
Oracle® Retail AI Foundation Cloud
Services
Operations Guide

Release 24.1.201.0
F96444-04
June 2024

Oracle Retail AI Foundation Cloud Services Operations Guide, Release 24.1.201.0

F96444-04

Copyright © 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Send Us Your Comments

 Preface

1 Introduction

2 AI Foundation Data Standalone Processes

Adjustments History Load 2-1

Design Overview 2-1

Key Tables Affected 2-1

Aggregate Fact History Load 2-2

Design Overview 2-2

Key Tables Affected 2-3

Allocation History Load 2-4

Design Overview 2-4

Key Tables Affected 2-4

Batch Individual File Reprocessing 2-4

Design Overview 2-4

Batch Nightly File Reprocessing 2-5

Design Overview 2-5

Customer Loyalty Load 2-5

Design Overview 2-5

Key Tables Affected 2-6

Data Security Load 2-6

Design Overview 2-6

Key Tables Affected 2-6

Deal Actuals History Load 2-7

Design Overview 2-7

Key Tables Affected 2-7

Deal Income History Load 2-7

Design Overview 2-7

iii

Key Tables Affected 2-8

Default Calendar Initialization 2-8

Design Overview 2-8

Key Tables Affected 2-8

ETL Business Date Update 2-9

Design Overview 2-9

Key Tables Affected 2-10

Fix Unusable Indexes 2-10

Design Overview 2-10

Flexible Fact Load 2-10

Design Overview 2-11

Key Tables Affected 2-11

Gift Card Sales Load 2-11

Design Overview 2-11

Key Tables Affected 2-11

History Data Cleanup 2-11

Design Overview 2-12

History Data File Upload 2-12

Design Overview 2-12

History Data Master Flow 2-12

Design Overview 2-13

Initial Base Cost Seeding 2-15

Design Overview 2-16

Key Tables Affected 2-16

Initial Base Cost Seeding (Legacy) 2-16

Design Overview 2-16

Key Tables Affected 2-17

Initial Calendar Load 2-17

Design Overview 2-17

Key Tables Affected 2-18

Initial Calendar Staging (Legacy) 2-19

Design Overview 2-19

Key Tables Affected 2-19

Initial Competitor Price Seeding 2-19

Design Overview 2-19

Key Tables Affected 2-20

Initial Dimension Load 2-20

Design Overview 2-20

Files to Pre-Staging Tables 2-21

Pre-Staging to Staging Tables 2-21

Staging to Target Tables 2-23

Initial Dimension Staging (Legacy) 2-24

iv

Design Overview 2-24

Key Tables Affected 2-24

Initial Inventory Seeding 2-26

Design Overview 2-26

Key Tables Affected 2-26

Initial Inventory Seeding (Legacy) 2-26

Design Overview 2-27

Key Tables Affected 2-27

Initial Net Cost Seeding 2-27

Design Overview 2-27

Key Tables Affected 2-28

Initial Net Cost Seeding (Legacy) 2-28

Design Overview 2-28

Key Tables Affected 2-29

Initial Price Seeding 2-29

Design Overview 2-29

Key Tables Affected 2-29

Initial Price Seeding (Legacy) 2-30

Design Overview 2-30

Key Tables Affected 2-30

Initial Purchase Order Seeding 2-30

Design Overview 2-31

Key Tables Affected 2-31

Initial Purchase Order Seeding (Legacy) 2-31

Design Overview 2-31

Key Tables Affected 2-32

Initial Purchase Order Allocation Seeding 2-32

Design Overview 2-32

Key Tables Affected 2-33

Intercompany Margin History Load 2-33

Design Overview 2-33

Key Tables Affected 2-33

Inventory History Current Position Load 2-33

Design Overview 2-33

Key Tables Affected 2-34

Inventory History Load 2-34

Design Overview 2-34

Key Tables Affected 2-35

Inventory History Staging 2-35

Design Overview 2-35

Key Tables Affected 2-36

Inventory History Staging (Legacy) 2-36

v

Design Overview 2-36

Key Tables Affected 2-36

Inventory Out of Stock Load 2-36

Design Overview 2-37

Key Tables Affected 2-37

Inventory Reclass History Load 2-37

Design Overview 2-37

Key Tables Affected 2-37

Inventory Refresh from Merchandising 2-38

Design Overview 2-38

Key Tables Affected 2-38

Inventory Reload 2-38

Design Overview 2-38

Key Tables Affected 2-39

Inventory Selling Date Seeding 2-39

Design Overview 2-39

Key Tables Affected 2-39

Markdown History Load 2-40

Design Overview 2-40

Key Tables Affected 2-40

Market Data Load 2-40

Design Overview 2-40

Key Tables Affected 2-41

Nightly Batch Status Cleanup 2-41

Design Overview 2-41

Key Tables Affected 2-42

Plan Data Integration 2-42

Design Overview 2-42

Key Tables Affected 2-42

Planning Dimension Export 2-43

Design Overview 2-43

Key Tables Affected 2-43

Planning Fact Export 2-44

Design Overview 2-44

Key Tables Affected 2-45

Planning Initial Inventory Export 2-45

Design Overview 2-45

Key Tables Affected 2-46

Planning Load Cleanup 2-46

Design Overview 2-46

Key Tables Affected 2-46

POS Sales Integration 2-46

vi

Design Overview 2-47

Key Tables Affected 2-47

Price History Load 2-47

Design Overview 2-47

Key Tables Affected 2-48

Price History Load (Legacy) 2-48

Design Overview 2-48

Key Tables Affected 2-49

Promotion Budget Load 2-49

Design Overview 2-49

Key Tables Affected 2-49

RDE Grants to APEX 2-49

Design Overview 2-49

Receipts History Load 2-50

Design Overview 2-50

Key Tables Affected 2-50

Rejected Record Analysis 2-50

Design Overview 2-50

Key Tables Affected 2-51

Rejected Record Cleanup 2-51

Design Overview 2-51

Key Tables Affected 2-52

Reprocess CSV Files 2-52

Design Overview 2-52

Reprocess DAT Files 2-53

Design Overview 2-54

RTV History Load 2-54

Design Overview 2-54

Key Tables Affected 2-54

RTV History Load (Legacy) 2-55

Design Overview 2-55

Key Tables Affected 2-55

Sales History Load 2-55

Design Overview 2-55

Key Tables Affected 2-56

Sales History Staging 2-57

Design Overview 2-57

Key Tables Affected 2-57

Sales History Staging (Legacy) 2-57

Design Overview 2-57

Key Tables Affected 2-58

Sales Tender Load 2-58

vii

Design Overview 2-58

Key Tables Affected 2-58

Sales Tender Staging 2-58

Design Overview 2-58

Key Tables Affected 2-59

Sales Wholesale/Franchise Staging 2-59

Design Overview 2-59

Key Tables Affected 2-59

Sales Wholesale/Franchise Load 2-59

Design Overview 2-59

Key Tables Affected 2-60

Shipments History Load 2-60

Design Overview 2-60

Key Tables Affected 2-60

Stock Count Load 2-61

Design Overview 2-61

Key Tables Affected 2-61

Stock Ledger Load 2-61

Design Overview 2-61

Key Tables Affected 2-62

Store Traffic Load 2-62

Design Overview 2-62

Key Tables Affected 2-62

Supplier Compliance Load 2-62

Design Overview 2-62

Key Tables Affected 2-63

Supplier Invoice Load 2-63

Design Overview 2-63

Key Tables Affected 2-63

Table Partitioning 2-63

Design Overview 2-63

Key Tables Affected 2-64

Transfer Detail History Load 2-64

Design Overview 2-64

Key Tables Affected 2-64

Transfer Transaction History Load 2-65

Design Overview 2-65

Key Tables Affected 2-65

Translation Lookup Load (Legacy) 2-65

Design Overview 2-66

Key Tables Affected 2-66

viii

3 AI Foundation Applications Standalone Processes

Customer Metrics - Base Calculation 3-3

Design Overview 3-3

Key Tables Affected 3-3

Customer Metrics - Final Calculation 3-3

Design Overview 3-4

Key Tables Affected 3-4

Customer Metrics - Loyalty Score 3-4

Design Overview 3-4

Key Tables Affected 3-5

Data Cleanup Utility 3-5

Design Overview 3-5

Fake Customer Identification 3-7

Design Overview 3-7

Key Tables Affected 3-8

File Export Execution 3-8

Design Overview 3-8

File Export Preparation 3-8

Design Overview 3-8

Forecast Aggregates 3-8

Design Overview 3-9

Lifecycle Pricing Optimization Run 3-9

Design Overview 3-9

Location Ranging 3-9

Design Overview 3-10

Key Tables Affected 3-10

Master Data Load - AA 3-10

Design Overview 3-10

Master Data Load - AC 3-11

Design Overview 3-11

Master Data Load - AE 3-12

Design Overview 3-12

Master Data Load - Common 3-13

Design Overview 3-13

Master Data Load - DT 3-15

Design Overview 3-15

Master Data Load - Forecast Estimation 3-16

Design Overview 3-16

Master Data Load - IO 3-17

Design Overview 3-17

Master Data Load - LPO 3-18

ix

Design Overview 3-18

Master Data Load - SO 3-19

Design Overview 3-20

Master Data Load - SPO 3-20

Design Overview 3-21

Product Location Ranging 3-21

Design Overview 3-22

Key Tables Affected 3-22

Sales Aggregation – Cumulative Sales 3-22

Design Overview 3-22

Key Tables Affected 3-23

Sales Aggregation - Customer Segment 3-23

Design Overview 3-23

Key Tables Affected 3-24

Sales Aggregation - Product 3-24

Design Overview 3-24

Key Tables Affected 3-24

Sales Aggregation - Product Attribute 3-24

Design Overview 3-25

Key Tables Affected 3-25

Sales Aggregation - Product Hierarchy 3-25

Design Overview 3-25

Key Tables Affected 3-25

Sales Aggregation - Weekly 3-26

Design Overview 3-26

Key Tables Affected 3-26

Sales Forecast Aggregation - Product Attribute (Legacy) 3-26

Design Overview 3-26

Sales Forecast Aggregation - Product Hierarchy (Legacy) 3-27

Design Overview 3-27

Sales Shares - Product Attribute 3-27

Design Overview 3-27

Key Tables Affected 3-28

Sales Transaction Load 3-28

Design Overview 3-28

Key Tables Affected 3-28

4 AI Foundation Data Standalone Process Flows

Process Flows for DAT Files 4-1

Process Flows for CSV Files 4-8

x

5 Data Validation Framework

Architecture Overview 5-1

Resolving Validation Issues 5-2

6 Support Utilities

Data Cleanup Utilities 6-1

Data Warehouse Table Cleanup 6-1

Integration Layer Table Cleanup 6-3

Data Warehouse Partition Cleanup 6-4

Data Delete Utility 6-4

Innovation Workbench Process Cleanup 6-6

Aggregation Utility 6-7

Database Statistics Utility 6-10

External Table Load Logs 6-10

Managing Rejected Records 6-11

Data Warehouse Rejection Process 6-11

Rejected Record Reprocessing 6-13

Rejected Record Notifications 6-15

Database Hints for SQL Jobs 6-16

Data Model Utilities 6-18

Data Warehouse Models 6-18

AI Foundation Models 6-18

xi

Send Us Your Comments

Oracle Retail Insights and AI Foundation Cloud Services Operations Guide

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this
document.

Your feedback is important, and helps us to best meet your needs as a user of our products.
For example:

• Are the implementation steps correct and complete?

• Did you understand the context of the procedures?

• Did you find any errors in the information?

• Does the structure of the information help you with your tasks?

• Do you need different information or graphics? If so, where, and in what format?

• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your
name, the name of the company who has licensed our products, the title and part number of
the documentation and the chapter, section, and page number (if available).

Note:

Before sending us your comments, you might like to check that you have the latest
version of the document and if any concerns are already addressed. To do this,
access the Online Documentation available on the Oracle Technology Network Web
site. It contains the most current Documentation Library plus all documents revised or
released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative
or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle
local office and inquire about our Oracle University offerings. A list of Oracle offices is available
on our Web site at http://www.oracle.com.

Send Us Your Comments

xii

http://www.oracle.com

Preface

This Operations Guide provides critical information about the processing and operating details
of the Retail Insights and AI Foundation Cloud Services, including the following:

• Standalone and Adhoc batch processes

• Integration processes

Audience

This guide is for:

• Systems administration and operations personnel

• Systems analyst

• Integrators and implementers

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

• Exact error message received

• Screen shots of each step you take

Oracle Help Center (docs.oracle.com)

Oracle Retail Product documentation is available on the following website https://
docs.oracle.com/en/industries/retail/html

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com
https://docs.oracle.com/en/industries/retail/html
https://docs.oracle.com/en/industries/retail/html

Comments and Suggestions

Please give us feedback about Oracle Retail Help and Guides. You can send an e-mail to:
retail-doc_us@oracle.com

Oracle Retail Cloud Services and Business Agility

The Oracle Retail Insights and AI Foundation Cloud Services are hosted in the Oracle Cloud
with the security features inherent to Oracle technology and a robust data center classification,
providing significant uptime. The Oracle Cloud team is responsible for installing, monitoring,
patching, and upgrading retail software.

Included in the service is continuous technical support, access to software feature
enhancements, hardware upgrades, and disaster recovery. The Cloud Service model helps to
free customer IT resources from the need to perform these tasks, giving retailers greater
business agility to respond to changing technologies and to perform more value-added tasks
focused on business processes and innovation.

Oracle Retail Software Cloud Service is acquired exclusively through a subscription service
(SaaS) model. This shifts funding from a capital investment in software to an operational
expense. Subscription-based pricing for retail applications offers flexibility and cost
effectiveness.

Preface

xiv

1
Introduction

This document is intended to guide a Retail Analytics and Planning Cloud Services
implementer through the internal operations of key areas of the AI Foundation platform that
they will need to interact with during a project, such as ad hoc batch processes and integration
programs. All programs are located within the Process Orchestration and Monitoring (POM)
application and the reader is expected to be familiar with that tool.

This guide includes the following topics:

• Retail AI Foundation Data Standalone Batch Processes - This chapter provides an
overview of each AIF data batch program or process flow in the Standalone set of jobs in
POM, the input and output tables involved in the process, and any dependencies or usage
details to consider before running them.

• Retail AI Foundation Cloud Services Standalone Batch Processes - This chapter
provides an overview of each AI Foundation Cloud Services batch program or process flow
available in the Standalone set of jobs in POM. The primary purpose of the AI Foundation
ad hoc programs is to integrate data from either RI, flat files, or Innovation Workbench.

• Retail AI Foundation Data Standalone Process Flows - This chapter provides a set of
cross-reference tables showing how programs in the AIF data standalone processes are
linked to each other, such as the staging and load jobs to move a single file into the
database from start to finish. This should be used to disable all unneeded jobs in the adhoc
load processes for files you are not trying to load.

• Data Validation Framework - This chapter explains the data validation procedures
associated with foundation input files. The data validation framework checks for common
mistakes and issues in the incoming data files and either fails the process or outputs
warnings to the database, depending on the issue.

• Support Utilities - This chapter describes the self-service utilities used for environment
maintenance and cleanup. Implementers should be aware of the utilities available to them
and leverage them during the project, as needed.

1-1

2
AI Foundation Data Standalone Processes

The primary function of standalone processes in the AI Foundation Data (AIF DATA) schedule
is to load history data in a new environment for use in one or more applications on the
platform. These process flows group together multiple, related programs that load data files,
stage them in the database, and transform them into multiple target tables in the data
warehouse. Processes are also available for integrations with Planning applications (MFP, AP,
and so on) and Xstore.

Adjustments History Load

Module Name HIST_CSV_ADJUSTMENTS_LOAD_ADHOC

Description Loads the ADJUSTMENT.csv file into the data warehouse and populates
key data tables used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Inventory Adjustment transactions accepts an input file at the
transaction level using the file specification for ADJUSTMENT.csv. It assumes the file has already
been moved into place using the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports
the file into a preprocessing table in the database, transforms it to RI’s internal staging tables,
then loads it into the base fact (item/location/day), as well as the week aggregate used for
integrations (item/location/week). The Reason dimension is also seeded with records if the
reason code and reason description are provided on the transactions.

Note:

This process does not currently populate BI aggregate tables. Those jobs need to be
run separately after each execution of this process if it is necessary to use this data
for reporting in RI.

Key Tables Affected

Table Usage

W_ADJUSTMENT_FTS File Input

W_REASON_DS Staging

W_DOMAIN_MEMBER_DS_TL Staging

W_RTL_INVADJ_IT_LC_DY_FS Staging

W_RTL_INVADJ_IT_LC_DY_F Output (Base Fact)

W_RTL_INVADJ_IT_LC_WK_A Output (Aggregate)

2-1

Table Usage

W_DOMAIN_MEMBER_LKP_TL Output (Reason Descriptions)

Aggregate Fact History Load

Module Name HIST_AGGR_FACT_LOAD_ADHOC

Description Loads pre-aggregated fact data from flat files into the data warehouse for
data that is above the item/location intersection.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for aggregate fact data is intended for new customers or migrating
customers that cannot provide item/location level history for sales, inventory, and other areas.
Pre-aggregated data can be loaded into one of four identical file interfaces that support a wide
variety of measures across all functional areas. Each interface must have data for a single
intersection (such as subclass/area/week) and the intersection must be configured in
C_ODI_PARAM_VW before running the loads. This process will take care of importing the files and
loading the data into data warehouse tables for storage.

There are jobs included in this process to validate the partition structure of these tables,
because they support flexible partitioning by day or week levels. The validator jobs (such as
W_FACT1_PROD1_LC1_T1_F_VALIDATOR_JOB) verify whether the partition structure is correct
relative to the configuration in C_ODI_PARAM_VW. If the configuration and table structures do not
match, it will automatically drop and re-create all partitions in the expected format. This will
result in dropped data as well, so it is important to verify the configuration before loading any
data.

When using these tables, the overall flow of data is as follows:

1. Update the configuration table (C_ODI_PARAM_VW) from the Control & Tactical Center to
specify your base intersections for each table.

a. The parameter names for these tables are prefixed with RI_FACT, such as
RI_FACT1_PROD_LEVEL for the product level of the FACT1 table.

b. The complete list of values you may put into these parameters is provided below.

Product (PROD) Organization (ORG) Calendar (CAL)

CMP COMPANY YEAR

DIV CHAIN HALFYEAR

GRP AREA QUARTER

DEPT REGION PERIOD

CLS DISTRICT WEEK

SBC LOCATION DAY

ITEM CHANNEL GREGORIANYEAR

ALL PLANNING_CHANNEL GREGORIANQUARTER

FLEX1 -FLEX20 PRICE_ZONE GREGORIANMONTH

Chapter 2
Aggregate Fact History Load

2-2

Product (PROD) Organization (ORG) Calendar (CAL)

 ALL GREGORIANDAY

2. Update the table partition configuration in C_MODULE_EXACT_TABLE by setting the
PARTITION_COLUMN_TYPE and PARTITION_INTERVAL as WK for week data or DY for day data.
Calendar levels above week level do not require partitioning as it’s assumed the data
volume will be low.

3. Enable the FACT1 through FACT4 modules (based on your intended usage) in
C_MODULE_ARTIFACT by setting the PARTITION_FLG and ACTIVE_FLG to Y.

4. Use the process CREATE_PARTITION_ADHOC to re-execute the partitioning programs for any
configuration changes made above, unless you have not yet loaded any calendar data, in
which case the CALENDAR_LOAD_ADHOC process will also perform partitioning for these
tables.

5. Use this process (HIST_AGGR_FACT_LOAD_ADHOC) to populate staging tables and move data
from staging (FS) to target (F) tables. Enable all jobs relating to the table(s) you will be
loading (Each table load has a COPY, STG, VALIDATOR, TMP, and F job, and all of them should
be enabled).

a. Records may be rejected due to bad/missing data in the 3 base dimensions supported
on the facts (product, location, calendar). The job does not fail if rejects occur; it will
load any valid records.

b. Rejected records will be copied to E$ tables such as
E$_W_RTL_FACT1_PROD1_LC1_T1_TMP. E$ tables are created dynamically when records
get rejected so the table may not exist initially.

c. E$ tables will contain the full rejected record, which you may insert back into the
staging (FS) tables later to attempt to load them again.

d. E$ tables will not purge or drop data unless you perform a full schema cleanup or
database clone from another environment.

6. If sending the data to a Planning application, use the processes
LOAD_PDS_FACT1_AGGR_PROCESS_ADHOC through LOAD_PDS_FACT4_AGGR_PROCESS_ADHOC to
export the contents of each table to PDS. The integration tables for PDS will have similar
names as the source tables, only adding PDS in the name. For example,
W_RTL_FACT1_PROD1_LC1_T1_F is loaded to W_PDS_FACT1_PROD1_LC1_T1_F by the process
LOAD_PDS_FACT1_AGGR_PROCESS_ADHOC.

Key Tables Affected

Table Usage

W_RTL_FACT1_PROD1_LC1_T1_FS Staging

W_RTL_FACT2_PROD2_LC2_T2_FS Staging

W_RTL_FACT3_PROD3_LC3_T3_FS Staging

W_RTL_FACT4_PROD4_LC4_T4_FS Staging

W_RTL_FACT1_PROD1_LC1_T1_F Output

W_RTL_FACT2_PROD2_LC2_T2_F Output

W_RTL_FACT3_PROD3_LC3_T3_F Output

W_RTL_FACT4_PROD4_LC4_T4_F Output

Chapter 2
Aggregate Fact History Load

2-3

Allocation History Load

Module Name HIST_ALCDETAIL_LOAD_ADHOC

Description Loads a full snapshot of allocations data from
W_RTL_ALC_DETAILS_DS.dat and W_RTL_ALC_IT_LC_DY_FS.dat to
initialize the dimension and fact data before the nightly batch is enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
Data regarding allocations of merchandise is split between two interfaces, the dimension file
W_RTL_ALC_DETAILS_DS.dat and the fact file W_RTL_ALC_IT_LC_DY_FS.dat. This process can
be used to load full snapshots of historical or currently active allocations to the data warehouse
outside the nightly batch cycle. The two files must be in sync, meaning that every allocation
record on the detail file must have a record in the header file. The header file is always a full
snapshot of all allocations that should appear as currently active in the data warehouse,
meaning that if any allocation records are no longer sent on W_RTL_ALC_DETAILS_DS.dat, they
will be marked as inactive/closed in the data warehouse table (CURRENT_FLG = N) and should
no longer appear in the files.

This data is used primarily for Retail Insights reporting and for Inventory Planning Optimization
(IPO).

Key Tables Affected

Table Usage

W_RTL_ALC_DETAILS_DS Staging

W_RTL_ALC_DETAILS_D Output

W_RTL_ALC_IT_LC_DY_FS Staging

W_RTL_ALC_IT_LC_DY_F Output

Batch Individual File Reprocessing

Module Name REPROCESS_ZIP_FILE_PROCESS_ADHOC

Description Looks for the RI_REPROCESS_DATA.zip file and unpacks it, moving any
files to the incoming directory for batch processes.

Dependencies None

Business Activity Nightly Batch Processing

Design Overview
This process moves and unloads a ZIP file (specifically RI_REPROCESS_DATA.zip) so that the
file contents may be added to an in-progress nightly batch run of the AIF DATA schedule. The
ZIP file may contain one or multiple files. It only needs to contain the files that you wish to
update for the current batch run. Unlike the other ZIP file processes, this process does not

Chapter 2
Allocation History Load

2-4

archive or delete existing files in the system, so it can safely be used repeatedly to upload new
files on top of existing data.

Batch Nightly File Reprocessing

Module Name NIGHTLY_ZIP_FILE_PROCESS_ADHOC

Description Looks for the RAP_DATA.zip file and any other nightly ZIP file name and
unpacks it, deleting all existing nightly files and copying in the new ones.

Dependencies None

Business Activity Nightly Batch Processing

Design Overview
This process moves and unloads nightly ZIP files (such as RAP_DATA.zip) so that the file
contents may be used for an in-progress nightly batch run of the AIF DATA schedule. The ZIP
file(s) must contain all data files you need for a nightly batch run. This process contains the
exact same jobs as the nightly AIF DATA batch and the primary purpose is to let you reload a
new ZIP file when your current nightly batch has failed or you’ve accidentally provided the
wrong upload and need to replace it.

The program uses the C_LOAD_DATES table to support restartability if it runs multiple times for
the same or different ZIP files, based on the following scenarios:

• The C_LOAD_DATES entry it creates has PACKAGE_NAME=’ZIPUNLOAD’.

• When you run it as part of the nightly batch or as part of this ad hoc job, it creates the entry
in the C_LOAD_DATES table.

• When you have a “Success” status in C_LOAD_DATES, then you can rerun the job by placing
a new zip file; it will then unzip it in the internal Expand directory (retaining older extracted
files in the Expand directory if it is not overwritten).

• When you have a status like “Failed”, then rerunning will mark it as “Success” and retain
the files in the Expand directory; it will not erase existing files.

• When you don't have any entry in the C_LOAD_DATES table, then running it erases all the
directories, then unzips your file into the internal location and processes them as needed.

Customer Loyalty Load

Module Name HIST_CUST_LYL_LOAD_ADHOC

Description Loads Customer Loyalty dimension and fact data for use in Retail Insights
reporting.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business
Activity

Historical Data Load

Design Overview
This process will load the Customer Loyalty dimension and fact files. This data is used for
Retail Insights reporting only. All jobs in the process should be enabled before running it.

Chapter 2
Batch Nightly File Reprocessing

2-5

Key Tables Affected

Input Table Target Table

W_RTL_CUST_LYL_PROG_DS W_RTL_CUST_LYL_PROG_D

W_RTL_CUST_LYL_ACCT_DS W_RTL_CUST_LYL_ACCT_D

W_RTL_CUST_LYL_AWD_ACCT_DS W_RTL_CUST_LYL_AWD_ACCT_D

W_RTL_CUST_LYL_TRX_LC_DY_FS W_RTL_CUST_LYL_TRX_LC_DY_F

W_RTL_CUST_LYL_AWD_TRX_DY_FS W_RTL_CUST_LYL_AWD_TRX_DY_F

W_RTL_CUST_LYL_TRX_LC_DY_F W_RTL_CUST_LYL_PROG_LC_DY_A

Data Security Load

Module Name RAF_SEC_FILTER_LOAD_ADHOC

Description Copies the data security staging table data (which is populated from IW)
into the target tables, such as RAF_SEC_USER.

Dependencies None

Business Activity Application Administration

Design Overview
This process loads data for AIF data security functionality. The tables populated by this
process limit what data an end user can see in certain AIF applications, such as RI and PMO.
This data load flow only accepts data from IW, and is an alternative to sending flat files as part
of the nightly batch process. This is only a replacement for the flat file load; if there are any
jobs downstream in the applications that must be run, those are still required. The steps to use
this process are:

1. Implement data security integration in Innovation Workbench/APEX to retrieve the users,
groups, and data filter definitions from an external source. You may use REST APIs or
custom file loads for this integration.

2. Develop SQL statements or procedures to insert your data into the staging tables (listed
below).

3. Run the RAF_SEC_FILTER_LOAD_ADHOC process, which will truncate the target tables and
insert your newly staged data. If a staging table is empty, then it will not truncate the target
table.

The entire process could be automated by establishing REST APIs that post into IW tables, a
stored procedure that pushes the data from IW into the RAF staging tables, and then adding a
DBMS_SCHEDULER job that runs the POM process. Because a truncate-and-load process is used,
you must maintain the full set of data security records somewhere to push into the AIF tables.

Key Tables Affected

Staging Table Target Table

RAF_SEC_USER_STG RAF_SEC_USER

RAF_SEC_GROUP_STG RAF_SEC_GROUP

Chapter 2
Data Security Load

2-6

Staging Table Target Table

RAF_SEC_USER_GROUP_STG RAF_SEC_USER_GROUP

RAF_FILTER_GROUP_MERCH_STG RAF_FILTER_GROUP_MERCH

RAF_FILTER_GROUP_ORG_STG RAF_FILTER_GROUP_ORG

Deal Actuals History Load

Module Name HIST_DEAL_LOAD_ADHOC

Description Loads the W_RTL_DEALACT_IT_LC_DY_FS.dat file into the data
warehouse and populates the target fact table for BI reporting.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Deal Actuals accepts an input file at the deal/item/location/date
level using the file specification for W_RTL_DEALACT_IT_LC_DY_FS.dat. It assumes the file has
already been moved into place using the HIST_ZIP_FILE_LOAD_ADHOC process. This process
imports the file into a staging table in the database and loads it into the base fact (item/
location/day) table for reporting.

Key Tables Affected

Table Usage

W_RTL_DEALACT_IT_LC_DY_FS Staging

W_RTL_DEALACT_IT_LC_DY_F Output (Base Fact)

Deal Income History Load

Module Name HIST_CSV_DEAL_INCOME_LOAD_ADHOC

Description Loads the DEAL_INCOME.csv file into the data warehouse and populates
key data tables used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Deal Income transactions accepts an input file at the transaction
level using the file specification for DEAL_INCOME.csv. It assumes the file has already been
moved into place using the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the file
into a preprocessing table in the database, transforms it to RI’s internal staging tables, and
then loads it into the base fact (item/location/day) as well as the week aggregate used for
integrations (item/location/week).

Chapter 2
Deal Actuals History Load

2-7

Key Tables Affected

Table Usage

W_RTL_DEALINC_IT_LC_DY_FTS File Input

W_RTL_DEALINC_IT_LC_DY_FS Staging

W_RTL_DEALINC_IT_LC_DY_F Output (Base Fact)

W_RTL_DEALINC_IT_LC_WK_A Output (Aggregate)

Default Calendar Initialization

Module Name AUTO_GEN_CALENDAR_LOAD_ADHOC

Description Automatically generates a generic NRF fiscal calendar and sets up the
data warehouse database with it.

Dependencies None

Business Activity Initial System Setup

Design Overview
The auto-generated calendar process does not require any input files. Instead, it uses an
internal calendar definition based on the National Retail Federation (NRF) 4-5-4 business
calendar to populate the Retail Insights data model with basic calendar information. The NRF
calendar typically starts around the first week of February and runs for 52 or 53 weeks,
depending on the year. The default calendar starts from January 2017 and extends for
approximately 30 years. It automatically includes 53-week years where appropriate and follows
the NRF guidelines for fiscal weeks and periods.

This process performs all the necessary transform and load jobs required to set up the RAP
data warehouse calendar. This process should only be used if you cannot get a business
calendar definition from any other source, and the retailer does not want to provide a file
themselves. Once this process runs, you can disable W_MCAL_PERIOD_DS_JOB in your nightly
batch if you do not intend to ever provide a calendar file directly.

This process also populates the Gregorian system calendar at the same time the fiscal
calendar is loaded. The Gregorian calendar requires additional start and end date parameters
from C_ODI_PARAM to define the time range to generate. It must be greater than the range of
time in the fiscal calendar. Output tables that start with W_MCAL_ are mainly used for fiscal
calendar generation, while the other tables, such as W_DAY_D, are used for the Gregorian
calendar. All output tables must be successfully populated with calendar data to use the
platform.

Key Tables Affected

Table Usage

W_MCAL_PERIOD_DS Staging

W_TIME_OF_DAY_D Output

W_DAY_D Output

W_YEAR_D Output

Chapter 2
Default Calendar Initialization

2-8

Table Usage

W_QTR_D Output

W_MONTH_D Output

W_WEEK_D Output

W_MINUTE_OF_DAY_D Output

W_MCAL_CONFIG_G Output

W_MCAL_CAL_D Output

W_MCAL_PERIOD_D Output

W_MCAL_DAY_D Output

W_MCAL_WEEK_D Output

W_MCAL_YEAR_D Output

W_MCAL_QTR_D Output

W_RTL_MCAL_DAY_SHIFT_D Output

W_RTL_MCAL_DAY_UNSHIFT_D Output

W_RTL_MCAL_DAY_GUNSHIFT_D Output

W_RTL_MCAL_DAY_CUSTOM_D Output

W_RTL_MCAL_WEEK_SHIFT_D Output

W_RTL_MCAL_WEEK_UNSHIFT_D Output

W_RTL_MCAL_PERIOD_SHIFT_D Output

W_RTL_MCAL_PERIOD_UNSHIFT_D Output

ETL Business Date Update

Module Name LOAD_CURRENT_BUSINESS_DATE_ADHOC

Description Override the current business date used for loading data into the data
warehouse.

Dependencies None

Business Activity Batch Administration

Design Overview
This process updates the current business date in the foundation data warehouse. The current
business date usually reflects the most recent data loaded into the platform. For example, if the
last nightly batch imported data is for February 2nd, 2023, the current business date will be that
same date. Specific to Retail Insights, this date is also used whenever calculating a repository
variable like CurrentDate or CurrentWeek. There may be times during an implementation of an
Analytics and Planning solution where you need to alter this date, such as when you are
loading historical data for a specific past date and want the data warehouse to reflect that date
as the current date. In such cases, you must use this process to set the business date as the
first step before running those other processes.

The ETL_BUSINESS_DATE_JOB within this process requires a date as an input parameter. The
date must be in the format YYYY-MM-DD. When you run the process from the POM UI, ensure
you edit the parameters for this job first and enter the date as the only input value.

Chapter 2
ETL Business Date Update

2-9

Sample payload when using an API to call the process:

{
"cycleName":"Adhoc",
"flowName":"Adhoc",
"processName":"LOAD_CURRENT_BUSINESS_DATE_ADHOC",
"requestParameters":"jobParams.ETL_BUSINESS_DATE_JOB=2017-12-31"
}

Key Tables Affected

Table Usage

W_RTL_CURR_MCAL_G Output

Fix Unusable Indexes

Module Name FIX_UNUSABLE_INDEX_ADHOC

Description Repair broken database indexes that may result from erasing and
reloading dimension or fact data repeatedly

Dependencies None

Business Activity Batch Administration

Design Overview
This process executes a single job, FIX_UNUSABLE_INDEX_JOB, which repairs any database
indexes in an unusable state. The most common reason to execute this job is that you have
encountered the error:

ORA-26026: unique index <INDEX NAME> initially in unusable state

When this error occurs, you must run this process to correct it. If you have a failed batch job
that encountered this error, you may restart that job from POM after running this process. This
job also runs as part of the AIF DATA weekly maintenance process RI_MAINTENANCE_ADHOC,
which should be scheduled to run every week before your nightly batches.

Flexible Fact Load

Module Name FLEXFACT_LOAD_ADHOC

Description Loads the flexible fact tables for use in AIF applications and Retail Insights
reporting.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business
Activity

Historical Data Load

Chapter 2
Fix Unusable Indexes

2-10

Design Overview
This process populates the flex fact tables that are used in both AI Foundation to display
custom attributes and measures and in Retail Insights reporting on custom fact data. Prior to
loading flex fact data, you must configure the proper data levels in C_ODI_PARAM to match the
hierarchy levels used in the files. Refer to the Retail Insights Implementation Guide for
additional details on configuring flex facts.

There is a job included in this process to validate the partition structure of the FLEXFACT1 table,
because it supports flexible partitioning by day or week levels. The validator job
(W_RTL_FLEXFACT1_F_VALIDATOR_JOB) verifies whether the partition structure is correct relative
to the configuration in C_ODI_PARAM_VW. If the configuration and table structures do not match, it
automatically drops and re-creates all partitions in the expected format. This will result in
dropped data as well, so it is important to verify the configuration before loading any data.

Key Tables Affected

Input Table Output Table

W_RTL_FLEXFACT1_FS W_RTL_FLEXFACT1_F

W_RTL_FLEXFACT2_FS W_RTL_FLEXFACT2_F

W_RTL_FLEXFACT3_FS W_RTL_FLEXFACT3_F

W_RTL_FLEXFACT4_FS W_RTL_FLEXFACT4_F

Gift Card Sales Load

Module Name HIST_GCN_TRX_LOAD_ADHOC

Description Loads Gift Card Sales fact data for use in Retail Insights reporting.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business
Activity

Historical Data Load

Design Overview
This process loads the Gift Card Sales fact file. This fact data is used for Retail Insights
reporting only. All jobs in the process should be enabled before running it.

Key Tables Affected

Table Usage

W_RTL_GCN_TRX_LC_DY_FS Staging

W_RTL_GCN_TRX_LC_DY_F Output

History Data Cleanup

Module Name HIST_DATA_CLEANUP_ADHOC

Chapter 2
Gift Card Sales Load

2-11

Description Erase all data from Inventory and Price tables in RI, in order to restart
your history load for those interfaces.

Dependencies None

Business Activity Historical Data Load

Design Overview
This process erases all data from select functional areas (currently Inventory Position and
Pricing facts). The purpose of the process is to reset the environment if the data currently
loaded is invalid or unwanted, and you’d like to start over with empty tables.

Note:

It does not erase partition structures, so you need to load data for the same range of
dates already available.

It also does not reset the C_HIST_LOAD_STATUS table, so you will need to update that
before loading any new data.

History Data File Upload

Module Name HIST_ZIP_FILE_LOAD_ADHOC

Description Looks for the RIHIST_RMS_DATA.zip file and unpacks it, moving any files
to the incoming directory for batch processes.

Dependencies None

Business Activity Historical Data Load

Design Overview
This process moves and unloads a ZIP file (specifically RIHIST_RMS_DATA.zip) so that the file
contents may be used for one or more history and seeding load jobs. The ZIP file may contain
one or multiple files. This process is a prerequisite to running any history or seeding load
programs.

The first job in this process waits a set period of time for the ZIP file to be uploaded, and it fails
if it is not received in that time (4 hours by default). The second job moves the ZIP file to the
internal server location and unzip it. It deletes any files previously in the destination folder,
unzip the new file, and move the ZIP file to an archive when complete. It fails if the ZIP does
not contain any data files, as there is nothing for it to move.

History Data Master Flow

Module Name RI_FLOW_ADHOC

Description Ad hoc flow for loading all major foundation fact files in a single process
that can be scheduled to run repeatedly in the same day for automated
history loads.

Chapter 2
History Data File Upload

2-12

Dependencies None

Business Activity Historical Data Load

Design Overview
The RI_FLOW_ADHOC process in the AIF DATA schedule is a replacement for the
RI_INTRADAY_CYCLE found in earlier versions. It provides a single master process flow that can
load the most common RAP foundation fact files and populate all data warehouse tables using
one or multiple input zip files. When you provide multiple zip files, you will also schedule the
RI_FLOW_ADHOC process to run multiple times and, each time, it will pick up the next ZIP file in
the sequence.

The process flow cannot be executed without first configuring which jobs to run. You may
configure the flow by enabling or disabling sets of jobs by process name, and then, within the
processes you are enabling, you may selectively disable jobs for tables you are not using. The
processes included in the flow are listed below in order of execution (first to last). You should
disable the processes you do not need before running or scheduling the flow.

Process Name Usage

FLOW_LOAD_START_PROCESS Required, non-functional jobs for logging/
dependency purposes.

CLEANUP_C_LOAD_DATES_FLOW_PROCESS Required, clears prior run statuses from
C_LOAD_DATES table.

ZIP_FILE_LOAD_FLOW_PROCESS Required, selects a ZIP file for the current run
and unpacks it.

STG_SALES_LOAD_ADHOC_PROCESS Stages the W_RTL_SLS_TRX_IT_LC_DY_FS.dat
and W_RTL_SLSPK_IT_LC_DY_FS.dat files;
disable if not using this file.

STG_CSV_SALES_LOAD_ADHOC_PROCESS Stages the SALES.csv and SALES_PACK.csv files;
disable if not using these files.

STG_RTV_LOAD_ADHOC_PROCESS Stages the W_RTL_INVRTV_IT_LC_DY_FS.dat file;
disable if not using this file.

STG_CSV_RTV_LOAD_ADHOC_PROCESS Stages the RTV.csv file; disable if not using this
file.

STG_INVADJ_LOAD_ADHOC_PROCESS Stages the W_RTL_INVADJ_IT_LC_DY_FS.dat file;
disable if not using this file.

STG_CSV_INVADJ_LOAD_ADHOC_PROCESS Stages the ADJUSTMENT.csv file; disable if not
using this file.

STG_INVRC_LOAD_ADHOC_PROCESS Stages the W_RTL_INVRC_IT_LC_DY_FS.dat file;
disable if not using this file.

STG_CSV_INVRC_LOAD_ADHOC_PROCESS Stages the RECEIPT.csv file; disable if not using
this file.

STG_INVTSF_LOAD_ADHOC_PROCESS Stages the W_RTL_INVTSF_IT_LC_DY_FS.dat file;
disable if not using this file.

STG_CSV_INVTSF_LOAD_ADHOC_PROCESS Stages the TRANSFER.csv file; disable if not using
this file.

STG_MARKDOWN_LOAD_ADHOC_PROCESS Stages the W_RTL_MKDN_IT_LC_DY_FS.dat file;
disable if not using this file.

Chapter 2
History Data Master Flow

2-13

Process Name Usage

STG_CSV_MARKDOWN_LOAD_ADHOC_PROCE
SS

Stages the MARKDOWN.csv file; disable if not using
this file.

STG_DEAL_INCOME_ADHOC_PROCESS Stages the W_RTL_DEALINC_IT_LC_DY_FS.dat
file; disable if not using this file.

STG_CSV_DEAL_INCOME_ADHOC_PROCESS Stages the DEAL_INCOME.csv file; disable if not
using this file.

STG_INV_LOAD_ADHOC_PROCESS Stages the W_RTL_INV_IT_LC_DY_FS.dat file;
disable if not using this file.

STG_INVOOS_LOAD_ADHOC_PROCESS Stages the INVENTORY_OOS.csv file; disable if not
using this file.

STG_CSV_INV_LOAD_ADHOC_PROCESS Stages the INVENTORY.csv file; disable if not
using this file.

STG_PRICE_LOAD_ADHOC_PROCESS Stages the W_RTL_PRICE_IT_LC_DY_FS.dat file;
disable if not using this file.

STG_CSV_PRICE_LOAD_ADHOC_PROCESS Stages the PRICE.csv file; disable if not using this
file.

STG_ONORD_ADHOC_PROCESS Stages the W_RTL_PO_ONORD_IT_LC_DY_FS.dat
file; disable if not using this file.

STG_CSV_ONORD_ADHOC_PROCESS Stages the ORDER_DETAIL.csv file; disable if not
using this file.

STG_INVU_LOAD_ADHOC_PROCESS Stages the W_RTL_INVU_IT_LC_DY_FS.dat file;
disable if not using this file.

STG_SALES_WF_ADHOC_PROCESS Stages the W_RTL_SLSWF_IT_LC_DY_FS.dat file;
disable if not using this file.

STG_CSV_SALES_WF_ADHOC_PROCESS Stages the SALES_WF.csv file; disable if not using
this file.

RESET_ETL_THREAD_VAL_ADHOC_PROCESS Required; updates your staging data to remove
any multi-threading parameter values that are
no longer supported.

ADHOC_REFRESH_RADM_PROCESS Required; collects statistics on your tables before
starting the target table loads.

SALES_LOAD_ADHOC_PROCESS Processes all the data from Sales and Sales Pack
files (CSV or DAT) into the target data warehouse
tables and aggregates.

RTV_LOAD_ADHOC_PROCESS Processes all the data from the RTV file (CSV or
DAT) into the target data warehouse tables and
aggregates.

INVADJ_LOAD_ADHOC_PROCESS Processes all the data from the Adjustment file
(CSV or DAT) into the target data warehouse
tables and aggregates.

INVRC_LOAD_ADHOC_PROCESS Processes all the data from the Receipt file (CSV
or DAT) into the target data warehouse tables
and aggregates.

INVTSF_LOAD_ADHOC_PROCESS Processes all the data from the Transfer file (CSV
or DAT) into the target data warehouse tables
and aggregates.

Chapter 2
History Data Master Flow

2-14

Process Name Usage

MARKDOWN_LOAD_ADHOC_PROCESS Processes all the data from the Markdown file
(CSV or DAT) into the target data warehouse
tables and aggregates.

DEAL_INCOME_ADHOC_PROCESS Processes all the data from the Deal Income file
(CSV or DAT) into the target data warehouse
tables and aggregates.

INV_LOAD_ADHOC_PROCESS Processes all the data from the Inventory file
(CSV or DAT) into the target data warehouse
tables and aggregates.

INVOOS_LOAD_ADHOC_PROCESS Processes all the data from the Inventory OOS
file into the target data warehouse tables and
aggregates.

PRICE_LOAD_ADHOC_PROCESS Processes all the data from the Price file (CSV or
DAT) into the target data warehouse tables and
aggregates.

ONORD_LOAD_ADHOC_PROCESS Processes all the data from the Purchase Order
file (CSV or DAT) into the target data warehouse
tables and aggregates.

INVU_LOAD_ADHOC_PROCESS Processes all the data from the Unavailable
Inventory file into the target data warehouse
tables and aggregates.

SALES_WF_ADHOC_PROCESS Processes all the data from the Sales Wholesale/
Franchise file (CSV or DAT) into the target data
warehouse tables and aggregates.

FACT_FLOW_END_PROCESS Required; non-functional jobs for logging/
dependency purposes.

FLOW_LOAD_END_PROCESS Required; non-functional jobs for logging/
dependency purposes.

Once you’ve disabled all the unused jobs at the process level, you may want to review the
remaining jobs and disable table loads that are not needed for your implementation. Unless
you are implementing Retail Insights, you do not need any aggregate table above the item/
location/week level intersections. For example, you will need all sales tables containing
IT_LC_DY or IT_LC_WK for item/loc/day and week intersections. You may not need the sales
aggregates such as W_RTL_SLS_SC_DY_A which is a BI aggregate for reporting, unless you are
implementing Retail Insights.

If you are calling the process from Postman or Curl, then you may use a payload like the
following to trigger the process flow:

{
 "cycleName" : "Adhoc",
 "flowName" : "RI_FLOW_ADHOC",
 "requestType" : "POM Scheduler"
}

Initial Base Cost Seeding

Module Name SEED_CSV_W_RTL_BCOST_IT_LC_DY_F_PROCESS_ADHOC

Chapter 2
Initial Base Cost Seeding

2-15

Description Loads a full snapshot of base cost data from COST.csv to initialize the
positional data before a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Base Cost data accepts an input file at the item-location-date-
supplier level using the file specification for COST.csv. It assumes the file has already been
moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the file into
a preprocessing table in the database, transforms it to RI’s internal staging tables, then loads it
into the base fact (item/location/day). This process is only for the base cost, a separate
process loads the net cost, if required.

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch is going to run.
Alternatively, you can include the full snapshots of data in your very first nightly batch
and skip the seeding steps. This causes the nightly batch to take a significantly
longer time to execute but avoids the manual load processes for all the positional
facts.

Key Tables Affected

Table Usage

W_COST_FTS File Input

W_RTL_BCOST_IT_LC_DY_FS Staging

W_RTL_BCOST_IT_LC_G Output

W_RTL_BCOST_IT_LC_DY_F Output

Initial Base Cost Seeding (Legacy)

Module Name SEED_W_RTL_BCOST_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of base cost data from
W_RTL_BCOST_IT_LC_DY_FS.dat to initialize the positional data before a
nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Base Cost data accepts an input file at the item-location-date-
supplier level using the file specification for W_RTL_BCOST_IT_LC_DY_FS.dat. It assumes the file

Chapter 2
Initial Base Cost Seeding (Legacy)

2-16

has already been moved into place using the HIST_ZIP_FILE_LOAD_ADHOC process. This
process imports the file into a preprocessing table in the database, transforms it to RI’s internal
staging tables, then loads it into the base fact (item/location/day).

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your very first nightly batch
and skip the seeding steps. This causes the nightly batch to take a significantly
longer time to execute but avoids the manual load processes for all the positional
facts.

Key Tables Affected

Table Usage

W_RTL_BCOST_IT_LC_DY_FS Staging

W_RTL_BCOST_IT_LC_G Output

W_RTL_BCOST_IT_LC_DY_F Output

Initial Calendar Load

Module Name CALENDAR_LOAD_ADHOC

Description Runs all calendar creation and load processes to set up or update the
system and fiscal calendars in the data warehouse. Runs the table
partitioning for all date-based partitions.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Initial System Setup

Design Overview
The calendar load ad hoc process performs all the necessary stage, transform, and load jobs
to set up the data warehouse calendars. It also performs the table partitioning that is driven by
the calendar definition. It takes as input:

1. A calendar data file (CALENDAR.csv) uploaded and unpacked using the
HIST_ZIP_FILE_LOAD_ADHOC process

2. Optional last-year mapping files to define shifted and unshifted calendars when reporting
on LY data

3. System calendar start and end dates in C_ODI_PARAM
4. Partition configurations in C_MODULE_ARTIFACT
The calendar data must be in the form of a fiscal calendar (for example, a 4-5-4 or 13-period
calendar). It must be at the period level of detail (not the day level) and should include start
and end date ranges for the period, quarter, and year levels on each record. The RAP data
warehouse currently supports a single, hard-coded calendar ID (Retail Calendar~41) that
should be used in the file’s first column (MCAL_CAL_ID). Optional mapping files for this-year-to-

Chapter 2
Initial Calendar Load

2-17

last-year mappings may be provided if the business uses a custom definition of LY in reporting
and analytics. These mappings control which range of dates are returned when pulling LY
metrics in RI, such as when a fiscal week in the current year should be mapped to a different
week in LY. Default mappings are created by the process if no data is provided.

This process populates the Gregorian system calendar at the same time the fiscal calendar is
loaded. The Gregorian calendar requires additional start and end date parameters from
C_ODI_PARAM to define the time range to generate. It must be greater than the range of time in
the fiscal calendar. The calendar generation process does not support a 53-week year as the
starting year, so it’s recommended to make the start date of the Gregorian calendar at least 1
year earlier than the start of the fiscal calendar, which avoids improperly formed data in the
fiscal calendar if the 53-week year is the first year.

Output tables that start with W_MCAL_ are mainly used for fiscal calendar generation, while the
other tables such as W_DAY_D are used for the Gregorian calendar. All output tables must be
successfully populated with calendar data in order to use the platform. Validate the data closely
after running this process to ensure nothing is missing or incorrect in the generated calendar
data.

Key Tables Affected

Table Usage

W_MCAL_PERIOD_DTS Input

W_RTL_MCAL_DAY_SHIFT_DS Input

W_RTL_MCAL_DAY_UNSHIFT_DS Input

W_RTL_MCAL_DAY_GUNSHIFT_DS Input

W_RTL_MCAL_WEEK_SHIFT_DS Input

W_RTL_MCAL_WEEK_UNSHIFT_DS Input

W_MCAL_PERIOD_DS Staging

W_TIME_OF_DAY_D Output

W_DAY_D Output

W_YEAR_D Output

W_QTR_D Output

W_MONTH_D Output

W_WEEK_D Output

W_MINUTE_OF_DAY_D Output

W_MCAL_CONFIG_G Output

W_MCAL_CAL_D Output

W_MCAL_PERIOD_D Output

W_MCAL_DAY_D Output

W_MCAL_WEEK_D Output

W_MCAL_YEAR_D Output

W_MCAL_QTR_D Output

W_RTL_MCAL_DAY_SHIFT_D Output

W_RTL_MCAL_DAY_UNSHIFT_D Output

W_RTL_MCAL_DAY_GUNSHIFT_D Output

W_RTL_MCAL_DAY_CUSTOM_D Output

Chapter 2
Initial Calendar Load

2-18

Table Usage

W_RTL_MCAL_WEEK_SHIFT_D Output

W_RTL_MCAL_WEEK_UNSHIFT_D Output

W_RTL_MCAL_PERIOD_SHIFT_D Output

W_RTL_MCAL_PERIOD_UNSHIFT_D Output

Initial Calendar Staging (Legacy)

Module Name CALENDAR_STG_LOAD_ADHOC

Description Stages the W_MCAL_PERIOD_DS.dat file for the ad hoc calendar load
programs.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Initial System Setup

Design Overview
This process looks for the W_MCAL_PERIOD_DS.dat file placed on the server by a history zip file
upload and imports it to a staging table for use in the CALENDAR_LOAD_ADHOC process.

Key Tables Affected

Table Usage

W_MCAL_PERIODS_DS File Input

Initial Competitor Price Seeding

Module Name SEED_W_RTL_COMP_PRICE_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of competitor price data from
W_RTL_COMP_PRICE_IT_LC_DY_FS.dat to initialize the positional data
before a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Competitor Price fact data accepts an input file at the item-
location-competitor store-date level using the file specification for
W_RTL_COMP_PRICE_IT_LC_DY_FS.dat. It assumes the file has already been moved into place
by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the file into a staging table,
then loads it into the base fact (item/location/comp store/day).

Chapter 2
Initial Calendar Staging (Legacy)

2-19

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your very first nightly batch
and skip the seeding steps. This causes the nightly batch to take a significantly
longer time to execute but avoids the manual load processes for all the positional
facts.

Key Tables Affected

Table Usage

W_RTL_COMP_PRICE_IT_LC_DY_FS File Input

W_RTL_COMP_PRICE_IT_LC_DY_F Output

W_RTL_COMP_STORE_DS File Input

W_RTL_COMP_STORE_D Output

Initial Dimension Load

Module Name RI_DIM_INITIAL_ADHOC

Description Runs all core dimension load programs in AIF DATA schedule in POM to
stage, transform, and load dimension data to the foundation data
warehouse tables.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process runs the dimension load programs needed to initialize the data model with the
core dataset needed for history and seed loads. Not all dimensions supported by RI or AIF are
part of the initial load process, only those that are used in some way for history or downstream
application processing. The process will stage and load all the files in a single flow; no other
processes are needed to load the dimensions. The jobs used by the process are the same as
the ones in the nightly batch so this also validates the file quality and correctness.

The process has three distinct types of jobs:

• File import jobs that take a CSV input and load it to the database pre-staging tables
(usually tables ending in DTS or FTS)

• Staging jobs that transform the raw inputs to the required formats and perform any
defaulting of values on data columns

• Load jobs that move the staging data to internal target tables

The tables below are broken out by each type, so you can review the inputs and outputs for
each block of jobs.

Chapter 2
Initial Dimension Load

2-20

Files to Pre-Staging Tables

Input File Output Table

PRODUCT.csv W_PRODUCT_DTS

PRODUCT_ALT.csv W_PRODUCT_ALT_DTS

ORGANIZATION.csv W_INT_ORG_DTS

ORGANIZATION_ALT.csv W_ORGANIZATION_ALT_DTS

EXCH_RATE.csv W_EXCH_RATE_DTS

CALENDAR.csv W_MCAL_PERIODS_DTS

SUPPLIER.csv W_SUPPLIER_DTS

EMPLOYEE.csv W_EMPLOYEE_DTS

PROD_LOC_ATTR.csv W_PROD_LOC_ATTR_DTS

PROD_LOC_REPL.csv W_INVENTORY_PRODUCT_ATTR_DTS

ATTR.csv W_ATTR_DTS

PROD_ATTR.csv W_PRODUCT_ATTR_DTS

SEASON.csv W_RTL_SEASON_PHASE_DTS

PROD_SEASON.csv W_RTL_SEASON_PHASE_IT_DTS

STORE_COMP.csv W_RTL_LOC_COMP_MTX_DTS

CODES.csv W_RTL_CODE_DTS

PROD_PACK.csv W_RTL_ITEM_GRP2_DTS

DIFF_GROUP.csv W_DIFF_GROUP_DTS

ADJUSTMENT.csv W_ADJUSTMENT_FTS

PROMOTION.csv W_RTL_PROMO_EXT_DTS

PROMO_DETAIL.csv W_RTL_PROMO_IT_LC_DTS

ORDER_HEAD.csv W_ORDER_HEAD_FTS

REPL_DISTRO.csv W_RTL_REPL_DISTRO_IT_LC_DS

REPL_REV_INT.csv W_RTL_REPL_REV_INT_IT_LC_DS

REPL_LT_INT.csv W_RTL_REPL_LT_INT_IT_LC_DS

Pre-Staging to Staging Tables
These processes apply all of the transformation scripts needed to take simplified interface (SI)
data for dimensions and map it to the internal data model staging tables. The simplified
interfaces are a one-to-many mapping to the internal data warehouse structures for
dimensions, so this intermediate step is required to transform the incoming data and make it
usable downstream.

Input Table Output Table

W_PRODUCT_DTS W_PROD_CAT_DHS

W_PRODUCT_DTS W_PRODUCT_ATTR_DS

W_PRODUCT_DTS W_PRODUCT_DS

W_PRODUCT_DTS W_PRODUCT_DS_TL

W_PRODUCT_DTS W_RTL_PRODUCT_BRAND_DS

Chapter 2
Initial Dimension Load

2-21

Input Table Output Table

W_PRODUCT_DTS W_RTL_PRODUCT_BRAND_DS_TL

W_PRODUCT_DTS W_RTL_IT_SUPPLIER_DS

W_PRODUCT_DTS W_DOMAIN_MEMBER_DS_TL

W_PRODUCT_ALT_DTS W_PRODUCT_FLEX_DS

W_INT_ORG_DTS W_INT_ORG_DS

W_INT_ORG_DTS W_INT_ORG_DS_TL

W_INT_ORG_DTS W_INT_ORG_DHS

W_INT_ORG_DTS W_DOMAIN_MEMBER_DS_TL

W_INT_ORG_DTS W_RTL_CHANNEL_DS

W_INT_ORG_DTS W_INT_ORG_ATTR_DS

W_INT_ORG_DTS W_RTL_CHANNEL_CNTRY_DS

W_ORGANIZATION_ALT_DTS W_ORGANIZATION_FLEX_DS

W_EXCH_RATE_DTS W_EXCH_RATE_GS

W_MCAL_PERIODS_DTS W_MCAL_PERIOD_DS

W_SUPPLIER_DTS W_PARTY_ATTR_DS

W_SUPPLIER_DTS W_PARTY_ORG_DS

W_EMPLOYEE_DTS W_EMPLOYEE_DS

W_PROD_LOC_ATTR_DTS W_RTL_IT_LC_DS

W_INVENTORY_PRODUCT_ATTR_DTS W_INVENTORY_PRODUCT_ATTR_DS

W_ATTR_DTS W_RTL_PRODUCT_ATTR_DS

W_ATTR_DTS W_RTL_PRODUCT_ATTR_DS_TL

W_ATTR_DTS W_DOMAIN_MEMBER_DS_TL

W_ATTR_DTS W_RTL_PRODUCT_COLOR_DS

W_PRODUCT_ATTR_DTS W_RTL_ITEM_GRP1_DS

W_RTL_SEASON_PHASE_DTS W_RTL_SEASON_DS

W_RTL_SEASON_PHASE_DTS W_RTL_PHASE_DS

W_RTL_SEASON_PHASE_DTS W_DOMAIN_MEMBER_DS_TL

W_RTL_SEASON_PHASE_IT_DTS W_RTL_SEASON_PHASE_IT_DS

W_RTL_LOC_COMP_MTX_DTS W_RTL_LOC_COMP_MTX_DS

W_RTL_CODE_DTS W_RTL_CODE_DS

W_RTL_ITEM_GRP2_DTS W_RTL_ITEM_GRP2_DS

W_DIFF_GROUP_DTS W_RTL_DIFF_GRP_DS

W_DIFF_GROUP_DTS W_RTL_DIFF_GRP_DS_TL

W_ADJUSTMENT_FTS W_REASON_DS

W_ADJUSTMENT_FTS W_DOMAIN_MEMBER_DS_TL

W_RTL_PROMO_EXT_DTS W_RTL_PROMO_EXT_DS

W_RTL_PROMO_IT_LC_DTS W_RTL_PROMO_IT_LC_DS

W_ORDER_HEAD_FTS W_RTL_PO_DETAILS_DS

Chapter 2
Initial Dimension Load

2-22

Staging to Target Tables

Input Table Output Table

W_DOMAIN_MEMBER_DS_TL W_DOMAIN_MEMBER_LKP_TL

W_EMPLOYEE_DS W_EMPLOYEE_D

W_EXCH_RATE_GS W_EXCH_RATE_G

W_INT_ORG_DS W_INT_ORG_D

W_INT_ORG_DHS W_INT_ORG_DH

W_ORGANIZATION_FLEX_DS W_ORGANIZATION_FLEX_D

W_PARTY_ATTR_DS W_PARTY_ATTR_D

W_PARTY_ORG_DS W_PARTY_ORG_D

W_PARTY_PER_DS W_PARTY_PER_D

W_PROD_CAT_DHS W_PROD_CAT_DH

W_PRODUCT_ATTR_DS W_PRODUCT_ATTR_D

W_PRODUCT_DS W_PRODUCT_D

W_PRODUCT_FLEX_DS W_PRODUCT_FLEX_D

W_REASON_DS W_REASON_D

W_RTL_ALC_DETAILS_DS W_RTL_ALC_DETAILS_D

W_RTL_BUYER_DS W_RTL_BUYER_D

W_RTL_CHANNEL_DS W_RTL_CHANNEL_D

W_RTL_CHANNEL_CNTRY_DS W_RTL_CHANNEL_CNTRY_D

W_RTL_CO_HEAD_DS W_RTL_CO_HEAD_D

W_RTL_CO_LINE_DS W_RTL_CO_LINE_D

W_RTL_CO_SHIP_METHOD_DS W_RTL_CO_SHIP_METHOD_D

W_RTL_CO_SHIP_TYPE_DS W_RTL_CO_SHIP_TYPE_D

W_RTL_COMP_STORE_DS W_RTL_COMP_STORE_D

W_RTL_CONS_METADATA_GS W_RTL_CONS_METADATA_G

W_RTL_COUPON_DS W_RTL_COUPON_D

W_RTL_DIFF_GRP_DS W_RTL_DIFF_GRP_D

W_RTL_DIFF_RNG_DS W_RTL_DIFF_RNG_D

W_RTL_DISCOUNT_TYPE_DS W_RTL_DISCOUNT_TYPE_D

W_RTL_IT_SUPPLIER_DS W_RTL_IT_SUPPLIER_D

W_RTL_ITEM_GRP1_DS W_RTL_ITEM_GRP1_D

W_RTL_LOC_STOCK_CNT_DS W_RTL_LOC_STOCK_CNT_D

W_RTL_ORG_FIN_DS W_RTL_ORG_FIN_D

W_RTL_PHASE_DS W_RTL_PHASE_D

W_RTL_PO_DETAILS_DS W_RTL_PO_DETAILS_D

W_RTL_PRICE_CLR_IT_LC_DS W_RTL_PRICE_CLR_IT_LC_D

W_RTL_PRODUCT_ATTR_DS W_RTL_PRODUCT_ATTR_D

W_RTL_PRODUCT_BRAND_DS W_RTL_PRODUCT_BRAND_D

W_RTL_PROMO_DS_TL W_RTL_PROMO_D_TL

Chapter 2
Initial Dimension Load

2-23

Input Table Output Table

W_RTL_PROMO_IT_LC_DS W_RTL_PROMO_IT_LC_D

W_RTL_PROMO_CE_IT_LC_DS W_RTL_PROMO_IT_LC_D

W_RTL_REPL_DISTRO_IT_LC_DS W_RTL_REPL_DISTRO_IT_LC_D

W_RTL_REPL_REV_INT_IT_LC_DS W_RTL_REPL_REV_INT_IT_LC_D

W_RTL_REPL_LT_INT_IT_LC_DS W_RTL_REPL_LT_INT_IT_LC_D

W_RTL_SEASON_DS W_RTL_SEASON_D

W_RTL_SEASON_PHASE_IT_DS W_RTL_SEASON_PHASE_IT_D

W_RTL_TNDR_TYPE_DS W_RTL_TNDR_TYPE_D

W_STATUS_DS W_STATUS_D

Initial Dimension Staging (Legacy)

Module Name LOAD_DIM_INITIAL_STAGE_ADHOC

Description Stages all of the dimension DAT files from the server for initial data loads
into the database.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process looks for all legacy DAT files for dimensions placed on the server by a history ZIP
file upload and move them into staging tables in the data warehouse for use by the
RI_DIM_INITIAL_ADHOC process. You cannot use both the CSV and DAT staging processes for
the same data, as they overwrite each other. However, you may use this process to load DAT
files for an interface where a CSV file does not exist, such as W_PARTY_PER_DS.dat.

Key Tables Affected

Table Usage

RA_SRC_CURR_PARAM_G File Input

W_CODE_DS File Input

W_DOMAIN_MEMBER_DS_TL File Input

W_EMPLOYEE_DS File Input

W_EXCH_RATE_GS File Input

W_INT_ORG_ATTR_DS File Input

W_INT_ORG_DHS File Input

W_INT_ORG_DS File Input

W_INT_ORG_DS_TL File Input

W_PARTY_ATTR_DS File Input

W_PARTY_ORG_DS File Input

W_PARTY_PER_DS File Input

Chapter 2
Initial Dimension Staging (Legacy)

2-24

Table Usage

W_PROD_CAT_DHS File Input

W_PRODUCT_ATTR_DS File Input

W_PRODUCT_DS File Input

W_PRODUCT_DS_TL File Input

W_REASON_DS File Input

W_RTL_ALC_DETAILS_DS File Input

W_RTL_BUYER_DS File Input

W_RTL_CHANNEL_DS File Input

W_RTL_CO_HEAD_DS File Input

W_RTL_CO_LINE_DS File Input

W_RTL_CO_SHIP_METHOD_DS File Input

W_RTL_CO_SHIP_TYPE_DS File Input

W_RTL_CODE_DS File Input

W_RTL_COMP_STORE_DS File Input

W_RTL_COUPON_DS File Input

W_RTL_COUPON_DS_TL File Input

W_RTL_DIFF_GRP_DS File Input

W_RTL_DIFF_GRP_DS_TL File Input

W_RTL_DIFF_RNG_DS File Input

W_RTL_DIFF_RNG_DS_TL File Input

W_RTL_DISCOUNT_TYPE_DS File Input

W_RTL_IT_SUPPLIER_DS File Input

W_RTL_ITEM_GRP1_DS File Input

W_RTL_LOC_STOCK_CNT_DS File Input

W_RTL_ORG_FIN_DS File Input

W_RTL_PARTY_PER_ATTR_DS File Input

W_RTL_PHASE_DS File Input

W_RTL_PO_DETAILS_DS File Input

W_RTL_PRICE_CLR_IT_LC_DS File Input

W_RTL_PROD_HIER_ATTR_LKP_DHS File Input

W_RTL_PRODUCT_BRAND_DS File Input

W_RTL_PRODUCT_BRAND_DS_TL File Input

W_RTL_PROMO_CE_DS File Input

W_RTL_PROMO_CE_IT_LC_DS File Input

W_RTL_PROMO_DS File Input

W_RTL_PROMO_DS_TL File Input

W_RTL_PROMO_EXT_DS File Input

W_RTL_SEASON_DS File Input

W_RTL_SEASON_PHASE_IT_DS File Input

W_RTL_TNDR_TYPE_DS File Input

Chapter 2
Initial Dimension Staging (Legacy)

2-25

Table Usage

W_STATUS_DS File Input

Initial Inventory Seeding

Module Name SEED_CSV_W_RTL_INV_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of inventory data from INVENTORY.csv to initialize
the positional data before a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Inventory data accepts an input file at the item-location-date level
using the file specification for INVENTORY.csv. It assumes the file has already been moved into
place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the file into a
preprocessing table in the database, transforms it to internal staging tables, then loads it into
the base fact (item/location/day).

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your first nightly batch and
skip the seeding steps. This causes the nightly batch to take a significantly longer
time to execute, but avoids the manual load processes for all the positional facts.

Key Tables Affected

Table Usage

W_RTL_INV_IT_LC_DY_FTS File Input

W_RTL_INV_IT_LC_DY_FS Staging

W_RTL_INV_IT_LC_G Output

W_RTL_INV_IT_LC_DY_F Output

Initial Inventory Seeding (Legacy)

Module Name SEED_W_RTL_INV_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of inventory data from
W_RTL_INV_IT_LC_DY_FS.dat to initialize the positional data before a
nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Chapter 2
Initial Inventory Seeding

2-26

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Inventory data accepts an input file at the item-location-date level
using the file specification for W_RTL_INV_IT_LC_DY_FS.dat. It assumes the file has already
been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the
file to internal staging tables, then load it into the base fact (item/location/day).

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your very first nightly batch
and skip the seeding steps. This causes the nightly batch to take a significantly
longer time to execute but avoids the manual load processes for all the positional
facts.

Key Tables Affected

Table Usage

W_RTL_INV_IT_LC_DY_FS File Input

W_RTL_INV_IT_LC_G Output

W_RTL_INV_IT_LC_DY_F Output

Initial Net Cost Seeding

Module Name SEED_CSV_W_RTL_NCOST_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of net cost data from COST.csv to initialize the
positional data before a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Net Cost data accepts an input file at the item-location-date-
supplier level using the file specification for COST.csv. It assumes the file has already been
moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the file into
a preprocessing table in the database, transforms it to internal staging tables, then loads it into
the base fact (item/location/day). This process is only for the net cost; a separate process
loads the base cost, if required.

Chapter 2
Initial Net Cost Seeding

2-27

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your very first nightly batch
and skip the seeding steps. This causes the nightly batch to take a significantly
longer time to execute, but avoids the manual load processes for all the positional
facts.

Key Tables Affected

Table Usage

W_COST_FTS File Input

W_RTL_NCOST_IT_LC_DY_FS Staging

W_RTL_NCOST_IT_LC_G Output

W_RTL_NCOST_IT_LC_DY_F Output

Initial Net Cost Seeding (Legacy)

Module Name SEED_W_RTL_NCOST_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of net cost data from
W_RTL_NCOST_IT_LC_DY_FS.dat to initialize the positional data before a
nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Net Cost data accepts an input file at the item-location-date-
supplier level using the file specification for W_RTL_NCOST_IT_LC_DY_FS.dat. It assumes the file
has already been moved into place using the HIST_ZIP_FILE_LOAD_ADHOC process. This
process imports the file into a preprocessing table in the database, transforms it to internal
staging tables, then loads it into the base fact (item/location/day).

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your very first nightly batch
and skip the seeding steps. This causes the nightly batch to take a significantly
longer time to execute, but avoids the manual load processes for all the positional
facts.

Chapter 2
Initial Net Cost Seeding (Legacy)

2-28

Key Tables Affected

Table Usage

W_RTL_NCOST_IT_LC_DY_FS File Input

W_RTL_NCOST_IT_LC_G Output

W_RTL_NCOST_IT_LC_DY_F Output

Initial Price Seeding

Module Name SEED_CSV_W_RTL_PRICE_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of price data from PRICE.csv to initialize the
positional data before a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Price data accepts an input file at the item-location-date level
using the file specification for PRICE.csv. It assumes the file has already been moved into
place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the file into a
preprocessing table in the database, transforms it to internal staging tables, then loads it into
the base fact (item/location/day).

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your very first nightly batch
and skip the seeding steps. This causes the nightly batch to take a significantly
longer time to execute, but avoids the manual load processes for all the positional
facts.

Key Tables Affected

Table Usage

W_RTL_PRICE_IT_LC_DY_FTS File Input

W_RTL_PRICE_IT_LC_DY_FS Staging

W_RTL_PRICE_IT_LC_G Output

W_RTL_PRICE_IT_LC_DY_F Output

Chapter 2
Initial Price Seeding

2-29

Initial Price Seeding (Legacy)

Module Name SEED_W_RTL_PRICE_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of price data from W_RTL_PRICE_IT_LC_DY_FS.dat
to initialize the positional data before a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Price data accepts an input file at the item-location-date level
using the file specification for W_RTL_PRICE_IT_LC_DY_FS.dat. It assumes the file has already
been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the
file into a staging table, then loads it into the base fact (item/location/day).

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your very first nightly batch
and skip the seeding steps. This causes the nightly batch to take a significantly
longer time to execute but avoids the manual load processes for all the positional
facts.

Key Tables Affected

Table Usage

W_RTL_PRICE_IT_LC_DY_FS File Input

W_RTL_PRICE_IT_LC_G Output

W_RTL_PRICE_IT_LC_DY_F Output

Initial Purchase Order Seeding

Module Name SEED_CSV_W_RTL_PO_ONORD_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of purchase order data from ORDER_HEAD.csv and
ORDER_DETAIL.csv to initialize the positional data before a nightly batch can
be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business
Activity

Nightly Batch Preparation

Chapter 2
Initial Price Seeding (Legacy)

2-30

Design Overview
The seeding load process for Purchase Order data accepts two input files at the order header
and order detail levels using the file specifications for ORDER_HEAD.csv and ORDER_DETAIL.csv.
It assumes the files have already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC
process. This process imports the files into preprocessing tables in the database, transforms
them to internal staging tables, then loads them into the base dimension and facts. The
dimension is loaded first to support loading the fact table against those foreign keys.

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
purchase orders and item/location combinations that should have a starting position
for this fact. The seeding process must load data for the day before the nightly batch
runs. Alternatively, you can include the full snapshots of data in your very first nightly
batch and skip the seeding steps. This causes the nightly batch to take a significantly
longer time to execute but avoids the manual load processes for all the positional
facts.

Key Tables Affected

Table Usage

W_ORDER_HEAD_FTS File Input

W_RTL_PO_DETAILS_DS Staging

W_RTL_PO_DETAILS_D Output

W_ORDER_DETAIL_FTS File Input

W_RTL_PO_ONORD_IT_LC_DY_FS Staging

W_RTL_PO_ONORD_IT_LC_DY_F Output

Initial Purchase Order Seeding (Legacy)

Module Name SEED_W_RTL_PO_ONORD_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of purchase order data from
W_RTL_PO_ONORD_IT_LC_DY_FS.dat to initialize the positional data before
a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Purchase Order fact data accepts an input file at the item-
location-date level using the file specification for W_RTL_PO_ONORD_IT_LC_DY_FS.dat. It
assumes the file has already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC
process. This process imports the file into a staging table, then loads it into the base fact (item/
location/day). It assumes the dimension has already been loaded separately using the initial
dimension loads.

Chapter 2
Initial Purchase Order Seeding (Legacy)

2-31

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your very first nightly batch
and skip the seeding steps. This causes the nightly batch to take a significantly
longer time to execute but avoids the manual load processes for all the positional
facts

Key Tables Affected

Table Usage

W_RTL_PO_ONORD_IT_LC_DY_FS File Input

W_RTL_PO_ONORD_IT_LC_DY_F Output

Initial Purchase Order Allocation Seeding

Module Name SEED_W_RTL_PO_ONALC_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of purchase order allocation data from
W_RTL_PO_ONALC_IT_LC_DY_FS.dat to initialize the positional data before
a nightly batch can be enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The seeding load process for Purchase Order Allocation fact data accepts an input file at the
item-location-date level using the file specification for W_RTL_PO_ONALC_IT_LC_DY_FS.dat. It
assumes the file has already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC
process. This process imports the file into a staging table, then loads it into the base fact (item/
location/day). It assumes the dimension has already been loaded separately using the initial
dimension loads.

Note:

Seeding processes require a full snapshot of data for a single date, which covers all
item/location combinations that should have a starting position for this fact. The
seeding process must load data for the day before the nightly batch runs.
Alternatively, you can include the full snapshots of data in your very first nightly batch
and skip the seeding steps. This causes the nightly batch to take a significantly
longer time to execute but avoids the manual load processes for all the positional
facts.

Chapter 2
Initial Purchase Order Allocation Seeding

2-32

Key Tables Affected

Table Usage

W_RTL_PO_ONALC_IT_LC_DY_FS File Input

W_RTL_PO_ONALC_IT_LC_DY_F Output

Intercompany Margin History Load

Module Name HIST_CSV_ICMARGIN_LOAD_ADHOC

Description Loads the IC_MARGIN.csv file into the data warehouse and populates key
data tables used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
The history load process for Intercompany Margin transactions accepts an input file at the item/
location/day level using the file specification for IC_MARGIN.csv. It assumes the file has already
been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the
file into a preprocessing table in the database, transforms it to RI’s internal staging tables, then
loads it into the base fact (item/location/day) as well as the week aggregate used for
integrations (item/location/week).

Key Tables Affected

Table Usage

W_RTL_ICM_IT_LC_DY_FTS File Input

W_RTL_ICM_IT_LC_DY_FS Staging

W_RTL_ICM_IT_LC_DY_F Output (Base Fact)

W_RTL_ICM_IT_LC_WK_A Output (Aggregate)

Inventory History Current Position Load

Module Name HIST_INV_GENERAL_LOAD_ADHOC

Description Copies the ending positions of inventory history for the last week into the
General (G) table for the purpose of testing the data and integrations
within RAP.

Dependencies HIST_INV_LOAD_ADHOC

Business Activity Nightly Batch Preparation

Design Overview
This process takes the final week of inventory data loaded using the HIST_INV_LOAD_ADHOC
process and copies it into the table for current inventory positions (W_RTL_INV_IT_LC_G). This

Chapter 2
Intercompany Margin History Load

2-33

program uses an INSERT statement, so it cannot be re-run multiple times without first truncating
the table. The purpose of this program is to test any integrations or reports that use this table
prior to actually running nightly batches, when it would normally be populated. The most
common use case is for Inventory Planning Optimization testing, which uses this table to get
the current inventory position during ad hoc and weekly batch runs.

Key Tables Affected

Table Usage

W_RTL_INV_IT_LC_DY_F Input

W_RTL_INV_IT_LC_G Output

Inventory History Load

Module Name HIST_INV_LOAD_ADHOC

Description Processes any staged inventory history data for end-of-week snapshots,
starting from the last processed week.

Dependencies HIST_STG_CSV_INV_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The inventory history load process supports loading of end-of-week inventory snapshots over a
long period of time to populate the data warehouse with historical data. It requires the inventory
data to already be staged into the database by one of the available staging processes. Multiple
weeks of inventory can be provided in a single file, though it is recommended to not load more
than one month at a time unless the volumes are low. Every record in the data must be for a
week-ending date; other dates in the file will not work using this process.

The C_HIST_LOAD_STATUS configuration table controls the actions taken by the process. Before
running the process for the first time, you must set up this table for the following:

• Set the history load date (HIST_LOAD_LAST_DATE) to be the very latest date you expect to
load history for (this can be changed later if needed to load more weeks). The date must
be a week-ending date and should have 00:00:00 as the timestamp after saving the date
to the database table..

• Disable any aggregate (_A) tables you do not wish to populate by setting ENABLED_IND to N.
When loading data only for AI Foundation or Planning, you only need the history temporary
table (W_RTL_INV_IT_LC_DY_HIST_TMP), base fact (W_RTL_INV_IT_LC_DY_F) and week
aggregate (W_RTL_INV_IT_LC_WK_A). For RI, all tables should be enabled and loaded.

Once setup is complete, begin processing files from the earliest week-ending date you plan to
load. You must start from the beginning of the history and load data sequentially. You cannot
load data out of order and you cannot load the same week multiple times without first erasing
the data from your database. After a week is loaded successfully, the C_HIST_LOAD_STATUS
records are updated with the most recent load status and date.

If you will be loading inventory history after you have already started nightly batches, then you
must also change two parameters in C_ODI_PARAM_VW from the Control Center:

Chapter 2
Inventory History Load

2-34

• INV_NIGHTLY_BATCH_IND – Change this to Y to indicate that nightly batches have been run
but you are planning to load history for prior dates.

• INV_LAST_HIST_LOAD_DT – Set this to the final week of history data you plan to load, which
must be a week-ending date and must be before the nightly batches were started.

Key Tables Affected

Table Usage

C_HIST_LOAD_STATUS Configuration

W_RTL_INV_IT_LC_DY_FS Input

W_RTL_INV_IT_LC_DY_F Output

W_RTL_INV_IT_LC_G Output

W_RTL_INV_IT_LC_GMH_A Output

W_RTL_INV_IT_LC_WK_A Output

W_RTL_INV_IT_RG_DY_A Output

W_RTL_INV_IT_DY_A Output

W_RTL_INV_IT_WK_A Output

W_RTL_INV_SC_LC_DY_A Output

W_RTL_INV_CL_LC_DY_A Output

W_RTL_INV_DP_LC_DY_A Output

W_RTL_INV_SC_LC_DY_CUR_A Output

W_RTL_INV_SC_DY_A Output

W_RTL_INV_SC_DY_CUR_A Output

W_RTL_INV_SC_LC_WK_A Output

W_RTL_INV_CL_LC_WK_A Output

W_RTL_INV_DP_LC_WK_A Output

W_RTL_INV_SC_LC_WK_CUR_A Output

W_RTL_INV_SC_WK_A Output

W_RTL_INV_SC_WK_CUR_A Output

Inventory History Staging

Module Name HIST_STG_CSV_INV_LOAD_ADHOC

Description Stages the INVENTORY.csv file for the ad hoc inventory load programs.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process looks for the INVENTORY.csv file placed on the server by a history zip file upload,
moves it into a preprocessing table, and transforms it for use by the HIST_INV_LOAD_ADHOC
process.

Chapter 2
Inventory History Staging

2-35

Note:

The inventory file used for history data must contain only week-ending dates and
must be full, weekly snapshots of data.

Key Tables Affected

Table Usage

W_RTL_INV_IT_LC_DY_FTS File Input

W_RTL_INV_IT_LC_DY_FS Output

Inventory History Staging (Legacy)

Module Name HIST_STG_INV_LOAD_ADHOC

Description Stages the W_RTL_INV_IT_LC_DY_FS.dat file for the ad hoc inventory
load programs.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process looks for the W_RTL_INV_IT_LC_DY_FS.dat file placed on the server by a history
ZIP file upload and loads it for use by the HIST_INV_LOAD_ADHOC process.

Note:

The inventory file used for history data must contain only week-ending dates and
must be full, weekly snapshots of data.

Key Tables Affected

Table Usage

W_RTL_INV_IT_LC_DY_FS File Input

Inventory Out of Stock Load

Module Name HIST_INV_OOS_LOAD_ADHOC

Description Stages and loads the INVENTORY_OOS.csv file for out of stock and outlier
indicators.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Chapter 2
Inventory History Staging (Legacy)

2-36

Design Overview
This process looks for the INVENTORY_OOS.csv file placed on the server by a history zip file
upload, moves it into a preprocessing table, and transforms it into the target table for use in AI
Foundation loads.

Note:

The inventory OOS file must contain only week-ending dates; other day dates will not
be accepted into the interface

Key Tables Affected

Table Usage

W_RTL_INVOOS_IT_LC_WK_FS Input

W_RTL_INVOOS_IT_LC_WK_F Output

Inventory Reclass History Load

Module Name HIST_CSV_INVRECLASS_LOAD_ADHOC

Description Loads the INV_RECLASS.csv file into the data warehouse and populates
key data tables used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Inventory Reclass transactions accepts an input file at the item/
location/day level using the file specification for INV_RECLASS.csv. It assumes the file has
already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process
imports the file into a preprocessing table in the database, transforms it to internal staging
tables, then loads it into the base fact (item/location/day) as well as the week aggregate used
for integrations (item/location/week).

Key Tables Affected

Table Usage

W_RTL_INVRECLASS_IT_LC_DY_FTS File Input

W_RTL_INVRECLASS_IT_LC_DY_FS Staging

W_RTL_INVRECLASS_IT_LC_DY_F Output (Base Fact)

W_RTL_INVRECLASS_IT_LC_WK_A Output (Aggregate)

Chapter 2
Inventory Reclass History Load

2-37

Inventory Refresh from Merchandising

Module Name RDE_INSERT_FULL_INV_POS_ADHOC

Description Prepares the RDE nightly extract for inventory positions to pull all
possible item/locations for the next run as a means of refreshing RAP
application inventory from the source without using separate ad hoc
jobs.

Dependencies None

Business Activity Nightly Batch Maintenance

Design Overview
This process contains only one job, which is named RDE_INSERT_FULL_INV_POS_JOB. The
purpose of this job is to query the Merchandising Foundation Cloud Service (MFCS) table
ITEM_LOC and extract all valid item/locations into a temporary table. The list of item/locations is
filtered to the same set of items that the nightly batch would allow from MFCS to RAP (only
active and approved items). The next time that the inventory position extract
RDE_EXTRACT_FACT_P7_INVILDSDE_JOB runs, it will include all of these item/locations even if
their inventory values did not change since yesterday. This process is only applicable when
MFCS is on version 23 or greater, as the job needs to directly query MFCS data that is being
replicated to the Analytics & Planning database.

Key Tables Affected

Table Usage

ITEM_LOC MFCS Source Table

ITEM_MASTER MFCS Source Table

RA_INV_IT_LC_EXT RDE Temp Table

Inventory Reload

Module Name INV_RELOAD_PROCESS_ADHOC

Description Provides an automated way to reload a single week of historical
inventory as a way of correcting bad data on the inventory position fact
table

Dependencies None

Business Activity Data Correction

Design Overview
This process contains only one job, which is named INV_RELOAD_JOB. This job deletes a week
of data from your inventory position fact tables and inserts the data found on
W_RTL_INV_IT_LC_DY_FS in its place. The process expects a single week of inventory data (with
DAY_DT equal to a week-ending date) to be loaded into the W_RTL_INV_IT_LC_DY_FS staging
table. This job deletes that specific week of data from the W_RTL_INV_IT_LC_DY_F and
W_RTL_INV_IT_LC_WK_A tables and then inserts the staging table data. If you then need to

Chapter 2
Inventory Refresh from Merchandising

2-38

move this data to downstream applications, you must also run the associated ad hoc
processes to load inventory data to those solutions.

This process is designed for customers that provide full weekly snapshots of their inventory
positions, such that deleting a week of data from the internal tables can be based solely on the
DAY_DT in the staging table and no other date. This job does not update the
W_RTL_INV_IT_LC_G current positions, as it assumes you are only trying to reload prior weeks
of inventory, not the current week. The data is assumed to be correct in W_RTL_INV_IT_LC_G; if
it is not, you must push in new inventory data using nightly batch processing to correct any
records in the current week. For example, if the current week has some non-zero positions that
need to be zeroed out after your data correction, you need to include those zero-balance rows
in a nightly batch file so they can be both applied to W_RTL_INV_IT_LC_G and updated for the
current week in the other data warehouse tables and downstream applications.

Key Tables Affected

Table Usage

W_RTL_INV_IT_LC_DY_FS Input Table

W_RTL_INV_IT_LC_DY_F Target Table

W_RTL_INV_IT_LC_WK_A Target Table

Inventory Selling Date Seeding

Module Name LOAD_W_RTL_INV_IT_LC_G_FIRST_SOLD_DT_ADHOC

Description Calculates the initial value of First Sold Date for all item/locations in
inventory, based on sales history data.

Dependencies SEED_CSV_W_RTL_INV_IT_LC_DY_F_PROCESS_ADHOC

Business Activity Historical Data Load

Design Overview
This process populates the fields W_RTL_INV_IT_LC_G.FIRST_SOLD_DT and LAST_SOLD_DT with
values, using your historical sales data to calculate the first time each item/location with stock
on hand was sold. This process should only run after all inventory and sales history is
completely loaded and you are ready to begin nightly batches. If this process does not run,
then all item/locations will start with a first/last selling date of the first transaction to occur on it
in nightly batch runs. These date values are used by the AI Foundation Cloud Services
(Lifecycle Pricing Optimization) as an input to determine item lifecycles from the history data in
RI.

Key Tables Affected

Table Usage

W_RTL_SLS_TRX_IT_LC_DY_F Input

W_RTL_INV_IT_LC_G Output

Chapter 2
Inventory Selling Date Seeding

2-39

Markdown History Load

Module Name HIST_CSV_MARKDOWN_LOAD_ADHOC

Description Loads the MARKDOWN.csv file into the data warehouse and populates key
data tables used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Markdown transactions accepts an input file at the item/
location/day level using the file specification for MARKDOWN.csv. It assumes the file has already
been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the
file into a preprocessing table in the database, transforms it to internal staging tables, then
loads it into the base fact (item/location/day) as well as the week aggregate used for
integrations (item/location/week).

Key Tables Affected

Table Usage

W_MARKDOWN_FTS File Input

W_RTL_MKDN_IT_LC_DY_FS Staging

W_RTL_MKDN_IT_LC_DY_F Output (Base Fact)

W_RTL_MKDN_IT_LC_WK_A Output (Aggregate)

Market Data Load

Module Name HIST_MARKET_LOAD_ADHOC

Description Loads all dimension and fact data relating to Market Items, Market Attributes,
and Market Sales subject areas. These tables are used for Retail Insights
reporting and Advanced Clustering (AC) analysis.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business
Activity

Historical Data Load

Design Overview
This process loads all the dimensions, facts, and aggregate tables relating to Market Data.
Market data comes from a non-Oracle source and represents consumer buying behavior and
products available on the market that are related to your own merchandise. It is used in Retail
Insights reporting, as well as specific metrics in Advanced Clustering where you may compare
performance of your store clusters against market performance in specific product categories.
Market data is updated infrequently, such as once a month or quarter, so you may choose to
exclude it from your nightly batches and only load it using this ad hoc process.

Chapter 2
Markdown History Load

2-40

Key Tables Affected

Input Table Target Table

W_RTL_MARKET_PRODUCT_DS W_RTL_MARKET_PRODUCT_D

W_RTL_MARKET_PROD_DHS W_RTL_MARKET_PROD_DH

W_RTL_MARKET_PRODUCT_DS_TL W_RTL_MARKET_PRODUCT_D_TL

W_RTL_MARKET_PROD_BRAND_DS_TL W_RTL_MARKET_PROD_BRAND_D_TL

W_RTL_MARKET_PRODUCT_MTX_DS W_RTL_MARKET_PRODUCT_MTX_D

W_RTL_MARKET_PROD_ATTR_DS W_RTL_MARKET_PROD_ATTR_D

W_RTL_MARKET_PROD_ATTR_MTX_DS W_RTL_MARKET_PROD_ATTR_MTX_D

W_RTL_MARKET_PROD_BRAND_DS W_RTL_MARKET_PROD_BRAND_D

W_RTL_MARKET_PROD_DH_MTX_DS W_RTL_MARKET_PROD_DH_MTX_D

W_RTL_MKTSLS_TA_CH_CNG_WK_FS W_RTL_MKTSLS_TA_CH_CNG_WK_F

W_RTL_MKTSLS_TA_CH_HG_WK_FS W_RTL_MKTSLS_TA_CH_HG_WK_F

W_RTL_MKTSLS_TA_CH_CNG_WK_F W_RTL_MKTSLS_TA_CMG_CS_QR_A

W_RTL_MKTSLS_TA_CH_CNG_WK_F W_RTL_MKTSLS_TA_CMG_QR_A

W_RTL_MKTSLS_TA_CH_CNG_WK_F W_RTL_MKTSLS_TA_CL_CS_QR_CUR_A

W_RTL_MKTSLS_TA_CH_CNG_WK_F W_RTL_MKTSLS_TA_CL_QR_CUR_A

Nightly Batch Status Cleanup

Module Name C_LOAD_DATES_CLEANUP_ADHOC

Description Erases the execution status of nightly batch programs. This is required to
run a nightly process outside of a batch.

Dependencies None

Business Activity Batch Administration

Design Overview
This process erases records from the C_LOAD_DATES database table. Any time a job runs as
part of the nightly batch, or a job runs that is included in both nightly and ad hoc processing, a
status record is inserted into C_LOAD_DATES. The job is then blocked from executing again while
this record exists, as a safety measure when restarting batch processes that failed midway
through execution. During initial dimension loads, you may need to execute the same jobs
multiple times to work through file or data issues. In that case, you may execute this process
before each run to clear the status of prior runs from the database.

Note:

This process should only run during history and initial data loads or at the guidance of
Oracle Support. It should not be run during regular nightly batch processing. Clearing
C_LOAD_DATES while the batch is running normally could cause data corruption, as it
would allow the same jobs to run multiple times for the same business date.

Chapter 2
Nightly Batch Status Cleanup

2-41

Key Tables Affected

Table Usage

C_LOAD_DATES Delete

Plan Data Integration

Module Name LOAD_PLANNING1_DATA_ADHOC
LOAD_PLANNING2_DATA_ADHOC
LOAD_PLANNING3_DATA_ADHOC
LOAD_PLANNING4_DATA_ADHOC
LOAD_PLANNING5_DATA_ADHOC

Description Extracts data from the MFP and AP Plan Export interfaces to RI's internal
planning tables.

Dependencies CLEANUP_C_LOAD_DATES_PLANNING_ADHOC

Business Activity RI Integrations

Design Overview
This set of processes moves Merchandise Financial Planning (MFP) and Assortment Planning
(AP) export data from the data exchange (RDX) layer to internal staging tables, then triggers
the AIF DATA load programs for planning data. Each process contains the end-to-end flow of
data for a single interface. Use these processes to perform integration testing and plan data
validations during an RI and MFP/AP implementation, or to trigger an on-demand refresh of
plan data in RI outside the normal batch cycle. If you run these on the same day as a normal
batch run, or you run them multiple times, you must run the cleanup process shown in the
dependencies prior to each run.

Key Tables Affected

Table Usage

MFP_PLAN1_EXP Input

W_RTL_PLAN1_PROD1_LC1_T1_FS Staging

W_RTL_PLAN1_PROD1_LC1_T1_F Output

MFP_PLAN2_EXP Input

W_RTL_PLAN2_PROD2_LC2_T2_FS Staging

W_RTL_PLAN2_PROD2_LC2_T2_F Output

MFP_PLAN3_EXP Input

W_RTL_PLAN3_PROD3_LC3_T3_FS Staging

W_RTL_PLAN3_PROD3_LC3_T3_F Output

MFP_PLAN4_EXP Input

W_RTL_PLAN4_PROD4_LC4_T4_FS Staging

W_RTL_PLAN4_PROD4_LC4_T4_F Output

AP_PLAN1_EXP Input

Chapter 2
Plan Data Integration

2-42

Table Usage

W_RTL_PLAN5_PROD5_LC5_T5_FS Staging

W_RTL_PLAN5_PROD5_LC5_T5_F Output

Planning Dimension Export

Module Name LOAD_PDS_DIMENSION_PROCESS_ADHOC

Description Exports all supported dimensions from the data warehouse to the data
exchange schema for Planning.

Dependencies RI_DIM_INITIAL_ADHOC

Business Activity RI Integrations

Design Overview
This process runs all the planning data schema dimension exports from the data warehouse to
the data exchange layer, where PDS batch processes can pick up and load the data the rest of
the way. Each time the exports run, the data is truncated and inserted as full snapshots.
Planning exports do not support incremental or delta extracts for dimensions. The programs
apply various filters and criteria to the export data to align with Planning Data Schema
requirements for dimensions, as described in the RAP Implementation Guide. The programs
only export specific columns from each dimension, based on the downstream application
needs. Review the PDS integration tables in detail to understand which data will be exported.

Key Tables Affected

Input Table Output Table

W_PRODUCT_D W_PDS_PRODUCT_D

W_PRODUCT_D_TL W_PDS_PRODUCT_D

W_PROD_CAT_DH W_PDS_PRODUCT_D

W_PRODUCT_ATTR_D W_PDS_PRODUCT_D

W_DOMAIN_MEMBER_LKP_TL W_PDS_PRODUCT_D

W_INT_ORG_D W_PDS_ORGANIZATION_D

W_INT_ORG_D_TL W_PDS_ORGANIZATION_D

W_INT_ORG_DH W_PDS_ORGANIZATION_D

W_DOMAIN_MEMBER_LKP_TL W_PDS_ORGANIZATION_D

W_INT_ORG_ATTR_D W_PDS_ORGANIZATION_D

W_MCAL_DAY_D W_PDS_CALENDAR_D

W_EXCH_RATE_G W_PDS_EXCH_RATE_G

W_RTL_ITEM_GRP1_D W_PDS_PRODUCT_ATTR_D

W_DOMAIN_MEMBER_LKP_TL W_PDS_PRODUCT_ATTR_D

W_RTL_PRODUCT_ATTR_D W_PDS_UDA_D

W_DOMAIN_MEMBER_LKP_TL W_PDS_UDA_D

W_RTL_PRODUCT_ATTR_D W_PDS_DIFF_D

Chapter 2
Planning Dimension Export

2-43

Input Table Output Table

W_RTL_PRODUCT_ATTR_D_TL W_PDS_DIFF_D

W_RTL_ITEM_GRP2_D W_PDS_PRODUCT_PACK_D

W_RTL_CUSTSEG_D W_PDS_CUSTSEG_D

W_INVENTORY_PRODUCT_ATTR_D W_PDS_REPL_ATTR_IT_LC_D

W_INT_ORG_D_CFA W_PDS_ORG_ATTR_STR_D

W_INT_ORG_ATTR_D W_PDS_ORG_ATTR_STR_D

W_ORGANIZATION_FLEX_D W_PDS_ORG_ATTR_STR_D

W_INT_ORG_D_CFA W_PDS_ORG_ATTR_NBR_D

W_INT_ORG_D_CFA W_PDS_ORG_ATTR_DT_D

W_PRODUCT_D_CFA W_PDS_PRODUCT_ATTR_STR_D

W_PRODUCT_D_CFA W_PDS_PRODUCT_ATTR_NBR_D

W_PRODUCT_D_CFA W_PDS_PRODUCT_ATTR_DT_D

W_RTL_IT_LC_D_CFA W_PDS_PROD_ORG_ATTR_STR_D

W_RTL_IT_LC_D_CFA W_PDS_PROD_ORG_ATTR_NBR_D

W_RTL_IT_LC_D_CFA W_PDS_PROD_ORG_ATTR_DT_D

Planning Fact Export

Module Name LOAD_PDS_FACT_PROCESS_ADHOC

Description Exports all supported facts from the data warehouse to the data
exchange schema for Planning.

Dependencies HIST_SALES_LOAD_ADHOC
HIST_INV_LOAD_ADHOC
HIST_CSV_ADJUSTMENTS_LOAD_ADHOC
HIST_CSV_INVRECEIPTS_LOAD_ADHOC
HIST_CSV_MARKDOWN_LOAD_ADHOC
HIST_CSV_INVRTV_LOAD_ADHOC
HIST_CSV_TRANSFER_LOAD_ADHOC
HIST_CSV_DEAL_INCOME_LOAD_ADHOC
HIST_CSV_ICMARGIN_LOAD_ADHOC
HIST_CSV_INVRECLASS_LOAD_ADHOC

Business Activity RI Integrations

Design Overview
This process runs all the planning data schema fact exports from the data warehouse to the
data exchange layer, where PDS batch processes pick up and load the data the rest of the
way. Each run of these jobs inserts to the target tables with a new RUN_ID. Old runs are
preserved for a configurable period of time (such as 7 days) to ensure PDS has adequate time
to retrieve the data before it is erased. All fact exports are incremental and send only the
current week’s data based on when it was posted into the data warehouse. This means the
exports include all back-posted transaction data regardless of the transaction date, as long as
it was posted to RI in the current fiscal week.

Chapter 2
Planning Fact Export

2-44

The range of dates exported by this process is tracked and configured from the table
C_SOURCE_CDC. This table can be edited from the Control & Tactical Center to alter the range of
dates exported in one batch execution, such as when you are sending historical data to MFP,
or when you need to refresh the PDS data for more than a week. The table is automatically
updated after every run to reflect the most recent export dates. The next export begins from
the last date/time used.

Key Tables Affected

Input Table Output Table

W_RTL_SLS_IT_LC_WK_A W_PDS_SLS_IT_LC_WK_A

W_RTL_SLS_IT_LC_WK_A W_PDS_GRS_SLS_IT_LC_WK_A

W_RTL_SLSWF_IT_LC_WK_A W_PDS_SLSWF_IT_LC_WK_A

W_RTL_INV_IT_LC_WK_A W_PDS_INV_IT_LC_WK_A

W_RTL_INVU_IT_LC_WK_A W_PDS_INVU_IT_LC_WK_A

W_RTL_PO_ONORD_IT_LC_DY_F W_PDS_PO_ONORD_IT_LC_WK_A

W_RTL_PO_ONORD_IT_LC_DY_F W_PDS_PO_ONORD_IT_LC_DY_F

W_RTL_MKDN_IT_LC_WK_A W_PDS_MKDN_IT_LC_WK_A

W_RTL_INVADJ_IT_LC_WK_A W_PDS_INVADJ_IT_LC_WK_A

W_RTL_INVRC_IT_LC_WK_A W_PDS_INVRC_IT_LC_WK_A

W_RTL_INVTSF_IT_LC_WK_A W_PDS_INVTSF_IT_LC_WK_A

W_RTL_INVRTV_IT_LC_WK_A W_PDS_INVRTV_IT_LC_WK_A

W_RTL_INVRECLASS_IT_LC_WK_A W_PDS_INVRECLASS_IT_LC_WK_A

W_RTL_DEALINC_IT_LC_WK_A W_PDS_DEALINC_IT_LC_WK_A

W_RTL_ICM_IT_LC_WK_A W_PDS_ICM_IT_LC_WK_A

W_RTL_TSF_IT_LC_DY_F W_PDS_TSF_IT_LC_DY_F

W_RTL_ALC_IT_LC_DY_F W_PDS_ALC_IT_LC_DY_F

Planning Initial Inventory Export

Module Name LOAD_PDS_FACT_INITIAL_PROCESS_ADHOC

Description Exports a full snapshot of historical inventory to the data exchange
schema for Planning.

Dependencies HIST_INV_LOAD_ADHOC

Business Activity RI Integrations

Design Overview
This process exports inventory history from the data warehouse to Planning. The base
inventory extract for PDS only sends the current week’s inventory, as the data is positional in
the data warehouse and the current week reflects all current values on the fact. This process
can send a range of weeks at one time by configuring the start date and end date in
C_SOURCE_CDC for this interface (where TABLE_NAME = W_RTL_INV_IT_LC_WK_A). The start and
end dates must be week-ending dates and must match a range of weeks loaded as inventory
history into RAP. If the job is run without configuring C_SOURCE_CDC with valid dates, it will fail
with the error “no data found”. All weeks of data are written for a single Run ID in the output

Chapter 2
Planning Initial Inventory Export

2-45

table. Running the PDS import process consumes the entire range of data into their inventory
facts.

Key Tables Affected

Table Usage

C_SOURCE_CDC Configuration

W_RTL_INV_IT_LC_WK_A Input

W_PDS_INV_IT_LC_WK_A Output

Planning Load Cleanup

Module Name CLEANUP_C_LOAD_DATES_PLANNING_ADHOC

Description Erases the execution status of planning batch programs. This is required
to run a program multiple times for the same business date.

Dependencies None

Business Activity RI Integrations

Design Overview
This process erases records from the C_LOAD_DATES database table. Any time a job runs as
part of the nightly batch, or a job is included in both nightly and ad hoc processing, a status
record is inserted into C_LOAD_DATES. The job is then blocked from executing again while this
record exists, as a safety measure when restarting batch processes that failed midway through
execution. During initial planning integration loads, you may need to execute the same jobs
multiple times to work through file or data issues. In that case, you may execute this process
before each run to clear the status of prior runs from the database.

Note:

This process should only run during history and initial data loads, or at the guidance
of Oracle Support. It should not run during regular nightly batch processing. Clearing
C_LOAD_DATES when the batch is running normally could cause data corruption, as it
would allow the same jobs to run multiple times for the same business date.

Key Tables Affected

Table Usage

C_LOAD_DATES Delete

POS Sales Integration

Module Name LOAD_POSLOG_DATA_ADHOC

Chapter 2
Planning Load Cleanup

2-46

Description Integrates data from Xstore, received through the POSLOG broadcaster
services, into the RI data model.

Dependencies None

Business Activity RI Integrations

Design Overview
Retail Insights supports loading intraday sales transactions from Xstore’s string-based XML
receiver API. The data loaded by this method is specifically for reporting today’s sales before
the end-of-day batch processes the full snapshot of audited sales transactions. The sales data
from Xstore is not used as a primary source of sales history in Retail Insights, as the system
was designed around the concept of a Sales Audit system being used prior to data coming into
the data warehouse.

The data first comes to the Retail AI Foundation Cloud Services from Xstore’s web service API.
The API is configured as part of the AI Foundation Cloud Services, but is used by Retail
Insights to get the raw XML POSLOGs into the database for transformation to the RI data
model. This process can then move the data from AI Foundation to RI staging tables, and from
there to RI’s internal data model for BI reports. Refer to the RI Implementation Guide for
additional details.

Key Tables Affected

Table Usage

W_RTL_POSLOG_XML_G Input

W_RTL_SLS_POS_IT_LC_DY_FS Staging

W_RTL_SLS_POS_IT_LC_DY_F Output

Price History Load

Module Name HIST_CSV_PRICE_LOAD_ADHOC

Description Loads the PRICE.csv file into the data warehouse and populates key data
tables used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The price history load process supports loading of price information over a long period of time
to populate the data warehouse with historical data. This process both stages the PRICE.csv
file into the database and processes it into RI. Multiple weeks of pricing data can be provided
in a single file, though it is recommended not to load more than one month at a time, unless
the volumes are low. Pricing data must start with a full snapshot of all item/locations on the
earliest day in history that you will be loading. This can be loaded by itself to validate the file is
formatted and the data is correct. From then on, you can provide only the price change events
on the dates that they occur (such as regular and markdown price changes). The price history
load will iterate through the provided files one day at a time and load the available price
change events for each date in order.

Chapter 2
Price History Load

2-47

The C_HIST_LOAD_STATUS configuration table determines the actions taken by the process.
Before running the process for the first time, you must set up this table for the history load date
to be the very latest date you expect to load history for (this can be changed later if needed to
load more weeks). Once that setup is complete, you can begin processing files from the
earliest date you plan to load. You must start from the beginning of the history and load it
sequentially. You cannot load data out of order, and you cannot load the same date multiple
times without first erasing the data from the database. After a date is loaded successfully, the
C_HIST_LOAD_STATUS records are updated with the most recent load status and date.

Key Tables Affected

Table Usage

W_RTL_PRICE_IT_LC_DY_FTS File Input

W_RTL_PRICE_IT_LC_DY_FS Staging

W_RTL_PRICE_IT_LC_DY_F Output

W_RTL_PRICE_IT_LC_G Output

Price History Load (Legacy)

Module Name HIST_PRICE_LOAD_ADHOC

Description Stages and loads the W_RTL_PRICE_IT_LC_DY_FS.dat file for pricing
history.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The price history load process supports loading of price information over a long period of time
to populate the data warehouse with historical data. This process stages the
W_RTL_PRICE_IT_LC_DY_FS.dat file into the database and processes it into RI. Multiple weeks
of pricing data can be provided in a single file, though it is recommended not to load more than
one month at a time unless the volumes are low. Pricing data must start with a full snapshot of
all item/locations on the earliest day in the history that you are loading. This can be loaded by
itself to validate the file is formatted and the data is correct. From then on, you can provide only
the price change events on the dates that they occur (such as regular and markdown price
changes). The price history load iterates through the provided files one day at a time and loads
the available price change events for each date in order.

The actions taken by the process are guided by the configuration table C_HIST_LOAD_STATUS.
Before running the process for the first time, you must set up this table for the history load date
to be the very latest date you expect to load history for (this can be changed later if needed to
load more weeks). Once that setup is complete, you can begin processing files from the
earliest date you plan to load. You must start from the beginning of the history and load it
sequentially. You cannot load data out of order and you cannot load the same date multiple
times without first erasing the data from your database. After a date is loaded successfully, the
C_HIST_LOAD_STATUS records are updated with the most recent load status and date.

Chapter 2
Price History Load (Legacy)

2-48

Key Tables Affected

Table Usage

W_RTL_PRICE_IT_LC_DY_FS Staging

W_RTL_PRICE_IT_LC_DY_F Output

W_RTL_PRICE_IT_LC_G Output

Promotion Budget Load

Module Name HIST_PROMO_FACT_LOAD_ADHOC

Description Loads promotion budget and actuals for use in Retail Insights reporting.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business
Activity

Historical Data Load

Design Overview
This process loads the promotion budget and promotion actuals fact tables. These tables are
only used in Retail Insights reporting and require that the promotion dimension W_RTL_PROMO_D
is already loaded using the initial dimension load process or nightly batch jobs.

Key Tables Affected

Table Usage

W_RTL_PRACT_IT_LC_DY_FS Staging

W_RTL_PRACT_IT_LC_DY_F Output

W_RTL_PRBDGT_IT_LC_FS Staging

W_RTL_PRBDGT_IT_LC_F Output

RDE Grants to APEX

Module Name RDE_GRANT_MFCS_TO_APEX_ADHOC

Description Refreshes the grants and synonyms for Merchandising replicated objects
that should be exposed to Innovation Workbench.

Dependencies None

Business Activity Historical Data Load

Design Overview
This process runs the job RDE_GRANT_MFCS_TO_APEX_JOB, which re-applies the necessary
grants and objects to allow a user to query Merchandising data from Innovation Workbench.
This process assumes that the environment is one in which Merchandising is version 22 or
later and the data is being actively replicated using Golden Gate to RAP.

Chapter 2
Promotion Budget Load

2-49

The synonyms are present in the RABE01USER user in the database; so, when querying
Merchandising objects, you may query a table like this:

select * from RABE01USER.ITEM_MASTER

Receipts History Load

Module Name HIST_CSV_INVRECEIPTS_LOAD_ADHOC

Description Loads the RECEIPT.csv file into the data warehouse and populates key
data tables used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Inventory Receipt transactions accepts an input file at the item/
location/day level using the file specification for RECEIPT.csv. It assumes the file has already
been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the
file into a preprocessing table in the database, transforms it to internal staging tables, then
loads it into the base fact (item/location/day) as well as the week aggregate used for
integrations (item/location/week).

Key Tables Affected

Table Usage

W_RECEIPT_FTS File Input

W_RTL_INVRC_IT_LC_DY_FS Staging

W_RTL_INVRC_IT_LC_DY_F Output (Base Fact)

W_RTL_INVRC_IT_LC_WK_A Output (Aggregate)

Rejected Record Analysis

Module Name W_RTL_REJECT_DIMENSION_TMP_ADHOC

Description Analyses rejected records in the pricing and inventory position facts for
any known causes of rejection, such as missing dimension keys for the
records, and outputs a summary for review.

Dependencies None

Business Activity Historical Data Load

Design Overview
The rejected record analysis ad hoc process provides a set of queries comparing rejected data
to all related dimensional tables. If any dimension keys are found on the rejected data but not
in the related tables, a summary of the comparison is output to a database table for review.
This tool can help debug invalid input data so it can be corrected and reprocessed. The ad hoc
job currently runs for the Sales Transaction, Inventory Position, and Pricing facts, which are the

Chapter 2
Receipts History Load

2-50

most common history loads performed. The job is run automatically for Inventory and Price
loads because they will fail if any records are rejected, but it requires manual setup and
execution for Sales Transaction analysis. The modules enabled for the job are listed in the
configuration table W_RTL_REJECT_DIMLKUP_TMP. The rejected dimension keys are output to
W_RTL_REJECT_DIMENSION_TMP.

To add the sales module before running the job for transaction loads, follow these steps:

1. Navigate to the Control & Tactical Center’s Manage System Configurations screen.

2. Locate the table C_MODULE_REJECT_TABLE and check whether there is already a row for
MODULE_CODE=SLS

3. If there is not a row for SLS, then add a new row with these values for the first 3 column:
SLS, E$_W_RTL_SLS_TRX_IT_LC_DY_TMP, W_RTL_SLS_TRX_IT_LC_DY_FS

To run the job from Postman, use the message body like below:

{
 "cycleName": "Adhoc",
 "flowName":"Adhoc",
 "processName":" W_RTL_REJECT_DIMENSION_TMP_ADHOC",
 "requestParameters":"jobParams. W_RTL_REJECT_DIMENSION_TMP_JOB=SLS 20230102
20230109"
}

The parameters for the job are the MODULE_CODE value from the configuration table followed by
start and end dates in YYYYMMDD format. The dates correspond to the load date that resulted in
rejected records on W_ETL_REJECTED_RECORDS. After you run the job, query
W_RTL_REJECT_DIMENSION_TMP to see the results.

Key Tables Affected

Table Usage

W_RTL_REJECT_DIMLKUP_TMP Configuration

W_RTL_REJECT_DIMENSION_TMP Output

Rejected Record Cleanup

Module Name REJECT_DATA_CLEANUP_ADHOC

Description Purges rejected records from certain E$ tables and populates a list of
invalid dimension keys present on the purged data. The invalid keys will
be ignored if a related fact history load process is re-run after failing due
to these rejections.

Dependencies None

Business Activity Historical Data Load

Design Overview
The rejected record cleanup ad hoc process provides a way to clear out rejected data for
positional fact history loads (currently inventory and price) that are blocked by having any
rejections. The data is erased from the E$ tables and any invalid keys that do not have

Chapter 2
Rejected Record Cleanup

2-51

matching dimensions are written to the C_DISCARD_DIMM output table. If you then re-run the
failed history job from POM, the job will ignore all of the discarded dimension keys and proceed
to load the rest of the data file for the current day/week of processing. It is important to note
that once you discard positional data in this manner, you cannot reload it later: you are
declaring the data as unwanted/unusable. If you instead want to reload your data file with
corrected records, you would not re-run your current history load job. You would go back and
reload dimension and fact files as needed and start a fresh job run.

This job requires an input parameter of INV or PRICE, which tells the job which fact to clean up.
The Postman body message format is below.

{
 "cycleName": "Adhoc",
 "flowName":"Adhoc",
 "processName":"REJECT_DATA_CLEANUP_ADHOC",
 "requestParameters":"jobParams.REJECT_DATA_CLEANUP_JOB=INV"
}

After doing the cleanup, check the C_HIST_LOAD_STATUS table to see where the history job
stopped processing. If all steps are marked COMPLETE and the TMP table has a later value for
the MAX_COMPLETED_DATE (for example, the TMP table has a date of 04/18/2021 and the other
tables show 04/11/2021) then you may simply rerun the POM job to resume the dataload. In
this scenario it will use the existing data in the HIST table for week of 04/18/2021 and continue
to load those records in the F/A tables (ignoring the dimensions which are discarded).

Key Tables Affected

Table Usage

E$_W_RTL_INV_IT_LC_DY_TMP1 Input

E$_W_RTL_PRICE_IT_LC_DP_TMP Input

C_DISCARD_DIMM Output

Reprocess CSV Files

Module Name CSV_REPROCESS_ADHOC

Description Reprocesses customer data files (with .csv file extensions) held in the
RI_REPROCESS_DATA.zip archive.

Dependencies REPROCESS_ZIP_FILE_PROCESS_ADHOC

Business Activity Batch Administration

Design Overview
This process provides an on-demand way to load data files that caused failures in the AIF
DATA nightly batch cycle and have a file extension of .csv; for example, you attempted to load
the file PRODUCT.csv, but the nightly batch failed on the job STG_SI_PRODUCT_JOB. The steps to
correct this issue and resume the batch are as follows:

1. Review and correct the file on your local server and generate a new PRODUCT.csv file, then
add it to RI_REPROCESS_DATA.zip.

Chapter 2
Reprocess CSV Files

2-52

2. Upload the ZIP file using FTS to the ris/incoming prefix, then run the AIF DATA process
REPROCESS_ZIP_FILE_PROCESS_ADHOC to load it. Verify that all jobs in the process complete
successfully before continuing.

3. Select the AIF DATA process CSV_REPROCESS_ADHOC, then locate the job named
COPY_SI_PRODUCT_JOB and run it.

4. If you want to verify the new file is correct, you may also run STG_SI_PRODUCT_JOB from
within the same process. You can also go directly back to the nightly batch cycle and re-
run the failed STG_SI_PRODUCT_JOB from there. Re-running the nightly batch job will attempt
to stage the file into the database and resume the batch.

Your batch may also fail on the job DIM_PROD_VALIDATOR_JOB, which means the PRODUCT.csv
file loaded successfully but there are other issues with the contents that cannot pass into the
data warehouse. When the batch fails here, run all of the steps above (COPY and STG jobs for
the file) plus all of the associated “simplified interface” or “SI” jobs that transform your CSV file
data into the internal database structures. In the case of PRODUCT.csv, these additional jobs are
one or more of the following, depending on what is enabled in your nightly batch:

• SI_W_PROD_CAT_DHS_JOB

• SI_W_PRODUCT_ATTR_DS_JOB

• SI_W_PRODUCT_DS_JOB

• SI_W_PRODUCT_DS_TL_JOB

• SI_W_RTL_IT_SUPPLIER_DS_JOB

• SI_W_RTL_PRODUCT_ATTR_IMG_DS_JOB

• SI_W_RTL_PRODUCT_BRAND_DS_JOB

• SI_W_RTL_PRODUCT_BRAND_DS_TL_JOB

After all the ad hoc jobs complete, return to the nightly batch cycle and re-run the failed
DIM_PROD_VALIDATOR_JOB. If the data issues are corrected, then the job will complete
successfully.

An alternative way to make data corrections specifically when a VALIDATOR job fails is to edit
the data directly from Innovation Workbench. For example, when the DIM_PROD_VALIDATOR_JOB
fails, instead of loading a new PRODUCT.csv file and re-running all of these jobs, you may
instead log into Innovation Workbench and execute SQLs against the records having an issue
in the staging tables, like W_PRODUCT_DS. This should only be done if you are familiar with the
data model and feel comfortable editing the data directly. This may allow you to complete the
current batch cycle faster, but you will still need to go back to your source system and correct
the file for tomorrow’s batch onwards.

Reprocess DAT Files

Module Name DAT_REPROCESS_ADHOC

Description Reprocesses customer data files (with .dat file extensions) in the
RI_REPROCESS_DATA.zip file.

Dependencies REPROCESS_ZIP_FILE_PROCESS_ADHOC

Business Activity Batch Administration

Chapter 2
Reprocess DAT Files

2-53

Design Overview
This process provides an on-demand way to load data files that caused failures in the AIF
DATA nightly batch cycle and have a .dat file extension. For example, you attempt to load the
file W_RTL_REPL_DAY_DS.dat but the nightly batch failed on the job
W_RTL_REPL_DAY_DS_STG_JOB. The steps to correct this issue and resume the batch process
are as follows:

1. Review and correct the file on your local server and generate a new
W_RTL_REPL_DAY_DS.dat file, then add it to RI_REPROCESS_DATA.zip

2. Upload the ZIP file using FTS to the ris/incoming prefix, then run the AIF DATA process
REPROCESS_ZIP_FILE_PROCESS_ADHOC to load it. Verify that all jobs in the process complete
successfully before continuing.

3. Select the AIF DATA process DAT_REPROCESS_ADHOC, then locate the
W_RTL_REPL_DAY_DS_COPY_JOB job and run it.

4. If you want to verify the new file is correct, run W_RTL_REPL_DAY_DS_STG_JOB from within the
same process. You can go directly back to the nightly batch cycle and re-run the failed
W_RTL_REPL_DAY_DS_STG_JOB from there. Re-running the nightly batch job will attempt to
stage the file into the database and resume the batch.

RTV History Load

Module Name HIST_CSV_INVRTV_LOAD_ADHOC

Description Loads the RTV.csv file into the data warehouse and populates key data
tables used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Inventory Returns to Vendor (RTV) transactions accepts an input
file at the item/location/day level using the file specification for RTV.csv. It assumes the file has
already been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process
imports the file into a preprocessing table in the database, transforms it to RI’s internal staging
tables, then loads it into the base fact (item/location/day) as well as the week aggregate used
for integrations (item/location/week).

Key Tables Affected

Table Usage

W_RTL_INVRTV_IT_LC_DY_FTS File Input

W_RTL_INVRTV_IT_LC_DY_FS Staging

W_RTL_INVRTV_IT_LC_DY_F Output (Base Fact)

W_RTL_INVRTV_IT_LC_WK_A Output (Aggregate)

Chapter 2
RTV History Load

2-54

RTV History Load (Legacy)

Module Name HIST_INVRTV_LOAD_ADHOC

Description Stages and loads the W_RTL_INVRTV_IT_LC_DY_FS.dat file for return-to-
vendor history.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Inventory Returns to Vendor (RTV) transactions accepts an input
file at the item/location/day level using the file specification for
W_RTL_INVRTV_IT_LC_DY_FS.dat. It assumes the file has already been moved into place by the
HIST_ZIP_FILE_LOAD_ADHOC process. This process will import the file into RI’s internal staging
tables and then load it into the base fact (item/location/day) as well as the week aggregate
used for integrations (item/location/week).

Key Tables Affected

Table Usage

W_RTL_INVRTV_IT_LC_DY_FS Staging

W_RTL_INVRTV_IT_LC_DY_F Output (Base Fact)

W_RTL_INVRTV_IT_LC_WK_A Output (Aggregate)

Sales History Load

Module Name HIST_SALES_LOAD_ADHOC

Description Processes any staged sales history data and runs all aggregation
programs for a specified history range.

Dependencies HIST_STG_CSV_SALES_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The sales history load process supports loading of sales transaction data over a long period of
time to populate the data warehouse with historical data. It requires the sales data to already
be staged into the database using one of the available staging processes. Multiple weeks of
sales can be provided in a single file, though it is recommended to not load more than one
month at a time unless the volumes are low. This process populates all sales tables in the data
warehouse (but not AIF applications), both for integration and BI reporting purposes. If you are
not using RI for reporting, disable the aggregation table programs in POM (except the
W_RTL_SLS_IT_LC_WK_A aggregate) before running the process.

Chapter 2
RTV History Load (Legacy)

2-55

Key Tables Affected

Table Usage

W_RTL_SLS_TRX_IT_LC_DY_FS Input

W_RTL_SLSPK_IT_LC_DY_FS Input

W_RTL_SLS_TRX_IT_LC_DY_F Output (Base Fact)

W_RTL_SLSPK_IT_LC_DY_F Output (Base Fact)

W_RTL_SLS_IT_LC_WK_A Aggregate (for integrations)

W_RTL_SLS_IT_LC_DY_A Aggregate (for BI reporting)

W_RTL_SLS_IT_LC_GMH_A Aggregate (for BI reporting)

W_RTL_SLS_SC_LC_DY_A Aggregate (for BI reporting)

W_RTL_SLS_SC_LC_WK_A Aggregate (for BI reporting)

W_RTL_SLS_CL_LC_DY_A Aggregate (for BI reporting)

W_RTL_SLS_CL_LC_WK_A Aggregate (for BI reporting)

W_RTL_SLS_DP_LC_DY_A Aggregate (for BI reporting)

W_RTL_SLS_DP_LC_WK_A Aggregate (for BI reporting)

W_RTL_SLS_IT_DY_A Aggregate (for BI reporting)

W_RTL_SLS_IT_WK_A Aggregate (for BI reporting)

W_RTL_SLS_SC_DY_A Aggregate (for BI reporting)

W_RTL_SLS_SC_WK_A Aggregate (for BI reporting)

W_RTL_SLS_LC_DY_A Aggregate (for BI reporting)

W_RTL_SLS_LC_WK_A Aggregate (for BI reporting)

W_RTL_SLS_IT_LC_DY_SN_A Aggregate (for BI reporting)

W_RTL_SLS_IT_LC_WK_SN_A Aggregate (for BI reporting)

W_RTL_SLS_IT_DY_SN_A Aggregate (for BI reporting)

W_RTL_SLS_IT_WK_SN_A Aggregate (for BI reporting)

W_RTL_SLS_SC_LC_DY_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_SC_LC_WK_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_CL_LC_DY_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_DP_LC_DY_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_CL_LC_WK_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_DP_LC_WK_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_SC_DY_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_CL_DY_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_DP_DY_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_SC_WK_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_CL_WK_CUR_A Aggregate (for BI reporting)

W_RTL_SLS_DP_WK_CUR_A Aggregate (for BI reporting)

W_RTL_SLSPK_IT_LC_WK_A Aggregate (for BI reporting)

W_RTL_SLSPK_IT_DY_A Aggregate (for BI reporting)

W_EMPLOYEE_D Supporting Dimension (for BI reporting)

Chapter 2
Sales History Load

2-56

Table Usage

W_PARTY_PER_D Supporting Dimension (for BI reporting)

W_RTL_CO_HEAD_D Supporting Dimension (for BI reporting)

W_RTL_CO_LINE_D Supporting Dimension (for BI reporting)

Sales History Staging

Module Name HIST_STG_CSV_SALES_LOAD_ADHOC

Description Stages the SALES.csv file for the ad hoc sales load programs.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process looks for the SALES.csv and SALES_PACK.csv files placed on the server by a
history ZIP file upload, moves them into a preprocessing table, and transforms the data for use
by the HIST_SALES_LOAD_ADHOC process.

Key Tables Affected

Table Usage

W_RTL_SLS_TRX_IT_LC_DY_FTS File Input

W_RTL_SLSPK_IT_LC_DY_FTS File Input

W_RTL_SLS_TRX_IT_LC_DY_FS Output

W_RTL_SLSPK_IT_LC_DY_FS Output

Sales History Staging (Legacy)

Module Name HIST_STG_SALES_LOAD_ADHOC

Description Stages the W_RTL_SLS_TRX_IT_LC_DY_FS.dat file for the ad hoc sales
load programs.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process looks for the W_RTL_SLS_TRX_IT_LC_DY_FS.dat file placed on the server by a
history ZIP file upload and loads it for use by the HIST_SALES_LOAD_ADHOC process.

Chapter 2
Sales History Staging

2-57

Key Tables Affected

Table Usage

W_RTL_SLS_TRX_IT_LC_DY_FS File Input

Sales Tender Load

Module Name HIST_SALES_TEND_LOAD_ADHOC

Description Processes any staged sales tender data into the sales tender fact table,
including processing of related dimensions used by the fact.

Dependencies HIST_STG_SALES_TEND_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The sales tender load process supports loading of sales transaction tender data over a long
period of time to populate the data warehouse with historical data. It requires the sales tender
data to already be staged in the database using the separate staging process. Multiple weeks
of tender data can be provided in a single file, though it is recommended to not load more than
one month at a time unless the volumes are low. This process populates all sales tender tables
in the data warehouse, both for integration and BI reporting purposes.

Key Tables Affected

Table Usage

W_RTL_TRX_TNDR_LC_DY_FS Input

W_EMPLOYEE_D Output (Dimension Seeding)

W_RTL_TRX_TNDR_LC_DY_F Output (Base Fact)

Sales Tender Staging

Module Name HIST_STG_SALES_TEND_LOAD_ADHOC

Description Processes a sales tender data file into the sales tender fact staging table.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
This process looks for the W_RTL_TRX_TNDR_LC_DY_FS.dat file placed on the server by a history
ZIP file upload and loads it for use by the HIST_SALES_TEND_LOAD_ADHOC process.

Chapter 2
Sales Tender Load

2-58

Key Tables Affected

Table Usage

W_RTL_TRX_TNDR_LC_DY_FS.dat Input File

W_RTL_TRX_TNDR_LC_DY_FS Output

Sales Wholesale/Franchise Staging

Module Name HIST_STG_CSV_SALES_WF_LOAD_ADHOC

Description Processes the sales for wholesale/franchise data file into the sales WF fact
staging table.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business
Activity

Historical Data Load

Design Overview
This process looks for the SALES_WF.csv file placed on the server by a history ZIP file upload
and loads it for use by the HIST_SALES_WF_LOAD_ADHOC process.

Key Tables Affected

Table Usage

W_RTL_SLSWF_IT_LC_DY_FTS File Input

W_RTL_SLSWF_IT_LC_DY_FS Staging

Sales Wholesale/Franchise Load

Module Name HIST_SALES_WF_LOAD_ADHOC

Description Processes any staged sales wholesale/franchise data into the sales wholesale/
franchise fact table and aggregates.

Dependencies HIST_STG_CSV_SALES_WF_LOAD_ADHOC

Business
Activity

Historical Data Load

Design Overview
The sales wholesale/franchise load process supports loading of sales measures for wholesale/
franchise locations over a long period of time to populate the data warehouse with historical
data. It requires the sales data to already be staged in the database using the separate staging
process. Multiple weeks of sales data can be provided in a single file. This process populates
all sales wholesale/franchise tables in the data warehouse, for both integration and BI reporting
purposes.

Chapter 2
Sales Wholesale/Franchise Staging

2-59

Key Tables Affected

Table Usage

W_RTL_SLSWF_IT_LC_DY_FS Staging

W_RTL_SLSWF_IT_LC_DY_F Base Fact

W_RTL_SLSWF_IT_LC_WK_A Aggregate (PDS Integration)

W_RTL_SLSWF_IT_DY_A Aggregate (BI Reporting)

W_RTL_SLSWF_IT_WK_A Aggregate (BI Reporting)

W_RTL_SLSWF_SC_LC_DY_A Aggregate (BI Reporting)

W_RTL_SLSWF_SC_LC_WK_A Aggregate (BI Reporting)

W_RTL_SLSWF_SC_LC_DY_CUR_A Aggregate (BI Reporting)

W_RTL_SLSWF_SC_LC_WK_CUR_A Aggregate (BI Reporting)

Shipments History Load

Module Name SEED_CSV_W_RTL_SHIP_IT_LC_DY_F_PROCESS_ADHOC

Description Loads a full snapshot of shipment data from SHIPMENT_HEAD.csv and
SHIPMENT_DETAIL.csv to initialize the dimension and fact data before the
nightly batch is enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
Data regarding shipments of merchandise is split between two interfaces, the dimension file
SHIPMENT_HEAD.csv and the fact file SHIPMENT_DETAIL.csv. This process can be used to load
full snapshots of historical or currently active shipments to the data warehouse outside of the
nightly batch cycle. The two files must be in sync, meaning that every shipment record on the
detail file must have a record in the header file. The header file is always a full snapshot of all
shipments that should appear as currently active in the data warehouse, meaning that if any
shipment records are no longer sent on SHIPMENT_HEAD.csv, they will be marked as inactive/
closed in the data warehouse table (CURRENT_FLG = N) and should no longer appear in the
files.

Key Tables Affected

Table Usage

W_RTL_SHIP_DETAILS_DTS File Input (SHIPMENT_HEAD.csv)

W_RTL_SHIP_DETAILS_DS Staging

W_RTL_SHIP_DETAILS_D Output

W_RTL_SHIP_IT_LC_DY_FTS File Input (SHIPMENT_DETAIL.csv)

W_RTL_SHIP_IT_LC_DY_FS Staging

W_RTL_SHIP_IT_LC_DY_F Output

Chapter 2
Shipments History Load

2-60

Stock Count Load

Module Name HIST_STOCK_COUNT_LOAD_ADHOC

Description Loads the stock count dimension and facts for Retail Insights reporting.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business
Activity

Historical Data Load

Design Overview
This process loads the stock count dimension and fact tables for use in Retail Insights
reporting. The fact tables are for counts coming from two different sources, systemic counts
(INVSS) from a merchandising solution and perpetual counts (INVPS) from a perpetual/real-
time inventory solution. The same dimension supports both facts, so the dimension file must be
a combination of all stock count header records from any source.

Key Tables Affected

Table Usage

W_RTL_LOC_STOCK_CNT_DS Staging

W_RTL_LOC_STOCK_CNT_D Output

W_RTL_INVPS_CNT_IT_LC_DY_FS Staging

W_RTL_INVPS_CNT_IT_LC_DY_F Output

W_RTL_INVSS_CNT_IT_LC_DY_FS Staging

W_RTL_INVSS_CNT_IT_LC_DY_F Output

Stock Ledger Load

Module Name HIST_STCKLDGR_LOAD_ADHOC

Description Loads Stock Ledger fact data for use in Retail Insights reporting.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business
Activity

Historical Data Load

Design Overview
This process loads the stock ledger fact files for week- and month-level stock ledgers. These
facts are used only in Retail Insights reporting. Before using this process, you must configure it
to disable one of the two month-level jobs:

• W_RTL_STCKLDGR_SC_LC_MH_F_JOB

• W_RTL_STCKLDGR_SC_LC_MH_F_GREG_JOB

The first job is used for Fiscal Calendar only, while the second job is used for Gregorian
calendar only. Attempting to run both jobs in the same environment will result in failures
because you cannot have both calendar types in the table at the same time.

Chapter 2
Stock Count Load

2-61

Key Tables Affected

Table Usage

W_RTL_STCKLDGR_SC_LC_WK_FS Staging

W_RTL_STCKLDGR_SC_LC_WK_F Output

W_RTL_STCKLDGR_SC_LC_MH_FS Staging

W_RTL_STCKLDGR_SC_LC_MH_FS Output

Store Traffic Load

Module Name HIST_STTRFC_LOAD_ADHOC

Description Loads Store Traffic fact data for use in Retail Insights reporting.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business
Activity

Historical Data Load

Design Overview
This process loads the Store Traffic fact file. This fact data is used for Retail Insights reporting
only. All jobs in the process should be enabled before running it.

Key Tables Affected

Table Usage

W_RTL_STTRFC_LC_DY_MI_FS Staging

W_RTL_STTRFC_LC_DY_MI_F Output

Supplier Compliance Load

Module Name HIST_SUPPCM_LOAD_ADHOC

Description Loads Supplier Compliance fact data for use in Retail Insights reporting.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business
Activity

Historical Data Load

Design Overview
This process loads the Supplier Compliance fact files. This fact data is used for Retail Insights
reporting only. All jobs in the process should be enabled before running it.

Chapter 2
Store Traffic Load

2-62

Key Tables Affected

Table Usage

W_RTL_SUPPCM_IT_LC_DY_FS Staging

W_RTL_SUPPCM_IT_LC_DY_F Output

W_RTL_SUPPCM_IT_LC_WK_A Aggregate

W_RTL_SUPPCMUF_LC_DY_FS Staging

W_RTL_SUPPCMUF_LC_DY_F Output

W_RTL_SUPPCMUF_LC_WK_A Aggregate

Supplier Invoice Load

Module Name HIST_SUPP_IVC_LOAD_ADHOC

Description Loads Supplier Invoice fact data for use in Retail Insights reporting.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business
Activity

Historical Data Load

Design Overview
This process loads the Supplier Invoice fact file. This fact data is used for Retail Insights
reporting only. All jobs in the process should be enabled before running it.

Key Tables Affected

Table Usage

W_RTL_SUPP_IVC_PO_IT_FS Staging

W_RTL_SUPP_IVC_PO_IT_F Output

Table Partitioning

Module Name CREATE_PARTITION_ADHOC

Description Uses the provided range of dates and the loaded calendar information to
generate table partitions across the data warehouse data model.

Dependencies CALENDAR_LOAD_ADHOC

Business Activity Initial System Setup

Design Overview
This process must be used after the Calendar load is complete to partition all of your database
tables. Tables in Retail Insights are partitioned dynamically based on your fiscal calendar using
the days and weeks defined in W_MCAL_DAY_D and W_MCAL_WEEK_D. This type of partitioning
provides optimal performance in BI reporting, where the SQL queries can prune the selected

Chapter 2
Supplier Invoice Load

2-63

partitions to only those that hold data for your time-based filters and attributes. Without this
partitioning in place, batch programs will not insert data into the expected partitions, some
programs could fail to load data at all, and BI reporting will have very poor performance.

This process can be run repeatedly to ensure all partitions are created. Each time it runs, it
resumes from where it left off, if any partitions still need to be added to the data model. If you
have run the process several times and it is now completing in under a minute, then it is no
long recreating any new partitions. The functional areas being partitioned should be reviewed
in the table C_MODULE_ARTIFACT. All tables should be enabled for partitioning, except for tables
that have PLAN in their naming structure.

Key Tables Affected

Table Usage

W_MCAL_DAY_D Input

W_MCAL_WEEK_D Input

C_ODI_PARAM Input

Transfer Detail History Load

Module Name HIST_TSFDETAIL_LOAD_ADHOC

Description Loads a full snapshot of transfers data from W_RTL_TSF_DETAILS_DS.dat
and W_RTL_TSF_IT_LC_DY_FS.dat to initialize the dimension and fact
data before the nightly batch is enabled.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
Data regarding transfers of merchandise is split between two interfaces, the dimension file
W_RTL_TSF_DETAILS_DS.dat and the fact file W_RTL_TSF_IT_LC_DY_FS.dat. This process can
be used to load full snapshots of historical or currently active transfers to the data warehouse
outside of the nightly batch cycle. The two files must be in sync, meaning that every transfer
record on the detail file must have a record in the header file. The header file is always a full
snapshot of all transfers that should appear as currently active in the data warehouse, meaning
that if any transfer records are no longer sent on W_RTL_TSF_DETAILS_DS.dat, they will be
marked as inactive/closed in the data warehouse table (CURRENT_FLG = N) and should no
longer appear in the files.

This data is not the same as the transfer transactions file (TRANSFER.csv). The transfer
transactions are aggregated at the item/loc/day level of detail, while these two files are for the
individual transfer activities at the lowest level of detail. The aggregated transfer transactions
are mainly for Retail Insights and Merchandise Financial Planning, while these transfer detail
files are for RI, AI Foundation, and Inventory Planning Optimization usage.

Key Tables Affected

Table Usage

W_RTL_TSF_DETAILS_DS Staging

Chapter 2
Transfer Detail History Load

2-64

Table Usage

W_RTL_TSF_DETAILS_D Output

W_RTL_TSF_IT_LC_DY_FS Staging

W_RTL_TSF_IT_LC_DY_F Output

Transfer Transaction History Load

Module Name HIST_CSV_TRANSFER_LOAD_ADHOC

Description Loads the TRANSFER.csv file into the data warehouse and populates key
data tables used to integrate with other systems for history data.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Design Overview
The history load process for Inventory Transfer transactions accepts an input file at the item/
location/day level using the file specification for TRANSFER.csv. It assumes the file has already
been moved into place by the HIST_ZIP_FILE_LOAD_ADHOC process. This process imports the
file into a preprocessing table in the database, transforms it to RI’s internal staging tables, then
loads it into the base fact (item/location/day) as well as the week aggregate used for
integrations (item/location/week).

This data is not the same as the transfer details files (W_RTL_TSF_DETAILS_DS.dat and
W_RTL_TSF_IT_LC_DY_FS.dat). The transfer transactions on this file are aggregated at the
item/loc/day level of detail, while the transfer detail files are for the individual transfer activities
at the lowest level of detail. The aggregated transfer transactions on this file are for Retail
Insights and Merchandise Financial Planning.

Key Tables Affected

Table Usage

W_RTL_INVTSF_IT_LC_DY_FTS File Input

W_RTL_INVTSF_IT_LC_DY_FS Staging

W_RTL_INVTSF_IT_LC_DY_F Output (Base Fact)

W_RTL_INVTSF_IT_LC_WK_A Output (Aggregate)

Translation Lookup Load (Legacy)

Module Name W_DOMAIN_MEMBER_LKP_TL_PROCESS_ADHOC

Description Processes the translatable string data in the
W_DOMAIN_MEMBER_DS_TL.dat file and loads it into the data warehouse.

Dependencies HIST_ZIP_FILE_LOAD_ADHOC

Business Activity Historical Data Load

Chapter 2
Transfer Transaction History Load

2-65

Design Overview
This process looks for the W_DOMAIN_MEMBER_DS_TL.dat file placed on the server by a history
ZIP file upload and loads it to the target table in the data warehouse for translatable strings.
When using CSV file uploads, all the translatable strings from the CSV files are automatically
inserted into this table and loaded in the data warehouse without a second file being provided.
However, if you are using legacy files, or you need to update records in this table directly, you
can use this process to manually load string lookup records.

Key Tables Affected

Table Usage

W_DOMAIN_MEMBER_DS_TL Staging

W_DOMAIN_MEMBER_LKP_TL Output

Chapter 2
Translation Lookup Load (Legacy)

2-66

3
AI Foundation Applications Standalone
Processes

The primary function of standalone processes in the AI Foundation Applications (AIF APPS
schedule in POM) is to move data from the data warehouse or external sources into the
application data models, or to move data out of the platform to send it elsewhere. These
process flows differ from the AIF DATA jobs in that most processes contain only one POM job.
That job contains many individual programs in it, but the execution flow is determined by
parameters passed into the job. This is done by editing the job’s parameters from the Batch
Monitoring screen in POM:

Each letter in the string refers to a specific program or step in the execution flow, which will be
covered in more detail in the sections of this chapter. When multiple parameters are used,
such as when start/end dates are provided, the format of those parameters uses double-
hyphens and colons as shown here:

3-1

This chapter includes the following programs:

• Customer Metrics - Base Calculation

• Customer Metrics - Final Calculation

• Customer Metrics - Loyalty Score

• Fake Customer Identification

• File Export Execution

• File Export Preparation

• Location Ranging

• Master Data Load - AA

• Master Data Load - AC

• Master Data Load - AE

• Master Data Load - Common

• Master Data Load - DT

• Master Data Load - IO

• Master Data Load - Forecast Estimation

• Master Data Load - LPO

• Master Data Load - SO

• Master Data Load - SPO

• Lifecycle Pricing Optimization Run

• Product Location Ranging

• Sales Aggregation - Customer Segment

Chapter 3

3-2

• Sales Aggregation - Product

• Sales Aggregation - Product Attribute

• Sales Aggregation - Product Hierarchy

• Sales Aggregation - Weekly

• Sales Forecast Aggregation - Product Attribute (Legacy)

• Sales Forecast Aggregation - Product Hierarchy (Legacy)

• Sales Shares - Product Attribute

• Sales Transaction Load

Customer Metrics - Base Calculation

Module Name RSE_CUST_ENG_METRIC_BASE_ADHOC

Description Calculate base values for customer engagement metrics.

Dependencies RSE_SLS_TXN_ADHOC

Business Activity Analytical Batch Processing

Design Overview
This process aggregates sales transaction data for use in customer engagement metric
calculations. The process runs for a range of weeks, depending on which weeks of sales have
had a run already performed. It will output the results to a database table for downstream
consumption. The RSE_SLS_TXN_ADHOC job is normally a prerequisite for this, as it is used to
refresh or load additional sales data.

Running this process requires parameters to specify the start and end date range for which
data should be processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_TXN Input

RSE_SLS_BASE_ATTR Output

Customer Metrics - Final Calculation

Module Name RSE_CUST_ENG_METRIC_CALC_ADHOC

Description Finalize the customer engagement metrics calculation.

Dependencies RSE_CUST_ENG_METRIC_BASE_ADHOC

Business Activity Analytical Batch Processing

Chapter 3
Customer Metrics - Base Calculation

3-3

Design Overview
This process calculates customer engagement metrics based on numerous inputs, including
sales transaction aggregates (for behavioral and predictive metrics) and product attributes (for
attribute loyalty metrics). Currently, supported product attributes must have a group type of
BRAND, STYLE, COLOR, LOC_LOYALTY, or PRICE_EFF_LOYALTY, as defined in
RSE_BUSINESS_OBJECT_ATTR_MD. The RSE_CUST_ENG_METRIC_BASE_ADHOC job is normally a
prerequisite for this, as it calculates the aggregated customer sales data.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_BASE_ATTR Input

RSE_PROD_ATTR Input

RSE_CUST_ATTR_LOY_DTL Input

RSE_CUST_SLS_ATTR Output

Customer Metrics - Loyalty Score

Module Name RSE_CUST_ATTR_LOY_ADHOC

Description Calculate customer loyalty score metrics.

Dependencies RSE_CUST_ENG_METRIC_BASE_ADHOC

Business Activity Analytical Batch Processing

Design Overview
This process calculates customer engagement loyalty data based on numerous inputs,
including sales transactions and product attributes. Currently, supported product attributes
must have a group type of BRAND, STYLE, COLOR, LOC_LOYALTY, or PRICE_EFF_LOYALTY, as
defined in RSE_BUSINESS_OBJECT_ATTR_MD. The RSE_CUST_ENG_METRIC_BASE_ADHOC job is
normally a prerequisite for this, as it calculates the aggregated customer sales data.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Chapter 3
Customer Metrics - Loyalty Score

3-4

Key Tables Affected

Table Usage

RSE_SLS_BASE_ATTR Input

RSE_PROD_ATTR Input

RSE_CUST_ATTR_LOY_DTL Output

Data Cleanup Utility

Module Name AIF_APPS_MAINT_DATA_CLEANUP_ADHOC_PR
OCESS

Description Erases database tables within the AIF Apps
database schema (RASE01)

Dependencies None
Business Activity Initial Data Loads

Design Overview
As you are loading and reloading data into AIF applications, you may run into conflicts or
constraint violations where you need to purge old data that is causing issues. An ad hoc
process is available in the AIF APPS schedule to facilitate this cleanup activity. The job invokes
the rse_data_cleanup.ksh program. The cleanup that will be done is determined based on the
parameters passed into the POM job for each execution. Initially, no parameter is indicated in
the job in POM. The user enters the parameters depending on their requirement. This
truncates the tables based on the entered parameters. Use the table below to identify the
parameters you need to use.

-h <input value> This parameter indicates which hierarchy type will be cleaned up (PRODUCT,
LOCATION, CALENDAR, PROMOTION, or CUSTSEG).

Valid values:

• ALL- All Hierarchy records will be cleaned up. This includes Product, Location, Calendar,
Promotion and Customer Segment Hierarchies. Alternate Hierarchies are also included for
location and product.

• PRODUCT - Product Hierarchy Data

• LOCATION - Location Hierarchy Data

• CALENDAR - Calendar Hierarchy Data

• PROMOTION - Promotion Hierarchy Data

• CUSTSEG - Customer Segment Hierarchy Data

Note:

If this parameter is not indicated, no hierarchies will be cleaned up even if you
are using the other parameters to clean app data.

Chapter 3
Data Cleanup Utility

3-5

-r <input value> This parameter indicates whether all tables referencing the hierarchy IDs
directly or indirectly will also be deleted.

Valid values:

• Y (Yes)

• N (No)

Default value is Y to ensure no stranded records will remain. This means any data referencing
a hierarchy ID will be purged along with the hierarchy itself. All affected tables will be deleted in
full; no data will be preserved.

-a <input value> This parameter indicates whether AIF application tables (such as for PMO,
SPO, and so on) will be deleted.

Global Values:

• ALL - All application tables will be cleaned up.

• NONE - Application tables will NOT be cleaned up.

Default value is ALL to avoid any stranded records that will no longer work after data is purged.
This parameter can also be used to clean up specific application tables that reference the
hierarchies (directly or indirectly).

Application Values:

• CDT (Customer Decision Tree)

• CIS (Advanced Clustering & Segmentation)

• DT (Demand Transference)

• IO (IPO - Inventory Optimization)

• MBA (Affinity Analysis / Market Basket Analysis)

• PMO (Lifecycle Pricing Optimization – PMO_* tables)

• PRO (Lifecycle Pricing Optimization – PRO_* tables)

• RODS (Retail Operational Data Store)

• SO (Space Optimization)

• SPO (Size Profile Optimization)

-o <input value> This parameter is to indicate whether ONLY the application data will be
deleted, but not any hierarchies.

Valid values:

• Y (Yes)

• N (No)

Note:

Application Data parameter (-a) should also be indicated. Default value is N if not
indicated. PMO and RODS don’t have specific app tables, hence they are not
covered by this option. All affected tables will be deleted in full; no data will be
preserved.

Chapter 3
Data Cleanup Utility

3-6

Examples

To clean up all the hierarchy tables together with dependent tables and app tables, add the
following as the parameter in POM:

-h ALL -r Y -a ALL -o N

To clean up only the location hierarchy tables together with AIF Apps dependent tables and
app tables, add the following as the parameter in POM:

-h LOCATION -r Y -a ALL -o N

To clean up only the application tables:

-a ALL -o Y

To clean up only a specific application (in this example, the CIS - Clustering application tables):

-a CIS -o Y

Fake Customer Identification

Module Name RSE_FAKE_CUST_ADHOC

Description Identify fake customers by looking through sales transaction data, so
they can be automatically excluded from some applications.

Dependencies RSE_SLS_TXN_ADHOC

Business Activity Sales Preprocessing

Design Overview
This process analyzes sales transaction data looking for “fake” customers, which usually
represent excessive sales attributed to a single customer ID. This could be caused by store
cards used at the register, corporate cards used by many people, or wholesale transactions
involving large numbers of sales. These kinds of transactions can have negative effects on
processes like Demand Transference because they are not representative of real customer
activity. The threshold for identifying a customer as fake is set using the RSE_CONFIG property
FAKE_CUST_DAY_TXN_THRESHOLD.

Running this routine requires parameters to specify the start and end date range, for which
data should be re-processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Chapter 3
Fake Customer Identification

3-7

Key Tables Affected

Table Usage

RSE_SLS_TXN Input

RSE_FAKE_CUST Output

File Export Execution

Module Name RSE_POST_EXPORT_ADHOC

Description Runs the export processes for any prepared AI Foundation export files,
which includes file movement, zipping, and export to SFTP.

Dependencies RSE_EXPORT_PREP_ADHOC

Business Activity Outbound Integrations

Design Overview
This process moves, zips, and exports files from the AI Foundation applications based on the
file export type. It accepts a single input parameter for the file frequency type, using one of
DAILY, WEEKLY, QUARTERLY, INTRADAY, or ADHOC. This process is the second step in the data flow
and assumes files have already been prepared for export using the dependent process.

File Export Preparation

Module Name RSE_EXPORT_PREP_ADHOC

Description Export preparation job for a specific group of AI Foundation export files.

Dependencies None

Business Activity Outbound Integrations

Design Overview
This process will prepare a set of export files from the AI Foundation applications based on the
file export type. It accepts a single input parameter for the file frequency type, using one of
DAILY, WEEKLY, QUARTERLY, INTRADAY, or ADHOC. This is the first step in the data flow and does
not perform the file movement to SFTP; it only prepares the files of the specified type so that
the RSE_POST_EXPORT_ADHOC process can consume them.

Forecast Aggregates

Module Name PMO_ACTIVITY_LOAD_ADHOC_PROCESS

Description Refresh the PMO_ACTIVITIES table used by AIF
forecasts to manually regenerate the aggregates
used for specific run types.

Dependencies None

Business Activity Initial Data Loads

Chapter 3
File Export Execution

3-8

Design Overview
This process regenerates aggregate data on the PMO_ACTIVITIES table for a subset of forecast
run types and time periods. You may want to use this process if you have loaded new historical
data into AIF and want it reflected on your existing forecast run types. Make sure the run types
are active in the UI before attempting to run this process on them. The process has 2 jobs:
PMO_ACTIVITY_STG_ADHOC_JOB and PMO_ACTIVITY_LOAD_ADHOC_JOB. All of the parameters must
be provided on the STG job.

Options:

• -n Number of weeks to process

• -f Force updates to existing data

• -s Start date in YYYYMMDD format

• -e End date in YYYYMMDD format

• -S Start calendar day ID

• -E End calendar day ID

• -w Calendar week ID to process

• -N New Forecast Run Type Aggregation Flag

• -r Forecast Run Type ID

• -? Display this usage information

Running this routine requires parameters to specify the start and end date range for weeks of
data to process. The -s parameter is for the Start Date and the -e parameter provides the End
Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y -N N

Lifecycle Pricing Optimization Run

Module Name PRO_OPT_ADHOC

Description Runs the LPO optimization process outside of the normal batch.

Dependencies None

Business Activity Analytical Batch Processing

Design Overview
This process triggers the lifecycle pricing optimization batch processing outside of the normal
batch window. All of the necessary steps to calculate optimization results are included in the ad
hoc job and no parameters are used. The process triggers the Java libraries on the application
server that are responsible for the optimization.

Location Ranging

Module Name DT_LOC_RANGE_ADHOC

Chapter 3
Lifecycle Pricing Optimization Run

3-9

Description Refresh Location Ranging data for Demand Transference.

Dependencies DT_PROD_LOC_RANGE_ADHOC

Business Activity Application Setup

Design Overview
This process calculates SKU Counts for the available ranges of products, for a given CM
Group, Store Location, and Week, which may be needed during implementation of Demand
Transference when using CM Groups.

Running this routine requires parameters to specify the start and end date range for weeks of
data to process. The -s parameter is for the Start Date and the -e parameter provides the End
Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

DT_PROD_LOC_STATUS Input

DT_CM_GRP_LOC_STATUS_AGGR Output

Master Data Load - AA

Module Name MBA_MASTER_ADHOC_PROCESS

Description Run the Affinity Analysis/Market Basket Analysis master script. This is
the best way to execute all the initial processing steps for the MBA
application module.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Affinity
Analysis (also known as Market Basket Analysis or MBA) application. It accepts one or more
single-character parameters to control which steps in the process are executed. Multiple steps
executed in sequence should be passed as one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -e Execute MBA ETL routines

• -c Execute ARM configuration load routines

• -a Execute ARM processes

Chapter 3
Master Data Load - AA

3-10

• -r Execute RI ARM processes

• -b Execute Baseline processes

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided more than
once, or after a -A or -R will toggle the switch On/Off. This will enable excluding a small
number of steps from processing, without requiring specifying all other switches

Example

-Aa will result in running all steps except -a

Master Data Load - AC

Module Name CIS_MASTER_ADHOC_PROCESS

Description Run the Advanced Clustering/Customer Segmentation master script. This
is the best option to run all initial processing steps for the AC/CS modules.
NOTE: when running through POM, if any -- options are required, use :
instead of = to separate the option from the value.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Advanced
Clustering and Customer Segmentation applications. It accepts one or more single-character
parameters to control which steps in the process are executed. Multiple steps executed in
sequence should be passed as one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -a Attribute Maintenance

• -h Product/Attribute Share Processing

• -t Loading cluster templates

• -v Setup a new version

• -s Update sales data for use by any versions

• -m Market Sales Aggregation load

• -c Update new versions with all the attribute summary information

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided more than
once, or after a -A or -R will toggle the switch On/Off. This will enable excluding a small
number of steps from processing, without requiring specifying all other switches.

Chapter 3
Master Data Load - AC

3-11

Example

• -Ah will result in running all steps except -h

• --from Start date of the data processing timeframe. Must be provided in YYYYMMDD
format with no spaces. For example, --from:20170101. Must be accompanied by the end
date and optionally by the extfrom flag

• --to End date of the data processing timeframe. Must be provided in YYYYMMDD format
with no spaces. For example, --to:20170201. Must be accompanied by the end date and
optionally by the extto flag

• --extfrom Optional flag to indicate if the start date must be extended to the start of the
week. Accepts Y or N (default). For example, --extfrom:Y, with no spaces

• --extto Optional flag to indicate if the end date must be extended to the end of the week.
Accepts Y or N (default). For example, --extto:Y, with no spaces

Master Data Load - AE

Module Name AE_MASTER_ADHOC_PROCESS

Description Run the Attribute Extraction master script. This is the best way to trigger
all initial processing for the AE application.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Attribute
Extraction application. It accepts one or more single-character parameters to control which
steps in the process are executed. Multiple steps executed in sequence should be passed as
one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -G Global Lists of Strings loading

• -C Product Categories loading

• -P Product loading

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided more than
once, or after a -A or -R will toggle the switch On/Off. This will enable excluding a small
number of steps from processing, without requiring specifying all other switches.

Example

-AGP will result in running all steps except -G and -P

Chapter 3
Master Data Load - AE

3-12

Master Data Load - Common

Module Name RSE_MASTER_ADHOC_PROCESS

Description Run the AI Foundation Cloud Services common master script. This is the
first step that should be run once data has been loaded into RI, and is
ready to initialize data needed by all the other application modules.

Dependencies None

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Retail AI
Foundation Cloud Services foundation data tables. This process is generally required as the
first step in loading data to any AI Foundation application. It accepts one or more single-
character parameters to control which steps in the process are executed. Multiple steps
executed in sequence should be passed as one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options for order)

• -p Product Hierarchy

• -c CM Group Product Hierarchy

• -l Location Hierarchy

• -t Trade Area Location Hierarchy

• -X Alternate (Flex) Product & Location Hierarchy

• -d Calendar Hierarchy

• -r Promotion Hierarchy

• -g Customer Segment Hierarchy

• -s Consumer segment data

• -P Product Attributes

• -L Location attributes

• -K Like Location / Product data load

• -G Customer Segment Attributes

• -z Price zone ETL

• -h Holiday data load

• -i Inventory data load

• -x Sales transaction data

• -f Fake customer data load

• -k Fake customer data identification

Chapter 3
Master Data Load - Common

3-13

• -w Weekly Aggregate Sales data (Load or Calc)

• -a Aggregate Sales data processing

• -F Forecast Aggregate Sales data processing

• -C Price and Cost data load

• -u UDA load

• -E Export Group Setup

• -W Weather Driven Demand data load

• -T Weekly Return transactions

• -e Weekly Return Aggregation

• -S Weekly Sales Return Price Consolidation

• -m Customer Engagement Attribute

• -o Forecast Plan Load

• -b Budget Allocation Load

• -O Order Cost data Load

• -n Promotion data Load

• -D Daily data Load

• -U Supplier, Supplier Item, Daily Supplier Cost, Supplier Inv Mgmt Load

• -N Season Phase Item Load

• -J Rules Engine data for PRO

• -j Rules Engine data for IO

• -q Group Flex Load

• -H Buyer, Allocation, Purchase Order, Transfer Loads

• -M Forecast Spread Profiles Load

• -V Forecast Lifecycle Classification Load

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. The A flag indicates to run all
steps except the letters following it, while the R flag indicates to resume from the letter following
it. Any switch provided more than once, or after a -A or -R will toggle the switch On/Off. This
will enable excluding a small number of steps from processing, without requiring specifying all
other switches.

Examples:

• -Act will result in running all steps except -c and -t
• -Rc -t will result in running all steps starting with c, but excluding step t
• -pldgxwa will result in extracting the product, location, calendar, customer segment, and

sales data from the data warehouse and populating all the core AIF aggregates for sales
(this is a common set of load steps for first-time runs)

Additional optional flags may be specified after the sequence of steps is provided, as listed
below. Date ranges will apply to any step that extracts historical data, such as sales and
inventory loads. If no date range is provided, then the job will attempt to determine the range of

Chapter 3
Master Data Load - Common

3-14

dates in the data warehouse and extract that entire range. If a step has already extracted data
from the data warehouse once, then you must specify dates on additional runs of that step to
ensure only that date range is re-extracted.

• --alt_prod_hier Run only the alternate (flex) product hierarchy load steps

• --alt_loc_hier Run only the alternate (flex) location hierarchy load steps

• --alt_hier_setup Run only the alternate (flex) hierarchy setup steps

• --prioritizefiles Specifies that data files should be prioritized as the source for a load
instead of RI, where it is possible to get data from either source

• --from Start date of the data processing timeframe. Must be provided in YYYYMMDD
format with no spaces. For example --from:20170101. Must be accompanied by the end
date and optionally by the extfrom flag

• --to End date of the data processing timeframe. Must be provided in YYYYMMDD format
with no spaces. For example, --to:20170201. Must be accompanied by the end date and
optionally by the extto flag

• --extfrom Optional flag to indicate whether the start date must be extended to the start of
the week. Accepts Y or N (default). For example, --extfrom:Y, with no spaces

• --extto Optional flag to indicate whether the end date must be extended to the end of the
week. Accepts Y or N (default). For example, --extto:Y, with no spaces

Master Data Load - DT

Module Name DT_MASTER_ADHOC_PROCESS

Description Run the Demand Transference master script. This is the best way to run
all the initial processing steps needed by the DT application module.
NOTE: when running through POM, if any -- options are required, use :
instead of = to separate the option from the value.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Demand
Transference application. It accepts one or more single-character parameters to control which
steps in the process are executed. Multiple steps executed in sequence should be passed as
one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -r Load Store Sku Ranging Data

• -l Aggregate Location Ranging Statistics

• -b Calculate Baseline

• -i Update model intervals

Chapter 3
Master Data Load - DT

3-15

• -g Run Group Load

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided more than
once, or after a -A or -R will toggle the switch On/Off. This will enable excluding a small
number of steps from processing, without requiring specifying all other switches.

Examples

• -Ab will result in running all steps except -b
• --from Start date of the data processing timeframe. Must be provided in YYYYMMDD

format with no spaces. For example, --from:20170101. Must be accompanied by the end
date and optionally by the extfrom flag

• --to End date of the data processing timeframe. Must be provided in YYYYMMDD format
with no spaces. For example, --to:20170201. Must be accompanied by the end date and
optionally by the extto flag

• --extfrom Optional flag to indicate if the start date must be extended to the start of the
week. Accepts Y or N (default). For example, --extfrom:Y, with no spaces

• --extto Optional flag to indicate if the end date must be extended to the end of the week.
Accepts Y or N (default). For example, --extto:Y, with no spaces

Master Data Load - Forecast Estimation

Module Name PMO_MASTER_ADHOC_PROCESS

Description Run the master script for processing forecast input loads and
calculations. This is the way to prepare certain inputs for the forecast
such as returns and activities tables.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Forecasting
module which is in addition to the common master data load (RSE_MASTER_ADHOC_PROCESS). It
accepts one or more single-character parameters to control which steps in the process are
executed. Multiple steps executed in sequence should be passed as one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -a Activities

• -d Return Data Preparation

• -c Return Calculation

• -h Holiday load

• -? Display this usage information

Chapter 3
Master Data Load - Forecast Estimation

3-16

Options -A and -R will enable processing of appropriate steps. Any switch provided more than
once, or after a -A or -R will toggle the switch On/Off. This will enable excluding a small
number of steps from processing, without requiring specifying all other switches.

The activities load (-a) supports date parameters when you are reloading data for a specific
historical period. Both parameters should be provided when used.

• --from Start date of the data processing timeframe. Must be provided in YYYYMMDD format
with no spaces. For example --from:20170101. Must be accompanied by the end date and
optionally by the extfrom flag

• --to End date of the data processing timeframe. Must be provided in YYYYMMDD format with
no spaces. For example, --to:20170201. Must be accompanied by the end date and
optionally by the extto flag

Examples

-Adh will result in running all steps except -d and -h
-a --from:20210502 --to:20210807 will process the historical activities data between
2021-05-02 and 2021-08-07

Master Data Load - IO

Module Name IO_MASTER_ADHOC_PROCESS

Description Run the Inventory Planning Optimization-Optimization master script.
This is the best option for running all the initial processing steps needed
by the Inventory Planning Optimization-Optimization application
module.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Inventory
Planning Optimization-Inventory Optimization application. It accepts one or more single-
character parameters to control which steps in the process are executed. Multiple steps
executed in sequence should be passed as one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -a Replenishment Attributes at Product/Location or Group level

• -s Seasons

• -r Strategy Rules

• -C Supply chain for Distribution Networks

• -S Review Schedule

• -L Lead Time of Internal Locations

• -P Supply chain for Procurement Networks

Chapter 3
Master Data Load - IO

3-17

• -Q Supplier Review Cycles

• -T Lead Time of Suppliers

• -M Internal Order Multiples

• -m Supplier Order Multiples

• -l Rounding Levels

• -I Load IO rules data to rules engine

• -N Load N-tier interface data to rules engine

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided more than
once, or after a -A or -R will toggle the switch On/Off. This will enable excluding a small
number of steps from processing, without requiring specifying all other switches.

Example

-AaP will result in running all steps except -a and -P

Master Data Load - LPO

Module Name PRO_MASTER_ADHOC_PROCESS

Description Run the Lifecycle Pricing Optimization master script. This is the best
option for running all the initial processing steps for the LPO application
module.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Lifecycle
Pricing Optimization application. It accepts one or more single-character parameters to control
which steps in the process are executed. Multiple steps executed in sequence should be
passed as one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -b Baseline

• -c Customer Segment Lifetime Value

• -i Inventory Aggregation

• -f Lifecycle Fatigue

• -p Promotion

• -l Promotion Lift

• -C Price and Cost for Promotion/Markdown Recommendations

Chapter 3
Master Data Load - LPO

3-18

• -e Price Elasticity

• -L Price Ladder

• -r Sales Return

• -s Season

• -P Season Product

• -d Season Period

• -E Markdown Day of Week

• -y Seasonality

• -D Model Dates

• -O Country Locale

• -F Forecast Adjustment

• -W Days of Week Profile

• -u Load Optimization rules for Promotion/Markdown Recommendations (using interface)

• -G Load Optimization rules for Regular Recommendations (using interface)

• -M Future Markdowns

• -U Product Location CDA Flex Facts for Promotion/Markdown Recommendations

• -g Product Location CDA Flex Facts for Regular Recommendations

• -n Inventory Aggregation for Regular Recommendations

• -o Price and Cost for Regular Recommendations

• -q Activities aggregation for Regular Recommendations

• -S Load Trailing metrics for Promotion/Markdown Recommendations

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided more than
once, or after a -A or -R will toggle the switch On/Off. This will enable excluding a small
number of steps from processing, without requiring specifying all other switches.

Example

-AbP will result in running all steps except -b and -P

Master Data Load - SO

Module Name SO_MASTER_ADHOC_PROCESS

Description Run the Space Optimization master script. This is the best way to run all
the initial steps for the SO application module.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Chapter 3
Master Data Load - SO

3-19

Design Overview
This process controls the master set of batch programs for loading data into the Assortment &
Space Optimization application. It accepts one or more single-character parameters to control
which steps in the process are executed. Multiple steps executed in sequence should be
passed as one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -F Assortment Finalization

• -a Assortment

• -h Placeholder Product Loading

• -M Product Cluster mapping

• -C Assortment product location forecast and price/cost

• -f Assortment Forecast loading

• -r Replenishment Parameters

• -S Product Stacking Height Limit

• -p Pog Loading

• -b Bay/Fixture Loading

• -y Display Style Loading

• -c Product Fixture Configuration Loading

• -P Perform Product Attribute maintenance

• -m Assortment Mapping

• -v Global Validation

• -s Assortment to POG mapping

• -g POG Set location creation

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided more than
once, or after a -A or -R will toggle the switch On/Off. This will enable excluding a small
number of steps from processing, without requiring specifying all other switches.

Example

-AaP will result in running all steps except -a and -P

Master Data Load - SPO

Module Name SPO_MASTER_ADHOC_PROCESS

Chapter 3
Master Data Load - SPO

3-20

Description Run the Size Profile Optimization master script. This is the best way to
run all the initial processing steps needed by the SPO application module.
NOTE: when running through POM, if any -- options are required, use :
instead of = to separate the option from the value.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process controls the master set of batch programs for loading data into the Size Profile
Optimization application. It accepts one or more single-character parameters to control which
steps in the process are executed. Multiple steps executed in sequence should be passed as
one string.

Options:

• -A Process all steps

• -R <Option> Resume processing all steps, starting with the step associated with the
provided option (see below options) for order

• -S Season Data Load

• -r Size Range Data Load

• -s Size Data Load

• -p Product Size Data Load

• -l Sub-Size Range Product Location Data Load

• -? Display this usage information

Options -A and -R will enable processing of appropriate steps. Any switch provided more than
once, or after a -A or -R will toggle the switch On/Off. This will enable excluding a small
number of steps from processing, without requiring specifying all other switches.

Example

• -Ar will result in running all steps except -r
• --from Start date of the data processing timeframe. Must be provided in YYYYMMDD

format with no spaces. For example, --from:20170101. Must be accompanied by the end
date and optionally by the extfrom flag

• --to End date of the data processing timeframe. Must be provided in YYYYMMDD format
with no spaces. For example, --to:20170201. Must be accompanied by the end date and
optionally by the extto flag

• --extfrom Optional flag to indicate if the start date must be extended to the start of the
week. Accepts Y or N (default). For example, --extfrom:Y, with no spaces

• --extto Optional flag to indicate if the end date must be extended to the end of the week.
Accepts Y or N (default). For example, --extto:Y, with no spaces

Product Location Ranging

Module Name DT_PROD_LOC_RANGE_ADHOC

Chapter 3
Product Location Ranging

3-21

Description Refresh Product Location Ranging data for Demand Transference.

Dependencies W_RTL_IT_LC_D_JOB (in RI)

Business Activity Application Setup

Design Overview
This process extracts the item/location ranging information from Retail Insights table
W_RTL_IT_LC_D. This process is also performed in the DT master batch process, but it can be
run on its own if you are modifying the data and need to reload it.

Running this routine requires parameters to specify the start and end date range, for which
data should be re-processed from the W_RTL_IT_LC_D table or from AI Foundation sales tables.
The -s parameter is for the Start Date and the -e parameter provides the End Date. Both are
in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

W_RTL_IT_LC_D Input

DT_PROD_LOC_LAST_SLS Input

DT_PROD_LOC_STATUS Output

Sales Aggregation – Cumulative Sales

Module Name PMO_CUMUL_SLS_ADHOC_PROCESS

Description Creates aggregate cumulative sales data for Lifecycle Pricing
Optimization.

Dependencies RSE_MASTER_ADHOC_PROCESS

Business Activity Initial Data Loads

Design Overview
This process allows the user to execute the cumulative sales aggregation for Lifecycle Pricing
Optimization application in an ad hoc manner. When the user creates a new forecast run type,
this aggregation is automatically called as part of “Start Data Aggregation”. This requires that
sales aggregations have already been performed using the RSE_MASTER ad hoc process, and
inventory position/receipts data has already been loaded into the data warehouse and AIF (so
that first receipt dates can be used).

Running this process requires parameters to specify the start and end date range for which
data should be processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Chapter 3
Sales Aggregation – Cumulative Sales

3-22

The process has the following list of supported options. All job parameters are passed into the
PMO_CUMUL_SLS_SETUP_ADHOC_JOB process when invoking it from Postman.

• -n Number of weeks to process

• -f Force update of existing data - Y/N (Default)

• -s Start date yyyymmdd
• -e End date yyyymmdd
• -S Start calendar day ID

• -E End calendar day ID

• -w Calendar Week ID to process

• -N New Forecast Run Type Aggregation Flag - Y/N

Key Tables Affected

Table Usage

RSE_SLS_PR_LC_CS_WK Input

RSE_INV_PR_LC_HIST Input

RSE_FCST_RUN_TYPE Input

RSE_FCST_DFLT_PARAMETER Input

PMO_CUM_SLS Output

Sales Aggregation - Customer Segment

Module Name RSE_WKLY_SLS_CUST_SEG_ADHOC

Description Aggregates Sales Transaction data to Weekly Customer Segment Sales
tables.

Dependencies RSE_SLS_TXN_ADHOC

Business Activity Initial Data Loads

Design Overview
This process aggregates sales data by customer segment for use in AI Foundation
applications. The RSE_SLS_TXN_ADHOC job is normally a prerequisite for this, as it is used to
refresh or load additional sales data.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Chapter 3
Sales Aggregation - Customer Segment

3-23

Key Tables Affected

Table Usage

RSE_SLS_TXN Input

RSE_CUSTSEG_CUST_XREF Input

RSE_CUSTSEG_SRC_XREF Input

RSE_SLS_PR_LC_CS_WK Output

Sales Aggregation - Product

Module Name RSE_WKLY_SLS_PR_AGGR_ADHOC

Description Calculates Product-based sales aggregate tables.

Dependencies RSE_WKLY_SLS_ADHOC

Business Activity Initial Data Loads

Design Overview
This process aggregates sales data by product for use in AI Foundation applications. The
RSE_WKLY_SLS_ADHOC job is normally a prerequisite for this, as it is used to refresh or load
additional sales data.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_PR_LC_WK Input

RSE_SLS_PR_WK_A Output

Sales Aggregation - Product Attribute

Module Name RSE_WKLY_SLS_PH_ATTR_AGGR_ADHOC

Description Calculates Product Attribute-based sales aggregate tables.

Dependencies RSE_WKLY_SLS_ADHOC

Business Activity Initial Data Loads

Chapter 3
Sales Aggregation - Product

3-24

Design Overview
This process aggregates sales data by product attribute and product hierarchy levels for use in
AI Foundation applications. The RSE_WKLY_SLS_ADHOC job is normally a prerequisite for this, as
it is used to refresh or load additional sales data.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_PR_LC_WK Input

RSE_PROD_ATTR Input

RSE_SLS_PH_ATTR_LC_WK_A Output

Sales Aggregation - Product Hierarchy

Module Name RSE_WKLY_SLS_PH_AGGR_ADHOC

Description Calculates Product Hierarchy-based sales aggregate tables.

Dependencies RSE_WKLY_SLS_ADHOC

Business Activity Initial Data Loads

Design Overview
This process aggregates sales data by product hierarchy levels for use in AI Foundation
applications. The RSE_WKLY_SLS_ADHOC job is normally a prerequisite for this, as it is used to
refresh or load additional sales data.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_PR_LC_WK Input

RSE_SLS_PH_LC_WK_A Output

Chapter 3
Sales Aggregation - Product Hierarchy

3-25

Sales Aggregation - Weekly

Module Name RSE_WKLY_SLS_ADHOC

Description Aggregates Sales Transaction data to week level tables.

Dependencies RSE_SLS_TXN_ADHOC

Business Activity Initial Data Loads

Design Overview
This process aggregates sales data by product hierarchy levels for use in AI Foundation
applications. The RSE_SLS_TXN_ADHOC job is normally a prerequisite for this, as it is used to
refresh or load additional sales data.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

RSE_SLS_TXN Input

RSE_SLS_PR_LC_WK Output

Sales Forecast Aggregation - Product Attribute (Legacy)

Module Name RSE_SLSFC_PH_ATTR_AGGR_ADHOC

Description Calculates Product Attribute-based sales forecast aggregate tables.

Dependencies RSE_SLSFC_PH_AGGR_ADHOC

Business Activity Initial Data Loads

Design Overview
This process aggregates sales forecast data by product attribute and product hierarchy levels
for use in AI Foundation applications. The RSE_SLSFC_PH_AGGR_ADHOC job is normally a
prerequisite for this, as it is used to refresh or load additional sales forecast data.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Chapter 3
Sales Aggregation - Weekly

3-26

Note:

This is a legacy process which uses a forecast interface from the data warehouse
that has been deprecated.

Sales Forecast Aggregation - Product Hierarchy (Legacy)

Module Name RSE_SLSFC_PH_AGGR_ADHOC

Description Calculates Product Hierarchy-based sales forecast aggregate tables.

Dependencies None

Business Activity Initial Data Loads

Design Overview
This process aggregates sales forecast data by product hierarchy levels for use in AI
Foundation applications.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Note:

This is a legacy process which uses a forecast interface from the data warehouse
that has been deprecated.

Sales Shares - Product Attribute

Module Name AC_PROD_ATTR_LOC_SHARE_ADHOC

Description Calculate product attribute sales shares for use in Advanced Clustering.

Dependencies RSE_WKLY_SLS_ADHOC

Business Activity Initial Data Loads

Design Overview
This process aggregates sales shares by product attribute for use in the Advanced Clustering
application, specifically for use in clustering by product attribute. The RSE_WKLY_SLS_ADHOC job
is normally a prerequisite for this, as it is used to refresh or load additional sales data at week
level.

You also must choose which attribute mode is applicable for AC. If it is specified as CDT in
RSE_CONFIG property PERF_CIS_APPROACH, then this program will expect additional information
for CDT-like attribute groups in RSE_PROD_ATTR_GRP and RSE_PROD_ATTR_GRP_VALUE_MAP. It will

Chapter 3
Sales Forecast Aggregation - Product Hierarchy (Legacy)

3-27

also use sales data from RSE_SLS_PH_ATTR_LC_WK_A. For any other configuration, these tables
are not required and a more generic approach will be taken.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

CIS_TCRITERIA_ATTR Input

CIS_BUS_OBJ_TCRITERIA_ATT_XREF Input

RSE_PROD_ATTR_GRP Input

RSE_PROD_ATTR_GRP_VALUE_MAP Input

RSE_SLS_PH_LC_WK_A Input

RSE_SLS_PH_ATTR_LC_WK_A Input

CIS_PROD_ATTR_LOC_SHARE Output

Sales Transaction Load

Module Name RSE_SLS_TXN_ADHOC

Description Performs bulk retrieval of Sales Transaction data.

Dependencies W_RTL_SLS_TRX_IT_LC_DY_F_JOB (in RI)

Business Activity Initial Data Loads

Design Overview
This process extracts sales transactions from Retail Insights for use in all AI Foundation
applications. The W_RTL_SLS_TRX_IT_LC_DY_F table in the data warehouse is the source of this
data and the data warehouse must be populated with sales before this program runs.

Running this process requires parameters to specify the start and end date range, for which
data should be processed. The -s parameter is for the Start Date and the -e parameter
provides the End Date. Both are in format YYYYMMDD. For example:

-s YYYYMMDD -e YYYYMMDD -f Y

Key Tables Affected

Table Usage

W_RTL_SLS_TRX_IT_LC_DY_F Input

RSE_SLS_TXN Output

Chapter 3
Sales Transaction Load

3-28

4
AI Foundation Data Standalone Process Flows

Standalone processes are separated across several different flows within POM depending on
the order in which you need to execute them and the dependencies to be followed. This
chapter provides a tabular view of related jobs across the different process flows in the AIF
DATA schedule so that you know which jobs are safe to enable or disable, depending on the
files you’re attempting to load into the platform. It is always a best practice to disable jobs in
POM if you are not actively using them, both to reduce runtimes and to avoid loading data you
did not intend to process.

Process Flows for DAT Files
The table below shows the standalone process flows for any file with a .dat extension. Please
note that the following list of jobs should remain enabled and are usually applicable to all batch
runs, so they’re not included in the table.

• VARIABLE_REFRESH_JOB

• ETL_REFRESH_JOB

• ETL_BUSINESS_DATE_JOB

• W_RTL_CURR_MCAL_G_JOB

• RI_UPDATE_TENANT_JOB (as part of HIST_ZIP_FILE_LOAD_ADHOC)

Table 4-1 DAT File Process Flows

Input Files (DAT) LOAD_DIM_INITIAL_STAGE_ADH
OC

RI_DIM_INITIAL_ADHOC

W_CODE_DS.dat W_CODE_DS_COPY_JO
W_CODE_DS_STG_JOB

W_CODE_D_JOB

W_DOMAIN_MEMBER_DS_T
L.dat

W_DOMAIN_MEMBER_DS_TL_CO
PY_JOB
W_DOMAIN_MEMBER_DS_TL_ST
G_JOB

W_DOMAIN_MEMBER_LKP_TL
_JOB

W_EMPLOYEE_DS.dat W_EMPLOYEE_DS_COPY_JOB
W_EMPLOYEE_DS_STG_JOB

W_EMPLOYEE_D_JOB

W_EXCH_RATE_GS.dat W_EXCH_RATE_GS_COPY_JOB
W_EXCH_RATE_GS_STG_JOB

W_EXCH_RATE_G_JOB

W_HOUSEHOLD_DS.dat W_HOUSEHOLD_DS_COPY_JOB
W_HOUSEHOLD_DS_STG_JOB

W_HOUSEHOLD_D_JOB

W_INT_ORG_ATTR_DS.dat
W_INT_ORG_DS.dat
W_INT_ORG_DS_TL.dat

W_INT_ORG_ATTR_DS_COPY_JOB
W_INT_ORG_ATTR_DS_STG_JOB
W_INT_ORG_DS_COPY_JOB
W_INT_ORG_DS_STG_JOB
W_INT_ORG_DS_TL_COPY_JOB
W_INT_ORG_DS_TL_STG_JOB

W_INT_ORG_D_TYPE1_JOB
W_RTL_ORG_RECLASS_TMP_JO
B

4-1

Table 4-1 (Cont.) DAT File Process Flows

Input Files (DAT) LOAD_DIM_INITIAL_STAGE_ADH
OC

RI_DIM_INITIAL_ADHOC

W_INT_ORG_DS_CFA.dat W_INT_ORG_DS_CFA_COPY_JOB
W_INT_ORG_DS_CFA_STG_JOB

W_INT_ORG_D_CFA_JOB

W_INT_ORG_DHS.dat W_INT_ORG_DHS_COPY_JOB
W_INT_ORG_DHS_STG_JOB

W_INT_ORG_DH_TYPE1_JOB
W_INT_ORG_DH_RTL_TMP_JOB

W_PARTY_ATTR_DS.dat W_PARTY_ATTR_DS_COPY_JOB
W_PARTY_ATTR_DS_STG_JOB

W_PARTY_ATTR_D_JOB

W_PARTY_ORG_DS.dat W_PARTY_ORG_DS_COPY_JOB
W_PARTY_ORG_DS_STG_JOB

W_PARTY_ORG_D_JOB

W_PARTY_ORG_DS_CFA.dat W_PARTY_ORG_DS_CFA_COPY_JO
B
W_PARTY_ORG_DS_CFA_STG_JOB

W_PARTY_ORG_D_CFA_JOB

W_PARTY_PER_DS.dat W_PARTY_PER_DS_COPY_JOB
W_PARTY_PER_DS_STG_JOB

W_PARTY_PER_D_JOB

W_PROD_CAT_DHS.dat W_PROD_CAT_DHS_COPY_JOB
W_PROD_CAT_DHS_STG_JOB

W_PROD_CAT_DH_TYPE1_JOB
W_PROD_CAT_DH_SC_RTL_TM
P_JOB

W_PROD_CAT_DHS_CFA.dat W_PROD_CAT_DHS_CFA_COPY_JO
B
W_PROD_CAT_DHS_CFA_STG_JOB

W_PROD_CAT_DH_CFA_JOB

W_PRODUCT_ATTR_DS.dat W_PRODUCT_ATTR_DS_COPY_JOB
W_PRODUCT_ATTR_DS_STG_JOB

W_PRODUCT_ATTR_D_JOB
W_RTL_PRODUCT_ATTR_UDA_
D_JOB

W_PRODUCT_DS.dat
W_PRODUCT_DS_TL.dat

W_PRODUCT_DS_COPY_JOB
W_PRODUCT_DS_STG_JOB
W_PRODUCT_DS_TL_COPY_JOB
W_PRODUCT_DS_TL_STG_JOB

W_PRODUCT_D_TYPE1_JOB
W_RTL_PROD_RECLASS_TMP_I
NITIAL_JOB
W_PRODUCT_D_RTL_TMP_JOB
W_RTL_PROD_RECLASS_TMP_J
OB
W_RTL_PRODUCT_AGGR_D_JO
B

W_PRODUCT_DS_CFA.dat W_PRODUCT_DS_CFA_COPY_JOB
W_PRODUCT_DS_CFA_STG_JOB

W_PRODUCT_D_CFA_JOB

W_REASON_DS.dat W_REASON_DS_COPY_JOB
W_REASON_DS_STG_JOB

W_REASON_D_JOB

W_RTL_ALC_DETAILS_DS.da
t

W_RTL_ALC_DETAILS_DS_COPY_J
OB
W_RTL_ALC_DETAILS_DS_STG_JO
B

W_RTL_ALC_DETAILS_D_JOB

W_RTL_ALLOC_CHRG_DETA
ILS_DS.dat

W_RTL_ALLOC_CHRG_DETAILS_D
S_COPY_JOB
W_RTL_ALLOC_CHRG_DETAILS_D
S_STG_JOB

W_RTL_ALLOC_CHRG_DETAILS
_D_JOB

W_RTL_BUYER_DS.dat W_RTL_BUYER_DS_COPY_JOB
W_RTL_BUYER_DS_STG_JOB

W_RTL_BUYER_D_JOB

Chapter 4
Process Flows for DAT Files

4-2

Table 4-1 (Cont.) DAT File Process Flows

Input Files (DAT) LOAD_DIM_INITIAL_STAGE_ADH
OC

RI_DIM_INITIAL_ADHOC

W_RTL_CHANNEL_DS.dat W_RTL_CHANNEL_DS_COPY_JOB
W_RTL_CHANNEL_DS_STG_JOB

W_RTL_CHANNEL_D_JOB

W_RTL_CLSTR_GRP_DS.dat W_RTL_CLSTR_GRP_DS_COPY_JOB
W_RTL_CLSTR_GRP_DS_STG_JOB

W_RTL_CLSTR_GRP_D_JOB

W_RTL_CLSTR_HDR_DS.dat W_RTL_CLSTR_HDR_DS_COPY_JO
B
W_RTL_CLSTR_HDR_DS_STG_JOB
W_DOMAIN_MEMBER_DS_TL_OR
ASE_JOB

W_RTL_CLSTR_HDR_D_JOB
W_DOMAIN_MEMBER_LKP_TL
_JOB

W_RTL_CLSTR_GRP_HDR_LC
_DS.dat

W_RTL_CLSTR_GRP_HDR_LC_DS_
COPY_JOB
W_RTL_CLSTR_GRP_HDR_LC_DS_
STG_JOB

W_RTL_CLSTR_GRP_HDR_LC_D
_JOB

W_RTL_CLSTR_GRP_PRD_DS.
dat

W_RTL_CLSTR_GRP_PRD_DS_COP
Y_JOB
W_RTL_CLSTR_GRP_PRD_DS_STG_
JOB

W_RTL_CLSTR_GRP_IT_D_JOB

W_RTL_CMG_PRODUCT_MT
X_DS.dat

W_RTL_CMG_PRODUCT_MTX_DS_
COPY_JOB
W_RTL_CMG_PRODUCT_MTX_DS_
STG_JOB

W_RTL_CMG_PRODUCT_MTX_
D_JOB

W_RTL_CO_HEAD_DS.dat W_RTL_CO_HEAD_DS_COPY_JOB
W_RTL_CO_HEAD_DS_STG_JOB

W_RTL_CO_HEAD_D_JOB

W_RTL_CO_LINE_DS.dat W_RTL_CO_LINE_DS_COPY_JOB
W_RTL_CO_LINE_DS_STG_JOB

W_RTL_CO_LINE_D_JOB

W_RTL_CO_SHIP_METHOD_
DS.dat

W_RTL_CO_SHIP_METHOD_DS_C
OPY_JOB
W_RTL_CO_SHIP_METHOD_DS_ST
G_JOB

W_RTL_CO_SHIP_METHOD_D_J
OB

W_RTL_CO_SHIP_TYPE_DS.d
at

W_RTL_CO_SHIP_TYPE_DS_COPY_
JOB
W_RTL_CO_SHIP_TYPE_DS_STG_J
OB

W_RTL_CO_SHIP_TYPE_D_JOB

W_RTL_CODE_DS.dat W_RTL_CODE_DS_COPY_JOB
W_RTL_CODE_DS_STG_JOB

W_RTL_CODE_D_JOB

W_RTL_COMP_STORE_DS.da
t

W_RTL_COMP_STORE_DS_COPY_J
OB
W_RTL_COMP_STORE_DS_STG_JO
B

W_RTL_COMP_STORE_D_JOB

W_RTL_COUPON_DS.dat
W_RTL_COUPON_DS_TL.dat

W_RTL_COUPON_DS_COPY_JOB
W_RTL_COUPON_DS_STG_JOB
W_RTL_COUPON_DS_TL_COPY_JO
B
W_RTL_COUPON_DS_TL_STG_JOB

W_RTL_COUPON_D_JOB

Chapter 4
Process Flows for DAT Files

4-3

Table 4-1 (Cont.) DAT File Process Flows

Input Files (DAT) LOAD_DIM_INITIAL_STAGE_ADH
OC

RI_DIM_INITIAL_ADHOC

W_RTL_CUST_ADDRESS_DS.
dat

W_RTL_CUST_ADDRESS_DS_COPY
_JOB
W_RTL_CUST_ADDRESS_DS_STG_J
OB

W_RTL_CUST_ADDRESS_D_JOB

W_RTL_CUST_CUSTSEG_DS.d
at

W_RTL_CUST_CUSTSEG_DS_COPY
_JOB
W_RTL_CUST_CUSTSEG_DS_STG_J
OB

W_RTL_CUST_CUSTSEG_D_JOB

W_RTL_CUST_DEDUP_DS.dat W_RTL_CUST_DEDUP_DS_COPY_J
OB
W_RTL_CUST_DEDUP_DS_STG_JO
B

W_PARTY_PER_D_JOB (data
used implicitly during dim
load)

W_RTL_CUST_HOUSEHOLD_
DS.dat

W_RTL_CUST_HOUSEHOLD_DS_C
OPY_JOB
W_RTL_CUST_HOUSEHOLD_DS_S
TG_JOB

W_RTL_CUST_HOUSEHOLD_D_
JOB

W_RTL_CUSTSEG_ALLOC_DS
.dat

W_RTL_CUSTSEG_ALLOC_DS_COP
Y_JOB
W_RTL_CUSTSEG_ALLOC_DS_STG
_JOB

W_RTL_CUSTSEG_ALLOC_D_JO
B

W_RTL_CUSTSEG_ATTR_DS.
dat

W_RTL_CUSTSEG_ATTR_DS_COPY
_JOB
W_RTL_CUSTSEG_ATTR_DS_STG_J
OB

W_RTL_CUSTSEG_D_JOB (data
used implicitly during dim
load)

W_RTL_DEAL_DS.dat W_RTL_DEAL_DS_COPY_JOB
W_RTL_DEAL_DS_STG_JOB

W_RTL_DEAL_D_JOB

W_RTL_DEPT_CHRG_DETAIL
S_DS.dat

W_RTL_DEPT_CHRG_DETAILS_DS
_COPY_JOB
W_RTL_DEPT_CHRG_DETAILS_DS
_STG_JOB

W_RTL_DEPT_CHRG_DETAILS_
D_JOB

W_RTL_DIFF_GRP_DS.dat
W_RTL_DIFF_GRP_DS_TL.dat

W_RTL_DIFF_GRP_DS_COPY_JOB
W_RTL_DIFF_GRP_DS_STG_JOB
W_RTL_DIFF_GRP_DS_TL_COPY_J
OB
W_RTL_DIFF_GRP_DS_TL_STG_JO
B

W_RTL_DIFF_GRP_D_JOB

W_RTL_DIFF_RNG_DS.dat W_RTL_DIFF_RNG_DS_COPY_JOB W_RTL_DIFF_RNG_D_JOB

W_RTL_DIFF_RNG_DS_TL.da
t

W_RTL_DIFF_RNG_DS_STG_JOB
W_RTL_DIFF_RNG_DS_TL_COPY_J
OB
W_RTL_DIFF_RNG_DS_TL_STG_JO
B

W_RTL_DIFF_RNG_D_JOB

W_RTL_DISCOUNT_TYPE_DS
.dat

W_RTL_DISCOUNT_TYPE_DS_COP
Y_JOB
W_RTL_DISCOUNT_TYPE_DS_STG
_JOB

W_RTL_DISCOUNT_TYPE_D_JO
B

Chapter 4
Process Flows for DAT Files

4-4

Table 4-1 (Cont.) DAT File Process Flows

Input Files (DAT) LOAD_DIM_INITIAL_STAGE_ADH
OC

RI_DIM_INITIAL_ADHOC

W_RTL_ELC_COMP_DS.dat W_RTL_ELC_COMP_DS_COPY_JOB
W_RTL_ELC_COMP_DS_STG_JOB

W_RTL_ELC_COMP_D_JOB

W_RTL_HOUSEHOLD_COMP
_DS.dat

W_RTL_HOUSEHOLD_COMP_DS_
COPY_JOB
W_RTL_HOUSEHOLD_COMP_DS_S
TG_JOB

W_RTL_HOUSEHOLD_COMP_D
_JOB

W_RTL_HOUSEHOLD_GRP_
DS.dat

W_RTL_HOUSEHOLD_GRP_DS_CO
PY_JOB
W_RTL_HOUSEHOLD_GRP_DS_ST
G_JOB

W_RTL_HOUSEHOLD_GRP_D_J
OB

W_RTL_IT_LC_DS_CFA.dat W_RTL_IT_LC_DS_CFA_COPY_JOB
W_RTL_IT_LC_DS_CFA_STG_JOB

W_RTL_IT_LC_D_CFA_JOB

W_RTL_IT_SUPPLIER_DS.dat W_RTL_IT_SUPPLIER_DS_COPY_J
OB
W_RTL_IT_SUPPLIER_DS_STG_JOB

W_RTL_IT_SUPPLIER_D_JOB

W_RTL_ITEM_CHRG_DETAIL
S_DS.dat

W_RTL_ITEM_CHRG_DETAILS_DS
_COPY_JOB
W_RTL_ITEM_CHRG_DETAILS_DS
_STG_JOB

W_RTL_ITEM_CHRG_DETAILS_
D_JOB

W_RTL_ITEM_GRP1_DS.dat W_RTL_ITEM_GRP1_DS_COPY_JO
B
W_RTL_ITEM_GRP1_DS_STG_JOB

W_RTL_ITEM_GRP1_D_ITEMBR
AND_JOB
W_RTL_ITEM_GRP1_D_ITEMCO
LOR_JOB
W_RTL_ITEM_GRP1_D_ITEMDI
FF_JOB
W_RTL_ITEM_GRP1_D_ITEMFA
B_JOB
W_RTL_ITEM_GRP1_D_ITEMLI
ST_JOB
W_RTL_ITEM_GRP1_D_ITEMLV
_JOB
W_RTL_ITEM_GRP1_D_ITEMSC
EN_JOB
W_RTL_ITEM_GRP1_D_ITEMSI
ZE_JOB
W_RTL_ITEM_GRP1_D_ITEMST
YLE_JOB
W_RTL_ITEM_GRP1_D_ITEMUD
A_JOB
W_RTL_PRODUCT_ATTR_UDA_
D_JOB

W_RTL_ITEM_GRP3_DS.dat W_RTL_ITEM_GRP3_DS_COPY_JO
B
W_RTL_ITEM_GRP3_DS_STG_JOB

W_RTL_ITEM_GRP3_D_JOB

W_RTL_LOC_LIST_DS.dat W_RTL_LOC_LIST_DS_COPY_JOB
W_RTL_LOC_LIST_DS_STG_JOB

W_RTL_LOC_LIST_D_JOB

Chapter 4
Process Flows for DAT Files

4-5

Table 4-1 (Cont.) DAT File Process Flows

Input Files (DAT) LOAD_DIM_INITIAL_STAGE_ADH
OC

RI_DIM_INITIAL_ADHOC

W_RTL_LOC_TRAIT_DS.dat W_RTL_LOC_TRAIT_DS_COPY_JOB
W_RTL_LOC_TRAIT_DS_STG_JOB

W_RTL_LOC_TRAIT_D_JOB

W_RTL_LOC_TRAIT_DS_TL.d
at

W_RTL_LOC_TRAITS_DS_TL_COPY
_JOB
W_RTL_LOC_TRAITS_DS_TL_STG_
JOB

W_RTL_LOC_TRAIT_D_JOB

W_RTL_LOC_STOCK_CNT_DS
.dat

W_RTL_LOC_STOCK_CNT_DS_COP
Y_JOB
W_RTL_LOC_STOCK_CNT_DS_STG
_JOB

W_RTL_LOC_STOCK_CNT_D_JO
B

W_RTL_MCAL_DAY_DS_CFA.
dat

W_RTL_MCAL_DAY_DS_CFA_COPY
_JOB
W_RTL_MCAL_DAY_DS_CFA_STG_J
OB

W_RTL_MCAL_DAY_D_CFA_JOB

W_RTL_ORG_FIN_DS.dat W_RTL_ORG_FIN_DS_COPY_JOB
W_RTL_ORG_FIN_DS_STG_JOB

W_RTL_ORG_FIN_D_JOB

W_RTL_PARTY_PER_ATTR_D
S.dat

W_RTL_PARTY_PER_ATTR_DS_CO
PY_JOB
W_RTL_PARTY_PER_ATTR_DS_ST
G_JOB

W_PARTY_ATTR_D_UDA_JOB

W_RTL_PHASE_DS.dat W_RTL_PHASE_DS_COPY_JOB
W_RTL_PHASE_DS_STG_JOB

W_RTL_PHASE_D_JOB

W_RTL_PO_DETAILS_DS.dat W_RTL_PO_DETAILS_DS_COPY_JO
B
W_RTL_PO_DETAILS_DS_STG_JOB

W_RTL_PO_DETAILS_D_JOB

W_RTL_PRICE_CLR_IT_LC_D
S.dat

W_RTL_PRICE_CLR_IT_LC_DS_CO
PY_JOB
W_RTL_PRICE_CLR_IT_LC_DS_STG
_JOB

W_RTL_PRICE_CLR_IT_LC_D_JO
B

W_RTL_PROD_HIER_ATTR_L
KP_DHS.dat

W_RTL_PROD_HIER_ATTR_LKP_D
HS_COPY_JOB
W_RTL_PROD_HIER_ATTR_LKP_D
HS_STG_JOB

W_RTL_PROD_HIER_ATTR_LKP
_DH_JOB
W_RTL_PROD_HIER_ATTR_LKP
_DH_IM_JOB

W_RTL_PROD_HIER_IMAGE_
DS.dat

W_RTL_PROD_HIER_IMAGE_DS_C
OPY_JOB
W_RTL_PROD_HIER_IMAGE_DS_S
TG_JOB

W_RTL_PROD_HIER_ATTR_LKP
_DH_IM_JOB

W_RTL_PRODUCT_ATTR_DS.
dat

W_RTL_PRODUCT_ATTR_DS_COPY
_JOB
W_RTL_PRODUCT_ATTR_DS_STG_
JOB

W_RTL_PRODUCT_ATTR_D_JOB

W_RTL_PRODUCT_ATTR_DS_
TL.dat

W_RTL_PRODUCT_ATTR_DS_TL_C
OPY_JOB
W_RTL_PRODUCT_ATTR_DS_TL_S
TG_JOB

W_RTL_PRODUCT_ATTR_D_JOB

Chapter 4
Process Flows for DAT Files

4-6

Table 4-1 (Cont.) DAT File Process Flows

Input Files (DAT) LOAD_DIM_INITIAL_STAGE_ADH
OC

RI_DIM_INITIAL_ADHOC

W_RTL_PRODUCT_ATTR_IM
G_DS.dat

W_RTL_PRODUCT_ATTR_IMG_DS_
COPY_JOB
W_RTL_PRODUCT_ATTR_IMG_DS_
STG_JOB

W_RTL_PRODUCT_ATTR_IMG_
D_JOB

W_RTL_PRODUCT_BRAND_D
S.dat
W_RTL_PRODUCT_BRAND_D
S_TL.dat

W_RTL_PRODUCT_BRAND_DS_CO
PY_JOB
W_RTL_PRODUCT_BRAND_DS_ST
G_JOB
W_RTL_PRODUCT_BRAND_DS_TL
_COPY_JOB
W_RTL_PRODUCT_BRAND_DS_TL
_STG_JOB

W_RTL_PRODUCT_BRAND_D_J
OB

W_RTL_PRODUCT_IMAGE_D
S.dat

W_RTL_PRODUCT_IMAGE_DS_CO
PY_JOB
W_RTL_PRODUCT_IMAGE_DS_ST
G_JOB

W_PRODUCT_ATTR_D_JOB
(data used implicitly by dim
load)

W_RTL_PROMO_DS.dat
W_RTL_PROMO_DS_TL.dat

W_RTL_PROMO_DS_COPY_JOB
W_RTL_PROMO_DS_STG_JOB

W_RTL_PROMO_D_TL_JOB
W_PROMO_D_RTL_TMP_JOB

W_RTL_PROMO_CE_DS.dat W_RTL_PROMO_CE_DS_COPY_JOB
W_RTL_PROMO_CE_DS_STG_JOB

W_RTL_PROMO_D_TL_JOB
W_PROMO_D_RTL_TMP_JOB

W_RTL_PROMO_CE_IT_LC_D
S.dat

W_RTL_PROMO_CE_IT_LC_DS_CO
PY_JOB
W_RTL_PROMO_CE_IT_LC_DS_ST
G_JOB

W_RTL_PROMO_IT_LC_D_JOB

W_RTL_PROMO_EXT_DS.dat W_RTL_PROMO_EXT_DS_COPY_JO
B
W_RTL_PROMO_EXT_DS_STG_JOB

W_RTL_PROMO_D_TL_JOB
W_PROMO_D_RTL_TMP_JOB

W_RTL_PROMO_IT_LC_DS.d
at

W_RTL_PROMO_IT_LC_DS_COPY_J
OB
W_RTL_PROMO_IT_LC_DS_STG_JO
B

W_RTL_PROMO_IT_LC_D_JOB

W_RTL_REPL_DAY_DS.dat W_RTL_REPL_DAY_DS_COPY_JOB
W_RTL_REPL_DAY_DS_STG_JOB

W_RTL_REPL_DAY_D_JOB

W_RTL_SEASON_DS.dat W_RTL_SEASON_DS_COPY_JOB
W_RTL_SEASON_DS_STG_JOB

W_RTL_SEASON_D_JOB

W_RTL_SEASON_PHASE_IT_
DS.dat

W_RTL_SEASON_PHASE_IT_DS_C
OPY_JOB
W_RTL_SEASON_PHASE_IT_DS_ST
G_JOB

W_RTL_SEASON_PHASE_IT_D_J
OB

W_RTL_SUB_IT_LC_DS.dat W_RTL_SUB_IT_LC_DS_COPY_JOB
W_RTL_SUB_IT_LC_DS_STG_JOB

W_RTL_SUB_IT_LC_D_JOB

W_RTL_SUPPLIER_TRAIT_DS
.dat

W_RTL_SUPPLIER_TRAIT_DS_COP
Y_JOB
W_RTL_SUPPLIER_TRAIT_DS_STG
_JOB

W_RTL_SUPPLIER_TRAIT_D_JO
B

Chapter 4
Process Flows for DAT Files

4-7

Table 4-1 (Cont.) DAT File Process Flows

Input Files (DAT) LOAD_DIM_INITIAL_STAGE_ADH
OC

RI_DIM_INITIAL_ADHOC

W_RTL_TRADE_AREA_DS.da
t

W_RTL_TRADE_AREA_DS_COPY_J
OB
W_RTL_TRADE_AREA_DS_STG_JO
B

W_RTL_TRADE_AREA_D_JOB

W_RTL_TRADE_AREA_LOC_
MTX_DS.dat

W_RTL_TRADE_AREA_LOC_MTX_
DS_COPY_JOB
W_RTL_TRADE_AREA_LOC_MTX_
DS_STG_JOB

W_RTL_TRADE_AREA_LOC_MT
X_D_JOB

W_RTL_TNDR_TYPE_DS.dat W_RTL_TNDR_TYPE_DS_COPY_JO
B
W_RTL_TNDR_TYPE_DS_STG_JOB

W_RTL_TNDR_TYPE_D_JOB

W_RTL_TSF_CHRG_DETAILS
_DS.dat

W_RTL_TSF_CHRG_DETAILS_DS_C
OPY_JOB
W_RTL_TSF_CHRG_DETAILS_DS_S
TG_JOB

W_RTL_TSF_CHRG_DETAILS_D
_JOB

W_RTL_TSF_DETAILS_DS.dat W_RTL_TSF_DETAILS_DS_
COPY_JOB
W_RTL_TSF_DETAILS_DS_
STG_JOB

W_RTL_TSF_DETAILS_D_JOB

W_STATUS_DS.dat W_STATUS_DS_COPY_JOB
W_STATUS_DS_STG_JOB

W_STATUS_D_JOB

W_RTL_UDA_METADATA_G.
dat

W_RTL_UDA_METADATA_G_COPY
_JOB
W_RTL_UDA_METADATA_G_STG_J
OB

N/A – No additional job
required

Process Flows for CSV Files
The table below shows the standalone process flows for any dimension file with a .csv
extension. CSV files follow a different load path as they are simplified interfaces that are
transformed from one input file to many output tables in the data model. The same set of jobs
are also present in the Nightly batch cycles, so you can use this section as a reference for
nightly batch configuration (ignoring the standalone process names). Please note that the
following list of jobs should remain enabled and are usually applicable to all batch runs, so
they’re not included in the table.

• RI_UPDATE_TENANT_JOB (as part of HIST_ZIP_FILE_LOAD_ADHOC)

• VARIABLE_REFRESH_JOB

• ETL_REFRESH_JOB

• ETL_BUSINESS_DATE_JOB

• W_RTL_CURR_MCAL_G_JOB

• SI_W_DOMAIN_MEMBER_DS_TL_TRUNC_JOB

The W_DOMAIN_MEMBER_DS_TL table works differently from other loaders, as multiple jobs are
inserting into the same staging area for different sets of records. The job above is needed at

Chapter 4
Process Flows for CSV Files

4-8

the start of a process flow to truncate the W_DOMAIN_MEMBER_DS_TL table before inserting new
records in all later steps in RI_DIM_INITIAL_ADHOC. If you are loading files one at a time, make
sure you do not truncate W_DOMAIN_MEMBER_DS_TL excessively. It is only needed at the
beginning of a new set of file loads or when starting over after an initial load was done.

Another important note is that you will want to load files in a certain order or together as sets,
depending on the data you have available. If possible, you should load all your files as a set,
once they become available, rather than reloading one by one every time.

Table 4-2 CSV File Process Flows

Input Files
(CSV)

RI_DIM_INITIAL_ADH
OC (Step 1)

RI_DIM_INITIAL_ADHOC
(Step 2)

RI_DIM_INITIAL_ADHOC
(Step 3)

ATTR.csv
PROD_ATTR.csv

COPY_SI_ATTR_JOB
STG_SI_ATTR_JOB
COPY_SI_PROD_ATTR_
JOB
STG_SI_PROD_ATTR_J
OB

STAGING_SI_W_RTL_PROD
UCT_ATTR_DS_JOB
SI_W_RTL_PRODUCT_ATT
R_DS_TL_JOB
SI_W_RTL_ITEM_GRP1_DS
_JOB
STAGING_SI_W_RTL_PROD
ATTR_ITEM_GRP1_DS_JOB
SI_ATTR_W_DOMAIN_ME
MBER_DS_TL_JOB
SI_PROD_ATTR_W_DOMAI
N_MEMBER_DS_TL_JOB
SI_W_RTL_PRODUCT_COL
OR_DS_JOB

W_RTL_PRODUCT_ATTR_D
_JOB
W_RTL_ITEM_GRP1_D_ITE
MBRAND_JOB
W_RTL_ITEM_GRP1_D_ITE
MCOLOR_JOB
W_RTL_ITEM_GRP1_D_ITE
MDIFF_JOB
W_RTL_ITEM_GRP1_D_ITE
MFAB_JOB
W_RTL_ITEM_GRP1_D_ITE
MLIST_JOB
W_RTL_ITEM_GRP1_D_ITE
MLV_JOB
W_RTL_ITEM_GRP1_D_ITE
MSCEN_JOB
W_RTL_ITEM_GRP1_D_ITE
MSIZE_JOB
W_RTL_ITEM_GRP1_D_ITE
MSTYLE_JOB
W_RTL_ITEM_GRP1_D_ITE
MUDA_JOB
W_DOMAIN_MEMBER_LK
P_TL_JOB
W_RTL_PRODUCT_ATTR_U
DA_D_JOB

CODES.csv COPY_SI_CODES_JOB
STG_SI_CODES_JOB

STAGING_SI_W_RTL_CODE
_DS_JOB

W_RTL_CODE_D_JOB

DIFF_GROUP.csv COPY_SI_DIFF_GROUP
_JOB
STG_SI_DIFF_GROUP_J
OB

SI_W_RTL_DIFF_GRP_DS_J
OB
SI_W_RTL_DIFF_GRP_DS_T
L_JOB

W_RTL_DIFF_GRP_D_JOB

EMPLOYEE.csv COPY_SI_EMPLOYEE_J
OB
STG_SI_EMPLOYEE_JO
B

SI_W_EMPLOYEE_DS_JOB W_EMPLOYEE_D_JOB

EXCH_RATE.csv COPY_SI_EXCH_RATE_
JOB
STG_SI_EXCH_RATE_J
OB

SI_W_EXCH_RATE_GS_JOB W_EXCH_RATE_G_JOB

Chapter 4
Process Flows for CSV Files

4-9

Table 4-2 (Cont.) CSV File Process Flows

Input Files
(CSV)

RI_DIM_INITIAL_ADH
OC (Step 1)

RI_DIM_INITIAL_ADHOC
(Step 2)

RI_DIM_INITIAL_ADHOC
(Step 3)

ORGANIZATION.
csv

COPY_SI_ORGANIZATI
ON_JOB
STG_SI_ORGANIZATIO
N_JOB

SI_W_INT_ORG_DHS_JOB
SI_W_INT_ORG_ATTR_DS_J
OB
SI_W_INT_ORG_DS_JOB
SI_W_INT_ORG_DS_TL_JO
B
SI_W_RTL_CHANNEL_DS_J
OB
SI_ORG_W_DOMAIN_MEM
BER_DS_TL_JOB
SI_W_RTL_CHANNEL_CNT
RY_DS_JOB
DIM_ORG_VALIDATOR_JO
B

W_INT_ORG_DH_TYPE1_JO
B
W_INT_ORG_D_TYPE1_JOB
W_INT_ORG_DH_RTL_TMP
_JOB
W_RTL_ORG_RECLASS_TM
P_JOB
W_RTL_CHANNEL_D_JOB
W_RTL_CHANNEL_CNTRY_
D_JOB
W_DOMAIN_MEMBER_LK
P_TL_JOB

ORGANIZATION
_ALT.csv

COPY_SI_ORGANIZATI
ON_ALT_JOB
STG_SI_ORGANIZATIO
N_ALT_JOB

SI_W_ORGANIZATION_FL
EX_DS_JOB

W_ORGANIZATION_FLEX_
D_JOB

PROD_LOC_ATT
R.csv

COPY_SI_PROD_LOC_A
TTR_JOB
STG_SI_PROD_LOC_AT
TR_JOB

SI_W_RTL_IT_LC_DS_JOB W_RTL_IT_LC_D_JOB

PROD_LOC_REP
L.csv

COPY_SI_PROD_LOC_R
EPL_JOB
STG_SI_PROD_LOC_RE
PL_JOB

STAGING_SI_W_INVENTO
RY_PRODUCT_ATTR_DS_JO
B

W_INVENTORY_PRODUCT_
D_JOB

PROD_PACK.csv COPY_SI_PROD_PACK_
JOB
STG_SI_PROD_PACK_J
OB

STAGING_SI_W_RTL_ITEM
_GRP2_DS_JOB

W_RTL_ITEM_GRP2_D_JOB

PROD_SEASON.c
sv
SEASON.csv

COPY_SI_SEASON_JOB
STG_SI_SEASON_JOB
COPY_SI_PROD_SEASO
N_JOB
STG_SI_PROD_SEASON
_JOB

STAGING_SI_W_RTL_PHAS
E_DS_JOB
STAGING_SI_W_RTL_SEAS
ON_DS_JOB
STAGING_SI_W_RTL_SEAS
ON_PHASE_IT_DS_JOB
SI_SEASON_W_DOMAIN_
MEMBER_DS_TL_JOB

W_RTL_SEASON_D_JOB
W_RTL_PHASE_D_JOB
W_RTL_SEASON_PHASE_I
T_D_JOB
W_DOMAIN_MEMBER_LK
P_TL_JOB

Chapter 4
Process Flows for CSV Files

4-10

Table 4-2 (Cont.) CSV File Process Flows

Input Files
(CSV)

RI_DIM_INITIAL_ADH
OC (Step 1)

RI_DIM_INITIAL_ADHOC
(Step 2)

RI_DIM_INITIAL_ADHOC
(Step 3)

PRODUCT.csv COPY_SI_PRODUCT_JO
B
STG_SI_PRODUCT_JOB

SI_W_PROD_CAT_DHS_JOB
SI_W_PRODUCT_ATTR_DS_
JOB
SI_W_PRODUCT_DS_JOB
SI_W_PRODUCT_DS_TL_JO
B
SI_W_RTL_IT_SUPPLIER_D
S_JOB
SI_W_RTL_PRODUCT_ATT
R_IMG_DS_JOB
SI_W_RTL_PRODUCT_BRA
ND_DS_JOB
SI_W_RTL_PRODUCT_BRA
ND_DS_TL_JOB
SI_PROD_W_DOMAIN_ME
MBER_DS_TL_JOB
DIM_PROD_VALIDATOR_J
OB

W_PROD_CAT_DH_TYPE1_J
OB
W_RTL_PROD_HIER_ATTR
_LKP_DH_JOB
W_PROD_CAT_DH_SC_RTL
_TMP_JOB
W_RTL_PROD_HIER_ATTR
_LKP_DH_IM_JOB
W_PRODUCT_D_TYPE1_JO
B
W_PRODUCT_ATTR_D_JOB
W_RTL_PROD_RECLASS_T
MP_INITIAL_JOB
W_PRODUCT_D_RTL_TMP_
JOB
W_RTL_PROD_RECLASS_T
MP_JOB
W_RTL_IT_SUPPLIER_D_JO
B
W_RTL_PRODUCT_BRAND
_D_JOB
W_RTL_PRODUCT_ATTR_U
DA_D_JOB

PRODUCT_ALT.cs
v

COPY_SI_PRODUCT_A
LT_JOB
STG_SI_PRODUCT_ALT
_JOB

SI_W_PRODUCT_FLEX_DS_
JOB

W_PRODUCT_FLEX_D_JOB

PROMOTION.csv COPY_SI_PROMO_EXT
_JOB
STG_SI_PROMO_EXT_J
OB

SI_W_RTL_PROMO_EXT_D
S_JOB

W_RTL_PROMO_D_TL_JOB
W_PROMO_D_RTL_TMP_JO
B

PROMO_DETAIL.
csv

COPY_SI_PROMO_DET
AIL_JOB
STG_SI_PROMO_DETA
IL_JOB

SI_W_RTL_PROMO_IT_LC_
DS_JOB

W_RTL_PROMO_IT_LC_D_J
OB

REPL_DISTRO.cs
v

W_RTL_REPL_DISTRO
_IT_LC_DS_COPY_JOB
W_RTL_REPL_DISTRO
_IT_LC_DS_STG_JOB

N/A – No SI jobs used W_RTL_REPL_DISTRO_IT_
LC_D_JOB

REPL_REV_INT.c
sv

W_RTL_REPL_REV_IN
T_IT_LC_DS_COPY_JOB
W_RTL_REPL_REV_IN
T_IT_LC_DS_STG_JOB

N/A – No SI jobs used W_RTL_REPL_REV_INT_IT_
LC_D_JOB

REPL_LT_INT.csv W_RTL_REPL_LT_INT_
IT_LC_DS_COPY_JOB
W_RTL_REPL_LT_INT_
IT_LC_DS_STG_JOB

N/A – No SI jobs used W_RTL_REPL_LT_INT_IT_L
C_D_JOB

Chapter 4
Process Flows for CSV Files

4-11

Table 4-2 (Cont.) CSV File Process Flows

Input Files
(CSV)

RI_DIM_INITIAL_ADH
OC (Step 1)

RI_DIM_INITIAL_ADHOC
(Step 2)

RI_DIM_INITIAL_ADHOC
(Step 3)

REPL_ROUND.cs
v

W_RTL_REPL_ROUND
_IT_LC_DS_COPY_JOB
W_RTL_REPL_ROUND
_IT_LC_DS_STG_JOB

N/A – No SI jobs used W_RTL_REPL_ROUND_IT_
LC_D_JOB

REPL_MULT_SU
P.csv

W_RTL_REPL_MULT_S
UP_IT_LC_DS_COPY_J
OB
W_RTL_REPL_MULT_S
UP_IT_LC_DS_STG_JOB

N/A – No SI jobs used W_RTL_REPL_MULT_SUP_I
T_LC_D_JOB

REPL_MULT_INT
.csv

W_RTL_REPL_MULT_I
NT_IT_LC_DS_COPY_J
OB
W_RTL_REPL_MULT_I
NT_IT_LC_DS_STG_JOB

N/A – No SI jobs used W_RTL_REPL_MULT_INT_I
T_LC_D_JOB

REPL_REV_SUP.c
sv

W_RTL_REPL_REV_SU
P_IT_LC_DS_COPY_JOB
W_RTL_REPL_REV_SU
P_IT_LC_DS_STG_JOB

N/A – No SI jobs used W_RTL_REPL_REV_SUP_IT
_LC_D_JOB

REPL_LT_SUP.cs
v

W_RTL_REPL_LT_SUP_
IT_LC_DS_COPY_JOB
W_RTL_REPL_LT_SUP_
IT_LC_DS_STG_JOB

N/A – No SI jobs used W_RTL_REPL_LT_SUP_IT_L
C_D_JOB

REPL_PROC.csv W_RTL_REPL_PROC_I
T_LC_DS_COPY_JOB
W_RTL_REPL_PROC_I
T_LC_DS_STG_JOB

N/A – No SI jobs used W_RTL_REPL_PROC_IT_LC
_D_JOB

STORE_COMP.cs
v

COPY_SI_STORE_COM
P_JOB
STG_SI_STORE_COMP_
JOB

STAGING_SI_W_RTL_LOC_
COMP_MTX_DS_JOB

W_RTL_LOC_COMP_MTX_
D_JOB

SUPPLIER.csv COPY_SI_SUPPLIER_JO
B
STG_SI_SUPPLIER_JOB

SI_W_PARTY_ORG_DS_JOB
STAGING_SI_W_PARTY_AT
TR_DS_JOB

W_PARTY_ATTR_D_JOB
W_PARTY_ORG_D_JOB

The table below provides the process flow for fact files in CSV format (applicable in both
standalone and nightly cycles).

Input Files (CSV) File Load Staging Load Target Load

ADJUSTMENT.csv COPY_SI_ADJUSTMENT
_JOB
STG_SI_ADJUSTMENT_J
OB

SI_W_RTL_INVADJ_IT_
LC_DY_FS_JOB
SI_INVADJ_W_DOMAIN
_MEMBER_DS_TL_JOB

W_RTL_INVADJ_IT_LC_
DY_F_JOB
W_DOMAIN_MEMBER_
LKP_TL_JOB

COST.csv COPY_SI_COST_JOB
STG_SI_COST_JOB

SI_W_RTL_BCOST_IT_L
C_DY_FS_JOB
SI_W_RTL_NCOST_IT_L
C_DY_FS_JOB

W_RTL_BCOST_IT_LC_
DY_F_JOB
W_RTL_NCOST_IT_LC_
DY_F_JOB

Chapter 4
Process Flows for CSV Files

4-12

Input Files (CSV) File Load Staging Load Target Load

DEAL_INCOME.csv COPY_SI_DEAL_INCOM
E_JOB
STG_SI_DEAL_INCOME
_JOB

SI_W_RTL_DEALINC_IT
_LC_DY_FS_JOB

W_RTL_DEALINC_IT_L
C_DY_F_JOB

IC_MARGIN.csv COPY_SI_IC_MARGIN_J
OB
STG_SI_IC_MARGIN_JO
B

STAGING_SI_W_RTL_IC
M_IT_LC_DY_FS_JOB

W_RTL_ICM_IT_LC_DY
_F_JOB

INV_RECLASS.csv COPY_SI_INV_RECLASS
_JOB
STG_SI_INV_RECLASS_J
OB

STAGING_SI_W_RTL_IN
VRECLASS_IT_LC_DY_F
S_JOB

W_RTL_INVRECLASS_I
T_LC_DY_F_JOB

INVENTORY.csv COPY_SI_INVENTORY_J
OB
STG_SI_INVENTORY_JO
B

SI_W_RTL_INV_IT_LC_
DY_FS_JOB

W_RTL_INV_IT_LC_DY_
F_JOB

MARKDOWN.csv COPY_SI_MARKDOWN
_JOB
STG_SI_MARKDOWN_J
OB

SI_W_RTL_MKDN_IT_L
C_DY_FS_JOB

W_RTL_MKDN_IT_LC_
DY_F_JOB

ORDER_DETAIL.csv COPY_SI_ORDER_DETA
IL_JOB
STG_SI_ORDER_DETAIL
_JOB

SI_W_RTL_PO_ONORD_
IT_LC_DY_FS_JOB

W_RTL_PO_ONORD_IT
_LC_DY_F_JOB

PRICE.csv COPY_SI_PRICE_JOB
STG_SI_PRICE_JOB

SI_W_RTL_PRICE_IT_L
C_DY_FS_JOB

W_RTL_PRICE_IT_LC_D
Y_F_JOB

RECEIPT.csv COPY_SI_RECEIPT_JOB
STG_SI_RECEIPT_JOB

SI_W_RTL_INVRC_IT_L
C_DY_FS_JOB

W_RTL_INVRC_IT_LC_
DY_F_JOB

RTV.csv COPY_SI_RTV_JOB
STG_SI_RTV_JOB

SI_W_RTL_INVRTV_IT_
LC_DY_FS_JOB

W_RTL_INVRTV_IT_LC
_DY_F_JOB

SALES.csv COPY_SI_SALES_JOB
STG_SI_SALES_JOB

SI_W_RTL_SLS_TRX_IT
_LC_DY_FS_JOB

W_RTL_SLS_TRX_IT_LC
_DY_F_JOB

SALES_PACK.csv COPY_SI_SALES_PACK_
JOB
STG_SI_SALES_PACK_J
OB

SI_W_RTL_SLSPK_IT_L
C_DY_FS_JOB

W_RTL_SLSPK_IT_LC_
DY_F_JOB

SALES_WF.csv COPY_SI_SALES_WF_JO
B
STG_SI_SALES_WF_JOB

STAGING_SI_W_RTL_S
LSWF_IT_LC_DY_FS_JO
B

W_RTL_SLSWF_IT_LC_
DY_F_JOB

SHIPMENT_DETAIL.csv COPY_SI_SHIPMENT_D
ETAIL_JOB
STG_SI_SHIPMENT_DE
TAIL_JOB

SI_W_RTL_SHIP_IT_LC_
DY_FS_JOB

W_RTL_SHIP_IT_LC_DY
_F_JOB

TRANSFER.csv COPY_SI_TRANSFER_JO
B
STG_SI_TRANSFER_JOB

SI_W_RTL_INVTSF_IT_
LC_DY_FS_JOB

W_RTL_INVTSF_IT_LC_
DY_F_JOB

Chapter 4
Process Flows for CSV Files

4-13

5
Data Validation Framework

The foundation file interfaces (such as product and organization hierarchies) have a set of
validations and error checking jobs that execute with them to ensure the data is accurate,
complete, and follows all basic requirements for RAP application usage. Review the contents
of this chapter to understand what validations exist and how to reconfigure them per your
implementation needs.

Architecture Overview
The validation framework consists of POM batch jobs that execute the validations, and
database tables that control the types of validation rules and what happens when the rule is
triggered. Some validation rules may cause the POM job to fail, which means the data has a
critical issue that needs to be corrected before the batch process can continue. Other rules will
simply write warnings to the database but allow the batch to proceed. In both cases, there are
tables that can be queried to check the validation results and determine what actions need to
be taken.

The table below summarizes the POM jobs that execute the validations:

Table 5-1 Data Validation POM Jobs

Job Name Summary

DIM_ORG_VALIDATOR_JOB Executes validations on the Organization Hierarchy
data

DIM_PROD_VALIDATOR_JOB Executes validations on the Product Hierarchy and
Product dimension data

DIM_CALENDAR_VALIDATOR_JOB Executes validations on the Calendar Hierarchy staging
data

DIM_CALENDAR_LOAD_VALIDATOR_JO
B

Executes validations on the Calendar Period data after
the load has been run

DIM_EXCH_RATE_VALIDATOR_JOB Executes validations on the Exchange Rate staging data

DIM_PROD_ATTR_VALIDATOR_JOB Executes validations on the Product Attribute staging
data

FACT_POSFACT_VALIDATOR_JOB Executes validations on the positional fact staging data
(inventory, POs, and so on). Refer to the POS DATA set
of validation rules, such as POSINVATA_R1 later in this
section, for details on what this job is looking for.

The jobs are included both in the nightly batch process flow and in separate ad hoc processes
that can be executed as part of your historical data loads.

The configuration tables for the validation rules are called C_DIM_RULE_LIST and
C_FACT_RULE_LIST. You can access these tables from the Control & Tactical Center’s Manage
System Configurations screen. The tables allows you to edit the following fields:

• Set the error message resulting from a validation rule (ERROR_DESC)

5-1

• Set whether the POM job should have a hard failure or only capture a warning message
(ERROR_TYPE) with a value of F or W

• Set whether it is turned on or off (ON_IND) with a value of Y or N
The other important field in this table is the BAD_TBL_NAME, which tells you where the results of
the validations will be written in the case of any errors or warnings. If a failure or warning does
occur, you can directly query the database table listed in BAD_TBL_NAME using Data Visualizer
or APEX.

Any time you execute one or more of the dimension validation jobs, there is also a database
view that summarizes the results from the job executions. This view is RI_DIM_VALIDATION_V
and can also be queried from DV as needed. An example of the data in this view is shown
below:

Using a combination of the data in RI_DIM_VALIDATION_V and the specified BAD_TBL_NAME table
data, you will be able to identify the issues and take corrective action on the source data. In the
case of job failures, you will need to reload the data file to proceed. It is also possible to skip
the failed validation job in POM, but this should only be done if you have carefully reviewed the
validation results and are confident the data will not cause any problems in your target
applications.

Resolving Validation Issues
The validation rules scan your input data for a variety of common problems that may result in
failures or inconsistencies in downstream applications such as AI Foundation or Planning
modules. The table below describes what the rules are checking for and how to resolve the
issues.

Table 5-2 Validation Rule Details

Rule ID Explanation Resolution

CAL_R1 The W_MCAL_PERIOD_D table does not
contain any data after loading a
calendar file. Your calendar file may
have format or data issues that
require correction, such as an
incorrect value for MCAL_CAL_ID or
missing dates that prevent it from
loading properly.

Reload a corrected data file after
reviewing the contents. All start/end
date fields must be populated and all
other fields should exactly match the
file requirements as documented.

CAL_R2 The start and end dates for the fiscal
periods, quarters, or years are
overlapping, which will result in an
invalid calendar.

Create and load a new calendar file
where the period/quarter/year start and
end dates are exactly aligned and don’t
overlap or have gaps. Ensure all periods
in one quarter/year have the same dates
for those columns.

Chapter 5
Resolving Validation Issues

5-2

Table 5-2 (Cont.) Validation Rule Details

Rule ID Explanation Resolution

CAL_R3 The START_DT parameter set on
C_ODI_PARAM_VW is not less than or
equal to your first calendar period
start date. This may result in missing
calendar data.

Update the START_DT parameter from
the Control Center to be earlier than
your fiscal calendar start date. Detailed
explanation of the start and end dates is
provided in Chapter 2 of the RAP
Implementation Guide.

CAL_R4 Your calendar file does not contain at
least 2 years prior to the current
system date. Many applications on
the platform require at least 2 years
before and after the current calendar
year (5 years total).

Load a new calendar file having at least
2 years of fiscal periods prior to the
current year.

PROD_STG_R1 Null descriptions were detected for
attributes having a non-null ID
column for one of the following:
BRAND_DESC, SUPPLIER_DESC

Populate valid descriptions for all rows
in the product data where BRAND_NAME
or SUPPLIER_NUM are populated, and
then reload the file.

PROD_R1 Many-to-many relationships exist in
your product hierarchy, which is not
allowed. This is generally due to the
same child ID appearing below
multiple parent IDs.

Review all hierarchy levels for instances
of the same ID appearing under
multiple parents (such as a department
belonging to two different divisions or
groups) and modify the data to remove
the multi-parent issues.

PROD_R2 The same product hierarchy node
has multiple descriptions on different
rows of the input file.

Modify your product hierarchy file such
that any given hierarchy ID has the
same description on all rows.

PROD_R3 A node of the product hierarchy has
no children under it. This could be
due to a reclass that didn’t delete the
old nodes, or when a new node is
added but no items were created yet.
Initially, it is set as a Failure (F) rule,
but you may change it to a warning
(W) in C_DIM_RULE_LIST if you are
okay with the data in its current
format.

If possible, remove all cases of nodes
having no children (for example, if all
items are reclassed out of a subclass,
delete the old subclass). Some AI
Foundation functionality may fail if you
attempt to run it on empty nodes; for
example, if a user attempts to run CDT
on an empty subclass, it cannot
complete the run because there will be
no data found. MFCS may allow
hierarchies to exist without items, but it
can lead to user confusion in AIF, so it’s
best to clean up this data regularly.

PROD_R4 Your product hierarchy levels use
alphanumeric characters for the level
IDs. This is not allowed if you are
implementing Retail Insights; all
levels must be numbers.

If you are implementing RI, you must
alter your hierarchy to only use
numbers for every level above item.
Other characters are not allowed.

PROD_R5 You are attempting to delete an item
while also sending data for that item
in other files on the same batch run.
You cannot delete an item if it is still
actively sending data on other input
interfaces.

Re-send the deleted item file, removing
any items that are still active or posting
new data to RI. If the item should be
deleted, then re-send the other files
having that item’s data to remove the
item from all other files.

Chapter 5
Resolving Validation Issues

5-3

Table 5-2 (Cont.) Validation Rule Details

Rule ID Explanation Resolution

PROD_R6 This is an informational message and
not a hard failure. Null values are
being checked for product attribute
columns that are critical to the
operation of multiple RAP
applications. The warning message
columns map to the item level
(ATTR11), tran level (ATTR12), diff
aggregate (ATTR16), and item/parent/
grandparent (ATTR13,14,15) fields in
the PRODUCT.csv file. (which loads
into the W_PRODUCT_ATTR_DS staging
table)

Null values in the ATTR11 and ATTR12
counts means that the ITEM_LEVEL and
TRAN_LEVEL input fields are not
populated, and these must be populated
for 100% of items at all levels.
ATTR13/14/15 represent the item
hierarchy of multi-level items and some
null values are normal. The only check
to perform is whether 100% of rows
have nulls; if there are, then no parent/
child relationship was set up for any
items. ATTR16 matches with the
DIFF_AGGREGATE input field (or DIFF
columns in MFCS) and it must have non-
null values for all fashion items (for
example, the color IDs for SKUs within a
style). MFCS allows you to configure
fashion items to not have a diff
aggregate, but it is invalid for RAP
applications that require diff aggregates
to function.

PROD_R7 Invalid hierarchy relationships exist
for two or more SKUs having the
same item-parents or grandparents
but different hierarchy levels. This
will break downstream integrations
with AIF and Planning.

Correct the hierarchy levels so that all
SKUs having the same item-parents also
have the same subclass and above
hierarchy levels. This includes both the
incoming item data and items already in
the database from prior loads; you must
ensure consistent parents and hierarchy
levels across all of them. The
BAD_PRODUCT_DS table shows multiple
messages for this validation depending
on where the issue is, such as PRODUCT
L3 AND ITEMPARENT L2 SUBCLASS
MISMATCH for item level 2 and 3 items
not having the same subclasses.

PROD_R8 You have more than 1 top level
(company) ID, which is not allowed.

Correct the TOP_PRODCAT_ID to contain
only one value on all rows.

PROD_R9 Your input file contains a different
top level (company) ID than what is
already in the database.

Correct the TOP_PRODCAT_ID to match
the company ID already in the system,
or erase the data in the system to
perform a clean load of new hierarchy
data.

PROD_R10 Your input file contains a different
top level (company) domain member
ID (on W_DOMAIN_MEMBER_DS_TL)
than what is already in the database.

Correct the TOP_PRODCAT_ID to match
the company ID already in the system,
or erase the data in the system to
perform a clean load of new hierarchy
data.

PROD_R11 You have more than 1 top level
(company) description, which is not
allowed.

Correct the TOP_PRODCAT_DESC to
contain only one value on all rows.

Chapter 5
Resolving Validation Issues

5-4

Table 5-2 (Cont.) Validation Rule Details

Rule ID Explanation Resolution

PROD_R12 You have duplicate item IDs when
ignoring the case, such as XYZ and
xyz, which is not allowed on the
platform. Item IDs are not case-
sensitive.

Delete duplicate items such that you
only have a single ID across all
lowercase/uppercase variations.

PROD_R13 You have a one-to-many relationship
between the display IDs for a
hierarchy level and their unique
(UID) identifiers, such as
LVL4_PRODCAT_UID and
LVL4_PRODCAT_ID.

For a given value in the unique (UID)
columns, you must have one and only
one value in the associated display ID
column. Correct either the UID or ID
columns to ensure they align.

ORG_STG_R1 Null descriptions were detected for
attributes having a non-null ID
column, for one of the following:
CHANNEL_NAME,
PLANNING_CHANNEL_NAME,
STORE_FORMAT_DESC

Populate valid values for all
descriptions where CHANNEL_ID,
PLANNING_CHANNEL_ID or
STORE_FORMAT_ID has a non-null value,
and then reload the file.

ORG_R1 Many-to-many relationships exist in
your organization hierarchy, which is
not allowed. This is generally due to
the same child ID appearing below
multiple parent IDs.

Review all hierarchy levels for instances
of the same ID appearing under
multiple parents (such as a district
belonging to two different regions or
areas) and modify the data to remove
the multi-parent issues.

ORG_R2 The same organization hierarchy
node has multiple descriptions on
different rows of the input file.

Modify your organization hierarchy file
such that any given hierarchy ID has the
same description on all rows.

ORG_R3 A node of the organization hierarchy
has no children under it. This could
be due to a reclass that didn’t delete
the old nodes, or when a new node is
added but no stores were created yet.

If possible, remove all cases of nodes
having no children (for example, if all
stores are reclassed out of a district,
delete the old district). Some AI
Foundation functionality will fail if you
attempt to run it on empty nodes.

ORG_R4 Your organization hierarchy levels
use alphanumeric characters for the
level IDs. This is not allowed if you
are implementing Retail Insights; all
levels must be numbers.

If you are implementing RI, you must
alter your hierarchy to only use
numbers for every level of the
organization hierarchy. Other
characters are not allowed.

ORG_R5 Your location type code
(ORG_TYPE_CODE) contains invalid
values.

Only specific codes S, W, or E are allowed
in the ORG_TYPE_CODE field, so you must
correct any other values and reload the
file.

ORG_R6 You have more than 1 top level
(company) ID, which is not allowed.

Correct the ORG_TOP_NUM to contain only
one value on all rows of your input file
and reload it.

ORG_R7 Your input file contains a different
top level (company) ID than what is
already in the database, which is not
allowed.

Correct the ORG_TOP_NUM to match the
company ID already in the database
(W_INT_ORG_DH table) or erase the data
in the system to perform a clean load of
new hierarchy data, if you do not want
to keep your existing dataset.

Chapter 5
Resolving Validation Issues

5-5

Table 5-2 (Cont.) Validation Rule Details

Rule ID Explanation Resolution

ORG_R8 Your input file contains a different
top level (company) domain member
ID or description (on
W_DOMAIN_MEMBER_DS_TL) than what
is already in the database.

Correct the ORG_TOP_NUM and
ORG_TOP_DESC to match the company
data already in the database
(W_DOMAIN_MEMBER_LKP_TL table) or
erase the data in the system to perform
a clean load of new hierarchy data, if
you do not want to keep your existing
dataset.

ORG_R9 You have more than 1 top level
(company) description, which is not
allowed.

Correct the ORG_TOP_DESC to contain
only one value on all rows of your input
file and reload it.

ORG_R10 You are attempting to load a location
in W_INT_ORG_DS which is already in
the data warehouse and flagged
inactive or deleted.

You may not reload or reuse location
IDs that are already in the data
warehouse and have been deleted or
inactivated. Delete the location from
your input data that is specified in
BAD_ORG_INT_ORG_DS. If you believe
this validation is incorrect you may
raise an SR for assistance.

ORG_R11 You are attempting to load a location
in W_INT_ORG_DHS which is already
in the data warehouse and flagged
inactive or deleted.

You may not reload or reuse location
IDs that are already in the data
warehouse and have been deleted or
inactivated. Delete the location from
your input data that is specified in
BAD_ORG_INT_ORG_DHS. If you believe
this validation is incorrect you may
raise an SR for assistance.

EXCH_RATE_R1 Exchange rate dates are overlapping
for the same conversion, which will
result in multiple rates active for the
same date and currency.

Modify the start/end dates for the
exchange rate records to ensure there
are no overlapping dates. Only one rate
may be effective per day/currency
combination.

EXCH_RATE_R2 Exchange rate dates have gaps which
will result in no rate being active for
one or more dates.

Modify the start/end dates for the
exchange rate records to ensure they
have no gaps between one end date and
the next start date, for any given
currency rate.

EXCH_RATE_R3 You have provided currency
conversion in one direction (for
example, USD > CAD) but you did not
provide it in the alternate direction
(CAD > USD).

The system requires that you provide
currency rates going in both directions
for each currency code pair, to ensure
we are always able to convert into and
out of any supported currency.

ATTR_R1 There is mismatched data between
the ATTR.csv and PROD_ATTR.csv
files

The ATTR.csv file must have a header
record for all attribute groups and
values found in PROD_ATTR.csv. Correct
the ATTR.csv file to match exactly with
PROD_ATTR.csv or delete the
mismatched rows from PROD_ATTR.csv.

Chapter 5
Resolving Validation Issues

5-6

Table 5-2 (Cont.) Validation Rule Details

Rule ID Explanation Resolution

ATTR_R2 PROD_ATTR.csv column
ATTR_GRP_TYPE contains an invalid
type code.

The only valid codes for ATTR_GRP_TYPE
are (ITEMDIFF, ITEMUDA, ITEMLIST,
COLOR, and PRODUCT_ATTRIBUTES).
Correct the PROD_ATTR.csv file and
reload the data.

ATTR_R3 ATTR.csv column ATTR_TYPE_CODE
contains an invalid type code.

The only valid codes for
ATTR_TYPE_CODE are (FF, LV, DT, SIZE,
FABRIC, SCENT, FLAVOR, STYLE, COLOR,
and DIFF). Correct the ATTR.csv file and
reload the data.

ATTR_R4 ATTR.csv columns ATTR_GROUP_ID or
ATTR_VALUE_ID contain invalid
characters.

Attribute group and value IDs are used
as a hierarchy in Planning apps and are
restricted from having any spaces,
colons, or quotation marks as part of
the IDs. Correct the ATTR.csv and
PROD_ATTR.csv files and reload the
data.

POSINVDATA_R
1

Dates other than the current business
date were found on
W_RTL_INV_IT_LC_DY_FS. The
DAY_DT is being compared to “select
MCAL_NUM from W_RTL_CURR_MCAL_G
where MCAL_TYPE = 'DT'”.

Daily positional fact data must only
contain a DAY_DT value matching the
current business date; correct the data
and reload. This can be a sign that an
incorrect file was used in the batch or
the dates are out of sync.

POSINVUDATA_
R2

Dates other than the current business
date were found on
W_RTL_INVU_IT_LC_DY_FS. The
DAY_DT is being compared to “select
MCAL_NUM from W_RTL_CURR_MCAL_G
where MCAL_TYPE = 'DT'”.

Daily positional fact data must only
contain a DAY_DT value matching the
current business date; correct the data
and reload. This can be a sign that an
incorrect file was used in the batch or
the dates are out of sync.

POSPRICEDATA
_R3

Dates other than the current business
date were found on
W_RTL_PRICE_IT_LC_DY_FS. The
DAY_DT is being compared to “select
MCAL_NUM from W_RTL_CURR_MCAL_G
where MCAL_TYPE = 'DT'”.

Daily positional fact data must only
contain a DAY_DT value matching the
current business date; correct the data
and reload. This can be a sign that an
incorrect file was used in the batch or
the dates are out of sync.

POSNCOSTDATA
_R4

Dates other than the current business
date were found on
W_RTL_NCOST_IT_LC_DY_FS. The
DAY_DT is being compared to “select
MCAL_NUM from W_RTL_CURR_MCAL_G
where MCAL_TYPE = 'DT'”.

Daily positional fact data must only
contain a DAY_DT value matching the
current business date; correct the data
and reload. This can be a sign that an
incorrect file was used in the batch or
the dates are out of sync.

POSBCOSTDATA
_R5

Dates other than the current business
date were found on
W_RTL_BCOST_IT_LC_DY_FS. The
DAY_DT is being compared to “select
MCAL_NUM from W_RTL_CURR_MCAL_G
where MCAL_TYPE = 'DT'”.

Daily positional fact data must only
contain a DAY_DT value matching the
current business date; correct the data
and reload. This can be a sign that an
incorrect file was used in the batch or
the dates are out of sync.

Chapter 5
Resolving Validation Issues

5-7

Table 5-2 (Cont.) Validation Rule Details

Rule ID Explanation Resolution

POSPOONORDD
ATA_R6

Dates other than the current business
date were found on
W_RTL_PO_ONORD_IT_LC_DY_FS. The
DAY_DT is being compared to “select
MCAL_NUM from W_RTL_CURR_MCAL_G
where MCAL_TYPE = 'DT'”.

Daily positional fact data must only
contain a DAY_DT value matching the
current business date; correct the data
and reload. This can be a sign that an
incorrect file was used in the batch or
the dates are out of sync.

POSPOONALCD
ATA_R7

Dates other than the current business
date were found on
W_RTL_PO_ONALC_IT_LC_DY_FS. The
DAY_DT is being compared to “select
MCAL_NUM from W_RTL_CURR_MCAL_G
where MCAL_TYPE = 'DT'”.

Daily positional fact data must only
contain a DAY_DT value matching the
current business date; correct the data
and reload. This can be a sign that an
incorrect file was used in the batch or
the dates are out of sync.

POSCOMPPRICE
DATA_R8

Dates other than the current business
date were found on
W_RTL_COMP_PRICE_IT_LC_DY_FS.
The DAY_DT is being compared to
“select MCAL_NUM from
W_RTL_CURR_MCAL_G where
MCAL_TYPE = 'DT'”.

Daily positional fact data must only
contain a DAY_DT value matching the
current business date, correct the data
and reload. This can be a sign that an
incorrect file was used in the batch or
the dates are out of sync.

In all cases where you need to correct your file and reload it, you are expected to push only the
corrected files into the system using the data reprocessing ad hoc programs in the POM AIF
DATA schedule. Refer to the AI Foundation Data Standalone Processes chapter for details on
these programs:

1. REPROCESS_ZIP_FILE_PROCESS_ADHOC to upload your corrected file(s)

2. CSV_REPROCESS_ADHOC or DAT_REPROCESS_ADHOC to import the corrected files and transform
the data from staging to target tables (only running the required programs, not the entire ad
hoc process)

Chapter 5
Resolving Validation Issues

5-8

6
Support Utilities

Some support utilities will be exposed for implementers directly in APEX, allowing you to run
functions such as database cleanup without Oracle involvement. These utilities may also be
used by Oracle Support when responding to Service Requests on your RAP environments. If a
process documented here is intended only for Oracle Support usage and not for customers
directly, it will be noted in the detailed description.

Data Cleanup Utilities

Data Warehouse Table Cleanup
Because foundation data is always loaded first through the shared data warehouse (also called
the RADM01 schema), implementers often need to erase data from these tables in preparation
for a new load. Database functions have been exposed to APEX to allow targeted deletion of
data by table name. The delete functions can be disabled by Oracle upon request if you do not
want the functionality exposed after customer go-live.

Note:

These utilities are only for data loaded using the AIF DATA schedule jobs in POM. If
you have loaded data into one or more AIF applications (AIF APPS schedule) then
there is a cleanup job named AIF_APPS_MAINT_DATA_CLEANUP_ADHOC_PROCESS in the
AIF APPS schedule. Refer to the Data Cleanup Utility section in the AI Foundation
Applications Standalone Processes chapter.

The sample command below is the basic method used for table cleanup of a specific table.
Specify the schema name and table name to be truncated, then run the PL/SQL block.

DECLARE
 SCHEMANAME VARCHAR2(200);
 TABLENAME VARCHAR2(200);
BEGIN
 SCHEMANAME := 'RADM01';
 TABLENAME := 'W_RTL_SLS_TRX_IT_LC_DY_FS';
 RI_SUPPORT_UTIL.CLEAR_SELECTED_RI_TABLES(
 SCHEMANAME => SCHEMANAME,
 TABLENAME => TABLENAME
);
END;

If the process is successful, you will see that the PL/SQL block was successfully executed with
no further message or results. If the process encounters any error, it will display the error
details in the results panel in APEX. Error details may also be logged in the RI_LOG_MSG table
unless it is an unexpected failure that was not caught by the program.

6-1

To quickly clean the entire database schema instead of individual tables, you may instead call
the following command. This command will erase all customer data except for the calendar,
system configuration tables, and seed data records. This command will also delete user data
from the C_HIST_LOAD_STATUS table, which was generated for any history loads. Use this
command if you need to reset the environment in preparation for a new dataload using a
different dataset:

DECLARE
SCHEMANAME VARCHAR2(200);
BEGIN
 SCHEMANAME := 'RADM01';
 RI_SUPPORT_UTIL.CLEAR_SELECTED_RI_TABLES(
 SCHEMANAME => SCHEMANAME
);
END;

Calendar removal is provided as a separate function, because you cannot remove calendar
information without also erasing all partitions (which are specific to your currently loaded
calendar). The function name is CLEAR_RI_MCAL_TABLES and can be called the same way as
the schema clear script above, passing in the schema name as the input. Before you perform
any calendar cleanup, review the following:

• Partition removal is based on the current partition configuration in C_MODULE_ARTIFACT; it
will not modify tables that are not enabled for partitioning. Ensure the configuration table
reflects your current cleanup needs.

• Because calendar cleanup includes partition removal, you cannot use the system for a new
data load without first re-partitioning the system. Refer to the RAP Implementation Guide
for the steps to reload the calendar and partition the database.

DECLARE
SCHEMANAME VARCHAR2(200);
BEGIN
 SCHEMANAME := 'RADM01';
 RI_SUPPORT_UTIL.CLEAR_RI_MCAL_TABLES(
 SCHEMANAME => SCHEMANAME
);
END;

There is a function named RI_SUBJECTAREA_TABLE that erases functional areas of the data
warehouse one by one, which can be useful for targeted cleanup of related groups of tables.
The function uses the list of tables and subject area names from the database table
C_RI_SUBJECTAREA, which you can query from APEX to identify which values you want to use.
If you run the command for the Price or Inventory Position subject areas, then it will also clean
up the C_HIST_LOAD_STATUS table for all related entries.

The command syntax is shown below.

DECLARE
 SUBJECTAREA_NAME VARCHAR2(200);
 OWNER_NAME VARCHAR2(200);
BEGIN
 OWNER_NAME := 'RADM01';
 SUBJECTAREA_NAME := 'Organization';
 RI_SUPPORT_UTIL.RI_SUBJECTAREA_TABLE(

Chapter 6
Data Cleanup Utilities

6-2

 SUBJECTAREA_NAME => SUBJECTAREA_NAME,
 OWNER_NAME => OWNER_NAME
);
END;

When you run any of the cleanup commands above, it may take an hour or longer to complete
depending upon the amount of data in your schema and the number of partitions requiring
deletion. It is recommended to run large cleanup activities from a SQL Script, not from the SQL
Commands screen. Add the commands to a script and save it, then execute it separately.
Saved scripts that are executed are allowed to run in the background, which means you can
navigate away from the page as soon as you start it, and it will continue to run until completed.
To monitor the activity after starting a cleanup command or script, you can query the
RI_LOG_MSG table and check for new log messages:

select * from ri_log_msg order by msg_ts desc;

If the process is still running, you will see new log entries being added for ri_support_util
methods. If no recent entries are added and the last set of messages show the END messages
for a process step, then you can verify that all your tables are cleared and proceed with your
implementation activities. When verifying table counts and contents after a cleanup script is
run, you must include a hint in your SQL to prevent cached results or stale statistics from being
returned.

For example:

SELECT /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
COUNT(*) from w_product_d;

Integration Layer Table Cleanup
Tables used to move data between RAP applications are maintained in a separate database
schema called RDX (short for retail data exchange). These tables are not accessible to
cleanup packages like ri_support_util. A separate package is provided just for these tables,
called rap_support_util. You may call this package to delete data from the RDX schema,
specifically for tables that use RUN_ID as the primary key and partition structure, such as
W_PDS_SLS_IT_LC_WK_A.

The rap_support_util package has a single method PURGE_INTF_RUNS. This method allows
you to delete data from an RDX table fully or for specific RUN_ID values. The parameters for the
method are:

• p_app_code – Required. The code of the application whose integration tables you are
purging. Use % as a wildcard to purge data regardless of the application source. Valid
codes can be found on RAP_INTF_CFG.

• p_intf_name – Required. The name of the table that needs to be purged. Use % as a
wildcard to purge all supported tables (recommended to only use this option with a non-
wildcard value on p_app_code).

• p_run_id – Optional. The run_id to be deleted.

• p_max_retained_run_id – Optional. The max run_id that needs to be retained in the
table. Data less that this run ID will be purged.

• p_purge_age_run_id – Optional. Purge run IDs older than this age.

Chapter 6
Data Cleanup Utilities

6-3

The first two parameters must always be used, and you may optionally provide one of the other
three parameters to further refine the data to be deleted.

To erase all runs in a table, you only need to provide the table name. For example, to erase the
W_PDS_INVRTV_IT_LC_WK_A table, use the command:

DECLARE
 TABLE_NAME VARCHAR2(200);
BEGIN
 TABLE_NAME := 'W_PDS_INVRTV_IT_LC_WK_A';
 RAP_SUPPORT_UTIL.PURGE_INTF_RUNS(p_app_code => '%', p_intf_name =>
TABLE_NAME);
END;

To limit the RUN_ID values that are purged, pick any one of the other parameters as a third
input value after the table name. The run ID and max retained run ID are numbers that should
contain a single RUN_ID from the available values in the database table. The purge age is a
number representing the number of days back from sysdate to purge (any run created before
sysdate-p_purge_age_run_id will be deleted).

Data Warehouse Partition Cleanup
Most tables in the data warehouse are partitioned using the loaded fiscal calendar, and these
partitions are created either through ad hoc processes or automatically in batch. When you
have major data changes, such as altering the calendar or reconfiguring the flexible fact tables,
you might be required to purge existing partitions as part of data cleanup. There is a function
named REMOVE_ALL_PARTITIONS that can purge partitions from a single table. It has only one
parameter input: the name of the table to purge.

DECLARE
 TABLE_NAME VARCHAR2(200);
BEGIN
 TABLE_NAME := 'W_RTL_FLEXFACT1_F';
 RI_SUPPORT_UTIL.REMOVE_ALL_PARTITIONS(p_table_name => TABLE_NAME);
END;

Data Delete Utility
During data validations, you may encounter times when a particular subset of data is incorrect,
and you wish to reload it. If you do not want to truncate the entire table, you may be able to
delete just the segment of data having an issue by using this data deletion utility. This utility
allows you to specify ranges of calendar, product, and location values that you need to delete
and it will remove only that data, allowing you to reprocess those intersections without
reloading the entire history.

Currently, the following functional modules are supported:

Name Module Code

Sales SLS

Inventory Position INV

Inventory Receipts INVRC

Inventory Transfers INVTSF

Chapter 6
Data Delete Utility

6-4

Name Module Code

Inventory Adjustments INVADJ

Inventory RTVs INVRTV

Markdowns MKDN

Wholesale/Franchise SLSWF

The job for this utility is in the AIF DATA schedule, Standalone process section. The process
name is DATA_DELETE_PROCESS_ADHOC and has only one job, DATA_DELETE_JOB. The job
accepts two parameter values:

1. The first value is required and must specify the module code (for example, SLS)

2. The second value is optional and may be the value ALL. This overrides the configurations
for the job and instead performs a full table truncate on the module, similar to the data
cleanup utility but only for the specific table covered by this program.

The parameters are provided directly into the POM edit parameters screen or as values on the
job parameters in a Postman call. If entered into POM UI, you might enter SLS ALL to erase the
sales data, or just SLS to run the sales delete process for your configuration.

To configure what data will be deleted, there are two configuration tables available from the
Manage System Configurations. The first table is C_MODULE_CLNUP_TABLE. This lists the
available tables in the database to be cleaned up by the utility. You may change the column
CLNUP_IND to be Y or N, which enables or disables that table for the cleanup functions. The
second table is C_MODULE_CLNUP_CFG. This is where you specify the intersections of product,
location, and calender to be deleted from the tables. You may insert a row to this table to set
the parameters. The columns to update are listed below.

Column Usage

MODULE_CODE Enter the module code from the supported list of codes, like
SLS or INV

PROD_LVL_NAME Enter the product hierarchy level that your IDs will be
specified for, including ITEM, SBC, CLS, DEPT, GRP, or DIV

PROD_LVL_ID_LST Enter a comma-separated list of unique identifiers for product
hierarchy nodes (equivalent to W_PROD_CAT_DH.LEVEL_ID or
PRODUCT.csv values like LVL4_PRODCAT_UID or ITEM) that you
want data deleted for.

PROD_LVL_ID_LST2 Optional field for more identifiers if your list exceeds the field
length of the prior column.

ORG_LVL_NAME Enter the location hierarchy level that your IDs will be
specified for, including LOCATION, DISTRICT, REGION, AREA,
CHAIN

ORG_LVL_ID_LST Enter a comma-separated list of unique identifiers for location
hierarchy nodes (equivalent to ORGANIZATION.csv
ORG_HIER10_NUM or other org hierarchy values) that you want
data deleted for.

ORG_LVL_ID_LST2 Optional field for more identifiers if your list exceeds the field
length of the prior column.

CLNUP_START_DATE Set the start date for the data cleanup. Use a week-starting date
if cleaning week-level tables. Make sure there is no timestamp
component (time shows as 00:00:00).

Chapter 6
Data Delete Utility

6-5

Column Usage

CLNUP_END_DATE Set the end date for the data cleanup. Use a week-ending date if
cleaning week-level tables. Make sure there is no timestamp
component (time shows as 00:00:00).

CLNUP_IND Enter Y or N to enable or disable the configuration record.

The data delete utility will use this information in the following ways:

• When not using the ALL option, it truncates partition statements if no prod/loc intersections
are provided, or delete statements which are limited by your product, location, and
calendar values. All combinations of the specified values are deleted for the given date
range.

• When using the ALL option, the configuration table is ignored and the tables having
CLNUP_IND=Y will be truncated entirely.

• Week-level tables are always truncated by weekly partition or deleted by week, partial
week cleanup is not possible, which is why week start/end dates should be used in the
configuration.

For the hierarchy information, the tables W_PRODUCT_D_RTL_CUR_TMP and
W_INT_ORG_DH_RTL_CUR_TMP are used to select the necessary intersections and keys. These
should be populated already by performing hierarchy loads into the system; but if you are
having any trouble with the tool deleting the necessary data, check that your hierarchies have
been loaded here. Only the latest hierarchy definitions are used, so if reclassifications were
performed, it will not delete data for inactive or outdated hierarchy definitions.

Innovation Workbench Process Cleanup
If a process running from Innovation Workbench needs to be terminated for any reason, it is
possible to do this from Innovation Workbench itself. As a prerequisite, you will need two
pieces of information:

• the account name which invoked the process/query that needs to be terminated (for
example: first.lastname@domainname.com)

• the minimum required runtime of the database session(s) to be killed (in minutes)

After collecting this information, you will use a package called RAP_DBADMIN_LOCAL_UTIL, which
is used for program units associated with session management. This package has a routine
named KILL_USER_RUNAWAY_SESSION which kills long-running sessions for specified client
information. It has support for two parameters to help select sessions to be killed. The first
parameter (p_client_info) is optional and, if not provided, will default to the user who invoked
the routine. The second parameter (p_max_runtime_allowed_min) is also optional and
accommodates the number of minutes a session must be active before being selected for
getting killed. This defaults to 60 minutes if not provided. To kill all IW sessions, without regard
for runtime, provide a value of 0 for p_max_runtime_allowed_min. The routine never terminates
the session that invoked the routine.

Based on the parameters provided, sessions that are ACTIVE and meet the search conditions
provided will be killed using a command like the following:

BEGIN
rap_dbadmin_local_util.kill_user_runaway_session(:userid_to_kill, :minimum_run
time_minutes);

Chapter 6
Innovation Workbench Process Cleanup

6-6

END;
/

The variables shown above are placeholders for the values to be used. The process will kill all
sessions that are associated with the specified account (except for the session initiating this
request), and have been active for more than the specified number of minutes. The runtime
parameter allows for easier cleanup of sessions, allowing only the terminating of longer
running sessions, and not more-recent sessions.

As an alternative to using this process, it is also possible to schedule your commands to run
through DBMS_SCHEDULER. Those statements run in the background and can be monitored
through the normal data dictionary views associated with DBMS_SCHEDULER. If a statement runs
through DBMS_SCHEDULER, and it needs to be terminated, then instead of using this
RAP_DBADMIN_LOCAL_UTIL package to kill the session, it is possible to use
DBMS_SCHEDULER.STOP_JOB to stop the job that was submitted.

Aggregation Utility
The data warehouse has over 100 different tables for pre-calculating data at higher levels of
aggregation, mainly for the purpose of BI reporting and analytics. These tables do not need to
be populated during initial historical data loads but would be needed before end-users begin
accessing data in RI. Some aggregates are also used for PDS integrations (at the item/
location/week level). To populate or update these tables after history loads are complete, an
aggregation utility is provided that can use the base intersection of a functional area to
calculate all of the higher-level tables.

The utility currently supports the following subject areas in RI:

Name Module Code

Sales SLS

Sales Pack SLSPK

Sales Promotion SLSPR

Sales Wholesale SLSWF

Inventory INV

Inventory Adjustments INVADJ

Inventory Receipts INVRC

Inventory Transfers INVTSF

Inventory Reclasses INVRECLASS

Inventory Return to Vendor INVRTV

Markdowns MKDN

Net Profit NPROF

Customer Loyalty Transactions CUST

Within these subject areas, the aggregation does have some limitations on which columns are
populated (relative to nightly batches). Aggregate columns that are derived by joining multiple
tables together during batch processing are not included in this utility because the data may
not be available or accurate for the calculations. This includes:

• Inventory availability columns, such as the counts and amounts based on presentation
stock and demo stock levels

Chapter 6
Aggregation Utility

6-7

• Inventory age and weeks-in-store calculations based on new receipt activity

• Any columns that join to the clearance dimension to get the clearance indicator and
markdown event ID for a specific inventory or transaction record

Prerequisites for using the utility (all steps must be completed every time you want to use the
utility):

1. Partitioning has been run for the target functional areas such as sales (SLS), inventory
(INV), and so on. Follow the steps in the RAP Implementation Guide to perform additional
partitioning as needed. If you have not used the utility since the last time you received a
product patch, you should re-run the partitioning process again to ensure all tables are
partitioned.

2. The base fact for the functional area has already been loaded with data for the entire date
range you want to aggregate on. For example, the W_RTL_SLS_TRX_IT_LC_DY_F table is
loaded before attempting to aggregate it to W_RTL_SLS_IT_LC_WK_A.

3. Database statistics have been collected recently using REFRESH_RADM_JOB and
ANAYLZE_TEMP_TABLES_JOB (either as part of an ad hoc data load or automatically as part of
nightly batch).

The configuration table to control the utility is C_RI_AGGREGATION_MAP, which is available from
the Control Center in the AI Foundation user interface. It contains a list of aggregate tables in
the data warehouse that can be processed by the utility. For each table you want to load, set
the START_DT as the earliest date to process and the END_DT to the final date to process. The
tables are grouped by functional area such as MODULE_CODE=SLS so you can update all tables
relating to that fact.

When specifying the start/end dates, make sure to consider the calendar level of the table. Day
level tables can have any start/end dates because they use daily partitions. Week level (WK)
tables should use week starting/ending dates to ensure each full week of data is always
aggregated into the table. Similarly, Gregorian month (GMH) tables should use month start/end
dates. The utility also has functions to auto-extend your date ranges to encompass full weeks
and months even if you make mistakes in the configuration. By default, dates will always be
auto-extended so that full weeks/months are always loaded where needed. This can be
changed using parameter RI_AGG_FULL_LOAD_TYPE on C_ODI_PARAM_VW if you only want the
dates you specify to be included in the aggregations. Valid values include:

• F – full auto-extend of dates

• FE – extend end dates only

• FS – extend start dates only

N/A (or any other values) – Use only the dates in the mapping table

Once the necessary updates are performed, you will execute an ad hoc process in POM
named AGGREGATION_UTILITY_ADHOC. This process is a first-time manual run to validate the
configuration is working as intended and to set up the temp tables. This process has 3 jobs in
it:

 AGG_UTILITY_PRE_JOB – Calculates a temporary lookup table for product hierarchy
relationships

 AGG_UTILITY_ORG_PRE_JOB – Calculates a temporary lookup table for organization hierarchy
relationships

 AGG_UTILITY_JOB – Performs an aggregation action for a specific table name and run type

The AGG_UTILITY_JOB requires two input parameters: the name of the table as found in
C_RI_AGGREGATION_MAP and the type of aggregation to perform (FRESH or RESTART). When

Chapter 6
Aggregation Utility

6-8

FRESH is specified, it assumes you want to aggregate the entire date range specified in the
configuration table, even if it has been run before. If RESTART is specified, it will run only from
the last completed period (the partition job aggregates one quarter at a time so it will not re-run
earlier quarters that already completed). Also use the RESTART option if you changed the
END_DT to some time further in the future and want to only process incomplete dates resulting
from the change. In most use cases you can always specify RESTART as the option and it will
perform the required actions.

Example Postman message body for the process call:

{
 "cycleName":"Adhoc",
 "flowName":"Adhoc",
 "requestType":"POM Scheduler",
 "processName":"AGGREGATION_UTILITY_ADHOC",
 "requestParameters":"jobParams.AGG_UTILITY_JOB= W_RTL_SLS_CS_IT_LC_DY_A
RESTART"
}

Once you have issued the command to start the process, you may monitor the detailed run
status by querying the table C_BULK_LOAD_STATUS from APEX. A record will be inserted for
each calendar quarter that has been processed until the entire date range is aggregated. The
POM job will complete successfully after the table is loaded for all dates. You may then
compare the base fact table with the target aggregate and confirm the values have been rolled
up as expected.

The aggregate tables must be populated in a specific sequence based on the value in the
AGGREGATION_LEVEL column in C_RI_AGGREGATION_MAP. For each MODULE_CODE, the level 1
tables must be populated first, then the level 2 tables, and so on. To automate this execution
sequence, there is a separate job available in POM, named AGG_SRVC_JOB. The aggregation
service job accepts a single input parameter for the MODULE_CODE value. The job will execute all
tables in the associated record set in C_RI_AGGREGATION_MAP for that module, following the
AGGREGATION_LEVEL sequence as needed. The two PRE jobs (AGG_UTILITY_PRE_JOB and
AGG_UTILITY_ORG_PRE_JOB) are prerequisites for this job, so ensure you’ve already run those at
least once before using AGG_SRVC_JOB.

Example Postman message body for the process call:

{
 "cycleName":"Adhoc",
 "flowName":"Adhoc",
 "requestType":"POM Scheduler",
 "processName":"AGGREGATION_SRVC_ADHOC",
 "requestParameters":"jobParams.AGG_SRVC_JOB=INV"
}

If any processes in the AGG_SRVC_JOB have a failure or are taking too long to run, you may also
check the following tables for more information:

• C_RI_SRVC_REQ_QUEUE – Contains the status of individual service calls invoked by the
aggregation process. A status of 6 means success while 7 means failed.

• RI_LOG_MSG – If a process does fail, the detailed trace logs will be written to this table to
help you identify the problem. Look for records where PROGRAM_UNIT =
RI_AGGREGATION_UTIL.

Chapter 6
Aggregation Utility

6-9

Database Statistics Utility
A critical part of working with large datasets in Oracle Database is the collection of statistics on
your database tables. The POM processes used to load data generally include a job to collect
statistics on the entire database schema to ensure stats are always up-to-date. The drawback
of this program is that it can take a significant amount of time to run, even if you only need to
refresh statistics on a single table. To help implementers collect statistics on specific tables, a
utility is provided using the POM standalone program COLLECT_STATS_JOB.

The COLLECT_STATS_JOB accepts a single input parameter for the database module code you
wish to gather stats on. The module codes are defined from the configuration table
C_MODULE_DBSTATS, which is available from the Control & Tactical Center in the AI Foundation
UI. The configuration table will come pre-defined with some core modules that often need stats
collected on them using the codes SLS, INV, and PRICE. You have the ability to insert new rows
into the table to define your own custom values for MODULE_CODE. You may specify any value
you wish for the MODULE_CODE, along with one or more tables you plan to collect stats on. You
would then pass the MODULE_CODE value into the job parameters to collect stats on your chosen
list of tables. TABLE_NAME and MODULE_CODE are the only required values for tables in the RADM01
schema. If you are collecting stats on a temp table (in the RABE01USER schema) then you must
also populate the OWNER_TYPE as BATCH.

The C_MODULE_DBSTATS column OP_TYPE provides a way to handle various issues with locked
statistics. It accepts one of the following codes:

• SKIP – If a table’s statistics are locked, then skip it and continue processing

• C_LOCK – If a table’s statistics are locked, unlock it, collect stats, then lock it again

• C_UNLOCK – If a table’s statistics are locked, unlock it and collect stats, leaving it unlocked

• UNLOCK – If a table’s statistics are locked, unlock them

After reviewing the configuration, you may invoke the job from POM or Postman, providing
your MODULE_CODE as the only input parameter.

Example Postman message body for the process call:

{
 "cycleName":"Adhoc",
 "flowName":"Adhoc",
 "requestType":"POM Scheduler",
 "processName":"COLLECT_STATS_ADHOC",
 "requestParameters":"jobParams.COLLECT_STATS_JOB=SLS"
}

External Table Load Logs
The first step of importing a file into RAP applications is to map the raw file as an external table
on the Oracle database. The file is then pulled from the external table into an actual staging
table in the target database schema. From a batch job perspective, the external table steps are
performed by the jobs having STG in the name, such as W_RTL_CMP_CLOSED_DS_STG_JOB or
STG_SI_ORGANIZATION_JOB. Issues that occur during the external table setup and load process
result in rejected records on the application server that are not immediately visible to the
database, since no data is yet loaded into the system.

Chapter 6
Database Statistics Utility

6-10

To access rejected records from external tables, a temporary link is created in the database
that points to the log files. You must use a procedure in the ri_support_util package to
access this data. The procedure is named get_file_load_result and it accepts two input
parameters:

1. The log file type, using values LOG or BAD. LOG files are the detailed log messages, while
BAD files are the actual rejected records from the source data.

2. The numerical sequence of the database object linked to the logs. This is obtained from
the error message when a job fails in POM.

Here is an example log message you might get from a failed job in POM:

Status check shows failed job, due to [ORA-20003: Reject limit reached, query
table "RADM01"."COPY$124_LOG" for error details

The table referenced in this message is actually an external table link to a log file on the server.
To access the data, log into Innovation Workbench and call the support utility with this
command:

create table BATCH_LOG124 as select * from table
(ri_support_util.get_file_load_result('LOG', '124'));

Creating a table allows you to preserve the logs without re-querying the application server. If
there are rejected records associated with the same load, then there will also be a BAD table,
which can use the same command but replacing LOG with BAD. External table logs are
temporary, and they will be erased frequently by automated processes. You will need to extract
the relevant data from the logs the same day the job fails, or it may be deleted.

Managing Rejected Records

Data Warehouse Rejection Process
A core feature of the foundation data warehouse is the capturing and storage of rejected fact
records. A rejected record is one in which the data was able to be staged into the database
from a file or other integration, but there was a problem with the data that prevented it from
loading into the final data warehouse table. The most common reason for rejection is that one
or more of the key columns in the fact record does not have any matching value in the
associated dimension tables. For example, you provide a sales transaction with ITEM = 12340
but there is no such item as part of your product dimension, so the system is unable to load
that record.

The general process for rejecting data is:

1. Records are loaded from the staging (FS) table to a temporary (TMP) table where the data is
joined with internal dimensions and foreign keys are obtained.

2. Records are moved from the temporary table to the target fact (F) table using either an
INSERT or MERGE statement, depending on the fact program.

3. The program compares the records in the FS and TMP tables and any differences are
written to an error (E$) table for review. E$ tables do not exist when the system is first
installed; they are created dynamically at runtime.

Chapter 6
Managing Rejected Records

6-11

4. A summary of the errors is written to the W_ETL_REJECTED_RECORDS table when the job
completes. Jobs do not fail due to rejected records, they will load any valid data and end
successfully.

A list of rejected record tables is provided below for reference. These tables belong to the
RABE01USER database user, so when querying them you should append the username in front
of the table name. If you are attempting to query one of these tables from APEX and you get
an error that the table does not exist, then one of two things may be the reason:

• You do not have any rejections yet, so the table has not been created by the load program.

• The table has not been granted to APEX. The ability to select from E$ tables is given by
RABE_TO_RTLWSP_GRANTS_JOB and this job must be executed as part of any ad hoc process
to refresh the table grants.

Subject Area Rejected Records Table

Allocation Details E$_W_RTL_ALC_IT_LC_DY_TMP

Base Cost E$_W_RTL_BCOST_IT_LC_DY_TMP

Cluster Items E$_W_RTL_CLSTR_GRP_IT_TMP

Competitor Price E$_W_RTL_COMP_PRICE_IT_LC_DY_T

Customer Loyalty Awards E$_W_RTL_CUST_LYL_AWD_TRX_DY_T

Customer Loyalty Transactions E$_W_RTL_CUST_LYL_TRX_LC_DY_TM

Deal Income E$_W_RTL_DEALINC_IT_LC_DY_TMP

Fact Aggregate 1 E$_W_RTL_FACT1_PROD1_LC1_T1_TMP

Fact Aggregate 2 E$_W_RTL_FACT2_PROD2_LC2_T2_TMP

Fact Aggregate 3 E$_W_RTL_FACT3_PROD3_LC3_T3_TMP

Fact Aggregate 4 E$_W_RTL_FACT4_PROD4_LC4_T4_TMP

Flex Fact 1 E$_W_RTL_FLEXFACT1_TMP

Flex Fact 2 E$_W_RTL_FLEXFACT2_TMP

Flex Fact 3 E$_W_RTL_FLEXFACT3_TMP

Flex Fact 4 E$_W_RTL_FLEXFACT4_TMP

Gift Card Sales E$_W_RTL_GCN_TRX_LC_DY_TMP

Intercompany Margin E$_W_RTL_ICM_IT_LC_DY_TMP

Inventory Adjustments E$_W_RTL_INVADJ_IT_LC_DY_TMP

Inventory OOS E$_W_RTL_INVOOS_IT_LC_WK_TMP

Inventory Count (Perpetual) E$_W_RTL_INVPS_CNT_IT_LC_DY_TM

Inventory Count (Systemic) E$_W_RTL_INVSS_CNT_IT_LC_DY_TM

Inventory Receipts E$_W_RTL_INVRC_IT_LC_DY_TMP

Inventory Reclass E$_W_RTL_INVRECLASS_IT_LC_DY_T

Inventory Return to Vendor E$_W_RTL_INVRTV_IT_LC_DY_TMP

Inventory Transfers E$_W_RTL_INVTSF_IT_LC_DY_TMP

Inventory Unavailable E$_W_RTL_INVU_IT_LC_DY_TMP

Inventory Position (when
RI_INVAGE_REQ_IND=N)

E$_W_RTL_INV_IT_LC_DY_TMP

Inventory Position (when
RI_INVAGE_REQ_IND=Y)

E$_W_RTL_INV_IT_LC_DY_TMP1

Markdowns E$_W_RTL_MKDN_IT_LC_DY_TMP

Chapter 6
Managing Rejected Records

6-12

Subject Area Rejected Records Table

Market Sales (Consumer Group) E$_W_RTL_MKTSLS_TA_CH_CNG_WK_T

Market Sales (Household Group) E$_W_RTL_MKTSLS_TA_CH_HG_WK_TM

Net Cost E$_W_RTL_NCOST_IT_LC_DY_TMP

Plan 1 E$_W_RTL_PLAN1_PROD1_LC1_T1_TMP

Plan 2 E$_W_RTL_PLAN2_PROD2_LC2_T2_TMP

Plan 3 E$_W_RTL_PLAN3_PROD3_LC3_T3_TMP

Plan 4 E$_W_RTL_PLAN4_PROD4_LC4_T4_TMP

Plan 5 E$_W_RTL_PLAN5_PROD5_LC5_T5_TMP

Plan Forecast 1 E$_W_RTL_PLANFC_PROD1_LC1_T1_T

Plan Forecast 2 E$_W_RTL_PLANFC_PROD2_LC2_T2_T

Promotion Actual E$_W_RTL_PRACT_IT_LC_DY_TMP

Promotion Budget E$_W_RTL_PRBDGT_IT_LC_TMP

Purchase Order Allocations E$_W_RTL_PO_ONALC_IT_LC_DY_TMP

Purchase Orders E$_W_RTL_PO_ONORD_IT_LC_DY_TMP

Price E$_W_RTL_PRICE_IT_LC_DY_TMP

Replenishment Demand E$_W_RTL_REPL_DMD_IT_LC_DY_TMP

Replenishment WF Orders E$_W_RTL_REPL_WF_ORD_IT_LC_DY_

Sales E$_W_RTL_SLS_TRX_IT_LC_DY_TMP

Sales Consignment E$_W_RTL_SLSCC_TRX_IT_LC_DY_TM

Sales Discount E$_W_RTL_SLSDSC_TRX_IT_LC_DY_T

Sales Extensions E$_W_RTL_SLS_TRX_EXT_IT_LC_DY_

Sales Pack E$_W_RTL_SLSPK_IT_LC_DY_TMP

Sales Promotion E$_W_RTL_SLSPR_TX_IT_LC_DY_TMP

Sales Wholesale E$_W_RTL_SLSWF_IT_LC_DY_TMP

Shipment Details E$_W_RTL_SHIP_IT_LC_DY_TMP

Stock Ledger (Gregorian Month) E$_W_RTL_STCKLDGR_SC_LC_MH_G_T

Stock Ledger (Month) E$_W_RTL_STCKLDGR_SC_LC_MH_TMP

Stock Ledger (Week) E$_W_RTL_STCKLDGR_SC_LC_WK_TMP

Store Traffic E$_W_RTL_STTRFC_LC_DY_MI_TMP

Supplier Compliance E$_W_RTL_SUPPCM_IT_LC_DY_TMP

Supplier Compliance Unfulfilled E$_W_RTL_SUPPCMUF_LC_DY_TMP

Transaction Tender E$_W_RTL_TRX_TNDR_LC_DY_TMP

Transfer Details E$_W_RTL_TSF_IT_LC_DY_TMP

XStore Sales E$_W_RTL_SLS_POS_IT_LC_DY_TMP

Rejected Record Reprocessing
Some subject areas have support utilities to aid with reloading records that were rejected
because of bad or missing data in nightly batch executions. When records are rejected, they
will first be placed into separate tables prefixed with E$. From here, you may review the data
for issues and go back to the source systems to make corrections and avoid future batch
problems. The rejected record utilities support the following areas:

Chapter 6
Managing Rejected Records

6-13

Subject Area Module
Code

Rejected Records Table

Sales SLS E$_W_RTL_SLS_TRX_IT_LC_DY_TMP

Sales Promotion SLSPR E$_W_RTL_SLSPR_TX_IT_LC_DY_TMP

Inventory INV E$_W_RTL_INV_IT_LC_DY_TMP
or
E$_W_RTL_INV_IT_LC_DY_TMP1

Price PRICE E$_W_RTL_PRICE_IT_LC_DY_TMP

As a prerequisite to running these processes, some one-time cleanup must be done. The
inventory and price reload jobs use the C_HIST_LOAD_STATUS table in the same manner as
historical loads. For this reason, you must erase the values from the MAX_COMPLETED_DATE and
HIST_LOAD_STATUS columns of this table. All rows should show as null values for these fields.
This cleanup can be done using the Control & Tactical Center UI.

For inventory only, there are two rejected record tables used by the process, but only one of
them is listed in the configuration tables. You do not need to alter the configuration to specify
the other TMP table; the program will select the correct table automatically based on the value
of RI_INVAGE_REQ_IND in C_ODI_PARAM. E$_W_RTL_INV_IT_LC_DY_TMP is used when the
parameter is set to N (which means the system is not tracking receipt dates or inventory age)
while the other table E$_W_RTL_INV_IT_LC_DY_TMP1 is used when the parameter value is Y.

Before attempting to reload any rejections, you will also need to perform another batch run or
ad hoc load to correct the associated dimensions, such as adding any missing items or
locations. For example, for records that are rejected on Day 1, you must fix the source data
and run a normal batch on Day 2; then you are ready to reprocess the older rejections on Day
2+ after the batch cycle. Once the dimensions are fixed, you can follow the steps below to
reload the rejected records.

1. Run the E_FS_RELOAD_JOB in the process E_FS_RELOAD_PROCESS_ADHOC. This job accepts
three input values: module code, start date, and end date. The module code is required
and comes from the table above. The dates are optional and specify the range of
CHECK_DATE values to extract from the E$ table. If no dates are provided to the job, then it
will use trunc(sysdate-1) to trunc(sysdate) as the start and end date. The values
should be entered as parameters on the job in the format:

SLS 20230808 20230809

2. The set of records found for the provided input parameters will be moved from the
associated E$ table to another table prefixed with ERR. This table will keep the history of
reprocessed records so the data is not lost. From there, it will be moved to the staging (FS)
table. The specific tables used for each module are listed in the configuration table
C_MODULE_REJECT_TABLE.

3. Verify the FS table now contains the data you want to load. You also have the ability to
directly update the data in the staging tables from Innovation Workbench if any further
changes need to be done to make it load successfully.

4. Run the reload process for the data to move the records from the staging table into the
data warehouse tables. This will be one of the following ad hoc processes (make sure all
jobs in these processes are enabled in Batch Administration before trying to run them):

• E_SLS_RELOAD_PROCESS_ADHOC

• E_SLSPR_RELOAD_PROCESS_ADHOC

Chapter 6
Managing Rejected Records

6-14

• E_INV_RELOAD_PROCESS_ADHOC

• E_PRICE_RELOAD_PROCESS_ADHOC

For Sales and Sales Promotion, they are kept separate because it’s possible to have
transactions that were loaded to the base sales tables but were rejected from promotional
sales tables. In this case, you might only reprocess the SLSPR module, which will not load any
new data into the base sales transaction tables. If you see rows rejected on both SLS and
SLSPR E$ tables, then you want to reprocess both modules, as the tables loaded are differently.

For Inventory and Price, you can see the status of the reload using the C_HIST_LOAD_STATUS
table, similar to how the historical load is performed. Once a range of dates is loaded
successfully in this manner, you cannot go back and reprocess the same records again: the job
will not allow you to insert any item/locations that already exist in the fact tables. If you have
different, rejected item/location records that still need to be reprocessed, then you must first
reset C_HIST_LOAD_STATUS to allow past dates to be reprocessed. The inventory reload is also
used only to populate the core tables that are common to RAP (W_RTL_INV_IT_LC_G,
W_RTL_INV_IT_LC_DY_F and W_RTL_INV_IT_LC_WK_A). For any other inventory aggregates that
need to be reloaded, the Aggregation Utility must be used.

The intermediate ERR tables used to hold the reload history have a DELETE_FLG column to
indicate that they’ve been reloaded to FS tables once and should not be used again on future
runs of the jobs. If you do want to reprocess the same set of records again to FS tables, there is
a separate process named E_FS_RESET_DELETE_FLG_PROCESS_ADHOC with one job
(E_RESET_DELETE_FLG_JOB) that accepts a module code, start date, and end date similar to the
E_FS_RELOAD_JOB parameters. This will change the delete flag back to N only for that subset of
records, allowing you to start over from step 1 above.

Rejected Record Notifications
When records are rejected during a nightly batch, the jobs themselves do not generally fail.
The batch will be allowed to complete but the rejected records are placed in separate tables for
review. You may enable notifications that will alert your administrator users any time rejections
happen in the AIF DATA batch cycles. The notifications are visible anywhere the Notifications
panel is available on the left side of the screen, such as in the Retail Home and AI Foundation
user interfaces. You can also customize the recipients and behavior from the Manage
Notifications screen in Retail Home. Refer to "Notifications Administration" in the Retail Home
Administration Guide for details. These notifications will be present under the Retail Insights
application in the dropdown menu, with a notification type code of AIF_DATA_REJECTION
and a notification name of AIF Data Rejections. AIF DATA refers to the schedule in POM by
the same name, which is what these notifications are issued for.

To enable the rejected record notifications, you must first enable the nightly jobs below in the
AIF DATA nightly batch schedule. By default, all jobs should be enabled except
E_INV_REJECT_DATA_NOTIF_JOB. This job is not needed unless you are configuring the job to
fail when rejections are found (using the options described farther below).

Job Purpose

E_REJECT_DATA_NOTIF_JOB Checks for rejected records and triggers
notifications when they are found. Will only
check for rejections in data loaded in the last 24
hours, so that it does not trigger repeatedly for
older data.

Chapter 6
Managing Rejected Records

6-15

Job Purpose

E_INV_REJECT_DATA_NOTIF_JOB Checks for rejected records in inventory data
and optionally causes the batch to fail
immediately, giving you the opportunity to
correct the data and reload it before resuming
the batch. The batch failure trigger is
configured separately, based on the severity
configuration.

E_DIMM_LKUP_PROD_CHK_JOB Compares the loaded product dimension data
with the internal lookup table used for
downstream integrations and logs any
differences for review. Mismatches in the
lookup table can cause missing data later in AIF
or RPAS apps. The missing records will be in
the table
RABE01USER.W_RTL_REJECT_DIMENSION_TMP
with ERR_PROD_LKP_TMP as the TABLE_NAME.

E_DIMM_LKUP_ORG_CHK_JOB Compares the loaded organization dimension
data with the internal lookup table used for
downstream integrations and logs any
differences for review. Mismatches in the
lookup table can cause missing data later in AIF
or RPAS apps. The missing records will be in
the table
RABE01USER.W_RTL_REJECT_DIMENSION_TMP
with ERR_ORG_LKP_TMP as the TABLE_NAME.

Once enabled, the notifications will be issued based on the configuration table
C_MODULE_REJECT_TABLE. This table has two columns that can be updated:

• E_NOTIFICATION_ON – Set to N to disable the notifications or Y to enable them

• E_SEVERITY_LEVEL – Set to 1 to mark the notification as Critical, which will also cause the
POM job to fail. Set to 2 or 3 for lower severity messages, which will not cause the POM
job to fail but will still issue notification messages.

When you set a notification to severity 1 and it causes the batch job to fail, then you must also
mark that notification as read to prevent it from causing the job to keep failing in future runs.
This can be done on the notifications user interface, either by clicking the X icon to clear the
notification from the task panel or by opening the full notifications tab and marking them as
read using the UI action for it. Refer to the Retail Home User Guide chapter on "Notifications"
for details on marking notifications as read.

In addition to the Notifications panel in the UI, the messages are also logged in the database if
you wish to access them from Innovation Workbench or create a custom service using the
data. The table used for the messages themselves is RADM01.RAF_NOTIFICATION; you must use
the database username as a prefix, because the same table exists for all Oracle users (RASE01
could be used instead for AIF Apps notifications). The table used to log the job activity is
RI_LOG_MSG; you may query this table where PROGRAM_UNIT = ‘RI_NOTIFICATION_UTIL’ to see
when messages are triggered.

Database Hints for SQL Jobs
Oracle Support may need to alter or add to the Oracle SQL hints used by specific programs to
improve performance on your dataset. All AIF DATA jobs in ODI support configurable hints
using rows added to the C_ODI_PARAM table.

Chapter 6
Database Hints for SQL Jobs

6-16

The general process is to insert a row into C_ODI_PARAM with PARAM_NAME set to
'IKM_OPTIMIZER_HINT_INSERT' or 'IKM_OPTIMIZER_HINT_SELECT' and with INTEGRATION_ID
set to 'Step/Interface Name'.

Insert statement template:

 INSERT INTO c_odi_param (
 row_wid,
 scenario_name,
 scenario_version,
 param_name,
 param_value,
 integration_id,
 created_on_dt,
 change_on_dt
)
 (SELECT
 2,
 $ODI_SCENARIO_NAME,
 '001',
 'IKM_OPTIMIZER_HINT_INSERT',
 $HINT_DEFINITION,
 $STEP_NAME,
 sysdate,
 sysdate
 FROM
 dual
)

As an example, we want to add a hint for job step SIL_Retail_SalesTransactionFact inside
the scenario 'SIL_RETAIL_SALESTRANSACTIONFACT'. We would run the following statement to
add the hint:

INSERT INTO c_odi_param (
row_wid,
scenario_name,
scenario_version,
param_name,
param_value,
integration_id,
created_on_dt,
change_on_dt
)
(SELECT
2,
'SIL_RETAIL_SALESTRANSACTIONFACT', -- “Scenario_Name”
'001',
'IKM_OPTIMIZER_HINT_INSERT',
'/* +Append */',
'SIL_Retail_SalesTransactionFact', -- “Step/Interface Name”
sysdate,
sysdate
FROM
dual
)

Chapter 6
Database Hints for SQL Jobs

6-17

Once a row is added for the first time, it should not be inserted again. Instead, update the
param_value with the new hint SQL.

Data Model Utilities

Data Warehouse Models
The Innovation Workbench workspace in APEX provides access to internal data warehouse
objects by using synonyms. This results in the end-user being unable to directly describe the
objects to see their column definitions and other information, because the synonym does not
provide any of that information about its underlying table. To access data model information, a
utility package named RI_DATA_MODEL is provided to query the information in a user-friendly
format. Currently, this package provides access to data in the RADM01 and RABE01USER
schemas, which covers all tables in the AIF DATA data warehouse.

If you need to query the list of tables in one of the data warehouse schemas, you can use the
following commands to do so:

select * from table(ri_data_model.ri_table_list('RADM01'));
select * from table(ri_data_model.ri_table_list('RADM01')) WHERE TABLE_NAME
LIKE '%DEAL%';

To get the column information for a table, use the following SQL statement, changing the table
name in the command as needed:

select * from table(ri_data_model.ri_table_desc('W_RTL_SLS_TRX_IT_LC_DY_F'));

To get the primary key (PK) information for a table, use the following SQL statement, changing
the table name in the command as needed:

select * from table(ri_data_model.ri_table_pk('W_RTL_SLS_TRX_IT_LC_DY_F'));

To get the foreign key (FK) information for a table, use the following SQL statement, changing
the table name in the command as needed:

select * from table(ri_data_model.ri_table_fk('W_RTL_SLS_TRX_IT_LC_DY_F'));

AI Foundation Models
The AI Foundation applications have a separate utility in Innovation Workbench for reviewing
the data models for each solution. There is a help view that can be used to get details about
the routines provided. Use the following query:

 SELECT * FROM rse_data_model_support_help_vw;

This will provide a list of the routines that are available, along with a description of the routines
and any parameters they support. A summary of the utility functions is provided below.

• RSE_DATA_MODEL_SUPPORT_UTIL.GET_TABLE_LIST - Return a list of objects that match the
parameter patterns provided

Chapter 6
Data Model Utilities

6-18

• RSE_DATA_MODEL_SUPPORT_UTIL.GET_TABLE_PK_LIST - Return a set of primary keys for one
or more objects (TABLE and VIEW)

• RSE_DATA_MODEL_SUPPORT_UTIL.GET_TABLE_FK_LIST - Return a set of foreign keys for one
or more objects (TABLE or VIEW)

• RSE_DATA_MODEL_SUPPORT_UTIL.GET_TABLE_UK_LIST - Return a set of unique keys for one
or more objects (TABLE and VIEW)

• RSE_DATA_MODEL_SUPPORT_UTIL.GET_TABLE_DESC - Return a list of columns for one or more
objects

• RSE_DATA_MODEL_SUPPORT_UTIL.GET_TABLE_PK - Return a set of primary keys columns for
one or more objects (TABLE and VIEW)

• RSE_DATA_MODEL_SUPPORT_UTIL.GET_TABLE_FK - Return a set of foreign keys columns for
one or more objects (TABLE and VIEW)

• RSE_DATA_MODEL_SUPPORT_UTIL.GET_TABLE_UK - Return a set of unique keys columns for
one or more objects (TABLE and VIEW)

Some examples of how to use the routines:

• Get help with a routine:

SELECT * FROM rse_data_model_support_help_vw WHERE program_unit =
'RSE_DATA_MODEL_SUPPORT_UTIL.GET_TABLE_LIST'

• Execute a routine, providing an optional parameter to help specify the object to return
information for:

SELECT * FROM RSE_DATA_MODEL_SUPPORT_UTIL.GET_TABLE_LIST ('RSE_SLS_%');

Any of the parameters listed in the help output can, optionally, be provided to limit the output
that the routine provides.

Chapter 6
Data Model Utilities

6-19

	Contents
	Send Us Your Comments
	Preface
	1 Introduction
	2 AI Foundation Data Standalone Processes
	Adjustments History Load
	Design Overview
	Key Tables Affected

	Aggregate Fact History Load
	Design Overview
	Key Tables Affected

	Allocation History Load
	Design Overview
	Key Tables Affected

	Batch Individual File Reprocessing
	Design Overview

	Batch Nightly File Reprocessing
	Design Overview

	Customer Loyalty Load
	Design Overview
	Key Tables Affected

	Data Security Load
	Design Overview
	Key Tables Affected

	Deal Actuals History Load
	Design Overview
	Key Tables Affected

	Deal Income History Load
	Design Overview
	Key Tables Affected

	Default Calendar Initialization
	Design Overview
	Key Tables Affected

	ETL Business Date Update
	Design Overview
	Key Tables Affected

	Fix Unusable Indexes
	Design Overview

	Flexible Fact Load
	Design Overview
	Key Tables Affected

	Gift Card Sales Load
	Design Overview
	Key Tables Affected

	History Data Cleanup
	Design Overview

	History Data File Upload
	Design Overview

	History Data Master Flow
	Design Overview

	Initial Base Cost Seeding
	Design Overview
	Key Tables Affected

	Initial Base Cost Seeding (Legacy)
	Design Overview
	Key Tables Affected

	Initial Calendar Load
	Design Overview
	Key Tables Affected

	Initial Calendar Staging (Legacy)
	Design Overview
	Key Tables Affected

	Initial Competitor Price Seeding
	Design Overview
	Key Tables Affected

	Initial Dimension Load
	Design Overview
	Files to Pre-Staging Tables
	Pre-Staging to Staging Tables
	Staging to Target Tables

	Initial Dimension Staging (Legacy)
	Design Overview
	Key Tables Affected

	Initial Inventory Seeding
	Design Overview
	Key Tables Affected

	Initial Inventory Seeding (Legacy)
	Design Overview
	Key Tables Affected

	Initial Net Cost Seeding
	Design Overview
	Key Tables Affected

	Initial Net Cost Seeding (Legacy)
	Design Overview
	Key Tables Affected

	Initial Price Seeding
	Design Overview
	Key Tables Affected

	Initial Price Seeding (Legacy)
	Design Overview
	Key Tables Affected

	Initial Purchase Order Seeding
	Design Overview
	Key Tables Affected

	Initial Purchase Order Seeding (Legacy)
	Design Overview
	Key Tables Affected

	Initial Purchase Order Allocation Seeding
	Design Overview
	Key Tables Affected

	Intercompany Margin History Load
	Design Overview
	Key Tables Affected

	Inventory History Current Position Load
	Design Overview
	Key Tables Affected

	Inventory History Load
	Design Overview
	Key Tables Affected

	Inventory History Staging
	Design Overview
	Key Tables Affected

	Inventory History Staging (Legacy)
	Design Overview
	Key Tables Affected

	Inventory Out of Stock Load
	Design Overview
	Key Tables Affected

	Inventory Reclass History Load
	Design Overview
	Key Tables Affected

	Inventory Refresh from Merchandising
	Design Overview
	Key Tables Affected

	Inventory Reload
	Design Overview
	Key Tables Affected

	Inventory Selling Date Seeding
	Design Overview
	Key Tables Affected

	Markdown History Load
	Design Overview
	Key Tables Affected

	Market Data Load
	Design Overview
	Key Tables Affected

	Nightly Batch Status Cleanup
	Design Overview
	Key Tables Affected

	Plan Data Integration
	Design Overview
	Key Tables Affected

	Planning Dimension Export
	Design Overview
	Key Tables Affected

	Planning Fact Export
	Design Overview
	Key Tables Affected

	Planning Initial Inventory Export
	Design Overview
	Key Tables Affected

	Planning Load Cleanup
	Design Overview
	Key Tables Affected

	POS Sales Integration
	Design Overview
	Key Tables Affected

	Price History Load
	Design Overview
	Key Tables Affected

	Price History Load (Legacy)
	Design Overview
	Key Tables Affected

	Promotion Budget Load
	Design Overview
	Key Tables Affected

	RDE Grants to APEX
	Design Overview

	Receipts History Load
	Design Overview
	Key Tables Affected

	Rejected Record Analysis
	Design Overview
	Key Tables Affected

	Rejected Record Cleanup
	Design Overview
	Key Tables Affected

	Reprocess CSV Files
	Design Overview

	Reprocess DAT Files
	Design Overview

	RTV History Load
	Design Overview
	Key Tables Affected

	RTV History Load (Legacy)
	Design Overview
	Key Tables Affected

	Sales History Load
	Design Overview
	Key Tables Affected

	Sales History Staging
	Design Overview
	Key Tables Affected

	Sales History Staging (Legacy)
	Design Overview
	Key Tables Affected

	Sales Tender Load
	Design Overview
	Key Tables Affected

	Sales Tender Staging
	Design Overview
	Key Tables Affected

	Sales Wholesale/Franchise Staging
	Design Overview
	Key Tables Affected

	Sales Wholesale/Franchise Load
	Design Overview
	Key Tables Affected

	Shipments History Load
	Design Overview
	Key Tables Affected

	Stock Count Load
	Design Overview
	Key Tables Affected

	Stock Ledger Load
	Design Overview
	Key Tables Affected

	Store Traffic Load
	Design Overview
	Key Tables Affected

	Supplier Compliance Load
	Design Overview
	Key Tables Affected

	Supplier Invoice Load
	Design Overview
	Key Tables Affected

	Table Partitioning
	Design Overview
	Key Tables Affected

	Transfer Detail History Load
	Design Overview
	Key Tables Affected

	Transfer Transaction History Load
	Design Overview
	Key Tables Affected

	Translation Lookup Load (Legacy)
	Design Overview
	Key Tables Affected

	3 AI Foundation Applications Standalone Processes
	Customer Metrics - Base Calculation
	Design Overview
	Key Tables Affected

	Customer Metrics - Final Calculation
	Design Overview
	Key Tables Affected

	Customer Metrics - Loyalty Score
	Design Overview
	Key Tables Affected

	Data Cleanup Utility
	Design Overview

	Fake Customer Identification
	Design Overview
	Key Tables Affected

	File Export Execution
	Design Overview

	File Export Preparation
	Design Overview

	Forecast Aggregates
	Design Overview

	Lifecycle Pricing Optimization Run
	Design Overview

	Location Ranging
	Design Overview
	Key Tables Affected

	Master Data Load - AA
	Design Overview

	Master Data Load - AC
	Design Overview

	Master Data Load - AE
	Design Overview

	Master Data Load - Common
	Design Overview

	Master Data Load - DT
	Design Overview

	Master Data Load - Forecast Estimation
	Design Overview

	Master Data Load - IO
	Design Overview

	Master Data Load - LPO
	Design Overview

	Master Data Load - SO
	Design Overview

	Master Data Load - SPO
	Design Overview

	Product Location Ranging
	Design Overview
	Key Tables Affected

	Sales Aggregation – Cumulative Sales
	Design Overview
	Key Tables Affected

	Sales Aggregation - Customer Segment
	Design Overview
	Key Tables Affected

	Sales Aggregation - Product
	Design Overview
	Key Tables Affected

	Sales Aggregation - Product Attribute
	Design Overview
	Key Tables Affected

	Sales Aggregation - Product Hierarchy
	Design Overview
	Key Tables Affected

	Sales Aggregation - Weekly
	Design Overview
	Key Tables Affected

	Sales Forecast Aggregation - Product Attribute (Legacy)
	Design Overview

	Sales Forecast Aggregation - Product Hierarchy (Legacy)
	Design Overview

	Sales Shares - Product Attribute
	Design Overview
	Key Tables Affected

	Sales Transaction Load
	Design Overview
	Key Tables Affected

	4 AI Foundation Data Standalone Process Flows
	Process Flows for DAT Files
	Process Flows for CSV Files

	5 Data Validation Framework
	Architecture Overview
	Resolving Validation Issues

	6 Support Utilities
	Data Cleanup Utilities
	Data Warehouse Table Cleanup
	Integration Layer Table Cleanup
	Data Warehouse Partition Cleanup

	Data Delete Utility
	Innovation Workbench Process Cleanup
	Aggregation Utility
	Database Statistics Utility
	External Table Load Logs
	Managing Rejected Records
	Data Warehouse Rejection Process
	Rejected Record Reprocessing
	Rejected Record Notifications

	Database Hints for SQL Jobs
	Data Model Utilities
	Data Warehouse Models
	AI Foundation Models

