
Oracle® Life Sciences Clinical One
Platform
Rules Developer Guide

Release 24.1
F91498-02
May 2024

Oracle Life Sciences Clinical One Platform Rules Developer Guide, Release 24.1

F91498-02

Copyright © 2022, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Life Sciences Documentation Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation accessibility viii

Diversity and Inclusion viii

Related resources viii

Access to Oracle Support viii

Additional copyright information ix

1 Before you begin your rules development

JavaScript basics 1-1

Javascript usage tips 1-3

Predefined rules versus custom rules 1-3

The Subject Object 1-4

Handle partial dates in custom rules 1-7

The standard JavaScript Date object 1-7

The custom C1Date object 1-8

2 Create and manage custom rules

Rule statuses and lifecycle 2-2

Access the rules interface 2-3

Create rules using the rule editor 2-3

Define rule variables 2-4

Create a rule for a calculated value 2-6

Create a rule for an automated query 2-8

Create a rule to send an email notification 2-10

Use predictive text to write rules 2-13

Debug a rule 2-13

Prepare your rule for testing and approval 2-16

Test and approve a rule 2-17

Publish rules 2-19

Publish a single rule 2-19

Publish multiple rules at the form level 2-20

Publish multiple rules at the study level 2-22

iii

Modify and republish a published rule 2-23

Disable a rule 2-24

Access the Rule Management page 2-25

Manage rules in Testing mode from the Rule Management page 2-25

Manage published rules from the Rule Management page 2-27

3 Rules helper function reference

General expressions 3-1

Comparison 3-2

Conversion 3-2

Switch statement 3-3

Choice 3-3

Compare dates with different formats 3-3

Range check 3-4

Date and time functions 3-4

dateDiffInYears() 3-5

dateDiffInDays() 3-7

timeDiffInHours() 3-8

timeDiffInMinutes() 3-9

timeDiffInSeconds() 3-11

areDatesEqual() 3-12

isDateInRange() 3-13

areDateTimesEqual() 3-15

isTimeInRange() 3-16

addDays() 3-18

addTimeInHours() 3-18

addTimeInMinutes() 3-19

getDateDMYFormat() 3-20

getDatesCompareResult() 3-21

partialDateDiff() 3-23

Repeating form functions 3-24

FindDuplicateRepeatingForm() 3-25

FindDuplicateRepeatingFormWithinRange() 3-26

FindMinInRepeatingForms() 3-28

FindMaxInRepeatingForms() 3-28

FindMinDateInRFs() 3-29

FindMaxDateInRFs() 3-31

FindMatchingRepeatingForm() 3-33

FindMatchingRepeatingFormWithinRange() 3-34

FindRFInstance() 3-36

ListRFInstances() 3-39

iv

GetCurrentRFInstance() 3-40

GetMatchingRepeatingFormsCount() 3-40

getPrevRepeatValue() 3-42

getRFValues() 3-43

Two-section form functions 3-45

findDuplicate2SForm() 3-46

findDuplicate2SFormWithinRange() 3-47

findMinIn2SForms() 3-49

findMaxIn2SForms() 3-50

findMinDateIn2SForm() 3-51

findMaxDateIn2SForm() 3-52

findMatching2SForm() 3-54

findMatching2SFormWithinRange() 3-56

find2SFormInstance() 3-59

list2SInstances() 3-62

getCurrent2SFormInstance() 3-63

getCurrent2STableInstance() 3-63

getMatching2SFormsCount() 3-64

get2SValues() 3-66

Control the behavior of a rule 3-67

isStudyVersion() 3-67

getCurrentVisitPropertyValue() 3-69

logMsg() 3-70

Detect missing data 3-71

Search and detect missing values 3-72

Multiple choice question functions 3-72

Deprecated - getArrayFromDropdown() 3-72

Deprecated - getStringFromDropdown() 3-73

setChoiceLabel() 3-74

setChoiceValue() 3-74

clearChoice() 3-75

getArrayFromChoice() 3-76

getStringFromChoice() 3-77

Multiple visit schedules and cycle visit functions 3-78

getCurrentBranch() 3-78

isSubjectOnBranch() 3-79

getCurrentTreatmentArm() 3-80

getQuestionValue() 3-80

getDataElementsArray() 3-82

getCurrentCycle() 3-84

getCycleCount() 3-84

getCompletedCycle() 3-85

v

Formatting and other functions 3-86

setQueryMessage() 3-86

enableNotificationDetails() 3-87

getValues() 3-88

4 Rules examples

Electronic Data Collection (EDC) examples 4-1

Range check 4-1

Item completion check 4-4

BMI calculation check 4-6

Oracle Central Coding mapping 4-7

Choice question check 4-9

Blood pressure comparison check 4-12

Format check 4-13

Age calculation check 4-14

Date examples 4-15

Date comparisons 4-15

Date comparison 4-16

DateTime comparison 4-18

Date comparison within range: On or after 4-20

Date comparison within range: Days before 4-22

Map dates 4-23

Partial date comparisons 4-25

Partial date comparison 4-25

Partial date unknown month evaluation 4-27

Dates with Dynamic Query Text 4-28

Date comparison - dynamic query 4-29

Date Time comparison - dynamic query 4-32

Partial date comparison with dynamic query text 4-34

Repeating form examples 4-36

Instance count 4-36

Duplicate values check 4-39

Compare related instances 4-41

Two-section form examples 4-46

Table instance count 4-46

Form instance count 4-49

Duplicate values check - flat section items 4-50

Duplicate values check - table section items 4-53

vi

5 Frequently Asked Questions (FAQs)

What if my JavaScript expression does not return a value for a calculation? 5-1

What happens when one of the function's inputs (operands or variables) is cleared? 5-1

What if I published a rule by mistake? 5-1

Can I publish a single rule in Production? 5-1

6 Revision history

vii

Preface

This preface contains the following sections:

• Documentation accessibility

• Diversity and Inclusion

• Related resources

• Access to Oracle Support

• Additional copyright information

Documentation accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related resources
All documentation and other supporting materials are available on the Oracle Help Center.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through
Support Cloud.

Contact our Oracle Customer Support Services team by logging requests in one of the
following locations:

• English interface Customer Support Portal (https://hsgbu.custhelp.com/)

• Japanese interface Customer Support Portal (https://hsgbu-jp.custhelp.com/)

You can also call our 24x7 help desk. For information, visit https://www.oracle.com/life-
sciences/support/ or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://docs.oracle.com/en/industries/health-sciences/clinical-one/index.html
https://hsgbu.custhelp.com/
https://hsgbu-jp.custhelp.com/
https://www.oracle.com/life-sciences/support/
https://www.oracle.com/life-sciences/support/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Additional copyright information
This documentation may include references to materials, offerings, or products that were
previously offered by Phase Forward Inc. Certain materials, offerings, services, or products
may no longer be offered or provided. Oracle and its affiliates cannot be held responsible for
any such references should they appear in the text provided.

Preface

ix

1
Before you begin your rules development

• JavaScript basics
Before working with rules in Oracle Clinical One Platform, you should have a basic
understanding of JavaScript. While you do not need advanced programming skills, an
understanding of JavaScript functions and variables is critical to your success.

• Javascript usage tips
While Oracle Clinical One Platform uses Javascript as a programming language for rules,
there are some usage caveats and limitations that you should know before beginning your
rules development, especially if you are an experienced Javascript developer.

• Predefined rules versus custom rules
Predefined rules are included as part of Oracle Clinical One Platform, Study designers can
apply these rules to questions during the study design process. Custom rules are more
advanced rules, typically created by a rules designer, that apply more complex validation,
or determine actions in response to certain criteria.

• The Subject Object
The Subject Object provides access to subject information and other data not collected
directly into a form, so you can include it in a rule's processing or as a return value.

• Handle partial dates in custom rules
Oracle Clinical One Platform handles dates differently depending on whether they are
partial dates or not.

JavaScript basics
Before working with rules in Oracle Clinical One Platform, you should have a basic
understanding of JavaScript. While you do not need advanced programming skills, an
understanding of JavaScript functions and variables is critical to your success.

JavaScript is a widely-used programming language most often used in web development. This
language is straightforward to learn and can be used to develop both basic expressions and
those with more complex logic. We use this language to write custom rules in Oracle Clinical
One Platform. Within the rule expressions, we can invoke JavaScript functions (blocks of code)
and the provided helper functions, together with variables, constants, operators, and various
methods to accomplish specific tasks.

Teaching you the fundamentals of JavaScript is beyond the scope of this document. There are
many excellent resources available on the web (such as W3schools) that can help you
understand JavaScript concepts and basic programming methodology.

JavaScript functions

Functions are simply blocks of code designed to accomplish a specific task. You can use
functions in your rules to perform a variety of tasks. When writing your rules, you invoke these
functions from the rules interface. You can use native JavaScript functions or special helper
functions that are provided as part of Oracle Clinical One Platform.

• Native JavaScript functions are functions that are part of standard JavaScript
programming. These functions are familiar to JavaScript programmers and not specific to

1-1

https://www.w3schools.com/js/

Oracle Clinical One Platform. You can invoke your code with parameters and the blocks of
code you write are visible within the rule expression.

Be sure to understand the limitations and usage caveats for using JavasScript in Oracle
Clinical One Platform before programming your rules. For guidance, see Javascript usage
tips.

• Oracle helper functions are also invoked using specific parameters and a value is returned
by the helper function. The return value for a helper function is available to you for use in
your rule expression and the logic of your rule can use this value to perform an action.
However, the code within these functions is not visible to you in the rules interface. Refer to
the Rules helper function reference for details on each function.

JavaScript variables

When working with JavaScript functions, you use variables to pass your data. Variables are
simply containers used to hold values that you want to use in your rule. You must declare and
define variables as part of your rule.

Note:

When writing rules, you must consider two types of variables, ones that hold values
taken directly from the data entered into forms and ones that can be created within
your rule code to store values generated within the code. Form variables are defined
in the top portion of the rule editor and are populated by form values. Variables used
in your code are defined in the code itself.

Rule validation

The rules interface provides a simple way for you to add your rule code and includes syntax
validation. However, you should keep in mind that this validation is used to ensure that the
syntax used in your rule is valid JavaScript (that is, you have not made a coding error such as
forgetting a closing parentheses or required semi-colon).

Understanding and defining the logic you want for your rule is a difficult process regardless of
your level of JavaScript knowledge! The system does not provide verification of your rule logic
so it is critical that you verify your rule and ensure the rule is functioning as expected. To help
you with the creation of your rule logic, we provide a number of examples as part of our helper
function reference and a library of Rules examples. Reviewing these examples can help you
gain a better understanding of the logic and functions used when writing JavaScript rule
expressions for complex tasks. These examples can also be used as a base for your own
custom code. This can significantly decrease your development time.

Note:

Rule verification should always be done in Testing mode for your study before it is
deployed to Production. You must always verify the behavior of your rule at run time.

Chapter 1
JavaScript basics

1-2

Javascript usage tips
While Oracle Clinical One Platform uses Javascript as a programming language for rules, there
are some usage caveats and limitations that you should know before beginning your rules
development, especially if you are an experienced Javascript developer.

Rule processing caveats

Follow these guidelines to help your rules process efficiently:

• Use the documented helper functions to reduce your need to loop through repeating
instances when performing certain matching and compare operations on data. This
improves your rule performance.

• Use generic Javascript functions under ECMAScript 5. For example, you can process an
array of elements with filter(), reduce(), and so forth to loop through an array for
a specific purpose. This can simplify your coding.

Javascript limitations

The following common Javascript and HTML coding operations are not allowed in any rule
expressions:

• Console operations

• Print operations

• File operations (such as load() and open())

• DOM manipulations (such as document and window)

• Display messages (such as alert)

• Interrupting script processing (such as exit() and quit())

• Debugger commands

• Looping operations (such as for and while)

• Words internally restricted by the Rules engine:

– Expression

– Window

There are also some reserved words that are typically not allowed in JavaScript. For a
complete list, see JavaScript Reserved Words.

Predefined rules versus custom rules
Predefined rules are included as part of Oracle Clinical One Platform, Study designers can
apply these rules to questions during the study design process. Custom rules are more
advanced rules, typically created by a rules designer, that apply more complex validation, or
determine actions in response to certain criteria.

Predefined rules can be selected during study design and are often (but not always) used for
validating data. Study designers apply these rules to a specific question in a specific form to
help facilitate appropriate data entry in a study. These rules allow study designers to better
control the quality of the data that is collected by generating a validation error message every
time the condition set by the rule isn't met. However, these rules are only available for a limited
number of commonly encountered conditions.

Chapter 1
Javascript usage tips

1-3

https://262.ecma-international.org/5.1/
https://www.w3schools.com/js/js_reserved.asp

Custom rules allow queries to be displayed for questions that have been answered and when
specific conditions are met for the data that is entered. Custom rules can also be used to
calculate the values of read-only questions or determine other actions such as sending an
email notification. These rules are written using Javascript and require some knowledge of
basic coding principles. Oracle Clinical One Platform provides an efficient interface where you
can create, validate, and publish rules using JavaScript.

Note:

When using predefined rules in your study design, you should be aware that queries
raised by predefined validation rules must be resolved before subjects can be
screened or randomized. They can also prevent dispensation actions. However,
when using custom rules, the system allows subjects to be screened or randomized
even when the query is not resolved. Apply predefined validation rules carefully.
Always validate your custom rules in Testing mode to ensure you are getting the
expected results before approving the rule for use in a Production study.

The Subject Object
The Subject Object provides access to subject information and other data not collected directly
into a form, so you can include it in a rule's processing or as a return value.

Sometimes, a rule's logic may need to reference data that wasn't collected in a form, such as
the subject number and status, or site-related information. The Subject Object has different
attributes for data that is not included in any form. You can use the Subject Object and its
attributes for rule processing or as a result for a calculated value.

Tip:

This last scenario can be useful to run Show Visit, Show Form, and Show Question
predefined rules or as a form question included for visit branching.

All of these attributes will always return the current value. This means that, if there is any
change to the subject, old data is overwritten and the new data is returned. Also, changes in
the values returned by the Subject Object do not trigger a rule to run or re-run. Because rules
run on data submission, a form item variable must be referenced to trigger the rule to run
whenever it changes to meet the specified criteria.

Usage tips

• When accessing the object properties using dot notation, it is always a good practice to
check if the property is defined to avoid code failure when null. For example:

if(Subject.SubjectNumber){
 var subnumber = Number(Subject.SubjectNumber.substring(10));
}

• A predictive text feature is available as you type, with descriptions of these attributes and
all available rule helper functions. See Use predictive text to write rules.

Chapter 1
The Subject Object

1-4

Subject Object attributes

Caution:

Some of these attributes allow access to potentially unblinding information. Use them
with caution and along with assigned queries and data classifications, when
applicable, to limit access to this information.

Attribute Description

SubjectNumber Indicates the number assigned to a subject.

SubjectStatus Indicates a subject's current status. The following statuses can be
displayed:
• New
• Screening_Initiated
• Screen_Failed (when a site user manually marks a subject as

having failed screening)
• Auto_Screen_Failed (when a subject automatically fails screening in

the system)
• Enrolled
• Active
• Withdrawn
• Complete

ScreeningDate Indicates the date when a subject is screened. By default, all dates are
returned with a standard 00:00 GMT time.

ScreenFailureDate Indicates the date when a subject fails screening, whether the screen
failure occurs manually or automatically. By default, all dates are
returned with a standard 00:00 GMT time.

Note:

If the date of the screen failure is entered
manually and differs from the system date,
the manually entered value is returned.

CompletionDate Indicates the date when a subject completed all visits in a study. By
default, all dates are returned in GMT time.

WithdrawalDate Indicates the date when a subject is withdrawn from a study. By default,
all dates are returned with a standard 00:00 GMT time.

Chapter 1
The Subject Object

1-5

Attribute Description

RandomizationDate Indicates the date for any of the following events:
• When a subject is randomized whether the randomization number

subsequently changed.
• When a subject is re-randomized.
By default, all dates are returned with a standard 00:00 GMT time.

Note:

In the event of a manual randomization
outside of Oracle Clinical One Platform,
this returns the date the subject was
randomized in Oracle Clinical One
Platform, not the date of manual
randomization that occurred outside of
Oracle Clinical One Platform.

TreatmentArm Indicates the ID (also known as the short name) of the treatment arm for
the subject.

Caution:

Potentially unblinding.

Note:

Treatment arms containing a backslash
("\") on their IDs, cannot be referenced as
text in a rule. You can use logMsg()
statements to verify the retrieved string,
see Debug a rule.

CohortName Indicates the name of the cohort where a subject belongs to, if
applicable.

SiteNumber Indicates a site's ID where a subject is assigned to, as specified on the
Create Organization: Institution dialog, in the Institution ID field.

SiteName Indicates a site's name where a subject is assigned to, as specified on
the Create Organization: Institution dialog, in the Institution Name field.

Country Indicates the ISO code of a country specified for a site where the subject
is assigned to.
This value is defined as indicated in the Geography system code list on
the Library page.

Region Indicates the primary region of a country for a site that a subject is
assigned to.
A country's region is defined on the Study Settings tab for a study.

Chapter 1
The Subject Object

1-6

Handle partial dates in custom rules
Oracle Clinical One Platform handles dates differently depending on whether they are partial
dates or not.

While writing a rule definition in the Rule editor you can retrieve the value of a date item into a
variable. If the date is a full date, a standard JavaScript Date object is created to hold the
variable. In the case for partial dates or time elements only, a custom object C1Date (defined
only for Oracle Clinical One Platform) is created.

When it comes to using date variables with date and time helper functions, you must know that
there are different types of helper functions and not all of them take partial dates. Only when a
rule helper function is pure JavaScript, both rule variables and locally defined variables (either
as Date or C1Date objects) can be used. The available pure JavaScript rule helper functions
are:

• getDateDMYFormat()

• getDatesCompareResult()

• partialDateDiff()

Other functions only take full JavaScript Date objects, meaning partial dates are not supported.
You may refer to the whole list of available helper functions and their documentation in the
Rules helper function reference section.

Usage tips

• Check your variable type to avoid rule failure. To know how your variable is created and
which type of object it is, you can use the logMsg(). See Debug a rule.

• You can use the associated methods of each object type to gather specific elements of any
date. This way you can manually evaluate and compare dates that may not be supported
by existing rule helper functions.

Review more information on the available date objects:

• The standard JavaScript Date object
The Date object is a standard built-in JavaScript object and supports full dates only. This
object has built-in methods that can be used to retrieve specific date components.

• The custom C1Date object
The C1Date object is defined only for Oracle Clinical One Platform and supports both full
and partial dates.

The standard JavaScript Date object
The Date object is a standard built-in JavaScript object and supports full dates only. This object
has built-in methods that can be used to retrieve specific date components.

Note:

If you need to work with partial dates see Handle partial dates in custom rules and
The custom C1Date object.

Chapter 1
Handle partial dates in custom rules

1-7

Method Description

getFullYear() Get year as a four digit number (yyyy).

getMonth() Get month as a number (0-11).

getDate() Get day as a number (1-31).

getDay() Get weekday as a number (0-6).

getHours() Get hour (0-23).

getMinutes() Get minute (0-59).

getSeconds() Get second (0-59).

For more information, you may refer to any official JavaScript documentation resources.

The custom C1Date object
The C1Date object is defined only for Oracle Clinical One Platform and supports both full and
partial dates.

Since this is a custom class, you need to know specific details about its constructors and
methods. This information allows you to use C1Date objects to properly handle partial dates.

Constructors

The C1Date object has two possible constructors:

C1Date(date, day, month, year)

C1Date (date, day, month, year, hour, minute, second)

These two possible constructors use the following object parameters:

Parameter Description

date Takes a JavaScript Date object (full date).

Note:

When a date is provided,
following parameters are not
needed.

day Takes a numeric value for the day of the date.

month Takes a numeric value for the month of the date.

year Takes a 4-digit numeric value for the year of the date (yyyy).

hour Takes a numeric value for the hours time element.

minute Takes a numeric value for the minutes time elemnt.

second Takes a numeric value for the seconds time element.

Chapter 1
Handle partial dates in custom rules

1-8

Methods

The C1Date class has the following methods:

Method Description

isPartialDate() Returns true for partial dates or false for full dates.

getDate() Returns a JavaScript Date object, or null.

getDay() Returns the numeric value of the day, null or UNK.

getMonth() Returns the numeric value of the month, null or UNK.

getYear() Returns the 4-digit value of the year, null or UNK.

getHour() Returns the numeric value of the hours time element, null or
UNK.

getMinute() Returns the numeric value of the minutes time element, null
or UNK.

getSecond() Returns the numeric value of the seconds time element, null
or UNK.

Chapter 1
Handle partial dates in custom rules

1-9

2
Create and manage custom rules

Oracle Clinical One Platform provides a user interface for creating custom rules using
JavaScript. Rules are applied in all modes when published, but you can only create, test, edit,
approve and publish them in Testing mode.

• Rule statuses and lifecycle
During the lifecycle of the rule, you can create, test, approve, and publish in an iterative
manner to help you refine your rules and implement them according to your product
specification.

• Access the rules interface
Oracle Clinical One Platform provides a user interface for you to create, test, approve, and
publish rules. You access this dialog by navigating to a form within a visit.

• Create rules using the rule editor
Define variables and add a Javascript expression in the rule editor to create your rules.
You can create rules to calculate values, create autommated queries and send email
notifications. If your rule fails to work as expected you can debug your rule to identify any
errors and correct rule logic.

• Prepare your rule for testing and approval
Your rule must be moved through each status in sequence and can be sent back for
rework if later testing reveals an issue. As a rule designer, you should test your rule in Draft
mode before moving it to UAT. This can help you minimize any future rework.

• Test and approve a rule
You need to test and approve a rule before publishing it to Production. Your testing should
be done before moving from Draft mode, and again before moving from UAT. This helps
ensure that your rule is functioning as expected before moving to production.

• Publish rules
Publish a rule once it is approved. A rule that reaches the Published status becomes active
in all modes, regardless of the study version. You can publish a single rule or multiple rules
at either form or study level.

• Modify and republish a published rule
You can modify a published rule and re-publish it as needed using the same process you
used to create the original rule. If you modify a published rule in Testing mode, changes
won't appear in Production mode until you update that rule's status to Published.

• Disable a rule
If you published a rule in error, users with the appropriate permission can disable that rule
so it stops running in all study versions for a given mode.

• Access the Rule Management page
Access the Rule Management page for a paticular study and manage all custom rules in
different modes.

• Manage rules in Testing mode from the Rule Management page
View and manage rules that are under development and already published in Testing
mode. This includes rules in all states: Draft, UAT, Approved, Published, and Invalid .

• Manage published rules from the Rule Management page
View and manage all published custom rules within a study, in either Production or Training
mode.

2-1

Rule statuses and lifecycle
During the lifecycle of the rule, you can create, test, approve, and publish in an iterative
manner to help you refine your rules and implement them according to your product
specification.

Figure 2-1 A rule's lifecycle and what each user role has to do

A rule needs to be created in Testing mode, where it goes over different stages before it gets
published. Rules are study version independent and apply to every mode once they reach the
Published status. Different roles participate at the different stages of the rule's lifecycle.

Icon Status Description

Draft The rule is newly created and can be edited by a Rule
Designer.
Once drafted, Prepare your rule for testing and approval. If it
has no syntax errors and works as expected move it to the
next stage. Otherwise make edits to your rule still in draft.

UAT The rule has no syntax errors and is ready to be tested by a
Rule Tester.
Test and approve a rule for every possible scenario. If the
rule fails testing you can take it back to draft mode so that the
rule designer makes the necessary edits.

Approved The rule has no syntax errors, it has the expected results and
is ready to be published by a Rule Publisher.
At this point you can Publish a single rule, Publish multiple
rules at the form level or Publish multiple rules at the study
level.

Published The rule has been published by a Rule Publisher. Once a
rule has reached the Published status, the rule becomes
active in all modes regardless of the study version.
If you edit a published rule in Testing mode, its state goes
back to Draft, but this doesn't affect the published rule in
Production and Training modes. To update in all modes you
need to Modify and republish a published rule.

If a rule is no longer needed you can Disable a rule.

Chapter 2
Rule statuses and lifecycle

2-2

Access the rules interface
Oracle Clinical One Platform provides a user interface for you to create, test, approve, and
publish rules. You access this dialog by navigating to a form within a visit.

Access the rules dialog from the Oracle Clinical One Platform home page.

Before doing any rules work, you must have a study version in the Testing container that
includes the following elements:

• Forms

• Visits (that contain forms)

• Subjects

• Sites associated with the study version placed in the Testing container

1. On the Home page, click the Testing Mode button () for the study you want to work on.

2. Along the top, make sure Subjects is selected.

3. If you have access to multiple sites for the study, select a site from the Site drop-down in
the upper-right.

4. In the table, locate and click the visit card that you want to edit.

5. On the left side of the visit window, click the form where you want to apply your rules work.

You can see the Rules pane on the right. Expand it to view and manage existing rules or
create new ones.

Tip:

Use the View all Rules in this form toggle to manage all rules, including those
added in other form questions.

From this interface, you can create, test, approve, and publish rules as needed.
To create a rule, select the question that must contain a rule, then click + Add Rule. The Rule
editor opens so you can start creating your rule, see:

• Create a rule for a calculated value

• Create a rule for an automated query

• Create a rule to send an email notification

Create rules using the rule editor
Define variables and add a Javascript expression in the rule editor to create your rules. You
can create rules to calculate values, create autommated queries and send email notifications.
If your rule fails to work as expected you can debug your rule to identify any errors and correct
rule logic.

• Define rule variables
As you create custom rules, define variables referring to collected data to use within your
rule expression.

Chapter 2
Access the rules interface

2-3

• Create a rule for a calculated value
You can create a rule that enables the system to automatically calculate a value in a form.
This allows you to automatically calculate certain values based on manually entered form
data. reducing calculation errors and simplifying forms.

• Create a rule for an automated query
You can create a rule that generates an automated query if the value entered by the site
does not meet the acceptance criteria defined by the rule logic. The query message lets
users know they should verify their entry and correct any errors.

• Create a rule to send an email notification
You can notify designated team members by creating a rule that sends an automatic email
notification when specific criteria is met. The usual steps for creating and managing
custom rules still apply.

• Use predictive text to write rules
Use predictive text to add suggested variable names, basic JavaScript syntax, Subject
attributes and rule helper functions to your rule expression.

• Debug a rule
Rule designers can debug rules by using logMsg() statements to obtain information
regarding the rule logic and make sure it works as desired.

Define rule variables
As you create custom rules, define variables referring to collected data to use within your rule
expression.

Custom rules are created from the Rule editor, see Access the rules interface.

As you create a rule you must enter a rule name and description before defining your rule
variables, expression and action.

1. In the Rule editor, at the top, click the plus sign icon () next to the Variables section
title.

A row with editable fields appears.

2. In the first field, enter a name for the variable.

3. Select a visit, a form, and a question from each drop-down. For example:

For example:

Var BP_Sys = Screening visit, Vital Signs form, Blood Pressure Systolic
question.

Table 2-1 Variable set up for different use cases

Use case Set up Behavior

Retrieve data from the
current visit

Select -All Visits- in the
visits field.

In this scenario the variable value will be
retrieved from the form in the current visit
where rule is being run. This option only
allows the rule to refer to forms in the same
visit as the target form.

Chapter 2
Create rules using the rule editor

2-4

Table 2-1 (Cont.) Variable set up for different use cases

Use case Set up Behavior

Retrieve data from a
specific visit

Select the specific visit in the
visits field. For example the
Screening visit.

If you select a specific visit,the variable data
will be retrieved from the form in the
specified visit, in this case the Screening
visit, for every visit where the rule is
executed.

Retrieve data from a
form that is not in the
current visit

Select -Any Visit-in the
visits field.

In this scenario the variable value will be
retrieved from a form that is not present in
the same visit where the rule is being
created. This type of variable can only be
used in conjunction with getValues() helper
function.

Retrieve visit date data
as a variable

Select Visit Date as both
form and question.

A visit's date is considered a separate form
and is included in all visits. Because of this,
rules that are configured with the visit date
field as their target will run against all
subject visits unless the rule logic dictates
differently.

Caution:

Visit Date should only be used as
a variable in a rule or as a rule's
target when required.
This is because Visit Date is a
system item in its own form (not
created by a study designer), and
when used as a variable or a
target, the system can take
longer than usual to run rules.
• If you need to create a

custom rule to compare a
Visit Date to another form
question, the form question
should be the target rather
than the Visit Date.
For example, you may need
to create a custom rule that
checks that the Date of
Informed Consent is less
than or equal to the Visit
Date. Here, the Date of
Informed Consent question
would be the target.

• Visit Date should only be
used as a variable to trigger
a calculation rule when no
other form questions can be
used as the trigger.

For each variable you want to create, repeat the steps above as needed.

• Create a rule for a calculated value

• Create a rule for an automated query

Chapter 2
Create rules using the rule editor

2-5

• Create a rule to send an email notification

Create a rule for a calculated value
You can create a rule that enables the system to automatically calculate a value in a form. This
allows you to automatically calculate certain values based on manually entered form data.
reducing calculation errors and simplifying forms.

Want to see how to perform this task? Watch the video below.

Video

You can also create rules that raise automatic queries or send an e-mail notification. See:

• Create a rule for an automated query

• Create a rule to send an email notification

You must have a study version in the Testing container that includes the required elements.
You access the Rules interface from a specific study version and site as described in Access
the rules interface.

1. Navigate to your desired study in Testing mode and select a site (if you have access to
multiple sites).

2. In the table, locate and click the visit card that you want to edit.

3. On the left, click the form for which you want to create the rule.

4. Select the question that should contain a rule and where the calculated value should
display.

5. On the right, expand the Rules pane, and click Add Rules.

6. In the Rule editor complete the following fields. Then click Next.

Field Description

Rule Name Enter a name for your rule. Each name must be unique within a study
and its number of characters should not exceed 512.

Description Enter a short description of your rule that doesn't exceed 4000
characters.

This field isn't mandatory. However, adding a description can help
you distinguish between each rule and its purpose in a study. This is
helpful when you want to reuse a rule.

Unblock Form Turn this toggle on if you want to allow site users to edit and save
forms without being blocked while the rule is running.

Note:

Complex rules take more time to run. Site users can still
enter values and save the form while the rule is running.
However, form updates generated by complex rules can be
delayed and may only appear after a page refresh.

7. In the Variable section, Define rule variables.

8. In the Expression section, enter the JavaScript expression that will be evaluated to a value.

Chapter 2
Create rules using the rule editor

2-6

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:29043

For example, to calculate BMI:

return weight/(height*height);

Note:

By default, the rule will run against every visit in the study that contains the form
and in all study versions.

• To limit which study version the rule is run against, use the
isStudyVersion() helper function.

• If you need your rule to apply and be executed only against an specific visit,
you can use the getCurrentVisitPropertyValue (Control) helper function.

Tip:

A predictive text feature is available as you type, with available Subject attributes,
rule helper functions, and more. See Use predictive text to write rules.

9. From the Action drop-down, choose Calculate Value.

This allows the system to automatically calculate a value and populate a read-only item
with the result. You must also

Note:

If the rule expression contains syntax errors the Rule Editor marks them for you
to correct.

10. Select the Answer Type from nthe dropdown:

• Number

• Text

• Choice

11. If your answer type is Number, select the Data Format for the calculated value.

For example, you can calculate the Body Mass Index (BMI) based on a subject's height
and weight and set the format to one decimal point as "1.0".

12. Click Save.

Your rule is now created and in Draft status.
To make your rule available in production. You must test, approve, and publish your rule. Rules
are study version independent and will apply in every mode once they reach the Published
state.

If you want to delete this rule and start over, click the menu icon (), select Delete.

For examples, and more information on developing custom rules, see:

• Rule statuses and lifecycle

• Test and approve a rule

Chapter 2
Create rules using the rule editor

2-7

• Publish a single rule

• Publish multiple rules at the form level

• Publish multiple rules at the study level

• Rules helper function reference

• Rules examples

Create a rule for an automated query
You can create a rule that generates an automated query if the value entered by the site does
not meet the acceptance criteria defined by the rule logic. The query message lets users know
they should verify their entry and correct any errors.

Note:

If the rule to create automated queries is published for all data, all published rules will
be re-run against all data in the study. Meaning that all queries in that study that were
previously closed by an user without data update, will be re-opened.
To avoid this, make sure you publish the rule for future data only. For more
information see Publish a single rule.

If a rule that triggers an assigned query is updated to add a new role in the assignment list,
then this update will only become available when a new query is created. Existing open
queries will not be impacted and they will not become assigned to the new role you add in the
assignment list. If a query is closed and re-opened, that query becomes visible to the newly
added roles.

You can also create a rule that calculates a value for use in a form or sends an e-mail
notification. See:

• Create a rule for a calculated value

• Create a rule to send an email notification

You must have a study version in the Testing container that includes the required elements.
You access the Rules interface from a specific study version and site as described in Access
the rules interface.

1. Navigate to your desired study in Testing mode and select a site (if you have access to
multiple sites).

2. In the table, locate and click the visit card that you want to edit.

3. On the left, click the form for which you want to create the rule.

4. Select the question that should contain the rule and to which the query will be raised upon
if applicable.

5. On the right, expand the Rules pane, and click Add Rules.

6. In the Rule editor complete the following fields. Then click Next.

Field Description

Rule Name Enter a name for your rule. Each name must be unique within a study
and its number of characters should not exceed 512.

Chapter 2
Create rules using the rule editor

2-8

Field Description

Description Enter a short description of your rule that doesn't exceed 4000
characters.

This field isn't mandatory. However, adding a description can help
you distinguish between each rule and its purpose in a study. This is
helpful when you want to reuse a rule.

Unblock Form Turn this toggle on if you want to allow site users to edit and save
forms without being blocked while the rule is running.

Note:

Complex rules take more time to run. Site users can still
enter values and save the form while the rule is running.
However, form updates generated by complex rules can be
delayed and may only appear after a page refresh.

7. In the Variable section, Define rule variables.

8. In the Expression section, enter the JavaScript expression that will be evaluated to raise a
query.

For example:

if (diastolic>systolic){
 return false; //query is raised when return false condition is
met
}
else{
 return true;
}

Note:

• If the action item is dynamic the rule expression should include logic to
ensure the item is visible before the query is triggered.

• By default, the rule will run against every visit in the study that contains the
form and in all study versions.

– To limit which study version the rule is run against, use the
isStudyVersion() helper function.

– If you need your rule to apply and be executed only against an specific
visit, you can use the getCurrentVisitPropertyValue (Control) helper
function.

Tip:

A predictive text feature is available as you type, with available Subject attributes,
rule helper functions, and more. See Use predictive text to write rules.

Chapter 2
Create rules using the rule editor

2-9

9. From the Action drop-down select the query type you want.
Option Description

Create Query Select this option to automatically generate
a query each time the value returned by the
rule expression is False.

Create Assigned Query Select this option to assign the query to a
specific study role. For this option, you must
click the field displayed and select one or
more study roles from the roles drop-down
list. The query will be assigned to the
selected roles only.

Note:

The Roles drop-down list contains
only the study roles that have
been created in the study. The
template study roles are not
included.

10. Enter a query message in the appropriate text-box.

Both query types require you to add a query message.

11. Click Save.

Your rule is now created and in Draft status.
To make your rule available in production. You must test, approve, and publish your rule. Rules
are study version independent and will apply in every mode once they reach the Published
state.

If you want to delete this rule and start over, click the menu icon (), select Delete.

For examples, and more information on developing custom rules, see:

• Rule statuses and lifecycle

• Test and approve a rule

• Publish a single rule

• Publish multiple rules at the form level

• Publish multiple rules at the study level

• Rules helper function reference

• Rules examples

Create a rule to send an email notification
You can notify designated team members by creating a rule that sends an automatic email
notification when specific criteria is met. The usual steps for creating and managing custom
rules still apply.

You can also create a rule that calculates a value for use in a form or generates an automated
query. See:

Chapter 2
Create rules using the rule editor

2-10

• Create a rule for a calculated value

• Create a rule for an automated query

Caution:

Make sure you do not include any personally identifiable information (PII) data in the
body of your email notification.

Note:

In Draft mode, study designers can additionally create a rule to send notifications
upon data entries and response changes. Reach out to your study design team or
see Define a Send Notification rule.

You must have a study version in the Testing container that includes the required elements.
You access the Rules interface from a specific study version and site as described in Access
the rules interface.

To create a rule to send an automatic email notification:

1. Navigate to your desired study in Testing mode and select a site (if you have access to
multiple sites).

2. In the table, locate and click the visit card that you want to edit.

3. On the left, click the form for which you want to create the rule.

4. Select the question that should contain a rule.

5. On the right, expand the Rules pane, and click Add Rules.

6. In the Rule editor complete the following fields. Then click Next.

Field Description

Rule Name Enter a name for your rule. Each name must be unique within a study
and its number of characters should not exceed 512.

Description Enter a short description of your rule that doesn't exceed 4000
characters.

This field isn't mandatory. However, adding a description can help
you distinguish between each rule and its purpose in a study. This is
helpful when you want to reuse a rule.

Unblock Form Turn this toggle on if you want to allow site users to edit and save
forms without being blocked while the rule is running.

Note:

Complex rules take more time to run. Site users can still
enter values and save the form while the rule is running.
However, form updates generated by complex rules can be
delayed and may only appear after a page refresh.

7. In the Variable section, Define rule variables.

Chapter 2
Create rules using the rule editor

2-11

8. In the Expression section, enter the JavaScript expression that will be evaluated to send a
notification.

Note:

By default, the rule will run against every visit in the study that contains the form
and in all study versions.

• To limit which study version the rule is run against, use the
isStudyVersion() helper function.

• If you need your rule to apply and be executed only against an specific visit,
you can use the getCurrentVisitPropertyValue (Control) helper function.

Tip:

A predictive text feature is available as you type, with available Subject attributes,
rule helper functions, and more. See Use predictive text to write rules.

9. From the Action drop-down, select Send Notification.

10. In the Subject Line field, write a subject for your notification email.

11. Type the email addresses you want to send this notification to in the text box underneath
the Action drop-down.

12. To test the email notification, type the email addresses you want to send the notification to
in the appropriate text box for testing email addresses.

Note:

Any email addresses will receive a notification when the rule is generated either
in Testing or Production mode.

13. Write the notification message you want the users to receive.

Notification details will always be included in the email below the notification message.

14. Click Save.

To make your rule available in production. You must test, approve, and publish your rule. Rules
are study version independent and will apply in every mode once they reach the Published
state.

If you want to delete this rule and start over, click the menu icon (), select Delete.

For examples, and more information on developing custom rules, see:

• Rule statuses and lifecycle

• Test and approve a rule

• Publish a single rule

• Publish multiple rules at the form level

• Publish multiple rules at the study level

Chapter 2
Create rules using the rule editor

2-12

• Rules helper function reference

• Rules examples

Use predictive text to write rules
Use predictive text to add suggested variable names, basic JavaScript syntax, Subject
attributes and rule helper functions to your rule expression.

When you write rule expressions, a predictive text feature is available as you type, listing
available Subject attributes and rule helper functions with their descriptions. This feature also
suggests variable names and some standard JavaScript syntax, when applicable.

Predictive text is only available in the expression text box of the rule editor, when creating
rules. See Create rules using the rule editor.

1. With the Rule Editor open, start typing in the Expression text box.

For any string you enter, you will get a list of releted options.

2. Select a suggestion from the list, either using the mouse or the arrow keys on your
keyboard.

Tip:

A short description is available as you hover over a list item. To see the
expanded description, including parameters description and return value details,

if applicable, click on the right arrow icon ()

or use the right arrow key, then press the down arrow key on your keyboard.

Selecting an item from the list adds it to your expression, and for rule helper functions it
includes its parameters as placeholders for you to complete.
For examples, and more information on developing custom rules, see:

• Create a rule for a calculated value

• Create a rule for an automated query

• Create a rule to send an email notification

• The Subject Object

• Rules helper function reference

• Rules examples

Debug a rule
Rule designers can debug rules by using logMsg() statements to obtain information regarding
the rule logic and make sure it works as desired.

The Debug functionality is only available in Testing mode. You must have a study version in the
Testing container that includes the required elements. You access the Rules interface from a
specific study version and site as described in Access the rules interface.

Chapter 2
Create rules using the rule editor

2-13

Note:

Before you can debug a rule, test data must have been entered for the rule. The
Debug button runs the rule against data entered for the subject for which the rule was
accessed, this includes relevant data entered in other visits.

1. Navigate to your desired study in Testing mode and select a site.

2. In the table, locate and click the visit card that you want to edit.

3. On the left side of the visit window, click the form containing the rule you want to work with.

4. Select a question and expand the Rules pane on the right to view the rules it contains.

Tip:

When you click on any question you can activate View all Rules in this form
option to get a list of all the rules added to any question in that form

5. Open the Rule Editor:

• To edit an existing rule: For the given rule click on the menu icon () then select
Edit.

• To create a new rule: See Create rules using the rule editor.

6. Add log statements where needed.

For more information on how to use the log helper function properly see logMsg().

Tip:

A predictive text feature is available as you type, with descriptions of this and all
other rule helper functions. This allows you to select an existing function from the
list and add it to your expression, including parameters as placeholders for you to
complete.
Predictive text also suggests variable names and some standard JavaScript
syntax.

7. Click Debug.

Clicking Debug automatically saves changes to the JavaScript expression. All rule saving
requirements must be fulfilled.

Note:

Any compilation error or missing requirement will not allow the debug process to
complete.

Chapter 2
Create rules using the rule editor

2-14

The log window appears on the right in the Rule editor.

Rule runs against data of the selected subject and outputs the calls made to the logMsg()
helper function within the rule and for all instances. This means that, if the rule belongs to a
form in multiple visits or a question in repeating sections, the rule is analyzed for all impacted
visits and repeating sections. The output from each rule instance is listed in the log window.

If any exception is encountered, the stack trace details and error messages are displayed in
the log window.

Review the log messages and make any necessary changes to the rule expression. Add
additional log statements as required and repeat this process until the rule's path of execution
is as expected. Then Save your changes and exit the rule editor.

Tip:

Since the logMsg() helper function only runs in debug mode, there is no need to
remove the calls before publishing the rule.

After saving, you must test rule performance to be as expected. To make your rule available in
Production, you must test, approve, and publish your rule.

For examples, and more information on developing custom rules, see:

• Rule statuses and lifecycle

• Prepare your rule for testing and approval

• Test and approve a rule

• Publish a single rule

• Publish multiple rules at the form level

• Publish multiple rules at the study level

• Rules helper function reference

Chapter 2
Create rules using the rule editor

2-15

• Rules examples

Prepare your rule for testing and approval
Your rule must be moved through each status in sequence and can be sent back for rework if
later testing reveals an issue. As a rule designer, you should test your rule in Draft mode
before moving it to UAT. This can help you minimize any future rework.

Before your rule can be promoted to UAT and Approved, a rule must contain a valid expression
and at least one action. The validation in the Rules editor can help you ensure your rules are
valid. For information on creating your rules, see:

• Create a rule for a calculated value

• Create a rule for an automated query

• Create a rule to send an email notification

For information on accessing the rules interface, see Access the rules interface.

1. Navigate to your desired study and select a site (if you have access to multiple sites).

2. In the table, locate and click the visit card that you want to edit.

3. On the left side of the visit window, click the form for which you want to test a rule.

4. Test your rule.

Your rule should be in Draft at this time.

a. Enter a value for the question containing the rule.

b. Click Save.

The rule will run against the value. You should evaluate the action taken by the rule and
confirm that it is correct.

5. Repeat the testing steps for all possible scenarios and values and confirm your results.

6. Once you have confirmed that your rule is functioning as expected, you can move it to
UAT.

a. On the Rules pane, click the rule status icon next to the rule name to show the status
slider.

b. Move the slider from Draft to UAT.

Chapter 2
Prepare your rule for testing and approval

2-16

Figure 2-2 The rule status slider when the rule is in UAT

If your rule is not functioning as expected, do not move it to UAT. See the following topics for
examples and more information on developing rules:

• Debug a rule

• Rules helper function reference

• Rules examples

Test and approve a rule
You need to test and approve a rule before publishing it to Production. Your testing should be
done before moving from Draft mode, and again before moving from UAT. This helps ensure
that your rule is functioning as expected before moving to production.

Want to see how to perform this task? Watch the video below.

Video

Do I have to do anything before performing this task? Before you begin your testing, work
with your user administrator to make sure you're assigned the Rule Tester role and make sure
you have prepared the rule for testing and approval (see Prepare your rule for testing and
approval).

1. Navigate to your desired study and select a site (if you have access to multiple sites).

2. In the table, locate and click the visit card that you want to edit.

3. On the left side of the visit window, click the form for which you want to test a rule.

Your rule should be in UAT at this time.

4. Enter a value for the question containing the rule.

5. Click Save.

The rule will run against the value. You should evaluate the action taken by the rule and
confirm that it is correct.

6. Repeat the testing steps for all possible scenarios and values and confirm your results.

7. If the rule generates the expected result for all scenarios:

Chapter 2
Test and approve a rule

2-17

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:29044

a. On the Rules pane, next to the rule's name, click the rule status icon to show the
status slider.

b. Move the slider from UAT to Approved.

Tip:

Make sure you move a Form or a Question in the the Approved container.
The rule will show only in the Design and Testing tabs. If you omit to move
them, the Production and Training tabs will show the forms and questions
incorrect as N/A.

Note:

Click the menu icon () and select View to see a rule's details in read-only
mode.

Figure 2-3 Figure 3-2 The rule status slider when a rule is approved

Note:

You can move the slider back to Draft at anytime.

If the rule doesn't generate the expected result, return the status slider to Draft and notify the
rule designer that rework is needed.

If the rule works as intended, you can move on to publishing. See:

• Publish a single rule

• Publish multiple rules at the form level

• Publish multiple rules at the study level

Chapter 2
Test and approve a rule

2-18

Publish rules
Publish a rule once it is approved. A rule that reaches the Published status becomes active in
all modes, regardless of the study version. You can publish a single rule or multiple rules at
either form or study level.

• Publish a single rule
Publish a rule to make it available in every mode. You can publish rules one at a time using
the rules slider in the Rules interface.

• Publish multiple rules at the form level
Publish rules to make them available in every mode. The rules interface gives you the
ability to publish all of the approved rules included in a form at the same time. This bulk
approval functionality saves you time when you have a number of rules that need to be
published.

• Publish multiple rules at the study level
Publish rules to make them available in every mode. The rules interface gives you the
ability to publish all approved rules within a study at the same time. This bulk approval
functionality saves you time when you have a number of rules that need to be published.

Publish a single rule
Publish a rule to make it available in every mode. You can publish rules one at a time using the
rules slider in the Rules interface.

Note:

Rules are study version independent and will apply in every mode once they reach
the Published state.

You can also publish multiple rules at the same time. See Publish multiple rules at the form
level or Publish multiple rules at the study level. Publishing a single rule or publishing multiple
rules at the form level allows you more control over how newly published rules are run.
Publishing multiple rules at the study level may run rules against existing data and for newly
entered data, too.

Work with your user administrator to make sure you're assigned the Rule Publisher role.
Before publishing a rule, it must be in the Approved state. See Test and approve a rule.

1. Navigate to your desired study and select a site (if you have access to multiple sites).

2. In the table, locate and click the visit card that you want to edit.

3. On the left side of the visit window, click the form that includes the rules that you want to
publish.

4. On the Rules pane, select the rule you want to publish.

5. Click the rule status icon to open the status slider.

6. Click the circle icon to move the rule to Publish.

Chapter 2
Publish rules

2-19

Note:

Once you move the rule to Publish you can't manually move it back to a
previous status in the rules status slider.

Figure 2-4 Figure 3-4 The rule status slider when publishing a rule

7. In the confirmation window, select whether you want to run the rule On Future Data only
or On All Data:

• On All Data: runs the rule on exisiting subjects and visits, as well as those entered in
the future.

• On Future Data: runs the rule only on subjects and visits entered from the point
forward the rule is published.

Once a rule is published, it cannot be retracted. The only way to change a published rule is to
edit it and re-publish the new version.

If you publish a rule by mistake, see Disable a rule.

Publish multiple rules at the form level
Publish rules to make them available in every mode. The rules interface gives you the ability to
publish all of the approved rules included in a form at the same time. This bulk approval
functionality saves you time when you have a number of rules that need to be published.

Note:

Rules are study version independent and will apply in every mode once they reach
the Published state.

Want to see how to perform this task? Watch the video below.

Video

Chapter 2
Publish rules

2-20

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:29045

You can also publish a single rule or multiple rules at the same time at the study level. See
Publish a single rule or Publish multiple rules at the study level.

Work with your user administrator to make sure you're assigned the Rule Publisher role.
Before publishing a rule, it must be in the Approved state. See Test and approve a rule.

1. Navigate to your desired study and select a site (if you have access to multiple sites).

2. In the table, locate and click the visit card that you want to edit.

3. On the left side of the visit window, click the form that includes the rules that you want to
publish.

4. At the top of the Rules pane, click the All Rules in the Form toggle.

You can now view all rules included in the form and their associated statuses.

Figure 2-5 How to show all rules in a form

Chapter 2
Publish rules

2-21

5. On the Rules pane, click the View all Rules in the Form toggle button.

6. Click Publish All Approved Rules.

Figure 2-6 Figure 3-5. Publish all approved rules button

Once a rule is published, it cannot be retracted. The only way to change a published rule is to
edit it and re-publish the new version.

If you publish a rule by mistake, see Disable a rule.

Publish multiple rules at the study level
Publish rules to make them available in every mode. The rules interface gives you the ability to
publish all approved rules within a study at the same time. This bulk approval functionality
saves you time when you have a number of rules that need to be published.

Rules are study version independent and will apply in every mode once they reach the
Published state.

Note:

When multiple published rules run or re-run at a study level, they run on all subject
data, both existing and new.

You can also publish a single rule or multiple rules at the same time at the form level. See
Publish a single rule or Publish multiple rules at the form level.

Work with your user administrator to make sure you're assigned the Rule Publisher role.
Before publishing a rule, it must be in the Approved state. See Test and approve a rule.

1. Select the Home tab.

2. On the Home page, click the pencil button () for the study you are working on.

Chapter 2
Publish rules

2-22

3. Drag the study from the Testing container to Approved.

All rules with an Approved status are published in Production.

Note:

You can publish rules in Production by following these steps only if the study is
already in the Approved container. If not, you need to move the study from Testing to
Approved to publish all rules in Production.

Once a rule is published, it cannot be retracted. The only way to change a published rule is to
edit it and re-publish the new version.

If you publish a rule by mistake, see Disable a rule.

Modify and republish a published rule
You can modify a published rule and re-publish it as needed using the same process you used
to create the original rule. If you modify a published rule in Testing mode, changes won't
appear in Production mode until you update that rule's status to Published.

Note:

Rules are study version independent and will apply in every mode once they reach
the Published state.

Want to see how to perform this task? Watch the video below.

Video

As a rules designer you can edit a rule in the same rules interface you used to create the rule.

Modify the study version in the Testing container. For information on accessing the rules
interface, see Access the rules interface.

1. Navigate to your desired study and select a site (if you have access to multiple sites).

2. In the table, locate and click the visit card that you want to edit.

3. On the left side of the visit window, click the form for which you want to create the rule.

4. Select the question that should contain a rule.

5. On the right, expand the Rules pane, and click the menu icon ().

6. Select Edit.

7. In the Rule editor, make your changes.

You can:

• Create a rule for a calculated value

• Create a rule for an automated query

• Create a rule to send an email notification

8. Click Save.

Chapter 2
Modify and republish a published rule

2-23

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:29045

The rule's status is updated to Draft. The rule currently published in Production isn't
impacted by this change.

Note:

If you want to start over, you can always delete a rule with a Draft status.

To make your updated rule available in Production, you must test, approve, and publish the
newly modified rule. However, as a Rule Designer, when you publish a modified rule, a
confirmation message appears asking you to choose if you want to execute the rule only on
future data or on all data including data that was already collected. When you click On All
Data, the rule re-runs for all subjects and visits for which it has previously run, as well as for
data that is collected from that moment forward. For example, if the rule is a calculation for
Body Mass Index (BMI) and has previously calculated the value for two subjects, then the rule
will re-run and re-calculate BMI for these two subjects. The rule will also run for data collected
in the future. When you click On Future Data Only, the rule runs only on data entered from
that point forward. It is not re-run on previously collected data.

Republished rules overwrite existing rules for all study versions currently running in Production.

See:

• Prepare your rule for testing and approval

• Test and approve a rule

• Publish a single rule

• Publish multiple rules at the form level

• Publish multiple rules at the study level

Disable a rule
If you published a rule in error, users with the appropriate permission can disable that rule so it
stops running in all study versions for a given mode.

Note:

When you disable a rule, it becomes inactive only in the mode where you disabled it.
For instance, if you disable a rule in Production mode, you deactivate it only in
Production but you can still test it in Testing mode.

On the Rule Management page, you can view all your study's custom rules by mode. From that
interface you can also disable (and enable) rules, individually and in bulk, for any mode.

• See Manage rules in Testing mode from the Rule Management page to view and manage
rules under development and already published in Testing mode.

• See Manage published rules from the Rule Management page to view and manage active
rules in Production and Training modes.

1. Access your study in a specific mode.

2. If you have access to multiple sites for the study, select a site from the Site drop-down.

3. In the table, locate and click the visit card that you want to edit.

Chapter 2
Disable a rule

2-24

4. Select the question that contains the rule that you want to disable.

5. On the right-side panel, expand the Rules section.

6. Click the menu icon for the rule that you want to disable and select Disable.

The rule is now disabled in all study versions running for the given mode.
To disable a rule in any other mode, access you study in that specific mode and repeat the
steps above.

Access the Rule Management page
Access the Rule Management page for a paticular study and manage all custom rules in
different modes.

Once a rule is published, there are three versions of the rule (Testing, Training, Production)
and all can be managed separately.

• See Manage rules in Testing mode from the Rule Management page to view and manage
rules under development and already published in Testing mode.

• See Manage published rules from the Rule Management page to view and manage active
rules in Production and Training modes.

Note:

Access to the Rule Management page and the corresponding tabs is based on your
permissions assigned on each mode. Reach out to you Oracle Project Manager or
user administrator to make sure you have the appropriate permissions.

1. On the Home page, locate your study and click the pencil button ().

2. Click Rule Management.

3. On the new screen, navigate to the appropriate tab.

• Go to the Design & Testing tab to manage rules in Testing mode. This includes rules
in all states (Draft, UAT, Approved, Published and Invalid).

• Go to the Production and Training tab to manage rules in Production and Training
modes.

Manage rules in Testing mode from the Rule Management page
View and manage rules that are under development and already published in Testing mode.
This includes rules in all states: Draft, UAT, Approved, Published, and Invalid .

Once a rule is published, there are three versions of the rule (Testing, Training, Production)
and all can be managed separately.

All rules in Testing mode are listed with the following details:

• Rule name and description.

• Target form.

• Target question.

• Rule state.

Chapter 2
Access the Rule Management page

2-25

• If rule is enabled or disabled in Testing mode.

• If, when published, rule will run on all data or future data only.

Note:

Only applies to the version of the rule in Testing mode.

• Last modified date and user.

Tip:

If you can't see all columns, make sure you scroll all the way to the right.

See Manage published rules from the Rule Management page to view and manage active
rules in Production and Training modes.

1. Access the Rule Management page.

2. Make sure you are on the Design & Testing tab.

3. Choose how to view your rules:

By default, rules are ordered by target form and question.

• To order by a different attribute, hover over the given column header and click the
arrow () to the right of the column name.

• To search for a specific rule, type its name in the search bar and press Enter on your
keyboard..

4. To manage rules in Testing mode you have the following options:
Option Description

Enable/Disable a rule a. Locate the rule.

b. Click Enabled or Disabled in the
Testing Mode column. A blue
background indicates the current
status.

Enable/Disable multiple rules All rules are enabled by default.

a. Use the checkbox to the left of each
rule to select all the rules you want to
enable or disable.

b. Click the Enable/Disable drop-down.

c. Select Enable or Disable accordingly.

Update on what data the rule will run
when published

Set to All Data by default.

a. Locate the rule.

b. Click All Data or Future Data in the
When published, Run on column. A
blue background indicates the current
selection.

Chapter 2
Manage rules in Testing mode from the Rule Management page

2-26

Option Description

Note:

This setting only applies when the
rule gets published by moving the
study version (where the rule
exists in an approved state) from
Testing to Approved container. If a
rule gets published using the
slider in testing mode, the
selection made then to run either
on All Data or Future Data Only
controls the rule's behavior in
active mode, regardless of the
configuration set in the Rule
Management page. Once a rule is
published and active, modifying
this setting only applies to the
version of the rule in the Testing
mode.

View rule in the Rule Editor a. Locate the rule.

b. Click the Action drop-down to the right.

c. Select View Rule.

Locate a published rule on the
Production & Training tab

Only available for published rules.

a. Locate the rule.

b. Click the Action drop-down to the right.

c. Select Find in Production & Training.

Manage published rules from the Rule Management page
View and manage all published custom rules within a study, in either Production or Training
mode.

Once a rule is published, there are three versions of the rule (Testing, Training, Production)
and all can be managed separately.

All active rules (in Production and Training modes) are listed with the following details:

• Rule name and description.

• Target form.

• Target question.

• If rule is enabled or disabled in Production mode.

• If rule is enabled or disabled in Training mode.

• Last published date and user.

Chapter 2
Manage published rules from the Rule Management page

2-27

Note:

This field displays the details of when the rule became active in poduction, this is
when study version with the rule in approved or published state got moved to the
Approved container.

Tip:

If you can't see all columns, make sure you scroll all the way to the right.

See Manage rules in Testing mode from the Rule Management page to view and manage rules
under development and already published in Testing mode.

1. Access the Rule Management page.

2. Navigate to the Production & Training tab.

3. Choose how to view your rules:

By default, rules are ordered by target form and question.

• To order by a different attribute, hover over the given column header and click the
arrow () to the right of the column name.

• To search for a specific rule, type its name in the search bar and press Enter on your
keyboard..

4. To manage rules in Production and training modes you have the following options:
Option Description

Enable/Disable a rule for a given mode a. Locate the rule.

b. Click Enabled or Disabled in the
respective column:

• Production Mode

• Training Mode

A blue background indicates the current
status.

Enable/Disable multiple rules a. Use the checkbox to the left of each
rule to select all the rules you want to
enable or disable.

b. Click the Enable/Disable drop-down.

c. Select Enable or Disable accordingly.

d. Select on which mode do you want to
apply the changes:

• Production & Training Mode

• Production Mode

• Training Mode

View rule in the Rule Editor a. Locate the rule.

Chapter 2
Manage published rules from the Rule Management page

2-28

Option Description

b. Click the Action drop-down to the right.

c. Select View Rule.

Locate a published rule on the Design &
Testing tab

a. Locate the rule.

b. Click the Action drop-down to the right.

c. Select Find in Design & Testing.

Chapter 2
Manage published rules from the Rule Management page

2-29

3
Rules helper function reference

• General expressions
Use basic JavaScript expressions in your rules to perform a variety of tasks and
validations.

• Date and time functions
Compare and manipulate date and time values.

• Repeating form functions
Find or evaluate a value in a repeating form.

• Two-section form functions
Find or evaluate a value in a two-section form.

• Control the behavior of a rule
Control how a rule behaves, whether it relates to a study's version, visits in the study or the
JavaScript expression logic.

• Detect missing data
Use this example of a custom Javascript rule when you want to find missing data.

• Multiple choice question functions
Modify a value in a multiple-choice type of question.

• Multiple visit schedules and cycle visit functions
Control data collection on multiple visit schedules and cycles visits.

• Formatting and other functions
Format messages and queries and perform other useful operations.

General expressions
Use basic JavaScript expressions in your rules to perform a variety of tasks and validations.

• Comparison
Use this expression when you want to compare two variables and generate a query when
the result returns false.

• Conversion
Automatically convert values such as Fahrenheit into Celsius or Celsius into Fahreinheit
degrees.

• Switch statement
Use this expression when you want to test multiple conditions. For instance, when you
want to calculate the number of kits to be dispensed based on the weight of the subject.

• Choice
Search for one of the answers in a choice question.

• Compare dates with different formats
Compare two dates with different formats. This can help confirm or resolve date
inconsistencies.

3-1

• Range check
Ensure that values don't exceed a specific range. For example, when you want to check
that the temperature is between 97.8°F to 99.1°F.

Comparison
Use this expression when you want to compare two variables and generate a query when the
result returns false.

Note:

You can use any valid JavaScript comparison operators. The example shown is just
for illustration purposes.

if (a>b){
 return false;
}

Conversion
Automatically convert values such as Fahrenheit into Celsius or Celsius into Fahreinheit
degrees.

Example 3-1 Celsius to Fahrenheit conversion

//given temperature in C, convert to F and return converted value

var fahrenheit;
fahrenheit = (celsius * (9/5)) + 32;
return Number(fahrenheit);

Example 3-2 Celsius to Fahrenheit conversion (Simplified) using inline calculation

//given temperature in C, returning converted value to F using inline
calculation

return (tempc * (9/5)) + 32;

Example 3-3 Fahrenheit to Celsius conversion using inline calculation

//given temperature in F, returning converted value to C using inline
calculation

return (tempf - 32) * 5/9);

Chapter 3
General expressions

3-2

Switch statement
Use this expression when you want to test multiple conditions. For instance, when you want to
calculate the number of kits to be dispensed based on the weight of the subject.

var kit;
 switch (true) {
 case weight > 25: kit = 5; break;
 case weight > 20: kit = 4; break;
 case weight > 15: kit = 3; break;
 case weight > 10: kit = 2; break;
 case weight >= 1: kit = 1; break;
 }
return Number(kit);

Choice
Search for one of the answers in a choice question.

Note:

You can also consider the getStringFromChoice() helper function as an alternative,
depending on your use case.

This example illustrates how to view female subjects that haven't done a pregnancy test.

if ((Gender.search('Female') > 0) && (Test.search('Not Done') > 0)){
 return false;
}

Note:

The .search function can only be used with a string. If you want to use this function
with an object, you must first convert the object to a string.

Compare dates with different formats
Compare two dates with different formats. This can help confirm or resolve date
inconsistencies.

Note:

There are also several helper functions available for date comparisons. These
functions may reduce your coding effort. For details, see Date and time functions.

Chapter 3
General expressions

3-3

For example, the Date Performed (Date format) on the Physical exam form should be the
same as the Check In date (date and time format) on the Housing form but they are different.
You can create a rule to confirm that the Physical Exam was not done at the same time as the
Check In or resolve the inconsistent dates.

var ci_dt = ci_datetime.getDate() + "-" + (ci_datetime.getMonth() + 1) + "-"
+ ci_datetime.getFullYear();
var pe_dt = pe_date.getDate() + "-" + (pe_date.getMonth() + 1) + "-" +
pe_date.getFullYear();
 if (ci_dt !== pe_dt){
 return false;
}

Range check
Ensure that values don't exceed a specific range. For example, when you want to check that
the temperature is between 97.8°F to 99.1°F.

In this example, we are looking for temperatures outside of a certain range when respiration is
abnormal.

var upper = 99.1;
var lower = 97.8;
if ((temp_res.search('Abnormal') > 0) && (temp_f > lower && temp_f < upper)){
 return false;
}

Date and time functions
Compare and manipulate date and time values.

Note:

For date-related functions, partial dates are not supported except where they are
explicitly mentioned.

• dateDiffInYears()
Calculate the difference between two dates in years. For instance, when you have two
questions of type Date in a form.

• dateDiffInDays()
Calculate the date difference between two dates measured in days.

• timeDiffInHours()
Calculate the time difference between two date or date/time values in hours.

• timeDiffInMinutes()
Calculate the time difference between two date or date/time values in minutes.

• timeDiffInSeconds()
Calculate the time difference between two date or date/time values in seconds.

• areDatesEqual()
Compare two dates to determine if they are equivalent.

Chapter 3
Date and time functions

3-4

• isDateInRange()
Verify if a date falls within a defined range.

• areDateTimesEqual()
Compare two date or date/time values to determine if they are equivalent.

• isTimeInRange()
Verify if a date or date/time value falls within a defined range.

• addDays()
Add a specific number of days to a date value. For example, when you need to ensure the
Date and Time entered by the user doesn't exceed a specific value.

• addTimeInHours()
Add a specific number of hours to a date or date/time value. For example, when you need
to ensure the Date and Time entered by the user doesn't exceed a specific value.

• addTimeInMinutes()
Add a specific number of minutes to a date or date/time value. For example, when you
need to ensure the Date and Time entered by the user doesn't exceed a specific value.

• getDateDMYFormat()
Return a date or datetime in DD-Mon-YYYY format, including time elements if applicable.
This function supports partial dates.

• getDatesCompareResult()
Compare two dates using a provided operation. This function handles partial dates.

• partialDateDiff()
Find the difference between two dates.

dateDiffInYears()
Calculate the difference between two dates in years. For instance, when you have two
questions of type Date in a form.

The dateDiffInYears() helper function is invoked with toDate and fromDate passed in
as parameters. The function returns a negative or positive number value indicating the
difference between the two dates in years. If the number value returned is a negative or zero
value, toDate is before or the same as fromDate. If the function returns a positive value,
toDate is after fromDate.

Note:

This function is only used to compare variables of type date that do not contain time
elements. When using a date/time type parameter, function considers only date part
and ignores time elements.

You can use the timeDiffInMinutes() helper function to compare two date and time
items.

Syntax

dateDiffInYears(toDate, fromDate)

Chapter 3
Date and time functions

3-5

Note:

You must compare dates that have the same format.

Parameters

toDate
Date value.

fromDate
Date value.

Return value

Difference between the dates in years (number). This number can be positive or negative.

Note:

The order in which parameters are supplied for date helper functions is important; the
resulting return value depends on which date you pass in as the first or second
parameter.

Example 3-4 Difference between two Date items

// Given 2 form questions of type Date (with no time elements) are defined in
the rule as variables:
return dateDiffInYears(dateItem1, dateItem2);

Example 3-5 Difference between two hard-coded dates

var toDate = new Date("March 1, 2020");
var fromDate = new Date("March 1, 2000");
return dateDiffInYears(toDate, fromDate);

// Returns value: 20

Chapter 3
Date and time functions

3-6

dateDiffInDays()
Calculate the date difference between two dates measured in days.

Note:

This function is only used to compare variables of type date that do not contain time
elements and do not include partial dates. When using a date/time type parameter,
function considers only date part and ignores time elements.

You can use the timeDiffInMinutes() helper function to compare two date and time
items.

If the date question contains partial date elements then use the
getDatesCompareResult() helper function.

The dateDiffInDays() helper function is invoked with toDate and fromDate passed in
as parameters. The function returns a negative or positive number value indicating the
difference between the two dates in days.

If the number value returned is a negative or zero value, toDate is before or the same as
fromDate. If the function returns a positive value, toDate is after fromDate.

Syntax

dateDiffInDays(toDate, fromDate)

Parameters

toDate
Date value.

fromDate
Date value.

Return value

Difference between the dates in days (number). This number can be positive or negative.

Note:

The order in which parameters are supplied for date helper functions is important; the
resulting return value depends on which date you pass in as the first or second
parameter.

Example 3-6 Difference between two Date items

// Given 2 form questions of type DateTime are defined in the rule as
variables:
return dateDiffInDays(datetem1, dateItem2);

Chapter 3
Date and time functions

3-7

Example 3-7 Difference between two hard-coded dates

var toDate = new Date("March 1, 2020");
var fromDate = new Date("March 1, 2019");
return dateDiffInDays(toDate, fromDate);

// Returns value: 366 (leap year!)

timeDiffInHours()
Calculate the time difference between two date or date/time values in hours.

Note:

When using date type variables with no time elements, function considers time as
'00:00:00'.

The timeDiffInHours() helper function is invoked with toDate and fromDate passed in
as parameters. The function returns a negative or positive number value indicating the
difference between the two dates in hours. If the number value returned is a negative or zero
value, toDate is before or the same as fromDate. If the function returns a positive value,
toDate is after fromDate.

Syntax

timeDiffInHours(toDate, fromDate)

Parameters

toDate
Future date or date/time value.

fromDate
Starting date or date/time value.

Return value

Difference between the dates or date/times in hours (number). This number can be positive or
negative.

Note:

The order in which parameters are supplied for date helper functions is important; the
resulting return value depends on which date you pass in as the first or second
parameter.

Chapter 3
Date and time functions

3-8

Example 3-8 Difference between two date/time items

// Given 2 form questions of type DateTime are defined in the rule as
variables:
return timeDiffInHours(dateTime1, dateTime2);

Example 3-9 Difference between two hard-coded date/time items

var toDate = new Date("March 1, 2020 13:00:00");
var fromDate = new Date("March 1, 2020 12:00:00");
return timeDiffInHours(toDate, fromDate);

// Returns value: 1

Example 3-10 Difference between 2 time items

var toDate = new Date('01-Jan-0001 ' + ruleTimeItem.getHour() + ':' +
ruleTimeItem.getMinute() + ':' + ruleTimeItem.getSecond());
var fromDate = new Date('01-Jan-0001 ' + ruleTimeItem2.getHour() + ':' +
ruleTimeItem2.getMinute() + ':' + ruleTimeItem2.getSecond());
return timeDiffInHours(toDate, fromDate);

Example 3-11 Difference between two partial date items

var toDate = new Date(ruleTimeItem.getYear() + '-' +
ruleTimeItem.getMonth() + '-' + ruleTimeItem.getDay() + ' ' +
ruleTimeItem.getHour() + ':' + ruleTimeItem.getMinute() + ':' +
ruleTimeItem.getSecond());
var fromDate = new Date(ruleTimeItem.getYear() + '-' +
ruleTimeItem.getMonth() + '-' + ruleTimeItem.getDay() + ' ' +
ruleTimeItem.getHour() + ':' + ruleTimeItem.getMinute() + ':' +
ruleTimeItem.getSecond());
return timeDiffInHours(toDate, fromDate);

timeDiffInMinutes()
Calculate the time difference between two date or date/time values in minutes.

Note:

When using date type variables with no time elements, function considers time as
'00:00:00'.

The timeDiffInMinutes() helper function is invoked with toDate and fromDate passed
in as parameters. The function returns a negative or positive number value indicating the
difference between the two dates in minutes. If the number value returned is a negative or zero
value, toDate is before or the same as fromDate. If the function returns a positive value,
toDate is after fromDate.

Chapter 3
Date and time functions

3-9

Syntax

timeDiffInMinutes(toDate, fromDate)

Parameters

toDate
Future date or date/time value.

fromDate
Starting date or date/time value.

Return value

Difference between the dates or date/times in minutes (number). This number can be positive
or negative.

Note:

The order in which parameters are supplied for date helper functions is important; the
resulting return value depends on which date you pass in as the first or second
parameter.

Example 3-12 Difference between two date/time items

// Given 2 form questions of type DateTime are defined in the rule as
variables:
return timeDiffInMinutes(dateTime1, dateTime2);

Example 3-13 Difference between two hard-coded date/time items

var toDate = new Date("March 1, 2020 12:02:00");
var fromDate = new Date("March 1, 2020 12:00:00");
return timeDiffInMinutes(toDate, fromDate);

// Returns value: 2

Example 3-14 Difference between 2 time items

var toDate = new Date('01-Jan-0001 ' + ruleTimeItem.getHour() + ':' +
ruleTimeItem.getMinute() + ':' + ruleTimeItem.getSecond());
var fromDate = new Date('01-Jan-0001 ' + ruleTimeItem2.getHour() + ':' +
ruleTimeItem2.getMinute() + ':' + ruleTimeItem2.getSecond());
return timeDiffInMinutes(toDate, fromDate);

Example 3-15 Difference between two partial date items

var toDate = new Date(ruleTimeItem.getYear() + '-' +
ruleTimeItem.getMonth() + '-' + ruleTimeItem.getDay() + ' ' +
ruleTimeItem.getHour() + ':' + ruleTimeItem.getMinute() + ':' +

Chapter 3
Date and time functions

3-10

ruleTimeItem.getSecond());
var fromDate = new Date(ruleTimeItem.getYear() + '-' +
ruleTimeItem.getMonth() + '-' + ruleTimeItem.getDay() + ' ' +
ruleTimeItem.getHour() + ':' + ruleTimeItem.getMinute() + ':' +
ruleTimeItem.getSecond());
return timeDiffInMinutes(toDate, fromDate);

timeDiffInSeconds()
Calculate the time difference between two date or date/time values in seconds.

Note:

When using date type variables with no time elements, function considers time as
'00:00:00'.

The timeDiffInSeconds() helper function is invoked with toDate and fromDate passed
in as parameters. The function returns a negative or positive number value indicating the
difference between the two dates in days. If the number value returned is a negative or zero
value, toDate is before or the same as fromDate. If the function returns a positive value,
toDate is after fromDate.

Syntax

timeDiffInSeconds(toDate, fromDate)

Parameters

toDate
Future date or date/time value.

fromDate
Starting date or date/time value.

Return value

Difference between the dates or date/times in seconds (number). This number can be positive
or negative.

Note:

The order in which parameters are supplied for date helper functions is important; the
resulting return value depends on which date you pass in as the first or second
parameter.

Example 3-16 Difference between two date/time items

// Given 2 form questions of type DateTime are defined in the rule as
variables:
return timeDiffInSeconds(dateTime1, dateTime2);

Chapter 3
Date and time functions

3-11

Example 3-17 Difference between two hard-coded date/time items

var toDate = new Date("March 1, 2020 12:02:00");
var fromDate = new Date("March 1, 2020 12:00:00");
return timeDiffInSeconds(toDate, fromDate);

// Returns value: 120

Example 3-18 Difference between two time items

var date1 = new Date('01-Jan-0001 ' + ruleTimeItem.getHour() + ':' +
ruleTimeItem.getMinute() + ':' + ruleTimeItem.getSecond());
var date2 = new Date('01-Jan-0001 ' + ruleTimeItem2.getHour() + ':' +
ruleTimeItem2.getMinute() + ':' + ruleTimeItem2.getSecond());
return areDateTimesEqual(date1, date2);

Example 3-19 Compare two partial date items

var date1 = new Date(ruleTimeItem.getYear() + '-' + ruleTimeItem.getMonth()
+ '-' + ruleTimeItem.getDay() + ' ' + ruleTimeItem.getHour() + ':' +
ruleTimeItem.getMinute() + ':' + ruleTimeItem.getSecond());
var date2 = new Date(ruleTimeItem.getYear() + '-' + ruleTimeItem.getMonth()
+ '-' + ruleTimeItem.getDay() + ' ' + ruleTimeItem.getHour() + ':' +
ruleTimeItem.getMinute() + ':' + ruleTimeItem.getSecond());
return areDateTimesEqual(date1, date2);

areDatesEqual()
Compare two dates to determine if they are equivalent.

Note:

This function is used to compare variables of type date that do not contain time
elements. When using a date/time type parameter, function considers only date part
and ignores time elements.

You can use the areDateTimesEqual() helper function to compare two date and time
items.

Syntax

areDatesEqual(date1, date2)

Parameters

date1
Date value.

date2
Date value.

Chapter 3
Date and time functions

3-12

Return value

True, if dates are equal; false, if they are not.

Example 3-20 Compare two Date items

// Given 2 form questions of type DateTime are defined in the rule as
variables
if (areDatesEqual(date1, date2)) {
 return false;
} else {
 return true;
}

// Triggers a query if this is a query rule and dates are equal.

Example 3-21 Compare two hard-coded Date items

var date1 = new Date("March 20, 2020");
var date2 = new Date("March 1, 2020");
if (!areDatesEqual(date1, date2)) {
 return false;
} else {
 return true;
}

// Triggers a query if this is a query rule and dates are NOT equal.

isDateInRange()
Verify if a date falls within a defined range.

Note:

This function is used to compare variables of type date that do not contain time
elements. When using a date/time type parameter, function considers only date part
and ignores time elements.

You can use the isTimeInRange() helper function to compare two date and time
items.

Syntax

isDateInRange(dateToCheck, dateFrom, dateTo, inclusive)

Parameters

dateToCheck
Date value to check.

Chapter 3
Date and time functions

3-13

dateFrom
Date value range start.

dateTo
Date value range end.

inclusive
String: both, from, to, or no.

• both: include dateTo and dateFrom dates in the range check (dateFrom <=
dateToCheck && dateToCheck <= dateTo)

• from: include only dateFrom in the range check (dateFrom <= dateToCheck &&
dateToCheck < dateTo)

• to: include only dateTo in the range check (dateFrom < dateToCheck && dateToCheck
<= dateTo)

• no: don't include dateTo or dateFrom in the range check (dateFrom < dateToCheck &&
dateToCheck < dateTo)

Return value

true, if date is within range; false, if it is not.

Example 3-22 Check a Date value

// Given 3 form questions of type DateTime are defined in the rule as
variables
if (isDateInRange(dateToCheck, dateFrom, dateTo, "both")) {
 return true;
} else {
 return false;
}

// Triggers query if dateToCheck is not in range (dateFrom <= dateToCheck &&
dateToCheck <= dateTo)

Example 3-23 Compare three hard-coded dates

var dateToCheck = new Date("April 1, 2020");
var dateFrom = new Date("March 1, 2020");
var dateTo = new Date("March 30, 2020");

if (!isDateInRange(dateToCheck, dateFrom, dateTo, "both") {
 return false;
} else {
 return true;
}

//Triggers query since dateToCheck is not in range (dateFrom <= dateToCheck
&& dateToCheck <= dateTo)

Chapter 3
Date and time functions

3-14

areDateTimesEqual()
Compare two date or date/time values to determine if they are equivalent.

Note:

When using date type variables with no time elements, function considers time as
'00:00:00'.

Syntax

areDateTimesEqual(date1, date2)

Parameters

date1
Date or date/time value.

date2
Date or date/time value.

Return value

true, if dates or date/times are equal; false, if they are not.

Example 3-24 Compare two date/time items

// Given 2 form questions of type DateTime are defined in the rule as
variables
if (areDateTimesEqual(date1, date2)) {
 return false;
} else {
 return true;
}

// Triggers query if dates are equal.

Example 3-25 Compare two hard-coded date/time items

var date1 = new Date("March 1, 2020 13:00:00");
var date2 = new Date("March 1, 2020 12:00:00");
if (!areDateTimesEqual(date1, date2)) {
 return false;
} else {
 return true;
}

// Triggers query since dates are not equal.

Chapter 3
Date and time functions

3-15

Example 3-26 Compare two time items

var date1 = new Date('01-Jan-0001 ' + ruleTimeItem.getHour() + ':' +
ruleTimeItem.getMinute() + ':' + ruleTimeItem.getSecond());
var date2 = new Date('01-Jan-0001 ' + ruleTimeItem2.getHour() + ':' +
ruleTimeItem2.getMinute() + ':' + ruleTimeItem2.getSecond());
return areDateTimesEqual(date1, date2);

Example 3-27 Compare two partial date items

var date1 = new Date(ruleTimeItem.getYear() + '-' + ruleTimeItem.getMonth()
+ '-' + ruleTimeItem.getDay() + ' ' + ruleTimeItem.getHour() + ':' +
ruleTimeItem.getMinute() + ':' + ruleTimeItem.getSecond());
var date2 = new Date(ruleTimeItem.getYear() + '-' + ruleTimeItem.getMonth()
+ '-' + ruleTimeItem.getDay() + ' ' + ruleTimeItem.getHour() + ':' +
ruleTimeItem.getMinute() + ':' + ruleTimeItem.getSecond());
return areDateTimesEqual(date1, date2);

isTimeInRange()
Verify if a date or date/time value falls within a defined range.

Note:

When using date type variables with no time elements, function considers time as
'00:00:00'.

Syntax

isTimeInRange(dateToCheck, dateFrom, dateTo, inclusive)

Parameters

dateToCheck
Date or date/time value to check.

dateFrom
Date or date/time value range start.

dateTo
Date or date/time value range end.

inclusive
String: 'both', 'from', 'to', or 'no'.

• 'both': include dateTo and dateFrom dates in the range check (dateFrom <=
dateToCheck && dateToCheck <= dateTo)

• 'from': include only dateFrom in the range check (dateFrom <= dateToCheck &&
dateToCheck < dateTo)

Chapter 3
Date and time functions

3-16

• 'to': include only dateTo in the range check (dateFrom < dateToCheck && dateToCheck
<= dateTo)

• 'no': don't include dateTo or dateFrom in the range check (dateFrom < dateToCheck
&& dateToCheck < dateTo)

Return value

true, if date or date/time is within range; false, if it is not.

Example 3-28 Check a date/time value

// Given 3 form questions of type DateTime are defined in the rule as
variables
if (isTimeInRange(dateToCheck, dateFrom, dateTo, "both")) {
 return true;
} else {
 return false;
}

// Triggers query if dateToCheck is not in range (dateFrom <= dateToCheck &&
dateToCheck <= dateTo)

Example 3-29 Compare three hard-coded date/time items

var dateToCheck = new Date("March 1, 2020 14:00:00");
var dateFrom = new Date("March 1, 2020 12:00:00");
var dateTo = new Date("March 1, 2020 13:00:00");

if (!isTimeInRange(dateToCheck, dateFrom, dateTo, "both") {
 return false;
} else {
 return true;
}

//Triggers query since dateToCheck is not in range (dateFrom <= dateToCheck
&& dateToCheck <= dateTo)

Example 3-30 Compare two time items

var dateToCheck= new Date('01-01-001 ' + ruleTimeItem.getHour() + ':' +
ruleTimeItem.getMinute() + ':' + ruleTimeItem.getSecond());
return isTimeInRange(dateToCheck, dateFrom, dateTo, "both");

Chapter 3
Date and time functions

3-17

addDays()
Add a specific number of days to a date value. For example, when you need to ensure the
Date and Time entered by the user doesn't exceed a specific value.

Note:

This function is used with variables of type date that do not contain time elements.
When using a date/time type parameter, function considers only date part and
ignores time elements.

You can use the addTimeInHours() or addTimeInMinutes() helper functions to work
with date and time items.

Syntax

addDays(startDate, numberOfDays)

Parameters

startDate
Date value to check.

numberOfDays
Number of days to add to startDate.

Return value

A new date value increased by the number of days specified.

Example 3-31 date1 cannot be greater than 7 days from date2

// Given 2 form questions of type Date are defined in the rule as variables
if (addDays(dateTime1, 7) > dateTime2) {
 return false;
} else {
 return true;
}

// triggers query that dateTime1 cannot be > 7 days from dateTime2

addTimeInHours()
Add a specific number of hours to a date or date/time value. For example, when you need to
ensure the Date and Time entered by the user doesn't exceed a specific value.

Syntax

addTimeInHours(startTime, numberOfHours)

Chapter 3
Date and time functions

3-18

Parameters

startTime
Date or date/time value to check.

numberOfHours
Number of hours to add to startTime.

Return value

A new date/time value increased by the number of hours specified.

Example 3-32 dateTime1 cannot be greater than 12 hours from dateTime2

// Given 2 form questions of type DateTime are defined in the rule as
variables
if (addTimeInHours(dateTime1, 12) > dateTime2) {
 return false;
} else {
 return true;
}

// Triggers query that dateTime1 cannot be > 12 hours from dateTime2

Example 3-33 Add hours to time items

var dateTime1= new Date('01-Jan-0001 ' + ruleTimeItem.getHour() + ':' +
ruleTimeItem.getMinute() + ':' + ruleTimeItem.getSecond());
return addTimeInHours(dateTime1, 30);

Example 3-34 Add hours to partial date items

var dateTime1= new Date(ruleTimeItem.getYear() + '-' +
ruleTimeItem.getMonth() + '-' + ruleTimeItem.getDay() + ' ' +
ruleTimeItem.getHour() + ':' + ruleTimeItem.getMinute() + ':' +
ruleTimeItem.getSecond());
return addTimeInHours(dateTime1, 30);

addTimeInMinutes()
Add a specific number of minutes to a date or date/time value. For example, when you need to
ensure the Date and Time entered by the user doesn't exceed a specific value.

Syntax

addTimeInMinutes(startTime, numberOfMinutes)

Parameters

startTime
Date or date/time value to check.

Chapter 3
Date and time functions

3-19

numberOfMinutes
Number of minutes to add to startTime.

Return value

A new date/time value increased by the number of minutes specified.

Example 3-35 dateTime1 cannot be greater than 30 minutes from dateTime2

// Given 2 form questions of type DateTime are defined in the rule as
variables
if (addTimeInMinutes(dateTime1, 30) > dateTime2) {
 return false;
} else {
 return true;
}

// Trigges query that dateTime1 cannot be > 30 minutes from dateTime2

Example 3-36 Add minutes to Time Items

var dateTime1= new Date('01-Jan-0001 ' + ruleTimeItem.getHour() + ':' +
ruleTimeItem.getMinute() + ':' + ruleTimeItem.getSecond());
return addTimeInMinutes(dateTime1, 30);

Example 3-37 Add minutes to partial date items

var dateTime1= new Date(ruleTimeItem.getYear() + '-' +
ruleTimeItem.getMonth() + '-' + ruleTimeItem.getDay() + ' ' +
ruleTimeItem.getHour() + ':' + ruleTimeItem.getMinute() + ':' +
ruleTimeItem.getSecond());
return addTimeInMinutes(dateTime1, 30);

getDateDMYFormat()
Return a date or datetime in DD-Mon-YYYY format, including time elements if applicable. This
function supports partial dates.

Syntax

getDateDMYFormat(vDate, [timeFormat])

Parameters

vDate
Required. Rule variable of date or datetime type.

timeFormat
Optional. Specifies the output format for the time elements present. This can be one of the
following values (case-sensitive), all in a 24-hour format:

• "HH:mm:ss"

Chapter 3
Date and time functions

3-20

• "HH:mm"
• "HH"
If timeFormat is not supplied, the return value will include all available time elements,
suppressing any ending zero values. For example, if vDate contains a full time including
hours, minutes and seconds the output will have a "HH:mm:ss" time format, and if it only
contains hours then output will have a "HH" format. However, if time equals "07:45:00",
output will omit the seconds and return "07:45", but would not remove the minutes in
"07:00:45" as the ending value present is "45" for the seconds time element.

Note:

Previously, this function used to take an optional boolean value as the second
parameter isPartial, to specify whether the function is expecting a partial date or
not. This function still accepts true and false as the second parameter, instead of
the timeFormat parameter, to continue supporting existing rules.

Return value

Date in DD-Mon-YYYY, for example UNK-Jan-2025 or 01-Feb-2021 23:45:00.

Example 3-38 Return a partial date in DD-Mon-YYYY format

var mdyDate = getDateDMYFormat(vDate);
return mdyDate.toString();

// returns date as string "UNK-Jan-2025"

getDatesCompareResult()
Compare two dates using a provided operation. This function handles partial dates.

As far as this function may contain partial date components, dates are compared up to the first
defined part for both dates (second/minute/hour/day/month/year). For example, if the following
two dates are compared:

• 01-Jun-2011 11:12:14
• 02-Jan-2011 17:UNK:UNK
The first defined part is hour, so dates will be compared as:

• 01-Jun-2011 11
• 02-Jan-2011 17

Note:

This is a JavaScript function. Quotes are not needed in the rule variable name.

Chapter 3
Date and time functions

3-21

Tip:

Since this function compares values, your rule expression may need to include a
check to ensure the variables being passed are not null.

Syntax

getDatesCompareResult(date1,isPartial1,date2,isPartial2,operation)

Parameters

date1
Variable. Supports Date, Datetime and Time type variables, either full or with partial
components.

isPartial1
Indicates if the date1 variable is partial or not (true/false).

date2
Variable. Supports Date, Datetime and Time type variables, either full or with partial
components.

isPartial2
Indicates if the date2 variable is partial or not (true/false).

operation
The operation you want to use to compare date1 and date2. For example, ">", ">=", "<",
"<=", "===", or "!==".

Return value

Returns true or false.

Example 3-39 Check if date1 is greater than date2

// check if date 1 is greater than date 2
return getDatesCompareResult(date1,true,date2,false,">");

// returns true or false

Example 3-40 Compare time part of time and datetime variables using time
components only

//compare time part of time (time1) and datetime (datetime1) components
var cdate1 = new C1Date (null, null, null, null, time1.getHour(),
time1.getMinute(), time1.getSecond());
var cdate2 = new C1Date (null, null, null, null, datetime1.getHour(),
datetime1.getMinute(), datetime1.getSecond());
return getDatesCompareResult(cdate1, true, cdate2, true, '===');

Chapter 3
Date and time functions

3-22

partialDateDiff()
Find the difference between two dates.

As far as this function may contain partial date components, dates are compared up to the first
defined part for both dates (second/minute/hour/day/month/year). For example, if the following
two dates are compared:

• 01-Jun-2011 11:12:14
• 02-Jan-2011 17:UNK:UNK
The first defined part is hour, so dates will be compared as:

• 01-Jun-2011 11
• 02-Jan-2011 17

Note:

This is a JavaScript function. Quotes are not needed in the rule variable name.

Syntax

partialDateDiff(date1,isPartial1,date2,isPartial2,Datepart)

Parameters

date1
Variable. Supports Date, Datetime and Time type variables, either full or with partial
components.

isPartial1
If the variable date1 is partial or not (true or false).

date2
Variable. Supports Date, Datetime and Time type variables, either full or with partial
components.

isPartial2
If the variable date2 is partial or not (true or false).

Datepart
String that specifies the part of the variable to compare. May contain one of the following
values:

• 'Day'
• 'Year'
• 'Hour'
• 'Minute'
• 'Second'

Chapter 3
Date and time functions

3-23

Note:

When Datepart is 'Day' or 'Year', time elements are not considered in difference
calculation

Return value

Number that represents the difference between the two dates.

Differences are returned using the closest integer less than or equal to the exact value. For
example, if the difference between 2 dates is 1.5 hours, then 1 hour is returned as the
difference in hours.

Example 3-41 Compare one full DateTime Item with one partial DateTime Item

// Given 2 form questions of type DateTime are defined in the rule as
variables
// date1 is a full date containing the value of 05-NOV-2021
// date2 is a partial date containing the value of UNK-OCT-2021
if(partialDateDiff(date1, false, date2, true, 'Day') > 28){
 returntrue;
}
else{
 returnfalse; // Query is triggered if the difference between dates is
greater than 28 days.
}

// The difference between dates is '31', the query will not be triggered

Repeating form functions
Find or evaluate a value in a repeating form.

• FindDuplicateRepeatingForm()
Detect duplicate data across repeating form instances for a given item. The data is
identified by a form ID which has duplicate item values for the search keys provided. The
rule target should be on the corresponding repeating section item.

• FindDuplicateRepeatingFormWithinRange()
Detect duplicate data across repeating form instances for a given item within the same
date range. The data is identified by a form ID which has duplicate item values for the
search keys provided. The rule target should be on the corresponding repeating section
item.

• FindMinInRepeatingForms()
Find the minimum value of a given data item in all instances of a repeating form. The data
is retrieved by form ID and works only for numeric fields.

• FindMaxInRepeatingForms()
Find the maximum value of a given data item in all instances of a repeating form. The data
is retrieved by form ID and works only for numeric fields.

• FindMinDateInRFs()
Find the minimum value of given date, date-time, or partial date items in all repeating
instances of the form identified by the form ID. This function is only applicable to date
fields.

Chapter 3
Repeating form functions

3-24

• FindMaxDateInRFs()
Find the maximum value of the given date, date-time, or partial-date items in all of the
repeating instances of the form identified by the form ID. This function is only applicable to
date fields.

• FindMatchingRepeatingForm()
Find a repeating form instance that contains a value that matches the search value.

• FindMatchingRepeatingFormWithinRange()
Find an instance of a repeating form, identified by the form ID, that matches the item value
provided as a search key. The search can be based on search keys or date ranges.

• FindRFInstance()
Find a repeating form instance that contains a value which matches the search value using
a supplied operator.

• ListRFInstances()
List all instance numbers for a repeating form. You can use this helper function in your rule
expression to check for instances of a specific question value in a repeating form.

• GetCurrentRFInstance()
Get the form instance number where the rule is currently being run.

• GetMatchingRepeatingFormsCount()
Get the number of repeating form instances of a form that match the item values provided
as search keys.

• getPrevRepeatValue()
Fetch a value from the previous non-deleted row within the same instance, where the
question of interest is entered. This function is available for repeating forms and repeating
sections of two-section forms.

• getRFValues()
Retrieves the current values for specified items on repeating form instances.

FindDuplicateRepeatingForm()
Detect duplicate data across repeating form instances for a given item. The data is identified
by a form ID which has duplicate item values for the search keys provided. The rule target
should be on the corresponding repeating section item.

For this function:

• You cannot use drop-downs, radio buttons, or checkbox values as function parameters or
as a target.

• If a variable is designed to hold a partial date, you must provide the value for that
parameter in the same partial date format.

• Deleted instances are not matched unless the helper functions provides a parameter to
include deleted records.

Use as many arguments as needed to fully define the duplicate key.

Note:

This is an aggregation function. The rule will be run for each form instance in the
case where the target is on a repeating form.

Chapter 3
Repeating form functions

3-25

Syntax

FindDuplicateRepeatingForm('variable1', 'variable2',...)

Parameters

variable(s)
Item variables to check.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

Return value

Returns true if duplicate values are found; false if duplicate values are not found.

Example 3-42 Check to see if any duplicate repeating form instances exist with the
same values for Lab and Test Name

// Given 5 repeating form instances with items "Lab" and "Test Name"
if (FindDuplicateRepeatingForm('itmLab', 'itmTestName')) {
 return false;
} else {
 return true;
}

// Fires a query if more than 1 repeating form instance is found containing
Lab = "Mass General" and Test Name = "CBC"

FindDuplicateRepeatingFormWithinRange()
Detect duplicate data across repeating form instances for a given item within the same date
range. The data is identified by a form ID which has duplicate item values for the search keys
provided. The rule target should be on the corresponding repeating section item.

For this function:

• You cannot use drop-downs, radio buttons, or checkbox values as function parameters or
as a target.

• If a variable is designed to hold a partial date, you must provide the value for that
parameter in the same partial date format.

• If a record has no data enter for the required dates, the record is skipped for comparison.

The first two parameters should always be the date range. Additional search keys can be
provided.

Chapter 3
Repeating form functions

3-26

Note:

This is an aggregation function. The rule will be run for each form instance in the
case where the target is on a repeating form.

Syntax

FindDuplicateRepeatingFormWithinRange('startDateVariable', 'endDateVariable',
'variable1',...)

Parameters

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

startDateVariable
Required. Date item on a repeating form.

endDateVariable
Required. Date item on a repeating form.

variable(s)
Optional. Additional Item variable to search.

Return value

Returns true if duplicate values are found; false if duplicate values are not found.

Example 3-43 Check to see if any repeating form instances exist within the same onset
date range and symptom value

// Given 5 repeating form instances with items "onsetStartDate",
"onsetEndDate and "Symptom"
if (FindDuplicateRepeatingFormWithinRange('itmOnsetDateStart',
'itmOnsetDateEnd', 'itmSymptom') === true) {
 return false;
} else {
 return true;
}

// Fires a query if more than 1 repeating form instance is found within the
same symptom value within the same date range.
//
// Note: If any repeating form instance has a null start or end date then the
system assumes a date in order to successfully
// perform the date range overlap check. If the start date is null then the
system assumes it to be 01 Jan 0001 and if the
// end date is null then it is assumed to be 01 Dec 3099.

Chapter 3
Repeating form functions

3-27

FindMinInRepeatingForms()
Find the minimum value of a given data item in all instances of a repeating form. The data is
retrieved by form ID and works only for numeric fields.

For this function:

• You cannot use drop-downs, radio buttons, or checkbox values as function parameters or
as a target.

Note:

This is an aggregation function. The rule is run for each form instance in the case
where the target is on a repeating form.

Syntax

FindMinInRepeatingForms('variable')

Parameters

variable
Item variable to search.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

Return value

Returns the minimum value across all instances or "0" if no minimum can be found.

Example 3-44 Find the minimum value of the "weight" number item across all
repeating form instances in a visit

// Given 5 repeating form instances with "weight" item containing values of
"150, 200, 250, 300, 350"
return FindMinInRepeatingForms('varWeight');

// returns 150

FindMaxInRepeatingForms()
Find the maximum value of a given data item in all instances of a repeating form. The data is
retrieved by form ID and works only for numeric fields.

For this function:

Chapter 3
Repeating form functions

3-28

• You cannot use drop-downs, radio buttons, or checkbox values as function parameters or
as a target.

Note:

This is an aggregation function. The rule is run for each form instance in the case
where the target is on a repeating form.

Syntax

FindMaxInRepeatingForms('variable')

Parameters

variable
Rule variables, which reference path: eventId.formId.itemId.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

Return value

Returns the maximum value across all instances or "0" if no maximum can be found.

Example 3-45 Find the maximum value of "weight" number item across all repeating
form instances in a visit

// Given 5 repeating form instances with "weight" item containing values of
"150, 200, 250, 300, 350"
return FindMaxInRepeatingForms('varWeight');

// returns 350

FindMinDateInRFs()
Find the minimum value of given date, date-time, or partial date items in all repeating instances
of the form identified by the form ID. This function is only applicable to date fields.

Note:

This is an aggregation function. The rule is run for each form instance in the case
where the target is on a repeating form.

Chapter 3
Repeating form functions

3-29

Syntax

FindMinDateInRFs('variable', DateMask)

Parameters

variable
Rule variables, with reference path: eventId.formId.itemId.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

DateMask
Flag to specify how partial dates should be handled.

• null. Ignore partial dates when doing comparisons.

• value. Replace the UNK component in the partial date with the specified value. For
example: entering '10-Apr' substitutes with '10' every UNK value of Day (DD) component
and with 'Apr' every UNK value of Month (MMM) component.

Note:

Use mask only for date elements and do not use it for time elements. Any
missing value in the time part is considered as 00.

Return value

• Minimum date value in String format. For example, '27-Jan-2021 00:00'.

• null if minimum is not found.

Usage tips

• Use 'DD-MON' format as DateMask to substitute unknown (UNK) values in the partial date
values. For example, if the mask is '01-MAR':

Partial date value Masked date Notes

'UNK-FEB-2020' '01-FEB-2020' Made effective for calculation
using the day part of the mask.

'UNK-UNK-2020' '01-MAR-2020' Made effective for calculation
using both, the day and month
parts of the mask.

• To convert return value to JavaScript date object, extra formatting should be done. For
example:

vExample = '10-Jul-2022 10:UNK:UNK'
new Date(vExample.replace(/UNK/g, "00"))

Chapter 3
Repeating form functions

3-30

Example 3-46 Get the minimum date value for an item across a set of repeating form
instances

// Get the minimum date value for an item across a set of repeating form
instances

return FindMinDateInRFs('aeDate');

// Same as above, using a partial date field aeDate (UNK-MMM-YYYY)

return FindMinDateInRFs('aeDate', '01-JAN');

//to compare with another date
var maxd= FindMinDateInRFs('a');
var today = new Date();
var maxdate = new Date(maxd);
if(dateDiffInDays(today,maxdate)>0){
 return "today>max";
}
return "today<max";

FindMaxDateInRFs()
Find the maximum value of the given date, date-time, or partial-date items in all of the
repeating instances of the form identified by the form ID. This function is only applicable to date
fields.

Note:

This is an aggregation function. The rule is run for each form instance in the case
where the target is on a repeating form.

Syntax

FindMaxDateInRFs('variable', DateMask)

Parameters

variable
Rule variables, with reference the path: eventId.formId.itemId.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

DateMask
Flag to specify how partial dates should be handled.

Chapter 3
Repeating form functions

3-31

• null. Ignore partial dates when doing comparisons.

• value. Replace the UNK component in the partial date with the specified value. For
example: entering '10-Apr' substitutes with '10' every UNK value of Day (DD) component
and with 'Apr' every UNK value of Month (MMM) component.

Note:

Use mask only for date elements and do not use it for time elements. Any
missing value in the time part is considered as 00.

Return value

• Maximum date value in String format. For example, '27-Jan-2021 00:00'.

• null if maximum is not found.

Usage tips

• Use 'DD-MON' format as DateMask to substitute unknown (UNK) values in the partial date
values. For example, if the mask is '01-MAR':

Partial date value Masked date Notes

'UNK-FEB-2020' '01-FEB-2020' Made effective for calculation
using the day part of the mask.

'UNK-UNK-2020' '01-MAR-2020' Made effective for calculation
using both, the day and month
parts of the mask.

• To convert return value to JavaScript date object, extra formatting should be done. For
example:

vExample = '10-Jul-2022 10:UNK:UNK'
new Date(vExample.replace(/UNK/g, "00"))

Example 3-47

// Get the maximum date value for an item across a set of repeating form
instances

return FindMaxDateInRFs('aeDate');

// Same as above, using a partial date field aeDate (UNK-MMM-YYYY)

return FindMaxDateInRFs('aeDate', '01-JAN');

//to compare with another date
var maxd= FindMaxDateInRFs('a');
var today = new Date();
var maxdate = new Date(maxd);
if(dateDiffInDays(today,maxdate)>0){
 return "today>max";

Chapter 3
Repeating form functions

3-32

}
return "today<max";

FindMatchingRepeatingForm()
Find a repeating form instance that contains a value that matches the search value.

For this function:

• You cannot use drop-downs, radio buttons, or checkbox values as function parameters or
as a target.

• If a variable is designed to hold a partial date, you must provide the value for that
parameter in the same partial date format. You can use partial dates in the following
formats:

– <dd-mmm-yyyy hh:mm>

– <dd-mmm-yyyy hh>

– <dd-mmm-yyyy>

– <mmm-yyyy>

– <yyyy>

Note:

This is an aggregation function. The rule is run for each form instance in the case
where the target is on a repeating form.

Syntax

FindMatchingRepeatingForm('variable1', value1, 'variable2', value2, ...)

Parameters

variable(s)
Item variable to search.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

value(s)
Search values.
These valuesmust be hard-coded and cannot be rule variables:

• Dates must be provided inside the string 'Date(dd-mmm-yyyy hh:mm:ss)'.

• You can use partial dates in the following formats:

Chapter 3
Repeating form functions

3-33

– <dd-mmm-yyyy hh:mm>

– <dd-mmm-yyyy hh>

– <dd-mmm-yyyy>

– <mmm-yyyy>

– <yyyy>

• Times must be provided inside the string 'Time(hh:mm:ss)'.

• You can use partial times in the following formats:

– <hh:mm>

– <hh>

Return value

Returns -1 if no matches are found or the index number (>0) of the form instance if at least one
matching instance is found. If multiple instances are found, only the first index is returned.

Note:

In dates, UNK values are considered to match any other value. For example:
'Date(01-Feb-2022)' and 'Date(20-Feb-2022)' are both considered as a match of
an entry with UNK-Feb-2022 date value.

Example 3-48 Raise a query if any instances exist where symptom = "headache" and
pulse rate = "100"

// Given 5 repeating form instances with items "itmSymptom" and "itmPulse"
if (FindMatchingRepeatingForm('itmSymptom', "headache", 'itmPulse', 100) > 0)
{
 return false;
} else {
 return true;
}

// Fires query if any of the 5 instances contain both itmSymptom = "headache"
AND itmPulse = 100.

FindMatchingRepeatingFormWithinRange()
Find an instance of a repeating form, identified by the form ID, that matches the item value
provided as a search key. The search can be based on search keys or date ranges.

For this function:

• You cannot use drop-downs, radio buttons, or checkbox values as function parameters or
as a target.

• The first two parameters should always be the date range. Additional search keys may be
provided after that.

• This function also considers entries where the dates are null.
If any repeating form instance has a null start or end date then the system assumes a date
in order to successfully perform the date range overlap check:

Chapter 3
Repeating form functions

3-34

– If the start date is null then the system assumes it to be 01-Jan-0001.

– If the end date is null then it is assumed to be 01-Dec-3099.

• If a variable is designed to hold a partial date then provide the value for that parameter in
the same partial date format. You can use partial dates in the following formats:

– <dd-mmm-yyyy hh:mm>

– <dd-mmm-yyyy hh>

– <dd-mmm-yyyy>

– <mmm-yyyy>

– <yyyy>

The Rule returns the index of the repeating form instance with overlapping dates.

Note:

This is an aggregation function. The rule is run for each form instance in the case
where the target is on a repeating form.

Syntax

FindMatchingRepeatingFormWithinRange('startDateVariable',startDateValue,
'endDateVariable', endDateValue, 'variable1', value1, 'variable2',
value2, ...)

Parameters

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

startDateVariable
Required. Date item.

startDateValue
Required. Date value in the form of a string.
These must be hard-coded and cannot be rule variables:

• Dates must be provided inside the string 'Date(dd-mmm-yyyy hh:mm:ss)'.

• You can use partial dates in the following formats:

– <dd-mmm-yyyy hh:mm>

– <dd-mmm-yyyy hh>

– <dd-mmm-yyyy>

– <mmm-yyyy>

Chapter 3
Repeating form functions

3-35

– <yyyy>

• Times must be provided inside the string 'Time(hh:mm:ss)'.

• You can use partial times in the following formats:

– <hh:mm>

– <hh>

endDateVariable
Required. Date item.

endDateValue
Required. Date value in the form of a string.
Consider same requirements as in startDateValue paraemter.

variable(s)
Optional. Item variable to search.

value(s)
Optional. Search value(s). These must be hard-coded and cannot be rule variables.

Return value

Returns -1 if no matches are found or the index number (>0) of the form instance if at least one
matching instance is found. If multiple instances are found, only the first index is returned.

Note:

In dates, UNK values are considered to match any other value. For example:
'Date(01-Feb-2022)' and 'Date(20-Feb-2022)' are both considered as a match of
an entry with UNK-Feb-2022 date value.

Example 3-49 Raise a query if any instances exist where a) onset date is between Jan
1 2020 and March 1 2020 and b) symptom = "headache"

// Given 5 repeating form instances with items "onsetStart", "onsetEnd" and
"itmSymptom":
if (FindMatchingRepeatingFormWithinRange('onsetStart', 'Date(01-JAN-2020)',
'onsetEnd', 'Date(01-MAR-2020)', 'itmSymptom', "headache") > 0) {
 return false;
} else {
 return true;
}

// Fires query if any of the 5 instances contain onset dates between Jan 1
2020 - March 1 2020 AND itmSymptom = "headache"

FindRFInstance()
Find a repeating form instance that contains a value which matches the search value using a
supplied operator.

This function is similar to FindMatchingRepeatingForm(). However, it allows the rule designer
to specify matching operands (=, >, <, >=, <=).

Chapter 3
Repeating form functions

3-36

Note:

This is an aggregation function. The rule is run for each form instance in the case
where the target is on a repeating form.

Syntax

FindRFInstance (DateMask, 'variable1', 'compareOperator1', value1,
'variable2', ...)

Parameters

DateMask
Flag to specify how partial dates should be handled.

• null. Ignore partial dates when doing comparisons.

• value. Replace the UNK component in the partial date with the specified value. For
example: entering '10-Apr' substitutes with '10' every UNK value of Day (DD) component
and with 'Apr' every UNK value of Month (MMM) component.

Note:

Use mask only for date elements and do not use it for time elements. Any
missing value in the time part is considered as 00.

variable
Item variables to search.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

compareOperator
Operator to use for the compare: =, >, <, >=, <=.

value
Value to compare variable with as a string.

• Date values can be provided as a Javascript Date variable or as a string in the following
formats:

– 'Date(dd-mmm-yyyy)'
– 'Date(dd-mmm-yyyy hh:mm:ss)'
– 'dd-mmm-yyyy'

Chapter 3
Repeating form functions

3-37

– 'dd-mmm-yyyy hh:mm:ss'
• Time values can be provided as 'Time(hh:mm:ss)'

Return value

Returns -1 if no matches are found or the index number (>0) of the form instance if at least one
matching instance is found. If multiple instances are found, only the first index is returned.

Usage tips

• This function does not support choice questions such as drop-down, radio button, or check
box.

• Values in the custom function should be JavaScript variables or direct values. Do not use
operand variables directly in the custom function expression.

• If other operands/variables are to be used for a value, it has to be assigned first to the
JavaScript variable and then used in the function expression.

• Use 'DD-MON' format as DateMask to substitute unknown (UNK) values in the partial date
values. For example, if the mask is '01-MAR':

Partial date value Masked date Notes

'UNK-FEB-2020' '01-FEB-2020' Made effective for calculation
using the day part of the mask.

'UNK-UNK-2020' '01-MAR-2020' Made effective for calculation
using both, the day and month
parts of the mask.

Example 3-50 Raise a query if there is an instance of pulse greater than a given value

// Raise a query if there is an instance of pulse > 100
return (FindRFInstance(null, 'pulseVal','>', 100) > 0)?false:true; //
query is raised when false is returned

Example 3-51 Raise query if Date variable is on or after a given date value

// Raise a query if there's an instance where onDate is >= 10-Jun-2010
//(onDate is partial UNK-UNK-YYYY)
return (FindRFInstance('10-Jun', 'onDate', '>=', '10-Jun-2010') > 0)?
false:true;

Example 3-52 Raise query if Datetime variable is on or after a given datetime value

// Raise a query if there's an instance where onDateTime is >= 10-Jun-2010
11:12:15
//(onDateTime is partial DD-MMM-YYYY UNK:UNK:UNK)
return (FindRFInstance('10-Jun', 'onDateTime' , '>=', '10-Jun-2010 11:12:15')
> 0)?false:true;

//or
return (FindRFInstance('10-Jun', 'onDateTime' , '>=', 'Date(10-Jun-2010
11:12:15)') > 0)?false:true;

Chapter 3
Repeating form functions

3-38

Example 3-53 Raise query if Time variable is on or after a given time value

// Raise a query if there's an instance where onTime is >= 11:12:15
//(onTime is partial HH:UNK:UNK)
return (FindRFInstance(null, 'onTime' ,'>=', 'Time(11:12:15)') > 0)?
false:true;

ListRFInstances()
List all instance numbers for a repeating form. You can use this helper function in your rule
expression to check for instances of a specific question value in a repeating form.

Note:

This is an aggregation function. The rule is run for each form instance in the case
where the target is on a repeating form.

Syntax

ListRFInstances('variable',includeDeleted)

Parameters

variable
An item that exists on the visit or form to search.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

includeDeleted
• null or 0 - Do not include deleted Repeating instances in the return array.

• 1 - Include deleted Repeating instances in the array count.

Return value

An array of repeating form instance numbers.

Example 3-54 Raise a query if AE form instance #3 does not exist

// Raise a query if AE form instance #3 does not exist
var arrAE = ListRFInstances('onDate', 0);
return (arrAE.indexOf(2) == -1)?false:true;

Chapter 3
Repeating form functions

3-39

Note:

In this example, .indexOf(2) equates to the third form instance as arrays start at
position zero.

Example 3-55 Raise a query if given form instance number does not exist, using
variables

// Raise a query if current form instance number does not exist
var curInst = GetCurrentRFInstance();
var arrAE = ListRFInstances('onDate', 0);
return (arrAE.indexOf(curInst.intValue()) == -1)?false:true;

Note:

Any variables passed when using the JavaScript indexOf() method with
ListRFInstances(), should be converted for integer using intValue() to ensure the
search works correctly.

GetCurrentRFInstance()
Get the form instance number where the rule is currently being run.

Syntax

GetCurrentRFInstance()

Parameters

None.

Return Value

Repeating form instance number where the rule is being run.

Example 3-56 If this is the first instance, raise a query if aeDate is not entered

// If this is the first instance, raise a query if aeDate is not entered

return (GetCurrentRFInstance() == 1 && aeDate === null)?false:true;

GetMatchingRepeatingFormsCount()
Get the number of repeating form instances of a form that match the item values provided as
search keys.

Syntax

GetMatchingRepeatingFormsCount('variable1', value1, 'variable2', value2, ...)

Chapter 3
Repeating form functions

3-40

Parameters

variable
Rule variable.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

value
Value to search for.

Return value

Count of matching repeating form instances.

Note:

In dates, UNK values are considered to match any other value. For example:
'Date(01-Feb-2022)' and 'Date(20-Feb-2022)' are both considered as a match of
an entry with UNK-Feb-2022 date value.

Usage Tips

• Can accept choice controls (radio controls, check box controls, and dropdowns) but can
only be searched by label, not value.

• Only one option can be provided as search text for choice controls.

• Dates must be provided inside the string 'Date(dd-mmm-yyyy hh:mm:ss)'.

• You can use partial dates in the following formats:

– <dd-mmm-yyyy hh:mm>

– <dd-mmm-yyyy hh>

– <dd-mmm-yyyy>

– <mmm-yyyy>

– <yyyy>

• Times must be provided inside the string 'Time(hh:mm:ss)'.

• You can use partial times in the following formats:

– <hh:mm>

– <hh>

Example 3-57 Raise a query if there is more than one instance where AE Outcome =
'Fatal"

// Raise a query if there is more than one instance where AE Outcome = 'Fatal"

// Get current repeating instance

Chapter 3
Repeating form functions

3-41

var ins = GetCurrentRFInstance();
var curVal = "";

// Get value of aeOut from current instance
var rfData = getRFValues('ins', [aeOut]);
if(rfData.exists && rfData.aeOut){
 if((rfData.aeOut) !== "[]"){ // If the choice control has been
cleared out then do not read the label
 curVal = JSON.parse(rfData.aeOut)[0].label;
 }
}

// check to see if there are more than 1 instance with "Yes"
return ((curVal == "Fatal") && (GetMatchingRepeatingFormsCount('aeOut',
"Fatal") > 1))?false:true;

getPrevRepeatValue()
Fetch a value from the previous non-deleted row within the same instance, where the question
of interest is entered. This function is available for repeating forms and repeating sections of
two-section forms.

Tip:

You can use this function to get the value form a previous row for either the same or
a different question.

Syntax

getPrevRepeatValue('ruleVariable', [isNullConsidered])

Parameters

ruleVariable
Name of the rule variable to get its value. The rule variable is defined for a specific visit, form
and item.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

isNullConsidered
Optional. Boolean parameter:

• true - previous value is returned even if it is null. This parameter is set to true by default.

• false - only returns value if it is not null.

Chapter 3
Repeating form functions

3-42

Note:

When false is set for this parameter, system will keep looking backwards until
either it finds the closest not-null value or the entirety of rows have been
searched.

Return value

Returns value for the specified item in the immediate previous row. Depending on the optional
parameter configuration, whether null is considered or not, can return any value (including null)
from the immediate previous row, or the closest previous not null value, if the immediate
previous row is null for the given item.

If the variable is a choice control (checkbox, radio or drop-down), the return value is the string
in JSON format:

("[{\"value\":\"3\",\"label\":\"TestLabel\"}]")

Note:

This can be parsed using JSON.parse(result) or the helper function
parseChoice(result).

Example 3-58 Get value of a given variable in the previous row

var prevValue= getPrevRepeatValue('vValue', false); //returns the first
previous not null value
var prevValue= getPrevRepeatValue('vValue'); //returns the first previous
value

getRFValues()
Retrieves the current values for specified items on repeating form instances.

If you'd like to fetch only a single value from a repeating form instance, you may also consider
getQuestionValue().

Note:

This is an aggregation function, the rule will be run for each form instance in case the
target is on a repeating form.

Syntax

getRFValues(formInstance, ['var1', 'var2', 'varN'])

Chapter 3
Repeating form functions

3-43

Parameters

formInstance
The instance number of the form you're retrieving values from. This parameter can be a
JavaScript variable or it can be a number.

var1, var2, varN
Item variable values to retrieve.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

Return value

Returns a JSON object containing the variables (of the same name as was passed in param2)
with values:

• Returned variable value will be a C1Date object in case of variable being a partial date, or
variable value will be a Date object in the case of the variable being a full date. This can be
checked using the isPartialDate() function as illustrated below.

• If the variable is a choice control (checkbox, radio button, or drop-down) then the returned
variable will be in JSON format: ("[{\"value":\"3\",\"label\":\"TestLabel\"}]"). This
can be parsed using JSON.parse or parseChoice().

– parseChoice(rfData.v4_chk4))
– JSON.parse(rfDate.v4_chk4))

• The return object has a property name 'exists' which returns true if any one of the
variable passed in has a value for the passed in repeat form instance number.

Example 3-59 Get values for 3 item variables in AE form instance #1, and put them to a
text item

varrfData = getRFValues(1, ['aeTerm','aeDate','aeSerious']);
if(rfData.exists){
 returnrfData.aeTerm + " | " + rfData.aeDate.getFullYear() + " | "+
JSON.parse(rfData.aeSerious)[0].label;
} else{
 return;
}

// It is best practice to check if the variable has value before using it
varrfData = getRFValues(1, ["aeTerm","aeDate"]);
if(rfData.exists && rfData.aeTerm && rfData.aeDate){
 returnrfData.aeTerm + " | " + rfData.aeDate.getFullYear() ;
} else{
 return;
}

Chapter 3
Repeating form functions

3-44

Two-section form functions
Find or evaluate a value in a two-section form.

• findDuplicate2SForm()
Detect duplicate data across two-section form instances for a given item either within the
flat section or the repeating section. The data is identified by a form ID which has duplicate
item values for the search keys provided. The rule target should be on the corresponding
repeating section item.

• findDuplicate2SFormWithinRange()
Detect duplicate data across two-section form instances for a given item within the same
date range, either within the flat section or the repeating section. The data is identified by a
form ID which has duplicate item values for the search keys or date ranges provided. The
rule target should be on the corresponding repeating section item.

• findMinIn2SForms()
Find the minimum value of a given data item in all instances of the repeating section in a
two-section form. This function works only for numeric fields.

• findMaxIn2SForms()
Find the maximum value of a given data item in all instances of a repeating section in a
two-section form. This function works only for numeric fields.

• findMinDateIn2SForm()
Find the minimum value of given date, date-time, or partial date items in all repeating
instances of a two-section form. This function is only applicable to date fields.

• findMaxDateIn2SForm()
Find the maximum value of the given date, date-time, or partial-date items in all of the
repeating instances of a two-section form. This function is only applicable to date fields.

• findMatching2SForm()
Find a repeating section instance of a two-section form, identified by the row ID, that
matches the item value provided as a search key. This function supports partial dates

• findMatching2SFormWithinRange()
Find an instance of a repeating section of a two-section form, identified by the row ID, that
matches the item value provided as a search key. The search can be based on search
keys or date ranges.

• find2SFormInstance()
Find an instance of the repeating section in a two-section form that contains a value which
matches the search value using a supplied operator.

• list2SInstances()
List all instance numbers for a two-section form.

• getCurrent2SFormInstance()
Get the form instance number where the rule is currently being run.

• getCurrent2STableInstance()
For two-section forms, find the current table row instances where the rule is currently being
run.

• getMatching2SFormsCount()
Get the number of repeating instances in a two-section form that match the item values
provided as search keys.

Chapter 3
Two-section form functions

3-45

• get2SValues()
Retrieve values for the provided variables of a two-section form or variables of a table in a
two-section form based on the tableInstance parameter.

findDuplicate2SForm()
Detect duplicate data across two-section form instances for a given item either within the flat
section or the repeating section. The data is identified by a form ID which has duplicate item
values for the search keys provided. The rule target should be on the corresponding repeating
section item.

Use as many arguments as needed to fully defined the duplicate key.

For this function:

• You cannot use drop-downs, radio buttons, or checkbox values as function parameters or
as a target.

• Partial dates are accepted for date comparison.

Note:

The presence of any partial date among instances will make other full dates to be
taken in the same format for comparison. For example, if there is a partial date
instance 'UNK-JAN-2022', only the month and year values in other dates will be
taken for the comparison, even if they are full dates. Similarly, if there is a partial
date instance 'UNK-UNK-2022', only the year value will be used for comparison in
all dates.

This is an aggregation function. The rule will be run for each form instance in the case where
the target is on a two-section form.

Syntax

findDuplicate2SForm(formInstance, 'variable1', 'variable2',...)

Parameters

variable(s)
Item variables to evaluate. These are declared rule variables with reference path
eventId.formId.itemId.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

formInstance
If this is null, the check is done for all instances of a two-section form. If a value is provided,
the check is done for table rows on that two-section form instance.

Chapter 3
Two-section form functions

3-46

Return value

Returns true if duplicate values are found; false if duplicate values are not found.

Example 3-60 Check to see if any duplicate two-section form instances exist with the
same values for Lab and Test Name

// Given 5 two-section form instances with items "Lab" and "Test Name"
if (findDuplicate2sForm(null,'itmLab', 'itmTestName')) {
 return false;
} else {
 return true;
}

Example 3-61 Check to see is a form instance is a duplicate of another form instance

// Raise a query if 2 section form instance is duplicate of any other form
instance

return findDuplicate2SForm(null, 'txt');

// Raise a query if 2 section table instance #2 is duplicate of any other
table instance

var arrAE = findDuplicate2SForm(2, "txt");
return (arrAE.length <= 1)?false:true;

findDuplicate2SFormWithinRange()
Detect duplicate data across two-section form instances for a given item within the same date
range, either within the flat section or the repeating section. The data is identified by a form ID
which has duplicate item values for the search keys or date ranges provided. The rule target
should be on the corresponding repeating section item.

For this function:

• You cannot use drop-downs, radio buttons, or checkbox values as function parameters or
as a target.

• If a variable is designed to hold a partial date, you must provide the value for that
parameter in the same partial date format.

• If a record has no data entered for the required dates, the record is skipped for
comparison.

The first two parameters should always be the date range. Additional search keys can be
provided.

Note:

This is an aggregation function. The rule will be run for each instance in the case
where the target is on the repeating section of a two-section form.

Chapter 3
Two-section form functions

3-47

Syntax

findDuplicate2SFormWithinRange(formInstance,'startDateVariable','endDateVariab
le','variable1',...)

Parameters

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

formInstance
Determines within which two-section form instance to look for a duplicate:

• If null and variable in the flat section, will search for a duplicate in the flat section across
all form instances.

• If null and variable in the table section, will search for a duplicate in all table rows across
all form instances.

• If a formInstance value is provided, the search will be performed across all the table rows
of the specified instance.

startDateVariable
(Required) Date item on a repeating form. The date selected in this field, as per the variable
definition, will be taken in as the lower limit of the date range.

endDateVariable
(Required) Date item on a repeating form. The date selected in this field, as per the variable
definition, will be taken in as the higher limit of the date range.

variable(s)
(Optional) Additional Item variable to search.

Return value

Returns true if duplicate values are found; false if duplicate values are not found.

Example 3-62 Check to see if any instance exist within the same onset date range and
symptom value across all two-section form instances.

// Given 5 repeating form instances with items "onsetStartDate",
"onsetEndDate and "Symptom"
if
(findDuplicate2SFormWithinRange(null,'itmOnsetDateStart','itmOnsetDateEnd','it
mSymptom') === true) {
 return false;
} else {
 return true;
}

// Fires a query if more than 1 repeating instance in a two-section form is
found within the same date range and with the same symptom.
//

Chapter 3
Two-section form functions

3-48

// Note: If any repeating instance of the two-section form has a null start
or end date then the system assumes a date in order to successfully
// perform the date range overlap check. If the start date is null then the
system assumes it to be 01 Jan 0001 and if the
// end date is null then it is assumed to be 01 Dec 3099.

findMinIn2SForms()
Find the minimum value of a given data item in all instances of the repeating section in a two-
section form. This function works only for numeric fields.

For this function you can only use number-type questions. You cannot use drop-downs, radio
buttons, or checkbox values as function parameters or as a target.

Note:

This is an aggregation function. The rule is run for each instance in the case where
the target is on a repeating section of a two-section form.

Syntax

findMinIn2SForms(formInstance,'variable')

Parameters

formInstance
The form instance that gets searched to find the minimum value.

• If formInstance is null and variable is in flat section, the flat section of all instances is
searched.

• If formInstance is null and variable is in a table row, all table rows in all instances are
searched.

• If formInstance value is provided, the search is across the table rows of the specified
instance only.

variable
Item variable to search.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

Return value

Returns the minimum value across all instances or "0" if no minimum can be found.

Chapter 3
Two-section form functions

3-49

Example 3-63 Find the minimum value of the "weight" number item across all
repeating section instances in a two-section form in a visit

// Given 5 repeating section instances in a two-section form with "weight"
item containing values of "150, 200, 250, 300, 350"
return findMinIn2SForms(null,'varWeight');

// returns 150

findMaxIn2SForms()
Find the maximum value of a given data item in all instances of a repeating section in a two-
section form. This function works only for numeric fields.

For this function you can only use number-type questions. You cannot use drop-downs, radio
buttons, or checkbox values as function parameters or as a target.

Note:

This is an aggregation function. The rule is run for each instance in the case where
the target is on a repeating section of a two-section form.

Syntax

findMaxIn2SForms(formInstance,'variable')

Parameters

formInstance
The form instance that gets searched to find the maximum value.

• If formInstance is null and variable is in flat section, the flat section of all instances is
searched.

• If formInstance is null and variable is in a table row, all table rows in all instances are
searched.

• If formInstance value is provided, the search is across the table rows of the specified
instance only.

variable
Item variable to search, which reference path is: eventId.formId.itemId.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

Return value

Returns the maximum value across all instances or "0" if no maximum can be found.

Chapter 3
Two-section form functions

3-50

Example 3-64 Find the maximum value of "weight" number item across all repeating
instances of a two-section form in a visit

// Given 5 repeating section instances in a two-section form with "weight"
item containing values of "150, 200, 250, 300, 350"
return findMaxIn2SForms(null,'varWeight');

// returns 350

findMinDateIn2SForm()
Find the minimum value of given date, date-time, or partial date items in all repeating instances
of a two-section form. This function is only applicable to date fields.

Note:

This is an aggregation function. The rule is run for each instance in the case where
the target is on the repeating section of a two-section form.

Syntax

findMinDateIn2SForm('variable', DateMask)

Parameters

variable
Rule variables, with reference path: eventId.formId.itemId.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

DateMask
Optional. Date mask to use for substitution for partial dates. If not provided, partial dates are
excluded from the calculation.

Note:

Use mask only for date elements and do not use it for time elements. Any missing
value in the time part is considered as 00.

Return value

• Minimum date value in String format. For example, '27-Jan-2021 00:00'.

• null if minimum is not found.

Chapter 3
Two-section form functions

3-51

Usage tips

• Use 'DD-MON' format as DateMask to substitute unknown (UNK) values in the partial date
values. For example, if the mask is '01-MAR':

Partial date value Masked date Notes

'UNK-FEB-2020' '01-FEB-2020' Made effective for calculation
using the day part of the mask.

'UNK-UNK-2020' '01-MAR-2020' Made effective for calculation
using both, the day and month
parts of the mask.

• To convert return value to JavaScript date object, extra formatting should be done. For
example:

vExample = '10-Jul-2022 10:UNK:UNK'
new Date(vExample.replace(/UNK/g, "00"))

Example 3-65 Get the minimum date value for an item across a set of repeating
section instances on a two-section form

// Get the minimum date value for an item across a set of repeating section
instances on a two-section form

return findMinDateIn2SForm('aeDate');

// Same as above, using a partial date field aeDate (UNK-MMM-YYYY)

return findMinDateIn2SForm('aeDate', '01-JAN');

//to compare with another date
var mind= findMinDateIn2SForm('a');
var today = new Date();
var mindate = new Date(mind);
if(dateDiffInDays(today,mindate)>0){
 return "today>min";
}
return "today<min";

findMaxDateIn2SForm()
Find the maximum value of the given date, date-time, or partial-date items in all of the
repeating instances of a two-section form. This function is only applicable to date fields.

Note:

This is an aggregation function. The rule is run for each repeating section instance in
the case where the target is on a two-section form.

Chapter 3
Two-section form functions

3-52

Syntax

findMaxDateIn2SForm('variable', DateMask)

Parameters

variable
Rule variables, with reference the path: eventId.formId.itemId.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

DateMask
Optional. Date mask to use for substitution for partial dates. If not provided, partial dates are
excluded from the calculation.

Note:

Use mask only for date elements and do not use it for time elements. Any missing
value in the time part is considered as 00.

Return value

• Maximum date value in String format. For example, '27-Jan-2021 00:00'.

• null if maximum is not found.

Usage tips

• Use 'DD-MON' format as DateMask to substitute unknown (UNK) values in the partial date
values. For example, if the mask is '01-MAR':

Partial date value Masked date Notes

'UNK-FEB-2020' '01-FEB-2020' Made effective for calculation
using the day part of the mask.

'UNK-UNK-2020' '01-MAR-2020' Made effective for calculation
using both, the day and month
parts of the mask.

• To convert return value to JavaScript date object, extra formatting should be done. For
example:

vExample = '10-Jul-2022 10:UNK:UNK'
new Date(vExample.replace(/UNK/g, "00"))

Chapter 3
Two-section form functions

3-53

Example 3-66 Get the maximum date value for an item across a set of repeating
section instances on a two-section form

// Get the maximum date value for an item across a set of repeating section
instances on a two-section form

return findMaxDateIn2SForm('aeDate');

// Same as above, using a partial date field aeDate (UNK-MMM-YYYY)

return findMaxDateIn2SForm('aeDate', '01-JAN');

//to compare with another date
var maxd= findMaxDateIn2SForm('a');
var today = new Date();
var maxdate = new Date(maxd);
if(dateDiffInDays(today,maxdate)>0){
 return "today>max";
}
return "today<max";

findMatching2SForm()
Find a repeating section instance of a two-section form, identified by the row ID, that matches
the item value provided as a search key. This function supports partial dates

For this function:

• Drop downs, radio buttons, and checkbox values are not supported as a function
parameter or as a target.

• If a variable is designed to hold a partial date then provide the value for that parameter in
the same partial date format. You can use partial dates in the following formats:

– <dd-mmm-yyyy hh:mm>

– <dd-mmm-yyyy hh>

– <dd-mmm-yyyy>

– <mmm-yyyy>

– <yyyy>

Note:

The presence of any partial date among instances will make other full dates to be
taken in the same format for comparison. For example, if there is a partial date
instance 'UNK-JAN-2022', only the month and year values in other dates will be
taken for the comparison, even if they are full dates. Similarly, if there is a partial
date instance 'UNK-UNK-2022', only the year value will be used for comparison in
all dates.

This is an aggregation function. The rule is run for each form instance in the case where the
target is on a two-section form.

Chapter 3
Two-section form functions

3-54

Syntax

findMatching2SForm(formInstance, 'variable1', value1, 'variable2',
value2, ...)

Parameters

formInstance

• If null, the search considers an array of existing instances of two-section forms. Ideally
this should be used with variables inside the flat section of the form.

• If a value is provided, the search considers an array of existing table rows on the specified
instance of the two-section form.

variable(s)
Item variable to search.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

value(s)
Search values.
These valuesmust be hard-coded and cannot be rule variables:

• Dates must be provided inside the string 'Date(dd-mmm-yyyy hh:mm:ss)'.

• You can use partial dates in the following formats:

– <dd-mmm-yyyy hh:mm>

– <dd-mmm-yyyy hh>

– <dd-mmm-yyyy>

– <mmm-yyyy>

– <yyyy>

• Times must be provided inside the string 'Time(hh:mm:ss)'.

• You can use partial times in the following formats:

– <hh:mm>

– <hh>

Return value

Returns -1 if no matches are found or the index number (>0) of the form instance if at least one
matching instance is found. If multiple instances are found, only the first index is returned.

Chapter 3
Two-section form functions

3-55

Note:

In dates, UNK values are considered to match any other value. For example:
'Date(01-Feb-2022)' and 'Date(20-Feb-2022)' are both considered as a match of
an entry with UNK-Feb-2022 date value.

When searching across all instances for the two-section form (such as formInstance = null),
the function returns the form instance number of the match. When searching a specific
instance (for example, formInstance = 1), The function returns the table row instance number
of the match.

Example 3-67 Raise a query if any instances exist where symptom = "headache" and
pulse rate = "100"

// Given 5 two-sections form instances with items "itmSymptom" and "itmPulse"
on flat part
// Fires query if any of the 5 instances contain both itmSymptom = "headache"
AND itmPulse = 100.
if (findMatching2SForm(null, 'itmSymptom', "headache", 'itmPulse', 100) > 0) {
 return false;
} else {
 return true;
}

// Search table rows inside the 4th instance of the 2-section form
// Fires query if any rows inside the 4th form instance contain both
itmSymptom = "headache" AND itmPulse = 100.
if (findMatching2SForm(4, itmSymptom, "headache", itmPulse, 100) > 0) {
 return false;
} else {
 return true;
}

findMatching2SFormWithinRange()
Find an instance of a repeating section of a two-section form, identified by the row ID, that
matches the item value provided as a search key. The search can be based on search keys or
date ranges.

For this function:

• You cannot use drop-downs, radio buttons, or checkbox values as function parameters or
as a target.

• The first two parameters should always be the date range. Additional search keys may be
provided after that.

• This function also considers entries where the dates are null.
If any repeating form instance has a null start or end date then the system assumes a date
in order to successfully perform the date range overlap check:

– If the start date is null then the system assumes it to be 01-Jan-0001.

– If the end date is null then it is assumed to be 01-Dec-3099.

Chapter 3
Two-section form functions

3-56

• If a variable is designed to hold a partial date then provide the value for that parameter in
the same partial date format. You can use partial dates in the following formats:

– <dd-mmm-yyyy hh:mm>

– <dd-mmm-yyyy hh>

– <dd-mmm-yyyy>

– <mmm-yyyy>

– <yyyy>

The Rule returns the index of the repeating section instance in a two-section form with
overlapping dates.

Note:

This function also considers entries where the dates are null. This is an aggregation
function. The rule is run for each instance in the case where the target is on the
repeating section of a two-section form.

Syntax

findMatching2SFormWithinRange('startDateVariable',startDateValue,
'endDateVariable', endDateValue, 'variable1', value1, 'variable2',
value2, ...)

Parameters

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

startDateVariable
Required. Date item.

startDateValue
Required. Date value in the form of a string.
These must be hard-coded and cannot be rule variables:

• Dates must be provided inside the string 'Date(dd-mmm-yyyy hh:mm:ss)'.

• You can use partial dates in the following formats:

– <dd-mmm-yyyy hh:mm>

– <dd-mmm-yyyy hh>

– <dd-mmm-yyyy>

– <mmm-yyyy>

Chapter 3
Two-section form functions

3-57

– <yyyy>

• Times must be provided inside the string 'Time(hh:mm:ss)'.

• You can use partial times in the following formats:

– <hh:mm>

– <hh>

endDateVariable
Required. Date item.

DateValue
Required. Date value in the form of a string.
Consider same requirements as in startDateValue paraemter.

variable(s)
Optional. Item variable to search.

value(s)
Optional. Search value(s). These must be hard-coded and cannot be rule variables.

Return value

Returns -1 if no matches are found, or the index number (>0) of the instance of the repeating
section in a two-section form if at least one matching instance is found. If multiple instances
are found, only the first index is returned.

Note:

In dates, UNK values are considered to match any other value. For example:
'Date(01-Feb-2022)' and 'Date(20-Feb-2022)' are both considered as a match of
an entry with UNK-Feb-2022 date value.

Example 3-68 Raise a query if any instances exist where a Date variable is between a
given range and there is any other given condition that matches

// Given 5 repeating form instances with items "onsetStart", "onsetEnd" and
"itmSymptom"
//Raises query if symptom = "headache" AND onSet date is between Jan 1 2020
and March 1 2020
if (findMatching2SFormWithinRange('onsetStart', 'Date(01-JAN-2020)',
'onsetEnd', 'Date(01-MAR-2020)', 'itmSymptom', "headache") > 0) {
 return false;
} else {
 return true;
}

// Fires query if any of the 5 instances contain onset dates between Jan 1
2020 - March 1 2020 AND itmSymptom = "headache"

//if rule variable (datetimeVar) is datetime componentif
(findMatching2SFormWithinRange(2, 'onsetStart', 'Date(01-JAN-2020)',
'onsetEnd', 'Date(01-MAR-2020)', 'datetimeVar', 'Date(10-Jun-2010 11:12:15)')

Chapter 3
Two-section form functions

3-58

> 0) {
return false;
} else {
return true;
}

//if rule variable (timeVar) is time componentif
(findMatching2SFormWithinRange(2, 'onsetStart', 'Date(01-JAN-2020)',
'onsetEnd', 'Date(01-MAR-2020)', 'timeVar', 'Time(11:12:15)') > 0) {
return false;
} else {
return true;
}

find2SFormInstance()
Find an instance of the repeating section in a two-section form that contains a value which
matches the search value using a supplied operator.

This function is similar to findMatching2SForm(). However, it allows the rule designer to
specify matching operands (=, >, <, >=, <=).

Note:

This is an aggregation function. The rule is run for each instance in the case where
the target is on the repeating section in a two-section form.

Syntax

find2SFormInstance(formInstance, DateMask, 'variable1', 'compareOperator1',
value1, 'variable2', ...)

Parameters

formInstance

• If formInstance is null and variable is in flat section, the flat portion across all instances
is searched.

• If formInstance is null and variable is in a table row, the search is across all table rows in
all instances.

• If formInstance value is provided, the search is across the table rows of the specified
instance.

DateMask
Flag to specify how partial dates should be handled.

• null. Ignore partial dates when doing comparisons.

Chapter 3
Two-section form functions

3-59

• value. Replace the UNK component in the partial date with the specified value. For
example: entering '10-Apr' substitutes with '10' every UNK value of Day (DD) component
and with 'Apr' every UNK value of Month (MMM) component.

Note:

Use mask only for date elements and do not use it for time elements. Any
missing value in the time part is considered as 00.

variable
Item variables to search.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

compareOperator
Operator to use for the comparison: =, >, <, >=, <=.

value
Value to compare variable with as a string.

• Date values can be provided as a Javascript Date variable or as a string in the following
formats:

– 'Date(dd-mmm-yyyy)'
– 'Date(dd-mmm-yyyy hh:mm:ss)'
– 'dd-mmm-yyyy'
– 'dd-mmm-yyyy hh:mm:ss'

• Time values can be provided as 'Time(hh:mm:ss)'

Return value

Returns -1 if no matches are found or the index number (>0) of the repeating section instance
if at least one matching instance is found. If multiple instances are found, only the first index is
returned.

Usage tips

• Values in the custom function should be JavaScript variables or direct values. Do not use
operand variables directly in the custom function expression.

• If other operands/variables are to be used for a value, it has to be assigned first to the
JavaScript variable and then used in the function expression.

• Use 'DD-MON' format as DateMask to substitute unknown (UNK) values in the partial date
values. For example, if the mask is '01-MAR':

Partial date value Masked date Notes

'UNK-FEB-2020' '01-FEB-2020' Made effective for calculation
using the day part of the mask.

Chapter 3
Two-section form functions

3-60

Partial date value Masked date Notes

'UNK-UNK-2020' '01-MAR-2020' Made effective for calculation
using both, the day and month
parts of the mask.

Example 3-69 Raise a query if there is an instance of pulse greater than a given value

// Raise a query if there is an instance of pulse > 100
return (find2SFormInstance(null, null, 'pulseVal','>', 100) > 0)?
false:true; //query is raised when false is returned

Example 3-70 Raise a query if there is an instance of a date variable on or after a given
date value

// Raise a query if there's an instance where onDate is >= 10-Jun-2010
//(onDate is partial UNK-UNK-YYYY)
return (Find2SFormInstance(null, '10-Jun', 'onDate', '>=', '10-Jun-2010') >
0)?false:true;

//Example using operand variable values
//Raise a query if there's an instance where onDate is on or after the enddt
dtval=enddt;
return (Find2SFormInstance(null, '10-Jun', 'onDate', '>=', dtval) > 0)?
false:true;

Example 3-71 Raise a query if there is an instance of a datetime variable on or after a
given datetime value

return (find2SFormInstance(2, '10-Jun', onDateTime , '>=', '10-Jun-2010
11:12:15') > 0)?false:true;
//or
return (find2SFormInstance(2, '10-Jun', 'onDateTime' , '>=', 'Date(10-
Jun-2010 11:12:15)') > 0)?false:true;

Example 3-72 Raise a query if there is an instance of a Time variable on or after a
given time value

return (find2SFormInstance(2, null, 'onTime' ,'>=', 'Time(11:12:15)') > 0)?
false:true;

Chapter 3
Two-section form functions

3-61

list2SInstances()
List all instance numbers for a two-section form.

Note:

This is an aggregation function. The rule is run for each form instance in the case
where the target is on a two-section form.

Syntax

list2SInstances('variable', formInstance, includeDeleted)

Parameters

variable
An item that exists on the visit or form to search.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

FormInstance

• If null, the search considers an array of existing instances of two-section forms. Ideally
this should be used with variables in the flat section of the form.

• If a value is provided, the search considers an array of existing table rows on the specified
instance of the two-section form.

includeDeleted

• null or 0 - Do not include deleted two-section instances in the return array.

• 1 - Include deleted two-section instances in the array count.

Return value

An array of two-section form instance numbers.

Example 3-73 Raise a query if AE form instance #2 does not exist

// Raise a query if AE form instance #2 does not exist
var arrAE = list2SInstances('onDate', 0);
return (arrAE.indexOf(2) == -1)?false:true;

Chapter 3
Two-section form functions

3-62

getCurrent2SFormInstance()
Get the form instance number where the rule is currently being run.

Note:

This is an aggregation function. The rule is run for each form instance in the case
where the target is on a two-section form.

Syntax

getCurrent2SFormInstance()

Parameters

None.

Return value

Two-section form instance number where the rule is being run.

Example 3-74 If this is the first instance, raise a query if aeDate is not entered

// If this is the first instance, raise a query if aeDate is not entered

return (getCurrent2SFormInstance() == 1 && aeDate === null)?false:true;

getCurrent2STableInstance()
For two-section forms, find the current table row instances where the rule is currently being
run.

Note:

This is an aggregation function. The rule is run for each form instance in the case
where the target is on a two-section form.

Syntax

getCurrent2STableInstance()

Parameters

None.

Return value

• Instance number (starts with 1) where the rule is currently being run.

Chapter 3
Two-section form functions

3-63

• -1 if it is not a two-section form.

Example 3-75 If this is the first instance, raise a query if aeDate is not entered

// If this is the first instance, raise a query if aeDate is not entered

return (getCurrent2STableInstance() == 1 && aeDate === null)?false:true;

getMatching2SFormsCount()
Get the number of repeating instances in a two-section form that match the item values
provided as search keys.

Syntax

getMatching2SFormsCount(formInstance, 'variable1', value1, 'variable2',
value2, ...)

Parameters

formInstance
Determines within which two-section form instance or section to look for a duplicate:

• If null and variable in the flat section, will search for a duplicate in the flat section across
all form instances.

• If null and variable in the table section, will search for a duplicate in all table rows across
all form instances.

• If a formInstance value is provided and variable is in the flat section, the search will be
performed in the flat section of the specified instance.

Note:

This would constitute a search in a single instance.

• If a formInstance value is provided and variable is in the table section, the search will be
performed across all the table rows of the specified instance.

variable
Rule variable.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

value
Value to search for.

Return value

Count of matching instances depending on the passed in parameters:

Chapter 3
Two-section form functions

3-64

• If formInstance is null and variable is in flat section, the count of matching repeating form
instances will be returned.

• If formInstance is null and variable is in a table row, the count of matching repeating
table row instances will be returned.

• If formInstance value is provided and variable is in the flat section, the count of matching
instances within the flat section of specified form instance will be returned.

• If formInstance value is provided and variable is in the table section, the count of
matching repeating table row instances within the specified form instance will be returned.

Note:

In dates, UNK values are considered to match any other value. For example:
'Date(01-Feb-2022)' and 'Date(20-Feb-2022)' are both considered as a match of
an entry with UNK-Feb-2022 date value.

Usage Tips

• Can accept choice controls (radio controls, check box controls, and dropdowns) but can
only be searched by label, not value.

• Only one option can be provided as search text for choice controls.

• Dates must be provided inside the string 'Date(dd-mmm-yyyy hh:mm:ss)'.

• You can use partial dates in the following formats:

– <dd-mmm-yyyy hh:mm>

– <dd-mmm-yyyy hh>

– <dd-mmm-yyyy>

– <mmm-yyyy>

– <yyyy>

• Times must be provided inside the string 'Time(hh:mm:ss)'.

• You can use partial times in the following formats:

– <hh:mm>

– <hh>

Example 3-76 Raise a query if there is more than one instance where AE Outcome is
"Fatal"

// Raise a query if there is more than one instance where AE Outcome = 'Fatal"

// Get current repeating instance
var ins = GetCurrent2SFormInstance();
var curVal = "";

// Get value of aeOut from current instance
var 2sData = get2SValues(ins,getCurrent2STableInstance(),['aeOut']);
if(2sData.exists && 2sData.aeOut){
 if((2sData.aeOut) !== "[]"){ // If the choice control has been
cleared out then do not read the label
 curVal = JSON.parse(2sData.aeOut)[0].label;

Chapter 3
Two-section form functions

3-65

 }
}

// check to see if there are more than 1 instance with "Yes"
return ((curVal == "Fatal") && (getMatching2SFormsCount(1, 'aeOut',
'[{"value":"3","label":"Fatal"}]') > 1))?false:true;

get2SValues()
Retrieve values for the provided variables of a two-section form or variables of a table in a two-
section form based on the tableInstance parameter.

If you want to fetch a single value from a two-section form instance, consider
getQuestionValue().

Syntax

get2SValues(formInstance, tableRowInstance, ['var1', 'var2', 'varN'])

Parameters

formInstance
Instance number of the two-section form to retrieve values from. This can be a JavaScript
variable or a number.

tableRowInstance
Instance number of the table of the two-section form to retrieve values from. This parameter is
null if you want to retrieve the value from the flat part of the two-section form. This parameter
can be a JavaScript variable or a number.

var1, var2, varN...
Item variable values to retrieve.

Note:

It is allowed to reuse variables passed into this function elsewhere in the rule
expression, however you must add the variable as a parameter using single quotes.

Return value

Returns a JSON object containing the variables (of same name as passed in param2) with
values:

• The returned variable value is the C1Date object if the variable is a partial date, or a Date
object if the variable is a full date. You can check this using the isPartialDate()
function.

• If the variable is a choice control (checkbox, radio, or drop-down), the returned variable
value is in JSON format: ("[{\"value\":\"3\",\"label\":\"TestLabel\"}]"). This can
be parsed using JSON.parse or the helper function parseChoice().

– parseChoice(rfData.v4_chk4))
– JSON.parse(rfData.v4_chk4))

Chapter 3
Two-section form functions

3-66

• The return object has a property named exists which returns true if any one of the
variables passed in has value for the passed in two-section form instance number.

Example 3-77 Get values for three item variables in AE form instance #1, and put them
to a text item

// Get values for 3 item variables in AE form instance #1, and put them to a
text item
var rfData = get2SValues(1, null, ['aeTerm','aeDate','aeSerious']);
if(rfData.exists){
 return rfData.aeTerm + " | " + rfData.aeDate.getFullYear() + " | " +
JSON.parse(rfData.aeSerious)[0].label;
} else {
 return;
}

// It is best practice to check if the variable has value before using it
var rfData = get2SValues(1, 2, ['aeTerm','aeDate']);
if(rfData.exists && rfData.aeTerm && rfData.aeDate){
 return rfData.aeTerm + " | " + rfData.aeDate.getFullYear() ;
} else {
 return;
}

Control the behavior of a rule
Control how a rule behaves, whether it relates to a study's version, visits in the study or the
JavaScript expression logic.

• isStudyVersion()
Compare the provided version with the current study version using the operator provided.

• getCurrentVisitPropertyValue()
Control rule behavior on different visits. For instance, if a rule is created on a question in a
form, and that form is associated with multiple visits, you can raise a query only on certain
visits in a study, not all visits.

• logMsg()
Get specific information regarding a rule's logic while debugging. Place log statements
where needed in the JavaScript expression to display values of defined variables and
messages to reveal a rule's behavior.

isStudyVersion()
Compare the provided version with the current study version using the operator provided.

Syntax

isStudyVersion(operator, version)
isStudyVersion(operator, version, variable1, variable2, ...)

Chapter 3
Control the behavior of a rule

3-67

Parameters

operator
Can be any of the following: <, >, =, <=, >=.

variable
Variables that are used in the rule expression for the true condition.

Return value

Returns true or false, depending on the comparison result.

Example 3-78 Example 1

//If Study Version is >= 1.0.0.5, multiply num1 by 10. Otherwise just return
num1.
if (isStudyVersion(">=", "1.0.0.5")) {
 return num1*10;
} else {
 // Do something else
 return num1;
}

Example 3-79 Example 2

If(isStudyVersion(">","10.1.2", variable1, variable2, variable3)) {
//do something
return variable1 + variable2 + variable3;
} else {
 If(isStudyVersion("<=","10.1.2", variable1, variable2))
 //do something else
 return variable1 + variable2;
 }
}

Note:

• isStudyVersion() with two parameters doesn't cover the situation where
item data is cleared or never entered. You can take care of this case by
comparing variables with an empty value and writing your own code for such a
situation. (For example, if (var) { //do something}).

• isStudyVersion() with more than two parameters lets a rule behave similar
to standard rule behavior for the situation where data is cleared or never entered.
In this case, no extra action is required.

• If isStudyVersion() is used with more than two parameters, use an else
condition as shown in Example 2.

Chapter 3
Control the behavior of a rule

3-68

getCurrentVisitPropertyValue()
Control rule behavior on different visits. For instance, if a rule is created on a question in a
form, and that form is associated with multiple visits, you can raise a query only on certain
visits in a study, not all visits.

By default, a rule is executed against every visit in the study that contains the form. When
declaring variables, for the visit field:

• If you leave -All Visits- in the visits field, the variable data will be retrieved from the form in
current visit where rule is being run.

• If you select a specific visit, for example the Screening visit, the variable data will be
retrieved from the form in the specified visit, in this case the Screening visit, for every visit
where the rule is executed.

You use this helper function for a rule to apply and be executed only against a specific visit.

Syntax

getCurrentVisitPropertyValue('propertyName')

Parameters

propertyName
propertyName in single quotes. propertyName could be any of the following:

• title

• visit ID

• event type

eventtype values can be one of following based on visit Design time: ScreeningVisit,
ScheduleAbleVisit, SubjectWithdrawalVisit, SubjectCompletionVisit,
UnScheduleAbleVisit, Event, AdverseEvent.

Return value

Returns the current visit property.

Example 3-80 Fetch the property value of the provided property of the current visit

// Returns (short-name) the current visit property 'visitid':
return getCurrentVisitPropertyValue('visitid')

// Returns (name) the current visit property 'title':
return getCurrentVisitPropertyValue('title')

// Returns event-type of the visit - will be one of the following
"ScreeningVisit","ScheduleAbleVisit","SubjectWithdrawalVisit","SubjectCompleti
onVisit","UnScheduleAbleVisit","Event","AdverseEvent"
return getCurrentVisitPropertyValue('eventtype')

// Example to demonstrate functionality based on current visit
if(getCurrentVisitPropertyValue ("visitid")==='visit1'){
 //add visit1 functionality here

Chapter 3
Control the behavior of a rule

3-69

}
else if(getCurrentVisitPropertyValue ("visitid")==='visit2'){
 //add visit2 functionality here
}
else{
 //else functionality
}

logMsg()
Get specific information regarding a rule's logic while debugging. Place log statements where
needed in the JavaScript expression to display values of defined variables and messages to
reveal a rule's behavior.

Syntax

logMsg(argument)

Parameters

argument
Expression or variable value to get logged and displayed for debug.
Only strings and numbers are supported as arguments, which means variables of these
types can be used. If you want to use an object as an argument you must use the
stringify() method so it is passed as a string.

Return value

The argument passed to the logMsg() helper function will be returned and displayed in the log
window when debugging.

Usage tips

Note:

Since the logMsg() helper function only runs in debug mode, there is no need to
remove the calls before publishing the rule.

Example 3-81 Using labels for variables

Use labels when logging variables to make the output easier to follow.

logMsg("weight: "+weight); // logs the label and the variable value

Output in the log window

weight: 160

Chapter 3
Control the behavior of a rule

3-70

Example 3-82 Using log statements to debug rule logic

Log messages as flags to reveal the logic driving the rule's behavior.

var weight = "All visits"."Form Demo"."item weight";
logMsg("weight: "+weight); // logs the label and the variable value
if(weight >160){
 logMsg("weight > 160"); // log the execution path for "if" return false; }
else{
 logMsg("NOT weight > 160"); // log the execution path for "else" return
true;}

Output in the log window

weight: 160
NOT weight > 160

Example 3-83 Using stringify() method to pass objects

Use stringify() method to parse objects to strings, so they can be used in log statements.

var val1 = getValues("dt1","tpt");
logMsg("dt1 = "+JSON.stringify(dt1));

Output in the Log Window

dt1 =

[{"visitName":"SCR","deleted":false,"tableRowInstance":null,"branchName":null,
"eventType":"ScreeningVisit","formRepeatNumber":1,
"value":"2022-03-09T00:00:00.000Z","cycleNumber":null,"empty":false,"treatment
Arm":null},
{"visitName":"SCR","deleted":false,"tableRowInstance":null,"branchName":null,"
eventType":"ScreeningVisit","formRepeatNumber":2,
"value":"2022-03-09T00:02:00.000Z","cycleNumber":null,"empty":false,"treatment
Arm":null},
{"visitName":"SCR","deleted":false,"tableRowInstance":null,"branchName":null,"
eventType":"ScreeningVisit","formRepeatNumber":3,
"value":"2022-03-09T06:00:00.000Z","cycleNumber":null,"empty":false,"treatment
Arm":null}]

Detect missing data
Use this example of a custom Javascript rule when you want to find missing data.

• Search and detect missing values
Verify collected data and raise a query any time a data field is found incomplete.

Chapter 3
Detect missing data

3-71

Search and detect missing values
Verify collected data and raise a query any time a data field is found incomplete.

if ((ae.search(“Yes”) >0) && (seriousnessCriteria === null)) {
 return false;
} else {
 return true;
}

If the adverse event is serious, then the seriousness criteria must be filled.

Multiple choice question functions
Modify a value in a multiple-choice type of question.

• Deprecated - getArrayFromDropdown()
Convert the selected drop-down (choice) labels into an array.

• Deprecated - getStringFromDropdown()
Convert selected drop-down (choice) labels into a comma-separated string.

• setChoiceLabel()
Use this helper function in a calculated rule to add a selection to an existing choice (drop-
down, radio button, or checkbox).

• setChoiceValue()
Use this helper function in a calculated rule to add a value to an existing choice (drop-
down, radio button, or checkbox).

• clearChoice()
Use this helper function to clear values in multiple choice type questions.

• getArrayFromChoice()
Convert the selected choice labels or codes from a multiple choice question (drop-down,
radio button, check box) into an array.

• getStringFromChoice()
Convert selected choice labels or codes from a multiple-choice question (drop-down, radio
button, check box) into a comma-separated string.

Deprecated - getArrayFromDropdown()
Convert the selected drop-down (choice) labels into an array.

Note:

This function continues to work for drop-downs, However, consider using
getArrayFromChoice() which supports all choice-type controls.

Syntax

getArrayFromDropdowm(variable)

Chapter 3
Multiple choice question functions

3-72

Parameters

variable
Drop-down variable from the rules editor.

Return value

Returns an empty array, if no values are selected or an array of selected drop-down labels.

Example 3-84 Given a drop-down dd with labels "Yes" and "No" selected

// Return the first selected label from dropdown item dd:
return getArrayFromDropdown(dd2)[0];
// returns "Yes"

// Return the second selected label from dropdown item dd:
return getArrayFromDropdown(dd2)[1];
// Returns "No"

Deprecated - getStringFromDropdown()
Convert selected drop-down (choice) labels into a comma-separated string.

Note:

This function continues to work for drop-downs. However, consider using
getStringFromChoice() which supports all choice-type controls.

Syntax

getStringFromDropdown(variable)

Parameters

variable
Drop-down variable from the rules editor.

Return value

Returns an empty string, if no labels are selected or a comma-separated string of selected
drop-down labels.

Example 3-85 Given a drop-down dd with labels "Yes" and "No" selected

// return all selected labels from dropdown
return getStringFromDropdown(dd2);

// if single label is selected, returns "label1"
// If multiple labels are selected, returns "label1,label2"

Chapter 3
Multiple choice question functions

3-73

setChoiceLabel()
Use this helper function in a calculated rule to add a selection to an existing choice (drop-
down, radio button, or checkbox).

The expression creates a string JSON value that must be returned to the target control and
must be used in combination with clearChoice().

Syntax

setChoiceLabel(labelStr, variable)

Parameters

labelStr
Label string.

variable
Choice variable from the rule editor.

Return value

Returns an empty JSON object string or a JSON object array string of selected choice labels.

Example 3-86 Given a drop-down (choice) control with multiple labels including
"Allergies" and "Obesity" as the target of the calculation rule

// Select "Allergies"
if (someCondition) {
 return setChoiceLabel("Allergies");
} else {
 return clearChoice();
}
// selects "Allergies" in the calculated control

// Select "Allergies" and "Obesity"
var b;
if (someCondition) {
 b = setChoiceLabel("Allergies");
 return setChoiceLabel("Obesity", b);
} else {
 return clearChoice();
}
// selects "Allergies" and "Obesity" in the calculated control

setChoiceValue()
Use this helper function in a calculated rule to add a value to an existing choice (drop-down,
radio button, or checkbox).

The expression creates a string JSON value that must be returned to the target control and
must be used in combination with clearChoice().

Chapter 3
Multiple choice question functions

3-74

Syntax

setChoiceValue(valueStr, variable)

Parameters

valueStr
Value string.

variable
Choice variable from the rule editor.

Return value

Returns an empty JSON object string or a JSON object array string of selected choice values.

Example 3-87 Given a drop-down (choice) control with multiple labels including
"Allergies" and "Obesity" with values "4" and "45" respectively, as the target of the
calculation rule

// Select label "Allergies" having value "4"
if (someCondition) {
 return setChoiceValue("4");
} else {
 return clearChoice();
}
// selects "Allergies" in the calculated control

// Select "Allergies" having value "4" and "Obesity" having value "32"
var b;
if (someCondition) {
 b = setChoiceValue("4");
 return setChoiceValue("32", b);
} else {
 return clearChoice();
}
// selects "Allergies" and "Obesity" in the calculated control

clearChoice()
Use this helper function to clear values in multiple choice type questions.

Note:

For more information about clearing data, see Understanding data clearing.

Syntax

clearChoice()

Chapter 3
Multiple choice question functions

3-75

Parameters

None.

Return value

Returns an empty JSON object string.

Example 3-88 Given a drop-down (choice) control, clear the control

// Clear a dropdown control. Must be returned to clear the control.
return clearChoice();
// clears the target calculated control

getArrayFromChoice()
Convert the selected choice labels or codes from a multiple choice question (drop-down, radio
button, check box) into an array.

Syntax

getArrayFromChoice(variable, [option])

Parameters

variable
Choice variable from the rule editor.

option
Optional. Defines which element of a choice control value to return:

• "label": returns the selected choice control label (Default if no option is provided).

• "code": returns the selected choice control code if the question choice comes form a
codelist.

Return value

• Empty array if nothing is selected.

• An array of the selected choice labels.

Example 3-89 Given a dropdown (choice) control d2 with the labels "Yes" and "No"
selected

// Return the first selected label from choice item dd2:
returngetArrayFromChoice(dd2)[0];
// returns "Yes"

// Return the second selected label from choice item dd2:
return getArrayFromChoice(dd2)[1];
// Returns "No"

// Return the first selected code from choice item dd2:
return getArrayFromChoice(dd2, "code")[0];
// returns C1

Chapter 3
Multiple choice question functions

3-76

getStringFromChoice()
Convert selected choice labels or codes from a multiple-choice question (drop-down, radio
button, check box) into a comma-separated string.

Syntax

getStringFromChoice(variable, [option])

Parameters

variable
Choice variable from the rule editor.

option
Optional. Defines which element of a choice control value to return:

• "label": returns the selected choice control label (Default if no option is provided).

• "code": returns the selected choice control code if the question choice comes form a
codelist.

Return value

• Empty string if no labels are selected.

• A comma-separated string of the selected choices.

Example 3-90 Given a dropdown (choice) control dd2 with labels "Yes" and "No"
selected

// return all selected labels from choice
return getStringFromChoice(dd2);
// if single label is selected, returns "label1"
// If multiple labels are selected, returns "label1,label2"

// return a code from choice:
return getStringFromChoice(dd2, "code");
// returns C1

Example 3-91 Convert a codelist term used as a coding target item into a string value

You can use an expression to convert a coding target using a choice question with a related
specify text question.

For this example, you have designed a choice question with an option for Other. When the site
user chooses Other, they are prompted to enter descriptive text into another question. This
expression code allows you to combine predefined choice text and the Other specified text into
a single question that is then tagged as the context item for coding. This is helpful because you
can only tag a single question as the given context item.

if (ROUTE !== null)
 {
 return (ROUTESP === null ? getStringFromChoice(ROUTE) :
(getStringFromChoice(ROUTE) + ': ' + ROUTESP));

Chapter 3
Multiple choice question functions

3-77

 }
else
 {
 return '';
 }

Multiple visit schedules and cycle visit functions
Control data collection on multiple visit schedules and cycles visits.

• getCurrentBranch()
Get the ID of the current branch.

• isSubjectOnBranch()
Check if a subject has started any visit in a specific branch.

• getCurrentTreatmentArm()
Retrieve the treatment arm short name that the current subject is on.

• getQuestionValue()
Return a single question value for provided item path. The item path should be a whole
path and should contain values for visitId, formId, and itemId. This function fetches
values from questions on both repeating and flat forms.

• getDataElementsArray()
Return an array of data element arrays that contain data collection information about all
existing instances for each variable.

• getCurrentCycle()
Retrieve the current cycle instance number.

• getCycleCount()
Get the current cycle instance number per subject within the input branch of the current
subject. For example, you can get the count of existing cycles.

• getCompletedCycle()
Retrieve the number of cycles that were completed by a subject.

getCurrentBranch()
Get the ID of the current branch.

Syntax

getCurrentBranch()

Parameters

None.

Return value

Returns branch short ID of the current branch (string) or an empty string if the visit is not a
branch visit.

Chapter 3
Multiple visit schedules and cycle visit functions

3-78

Note:

If the branch name is changed between study versions, use the isStudyVersion()
function to get the appropriate name.

Example 3-92 If the current branch is 'Branch01', set value of a dropdown to true

if (getCurrentBranch() == "Branch01") {
 return setChoiceLabel("TRUE");
} else {
 return setChoiceLabel("FALSE");
}

isSubjectOnBranch()
Check if a subject has started any visit in a specific branch.

Syntax

isSubjectOnBranch(branchShortName)

Parameters

branchShortName
The branch short ID for the branch you are querying for.

Return value

Returns true if the branch with the short name branchShortName contains any visits where
data has been entered or false if no visits are initialized in that branch.

Note:

If the branch name is changed between study versions, use the isStudyVersion()
function to get the appropriate name.

Example 3-93 If subject is on Branch01, set value of text box to "Branch1"

var onBranch = isSubjectOnBranch("Branch1");
if (onBranch) {
 return "Branch1 has been started";
} else {
 return "Branch1 NOT started";
}

Chapter 3
Multiple visit schedules and cycle visit functions

3-79

getCurrentTreatmentArm()
Retrieve the treatment arm short name that the current subject is on.

Syntax

getCurrentTreatmentArm()

Return value

Returns the current treatment arm short name for the subject (string) or an empty string, if the
treatment arm does not exist.

Example 3-94 Fetch the current treatment arm of the subject and return a value

if (getCurrentTreatmentArm()==="Placebo") {
 return "On Placebo" ;
} else {
 return "Not on Placebo" ;
}

getQuestionValue()
Return a single question value for provided item path. The item path should be a whole path
and should contain values for visitId, formId, and itemId. This function fetches values from
questions on both repeating and flat forms.

All Visits cannot be used in the variable definition. If you'd like to fetch multiple values from a
repeating form instance in a single function call, use thegetRFValues() function.

Note:

• This rule does not support Visit Start Date items.

• This is aggregation function, the rule is run for each form instance in the case
where the target is on a repeating form.

Syntax

getQuestionValue('ruleVariable', eventInstanceNumber, formInstanceNumber,
repeatFormNumber)

Parameters

Note:

If optional parameters are missing, the event instance number and form instance
number are taken from rule target context.

Chapter 3
Multiple visit schedules and cycle visit functions

3-80

ruleVariable
Variable (from the rule editor).

eventInstanceNumber
Event instance number/cycle instance number (optional). To reference non-repeating visits,
pass an empty string.

formInstanceNumber
Form instance number (optional).To reference a non-repeating form, pass an empty string.

repeatFormNumber
Repeat form number (optional) to reference items on a two section form.

Return value

The question value in the corresponding data type, or null if there is no value.

Note:

The value is returned even for deleted instances.

Question type Returned data type details.

Date Returned variable value will be a C1Date object in case of a variable
being a partial date, or it will be a Date object in the case of the variable
being a full date.
For additional information see Handle partial dates in custom rules.

Note:

When using date items, a null check must
be included. See the example for more
information.

Choice control:
• Checkbox
• Radio button
• Dropdown

The returned variable value is a string in JSON format:

"[{\"value\":\"3\",\"label\":\"TestLabel\"}]"

This can be parsed using JSON.parse or the helper function
parseChoice.

• parseChoice(result))
• JSON.parse(result))

Example 3-95 Using getQuestionValue in 2-section forms

To use getQuestionValue for items inside table rows of 2-section forms, the syntax is:

getQuestionValue('ruleVariable', eventInstanceNumber, repeatNumber,
formInstanceNumber)

// Get a value from an item in a flat form
return (getQuestionValue('text1');

Chapter 3
Multiple visit schedules and cycle visit functions

3-81

// Get a value from an item in repeating form instance #1
// Pass an empty string to eventInstance
return (getQuestionValue('text1', '', 1);

// Get a value from a flat form in unscheduled visit instance #1
// Pass an empty string to eventInstance
return (getQuestionValue('text1', 1, '');

// Get a date value from a flat form
var res = getQuestionValue('dt1');
if(res !== null) {
 return res.getFullYear();
} else {
 // do nothing
 return;
}

//In a 2-section form, get a value from Form 2, Table Row 3:
return getQuestionValue('v2', '', 3, 2);

getDataElementsArray()
Return an array of data element arrays that contain data collection information about all
existing instances for each variable.

Return an array of data element arrays that contain data collection information about all
existing instances for each variable.

Syntax

getDataElementsArray(var1, var2, ...)

Parameters

var1, var2, ...
Variables that are defined based on visits, forms, and items.

Return value

The rule returns an array of data element arrays with visit or branch short name.

Example 3-96 Rule with two variables: txt and num

var obj = getDataElementsArray(txt, num);
var result = "";

if(obj && obj.result)
{
 //list of dataelements for txt variable
 var txtPathObject = obj.result[0];
 //list of dataelements for num variable

Chapter 3
Multiple visit schedules and cycle visit functions

3-82

 var numPathObject = obj.result[1];

 //dataelement value can be referenced through index
 //return txtPathObject[0].value + " --- " + numPathObject[0].value;

 //dataelement value can be referenced through forEach loop
 txtPathObject.forEach(function(txtVar) {
 result = result + ">>>" + txtVar.value;
 });

 /*var result = "";
 numPathObject.forEach(function(numVar) {
 result = result + ">>>" + numVar.value;
 });*/
}

return result;

var obj = getDataElementsArray(txt, num);
var result = "";

if(obj && obj.result)
{
 //list of dataelements for txt variable
 var txtPathObject = obj.result[0];
 //list of dataelements for num variable
 var numPathObject = obj.result[1];

 //access to dataelements properties for txt variable
 if(txtPathObject[0].visitShortName=='Visit1')
 //do something
 if(txtPathObject[0].visitType=='SCHEDULED') //visit type
 //do something
 if(txtPathObject[0].eventInstanceNum=='1') //cycle instance number or
unscheduled visit instance number
 //do something
 if(txtPathObject[0].repeatSequenceNumber=='1') //repeating form instance
number
 //do something
 if(txtPathObject[0].value=='Yes') //###user friendly value to be
implemented
 //do something
}

return result;

These types of JavaScript expressions can be used in Oncology Solid Tumor studies to sum
up all the lesions prior to that visit and determine the lowest prior sum. Additionally, the rule can
be used to check if a certain value exists in at least one visit or to compare values with the
current visit, form, and so forth.

Chapter 3
Multiple visit schedules and cycle visit functions

3-83

getCurrentCycle()
Retrieve the current cycle instance number.

Syntax

getCurrentCycle()

Parameters

None.

Return value

Returns the current cycle instance number or -1 if the target form is not on a cycle visit.

Example 3-97 If the current cycle instance is even (2, 4, 6, and so on), set the value of
the dynamic form launch item to true

// get current cycle instance number
var currCycle = getCurrentCycle();

// if cycle instance is even, set value to true
if (currCycle > 1 && currCycle % 2 == 0) {
 return setChoiceLabel("TRUE");
} else {
 return setChoiceLabel("FALSE");
}

getCycleCount()
Get the current cycle instance number per subject within the input branch of the current
subject. For example, you can get the count of existing cycles.

Syntax

getCycleCount(branchShortName)

Parameters

branchShortName
The short name for the branch you want to count.

Return value

Returns the subject branch cycle instance number or -1 if the subject is not provided on the
branch.

Chapter 3
Multiple visit schedules and cycle visit functions

3-84

Note:

If the branch name is changed between study versions, use the isStudyVersion()
function to get the appropriate name.

Example 3-98 If the Branch01 has at least 1 started cycle, set the value of a drop-down
to true

// get the current cycle count of branch 'Branch01'
var cycleCount = getCycleCount('Branch01');

// if at least 1 cycle has been started in Branch01, set value to true
if (cycleCount > 1) {
 return setChoiceLabel("TRUE");
} else {
 return setChoiceLabel("FALSE");
}

getCompletedCycle()
Retrieve the number of cycles that were completed by a subject.

Syntax

getCompletedCycle(visitShortName)

Parameters

visitShortName
The branch short ID for the branch you are querying for.

Return value

Returns the number of cycles where the visit is in the Completed status (number) or -1 if
visitShortName is not a cycle visit.

Note:

If the branch name is changed between study versions, use the isStudyVersion()
function to get the appropriate name.

Example 3-99 If 3 cycle visits for a subject have been completed, set value of a
dynamic form launch item to true

if (getCompletedCycle("Vitals") == 3) {
 return setChoiceLabel("TRUE");
} else {
 return setChoiceLabel("FALSE");
}

Chapter 3
Multiple visit schedules and cycle visit functions

3-85

Formatting and other functions
Format messages and queries and perform other useful operations.

• setQueryMessage()
Set a query message dynamically within a rule. This query message is used for query
creation when the rule returns false.

• enableNotificationDetails()
Dynamically include or exclude the notification details in the notification email message.
This function defaults to yes. If not specified in the rule expression, the details are included
in the email message by default.

• getValues()
Use this helper function to fetch values for one or more variables across multiple visits, in
an array format ordered by visits.

setQueryMessage()
Set a query message dynamically within a rule. This query message is used for query creation
when the rule returns false.

Note:

This function cannot be used for rules that spawn a notification.

You can use the getDateDMYFormat() helper function to format a date before passing it to this
function.

Syntax

setQueryMessage(strMessage)

Parameters

strMessage
A string containing the query message. This string can be dynamically generated within the
rule expression.

Return value

A string containing the query message that has been set for query creation. Or, an empty string
if any errors occurred during the running of the function.

Note:

The dynamic query message is not set if its value is null, undefined, an empty string,
or contains a space only. The default query message provided on rule creation is
used when no dynamic query message is set upon running the rule.

Chapter 3
Formatting and other functions

3-86

Example 3-100 Set the query message when weight is less than 120

// Given "weight" item containing value of 110.
if (weight < 120){
var strMessage = "Subject weight of " + weight + " lb is less than the
required weight of 120 lb."
setQueryMessage(strMessage);
 return false; // create query
} else {

 return true; // close query
}

// A query is created with message "Subject weight of 110 lb is less than the
required weight of 120 lb."

enableNotificationDetails()
Dynamically include or exclude the notification details in the notification email message. This
function defaults to yes. If not specified in the rule expression, the details are included in the
email message by default.

The notification details include the following information, specific to the subject and target item
containing the rule:

• Study Name

• Study Mode

• Site Name

• Subject Number

• Visit

• Form

• Question

• Sequence Number (repeating form instance number, if present)

• Date & Time of Notification

Syntax

enableNotificationDetails(option)

Parameters

option
Set to 'yes' to include the notification details (default).
Set to 'no' to exclude the notification details.

Return value

Returns null.

Chapter 3
Formatting and other functions

3-87

Example 3-101 Exclude the notification details from the notification email

// Exclude the notification details
enableNotificationDetails('no');

// The notification mail message is created without the notification header

getValues()
Use this helper function to fetch values for one or more variables across multiple visits, in an
array format ordered by visits.

Note:

This is an aggregation function. The rule is run for each form instance in the case
where the target is on a repeating form. For empty rows in repeating forms and two-
section forms, only rows that were entered and then cleared will be included. Rows
that never had data entered into it, won't be returned.

When used with a two-section form, GetCurrentRFInstance() can be used to restrict
the rule to run only on the current two-section form instance.

Syntax

getValues('var1', 'var2', ...)

Parameters

'var1', 'var2', ...
Rule variable names (which define the visit, form, or item).

Return value

Returns true on success; otherwise, false.

Also, during the call to this function, rule variables are redefined with the gotten value as var1,
var2, ... additionally each variable holds an array with attributes.

Tip:

Rule variables will be redefined to null if there is no data elements related to this
variable. For this reason you should always validate if the variable contains any array
elements before you use it for processing data.

Each item in the array, for example var1[0], contains the following information as attributes:

Attribute Description

var1[0].visitName The name of the visit.

var1[0].deleted True if repeating form instance is deleted.

Chapter 3
Formatting and other functions

3-88

Attribute Description

var1[0].tableRowInstanc
e

The repeating table row instance in case it is within a table.

var1[0].branchName Name of branch.

var1[0].eventType Type of visit:
• Scheduled Visit
• Unscheduled Visit
• Event

var1[0].formRepeatNumbe
r

The repeating form instance number in case form is a repeating form.

var1[0].value Data element value, or null if values were cleared.
• Date elements:

– The returned variable value is a Date object in the case where
the variable is the full date.

– The returned variable value is a C1Date object in the case
where a variable is a partial date.
* For C1Date objects (partial dates), date values must be

fetched using date parts such as item.value.day,
item.value.month, and so forth instead of just
item.value.

// Sample JSON response for a partial date
item:
[
 {
 "visitName": "visit1",
 "deleted": false,
 "tableRowInstance": null,
 "branchName": null,
 "eventType": "ScheduleAbleVisit",
 "formRepeatNumber": null,
 "value": {
 "partialDate": true,
 "date": null,
 "day": "UNK",
 "month": 2,
 "year": 2021
 },
 "cycleNumber": null,
 "empty": false,
 "treatmentArm": null
 }
]

• Choice control elements: If the variable is a choice control
(checkbox, radio, or dropdown) then the returned variable value is a
string in JSON format:

 "[{\"value\":\"3\",\"label\":\"TestLabel\"}]"

This can be parsed using JSON.parse or parseChoice().

var1[0].cycleNumber The cycle number of the visit in case it is in a cycle.

var1[0].empty True if value was cleared or never entered in repeating form.

Chapter 3
Formatting and other functions

3-89

Attribute Description

var1[0].cleared True if repeating forms instance is cleared.

var1[0].treatmentArm The treatment arm.

Usage tips

If you are working with variables defined for -Any Visit- you must use this helper function to get
the values and use them in your expression. You can't work with the variables directly in your
logic. Use the following format, where 'variable' is your Any Visit type variable:

getValues('variable')

This type of variable definition allows you to work with data collected in forms that are not
present in the same visit as the target form in which you are creating your rule. For more
information see Define rule variables.

Limitations

• The amount of data which is returned by getValues() can be significant if the question
exists in more than one visit. This can impact performance of the data submit.

• Once you have passed a variable into getValues(), it cannot be reused as a discrete
value elsewhere in the rule. If you need to reference the discrete value for the row and visit
elsewhere, you need to declare a second variable.

Example 3-102 View results of the getValues function call for a single item

// this can be helpful during rule development to view the results returned
by the getValues function
// using a read-only text field as the target

var val = getValues("item1");
if (val == true) {
 return JSON.stringify(item1);
}

/* example results:
[
 {
 "visitName": "visit1",
 "deleted": false,
 "tableRowInstance": null,
 "branchName": null,
 "eventType": "ScheduleAbleVisit",
 "formRepeatNumber": null,
 "value": "Test",
 "cycleNumber": null,
 "empty": false,
 "treatmentArm": null
 },
 {
 "visitName": "visit2",
 "deleted": false,
 "tableRowInstance": null,

Chapter 3
Formatting and other functions

3-90

 "branchName": null,
 "eventType": "ScheduleAbleVisit",
 "formRepeatNumber": null,
 "value": "Test",
 "cycleNumber": null,
 "empty": false,
 "treatmentArm": null
 }
]
*/

Example 3-103 Sum all tumor diameter values across all visits

var sumTotalLongestDiameter = -1;

function calculateTumor(item, index)
{
 if (longestDiameter[index] !== null)
 {
 sumTotalLongestDiameter += longestDiameter[index].value;
 }
}

var rc = getValues("tumorID", "longestDiameter");

if (rc === true)
{
 tumorID.forEach(calculateTumor);

 // Set the value for the current row where this rule runs
 return sumTotalLongestDiameter;
}

Example 3-104 Sum tumor diameter values across all visits, excluding the Screening
visit by using a filter function

var rc = getValues("tumorID", "longestDiameter");

//filter by visit name
function filterFunction(item) {
 return item.visitName !== 'Screening';
}

var sumTotalLongestDiameter = -1;

function calculateTumor(item, index)
{
 if (longestDiameter[index] !== null)
 {
 sumTotalLongestDiameter += longestDiameter[index].value;
 }
}

if (rc === true)
{

Chapter 3
Formatting and other functions

3-91

 //exclude Screening visit
 var filterResult = tumorID.filter(filterFunction);
 filterResult.forEach(calculateTumor);

 // Set the value for the current row where this rule runs
 return sumTotalLongestDiameter;
}

Example 3-105 Find the previous/next value with target and operands on the same
form

Rule Variables:

• brDateForFunc - rule variable which references date.

• brDate - rule variable which references date (the same as the first one just with different
name in case the same items on different visits should be compared).

var visitName = getCurrentVisitPropertyValue("visitid");
var currCycle = getCurrentCycle();var prevValue = null;
var prevValueFound = false;

function getPrevValue(item){
 if(prevValueFound) return;
 if(item.visitName==visitName && item.cycleNumber==currCycle){
 prevValueFound = true; return;
 }
 if(item.eventType!='UnScheduleAbleVisit' && item.value!=null)
 prevValue = item.value;
}

var res = getValues('brDateForFunc');
if(res){
 brDateForFunc.forEach(getPrevValue);
 //in case the next visit should be found the array should be
reverted:
 //brDateForFunc.reverse().forEach(getPrevValue);

//here should go the necessary logic to compare brDate with previous value
which is now in variable prevValue
}

Example 3-106 Find the last or closest next value with target and operands on
different forms

Rule variables:

• aeDate- rule variable which references date on AE form.

• cycleDate1 - rule variable which references date on the first cycle visit.

• cycleDate2 - rule variable which references date on the second cycle visit.

• cycleCheck1 - rule variable which references some condition on the first cycle visit.

• cycleCheck2 - rule variable which references some condition on the second cycle visit.

Chapter 3
Formatting and other functions

3-92

• vsd - visit start date with All Visits option

var lastStartedlVisit = null;
var lastVisitFound = false;
var cycleDate = null;
var cycleCheck = null;
var cycleNumber = null;

function getLastStartedlVisit(item){
 if(lastVisitFound || item.eventType=='UnScheduleAbleVisit') return;

 //condition may depend on where the point of comparison is, at some
situation it can be <if(item.value==null)> or something else
 if(item.eventType=='AdverseEvent'){
 lastVisitFound = true;
 return;
 }
if(item.value!=null) {
 lastStartedlVisit = item;
 }
}

function findItem(item, index){
 if(item.cycleNumber === cycleNumber){
 if(this.valueOf()=='cycleDate') cycleDate = item.value;
 if(this.valueOf()=='cycleCheck') cycleCheck = item.value;
 }
}

var res = getValues('vsd');
if(res){
 //the first visit before AE
 vsd.forEach(getLastStartedlVisit);

 //in case the next visit should be found the array should be reverted:
 //vsd.reverse().forEach(getLastStartedlVisit);

 cycleNumber = lastStartedlVisit.cycleNumber;
 res = getValues('cycleDate1');
 if(cycleDate1[cycleDate1.length-1].visitName ==
lastStartedlVisit.visitName){
 cycleDate1.forEach(findItem, 'cycleDate');
 res = getValues('cycleCheck1');
 cycleCheck1.forEach(findItem, 'cycleCheck');
 }
 else{
 res = getValues('cycleDate2');
 if(cycleDate2[cycleDate2.length-1].visitName ==
lastStartedlVisit.visitName){
 cycleDate2.forEach(findItem, 'cycleDate');
 res = getValues('cycleCheck2');
 cycleCheck2.forEach(findItem, 'cycleCheck');
 }
 }
}
//logMsg(JSON.stringify(aeDate))

Chapter 3
Formatting and other functions

3-93

//logMsg(JSON.stringify(cycleDate));
//logMsg(JSON.stringify(cycleCheck));
//logic to compare cycleDate cycleCheck and aeDate

Example 3-107 Compare date with next visit start date

Rule variables:

• brDate - rule variable which references date.

• vsd - rule variable which references visit start date with All Visits option.

var visitName = getCurrentVisitPropertyValue("visitid");
var currCycle = getCurrentCycle();
//logMsg(visitName);
//logMsg(currCycle);
//logMsg(brDate);
var nextValue = null;
var nextValueFound = false;

function getNextValue(item){
 if(nextValueFound) return;
 if(item.visitName==visitName && item.cycleNumber==currCycle){
 nextValueFound = true;
 return;
 }
 if(item.eventType!='UnScheduleAbleVisit' && item.value!=null)
 nextValue = item.value;
}

var res = getValues('vsd');
if(res){
 vsd.reverse().forEach(getNextValue);
 //logMsg(nextValue);
 //logMsg(brDate);
 //compare next vsd with cycle date: vsd
}

Chapter 3
Formatting and other functions

3-94

4
Rules examples

Rule examples provide real world examples for rules using multiple helper functions. You can
use these examples as the basis for your own custom rules.

While helper functions can be used alone for simple rules, most studies require complex rules
that combine multiple functions to achieve the desired rule logic. Use the examples provided
as-is or as a basis for a similar complex rule.

• Electronic Data Collection (EDC) examples

• Date examples

• Repeating form examples

• Two-section form examples

Electronic Data Collection (EDC) examples
• Range check

Check if a given value is in the range or not.

• Item completion check
Check that an item has been completed.

• BMI calculation check
Calculate a subject BMI.

• Oracle Central Coding mapping
Perform mapping on for Central Coding questions.

• Choice question check
Check the value of a choice question.

• Blood pressure comparison check
Compare systolic and diastolic blood pressure values.

• Format check
Check the format of a question.

• Age calculation check
Calculate an age using Informed Consent and Date of Birth.

Range check
Check if a given value is in the range or not.

Rule description: the Oral Temperature must be between 35-40.6 C or 95-105 F (inclusive).

Rule expression

if(tempval!==null)
{
if(getStringFromChoice(tempunit)==='C')

4-1

{
 if(tempval>=35.0 && tempval<=40.6)
 {
 return true;
 }
 else
 {
 setQueryMessage("The value entered for Oral Temperature is out of
range: 35-40.6 °C. Please confirm or correct.")
 return false; //System sends query if return false
condition is met
 }
}
else
{
 if(getStringFromChoice(tempunit)==='F')
{
 if(tempval>=95.0 && tempval<=105.0)
 {
 return true;
 }
 else
 {
 setQueryMessage("The value entered for Oral Temperature is out of
range: 95-105 F. Please confirm or correct.")
 return false; //System sends query if return false
condition is met
 }
}
else
{
 return true;
}
}
}
else
{
 return true;
}

Query message (Dynamic): The value entered for Oral Temperature is out of range:
{tempRange}. Please confirm or correct.

Definitions

tempval
Corresponds to the Temperature from rule description.

tempunit
Corresponds to the Temperature unit from the rule description.

getStringFromChoice()
Convert the label of the selected choice from a drop-down, radio button or check box into a
string or comma-separated value. Takes in the question item variable as parameter.

Chapter 4
Electronic Data Collection (EDC) examples

4-2

setQueryMessage()
Specify dynamic query text passed in as a parameter.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the value to check, in
this example the oral temperature value <tempval>.

2. Update the form items tempval and tempunit as in the following table and verify the result
is as listed:

tempval tempunit Notes Result

35.0 C tempval matches the lower range limit for °C
temperatures (35.0 - 40.6).

No query

34.9 C tempval is lower than the lower range limit for
°C temperatures (35.0).

Query

35.1 C tempval is in range for °C temperatures (35.0 -
40.6).

No query

40.6 C tempval matches the higher range limit for °C
temperatures (40.6).

No query

40.5 C tempval is in range for °C temperatures (35.0 -
40.6).

No query

40.7 C tempval is higher that the higher range limit for
°C temperatures (40.6).

Query

40.7 F tempval is lower than the lower range limit for °F
temperatures (95 - 105).

Query

94.0 F tempval is lower than the lower range limit for °F
temperatures (95 - 105).

Query

95.0 F tempval matches the lower range limit for °F
temperatures (95 - 105).

No query

96.0 F tempval is in range for °F temperatures (95 -
105).

No query

105.0 F tempval matches the higher range limit for °F
temperatures (95 - 105).

No query

104.0 F tempval is in range for °F temperatures (95 -
105).

No query

106.0 F tempval is higher than the higher range limit for
°F temperatures (95 - 105).

Query

103.0 F tempval is in range for °F temperatures (95 -
105).

No query

103.0 C tempval is higher that the higher range limit for
°C temperatures (40.6).

Query

Note:

Repeat the above steps if the form is present in multiple visits.

Chapter 4
Electronic Data Collection (EDC) examples

4-3

Other examples

Example 4-1 The weight must be between 36.2-136.1 kg or 80-300 lbs (inclusive)

if (wtval!==null)
{
if (getStringFromDropdown(wtunit)==='kg')
{
 if (wtval>=36.2 && wtval<=136.1)
 {
 return true;
 }
 else
 {
 return false;
 }
}
else
{
 if (getStringFromDropdown(wtunit)==='lb')
{
 if (wtval>=80.0 && wtval<=300.0)
 {
 return true;
 }
 else
 {
 return false;
 }
}
else
{
 return true;
}
}
}
else
{
 return true;
}

Query message: The value entered for Weight is out of range. Please confirm or correct.

Item completion check
Check that an item has been completed.

Rule description: evaluate that Reason for Withdrawal is not null when the Date of
Discontinuation is provided.

Rule expression

if(dt !== null && reason === null)
{

Chapter 4
Electronic Data Collection (EDC) examples

4-4

 return false; //System sends query when return false
condition is met
}
else
{
 return true;
}

Query Message: Date of Discontinuation is provided but Reason for Withdrawal is missing.
Please verify.

Definitions

dt
Corresponds to the Date of Discontinuation from the rule description.

reason
Corresponds to the Reason for Withdrawal from the rule description.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the iems to check, in
this example the Date of discontinuation <dt> and Reason for withdrawal <reason>.

2. Update the form items dt and reason as in the following table and verify the result is as
listed:

Step dt reason Result

Add date in dt only. Value Null Query

Add reason. Value Value No query

Clear reason only. Value Null Query

Add new reason. Value Value No query

Clear dt only. Null Value No query

Clear reason. Null Null No query

Note:

Repeat the above steps if the form is present in multiple visits.

Other examples

Example 4-2 Collected Date and Time is provided and Clinical Significance = null so a
query is issued

if(VSDTTIM !== null)
{

Chapter 4
Electronic Data Collection (EDC) examples

4-5

 if(VSCLSIG !== null)
 {
 return true;
 }
 else
 {
 return false;
 }
}
else
{
 return true;
}

Query message: Collected Date and Time is provided but Clinical Significance is missing.
Please verify.

BMI calculation check
Calculate a subject BMI.

Rule description: Calculate a BMI using the below formula:

BMI = Weight/Height * Height

The result has one decimal place (for example, 25.1). The unit is kg/m2. If weight and height
units are provided in pounds (lb) and centimeters or inches (cm or in), convert them into
kilograms (kg) and meters (m).

Rule expression

if(hght===0||wght===0){
return 0;}
else{
 if(getStringFromChoice(hghtunt)=='cm'){
 hght=(hght*0.01);}
 else if(getStringFromChoice(hghtunt)=='in'){
 hght=(hght*0.0245);}
 if(getStringFromChoice(wghtunt)=='lb'){
 wght=(wght*0.453);}
 return (wght/((hght)*(hght)));}

Definitions

wght
Corresponds to Weight from rule description.

hght
Corresponds to Height from the rule description.

hghtunt
Corresponds to Height unit from the rule description.

wghtunt
Corresponds to Weight unit from the rule description.

Chapter 4
Electronic Data Collection (EDC) examples

4-6

Return value

Number
Returns a calculated numerical value rounded according to the target item format. In this case
one decimal place, for example 21.5.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the items to check, in
this example the height value <hght>, height unit <hghtunt>, weight value <wght>, and
weight unit <wghtunt>.

2. Update the form items hght, hghtunt, wght and wghtunt as in the following table and verify
the result is as listed:

hght hghtunt wght wghtunt Result

175 cm 50 kg 16.3

175 cm 50 lb 7.4

175 cm 78.0 lb 11.5

175 cm 78.0 kg 25.5

72 cm 78.0 kg 150.5

72 in 78.0 kg 23.3

0.0 in 78.0 kg 0

Note:

Repeat the above steps if the form is present in multiple visits.

Oracle Central Coding mapping
Perform mapping on for Central Coding questions.

Rule description: When a codelist value is mapped to Oracle Central Coding and includes
'Other' as an option for a field (ROUTE), user will be requested to specify in another text field
(ROUTEOTHR), then we will map the specified text to the codelist value in the following
format: "Other: {ROUTEOTHR}".

Rule expression

if (ROUTE !== null)
 {
 return (ROUTEOTHR === null ? getStringFromChoice(ROUTE) :
(getStringFromChoice(ROUTE) + ': ' + ROUTEOTHR));
 }
else
 {
 return '';
 }

Chapter 4
Electronic Data Collection (EDC) examples

4-7

Definitions

ROUTE
Corresponds to the mapped codelist value item (ROUTE) from the rule description.

ROUTEOTHR
Corresponds to the specified text item (ROUTEOTHR) that needs to be mapped along the
'Other' codelist value from the rule description.

Return value

String
The route item is a choice control and the rule is mapping data entered in choice control to a
text item.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the items to map, in
this example the dropdown question administration route <ROUTE>, and specify
<ROUTEOTHR> displayed when selecting "Other" as an answer.

2. Update the form items ROUTE, and ROUTEOTHR when prompted, as in the following table and
verify the result is as listed:

ROUTE ROUTEOTHR Result

'Oral' NA. Target item is populated as 'Oral'.

'Topical' NA. Target item is populated as 'Topical'.

'IM' NA. Target item is populated as 'IM'.

'Other' Null Target item is populated as 'Other'.

'Other' 'Unknown' Target item is populated as 'Other: Unknown'.

Null Null Target item is cleared.

Note:

Repeat the above steps if the form is present in multiple visits.

Other examples

Example 4-3 Details from Route and Route Other specify should be mapped to Route
of Administration

Note:

If CMROUTE = Other and CMROUTEOTH = null then NO VALUE will be populated
in Route of Administration

if(CMROUTE===null || cmrouteoth===null){}
var txt=getStringFromChoice(CMROUTE);
if(txt==='Other')

Chapter 4
Electronic Data Collection (EDC) examples

4-8

{
 return cmrouteoth!==null? cmrouteoth : "NO VALUE";
}
else if(txt!==''){
 return txt;
}else
{
 return '';
}

Choice question check
Check the value of a choice question.

Rule description: if injection site is "Other" for Study Vaccine Administration, issue a query.

Rule expression

if(getStringFromChoice(INJSITELOC)==='Other')
{
 return false; //System sends query when return false
condition is met
}
else
{
 return true;
}

Query Message: Potential Protocol Deviation: The Injection is not administered in a
recomended muscle. Please reconcile or complete Protocol Deviation CRF.

Definitions

INJSITELOC
Corresponds to Injection Site choice question from the rule description.

getStringFromChoice()
Convert the label of the seleceted choice from a drop-down, radio button or check box into a
string or comma-separated value. Takes in the question item variable as parameter.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Usage tips

Use this only for choice question types.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the iems to check, in
this example the Injection site for study vaccine administration <INJSITELOC> .

2. Update the form item INJSITELOC as in the following table and verify the result is as listed:

Chapter 4
Electronic Data Collection (EDC) examples

4-9

Step Result

a. Select INJSITELOC as 'Other'. Query

b. Select INJSITELOC as any value other than 'Other'. No query

c. Select INJSITELOC as 'Other'. Query

d. Clear INJSITELOC. No query

e. Select INJSITELOC as any value other than 'Other' and different to the
one selected in step b.

No query

Note:

Repeat the above steps if the form is present in multiple visits.

Other examples

Example 4-4 If Stop Date is present, then Outcome must be Recovered/Resolved,
Recovered/Resolved with Sequelae, or Fatal

if(stpdt!==null)
{
 if(getStringFromChoice(outcm).contains('Recovered/Resolved') ||
getStringFromChoice(outcm).contains('Recovered/Resolved with Sequelae') ||
getStringFromChoice(outcm).contains('Fatal'))
 {return true;}
 else{return false;}
}
else
{ return true;}

Query message:You have entered a Stop Date but the Outcome is not RECOVERED/
RESOLVED, RECOVERED/RESOLVED WITH SEQUELAE, or FATAL. Please change the
Outcome or remove the Stop Date.

Example 4-5 If Were Height and Weight collected? on VS form is No, issue a query

if (getStringFromChoice(VSYN)==='No')
{
 return false;
}
else
{
 return true;
}

Query message: Potential Protocol Deviation: Height and/or Weight was/were not assessed
as schedule at Screening. Please reconcile or complete Protocol Deviation CRF.

Example 4-6 If Standard Toxicity Grade is Grade 4 or Grade 5, then Is AE Serious?
must be Yes

if(getStringFromChoice(toxicity).contains('Grade 4') ||
getStringFromChoice(toxicity).contains(Grade 5'))

Chapter 4
Electronic Data Collection (EDC) examples

4-10

 {
 if(getStringFromChoice(aeser)==='Yes')
 {return true;}
 else{return false;}
 }
else
{ return true;}

Query message: Standard Toxicity Grade is selected as either Grade 4 or Grade 5. Please
assess whether this AE meets seriousness criteria. If no, please confirm. If yes, please change
Is AE serious? to Yes and report SAE.

Example 4-7 If Outcome is Fatal then the answer to Is AE Serious? must be Yes

if(getStringFromChoice(outcm).contains('Fatal'))
 {
 if(getStringFromChoice(aeser)==='Yes')
 {return true;}
 else{return false;}
 }
else
{ return true;}

Query message: Outcome is FATAL, but Is AE Serious? is No. Please correct outcome or
seriousness.

Example 4-8 If Hypersensitivity Reaction Term is Other then (Other) Specify must be
completed

 if(getStringFromChoice(reacterm).contains('Other'))
 {
 if(othspec!==null)
 {return true;}
 else{return false;}
 }
else
{ return true;}

Query message: Other is selected; however the (Other) Specify field is blank. Please correct
or clarify.

Example 4-9 Fire Query if Pregnancy Test is Positive

if(getStringFromChoice(pregtest)==='Positive')
 {
 return false;
 }
 else
 {
 return true;
 }

Query message: Pregnancy Test Result is recorded as Positive. If this is correct, please
report immediately to the Sponsor Safety Team.

Chapter 4
Electronic Data Collection (EDC) examples

4-11

Blood pressure comparison check
Compare systolic and diastolic blood pressure values.

Rule description: Systolic Blood Pressure must be greater than the corresponding Diastolic
Blood Pressure.

Rule expression

if (SYS>DIA)
{
return true;
}
else
{
return false; //System sends query when return false condition
is met
}

Query Message: Systolic Blood Pressure is less than or equal to Diastolic Blood Pressures.
Please correct or confirm.

Definitions

SYS
Corresponds to Systolic Blood Pressure item from rule description.

DIA
Corresponds to Diastolic Blood Pressure from the rule description.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the items to check, in
this example the systolic blood pressure <SYS> and diastolic blood pressure <DIA>.

2. Update the form items SYS and DIA as in the following table and verify the result is as
listed:

SYS DIA Result

120 Null No query

120 120 Query

120 119 No query

120 121 Query

123 121 No query

115 121 Query

Null 121 No query

125 121 No query

Chapter 4
Electronic Data Collection (EDC) examples

4-12

Note:

Repeat the above steps if the form is present in multiple visits.

Format check
Check the format of a question.

Rule description: the Subject Initials value must be 3 characters or 2 characters with a dash
in place of the middle initial. No numbers, spaces, or special characters are allowed.

Rule expression

var str=txtitem1.toUpperCase();
if(str.length==3 && (str.match("^([A-Z]){3}$") || str.match("^(([A-Z])[-]([A-
Z]))$")))
{
 return true;
}
else
{
 return false; //System sends query if the return false
condition is met
}

Query Message: Value is not recorded in the required format of 3 charactes or 2 with a dash
in place of the middle initial

Definitions

txtitem1
Question or Item for which you want to check the format, Subject Initials from the rule
description.

.toUpperCase()
JavaScript method for string objects to convert a string in all upper cases.

.match()
JavaScript method for string objects to check a string value against a regular expression
which returns an array of matches.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Verification steps

In the following verification steps for the given rule expression, we use <item> that refers to
subject initials.

1. Using a subject for testing, go to the given visit and form containing the iems to check, in
this example the subject initials <txtitem1> .

2. Update the form item txtitem1 as in the following table and verify the result is as listed:

Chapter 4
Electronic Data Collection (EDC) examples

4-13

txtitem1 Result

'ABC' No query

'abc' No query

'AbC' No query

'A-b' No query

'A-A' No query

'a-z' No query

'A' Query

'AB' Query

'Ab' Query

'A_B' Query

'123' Query

'A13' Query

'AB@' Query

'AB$' Query

'AB!' Query

'AB&' Query

'A B' Query

'Abc' No query

Note:

Repeat the above steps if the form is present in multiple visits.

Other examples

Example 4-10 The 'Kit Number:' must be 5 digits

var wk2num=KITNUM.toString();
if(wk2num.length==5)
{
 return true;
}
else
{
 return false;
}

Query message: Kit number does not meet the requirements (kit number must be 5 digits).
Please correct or clarify.

Age calculation check
Calculate an age using Informed Consent and Date of Birth.

Rule description: calculate age using Date of Informed Consent Signed and Date of Birth.

Chapter 4
Electronic Data Collection (EDC) examples

4-14

Rule expression

//Returns the age value as the difference infconst-dob
return dateDiffInYears(infconst,dob);

Definitions

infconst
Corresponds to the Informed Consent item form rule description.

dob
Corresponds to the Date of Birth item from rule description.

Return value

Number
Returns a calculated numerical value with the difference in years between the two given
dates.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the items to check, in
this example the date of birth <dob> and date of inform consent signed <infconst>.

2. Update the form items dob and infconst as in the following table and verify the result is as
listed:

dob infconst Result

2-Jan-1942 2-Jan-2021 79

3-Jan-1942 2-Jan-2021 78

1-Jan-1942 2-Jan-2021 79

1-Jan-1993 2-Jan-2021 28

3-Jan-1993 2-Jan-2021 27

3-Jan-1993 3-Jan-2021 28

3-Jan-1993 Null Null

Date examples

• Date comparisons

• Partial date comparisons

• Dates with Dynamic Query Text

Date comparisons

• Date comparison
Compare two date questions that do not have fields for an exact time (hour and minutes)
and raise a query if the dates for those questions are not as expected.

Chapter 4
Date examples

4-15

• DateTime comparison
Compare two date questions that also contain time fields (hour and seconds), and raise a
query if the dates are not as expected.

• Date comparison within range: On or after
Check if one date is the same, or a number of days after (inclusive) another date, and raise
a query if the date is outside of this window.

• Date comparison within range: Days before
Check if one date is within a number of days prior to another date (inclusive) and raise a
query if the date is outside of this window.

• Map dates
Map a date question that has time elements to a read-only question.

Date comparison
Compare two date questions that do not have fields for an exact time (hour and minutes) and
raise a query if the dates for those questions are not as expected.

Rule description: the Onset Date value must be on or before the Date of Completion value, or
else a query is raised.

Rule expression

//to meet the rule description criteria onstdt-compdt should be a negative
value or zero (<=0)
if(dateDiffInDays(onstdt,compdt)<=0)
{
return true;
}
else
{
return false; //System sends query when return false
condition is met
}

Query Message: The Onset Date is after the Date of Completion. Please correct or confirm
the date(s).

Definitions

onstdt
Corresponds to the Onset Date from the rule description.

compdt
Corresponds to the Date of Completion from the rule description.

<=
Less Than or Equal To operator. Update the operator based on the rule description.

dateDiffInDays
Calculates the difference between date1 (onstdt) and date2 (compdt) (date1-date2) in days.

Chapter 4
Date examples

4-16

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Usage tips

Always use the relevant date helper function to compare dates rather than directly comparing
the variables using comparison operators.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the date items to
compare, in this example the onset date <onstdt> and date of completion <compdt>.

2. Update the form items onstdt and compdt as in the following table and verify the result is
as listed:

onstdt compdt Result

10-May-2021 Null No query

10-May-2021 10-May-2021 No query

11-May-2021 10-May-2021 Query

09-May-2021 10-May-2021 No query

09-Jun-2021 10-May-2021 Query

11-Apr-2021 10-May-2021 No query

Null 10-May-2021 No query

12-May-2021 10-May-2021 Query

12-May-2021 14-May-2021 No query

Note:

Repeat the above steps if the form is present in multiple visits.

Other examples

Example 4-11 Date of Death must be greater than or equal to the Date of
Randomization

if(dateDiffInDays(deathdt,randt)>=0)
{
return true;
}
else
{
return false;
}

Query message: The Date of Death is prior to the Randomization Date. Please correct or
confirm the date(s).

Chapter 4
Date examples

4-17

Example 4-12 The Date of Completion or the Withdrawal Date must be equal to the
Date of Death

//Apply this rule when Reason for discontinuation is 'death'
if(dateDiffInDays(compdt,deathdt)===0)
{
return true;
}
else
{
return false;
}

Query message: Reason for discontinuation is death, the Date of Completion or the
Withdrawal Date must equal the Date of Death. Please correct or confirm the date(s).

Example 4-13 Start date of hypoglycaemic episode must be <== Date of subject
withdrawal

Note: The hypoglycaemic episode is a date and time question, time elements are ignored in
this logic.

if(dateDiffInDays(hypodt,withdrawdt)<=0)
{
return true;
}
else
{
return false;
}

Query message: The date of the hypoglycaemic episode is after the subject ended the trial.
Please correct or clarify.

Example 4-14 Medical History Start Date must be on or after Date of Birth

if(dateDiffInDays(mhstdt,dob)>=0)
{
return true;
}
else
{
return false;
}

Query message: Start Date is before the Date of Birth on the Demographics form. Please
correct the date(s).

DateTime comparison
Compare two date questions that also contain time fields (hour and seconds), and raise a
query if the dates are not as expected.

Rule description: the End Date and the Time must be on or after to the Start Date and Time in
the Administration form.

Chapter 4
Date examples

4-18

Rule expression

//to meet the rule description criteria enddt-stdt should be a positive value
or zero (>=0)
if(dateDiffInMinutes(enddt, stdt)>=0)
{
 return true;
}
else
{
 return false; //System sends query when return false
condition is met
}

Query Message: The End Date and Time is before the Start Date and Time. Please correct or
confirm the date(s).

Definitions

enddt
Corresponds to the End Date from the rule description.

stdt
Corresponds to the Start Date from the rule description.

>=
Greater Than or Equal To operator. Update operator based on the rule description.

timeDiffInMinutes()
Calculates the difference between date1 (enddt), date2 (stdt) (date1-date2) in minutes.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Usage tips

Always use the relevant date helper function to compare dates rather than comparing the
variables directly using comparison operators.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the date items to
compare, in this example the end date <enddt> and start date <stdt>.

2. Update the form items enddt and stdt as in the following table and verify the result is as
listed:

enddt stdt Result

Null 10-May-2021 11:00 AM No query

10-May-2021 11:00 AM 10-May-2021 No query

10-May-2021 11:00 AM 10-May-2021 11:01 AM Query

10-May-2021 11:00 AM 10-May-2021 10:59 AM No query

Chapter 4
Date examples

4-19

enddt stdt Result

10-May-2021 11:00 AM 11-May-2021 10:59 AM Query

10-May-2021 11:00 AM 09-May-2021 10:59 AM No query

10-May-2021 11:00 AM Null No query

12-May-2021 10-May-2021 11:00 PM Query

10-May-2021 11:05PM 10-May-2021 11:00 PM No query

Note:

Repeat the above steps if the form is present in multiple visits.

Date comparison within range: On or after
Check if one date is the same, or a number of days after (inclusive) another date, and raise a
query if the date is outside of this window.

Rule description: the Date of Study Completion must be on or within 30 days after the V5C
Visit Date.

Rule expression

//to meet the rule description criteria DSENDT1-VISDAT should be between 0
and 30 (inclusive)
//so greater than or equal to 0 (>=0) AND less than or equal 30 (<=30)
if(dateDiffInDays(DSENDT1,VISDAT)>=0 && dateDiffInDays(DSENDT1,VISDAT)<=30)
{
 return true;
}
else
{
 return false; //System sends query when return false
condition is met
}

Query message: Date of Study Completion is prior to, or not within 30 days of, V5C DOV.
Please verify.

Definitions

DSENDT1
Corresponds to the Date of Study Completion from the rule description.

VISDAT
Corresponds to the Visit Date from the rule description.

>=, <=
Greater Than or Equal To and Less Than or Equal To operators. Update operator based on
the rule description.

dateDiffInDays
Calculates difference between date1 (DSENDT1), date2(VISDAT) (date1-date2) in days.

Chapter 4
Date examples

4-20

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Usage tips

Always use the relevant date helper function to compare dates rather than comparing the
variables directly using comparison operators.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the date items to
compare, in this example the date of study completion <DSENDT1> and 'V5C' Visit date
<VISDAT>.

2. Update the form items DSENDT1 and VISDAT as in the following table and verify the result is
as listed:

DSENDT1 VISDAT Result

Null 10-May-2021 No query

10-May-2021 10-May-2021 No query

10-Jun-2021 10-May-2021 Query

09-Jun-2021 10-May-2021 No query

10-May-2022 10-May-2021 Query

11-May-2021 10-May-2021 No query

11-May-2021 05-May-2022 Query

11-May-2021 11-May-2021 No query

11-May-2021 Null No query

11-May-2021 06-May-2022 Query

Note:

Repeat the above steps if the form is present in multiple visits.

Other examples

Example 4-15 'Collection Date' must be within 30 days of 'Date Initial Informed
Consent Obtained'

if(dateDiffInDays(COLLDT,INFCNST)>=0 && dateDiffInDays(COLLDT,INFCNST)<=30)
{
 return true;
}
else
{
 return false;
}

Chapter 4
Date examples

4-21

Query message: Collection Date is not within 30 days of Date of Initial Informed Consent
Obtained. Please Verify.

Date comparison within range: Days before
Check if one date is within a number of days prior to another date (inclusive) and raise a query
if the date is outside of this window.

Rule description: the Date of Measurement must be 1 to 28 days prior (inclusive) to the Day 1
visit start date.

Rule expression

//to meet the rule description criteria DOV-MEASDT should be between 1 and 28
(inclusive)
//so greater than or equal to 1 (>=1) AND less than or equal 28 (<=28)
if(dateDiffInDays(DOV,MEASDT)<=28 && dateDiffInDays(DOV, MEASDT)>=1)
{
return true;
}
else
{
return false; //System sends query when return false
condition is met
}

Query message: Date of Measurement at Screening visit was not taken within -28 to -1 days
prior to Day 1. Please verify the dates.

Definitions

DOV
Corresponds to Day 1 Visit Start date from the rule description.

MEASDT
Corresponds to Date of Measurement from the rule description.

<=, >=
Less Than or Equal To and Greater Than or Equal To operators. Update operator based on
the rule description.

dateDiffInDays
Calculates difference between date1 (DOV) and date2 (MEASDT) (date1-date2) in days.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Usage tips

Always use the relevant date helper function to compare dates rather than comparing the
variables directly using comparison operators.

Chapter 4
Date examples

4-22

Verification steps

1. Using a subject for testing, go to the given visit and form containing the date items to
compare, in this example the Day 1 visit start date <DOV> and date of measurement
<MEASDT>.

2. Update the form items DOV and MEASDT as in the following table and verify the result is as
listed:

DOV MEASDT Result

Null 10-May-2021 No query

10-May-2021 10-May-2021 Query

11-May-2021 10-May-2021 No query

09-May-2021 10-May-2021 Query

12-Apr-2022 10-May-2021 Query

12-Apr-2022 11-Apr-2021 No query

12-Apr-2022 12-Apr-2022 Query

12-Apr-2022 14-Mar-2021 Query

12-Apr-2022 15-Mar-2021 No query

13-Apr-2021 15-Mar-2022 Query

13-Apr-2022 Null No query

Note:

Repeat the above steps if the form is present in multiple visits.

Map dates
Map a date question that has time elements to a read-only question.

Rule description: Use this rule to map DateTime2 in form2 onto DateTime1 in form1.

Rule expression

return getDateDMYFormat(dt2,"HH:mm");

Definitions

getDateDMYFormat()
Returns a date or datetime in DD-Mon-YYYY format, including time elements if applicable.

dt2
Corresponds to DateTime2 in rule description.

"HH:mm"
Time format passed as a parameter for the getDateDMYFormat() helper function to define the
output format of the time elements present.

Chapter 4
Date examples

4-23

Return value

Date
Returns a date (including a partial date) in DD-Mon-YYYY HH:MM format by passing in:

• DD (day value): uses the JavaScript getDate() method passed into the pad2()
function that ensures a leading zero is appended where required to ensure a two-digit
numerical value is returned.

• - (separator): appends a hyphen "-" in string format.

• Mon: uses the JavaScript getMonth() method to return a number that represents the
month of the date (0 to 11) into a new variable mnth. This variable is used as an index for
the fullmnth array to return the month as a three-letter abbreviation. For example, Apr.

• - (separator): appends a hyphen "-" in string format.

• YYYY (Year value): uses the JavaScript getFullYear() method.

• appends a blank space " ".

• HH (hours value): uses the JavaScript getHours() method passed into the pad2()
function that ensures a leading zero is appended where required to ensure a two-digit
numerical value is returned.

• : (time elements separator): appends a colon ":" in string format.

• MM (minutes value): uses the JavaScript getMinutes() method passed into the
pad2() function that ensures a leading zero is appended where required to ensure a
two-digit numerical value is returned.

Note:

+" "+pad2(dt2.getHours())+":"+pad2(dt2.getMinutes()) is used to add time
component. Exclude from the return statement if the date item does not include a
time element.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the date item to map,
in this example the date time in form 2 <dt2> to be mapped into date time in form 1.

2. Update the form item dt2 as in the following table and verify the result mapped to the
target item in form 1 is as listed:

dt2 Mapped value in form 1

'30-Oct-2021 01:23' '30-Oct-2021 01:23'

'31-Oct-2021 23:59' '31-Oct-2021 23:59'

Null Null

Note:

Repeat the above steps if the form is present in multiple visits.

Chapter 4
Date examples

4-24

Other examples

Example 4-16 Map date of visit in status form as visit date

return getDateDMYFormat(date);

Partial date comparisons

• Partial date comparison
Compare two date questions where at least one of the dates is a partial date and raise a
query if the dates are not as expected.

• Partial date unknown month evaluation
Check if the month of the date question is selected as unknown (UNK) and display a query
if needed.

Partial date comparison
Compare two date questions where at least one of the dates is a partial date and raise a query
if the dates are not as expected.

Rule description: the AE Start Date must be on or after the Date of Informed Consent.

Note:

If any parts of the AE Start date are unknown (UNK), compare the available parts of
the date.

Rule expression

//to meet the rule description criteria 'aestdt >= infconsdt' should be met
if(getDatesCompareResult(aestdt,true,infconsdt,false,">="))
 {
 return true;
 }
 else
 {
 return false; //System sends query when return false condition is
met
 }

Query message: Do not record events starting before the Date of Informed Consent. If dates
are correct, move to Medical history. Otherwise, correct dates.

Definitions

aestdt
Corresponds to the AE Start Date from the rule description.

Chapter 4
Date examples

4-25

infconsdt
Corresponds to the Date of Informed Consent from the rule description.

getDatesCompareResult()
Compares two dates (aestdt, infconsdt) using the passed in operator (>=), in this case:
aestdt >= infconsdt.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Usage tips

• Always use the relevant date helper function to compare dates rather than comparing the
variables directly using comparison operators.

• Use this when you want to perform a comparison for date questions where at least one of
the dates is a partial date.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the date items to
compare, in this example the AE start date <aestdt> and date of informed consent
<infconsdt>.

2. Update the form items aestdt and infconsdt as in the following table and verify the result
is as listed:

aestdt infconsdt Result

Null 02-Dec-2021 No query

02-Dec-2021 02-Dec-2021 No query

01-Dec-2021 02-Dec-2021 Query

UNK-Dec-2021 02-Dec-2021 No query

UNK-Nov-2021 02-Dec-2021 Query

03-Dec-2021 02-Dec-2021 No query

03-Dec-2021 05-Dec-2021 Query

03-Dec-2021 02-Dec-2021 No query

03-Dec-2021 01-Jan-2022 Query

03-Dec-2021 04-Dec-2021 Query

03-Dec-2021 Null No query

03-Dec-2021 02-Dec-2021 No query

01-Dec-2021 02-Dec-2021 Query

Note:

Repeat the above steps if the form is present in multiple visits.

Chapter 4
Date examples

4-26

Other examples

Example 4-17 AE Start Date must not be greater than Date of Death

if(getDatesCompareResult(aestdt,true,deathdt,false,'<=')
{
 return true;
}
else
{
 return false;
}

Query message: Start date of AE is greater than date of death. Please reconcile.

Example 4-18 AE Stop Date must be greater than AE Start Date

if(getDatesCompareResult(aestpdt,true,aestdt,true,'>=')
{
 return true;
}
else
{
 return false;
}

Query message: Stop Date is prior to Start Date. Please correct.

Example 4-19 AE Stop Date must not be greater than Date of Death

if(getDatesCompareResult(aestpdt,true,deathdt,false,'<=')
{
 return true;
}
else
{
 return false;
}

Query message: Stop Date of AE is greater than date of death. Please reconcile.

Partial date unknown month evaluation
Check if the month of the date question is selected as unknown (UNK) and display a query if
needed.

Rule description: if UNK is selected as Month for Date of Initial Diagnosis then a query is
issued.

Rule expression

if(DIADT.getMonth()==='UNK') //checks for the presence of 'UNK' value as
the month of a date
{

Chapter 4
Date examples

4-27

 return false; //System sends query when return false
condition is met
}
else
{
 return true;
}

Query message: UNK has been selected for Month. Please verify and provide.

Definitions

DIADT
Corresponds to the Date of Initial Diagnosis from rule description.

===
Equal to comparison operator. Compares both the value and type to be equal.

.getMonth()
JavaScript method for date type elements. Retrieves the numeric value of the month in a date,
for example '11' as the numeric value of Novemeber in '01-Nov-2021 15:03'. Returns 'UNK' if
month value is not present.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the date item to check,
in this example the date of initial diagnosis <DIADT> .

2. Update the form item DIADT as in the following table and verify the result is as listed:

DIADT Result

10-May-2021 No query

UNK-UNK-2021 Query

UNK-May-2021 No query

05-Jun-2021 No query

UNK-UNK-2021 Query

Null No query

Note:

Repeat the above steps if the form is present in multiple visits.

Dates with Dynamic Query Text

Chapter 4
Date examples

4-28

• Date comparison - dynamic query
Compare two date questions that do not have time elements and display a dynamic query
if the dates are not as expected.

• Date Time comparison - dynamic query
Compare two date questions that also have time elements and display a dynamic query if
the dates are not as expected.

• Partial date comparison with dynamic query text
Compare two date questions where at least one of the dates is partial then issue a query
that contains dynamic text if the dates are not as expected.

Date comparison - dynamic query
Compare two date questions that do not have time elements and display a dynamic query if
the dates are not as expected.

Rule description: the date of the Informed Consent is Signed must be on or before the date
entered in the Visit Date field for the Screening or Baseline visit.

Rule expression

//to meet the rule description criteria onstdt-compdt should be a negative
value or zero (<=0)
if(dateDiffInDays(icdat,vstdt)<=0)
 {
 return true;
 }
 else
 {
 setQueryMessage("Date Informed Consent signed
"+getDateDMYFormat(icdat,false)+" must be on or before the Visit date
"+getDateDMYFormat(vstdt,false) +" .Please correct or clarify.");
 return false; //Query message set dynamically. System
sends query when return false condition is met
 }

Query message: Date Informed Consent was signed {infconstdt} must be on or before the
Visit date {visitdate}. Please correct or clarify.

Definitions

icdat
Corrsponds to the Date of Informed Consent from the rule description.

vstdt
Corresponds to the Visit date from the rule description.

<=
Less Than or Equalt To operator. Update operator based on the rule description.

dateDiffInDays()
Calculates difference between date1 and date2 (date1-date2) in days, in this case icdat -
vstdt.

Chapter 4
Date examples

4-29

setQueryMessage()
Specify dynamic query text passed in as a parameter.

getDateDMYFormat()
Use the getDateDMYFormat helper function to return a date (including partial dates) in DD-
MON-YYYY format.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Usage tips

Always use the relevant date helper function to compare dates rather than comparing the
variables directly using comparison operators.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the date items to
compare, in this example the date of informed consent <icdat> and visit date <vstdt>.

2. Update the form items icdat and vstdt as in the following table and verify the result is as
listed:

icdat vstdt Result

10-May-2021 Null No query

10-May-2021 10-May-2021 No query

11-May-2021 10-May-2021 Query.
Verify correct date values are
populated in the Query Text.

09-May-2021 10-May-2021 No query

09-Jun-2021 10-May-2021 Query.
Verify correct date values are
populated in the Query Text.

11-Apr-2021 10-May-2021 No query

Null 10-May-2021 No query

12-May-2021 10-May-2021 Query.
Verify correct date values are
populated in the Query Text.

12-May-2021 14-May-2021 No query

Note:

Repeat the above steps if the form is present in multiple visits.

Chapter 4
Date examples

4-30

Other examples

Example 4-20 Date of Study Discontinuation must be >= Date Informed Consent
signed

if(dateDiffInDays(studycompdt,infdt)>=0)
{
return true;
}
else
{
setQueryMessage("Date of Study Discontinuation
"+getDateDMYFormat(studycompdt,false)+" is less than Informed Consent date
"+getDateDMYFormat(infdt,false)+". Please correct or clarify.");
return false;
}

Query message: Date of Study Discontinuation {discontdate} is less than Informed Consent
date {infdt}. Please correct or clarify.

Example 4-21 Date of Infusion must be equal to visit date of respective visits

if(dateDiffInDays(infudt, visdt)==0)
{
 return true;
}
else
{
setQueryMessage("Date of Infusion "+getDateDMYFormat(infudt,false)+" is prior
to or greater than visit date "+getDateDMYFormat(visdt,false)+". Please
correct or clarify.");
 return false;
}

Query message: Date of Infusion {infusiondt} is prior to or greater than visit date {visitdate}.
Please correct or clarify.

Example 4-22 Start date of hypoglyceamic episode must be >= Date of randomization

Note:

Hypoglycaemic episode is date question with time elements.

if(dateDiffInDays(hypodt, randdt)>=0)
{
 return true;
}
else
{
setQueryMessage("Start date "+getDateDMYFormat(hypodt,false)+" is prior to
date of randomisation "+getDateDMYFormat(randdt,false)+". Please correct.");

Chapter 4
Date examples

4-31

 return false;
}

Query message: Start date is prior to date of randomization ({RandDate}). Please correct.

Date Time comparison - dynamic query
Compare two date questions that also have time elements and display a dynamic query if the
dates are not as expected.

Rule description: Collection Date and Time must be on or prior to the Study Vaccine
Administration Date and Time of Injection.

Rule expression

//to meet the rule description criteria colldt-vaccdt should be a negative
value or 0 (<=0)
if(timeDiffInMinutes(colldt,vaccdt)<=0)
{
return true;
}
else
{
var dt1=getDateDMYFormat(colldt,"HH:mm");
var dt2=getDateDMYFormat(vaccdt,"HH:mm");
var qtstr="Potential Protocol Deviation: Blood sample "+dt1+" was obtained
post-injection "+dt2+".Please reconcile or complete Protocol Deviation CRF."
setQueryMessage(qtstr); //query message set dynamically
return false; //System sends query when return false condition
is met
}

Query message: Potential Protocol Deviation: Blood sample {SampleDate} was obtained
post-injection {injectiondate}. Please reconcile or complete Protocol Deviation CRF.

Definitions

colldt
Corresponds to the Collection Date and Time from the rule description.

vaccdt
Corresponds to the Study Vaccine Administration Date and Time from rule description.

<=
Less Than or Equal To operator. Update operator based on the rule description.

timeDiffInMinutes()
Calculates difference between date1 (colldt), date2 (vaccdt) (date1-date2) in minutes.

getDateDMYFormat()
Returns a date or datetime in DD-Mon-YYYY format, including time elements if applicable.

"HH:mm"
Time format passed as a parameter for the getDateDMYFormat() helper function to define the
output format of the time elements present.

Chapter 4
Date examples

4-32

setQueryMessage()
Specify dynamic query text using the setQueryMessage() function.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Usage tips

• Always use the relevant date helper function to compare dates rather than comparing the
variables directly using comparison operators.

• Use this when comparison should be performed for full dates with time.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the date items to
compare, in this example the sample collection date <colldt> and study vaccine
administration date <vaccdt>.

2. Update the form items colldt and vaccdt as in the following table and verify the result is
as listed:

colldt vaccdt Result

10-May-2021 10:00 Null No query

10-May-2021 10:00 10-May-2021 10:00 No query

10-May-2021 10:01 10-May-2021 10:00 Query.
Verify correct date values are
populated in the Query Text.

10-May-2021 09:59 10-May-2021 10:00 No query

11-Jun-2021 10:00 10-May-2021 10:00 Query.
Verify correct date values are
populated in the Query Text.

11-Apr-2021 07:01 10-May-2021 10:00 No query

Null 10-May-2021 10:00 No query

Other examples

Example 4-23 ECG Date [and Time Performed] must be on or prior to either 'Date of
Study Completion'

if(dateDiffInDays(ecgdt,compdt)<=0)
{
return true;
}
var dt1=getDateDMYFormat(ecgdt,"HH:mm");
var dt2=getDateDMYFormat(compdt);
var qtstr="Date is "+dt1+" after Date of Study Completion or Discontinuation
"+dt2+". Please correct or confirm date(s).";
setQueryMessage(qtstr);
return false;
}

Chapter 4
Date examples

4-33

Query message: Date is after Date of Study Completion or Discontinuation. Please correct or
confirm date(s).

Partial date comparison with dynamic query text
Compare two date questions where at least one of the dates is partial then issue a query that
contains dynamic text if the dates are not as expected.

Rule description: AE Stop Date must be on or after the Date Informed Consent.

Note:

If any parts of AE Stop date are unknown (UNK), compare the available date parts.

Rule expression

if(getDatesCompareResult(aeenddt,true,infconsdt,false,'>=')) {
 return true;
 }
 else
 {
 setQueryMessage("AE Stop date "+getDateDMYFormat(aeenddt,true)+" is prior to
Informed Consent date "+getDateDMYFormat(infconsdt,false)+". Please correct
or confirm.");
 return false; //Query message set dynamically. System sends
query when return false condition is met.
 }

Query message: AE Stop date is prior to Informed Consent date. Please correct or confirm.

Definitions

aeenddt
Corresponds to AE Stop Date from the rule description (Partial Date), followed by True, as AE
Stop Date is partial date.

infconsdt
Corrsponds to the Informed Consent Date from rule description (full date), followed by False,
as Informed Consent Date is full date.

>=
Greater Than or Equal To operator. Update operator based on the rule description.

getDatesCompareResult()
Compares two dates (aeenddt, infconsdt) using the passed in operator (>=). In this case:
aeenddt >= infconsdt.

getDateDMYFormat()
Use the getDateDMYFormat helper function to return a date (including partial dates) in DD-
MON-YYYY format.

Chapter 4
Date examples

4-34

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Usage tips

• Use this when comparison should be performed for date questions and at least one of the
dates is partial.

• Query text should contain the dynamically entered date question values in it.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the date items to
compare, in this example the AE stop date <aeenddt> and date of informed consent
<infconsdt>.

2. Update the form items aeenddt and infconsdt as in the following table and verify the
result is as listed:

aeenddt infconsdt Result

Null 02-Dec-2021 No query

02-Dec-2021 02-Dec-2021 No query

01-Dec-2021 02-Dec-2021 Query.

UNK-Dec-2021 02-Dec-2021 No query

UNK-Nov-2021 02-Dec-2021 Query.

03-Dec-2021 02-Dec-2021 No query

03-Dec-2021 05-Dec-2021 Query

03-Dec-2021 02-Dec-2021 No query

03-Dec-2021 01-Jan-2022 Query

03-Dec-2021 04-Dec-2021 Query

03-Dec-2021 Null No query

03-Dec-2021 02-Dec-2021 No query

01-Dec-2021 02-Dec-2021 Query

Note:

Repeat the above steps if the form is present in multiple visits.

Other examples

Example 4-24 Date of Study Completion must be on or after the Last Date of Study
Drug

Note: If any parts of the parts of the Last Date of Study Drug are UNK, compare the available
date parts.

if(getDatesCompareResult(compdt,false,drugdt,true,'>='))
{
 return true;

Chapter 4
Date examples

4-35

}
else
{
setQueryMessage("Date of Study Completion "+getDateDMYFormat(compdt,false)+"
is prior to Last Date of Study Drug "+getDateDMYFormat(drugdt,true)+" .Please
correct or confirm.");
 return false;
}

Query message: Date of Study Completion is prior to Last Date of Study Drug. Please correct
or confirm.

Example 4-25 CM Stop Date must be on or after CM Start Date

Note: If any parts of CM Start/Stop date are unknown, compare available date parts.

if(getDatesCompareResult(cmenddt,true,cmstdt,true,'>='))
{
 return true;
}
else
{
setQueryMessage("Date of Study Completion "+getDateDMYFormat(cmenddt,true)+"
is prior to Last Date of Study Drug "+getDateDMYFormat(cmstdt,true)+" .Please
correct or confirm.");
 return false;
}

Query message: CM Stop Date is prior to CM Start Date. Please correct and clarify.

Repeating form examples

• Instance count
Count the number of instances in a repeating form.

• Duplicate values check
Check for duplicate data in a repeating form.

• Compare related instances
Check a value for a matching instance in a repeating form.

Instance count
Count the number of instances in a repeating form.

Rule description: if the Indication on a Concomitant Medications (ConMeds) form is assigned
to an Adverse Event, there should be at least one non-deleted adverse event record present
on the Adverse Event (AE) repeating form.

Rule expression

 if(AESER!==null || AESERY!==null || AESERYOTH!==null || AESTDT!==null ||
AEONGO!==null || AEENDT!==null || AEOUT!==null){} //This is to make
sure the code runs when any of the other items of the AE form is updated. It

Chapter 4
Repeating form examples

4-36

does not include the item already used in the code
 var indval=getStringFromChoice(INDICAT);
 var aecnt=ListRFInstances(AETERM,0);
 if(indval.contains("Adverse Event")) //multi-select question.
Evaluates for a specific given choice.
 {
 if(aecnt.length<=0)
 {
 return false; //System sends query when return false
condition is met
 }
 else
 {
 return true;
 }
}
else
{
 return true;
}

Query message: Medication is indicated as being taken for an adverse event but no records
are recorded on the Adverse Events (AE) eCRF. Please verify.

Definitions

INDICAT
Corresponds to the Indication on a Concomitant Medications (ConMeds) form from the rule
description.

AETERM
Corresponds to the Adverse Events records on the Adverse Event (AE) form from the rule
description.

AESER, AESERY, AESERYOTH, AESTDT, AEONGO, AEENDT, AEOUT
Items in the repeating form.

aecnt
Defined JavaScript variable that stores a list of instances. When using aecnt.length we
retrive the number of instances contained in this list.

getStringFromChoice()
Converts selected label for the choice element (drop-down, radio buttons or checkboxes) to a
string or a comma-separated value. Takes in the choice element as parameter.

ListRFInstances()
Lists all repeating form instances of the passed-in variable. Takes an item variable in the form
as a parameter.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Chapter 4
Repeating form examples

4-37

Usage tips

To make sure the rule runs whenever any of the items in the repeating form is completed or
updated, you must create global variables for each of them and use the variables to evaluate if
any of these are not null. This is done in the first line of the rule expression.

Note:

For this evaluation, you should not include the item passed as a parameter to the
ListRFInstances() helper function in the rule expression logic.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the iems to check, in
this example the indication <INDICAT> on the Concomitant Medications form.

2. Update the form item INDICAT as in the following table and verify the result is as listed:

Step Result

a. Assign the INDICAT item to an adverse event. Query

b. Go to the first repeating form instance of the Adverse Event form and
complete all items of the repeating form for which it is required to check
atleast one non deleted instance is present: AESER, AESERY, AESERYOTH,
AESTDT, AEONGO, AEENDT, and AEOUT.

No query

c. Clear all the item in the first repeating form instance completed in
previous step.

No query

d. Delete the first repeating form instance. Query

e. Update the INDICAT item so it is not assigned to an adverse event. No query

f. Update the INDICAT item so it is assigned to an adverse event again. Query

g. Create a second repeating form instance and enter only one item or
less than all the items of the repeating form for which it is required to
check atleast one non deleted instance is present.

Query

h. Create third repeating form instance and complete the remaining
required items from previous step in that third repeating form instance.

Query

i. Complete the remaining required items in the second repeating form
instance.

No query

j. Delete the third repeating form instance. No query

Note:

Repeat the above steps if the form is present in multiple visits.

Chapter 4
Repeating form examples

4-38

Other examples

Example 4-26 If 'Was a follow-up lesion assessment performed?' if 'No,' then there
isn't a non-deleted add entry record present on TARGET

if(R2!==null || R3!==null || R4!==null || R5!==null || R6!==null || R7!==null
|| R8!==null){}
var chk1val=getStringFromChoice(FOLLOWASS);
var tarcnt=ListRFInstances(R1, 0);
 if(chk1val.contains("No"))
 {
 if(tarcnt.length<=0)
 {
 return true;
 }
 else
 {
 return false;
 }
}
else
{
 return true;
}

Query message: You have selected No. However, information has been recorded. Please
review and correct.

Duplicate values check
Check for duplicate data in a repeating form.

Rule description: we do not want any duplicates for Follow-up 'RECIST Evaluation Number'
to be recorded on the TARGET form.

Rule expression

if(FindDuplicateRepeatingForm(TLFEVAL))
{
 return false; //System sends query when return false
condition is met
}
else
{
 return true;
}

Query message: A duplicate RECIST Evaluation Number has been recorded. Please verify
and correct.

TLFEVAL
Corresponds to the RECIST Evaluation Number from rule description.

Chapter 4
Repeating form examples

4-39

FindDuplicateRepeatingForm()
Helper function to detect duplicate data in a repeating form for search keys passed in as
parameters (TLFEVAL)

Note:

This is an aggregation function. The rule will be run for each form instance in the
case where the target is on a repeating form.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Usage tips

Use this when the item is not a choice control.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the iems to check, in
this example the RECIST evaluation number <TLFEVAL> in the specified repeating form
instance.

2. Update the form item TLFEVAL as in the following table and verify the result is as listed:

Step Notes Result

a. In the first repeating form (1RF)
instance enter the TLFEVAL item as
value 1 (input value is as per item type
i.e. Text/Date/Number).

Only one repeating form instance. No query.

b. Go to a second repeating form
(2RF) instance and enter the TLFEVAL
item as value 1 (same as in previous
step).

Matching values in 1RF and 2RF:
• 1RF - value 1
• 2RF -value 1

Query in 1RF and 2RF.

c. Update TLFEVAL item in 2RF
instance as value 2 (different to value
1).

Different values in 1RF and 2RF:
• 1RF - value 1
• 2RF -value 2

No queries.

d. Update TLFEVAL item in 1RF
instance as value 2 (same as in
previous step).

Matching values in 1RF and 2RF:
• 1RF - value 2
• 2RF -value 2

Query in 1RF and 2RF.

e. Clear TLFEVAL item in 2RF. Different values in 1RF and 2RF:
• 1RF - value 2
• 2RF -Null

No queries.

f. Enter TLFEVAL item in 2RF as value
3 (different to those entere before).

Different values in 1RF and 2RF:
• 1RF - value 2
• 2RF -value 3

No queries.

g. Go to a third repeating form (3RF)
instance and enter the TLFEVAL item
as value 2.

Matching values in 1RF and 3RF:
• 1RF - value 2
• 2RF -value 3
• 3RF - value 2

Query in 1RF and 3RF.

No query in 2RF.

Chapter 4
Repeating form examples

4-40

Step Notes Result

h. Update the TLFEVAL item in 3RF as
value 1.

Different values in 1RF, 2RF and
3RF:
• 1RF - value 2
• 2RF -value 3
• 3RF - value 1

No queries.

i. Update the TLFEVAL item in 3RF as
value 3.

Matching values in 2RF and 3RF:
• 1RF - value 2
• 2RF -value 3
• 3RF - value 3

Query in 2RF and 3RF.

No query in 1RF.

j. Delete the 2RF instance. Different values in 1RF and 3RF,
and no 2RF present:
• 1RF - value 2
• 3RF - value 3

No queries.

Note:

Repeat the above steps if the form is present in multiple visits.

Other examples

Example 4-27 If more than one AE Term exists with the same start date, issue a query

if(FindDuplicateRepeatingForm(aetrm,onstdt)) {
 return false;
} else {
 return true;
}

Query message: An adverse event term with the same start date is reported more than once.
Please correct.

Compare related instances
Check a value for a matching instance in a repeating form.

Rule description: severity (a radio control) must be different from the previous one for the
same related Adverse Event (AENUM).

Rule expression

//variable declaration
var rc; //Radio Control - severity
var ins; //placeholder for Repeating Form instance
var outc=''; //placeholder for severity label value
var cnt=0; //counter variable

//function definition to identify number of instances matching the severity
value
function functi(item,index)
{
 if(item.deleted===false && item.value!==null && index!==(ins-1) &&

Chapter 4
Repeating form examples

4-41

index<ins-1)
 {

 if(item.value===aenum1val) //
Checks if the passed-in instance has a matching AE number value with the
current instance
 {
 if(newsev[index]!==null && sevval!==null)
 {
 outc=JSON.parse(newsev[index].value)[0].label; //
Retrieves label from severity selection made by the user in the related
instance
 if(outc===sevval) //Checks if
the severity value in the related instance is matching in the current instance
 {
 cnt=cnt+1; //Updates
the number of identified matching instances
 }
 else
 {
 cnt=cnt;
 }
 }
 else
 {
 cnt=cnt;
 }
 }
 else
 {
 cnt=cnt;
 }
 }
 else
 {
 cnt=cnt;
 }
}

try
{
//variable declaration
 ins = GetCurrentRFInstance(); //Retrieves
instance of the current AE form
 var aenum1val=aenum1; //Adverse
event number item
 var sevval=getStringFromChoice(newsev1); //Variable
for severity item to retrieve the label for the severity choice item selected
by the user
 rc=getValues('aenum','newsev'); //Gets
values entered for AE number and severity items
 if(rc===true && aenum1val!==null && sevval!==null && ins>1) //Checks
if getValues function retrieved results array, if AE number and severity
values are not null and if current instance is not the first instance of the
form
 {

Chapter 4
Repeating form examples

4-42

 aenum.forEach(functi); //Execute the function code for all AE
number values entered in the form
 if(cnt>0)
 {
 return false; //System sends query when return false
condition is met
 }
 else
 {
 return true;
 }
 }
 else
 {
 return true;
 }
}
catch(err)
{
 setQueryMessage(err); //set query message to display an
encountered error
 return false; //System sends query when return
false condition is met
}

Query: The new severity is the same as the previous one. Please check.

Definitions

newsev
Created variable for the Severity item from rule description.

aenum
Corresponds to the Adverse Event Number item from the rule description.

GetCurrentRFInstance()
Gets the form instance number of the current repeating form.

getStringFromChoice()
Converts selected label for the choice element (drop-down, radio buttons or checkboxes) to a
string or a comma-separated value. Takes in the choice element as parameter.

getValues()
Fetches values for one or more variables across multiple visits, in an array format ordered by
visits. In this case takes aenum and newsev variables described above.

setQueryMessage()
Specify dynamic query text passed in as a parameter.

functi(item,index)
Function declared in code. Identifies number of instances matching the giving severity value.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Chapter 4
Repeating form examples

4-43

Verification steps

1. Using a subject for testing, go to the given visit and form containing the iems to check, in
this example the Adverse Event number <aenumval> and severity <sevval>in the specified
repeating form instance.

2. Update the form items aenumval and sevval as in the following table and verify the result is
as listed:

Step Notes Result

a. In the first repeating form (1RF)
instance enter the aenumval item as
'1' (AE1) and select sevval as 'Grade
1'.

Only one repeating form instance. No query.

b. Go to a second repeating form
(2RF) instance and enter the
aenumval item as '1' (AE1) and select
sevval as 'Grade 1' (same as in
previous step).

Matching values in 1RF and 2RF:
• 1RF:

– AE1
– Severity Grade 1

• 2RF:
– AE1
– Severity Grade 1

Query in 2RF.

c. Update sevval item in 2RF
instance as 'Grade 2'.

Different values in 1RF and 2RF:
• 1RF:

– AE1
– Severity Grade 1

• 2RF:
– AE1
– Severity Grade 2

No queries.

d. Update sevval item in 2RF
instance back as 'Grade 1'.

Matching values in 1RF and 2RF:
• 1RF:

– AE1
– Severity Grade 1

• 2RF:
– AE1
– Severity Grade 1

Query in 2RF.

e. Update aenumval item in 2RF
instance as '2' (AE2).

Different values in 1RF and 2RF:
• 1RF:

– AE1
– Severity Grade 1

• 2RF:
– AE2
– Severity Grade 1

No queries.

f. Create a thrid repeating form (3RF)
instance and enter aenumval item as
'1' (AE1) and sevval as 'Grade 1'.

Matching values in 1RF and 3RF:
• 1RF:

– AE1
– Severity Grade 1

• 2RF:
– AE2
– Severity Grade 1

• 3RF:
– AE1
– Severity Grade 1

Query in 3RF.

Chapter 4
Repeating form examples

4-44

Step Notes Result

g. Update aenumval in 3RF as '3'
(AE3).

Different values in all repeating
form instances:
• 1RF:

– AE1
– Severity Grade 1

• 2RF:
– AE2
– Severity Grade 1

• 3RF:
– AE3
– Severity Grade 1

No queries.

h. Update the aenumval item in 3RF
as '2' (AE2).

Matching values in 2RF and 3RF:
• 1RF:

– AE1
– Severity Grade 1

• 2RF:
– AE2
– Severity Grade 1

• 3RF:
– AE2
– Severity Grade 1

Query in 3RF.

i. Update the sevval item in 2RF as
'Grade 3'.

Different values in all repeating
form instances:
• 1RF:

– AE1
– Severity Grade 1

• 2RF:
– AE2
– Severity Grade 3

• 3RF:
– AE2
– Severity Grade 1

No queries.

Other examples

Example 4-28 The start date of the treatment must be after or the same as the stop
date of treatment for the previous prescription of the same drug

var rc;
var ins;
var ind=-1;
var res='';
function functi(item,index)
{
 if(item.deleted===false && item.value!==null && index!==(ins-1) &&
index<ins-1)
 {
 if(item.value===trtname1)
 {
 if(stpdt[index]!==null && stdt[ins-1]!==null)
 {

if(getDatesCompareResult(stdt[ins-1].value,true,stpdt[index].value,true,'>='))
 {
 ind=1;

Chapter 4
Repeating form examples

4-45

 }
 else{ ind = 0;}
 }
 }
 }
}
 ins = GetCurrentRFInstance();
 rc=getValues("trtname","stdt","stpdt");
 if(rc===true && ins!==1)
 {
 trtname.forEach(functi);
 if(ind===0)
 {
 return false;
 }
 else { return true; }
 }
 else
 {
 return true;
 }

Query message: Start date is prior to stop date of previous prescription. Please correct or
confirm.

Two-section form examples

• Table instance count
Find table row instances where the rule is currently being executed for a two-section form.

• Form instance count
Find the number of form instances where the rule is run on two-Section forms.

• Duplicate values check - flat section items
Check if more than one form instance contains the same value for a given item in the flat
section of a two-section form.

• Duplicate values check - table section items
Check if more than one table instance contains the same value for a given item in a
respective two-section form.

Table instance count
Find table row instances where the rule is currently being executed for a two-section form.

Rule description: if Yes is selected for Does the subject have any relevant Medical History?,
then there must be at least one non-deleted table instance recorded or a query is issued.

Rule expression

If(MHSTDT!==null || MHONG!==null || MHENDT!==null){…..}
var instval=getCurrent2SFormInstance();
if(getStringFromChoice(MHYes)==='Yes')
{

Chapter 4
Two-section form examples

4-46

var instcnt=list2SInstances(MHTERM,instval,0);
if(instcnt.length > 0)
{
return true;
}
else
{
return false; //System sends query when return false condition
is met
}
}
else
{
return true;
}

Query message: "Does the subject have any relevant Medical History?" has been answered
"Yes", therefore data is expected in the table. Please review and complete.

Definitions

MHSTDT, MHONG, MHENDT
Table section items in two-Section form.

MHYes
Item on Flat section which is target item.

MHTERM
Table section item in two-Section form used as parameter to the list2SInstances() helper
function.

getCurrent2SFormInstance()
Gets the form instance number of the current two-section form.

getStringFromChoice()
Converts selected label for the choice element (drop-down, radio buttons or checkboxes) to a
string or a comma-separated value. Takes in the choice element as parameter.

list2SInstances()
Lists all table instances of the passed-in variable in a two-section form. Takes an item variable
of the table section in the form as a parameter.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Usage tips

To make sure the rule runs whenever any of the items in the table section of a two-section form
is completed or updated, you must create global variables for each of them and use the
variables to evaluate if any of these are not null. This is done in the first line of the rule
expression.

Chapter 4
Two-section form examples

4-47

Note:

For this evaluation, you should not include the item passed as a parameter to the
ListRFInstances() helper function in the rule expression logic.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the iems to check, in
this example the Does the subject have any relevant Medical History? question <MHYes> .

2. Update the form item MHYes as in the following table and verify the result is as listed:

Step Result

a. In the flat section of a first instance of a two-section form (Form1), enter
the MHYes item as 'Yes'.

Query

b. In Form1, create a first table instance and complete all items. No query

c. In Form1, clear all items in the first table instance. No query

d. In Form1, delete the first table instance. Query

e. In the flat section of Form1, update the MHYes item as 'No'. No query

f. In the flat section of Form1, update the MHYes item as 'Yes'. Query

g. In Form1, create a new first table instance and complete some items. No query

h. Create a second two-section form instance (Form2) and enter the
MHYes item as 'Yes' in the flat section.

Query in Form2

i. In Form2, create a first table instance and complete some items. No queries

j. Delete Form2. No query

Note:

Repeat the above steps if the form is present in multiple visits.

Other examples

Example 4-29 Trigger query if the read only "Was PE Date populated?' is populated
with "Yes", and there is no date completed in the repeating section.

var instval=getCurrent2SFormInstance();
if(getStringFromChoice(PEDT)==='Yes')
{
var instcnt=list2SInstances(RES,instval,0);
if(instcnt.length > 0)
{
return true;
}
else
{
return false;
}
}

Chapter 4
Two-section form examples

4-48

else
{
return true;
}

Query message: Date of Physical Exam is entered. However, there is no entry in the table.

Form instance count
Find the number of form instances where the rule is run on two-Section forms.

Rule description: there should not be more than five form instances recorded on the Target
Lesion form, or a query is issued.

Rule expression

 If(organ!==null || vst!==null || assess!==null)
var cnt= list2SInstances(lesid,null,0);
if(cnt.length>5)
{
return false; //System sends query when return false condition
is met
}
else
{
return true;
}

Query message: There are five or less Target Lesion measurements expected, please verify
and correct.

Definitions

organ
An item in the form (Including items in flat section and table section).

vst
An item in the form (Including items in flat section and table section).

assess
An item in the form (Including items in flat section and table section).

lesid
Target item which is Flat section item.

list2SInstances()
Lists all table instances of the passed-in variable in a two-section form. Takes an item variable
of the table section in the form as a parameter.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Chapter 4
Two-section form examples

4-49

Usage tips

To make sure the rule runs whenever any of the items in the table section of a two-section form
is completed or updated, you must create global variables for each of them and use the
variables to evaluate if any of these are not null. This is done in the first line of the rule
expression.

Note:

For this evaluation, you should not include the item passed as a parameter to the
ListRFInstances() helper function in the rule expression logic.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the iems to check, in
this example the Lesion ID <lesid> in the Target Lesion form.

2. Create form instances updating the form item lesid as in the following table and verify the
result is as listed:

Step Result

a. Create a first instance of a two-section form (Form1) and enter the
lesid item with any value'.

No query

b. Create a second instance of a two-section form (Form2) and enter the
lesid item with any value'.

No query

c. Create a third instance of a two-section form (Form3) and enter the
lesid item with any value'.

No query

d. Create a fourth instance of a two-section form (Form4) and enter the
lesid item with any value'.

No query

e. Create a fifth instance of a two-section form (Form5) and enter the
lesid item with any value'.

No query

f. Create a sixth instance of a two-section form (Form6) and enter the
lesid item with any value'.

Query in all six
instances.

g. Delete Form2. No query

Note:

Repeat the above steps if the form is present in multiple visits.

Duplicate values check - flat section items
Check if more than one form instance contains the same value for a given item in the flat
section of a two-section form.

Rule description: all Form Instances contain a unique Lesion ID. Issue a query if a Lesion ID
is duplicated.

Chapter 4
Two-section form examples

4-50

Rule expression

if(findDuplicate2SForm(null,lesid))
{
 return false; //System sends query when return false
condition is met
}
else
{
 return true;
}

Query Message: The number recorded for Lesion ID has already has been used. Please
confirm and correct.

Definitions

lesid
Corresponds to Lesion ID that is present in the flat section of a two-section form from rule
description.

findDuplicate2SForm()
Identifies duplicated data as item values for the variables provided as parameters, in this case
lesid.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Usage tips

Use this when the item is not a choice control.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the iems to check, in
this example the Lesion ID <lesid> in the specified two-section form instance.

2. Update the form item lesid as in the following table and verify the result is as listed:

Step Notes Result

a. In the first two-section form instance
(Form1) enter the lesid item as '1'.

Only one two-section form
instance.

No query.

b. Create a second two-section form
instance (Form2), and enter the lesid
item as '1'.

Matching values in Form1 and
Form2:
• Form1 - 1
• Form2 - 1

Query in Form1 and
Form2.

c. Update lesid item in Form2 as '2'. Different values in Form1 and
Form2:
• Form1 - 1
• Form2 -2

No queries.

Chapter 4
Two-section form examples

4-51

Step Notes Result

d. Update lesid item in Form1 as '2'. Matching values in Form1 and
Form2:
• Form1 - 2
• Form2 -2

Query in Form1 and
Form2.

e. Clear lesid item in Form2. Different values in Form1 and
Form2:
• Form1 - 2
• Form2 -Null

No queries.

f. Update lesid item in Form2 as '3'. Different values in Form1 and
Form2:
• Form1 - 2
• Form2 -3

No queries.

g. Create a third two-section form
instance (Form3), and enter the lesid
item as '2'.

Matching values in Form1 and
Form3:
• Form1 - 2
• Form2 -3
• Form3 - 2

Query in Form1 and
Form3.

No query in Form2.

h. Update lesid item in Form3 as '1'. Different values in Form1, Form2
and Form3:
• Form1 - 2
• Form2 -3
• Form3 - 1

No queries.

i. Update lesid item in Form3 as '3'. Matching values in Form2 and
Form3:
• Form1 - 2
• Form2 -3
• Form3 - 3

Query in Form2 and
Form3.

No query in Form1.

j. Delete Form2. Different values in Form1 and
Form3, and no Form2 present:
• Form1 - 2
• Form3 - 3

No queries.

Note:

Repeat the above steps if the form is present in multiple visits.

Other examples

Example 4-30 Method of Assessment should stay the same across all records

if(findDuplicate2SForm(null,assmethod))
{
 return true;
}
else
{
 return false;
}

Query message: Method of Assessment is different than the value previously recorded.
Please verify.

Chapter 4
Two-section form examples

4-52

Duplicate values check - table section items
Check if more than one table instance contains the same value for a given item in a respective
two-section form.

Rule description: issue a query if a duplicate Abnormality/Condition is entered in the Medical
History table section.

Rule expression

var instval=getCurrent2SFormInstance();
if(findDuplicate2SForm(instval,MHCondition))
{
 return false; //System sends query when return false
condition is met
}
else
{
 return true;
}

Query Message: Abnormality/Condition has been recorded in duplicate, please verify and
correct.

Definitions

MHCondition
Corresponds to the Abnormality/Condition that is present in the table section of a two-section
form, from rule description.

getCurrent2SFormInstance()
Gets the form instance number of the current two-section form.

findDuplicate2SForm()
Identifies duplicated data as item values for the variables provided as parameters, in this case
lesid.

Return value

Boolean
Returns either true or false. System raises query when return false condition is met.

Usage tips

Use this when an item is not a choice control.

Verification steps

1. Using a subject for testing, go to the given visit and form containing the iems to check, in
this example the Abnormality/Condition <MHCondition> in the specified table instance of
the Medical History two-section form.

2. Update the form item MHCondition as in the following table and verify the result is as listed:

Chapter 4
Two-section form examples

4-53

Step Notes Result

a. In the first two-section form instance
(Form1), create a first table instance
(Row1) and enter the MHCondition
item as 'value 1'.

Only one two-section form
instance.

No query.

b. In Form1, create a second table
instance (Row2) and enter the
MHCondition item as 'value 1'.

Matching values in Row1 and
Row2 of Form1:
• Form1:

– Row1 - value 1
– Row2 - value 1

Query.

c. Update MHcondition item in Row2
of Form1 as 'value 2'.

Different values in Row1 and
Row2 of Form1:
• Form1:

– Row1 - value 1
– Row2 - value 2

No query.

d. Update MHcondition item in Row1
of Form1 as 'value 2'.

Matching values in Row1 and
Row2 of Form1:
• Form1:

– Row1 - value 2
– Row2 - value 2

Query.

e. Clear MHCondition item in Row2 of
Form1.

Different values in Row1 and
Row2 of Form1:
• Form1:

– Row1 - value 2
– Row2 - Null

No queries.

f. Update MHcondition item in Row2
of Form1 as 'value 3'.

Different values in Row1 and
Row2 of Form1:
• Form1:

– Row1 - value 2
– Row2 - value 3

No queries.

g. In Form1, create a third table
instance (Row3) and enter the
MHCondition item as 'value 2'.

Matching values in Row1 and
Row3 of Form1:
• Form1:

– Row1 - value 2
– Row2 - value 3
– Row3 - value 2

Query.

h. Update MHcondition item in Row3
of Form1 as 'value 1'.

Different values in Row1, Row2
and Row3 of Form1:
• Form1:

– Row1 - value 2
– Row2 - value 3
– Row3 - value 1

No queries.

i. Update MHcondition item in Row3
of Form1 as 'value 3'.

Matching values in Row2 and
Row3 of Form1:
• Form1:

– Row1 - value 2
– Row2 - value 3
– Row3 - value 3

Query.

Chapter 4
Two-section form examples

4-54

Step Notes Result

j. Create a second two-section form
instance (Form2) and create a first
table instance (Row1) and enter the
MHCondition item as 'value 3'.

Matching values in Matching
values in Row2 and Row3 of
Form1:
• Form1:

– Row1 - value 2
– Row2 - value 3
– Row3 - value 3

• Form2:
– Row1 - value 3

Query in Form1.

No query in Form2.

k. In Form2, create a second table
instance (Row2) and enter the
MHCondition item as 'value 3'.

Matching values in Matching
values in Row2 and Row3 of
Form1 and in Row1 and Row2 of
Form2:
• Form1:

– Row1 - value 2
– Row2 - value 3
– Row3 - value 3

• Form2:
– Row1 - value 3
– Row2 - value 3

Query in Form1 and
Form2.

l. Delete Row2 in Form2. Matching values in Matching
values in Row2 and Row3 of
Form1:
• Form1:

– Row1 - value 2
– Row2 - value 3
– Row3 - value 3

• Form2:
– Row1 - value 3

Query in Form1.

No query in Form2

Note:

Repeat the above steps if the form is present in multiple visits.

Other examples

Example 4-31 If Timepoint (or Visit) is selected and previous record already uses
timepoint, then fire query

var frminst=getCurrent2SFormInstance();
if(findDuplicate2SForm(frminst,Visit))
{
return false;
}
else
{
return true;
}

Query message: The time point selected has already been reported on a previous record.
Please review and reconcile.

Chapter 4
Two-section form examples

4-55

Example 4-32 Date of Assessment cannot be duplicated. For example, if 01/01/2021 is
already recorded for a previous Timepoint, it cannot be recorded again

var frminst=getCurrent2SFormInstance();
if(findDuplicate2SForm(frminst,assdt))
{
return false;
}
else
{
return true;
}

Query message: Date of Assessment is already recorded. Please review and correct.

Chapter 4
Two-section form examples

4-56

5
Frequently Asked Questions (FAQs)

• What if my JavaScript expression does not return a value for a calculation?
A JavaScript function always returns a value, if it is properly defined.

• What happens when one of the function's inputs (operands or variables) is cleared?
If a question that is used as input for a rule is cleared, the given rule will re-run with an
empty value. In the case of rules for calculated values, the calculated value is cleared.

• What if I published a rule by mistake?

• Can I publish a single rule in Production?
Yes you can. To publish one rule at a time in Production, all you have to do is move the
status slider from Approved to Published, while the study is still in Testing mode.

What if my JavaScript expression does not return a value for a
calculation?

A JavaScript function always returns a value, if it is properly defined.

If you do not specify a return value, it remains undefined and can result in unexpected
behavior. Therefore, make sure you include a return statement on your rule to specify the
value your JavaScript expression should return. For step-by-step instructions, see Create a
rule for a calculated value.

What happens when one of the function's inputs (operands or
variables) is cleared?

If a question that is used as input for a rule is cleared, the given rule will re-run with an empty
value. In the case of rules for calculated values, the calculated value is cleared.

For example, consider that Body Mass Index (BMI) is calculated based on the questions
(inputs/variables) Height and Weight. If BMI currently has a value for 25.6 and Height is
cleared, then BMI is also cleared.

What if I published a rule by mistake?
If you published a rule in error, depending on your role, you can disable that rule so it stops
running in all study versions in Production. For more information see Disable a rule.

Can I publish a single rule in Production?
Yes you can. To publish one rule at a time in Production, all you have to do is move the status
slider from Approved to Published, while the study is still in Testing mode.

If you want to publish multiple rules at a time, all you have to do is make sure they have a
status of Approved. When you move the study from the Testing to the Approved container, all
rules with a status of Approved will be published in Production.

5-1

This task can be performed if you you're assigned the Rule Publisher role by the user
administrator.

Chapter 5
Can I publish a single rule in Production?

5-2

6
Revision history

Table 6-1 Revision History

Date Part Number Description

May 2024 F91498-02 Included additional information on how
to Handle partial dates in custom rules.

May 2024 F91498-01 Original version of the document.

6-1

	Contents
	Preface
	Documentation accessibility
	Diversity and Inclusion
	Related resources
	Access to Oracle Support
	Additional copyright information

	1 Before you begin your rules development
	JavaScript basics
	Javascript usage tips
	Predefined rules versus custom rules
	The Subject Object
	Handle partial dates in custom rules
	The standard JavaScript Date object
	The custom C1Date object

	2 Create and manage custom rules
	Rule statuses and lifecycle
	Access the rules interface
	Create rules using the rule editor
	Define rule variables
	Create a rule for a calculated value
	Create a rule for an automated query
	Create a rule to send an email notification
	Use predictive text to write rules
	Debug a rule

	Prepare your rule for testing and approval
	Test and approve a rule
	Publish rules
	Publish a single rule
	Publish multiple rules at the form level
	Publish multiple rules at the study level

	Modify and republish a published rule
	Disable a rule
	Access the Rule Management page
	Manage rules in Testing mode from the Rule Management page
	Manage published rules from the Rule Management page

	3 Rules helper function reference
	General expressions
	Comparison
	Conversion
	Switch statement
	Choice
	Compare dates with different formats
	Range check

	Date and time functions
	dateDiffInYears()
	dateDiffInDays()
	timeDiffInHours()
	timeDiffInMinutes()
	timeDiffInSeconds()
	areDatesEqual()
	isDateInRange()
	areDateTimesEqual()
	isTimeInRange()
	addDays()
	addTimeInHours()
	addTimeInMinutes()
	getDateDMYFormat()
	getDatesCompareResult()
	partialDateDiff()

	Repeating form functions
	FindDuplicateRepeatingForm()
	FindDuplicateRepeatingFormWithinRange()
	FindMinInRepeatingForms()
	FindMaxInRepeatingForms()
	FindMinDateInRFs()
	FindMaxDateInRFs()
	FindMatchingRepeatingForm()
	FindMatchingRepeatingFormWithinRange()
	FindRFInstance()
	ListRFInstances()
	GetCurrentRFInstance()
	GetMatchingRepeatingFormsCount()
	getPrevRepeatValue()
	getRFValues()

	Two-section form functions
	findDuplicate2SForm()
	findDuplicate2SFormWithinRange()
	findMinIn2SForms()
	findMaxIn2SForms()
	findMinDateIn2SForm()
	findMaxDateIn2SForm()
	findMatching2SForm()
	findMatching2SFormWithinRange()
	find2SFormInstance()
	list2SInstances()
	getCurrent2SFormInstance()
	getCurrent2STableInstance()
	getMatching2SFormsCount()
	get2SValues()

	Control the behavior of a rule
	isStudyVersion()
	getCurrentVisitPropertyValue()
	logMsg()

	Detect missing data
	Search and detect missing values

	Multiple choice question functions
	Deprecated - getArrayFromDropdown()
	Deprecated - getStringFromDropdown()
	setChoiceLabel()
	setChoiceValue()
	clearChoice()
	getArrayFromChoice()
	getStringFromChoice()

	Multiple visit schedules and cycle visit functions
	getCurrentBranch()
	isSubjectOnBranch()
	getCurrentTreatmentArm()
	getQuestionValue()
	getDataElementsArray()
	getCurrentCycle()
	getCycleCount()
	getCompletedCycle()

	Formatting and other functions
	setQueryMessage()
	enableNotificationDetails()
	getValues()

	4 Rules examples
	Electronic Data Collection (EDC) examples
	Range check
	Item completion check
	BMI calculation check
	Oracle Central Coding mapping
	Choice question check
	Blood pressure comparison check
	Format check
	Age calculation check

	Date examples
	Date comparisons
	Date comparison
	DateTime comparison
	Date comparison within range: On or after
	Date comparison within range: Days before
	Map dates

	Partial date comparisons
	Partial date comparison
	Partial date unknown month evaluation

	Dates with Dynamic Query Text
	Date comparison - dynamic query
	Date Time comparison - dynamic query
	Partial date comparison with dynamic query text

	Repeating form examples
	Instance count
	Duplicate values check
	Compare related instances

	Two-section form examples
	Table instance count
	Form instance count
	Duplicate values check - flat section items
	Duplicate values check - table section items

	5 Frequently Asked Questions (FAQs)
	What if my JavaScript expression does not return a value for a calculation?
	What happens when one of the function's inputs (operands or variables) is cleared?
	What if I published a rule by mistake?
	Can I publish a single rule in Production?

	6 Revision history

