
Oracle® Healthcare Data Repository
FHIR User's Guide

Release 8.1.4
F73507-01
September 2023

Oracle Healthcare Data Repository FHIR User's Guide, Release 8.1.4

F73507-01

Copyright © 2018, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation accessibility vii

Diversity and Inclusion vii

1 Getting Started

Introduction 1-1

Platform Requirements 1-1

2 Installation

3 HDR FHIR Server Architecture

4 Deployment Details

Install files 4-1

FHIR Server Base URL and REST Endpoints 4-1

Configuration Files 4-1

Properties File 4-1

Log Configurations 4-6

5 Using the OAuth 2.0 protected API

Prerequisites 5-1

How It Works 5-1

Obtaining the Access Token from the OAuth Server 5-2

Calling the HDR FHIR API with an Access Token 5-2

Error Messages 5-2

iii

6 Auditing

Audit Interceptor Execution Flow 6-1

Audit Record Format 6-2

Settings 6-2

7 FHIR Command-Line Utility

Prerequisites 7-1

Commands 7-1

export-conceptmap-to-csv 7-2

import-csv-to-conceptmap 7-3

upload-definitions and upload-examples 7-4

upload-terminology 7-5

8 Working with FHIR REST APIs

9 HDR FHIR Data Model

10

Data Store in Repository

Resources 10-1

Search Indexes 10-2

11

FHIR Operations

FHIR CRUD (Create/Read/Update/Delete) operations 11-1

Create 11-2

Update 11-4

Delete 11-6

Patch 11-7

Read 11-13

vRead 11-14

FHIR Search operations 11-16

Basic searching: Finding patients 11-16

References: Finding encounters 11-18

Quantities: Finding laboratory values 11-18

Dates and times: Narrowing your search 11-19

Paging search results 11-20

Sorting search results 11-21

iv

Full text searching 11-22

Patient search $everything 11-22

FHIR Bundle transactions and batches 11-23

Basic bundle transaction 11-24

Bundle multiple related resources 11-25

Placeholder IDs and references 11-26

Conditional Create 11-28

Conditional Update 11-29

Delete 11-30

Patch 11-31

Search parameters 11-32

Default search parameters 11-32

Managing search parameters 11-33

Manual indexing 11-33

Reindex operation 11-34

Reindex response 11-35

Search parameter features 11-36

Index missing search parameter (: missing) 11-36

Index contained resources 11-37

Searching for data 11-38

FHIR Search extensions 11-38

Creating data 11-39

Validating references and referential integrity 11-40

Transactions and submitting bundles 11-40

Auto-creating reference targets 11-41

FHIR Transaction with conditional create 11-41

Auto-create placeholders for reference targets 11-43

Auto-create placeholder reference targets with identifier 11-44

Reading data 11-45

Diff operation 11-46

Diff at Instance Level 11-46

Diff at Type Level 11-47

$everything operation 11-48

Updating data 11-49

Patching data 11-49

Tag retention 11-53

Deleting data 11-54

Deletes and referential integrity 11-55

Transactional delete 11-56

Referential integrity 11-56

Cascading deletes 11-57

v

The $expunge operation 11-58

Binary Access Operations 11-61

Binary Access Write Operation ($binary-access-write) 11-61

Binary Access Read Operation ($binary-access-read) 11-63

12

Other Features

Repository Validation Support 12-1

Configuration 12-2

Remote Terminology Service Validation Support 12-4

Configuration 12-4

Patient :identifier Search Parameter Support 12-5

Lucene/Elasticsearch Indexing 12-6

Configuration 12-7

String search 12-7

13

Partitioning

Partitioning Outcomes 13-1

Partition Operations 13-2

Creating a Partition 13-2

Updating a Partition 13-3

Deleting a Partition 13-3

Reading a Partition 13-4

Listing all Partitions 13-4

Enabling Partitioning 13-5

14

Terminology

Uploading CodeSystems 14-1

Applying Deltas to CodeSystems 14-3

ValueSet 14-5

Expanding Hierarchical CodeSystems and ValueSets 14-6

Requesting A ValueSet Expansion 14-9

Requesting a ValueSet Hierarchical Expansion 14-10

vi

Preface

This preface contains the following sections:

• Documentation accessibility

• Diversity and Inclusion

Documentation accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

1
Getting Started

This section provides information about the platform requirements for setting up an Oracle
Healthcare Data Repository HL7 FHIR server.

• Introduction

• Platform Requirements

Introduction
Fast Healthcare Interoperability Resources (FHIR) is a standard for healthcare data
exchange that is published by HL7 (www.hl7.org/fhir/).

Oracle Healthcare Data Repository (HDR) Release 8.1.4 supports the HL7 FHIR specification
versions R4 (4.0.1), R4B (4.3.0) and R5. The FHIR server module is distributed as a web
application, which can be deployed to standard web containers such as WebLogic. FHIR
resources are exposed as a set of REST APIs that can be accessed by REST-based
applications.

Platform Requirements
The following software is required for Oracle Healthcare Data Repository and the FHIR
server module:

• Operating System: Oracle Enterprise Linux 8.x or 9.x (64 bit)

• Oracle Database 19c Release 1 (12.1.0.2.0) or Release 2 (12.2.1.2.0) or Release 19c.
Download from the Oracle Software Delivery Cloud at https://edelivery.oracle.com.

• WebLogic Server 14.1.1.0 with the Coherence option. Download from the Oracle
Software Delivery Cloud at https://edelivery.oracle.com.

• JDK (Java Development Kit) 11u17 and later. Download from My Oracle Support.

Download the Oracle Healthcare Data Repository 8.1.4 patch set from My Oracle Support at
https://support.oracle.com. Refer to the Oracle Healthcare Data Repository 8.1.4 Release
Notes (https://support.oracle.com/epmos/faces/DocumentDisplay?id=2907176.1).

1-1

https://www.hl7.org/fhir/
https://edelivery.oracle.com
https://edelivery.oracle.com
https://support.oracle.com
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2872158.1

2
Installation

Refer to the Oracle Healthcare Data Repository 8.1.4 Release Notes (https://
support.oracle.com/epmos/faces/DocumentDisplay?id=2907176.1) for information on the
prerequisites and steps to install the HDR-FHIR module.

2-1

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2872158.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2872158.1

3
HDR FHIR Server Architecture

Healthcare functional domains (administrative, clinical, and financial) and core services are
exposed as RESTful endpoints.

The client application that uses the HDR FHIR RESTful APIs must properly configure the
system in a secure environment to avoid unauthorized access of those APIs. To access
protected FHIR APIs, the client application must provide a valid access token. For more
information on this, see the HDR 8.1 Secure Configuration Guide and Secure Development
Guide.

The FHIR Server can be deployed in a single or multi-node cluster as illustrated below:

3-1

Figure 3-1 Single Node

Chapter 3

3-2

Figure 3-2 Multi-Node Cluster

Chapter 3

3-3

4
Deployment Details

This section describes the details of the HDR FHIR Server deployment.

• Install files

• FHIR Server Base URL and REST Endpoints

• Configuration Files

Install files
The HDR FHIR Server module is packaged as a deployable web application (.war) file. The
war file is distributed along with the HDR 8.1.4 patch set. Once installed, FHIR resources are
exposed as a set of REST endpoints.

The other component, the FHIR command line tool, is available in the HDR 8.1.4 patch and
copy them under HDR HOME directory on the middle tier. Refer to FHIR Command-Line
Utility section for more details.

FHIR Server Base URL and REST Endpoints
FHIR REST APIs can be accessed using the base URL as show below:

http://HOSTNAME:PORT/oracle-fhir-server/fhir

A specific resource can be accessed using the URL format:

<BASE_URL>/<resourceName>

For example, to access the ‘Patient' resource, use the following URL:

http://HOSTNAME:PORT/oracle-fhir-server/fhir/Patient

For the complete list of resources and their corresponding URLs, see Working with FHIR
REST APIs .

Configuration Files
Runtime behavior and logging are controlled using configuration files.

• Properties File

• Log Configurations

Properties File
The runtime behavior of the FHIR JPA server can be managed using the hdr_fhir.yaml file:
<HDR_DOMAIN>/config/fhir/hdr_fhir.yaml

4-1

Example 4-1 hdr_fhir.yaml file

#Adds the option to go to eg. http://localhost:8080/actuator/health for seeing
the running configuration
#see https://docs.spring.io/spring-boot/docs/current/reference/html/
actuator.html#actuator.endpoints
management:
 endpoints:
 web:
 exposure:
 include: "health,prometheus"
spring:
 main:
 allow-circular-references: true
 #allow-bean-definition-overriding: true
 flyway:
 enabled: false
 check-location: false
 baselineOnMigrate: true
#########
datasrouce - specify datasource here(name of the datasource configured in your
app server)
#########
 datasource:
 jndi_name: jdbc/OrclFhirDataSource
 jpa:
 properties:
 hibernate.format_sql: false
 hibernate.show_sql: false
 #Hibernate dialect is automatically detected except Postgres and H2.
 hibernate.hbm2ddl.auto: none
 hibernate.jdbc.batch_size: 20
 hibernate.cache.use_query_cache: false
 hibernate.cache.use_second_level_cache: false
 hibernate.cache.use_structured_entries: false
 hibernate.cache.use_minimal_puts: false
 ### These settings will enable fulltext search with lucene or elastic
 hibernate.search.enabled: true
 ### lucene parameters
 hibernate.search.backend.type: lucene
 hibernate.search.backend.analysis.configurer:
ca.uhn.fhir.jpa.search.HapiHSearchAnalysisConfigurers$HapiLuceneAnalysisConfigure
r
 hibernate.search.backend.directory.type: local-filesystem
 hibernate.search.backend.directory.root: target/lucenefiles
 hibernate.search.backend.lucene_version: lucene_current
 ### elastic parameters ===> see also elasticsearch section below <===
hibernate.search.backend.type: elasticsearch
hibernate.search.backend.analysis.configurer:
ca.uhn.fhir.jpa.search.HapiHSearchAnalysisConfigurers$HapiElasticAnalysisConfigur
er
hapi:
 fhir:
 ### This is the FHIR version. Choose between, DSTU2, DSTU3, R4 or R5
 fhir_version: R4
 ### This enables the swagger-ui at <BaseUrl>/swagger-ui/index.html as well
as the <BaseUrl>/api-docs
 openapi_enabled: true

 ### enable to use the ApacheProxyAddressStrategy which uses X-Forwarded-*
headers

Chapter 4
Configuration Files

4-2

 ### to determine the FHIR server address
 # use_apache_address_strategy: false
 ### forces the use of the https:// protocol for the returned server address.
 ### alternatively, it may be set using the X-Forwarded-Proto header.
 # use_apache_address_strategy_https: false
 ### enables the server to host content like HTML, css, etc. under the url pattern
of /static/**
 ### the deepest folder level will be used. E.g. - if you put file:/foo/bar/bazz as
value then the files are resolved under /static/bazz/**
 #staticLocation: file:/foo/bar/bazz
 ### enable to set the Server URL
 # server_address: http://hapi.fhir.org/baseR4
 # defer_indexing_for_codesystems_of_size: 101
##########################
Repository Validation(resource validation against Implementation Gudie)
IG can be loaded from remote url(http:), local file(file:) or classpath(classpath:)
If no url specified, IG is downloaded from central package respository(https://
packages.fhir.org/)
note: url can be either http:, https:, classpath:, or file:
##########################
 load_ig_on_server_startup: false
 install_transitive_ig_dependencies: false
 implementationguides:
australia_core:
name: hl7.fhir.au.base
version: 4.1.0
url:
 us_core:
 name: hl7.fhir.us.core
 version: 6.0.0
url:
 # supported_resource_types:
 # - Patient
 # - Observation
###############
Repository validation enable/disable
###############
 validation_repository_enabled: false
 ##
 # Allowed Bundle Types for persistence (defaults are: COLLECTION,DOCUMENT,MESSAGE)
 ##
 allowed_bundle_types:
COLLECTION,DOCUMENT,MESSAGE,TRANSACTION,TRANSACTIONRESPONSE,BATCH,BATCHRESPONSE,HISTORY
,SEARCHSET
 allow_cascading_deletes: true
 allow_contains_searches: true
 allow_external_references: true
 allow_multiple_delete: true
 allow_override_default_search_params: true
 auto_create_placeholder_reference_targets: false
 # cr_enabled: true
 # ips_enabled: false
 default_encoding: JSON
 # default_pretty_print: true
 default_page_size: 20
 delete_expunge_enabled: true

 enable_index_missing_fields: false
 # enable_index_of_type: true
 # enable_index_contained_resource: false
 ### !!Extended Lucene/Elasticsearch Indexing is still a experimental feature,

Chapter 4
Configuration Files

4-3

expect some features (e.g. _total=accurate) to not work as expected!!
 ### more information here: https://hapifhir.io/hapi-fhir/docs/server_jpa/
elastic.html
 advanced_lucene_indexing: false
 # bulk_export_enabled: false
 # bulk_import_enabled: false
 # enforce_referential_integrity_on_delete: false
 # This is an experimental feature, and does not fully support _total and
other FHIR features.
 enforce_referential_integrity_on_delete: false
 enforce_referential_integrity_on_write: false
 etag_support_enabled: true
 expunge_enabled: true
 # client_id_strategy: ALPHANUMERIC
 fhirpath_interceptor_enabled: false
 filter_search_enabled: true
 graphql_enabled: true
 narrative_enabled: false
 # mdm_enabled: true
 # local_base_urls:
 # - https://hapi.fhir.org/baseR4
 mdm_enabled: false
 # partitioning:
 # allow_references_across_partitions: false
 # partitioning_include_in_search_hashes: false
 cors:
 allow_Credentials: true
 # These are allowed_origin patterns, see: https://docs.spring.io/spring-
framework/docs/current/javadoc-api/org/springframework/web/cors/
CorsConfiguration.html#setAllowedOriginPatterns-java.util.List-
 allowed_origin:
 - '*'

 # Search coordinator thread pool sizes
 search-coord-core-pool-size: 20
 search-coord-max-pool-size: 100
 search-coord-queue-capacity: 200

 # comma-separated package names, will be @ComponentScan'ed by Spring to
allow for creating custom Spring beans
 #custom-bean-packages:

 # comma-separated list of fully qualified interceptor classes.
 # classes listed here will be fetched from the Spring context when combined
with 'custom-bean-packages',
 # or will be instantiated via reflection using an no-arg contructor; then
registered with the server
 #custom-interceptor-classes:

 # Threadpool size for BATCH'ed GETs in a bundle.
 # bundle_batch_pool_size: 10
 # bundle_batch_pool_max_size: 50

 logger:
 error_format: 'ERROR - ${requestVerb} ${requestUrl}'
 format: >-
 Path[${servletPath}] Source[${requestHeader.x-forwarded-for}]
 Operation[${operationType} ${operationName} ${idOrResourceName}]
 UA[${requestHeader.user-agent}] Params[${requestParameters}]
 ResponseEncoding[${responseEncodingNoDefault}]
 log_exceptions: true

Chapter 4
Configuration Files

4-4

 name: fhirtest.access
 max_binary_size: 104857600
 max_page_size: 200
 retain_cached_searches_mins: 60
 reuse_cached_search_results_millis: -1
#############
#Resource validation configuration
#############
 validation:
 requests_enabled: false
 responses_enabled: false
if remote terminology validation is set to true, make sure that request validation
is also enabled(requests_enabled property).
 remote_terminology_service_enabled: false
 remote_terminology_server_base_url: https://lforms-fhir.nlm.nih.gov/baseR4
#############
 binary_storage_enabled: true
############
#below property decides whether to store the resource as plain text in RES_TEXT_VC
column.
#if the resource size is below the size as set in the below property, it goes
RES_TEXT_VC column,
#if its larger than the property set value, it goes to RES_TEXT as compressed blob.
summary - the resource is stored in either RES_TEXT_VC or RES_TEXT dependeing on
the size set below.
 inline_resource_storage_below_size: 0
bulk_export_enabled: true
 subscription:
 resthook_enabled: false
 websocket_enabled: false
email:
from: some@test.com
host: localhost
port: 22
username:
password:
auth:
startTlsEnable:
startTlsRequired:
quitWait:
lastn_enabled: true
store_resource_in_lucene_index_enabled: true
This is configuration for normalized quantity search level default is 0
0: NORMALIZED_QUANTITY_SEARCH_NOT_SUPPORTED - default
1: NORMALIZED_QUANTITY_STORAGE_SUPPORTED
2: NORMALIZED_QUANTITY_SEARCH_SUPPORTED
 normalized_quantity_search_level: 0
 metadata:
 implementation_description: Oracle FHIR Server
 software_name: Oracle FHIR Server
 publisher: Oracle Corporation
 software_version: 8.1.4

 resource_count_enabled: false
 resource_compression_enabled: true
 response_highlighter_enabled: true
 allow_placeholder_references: true
 response_timing_log_enabled: false

############
for extracting unique request id from the incoming REST HTTP request and log the id

Chapter 4
Configuration Files

4-5

into server log file.
 enable_http_header_logging: true
 request_id_key_http_header: X-Request-ID
############

############
for controlling scheduled job - resourcecountcache
 enable_resource_count_scheduling_job: false
 resource_count_cache_expiry_time_in_minutes: 240
 resource_count_job_scheduling_time_in_minutes: 10
############

 audit:
 enabled: true
 datastore_type: DB
 savemessagepayload_enabled: false
 standard: CUSTOM

elasticsearch:
 debug:
 pretty_print_json_log: false
 refresh_after_write: false
 enabled: false
 required_index_status: YELLOW
 rest_url: 'localhost:9200'
 protocol: 'http'
 schema_management_strategy: CREATE
 username: SomeUsername
 password: SomePassword

oauth:
 enabled: false
 token_issuer: "https://dev-t9brtcqa.auth0.com/"
 token_audience: "https://fhir-hdr.auth.com/api/v2/"
 token_alg: HS256
 scopes: "fhir.admin,fhir.users,fhir.users.restricted"
 fhir.admin: read,create,update,delete
 fhir.users: read,create
 fhir.users.restricted: read
 #note: add more if needed
 #scopes and allowed fhir resources
 fhir.admin.allowedapis: ALL
 fhir.users.allowedapis: ALL
 #ResearchStudy
 fhir.users.restricted.allowedapis: Patient, Observation, AllergyIntolerance,
Medication, Condition, Procedure, Immunization

Log Configurations
HDR FHIR has several logging mechanisms that each serve a distinct purpose. These
mechanisms are described in the table below. Oracle HDR FHIR uses the log4j2
logging framework to emit these logs. These logs are generated at runtime by all
components of the FHIR. The location of the log4j2.properties is: <HDR_DOMAIN>/
config/fhir/ log4j2.properties.

Chapter 4
Configuration Files

4-6

Table 4-1 Log files

Log File Purpose Retention

Application log <HDR_DOMAIN>/logs/
hdr-fhir.log

Application Logging is a
traditional file-based log
of events and internal
processing details of
Oracle HDR FHIR.
These logs are useful for
troubleshooting.
Application logs can be
enabled and disabled at
runtime by modifying the
log4j2 properties file.

Logs are rotated and
compressed on a Time basis,
although this can be
configured using the
log4j2.properties file.

Audit Log <HDR_DOMAIN>/logs/
audit-hdr-fhir.log

The audit log is intended
to record actions taken
by users. This log can be
enabled or disabled
using “audit.enabled"
property defined in the
hdr_fhir.properties file.

Logs are rotated and
compressed on a Time basis,
although this can be
configured using
log4j2.properties file.

Chapter 4
Configuration Files

4-7

5
Using the OAuth 2.0 protected API

HDR FHIR offers a suite of REST APIs implemented per HL7 FHIR specification and secured
using the OAuth 2.0 security framework. This article outlines the steps needed for clients/
admin users to obtain a secure access token from HDR's OAuth Server and use the access
token to invoke the HDR FHIR REST APIs.

• Prerequisites

• How It Works

• Obtaining the Access Token from the OAuth Server

• Calling the HDR FHIR API with an Access Token

• Error Messages

Prerequisites
Prerequisites for using the OAuth protected API are as follows:

• HDR FHIR is successfully registered with an OAuth Server as a Resource Server (that is
protecting its endpoints).

• A client representing the HDR FHIR API admin user has been registered with OAuth
Server as an OAuth Client and is authorized to invoke HDR FHIR APIs.

How It Works

Figure 5-1 Access Token Process

5-1

1. Client application or user authenticates with the OAuth Server (at say, the /
ms_oauth/oauth2/endpoints/tokens endpoint) using the client ID and secret. The
client ID and secret would have been obtained at the time of registering the OAuth
client with OAuth Server.

2. OAuth Server validates the client ID and secret.

3. OAuth Server responds with an Access Token.

4. Client application or user uses the Access Token to call an HDR FHIR API.

5. HDR FHIR server intercepts the request and validates the Access Token.

6. HDR FHIR API responds with requested data.

Obtaining the Access Token from the OAuth Server
The client/user can ask the OAuth Server for tokens for any of the authorized
applications by issuing the following API call:

curl --request POST \
 --url https://example.oauthserver.com/ms_oauth/oauth2/endpoints/tokens \
 --header 'content-type: application/json' \
 --data
'{"client_id":"CqwUDq2VQ6AH416sf7n42CZ2rNyElkDW","client_secret":"iA6bJ9OQ-
tMWhVNUZylx6Km1_9tMuxVyKC4xNfWtPye72MjXyC3f1GJ38ttQ0oH9","audience":"hdr_fhir_api
","grant_type":"client_credentials"}'

In this example, client_id and client_secret are assigned random representative
values. You should change these values with the actual client Id and secret, obtained
after registering the client with OAuth Server.

{
 "access_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsI........N7KT4ig",
 "token_type": "Bearer",
 "expires_in":600
}

You can now extract the access_token property value from the response to make
authorized requests to your API.

Calling the HDR FHIR API with an Access Token
You can use this bearer token with an Authorization Header in your request to obtain
authorized access to the HDR FHIR API.

curl --request GET \
 --url http://<SERVER BASE URL>/fhir/Medication \
 --header 'accept: application/json' \
 --header 'authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsI........N7KT4ig'

Error Messages
Here is a list of a few common OAuth-related error messages that can be thrown by
HDR FHIR APIs and the associated remediation steps.

Chapter 5
Obtaining the Access Token from the OAuth Server

5-2

Table 5-1 OAuth-Related Error Messages

HTTP Status Code Message Meaning Remediation

401 BAD_TOKEN: Invalid
Algorithm. Algorithm is
empty or not supported.

Signature algorithm is
empty or not supported
by the FHIR server.

Recommended
algorithm is RS256.
Make sure JWT header
contains - "alg":
"RS256".

200, 201 -- Success. Authentication was
successful. Operation
was successful.

401 BAD_TOKEN: Invalid
JWT token. Bad claims.
Expired JWT

Unauthorized - expired
OAuth token sent in
request.

Current access token
has expired. Obtain a
fresh access token from
OAuth Server and use it.

401 BAD_TOKEN: Invalid
JWT token. Token is null
or empty.

Unauthorized - no
OAuth token sent in
request.

Obtain a valid access
token from OAuth
Server. Pass it in
request as bearer token
in HTTP Auth header.

401 <Other error messages
that start with
"BAD_TOKEN: Invalid
JWT token'' >

Unauthorized - reason
to be investigated.

Contact HDR
administrator with the
error message for
further assistance.

401 BAD_TOKEN: Invalid
JWT token. Bad claims.
Invalid 'aud' attribute.
Expected audience
'<correct_audience>'
does not exist in
audience
'<incorrect_audience>'

Unauthorized - token
sent has incorrect
audience value
specified.

Ensure that you are
using a correct audience
value while requesting
access token from
OAuth Server.

Chapter 5
Error Messages

5-3

6
Auditing

This module is responsible for collecting and storing audit data from incoming REST request
and response. Key details such as user id, IP address, resource name, HTTP request type
and request URL etc. are collected from the incoming request and stored in a secure
location. Audit records can be stored either in a database table or in a file.

• Audit Interceptor Execution Flow

• Audit Record Format

• Settings

Audit Interceptor Execution Flow

Figure 6-1 Audit Interceptor Execution Flow

The audit module (rendered in green) design follows an interceptor pattern as shown in the
above flow diagram. Here, incoming and outgoing REST API transactions are intercepted for
extracting audit data elements.

Once the data is extracted, audit information goes to either a database table or a file
(depending on storage settings defined in the FHIR server configuration file).

6-1

Audit Record Format
Audit record data format is as shown below.

Audit data element Description

AUDIT_ID Unique identifier for audit record

USER_ID User ID

RESOURCE_NAME FHIR resource name

HTTP_REQ_TYPE HTTP request type - GET, POST, and so forth

REQUEST_URL Incoming request URL

HTTP_RES_CODE HTTP response code - 200, 201, 500, ...

SOURCE_IP_ADDRESS Source system IP address

PROCESSING_TIME_MILLIS Time taken to complete REST request

REQUEST_PAYLOAD Payload

RESPONSE_PAYLOAD Response payload

EVENT_TIMESTAMP Timestamp

ATNA_AUDITEVENT Audit record in the form of AuditEvent json

Settings
Audit service functionality can be controlled using a configuration file. The file is
located at <HDR_DOMAIN>/config/fhir/hdr_fhir.yaml.

For example, if there is a requirement to store message payload as part of an audit
record, change “savemessagepayload_enabled" property to true. Other important
entries in the properties file is as shown below.

#audit enabled - true or false
audit:
 enabled: true

 #audit storage type - FILE or DB
 datastore_type: DB
 standard: CUSTOM

If ‘FILE' is selected as the storage type, audit data goes to a file named audit-hdr-
fhir.log.

If ‘DB' is selected as the storage type, audit data goes to a table called
OHF_HDR_FHIR_AUDIT. Refer to the FHIR eTRM document for more information
about the Audit table.

#collect request/response payload message – true or false

savemessagepayload_enabled=false

Chapter 6
Audit Record Format

6-2

7
FHIR Command-Line Utility

The HDR FHIR command-line interface (CLI) tool is a standalone command-line tool
distributed with HDR 8.1.4 that contains a number of commands to ingest terminology data
provided by the LOINC and SNOMED organizations.

The current version of the HDR FHIR command-line interface tool supports LOINC and
SNOMED terminology data to be loaded into the HDR FHIR repository.

The tool is distributed in the form of zip file (hdr-fhir-cli-app-8.1.0-SNAPSHOT.zip) and is
located in the HDR 8.1.4 patch.

Extract it into a directory where you will keep it, and add this directory to your path.

The zip file hdr-fhir-cli-app-8.1.0-SNAPSHOT.zip contains the following files:

File Description

lib All runtime executable jar file.

hdr-fhir-cli.sh Linux script to manage the command line tool.

• Prerequisites

• Commands

Prerequisites
The following prerequisites are required to use the command-line utility:

• Install the JDK 11

• Set the environment variable JAVA_HOME

• Extract the hdr-fhir-cli-app-8.1.0-SNAPSHOT.zip file into the middle tier

• Set the environment variable CLI_HOME to the location where hdr-fhir-cli-app-8.1.0-
SNAPSHOT.zip file is extracted

Commands
The HDR FHIR command line tool has a number of supported functions, called commands.
Each command has a name and a set of supported arguments.

You can see a list of supported commands by simply executing the below command. For
example:

$>{$CLI_HOME}/hdr-fhir-cli.sh

Usage:
 hdr-fhir-cli {command} [options]

Commands:
 export-conceptmap-to-csv - Exports a specific ConceptMap resource to a CSV file.

7-1

 import-csv-to-conceptmap - Imports a CSV file to a ConceptMap resource.

 upload-definitions - Uploads the conformance resources
(StructureDefinition and ValueSet) from the official FHIR
definitions.
 upload-examples - Downloads the resource example pack from the
HL7.org FHIR specification website, and uploads all of the example resources to
a given server.

 upload-terminology - Uploads a terminology package (e.g. a SNOMED CT ZIP
file) to a server, using the $upload-external-code-system operation.

You can also see the list of supported arguments for a given command by issuing
command help [commandname]. For example:

$>{$CLI_HOME}/hdr-fhir-cli.sh help upload-terminology

Usage:
 hdr-fhir-cli upload-terminology [options]

Uploads a terminology package (e.g. a SNOMED CT ZIP file) to a server, using the
$upload-external-code-system operation.

Options:

 -d,--data <arg> Local file to use to upload (can be a raw file
or a ZIP containing the raw file)
 -l,--logging If specified, verbose logging will be used.
 -t,--target <target> Base URL for the target server (e.g.
 " http://localhost:7001/oracle-fhir-server/fhir").
 -u,--url <arg> The code system URL associated with this upload
(e.g. http://snomed.info/sct)
 -v,--fhir-version <version> The FHIR version being used. Valid values: r4

• export-conceptmap-to-csv

• import-csv-to-conceptmap

• upload-definitions and upload-examples

• upload-terminology

export-conceptmap-to-csv
The export-conceptmap-to-csv command can be used to export a ConceptMap
resource as a CSV file of terminology mappings.

The first row of the CSV file will include the following headers:

 SOURCE_CODE_SYSTEM – ConceptMap.group.source
 SOURCE_CODE_SYSTEM_VERSION – ConceptMap.group.sourceVersion
 TARGET_CODE_SYSTEM – ConceptMap.group.target
 TARGET_CODE_SYSTEM_VERSION – ConceptMap.group.targetVersion
 SOURCE_CODE – ConceptMap.group.element.code
 SOURCE_DISPLAY – ConceptMap.group.element.display
 TARGET_CODE – ConceptMap.group.element.target.code
 TARGET_DISPLAY – ConceptMap.group.element.target.display
 EQUIVALENCE – ConceptMap.group.element.target.equivalence

Chapter 7
Commands

7-2

ConceptMapEquivalence)
 COMMENT – ConceptMap.group.element.target.comment

Usage:

hdr-fhir-cli export-conceptmap-to-csv [options]

Exports a specific ConceptMap resource to a CSV file.

Options:

-f,--filename <filename> The path and filename of the CSV file to be exported (./output.csv).

-l,--logging If specified, verbose logging will be used.

-t,--target <target> Base URL for the target server (e.g. “http://localhost:7001/oracle-fhir-
server/fhir").

u,--url <url> The URL of the ConceptMap resource to be exported (i.e.
ConceptMap.url).

-v,--fhir-version <version> The FHIR version being used. Valid values: r4.

These terminology mappings could then be exported with the following command:

./hdr-fhir-cli.sh export-conceptmap-to-csv --fhir-version R4 -t http://localhost:8080//
oracle-fhir-server/fhir -u http://hl7.org/fhir/ConceptMap/cm-administrative-gender-v2 -
f /u01/output.csv

import-csv-to-conceptmap
The import-csv-to-conceptmap command can be used to import a CSV file of terminology
mappings and store it as a ConceptMap resource.

The first row of the CSV file is expected to include the following headers:

 SOURCE_CODE_SYSTEM – ConceptMap.group.source
 SOURCE_CODE_SYSTEM_VERSION – ConceptMap.group.sourceVersion
 TARGET_CODE_SYSTEM – ConceptMap.group.target
 TARGET_CODE_SYSTEM_VERSION – ConceptMap.group.targetVersion
 SOURCE_CODE – ConceptMap.group.element.code
 SOURCE_DISPLAY – ConceptMap.group.element.display
 TARGET_CODE – ConceptMap.group.element.target.code
 TARGET_DISPLAY – ConceptMap.group.element.target.display
 EQUIVALENCE – ConceptMap.group.element.target.equivalence (ConceptMapEquivalence)
 COMMENT – ConceptMap.group.element.target.comment

An example CSV file that describes the mapping of FHIR to HL7v2 for Administrative Gender
would appear as follows:

"SOURCE_CODE_SYSTEM","SOURCE_CODE_SYSTEM_VERSION","TARGET_CODE_SYSTEM","TARGET_CODE_SYS
TEM_VERSION","SOURCE_CODE","SOURCE_DISPLAY","TARGET_CODE","TARGET_DISPLAY","EQUIVALENCE
","COMMENT"
"http://hl7.org/fhir/administrative-gender","","http://hl7.org/
fhir/v2/0001","","male","Male","M","Male","equal",""

Usage:

hdr-fhir-cli import-csv-to-conceptmap [options]

Imports a CSV file to a ConceptMap resource.

Chapter 7
Commands

7-3

Options:

-f,--filename <filename> The path and filename of the CSV file to be imported (for
example, ./input.csv).

-i,--input <input> The source value set of the ConceptMap to be imported (i.e.
ConceptMap.sourceUri).

-l,--logging If specified, verbose logging will be used.

-o,--output <output> The target value set of the ConceptMap to be imported (i.e.
ConceptMap.targetUri).

-t,--target <target> Base URL for the target server (e.g. "http://localhost:7001/oracle-
fhir-server/fhir").

-u,--url <url> The URL of the ConceptMap resource to be imported/exported
(i.e. ConceptMap.url).

-v,--fhir-version <version> The FHIR version being used. Valid values: r4.

These terminology mappings could then be imported with the following command:

./hdr-fhir-cli.sh import-csv-to-conceptmap --fhir-version R4 -t http://
localhost:8080//oracle-fhir-server/fhir -u http://hl7.org/fhir/ConceptMap/cm-
administrative-gender-v2 -i http://hl7.org/fhir/ValueSet/administrative-gender -
o http://hl7.org/fhir/ValueSet/v2-0001 -f /u01/sampleInputFile.csv

upload-definitions and upload-examples
The upload-definitions command uploads the conformance resources
(StructureDefinition and ValueSet) from the official FHIR definitions.

The upload-examples command uploads the example resources from the official FHIR
definitions.

Usage:

hdr-fhir-cli upload-definitions/upload-examples [options]

The conformance rules are available at https://www.hl7.org/fhir/conformance-
rules.html.

Options:

-e,--exclude <arg> Exclude uploading the given resources, such as "-e dicom-
dcim,foo".

-t,--target <arg> Base URL for the target server (such as "http://localhost:7001/
oracle-fhir-server/fhir ").

-v,--fhir-version <version> The FHIR version being used. Valid values: r4.

Command usage:

./hdr-fhir-cli.sh upload-definitions --fhir-version R4 -t http://localhost:8181/
baseR4 "-e dicom-dcim,foo"

./hdr-fhir-cli.sh upload-examples --fhir-version R4 -t http://localhost:8181/
baseR4 "-e dicom-dcim,foo"

Chapter 7
Commands

7-4

https://www.hl7.org/fhir/conformance-rules.html
https://www.hl7.org/fhir/conformance-rules.html

upload-terminology
The HDR FHIR server provides a terminology server, which supports ingestion of terminology
data provided by LOINC and SNOMED. For more information on obtaining the above
terminology data refer to the respective websites.

The HDR FHIR server provides a repository for terminology content used across the HDR
platform, and an API suite to access the content.

The server provides a mechanism for ingestion of the terminology data via the upload-
terminology command of the CLI tool. This command supports only LOINC and SNOMED
terminologies in the current release.

Note:

The path and exact filename of the terminology files will likely need to be adjusted
for your local disk structure.

Usage:

hdr-fhir-cli upload-terminology [options]

Uploads a terminology package (such as a SNOMED CT ZIP file) to a server, using
the $upload-external-code-system operation.

Options:

-d,--data <arg> Local file to use to upload (can be a raw file or a ZIP containing the
raw file).

-l,--logging If specified, verbose logging will be used.

-t,--target <target> Base URL for the target server (such as "http://localhost:7001/oracle-
fhir-server/fhir").

-u,--url <arg> The code system URL associated with this upload (such as http://
snomed.info/sct).

-v,--fhir-version <version> The FHIR version being used. Valid values: r4.

Command usage:

$>{$CLI_HOME}$./hdr-fhir-cli.sh upload-terminology -d /scratch/fhir/Loinc_2.65.zip -d /
scratch/fhir/loincupload.properties --fhir-version R4 –t http://localhost:8080//oracle-
fhir-server/fhir -u http://loinc.org

Chapter 7
Commands

7-5

8
Working with FHIR REST APIs

Oracle Healthcare Data Repository 8.1.4-FHIR offers a suite of REST APIs implemented as
per the HL7 FHIR specification and is secured using the OAuth 2.0 security framework. For
more information, refer to the HDR FHIR REST API documentation.

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2913016.1

8-1

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2913016.1

9
HDR FHIR Data Model

For information on the Oracle Healthcare Data Repository 8.1.4-FHIR data model, see the
FHIR Technical Reference Manual, available from Oracle Support:

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2913016.1

9-1

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2913016.1

10
Data Store in Repository

This section describes about how the FHIR resource data gets stored in the HDR FHIR
repository.

The HDR FHIR JPA schema relies on the concept of internal persistent IDs on tables, using a
Java type of Long.

Many tables use an internal persistent ID as their primary key, allowing flexibility for other
more complex business identifiers to be changed and minimizing the amount of data
consumed by foreign key relationships. Persistent ID columns are generally assigned using
the database sequences. The persistent ID column is generally called PID in the HDR FHIR
schema.

• Resources
Various resources are used in storing data in the HDR FHIR repository.

• Search Indexes
Search Parameter Index are used to index resources for searching.

Resources
Various resources are used in storing data in the HDR FHIR repository.

Resource Master Table

The table called HFJ_RESOURCE indicates a single resource of any type in the database.
For example, the resource Patient/1 will have exactly one row in this table, representing all
versions of the resource.

Resource Versions and Contents

The table called HFJ_RES_VER contains individual versions of a resource. If the resource
Patient/1 has 3 versions, there will be 3 rows in this table.

The complete raw contents of the resource is stored in either the RES_TEXT or the
RES_TEXT_VC column of the resource specific extended table OHF_FHIR_xxx, using the
encoding specified in the RES_ENCODING column of the HFJ_RES_VER.

Example: Resource Extended Table OHF_FHIR_PATIENT

The following property decides whether to store the resource as plain text in RES_TEXT_VC
column or not.

If the resource size is below the size as set in the following property, it goes to
RES_TEXT_VC column and RES_ENCODING columns value is JSON.

If the resource size is larger than the property set value, it goes to RES_TEXT as a
compressed blob.

inline_resource_storage_below_size: 0
Encoding

10-1

The resource is serialized using FHIR JSON encoding, and then compressed into a
byte stream using GZIP compression. This will be controlled using the following
property:

resource_compression_enabled: true
If the above property is set to true, the resource is serialized and then compressed
into byte stream using GZIP compression. Then the compressed resource is stored
into RES_TEXT column as a blob value with RES_ENCODING set to JSONC.

If the above property is set to false, the resource is not compressed and the plain text
resource is stored into RES_TEXT column as a blob with RES_ENCODING set to
JSON.

Client Assigned Resource IDs

By default, the HFJ_RESOURCE.RES_ID column is used as the resource ID for all
server-assigned IDs. For example, if a Patient resource is created in a completely
empty database, it will be assigned the ID Patient/1 by the server and RES_ID will
have a value of 1.

However, when client-assigned IDs are used, these may contain text values to allow a
client to create an ID such as Patient/ABC. When a client-assigned ID is given to a
resource, a row is created in the HFJ_RESOURCE table. When an HFJ_FORCED_ID
row exists corresponding to the equivalent HFJ_RESOURCE row, the RES_ID value is
no longer visible or usable by FHIR clients and it becomes purely an internal ID to the
JPA server.

If the server has been configured with a Resource Client ID Strategy of ANY, the
server use the Resource Server ID Strategy of UUID and will create a Forced ID for all
resources (not only resources having textual IDs).

Propety:
client_id_strategy: ANY

Resource Links

Resource links will be established between the two resources. When a resource is
created or updated, it is indexed for searching. Any search parameters of type
Reference are resolved, and one or more rows may be created in the HFJ_RES_LINK
table between source Resource Id and Target Resource ID.

Search Indexes
Search Parameter Index are used to index resources for searching.

The table starts with HFJ_SPIDX (Search Parameter Index) used to index resources
for searching. When a resource is created or updated, a set of rows will be added in
the tables. These are used for finding appropriate rows to return when performing
FHIR searches. There are dedicated tables for supporting each of the non-reference
FHIR Search Datatypes: Date, Number, Quantity, String, Token, and URI:

• HFJ_SPIDX_DATE
• HFJ_SPIDX_NUMBER

Chapter 10
Search Indexes

10-2

• HFJ_SPIDX_QUANTITY
• HFJ_SPIDX_QUANTITY_NRML
• HFJ_SPIDX_STRING
• HFJ_SPIDX_TOKEN
• HFJ_SPIDX_URI

Note:

Reference search parameters are implemented using the HFJ_RES_LINK table
above.

The SPIDX tables leverage "hash columns", which contain a hash of multiple columns in
order to reduce index size and improve search performance. Hashes currently use the
MurmurHash3_x64_128 hash algorithm, keeping only the first 64 bits in order to produce a
LongInt value. For example, all search index tables have columns for storing the search
parameter name (SP_NAME) and resource type (RES_TYPE). An additional column which
hashes these two values is provided:

HASH_IDENTITY

Chapter 10
Search Indexes

10-3

11
FHIR Operations

This section gives an overview of some of the features of HDR FHIR, and it shows you how
to manage and configure it for a few basic functionalities.

• FHIR CRUD (Create/Read/Update/Delete) operations
This section describes how to use the HDR FHIR Endpoint to perform basic CRUD
(Create/Read/Update/Delete) operations.

• FHIR Search operations
This section describes the FHIR Search operations.

• FHIR Bundle transactions and batches
Oracle FHIR includes a mechanism that can be used by a client to send multiple
interactions to a server for processing. This mechanism uses the FHIR bundle resource
as the transport, with a collection of one or more interactions grouped inside the bundle.

• Search parameters
Search parameters are named paths within resources that are indexed by the system so
that they can be used to find resources that match a given criteria.

• Search parameter features
This section describes optional features that you can enable or disable for optimizing how
searching works on Oracle HDR-FHIR server.

• Searching for data
This section contains information about methods for searching for data in Oracle HDR
FHIR.

• Creating data
This section describes creating data in Oracle HDR FHIR repository.

• Reading data
This section describes methods for reading data from the Oracle HDR FHIR Repository.

• Updating data
This section describes information about methods for updating data in the HDR FHIR
Repository.

• Deleting data
The FHIR delete operation performs a "logical" delete. This means that data is not
physically removed from the database.

• Binary Access Operations
In many cases, resources such as DocumentReference are used to store large files
such as scanned PDFs and images. These resources use the Attachment datatype,
which ultimately stores a content type and a base 64 encoded representation of the
binary content.

FHIR CRUD (Create/Read/Update/Delete) operations
This section describes how to use the HDR FHIR Endpoint to perform basic CRUD (Create/
Read/Update/Delete) operations.

11-1

• Create
A client may create a new resource on an HDR FHIR server by performing a
Create operation. The Create uses an HTTP POST against the URL [baseUrl]/
[resourceName]. This POST should have a Content-Type header which specifies
the MIME type of the payload.

• Update
You can update an existing resource on an FHIR server by performing an Update
operation. The Update uses an HTTP PUT against the URL [baseUrl]/
[resourceName]/[id]. This PUT should have a Content-Type header that specifies
the MIME type of the payload.

• Delete
You can delete a resource on an FHIR server by performing a Delete operation.
The Delete uses an HTTP DELETE against the URL [baseUrl]/[resourceType]/[id].

• Patch
You can patch a resource on an FHIR server by performing a Patch operation.
This operation support allows you to modify a resource in place by supplying a
delta. The Patch uses an HTTP PATCH against the URL [baseUrl]/[resourceType]/
[id]. This operation requires a Content-Type header that specifies the MIME type of
the payload.

• Read
If you know the ID of a resource on an FHIR server, you can read back the most
recent version of that resource by performing a Read operation. The Read uses an
HTTP GET against the URL [baseUrl]/[resourceType]/[id].

• vRead
You can also include a version string in the URL in order to request a specific
version of the resource by performing a vRead operation. The vRead uses an
HTTP GET against the URL [baseUrl]/[resourceType]/[id]/_history/[versionId].

Create
A client may create a new resource on an HDR FHIR server by performing a Create
operation. The Create uses an HTTP POST against the URL [baseUrl]/
[resourceName]. This POST should have a Content-Type header which specifies the
MIME type of the payload.

The following example shows a simple Patient resource create using a JSON Payload.

Request: FHIR CRUD Create operation

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-2

Response: FHIR CRUD Create operation

The endpoint responds with a response similar to the following:

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-3

Update
You can update an existing resource on an FHIR server by performing an Update
operation. The Update uses an HTTP PUT against the URL [baseUrl]/[resourceName]/
[id]. This PUT should have a Content-Type header that specifies the MIME type of the
payload.

The following example shows a simple Patient resource update using a JSON
Payload. This example uses the previously created Patient resource (see Create) and
updates it by adding an address.

Request: FHIR CRUD Update operation

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-4

Response: FHIR CRUD Update operation

The endpoint responds with a response similar to the following:

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-5

Delete
You can delete a resource on an FHIR server by performing a Delete operation. The
Delete uses an HTTP DELETE against the URL [baseUrl]/[resourceType]/[id].

This operation performs a logical delete, which has a specific set of semantics:

• The resource is marked as deleted, and it no longer appears in search results.

• The version number of the resource is incremented (that is, a new deleted version
is created).

• Previous versions of the resource are not physically deleted.

• The resource may be un-deleted by updating it again.

The following example shows a simple delete of the resource created and updated in
the examples in Create and Update.

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-6

Request: FHIR CRUD Delete operation

Response: FHIR CRUD Delete operation

The endpoint responds with a response similar to the following:

Patch
You can patch a resource on an FHIR server by performing a Patch operation. This operation
support allows you to modify a resource in place by supplying a delta. The Patch uses an
HTTP PATCH against the URL [baseUrl]/[resourceType]/[id]. This operation requires a
Content-Type header that specifies the MIME type of the payload.

For example, for a JSON patch payload the header value is: application/json-patch+json.

Updating a resource using patch operation: PATCH works by creating a patch document
that specifies the changes that the client wishes to make to a resource, and submits that to
the server. The server then applies those changes to the indicated resource and optionally
returns the updated resource.

Each change in the patch document (and there can be multiple) specifies:

• The operation that is to be performed (for example, add, remove, or replace).

• The location in the resource to apply the operation.

• The new value (if an add or change).

The following example shows how to perform a patch using a FHIR Patch.

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-7

Here is the initial patient resource.

{

"resourceType": "Patient",

"id" : "149954",

"birthDate": "1974-02-13"

}

Example 1: Add Operation

• Adding the gender. If a target element is an object (for example, not an array)
and already exists then the value is replaced. Otherwise, it is added.

Table 11-1 Request

HTTP Method PATCH

URL http://<HOST>:<PORT>/oracle-
fhir-server/fhir/Patient/149954

Headers Content-Type: application/json-
patch+json

Request Body [{ "op": "add", "path": "/
gender", "value": "male" }]

Note:

The Patch document is in an array as there can be any number of
operations in a single PATCH call.

Response: The FHIR endpoint will respond with a response similar to the
following:

{
"resourceType": "Patient",
"id": "149954",
"meta": {
"versionId": "2",
"lastUpdated": "2022-04-24T19:05:13.111+05:30",
"source": "#sieqifF8d5n5c2dU"
},

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-8

"text": {
"status": "generated",
"div": "<div xmlns=\"http://www.w3.org/1999/xhtml\"><table
class=\"hapiPropertyTable\"><tbody/></table></div>"
},
"gender": "female"
}

• Adding an address. This element can repeat. It is represented in the resource instance
as an array. It is possible to adjust an array, but unlike an object, the array will not be
automatically created if it does not exist. So, the contents of the patch document will be
different if there is no address already. It needs to be created first.

Table 11-2 Request

HTTP Method PATCH

URL http://<HOST>:<PORT>/oracle-fhir-
server/fhir/Patient/149954

Headers Content-Type: application/json-
patch+json

Request Body [
{ "op": "add", "path": "/address",
"value":[]},
{ "op": "add", "path": "/
address/0", "value":
{
"use" : "home",
"line" : ["<Sample Street
Name>","avon"],
"city" : "<City_Name>",
"district": "<Sample Street Name>",
"state": "Vic",
"postalCode": "3999",
"text":"<Sample Street Name>"
}
}
]

Response: The FHIR endpoint will respond with a response similar to the following:

{
"resourceType": "Patient",
"id": "149954",
"meta": {
"versionId": "3",
"lastUpdated": "2022-04-24T19:17:02.229+05:30",

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-9

"source": "#2dK6qlDOD2W4vQbh"
},
"text": {
"status": "generated",
"div": "<div xmlns=\"http://www.w3.org/1999/xhtml\"><table
class=\"hapiPropertyTable\"><tbody/></table></div>"
},
"gender": "female",
"address": [{
"use": "home",
"text": "<Sample Street Name>",
"line": ["<Sample Street Name>", "avon"],
"city": "<City_Name>",
"district": "<Sample Street Name>",
"state": "Vic",
"postalCode": "3999"
}]
}

Example 2: Replace Operation

Update address content and birthDate object with replace operation.

Table 11-3 Request

HTTP Method PATCH

URL
http://<HOST>:<PORT>/oracle-fhir-
server/fhir/Patient/149954

Headers
Content-Type: application/json-
patch+json

Request Body
 [
{
"op": "replace",
"path": "/address/0/postalCode",
"value": "4000"
},
{
"op": "replace",
"path": "/birthDate",
"value": "1974-02-20"
}
]

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-10

Response: The FHIR endpoint will respond with a response similar to the following:

{
"resourceType": "Patient",
"id": "149954",
"meta": {
"versionId": "4",
"lastUpdated": "2022-04-24T19:37:51.559+05:30",
"source": "#fZYCuXUNmAoZYbDH"
},
"text": {
"status": "generated",
"div": "<div xmlns=\"http://www.w3.org/1999/xhtml\"><table
class=\"hapiPropertyTable\"><tbody/></table></div>"
},
"gender": "female",
"birthDate": "1974-02-20",
"address": [{
"use": "home",
"text": "<Sample Street Name>t",
"line": ["<Sample Street Name>", "avon"],
"city": "<City_Name>",
"district": "<Sample Street Name>",
"state": "Vic",
"postalCode": "4000"
}]
}

Example 3: Remove Operation

[
{"op": "remove", "path": "/address/0"}
]

For adjusting the array, you need to know the position of the element in the array to remove.
If you want to be sure, then you can require that the client submit the actual address that they
are removing so the server can check. This can be done using the test operation. The
document below will remove the address only if its value matches.

[
{"op": "test", "path": "/address/0","value": { "use" : "home", "line" :
["<Sample Street Name>","avon"], "city" : "<City_Name>", "district":
"<Sample Street Name>", "state": "Vic", "postalCode": "4000",
"text":"<Sample Street Name>"}},
{"op": "remove", "path": "/address/0"}
]

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-11

Table 11-4 Request

HTTP Method PATCH

URL
http://<HOST>:<PORT>/oracle-fhir-
server/fhir/Patient/149954

Headers
Content-Type: application/json-
patch+json

Request Body
[
{"op": "test", "path": "/address/
0","value": { "use" : "home",
"line" : ["<Sample Street
Name>","avon"],
"city" : "<City_Name>",
"district": "<Sample Street
Name>",
"state": "Vic",
"postalCode": "4000",
"text":"<Sample Street Name>"}},
{"op": "remove", "path": "/
address/0"}
]

Response: The FHIR endpoint will respond with a response similar to the following:

{
"resourceType": "Patient",
"id": "149954",
"meta": {
"versionId": "5",
"lastUpdated": "2022-04-24T19:54:03.769+05:30",
"source": "#Bu5gN7pTIzZgLrM9"
},
"text": {
"status": "generated",
"div": "<div xmlns=\"http://www.w3.org/1999/xhtml\"><table
class=\"hapiPropertyTable\"><tbody/></table></div>"
},
"gender": "female",
"birthDate": "1974-02-20"
}

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-12

Read
If you know the ID of a resource on an FHIR server, you can read back the most recent
version of that resource by performing a Read operation. The Read uses an HTTP GET
against the URL [baseUrl]/[resourceType]/[id].

The following example shows a simple read of the resource created and updated in the
examples in Create, Update, Delete, and Patch.

Request: FHIR CRUD Read operation

Response: FHIR CRUD Read operation

The FHIR endpoint responds with a response similar to the following:

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-13

vRead
You can also include a version string in the URL in order to request a specific version
of the resource by performing a vRead operation. The vRead uses an HTTP GET
against the URL [baseUrl]/[resourceType]/[id]/_history/[versionId].

The following example shows a simple vRead of the original resource created in
Create.

Request: FHIR vRead operation

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-14

Response: FHIR vRead operation

The FHIR endpoint responds with a response similar to the following:

Chapter 11
FHIR CRUD (Create/Read/Update/Delete) operations

11-15

FHIR Search operations
This section describes the FHIR Search operations.

• Basic searching: Finding patients
The most basic form of a search is a search with no parameters, which matches
all resources of a given type. You can also search with a name parameter or
multiple parameters.

• References: Finding encounters
Patients often have one or more encounters. You can search for all encounter
resources for a specific patient using the subject search parameter.

• Quantities: Finding laboratory values
There are a few options to search Observation resources for lab tests. You can
search for all lab tests or specific lab tests for all patients or a specific patient.

• Dates and times: Narrowing your search
Searching by date in FHIR is quite powerful. If you want to search for anything
matching a date, you can use that date as the search parameter value.

• Paging search results
When returning search results, the server pages them by default.

• Sorting search results
FHIR makes it easy to sort the results of your search query according to whatever
criteria you require. Add the _sort parameter followed by the name of a search
parameter.

• Full text searching
You can perform a full text search across the textual contents of resources. Using
the _content parameter, the various textual fields in resources are matched.

• Patient search $everything
Oracle FHIR provides a special query known as the $everything operation, which
returns all resources associated with a specific patient. The query searches the
patient's entire chart.

Basic searching: Finding patients
The most basic form of a search is a search with no parameters, which matches all
resources of a given type. You can also search with a name parameter or multiple
parameters.

Request: Search with no parameters

The following search returns all patients in the system.

Chapter 11
FHIR Search operations

11-16

Response: Search with no parameters

The response to the query only returns a small amount of patient records (the default is 20).
You can however, narrow your search using a name parameter or multiple parameters.

Request: Search with a name parameter

The following search query finds any patients with the family name "Chalmers."

Request: Search with multiple parameters (as an AND combination)

You can combine multiple parameters to narrow down your search even further (multiple
parameters are interpreted as an AND combination).

Request: Search with multiple parameters as comma separated values (as an OR
search)

Comma separated values are treated as an OR search (either value may match). For
example, the following search query finds people with the family name "Chalmers" and a
given name of either "James" or "Peter."

Chapter 11
FHIR Search operations

11-17

References: Finding encounters
Patients often have one or more encounters. You can search for all encounter
resources for a specific patient using the subject search parameter.

An encounter has several details contained within the resource. Most importantly, it
has a subject, which is a reference to the patient for whom this encounter exists. It
also generally has references to practitioner resources who are a part of the encounter
in some way.

Request: Search query for encounters

The following example uses the _sort parameter so the results are returned in order
by date from oldest to newest.

Quantities: Finding laboratory values
There are a few options to search Observation resources for lab tests. You can search
for all lab tests or specific lab tests for all patients or a specific patient.

Request: Search query for all lab tests for a patient

The following search query uses the laboratory category to find all lab tests for a given
patient.

Request: Search for a specific lab test for all patients

To find a specific lab test, you can use the LOINC code for that test and the code
search parameter. For example, the following search query finds all Potassium tests
(LOINC code 6298-4) across all patients.

Chapter 11
FHIR Search operations

11-18

Request: Search for a value and quantity

You can also add a value-quantity search parameter to find, for example, potassium tests
with a specific value. The following example searches for any potassium tests with a value
below 4.0 mmol/L.

Dates and times: Narrowing your search
Searching by date in FHIR is quite powerful. If you want to search for anything matching a
date, you can use that date as the search parameter value.

Request: Search query for all patients with a specific birthday

The following example shows a search query for all patients with a given birthday.

Request: Search query for all patients born in a specific year

Partial dates are used to narrow the search, and they will match any values within the part.
For example, the following search finds all patients born in 1974.

Request: Search query for a date range

Date searches also support a set of qualifiers, which are prefixes on the date that act as a
comparator. For example, the value ge2011-01-01 matches any date on or after 2011-01-01.
A number of other qualifiers are available under the Date section of the FHIR Search page.
The following search query request matches any Encounters for the given patient that started
or ended between June 2009 and July 2009.

Chapter 11
FHIR Search operations

11-19

Request: Search query for last updated

FHIR also supports a special parameter called _lastUpdated that can be used on any
resource type. This parameter filters search results to only match resources that were
last updated at or after the given date/time (or optionally before). The _lastupdate
parameter considers the value found in Resource.meta.lastUpdated. It is also
important to remember that this value is always provided by the server, and you do not
have any control over the resource last updated date. The following search request
finds Patient resources updated on or after midnight on Jan 1, 2017.

Paging search results
When returning search results, the server pages them by default.

Request: Search query for paging search results

Consider the following search query.

Response: Search query for paging search results

The following example show that the response returns a Bundle. Let’s say, there are
200 matching search results in total. However, the Bundle actually contains only the
first page of results. The URL marked next provides a link to fetch the next page of
results. This allows client applications to fetch data in manageable amounts, which
improves performance in many cases.

Chapter 11
FHIR Search operations

11-20

Request: Search query to control the number of returned results

You can control the number of returned results by using the _count parameter.

Sorting search results
FHIR makes it easy to sort the results of your search query according to whatever criteria you
require. Add the _sort parameter followed by the name of a search parameter.

Request: Search query for sorting single parameter search results

For example, you can search for patients with a single search parameter, such as sorting by
family name (ascending and descending).

Request: Search query for sorting multiple parameter search results

Chapter 11
FHIR Search operations

11-21

You can also sort by multiple search parameters by combining them with a comma.

Full text searching
You can perform a full text search across the textual contents of resources. Using the
_content parameter, the various textual fields in resources are matched.

Request: Search query for full text searching

The following search query returns all Condition resources that contain the string
"diabetes." The search is not case-sensitive.

Note:

FHIR also provides a second full text parameter, _text that you can use to
search across the resource.

Patient search $everything
Oracle FHIR provides a special query known as the $everything operation, which
returns all resources associated with a specific patient. The query searches the
patient's entire chart.

Request: Search query for patient using search $everything

To invoke this operation on a specific patient, call $everything on a patient resource
instance. For example:

Request: Search query for patient using search $everything by count

The result of this operation can be paged in order to avoid overwhelming the client and
server. You can use the _count parameter and increase the page size from the
resulting bundle.

Chapter 11
FHIR Search operations

11-22

FHIR Bundle transactions and batches
Oracle FHIR includes a mechanism that can be used by a client to send multiple interactions
to a server for processing. This mechanism uses the FHIR bundle resource as the transport,
with a collection of one or more interactions grouped inside the bundle.

FHIR bundles are sent to the FHIR server using an HTTP POST to the base URL of the
server. There are two modes of processing, as determined by the Bundle.type value.

• Transaction: All operations in the bundle are executed as a single atomic database
transaction. If any failures occur, the entire transaction is rolled back.

• Batch: Each operation in the bundle is executed as an independent database
transaction. Any processing failures may cause the specific interaction to be rolled back
but will not affect other operations.

Mostly, transaction bundles are commonly used to post data to a server, since any HTTP
REST operation is a process to be included in a transaction.

• Basic bundle transaction
Oracle FHIR transaction bundle has a few important elements.

• Bundle multiple related resources
A common use for FHIR bundle transactions is to persist a collection of related resources
to a server. For example, if you have a collection of Observation resources with the same
patient as subject, you could place them inside a single FHIR bundle transaction and
send them together to a server.

• Placeholder IDs and references
Creating references between resources is easy if you know the ID of the reference target
(such as in the example above with client-assigned IDs) but it is also possible to have
references between resources in a single bundle even if you don't yet know the target
resource ID.

• Conditional Create
The FHIR Conditional Create mechanism allows the client to specify a FHIR search URL
alongside a resource to create. When processing the create, the server will first check if
any resource already exists matching the given search. If no resources match, the create
proceeds. If a resource does match, no resource is created.

• Conditional Update
The FHIR Conditional Update mechanism allows a resource to be transmitted to the
server for updating, but instead of supplying an ID to update, the client supplies a search
URL similar to the URL used for the Conditional Create example.

• Delete
FHIR logical deletes can be performed as a part of a transaction, as well. In a transaction
bundle, deletes will be applied as a group, meaning that if one fails, all will be rolled back.

• Patch
The FHIR Patch operation can also be performed in a transaction bundle. When using
the FHIR Patch mechanism for patching, the FHIR Patch document is placed in
Bundle.entry.resource. In the case of JSON Patch the contents are placed in a Binary

Chapter 11
FHIR Bundle transactions and batches

11-23

resource and then placed into Bundle.entry.resource. In all cases, the HTTP verb/
method is PATCH.

Basic bundle transaction
Oracle FHIR transaction bundle has a few important elements.

• Bundle.type: This value specifies the processing mode (transaction or batch).

• Bundle.entry: This is an array. Each repetition of the this array contains a single
interaction, and is the equivalent to a single HTTP REST interaction.

• Bundle.entry.request: The standard HTTP REST parameters (i.e. the verb, the
request URL, and the request headers) are communicated in the element
Bundle.entry.request.

• Bundle.entry.resource: Interactions which accept a resource as the payload
body (such as create and update) place the payload in the element
Bundle.entry.resource.

• Bundle.entry.fullUrl: An additional element in each entry has a full URL or URI
associated with the entry, in the element Bundle.entry.fullUrl.

Sample FHIR bundle transaction. In this example, the fullUrl is a randomly
generated UUID.

{
 "resourceType": "Bundle",
 "type": "transaction",
 "entry": [
 {
 "fullUrl": "urn:uuid:850bc2ca-d9ab-467b-9924-0e08d0a6e586",
 "resource": {
 "resourceType": "Patient",
 "identifier": [
 {
 "system": "https://github.com/synthetichealth/synthea",
 "value": "8ffd03ee-fb56-441d-a3ef-01cdc9f94d89"
 }],
 "name": [
 {
 "use": "official",
 "family": "Trantow673",
 "given": [
 "Matthew562"
],
 "prefix": [
 "Mr."
]
 }
],
 "request": {
 "method": "POST",
 "url": "Patient"
 }
 } }
 }

Chapter 11
FHIR Bundle transactions and batches

11-24

Bundle multiple related resources
A common use for FHIR bundle transactions is to persist a collection of related resources to a
server. For example, if you have a collection of Observation resources with the same patient
as subject, you could place them inside a single FHIR bundle transaction and send them
together to a server.

The simplest way to send related resources in a single bundle is to use client-assigned IDs.
When using this form, the server is instructed to use the IDs supplied in the requests. Any
references between resources simply use these client-assigned IDs. Resources may also
have references to other resources which already exist on the server.

Sample Transaction bundle with client-assigned ID on three resources: a patient, and two
observations for this patient.

{
 "resourceType": "Bundle",
 "type": "transaction",
 "entry": [{
 "fullUrl": "Patient/PTA",
 "resource": {
 "resourceType": "Patient",
 "id": "PTA",
 "identifier": [{
 "system": "http://acme.org/mrns",
 "value": "013872"
 }],
 "name": [{
 "family": "Simpson",
 "given": ["Homer"]
 }]
 },
 "request": {
 "method": "PUT",
 "url": "Patient/PTA"
 }
 }, {
 "fullUrl": "Observation/OB1",
 "resource": {
 "resourceType": "Observation",
 "id": "OB1",
 "status": "final",
 "code": {
 "coding": [{
 "system": "http://loinc",
 "code": "29463-7",
 "display": "Body Weight"
 }]
 },
 "subject": {
 "reference": "Patient/PTA"
 },
 "effectiveDateTime": "2022-02-23",
 "valueQuantity": {

Chapter 11
FHIR Bundle transactions and batches

11-25

 "value": 67.1,
 "unit": "kg",
 "system": "http://unitsofmeasure.org",
 "code": "kg"
 }
 },
 "request": {
 "method": "PUT",
 "url": "Observation/OB1"
 }
 }, {
 "fullUrl": "Observation/OB2",
 "resource": {
 "resourceType": "Observation",
 "id": "OB2",
 "status": "final",
 "code": {
 "coding": [{
 "system": "http://loinc",
 "code": "29463-7",
 "display": "Body Weight"
 }]
 },
 "subject": {
 "reference": "Patient/PTA"
 },
 "effectiveDateTime": "2019-12-29",
 "valueQuantity": {
 "value": 72.4,
 "unit": "kg",
 "system": "http://unitsofmeasure.org",
 "code": "kg"
 }
 },
 "request": {
 "method": "PUT",
 "url": "Observation/OB2"
 }
 }]
}

Placeholder IDs and references
Creating references between resources is easy if you know the ID of the reference
target (such as in the example above with client-assigned IDs) but it is also possible to
have references between resources in a single bundle even if you don't yet know the
target resource ID.

For example, if an entry in your bundle is using a normal FHIR create (for example,
HTTP POST) then it will assign an ID to the resource and your client will not know this
ID until after the transaction has been processed.

FHIR solves this issue by using a feature called Placeholder IDs, which are UUIDs
generated by the client to associate with each resource. These UUIDs are temporary

Chapter 11
FHIR Bundle transactions and batches

11-26

and should be randomly generated. They serve only to link resources in the Bundle together,
and are thrown away by the server once it has determined the actual resource IDs.

The following example shows a transaction that creates two resources: a Patient and an
Observation referring to this patient.

{
 "resourceType": "Bundle",
 "type": "transaction",
 "entry": [{
 "fullUrl": "urn:uuid:e16eac01-a5ee-4904-b1c8-f4bd56e338d5", >
Placeholder ID for Patient resource
 "resource": {
 "resourceType": "Patient",
 "identifier": [{
 "system": "http://acme.org/mrns",
 "value": "013872"
 }],
 "name": [{
 "family": "Simpson",
 "given": ["Homer"]
 }]
 },
 "request": {
 "method": "POST",
 "url": "Patient"
 }
 }, {
 "fullUrl": "urn:uuid:499733fe-7ced-4d15-81ce-8a433a1fb71e",
 "resource": {
 "resourceType": "Observation",
 "status": "final",
 "code": {
 "coding": [{
 "system": "http://loinc",
 "code": "29463-7",
 "display": "Body Weight"
 }]
 },
 "subject": {
 "reference": "urn:uuid:e16eac01-a5ee-4904-b1c8-f4bd56e338d5" >
Reference to Patient placeholder ID. This will be automatically replaced
with the real resource ID by the server.
 },
 "effectiveDateTime": "2022-02-23",
 "valueQuantity": {
 "value": 67.1,
 "unit": "kg",
 "system": "http://unitsofmeasure.org",
 "code": "kg"
 }
 },
 "request": {
 "method": "POST",
 "url": "Observation"

Chapter 11
FHIR Bundle transactions and batches

11-27

 }
 }]
}

Conditional Create
The FHIR Conditional Create mechanism allows the client to specify a FHIR search
URL alongside a resource to create. When processing the create, the server will first
check if any resource already exists matching the given search. If no resources match,
the create proceeds. If a resource does match, no resource is created.

In a standard REST mechanism, conditional creates place the search URL in the In-
None-Exist request header. In a FHIR bundle transaction, this URL goes in
Bundle.entry.request.ifNoneExist. Like a normal create, we use the HTTP method/verb
of POST.

For example:

{
 "resourceType": "Bundle",
 "type": "transaction",
 "entry": [{
 "fullUrl": "urn:uuid:95dbbf93-5829-46ba-9021-2545a1da3aa5", >
Placeholder ID for Patient
 "resource": {
 "resourceType": "Patient",
 "identifier": [{
 "system": "http://acme.org/mrns",
 "value": "013872"
 }],
 "name": [{
 "family": "Simpson",
 "given": ["Homer"]
 }]
 },
 "request": {
 "method": "POST",
 "url": "Patient",
 "ifNoneExist": "Patient?identifier=http://acme.org/mrns|
013872" > Search URL for Conditional Create
 }
 }, {
 "fullUrl": "urn:uuid:124ff3c8-f251-4bd9-8c44-cc6568180eae",
 "resource": {
 "resourceType": "Observation",
 "identifier": [{
 "system": "http://acme.org/obs",
 "value": "46252"
 }],
 "status": "final",
 "code": {
 "coding": [{
 "system": "http://loinc",
 "code": "29463-7",
 "display": "Body Weight"

Chapter 11
FHIR Bundle transactions and batches

11-28

 }]
 },
 "subject": {
 "reference": "urn:uuid:95dbbf93-5829-46ba-9021-2545a1da3aa5" >
Reference to Patient Placeholder ID
 },
 "effectiveDateTime": "2022-02-23",
 "valueQuantity": {
 "value": 67.1,
 "unit": "kg",
 "system": "http://unitsofmeasure.org",
 "code": "kg"
 }
 },
 "request": {
 "method": "POST",
 "url": "Observation",
 "ifNoneExist": "Observation?identifier=http://acme.org/obs|46252"
> Search URL for Conditional Create
 }
 }]
}

Conditional Update
The FHIR Conditional Update mechanism allows a resource to be transmitted to the server
for updating, but instead of supplying an ID to update, the client supplies a search URL
similar to the URL used for the Conditional Create example.

For more information, see Conditional Create.

Before performing the update, the server first performs the search. If no resources match the
search, a new resource is created. If a resource already matches the search, it is updated
using the contents in Bundle.entry.resource. In this case, the method/verb will be PUT and
the search URL is specified in Bundle.request.url.

For example:

{
 "resourceType": "Bundle",
 "type": "transaction",
 "entry": [{
 "fullUrl": "urn:uuid:95dbbf93-5829-46ba-9021-2545a1da3aa5", >
Placeholder ID for Patient
 "resource": {
 "resourceType": "Patient",
 "identifier": [{
 "system": "http://acme.org/mrns",
 "value": "013872"
 }],
 "name": [{
 "family": "Simpson",
 "given": ["Homer"]
 }]
 },

Chapter 11
FHIR Bundle transactions and batches

11-29

 "request": {
 "method": "PUT",
 "url": "Patient?identifier=http://acme.org/mrns|013872" >
Search URL for Conditional Update
 }
 }, {
 "fullUrl": "urn:uuid:124ff3c8-f251-4bd9-8c44-cc6568180eae",
 "resource": {
 "resourceType": "Observation",
 "identifier": [{
 "system": "http://acme.org/obs",
 "value": "46252"
 }],
 "status": "final",
 "code": {
 "coding": [{
 "system": "http://loinc",
 "code": "29463-7",
 "display": "Body Weight"
 }]
 },
 "subject": {
 "reference":
"urn:uuid:95dbbf93-5829-46ba-9021-2545a1da3aa5" > Reference to
Patient Placeholder ID
 },
 "effectiveDateTime": "2022-02-23",
 "valueQuantity": {
 "value": 67.1,
 "unit": "kg",
 "system": "http://unitsofmeasure.org",
 "code": "kg"
 }
 },
 "request": {
 "method": "PUT",
 "url": "Observation?identifier=http://acme.org/obs|46252" >
Search URL for Conditional Update
 }
 }]
}

Delete
FHIR logical deletes can be performed as a part of a transaction, as well. In a
transaction bundle, deletes will be applied as a group, meaning that if one fails, all will
be rolled back.

The following example shows deletes in a FHIR transaction.

{
 "resourceType": "Bundle",
 "type": "transaction",
 "entry": [{

Chapter 11
FHIR Bundle transactions and batches

11-30

 "request": {
 "method": "DELETE",
 "url": "Patient/A0"
 }
 }, {
 "request": {
 "method": "DELETE",
 "url": "Patient/A1"
 }
 }]
}

Patch
The FHIR Patch operation can also be performed in a transaction bundle. When using the
FHIR Patch mechanism for patching, the FHIR Patch document is placed in
Bundle.entry.resource. In the case of JSON Patch the contents are placed in a Binary
resource and then placed into Bundle.entry.resource. In all cases, the HTTP verb/method is
PATCH.

The following example shows a simple FHIR Patch in a transaction.

{
 "resourceType": "Bundle",
 "type": "transaction",
 "entry": [{
 "resource": {
 "resourceType": "Parameters”, > The FHIR Patch document
 "parameter": [{
 "name": "operation",
 "part": [{
 "name": "type",
 "valueCode": "replace"
 }, {
 "name": "path",
 "valueString": "Patient.identifier"
 }, {
 "name": "value",
 "valueIdentifier": {
 "system": "http://new-system",
 "value": "0001"
 }
 }]
 }]
 },
 "request": {
 "method": "PATCH",
 "url": "Patient/123" > The identity of the resource to patch
 }
 }]
}

Chapter 11
FHIR Bundle transactions and batches

11-31

Search parameters
Search parameters are named paths within resources that are indexed by the system
so that they can be used to find resources that match a given criteria.

For example, the FHIR specifications define the gender search parameter on the
Patient resource, giving it a path of Patient.gender. This means that every time a new
Patient resource is created—or an existing one is updated—the value found at path
Patient.gender will be indexed. Clients may then use a URL search parameter named
gender to find a resource with the given gender.

Request: Search parameters

• Default search parameters
For a general-purpose repository, using the default search parameters is useful
since these parameters represent a wide variety of use cases. Additionally, using
the default parameters is good for interoperability since clients may expect
standard parameters to be supported across different servers.

• Managing search parameters
Each search parameter is represented by a SearchParameter resource in the
database. When Oracle HDR starts for the first time, the database will be
preseeded with search parameter resources that correspond to the various default
parameters.

• Manual indexing
It is possible to trigger a manual reindexing of data in the Oracle HDR-FHIR
repository.

• Reindex operation
The $reindex operation requests that all data on the server, or a selected subset
of the data on the server, be reindexed.

Default search parameters
For a general-purpose repository, using the default search parameters is useful since
these parameters represent a wide variety of use cases. Additionally, using the default
parameters is good for interoperability since clients may expect standard parameters
to be supported across different servers.

The default search parameters are:

• name (Search for patient by name)

• birthdate (Search for patient by date of birth)

• identifier (Search for patient by identifier)

However, it is often useful to customize the supported search parameters. For
example, you may want to:

Chapter 11
Search parameters

11-32

• Add additional search parameters that will index fields that do not have a standard search
parameter defined.

• Add additional search parameters that will index extensions used by your clients.

• Disable search parameters that are not used in order to improve performance and
conserve space (disabling unnecessary search parameters can have a dramatic impact
on write performance in some cases).

Managing search parameters
Each search parameter is represented by a SearchParameter resource in the database.
When Oracle HDR starts for the first time, the database will be preseeded with search
parameter resources that correspond to the various default parameters.

Using FHIR Endpoint—If you want to customize the available search parameters, there are
several ways to do so.

For example, POSTing the following resource to an Oracle HDR-FHIR server that supports
custom search parameters creates a new search parameter on the Patient resource named
eyecolour.

Manual indexing
It is possible to trigger a manual reindexing of data in the Oracle HDR-FHIR repository.

To perform a manual reindex, invoke the following operation at the server (root) level of the
FHIR Endpoint (that is, the base URL of the FHIR endpoint). To specify parameters, a
resource of type Parameters must be included as the body of a POST request.

• Operation:

$mark-all-resources-for-reindexing

• Parameter:

type: Optional. If supplied, specifies the specific resource type to reindex. If not specified,
all resource types are reindexed.

See the following examples for more details.

Chapter 11
Search parameters

11-33

To perform reindexing on specific resource type, ex Patient, here is the sample
payload. We can also include multiple resources.

Content-Type: application/fhir+json
{
 "resourceType": "Parameters",
 "parameter": [{
 "name": "type",
 "valueString": "Patient"
 }]
}

For all resource types, here is the payload example.

Content-Type: application/fhir+json
{
 "resourceType": "Parameters",
 "parameter": []
}

The status of the reindexing will be recorded in this HFJ_RES_REINDEX_JOB table
while re-indexing. The record will be purged once the reindexing operation is
completed.

Reindex operation
The $reindex operation requests that all data on the server, or a selected subset of
the data on the server, be reindexed.

The $reindex operation can be called in one of two ways, either with a list of urls to
be reindexed or with everything=true. If everything=true then the urls parameter is
ignored and all resources will be reindexed. Otherwise, only the resources matching
the urls are reindexed. The reindex operation uses search URLs to identify resources
that should be reindexed. A search URL takes the form:

{resourceType}?[optional search parameters]
For example, the following URL indicates that all resources of type Patient should be
reindexed:

Patient?
The following URL indicates that all Observations whose subject is in active should be
reindexed:

Observation?subject.active=true
If no URLs are included, then all resources of all types will be reindexed.

Example 1: Reindex a specific set of URLs

POST <baseURL>/$reindex
Content-Type: application/fhir+json

{

Chapter 11
Search parameters

11-34

 "resourceType": "Parameters",
 "parameter": [{
 "name": "url",
 "valueString": "Patient?active=true"
 }, {
 "name": "url",
 "valueString": "Observation?subject.active=true"
 }]
}

Example 2: Reindex all Practitioner and all Patient resources

POST baseURL/$reindex
Content-Type: application/fhir+json

{
 "resourceType": "Parameters",
 "parameter": [{
 "name": "url",
 "valueString": "Practitioner?"
 }, {
 "name": "url",
 "valueString": "Patient?"
 }]
}

Example 3: Reindex all resources with no parameters or with everything = true

POST baseURL/$reindex
OR

POST baseURL/$reindex
{
 "resourceType": "Parameters",
 "parameter": [{
 "name": "everything",
 "valueBoolean": "true"
 }]
}

• Reindex response
The $reindex operation creates a batch job that can be executed asynchronously.

Reindex response
The $reindex operation creates a batch job that can be executed asynchronously.

When you invoke a reindex operation, the system responds with a jobId and that can be used
to know the status of the reindex operation.

Chapter 11
Search parameters

11-35

Example Response:

{
 "resourceType": "Parameters",
 "parameter": [{
 "name": "jobId",
 "valueString": "18256337-5a0d-4b9d-a2af-0927d08201c6"
 }]
}

You can use the $export-poll-status operation to know the status of the job using the
following call:

GET baseURL/$export-poll-status?_jobId=18256337-5a0d-4b9d-
a2af-0927d08201c6

Search parameter features
This section describes optional features that you can enable or disable for optimizing
how searching works on Oracle HDR-FHIR server.

• Index missing search parameter (: missing)
When enabled, the : missing modifier can be used on a SearchParameter to find
resources where that search parameter has found (or not found) any data in the
given resource.

• Index contained resources
FHIR search parameters of type reference supports a concept called chaining.

Index missing search parameter (: missing)
When enabled, the : missing modifier can be used on a SearchParameter to find
resources where that search parameter has found (or not found) any data in the given
resource.

This feature defaults to: Disabled

Parameter name: enable_index_missing_fields

For example, take the Patient:birthdate search parameter, which indexes the value of
Patient.birthDate. The following URL finds all patients having a birthdate:

Request: Search query for all patients with a birth date

Request: Search query for all patients without a birth date

Chapter 11
Search parameter features

11-36

Indexing for missing search parameters can add a great deal of extra index space, and slow
down write operations on servers with many enabled search parameters. This feature is
therefore disabled by default and must be specifically enabled if it is needed.

Index contained resources
FHIR search parameters of type reference supports a concept called chaining.

This feature defaults to: Disabled

Parameter name: enable_index_contained_resource

Consider the following resources:

Patient resource:

Observation resource with reference to Patient:

Request: Search query for an Observation resource

With the Patient and Observation resources stored in your repository, the following search
returns the Observation resource.

Chapter 11
Search parameter features

11-37

This works because of the chain, which is the dot notation followed by a second
search parameter. This syntax means "find me any Observation resources where the
subject reference links to a target resource where a search for name=Smith would
match."

By default, chained searches only consider top-level resources. Consider the following
Observation resource with a reference to a contained Patient.

The search given above will not return this Observation, because the contained
resource has not been included in the search indexes. If the Index Contained
Resources feature is enabled, indexes will be generated for the contained resources,
and Observation/3 would be included in the search results.

Searching for data
This section contains information about methods for searching for data in Oracle HDR
FHIR.

• FHIR Search extensions
In addition to implementing most of the FHIR Search specification, Oracle HDR
FHIR server implements the following extensions: _source, %now, and %today.

FHIR Search extensions
In addition to implementing most of the FHIR Search specification, Oracle HDR FHIR
server implements the following extensions: _source, %now, and %today.

_source—An additional search parameter called _source can be used to search for
resources based on information about the system or request that created the resource.

Request: Search parameter _source

Chapter 11
Searching for data

11-38

%now—Date searches can be performed relative to "now" using the %now parameter value.

For example, to search for Procedures with a date later than now, you can search for /
Observation?date=le%now.

Note:

The "%" needs to be URL escaped so the actual URL will be /Observation?
date=le%25now.

Request: Search parameter _source now

%today—Similarly date searches can be performed relative to "today" using the "%today"
parameter value. "%today" works the same as "%now" except that it searches as a "date"
type as opposed to a "dateTime" type.

Creating data
This section describes creating data in Oracle HDR FHIR repository.

• Validating references and referential integrity
When a resource is written to the repository (create/update/etc), local resource
references that are indexed by at least one SearchParameter can be checked to ensure
that the target of the reference is valid.

• Transactions and submitting bundles
If you POST a bundle message to [baseUrl]/Bundle you are submitting the bundle for
storage as-is.

• Auto-creating reference targets
Often when batch processing data from multiple sources, you have data from one source
that has references to data from other sources.

• FHIR Transaction with conditional create
The conditional create is roughly described as “use an existing resource that matches
specific criteria if one exists (and do not modify that resource), or create a new one if
not.”

• Auto-create placeholders for reference targets
If the Auto-Create Placeholder Reference Targets setting
(auto_create_placeholder_reference_targets) is enabled in the Oracle HDR FHIR server,
it is possible to have the server automatically create an empty "placeholder" resource
with a pre-assigned ID.

• Auto-create placeholder reference targets with identifier
If the Auto-Create Placeholder Reference Targets setting is enabled in the FHIR Storage
module configuration (as shown above), and the Allow Inline Match URL References
Enabled setting is also enabled, you can refine the behavior shown above further.

Chapter 11
Creating data

11-39

Validating references and referential integrity
When a resource is written to the repository (create/update/etc), local resource
references that are indexed by at least one SearchParameter can be checked to
ensure that the target of the reference is valid.

References that are not indexed by at least one SearchParameter are never checked
for target existence. Non-local references (that is, references where the base URL of
the reference target refers to a different FHIR server) are never checked for target
existence.

Reference validation

If the config Enforce Referential Integrity on Write
(enforce_referential_integrity_on_write) is enabled, reference targets are checked.

For example, if a patient contains a reference to managing organization Organization/
HealthOrg but HealthOrg is not a valid ID for an organization on the server, the
operation is blocked unless this property has been disabled.

This property can cause confusing results for clients of the server since searches,
includes, and other FHIR features may not behave as expected when referential
integrity is not preserved. In particular, resource references to target resources that do
not exist at the time that the source resource is created will not be indexed, even if
the target resource is created later. Disable with caution.

Referential integrity

If the config Enforce Referential Integrity on Delete
(enforce_referential_integrity_on_delete) is enabled on HDR FHIR Server, resources
can only be deleted if there are no other resources with indexed references to the
candidate resource for deletion.

Transactions and submitting bundles
If you POST a bundle message to [baseUrl]/Bundle you are submitting the bundle for
storage as-is.

In other words, the bundle is stored as a Bundle, and the contents inside aren’t looked
at by the server (aside from any validation that is enabled). This mode is generally
used to store Bundle resources with Bundle.type values such as document and
collection. In its default configuration, Oracle HDR prohibits storing a Bundle with a
type value of transaction or batch as this is generally a sign that the client is attempting
to perform the operations described below but with an incorrect request URL.

• Bundle Type—Transaction

– If you POST to [baseUrl] and your Bundle has a Bundle.type value of
transaction you are performing a FHIR “transaction operation”, meaning that
all of the individual resources inside the bundle will be processed. It is also
possible to include other REST operations such as searches in this kind of
bundle. The processing works as an atomic unit, meaning that if anything fails
(for example, invalid data in an individual element) the entire thing will be
rolled back.

– This operation is referred to as an FHIR Transaction operation.

• Bundle Type—Batch

Chapter 11
Creating data

11-40

– If you POST to [baseUrl] and your Bundle has a Bundle.type value of batch, the
same processing as the transaction applies, except those individual operations are
executed in individual database transactions, so an individual failure doesn’t cause
the entire operation to be rolled back. In this case, the response Bundle returned by
the server includes status entries indicating the outcome for the individual operations
within. Note that the batch operation does require the entire Bundle to be valid FHIR
at a minimum. This means that it can’t have non-existent resource types in it,
malformed datatypes, and so on.

– This operation is referred to as an FHIR Batch operation.

Auto-creating reference targets
Often when batch processing data from multiple sources, you have data from one source that
has references to data from other sources.

For example, a collection of Observation resources could be imported from a lab system data
source at the same time that a collection of Patient resources is created from a patient
administration data source. The Observation resources would have references to the Patient
resources. Under ideal conditions, the Patient resource would process first and be present for
the Observation to link to. In the real world however, often it is hard to control the order that
transactions occur, and so it might be possible for an Observation to be processed before its
Patient. By default, this causes an error since the Observation has an invalid reference, and
nothing is stored.

The following topics describe helpful strategies for solving this issue:

• FHIR Transaction with conditional create

• Auto-create placeholders for reference targets

• Auto-create placeholder reference targets with identifier

FHIR Transaction with conditional create
The conditional create is roughly described as “use an existing resource that matches
specific criteria if one exists (and do not modify that resource), or create a new one if not.”

The specific criteria in question can be any set of FHIR search parameters that could be used
to otherwise locate the resource to use. The resource identifier field/search parameter is
often used for this purpose, but other search parameters can also be used.

In an FHIR Transaction operation, an operation is performed using a conditional create.

This involves creating a Transaction Bundle with the following properties (an Observation
being created with a reference to a Conditionally Created Patient is being used for this
example):

• One or more entries containing an Observation resource with a request.method value of
POST. This means that the server should create the new Observation resources, and
automatically assign them new IDs.

• The Observation resources contain a reference where the target is the fullUrl UUID for
the Patient entry. If the Patient target was created (because it did not already exist) the
reference will automatically be replaced with a reference to the newly created resource. If
the Patient target was not created (because it already existed), the reference will
automatically be replaced with a reference to the pre-existing Patient resource.

• An entry containing a Patient resource with:

Chapter 11
Creating data

11-41

– A request.method value of POST

– A fullUrl value containing a temporary UUID. This is used as the target for
references to this resource from other resources. A request.ifNoneExist
value containing a search URL that could be used to find this resource (in the
example below, a search for the Patient by identifier). This indicates to the
server that this resource should only be created if no existing resource already
matches the given search criteria.

Example: Transaction Bundle

An example Transaction Bundle is shown below. It should be POSTed to the root of
the FHIR Endpoint module server.

"resourceType": "Bundle",
 "meta": {
 "lastUpdated": "2014-08-18T01:43:30Z"
 },
 "type": "transaction",
 "entry": [
 {
 "fullUrl": "urn:uuid:61ebe359-bfdc-4613-8bf2-c5e300945f0a",
 "resource": {
 "resourceType": "Patient",
 "text": {
 "status": "generated",
 "div": "<div xmlns=\"http://www.w3.org/1999/xhtml\">Some
narrative</div>"
 },
 "active": true,
 "name": [
 {
 "use": "official",
 "family": "Chalmers",
 "given": [
 "Peter",
 "James"
]
 }
],
 "gender": "male",
 "birthDate": "1974-12-25"
 },
 "request": {
 "method": "POST",
 "url": "Patient"
 }
 },
 {
 "fullUrl": "http://example.org/fhir/Patient/100058",
 "resource": {
 "resourceType": "Patient",
 "id": "123",
 "text": {
 "status": "generated",
 "div": "<div xmlns=\"http://www.w3.org/1999/xhtml\">Some

Chapter 11
Creating data

11-42

narrative</div>"
 },
 "active": true,
 "name": [
 {
 "use": "official",
 "family": "Chalmers",
 "given": [
 "Peter",
 "James"
]
 }
],
 "gender": "male",
 "birthDate": "1974-12-25"
 },
 "request": {
 "method": "PUT",
 "url": "Patient/100058"
 }
 },
 {
 "request": {
 "method": "GET",
 "url": "Patient?name=Peter"
 }
 },
 {
 "request": {
 "method": "GET",
 "url": "Patient/1",
 "ifNoneMatch": "W/\"4\"",
 "ifModifiedSince": "2015-08-31T08:14:33+10:00"
 }
 }
]
}

Auto-create placeholders for reference targets
If the Auto-Create Placeholder Reference Targets setting
(auto_create_placeholder_reference_targets) is enabled in the Oracle HDR FHIR server, it is
possible to have the server automatically create an empty "placeholder" resource with a pre-
assigned ID.

This technique is somewhat less complex than the example described in FHIR Transaction
with conditional create, since it does not require a transaction bundle to be created. With this
technique, the ID (not the identifier) of the target resource must be known. For example, the
following payload could be POSTed to [baseUrl]/Observation, and would result in the creation
of an empty resource with the ID Patient/ABC if one does not already exist. Note that if you
want to be able to use this technique with purely numeric resource IDs you will also need to
adjust the Client ID Mode.

Chapter 11
Creating data

11-43

Example: Auto-create placeholders for reference targets

{
 "resourceType": "Observation",
 "status": "final",
 "code": {
 "coding": [{
 "system": "http://loinc.org",
 "code": "789-8"
 }]
 },
 "subject": {
 "reference": "Patient/ABC"
 },
 "valueQuantity": {
 "value": 4.12,
 "system": "http://unitsofmeasure.org",
 "code": "10*12/L"
 }
}

Auto-create placeholder reference targets with identifier
If the Auto-Create Placeholder Reference Targets setting is enabled in the FHIR
Storage module configuration (as shown above), and the Allow Inline Match URL
References Enabled setting is also enabled, you can refine the behavior shown above
further.

In this case, it is possible to use an inline match URL instead of a hardcoded resource
ID, and you can then achieve similar behavior to the Transaction Bundle use case.

Consider the following Observation being POSTed to /Observation.

Example: Auto-create placeholders for reference targets with identifiers

Chapter 11
Creating data

11-44

In this case, the reference is treated as a local search (in this case for a Patient with the
identifier included in the inline match URL) and executed as such.

If the search finds zero results, a new Patient resource is created. If the inline match URL
uses an identifier as it does here, Patient.identifier is populated with the inline match URL's
identifier system and value. The reference is then automatically replaced with a reference to
this new Patient.

If the search finds one result, the reference is automatically replaced with a reference to the
found Patient and no placeholder reference target is created.

Note:

We use Patient as an example; this applies to any reference targets that include an
Identifier element.

Reading data
This section describes methods for reading data from the Oracle HDR FHIR Repository.

• Diff operation
Use the $diff operation to generate a differential between two versions of a resource, or
between two different resources of the same type.

Chapter 11
Reading data

11-45

• Diff at Instance Level
When you invoke the $diff operation at the instance level (meaning it is invoked on
a specific resource ID), it compares two versions of the given resource.

• Diff at Type Level
When the $diff operation is invoked at the type level (meaning it is invoked on a
specific resource type), it will compare two different resources of the same type.

• $everything operation
The Oracle HDR-FHIR jpa server supports the Patient/$everything operation and
accepts all the IN parameters defined in the documentation. Additionally, Oracle
HDR allows you to provide an _id parameter, in order to filter the set of patients
you wish to get everything for.

Diff operation
Use the $diff operation to generate a differential between two versions of a resource,
or between two different resources of the same type.

Differentials generated by this operation are in FHIR Patch format.

In generated differentials, where a value has changed (that is, a replace operation), an
additional part value is present on the given operation called previousValue. This part
shows the value as it was in the from version of the resource.

Diff at Instance Level
When you invoke the $diff operation at the instance level (meaning it is invoked on a
specific resource ID), it compares two versions of the given resource.

Parameters

• fromVersion=[versionId]—Optional. If specified, compare using this version as
the source. If not specified, the immediately previous version is compared.

• includeMeta=true—Optional. If specified, changes to Resource.meta are included
in the diff. This element is omitted by default.

Request: Reading Data with a Diff at Instance Level

Response: Reading Data with a Diff at Instance Level

The server produces a response similar to the following:

Chapter 11
Reading data

11-46

Diff at Type Level
When the $diff operation is invoked at the type level (meaning it is invoked on a specific
resource type), it will compare two different resources of the same type.

Parameters

• from=[reference]—Specifies the source of the comparison. The value must include a
resource type and a resource ID, and can optionally include a version (for example,
Patient/123 or Patient/123/_history/2).

• to=[reference]—Specifies the target of the comparison. The value must include a
resource type and a resource ID, and can optionally include a version (for example,
Patient/123 or Patient/123/_history/2).

• includeMeta=true—Optional. If specified, changes to Resource.meta are included in the
diff. This element is omitted by default.

Request: Reading Data with a Diff at Type Level

Response: Reading Data with a Diff at Type Level

Chapter 11
Reading data

11-47

The server produces a response similar to the following:

{
 "resourceType": "Parameters",
 "parameter": [{
 "name": "operation",
 "part": [{
 "name": "type",
 "valueCode": "replace"
 }, {
 "name": "path",
 "valueString": "Patient.id"
 }, {
 "name": "previousValue",
 "valueId": "100065"
 }, {
 "name": "value",
 "valueId": "100004"
 }]
 }]
}

$everything operation
The Oracle HDR-FHIR jpa server supports the Patient/$everything operation and
accepts all the IN parameters defined in the documentation. Additionally, Oracle HDR
allows you to provide an _id parameter, in order to filter the set of patients you wish to
get everything for.

The following requests are all equivalent, and these example queries fetch everything
for Patient/1, Patient/2, and Patient/3.

Request: $everything operation using GET

Request: $everything operation using GET with alternate _id parameter

The server produces a response similar to the following:

Request: $everything operation using a POST

Chapter 11
Reading data

11-48

Updating data
This section describes information about methods for updating data in the HDR FHIR
Repository.

• Patching data
You can patch data to make a small change to a resource without needing to re-upload
the entire content. For example, a resource status field might be changed by an
application with no other changes needed.

• Tag retention
According to the FHIR rules on updating resources, by default when a resource is
updated, any tags and security labels are carried forward even if they are not explicitly
listed in the new version.

Patching data
You can patch data to make a small change to a resource without needing to re-upload the
entire content. For example, a resource status field might be changed by an application with
no other changes needed.

Oracle HDR FHIR support the following syntaxes:

• FHIR Patch—This is the most expressive syntax for patching and is recommended for
use. It uses a format described in the FHIR specification as FHIR Patch.

• JSON Patch—This syntax expresses a change set in JSON using RFC 6902.

Patch using FHIR Patch

Chapter 11
Updating data

11-49

The FHIR Patch format can be used to specify rules for inserting, modifying, and
removing data from FHIR resources. See FHIR Patch for details about the format.

Example: FHIR Patch used to update a patient birth date

The following example shows a FHIR Patch being used to update a patient birth date.

Table 11-5 FHIR Patch to update patient birth date

Category Description

HTTP Method PATCH

Content-Type application/fhir+json

URL http(s)://HOSTNAME:PORT/oracle-fhir-server/
fhir/Patient/123/

Request Body
{
 "resourceType": "Parameters",
 "parameter": [{
 "name": "operation",
 "part": [{
 "name": "type",
 "valueCode": "replace"
 }, {
 "name": "path",
 "valueString":
"Patient.birthDate"
 }, {
 "name": "value",
 "valueDate": "1975-09-09"
 }]
 }]
}

Example: FHIR Patch as part of FHIR transaction

A FHIR Patch may also be submitted as a part of a FHIR transaction.

Table 11-6 FHIR Patch as part of FHIR transaction

Category Description

HTTP Method POST

Content-Type application/fhir+json

URL http(s)://HOSTNAME:PORT/oracle-fhir-server/
fhir/

Chapter 11
Updating data

11-50

https://www.hl7.org/fhir/fhirpatch.html

Table 11-6 (Cont.) FHIR Patch as part of FHIR transaction

Category Description

Request Body
{
 "resourceType": "Bundle",
 "type": "transaction",
 "entry": [{
 "fullUrl": "Patient/123",
 "resource": {
 "resourceType":
"Parameters",
 "parameter": [{
 "name": "operation",
 "part": [{
 "name": "type",
 "valueCode": "replace"
 }, {
 "name": "path",
 "valueString":
"Patient.birthDate"
 }, {
 "name": "value",
 "valueDate":
"1930-01-01"
 }]
 }]
 },
 "request": {
 "method": "PATCH",
 "url": "Patient/123"
 }
 }]
}

Example: Patch Using JSONPatch

The following example shows a JSONPatch being used to update an Observation status:

Table 11-7 Patch Using JSONPatch

Category Description

HTTP Method PATCH

Content-Type application/json-patch+json

URL http(s)://HOSTNAME:PORT/oracle-fhir-server/fhir/
Observation/123

Chapter 11
Updating data

11-51

Table 11-7 (Cont.) Patch Using JSONPatch

Category Description

Request Body
[
 {
 "op": "replace",
 "path": "/status",
 "value": "in-progress"
 }
]

Note:

If you are using "op": "add", you need to suffix the path with /- (e.g. "path": "/
identifier/-").

Example: JSONPatch also be submitted as a part of a FHIR transaction

A JSONPatch may also be submitted as a part of a FHIR transaction using a Binary
resource as the payload in order to update the contents.

Table 11-8 JSONPatch submitted as part of a FHIR transaction

Category Description

HTTP Method POST

Content-Type application/fhir+json

URL http(s)://HOSTNAME:PORT/oracle-fhir-server/
fhir/

Chapter 11
Updating data

11-52

Table 11-8 (Cont.) JSONPatch submitted as part of a FHIR transaction

Category Description

Request Body
{
 "resourceType": "Bundle",
 "type": "transaction",
 "entry": [
 {
 "fullUrl": "Patient/1",
 "resource": {
 "resourceType": "Binary",
 "contentType":
"application/json-patch+json",
 "data":
"WyB7ICJvcCI6InJlcGxhY2UiLCAicGF0a
CI6Ii9hY3RpdmUiLCAidmFsdWUiOmZhbHN
lIH0gXQ=="
 },
 "request": {
 "method": "PATCH",
 "url": "Patient/1"
 }
 }
]
}

Tag retention
According to the FHIR rules on updating resources, by default when a resource is updated,
any tags and security labels are carried forward even if they are not explicitly listed in the new
version.

For example, suppose a resource is created by a client, and in that resource a tag "foo" is
listed in Resource.meta.tag. Then, an update is performed by a client but this update does
not contain a value in Resource.meta.

According to the FHIR rules, in this case the tag is copied to the new version of the resource
even though it was not explicitly requested.

If a client wishes to override this behavior, they may do so using the X-Meta-Snapshot-Mode
header. This header indicates that Tags and/or Security Labels and/or Profile Declarations
should be treated as snapshots, meaning that any values not already present should be
removed.

The value is a comma-separated list containing the metadata components that should be
treated in snapshot mode:

• TAG—Resource tags

Chapter 11
Updating data

11-53

• PROFILE—Resource profile declarations

• SECURITY_LABEL—Security Labels.

Example: Tag retention—Metadata components using snapshot mode

Deleting data
The FHIR delete operation performs a "logical" delete. This means that data is not
physically removed from the database.

For example, Patient resource with ID 123 is created (via an HTTP POST /Patient)
and subsequently deleted (via an HTTP DELETE Patient/123). This causes a second
version of the Patient/123 resource to be created with version Patient/123/_history/2
that is marked as deleted.

This patient no longer appears in search results and attempts to read the resource
(using an HTTP GET Patient/123) fails with an "HTTP 410 Gone" response.

The original content of the resource is not destroyed, however. It can still be found
using two FHIR operations:

• Using a FHIR version-specific read: GET Patient/123/_history/1

• Using a FHIR instance-history: GET Patient/123/_history

Note that HTTP 410 Gone responses include a Location header containing the fully
qualified resource ID as well as the version ID.

Example: DELETE 410 Gone response with a Location Header

Figure 11-1 Status Code: 410 Gone Response

Example: DELETE 410 Gone response with latest non-deleted version

In this example, we can see that the deleted version of the resource is version 2. This
means that the last non-deleted version is version 1, and this could be accessed using
a version-specific read to the following URL:

Chapter 11
Deleting data

11-54

• Deletes and referential integrity
The FHIR delete operation performs a "logical" delete. This means that data is not
physically removed from the database.

• Transactional delete
Use the FHIR Transaction operation to delete multiple resources at the same time.

• Referential integrity
By default, Oracle HDR-FHIR server blocks the deletion of a resource if any other
resources have indexed references to the resource being deleted.

• Cascading deletes
By enabling the cascading delete, a user can perform the delete on parent resource, then
all the corresponding child resources will be deleted as well.

• The $expunge operation
In some cases, you may need to completely delete data from the HDR-FHIR repository
after performing the DELTE operation. In those cases, the $expunge operation will be
used and is a powerful operation that can physically delete old versions of resources,
deleted resources, or even all data in the database.

Deletes and referential integrity
The FHIR delete operation performs a "logical" delete. This means that data is not physically
removed from the database.

For example, suppose the HDR-FHIR server containing a patient resource with the ID
Patient/1. And HDR-FHIR server also contains Encounter/1 and Encounter/2, as well as
Observation/3 and MedicationAdministration/4, and all these resources have a reference to
the resource Patient/1. We will call these resources are child resources.

If you try to DELETE Patient/1 (using a standard FHIR DELETE operation), the request is
denied, assuming that there is a resource link between the child resources and the patient.

This results in an HTTP 409 Conflict with a response similar to the following:

Example: DELETE 410 Gone response with an HTTP 409 Conflict

If you want to force a delete of Patient/1, you have several options:

• You can manually delete all the child resources before trying to delete the Patient.

Chapter 11
Deleting data

11-55

• You can disable referential integrity checking in the HDR-FHIR server by changing
enforce referential integrity check in delete setting on the FHIR Server. This means
that any delete on resource is allowed, even if other resources still have
references left.

• You can use a transactional delete.

• You can use cascading deletes.

Transactional delete
Use the FHIR Transaction operation to delete multiple resources at the same time.

This is useful if you have chains or collections of resources to delete at once, but also
can be used to delete circular references.

To delete multiple resources in a transaction, POST a Bundle such as the following to
the root of your FHIR endpoint.

Example: Transactional delete

Referential integrity
By default, Oracle HDR-FHIR server blocks the deletion of a resource if any other
resources have indexed references to the resource being deleted.

For example:

• The resource Patient/102 has been saved in the repository, and a second
resource Observation/558 is then saved as well, where the Observation.subject
reference is a reference to the Patient.

• In this situation, attempts to delete Patient/102 are blocked unless resources with
references to this resource are deleted first (or are deleted as a part of the same
transaction in the case of a transactional delete).

Chapter 11
Deleting data

11-56

Disabling Referential Integrity on Delete

You can disable this referential integrity check on delete operation using below configuration
property on the Oracle HDR-FHIR Server.

enforce_referential_integrity_on_delete: false
If it is enabled, resources can only be deleted if there are no other resources with indexed
references to the candidate resource for deletion.

Disabling Referential Integrity on Write

You can disable this referential integrity check on write operation using below configuration
property on the Oracle HDR-FHIR Server.

enforce_referential_integrity_on_write.: false
If it is enabled, reference targets will be checked. For example, if a patient contains a
reference to managing organization Organization/FOO but FOO is not a valid ID for an
organization on the server then the operation will be blocked unless this property has been
disabled. This property can be used with caution since searches and other FHIR features
may not behave as expected when referential integrity is not preserved. In cases, resource
references to target resources that do not exist at the time that the source resource is created
will not be indexed, even if the target resource is created later.

Cascading deletes
By enabling the cascading delete, a user can perform the delete on parent resource, then all
the corresponding child resources will be deleted as well.

In order to perform a cascading delete:

• First, the allow_cascading_deletes property must be enabled on the HDR-FHIR Server.

• And then, to perform a cascaded delete, the client HTTP request must include either a
special URL parameter (_cascade) or a special header to indicate that a cascading
delete is desired.

The following example shows how to delete using a URL parameter.

Table 11-9 Delete using URL parameter

HTTP Method DELETE

URL http(s)://<HOSTNAME>:<PORT>/oracle-
fhir-server/fhir/Patient/100004?
_cascade=delete

The following example shows how to delete using HTTP header.

Chapter 11
Deleting data

11-57

Table 11-10 Delete using HTTP Header

HTTP Method DELETE

URL http(s)://<HOSTNAME>:<PORT>/oracle-
fhir-server/fhir/Patient/100004?
_cascade=delete

Http Header X-cascade.delete

The $expunge operation
In some cases, you may need to completely delete data from the HDR-FHIR
repository after performing the DELTE operation. In those cases, the $expunge
operation will be used and is a powerful operation that can physically delete old
versions of resources, deleted resources, or even all data in the database.

Table 11-11 Input Parameters

Name Type Usage Default

limit Number This parameter
specifies the
maximum number of
entries (resource
versions and/or
resources) that will be
deleted in a single
batch before exiting.

1000

expungeDeletedReso
urces

Boolean If set to true, deleted
resources will be
expunged (including
all previous versions
of the resource).

false

expungePreviousVersi
ons

Boolean If set to true, non-
current versions of
resources will be
expunged.

false

expungeEverything Boolean If set to true, current
versions of resources
will also be expunged.

false

Instance level expunge

You can invoke the $expunge operation against a single resource instance, or even an
individual version of a resource instance. If invoked at the instance level (shown
below), previous versions of the resource may be deleted (if expungePreviousVersions
is set to true) and the current version may be deleted (if the resource is deleted and
expungeDeletedResources is set to true).

Request: Instance level expunge against a single resource instance

Chapter 11
Deleting data

11-58

Request: Instance level expunge at the instance version level

You can also invoke the $expunge operation at the instance version level (shown below). Use
this to expunge an individual version of a resource without affecting other versions.

Type level expunge

You can invoke the $expunge operation at the type level. In this mode, all resources of a
given type are processed with the same rules as at the instance level.

Request: Type level expunge at the type level

Chapter 11
Deleting data

11-59

System level expunge

You can invoke the $expunge operation at the system level. In this mode, all resources
on the server are processed with the same rules as at the instance level.

Request: System level expunge

Delete expunge

If you need to quickly delete all data associated with a set of resources, you can
combine the DELETE and $expunge operations into a single step. Oracle HDR FHIR
supports this combination.

You can call the usual DELETE with a special parameter _expunge=true. This results
in starting a Delete Expunge Batch Job that deletes and expunges the requested
details in the background.

In order to perform a Delete Expunge, three settings need to be enabled on the Oracle
HDR FHIR server:

Chapter 11
Deleting data

11-60

• Expunge Enabled (expunge_enabled=true)

• Delete Expunge Enabled (delete_expunge_enabled=true)

• Allow multiple Delete Enabled (allow_multiple_delete=true)

When the _expunge parameter is provided to the DELETE operation, the matched resources
and all of their history will be both deleted and expunged from the database. This will perform
considerably faster than doing the delete and expunge separately.

DELETE with _expunge=true

The following example shows how to perform a delete expunge using the DELETE method:

Request: DELETE with _expunge=true

Binary Access Operations
In many cases, resources such as DocumentReference are used to store large files such as
scanned PDFs and images. These resources use the Attachment datatype, which ultimately
stores a content type and a base 64 encoded representation of the binary content.

To deal with these binary content, HDR FHIR provides two custom FHIR operations that can
be used to interact directly with binary content contained within resources such as
DocumentReference. These operations can be used both to write and read back binary
content.

These operations can be enabled/disabled using the binary_storage_enabled property. If
this property is enable, the plain Binary Access Provider class can be registered with the
server to provide the $binary-access-read and $binary-access-write operations that can be
used to access attachment data as a raw binary.

• Binary Access Write Operation ($binary-access-write)
The process of writing a binary payload using the Binary Access Write Operation is done
in a two-step process.

• Binary Access Read Operation ($binary-access-read)
The Binary Access Read Operation can be used to read back binary content from
Attachment elements in a similar way to the write operation.

Binary Access Write Operation ($binary-access-write)
The process of writing a binary payload using the Binary Access Write Operation is done in a
two-step process.

First, the resource must be created on the server, with a placeholder Attachment that will be
populated later.

Chapter 11
Binary Access Operations

11-61

Example: POST DocumentReference resource with a placeholder Attachment.

POST http://<HOST_NAME>:<PORT>/oracle-fhir-server/fhir/
DocumentReference/DocumentReference
Content-Type: application/fhir+json

{
 "resourceType": "DocumentReference",
 "subject": {
 "reference": "Patient/P123"
 },
 "content": [
 {
 "attachment": {
 "contentType": "image/jpeg"
 }
 }
]
}

The server will reply with a content-location header containing the ID of the newly
created resource.

content-location: http://localhost:7001/oracle-fhir-server/fhir/
DocumentReference/499952/_history/1

This ID is then used in the Binary Access Write Operation to set the binary content.

Second, the Binary Access Write Operation is invoked to directly store the content.

The path parameter, that specifies a FHIRPath expression to the attachment element
within the DocumentReference resource. It is important to provide the appropriate
content type via the Content-Type header in the operation HTTP request.

POST : http://localhost:7001/oracle-fhir-server/fhir/DocumentReference/
499952/$binary-access-write?path=DocumentReference.content.attachment

Content-Type: image/png

HTTP Body - (... binary content ...)

Note:

The below property decides whether to store the resource as plain text in the
RES_TEXT_VC column of resource extended tables.

inline_resource_storage_below_size: 0

If the resource size is below the size as set in the above property, it goes
RES_TEXT_VC column, otherwise it goes to RES_TEXT as compressed blob.

Chapter 11
Binary Access Operations

11-62

Binary Access Read Operation ($binary-access-read)
The Binary Access Read Operation can be used to read back binary content from Attachment
elements in a similar way to the write operation.

Example of read operation:

GET http://localhost:7001/oracle-fhir-server/fhir/DocumentReference/
499952/$binary-access-read?path=DocumentReference.content.attachment

Note:

The $binary-access-read operation works on any resource that contains base64
data.

Example:

/DocumentReference/[id]/$binary-access-read?
path=DocumentReference.content.attachment
GET /Binary/[id]/$binary-access-read?path=Binary.data
GET /Media/[id]/$binary-access-read?path=Media.content

Note:

If the data is stored as blob, it is required to switch your response type to "blob" in
the client call.

Chapter 11
Binary Access Operations

11-63

12
Other Features

Oracle Healthcare Data Repository includes other features such as Repository Validation
support, Remote Terminology Service Validation support, Patient :identifier Search Parameter
support, and Lucene/Elasticsearch indexing.

• Repository Validation Support
Repository Validation provides another way to validate against the core FHIR
specification and the resource against it.

• Remote Terminology Service Validation Support
This service validates codes using a remote FHIR-based terminology server.

• Patient :identifier Search Parameter Support
HDR FHIR supports patient identifier search for all resources.

• Lucene/Elasticsearch Indexing
The HDR-FHIR JPA Server supports optional indexing via Hibernate Search when
configured to use Lucene or Elasticsearch to support the _content, or _text search
parameters and also the extended Lucene string search indexing supports the default
search, as well as :contains, :exact, and :text modifiers.

Repository Validation Support
Repository Validation provides another way to validate against the core FHIR specification
and the resource against it.

The default implementation uses the built-in official FHIR definitions to validate the resource
against it and, in many cases, this is good enough. However, if you have needs beyond
validating against the core FHIR specification, you may want to use another validation
method called Repository Validation.

When using a HDR FHIR JPA server as a FHIR Repository, it is often desirable to enforce
specific rules about which specific FHIR profiles can or must be used.

For example, if an organization created a FHIR Repository for the purposes of hosting and
serving US Core Data, that organization might want to enforce rules that data being stored in
the repository must actually declare conformance to US Core Profiles such as the US Core
Patient Profile and US Core Observation Profile.

In this situation, it would also be useful to require that any data being stored in the repository
be validated, and rejected if it is not valid. The Repository Validating method can be used for
this purpose. The HDR-FHIR server will be able to configure to validate resources based on
external profiles or implementation guides.

• Configuration
The required configuration properties are added to the hdr_fhir.yaml file.

12-1

Configuration
The required configuration properties are added to the hdr_fhir.yaml file.

load_ig_on_server_startup: false

If this property is set to true, the HDR-FHIR server dynamically loads configured IG
packages during FHIR server startup. By default this property is set to false.

implementationguides:
 us_core:
 name: hl7.fhir.us.core
 version: 6.0.0
 url: http://hl7.org/fhir/us/core/STU6/package.tgz

To load a different IG, change the url, name, and version to point to the specific IG
package location, add one more section like above that includes name, version and
url.

install_transitive_ig_dependencies: false

This property allows loading of dependencies required by the IG. Usually, this value is
set to false as most of the IGs depends on hl7 fhir core which is implied and doesn’t
require loading. Set this value to false.

validation_repository_enabled: false

If this property set to true, the incoming FHIR resource is validated against a
configured profile. Set this value to false to disable repository validation.

Note:

Make sure that the incoming message contains meta tag with profile
information to be validated.

Sample Message:

{
 "resourceType" : "Patient",
 "id" : "patient-example-female",
 "meta": {
 "profile": [
 "http://hl7.org/fhir/us/core/StructureDefinition/us-core-
patient"
]
 },
 "text" : {
 "status" : "generated",
 "div" : "<div xmlns=\"http://www.w3.org/1999/xhtml\"><p>Martha
DeLarosa female, DoB: 1992-05-01 (id: 574687583)</p></div>"
 },

Chapter 12
Repository Validation Support

12-2

 "identifier" : [
 {
 "system" : "urn:oid:2.16.840.1.113883.2.4.6.3",
 "value" : "574687583"
 }
],
 "active" : true,
 "name" : [
 {
 "family" : "DeLarosa",
 "given" : [
 "Martha"
]
 }
],
 "telecom" : [
 {
 "system" : "phone",
 "value" : "+31788700800",
 "use" : "home"
 }
],
 "gender" : "female",
 "birthDate" : "1992-05-01",
 "address" : [
 {
 "line" : [
 "Laan Van Europa 1600"
],
 "city" : "Dordrecht",
 "postalCode" : "3317 DB",
 "country" : "NL"
 }
],
 "contact" : [
 {
 "relationship" : [
 {
"coding": [
 {
 "system": "http://terminology.hl7.org/CodeSystem/v2-0131",
 "code": "N"
 }
]
 }
],
 "name" : {
 "family" : "Mum",
 "given" : [
 "Martha"
]
 },
 "telecom" : [
 {
 "system" : "phone",

Chapter 12
Repository Validation Support

12-3

 "value" : "+33-555-20036",
 "use" : "home"
 }
],
 "address" : {
 "line" : [
 "Promenade des Anglais 111"
],
 "city" : "Lyon",
 "postalCode" : "69001",
 "country" : "FR"
 }
 }
]
}

Remote Terminology Service Validation Support
This service validates codes using a remote FHIR-based terminology server.

The remote terminology service must be configured on HDR FHIR server that is being
used for validation support. When enabled, profile StructureDefinition resources will
still be fetched directly from the validation support repository, but any validation
request operations (e.g. $lookup, $validate-code, $expand, $translate) will be
forwarded to the remote terminology server.

• Configuration
The required configuration properties are added to the hdr_fhir.yaml file.

Configuration
The required configuration properties are added to the hdr_fhir.yaml file.

remote_terminology_service_enabled: false

Set this property to true to enable validate codes using the configured FHIR-based
remote terminology server. By default it is false.

remote_terminology_server_base_url=http://hapi.fhir.org/baseR4

Specify FHIR-based remote terminology server url to validate codes against this
server.

Note:

If remote terminology validation is set to true, make sure that request
validation is also enabled (requests_enabled property).

Chapter 12
Remote Terminology Service Validation Support

12-4

Patient :identifier Search Parameter Support
HDR FHIR supports patient identifier search for all resources.

The FHIR standard defines a modifier :identifier that can be used to limit the reference search
parameter. In this manner, the system allows for searching by identifier rather than literal
reference.

Example:

GET [base]/Consent?patient:identifier=http://
ns.electronichealth.net.au/id/hi/ihi/1.0|8003608833630130

The example is a search for all Consent resources that reference a patient by a particular
patient identifier. When the :identifier modifier is used, the search value works as a token
search.

In this case, patient resource will not be created before, and it will be attached while
persisting the resource.

Sample Message:

{
 "resourceType": "Consent",
 "id": "consent-example-basic1255",
 "text": {
 "status": "generated",
 "div": "<div xmlns=\"http://www.w3.org/1999/
xhtml\">\n\t\t\t<p>\n\tAuthorize Normal access for Treatment\n\t\t\t</
p>\n\t\t\t<p>\n Patient "P. van de Heuvel" wishes to have all
of the PHI collected at the Good Health Psychiatric Hospital \n available
for normal treatment use.\n\t\t\t</p>\n\t\t</div>"
 },
 "status": "active",
 "scope": {
 "coding": [
 {
 "system": "http://terminology.hl7.org/CodeSystem/consentscope",
 "code": "patient-privacy"
 }
]
 },
 "category": [
 {
 "coding": [
 {
 "system": "http://loinc.org",
 "code": "59284-0"
 }
]
 }
],
 "patient": [{
 "identifier": {

Chapter 12
Patient :identifier Search Parameter Support

12-5

 "system": "http://test.com",
 "value": "12345"
 }
 }],
 "dateTime": "2016-05-11",
 "organization": [
 {
 "reference": "Organization/rrrrf001"
 }
],
 "sourceAttachment": {
 "title": "The terms of the consent in lawyer speak."
 },
 "policyRule": {
 "coding": [
 {
 "system": "http://terminology.hl7.org/CodeSystem/v3-ActCode",
 "code": "OPTIN"
 }
]
 },
 "provision": {
 "period": {
 "start": "1964-01-01",
 "end": "2016-01-01"
 }
 }
}

When the above message is persisted, indexed patient references will generate an
index in the HFJ_SPIDX_TOKEN table for the patient identifier.

Now you can search Consent resources that reference a patient by a patient identifier
using the GET operation like below.

GET [base]/Consent?patient:identifier=http://test.com|12345

Lucene/Elasticsearch Indexing
The HDR-FHIR JPA Server supports optional indexing via Hibernate Search when
configured to use Lucene or Elasticsearch to support the _content, or _text search
parameters and also the extended Lucene string search indexing supports the default
search, as well as :contains, :exact, and :text modifiers.

• Configuration
The settings below will be enabled to support lucene or elastic search in the
hdr_fhir.yaml file.

• String search
The Extended Lucene string search indexing supports the default search, as well
as :contains, :exact, and :text modifiers.

Chapter 12
Lucene/Elasticsearch Indexing

12-6

Configuration
The settings below will be enabled to support lucene or elastic search in the hdr_fhir.yaml file.

hibernate.search.enabled: true

For Lucene:

 ### lucene parameters
 hibernate.search.backend.type: lucene
 hibernate.search.backend.analysis.configurer:
ca.uhn.fhir.jpa.search.HapiHSearchAnalysisConfigurers$HapiLuceneAnalysisConfi
gurer
 hibernate.search.backend.directory.type: local-filesystem
 hibernate.search.backend.directory.root: target/lucenefiles
 hibernate.search.backend.lucene_version: lucene_current

For Elastic Search:

 hibernate.search.backend.type: elasticsearch
 hibernate.search.backend.analysis.configurer:
ca.uhn.fhir.jpa.search.HapiHSearchAnalysisConfigurers$HapiElasticAnalysisConf
igurer

elasticsearch:
 debug:
 pretty_print_json_log: false
 refresh_after_write: false
 enabled: false
 required_index_status: YELLOW
 rest_url: 'localhost:9200'
 protocol: 'http'
 schema_management_strategy: CREATE
 username: SomeUsername
 password: SomePassword

Note:

To work with elastic search, the required elastic search client jar files need to be
placed under the WebLogic domain classpath (Example: <FHIR_DOMAIN>/lib) or
add those jar files to HDR FHIR application war file under
<HDR_FHIR_WAR>\WEB-INF\lib folder directly. These jar files are not bundled
with the HDR FHIR application due to Oracle's commercial license procedure/
restrictions.

String search
The Extended Lucene string search indexing supports the default search, as well
as :contains, :exact, and :text modifiers.

Chapter 12
Lucene/Elasticsearch Indexing

12-7

The default (unmodified) string search matches by prefix, insensitive to case or
accents.

:exact matches the entire string, matching case and accents.

:contains match any substring of the text, ignoring case and accents.

:text provides a rich search syntax.

For more information, see:

https://www.hl7.org/fhir/search.html#string

Configuration

!!Extended Lucene/Elasticsearch Indexing is still a experimental
feature, expect some features (e.g. _total=accurate) to not work as
expected!!
 ### more information here: https://hapifhir.io/hapi-fhir/docs/
server_jpa/elastic.html
 advanced_lucene_indexing: false

Chapter 12
Lucene/Elasticsearch Indexing

12-8

https://www.hl7.org/fhir/search.html#string

13
Partitioning

Oracle Healthcare Data Repository FHIR 8.1.4 introduced a new feature called Partitioning.
Partitioning allows each resource on the server to be placed in a partition grouping a set of
resources together.

• Partitioning Outcomes
Partitioning is designed so that it can be used to achieve different outcomes.

• Partition Operations
Several operations can be used to manage partitions.

• Enabling Partitioning
To enable partitioning on the HDR FHIR server, uncomment and enable the properties in
the hdr_fhir.yaml file as shown below.

Partitioning Outcomes
Partitioning is designed so that it can be used to achieve different outcomes.

Multitenancy

Partitioning could be used to achieve multitenancy, where there are multiple logically
separate resources on the server. Traditionally this kind of setup is called tenant wise, and
each of these tenants should not be able to access or modify data belonging to another
tenant.

Separate Data

Partitioning could also be used to logically separate data coming from distinct sources
within an organization. For example, patient records might be placed in one partition, lab data
sourced from a lab system might be placed in a second partition and patient surveys from a
survey app might be placed in another. In this situation, data does not need to be completely
segregated (Lab Observation records may have references to Patient records in the patient
partition) but these partitions might be used to support security groups, retention policies, etc.

Partitioning in HDR FHIR JPA means that every resource has a partition identity. This identity
consists of the following attributes:

• Partition Name: This is a short textual identifier for the partition that the resource
belongs to. This might be a customer ID, a description of the type of data in the partition,
or something else.

• Partition ID: This is an integer ID that corresponds 1:1 with the partition Name. It is used
in the database as the partition identifier.

• Partition Date: This is an additional partition discriminator that can be used to implement
partitioning strategies using a date axis.

At the database level, partitioning involves the use of two dedicated columns to many tables
within the HDR_FHIR Schema

13-1

PARTITION_ID – This is an integer indicating the specific partition that a given
resource is placed in. This column can also be NULL, meaning that the given resource
is in the Default Partition.

PARTITION_DATE – This is a date/time column that can be assigned an arbitrary
value depending on your use case.

When partitioning is used, these two columns will be populated with the same value for
a given resource on all resource-specific tables (this includes HFJ_RESOURCE and
all tables that have a foreign key relationship to it including HFJ_RES_VER,
HFJ_RESLINK, HFJ_SPIDX_*, extended tables like OHF_FHIR_*etc.)

When a new resource is created, the partition ID and date is assigned to the resource.

When a resource is updated, the partition ID and date from the previous version is
used.

Partition Operations
Several operations can be used to manage partitions.

Before a partition can be used, it must be registered.

• Creating a Partition
The $partition-management-create-partition operation can be used to create a new
partition.

• Updating a Partition
The $partition-management-update-partition operation can be used to update an
existing partition.

• Deleting a Partition
The $partition-management-delete-partition operation can be used to delete an
existing partition.

• Reading a Partition
The $partition-management-read-partition operation can be used to read an
existing partition.

• Listing all Partitions
The $partition-management-list-partitions operation can be used to list all existing
partitions.

Creating a Partition
The $partition-management-create-partition operation can be used to create a new
partition.

An HTTP POST to the following URL can be used to invoke this operation. Notice that
we use the DEFAULT partition, as it always exists by default.

Example:

http://localhost:9001/oracle-fhir-server/fhir/DEFAULT/$partition-
management-create-partition

Chapter 13
Partition Operations

13-2

The following request body could be used:

{
 "resourceType": "Parameters",
 "parameter": [{
 "name": "id",
 "valueInteger": 123
 }, {
 "name": "name",
 "valueCode": "PARTITION-123"
 }, {
 "name": "description",
 "valueString": "a description"
 }]
}

Updating a Partition
The $partition-management-update-partition operation can be used to update an existing
partition.

An HTTP POST to the following URL can be used to invoke this operation.

Example:

http://localhost:9001/oracle-fhir-server/fhir/DEFAULT/$partition-management-
update-partition

The following request body could be used:

{
 "resourceType": "Parameters",
 "parameter": [{
 "name": "id",
 "valueInteger": 123
 }, {
 "name": "name",
 "valueCode": "PARTITION-123"
 }, {
 "name": "description",
 "valueString": "a description"
 }]
}

Deleting a Partition
The $partition-management-delete-partition operation can be used to delete an existing
partition.

An HTTP POST to the following URL can be used to invoke this operation.

Chapter 13
Partition Operations

13-3

Example:

http://localhost:9001/oracle-fhir-server/fhir/DEFAULT/$partition-
management-delete-partition

The following request body could be used:

{
 "resourceType": "Parameters",
 "parameter": [{
 "name": "id",
 "valueInteger": 123
 }]
}

Reading a Partition
The $partition-management-read-partition operation can be used to read an existing
partition.

An HTTP POST to the following URL can be used to invoke this operation.

http://localhost:9001/oracle-fhir-server/fhir/DEFAULT/$partition-
management-read-partition

The following request body could be used:

{
 "resourceType": "Parameters",
 "parameter": [{
 "name": "id",
 "valueInteger": 123
 }]
}

Listing all Partitions
The $partition-management-list-partitions operation can be used to list all existing
partitions.

An HTTP POST to the following URL can be used to invoke this operation.

Example:

http://localhost:9001/oracle-fhir-server/fhir/DEFAULT/$partition-
management-list-partitions

Chapter 13
Partition Operations

13-4

This operation returns a Parameters resource that looks like the following:

{
 "resourceType": "Parameters",
 "parameter": [{
 "name": "partition",
 "part": [{
 "name": "id",
 "valueInteger": 1
 }, {
 "name": "name",
 "valueCode": "PARTITION-1"
 }, {
 "name": "description",
 "valueString": "a description1"
 }]
 }, {
 "name": "partition",
 "part": [{
 "name": "id",
 "valueInteger": 2
 }, {
 "name": "name",
 "valueCode": "PARTITION-2"
 }, {
 "name": "description",
 "valueString": "a description2"
 }]
 }]
}

Enabling Partitioning
To enable partitioning on the HDR FHIR server, uncomment and enable the properties in the
hdr_fhir.yaml file as shown below.

partitioning:

allow_references_across_partitions: true

When this flag is not set (as is the default), when a search requests a specific partition, an
additional SQL WHERE predicate is added to the query to explicitly request the given
partition ID. When this flag is set, this additional WHERE predicate is not necessary since the
partition is factored into the hash value being searched on. Setting this flag avoids the need
to manually adjust indexes against the HFJ_SPIDX tables.

partitioning_include_in_search_hashes: true

This setting controls whether resources in one partition should be allowed to create
references to resources in other partitions.

Chapter 13
Enabling Partitioning

13-5

14
Terminology

HDR FHIR supports a terminology feature to use and manage code.

The general pattern for representing coded values in resources uses the following four
elements:

• system - A URI that identifies the system

• version - A string value representing a version of the original code system

• code - A string value that identifies a concept as defined by the code system

• display - A description of the concept as defined by the code system

Example:

{
 "system" : "http://loinc.org",
 "version" : "2.62",
 "code" : "55423-8",
 "display" : "Number of steps in unspecified time Pedometer"
}

• Uploading CodeSystems
In most cases, it is useful to upload your own CodeSystems for use in HDR FHIR
Repository. This might mean uploading external Terminologies such as LOINC/SNOMED
or loading custom terminologies such as local CodeSystems defined for organizational
specific use.

• Applying Deltas to CodeSystems
A pair of FHIR operations can be used to add or remove codes from the CodeSystems.
These operations directly add or remove the codes from the specified CodeSystem.

• ValueSet
The FHIR Specification defines two resource types that are used as a part of defining and
using codes.

Uploading CodeSystems
In most cases, it is useful to upload your own CodeSystems for use in HDR FHIR Repository.
This might mean uploading external Terminologies such as LOINC/SNOMED or loading
custom terminologies such as local CodeSystems defined for organizational specific use.

Uploading External Terminologies

HDR FHIR has the ability to upload several standard terminology code systems like LOINC/
SNOMED using their native distribution formats. This is done using the $upload-external-
code-system operation on the CodeSystem Resource and can be invoked using the HDR
FHIR command line utility. Refer to the FHIR Command-Line Utility chapter in this guide.

14-1

Table 14-1 External CodeSystem Formats

CodeSystem URL File Format

LOINC http://loinc.org LOINC Complete Download
ZIP

SNOMED CT http://snomed.info/sct RF2 Distribution in ZIP

Uploading Custom Terminologies Using CSV Files

HDR FHIR has the ability to upload custom local CodeSystem using the supported
CSV file formats. This is done using the $upload-external-code-system operation on
the CodeSystem Resource and can be invoked directly using the REST operation.

To upload terminology via the REST endpoint, perform an HTTP POST to the following
URL:

http://<HOST_NAME>:<PORT>/oracle-fhir-server/fhir/CodeSystem/$upload-
external-code-system

The request body for this operation is a Parameters resource with the following parts:

Table 14-2 Parameters

Parameter Description

system This parameter should have a uri value
containing the CodeSystem URI.

file This parameter should have an attachment
value containing the value of the file (encoded
in Base64) in Attachment.data and the
filename in Attachment.url.

contentType Specifies the payload type (should be text/csv,
application/zip etc.).

data Contains the raw Base64 encoded payload.

url Used by the upload processor to determine
the type of file being uploaded (e.g.
concepts.csv vs hierarchy.csv). See the CSV
input Files below for descriptions of the files to
upload.

Example: CSV Files Content

CODE,DISPLAY

CHEM,Chemistry
HB,Hemoglobin
NEUT,Neutrophils

MICRO,Microbiology
C&S,Culture and Sensitivity

Chapter 14
Uploading CodeSystems

14-2

http://loinc.org
http://snomed.info/sct

Example: Request Body

{
 "resourceType": "Parameters",
 "parameter": [
 {
 "name": "system",
 "valueUri": "http://example.com/csv"
 },
 {
 "name": "file",
 "valueAttachment": {
 "contentType": "text/csv",
 "data":
"Q09ERSxESVNQTEFZCgpDSEVNLENoZW1pc3RyeQpIQixIZW1vZ2xvYmluCk5FVVQsTmV1dHJvcGhp
bHMKCk1JQ1JPLE1pY3JvYmlvbG9neQpDJlMsQ3VsdHVyZSBhbmQgU2Vuc2l0aXZpdHkK",
 "url": "file:/concepts.csv"
 }
 },
 {
 "name": "file",
 "valueAttachment": {
 "contentType": "text/csv",
 "data":
"UEFSRU5ULENISUxECgpDSEVNLEhCCkNIRU0sTkVVVAoKTUlDUk8sQyZTCg==",
 "url": "file:/hierarchy.csv"
 }
 }
]
}

Applying Deltas to CodeSystems
A pair of FHIR operations can be used to add or remove codes from the CodeSystems.
These operations directly add or remove the codes from the specified CodeSystem.

Delta Add Operation: $apply-codesystem-delta-add

The $apply-codesystem-delta-add operation can be used to add concepts to an existing
Codeystem.

The following example shows an invocation of the Delta Add operation. This payload should
be a POST to the following URL:

http://<HOST_NAME>:<PORT>/oracle-fhir-server/fhir/CodeSystem/$apply-
codesystem-delta-add

The payload is shown below:

{
 "resourceType": "Parameters",

Chapter 14
Applying Deltas to CodeSystems

14-3

 "parameter": [
 {
 "name": "system",
 "valueUri": "http://example.com/csv"
 },
 {
 "name": "file",
 "valueAttachment": {
 "contentType": "text/csv",
 "data":
"Q09ERSxESVNQTEFZCgpDSEVNVFJZLENoZW1pc3RyeQpIQjEsSGVtb2dsb2Jpbg==",
 "url": "file:/concepts.csv"
 }
 }
]
}

Delta Remove Operation: $apply-codesystem-delta-remove

The $apply-codesystem-delta-remove operation can be used to remove concepts from
an existing CodeSystem.

The following example shows an invocation of the Delta Remove operation. This
payload should be a POST to the following URL:

http://<HOST_NAME>:<PORT>/oracle-fhir-server/fhir/CodeSystem/$apply-
codesystem-delta-remove

The payload is shown below:

{
 "resourceType": "Parameters",
 "parameter": [
 {
 "name": "system",
 "valueUri": "http://example.com/csv"
 },
 {
 "name": "file",
 "valueAttachment": {
 "contentType": "text/csv",
 "data":
"Q09ERSxESVNQTEFZCgpDSEVNVFJZLENoZW1pc3RyeQpIQjEsSGVtb2dsb2Jpbg==",
 "url": "file:/concepts.csv"
 }
 }
]
}

Chapter 14
Applying Deltas to CodeSystems

14-4

ValueSet
The FHIR Specification defines two resource types that are used as a part of defining and
using codes.

• The CodeSystem resource defines a collection of codes.

• The ValueSet resource creates a collection of codes drawn from one or more
CodeSystems.

ValueSets are defined by a collection of rules, it means the composition. These rules can be
simple rules (e.g. include codes P, Q, and R) or much more complex rules (ex: include any
codes that are a child of code P, etc).

Pre-Calculation for ValueSet Expansion

When a ValueSet is uploaded into HDR FHIR Repository, a scheduler job will be triggered in
the background to calculate the expansion of the valueset and store it in a dedicated set of
database tables. When you perform a ValueSet expansion, an extension will be added to the
ValueSet.meta element. This extension shows the status of the pre-calculation.

Pre-Calculation Status

To test whether a ValueSet has been pre-calculated, simply request the expansion using
the $expand operation. For example, the following request can be used to request the
expansion of the my_custom_value_set ValueSet:

GET ValueSet/$expand?url= http://example.com/my_custom_value_set
If this ValueSet has not been precalculated, the system will send a response similar to the
following:

{
 "resourceType": "ValueSet",
 "id": "200007",
 "meta": {
 "extension": [{
 "url": "http://hapifhir.io/fhir/StructureDefinition/valueset-expansion-
message",
 "valueString": "ValueSet \"ValueSet.url[http://example.com/
t_custom_value_set]\" has not yet been pre-expanded. Performing in-memory
expansion without parameters. Current status: NOT_EXPANDED | The ValueSet is
waiting to be picked up and pre-expanded by a scheduled task."
 }],
 "versionId": "1"
 },
 "url": "http://example.com/my_custom_value_set",
 "status": "active",
[... Remaining Fields Not Shown ...]
}

After the pre-calculation has completed, you will see a response similar to the following:

{
 "resourceType": "ValueSet",
 "id": "200007",

Chapter 14
ValueSet

14-5

 "meta": {
 "extension": [{
 "url": "http://hapifhir.io/fhir/StructureDefinition/valueset-
expansion-message",
 "valueString": "ValueSet was expanded using an expansion that
was pre-calculated at 2023-08-16T20:14:35.055+05:30 (00:24:06 ago)"
 }],
 "versionId": "1"
 },
 "url": "http://example.com/t_custom_value_set",
 "status": "active",
[... Remaining Fields Not Shown ...]
}

Invalidating Pre-Calculated Expansion

It is also possible to manually request that the existing pre-calculated valueset
expansion be invalidated and a new one can be calculated. This is useful in cases
where the underlying CodeSystem has been changed.

To invalidate an existing Pre-Calculated valueset expansion, use the $invalidate-
expansion operation by using a POST against the ValueSet resource ID such as the
following:

POST ValueSet/200007/$invalidate-expansion
The response will be similar to the following:

{
 "resourceType": "Parameters",
 "parameter": [{
 "name": "message",
 "valueString": "ValueSet with URL \"http://example.com/
my_custom_value_set\" precaluclated expansion with 4 concept(s) has
been invalidated"
 }]
}

• Expanding Hierarchical CodeSystems and ValueSets
Many CodeSystem resources define concepts in a hierarchy, ex: parent code and
child codes.

• Requesting A ValueSet Expansion
ValueSet expansion can be invoked using the HTTP GET on the following URL:

• Requesting a ValueSet Hierarchical Expansion
If you would like to request parent-child relationships to be reflected in the
response, you can add the includeHierarchy parameter in your request.

Expanding Hierarchical CodeSystems and ValueSets
Many CodeSystem resources define concepts in a hierarchy, ex: parent code and child
codes.

Chapter 14
ValueSet

14-6

The hierarchy in a CodeSystem often indicates an "is-a" relationship between the parent
code and the child codes. This is not always the case; the hierarchy can imply different kinds
of relationships depending on the specific system.

ValueSets can be used to retrieve all of the codes that are a child of a specific code in a
CodeSystem.

For example, suppose you have the following CodeSystem and there are 3 codes at the root
level (P , Q and R) and each of these codes have children, some of which have further
children.

{
 "resourceType": "CodeSystem",
 "url": "http://example.com/my_custom_codeSystem",
 "content": "complete",
 "concept": [{
 "code": "P",
 "display": "Code P",
 "concept": [{
 "code": "PP",
 "display": "Code PP",
 "concept": [{
 "code": "PPP",
 "display": "Code PPP"
 }]
 }, {
 "code": "PQ",
 "display": "Code PQ"
 }]
 }, {
 "code": "Q",
 "display": "Code Q",
 "concept": [{
 "code": "QP",
 "display": "Code QP"
 }, {
 "code": "QQ",
 "display": "Code QQ"
 }]
 } , {
 "code": "R",
 "display": "Code R",
 "concept": [{
 "code": "RP",
 "display": "Code RP"
 }, {
 "code": "RQ",
 "display": "Code RQ"
 } , {
 "code": "RR",
 "display": "Code RR"
 }]
 }]
}

Chapter 14
ValueSet

14-7

The hierarchy for the codes above can be visualized as follows:

|-- P
| |-- PP
| | \-- PPP
| \-- PQ
\-- Q
| |-- QP
| \-- QQ
\-- R
 |-- RP
 \-- RQ
 \-- RR

To create a ValueSet containing all of the children of a specific code in this
CodeSystem, a ValueSet with a filter can be defined:

{
 "resourceType": "ValueSet",
 "url": "http://example.com/my_custom_value_set",
 "status": "active",
 "compose": {
 "include": [{
 "system": "http://example.com/my_custom_codeSystem",
 "filter": [{
 "property": "concept",
 "op": "is-a",
 "value": "P"
 }]
 }]
 }
}

Note:

Note that the "is-a" filter will exclude the concept itself.

The following example combines an "is-a" filter with a simple explicit code inclusion in
order to include the code "P" as well as all of its descendants.

{
 "resourceType": "ValueSet",
 "url": "http://example.com/my_custom_value_set",
 "status": "active",
 "compose": {
 "include": [{
 "system": "http://example.com/my_custom_codeSystem",
 "filter": [{
 "property": "concept",
 "op": "is-a",
 "value": "P"
 }]

Chapter 14
ValueSet

14-8

 }, {
 "system": "http://example.com/my_custom_codeSystem",
 "concept": [{
 "code": "P"
 }]
 }]
 }
}

Requesting A ValueSet Expansion
ValueSet expansion can be invoked using the HTTP GET on the following URL:

http://<HOST_NAME>:<PORT>/oracle-fhir-server/fhir/ValueSet/$expand?
url=my_custom_value_set

This will return the following response. Note that the hierarchy is not included in the
response.

{
 "resourceType": "ValueSet",
 "id": "200007",
 "meta": {
 "extension": [{
 "url": "http://hapifhir.io/fhir/StructureDefinition/valueset-expansion-
message",
 "valueString": "ValueSet was expanded using an expansion that was pre-
calculated at 2023-08-16T20:14:35.055+05:30 (00:28:24 ago)"
 }],
 "versionId": "1"
 },
 "url": "http://example.com/my_custom_value_set",
 "status": "active",
 "compose": {
 "include": [{
 "system": "http://example.com/my_custom_codeSystem",
 "filter": [{
 "property": "concept",
 "op": "is-a",
 "value": "P"
 }]
 }, {
 "system": "http://example.com/my_custom_codeSystem",
 "concept": [{
 "code": "P"
 }]
 }]
 },
 "expansion": {
 "identifier": "d802bee9-5447-4ecd-92f9-062b704ca566",
 "timestamp": "2023-08-16T20:42:59+05:30",

Chapter 14
ValueSet

14-9

 "total": 4,
 "offset": 0,
 "parameter": [{
 "name": "offset",
 "valueInteger": 0
 }, {
 "name": "count",
 "valueInteger": 1000
 }],
 "contains": [{
 "system": "http://example.com/my_custom_codeSystem",
 "code": "PP",
 "display": "Code PP"
 }, {
 "system": "http://example.com/my_custom_codeSystem",
 "code": "PPP",
 "display": "Code PPP"
 }, {
 "system": "http://example.com/my_custom_codeSystem",
 "code": "PQ",
 "display": "Code PQ"
 }, {
 "system": "http://example.com/my_custom_codeSystem",
 "code": "P",
 "display": "Code P"
 }]
 }
}

Requesting a ValueSet Hierarchical Expansion
If you would like to request parent-child relationships to be reflected in the response,
you can add the includeHierarchy parameter in your request.

Example:

http://<HOST_NAME>:<PORT>/oracle-fhir-server/fhir/ValueSet/$expand?
url=my_custom_value_set &includeHierarchy=true

This will return the following response:

{
 "resourceType": "ValueSet",
 "id": "200007",
 "meta": {
 "extension": [{
 "url": "http://hapifhir.io/fhir/StructureDefinition/valueset-
expansion-message",
 "valueString": "ValueSet was expanded using an expansion that
was pre-calculated at 2023-08-16T20:14:35.055+05:30 (00:29:44 ago)"
 }],
 "versionId": "1"

Chapter 14
ValueSet

14-10

 },
 "url": "http://example.com/my_custom_value_set",
 "status": "active",
 "compose": {
 "include": [{
 "system": "http://example.com/my_custom_codeSystem",
 "filter": [{
 "property": "concept",
 "op": "is-a",
 "value": "P"
 }]
 }, {
 "system": "http://example.com/my_custom_codeSystem",
 "concept": [{
 "code": "P"
 }]
 }]
 },
 "expansion": {
 "identifier": "415a2a3c-02d5-463d-a810-e9d907146234",
 "timestamp": "2023-08-16T20:44:18+05:30",
 "total": 4,
 "offset": 0,
 "parameter": [{
 "name": "offset",
 "valueInteger": 0
 }, {
 "name": "count",
 "valueInteger": 1000
 }],
 "contains": [{
 "system": "http://example.com/my_custom_codeSystem",
 "code": "P",
 "display": "Code P",
 "contains": [{
 "system": "http://example.com/my_custom_codeSystem",
 "code": "PP",
 "display": "Code PP",
 "contains": [{
 "system": "http://example.com/my_custom_codeSystem",
 "code": "PPP",
 "display": "Code PPP"
 }]
 }, {
 "system": "http://example.com/my_custom_codeSystem",
 "code": "PQ",
 "display": "Code PQ"
 }]
 }]
 }
}

Chapter 14
ValueSet

14-11

	Contents
	Preface
	Documentation accessibility
	Diversity and Inclusion

	1 Getting Started
	Introduction
	Platform Requirements

	2 Installation
	3 HDR FHIR Server Architecture
	4 Deployment Details
	Install files
	FHIR Server Base URL and REST Endpoints
	Configuration Files
	Properties File
	Log Configurations

	5 Using the OAuth 2.0 protected API
	Prerequisites
	How It Works
	Obtaining the Access Token from the OAuth Server
	Calling the HDR FHIR API with an Access Token
	Error Messages

	6 Auditing
	Audit Interceptor Execution Flow
	Audit Record Format
	Settings

	7 FHIR Command-Line Utility
	Prerequisites
	Commands
	export-conceptmap-to-csv
	import-csv-to-conceptmap
	upload-definitions and upload-examples
	upload-terminology

	8 Working with FHIR REST APIs
	9 HDR FHIR Data Model
	10 Data Store in Repository
	Resources
	Search Indexes

	11 FHIR Operations
	FHIR CRUD (Create/Read/Update/Delete) operations
	Create
	Update
	Delete
	Patch
	Read
	vRead

	FHIR Search operations
	Basic searching: Finding patients
	References: Finding encounters
	Quantities: Finding laboratory values
	Dates and times: Narrowing your search
	Paging search results
	Sorting search results
	Full text searching
	Patient search $everything

	FHIR Bundle transactions and batches
	Basic bundle transaction
	Bundle multiple related resources
	Placeholder IDs and references
	Conditional Create
	Conditional Update
	Delete
	Patch

	Search parameters
	Default search parameters
	Managing search parameters
	Manual indexing
	Reindex operation
	Reindex response

	Search parameter features
	Index missing search parameter (: missing)
	Index contained resources

	Searching for data
	FHIR Search extensions

	Creating data
	Validating references and referential integrity
	Transactions and submitting bundles
	Auto-creating reference targets
	FHIR Transaction with conditional create
	Auto-create placeholders for reference targets
	Auto-create placeholder reference targets with identifier

	Reading data
	Diff operation
	Diff at Instance Level
	Diff at Type Level
	$everything operation

	Updating data
	Patching data
	Tag retention

	Deleting data
	Deletes and referential integrity
	Transactional delete
	Referential integrity
	Cascading deletes
	The $expunge operation

	Binary Access Operations
	Binary Access Write Operation ($binary-access-write)
	Binary Access Read Operation ($binary-access-read)

	12 Other Features
	Repository Validation Support
	Configuration

	Remote Terminology Service Validation Support
	Configuration

	Patient :identifier Search Parameter Support
	Lucene/Elasticsearch Indexing
	Configuration
	String search

	13 Partitioning
	Partitioning Outcomes
	Partition Operations
	Creating a Partition
	Updating a Partition
	Deleting a Partition
	Reading a Partition
	Listing all Partitions

	Enabling Partitioning

	14 Terminology
	Uploading CodeSystems
	Applying Deltas to CodeSystems
	ValueSet
	Expanding Hierarchical CodeSystems and ValueSets
	Requesting A ValueSet Expansion
	Requesting a ValueSet Hierarchical Expansion

