
Oracle® Retail AI Foundation Cloud
Services
Operations Guide

Release 23.1.201.0
F80449-04
June 2023

Oracle Retail AI Foundation Cloud Services Operations Guide, Release 23.1.201.0

F80449-04

Copyright © 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Send Us Your Comments

 Preface

1 Introduction

2 Retail Insights Standalone Processes

Adjustments History Load 2-1

Design Overview 2-1

Key Tables Affected 2-1

Aggregate Fact History Load 2-2

Design Overview 2-2

Key Tables Affected 2-2

Batch Data File Reprocessing 2-2

Design Overview 2-3

Copy Files From FTS 2-3

Design Overview 2-3

Data Security Load 2-3

Design Overview 2-3

Key Tables Affected 2-4

Deal Income History Load 2-4

Design Overview 2-4

Key Tables Affected 2-4

Default Calendar Initialization 2-5

Design Overview 2-5

Key Tables Affected 2-5

ETL Business Date Update 2-6

Design Overview 2-6

Key Tables Affected 2-6

History Data Cleanup 2-6

iii

Design Overview 2-7

History Data File Upload 2-7

Design Overview 2-7

Initial Base Cost Seeding 2-7

Design Overview 2-8

Key Tables Affected 2-8

Initial Base Cost Seeding (Legacy) 2-8

Design Overview 2-8

Key Tables Affected 2-9

Initial Calendar Load 2-9

Design Overview 2-9

Key Tables Affected 2-10

Initial Calendar Staging (Legacy) 2-11

Design Overview 2-11

Key Tables Affected 2-11

Initial Dimension Load 2-11

Design Overview 2-11

Files to Pre-Staging Tables 2-12

Pre-Staging to Staging Tables 2-12

Staging to Target Tables 2-14

Initial Dimension Staging 2-15

Design Overview 2-15

Key Tables Affected 2-15

Initial Dimension Staging (Legacy) 2-16

Design Overview 2-16

Key Tables Affected 2-16

Initial Inventory Seeding 2-18

Design Overview 2-18

Key Tables Affected 2-18

Initial Inventory Seeding (Legacy) 2-19

Design Overview 2-19

Key Tables Affected 2-19

Initial Net Cost Seeding 2-19

Design Overview 2-20

Key Tables Affected 2-20

Initial Net Cost Seeding (Legacy) 2-20

Design Overview 2-20

Key Tables Affected 2-21

Initial Price Seeding 2-21

Design Overview 2-21

Key Tables Affected 2-22

iv

Initial Price Seeding (Legacy) 2-22

Design Overview 2-22

Key Tables Affected 2-22

Initial Purchase Order Seeding 2-23

Design Overview 2-23

Key Tables Affected 2-23

Initial Purchase Order Seeding (Legacy) 2-23

Design Overview 2-24

Key Tables Affected 2-24

Inventory History Current Position Load 2-24

Design Overview 2-24

Key Tables Affected 2-25

Intercompany Margin History Load 2-25

Design Overview 2-25

Key Tables Affected 2-25

Inventory History Load 2-25

Design Overview 2-26

Key Tables Affected 2-26

Inventory History Staging 2-27

Design Overview 2-27

Key Tables Affected 2-27

Inventory History Staging (Legacy) 2-28

Design Overview 2-28

Key Tables Affected 2-28

Inventory Out of Stock Load 2-28

Design Overview 2-28

Key Tables Affected 2-29

Inventory Reclass History Load 2-29

Design Overview 2-29

Key Tables Affected 2-29

Inventory Selling Date Seeding 2-29

Design Overview 2-30

Key Tables Affected 2-30

Markdown History Load 2-30

Design Overview 2-30

Key Tables Affected 2-30

Nightly Batch Status Cleanup 2-31

Design Overview 2-31

Key Tables Affected 2-31

Plan Data Integration 2-31

Design Overview 2-32

v

Key Tables Affected 2-32

Planning Dimension Export 2-32

Design Overview 2-32

Key Tables Affected 2-33

Planning Fact Export 2-33

Design Overview 2-34

Key Tables Affected 2-34

Planning Initial Inventory Export 2-34

Design Overview 2-35

Key Tables Affected 2-35

Planning Load Cleanup 2-35

Design Overview 2-35

Key Tables Affected 2-36

POS Sales Integration 2-36

Design Overview 2-36

Key Tables Affected 2-36

Price History Load 2-36

Design Overview 2-37

Key Tables Affected 2-37

Price History Load (Legacy) 2-37

Design Overview 2-37

Key Tables Affected 2-38

RDE Grants to APEX 2-38

Design Overview 2-38

Receipts History Load 2-38

Design Overview 2-39

Key Tables Affected 2-39

Rejected Record Analysis 2-39

Design Overview 2-39

Key Tables Affected 2-40

Rejected Record Cleanup 2-40

Design Overview 2-40

Key Tables Affected 2-41

RTV History Load 2-41

Design Overview 2-41

Key Tables Affected 2-41

RTV History Load (Legacy) 2-42

Design Overview 2-42

Key Tables Affected 2-42

Sales History Load 2-42

Design Overview 2-42

vi

Key Tables Affected 2-43

Sales History Staging 2-44

Design Overview 2-44

Key Tables Affected 2-44

Sales History Staging (Legacy) 2-44

Design Overview 2-45

Key Tables Affected 2-45

Sales Tender Load 2-45

Design Overview 2-45

Key Tables Affected 2-45

Sales Tender Staging 2-45

Design Overview 2-46

Key Tables Affected 2-46

Table Partitioning 2-46

Design Overview 2-46

Key Tables Affected 2-46

Transfer History Load 2-47

Design Overview 2-47

Key Tables Affected 2-47

Translation Lookup Load (Legacy) 2-47

Design Overview 2-47

Key Tables Affected 2-48

3 AI Foundation Cloud Services Standalone Processes

Customer Metrics - Base Calculation 3-3

Design Overview 3-3

Key Tables Affected 3-3

Customer Metrics - Final Calculation 3-3

Design Overview 3-4

Key Tables Affected 3-4

Customer Metrics - Loyalty Score 3-4

Design Overview 3-4

Key Tables Affected 3-5

Fake Customer Identification 3-5

Design Overview 3-5

Key Tables Affected 3-5

File Export Execution 3-5

Design Overview 3-6

File Export Preparation 3-6

Design Overview 3-6

vii

Location Ranging 3-6

Design Overview 3-6

Key Tables Affected 3-7

Master Data Load - AA 3-7

Design Overview 3-7

Master Data Load - AC 3-7

Design Overview 3-8

Master Data Load - AE 3-9

Design Overview 3-9

Master Data Load - Common 3-9

Design Overview 3-9

Master Data Load - DT 3-12

Design Overview 3-12

Master Data Load - IO 3-13

Design Overview 3-13

Master Data Load - PMO 3-14

Design Overview 3-14

Master Data Load - OO 3-15

Design Overview 3-15

Master Data Load - SO 3-16

Design Overview 3-16

Master Data Load - SPO 3-17

Design Overview 3-17

Offer Optimization Run 3-18

Design Overview 3-18

Product Location Ranging 3-18

Design Overview 3-19

Key Tables Affected 3-19

Sales Aggregation – Cumulative Sales 3-19

Design Overview 3-19

Key Tables Affected 3-20

Sales Aggregation - Customer Segment 3-20

Design Overview 3-20

Key Tables Affected 3-20

Sales Aggregation - Product 3-21

Design Overview 3-21

Key Tables Affected 3-21

Sales Aggregation - Product Attribute 3-21

Design Overview 3-21

Key Tables Affected 3-22

Sales Aggregation - Product Hierarchy 3-22

viii

Design Overview 3-22

Key Tables Affected 3-22

Sales Aggregation - Weekly 3-22

Design Overview 3-23

Key Tables Affected 3-23

Sales Forecast Aggregation - Product Attribute (Legacy) 3-23

Design Overview 3-23

Sales Forecast Aggregation - Product Hierarchy (Legacy) 3-24

Design Overview 3-24

Sales Shares - Product Attribute 3-24

Design Overview 3-24

Key Tables Affected 3-25

Sales Transaction Load 3-25

Design Overview 3-25

Key Tables Affected 3-25

4 Retail Insights Standalone Process Flows

Process Flows for DAT Files 4-1

Process Flows for CSV Files 4-5

5 Data Validation Framework

Architecture Overview 5-1

Resolving Validation Issues 5-2

6 Support Utilities

Data Cleanup Utility 6-1

Aggregation Utility 6-3

Database Statistics Utility 6-6

External Table Load Logs 6-7

Database Hints for SQL Jobs 6-8

ix

Send Us Your Comments

Oracle Retail Insights and AI Foundation Cloud Services Operations Guide

Oracle welcomes customers' comments and suggestions on the quality and
usefulness of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

• Are the implementation steps correct and complete?

• Did you understand the context of the procedures?

• Did you find any errors in the information?

• Does the structure of the information help you with your tasks?

• Do you need different information or graphics? If so, where, and in what format?

• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note:

Before sending us your comments, you might like to check that you have the
latest version of the document and if any concerns are already addressed. To
do this, access the Online Documentation available on the Oracle
Technology Network Web site. It contains the most current Documentation
Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: retail-
doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at http://www.oracle.com.

Send Us Your Comments

x

http://www.oracle.com

Preface

This Operations Guide provides critical information about the processing and operating
details of the Retail Insights and AI Foundation Cloud Services, including the following:

• Standalone and Adhoc batch processes

• Integration processes

Audience

This guide is for:

• Systems administration and operations personnel

• Systems analyst

• Integrators and implementers

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

• Exact error message received

• Screen shots of each step you take

Oracle Help Center (docs.oracle.com)

Oracle Retail Product documentation is available on the following website https://
docs.oracle.com/en/industries/retail/html

xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com
https://docs.oracle.com/en/industries/retail/html
https://docs.oracle.com/en/industries/retail/html

Comments and Suggestions

Please give us feedback about Oracle Retail Help and Guides. You can send an e-mail
to: retail-doc_us@oracle.com

Oracle Retail Cloud Services and Business Agility

The Oracle Retail Insights and AI Foundation Cloud Services are hosted in the Oracle
Cloud with the security features inherent to Oracle technology and a robust data
center classification, providing significant uptime. The Oracle Cloud team is
responsible for installing, monitoring, patching, and upgrading retail software.

Included in the service is continuous technical support, access to software feature
enhancements, hardware upgrades, and disaster recovery. The Cloud Service model
helps to free customer IT resources from the need to perform these tasks, giving
retailers greater business agility to respond to changing technologies and to perform
more value-added tasks focused on business processes and innovation.

Oracle Retail Software Cloud Service is acquired exclusively through a subscription
service (SaaS) model. This shifts funding from a capital investment in software to an
operational expense. Subscription-based pricing for retail applications offers flexibility
and cost effectiveness.

Preface

xii

1
Introduction

This document is intended to guide a Retail Analytics and Planning Cloud Services
implementer through the internal operations of key areas of the AI Foundation platform that
they will need to interact with during a project, such as ad hoc batch processes and
integration programs. All programs are located within the Process Orchestration and
Monitoring (POM) application and the reader is expected to be familiar with that tool.

This guide includes the following topics:

• Retail Insights Standalone Batch Processes - This chapter provides an overview of
each Retail Insights batch program or process flow in the Standalone set of jobs in POM,
the input and output tables involved in the process, and any dependencies or usage
details to consider before running them.

• Retail AI Foundation Cloud Services Standalone Batch Processes - This chapter
provides an overview of each AI Foundation Cloud Services batch program or process
flow available in the Standalone set of jobs in POM. The primary purpose of the AI
Foundation ad hoc programs is to integrate data from either RI, flat files, or Innovation
Workbench.

• Retail Insights Standalone Process Flows - This chapter provides a set of cross-
reference tables showing how programs in the RI standalone processes are linked to
each other, such as the staging and load jobs to move a single file into the database from
start to finish. This should be used to disable all unneeded jobs in the adhoc load
processes for files you are not trying to load.

• Data Validation Framework - This chapter explains the data validation procedures
associated with foundation input files. The data validation framework checks for common
mistakes and issues in the incoming data files and either fails the process or outputs
warnings to the database, depending on the issue.

• Support Utilities - This chapter describes the self-service utilities used for environment
maintenance and cleanup. Implementers should be aware of the utilities available to
them and leverage them during the project, as needed.

1-1

2
Retail Insights Standalone Processes

The primary function of standalone processes in Retail Insights (RI) is to load history data in
a new environment for use in one or more applications on the platform. These process flows
group together multiple, related programs that load data files, stage them in the database,
and transform them into multiple target tables in the RI data warehouse. Processes are also
available for integrations with Merchandise Financial Planning (MFP) and Xstore.

Adjustments History Load

Module Name HIST_CSV_ADJUSTMENTS_LOAD_ADHOC

Description Loads the ADJUSTMENT.csv file into RI and populates key data tables
used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Inventory Adjustment transactions accepts an input file at the
transaction level using the file specification for ADJUSTMENT.csv. It assumes the file has
already been moved into place using the HIST_ZIP_FILE_LOAD_ADHOC process. This process
imports the file into a preprocessing table in the database, transforms it to RI’s internal
staging tables, then loads it into the base fact (item/location/day), as well as the week
aggregate used for integrations (item/location/week). The Reason dimension is also seeded
with records if the reason code and reason description are provided on the transactions.

Note:

This process does not currently populate BI aggregate tables. Those jobs need to
be run separately after each execution of this process if it is necessary to use this
data for reporting in RI.

Key Tables Affected

Table Usage

W_ADJUSTMENT_FTS File Input

W_REASON_DS Staging

W_DOMAIN_MEMBER_DS_TL Staging

W_RTL_INVADJ_IT_LC_DY_FS Staging

W_RTL_INVADJ_IT_LC_DY_F Output (Base Fact)

W_RTL_INVADJ_IT_LC_WK_A Output (Aggregate)

2-1

Table Usage

W_DOMAIN_MEMBER_LKP_TL Output (Reason Descriptions)

Aggregate Fact History Load

Module Name HIST_AGGR_FACT_LOAD_ADHOC

Description Loads pre-aggregated fact data from flat files into RI for data that
is above the item/location intersection.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for aggregate fact data is intended for new customers or
migrating customers that cannot provide item/location level history for sales, inventory,
and other areas. Pre-aggregated data can be loaded into one of four identical file
interfaces that support a wide variety of measures across all functional areas. Each
interface must have data for a single intersection (such as subclass/area/week) and
the intersection must be configured in C_ODI_PARAM_VW before running the loads. This
process will take care of importing the files and loading the data into data warehouse
tables for storage.

Key Tables Affected

Table Usage

W_RTL_FACT1_PROD1_LC1_T1_FS Staging

W_RTL_FACT2_PROD2_LC2_T2_FS Staging

W_RTL_FACT3_PROD3_LC3_T3_FS Staging

W_RTL_FACT4_PROD4_LC4_T4_FS Staging

W_RTL_FACT1_PROD1_LC1_T1_F Output

W_RTL_FACT2_PROD2_LC2_T2_F Output

W_RTL_FACT3_PROD3_LC3_T3_F Output

W_RTL_FACT4_PROD4_LC4_T4_F Output

Batch Data File Reprocessing

Module Name REPROCESS_ZIP_FILE_PROCESS_ADHOC

Description Looks for the RI_REPROCESS_DATA.zip file and unpacks it, moving
any files to the incoming directory for batch processes.

Dependencies None

Business Activity Nightly Batch Processing

Chapter 2
Aggregate Fact History Load

2-2

Design Overview
This process moves and unloads a ZIP file (specifically RI_REPROCESS_DATA.zip) so that the
file contents may be added to an in-progress nightly batch run of the RI schedule. The ZIP file
may contain one or multiple files. It only needs to contain the files that you wish to update for
the current batch run. Unlike the other ZIP file processes, this process does not archive or
delete existing files in the system, so it can safely be used repeatedly to upload new files on
top of existing data.

Copy Files From FTS

Module Name COPY_FILES_ADHOC

Description Reprocesses customer data from RI_REPROCESS_DATA.zip and copies
all files from Object Storage to the application server.

Dependencies ZIP file uploaded to Object Storage

Business Activity Batch Administration

Design Overview
This process reloads data files that caused failures in the AIF DATA nightly batch cycle. Any
time a job ending in STG_JOB failed in the nightly batch, it means that there is an issue with
the file, such as formatting mistakes or missing values. The customer must generate a new
file to correct the issue, package it in RI_REPROCESS_DATA.zip and upload it to Object Storage
using File Transfer Services. Once the ZIP is uploaded, the jobs in this process can be used
to unpack the ZIP file and copy the relevant data to the application server. Lastly, the failed
STG job in the nightly cycle can be restarted; it will use the newly provided input file.

Data Security Load

Module Name RAF_SEC_FILTER_LOAD_ADHOC

Description Copies the data security staging table data (which is populated from IW)
into the target tables, such as RAF_SEC_USER.

Dependencies None

Business Activity Application Administration

Design Overview
This process loads data for AIF data security functionality. The tables populated by this
process limit what data an end user can see in certain AIF applications, such as RI and PMO.
This data load flow only accepts data from IW, and is an alternative to sending flat files as
part of the nightly batch process. This is only a replacement for the flat file load; if there are
any jobs downstream in the applications that must be run, those are still required. The steps
to use this process are:

1. Implement data security integration in Innovation Workbench/APEX to retrieve the users,
groups, and data filter definitions from an external source. You may use REST APIs or
custom file loads for this integration.

Chapter 2
Copy Files From FTS

2-3

2. Develop SQL statements or procedures to insert your data into the staging tables
(listed below).

3. Run the RAF_SEC_FILTER_LOAD_ADHOC process, which will truncate the target tables
and insert your newly staged data. If a staging table is empty, then it will not
truncate the target table.

The entire process could be automated by establishing REST APIs that post into IW
tables, a stored procedure that pushes the data from IW into the RAF staging tables,
and then adding a DBMS_SCHEDULER job that runs the POM process. Because a
truncate-and-load process is used, you must maintain the full set of data security
records somewhere to push into the AIF tables.

Key Tables Affected

Staging Table Target Table

RAF_SEC_USER_STG RAF_SEC_USER

RAF_SEC_GROUP_STG RAF_SEC_GROUP

RAF_SEC_USER_GROUP_STG RAF_SEC_USER_GROUP

RAF_FILTER_GROUP_MERCH_STG RAF_FILTER_GROUP_MERCH

RAF_FILTER_GROUP_ORG_STG RAF_FILTER_GROUP_ORG

Deal Income History Load

Module Name HIST_CSV_DEAL_INCOME_LOAD_ADHOC

Description Loads the DEAL_INCOME.csv file into RI and populates key data
tables used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Deal Income transactions accepts an input file at the
transaction level using the file specification for DEAL_INCOME.csv. It assumes the file
has already been moved into place using the HIST_ZIP_FILE_LOAD_ADHOC process.
This process imports the file into a preprocessing table in the database, transforms it
to RI’s internal staging tables, and then loads it into the base fact (item/location/day) as
well as the week aggregate used for integrations (item/location/week).

Key Tables Affected

Table Usage

W_RTL_DEALINC_IT_LC_DY_FTS File Input

W_RTL_DEALINC_IT_LC_DY_FS Staging

W_RTL_DEALINC_IT_LC_DY_F Output (Base Fact)

W_RTL_DEALINC_IT_LC_WK_A Output (Aggregate)

Chapter 2
Deal Income History Load

2-4

Default Calendar Initialization

Module Name AUTO_GEN_CALENDAR_LOAD_ADHOC

Description Automatically generates a generic NRF fiscal calendar and sets up the RI
database with it.

Dependencies None

Business Activity Initial System Setup

Design Overview
The auto-generated calendar process does not require any input files. Instead, it uses an
internal calendar definition based on the National Retail Federation (NRF) 4-5-4 business
calendar to populate the Retail Insights data model with basic calendar information. The NRF
calendar typically starts around the first week of February and runs for 52 or 53 weeks,
depending on the year. The default calendar starts from January 2017 and extends for
approximately 30 years. It automatically includes 53-week years where appropriate and
follows the NRF guidelines for fiscal weeks and periods.

This process performs all the necessary transform and load jobs required to set up the RI
calendar. This process should only be used if you cannot get a business calendar definition
from any other source, and the retailer does not want to provide a file themselves. Once this
process runs, you can disable W_MCAL_PERIOD_DS_JOB in your nightly batch if you do not
intend to ever provide a calendar file directly.

This process also populates the Gregorian system calendar at the same time the fiscal
calendar is loaded. The Gregorian calendar requires additional start and end date parameters
from C_ODI_PARAM to define the time range to generate. It must be greater than the range of
time in the fiscal calendar. Output tables that start with W_MCAL_ are mainly used for fiscal
calendar generation, while the other tables, such as W_DAY_D, are used for the Gregorian
calendar. All output tables must be successfully populated with calendar data to use the
platform.

Key Tables Affected

Table Usage

W_MCAL_PERIOD_DS Staging

W_TIME_OF_DAY_D Output

W_DAY_D Output

W_YEAR_D Output

W_QTR_D Output

W_MONTH_D Output

W_WEEK_D Output

W_MINUTE_OF_DAY_D Output

W_MCAL_CONFIG_G Output

W_MCAL_CAL_D Output

W_MCAL_PERIOD_D Output

Chapter 2
Default Calendar Initialization

2-5

Table Usage

W_MCAL_DAY_D Output

W_MCAL_WEEK_D Output

W_MCAL_YEAR_D Output

W_MCAL_QTR_D Output

W_RTL_MCAL_DAY_SHIFT_D Output

W_RTL_MCAL_DAY_UNSHIFT_D Output

W_RTL_MCAL_DAY_GUNSHIFT_D Output

W_RTL_MCAL_DAY_CUSTOM_D Output

W_RTL_MCAL_WEEK_SHIFT_D Output

W_RTL_MCAL_WEEK_UNSHIFT_D Output

W_RTL_MCAL_PERIOD_SHIFT_D Output

W_RTL_MCAL_PERIOD_UNSHIFT_D Output

ETL Business Date Update

Module Name LOAD_CURRENT_BUSINESS_DATE_ADHOC

Description Override the current business date used for loading data into RI.

Dependencies None

Business Activity Batch Administration

Design Overview
This process updates the business date in the Retail Insights data model to prepare
the batch infrastructure for loading additional data on this date. This process should be
used during the history and seeding data loads to align the current RI system date with
the date on the input data files. The system date must match with the incoming data
for positional files such as inventory and pricing when you are doing seed loads to
initialize the system. For transactional data loads, it is only necessary to have the
system date be on or after the latest date in the file, because RI supports back-posting
transaction records to prior dates.

Key Tables Affected

Table Usage

W_RTL_CURR_MCAL_G Output

History Data Cleanup

Module Name HIST_DATA_CLEANUP_ADHOC

Description Erase all data from Inventory and Price tables in RI, in order to
restart your history load for those interfaces.

Chapter 2
ETL Business Date Update

2-6

Dependencies None

Business Activity Historical Data Load

Design Overview
This process erases all data from select functional areas (currently Inventory Position and
Pricing facts). The purpose of the process is to reset the environment if the data currently
loaded is invalid or unwanted, and you’d like to start over with empty tables.

Note that

Note:

It does not erase partition structures, so you will need to load data for the same
range of dates already available.

It also does not reset the C_HIST_LOAD_STATUS table, so you will need to update that
before loading any new data.

History Data File Upload

Module Name HIST_ZIP_FILE_LOAD_ADHOC

Description Looks for the RIHIST_RMS_DATA.zip file and unpacks it, moving any
files to the incoming directory for batch processes.

Dependencies None

Business Activity Historical Data Load

Design Overview
This process moves and unloads a ZIP file (specifically RIHIST_RMS_DATA.zip) so that the file
contents may be used for one or more history and seeding load jobs. The ZIP file may
contain one or multiple files. This process is a prerequisite to running any history or seeding
load programs.

The first job in this process waits a set period of time for the ZIP file to be uploaded, and it
fails if it is not received in that time (4 hours by default). The second job moves the ZIP file to
the internal server location and unzip it. It deletes any files previously in the destination folder,
unzip the new file, and move the ZIP file to an archive when complete. It fails if the ZIP does
not contain any data files, as there is nothing for it to move.

Initial Base Cost Seeding

Module Name SEED_CSV_W_RTL_BCOST_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of base cost data from COST.csv to initialize the
positional data before a nightly batch can be enabled.

Chapter 2
History Data File Upload

2-7

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Base Cost data accepts an input file at the item-location-
date-supplier level using the file specification for COST.csv. It assumes the file has
already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This
process imports the file into a preprocessing table in the database, transforms it to RI’s
internal staging tables, then loads it into the base fact (item/location/day). This process
is only for the base cost, a separate process loads the net cost, if required.

Note:

Seeding processes require a full snapshot of data for a single date, which
covers all item/location combinations that should have a starting position for
this fact. The seeding process must load data for the day before the nightly
batch is going to run. Alternatively, you can include the full snapshots of data
in your very first nightly batch and skip the seeding steps. This causes the
nightly batch to take a significantly longer time to execute but avoids the
manual load processes for all the positional facts.

Key Tables Affected

Table Usage

W_COST_FTS File Input

W_RTL_BCOST_IT_LC_DY_FS Staging

W_RTL_BCOST_IT_LC_G Output

W_RTL_BCOST_IT_LC_DY_F Output

Initial Base Cost Seeding (Legacy)

Module Name SEED_W_RTL_BCOST_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of base cost data from
W_RTL_BCOST_IT_LC_DY_FS.dat to initialize the positional data
before a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Base Cost data accepts an input file at the item-location-
date-supplier level using the file specification for W_RTL_BCOST_IT_LC_DY_FS.dat. It
assumes the file has already been moved into place using the

Chapter 2
Initial Base Cost Seeding (Legacy)

2-8

HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the file into a preprocessing table
in the database, transforms it to RI’s internal staging tables, then loads it into the base fact
(item/location/day).

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your very first nightly
batch and skip the seeding steps. This causes the nightly batch to take a
significantly longer time to execute but avoids the manual load processes for all the
positional facts.

Key Tables Affected

Table Usage

W_RTL_BCOST_IT_LC_DY_FS Staging

W_RTL_BCOST_IT_LC_G Output

W_RTL_BCOST_IT_LC_DY_F Output

Initial Calendar Load

Module Name CALENDAR_LOAD_ADHOC

Description Runs all calendar creation and load processes to set up or update the
system and fiscal calendars in RI. Runs the table partitioning for all
date-based partitions.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Initial System Setup

Design Overview
The calendar load ad hoc process performs all the necessary stage, transform, and load jobs
to set up the RI calendars. It also performs the table partitioning that is driven by the calendar
definition. It takes as input:

1. A calendar data file (CALENDAR.csv) uploaded and unpacked using the
HIST_ZIP_FILE_LOAD_ADHOC process

2. Optional last-year mapping files to define shifted and unshifted calendars when reporting
on LY data

3. System calendar start and end dates in C_ODI_PARAM
4. Partition configurations in C_MODULE_ARTIFACT
The calendar data must be in the form of a fiscal calendar (for example, a 4-5-4 or 13-period
calendar). It must be at the period level of detail (not the day level) and should include start
and end date ranges for the period, quarter, and year levels on each record. RI currently
supports a single, hard-coded calendar ID (Retail Calendar~41) that should be used in the

Chapter 2
Initial Calendar Load

2-9

file’s first column (MCAL_CAL_ID). Optional mapping files for this-year-to-last-year
mappings may be provided if the business uses a custom definition of LY in reporting
and analytics. These mappings control which range of dates are returned when pulling
LY metrics in RI, such as when a fiscal week in the current year should be mapped to
a different week in LY. Default mappings are created by the process if no data is
provided.

This process populates the Gregorian system calendar at the same time the fiscal
calendar is loaded. The Gregorian calendar requires additional start and end date
parameters from C_ODI_PARAM to define the time range to generate. It must be greater
than the range of time in the fiscal calendar. The calendar generation process does not
support a 53-week year as the starting year, so it’s recommended to make the start
date of the Gregorian calendar at least 1 year earlier than the start of the fiscal
calendar, which avoids improperly formed data in the fiscal calendar if the 53-week
year is the first year.

Output tables that start with W_MCAL_ are mainly used for fiscal calendar generation,
while the other tables such as W_DAY_D are used for the Gregorian calendar. All output
tables must be successfully populated with calendar data in order to use the platform.
Validate the data closely after running this process to ensure nothing is missing or
incorrect in the generated calendar data.

Key Tables Affected

Table Usage

W_MCAL_PERIOD_DTS Input

W_RTL_MCAL_DAY_SHIFT_DS Input

W_RTL_MCAL_DAY_UNSHIFT_DS Input

W_RTL_MCAL_DAY_GUNSHIFT_DS Input

W_RTL_MCAL_WEEK_SHIFT_DS Input

W_RTL_MCAL_WEEK_UNSHIFT_DS Input

W_MCAL_PERIOD_DS Staging

W_TIME_OF_DAY_D Output

W_DAY_D Output

W_YEAR_D Output

W_QTR_D Output

W_MONTH_D Output

W_WEEK_D Output

W_MINUTE_OF_DAY_D Output

W_MCAL_CONFIG_G Output

W_MCAL_CAL_D Output

W_MCAL_PERIOD_D Output

W_MCAL_DAY_D Output

W_MCAL_WEEK_D Output

W_MCAL_YEAR_D Output

W_MCAL_QTR_D Output

W_RTL_MCAL_DAY_SHIFT_D Output

Chapter 2
Initial Calendar Load

2-10

Table Usage

W_RTL_MCAL_DAY_UNSHIFT_D Output

W_RTL_MCAL_DAY_GUNSHIFT_D Output

W_RTL_MCAL_DAY_CUSTOM_D Output

W_RTL_MCAL_WEEK_SHIFT_D Output

W_RTL_MCAL_WEEK_UNSHIFT_D Output

W_RTL_MCAL_PERIOD_SHIFT_D Output

W_RTL_MCAL_PERIOD_UNSHIFT_D Output

Initial Calendar Staging (Legacy)

Module Name CALENDAR_STG_LOAD_ADHOC

Description Stages the W_MCAL_PERIOD_DS.dat file for the ad hoc calendar load
programs.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Initial System Setup

Design Overview
This process looks for the W_MCAL_PERIOD_DS.dat file placed on the server by a history zip file
upload and imports it to a staging table for use in the CALENDAR_LOAD_ADHOC process.

Key Tables Affected

Table Usage

W_MCAL_PERIODS_DS File Input

Initial Dimension Load

Module Name LOAD_DIM_INITIAL_ADHOC

Description Runs all core dimension load programs in RI to stage, transform, and
load dimension data to RI's data model.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process runs the dimension load programs needed to initialize the data model with the
core dataset needed for history and seed loads. Not all dimensions supported by RI are part
of the initial load process, only those that are used in some way for history or downstream
application processing. The process will stage and load all the files in a single flow; no other
processes are needed to load the dimensions. The jobs used by the process are the same as
the ones in the nightly batch so this also validates the file quality and correctness.

Chapter 2
Initial Calendar Staging (Legacy)

2-11

The process has three distinct types of jobs:

• File import jobs that take a CSV input and load it to the database pre-staging
tables (usually tables ending in DTS or FTS)

• Staging jobs which transform the raw inputs to the required formats and perform
any defaulting of values on data columns

• Load jobs that move the staging data to internal target tables

The tables below are broken out by each type, so you can review the inputs and
outputs for each block of jobs.

Files to Pre-Staging Tables

Input File Output Table

PRODUCT.csv W_PRODUCT_DTS

PRODUCT_ALT.csv W_PRODUCT_ALT_DTS

ORGANIZATION.csv W_INT_ORG_DTS

ORGANIZATION_ALT.csv W_ORGANIZATION_ALT_DTS

EXCH_RATE.csv W_EXCH_RATE_DTS

CALENDAR.csv W_MCAL_PERIODS_DTS

SUPPLIER.csv W_SUPPLIER_DTS

EMPLOYEE.csv W_EMPLOYEE_DTS

PROD_LOC_ATTR.csv W_PROD_LOC_ATTR_DTS

PROD_LOC_REPL.csv W_INVENTORY_PRODUCT_ATTR_DTS

ATTR.csv W_ATTR_DTS

PROD_ATTR.csv W_PRODUCT_ATTR_DTS

SEASON.csv W_RTL_SEASON_PHASE_DTS

PROD_SEASON.csv W_RTL_SEASON_PHASE_IT_DTS

STORE_COMP.csv W_RTL_LOC_COMP_MTX_DTS

CODES.csv W_RTL_CODE_DTS

PROD_PACK.csv W_RTL_ITEM_GRP2_DTS

DIFF_GROUP.csv W_DIFF_GROUP_DTS

ADJUSTMENT.csv W_ADJUSTMENT_FTS

PROMOTION.csv W_RTL_PROMO_EXT_DTS

ORDER_HEAD.csv W_ORDER_HEAD_FTS

REPL_DISTRO.csv W_RTL_REPL_DISTRO_IT_LC_DS

REPL_REV_INT.csv W_RTL_REPL_REV_INT_IT_LC_DS

REPL_LT_INT.csv W_RTL_REPL_LT_INT_IT_LC_DS

Pre-Staging to Staging Tables
These processes apply all of the transformation scripts needed to take simplified
interface (SI) data for dimensions and map it to the internal data model staging tables.
The simplified interfaces are a one-to-many mapping to the internal data warehouse

Chapter 2
Initial Dimension Load

2-12

structures for dimensions, so this intermediate step is required to transform the incoming data
and make it usable downstream.

Input Table Output Table

W_PRODUCT_DTS W_PROD_CAT_DHS

W_PRODUCT_DTS W_PRODUCT_ATTR_DS

W_PRODUCT_DTS W_PRODUCT_DS

W_PRODUCT_DTS W_PRODUCT_DS_TL

W_PRODUCT_DTS W_RTL_PRODUCT_BRAND_DS

W_PRODUCT_DTS W_RTL_PRODUCT_BRAND_DS_TL

W_PRODUCT_DTS W_RTL_IT_SUPPLIER_DS

W_PRODUCT_DTS W_DOMAIN_MEMBER_DS_TL

W_PRODUCT_ALT_DTS W_PRODUCT_FLEX_DS

W_INT_ORG_DTS W_INT_ORG_DS

W_INT_ORG_DTS W_INT_ORG_DS_TL

W_INT_ORG_DTS W_INT_ORG_DHS

W_INT_ORG_DTS W_DOMAIN_MEMBER_DS_TL

W_INT_ORG_DTS W_RTL_CHANNEL_DS

W_INT_ORG_DTS W_INT_ORG_ATTR_DS

W_INT_ORG_DTS W_RTL_CHANNEL_CNTRY_DS

W_ORGANIZATION_ALT_DTS W_ORGANIZATION_FLEX_DS

W_EXCH_RATE_DTS W_EXCH_RATE_GS

W_MCAL_PERIODS_DTS W_MCAL_PERIOD_DS

W_SUPPLIER_DTS W_PARTY_ATTR_DS

W_SUPPLIER_DTS W_PARTY_ORG_DS

W_EMPLOYEE_DTS W_EMPLOYEE_DS

W_PROD_LOC_ATTR_DTS W_RTL_IT_LC_DS

W_INVENTORY_PRODUCT_ATTR_DTS W_INVENTORY_PRODUCT_ATTR_DS

W_ATTR_DTS W_RTL_PRODUCT_ATTR_DS

W_ATTR_DTS W_RTL_PRODUCT_ATTR_DS_TL

W_ATTR_DTS W_DOMAIN_MEMBER_DS_TL

W_ATTR_DTS W_RTL_PRODUCT_COLOR_DS

W_PRODUCT_ATTR_DTS W_RTL_ITEM_GRP1_DS

W_RTL_SEASON_PHASE_DTS W_RTL_SEASON_DS

W_RTL_SEASON_PHASE_DTS W_RTL_PHASE_DS

W_RTL_SEASON_PHASE_DTS W_DOMAIN_MEMBER_DS_TL

W_RTL_SEASON_PHASE_IT_DTS W_RTL_SEASON_PHASE_IT_DS

W_RTL_LOC_COMP_MTX_DTS W_RTL_LOC_COMP_MTX_DS

W_RTL_CODE_DTS W_RTL_CODE_DS

W_RTL_ITEM_GRP2_DTS W_RTL_ITEM_GRP2_DS

W_DIFF_GROUP_DTS W_RTL_DIFF_GRP_DS

W_DIFF_GROUP_DTS W_RTL_DIFF_GRP_DS_TL

Chapter 2
Initial Dimension Load

2-13

Input Table Output Table

W_ADJUSTMENT_FTS W_REASON_DS

W_ADJUSTMENT_FTS W_DOMAIN_MEMBER_DS_TL

W_RTL_PROMO_EXT_DTS W_RTL_PROMO_EXT_DS

W_ORDER_HEAD_FTS W_RTL_PO_DETAILS_DS

Staging to Target Tables

Input Table Output Table

W_DOMAIN_MEMBER_DS_TL W_DOMAIN_MEMBER_LKP_TL

W_EMPLOYEE_DS W_EMPLOYEE_D

W_EXCH_RATE_GS W_EXCH_RATE_G

W_INT_ORG_DS W_INT_ORG_D

W_INT_ORG_DHS W_INT_ORG_DH

W_ORGANIZATION_FLEX_DS W_ORGANIZATION_FLEX_D

W_PARTY_ATTR_DS W_PARTY_ATTR_D

W_PARTY_ORG_DS W_PARTY_ORG_D

W_PARTY_PER_DS W_PARTY_PER_D

W_PROD_CAT_DHS W_PROD_CAT_DH

W_PRODUCT_ATTR_DS W_PRODUCT_ATTR_D

W_PRODUCT_DS W_PRODUCT_D

W_PRODUCT_FLEX_DS W_PRODUCT_FLEX_D

W_REASON_DS W_REASON_D

W_RTL_ALC_DETAILS_DS W_RTL_ALC_DETAILS_D

W_RTL_BUYER_DS W_RTL_BUYER_D

W_RTL_CHANNEL_DS W_RTL_CHANNEL_D

W_RTL_CHANNEL_CNTRY_DS W_RTL_CHANNEL_CNTRY_D

W_RTL_CO_HEAD_DS W_RTL_CO_HEAD_D

W_RTL_CO_LINE_DS W_RTL_CO_LINE_D

W_RTL_CO_SHIP_METHOD_DS W_RTL_CO_SHIP_METHOD_D

W_RTL_CO_SHIP_TYPE_DS W_RTL_CO_SHIP_TYPE_D

W_RTL_COMP_STORE_DS W_RTL_COMP_STORE_D

W_RTL_CONS_METADATA_GS W_RTL_CONS_METADATA_G

W_RTL_COUPON_DS W_RTL_COUPON_D

W_RTL_DIFF_GRP_DS W_RTL_DIFF_GRP_D

W_RTL_DIFF_RNG_DS W_RTL_DIFF_RNG_D

W_RTL_DISCOUNT_TYPE_DS W_RTL_DISCOUNT_TYPE_D

W_RTL_IT_SUPPLIER_DS W_RTL_IT_SUPPLIER_D

W_RTL_ITEM_GRP1_DS W_RTL_ITEM_GRP1_D

W_RTL_LOC_STOCK_CNT_DS W_RTL_LOC_STOCK_CNT_D

Chapter 2
Initial Dimension Load

2-14

Input Table Output Table

W_RTL_ORG_FIN_DS W_RTL_ORG_FIN_D

W_RTL_PHASE_DS W_RTL_PHASE_D

W_RTL_PO_DETAILS_DS W_RTL_PO_DETAILS_D

W_RTL_PRICE_CLR_IT_LC_DS W_RTL_PRICE_CLR_IT_LC_D

W_RTL_PRODUCT_ATTR_DS W_RTL_PRODUCT_ATTR_D

W_RTL_PRODUCT_BRAND_DS W_RTL_PRODUCT_BRAND_D

W_RTL_PROMO_DS_TL W_RTL_PROMO_D_TL

W_RTL_REPL_DISTRO_IT_LC_DS W_RTL_REPL_DISTRO_IT_LC_D

W_RTL_REPL_REV_INT_IT_LC_DS W_RTL_REPL_REV_INT_IT_LC_D

W_RTL_REPL_LT_INT_IT_LC_DS W_RTL_REPL_LT_INT_IT_LC_D

W_RTL_SEASON_DS W_RTL_SEASON_D

W_RTL_SEASON_PHASE_IT_DS W_RTL_SEASON_PHASE_IT_D

W_RTL_TNDR_TYPE_DS W_RTL_TNDR_TYPE_D

W_STATUS_DS W_STATUS_D

Initial Dimension Staging

Module Name LOAD_DIM_INITIAL_CSV_ADHOC

Description Stages all of the dimension CSV files from the server for initial data
loads into the database.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process looks for all CSV files for dimensions placed on the server by a history ZIP file
upload and moves them into preprocessing tables in RI for use by the
LOAD_EXT_DIM_INITIAL_SI_ADHOC process.

Key Tables Affected

Table Usage

W_PRODUCT_DTS File Input

W_INT_ORG_DTS File Input

W_EXCH_RATE_DTS File Input

W_MCAL_PERIODS_DTS File Input

W_SUPPLIER_DTS File Input

W_EMPLOYEE_DTS File Input

W_PROD_LOC_ATTR_DTS File Input

W_INVENTORY_PRODUCT_ATTR_DTS File Input

Chapter 2
Initial Dimension Staging

2-15

Table Usage

W_ATTR_DTS File Input

W_PRODUCT_ATTR_DTS File Input

W_RTL_SEASON_PHASE_DTS File Input

W_RTL_SEASON_PHASE_IT_DTS File Input

W_RTL_LOC_COMP_MTX_DTS File Input

W_RTL_CODE_DTS File Input

W_RTL_ITEM_GRP2_DTS File Input

W_DIFF_GROUP_DTS File Input

W_ADJUSTMENT_FTS File Input

W_RTL_PROMO_EXT_DTS File Input

W_ORDER_HEAD_FTS File Input

Initial Dimension Staging (Legacy)

Module Name LOAD_DIM_INITIAL_STAGE_ADHOC

Description Stages all of the dimension DAT files from the server for initial
data loads into the database.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process looks for all legacy DAT files for dimensions placed on the server by a
history ZIP file upload and move them into staging tables in RI for use by the
LOAD_DIM_INITIAL_ADHOC process. You cannot use both the CSV and DAT staging
processes for the same data, as they overwrite each other. However, you may use this
process to load DAT files for an interface where a CSV file does not exist, such as
W_PARTY_PER_DS.dat.

Key Tables Affected

Table Usage

RA_SRC_CURR_PARAM_G File Input

W_CODE_DS File Input

W_DOMAIN_MEMBER_DS_TL File Input

W_EMPLOYEE_DS File Input

W_EXCH_RATE_GS File Input

W_INT_ORG_ATTR_DS File Input

W_INT_ORG_DHS File Input

W_INT_ORG_DS File Input

W_INT_ORG_DS_TL File Input

Chapter 2
Initial Dimension Staging (Legacy)

2-16

Table Usage

W_PARTY_ATTR_DS File Input

W_PARTY_ORG_DS File Input

W_PARTY_PER_DS File Input

W_PROD_CAT_DHS File Input

W_PRODUCT_ATTR_DS File Input

W_PRODUCT_DS File Input

W_PRODUCT_DS_TL File Input

W_REASON_DS File Input

W_RTL_ALC_DETAILS_DS File Input

W_RTL_BUYER_DS File Input

W_RTL_CHANNEL_DS File Input

W_RTL_CO_HEAD_DS File Input

W_RTL_CO_LINE_DS File Input

W_RTL_CO_SHIP_METHOD_DS File Input

W_RTL_CO_SHIP_TYPE_DS File Input

W_RTL_CODE_DS File Input

W_RTL_COMP_STORE_DS File Input

W_RTL_COUPON_DS File Input

W_RTL_COUPON_DS_TL File Input

W_RTL_DIFF_GRP_DS File Input

W_RTL_DIFF_GRP_DS_TL File Input

W_RTL_DIFF_RNG_DS File Input

W_RTL_DIFF_RNG_DS_TL File Input

W_RTL_DISCOUNT_TYPE_DS File Input

W_RTL_IT_SUPPLIER_DS File Input

W_RTL_ITEM_GRP1_DS File Input

W_RTL_LOC_STOCK_CNT_DS File Input

W_RTL_ORG_FIN_DS File Input

W_RTL_PARTY_PER_ATTR_DS File Input

W_RTL_PHASE_DS File Input

W_RTL_PO_DETAILS_DS File Input

W_RTL_PRICE_CLR_IT_LC_DS File Input

W_RTL_PROD_HIER_ATTR_LKP_DHS File Input

W_RTL_PRODUCT_BRAND_DS File Input

W_RTL_PRODUCT_BRAND_DS_TL File Input

W_RTL_PROMO_CE_DS File Input

W_RTL_PROMO_DS File Input

W_RTL_PROMO_DS_TL File Input

W_RTL_PROMO_EXT_DS File Input

Chapter 2
Initial Dimension Staging (Legacy)

2-17

Table Usage

W_RTL_SEASON_DS File Input

W_RTL_SEASON_PHASE_IT_DS File Input

W_RTL_TNDR_TYPE_DS File Input

W_STATUS_DS File Input

Initial Inventory Seeding

Module Name SEED_CSV_W_RTL_INV_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of inventory data from INVENTORY.csv to
initialize the positional data before a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Inventory data accepts an input file at the item-location-
date level using the file specification for INVENTORY.csv. It assumes the file has
already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This
process imports the file into a preprocessing table in the database, transforms it to RI’s
internal staging tables, then loads it into the base fact (item/location/day).

Note:

Seeding processes require a full snapshot of data for a single date, which
covers all item/location combinations that should have a starting position for
this fact. The seeding process must load data for the day before the nightly
batch runs. Alternatively, you can include the full snapshots of data in your
first nightly batch and skip the seeding steps. This causes the nightly batch
to take a significantly longer time to execute, but avoids the manual load
processes for all the positional facts.

Key Tables Affected

Table Usage

W_RTL_INV_IT_LC_DY_FTS File Input

W_RTL_INV_IT_LC_DY_FS Staging

W_RTL_INV_IT_LC_G Output

W_RTL_INV_IT_LC_DY_F Output

Chapter 2
Initial Inventory Seeding

2-18

Initial Inventory Seeding (Legacy)

Module Name SEED_W_RTL_INV_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of inventory data from
W_RTL_INV_IT_LC_DY_FS.dat to initialize the positional data before a
nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Inventory data accepts an input file at the item-location-date
level using the file specification for W_RTL_INV_IT_LC_DY_FS.dat. It assumes the file has
already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process
imports the file to RI’s internal staging tables, then load it into the base fact (item/location/
day).

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your very first nightly
batch and skip the seeding steps. This causes the nightly batch to take a
significantly longer time to execute but avoids the manual load processes for all the
positional facts.

Key Tables Affected

Table Usage

W_RTL_INV_IT_LC_DY_FS File Input

W_RTL_INV_IT_LC_G Output

W_RTL_INV_IT_LC_DY_F Output

Initial Net Cost Seeding

Module Name SEED_CSV_W_RTL_NCOST_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of net cost data from COST.csv to initialize the
positional data before a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Chapter 2
Initial Inventory Seeding (Legacy)

2-19

Design Overview
The seeding load process for Net Cost data accepts an input file at the item-location-
date-supplier level using the file specification for COST.csv. It assumes the file has
already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This
process imports the file into a preprocessing table in the database, transforms it to RI’s
internal staging tables, then loads it into the base fact (item/location/day). This process
is only for the net cost; a separate process loads the base cost, if required.

Note:

Seeding processes require a full snapshot of data for a single date, which
covers all item/location combinations that should have a starting position for
this fact. The seeding process must load data for the day before the nightly
batch runs. Alternatively, you can include the full snapshots of data in your
very first nightly batch and skip the seeding steps. This causes the nightly
batch to take a significantly longer time to execute, but avoids the manual
load processes for all the positional facts.

Key Tables Affected

Table Usage

W_COST_FTS File Input

W_RTL_NCOST_IT_LC_DY_FS Staging

W_RTL_NCOST_IT_LC_G Output

W_RTL_NCOST_IT_LC_DY_F Output

Initial Net Cost Seeding (Legacy)

Module Name SEED_W_RTL_NCOST_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of net cost data from
W_RTL_NCOST_IT_LC_DY_FS.dat to initialize the positional data
before a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Net Cost data accepts an input file at the item-location-
date-supplier level using the file specification for W_RTL_NCOST_IT_LC_DY_FS.dat. It
assumes the file has already been moved into place using the
HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the file into a
preprocessing table in the database, transforms it to RI’s internal staging tables, then
loads it into the base fact (item/location/day).

Chapter 2
Initial Net Cost Seeding (Legacy)

2-20

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your very first nightly
batch and skip the seeding steps. This causes the nightly batch to take a
significantly longer time to execute, but avoids the manual load processes for all the
positional facts.

Key Tables Affected

Table Usage

W_RTL_NCOST_IT_LC_DY_FS File Input

W_RTL_NCOST_IT_LC_G Output

W_RTL_NCOST_IT_LC_DY_F Output

Initial Price Seeding

Module Name SEED_CSV_W_RTL_PRICE_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of price data from PRICE.csv to initialize the
positional data before a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Price data accepts an input file at the item-location-date level
using the file specification for PRICE.csv. It assumes the file has already been moved into
place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the file into a
preprocessing table in the database, transforms it to RI’s internal staging tables, then loads it
into the base fact (item/location/day).

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your very first nightly
batch and skip the seeding steps. This causes the nightly batch to take a
significantly longer time to execute, but avoids the manual load processes for all the
positional facts.

Chapter 2
Initial Price Seeding

2-21

Key Tables Affected

Table Usage

W_RTL_PRICE_IT_LC_DY_FTS File Input

W_RTL_PRICE_IT_LC_DY_FS Staging

W_RTL_PRICE_IT_LC_G Output

W_RTL_PRICE_IT_LC_DY_F Output

Initial Price Seeding (Legacy)

Module Name SEED_W_RTL_PRICE_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of price data from
W_RTL_PRICE_IT_LC_DY_FS.dat to initialize the positional data
before a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Price data accepts an input file at the item-location-date
level using the file specification for W_RTL_PRICE_IT_LC_DY_FS.dat. It assumes the file
has already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This
process imports the file into a staging table, then loads it into the base fact (item/
location/day).

Note:

Seeding processes require a full snapshot of data for a single date, which
covers all item/location combinations that should have a starting position for
this fact. The seeding process must load data for the day before the nightly
batch runs. Alternatively, you can include the full snapshots of data in your
very first nightly batch and skip the seeding steps. This causes the nightly
batch to take a significantly longer time to execute but avoids the manual
load processes for all the positional facts.

Key Tables Affected

Table Usage

W_RTL_PRICE_IT_LC_DY_FS File Input

W_RTL_PRICE_IT_LC_G Output

W_RTL_PRICE_IT_LC_DY_F Output

Chapter 2
Initial Price Seeding (Legacy)

2-22

Initial Purchase Order Seeding

Module Name SEED_CSV_W_RTL_PO_ONORD_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of purchase order data from ORDER_HEAD.csv and
ORDER_DETAIL.csv to initialize the positional data before a nightly batch can
be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business
Activity

Nightly Batch Preparation

Design Overview
The seeding load process for Purchase Order data accepts two input files at the order header
and order detail levels using the file specifications for ORDER_HEAD.csv and
ORDER_DETAIL.csv. It assumes the files have already been moved into place by the
HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the files into preprocessing tables
in the database, transforms them to RI’s internal staging tables, then loads them into the base
dimension and facts. The dimension is loaded first to support loading the fact table against
those foreign keys.

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
purchase orders and item/location combinations that should have a starting position
for this fact. The seeding process must load data for the day before the nightly
batch runs. Alternatively, you can include the full snapshots of data in your very first
nightly batch and skip the seeding steps. This causes the nightly batch to take a
significantly longer time to execute but avoids the manual load processes for all the
positional facts.

Key Tables Affected

Table Usage

W_ORDER_HEAD_FTS File Input

W_RTL_PO_DETAILS_DS Staging

W_RTL_PO_DETAILS_D Output

W_ORDER_DETAIL_FTS File Input

W_RTL_PO_ONORD_IT_LC_DY_FS Staging

W_RTL_PO_ONORD_IT_LC_DY_F Output

Initial Purchase Order Seeding (Legacy)

Module Name SEED_W_RTL_PO_ONORD_IT_LC_DY_F_PROCESS_ADHOC

Chapter 2
Initial Purchase Order Seeding

2-23

Description Loads a full snapshot of purchase order data from
W_RTL_PO_ONORD_IT_LC_DY_FS.dat to initialize the positional data
before a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Purchase Order fact data accepts an input file at the
item-location-date level using the file specification for
W_RTL_PO_ONORD_IT_LC_DY_FS.dat. It assumes the file has already been moved into
place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the file into a
staging table, then loads it into the base fact (item/location/day). It assumes the
dimension has already been loaded separately using the initial dimension loads.

Note:

Seeding processes require a full snapshot of data for a single date, which
covers all item/location combinations that should have a starting position for
this fact. The seeding process must load data for the day before the nightly
batch runs. Alternatively, you can include the full snapshots of data in your
very first nightly batch and skip the seeding steps. This causes the nightly
batch to take a significantly longer time to execute but avoids the manual
load processes for all the positional facts

Key Tables Affected

Table Usage

W_RTL_PO_ONORD_IT_LC_DY_FS File Input

W_RTL_PO_ONORD_IT_LC_DY_F Output

Inventory History Current Position Load

Module Name HIST_INV_GENERAL_LOAD_ADHOC

Description Copies the ending positions of inventory history for the last week
into the General (G) table for the purpose of testing the data and
integrations within RAP.

Dependencies HIST_INV_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
This process takes the final week of inventory data loaded using the
HIST_INV_LOAD_ADHOC process and copies it into the table for current inventory
positions (W_RTL_INV_IT_LC_G). This program uses an INSERT statement, so it cannot

Chapter 2
Inventory History Current Position Load

2-24

be re-run multiple times without first truncating the table. The purpose of this program is to
test any integrations or reports that use this table prior to actually running nightly batches,
when it would normally be populated. The most common use case is for Inventory
Optimization testing, which uses this table to get the current inventory position during ad hoc
and weekly batch runs.

Key Tables Affected

Table Usage

W_RTL_INV_IT_LC_DY_F Input

W_RTL_INV_IT_LC_G Output

Intercompany Margin History Load

Module Name HIST_CSV_ICMARGIN_LOAD_ADHOC

Description Loads the IC_MARGIN.csv file into RI and populates key data tables used
to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The history load process for Intercompany Margin transactions accepts an input file at the
item/location/day level using the file specification for IC_MARGIN.csv. It assumes the file has
already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process
imports the file into a preprocessing table in the database, transforms it to RI’s internal
staging tables, then loads it into the base fact (item/location/day) as well as the week
aggregate used for integrations (item/location/week).

Key Tables Affected

Table Usage

W_RTL_ICM_IT_LC_DY_FTS File Input

W_RTL_ICM_IT_LC_DY_FS Staging

W_RTL_ICM_IT_LC_DY_F Output (Base Fact)

W_RTL_ICM_IT_LC_WK_A Output (Aggregate)

Inventory History Load

Module Name HIST_INV_LOAD_ADHOC

Description Processes any staged inventory history data for end-of-week snapshots,
starting from the last processed week.

Dependencies HIST_STG_CSV_INV_LOAD_ADHOC

Business Activity Historical Data Load

Chapter 2
Intercompany Margin History Load

2-25

Design Overview
The inventory history load process supports loading of end-of-week inventory
snapshots over a long period of time to populate RI with historical data. It requires the
inventory data to already be staged into the database by one of the available staging
processes. Multiple weeks of inventory can be provided in a single file, though it is
recommended to not load more than one month at a time unless the volumes are low.
Every record in the data must be for a week-ending date; other dates in the file will not
work using this process.

The C_HIST_LOAD_STATUS configuration table controls the actions taken by the
process. Before running the process for the first time, you must set up this table for the
following:

• Set the history load date to be the very latest date you expect to load history for
(this can be changed later if needed to load more weeks). The date should be a
week-ending date.

• Disable any aggregate (_A) tables you do not wish to populate. When loading data
only for AI Foundation, you only need the base fact (W_RTL_INV_IT_LC_DY_F) and
week aggregate (W_RTL_INV_IT_LC_WK_A). For RI, all tables should be enabled
and loaded.

Once setup is complete, begin processing files from the earliest week-ending date you
plan to load. You must start from the beginning of the history and load data
sequentially. You cannot load data out of order and you cannot load the same week
multiple times without first erasing the data from your database. After a week is loaded
successfully, the C_HIST_LOAD_STATUS records are updated with the most recent load
status and date.

If you will be loading inventory history after you have already started nightly batches,
then you must also change two parameters in C_ODI_PARAM_VW from the Control
Center:

• INV_NIGHTLY_BATCH_IND – Change this to Y to indicate that nightly batches have
been run but you are planning to load history for prior dates.

• INV_LAST_HIST_LOAD_DT – Set this to the final week of history data you plan to
load, which must be a week-ending date and must be before the nightly batches
were started.

Key Tables Affected

Table Usage

C_HIST_LOAD_STATUS Configuration

W_RTL_INV_IT_LC_DY_FS Input

W_RTL_INV_IT_LC_DY_F Output

W_RTL_INV_IT_LC_G Output

W_RTL_INV_IT_LC_GMH_A Output

W_RTL_INV_IT_LC_WK_A Output

W_RTL_INV_IT_RG_DY_A Output

W_RTL_INV_IT_DY_A Output

Chapter 2
Inventory History Load

2-26

Table Usage

W_RTL_INV_IT_WK_A Output

W_RTL_INV_SC_LC_DY_A Output

W_RTL_INV_CL_LC_DY_A Output

W_RTL_INV_DP_LC_DY_A Output

W_RTL_INV_SC_LC_DY_CUR_A Output

W_RTL_INV_SC_DY_A Output

W_RTL_INV_SC_DY_CUR_A Output

W_RTL_INV_SC_LC_WK_A Output

W_RTL_INV_CL_LC_WK_A Output

W_RTL_INV_DP_LC_WK_A Output

W_RTL_INV_SC_LC_WK_CUR_A Output

W_RTL_INV_SC_WK_A Output

W_RTL_INV_SC_WK_CUR_A Output

Inventory History Staging

Module Name HIST_STG_CSV_INV_LOAD_ADHOC

Description Stages the INVENTORY.csv file for the ad hoc inventory load programs.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process looks for the INVENTORY.csv file placed on the server by a history zip file upload,
move it into a preprocessing table in RI, and transform it for use in the HIST_INV_LOAD_ADHOC
process.

Note:

The inventory file used for history data must contain only week-ending dates and
must be full, weekly snapshots of data.

Key Tables Affected

Table Usage

W_RTL_INV_IT_LC_DY_FTS File Input

W_RTL_INV_IT_LC_DY_FS Output

Chapter 2
Inventory History Staging

2-27

Inventory History Staging (Legacy)

Module Name HIST_STG_INV_LOAD_ADHOC

Description Stages the W_RTL_INV_IT_LC_DY_FS.dat file for the ad hoc
inventory load programs.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process looks for the W_RTL_INV_IT_LC_DY_FS.dat file placed on the server by a
history ZIP file upload and loads it for use by the HIST_INV_LOAD_ADHOC process.

Note:

The inventory file used for history data must contain only week-ending dates
and must be full, weekly snapshots of data.

Key Tables Affected

Table Usage

W_RTL_INV_IT_LC_DY_FS File Input

Inventory Out of Stock Load

Module Name HIST_INV_OOS_LOAD_ADHOC

Description Stages and loads the INVENTORY_OOS.csv file for out of stock and
outlier indicators.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process looks for the INVENTORY_OOS.csv file placed on the server by a history zip
file upload, move it into a preprocessing table in RI, and transform it into the target
table for use in AI Foundation loads.

Note:

The inventory OOS file must contain only week-ending dates; other day
dates will not be accepted into the interface

Chapter 2
Inventory History Staging (Legacy)

2-28

Key Tables Affected

Table Usage

W_RTL_INVOOS_IT_LC_WK_FS Input

W_RTL_INVOOS_IT_LC_WK_F Output

Inventory Reclass History Load

Module Name HIST_CSV_INVRECLASS_LOAD_ADHOC

Description Loads the INV_RECLASS.csv file into RI and populates key data tables
used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Inventory Reclass transactions accepts an input file at the item/
location/day level using the file specification for INV_RECLASS.csv. It assumes the file has
already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process
imports the file into a preprocessing table in the database, transforms it to RI’s internal
staging tables, then loads it into the base fact (item/location/day) as well as the week
aggregate used for integrations (item/location/week).

Key Tables Affected

Table Usage

W_RTL_INVRECLASS_IT_LC_DY_FTS File Input

W_RTL_INVRECLASS_IT_LC_DY_FS Staging

W_RTL_INVRECLASS_IT_LC_DY_F Output (Base Fact)

W_RTL_INVRECLASS_IT_LC_WK_A Output (Aggregate)

Inventory Selling Date Seeding

Module Name LOAD_W_RTL_INV_IT_LC_G_FIRST_SOLD_DT_ADHOC

Description Calculates the initial value of First Sold Date for all item/locations in
inventory, based on sales history data.

Dependencies SEED_CSV_W_RTL_INV_IT_LC_DY_F_PROCESS_ADHOC

Business Activity Historical Data Load

Chapter 2
Inventory Reclass History Load

2-29

Design Overview
This process populates the fields W_RTL_INV_IT_LC_G.FIRST_SOLD_DT and
LAST_SOLD_DT with values, using your historical sales data to calculate the first time
each item/location with stock on hand was sold. This process should only run after all
inventory and sales history is completely loaded and you are ready to begin nightly
batches. If this process does not run, then all item/locations will start with a first/last
selling date of the first transaction to occur on it in nightly batch runs. These date
values are used by the AI Foundation Cloud Services (Pricing and Markdown
Optimization) as an input to determine item lifecycles from the history data in RI.

Key Tables Affected

Table Usage

W_RTL_SLS_TRX_IT_LC_DY_F Input

W_RTL_INV_IT_LC_G Output

Markdown History Load

Module Name HIST_CSV_MARKDOWN_LOAD_ADHOC

Description Loads the MARKDOWN.csv file into RI and populates key data tables
used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Markdown transactions accepts an input file at the item/
location/day level using the file specification for MARKDOWN.csv. It assumes the file has
already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This
process imports the file into a preprocessing table in the database, transforms it to RI’s
internal staging tables, then loads it into the base fact (item/location/day) as well as the
week aggregate used for integrations (item/location/week).

Key Tables Affected

Table Usage

W_MARKDOWN_FTS File Input

W_RTL_MKDN_IT_LC_DY_FS Staging

W_RTL_MKDN_IT_LC_DY_F Output (Base Fact)

W_RTL_MKDN_IT_LC_WK_A Output (Aggregate)

Chapter 2
Markdown History Load

2-30

Nightly Batch Status Cleanup

Module Name C_LOAD_DATES_CLEANUP_ADHOC

Description Erases the execution status of nightly batch programs. This is required
to run a nightly process outside of a batch.

Dependencies None

Business Activity Batch Administration

Design Overview
This process erases records from the C_LOAD_DATES database table. Any time a job runs as
part of the nightly batch, or a job runs which is included in both nightly and ad hoc
processing, a status record is inserted to C_LOAD_DATES. The job is then blocked from
executing again while this record exists, as a safety measure when restarting batch
processes that failed midway through execution. During initial dimension loads, you may
need to execute the same jobs multiple times to work through file or data issues. In that case,
you may execute this process before each run to clear the status of prior runs from the
database.

Note:

This process should only run during history and initial data loads or at the guidance
of Oracle Support. It should not be run during regular nightly batch processing.
Clearing C_LOAD_DATES while the batch is running normally could cause data
corruption, as it would allow the same jobs to run multiple times for the same
business date.

Key Tables Affected

Table Usage

C_LOAD_DATES Delete

Plan Data Integration

Module Name LOAD_PLANNING1_DATA_ADHOC
LOAD_PLANNING2_DATA_ADHOC
LOAD_PLANNING3_DATA_ADHOC
LOAD_PLANNING4_DATA_ADHOC
LOAD_PLANNING5_DATA_ADHOC

Description Extracts data from the MFP and AP Plan Export interfaces to RI's
internal planning tables.

Dependencies CLEANUP_C_LOAD_DATES_PLANNING_ADHOC

Business Activity RI Integrations

Chapter 2
Nightly Batch Status Cleanup

2-31

Design Overview
This set of processes moves Merchandise Financial Planning (MFP) and Assortment
Planning (AP) export data from the data exchange (RDX) layer to internal RI staging
tables, then triggers the RI load programs for planning data. Each process contains
the end-to-end flow of data for a single interface. Use these processes to perform
integration testing and plan data validations during an RI and MFP/AP implementation,
or to trigger an on-demand refresh of plan data in RI outside the normal batch cycle. If
you run these on the same day as a normal batch run, or you run them multiple times,
you must run the cleanup process shown in the dependencies prior to each run.

Key Tables Affected

Table Usage

MFP_PLAN1_EXP Input

W_RTL_PLAN1_PROD1_LC1_T1_FS Staging

W_RTL_PLAN1_PROD1_LC1_T1_F Output

MFP_PLAN2_EXP Input

W_RTL_PLAN2_PROD2_LC2_T2_FS Staging

W_RTL_PLAN2_PROD2_LC2_T2_F Output

MFP_PLAN3_EXP Input

W_RTL_PLAN3_PROD3_LC3_T3_FS Staging

W_RTL_PLAN3_PROD3_LC3_T3_F Output

MFP_PLAN4_EXP Input

W_RTL_PLAN4_PROD4_LC4_T4_FS Staging

W_RTL_PLAN4_PROD4_LC4_T4_F Output

AP_PLAN1_EXP Input

W_RTL_PLAN5_PROD5_LC5_T5_FS Staging

W_RTL_PLAN5_PROD5_LC5_T5_F Output

Planning Dimension Export

Module Name LOAD_PDS_DIMENSION_PROCESS_ADHOC

Description Exports all supported dimensions from RI to the data exchange
schema for Planning.

Dependencies LOAD_DIM_INITIAL_ADHOC

Business Activity RI Integrations

Design Overview
This process runs all the planning data schema dimension exports from RI to the data
exchange layer, where PDS batch processes can pick up and load the data the rest of
the way. Each time the exports run, the data is truncated and inserted as full
snapshots. Planning exports do not support incremental or delta extracts for

Chapter 2
Planning Dimension Export

2-32

dimensions. RI applies various filters and criteria to the export data to align with Planning
Data Schema requirements for dimensions, as described in the RAP Implementation Guide.
RI only exports specific columns from each dimension, based on the downstream application
needs. Review the PDS integration tables in detail to understand which data will be exported.

Key Tables Affected

Input Table Output Table

W_PRODUCT_D W_PDS_PRODUCT_D

W_PRODUCT_D_TL W_PDS_PRODUCT_D

W_PROD_CAT_DH W_PDS_PRODUCT_D

W_PRODUCT_ATTR_D W_PDS_PRODUCT_D

W_DOMAIN_MEMBER_LKP_TL W_PDS_PRODUCT_D

W_INT_ORG_D W_PDS_ORGANIZATION_D

W_INT_ORG_D_TL W_PDS_ORGANIZATION_D

W_INT_ORG_DH W_PDS_ORGANIZATION_D

W_DOMAIN_MEMBER_LKP_TL W_PDS_ORGANIZATION_D

W_INT_ORG_ATTR_D W_PDS_ORGANIZATION_D

W_MCAL_DAY_D W_PDS_CALENDAR_D

W_EXCH_RATE_G W_PDS_EXCH_RATE_G

W_RTL_ITEM_GRP1_D W_PDS_PRODUCT_ATTR_D

W_DOMAIN_MEMBER_LKP_TL W_PDS_PRODUCT_ATTR_D

W_RTL_PRODUCT_ATTR_D W_PDS_UDA_D

W_DOMAIN_MEMBER_LKP_TL W_PDS_UDA_D

W_RTL_PRODUCT_ATTR_D W_PDS_DIFF_D

W_RTL_PRODUCT_ATTR_D_TL W_PDS_DIFF_D

Planning Fact Export

Module Name LOAD_PDS_FACT_PROCESS_ADHOC

Description Exports all supported facts from RI to the data exchange schema for
Planning.

Dependencies HIST_SALES_LOAD_ADHOC
HIST_INV_LOAD_ADHOC
HIST_CSV_ADJUSTMENTS_LOAD_ADHOC
HIST_CSV_INVRECEIPTS_LOAD_ADHOC
HIST_CSV_MARKDOWN_LOAD_ADHOC
HIST_CSV_INVRTV_LOAD_ADHOC
HIST_CSV_TRANSFER_LOAD_ADHOC
HIST_CSV_DEAL_INCOME_LOAD_ADHOC
HIST_CSV_ICMARGIN_LOAD_ADHOC
HIST_CSV_INVRECLASS_LOAD_ADHOC

Business Activity RI Integrations

Chapter 2
Planning Fact Export

2-33

Design Overview
This process runs all the planning data schema fact exports from RI to the data
exchange layer, where PDS batch processes pick up and load the data the rest of the
way. Each run of these jobs inserts to the target tables with a new RUN_ID. Old runs
are preserved for a configurable period of time (such as 7 days) to ensure PDS has
adequate time to retrieve the data before it is erased. All fact exports are incremental
and send only the current week’s data based on when it was posted into RI. This
means the exports include all back-posted transaction data regardless of the
transaction date, as long as it was posted to RI in the current fiscal week.

The range of dates exported by this process is tracked and configured from the table
C_SOURCE_CDC. This table can be edited from the Control & Tactical Center to alter the
range of dates exported in one batch execution, such as when you are sending
historical data to MFP, or when you need to refresh the PDS data for more than a
week. The table is automatically updated after every run to reflect the most recent
export dates. The next export begin from the last date/time used.

Key Tables Affected

Input Table Output Table

W_RTL_SLS_IT_LC_WK_A W_PDS_SLS_IT_LC_WK_A

W_RTL_SLS_IT_LC_WK_A W_PDS_GRS_SLS_IT_LC_WK_A

W_RTL_SLSWF_IT_LC_WK_A W_PDS_SLSWF_IT_LC_WK_A

W_RTL_INV_IT_LC_WK_A W_PDS_INV_IT_LC_WK_A

W_RTL_PO_ONORD_IT_LC_DY_F W_PDS_PO_ONORD_IT_LC_WK_A

W_RTL_MKDN_IT_LC_WK_A W_PDS_MKDN_IT_LC_WK_A

W_RTL_INVADJ_IT_LC_WK_A W_PDS_INVADJ_IT_LC_WK_A

W_RTL_INVRC_IT_LC_WK_A W_PDS_INVRC_IT_LC_WK_A

W_RTL_INVTSF_IT_LC_WK_A W_PDS_INVTSF_IT_LC_WK_A

W_RTL_INVRTV_IT_LC_WK_A W_PDS_INVRTV_IT_LC_WK_A

W_RTL_INVRECLASS_IT_LC_WK_A W_PDS_INVRECLASS_IT_LC_WK_A

W_RTL_DEALINC_IT_LC_WK_A W_PDS_DEALINC_IT_LC_WK_A

W_RTL_ICM_IT_LC_WK_A W_PDS_ICM_IT_LC_WK_A

Planning Initial Inventory Export

Module Name LOAD_PDS_FACT_INITIAL_PROCESS_ADHOC

Description Exports a full snapshot of historical inventory to the data
exchange schema for Planning.

Dependencies HIST_INV_LOAD_ADHOC

Business Activity RI Integrations

Chapter 2
Planning Initial Inventory Export

2-34

Design Overview
This process exports inventory history from RI to Planning. The base inventory extract for
PDS only sends the current week’s inventory, as the data is positional in RI and the current
week reflects all current values on the fact. This process can send a range of weeks at one
time by configuring the start date and end date in C_SOURCE_CDC for this interface. All weeks
of data are written for a single Run ID in the output table. Running the PDS import process
consumes the entire range of data into their inventory facts.

Key Tables Affected

Table Usage

C_SOURCE_CDC Configuration

W_RTL_INV_IT_LC_WK_A Input

W_PDS_INV_IT_LC_WK_A Output

Planning Load Cleanup

Module Name CLEANUP_C_LOAD_DATES_PLANNING_ADHOC

Description Erases the execution status of planning batch programs. This is required
to run a program multiple times for the same business date.

Dependencies None

Business Activity RI Integrations

Design Overview
This process erases records from the C_LOAD_DATES database table. Any time a job runs as
part of the nightly batch, or a job is included in both nightly and ad hoc processing, a status
record is inserted to C_LOAD_DATES. The job is then blocked from executing again while this
record exists, as a safety measure when restarting batch processes that failed midway
through execution. During initial planning integration loads, you may need to execute the
same jobs multiple times to work through file or data issues. In that case, you may execute
this process before each run to clear the status of prior runs from the database.

Note:

This process should only run during history and initial data loads, or at the guidance
of Oracle Support. It should not run during regular nightly batch processing.
Clearing C_LOAD_DATES when the batch is running normally could cause data
corruption, as it would allow the same jobs to run multiple times for the same
business date.

Chapter 2
Planning Load Cleanup

2-35

Key Tables Affected

Table Usage

C_LOAD_DATES Delete

POS Sales Integration

Module Name LOAD_POSLOG_DATA_ADHOC

Description Integrates data from Xstore, received through the POSLOG
broadcaster services, into the RI data model.

Dependencies None

Business Activity RI Integrations

Design Overview
Retail Insights supports loading intraday sales transactions from Xstore’s string-based
XML receiver API. The data loaded by this method is specifically for reporting today’s
sales before the end-of-day batch processes the full snapshot of audited sales
transactions. The sales data from Xstore is not used as a primary source of sales
history in Retail Insights, as the system was designed around the concept of a Sales
Audit system being used prior to data coming into the data warehouse.

The data first comes to the Retail AI Foundation Cloud Services from Xstore’s web
service API. The API is configured as part of the AI Foundation Cloud Services, but is
used by Retail Insights to get the raw XML POSLOGs into the database for
transformation to the RI data model. This process can then move the data from AI
Foundation to RI staging tables, and from there to RI’s internal data model for BI
reports. Refer to the RI Implementation Guide for additional details.

Key Tables Affected

Table Usage

W_RTL_POSLOG_XML_G Input

W_RTL_SLS_POS_IT_LC_DY_FS Staging

W_RTL_SLS_POS_IT_LC_DY_F Output

Price History Load

Module Name HIST_CSV_PRICE_LOAD_ADHOC

Description Loads the PRICE.csv file into RI and populates key data tables
used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Chapter 2
POS Sales Integration

2-36

Design Overview
The price history load process supports loading of price information over a long period of time
to populate RI with historical data. This process both stages the PRICE.csv file into the
database and processes it into RI. Multiple weeks of pricing data can be provided in a single
file, though it is recommended not to load more than one month at a time, unless the volumes
are low. Pricing data must start with a full snapshot of all item/locations on the earliest day in
history that you will be loading. This can be loaded by itself to validate the file is formatted
and the data is correct. From then on, you can provide only the price change events on the
dates that they occur (such as regular and markdown price changes). The price history load
will iterate through the provided files one day at a time and load the available price change
events for each date in order.

The C_HIST_LOAD_STATUS configuration table determines the actions taken by the process.
Before running the process for the first time, you must set up this table for the history load
date to be the very latest date you expect to load history for (this can be changed later if
needed to load more weeks). Once that setup is complete, you can begin processing files
from the earliest date you plan to load. You must start from the beginning of history and load
sequentially. You cannot load data out of order, and you cannot load the same date multiple
times without first erasing the data from the database. After a date is loaded successfully, the
C_HIST_LOAD_STATUS records are updated with the most recent load status and date.

Key Tables Affected

Table Usage

W_RTL_PRICE_IT_LC_DY_FTS File Input

W_RTL_PRICE_IT_LC_DY_FS Staging

W_RTL_PRICE_IT_LC_DY_F Output

W_RTL_PRICE_IT_LC_G Output

Price History Load (Legacy)

Module Name HIST_PRICE_LOAD_ADHOC

Description Stages and loads the W_RTL_PRICE_IT_LC_DY_FS.dat file for pricing
history.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The price history load process supports loading of price information over a long period of time
to populate RI with historical data. This process stages the W_RTL_PRICE_IT_LC_DY_FS.dat
file into the database and processes it into RI. Multiple weeks of pricing data can be provided
in a single file, though it is recommended not to load more than one month at a time unless
the volumes are low. Pricing data must start with a full snapshot of all item/locations on the
earliest day in the history that you are loading. This can be loaded by itself to validate the file
is formatted and the data is correct. From then on, you can provide only the price change
events on the dates that they occur (such as regular and markdown price changes). The

Chapter 2
Price History Load (Legacy)

2-37

price history load iterates through the provided files one day at a time and loads the
available price change events for each date in order.

The actions taken by the process are guided by a configuration table
C_HIST_LOAD_STATUS. Before running the process for the first time, you must set up
this table for the history load date to be the very latest date you expect to load history
for (this can be changed later if needed to load more weeks). Once that setup is
complete, you can begin processing files from the earliest date you plan to load. You
must start from the beginning of history and load sequentially. You cannot load data
out of order and you cannot load the same date multiple times without first erasing the
data from your database. After a date is loaded successfully, the C_HIST_LOAD_STATUS
records are updated with the most recent load status and date.

Key Tables Affected

Table Usage

W_RTL_PRICE_IT_LC_DY_FS Staging

W_RTL_PRICE_IT_LC_DY_F Output

W_RTL_PRICE_IT_LC_G Output

RDE Grants to APEX

Module Name RDE_GRANT_MFCS_TO_APEX_ADHOC

Description Refreshes the grants and synonyms for Merchandising replicated
objects that should be exposed to Innovation Workbench.

Dependencies None

Business Activity Historical Data Load

Design Overview
This process runs the job RDE_GRANT_MFCS_TO_APEX_JOB, which re-applies the
necessary grants and objects to allow a user to query Merchandising data from
Innovation Workbench. This process assumes that the environment is one in which
Merchandising is version 22 or later and the data is being actively replicated using
Golden Gate to RAP.

The synonyms are present in the RABE01USER user in the database; so, when querying
Merchandising objects, you may query a table like this:

select * from RABE01USER.ITEM_MASTER

Receipts History Load

Module Name HIST_CSV_INVRECEIPTS_LOAD_ADHOC

Description Loads the RECEIPT.csv file into RI and populates key data tables
used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Chapter 2
RDE Grants to APEX

2-38

Business Activity Historical Data Load

Design Overview
The history load process for Inventory Receipt transactions accepts an input file at the item/
location/day level using the file specification for RECEIPT.csv. It assumes the file has already
been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the
file into a preprocessing table in the database, transforms it to RI’s internal staging tables,
then loads it into the base fact (item/location/day) as well as the week aggregate used for
integrations (item/location/week).

Key Tables Affected

Table Usage

W_RECEIPT_FTS File Input

W_RTL_INVRC_IT_LC_DY_FS Staging

W_RTL_INVRC_IT_LC_DY_F Output (Base Fact)

W_RTL_INVRC_IT_LC_WK_A Output (Aggregate)

Rejected Record Analysis

Module Name W_RTL_REJECT_DIMENSION_TMP_ADHOC

Description Analyses rejected records in the pricing and inventory position facts for
any known causes of rejection, such as missing dimension keys for the
records, and outputs a summary for review.

Dependencies None

Business Activity Historical Data Load

Design Overview
The rejected record analysis ad hoc process provides a set of queries comparing rejected
data to all related dimensional tables. If any dimension keys are found on the rejected data
but not in the related tables, a summary of the comparison is output to a database table for
review. This tool can help debug invalid input data so it can be corrected and reprocessed.
The ad hoc job currently runs for the Sales Transaction, Inventory Position, and Pricing facts,
which are the most common history loads performed. The job is run automatically for
Inventory and Price loads since they will fail if any records are rejected, but it requires manual
setup and execution for Sales Transaction analysis. The modules enabled for the job are
listed in the configuration table W_RTL_REJECT_DIMLKUP_TMP. The rejected dimension keys are
output to W_RTL_REJECT_DIMENSION_TMP.

To add the sales module before running the job for transaction loads, follow these steps:

1. Navigate to the Control & Tactical Center’s Manage System Configurations screen.

2. Locate the table C_MODULE_REJECT_TABLE and check whether there is already a row for
MODULE_CODE=SLS

Chapter 2
Rejected Record Analysis

2-39

3. If there is not a row for SLS, then add a new row with these values for the first 3
column: SLS, E$_W_RTL_SLS_TRX_IT_LC_DY_TMP, W_RTL_SLS_TRX_IT_LC_DY_FS

To run the job from Postman, use the message body like below:

{
 "cycleName": "Adhoc",
 "flowName":"Adhoc",
 "processName":" W_RTL_REJECT_DIMENSION_TMP_ADHOC",
 "requestParameters":"jobParams. W_RTL_REJECT_DIMENSION_TMP_JOB=SLS
20230102 20230109"
}

The parameters for the job are the MODULE_CODE value from the configuration table
followed by start and end dates in YYYYMMDD format. The dates correspond to the load
date that resulted in rejected records on W_ETL_REJECTED_RECORDS. After you run the
job, query W_RTL_REJECT_DIMENSION_TMP to see the results.

Key Tables Affected

Table Usage

W_RTL_REJECT_DIMLKUP_TMP Configuration

W_RTL_REJECT_DIMENSION_TMP Output

Rejected Record Cleanup

Module Name REJECT_DATA_CLEANUP_ADHOC

Description Purges rejected records from certain E$ tables and populates a list
of invalid dimension keys present on the purged data. The invalid
keys will be ignored if a related fact history load process is re-run
after failing due to these rejections.

Dependencies None

Business Activity Historical Data Load

Design Overview
The rejected record cleanup ad hoc process provides a way to clear out rejected data
for positional fact history loads (currently inventory and price) that are blocked by
having any rejections. The data is erased from the E$ tables and any invalid keys that
do not have matching dimensions are written to the C_DISCARD_DIMM output table. If
you then re-run the failed history job from POM, the job will ignore all of the discarded
dimension keys and proceed to load the rest of the data file for the current day/week of
processing. It is important to note that once you discard positional data in this manner,
you cannot reload it later on: you are declaring the data as unwanted/unusable. If you
instead want to reload your data file with corrected records, you would not re-run your
current history load job. You would go back and reload dimension and fact files as
needed and start a fresh job run.

Chapter 2
Rejected Record Cleanup

2-40

This job requires an input parameter of INV or PRICE, which tells the job which fact to clean
up. The Postman body message format is below.

{
 "cycleName": "Adhoc",
 "flowName":"Adhoc",
 "processName":"REJECT_DATA_CLEANUP_ADHOC",
 "requestParameters":"jobParams.REJECT_DATA_CLEANUP_JOB=INV"
}

After doing the cleanup, check the C_HIST_LOAD_STATUS table to see where the history job
stopped processing. If all steps are marked COMPLETE and the TMP table has a later value for
the MAX_COMPLETED_DATE (for example, the TMP table has a date of 04/18/2021 and the other
tables show 04/11/2021) then you may simply rerun the POM job to resume the dataload. In
this scenario it will use the existing data in the HIST table for week of 04/18/2021 and
continue to load those records in the F/A tables (ignoring the dimensions which are
discarded).

Key Tables Affected

Table Usage

E$_W_RTL_INV_IT_LC_DY_TMP1 Input

E$_W_RTL_PRICE_IT_LC_DP_TMP Input

C_DISCARD_DIMM Output

RTV History Load

Module Name HIST_CSV_INVRTV_LOAD_ADHOC

Description Loads the RTV.csv file into RI and populates key data tables used to
integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Inventory Returns to Vendor (RTV) transactions accept an input
file at the item/location/day level using the file specification for RTV.csv. It assumes the file
has already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process
imports the file into a preprocessing table in the database, transforms it to RI’s internal
staging tables, then loads it into the base fact (item/location/day) as well as the week
aggregate used for integrations (item/location/week).

Key Tables Affected

Table Usage

W_RTL_INVRTV_IT_LC_DY_FTS File Input

Chapter 2
RTV History Load

2-41

Table Usage

W_RTL_INVRTV_IT_LC_DY_FS Staging

W_RTL_INVRTV_IT_LC_DY_F Output (Base Fact)

W_RTL_INVRTV_IT_LC_WK_A Output (Aggregate)

RTV History Load (Legacy)

Module Name HIST_INVRTV_LOAD_ADHOC

Description Stages and loads the W_RTL_INVRTV_IT_LC_DY_FS.dat file for
return-to-vendor history.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Inventory Returns to Vendor (RTV) transactions accepts
an input file at the item/location/day level using the file specification for
W_RTL_INVRTV_IT_LC_DY_FS.dat. It assumes the file has already been moved into
place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process will import the file into
RI’s internal staging tables and then load it into the base fact (item/location/day) as
well as the week aggregate used for integrations (item/location/week).

Key Tables Affected

Table Usage

W_RTL_INVRTV_IT_LC_DY_FS Staging

W_RTL_INVRTV_IT_LC_DY_F Output (Base Fact)

W_RTL_INVRTV_IT_LC_WK_A Output (Aggregate)

Sales History Load

Module Name HIST_SALES_LOAD_ADHOC

Description Processes any staged sales history data and runs all aggregation
programs for a specified history range.

Dependencies HIST_STG_CSV_SALES_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The sales history load process supports loading of sales transaction data over a long
period of time to populate RI with historical data. It requires the sales data to already
be staged into the database using one of the available staging processes. Multiple
weeks of sales can be provided in a single file, though it is recommended to not load

Chapter 2
RTV History Load (Legacy)

2-42

more than one month at a time unless the volumes are low. This process populates all sales
tables in RI, both for integration and BI reporting purposes. If you are not using RI for
reporting, disable the aggregation table programs in POM (except the IT_LC_WK_A aggregate)
before running the process.

Key Tables Affected

Table Usage

W_RTL_SLS_TRX_IT_LC_DY_FS Input

W_RTL_SLSPK_IT_LC_DY_FS Input

W_RTL_SLS_TRX_IT_LC_DY_F Output (Base Fact)

W_RTL_SLSPK_IT_LC_DY_F Output (Base Fact)

W_RTL_SLS_IT_LC_WK_A Aggregate (for integrations)

W_RTL_SLS_IT_LC_DY_A Aggregate (for BI reporting)

W_RTL_SLS_IT_LC_GMH_A Aggregate (for BI reporting)

W_RTL_SLS_SC_LC_DY_A Aggregate (for BI reporting)

W_RTL_SLS_SC_LC_WK_A Aggregate (for BI reporting)

W_RTL_SLS_CL_LC_DY_A Aggregate (for BI reporting)

W_RTL_SLS_CL_LC_WK_A Aggregate (for BI reporting)

W_RTL_SLS_DP_LC_DY_A Aggregate (for BI reporting)

W_RTL_SLS_DP_LC_WK_A Aggregate (for BI reporting)

W_RTL_SLS_IT_DY_A Aggregate (for BI reporting)

W_RTL_SLS_IT_WK_A Aggregate (for BI reporting)

W_RTL_SLS_SC_DY_A Aggregate (for BI reporting)

W_RTL_SLS_SC_WK_A Aggregate (for BI reporting)

W_RTL_SLS_LC_DY_A Aggregate (for BI reporting)

W_RTL_SLS_LC_WK_A Aggregate (for BI reporting)

W_RTL_SLS_IT_LC_DY_SN_A Aggregate (for BI reporting)

W_RTL_SLS_IT_LC_WK_SN_A Aggregate (for BI reporting)

W_RTL_SLS_IT_DY_SN_A Aggregate (for BI reporting)

W_RTL_SLS_IT_WK_SN_A Aggregate (for BI reporting)

W_RTL_SLS_SC_LC_DY_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_SC_LC_WK_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_CL_LC_DY_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_DP_LC_DY_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_CL_LC_WK_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_DP_LC_WK_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_SC_DY_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_CL_DY_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_DP_DY_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_SC_WK_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_CL_WK_CUR_A Aggregate (for BI reporting)

Chapter 2
Sales History Load

2-43

Table Usage

W_RTL_SLS_DP_WK_CUR_A Aggregate (for BI reporting)

W_RTL_SLSPK_IT_LC_WK_A Aggregate (for BI reporting)

W_RTL_SLSPK_IT_DY_A Aggregate (for BI reporting)

W_EMPLOYEE_D Supporting Dimension (for BI reporting)

W_PARTY_PER_D Supporting Dimension (for BI reporting)

W_RTL_CO_HEAD_D Supporting Dimension (for BI reporting)

W_RTL_CO_LINE_D Supporting Dimension (for BI reporting)

Sales History Staging

Module Name HIST_STG_CSV_SALES_LOAD_ADHOC

Description Stages the SALES.csv file for the ad hoc sales load programs.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process looks for the SALES.csv and SALES_PACK.csv files placed on the server
by a history ZIP file upload, moves them into a preprocessing table in RI, and
transforms it for use by the HIST_SALES_LOAD_ADHOC process.

Key Tables Affected

Table Usage

W_RTL_SLS_TRX_IT_LC_DY_FTS File Input

W_RTL_SLSPK_IT_LC_DY_FTS File Input

W_RTL_SLS_TRX_IT_LC_DY_FS Output

W_RTL_SLSPK_IT_LC_DY_FS Output

Sales History Staging (Legacy)

Module Name HIST_STG_SALES_LOAD_ADHOC

Description Stages the W_RTL_SLS_TRX_IT_LC_DY_FS.dat file for the ad hoc
sales load programs.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Chapter 2
Sales History Staging

2-44

Design Overview
This process looks for the W_RTL_SLS_TRX_IT_LC_DY_FS.dat file placed on the server by a
history ZIP file upload and loads it for use in the HIST_SALES_LOAD_ADHOC process.

Key Tables Affected

Table Usage

W_RTL_SLS_TRX_IT_LC_DY_FS File Input

Sales Tender Load

Module Name HIST_SALES_TEND_LOAD_ADHOC

Description Processes any staged sales tender data into the sales tender fact table,
including processing of related dimensions used by the fact.

Dependencies HIST_STG_SALES_TEND_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The sales tender load process supports loading of sales transaction tender data over a long
period of time to populate RI with historical data. It requires the sales tender data to already
be staged into the database using the separate staging process. Multiple weeks of tender
data can be provided in a single file, though it is recommended to not load more than one
month at a time unless the volumes are low. This process populates all sales tender tables in
RI, both for integration and BI reporting purposes.

Key Tables Affected

Table Usage

W_RTL_TRX_TNDR_LC_DY_FS Input

W_EMPLOYEE_D Output (Dimension Seeding)

W_RTL_TRX_TNDR_LC_DY_F Output (Base Fact)

Sales Tender Staging

Module Name HIST_STG_SALES_TEND_LOAD_ADHOC

Description Processes a sales tender data file into the sales tender fact staging table.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Chapter 2
Sales Tender Load

2-45

Design Overview
This process looks for the W_RTL_TRX_TNDR_LC_DY_FS.dat file placed on the server by
a history ZIP file upload and loads it for use in the HIST_SALES_TEND_LOAD_ADHOC
process.

Key Tables Affected

Table Usage

W_RTL_TRX_TNDR_LC_DY_FS.dat Input File

W_RTL_TRX_TNDR_LC_DY_FS Output

Table Partitioning

Module Name CREATE_PARTITION_ADHOC

Description Uses the provided range of dates and the loaded calendar
information to generate table partitions across the RI data model.

Dependencies CALENDAR_LOAD_ADHOC

Business Activity Initial System Setup

Design Overview
This process must be used after the Calendar load is complete to partition all of your
database tables. Tables in Retail Insights are partitioned dynamically based on your
fiscal calendar using the days and weeks defined in W_MCAL_DAY_D and
W_MCAL_WEEK_D. This type of partitioning provides optimal performance in BI reporting,
where the SQL queries can prune the selected partitions to only those that hold data
for your time-based filters and attributes. Without this partitioning in place, batch
programs will not insert data into the expected partitions, some programs could fail to
load data at all, and BI reporting will have very poor performance.

This process can be run repeatedly to ensure all partitions are created. Each time it is
run, it will resume from where it left off, if any partitions still need to be added to the
data model. If you have run the process several times and it is now completing in
under a minute, then it is no long recreating any new partitions. The functional areas
being partitioned should be reviewed in the table C_MODULE_ARTIFACT. All tables should
be enabled for partitioning, except for tables that have PLAN in their naming structure.

Key Tables Affected

Table Usage

W_MCAL_DAY_D Input

W_MCAL_WEEK_D Input

C_ODI_PARAM Input

Chapter 2
Table Partitioning

2-46

Transfer History Load

Module Name HIST_CSV_TRANSFER_LOAD_ADHOC

Description Loads the TRANSFER.csv file into RI and populates key data tables used
to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Inventory Transfer transactions accepts an input file at the item/
location/day level using the file specification for TRANSFER.csv. It assumes the file has already
been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the
file into a preprocessing table in the database, transforms it to RI’s internal staging tables,
then loads it into the base fact (item/location/day) as well as the week aggregate used for
integrations (item/location/week).

Key Tables Affected

Table Usage

W_RTL_INVTSF_IT_LC_DY_FTS File Input

W_RTL_INVTSF_IT_LC_DY_FS Staging

W_RTL_INVTSF_IT_LC_DY_F Output (Base Fact)

W_RTL_INVTSF_IT_LC_WK_A Output (Aggregate)

Translation Lookup Load (Legacy)

Module Name W_DOMAIN_MEMBER_LKP_TL_PROCESS_ADHOC

Description Processes the translatable string data in the
W_DOMAIN_MEMBER_DS_TL.dat file and loads it into RI.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process looks for the W_DOMAIN_MEMBER_DS_TL.dat file placed on the server by a history
ZIP file upload and loads it to the target table in RI for translatable strings. When using CSV
file uploads, all the translatable strings from the CSV files are automatically inserted into this
table and loaded in RI without a second file being provided. However, if you are using legacy
files, or you need to update records in this table directly, you can use this process to manually
load string lookup records.

Chapter 2
Transfer History Load

2-47

Key Tables Affected

Table Usage

W_DOMAIN_MEMBER_DS_TL Staging

W_DOMAIN_MEMBER_LKP_TL Output

Chapter 2
Translation Lookup Load (Legacy)

2-48

3
AI Foundation Cloud Services Standalone
Processes

The primary function of standalone processes in the AI Foundation Cloud Services is move
data from RI or external sources into the platform, or to move data out of the platform to send
it elsewhere. These process flows differ from the Retail Insights jobs in that most processes
contain only one POM job. That job contains many individual programs in it, but the execution
flow is determined by parameters passed into the job. This is done by editing the job’s
parameters from the Batch Monitoring screen in POM:

Each letter in the string refers to a specific program or step in the execution flow, which will
be covered in more detail in the sections of this chapter. When multiple parameters are used,
such as when start/end dates are provided, the format of those parameters uses double-
hyphens and colons as shown here:

3-1

This chapter includes the following programs:

• Customer Metrics - Base Calculation

• Customer Metrics - Final Calculation

• Customer Metrics - Loyalty Score

• Fake Customer Identification

• File Export Execution

• File Export Preparation

• Location Ranging

• Master Data Load - AA

• Master Data Load - AC

• Master Data Load - AE

• Master Data Load - Common

• Master Data Load - DT

• Master Data Load - IO

• Master Data Load - PMO

• Master Data Load - OO

• Master Data Load - SO

• Master Data Load - SPO

• Offer Optimization Run

• Product Location Ranging

• Sales Aggregation - Customer Segment

• Sales Aggregation - Product

Chapter 3

3-2

• Sales Aggregation - Product Attribute

• Sales Aggregation - Product Hierarchy

• Sales Aggregation - Weekly

• Sales Forecast Aggregation - Product Attribute (Legacy)

• Sales Forecast Aggregation - Product Hierarchy (Legacy)

• Sales Shares - Product Attribute

• Sales Transaction Load

Customer Metrics - Base Calculation

Module Name RSE_CUST_ENG_METRIC_BASE_ADHOC

Description Calculate base values for customer engagement metrics.

Dependencies RSE_SLS_TXN_ADHOC

Business Activity Analytical Batch Processing

Design Overview
This process aggregates sales transaction data for use in customer engagement metric
calculations. The process runs for a range of weeks, depending on which weeks of sales
have had a run already performed. It will output the results to a database table for
downstream consumption. The RSE_SLS_TXN_ADHOC job is normally a prerequisite for this, as it
is used to refresh or load additional sales data.

Running this process requires parameters to specify the start and end date range for which
data should be processed. The -s Parameter is for the Start date and the -e parameter
provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_TXN Input

RSE_SLS_BASE_ATTR Output

Customer Metrics - Final Calculation

Module Name RSE_CUST_ENG_METRIC_CALC_ADHOC

Description Finalize the customer engagement metrics calculation.

Dependencies RSE_CUST_ENG_METRIC_BASE_ADHOC

Business Activity Analytical Batch Processing

Chapter 3
Customer Metrics - Base Calculation

3-3

Design Overview
This process calculates customer engagement metrics based on numerous inputs,
including sales transaction aggregates (for behavioral and predictive metrics) and
product attributes (for attribute loyalty metrics). Currently, supported product attributes
must have a group type of BRAND, STYLE, COLOR, LOC_LOYALTY, or PRICE_EFF_LOYALTY,
as defined in RSE_BUSINESS_OBJECT_ATTR_MD. The RSE_CUST_ENG_METRIC_BASE_ADHOC
job is normally a prerequisite for this, as it calculates the aggregated customer sales
data.

Running this process requires parameters to specify the start and end date range, for
which data should be processed. The -s Parameter is for the Start date and the -e
parameter provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_BASE_ATTR Input

RSE_PROD_ATTR Input

RSE_CUST_ATTR_LOY_DTL Input

RSE_CUST_SLS_ATTR Output

Customer Metrics - Loyalty Score

Module Name RSE_CUST_ATTR_LOY_ADHOC

Description Calculate customer loyalty score metrics.

Dependencies RSE_CUST_ENG_METRIC_BASE_ADHOC

Business Activity Analytical Batch Processing

Design Overview
This process calculates customer engagement loyalty data based on numerous inputs,
including sales transactions and product attributes. Currently, supported product
attributes must have a group type of BRAND, STYLE, COLOR, LOC_LOYALTY, or
PRICE_EFF_LOYALTY, as defined in RSE_BUSINESS_OBJECT_ATTR_MD. The
RSE_CUST_ENG_METRIC_BASE_ADHOC job is normally a prerequisite for this, as it
calculates the aggregated customer sales data.

Running this process requires parameters to specify the start and end date range, for
which data should be processed. The -s Parameter is for the Start date and the -e
parameter provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Chapter 3
Customer Metrics - Loyalty Score

3-4

Key Tables Affected

Table Usage

RSE_SLS_BASE_ATTR Input

RSE_PROD_ATTR Input

RSE_CUST_ATTR_LOY_DTL Output

Fake Customer Identification

Module Name RSE_FAKE_CUST_ADHOC

Description Identify fake customers by looking through sales transaction data, so
they can be automatically excluded from some applications.

Dependencies RSE_SLS_TXN_ADHOC

Business Activity Sales Preprocessing

Design Overview
This process analyzes sales transaction data looking for “fake” customers, which usually
represent excessive sales attributed to a single customer ID. This could be caused by store
cards used at the register, corporate cards used by many people, or wholesale transactions
involving large numbers of sales. These kinds of transactions can have negative effects on
processes like Demand Transference because they are not representative of real customer
activity. The threshold for identifying a customer as fake is set using the RSE_CONFIG property
FAKE_CUST_DAY_TXN_THRESHOLD.

Running this routine requires parameters to specify the start and end date range, for which
data should be re-processed. The -s Parameter is for the Start date and the -e parameter
provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_TXN Input

RSE_FAKE_CUST Output

File Export Execution

Module Name RSE_POST_EXPORT_ADHOC

Description Runs the export processes for any prepared AI Foundation export files,
which includes file movement, zipping, and export to SFTP.

Dependencies RSE_EXPORT_PREP_ADHOC

Chapter 3
Fake Customer Identification

3-5

Business Activity Outbound Integrations

Design Overview
This process moves, zips, and exports files from the AI Foundation applications based
on the file export type. It accepts a single input parameter for the file frequency type,
using one of DAILY, WEEKLY, QUARTERLY, INTRADAY, or ADHOC. This process is the
second step in the data flow and assumes files have already been prepared for export
using the dependent process.

File Export Preparation

Module Name RSE_EXPORT_PREP_ADHOC

Description Export preparation job for a specific group of AI Foundation
export files.

Dependencies None

Business Activity Outbound Integrations

Design Overview
This process will prepare a set of export files from the AI Foundation applications
based on the file export type. It accepts a single input parameter for the file frequency
type, using one of DAILY, WEEKLY, QUARTERLY, INTRADAY, or ADHOC. This is the first step
in the data flow and does not perform the file movement to SFTP; it only prepares the
files of the specified type so that the RSE_POST_EXPORT_ADHOC process can consume
them.

Location Ranging

Module Name DT_LOC_RANGE_ADHOC

Description Refresh Location Ranging data for Demand Transference.

Dependencies DT_PROD_LOC_RANGE_ADHOC

Business Activity Application Setup

Design Overview
This process calculates SKU Counts for the available ranges of products, for a given
CM Group, Store Location, and Week, which may be needed during implementation of
Demand Transference when using CM Groups.

Running this routine requires parameters to specify the start and end date range for
weeks of data to process. The -s Parameter is for the Start date and the -e parameter
provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Chapter 3
File Export Preparation

3-6

Key Tables Affected

Table Usage

DT_PROD_LOC_STATUS Input

DT_CM_GRP_LOC_STATUS_AGGR Output

Master Data Load - AA

Module Name MBA_MASTER_ADHOC_PROCESS

Description Run the Affinity Analysis/Market Basket Analysis master script. This is
the best way to execute all the initial processing steps for the MBA
application module.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Affinity
Analysis (also known as Market Basket Analysis or MBA) application. It accepts one or more
single-character parameters to control which steps in the process are executed. Multiple
steps executed in sequence should be passed as one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -e Execute MBA ETL routines

• -c Execute ARM configuration load routines

• -a Execute ARM processes

• -r Execute RI ARM processes

• -b Execute Baseline processes

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided more
than once, or after a -A or -R will toggle the switch On/Off. This will enable excluding a small
number of steps from processing, without requiring specifying all other switches

Example:

-Aa will result in running all steps except -a

Master Data Load - AC

Module Name CIS_MASTER_ADHOC_PROCESS

Chapter 3
Master Data Load - AA

3-7

Description Run the Advanced Clustering/Customer Segmentation master script.
This is the best option to run all initial processing steps for the AC/CS
modules. NOTE: when running through POM, if any -- options are
required, use : instead of = to separate the option from the value.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the
Advanced Clustering and Customer Segmentation applications. It accepts one or more
single-character parameters to control which steps in the process are executed.
Multiple steps executed in sequence should be passed as one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with
the provided option (see below options) for order

• -a Attribute Maintenance

• -h Product/Attribute Share Processing

• -t Loading cluster templates

• -v Setup a new version

• -s Update sales data for use by any versions

• -m Market Sales Aggregation load

• -c Update new versions with all the attribute summary information

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided
more than once, or after a -A or -R will toggle the switch On/Off. This will enable
excluding a small number of steps from processing, without requiring specifying all
other switches.

Examples:

• -Ah will result in running all steps except -h

• --from Start date of the data processing timeframe. Must be provided in
YYYYMMDD format with no spaces. For example, --from:20170101. Must be
accompanied by the end date and optionally by the extfrom flag

• --to End date of the data processing timeframe. Must be provided in YYYYMMDD
format with no spaces. For example, --to:20170201. Must be accompanied by the
end date and optionally by the extto flag

• --extfrom Optional flag to indicate if the start date must be extended to the start
of the week. Accepts Y or N (default). For example, --extfrom:Y, with no spaces

• --extto Optional flag to indicate if the end date must be extended to the end of
the week. Accepts Y or N (default). For example, --extto:Y, with no spaces

Chapter 3
Master Data Load - AC

3-8

Master Data Load - AE

Module Name AE_MASTER_ADHOC_PROCESS

Description Run the Attribute Extraction master script. This is the best way to
trigger all initial processing for the AE application.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Attribute
Extraction application. It accepts one or more single-character parameters to control which
steps in the process are executed. Multiple steps executed in sequence should be passed as
one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -G Global Lists of Strings loading

• -C Product Categories loading

• -P Product loading

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided more
than once, or after a -A or -R will toggle the switch On/Off. This will enable excluding a small
number of steps from processing, without requiring specifying all other switches.

Example:

-AGP will result in running all steps except -G and -P

Master Data Load - Common

Module Name RSE_MASTER_ADHOC_PROCESS

Description Run the AI Foundation Cloud Services common master script. This is the
first step that should be run once data has been loaded into RI, and is
ready to initialize data needed by all the other application modules.

Dependencies None

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Retail AI
Foundation Cloud Services foundation data tables. This process is generally required as the
first step in loading data to any AI Foundation application. It accepts one or more single-

Chapter 3
Master Data Load - AE

3-9

character parameters to control which steps in the process are executed. Multiple
steps executed in sequence should be passed as one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with
the provided option (see below options for order)

• -p Product Hierarchy

• -c CM Group Product Hierarchy

• -l Location Hierarchy

• -t Trade Area Location Hierarchy

• -X Alternate (Flex) Product & Location Hierarchy

• -d Calendar Hierarchy

• -r Promotion Hierarchy

• -g Customer Segment Hierarchy

• -s Consumer segment data

• -P Product Attributes

• -L Location attributes

• -K Like Location / Product data load

• -G Customer Segment Attributes

• -z Price zone ETL

• -h Holiday data load

• -i Inventory data load

• -x Sales transaction data

• -f Fake customer data load

• -k Fake customer data identification

• -w Weekly Aggregate Sales data (Load or Calc)

• -a Aggregate Sales data processing

• -F Forecast Aggregate Sales data processing

• -C Price and Cost data load

• -u UDA load

• -E Export Group Setup

• -W Weather Driven Demand data load

• -T Weekly Return transactions

• -e Weekly Return Aggregation

• -S Weekly Sales Return Price Consolidation

• -m Customer Engagement Attribute

Chapter 3
Master Data Load - Common

3-10

• -o Forecast Plan Load

• -b Budget Allocation Load

• -O Order Cost data Load

• -n Promotion data Load

• -D Daily data Load

• -U Supplier, Supplier Item, Daily Supplier Cost, Supplier Inv Mgmt Load

• -N Season Phase Item Load

• -J Rules Engine data for PRO

• -j Rules Engine data for IO

• -q Group Flex Load

• -H Buyer, Allocation, Purchase Order, Transfer Loads

• -M Forecast Spread Profiles Load

• -V Forecast Lifecycle Classification Load

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. The A flag indicates to run all
steps except the letters following it, while the R flag indicates to resume from the letter
following it. Any switch provided more than once, or after a -A or -R will toggle the switch On/
Off. This will enable excluding a small number of steps from processing, without requiring
specifying all other switches.

Examples:

• -Act will result in running all steps except -c and -t
• -Rc -t will result in running all steps starting with c, but excluding step t
• -pldxwa will result in extracting the product, location, calendar, and sales data from the RI

data warehouse and populating all the core AIF aggregates for sales (this is a common
set of load steps for first-time runs)

Additional optional flags may be specified after the sequence of steps is provided, as listed
below. Date ranges will apply to any step that extracts historical data, such as sales and
inventory loads. If no date range is provided, then the job will attempt to determine the range
of dates in RI and extract that entire range. If a step has already extracted data from RI once,
then you must specify dates on additional runs of that step to ensure only that date range is
re-extracted.

• --alt_prod_hier Run only the alternate (flex) product hierarchy load steps

• --alt_loc_hier Run only the alternate (flex) location hierarchy load steps

• --alt_hier_setup Run only the alternate (flex) hierarchy setup steps

• --prioritizefiles Specifies that data files should be prioritized as the source for a load
instead of RI, where it is possible to get data from either source

• --from Start date of the data processing timeframe. Must be provided in YYYYMMDD
format with no spaces. For example --from:20170101. Must be accompanied by the end
date and optionally by the extfrom flag

Chapter 3
Master Data Load - Common

3-11

• --to End date of the data processing timeframe. Must be provided in YYYYMMDD
format with no spaces. For example, --to:20170201. Must be accompanied by the
end date and optionally by the extto flag

• --extfrom Optional flag to indicate whether the start date must be extended to the
start of the week. Accepts Y or N (default). For example, --extfrom:Y, with no
spaces

• --extto Optional flag to indicate whether the end date must be extended to the
end of the week. Accepts Y or N (default). For example, --extto:Y, with no spaces

Master Data Load - DT

Module Name DT_MASTER_ADHOC_PROCESS

Description Run the Demand Transference master script. This is the best way
to run all the initial processing steps needed by the DT application
module. NOTE: when running through POM, if any -- options are
required, use : instead of = to separate the option from the value.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the
Demand Transference application. It accepts one or more single-character parameters
to control which steps in the process are executed. Multiple steps executed in
sequence should be passed as one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with
the provided option (see below options) for order

• -r Load Store Sku Ranging Data

• -l Aggregate Location Ranging Statistics

• -b Calculate Baseline

• -i Update model intervals

• -g Run Group Load

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided
more than once, or after a -A or -R will toggle the switch On/Off. This will enable
excluding a small number of steps from processing, without requiring specifying all
other switches.

Examples:

• -Ab will result in running all steps except -b

Chapter 3
Master Data Load - DT

3-12

• --from Start date of the data processing timeframe. Must be provided in YYYYMMDD
format with no spaces. For example, --from:20170101. Must be accompanied by the end
date and optionally by the extfrom flag

• --to End date of the data processing timeframe. Must be provided in YYYYMMDD
format with no spaces. For example, --to:20170201. Must be accompanied by the end
date and optionally by the extto flag

• --extfrom Optional flag to indicate if the start date must be extended to the start of the
week. Accepts Y or N (default). For example, --extfrom:Y, with no spaces

• --extto Optional flag to indicate if the end date must be extended to the end of the week.
Accepts Y or N (default). For example, --extto:Y, with no spaces

Master Data Load - IO

Module Name IO_MASTER_ADHOC_PROCESS

Description Run the Inventory Optimization master script. This is the best option for
running all the intial processing steps needed by the IO application
module.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Inventory
Optimization application. It accepts one or more single-character parameters to control which
steps in the process are executed. Multiple steps executed in sequence should be passed as
one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -a Replenishment Attributes at Product/Location or Group level

• -w Replenishment Attributes at Product/Warehouse or Group level

• -n Non-receiving Dates for Locations

• -N Non-receiving Dates for Location Types

• -d Non-receiving Days for Locations

• -t Warehouse Source Split Target

• -s Seasons

• -c Shipping Costs

• -r Strategy Rules

• -? Display this usage information

Chapter 3
Master Data Load - IO

3-13

Options -A and -R will enable processing of appropriate steps. Any switch provided
more than once, or after a -A or -R will toggle the switch On/Off. This will enable
excluding a small number of steps from processing, without requiring specifying all
other switches.

Example:

-AbP will result in running all steps except -b and -P

Master Data Load - PMO

Module Name PMO_MASTER_ADHOC_PROCESS

Description Run the Pricing and Markdown Optimization master script. This is
the best way to perform all initial processing steps needed by the
PMO application module.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the
Pricing and Markdown Optimization application. It accepts one or more single-
character parameters to control which steps in the process are executed. Multiple
steps executed in sequence should be passed as one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with
the provided option (see below options) for order

• -a Activities

• -d Return Data Preparation

• -c Return Calculation

• -h Holiday load

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided
more than once, or after a -A or -R will toggle the switch On/Off. This will enable
excluding a small number of steps from processing, without requiring specifying all
other switches.

The activities load (-a) supports date parameters when you are reloading data for a
specific historical period. Both parameters should be provided when used.

• --from Start date of the data processing timeframe. Must be provided in YYYYMMDD
format with no spaces. For example --from:20170101. Must be accompanied by
the end date and optionally by the extfrom flag

• --to End date of the data processing timeframe. Must be provided in YYYYMMDD
format with no spaces. For example, --to:20170201. Must be accompanied by the
end date and optionally by the extto flag

Chapter 3
Master Data Load - PMO

3-14

Examples:

-Adh will result in running all steps except -d and -h
-a --from:20210502 --to:20210807 will process the historical activities data between
2021-05-02 and 2021-08-07

Master Data Load - OO

Module Name PRO_MASTER_ADHOC_PROCESS

Description Run the Offer Optimization master script. This is the best option for
running all the initial processing steps for the OO application module.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Offer
Optimization application. It accepts one or more single-character parameters to control which
steps in the process are executed. Multiple steps executed in sequence should be passed as
one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -b Baseline

• -c Customer Segment Lifetime Value

• -i Inventory Aggregation

• -f Lifecycle Fatigue

• -p Promotion

• -l Promotion Lift

• -C Price-Cost

• -e Price Elasticity

• -L Price Ladder

• -r Sales Return

• -s Season

• -P Season Product

• -d Season Period

• -E Markdown Day of Week

• -y Seasonality

• -D Model Dates

Chapter 3
Master Data Load - OO

3-15

• -O Country Locale

• -F Forecast Adjustment

• -W Days of Week Profile

• -u Properties and Rules

• -M Future Markdowns

• -U Product Location CDA Flex Facts

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided
more than once, or after a -A or -R will toggle the switch On/Off. This will enable
excluding a small number of steps from processing, without requiring specifying all
other switches.

Example:

-AbP will result in running all steps except -b and -P

Master Data Load - SO

Module Name SO_MASTER_ADHOC_PROCESS

Description Run the Space Optimization master script. This is the best way to
run all the initial steps for the SO application module.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Offer
Optimization application. It accepts one or more single-character parameters to control
which steps in the process are executed. Multiple steps executed in sequence should
be passed as one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with
the provided option (see below options) for order

• -F Assortment Finalization

• -a Assortment

• -h Placeholder Product Loading

• -M Product Cluster mapping

• -C Assortment product location forecast and price/cost

• -f Assortment Forecast loading

• -r Replenishment Parameters

• -S Product Stacking Height Limit

Chapter 3
Master Data Load - SO

3-16

• -p Pog Loading

• -b Bay/Fixture Loading

• -y Display Style Loading

• -c Product Fixture Configuration Loading

• -P Perform Product Attribute maintenance

• -m Assortment Mapping

• -v Global Validation

• -s Assortment to POG mapping

• -g POG Set location creation

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided more
than once, or after a -A or -R will toggle the switch On/Off. This will enable excluding a small
number of steps from processing, without requiring specifying all other switches.

Example:

-AaP will result in running all steps except -a and -P

Master Data Load - SPO

Module Name SPO_MASTER_ADHOC_PROCESS

Description Run the Size Profile Optimization master script. This is the best way to
run all the initial processing steps needed by the SPO application
module. NOTE: when running through POM, if any -- options are
required, use : instead of = to separate the option from the value.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Size Profile
Optimization application. It accepts one or more single-character parameters to control which
steps in the process are executed. Multiple steps executed in sequence should be passed as
one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -S Season Data Load

• -r Size Range Data Load

• -s Size Data Load

• -p Product Size Data Load

Chapter 3
Master Data Load - SPO

3-17

• -l Sub-Size Range Product Location Data Load

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided
more than once, or after a -A or -R will toggle the switch On/Off. This will enable
excluding a small number of steps from processing, without requiring specifying all
other switches.

Example:

• -Ar will result in running all steps except -r
• --from Start date of the data processing timeframe. Must be provided in

YYYYMMDD format with no spaces. For example, --from:20170101. Must be
accompanied by the end date and optionally by the extfrom flag

• --to End date of the data processing timeframe. Must be provided in YYYYMMDD
format with no spaces. For example, --to:20170201. Must be accompanied by the
end date and optionally by the extto flag

• --extfrom Optional flag to indicate if the start date must be extended to the start
of the week. Accepts Y or N (default). For example, --extfrom:Y, with no spaces

• --extto Optional flag to indicate if the end date must be extended to the end of
the week. Accepts Y or N (default). For example, --extto:Y, with no spaces

Offer Optimization Run

Module Name PRO_OPT_ADHOC

Description Runs the offer optimization process outside of the normal batch.

Dependencies None

Business Activity Analytical Batch Processing

Design Overview
This process triggers the offer optimization batch processing outside of the normal
batch window. All of the necessary steps to calculate optimization results are included
in the ad oc job and no parameters are used. The process triggers the Java libraries
on the application server that are responsible for the optimization.

Product Location Ranging

Module Name DT_PROD_LOC_RANGE_ADHOC

Description Refresh Product Location Ranging data for Demand Transference.

Dependencies W_RTL_IT_LC_D_JOB (in RI)

Business Activity Application Setup

Chapter 3
Offer Optimization Run

3-18

Design Overview
This process extracts the item/location ranging information from Retail Insights table
W_RTL_IT_LC_D. This process is also performed in the DT master batch process, but it can be
run on its own if you are modifying the data and need to reload it.

Running this routine requires parameters to specify the start and end date range, for which
data should be re-processed from the W_RTL_IT_LC_D table or from AI Foundation sales
tables. The -s Parameter is for the Start date and the -e parameter provides the End date.
Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

W_RTL_IT_LC_D Input

DT_PROD_LOC_LAST_SLS Input

DT_PROD_LOC_STATUS Output

Sales Aggregation – Cumulative Sales

Module Name PMO_CUMUL_SLS_ADHOC_PROCESS

Description Creates aggregate cumulative sales data for Promotion and Markdown
Optimization.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process allows the user to execute the cumulative sales aggregation for Promotion and
Markdown Optimization application in an ad hoc manner. When the user creates a new
forecast run type, this aggregation is automatically called as part of “Start Data Aggregation”.
This requires that sales aggregations have already been performed using the RSE_MASTER ad
hoc process, and inventory position/receipts data has already been loaded into RI and AIF
(so that first receipt dates can be used).

Running this process requires parameters to specify the start and end date range for which
data should be processed. The -s parameter is for the start date and the -e parameter
provides the end date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

The process has the following list of supported options. All job parameters are passed into
the PMO_CUMUL_SLS_SETUP_ADHOC_JOB process when invoking it from Postman.

• -n Number of weeks to process

Chapter 3
Sales Aggregation – Cumulative Sales

3-19

• -f Force update of existing data - Y/N (Default)

• -s Start date yyyymmdd
• -e End date yyyymmdd
• -S Start calendar day ID

• -E End calendar day ID

• -w Calendar Week ID to process

• -N New Forecast Run Type Aggregation Flag - Y/N

Key Tables Affected

Table Usage

RSE_SLS_PR_LC_CS_WK Input

RSE_INV_PR_LC_HIST Input

RSE_FCST_RUN_TYPE Input

RSE_FCST_DFLT_PARAMETER Input

PMO_CUM_SLS Output

Sales Aggregation - Customer Segment

Module Name RSE_WKLY_SLS_CUST_SEG_ADHOC

Description Aggregates Sales Transaction data to Weekly Customer Segment
Sales tables.

Dependencies RSE_SLS_TXN_ADHOC

Business Activity Initial Data Loads

Design Overview
This process aggregates sales data by customer segment for use in AI Foundation
applications. The RSE_SLS_TXN_ADHOC job is normally a prerequisite for this, as it is
used to refresh or load additional sales data.

Running this process requires parameters to specify the start and end date range, for
which data should be processed. The -s Parameter is for the Start date and the -e
parameter provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_TXN Input

RSE_CUSTSEG_CUST_XREF Input

Chapter 3
Sales Aggregation - Customer Segment

3-20

Table Usage

RSE_CUSTSEG_SRC_XREF Input

RSE_SLS_PR_LC_CS_WK Output

Sales Aggregation - Product

Module Name RSE_WKLY_SLS_PR_AGGR_ADHOC

Description Calculates Product-based sales aggregate tables.

Dependencies RSE_WKLY_SLS_ADHOC

Business Activity Initial Data Loads

Design Overview
This process aggregates sales data by product for use in AI Foundation applications. The
RSE_WKLY_SLS_ADHOC job is normally a prerequisite for this, as it is used to refresh or load
additional sales data.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s Parameter is for the Start date and the -e parameter
provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_PR_LC_WK Input

RSE_SLS_PR_WK_A Output

Sales Aggregation - Product Attribute

Module Name RSE_WKLY_SLS_PH_ATTR_AGGR_ADHOC

Description Calculates Product Attribute-based sales aggregate tables.

Dependencies RSE_WKLY_SLS_ADHOC

Business Activity Initial Data Loads

Design Overview
This process aggregates sales data by product attribute and product hierarchy levels for use
in AI Foundation applications. The RSE_WKLY_SLS_ADHOC job is normally a prerequisite for this,
as it is used to refresh or load additional sales data.

Chapter 3
Sales Aggregation - Product

3-21

Running this process requires parameters to specify the start and end date range, for
which data should be processed. The -s Parameter is for the Start date and the -e
parameter provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_PR_LC_WK Input

RSE_PROD_ATTR Input

RSE_SLS_PH_ATTR_LC_WK_A Output

Sales Aggregation - Product Hierarchy

Module Name RSE_WKLY_SLS_PH_AGGR_ADHOC

Description Calculates Product Hierarchy-based sales aggregate tables.

Dependencies RSE_WKLY_SLS_ADHOC

Business Activity Initial Data Loads

Design Overview
This process aggregates sales data by product hierarchy levels for use in AI
Foundation applications. The RSE_WKLY_SLS_ADHOC job is normally a prerequisite for
this, as it is used to refresh or load additional sales data.

Running this process requires parameters to specify the start and end date range, for
which data should be processed. The -s Parameter is for the Start date and the -e
parameter provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_PR_LC_WK Input

RSE_SLS_PH_LC_WK_A Output

Sales Aggregation - Weekly

Module Name RSE_WKLY_SLS_ADHOC

Description Aggregates Sales Transaction data to week level tables.

Dependencies RSE_SLS_TXN_ADHOC

Chapter 3
Sales Aggregation - Product Hierarchy

3-22

Business Activity Initial Data Loads

Design Overview
This process aggregates sales data by product hierarchy levels for use in AI Foundation
applications. The RSE_SLS_TXN_ADHOC job is normally a prerequisite for this, as it is used to
refresh or load additional sales data.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s Parameter is for the Start date and the -e parameter
provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_TXN Input

RSE_SLS_PR_LC_WK Output

Sales Forecast Aggregation - Product Attribute (Legacy)

Module Name RSE_SLSFC_PH_ATTR_AGGR_ADHOC

Description Calculates Product Attribute-based sales forecast aggregate tables.

Dependencies RSE_SLSFC_PH_AGGR_ADHOC

Business Activity Initial Data Loads

Design Overview
This process aggregates sales forecast data by product attribute and product hierarchy levels
for use in AI Foundation applications. The RSE_SLSFC_PH_AGGR_ADHOC job is normally a
prerequisite for this, as it is used to refresh or load additional sales forecast data.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s Parameter is for the Start date and the -e parameter
provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Note:

This is a legacy process which uses a forecast interface from RI that has been
deprecated.

Chapter 3
Sales Forecast Aggregation - Product Attribute (Legacy)

3-23

Sales Forecast Aggregation - Product Hierarchy (Legacy)

Module Name RSE_SLSFC_PH_AGGR_ADHOC

Description Calculates Product Hierarchy-based sales forecast aggregate tables.

Dependencies None

Business Activity Initial Data Loads

Design Overview
This process aggregates sales forecast data by product hierarchy levels for use in AI
Foundation applications.

Running this process requires parameters to specify the start and end date range, for
which data should be processed. The -s Parameter is for the Start date and the -e
parameter provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Note:

This is a legacy process which uses a forecast interface from RI that has
been deprecated.

Sales Shares - Product Attribute

Module Name AC_PROD_ATTR_LOC_SHARE_ADHOC

Description Calculate product attribute sales shares for use in Advanced
Clustering.

Dependencies RSE_WKLY_SLS_ADHOC

Business Activity Initial Data Loads

Design Overview
This process aggregates sales shares by product attribute for use in the Advanced
Clustering application, specifically for use in clustering by product attribute. The
RSE_WKLY_SLS_ADHOC job is normally a prerequisite for this, as it is used to refresh or
load additional sales data at week level.

You also must choose which attribute mode is applicable for AC. If it is specified as
CDT in RSE_CONFIG property PERF_CIS_APPROACH, then this program will expect
additional information for CDT-like attribute groups in RSE_PROD_ATTR_GRP and
RSE_PROD_ATTR_GRP_VALUE_MAP. It will also use sales data from
RSE_SLS_PH_ATTR_LC_WK_A. For any other configuration, these tables are not required
and a more generic approach will be taken.

Chapter 3
Sales Forecast Aggregation - Product Hierarchy (Legacy)

3-24

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s Parameter is for the Start date and the -e parameter
provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

CIS_TCRITERIA_ATTR Input

CIS_BUS_OBJ_TCRITERIA_ATT_XREF Input

RSE_PROD_ATTR_GRP Input

RSE_PROD_ATTR_GRP_VALUE_MAP Input

RSE_SLS_PH_LC_WK_A Input

RSE_SLS_PH_ATTR_LC_WK_A Input

CIS_PROD_ATTR_LOC_SHARE Output

Sales Transaction Load

Module Name RSE_SLS_TXN_ADHOC

Description Performs bulk retrieval of Sales Transaction data.

Dependencies W_RTL_SLS_TRX_IT_LC_DY_F_JOB (in RI)

Business Activity Initial Data Loads

Design Overview
This process extracts sales transactions from Retail Insights for use in all AI Foundation
applications. The W_RTL_SLS_TRX_IT_LC_DY_F table in RI is the source of this data and RI
must be populated with sales before this program runs.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s Parameter is for the Start date and the -e parameter
provides the End date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

W_RTL_SLS_TRX_IT_LC_DY_F Input

RSE_SLS_TXN Output

Chapter 3
Sales Transaction Load

3-25

4
Retail Insights Standalone Process Flows

Standalone processes are separated across several different flows within POM depending on
the order in which you need to execute them and the dependencies to be followed. This
chapter provides a tabular view of related jobs across the different process flows so you know
which jobs are safe to enable or disable, depending on the files you’re attempting to load into
the platform. It is always a best practice to disable jobs in POM if you are not actively using
them, both to reduce runtimes and to avoid loading data you did not intend to process.

Process Flows for DAT Files
The table below shows the standalone process flows for any file with a .dat extension.
Please note that the following list of jobs should remain enabled and are usually applicable to
all batch runs, so they’re not included in the table.

• VARIABLE_REFRESH_JOB

• ETL_REFRESH_JOB

• ETL_BUSINESS_DATE_JOB

• W_RTL_CURR_MCAL_G_JOB

• RI_UPDATE_TENANT_JOB

Table 4-1 DAT File Process Flows

Input Files (DAT) LOAD_DIM_INITIAL_STAGE_AD
HOC

LOAD_DIM_INITIAL_ADHOC

W_DOMAIN_MEMBER_DS_T
L.dat

W_DOMAIN_MEMBER_DS_TL_CO
PY_JOB
W_DOMAIN_MEMBER_DS_TL_ST
G_JOB

W_DOMAIN_MEMBER_LKP_TL
_JOB

W_EMPLOYEE_DS.dat W_EMPLOYEE_DS_COPY_JOB
W_EMPLOYEE_DS_STG_JOB

W_EMPLOYEE_D_JOB

W_EXCH_RATE_GS.dat W_EXCH_RATE_GS_COPY_JOB
W_EXCH_RATE_GS_STG_JOB

W_EXCH_RATE_G_JOB

W_INT_ORG_ATTR_DS.dat
W_INT_ORG_DS.dat
W_INT_ORG_DS_TL.dat

W_INT_ORG_ATTR_DS_COPY_JOB
W_INT_ORG_ATTR_DS_STG_JOB
W_INT_ORG_DS_COPY_JOB
W_INT_ORG_DS_STG_JOB
W_INT_ORG_DS_TL_COPY_JOB
W_INT_ORG_DS_TL_STG_JOB

W_INT_ORG_D_TYPE1_JOB
W_RTL_ORG_RECLASS_TMP_J
OB

W_INT_ORG_DHS.dat W_INT_ORG_DHS_COPY_JOB
W_INT_ORG_DHS_STG_JOB

W_INT_ORG_DH_TYPE1_JOB
W_INT_ORG_DH_RTL_TMP_JO
B

4-1

Table 4-1 (Cont.) DAT File Process Flows

Input Files (DAT) LOAD_DIM_INITIAL_STAGE_AD
HOC

LOAD_DIM_INITIAL_ADHOC

W_PARTY_ATTR_DS.dat W_PARTY_ATTR_DS_COPY_JOB
W_PARTY_ATTR_DS_STG_JOB

W_PARTY_ATTR_D_JOB

W_PARTY_ORG_DS.dat W_PARTY_ORG_DS_COPY_JOB
W_PARTY_ORG_DS_STG_JOB

W_PARTY_ORG_D_JOB

W_PARTY_PER_DS.dat W_PARTY_PER_DS_COPY_JOB
W_PARTY_PER_DS_STG_JOB

W_PARTY_PER_D_JOB

W_PROD_CAT_DHS.dat W_PROD_CAT_DHS_COPY_JOB
W_PROD_CAT_DHS_STG_JOB

W_PROD_CAT_DH_TYPE1_JOB
W_PROD_CAT_DH_SC_RTL_TM
P_JOB

W_PRODUCT_ATTR_DS.dat W_PRODUCT_ATTR_DS_COPY_JO
B
W_PRODUCT_ATTR_DS_STG_JOB

W_PRODUCT_ATTR_D_JOB
W_RTL_PRODUCT_ATTR_UDA_
D_JOB

W_PRODUCT_DS.dat
W_PRODUCT_DS_TL.dat

W_PRODUCT_DS_COPY_JOB
W_PRODUCT_DS_STG_JOB
W_PRODUCT_DS_TL_COPY_JOB
W_PRODUCT_DS_TL_STG_JOB

W_PRODUCT_D_TYPE1_JOB
W_RTL_PROD_RECLASS_TMP_I
NITIAL_JOB
W_PRODUCT_D_RTL_TMP_JOB
W_RTL_PROD_RECLASS_TMP_J
OB

W_REASON_DS.dat W_REASON_DS_COPY_JOB
W_REASON_DS_STG_JOB

W_REASON_D_JOB

W_RTL_ALC_DETAILS_DS.d
at

W_RTL_ALC_DETAILS_DS_COPY_J
OB
W_RTL_ALC_DETAILS_DS_STG_JO
B

W_RTL_ALC_DETAILS_D_JOB

W_RTL_BUYER_DS.dat W_RTL_BUYER_DS_COPY_JOB
W_RTL_BUYER_DS_STG_JOB

W_RTL_BUYER_D_JOB

W_RTL_CHANNEL_DS.dat W_RTL_CHANNEL_DS_COPY_JOB
W_RTL_CHANNEL_DS_STG_JOB

W_RTL_CHANNEL_D_JOB

W_RTL_CO_HEAD_DS.dat W_RTL_CO_HEAD_DS_COPY_JOB
W_RTL_CO_HEAD_DS_STG_JOB

W_RTL_CO_HEAD_D_JOB

W_RTL_CO_LINE_DS.dat W_RTL_CO_LINE_DS_COPY_JOB
W_RTL_CO_LINE_DS_STG_JOB

W_RTL_CO_LINE_D_JOB

W_RTL_CO_SHIP_METHOD_
DS.dat

W_RTL_CO_SHIP_METHOD_DS_C
OPY_JOB
W_RTL_CO_SHIP_METHOD_DS_S
TG_JOB

W_RTL_CO_SHIP_METHOD_D_
JOB

W_RTL_CO_SHIP_TYPE_DS.d
at

W_RTL_CO_SHIP_TYPE_DS_COPY
_JOB
W_RTL_CO_SHIP_TYPE_DS_STG_J
OB

W_RTL_CO_SHIP_TYPE_D_JOB

W_RTL_CODE_DS.dat W_RTL_CODE_DS_COPY_JOB
W_RTL_CODE_DS_STG_JOB

W_RTL_COMP_STORE_D_JOB

Chapter 4
Process Flows for DAT Files

4-2

Table 4-1 (Cont.) DAT File Process Flows

Input Files (DAT) LOAD_DIM_INITIAL_STAGE_AD
HOC

LOAD_DIM_INITIAL_ADHOC

W_RTL_COUPON_DS.dat
W_RTL_COUPON_DS_TL.dat

W_RTL_COUPON_DS_COPY_JOB
W_RTL_COUPON_DS_STG_JOB
W_RTL_COUPON_DS_TL_COPY_J
OB
W_RTL_COUPON_DS_TL_STG_JOB

W_RTL_COUPON_D_JOB

W_RTL_DIFF_GRP_DS.dat
W_RTL_DIFF_GRP_DS_TL.da
t

W_RTL_DIFF_GRP_DS_COPY_JOB
W_RTL_DIFF_GRP_DS_STG_JOB
W_RTL_DIFF_GRP_DS_TL_COPY_J
OB
W_RTL_DIFF_GRP_DS_TL_STG_JO
B

W_RTL_DIFF_GRP_D_JOB

W_RTL_DIFF_RNG_DS.dat W_RTL_DIFF_RNG_DS_COPY_JOB W_RTL_DIFF_RNG_D_JOB

W_RTL_DIFF_RNG_DS_TL.d
at

W_RTL_DIFF_RNG_DS_STG_JOB
W_RTL_DIFF_RNG_DS_TL_COPY_J
OB
W_RTL_DIFF_RNG_DS_TL_STG_JO
B

W_RTL_DISCOUNT_TYPE_D
S.dat

W_RTL_DISCOUNT_TYPE_DS_COP
Y_JOB
W_RTL_DISCOUNT_TYPE_DS_STG
_JOB

W_RTL_DISCOUNT_TYPE_D_JO
B

W_RTL_IT_SUPPLIER_DS.dat W_RTL_IT_SUPPLIER_DS_COPY_J
OB
W_RTL_IT_SUPPLIER_DS_STG_JO
B

W_RTL_IT_SUPPLIER_D_JOB

Chapter 4
Process Flows for DAT Files

4-3

Table 4-1 (Cont.) DAT File Process Flows

Input Files (DAT) LOAD_DIM_INITIAL_STAGE_AD
HOC

LOAD_DIM_INITIAL_ADHOC

W_RTL_ITEM_GRP1_DS.dat W_RTL_ITEM_GRP1_DS_COPY_JO
B
W_RTL_ITEM_GRP1_DS_STG_JOB

W_RTL_ITEM_GRP1_D_ITEMB
RAND_JOB
W_RTL_ITEM_GRP1_D_ITEMC
OLOR_JOB
W_RTL_ITEM_GRP1_D_ITEMDI
FF_JOB
W_RTL_ITEM_GRP1_D_ITEMFA
B_JOB
W_RTL_ITEM_GRP1_D_ITEMLI
ST_JOB
W_RTL_ITEM_GRP1_D_ITEML
V_JOB
W_RTL_ITEM_GRP1_D_ITEMSC
EN_JOB
W_RTL_ITEM_GRP1_D_ITEMSI
ZE_JOB
W_RTL_ITEM_GRP1_D_ITEMST
YLE_JOB
W_RTL_ITEM_GRP1_D_ITEMU
DA_JOB
W_RTL_PRODUCT_ATTR_UDA_
D_JOB

W_RTL_LOC_STOCK_CNT_D
S.dat

W_RTL_LOC_STOCK_CNT_DS_CO
PY_JOB
W_RTL_LOC_STOCK_CNT_DS_STG
_JOB

W_RTL_LOC_STOCK_CNT_D_JO
B

W_RTL_ORG_FIN_DS.dat W_RTL_ORG_FIN_DS_COPY_JOB
W_RTL_ORG_FIN_DS_STG_JOB

W_RTL_ORG_FIN_D_JOB

W_RTL_PARTY_PER_ATTR_D
S.dat

W_RTL_PARTY_PER_ATTR_DS_CO
PY_JOB
W_RTL_PARTY_PER_ATTR_DS_ST
G_JOB

W_PARTY_ATTR_D_UDA_JOB

W_RTL_PHASE_DS.dat W_RTL_PHASE_DS_COPY_JOB
W_RTL_PHASE_DS_STG_JOB

W_RTL_PHASE_D_JOB

W_RTL_PO_DETAILS_DS.dat W_RTL_PO_DETAILS_DS_COPY_J
OB
W_RTL_PO_DETAILS_DS_STG_JOB

W_RTL_PO_DETAILS_D_JOB

W_RTL_PRICE_CLR_IT_LC_D
S.dat

W_RTL_PRICE_CLR_IT_LC_DS_CO
PY_JOB
W_RTL_PRICE_CLR_IT_LC_DS_ST
G_JOB

W_RTL_PRICE_CLR_IT_LC_D_J
OB

W_RTL_PROD_HIER_ATTR_L
KP_DHS.dat

W_RTL_PROD_HIER_ATTR_LKP_D
HS_COPY_JOB
W_RTL_PROD_HIER_ATTR_LKP_D
HS_STG_JOB

W_RTL_PROD_HIER_ATTR_LK
P_DH_JOB
W_RTL_PROD_HIER_ATTR_LK
P_DH_IM_JOB

Chapter 4
Process Flows for DAT Files

4-4

Table 4-1 (Cont.) DAT File Process Flows

Input Files (DAT) LOAD_DIM_INITIAL_STAGE_AD
HOC

LOAD_DIM_INITIAL_ADHOC

W_RTL_PRODUCT_BRAND_
DS.dat
W_RTL_PRODUCT_BRAND_
DS_TL.dat

W_RTL_PRODUCT_BRAND_DS_CO
PY_JOB
W_RTL_PRODUCT_BRAND_DS_ST
G_JOB
W_RTL_PRODUCT_BRAND_DS_TL
_COPY_JOB
W_RTL_PRODUCT_BRAND_DS_TL
_STG_JOB

W_RTL_PRODUCT_BRAND_D_J
OB

W_RTL_PROMO_DS.dat
W_RTL_PROMO_DS_TL.dat

W_RTL_PROMO_DS_COPY_JOB
W_RTL_PROMO_DS_STG_JOB

W_RTL_PROMO_D_TL_JOB
W_PROMO_D_RTL_TMP_JOB

W_RTL_PROMO_CE_DS.dat W_RTL_PROMO_CE_DS_COPY_JO
B
W_RTL_PROMO_CE_DS_STG_JOB

W_RTL_PROMO_D_TL_JOB
W_PROMO_D_RTL_TMP_JOB

W_RTL_PROMO_EXT_DS.dat W_RTL_PROMO_EXT_DS_COPY_J
OB
W_RTL_PROMO_EXT_DS_STG_JO
B

W_RTL_PROMO_D_TL_JOB
W_PROMO_D_RTL_TMP_JOB

W_RTL_SEASON_DS.dat W_RTL_SEASON_DS_COPY_JOB
W_RTL_SEASON_DS_STG_JOB

W_RTL_SEASON_D_JOB

W_RTL_SEASON_PHASE_IT_
DS.dat

W_RTL_SEASON_PHASE_IT_DS_C
OPY_JOB
W_RTL_SEASON_PHASE_IT_DS_S
TG_JOB

W_RTL_SEASON_PHASE_IT_D_
JOB

W_RTL_TNDR_TYPE_DS.dat W_RTL_TNDR_TYPE_DS_COPY_JO
B
W_RTL_TNDR_TYPE_DS_STG_JOB

W_RTL_TNDR_TYPE_D_JOB

W_STATUS_DS.dat W_STATUS_DS_COPY_JOB
W_STATUS_DS_STG_JOB

W_STATUS_D_JOB

Process Flows for CSV Files
The table below shows the standalone process flows for any dimension file with a .csv
extension. CSV files follow a different load path as they are simplified interfaces that are
transformed from one input file to many output tables in the data model. Please note that the
following list of jobs should remain enabled and are usually applicable to all batch runs, so
they’re not included in the table.

• RI_UPDATE_TENANT_JOB (as part of HIST_ZIP_FILE_LOAD_ADHOC)

• VARIABLE_REFRESH_JOB

• ETL_REFRESH_JOB

• ETL_BUSINESS_DATE_JOB

• W_RTL_CURR_MCAL_G_JOB

• SI_W_DOMAIN_MEMBER_DS_TL_TRUNC_JOB

Chapter 4
Process Flows for CSV Files

4-5

The W_DOMAIN_MEMBER_DS_TL table works differently from other loaders, as multiple
jobs are inserting into the same staging area for different sets of records. The job
above is needed at the start of a process flow to truncate the W_DOMAIN_MEMBER_DS_TL
table before inserting new records in all later steps in
LOAD_EXT_DIM_INITIAL_SI_ADHOC. If you are loading files one at a time, make sure
you do not truncate W_DOMAIN_MEMBER_DS_TL excessively. It is only needed at the
beginning of a new set of file loads or when starting over after an initial load was done.

Another important note is that you will want to load files in a certain order or together
as sets, depending on the data you have available. If possible, you should load all your
files as a set, once they become available, rather than reloading one by one every
time.

Table 4-2 CSV File Process Flows

Input Files
(CSV)

LOAD_DIM_INITIAL
_ADHOC (Step 1)

LOAD_DIM_INITIAL_AD
HOC (Step 2)

LOAD_DIM_INITIAL_AD
HOC (Step 3)

ATTR.csv
PROD_ATTR.cs
v

COPY_SI_ATTR_JOB
STG_SI_ATTR_JOB
COPY_SI_PROD_ATT
R_JOB
STG_SI_PROD_ATTR
_JOB

STAGING_SI_W_RTL_PR
ODUCT_ATTR_DS_JOB
SI_W_RTL_PRODUCT_AT
TR_DS_TL_JOB
SI_W_RTL_ITEM_GRP1_
DS_JOB
STAGING_SI_W_RTL_PR
ODATTR_ITEM_GRP1_D
S_JOB
SI_ATTR_W_DOMAIN_M
EMBER_DS_TL_JOB
SI_PROD_ATTR_W_DOM
AIN_MEMBER_DS_TL_J
OB
SI_W_RTL_PRODUCT_C
OLOR_DS_JOB

W_RTL_PRODUCT_ATTR
_D_JOB
W_RTL_ITEM_GRP1_D_I
TEMBRAND_JOB
W_RTL_ITEM_GRP1_D_I
TEMCOLOR_JOB
W_RTL_ITEM_GRP1_D_I
TEMDIFF_JOB
W_RTL_ITEM_GRP1_D_I
TEMFAB_JOB
W_RTL_ITEM_GRP1_D_I
TEMLIST_JOB
W_RTL_ITEM_GRP1_D_I
TEMLV_JOB
W_RTL_ITEM_GRP1_D_I
TEMSCEN_JOB
W_RTL_ITEM_GRP1_D_I
TEMSIZE_JOB
W_RTL_ITEM_GRP1_D_I
TEMSTYLE_JOB
W_RTL_ITEM_GRP1_D_I
TEMUDA_JOB
W_DOMAIN_MEMBER_
LKP_TL_JOB
W_RTL_PRODUCT_ATTR
_UDA_D_JOB

CODES.csv COPY_SI_CODES_JO
B
STG_SI_CODES_JOB

STAGING_SI_W_RTL_CO
DE_DS_JOB

W_RTL_CODE_D_JOB

DIFF_GROUP.cs
v

COPY_SI_DIFF_GRO
UP_JOB
STG_SI_DIFF_GROU
P_JOB

SI_W_RTL_DIFF_GRP_D
S_JOB
SI_W_RTL_DIFF_GRP_D
S_TL_JOB

W_RTL_DIFF_GRP_D_JO
B

Chapter 4
Process Flows for CSV Files

4-6

Table 4-2 (Cont.) CSV File Process Flows

Input Files
(CSV)

LOAD_DIM_INITIAL
_ADHOC (Step 1)

LOAD_DIM_INITIAL_AD
HOC (Step 2)

LOAD_DIM_INITIAL_AD
HOC (Step 3)

EMPLOYEE.csv COPY_SI_EMPLOYE
E_JOB
STG_SI_EMPLOYEE_
JOB

SI_W_EMPLOYEE_DS_JO
B

W_EMPLOYEE_D_JOB

EXCH_RATE.cs
v

COPY_SI_EXCH_RAT
E_JOB
STG_SI_EXCH_RATE
_JOB

SI_W_EXCH_RATE_GS_J
OB

W_EXCH_RATE_G_JOB

ORGANIZATIO
N.csv

COPY_SI_ORGANIZA
TION_JOB
STG_SI_ORGANIZAT
ION_JOB

SI_W_INT_ORG_DHS_JO
B
SI_W_INT_ORG_ATTR_D
S_JOB
SI_W_INT_ORG_DS_JOB
SI_W_INT_ORG_DS_TL_J
OB
SI_W_RTL_CHANNEL_D
S_JOB
SI_ORG_W_DOMAIN_M
EMBER_DS_TL_JOB
SI_W_RTL_CHANNEL_C
NTRY_DS_JOB
DIM_ORG_VALIDATOR_J
OB

W_INT_ORG_DH_TYPE1
_JOB
W_INT_ORG_D_TYPE1_J
OB
W_INT_ORG_DH_RTL_T
MP_JOB
W_RTL_ORG_RECLASS_
TMP_JOB
W_RTL_CHANNEL_D_JO
B
W_RTL_CHANNEL_CNT
RY_D_JOB
W_DOMAIN_MEMBER_
LKP_TL_JOB

ORGANIZATIO
N_ALT.csv

COPY_SI_ORGANIZA
TION_ALT_JOB
STG_SI_ORGANIZAT
ION_ALT_JOB

SI_W_ORGANIZATION_F
LEX_DS_JOB

W_ORGANIZATION_FLE
X_D_JOB

PROD_LOC_AT
TR.csv

COPY_SI_PROD_LOC
_ATTR_JOB
STG_SI_PROD_LOC_
ATTR_JOB

SI_W_RTL_IT_LC_DS_JO
B

W_RTL_IT_LC_D_JOB

PROD_LOC_RE
PL.csv

COPY_SI_PROD_LOC
_REPL_JOB
STG_SI_PROD_LOC_
REPL_JOB

STAGING_SI_W_INVENT
ORY_PRODUCT_ATTR_D
S_JOB

W_INVENTORY_PRODU
CT_D_JOB

PROD_PACK.cs
v

COPY_SI_PROD_PAC
K_JOB
STG_SI_PROD_PACK
_JOB

STAGING_SI_W_RTL_ITE
M_GRP2_DS_JOB

W_RTL_ITEM_GRP2_D_J
OB

Chapter 4
Process Flows for CSV Files

4-7

Table 4-2 (Cont.) CSV File Process Flows

Input Files
(CSV)

LOAD_DIM_INITIAL
_ADHOC (Step 1)

LOAD_DIM_INITIAL_AD
HOC (Step 2)

LOAD_DIM_INITIAL_AD
HOC (Step 3)

PROD_SEASON.
csv
SEASON.csv

COPY_SI_SEASON_J
OB
STG_SI_SEASON_JO
B
COPY_SI_PROD_SEA
SON_JOB
STG_SI_PROD_SEAS
ON_JOB

STAGING_SI_W_RTL_PH
ASE_DS_JOB
STAGING_SI_W_RTL_SE
ASON_DS_JOB
STAGING_SI_W_RTL_SE
ASON_PHASE_IT_DS_JO
B
SI_SEASON_W_DOMAIN
_MEMBER_DS_TL_JOB

W_RTL_SEASON_D_JOB
W_RTL_PHASE_D_JOB
W_RTL_SEASON_PHASE
_IT_D_JOB
W_DOMAIN_MEMBER_
LKP_TL_JOB

PRODUCT.csv COPY_SI_PRODUCT_
JOB
STG_SI_PRODUCT_J
OB

SI_W_PROD_CAT_DHS_J
OB
SI_W_PRODUCT_ATTR_
DS_JOB
SI_W_PRODUCT_DS_JOB
SI_W_PRODUCT_DS_TL_
JOB
SI_W_RTL_IT_SUPPLIER
_DS_JOB
SI_W_RTL_PRODUCT_AT
TR_IMG_DS_JOB
SI_W_RTL_PRODUCT_B
RAND_DS_JOB
SI_W_RTL_PRODUCT_B
RAND_DS_TL_JOB
SI_PROD_W_DOMAIN_
MEMBER_DS_TL_JOB
DIM_PROD_VALIDATOR
_JOB

W_PROD_CAT_DH_TYPE
1_JOB
W_RTL_PROD_HIER_AT
TR_LKP_DH_JOB
W_PROD_CAT_DH_SC_R
TL_TMP_JOB
W_RTL_PROD_HIER_AT
TR_LKP_DH_IM_JOB
W_PRODUCT_D_TYPE1_J
OB
W_PRODUCT_ATTR_D_J
OB
W_RTL_PROD_RECLASS
_TMP_INITIAL_JOB
W_PRODUCT_D_RTL_TM
P_JOB
W_RTL_PROD_RECLASS
_TMP_JOB
W_RTL_PRODUCT_BRA
ND_D_JOB
W_RTL_PRODUCT_ATTR
_UDA_D_JOB

PRODUCT_ALT.
csv

COPY_SI_PRODUCT_
ALT_JOB
STG_SI_PRODUCT_A
LT_JOB

SI_W_PRODUCT_FLEX_
DS_JOB

W_PRODUCT_FLEX_D_J
OB

PROMOTION.cs
v

COPY_SI_PROMO_E
XT_JOB
STG_SI_PROMO_EXT
_JOB

SI_W_RTL_PROMO_EXT
_DS_JOB

W_RTL_PROMO_D_TL_J
OB
W_PROMO_D_RTL_TMP
_JOB

REPL_DISTRO.c
sv

W_RTL_REPL_DISTR
O_IT_LC_DS_COPY_J
OB
W_RTL_REPL_DISTR
O_IT_LC_DS_STG_JO
B

N/A – No SI jobs used W_RTL_REPL_DISTRO_I
T_LC_D_JOB

Chapter 4
Process Flows for CSV Files

4-8

Table 4-2 (Cont.) CSV File Process Flows

Input Files
(CSV)

LOAD_DIM_INITIAL
_ADHOC (Step 1)

LOAD_DIM_INITIAL_AD
HOC (Step 2)

LOAD_DIM_INITIAL_AD
HOC (Step 3)

REPL_REV_INT.
csv

W_RTL_REPL_REV_I
NT_IT_LC_DS_COPY_
JOB
W_RTL_REPL_REV_I
NT_IT_LC_DS_STG_J
OB

N/A – No SI jobs used W_RTL_REPL_REV_INT_
IT_LC_D_JOB

REPL_LT_INT.c
sv

W_RTL_REPL_LT_IN
T_IT_LC_DS_COPY_J
OB
W_RTL_REPL_LT_IN
T_IT_LC_DS_STG_JO
B

N/A – No SI jobs used W_RTL_REPL_LT_INT_IT
_LC_D_JOB

STORE_COMP.c
sv

COPY_SI_STORE_CO
MP_JOB
STG_SI_STORE_COM
P_JOB

STAGING_SI_W_RTL_LO
C_COMP_MTX_DS_JOB

W_RTL_LOC_COMP_MT
X_D_JOB

SUPPLIER.csv COPY_SI_SUPPLIER_
JOB
STG_SI_SUPPLIER_J
OB

SI_W_PARTY_ORG_DS_J
OB
STAGING_SI_W_PARTY_
ATTR_DS_JOB

W_PARTY_ATTR_D_JOB
W_PARTY_ORG_D_JOB

Chapter 4
Process Flows for CSV Files

4-9

5
Data Validation Framework

The foundation file interfaces (such as product and organization hierarchies) have a set of
validations and error checking jobs that execute with them to ensure the data is accurate,
complete, and follows all basic requirements for RAP application usage. Review the contents
of this chapter to understand what validations exist and how to reconfigure them per your
implementation needs.

Architecture Overview
The validation framework consists of POM batch jobs that execute the validations, and
database tables that control the types of validation rules and what happens when the rule is
triggered. Some validation rules may cause the POM job to fail, which means the data has a
critical issue that needs to be corrected before the batch process can continue. Other rules
will simply write warnings to the database but allow the batch to proceed. In both cases, there
are tables that can be queried to check the validation results and determine what actions
need to be taken.

The table below summarizes the POM jobs that execute the validations:

Table 5-1 Data Validation POM Jobs

Job Name Summary

DIM_ORG_VALIDATOR_JOB Executes validations on the Organization Hierarchy
data

DIM_PROD_VALIDATOR_JOB Executes validations on the Product Hierarchy and
Product dimension data

DIM_CALENDAR_VALIDATOR_JOB Executes validations on the Calendar Hierarchy
staging data

DIM_CALENDAR_LOAD_VALIDATOR_JO
B

Executes validations on the Calendar Period data after
the load has been run

DIM_EXCH_RATE_VALIDATOR_JOB Executes validations on the Exchange Rate staging
data

The jobs are included both in the nightly batch process flow and in separate ad hoc
processes that can be executed as part of your historical data loads.

The configuration table for the validation rules is called C_DIM_RULE_LIST. You can access
this table from the Control & Tactical Center’s Manage System Configurations screen. This
table allows you to edit the following fields:

• Set the error message resulting from a validation rule (ERROR_DESC)

• Set whether the POM job should have a hard failure or only capture a warning message
(ERROR_TYPE) with a value of F or W

• Set whether it is turned on or off (ON_IND) with a value of Y or N

5-1

The other important field in this table is the BAD_TBL_NAME, which tells you where the
results of the validations will be written in the case of any errors or warnings. If a
failure or warning does occur, you can directly query the database table listed in
BAD_TBL_NAME using Data Visualizer or APEX.

Any time you execute one or more of the validation jobs, there is also a database view
that summarizes the results from the job executions. This view is
RI_DIM_VALIDATION_V and can also be queried from DV as needed. An example of the
data in this view is shown below:

Using a combination of the data in RI_DIM_VALIDATION_V and the specified
BAD_TBL_NAME table data, you will be able to identify the issues and take corrective
action on the source data. In the case of job failures, you will need to reload the data
file to proceed. It is also possible to skip the failed validation job in POM, but this
should only be done if you have carefully reviewed the validation results and are
confident the data will not cause any problems in your target applications.

Resolving Validation Issues
The validation rules scan your input data for a variety of common problems that may
result in failures or inconsistencies in downstream applications such as AI Foundation
or Planning modules. The table below describes what the rules are checking for and
how to resolve the issues.

Table 5-2 Validation Rule Details

Rule ID Explanation Resolution

CAL_R1 The W_MCAL_PERIOD_D table does
not contain any data after loading
a calendar file. Your calendar file
may have format or data issues
that require correction, such as
an incorrect value for
MCAL_CAL_ID or missing dates
that prevent it from loading
properly.

Reload a corrected data file after
reviewing the contents. All start/end
date fields must be populated and all
other fields should exactly match
the file requirements as
documented.

CAL_R2 The start and end dates for the
fiscal periods, quarters, or years
are overlapping, which will result
in an invalid calendar.

Create and load a new calendar file
where the period/quarter/year start
and end dates are exactly aligned
and don’t overlap or have gaps.
Ensure all periods in one quarter/
year have the same dates for those
columns.

Chapter 5
Resolving Validation Issues

5-2

Table 5-2 (Cont.) Validation Rule Details

Rule ID Explanation Resolution

CAL_R3 The START_DT parameter set on
C_ODI_PARAM_VW is not less than
or equal to your first calendar
period start date. This may result
in missing calendar data.

Update the START_DT parameter
from the Control Center to be earlier
than your fiscal calendar start date.

CAL_R4 Your calendar file does not
contain at least 2 years prior to
the current system date. Many
applications on the platform
require at least 2 years before and
after the current calendar year (5
years total).

Load a new calendar file having at
least 2 years of fiscal periods prior to
the current year.

PROD_R1 Many-to-many relationships exist
in your product hierarchy, which
is not allowed. This is generally
due to the same child ID
appearing below multiple parent
IDs.

Review all hierarchy levels for
instances of the same ID appearing
under multiple parents (such as a
department belonging to two
different divisions or groups) and
modify the data to remove the multi-
parent issues.

PROD_R2 The same product hierarchy node
has multiple descriptions on
different rows of the input file.

Modify your product hierarchy file
such that any given hierarchy ID has
the same description on all rows.

PROD_R3 A node of the product hierarchy
has no children under it. This
could be due to a reclass that
didn’t delete the old nodes, or
when a new node is added but no
items were created yet.

If possible, remove all cases of nodes
having no children (for example, if
all items are reclassed out of a
subclass, delete the old subclass).
Some AI Foundation functionality
will fail if you attempt to run it on
empty nodes.

PROD_R4 Your product hierarchy levels use
alphanumeric characters for the
level IDs. This is not allowed if
you are implementing Retail
Insights; all levels must be
numbers.

If you are implementing RI, you
must alter your hierarchy to only
use numbers for every level above
item. Other characters are not
allowed.

PROD_R5 You are attempting to delete an
item while also sending data for
that item in other files on the
same batch run. You cannot
delete an item if it is still actively
sending data on other input
interfaces.

Re-send the deleted item file,
removing any items that are still
active or posting new data to RI. If
the item should be deleted, then re-
send the other files having that
item’s data to remove the item from
all other files.

Chapter 5
Resolving Validation Issues

5-3

Table 5-2 (Cont.) Validation Rule Details

Rule ID Explanation Resolution

PROD_R6 Null or -1 dummy values are
present on product attribute
columns that are critical to the
operation of multiple RAP
applications. The warning
message columns map to the item
level (ATTR11), tran level
(ATTR12), diff aggregate (ATTR16),
and item/parent/grandparent
(ATTR13,14,15) fields in the
PRODUCT file.

Fill in the null values on the
specified columns with non-null
values wherever possible and re-
send the product file. If you are okay
with the null values and understand
the impact then this warning may be
ignored.

PROD_R7 Invalid hierarchy relationships
exist for two or more SKUs having
the same item-parents but
different hierarchy levels. This
will break downstream
integrations with AIF and
Planning.

Correct the hierarchy levels so that
all SKUs having the same item-
parents also have the same subclass
and above hierarchy levels.

PROD_R8 You have more than 1 top level
(company) ID, which is not
allowed.

Correct the TOP_PRODCAT_ID to
contain only one value on all rows.

PROD_R9 Your input file contains a
different top level (company) ID
than what is already in the
database.

Correct the TOP_PRODCAT_ID to
match the company ID already in
the system, or erase the data in the
system to perform a clean load of
new hierarchy data.

PROD_R10 Your input file contains a
different top level (company)
domain member ID (on
W_DOMAIN_MEMBER_DS_TL) than
what is already in the database.

Correct the TOP_PRODCAT_ID to
match the company ID already in
the system, or erase the data in the
system to perform a clean load of
new hierarchy data.

PROD_R11 You have more than 1 top level
(company) description, which is
not allowed.

Correct the TOP_PRODCAT_DESC to
contain only one value on all rows.

ORG_R1 Many-to-many relationships exist
in your organization hierarchy,
which is not allowed. This is
generally due to the same child ID
appearing below multiple parent
IDs.

Review all hierarchy levels for
instances of the same ID appearing
under multiple parents (such as a
district belonging to two different
regions or areas) and modify the
data to remove the multi-parent
issues.

ORG_R2 The same organization hierarchy
node has multiple descriptions on
different rows of the input file.

Modify your organization hierarchy
file such that any given hierarchy ID
has the same description on all
rows.

Chapter 5
Resolving Validation Issues

5-4

Table 5-2 (Cont.) Validation Rule Details

Rule ID Explanation Resolution

ORG_R3 A node of the organization
hierarchy has no children under
it. This could be due to a reclass
that didn’t delete the old nodes, or
when a new node is added but no
stores were created yet.

If possible, remove all cases of nodes
having no children (for example, if
all stores are reclassed out of a
district, delete the old district). Some
AI Foundation functionality will fail
if you attempt to run it on empty
nodes.

ORG_R4 Your organization hierarchy
levels use alphanumeric
characters for the level IDs. This is
not allowed if you are
implementing Retail Insights; all
levels must be numbers.

If you are implementing RI, you
must alter your hierarchy to only
use numbers for every level of the
organization hierarchy. Other
characters are not allowed.

EXCH_RATE_R
1

Exchange rate dates are
overlapping for the same
conversion, which will result in
multiple rates active for the same
date and currency.

Modify the start/end dates for the
exchange rate records to ensure
there are no overlapping dates. Only
one rate may be effective per day/
currency combination.

EXCH_RATE_R
2

Exchange rate dates have gaps
which will result in no rate being
active for one or more dates.

Modify the start/end dates for the
exchange rate records to ensure
they have no gaps between one end
date and the next start date, for any
given currency rate.

EXCH_RATE_R
3

You have provided currency
conversion in one direction (for
example, USD > CAD) but you did
not provide it in the alternate
direction (CAD > USD).

The system requires that you
provide currency rates going in both
directions for each currency code
pair, to ensure we are always able to
convert into and out of any
supported currency.

Chapter 5
Resolving Validation Issues

5-5

6
Support Utilities

Some support utilities will be exposed for implementers directly in APEX, allowing you to run
functions such as database cleanup without Oracle involvement. These utilities may also be
used by Oracle Support when responding to Service Requests on your RAP environments. If
a process documented here is intended only for Oracle Support usage and not for customers
directly, it will be noted in the detailed description.

Data Cleanup Utility
Because foundation data is always loaded first through the Retail Insights data warehouse,
implementers often need to erase data from the RI tables in preparation for a new load.
Database functions have been exposed to APEX to allow targeted deletion of data by table
name. The deletion requires generation of a unique toke value to pass into the commands.
This token generation (and the delete functions in general) can be disabled by Oracle upon
request if you do not want the functionality exposed after customer go-live. Before using the
utility, run the token generation to verify the package is available, as shown below.

The command to run in APEX to generate tokens is:

select ri_support_util.generate_token from dual

Once you have verified one time that the PL/SQL package is working without error, you can
use the commands below to perform table cleanup. Specify the schema name and table
name to be truncated, then run the PL/SQL block.

DECLARE
 TOKEN_VALUE VARCHAR2(200);

6-1

 SCHEMANAME VARCHAR2(200);
 TABLENAME VARCHAR2(200);
BEGIN
 TOKEN_VALUE := ri_support_util.generate_token;
 SCHEMANAME := 'RADM01';
 TABLENAME := 'W_RTL_SLS_TRX_IT_LC_DY_FS';
 RI_SUPPORT_UTIL.CLEAR_SELECTED_RI_TABLES(
 TOKEN_VALUE => TOKEN_VALUE,
 SCHEMANAME => SCHEMANAME,
 TABLENAME => TABLENAME
);
END;

If the process is successful, you will see that the PL/SQL block was successfully
executed with no further message or results. If the process encounters any error, it will
display the error details in the results panel in APEX. For example, if the token used is
not valid it will show the following error:

To quickly clean the entire database schema instead of individual tables, you may
instead call the following command. This command will erase all customer data except
for the calendar, system configuration tables, and seed data records. Use this
command if you need to reset the environment in preparation for a new dataload using
a different dataset:

DECLARE
v_token VARCHAR2(200);
SCHEMANAME VARCHAR2(200);

BEGIN
 v_token := ri_support_util.generate_token;
 SCHEMANAME := 'RADM01';
 RI_SUPPORT_UTIL.CLEAR_SELECTED_RI_TABLES(
 TOKEN_VALUE => v_token,
 SCHEMANAME => SCHEMANAME
);
END;

Calendar removal is provided as a separate function, because you cannot remove
calendar information without also erasing all partitions (which are specific to your
currently loaded calendar). The function name is CLEAR_RI_MCAL_TABLES and can be
called the same way as the schema clear script above, passing in the token and
schema name as the inputs. Before you perform any calendar cleanup, review the
following:

Chapter 6
Data Cleanup Utility

6-2

• Partition removal is based on the current partition configuration in C_MODULE_ARTIFACT; it
will not modify tables that are not enabled for partitioning. Ensure the configuration table
reflects your current cleanup needs.

• Because calendar cleanup includes partition removal, you cannot use the system for a
new data load without first re-partitioning the system. Refer to the RAP Implementation
Guide for the steps to reload the calendar and partition the database.

Lastly, there is a function named RI_SUBJECTAREA_TABLE that erases functional areas of the
data warehouse one by one, which can be useful for targeted cleanup of related groups of
tables. The function uses the list of tables and subject area names from the database table
C_RI_SUBJECTAREA, which you can query from APEX to identify which values you want to use.

The command syntax is shown below.

DECLARE
 TOKEN_VALUE VARCHAR2(200);
 SUBJECTAREA_NAME VARCHAR2(200);
 OWNER_NAME VARCHAR2(200);
BEGIN
 TOKEN_VALUE := ri_support_util.generate_token;
 OWNER_NAME := 'RADM01';
 SUBJECTAREA_NAME := 'Organization';
 RI_SUPPORT_UTIL.RI_SUBJECTAREA_TABLE(
 TOKEN_VALUE => TOKEN_VALUE,
 SUBJECTAREA_NAME => SUBJECTAREA_NAME,
 OWNER_NAME => OWNER_NAME
);
END;

When you run any of the cleanup commands above, it may take an hour or longer to
complete depending upon the amount of data in your schema and the number of partitions
requiring deletion. Due to APEX limitations, your session may expire or timeout while waiting
for the command to complete, but the process will continue to run in the database. To monitor
the activity after a session timeout, you can query the RI_LOG_MSG table and check for new
log messages:

select * from ri_log_msg order by msg_ts desc;

If the process is still running, you will see new log entries being added for ri_support_util
methods. If no recent entries are added and the last set of messages show the END
messages for a process step, then you can verify that all your tables are cleared and proceed
with your implementation activities.

Aggregation Utility
Retail Insights has over 100 different tables for pre-calculating data at higher levels of
aggregation, mainly for the purpose of BI reporting and analytics. These tables do not need to
be populated during initial historical data loads but would be needed before end-users begin
accessing data in RI. To populate these tables after history loads are complete, an
aggregation utility is provided that can use the base intersection of a functional area to
calculate all of the higher-level tables.

The utility currently supports the following subject areas in RI:

Chapter 6
Aggregation Utility

6-3

Name Module Code

Sales SLS

Sales Promotion SLSPR

Sales Wholesale SLSWF

Inventory INV

Inventory Receipts INVRC

Inventory Transfers INVTSF

Inventory Reclasses INVRECLASS

Inventory Return to Vendor INVRTV

Markdowns MKDN

Net Profit NPROF

Customer Loyalty Transactions CUST

Within these subject areas, the aggregation does have some limitations on which
columns are populated (relative to nightly batches). Aggregate columns that are
derived by joining multiple tables together during batch processing are not included in
this utility because the data may not be available or accurate for the calculations. This
includes:

• Inventory availability columns, such as the counts and amounts based on
presentation stock and demo stock levels

• Inventory age and weeks-in-store calculations based on new receipt activity

• Any columns that join to the clearance dimension to get the clearance indicator
and markdown event ID for a specific inventory or transaction record

Prerequisites for using the utility (all steps must be completed every time you want to
use the utility):

1. Partitioning has been run for the target functional areas such as sales (SLS),
inventory (INV), and so on. Follow the steps in the RAP Implementation Guide to
perform additional partitioning as needed. If you have not used the utility since the
last time you received a product patch, you should re-run the partitioning process
again to ensure all tables are partitioned.

2. The base fact for the functional area has already been loaded with data for the
entire date range you want to aggregate on. For example, the
W_RTL_SLS_TRX_IT_LC_DY_F table is loaded before attempting to aggregate it to
W_RTL_SLS_IT_LC_WK_A.

3. Database statistics have been collected recently using REFRESH_RADM_JOB and
ANAYLZE_TEMP_TABLES_JOB (either as part of an ad hoc data load or automatically
as part of nightly batch).

The configuration table to control the utility is C_RI_AGGREGATION_MAP, which is
available from the Control Center in the AI Foundation user interface. It contains a list
of aggregate tables in RI that can be processed by the utility. For each table you want
to load, set the START_DT as the earliest date to process and the END_DT to the final
date to process. The tables are grouped by functional area such as MODULE_CODE=SLS
so you can update all tables relating to that fact.

Chapter 6
Aggregation Utility

6-4

When specifying the start/end dates, make sure to consider the calendar level of the table.
Day level tables can have any start/end dates because they use daily partitions. Week level
(WK) tables should use week starting/ending dates to ensure each full week of data is always
aggregated into the table. Similarly, Gregorian month (GMH) tables should use month
start/end dates. The utility also has functions to auto-extend your date ranges to encompass
full weeks and months even if you make mistakes in the configuration. By default, dates will
always be auto-extended so that full weeks/months are always loaded where needed. This
can be changed using parameter RI_AGG_FULL_LOAD_TYPE on C_ODI_PARAM_VW if you only
want the dates you specify to be included in the aggregations. Valid values include:

• F – full auto-extend of dates

• FE – extend end dates only

• FS – extend start dates only

N/A (or any other values) – Use only the dates in the mapping table

Once the necessary updates are performed, you will execute an ad hoc process in POM
named AGGREGATION_UTILITY_ADHOC. This process is a first-time manual run to validate the
configuration is working as intended and to set up the temp tables. This process has 3 jobs in
it:

 AGG_UTILITY_PRE_JOB – Calculates a temporary lookup table for product hierarchy
relationships

 AGG_UTILITY_ORG_PRE_JOB – Calculates a temporary lookup table for organization hierarchy
relationships

 AGG_UTILITY_JOB – Performs an aggregation action for a specific table name and run type

The AGG_UTILITY_JOB requires two input parameters: the name of the table as found in
C_RI_AGGREGATION_MAP and the type of aggregation to perform (FRESH or RESTART). When
FRESH is specified, it assumes you want to aggregate the entire date range specified in the
configuration table, even if it has been run before. If RESTART is specified, it will run only from
the last completed period (the partition job aggregates one quarter at a time so it will not re-
run earlier quarters that already completed). Also use the RESTART option if you changed the
END_DT to some time further in the future and want to only process incomplete dates resulting
from the change. In most use cases you can always specify RESTART as the option and it will
perform the required actions.

Example Postman message body for the process call:

{
 "cycleName":"Adhoc",
 "flowName":"Adhoc",
 "requestType":"POM Scheduler",
 "processName":"AGGREGATION_UTILITY_ADHOC",
 "requestParameters":"jobParams.AGG_UTILITY_JOB= W_RTL_SLS_CS_IT_LC_DY_A
RESTART"
}

Once you have issued the command to start the process, you may monitor the detailed run
status by querying the table C_BULK_LOAD_STATUS from APEX. A record will be inserted for
each calendar quarter that has been processed until the entire date range is aggregated. The
POM job will complete successfully after the table is loaded for all dates. You may then

Chapter 6
Aggregation Utility

6-5

compare the base fact table with the target aggregate and confirm the values have
been rolled up as expected.

The aggregate tables must be populated in a specific sequence based on the value in
the AGGREGATION_LEVEL column in C_RI_AGGREGATION_MAP. For each MODULE_CODE, the
level 1 tables must be populated first, then the level 2 tables, and so on. To automate
this execution sequence, there is a separate job available in POM, named
AGG_SRVC_JOB. The aggregation service job accepts a single input parameter for the
MODULE_CODE value. The job will execute all tables in the associated record set in
C_RI_AGGREGATION_MAP for that module, following the AGGREGATION_LEVEL sequence as
needed. The two PRE jobs (AGG_UTILITY_PRE_JOB and AGG_UTILITY_ORG_PRE_JOB) are
prerequisites for this job, so ensure you’ve already run those at least once before
using AGG_SRVC_JOB.

Example Postman message body for the process call:

{
 "cycleName":"Adhoc",
 "flowName":"Adhoc",
 "requestType":"POM Scheduler",
 "processName":"AGGREGATION_SRVC_ADHOC",
 "requestParameters":"jobParams.AGG_SRVC_JOB=INV"
}

If any processes in the AGG_SRVC_JOB have a failure or are taking too long to run, you
may also check the following tables for more information:

• C_RI_SRVC_REQ_QUEUE – Contains the status of individual service calls invoked by
the aggregation process. A status of 6 means success while 7 means failed.

• RI_LOG_MSG – If a process does fail, the detailed trace logs will be written to this
table to help you identify the problem. Look for records where PROGRAM_UNIT =
RI_AGGREGATION_UTIL.

Database Statistics Utility
A critical part of working with large datasets in Oracle Database is the collection of
statistics on your database tables. The POM processes used to load data generally
include a job to collect statistics on the entire database schema to ensure stats are
always up-to-date. The drawback of this program is that it can take a significant
amount of time to run, even if you only need to refresh statistics on a single table. To
help implementers collect statistics on specific tables, a utility is provided using the
POM standalone program COLLECT_STATS_JOB.

The COLLECT_STATS_JOB accepts a single input parameter for the database module
code you wish to gather stats on. The module codes are defined from the configuration
table C_MODULE_DBSTATS, which is available from the Control & Tactical Center in the AI
Foundation UI. The configuration table will come pre-defined with some core modules
that often need stats collected on them using the codes SLS, INV, and PRICE. You have
the ability to insert new rows into the table to define your own custom values for
MODULE_CODE. You may specify any value you wish for the MODULE_CODE, along with one
or more tables you plan to collect stats on. You would then pass the MODULE_CODE
value into the job parameters to collect stats on your chosen list of tables. TABLE_NAME
and MODULE_CODE are the only required values for tables in the RADM01 schema. If you

Chapter 6
Database Statistics Utility

6-6

are collecting stats on a temp table (in the RABE01USER schema) then you must also populate
the OWNER_TYPE as BATCH.

After reviewing the configuration, you may invoke the job from POM or Postman, providing
your MODULE_CODE as the only input parameter.

Example Postman message body for the process call:

{
 "cycleName":"Adhoc",
 "flowName":"Adhoc",
 "requestType":"POM Scheduler",
 "processName":"COLLECT_STATS_ADHOC",
 "requestParameters":"jobParams.COLLECT_STATS_JOB=SLS"
}

External Table Load Logs
The first step of importing a file into RAP applications is to map the raw file as an external
table on the Oracle database. The file is then pulled from the external table into an actual
staging table in the target database schema. From a batch job perspective, the external table
steps are performed by the jobs having STG in the name, such as
W_RTL_CMP_CLOSED_DS_STG_JOB or STG_SI_ORGANIZATION_JOB. Issues that occur during the
external table setup and load process result in rejected records on the application server that
are not immediately visible to the database, since no data is yet loaded into the system.

To access rejected records from external tables, a temporary link is created in the database
that points to the log files. You must use a procedure in the ri_support_util package to
access this data. The procedure is named get_file_load_result and it accepts two input
parameters:

1. The log file type, using values LOG or BAD. LOG files are the detailed log messages, while
BAD files are the actual rejected records from the source data.

2. The numerical sequence of the database object linked to the logs. This is obtained from
the error message when a job fails in POM.

Here is an example log message you might get from a failed job in POM:

Status check shows failed job, due to [ORA-20003: Reject limit reached,
query table "RADM01"."COPY$124_LOG" for error details

The table referenced in this message is actually an external table link to a log file on the
server. To access the data, log into Innovation Workbench and call the support utility with this
command:

create table BATCH_LOG124 as select * from table
(ri_support_util.get_file_load_result('LOG', '124'));

Creating a table allows you to preserve the logs without re-querying the application server. If
there are rejected records associated with the same load, then there will also be a BAD table,
which can use the same command but replacing LOG with BAD. External table logs are
temporary, and they will be erased frequently by automated processes. You will need to
extract the relevant data from the logs the same day the job fails, or it may be deleted.

Chapter 6
External Table Load Logs

6-7

Database Hints for SQL Jobs
Oracle Support may need to alter or add to the Oracle SQL hints used by specific
programs to improve performance on your dataset. All RI jobs in ODI support
configurable hints using rows added to the C_ODI_PARAM table.

The general process is to insert a row into C_ODI_PARAM with PARAM_NAME set to
'IKM_OPTIMIZER_HINT_INSERT' or 'IKM_OPTIMIZER_HINT_SELECT' and with
INTEGRATION_ID set to 'Step/Interface Name'.

Insert statement template:

 INSERT INTO c_odi_param (
 row_wid,
 scenario_name,
 scenario_version,
 param_name,
 param_value,
 integration_id,
 created_on_dt,
 change_on_dt
)
 (SELECT
 2,
 $ODI_SCENARIO_NAME,
 '001',
 'IKM_OPTIMIZER_HINT_INSERT',
 $HINT_DEFINITION,
 $STEP_NAME,
 sysdate,
 sysdate
 FROM
 dual
)

As an example, we want to add a hint for job step SIL_Retail_SalesTransactionFact
inside the scenario 'SIL_RETAIL_SALESTRANSACTIONFACT'. We would run the following
statement to add the hint:

INSERT INTO c_odi_param (
row_wid,
scenario_name,
scenario_version,
param_name,
param_value,
integration_id,
created_on_dt,
change_on_dt
)
(SELECT
2,
'SIL_RETAIL_SALESTRANSACTIONFACT', -- “Scenario_Name”
'001',

Chapter 6
Database Hints for SQL Jobs

6-8

'IKM_OPTIMIZER_HINT_INSERT',
'/* +Append */',
'SIL_Retail_SalesTransactionFact', -- “Step/Interface Name”
sysdate,
sysdate
FROM
dual
)

Once a row is added for the first time, it should not be inserted again. Instead, update the
param_value with the new hint SQL.

Chapter 6
Database Hints for SQL Jobs

6-9

	Contents
	Send Us Your Comments
	Preface
	1 Introduction
	2 Retail Insights Standalone Processes
	Adjustments History Load
	Design Overview
	Key Tables Affected

	Aggregate Fact History Load
	Design Overview
	Key Tables Affected

	Batch Data File Reprocessing
	Design Overview

	Copy Files From FTS
	Design Overview

	Data Security Load
	Design Overview
	Key Tables Affected

	Deal Income History Load
	Design Overview
	Key Tables Affected

	Default Calendar Initialization
	Design Overview
	Key Tables Affected

	ETL Business Date Update
	Design Overview
	Key Tables Affected

	History Data Cleanup
	Design Overview

	History Data File Upload
	Design Overview

	Initial Base Cost Seeding
	Design Overview
	Key Tables Affected

	Initial Base Cost Seeding (Legacy)
	Design Overview
	Key Tables Affected

	Initial Calendar Load
	Design Overview
	Key Tables Affected

	Initial Calendar Staging (Legacy)
	Design Overview
	Key Tables Affected

	Initial Dimension Load
	Design Overview
	Files to Pre-Staging Tables
	Pre-Staging to Staging Tables
	Staging to Target Tables

	Initial Dimension Staging
	Design Overview
	Key Tables Affected

	Initial Dimension Staging (Legacy)
	Design Overview
	Key Tables Affected

	Initial Inventory Seeding
	Design Overview
	Key Tables Affected

	Initial Inventory Seeding (Legacy)
	Design Overview
	Key Tables Affected

	Initial Net Cost Seeding
	Design Overview
	Key Tables Affected

	Initial Net Cost Seeding (Legacy)
	Design Overview
	Key Tables Affected

	Initial Price Seeding
	Design Overview
	Key Tables Affected

	Initial Price Seeding (Legacy)
	Design Overview
	Key Tables Affected

	Initial Purchase Order Seeding
	Design Overview
	Key Tables Affected

	Initial Purchase Order Seeding (Legacy)
	Design Overview
	Key Tables Affected

	Inventory History Current Position Load
	Design Overview
	Key Tables Affected

	Intercompany Margin History Load
	Design Overview
	Key Tables Affected

	Inventory History Load
	Design Overview
	Key Tables Affected

	Inventory History Staging
	Design Overview
	Key Tables Affected

	Inventory History Staging (Legacy)
	Design Overview
	Key Tables Affected

	Inventory Out of Stock Load
	Design Overview
	Key Tables Affected

	Inventory Reclass History Load
	Design Overview
	Key Tables Affected

	Inventory Selling Date Seeding
	Design Overview
	Key Tables Affected

	Markdown History Load
	Design Overview
	Key Tables Affected

	Nightly Batch Status Cleanup
	Design Overview
	Key Tables Affected

	Plan Data Integration
	Design Overview
	Key Tables Affected

	Planning Dimension Export
	Design Overview
	Key Tables Affected

	Planning Fact Export
	Design Overview
	Key Tables Affected

	Planning Initial Inventory Export
	Design Overview
	Key Tables Affected

	Planning Load Cleanup
	Design Overview
	Key Tables Affected

	POS Sales Integration
	Design Overview
	Key Tables Affected

	Price History Load
	Design Overview
	Key Tables Affected

	Price History Load (Legacy)
	Design Overview
	Key Tables Affected

	RDE Grants to APEX
	Design Overview

	Receipts History Load
	Design Overview
	Key Tables Affected

	Rejected Record Analysis
	Design Overview
	Key Tables Affected

	Rejected Record Cleanup
	Design Overview
	Key Tables Affected

	RTV History Load
	Design Overview
	Key Tables Affected

	RTV History Load (Legacy)
	Design Overview
	Key Tables Affected

	Sales History Load
	Design Overview
	Key Tables Affected

	Sales History Staging
	Design Overview
	Key Tables Affected

	Sales History Staging (Legacy)
	Design Overview
	Key Tables Affected

	Sales Tender Load
	Design Overview
	Key Tables Affected

	Sales Tender Staging
	Design Overview
	Key Tables Affected

	Table Partitioning
	Design Overview
	Key Tables Affected

	Transfer History Load
	Design Overview
	Key Tables Affected

	Translation Lookup Load (Legacy)
	Design Overview
	Key Tables Affected

	3 AI Foundation Cloud Services Standalone Processes
	Customer Metrics - Base Calculation
	Design Overview
	Key Tables Affected

	Customer Metrics - Final Calculation
	Design Overview
	Key Tables Affected

	Customer Metrics - Loyalty Score
	Design Overview
	Key Tables Affected

	Fake Customer Identification
	Design Overview
	Key Tables Affected

	File Export Execution
	Design Overview

	File Export Preparation
	Design Overview

	Location Ranging
	Design Overview
	Key Tables Affected

	Master Data Load - AA
	Design Overview

	Master Data Load - AC
	Design Overview

	Master Data Load - AE
	Design Overview

	Master Data Load - Common
	Design Overview

	Master Data Load - DT
	Design Overview

	Master Data Load - IO
	Design Overview

	Master Data Load - PMO
	Design Overview

	Master Data Load - OO
	Design Overview

	Master Data Load - SO
	Design Overview

	Master Data Load - SPO
	Design Overview

	Offer Optimization Run
	Design Overview

	Product Location Ranging
	Design Overview
	Key Tables Affected

	Sales Aggregation – Cumulative Sales
	Design Overview
	Key Tables Affected

	Sales Aggregation - Customer Segment
	Design Overview
	Key Tables Affected

	Sales Aggregation - Product
	Design Overview
	Key Tables Affected

	Sales Aggregation - Product Attribute
	Design Overview
	Key Tables Affected

	Sales Aggregation - Product Hierarchy
	Design Overview
	Key Tables Affected

	Sales Aggregation - Weekly
	Design Overview
	Key Tables Affected

	Sales Forecast Aggregation - Product Attribute (Legacy)
	Design Overview

	Sales Forecast Aggregation - Product Hierarchy (Legacy)
	Design Overview

	Sales Shares - Product Attribute
	Design Overview
	Key Tables Affected

	Sales Transaction Load
	Design Overview
	Key Tables Affected

	4 Retail Insights Standalone Process Flows
	Process Flows for DAT Files
	Process Flows for CSV Files

	5 Data Validation Framework
	Architecture Overview
	Resolving Validation Issues

	6 Support Utilities
	Data Cleanup Utility
	Aggregation Utility
	Database Statistics Utility
	External Table Load Logs
	Database Hints for SQL Jobs

