
parameter to be set which can have
following values 1.PAYLOAD
2.CMET 3. COREMIF. If another
value other than these 3 values set
for SCHEMA INFORMATION TYPE
is encountered, this error is
thrown . Please use the correct
SCHEMA INFORMATION TYPE
values in uploaded
schemainformation object.

CTB_MTK_DUPLI
CATE_XSD

CTBValidationRunti
meException

XSD &XSD_FILE_NAME
already exists as oracle
ARTIFACTs. Please
rename the ARTIFACT.

This error shows that the xsd which
user is trying to upload is already
present as an Oracle supplied
artifact . Please change the name
of xsd (other than oracle supported
ones) and set it on the
schemainformation object.

CTB_MTK_NO_C
ORE_MIF

CTBValidationRunti
meException

The content of file
CMETINFO.COREMIF
file is empty.

MTK throws this error when in the
schemainformation object
schema_type is set as coremif but
the content of the files on the object
are null. Please pass the coremif
content as well in the
schemainformation object.

CTB_MTK_PAYLO
AD_NT_FOUND

CTBValidationRunti
meException

PAYLOAD XSD is not
present in the
SCHEMA information
passed to
MESSAGING TOOL
KIT.

MTK throws this error when in the
schemainformation object does not
contain payload xsd . Please pass
the payload xsd information in
schemainformation object.

CTB_MTK_DUPLI
CATE_PAYLOAD

CTBValidationRunti
meException

More than one
PAYLOAD present in
the SCHEMA
information passed to
MESSAGING TOOL
KIT.

MTK throws this error when in the
schemainformation object array
have more than one payload
schemainformation objects . Please
upload only one payload in
schemainformation object array.

CTB_MTK_UNSU
PPORTED_RIM_C
LASS

CTBRuntimeExcep
tion

PAYLOAD CLASS type
'&PAYLOAD_TYPE' is
unknown.

If the payload entry point class is
not of type ROLE or ACT, this error
is thrown. Please use only ROLE or
ACT payload types i.e the payload
must have ROLE or ACT as entry
point class.

Chapter 9
HDR Messaging Toolkit

9-80

CTB_MTK_INTR_
XSD_BUILD_FAIL
ED

CTBRuntimeExcep
tion

INTERACTION
SCHEMA validation
failed. INTERACTION
SCHEMA path:
&INTR_SCHEMA.
CAUSE: &CAUSE

This error occurs when the
uploaded xsds are incorrect or
which have the datatypes or
vocabulary values which are not
supported in HDR. Please check
that xsds generated by schema
generator tool are correct and
recheck the datatypes and
vocabulary values used in RMIM
(those have to be supported in
HDR).

Schema validation failure for
interaction schema.

CTB_MTK_MSG_
PARSING_FAILED

CTBRuntimeExcep
tion

XML message parsing
failed. CAUSE: &CAUSE

This is a program error where MTK
is not able to parse the test
message to persist it.

CTB_MTK_TRG_N
OT_FOUND

CTBRuntimeExcep
tion

TRIGGER CODE
&TRIGGER_EVENT_COD
E is not available in
CODE SYSTEM
&CODE_SYSTEM_NAME.
CAUSE: &CAUSE

This is a program error where the
triggerCode generated in test
message is an invalid concept.

CTB_MTK_RIM_A
SSOCIATION_NT_
FND

CTBRuntimeExcep
tion

RIM ASSOCIATION not
found in METADATA for
ELEMENT name:
&ELEMENT_NAME and
parent COMPLEX
TYPE&PARENT_COMPLE
X_TYPE. MIF or XSD
for this complex type
may be invalid.

MTK throws this error when it is
unable to find the RIM association
metadata for a RIM class from the
database. As the metadata is
generated from MIF file. Please
check the MIF file is correct. The
MIF file name can be found out
from the complex type name given
in the error message.

CTB_MTK_PARNT
_CMPLX_TYP_NT
_FND

CTBRuntimeExcep
tion

The parent COMPLEX
TYPE for the
ELEMENT
'&ELEMENT_NAME' is
not found in
METADATA. MIF or
XSD for the complex
type may be invalid

MTK throws this error when it is not
able to find parent complex type for
an element from MIF metadata.
Please check the MIF file is correct.
The MIF file name can be found out
from the complex type name given
in the error message.

CTB_MTK_CODIN
G_SCHEME_NT_F
OUND

CTBRuntimeExcep
tion

Unable to get coding
scheme, for CODE:
&CODE, and CODE
System Name:
&CODE_SYSTEM_NAME.
CAUSE: &CAUSE

This is a Program error where MTK
is not able to find the code and
code system name present in the
test message from ETS.

CTB_MTK_PAYLO
AD_INFO_NT_FO
UND

CTBRuntimeExcep
tion

Unable to parse
PAYLOAD MIF file.
PAYLOAD MIF file does
not contain PAYLOAD
ELEMENT, COMPLEX
TYPE information.

This is a program error which
occurs due to failure in parsing of
payload mif file.

Chapter 9
HDR Messaging Toolkit

9-81

CTB_MTK_CMPLX
_TYPE_NT_FOUN
D

CTBRuntimeExcep
tion

XSD COMPEX TYPE
object for the
COMPLEX TYPE
name
&COMPLEX_TYPE_NAME
is not found in the xsd.

This is a program error. This error
occurs when MTK does not find a
complex type in the xsd.

CTB_MTK_INCOR
RECT_FOCAL_CL
ASS

CTBValidationRunti
meException

The PAYLOAD XSD
has unsupported focal
CLASS. It should be
either role or act.

If the payload entry point class is
not of type ROLE or ACT, this error
is thrown. Please use only ROLE or
ACT payload types i.e the payload
must have ROLE or ACT as entry
point class.

CTB_MTK_FILE_R
EAD_FAILED

CTBRuntimeExcep
tion

Unable to read file
&FILE_NAME

This is a program error when MTK
is unable to read a file from disk.

CTB_MTK_FILE_
WRITE_FAILED

CTBRuntimeExcep
tion

Unable to write into the
FILE: &FILE_NAME.
CAUSE: &CAUSE

This is a program error when MTK
is unable to write a file to disk.

CTB_MTK_METDA
TA_NOT_FOUND

CTBRuntimeExcep
tion

Unable to find
METADATA for
COMPLEX TYPE
&COMPLEX_TYPE_NAME

MTK throws this error when its not
able to find metadata for a complex
type. Please check the MIF file is
correct. The MIF file name can be
found out from the complex type
name given in the error message.

CTB_MTK_CLASS
_CODE_NT_FOU
ND

CTBRuntimeExcep
tion

Unable to find CLASS
CODE value for
COMPLEX TYPE
&COMPLEX_TYPE_NAME

This is program error where MTK is
not able to find a value for class
Code attribute for particular xsd
complex type. The error occurs
when MTK is trying to generate the
test message.

CTB_MTK_PAYLO
AD_NOT_FOUND

CTBValidationRunti
meException

Unable to find
PAYLOAD in
INTERACTION
SCHEMA.

This is a program error, When MTK
tries to find the payload complex
type from interaction schema to
generate the test instance, it does
not find that and throws this error.

CTB_MTK_INCOR
RECT_INSTANCE

CTBValidationRunti
meException

Test message
generation failed for
INTERACTION
SCHEMA
&INTERACTIONS_SCHE
MA. CAUSE: &CAUSE

This is a program error, This error
occurs when MTK generates and
incorrect test message and the
schema validation for the message
fails.

CTB_MTK_CODE
D_ATTR_NOT_CR
EATED

CTBRuntimeExcep
tion

Unable to create XML
fragment for CODED
attribute for ELEMENT
&ELEMENT_NAME.
CAUSE: &CAUSE

This is a program error. This error
occurs when MTK is unable to fetch
ETS data for coded attributes to
generate the test instance.

CTB_MTK_NOT_E
NOUGH_VAL

CTBValidationRunti
meException

Concept list for CODEd
attribute has less than
two values for
CONCEPT LIST
&COCEPTLIST_NAME
and XML ELEMENT
name &ELEMENT_NAME

If a concept list for a coded attribute
has less than 2 concepts then this
error is thrown . Please insert
minimum of 2 concepts in all the
extensible concept list.

Chapter 9
HDR Messaging Toolkit

9-82

CTB_MTK_II_FRA
GMNT_NT_CREAT
ED

CTBRuntimeExcep
tion

Unable to create XML
fragment for CODED
attribute for ELEMENT
&ELEMENT_NAME.
CAUSE: &CAUSE

This is a program error. This error
occurs when MTK is not able to
create id attribute data to generate
a test instance.

CTB_MTK_XML_F
RAGMENT_NT_F
OUND

CTBRuntimeExcep
tion

XML fragment is not
seeded for data type
&DATA_TYPE

When MTK does not find a xml
fragment for a datatype to generate
a test message, this error is thrown.
Please verify the only HDR
supported datatypes are used in
the RMIM.

CTB_MTK_ELMT_
METADATA_NOTF
OUND

CTBRuntimeExcep
tion

Metadata not found for
an element name
&ELEMENT_NAME and
parent complex type
name
&COMPLEX_TYPE_NAME

MTK throws this error when its not
able to find metadata for a complex
type. Please check the MIF file is
correct or not. The MIF file name
can be found out from the complex
type name given in the error
message.

CTB_MTK_MSG_
NT_PERSISTED

CTBValidationRunti
meException

IMP persistence failed.
Acknowledgement
message is
&ACKNOWLEDGEMENT

When MTK tries to persist the
message through IMP and it fails in
persistence, this error is thrown.
Please fix the error shown in
acknowledgement message and
rerun the test case.

CTB_MTK_ATTR_
VAL_NT_FOUND

CTBRuntimeExcep
tion

Unable to generate test
INSTANCE . No default
value found in XSD for
ATTRIBUTE
&ATTR_NAME present in
COMPLEX TYPE
&COMPLEX_TYPE_NAME

This is a program error. When MTK
is not able to find a value for a
structural attribute value from xsd
or mif this error is thrown .

CTB_MTK_INVALI
D_ACTRELATION

CTBValidationRunti
meException

Validation of input
SCHEMA failed.
ACTRELATIONSHIP
COMPLEX TYPE
&COMPLEX_TYPE do
not have TARGET ACT.

This error occurs when MTK finds
the an act relationship in xsd does
not have a target act . Please fix
the RMIM and XSD to have a target
act for the corresponding act
relationship.

CTB_MTK_XSD_L
OAD_FAILED

CTBRuntimeExcep
tion

Loading of Schema
&XSD_PATH has failed.
CAUSE: &CAUSE

This error is thrown by MTK when
the validation of uploaded xsd is
failed . Please check the input xsds
are correct.

CTB_MTK_INVALI
D_OB_PRTCPN

CTBValidationRunti
meException

Validation of input
SCHEMA failed.
OUTBOUND
PARTICIPATION
COMPLEX TYPE
&COMPLEX_TYPE do
not have target ROLE.

This error occurs when MTK finds
the a participation in xsd does not
have a participant role . Please fix
the RMIM and XSD to have a
participant role for the
corresponding participation.

CTB_MTK_INVALI
D_IB_PRTCPN

CTBValidationRunti
meException

Validation of input
SCHEMA failed.
INBOUND
PARTICIPATION
COMPLEX TYPE
&COMPLEX_TYPE do
not have TARGET ACT.

This error occurs when MTK finds
the an inbound participation in xsd
does not have target act . Please fix
the RMIM and XSD to have a target
act for the corresponding
participation.

Chapter 9
HDR Messaging Toolkit

9-83

CTB_MTK_XSD_M
IF_ELMT_MISMAT
CH

CTBValidationRunti
meException

Input SCHEMA and
MIF files does not
match. Element
&ELEMENT_NAME found
in SCHEMA
COMPLEX TYPE
&COMPLEX_TYPE is
missing in
corresponding MIF file.

This error occurs when there is a
mismatch between MIF and XSD
file of the same artifact i.e an
element found XSD file is missing
from the MIF file.

CTB_MTK_XSDMI
F_CMPXTY_MISM
ATCH

CTBValidationRunti
meException

Input SCHEMA and
MIF files does not
match. SCHEMA
COMPLEX TYPE
&COMPLEX_TYPE is
missing in
corresponding MIF file.

This error occurs when there is a
mismatch between MIF and XSD
file of the same artifact, that is, a
complex type found XSD file is
missing from the MIF file.

CTB_MTK_MS_SC
M_VALIDATN_FAIL

CTBValidationRunti
meException

Message generated by
OMP failed to validate
against the schema.
CAUSE: &CAUSE

This is a program error. When MTK
generates the persisted test
message using OMP, the generated
message fails schema validation
and this error is thrown . Please
contact your system administrator.

CTB_MTK_CORE
MIF_PARSE_FAIL
ED

CTBValidationRunti
meException

Unable to merge the
existing
CMETINFO.COREMIF
with the one provided
as input, because
parsing of &CORE_MIF
failed. CAUSE:
&CAUSE.

For merging the
CMETINFO.COREMIF file new
uploaded CMETINFO.COREMIF
has to be parsed, if the
CMETINFO.COREMIF is not a
valid xml file then MTK throws this
error. Please fix
CMETINFO.COREMIF and upload
again.

CTB_MTK_NO_DE
FAULT_CONCEPT

CTBValidationRunti
meException

CONCEPT LIST
&CONCEPT_LIST
should contain at least
one CONCEPT from
default CODING
SCHEME VERSION.

MTK throws this error when the
default coding scheme has no valid
concepts . Please ensure that all
coding schemes have default
version and should have at least
one valid concept and concept list.
These should have concepts from
default coding schemes.

CTB_MTK_ACTIV
E_STATUSCD_NT
FND

CTBValidationRunti
meException

Test message
generation failed.
STATUS CODE
CONCEPT LIST
&CONCEPT_LIST do
not have CONCEPT
with CONCEPT CODE
ACTIVE

MTK throws an error while
generating a test instance,when it
does not find an "ACTIVE"
statusCode in the system
conceptlist . Please ensure that
ACTIVE concept is available in the
concept list.

CTB_MTK_MAND
T_INPUT_MISSIN
G

CTBValidationRunti
meException

The input parameter
&TOKEN_NAME is
passed as null. The
request cannot be
processed,because
mandatory parameter
&TOKEN_NAME has null
value.

MTK throws this error when any
mandatory input parameter is not
passed by the user.

Chapter 9
HDR Messaging Toolkit

9-84

CTB_MS_CMET_I
NFO_NOT_FOUN
D

CTBValidationRunti
meException

Unable to extract
METADATA. CMET info
file
&CMETINFO_FILENAME
not found.

MTK throws this error from
metadataservice when
metadataservice is not able to find
the CMETINFO.COREMIF file.
Please check the
CMETINFO.CORE MIF file is
available on the server.

CTB_MS_CMET_T
YPE_NOT_FOUN
D

CTBValidationRunti
meException

Unable to extract
METADATA. CMET
reference &REFERENCE
in MIF file &MIFFILE is
missing in
CMETINFO.COREMIF
file.

MTK throws this error from
metadataservice when
metadataservice is not able to find
the an entry of cmet in
CMETINFO.COREMIF file. Please
check the corresponding CMET
entry is present in
CMETINFO.COREMIF file.

CTB_MS_MIFFILE
_NOT_FOUND

CTBValidationRunti
meException

Unable to extract
METADATA. MIF file
&MIFFILE not found .

MTK throws this error from
metadataservice when
metadataservice is not able to find
the MIF file to load the metadata.
Please check the corresponding
MIF file is available on the server.

CTB_MS_MIF_PA
RSING_FAILED

CTBValidationRunti
meException

Unable to extract
METADATA. Unable to
parse MIF file
&MIFFILE.

MTK throws this error from
metadataservice when
metadataservice is not able to
parse a MIF file. Please check all
MIF files are valid xmls.

CTB_MS_CMETIN
FO_PARSING_FAI
LED

CTBValidationRunti
meException

Unable to extract
METADATA. Unable to
parse CMET info file
&CMETINFO_FILENAME
.

MTK throws this error from
metadataservice when
metadataservice is not able to
parse CMETINFO.COREMIF.
Please check
CMETINFO.COREMIF file is valid
xmls.

CTB_MS_INTR_S
CHEMA_NOT_FO
UND

CTBValidationRunti
meException

Unable to extract
METADATA.
INTERACTION
SCHEMA file
[&INTERACTION_SCHE
MA] not found.

MTK throws this error from
metadataservice when
metadataservice is not able to find
interaction schema on the server.

CTB_MS_SCHEM
A_PARSING_FAIL
ED

CTBValidationRunti
meException

Unable to extract
METADATA. Unable to
parse INTERACTION
SCHEMA
&SCHEMA_FILE.

MTK throws this error from
metadataservice when
metadataservice is not able to
parse interaction schema on the
server. Please contact your system
administrator.

CTB_MS_MIF_DIR
_NOT_FOUND

CTBValidationRunti
meException

Unable to extract
METADATA. MIF
directory &DIR_PATH
not found.

MTK throws this error from
metadataservice when
metadataservice is not able to find
the directory for MIF files on the
server.

Chapter 9
HDR Messaging Toolkit

9-85

CTB_MS_WRAPP
ER_METADT_NOT
FOUND

CTBValidationRunti
meException

Unable to load
metadata for an
INTERACTION
SCHEMA
&SCHEMAFILE. Unable
to find metadata for
parent COMPLEX
TYPE &COMPLEXTYPE
of PAYLOAD
&PAYLOAD_ELEMENT.

MTK throws this error from
metadataservice when
metadataservice is not able to find
metadata for the parent complex
type element of the payload
element in the database.

CTB_MTK_STATU
S_FILE_NT_FOUN
D

CTBValidationRunti
meException

The STATUS file
'&STATUS_FILE' is not
available on the server

MTK throws this error when it tries
to download the status file from
TEST_ID folder but does not find
the folder with that TEST_ID name
on the server . Please pass the
correct TEST_ID name.

CTB_MTK_TEST_I
D_DIR_NOT_FND

CTBValidationRunti
meException

The TEST ID directory
&TEST_ID is not
present on the server

MTK throws this error when the
Test ID folder is not found in the
server.

CTB_MTK_CMET_
ID_CONFLICT

CTBValidationRunti
meException

Unable to merge
existing
CMETINFO.COREMIF
with user provided
CMETINFO.COREMIF.
CMET name
&CMET_NAME already
exists with different
CMET ID. Existing
CMET id
&EXISTING_CMET_ID
and new CMET ID
&NEW_CMET_ID.

This error occurs when user try to
upload a CMETINFO.COREMIF file
which has an entry with same cmet
name as that of the one which is
already uploaded but the
corresponding CMET IDs for the
new one and existing one are
different .So if the new file is
merged with the existing file , then
there will be 2 entries of the same
CMET name with a different CMET
ID. This is incorrect. Please upload
unique CMET names at all times
and not applied to other CMET IDs.

CTB_MTK_CMET_
NAME_CONFLICT

CTBValidationRunti
meException

Unable to merge
existing
CMETINFO.COREMIF
with user provided
CMETINFO.COREMIF.
CMET id &CMET_ID
already exists with
different CMET name.
Existing CMET name
&EXISTING_CMET_NAM
E and new CMET
name
&NEW_CMET_NAME.

This error occurs when user try to
upload a CMETINFO.COREMIF file
which has an entry with same
CMET ID as that of the one which
is already uploaded. These have
different CMET names .Therefore if
the new file is merged with the
existing file, then there will be two
entries of the same CMET ID with
different CMET names. To avoid
this error please upload unique
CMET IDs which are not already
used with other CMET names.

CTB_MTK_DUPLI
CATE_INTR_ID

CTBRuntimeExcep
tion

The INTERACTION
detail for the
INTERACTION ID
&INTERACTION_ID
already exists. Unable
to create
INTERACTION detail

When MTK tries to create a record
for interaction ID in the database
but the same interaction ID is
already present then this error is
thrown . Please use a different
interaction ID which is not already
seeded.

Chapter 9
HDR Messaging Toolkit

9-86

CTB_MTK_UNSU
PPORTED_IP_PA
RAMS

CTBRuntimeExcep
tion

Unable to create
Composite Message
Schema. The input
parameter
&TOKEN_VALUE for
&TOKEN_NAME is not
supported

MTK throws this error when any
input parameter is passed
incorrectly; for example if a
transmission wrapper ID passed by
the user does not match with the
transmission wrapper ID which
HDR supports MTK throws this
error. Please pass the correct input
values.

CTB_MTK_PAYLO
AD_ID_NOT_EXIS
TS

CTBValidationRunti
meException

Unable to create
INTERACTION
SCHEMA PAYLOAD ID
does not exist for the
given INTERACTION
ID: &INTERACTION_ID

MTK throws this error when it does
not find payload xsd on the server
to create an interaction schema for
it. Please upload the payload xsd
first and then create the interaction
schemas for it.

CTB_MTK_PAYLO
AD_XSD_NT_FOU
ND

CTBValidationRunti
meException

Unable to generate
INTERACTION
SCHEMA because
Message Type XSD
&XSD_PATH is not
available.

This error occurs when MTK does
not find payload xsd on server with
name given by the user . Please
pass the correct payload ID as
input.

CTB_MTK_SCHE
MA_IN_USE

CTBValidationRunti
meException

Unable to delete the
SCHEMA &SCHEMA
from server.The
SCHEMA is referred by
the PAYLOAD
&PAYLOAD.

The error occurs when a schema is
tried to be deleted, is referred by a
payload present on the server. To
delete the schema please delete
the referring payload first.

CTB_MTK_HTB_A
RTIFACT_FOUND

CTBValidationRunti
meException

Unable to delete
ARTIFACTS. Customer
cannot delete HDR
specific ARTIFACT
&ARTIFACT.

MTK throws this error when user
tries to delete Oracle artifacts . You
are not supposed to delete Oracle
artifacts.

CTB_MTK_INTR_
SCHEMA_REF

CTBValidationRunti
meException

Can not delete
PAYLOAD SCHEMA
&PAYLOAD_SCHEMA as
INTERACTION IDS
&INTERACTION_IDS
are configured for this
PAYLOAD.

MTK throws this error when you
tries to delete a payload and that
payload has a interaction ID
configured in the table. Please
delete the interaction IDs for the
payload and then delete the
payload.

CTB_MTK_XSD_N
OT_EXISTS

CTBValidationRunti
meException

Unable to remove XSD
&XSD_FILE, as it does
not exist.

This error occurs when an xsd is
tried to be deleted which is not
present on the server. In this case
the xsd file name might be
incorrectly passed. Please pass the
correct xsd file name.

CTB_MTK_PAYLO
AD_FOUND

CTBValidationRunti
meException

Invalid input data
because input contains
a SCHEMA of a
PAYLOAD.
LOADSCHEMA API
accepts SCHEMAS of
CMETS only. Instead
use API
LOADCUSTOMMESS
AGETYPETOPRODUC
TIONSERVER.

MTK throws this error when the
uploaded schema is of type
PAYLOAD . Only CMETS are
allowed to upload using this API.
Please upload only CMETS.

Chapter 9
HDR Messaging Toolkit

9-87

CTB_MTK_INTR_
DETAIL_NT_FND

CTBValidationRunti
meException

INTERACTION detail
for INTERACTION ID
&INTERACTION_ID is
not available. Can not
delete the
INTERACTION detail
entry.

When MTK tries to delete an
interaction schema on the
server ,and if it does not find a
record for the corresponding
interaction ID in the interactions
table, it throws this error . Please
ensure that interaction ID record is
available in the interactions table
before deleting it.

CTB_MTK_INTR_
RECV_CONFIG_E
XIST

CTBValidationRunti
meException

Can not delete
INTERACTION
SCHEMA for
INTERACTION ID
&INTERACTION_ID as
RECEIVERS are
configured for this
INTERACTION ID.

When MTK tries to delete the
interaction schema and for that
interaction ID receivers are already
configured then MTK cannot delete
the interaction schema and throws
this error. Please ensure that no
receivers are configured for the
interaction schema which is to be
deleted.

CTB_MTK_INTR_
SENDER_CONF_
EXIST

CTBValidationRunti
meException

Can not delete
INTERACTION
SCHEMA for
INTERACTION ID
&INTERACTION_ID as
SENDERS are
configured for this
INTERACTION ID.

When MTK tries to delete the
interaction schema and for that
interaction ID senders are already
configured then MTK cannot delete
the interaction schema and throws
this error. Please ensure that no
senders are configured for the
interaction schema which is to be
deleted.

Chapter 9
HDR Messaging Toolkit

9-88

10
HDR Exception Handling

• Optimistic Locking Exceptions

• Bundled Exceptions

HDR provides a hierarchy of exception classes, which allow users to distinguish between
validation errors and system errors (For example, locking errors, session timeout errors, and
unexpected errors). All exception classes extend from the CommonException class.

To obtain information about as many issues as possible, exceptions may be received as a
bundle with each child exception representing a different issue.

HDR translates server-side root cause exception to equivalent CommonException in the
client-side EJB exception.

The code samples below help you to manage the following scenarios:

• Optimistic Locking Exception (see Example 10-1)

• Bundled Exceptions (see Example 10-2)

• Helper Methods to Print Details of the Exception Bundle (see Example 10-3)

Optimistic Locking Exceptions
If HDR receives an OptimisticLockException from the underlying JPA framework, it wraps the
exception in oracle.hsgbu.hdr.base.persist.exception.CorePersistenceException with error
code HDR_OBJECT_ALREADY_MODIFIED_ERROR. The client application should attempt
to query again if necessary and resubmit updates to HDR.

Example 10-1 Optimistic Locking Exception

The following code sample illustrates an optimistic locking exception:

// create an Act
SET_II actId = dataTypeFactory.newSET_II("9.989898.5.6.100", "OBS1001", true);
Act act = actFactory.newObservation(ActMood.EVN, null, actId);
ControlAct controlAct = actFactory.newControlActEvent(
 dataTypeFactory.nullCD(NullFlavor.NI), dataTypeFactory.nullSET_II(NullFlavor.NI));
controlAct.addOBActRelationship(ActRelationshipType.SUBJ, act);
rimService().submit(controlAct);

// retrieve two copies of the Act
Act retrievedAct1 = retrieveAct(actId);
Act retrievedAct2 = retrieveAct(actId);

// update the Act
ControlAct controlAct2 = actFactory.newControlActEvent(
 dataTypeFactory.nullCD(NullFlavor.NI), dataTypeFactory.nullSET_II(NullFlavor.NI));
controlAct2.addOBActRelationship(ActRelationshipType.SUBJ,
(Act)retrievedAct1.createNewVersion());
rimService().submit(controlAct2);

// try updating the same Act with the other retrieved copy

10-1

ControlAct controlAct3 = actFactory.newControlActEvent(
 dataTypeFactory.nullCD(NullFlavor.NI),
dataTypeFactory.nullSET_II(NullFlavor.NI));
controlAct3.addOBActRelationship(ActRelationshipType.SUBJ,
(Act)retrievedAct2.createNewVersion());
try
{
 rimService.submit(controlAct3);
}
catch (CTBLockingException e)
{
 // One or more objects in the submission
 // are locked by another process.
 //
 // Requery if necessary, and resubmit
 // updates to HDR.
 //
 // In this case, we know the object is
 // the Observation which was queried and
 // versioned, but this can be verified by
 // inspecting the Exception

 Act requeriedAct = retrieveAct(actId);
 ControlAct newControlAct = actFactory.newControlActEvent(
 dataTypeFactory.nullCD(NullFlavor.NI),
dataTypeFactory.nullSET_II(NullFlavor.NI));
 newControlAct.addOBActRelationship(ActRelationshipType.SUBJ,
(Act)requeriedAct.createNewVersion());
 rimService.submit(newControlAct);
}

Bundled Exceptions
If HDR detects multiple validation errors during processing it returns them wrapped in
a CommonException or a subclass of it. These validation errors may be accessed and
inspected by calling getBundledExceptions() at the top-level exception.

Example 10-2 Bundled Exceptions

The following code sample illustrates how to handle bundled exceptions:

Observation focalAct = mActFactory.newObservation(ActMood.EVN,
 mDataTypeFactory.nullCD(NullFlavor.NI),
 mDataTypeFactory.nullSET_II(NullFlavor.NI));

Observation obs = mActFactory.newObservation(ActMood.EVN,
 mDataTypeFactory.nullCD(NullFlavor.NI),
 mDataTypeFactory.nullSET_II(NullFlavor.NI));
obs.setStatusCode(mDataTypeFactory.newCS("INVALID_STATUS"));
obs.setMethodCode(mDataTypeFactory.newSET_CE(new CE[] {
 newCE("0251", "ObservationMethod"),
 newCE("DoesNotExist", "ObservationMethod")}));

Observation obs2 = mActFactory.newObservation(ActMood.EVN,
 mDataTypeFactory.nullCD(NullFlavor.NI),
 mDataTypeFactory.nullSET_II(NullFlavor.NI));
obs2.setStatusCode(mDataTypeFactory.newCS("A_DIFFERENT_STATUS"));

ControlAct controlAct = mActFactory.newControlActEvent(
 mDataTypeFactory.nullCD(NullFlavor.NI),

Chapter 10
Bundled Exceptions

10-2

 mDataTypeFactory.nullSET_II(NullFlavor.NI));

cact.addOBActRelationship(ActRelationshipType.SUBJ, focal);
focalAct.addOBActRelationship(ActRelationshipType.COMP, obs);
focalAct.addOBActRelationship(ActRelationshipType.COMP, obs2);

try
{
 mRimService.submit(controlAct);
}
catch (CommonException e)
{
 StringBuffer sb = new StringBuffer();
 addExceptionDetailToBuffer(sb, e, 0);
 System.out.println(sb.toString());
}

Example 10-3 Helper Methods to Print Details of the Exception Bundle

The following code is a sample method that shows how to get exception details from bundled
exceptions:

private StringBuffer addExceptionDetailToBuffer(StringBuffer sb,
 CommonException e, int indent) {
 sb.append(getIndentString(indent));
 sb.append(e.getClass().getName());
 sb.append(" ").append(e.getExceptionCode());
 sb.append(" ").append(e.getMessage());
 sb.append("\n");

 CommonException[] bundle = e.getBundledExceptions();
 for (int i = 0; i < bundle.length; i++) {
 sb = addExceptionDetailToBuffer(sb, bundle[i], indent + 1);
 }

 return sb;
 }

The following is the printed description of the exception bundle obtained from this call to
RimService.submit(ControlAct):

[java] oracle.hsgbu.hdr.fwk.base.common.HDRRimException
CTB_FK_MLTPL_VALIDATION_XCPTNS Multiple errors occurred processing request. [java]
oracle.hsgbu.hdr.hl7.common.RimCodedAttributeException
CTB_CORE_ETS_MEM_CODE_INVALID Concept code not found in concept list. [java]
oracle.hsgbu.hdr.hl7.common.RimCodedAttributeException CTB_CORE_UNKNOWN_CODE
Concept Code was not found for provided Code System. [java]
oracle.hsgbu.hdr.hl7.common.RimCodedAttributeException
CTB_CORE_ETS_MEM_CODE_INVALID Concept code not found in concept list. [java]
oracle.hsgbu.hdr.hl7.rim.types.exception.common.RimDataTypeException
HDR_CORE_GTS_PARSER Invalid syntax encounterd when parsing CE literal:
'''ObservationMethod''';' Unexpected character O encountered at position 0 in OID literal
string "ObservationMethod".

Chapter 10
Bundled Exceptions

10-3

11
Integrating the Healthcare Enterprise

• Cross-Enterprise Document Sharing-b (XDS.b)

• Integrating the Healthcare Enterprise Cross-Enterprise Document Sharing-b Web Service

Cross-Enterprise Document Sharing-b (XDS.b)
The Cross-Enterprise Document Sharing-b (XDS.b) IHE Integration Profile focuses on
providing a standards-based specification for managing the sharing of XDS documents
across healthcare enterprises.

An XDS document is a composition of clinical information that complies with a published
standard defining the document structure, content, and encoding. As a single unit for
exchange in the repository, an XDS document is assigned with a globally unique identifier
and is associated with its own metadata that reflects the content of the document. The
metadata is not stored in the repository along with the document, but is registered in the
Document Registry for subsequent queries and retrievals of the document.

Similar to any IHE Integration Profile in the IHE IT Infrastructure Technical Framework, the
XDS profile is defined by the IHE actors involved and the set of transactions performed by
these actors. To support a certain integration capability, the healthcare industry must have a
product implementing the IHE actors and the corresponding transactions deployed.

This section contains the following topics:

• IHE Actors

• Affinity Domain

IHE Actors
The various actors in IHE XDS.b ITI integration profile are:

Actors in IHE XDS.b:

• Document Source: Sends documents to a Document Repository and supplies metadata
for registration.

• Document Consumer: Queries the Document Registry for documents and retrieves
documents from a document repository.

• Document Registry: Validates and maintains metadata for each document and
responds to document queries from the Document Consumer Actor.

• Document Repository: Persists documents and registers the document metadata with
appropriate Document Registry. It also assigns a uniqueId to documents for subsequent
retrieval by a Document Consumer.

• Patient Identity Source: Provides a unique identifier for each patient.

• Integrated Document Source/Repository: Combines the functionality of the Document
Source and Document Repository actors to provide and register document sets in the
repository.

11-1

The HDR's IHE XDS.b solution implements the Document Repository actor and its
supported transactions.

Affinity Domain
An Affinity Domain is an administrative structure containing various healthcare entities
that have agreed to share clinical documents in the common infrastructure.

To ensure effective interoperability between the different entities, a Document Registry
is identified, and a number of policies are established in an Affinity Domain that specify
the document format, vocabulary value set, coding schemes, and the Patient
Identification Domain used by the Document Registry.

To build your Affinity Domain, follow the guidelines specified in Template for XDS
Affinity Domain Deployment Planning, which is available from, http://www.ihe.net/
Technical_Framework/upload/
IHE_ITI_White_Paper_XDS_Affinity_Domain_Template_TI_2008-12-02.pdf.

Integrating the Healthcare Enterprise Cross-Enterprise
Document Sharing-b Web Service

HDR provides IHE XDS.b implementation to help healthcare practitioners and clinical
vendors implement medical information integration among clinical organizations. The
IHE XDS Document Repository is built on top of Oracle Healthcare Data Repository
(HDR) platform.

The topics below describe:

• HDR's IHE XDS.b Solution Overview

• Supported IHE XDS.b Transactions

• Synchronous Provide and Register Document Set-b

• Document Storage Mode

• Synchronous Retrieve Document Set

• Asynchronous XDS.b Web Services

• Audit Trail and Event Logs

HDR's IHE XDS.b Solution Overview
HDR implements the Document Repository Actor of the IHE XDS profile. It can be
directly plugged into the IHE infrastructure and interact with the other Actors, such as
the Document Registry, the Document Source, and the Document Consumer
implemented by other entities.

HDR stores and manages XDS documents. The users accessing the repository can be
clinical doctors, consultants, nurses, researchers, and patients.

HDR also implements the Time Client Actor in the Consistent Time (CT) profile, and
the Secure Node Actor in Audit Trail and Node Authentication (ATNA) profile of IHE IT
Infrastructure domain.

Chapter 11
Integrating the Healthcare Enterprise Cross-Enterprise Document Sharing-b Web Service

11-2

Supported IHE XDS.b Transactions
HDR supports the following transactions in the XDS workflow:

1. Provide And Register Document Set-b through synchronous Web services.

2. Retrieve Document Set through synchronous Web services.

3. Provide And Register Document Set-b through asynchronous Web services.

4. Retrieve Document Set through asynchronous Web services.

Synchronous Provide and Register Document Set-b

Prerequisite
Before proceeding with the document sharing features, make sure that the profile options for
Document Repository actor like Document Registry server URL, Syslog server details, and
TLS configuration for secure mode communication are configured as per the Installation
Guide instructions.

Providing/Registering Documents
The processes of providing and registering documents are merged into a single task. This
task is initiated from the Document Source Actor. It contains the following steps:

1. Generate the Patient ID for the documents. Obtain other optional entity IDs if necessary.
An external partner outside of HDR implements the Patient Identity Actor.

2. Analyze the document content and generate the document metadata. For more
information, refer to Section 4.2.3 Metadata Attributes in IHE_ITI_TF_Vol3.pdf.

3. Identify the URL to the HDR's Provide and Register Document Set-b. The URL is in the
form: http://hostname:port/hdr/xdsrepositoryb_Soap12 or https://hostname:port/hdr/
xdsrepositoryb_Soap12.

4. Wrap the document metadata and the document content in one or several HTTP/SOAP
messages and submit the messages to the HDR.

5. There are many ways to implement the wrapping and submitting processes. The
implementation is not mandated but the encoding and protocol must comply with the
relevant specifications issued by OASIS/ebXML.

6. An acknowledgement of a successful registration and storing of the document will be
received when the task is complete.

Document Storage Mode
HDR provides two behavior modes for document storage, as follows:

Store mode: If the profile option CTB_XDS_DOCUMENT_IMPORT is set to N.

A document received in the store mode is stored in HDR as an entire object. HDR does not
parse the elements contained in the document.

Import mode: If the profile option CTB_XDS_DOCUMENT_IMPORT is set to Y.

Chapter 11
Integrating the Healthcare Enterprise Cross-Enterprise Document Sharing-b Web Service

11-3

A document received in the import mode is parsed by HDR, which identifies the
elements inside the document and stores them separately.

Synchronous Retrieve Document Set
The retrieval of a registered document in the HDR is initiated from the Document
Consumer. First query the Document Registry to get the document uniqueId, and then
submit the request to the HDR to get the document.

The task generally consists of the following steps:

1. Obtain the Query Service URL and start the query for the target documents. The
Query Service URL is in the form: http://hostname:port/hdr/xdsrepositoryb_Soap12
or https://hostname:port/hdr/xdsrepositoryb_Soap12.

2. Query the Document Registry for the list of documents meeting the specified
criteria. The Query method varies but normally you should have the patient ID as
the query input. For more information, refer to Section 3.18 Registry Stored Query
in IHE_ITI_TF_Vol2a.pdf.

3. The Registry will return a list of documents along with their respective uniqueIds.

4. With the document uniqueIds of the selected documents from the list returned, the
Document Consumer will send the Retrieve Document Set (ITI-43) requests to
retrieve the documents. The documents are returned as entities in the response to
the request. For more information, refer to Section 3.43 Retrieve Document Set in
IHE_ITI_TF_Vol2b.pdf.

Asynchronous XDS.b Web Services
Prerequisites

Configure the following as per the instructions in HDR Implementation and System
Administrator Guide:

1. JMS queues to address reliable messaging in asynchronous transactions.

2. The profile option for identifying the Document Registry actor's asynchronous
URL.

Key Differences in the Asynchronous XDS.b Web Services
Asynchronous XDS.b (Provide and Register Document Set-b and Retrieve Document
Set) transactions essentially accomplish the same set of tasks as their synchronous
counterparts. However, the key aspects and differences in the asynchronous
transactions are following:

Asynchronous Provide and Register Document Set-b
1. To initiate an Asynchronous Provide and Register Document Set-b transaction with

HDR, the Document Source actor should identify the URL to HDR's Asynchronous
Provide and Register Document Set-b. This URL is in the form: http://
hostname:port/hdr/xdsrepositorybAsync_Soap12 or https://hostname:port/hdr/
xdsrepositorybAsync_Soap12.

Chapter 11
Integrating the Healthcare Enterprise Cross-Enterprise Document Sharing-b Web Service

11-4

2. Document Source must specify a valid callback endpoint URL using the WS-Addressing
ReplyTo property in the SOAP header of its Asynchronous Provide and Register
Document Set-b request message.

3. Upon successful receipt of an Asynchronous Provide and Register Document Set-b
request message, a HTTP response status code of 202, which means that request has
been accepted is sent back to the Document Source. After checking this status, the
Document Source can unblock itself from the connection it initiated.

4. When an Asynchronous Provide and Register Document Set-b response is generated,
HDR's Document Repository uses the callback endpoint specified in the SOAP request's
ReplyTo property, to forward the response to the Document Source.

5. On receipt of an Asynchronous Provide and Register Document Set-b response
message, the Document Source can use the SOAP response's RelatesTo property, to
correlate the response with a request that it had sent out earlier.

6. The Document Source should finally respond with a HTTP response status code of 202,
which means that request has been accepted to HDR's Doc Repository, marking the end
of the transaction.

Audit Trail and Event Logs
All IHE XDS.b transactions generate audit events that are forwarded to a configured Audit
Server. The location of the audit log in the Audit Server varies depending on the configuration
of the Audit Server. This audit logging will be in addition and processed by the HDR's native
logging mechanism.

Chapter 11
Integrating the Healthcare Enterprise Cross-Enterprise Document Sharing-b Web Service

11-5

12
HDR Clinical Document Architecture (CDA)
Persistence

• Overview

• WSDL CDA Persistence Implementation

• WS-Security for CDA Persistence Web Service

Overview
You can use the CDA Persistence or CDA Ingest Web service to parse and import various
document types such as CDA, HITSP C32 v2.5, HITSP C32 v2.4, HITSP c37, HITSP C48,
and HITSP C78 into HDR

This Web service offers two operations as follows:

1. importDocument(DocumentUniqueId) : Using the documentUniqueID provided by user,
this operation will first query the document that was already persisted using IHE XDS.b
ITI-41 transaction, parses the retrieved document, and imports or persists the document
atomically into HDR DB.

Also this operation throws the following SOAP faults to the user:

• incorrectInput - When client does not specify the value for DocumentUniqueId
element.

• invalidCDADoc - When the validation of input xml against CDA.xsd fails.

• noRootFound - When none of the templateID elements in input xml file have the root
attribute value.

• invalidDocIDFault - When there is no document with the provided uniqueID exists in
HDR DB.

• aFault - For all other erroneous conditions.

2. persistDocument(documentContent In Base64 format, documentId): This operation lets
the user to provide the document in base64 format which they are interested to parse and
import it in HDR DB atomically. This operation takes two parameters, a mandatory
documentContent parameter, and an optional documentId. The first parameter
documentContent represents the document in Base64 format. In case the user also
provides the second optional parameter, documentId, then the Service will query the
DOCCLIN Act using the provided documentId, and establishes a SUBJ Act relationship
between the queried documentId and the newly persisted document's documentId.

Also this operation throws the following SOAP faults to the user:

• incorrectInput - When client doesn't specify the value for Document element.

• invalidCDADoc - When the validation of input xml against CDA.xsd fails.

• noRootFound - When none of the templateID elements in input xml file have the root
attribute value.

12-1

• invalidDocIDFault - When there is no document with the provided uniqueID
exists in HDR DB.

• aFault - For all other erroneous conditions.

Note:

This service will override the already existing document import mode
feature in IHE XDS.b Web Service.

Having this Web service available in HDR, it is not recommended to use IHE XDS.b
ITI-41 transaction (ProvideAndRegisterDocumentSet-B) to import the document into
HDR. The IHE XDS.b ITI-41 transaction should be used to store the CDA, HITSP C32
v2.5, HITSP C32 v2.4, HITSP C37, HITSP C48, HITSP C78, and Discharge Summary
documents into HDR. If customers want to import the document, they should rely on
importDocument or persistDocument operations provided by this CDA Persistence
Web service.

WSDL CDA Persistence Implementation
Click this link for WSDL that describes CDAPersistenceWebService with SOAP11
Binding.

Click this link for WSDL that describes CDAPersistenceWebService with SOAP12
Binding.

WS-Security for CDA Persistence Web Service
In HDR, the CDA Persistence Web service is implemented with WS-Security
UserName Token profile. The Web service client has to supply UserName and
Password in SOAP Header of the SOAP request that will be used to load the CDA
Persistence Web service. The WebLogic server performs the user authentication using
the Web service client provided UserName and Password values.

Sample CDA Persistence --> persistDocument Web Service SOAP request

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:orac="http://oracle.apps.ctb.cdapersistence.types">

 <soap:Header>

 <wsse:Security soap:mustUnderstand="true" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">

 <wsse:UsernameToken wsu:Id="UsernameToken-10">

 <wsse:Username>IHE_XDS_USER</wsse:Username>

 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-profile-1.0#PasswordText"><USER_PASSWORD></
wsse:Password>

 </wsse:UsernameToken>

Chapter 12
WSDL CDA Persistence Implementation

12-2

 </wsse:Security>

 </soap:Header>

 <soap:Body>

 <orac:PersistCDADocumentRequest>

<orac:Document>PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4NCjwhLS0gZWRpdGVkIHdp
dGggWE1MU3B5IHYyMDExIChodHRwOi8vd3d3LmFsdG92YS5jb20pIGJ5IExlbiBHYWxsYWdoZXIgKE5JU1QpIC0
tPg0KPCEtLVNhbXBsZSBYTUwgZmlsZSBnZW5lcmF0ZWQgYnkgWE1MU3B5IHYyMDA3IHNwMiAoaHR0cDovL3d3dy
5hbHRvdmEuY29tKS0tPg0KPENsaW5pY2FsRG9jdW1lbnQgeG1sbnM9InVybjpobDctb3JnOnYzIiB4bWxuczp4c
2k9Imh0dHA6Ly93d3cudzMub3JnLzIwMDEvWE1MU2NoZW1hLWluc3RhbmNlIiB4c2k6c2NoZW1hTG9jYXRpb249
InVybjpobDctb3JnOnYzIGh0dHA6Ly94cmVnMi5uaXN0Lmdvdjo4MDgwL2hpdHNwVmFsaWRhdGlvbi9zY2hlbWE
vY2RhcjJjMzIvaW5mcmFzdHJ1Y3R1cmUvY2RhL0MzMl9DREEueHNkIj4NCgk8cmVhbG1Db2RlIGNvZGU9IlVTIi
8+DQoJPHR5cGVJZCByb290PSIyLjE2Ljg0MC4xLjExMzg4My4xLjMiIGV4dGVuc2lvbj0iUE9DRF9IRDAwMDA0M
CIvPg0KCTx0ZW1wbGF0ZUlkIHJvb3Q9IjIuMTYuODQwLjEuMTEzODgzLjMuMjcuMTc3NiIgYXNzaWduaW5nQXV0
aG9yaXR5TmFtZT0iQ0RBL1IyIi8+DQoJPHRlbXBsYXRlSWQgcm9vdD0iMi4xNi44NDAuMS4xMTM4ODMuMTAuMjA
uMyIgYXNzaWduaW5nQXV0aG9yaXR5TmFtZT0iSEw3L0NEVCBIZWFkZXIiLz4NCgk8dGVtcGxhdGVJZCByb290PS
IxLjMuNi4xLjQuMS4xOTM3Ni4xLjUuMy4xLjEuMSIgYXNzaWduaW5nQXV0aG9yaXR5TmFtZT0iSUhFL1BDQyIvP
g0KCTx0ZW1wbGF0ZUlkIHJvb3Q9IjIuMTYuODQwLjEuMTEzODgzLjMuODguMTEuMzIuMSIgYXNzaWduaW5nQXV0
aG9yaXR5TmFtZT0iSElUU1AvQzMyIi8+DQoJPGlkIHJvb3Q9IjIuMTYuMy41LjYiIGV4dGVuc2lvbj0iVGVzdDA
xX0NDRDM5MCIgYXNzaWduaW5nQXV0aG9yaXR5TmFtZT0iTklTVCBIZWFsdGhjYXJlIFByb2plY3QiLz4NCgk8IS
0tVGhlIEhMNy9DQ0Qgc3BlY2lmaWNhdGlvbiByZXF1aXJlcyB0aGF0IGV2ZXJ5IENDRCBDbGluaWNhbERvY3VtZ
W50IGNvbnRhaW4gdGhlICBzcGVjaWZpYyBMT0lOQyBjb2RlIDM0MTMzLTkuIE5vdGUgdGhhdCBNZWFuaW5nZnVs
IFVzZSBkZWZlcnMgdG8gSUhFIHNwZWNpZmljYXRpb25zIHdoaWNoIGRvIG5vdCByZXF1aXJlIHRoZSBDQ0QgdGV
tcGxhdGVJZCBvbiB0aGUgZG9jdW1lbnQgaXRzZWxmLCB0aHVzIGFsbG93aW5nIG90aGVyIGNvZGVzIHRvIGJlIH
VzZWQgYXQgdGhpcyBsb2NhdGlvbi4gVG8gYXZvaWQgY29uZnVzaW9uIGl0IG1heSBiZSBiZXN0IHRvIHN0aWNrI
HdpdGggdGhpcyBjb2RlIGFzIGZpeGVkIGluIHRoZSBhYnNlbmNlIG9mIGFub3RoZXIgcmVxdWlyZWQgc3Vic3Rp
dHV0ZS4tLT4NCgk8Y29kZSBjb2RlPSIzNDEzMy05IiBkaXNwbGF5TmFtZT0iU3VtbWFyaXphdGlvbiBvZiBlcGl
zb2RlIG5vdGUiIGNvZGVTeXN0ZW09IjIuMTYuODQwLjEuMTEzODgzLjYuMSIgY29kZVN5c3RlbU5hbWU9IkxPSU
5DIi8+DQoJPHRpdGxlLz4NCgk8ZWZmZWN0aXZlVGltZSB2YWx1ZT0iMjAxMDEwMjYxMzA5NDUiLz4NCgk8Y29uZ
mlkZW50aWFsaXR5Q29kZS8+DQoJPGxhbmd1YWdlQ29kZSBjb2RlPSJlbi1VUyIvPg0KCTxyZWNvcmRUYXJnZXQ+
DQoJCTxwYXRpZW50Um9sZT4NCgkJCTwhLS1UaGUgSElUU1AvQzMyIHNwZWNpZmljYXRpb24gcmVxdWlyZXMgdGh
hdCBjZXJ0YWluIHBhdGllbnQgZWxlbWVudHMgYmUgcHJlc2VudCwgYnV0IGRvZXMgbm90IHJlcXVpcmUgdGhhdC
B0aGV5IGJlIG5vbi1lbXB0eS4gQSBtZWFuaW5nZnVsIGRvY3VtZW50IHNob3VsZCBjb250YWluIGVpdGhlciBhI
GNvbXBsZXRlIHBhdGllbnRSb2xlL0lkIG9yIGF0IGxlYXN0IGdpdmVuIGFuZCBmYW1pbHkgbmFtZXMuLS0+DQoJ
CQk8aWQvPg0KCQkJPGFkZHI+DQpOb25lIG9mIHRoZSBmb2xsb3dpbmcgYWRkcmVzcyBlbGVtZW50cyBhcmUgc3B
lY2lmaWNhbGx5IHJlcXVpcmVkIGJ5IEhJVFNQIEMzMiwgc28gdGhlIGFkZHJlc3MgY291bGQgYmUganVzdCBwbG
FpbiB0ZXh0IGF0IHRoaXMgbG9jYXRpb24/
IFVzZSBvZiBvbmUgb3IgbW9yZSBvZiB0aGUgZm9sbG93aW5nIGxhYmVsZWQgYWRkcmVzcyBsaW5lcywgd2l0aCB
tZWFuaW5nZnVsIGNvbnRlbnQsIGlzIGVuY291cmFnZWQuDQoJCQkJPHN0cmVldEFkZHJlc3NMaW5lLz4NCgkJCQ
k8c3RyZWV0QWRkcmVzc0xpbmUvPg0KCQkJCTxjaXR5Lz4NCgkJCQk8c3RhdGUvPg0KCQkJCTxwb3N0YWxDb2RlL
z4NCgkJCQk8Y291bnRyeS8+DQoJCQk8L2FkZHI+DQoJCQk8dGVsZWNvbS8+DQoJCQk8cGF0aWVudD4NCgkJCQk8
bmFtZT4NCgkJCQkJPGdpdmVuLz4NCgkJCQkJPGdpdmVuLz4NCgkJCQkJPGZhbWlseS8+DQoJCQkJPC9uYW1lPg0
KCQkJCTwhLS1ISVRTUC9DODMgcmVxdWlyZXMgcGF0aWVudCBhZG1pbmlzdHJhdGl2ZSBnZW5kZXIsIGUuZy4gTS
wgRiwgSSAoaW5kZXRlcm1pbmF0ZSktLT4NCgkJCQk8YWRtaW5pc3RyYXRpdmVHZW5kZXJDb2RlIGNvZGU9IkYiI
GRpc3BsYXlOYW1lPSJGZW1hbGUiIGNvZGVTeXN0ZW09IjIuMTYuODQwLjEuMTEzODgzLjUuMSIgY29kZVN5c3Rl
bU5hbWU9IkhMNyBBZG1pbmlzdHJhdGl2ZUdlbmRlciIvPg0KCQkJCTwhLS1ISVRTUC8zMiB3aXRoIElIRSBlbmh
hbmNlbWVudHMgcmVxdWlyZXMgdGhhdCB0aGUgcGF0aWVudCBiaXJ0aFRpbWUgZWxlbWVudCBiZSBwcmVjaXNlIG
F0IGxlYXN0IHRvIHllYXIgYW5kIHN0YXRlcyB0aGF0IGl0IHNob3VsZCBiZSBwcmVjaXNlIGF0IGxlYXN0IHRvI
GRheS4gLS0+DQoJCQkJPGJpcnRoVGltZSB2YWx1ZT0iMTk4NDA3MDQiLz4NCgkJCTwvcGF0aWVudD4NCgkJPC9w
YXRpZW50Um9sZT4NCgk8L3JlY29yZFRhcmdldD4NCgk8YXV0aG9yPg0KCQk8IS0tSElUU1AvMzIgd2l0aCBJSEU
gZW5oYW5jZW1lbnRzIHJlcXVpcmVzIHRoYXQgdGhlIGF1dGhvciB0aW1lIGVsZW1lbnQgYmUgcHJlY2lzZSBhdC
BsZWFzdCB0byBkYXkgYW5kIHN0YXRlcyB0aGF0IGl0IHNob3VsZCBiZSBhIHRpbWVzdGFtcCB3aXRoIHByZWNpc
2lvbiBhdCBsZWFzdCB0byBzZWNvbmQuIC0tPg0KCQk8dGltZSB2YWx1ZT0iMjAxMDEwMjYxNDU3MzAiLz4NCgkJ
PGFzc2lnbmVkQXV0aG9yPg0KCQkJPGlkLz4NCgkJCTxhZGRyLz4NCgkJCTx0ZWxlY29tLz4NCgkJCTxhc3NpZ25
lZFBlcnNvbj4NCgkJCQk8bmFtZS8+DQoJCQk8L2Fzc2lnbmVkUGVyc29uPg0KCQkJPHJlcHJlc2VudGVkT3JnYW
5pemF0aW9uPg0KCQkJCTxuYW1lPk5JU1QgSGVhbHRoY2FyZSBUZXN0aW5nIExhYm9yYXRvcnk8L25hbWU+DQoJC
QkJPHRlbGVjb20vPg0KCQkJCTxhZGRyLz4NCgkJCTwvcmVwcmVzZW50ZWRPcmdhbml6YXRpb24+DQoJCTwvYXNz

Chapter 12
WS-Security for CDA Persistence Web Service

12-3

aWduZWRBdXRob3I+DQoJPC9hdXRob3I+DQoJPGN1c3RvZGlhbj4NCgkJPGFzc2lnbmVkQ3VzdG9kaWFuP
g0KCQkJPHJlcHJlc2VudGVkQ3VzdG9kaWFuT3JnYW5pemF0aW9uPg0KCQkJCTxpZC8+DQoJCQkJPG5hbW
UvPg0KCQkJCTx0ZWxlY29tLz4NCgkJCQk8YWRkci8+DQoJCQk8L3JlcHJlc2VudGVkQ3VzdG9kaWFuT3J
nYW5pemF0aW9uPg0KCQk8L2Fzc2lnbmVkQ3VzdG9kaWFuPg0KCTwvY3VzdG9kaWFuPg0KCTxjb21wb25l
bnQ+DQoJCTxub25YTUxCb2R5Pg0KCQkJPHRleHQvPg0KCQk8L25vblhNTEJvZHk+DQoJPC9jb21wb25lb
nQ+DQo8L0NsaW5pY2FsRG9jdW1lbnQ+DQo=</orac:Document>

 <!--Optional:-->

 <orac:DocumentId>2.16.3.5.6^Test01_CCD390</orac:DocumentId>

 </orac:PersistCDADocumentRequest>

 </soap:Body>

</soap:Envelope>

where the user provided underneath the SOAP Header should have already been
created under WebLogic default Security Realm myrealm.

Sample for successful CDA Persistence --> persistDocument Web Service SOAP
response

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:orac="http://oracle.apps.ctb.cdapersistence.types">

 <soap:Body>

 <orac: PersistCDADocumentResponse >

 <orac:status>SUCCESS</orac:status>

 </orac: PersistCDADocumentResponse >

 </soap:Body>

</soap:Envelope>

Sample CDA Persistence à importDocument Web Service SOAP request

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:orac="http://oracle.apps.ctb.cdapersistence.types">

 <soap:Header>

 <wsse:Security soap:mustUnderstand="true" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">

 <wsse:UsernameToken wsu:Id="UsernameToken-10">

 <wsse:Username>IHE_XDS_USER</wsse:Username>

 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-profile-1.0#PasswordText"><USER_PASSWORD></
wsse:Password>

 </wsse:UsernameToken>

 </wsse:Security>

Chapter 12
WS-Security for CDA Persistence Web Service

12-4

 </soap:Header>

 <soap:Body>

 <orac:ImportCDADocumentRequest>

 <orac:DocumentUniqueId>1.1.1.1.1.1.53351113</orac:DocumentUniqueId>

 </orac:ImportCDADocumentRequest>

 </soap:Body>

</soap:Envelope>

where the user provided under the SOAP Header should have already been created under
WebLogic default Security Realm myrealm.

Sample for successful CDA Persistence --> importDocument Web Service SOAP
response

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:orac="http://
oracle.apps.ctb.cdapersistence.types">

 <soap:Body>

 <orac: ImportCDADocumentResponse >

 <orac:status>SUCCESS</orac:status>

 </orac: ImportCDADocumentResponse >

 </soap:Body>

</soap:Envelope>

Chapter 12
WS-Security for CDA Persistence Web Service

12-5

	Contents
	Preface
	Documentation accessibility
	Diversity and Inclusion

	1 HDR Components
	Services
	Service Categories

	Java APIs
	Client-side Service Classes

	Integrating the Healthcare Enterprise (IHE)
	Messaging Interface
	Inbound Messaging Services

	Concurrent Program Service for Scheduling Jobs
	Enterprise Terminology Services
	Profile Option Services
	Create, Set, and Update Profile Options
	Creating Profile Options
	Updating Profile Options

	Create and Update New Profile Option Values

	Audit Services
	Enabling Audit Services

	RIM Service

	2 Design Recommendations
	Use Version-Aware References
	Follow J2EE Best Practices
	Choose an Appropriate Deployment Model
	Package Custom Server-side Code in its Own EAR File
	Design Your Own Business Level Services on Top of HDR
	Design Your Own Domain Model to Take Full Advantage of GUI Frameworks
	Consider Threading Issues
	Avoid Treatment of Your ServiceLocator as a Handle to a Session
	Avoid Deprecated Methods
	Use Oracle Identity Manager for Single Sign-On
	Use HTTP Form Authentication

	3 Set Up Client-side Libraries
	Client-side Libraries

	4 Use the Service Locator to Create HDR Sessions
	The Service Locator
	Configure Service Locator
	Create a New Session
	Set the Client Mode
	Authorization Considerations
	ServiceLocator.login

	JAAS Authentication in WebLogic Server
	JAAS and the ServiceLocator

	5 Audit Events and Log Errors
	HDR Audit Services
	Initializing Existing Audit Event Types
	Creating New Audit Event Types
	Invoking HDR Audit Services
	Attribute Values in Audit Events

	Log Error Messages
	Teminology
	Log Message
	Level

	Log4j Logging Configuration
	Log Configuration Parameters

	6 ID and Profile Option Services
	HDR OID Service
	HDR Object Identifiers

	HDR Profile Option Service
	Define Profile Options
	Create Profile Options
	Set Profile Option Values
	Retrieve Profile Option Values

	7 RIM Services
	Submit a Query
	HDR HL7 Domain Constants
	HDR Factories
	Factories
	Data Type Factory
	RIM Object Factories
	Query Component Factory

	Reference Modifiers

	HDR Query
	Scenario
	Fetches
	Flexible Retrieval
	Set Criteria on Fetches
	Add Detail Fetches
	Incremental Fetches
	Order Fetch Results
	Cyclic (Recursive) Fetches

	Criteria
	Attribute Criteria
	Query-by-Example (QBE) APIs
	Query-by-Criteria (QBC) APIs
	CodedTypeCriteria APIs
	Querying-by-Equivalence

	Connective Criteria
	Navigate the Result Graph
	Core RIM Navigational APIs

	HDR RIM Extensions
	Versioning and Query
	Versioning and Fetches
	Versioning and Criteria
	Retrieving the Current Version
	Retrieving a Specific Version
	Detail Criteria Versioning Behavior
	Detail Fetches
	Detail Criteria
	ControlAct Querying
	Person Merge Querying
	Owned Roles
	Original Coded Attributes

	DCTB Subqueries
	-DCTB_SUBQRY_OPT_METHOD=NONE
	-DCTB_SUBQRY_OPT_METHOD=EXISTS
	-DCTB_SUBQRY_OPT_METHOD=JOIN

	HDR RIM Services
	Use RIM Services
	Use The RIM Service
	Reference Modifiers
	Exception Handling

	Use Master Catalog API
	Master Catalog Entries
	Concepts

	Focal Class State Transitions

	HDR HL7 Data Types
	Use the DataTypeFactory
	Creating Constants
	Abstract Types (ANY, BIN, QTY)

	HL7 Null Flavors
	Unsupported Operations
	Coded Types
	Collections (SET, BAG, LIST, IVL)
	HL7 Timing Specification (GTS, PIVL, EIVL, IVL<TS>, TS)

	RIM Service Examples
	Use CD Qualifiers
	Query Based on Observation Value Attribute

	Constraints on the HL7 V3 RIM Model
	HL7 V3 Datatype Constraints
	RIM Query API Constraints

	8 Enterprise Terminology Server (ETS)
	Generic Terminology Model
	Verify Different Terminology Versions Using Change Files

	Loading and Activating Coding Scheme Versions
	Preparing Terminology Content and Control Files
	Creating New Generic Coding Schemes
	Loading a Coding Scheme Version
	Using Oracle Database Scheduler (DBMS_SCHEDULER)
	Publishing a Coding Scheme Version
	Using Oracle Database Scheduler (DBMS_SCHEDULER)
	Activating a New Terminology Version

	Interterminology Mapping
	Interterminology Mapping Using Cross Maps
	Guidelines: Cross Maps
	Loading Cross Maps Provided by the College of American Pathologists

	ETS Object Model
	ETS Concept Lists
	Creating and Updating a Concept List
	Adding Concepts to a Concept List
	Adding Concepts to a Concept List
	Specializing a Concept List
	Subsetting a Concept List
	Subsetting a User Concept List
	Subsetting a Concept List of any Extensibility Type

	ETS Editable Terminologies
	Reference
	Adding Components
	Changing Component Status
	Adding and Removing Attributes

	ETS Classifications
	Classifications can be Linked Hierarchically
	Testing Containment
	Creating and Populating Classifications
	Creating a Classification
	Building a Classification with the HDR Maintenance Job
	Updating Published Coding Scheme Versions
	Running the HDR Maintenance Job
	Scheduling the Maintenance Job

	ETS Equivalence
	Intraterminology Equivalence
	Interterminology Equivalence
	Combining Intraterminology and Interterminology Equivalence

	HDR Terminology Jobs
	ETS Multiple Language Support (MLS)
	Understanding Language (Locale) Mappings
	Scenario

	Locale Enabled APIs
	Errors

	9 HDR Messaging Services
	HDR Inbound Message Processor
	Configuring Interactions
	Configuring Sender, Sender Interaction, and Side Effect
	Invoke Inbound Messaging Services
	IMP Configuration API Usage
	Sender Configuration Attributes
	Sender Interaction Configuration Attributes
	Sender Side Effect Configuration Attributes
	Sender Configuration Search Parameters
	IMP Sender Interaction Configuration Administration Service

	Side Effect Configuration Rules

	HDR Message Submission Unit
	Message Submission Unit
	Submission Unit Interface
	Submission Unit Service Interface Methods

	HDR RIM Service Hook
	Event and Subscription
	Subscription Code Sample

	HDR Messaging Toolkit
	MTK Workflow
	Validating Inputs
	Generating Configuration Reports
	Generating Instances
	Testing Instance
	Setting Up Message Type

	Messaging Toolkit (MTK) Services
	HL7 Message Development Process
	Implement a New Message Type
	Procedure
	Test a New Message Type
	Using the MTK Services for Testing

	Verify the Test Files
	Set Up Message Types
	Load Message Types
	Use the MTK Services for Testing

	Configure IMP and OMP
	Use the MTK Services
	Test Custom Message Types
	Setting Up a New Message Type

	Sample Exercise Using MTK Services
	Prerequisites and Tools
	Creating a New Message Type or Modifying an Existing Message Type
	Generate Schema (XSD) and MIF Files for the Modified Messages
	Generate Test Messages Using MTK Service

	Generating Custom Message Types
	Generating Custom Artifacts Using RMIM
	Generating Custom Artifacts Without Using RMIM

	Logic for Instance Generation
	Master Catalog and Side Effect Configuration Reports
	Master Catalog Reports
	Act
	Role: Non-owned Role without Entities
	Role: Non-owned Role with Entities
	ROLE: Owned Role without Non-Owning Entity
	ROLE: Owned Role with Non-Owning Entity
	Master Catalog Reporting Logic
	Side Effect Configuration Report

	MTK Message Types Construct Processing
	Constructs in External Artifacts (Message Type and CMETs)
	Constructs Within Oracle Published CMETS

	XML Snippets of Seeded Data
	Expected Differences in Instances
	Extra Internal ID Elements
	Extra XML Attributes in Coded Values
	Order Differences in Collection Attributes
	Order Differences Due to Choice Elements
	Differences in the Order of XML Attributes
	Differences Due to Time Zones
	Differences Due to Vocabulary Configuration
	Differences in the Message Wrapper
	Sample Test Message and Corresponding Generated Message
	Error Messages

	10 HDR Exception Handling
	Optimistic Locking Exceptions
	Bundled Exceptions

	11 Integrating the Healthcare Enterprise
	Cross-Enterprise Document Sharing-b (XDS.b)
	IHE Actors
	Affinity Domain

	Integrating the Healthcare Enterprise Cross-Enterprise Document Sharing-b Web Service
	HDR's IHE XDS.b Solution Overview
	Supported IHE XDS.b Transactions
	Synchronous Provide and Register Document Set-b
	Prerequisite
	Providing/Registering Documents

	Document Storage Mode
	Synchronous Retrieve Document Set
	Asynchronous XDS.b Web Services
	Key Differences in the Asynchronous XDS.b Web Services
	Asynchronous Provide and Register Document Set-b

	Audit Trail and Event Logs

	12 HDR Clinical Document Architecture (CDA) Persistence
	Overview
	WSDL CDA Persistence Implementation
	WS-Security for CDA Persistence Web Service

