
Oracle® Retail Analytics and Planning
Implementation Guide

Release 24.2.301.0
G12038-01
July 2024

Oracle Retail Analytics and Planning Implementation Guide, Release 24.2.301.0

G12038-01

Copyright © 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Send Us Your Comments

 Preface

1 Introduction

Overview 1-1

Architecture 1-1

Getting Started 1-2

2 Setup and Configuration

Configuration Overview 2-1

Platform Configurations 2-1

C_ODI_PARAM Initialization 2-2

W_LANGUAGES_G Initialization 2-8

C_MODULE_ARTIFACT Initialization 2-9

C_MODULE_EXACT_TABLE Initialization 2-9

C_HIST_LOAD_STATUS 2-10

C_SOURCE_CDC 2-11

W_GLOBAL_CURR_G 2-11

Application Configurations 2-11

Retail Insights 2-11

AI Foundation Cloud Services and Forecasting 2-12

Planning Platform 2-13

3 Data Loads and Initial Batch Processing

Data Requirements 3-1

Platform Data Requirements 3-3

File Upload Samples 3-5

Example #1: Calendar Initialization 3-6

Example #2: Product and Location Setup 3-6

iii

Example #3: Full dimension load 3-6

Example #4: Sales Data Load 3-7

Example #5: Multi-File Fact Data Load 3-7

Uploading ZIP Packages 3-7

Preparing to Load Data 3-8

Calendar and Partition Setup 3-9

Loading Data from Files 3-11

Initialize Dimensions 3-12

Loading Dimensions into RI 3-12

Hierarchy Deactivation 3-14

Loading Dimensions to Other Applications 3-14

Load History Data 3-15

Automated History Loads 3-17

Sales History Load 3-17

Inventory Position History Load 3-20

Reloading Inventory Data 3-22

Price History Load 3-23

Reloading Price Data 3-24

Purchase Order Loads 3-24

Other History Loads 3-25

Modifying Staged Data 3-26

Reloading Dimensions 3-26

Seed Positional Facts 3-27

Run Nightly Batches 3-29

Sending Data to AI Foundation 3-30

Sending Data to Planning 3-33

Process Overview 3-33

Usage Examples 3-38

Customized Planning Integrations 3-39

Generating Forecasts for MFP 3-41

Generating Forecasts for Inventory Planning Optimization Cloud Service-Demand
Forecasting 3-43

Implementation Flow Example 3-43

Generating Forecasts for AP 3-47

Loading Plans to RI 3-47

Loading Forecasts to RI 3-48

Loading Aggregate History Data 3-49

Migrate Data Between Environments 3-52

4 Integration with Merchandising

Architecture Overview 4-1

iv

Merchandising Foundation Cloud Service Data Mapping 4-2

Batch Schedule Definitions 4-2

Ad Hoc Processes 4-4

Batch Dependency Setup (Gen 2 Architecture) 4-6

Batch Link Setup (Gen 2 Architecture) 4-8

Module Setup in Retail Home (Gen 2 Architecture) 4-8

Batch Job Setup (Gen 2 Architecture) 4-9

Batch Job Setup (Gen 1 Architecture) 4-11

Batch Setup for RMS On-Premise 4-12

RDE Job Configuration 4-13

Using RDE for Calendar Setup (Gen 2 Architecture) 4-16

Using RDE for Dimension Loads (Gen 2 Architecture) 4-17

Using RDE for Initial Seeding (Gen 2 Architecture) 4-18

Using RDE for Initial Seeding (Gen 1 Architecture) 4-19

5 Batch Orchestration

Overview 5-1

Initial Batch Setup 5-3

Common Modules 5-4

RI Modules 5-6

AI Foundation Modules 5-6

Maintenance Cycles 5-8

Batch Setup Example 5-8

Adjustments in POM 5-11

Managing Multiple Data Sources 5-11

Adjustments 5-12

Costs 5-12

Deal Income 5-13

Intercompany Margin 5-13

Inventory Position 5-14

Inventory Reclass 5-14

Markdowns 5-15

Prices 5-15

Purchase Orders 5-16

Receipts 5-16

Returns to Vendor 5-17

Sales 5-17

Sales Pack 5-18

Sales Wholesale 5-18

Transfers 5-19

Configure POM Integrations 5-19

v

Schedule the Batches 5-20

Batch Flow Details 5-21

Planning Applications Job Details 5-21

Reprocessing Nightly Batch Files 5-22

6 Data Processing and Transformations

Data Warehouse Aggregate Tables 6-1

Table Structures 6-1

Key Columns 6-1

Fact and Dimension Relationships 6-2

Transformations from Data Warehouse to Planning 6-3

Data Filtering and Conversions 6-3

Data Mappings 6-4

Product Mapping 6-5

Organization Mapping 6-10

Calendar Mapping 6-16

Exchange Rate Mapping 6-17

User Defined Attributes (UDA) Mapping 6-17

Differentiator Attributes Mapping 6-18

Item Attributes Mapping 6-18

Differentiator Group Mapping 6-19

Brand Mapping 6-19

Replenishment Attribute Mapping 6-19

Supplier Mapping 6-23

Customer Segment Mapping 6-23

Custom Flex Attribute Mapping 6-24

Sales Mapping 6-25

Gross Sales Mapping 6-30

Inventory Position Mapping 6-30

On Order Mapping 6-31

Markdown Mapping 6-31

Wholesale/Franchise Mapping 6-32

Inventory Adjustments Mapping 6-33

Inventory Receipts Mapping 6-33

Inventory Transfers Mapping 6-34

Inventory RTVs Mapping 6-34

Inventory Reclass Mapping 6-35

Deal Income Mapping 6-35

Intercompany Margin Mapping 6-35

Allocation Detail Mapping 6-35

Transfer Detail Mapping 6-36

vi

Transformations in Planning 6-37

7 Implementation Tools

Retail Home 7-1

Process Orchestration and Monitoring (POM) 7-3

POM and Customer Modules Management 7-3

Control & Tactical Center 7-5

Data Visualizer 7-6

File Transfer Services 7-10

Required Parameters 7-11

Base URL 7-12

Tenant 7-12

OCI IAM URL 7-12

OCI IAM Scope 7-12

Client ID and Secret 7-13

Common HTTP Headers 7-16

Retrieving Identity Access Client Token 7-17

FTS API Specification 7-17

FTS Script Usage 7-20

Upload Files 7-20

Download Files 7-20

Download Archives 7-20

BI Publisher 7-21

Configuring Burst Reports for Object Storage 7-21

Delivering Scheduled Reports through Object Storage 7-21

Downloading Reports from Object Storage 7-22

Application Express (APEX) 7-22

Database Access Levels 7-24

Postman 7-24

8 Data File Generation

Files Types and Data Format 8-1

Context Files 8-2

Application-Specific Data Formats 8-4

Retail Insights 8-4

Retail AI Foundation Cloud Services 8-5

Planning Platform 8-5

Dimension Files 8-5

Product File 8-6

Product Alternates 8-10

vii

Re-Using Product Identifiers 8-11

Organization File 8-11

Organization Alternates 8-14

Calendar File 8-14

Exchange Rates File 8-16

Attributes Files 8-17

Fact Files 8-19

Fact Data Key Columns 8-19

Fact Data Incremental Logic 8-21

Multi-Threading and Parallelism 8-22

Sales Data Requirements 8-22

Sales Pack Data 8-26

Inventory Data Requirements 8-26

Price Data Requirements 8-29

Receipts Data Requirements 8-31

Transfer Data Requirements 8-33

Adjustment Data Requirements 8-34

RTV Data Requirements 8-36

Markdown Data Requirements 8-37

Purchase Order Data Requirements 8-39

Other Fact File Considerations 8-42

Positional Data Handling 8-42

System Parameters File 8-43

9 Extensibility

AI Foundation Extensibility 9-1

Custom Hooks for IW Extensions 9-2

Planning Applications Extensibility 9-3

Supported Application Configuration Customization 9-3

Rules for Customizing Hierarchy 9-4

Rules for Adding Measures 9-4

Rules for Adding Custom Rules 9-5

Rules for Workbooks and Worksheets Extensibility 9-5

Rules for Adding Custom Real-time Alerts into Existing Workbooks 9-6

Adding a Custom Solution 9-7

Adding Custom Styles 9-7

Validating the Customized Configuration 9-7

Taskflow Extensibility 9-8

Customizing the Batch Process 9-9

Custom Batch Control Validation 9-11

Dashboard Extensibility 9-11

viii

IPOCS-Demand Forecasting Dashboard Extensibility 9-12

Dashboard Intersection 9-13

Process to Customize the Dashboard 9-14

Applying Changes to the Cloud Environment 9-15

Customizing the MFP/AP Dashboard 9-15

RAP Integration Interface Extensibility 9-16

Application Specific Batch Control Information 9-19

Batch Control Samples 9-21

Batch Control Samples 9-25

Batch Control Samples 9-28

Programmatic Extensibility of RPASCE Through Innovation Workbench 9-29

Architectural Overview 9-29

Innovation Workbench from an RPASCE Context 9-30

Innovation Workbench from a RAP Context 9-30

RPASCE Configuration Tools Changes 9-31

Measure Properties 9-31

Rules and Expressions 9-32

Integration Configuration 9-33

RPASCE Special Expression - execplsql 9-33

Arguments 9-33

Examples 9-34

Limitations 9-42

Validations and Common Error Messages 9-42

RPASCE Batch Control File Changes 9-43

RPASCE Deployment 9-44

Uploading Custom PL/SQL Packages 9-44

RPASCE Helper Functions and API for IW 9-44

PL/SQL Best Practices 9-47

Abbreviations and Acronyms 9-48

Input Data Extensibility 9-49

Additional Source for Product Attributes 9-49

Additional Source for Foundation Data 9-49

Additional Source for Data Security 9-50

Additional Sources for Measures 9-51

Custom Sales Type 9-51

Custom Fact Measures 9-52

Additional Custom Fact Data 9-52

Extensibility Example – Product Hierarchy 9-52

Input File Changes 9-53

AI Foundation Setup 9-53

Planning Data Store Setup 9-55

ix

In-Season Forecast Setup 9-57

A Legacy Foundation File Reference

B Context File Table Reference

C Sample Public File Transfer Script for Planning Apps

D Sample Public File Transfer Script for RI and AIF

E Sample Validation SQLs

F Accessibility

ADF-Based Applications F-1

Configuring Application for Screen Reader Mode F-2

Setting Accessibility to Default F-3

JET-Based Applications F-4

OAS-Based Applications F-5

RPASCE Configuration Tools F-5

Report Authoring Guidelines F-5

Color Usage in Tables and Graphs F-6

Text and Label Usage F-6

Layout and Canvas Usage F-7

x

Send Us Your Comments

Oracle Retail Analytics and Planning Implementation Guide

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this
document.

Your feedback is important, and helps us to best meet your needs as a user of our products.
For example:

• Are the implementation steps correct and complete?

• Did you understand the context of the procedures?

• Did you find any errors in the information?

• Does the structure of the information help you with your tasks?

• Do you need different information or graphics? If so, where, and in what format?

• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your
name, the name of the company who has licensed our products, the title and part number of
the documentation and the chapter, section, and page number (if available).

Note:

Before sending us your comments, you might like to check that you have the latest
version of the document and if any concerns are already addressed. To do this,
access the Online Documentation available on the Oracle Technology Network Web
site. It contains the most current Documentation Library plus all documents revised or
released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative
or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle
local office and inquire about our Oracle University offerings. A list of Oracle offices is available
on our Web site at http://www.oracle.com.

xi

http://www.oracle.com

Preface

This Implementation Guide provides critical information about the processing and operating
details of the Analytics and Planning, including the following:

• System configuration settings

• Technical architecture

• Functional integration dataflow across the enterprise

• Batch processing

Audience

This guide is for:

• Systems administration and operations personnel

• System analysts

• Integrators and implementers

• Business analysts who need information about Analytics and Planning processes and
interfaces

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

• Exact error message received

• Screen shots of each step you take

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com

Oracle Help Center (docs.oracle.com)

Oracle Retail Product documentation is available on the following website https://
docs.oracle.com/en/industries/retail/html

Comments and Suggestions

Please give us feedback about Oracle Retail Help and Guides. You can send an e-mail to:
retail-doc_us@oracle.com

Oracle Retail Cloud Services and Business Agility

Oracle Retail Analytics and Planning Cloud Service is hosted in the Oracle Cloud with the
security features inherent to Oracle technology and a robust data center classification,
providing significant uptime. The Oracle Cloud team is responsible for installing, monitoring,
patching, and upgrading retail software.

Included in the service is continuous technical support, access to software feature
enhancements, hardware upgrades, and disaster recovery. The Cloud Service model helps to
free customer IT resources from the need to perform these tasks, giving retailers greater
business agility to respond to changing technologies and to perform more value-added tasks
focused on business processes and innovation.

Oracle Retail Software Cloud Service is acquired exclusively through a subscription service
(SaaS) model. This shifts funding from a capital investment in software to an operational
expense. Subscription-based pricing for retail applications offers flexibility and cost
effectiveness.

Preface

xiii

https://docs.oracle.com/en/industries/retail/html
https://docs.oracle.com/en/industries/retail/html

1
Introduction

Overview
The Oracle Retail Analytics and Planning platform is the common and extensible cloud
architecture for analytics and planning solutions.

The platform supports Oracle Retail applications across each of major analytical categories,
including:

• Descriptive and diagnostic with merchandise, customer, and consumer insights.

• Predictive with demand forecasting, customer, and location clustering.

• Prescriptive with assortment, pricing, and inventory optimization.

The platform also supports Oracle Retail merchandise and inventory planning solutions. These
solutions support business responsiveness through a highly interactive user experience and
drive the best outcomes with the application of advanced analytics and artificial intelligence
(AI).

As a common platform, it provides a centralized data repository, lean integration APIs, and an
efficient portfolio of delivery technologies. The data repository reflects a comprehensive data
model of retail planning, operations, and execution processes. The integration APIs support
right-time interactions: a lean set of bulk, on-demand, and near real-time mechanisms. The
delivery technologies represent a portfolio of connected tools to build and extend composite
solutions using fit-for-purpose analytical, application, and integration tools.

Architecture
The architecture used for Oracle Retail Analytics and Planning provides a centralized
repository and integration path for all common foundational and analytical data. The
centralized repository ensures that all solutions reference consistent data definitions across
transformations and aggregations. The centralized integrations simplify implementation and
operational support. This centralization can also be complemented by data and integrations for
customer-specific extensions to any analytics or planning solution implemented on the
platform. Coordination of analytical processes and data movement within the platform is
managed by Oracle Retail Process Orchestration & Monitoring using a common schedule.

The diagram below depicts the high-level platform architecture.

1-1

Getting Started
Each implementation of a Retail Analytics and Planning solution involves one or more modules
across Insights, AI Foundation, and Planning. It often includes multiple years of historical data
sourced from multiple Oracle and non-Oracle systems, some of which will also need to be
integrated with the platform on an ongoing basis. For many of the modules, you will also want
data from the platform to be sent to other downstream applications and processes. For these
reasons, every implementation is unique to your business requirements and requires careful
planning and a deep understanding of all platform components.

Regardless of the modules being implemented, the outline in the table below can be followed
and adapted for your project, and later chapters of the document will elaborate on many of
these topics. More detailed checklists and project planning tools for some modules are also
available in My Oracle Support.

Table 1-1 Implementation Outline

Project Phase Activity References

Pre-Implementation Train team members on platform tools,
including Retail Home, POM, APEX, Object
Store, and Oracle Analytics Server (OAS).

Read the section on
Implementation Tools

Plan for the types and volumes of historical
data you will need to create, based on
platform and application-specific data needs.

Read the section on Data
Requirements

Plan for all inbound data sources that must
provide history and ongoing data to the
platform, such as external merchandising
systems.

Read the section on Loading
Data from Files

Understand how data is manipulated and
transformed to meet the needs of the
platform modules, as this can influence your
data conversion efforts.

Read the chapter on Data
Processing and
Transformations

Environment
Provisioning

Complete all activities captured in the
Service Administrator Action List before
starting the implementation.

Oracle Retail Analytics and
Planning Service
Administrator Action List

Chapter 1
Getting Started

1-2

https://support.oracle.com/
https://docs.oracle.com/en/industries/retail/retail-analytics-platform/21.0/rapal/
https://docs.oracle.com/en/industries/retail/retail-analytics-platform/21.0/rapal/
https://docs.oracle.com/en/industries/retail/retail-analytics-platform/21.0/rapal/

Table 1-1 (Cont.) Implementation Outline

Project Phase Activity References

Perform the initial system setup and confirm
all configurations with the customer and
implementation teams.

Complete the sections on
Platform Configurations and
Application Configurations

Data Conversion Extract historical data files based on the
needs of your chosen RAP modules.

Complete the section on
Data Requirements

Understand how to interface with RAP to
upload and move data into the platform and
through to all implemented modules.

Complete the section on
Preparing to Load Data

Data Loading Initialize your system and business
calendars and validate that the environment
is ready to run batch processes.

Complete the section on
Calendar and Partition Setup

Integrate all data files for history loads and
initial seeding of positional data.

Complete the sections on
Loading Data from Files and
Integration with
Merchandising

Ensure all implemented modules have
received the necessary historical data for the
entire history window.

Complete the sections on
Sending Data to AI
Foundation and Sending
Data to Planning

Batch Processing Enable daily and weekly batch processing
and establish all ongoing integrations with
Oracle and non-Oracle systems.

Complete the chapter on
Batch Orchestration

Cutovers Perform mock cutovers between Pre-
Production and Production environments,
where data and batches are tested in
Production using final batch flows.

Environment cutovers are
scheduled through My
Oracle Support

Plan for final cutover to production several
weeks before the go-live date and establish
an outage window based on the duration of
the mock cutover.

Environment cutovers are
scheduled through My
Oracle Support

Based on all of the topics listed above, here is an example of some major milestones and key
activities that might be followed for a project that includes Merchandise Financial Planning or
IPOCS-Demand Forecasting:

1. Oracle sends you a welcome mail having the required credentials to access your Retail
Analytics and Planning applications - RI, AI Foundation, MFP, IPO, AP, POM, RH, DV,
Apex, Innovation Workbench. You will receive a combined email pointing you to Retail
Home for the individual application links.

2. Verify that the modules purchased by the customer are enabled in Retail Home during
deployment. Review the steps in the RAP Implementation Guide on managing customer
modules.

3. Verify that you can access POM and that the batch schedules for your subscribed
applications are available.

4. Prepare the scripts to access object storage and test your connection to the File Transfer
Services (FTS).

5. Apply initial configurations to all your applications per the documentation for each solution.

6. Upload the files required by RAP for foundation and historical data to object storage.

Chapter 1
Getting Started

1-3

https://support.oracle.com
https://support.oracle.com
https://support.oracle.com
https://support.oracle.com

7. Run the first set of ad hoc jobs to load data into RI’s interfaces, following the RAP
Implementation Guide and RAP Operations Guides as needed.

8. Run the next set of ad hoc jobs to publish data to AI Foundation and Planning (PDS),
following the RAP Implementation Guide and RAP Operations Guides as needed.

9. Repeat the ad hoc data load process iteratively until all history is loaded, and perform any
needed seeding steps per the RAP Implementation Guide to establish full snapshots of
positional data.

10. Run the PDS domain build activity to build your Planning domain (this can be done as
soon as you have any data moved to PDS; it does not require completing the history load).

11. Create user groups in MFP/IPO/AP and configure access in OCI IAM for business users.

12. Configure forecast settings in AI Foundation for generating forecasts and validate forecast
execution works as expected.

13. Upload files to object storage for your complete nightly batch runs and initiate the full
batches for RAP.

Chapter 1
Getting Started

1-4

2
Setup and Configuration

The Setup and Configuration chapter provides parameters and steps for setting up a new
Retail Analytics and Planning cloud environment. While the platform comprises many
application modules (some of which you may not use), there are certain common processes
and settings that are shared across all of them. It is critical to check and update these core
settings before moving on to later implementation steps, as they will define many system-wide
behaviors that could be difficult to change once you've started loading data into the platform.

Configuration Overview
A high-level outline of the setup process is provided below to describe the activities to be
performed in this chapter.

Table 2-1 RAP Configuration Overview

Activity Description

Learn the configuration
tools

The Retail Analytics and Planning has many tools available to
support an implementation, such as Retail Home, POM, and APEX.
Knowing how to use these tools is an important first step in the
process. Review the Implementation Tools chapter for details.

Verify Object Storage
connectivity

Generate access tokens for interacting with Object Storage and test
the connection, as it is required for all file movement into and out of
the Oracle cloud. Review the Implementation Tools chapter for details.

Configure the system
calendar

Update the parameters that define the type and characteristics of
your business calendar, such as the start and end dates RAP will use
to define calendar generation.

Configure the system
languages

Update the master list of supported languages that need to be
present in addition to your primary language, such as the need for
seeing data in both English and French.

Configure history
retention policies

Certain data tables in Retail Insights that are leveraged by other
applications on the platform have a history retention period after
which some data may be erased.

Configure application-
specific settings

All applications in the Retail Analytics and Planning have their own
settings which must be reviewed before starting an implementation
of those modules.

Platform Configurations
This section provides a list of initial setup and configuration steps to be taken as soon as you
are ready to start a new implementation of the Retail Analytics and Planning and have the
cloud environments provisioned and generally available.

Several configuration tables in the RAP database should be reviewed before processing any
data. A list of these tables is below, along with an explanation of their primary uses. The way to
apply changes to these tables is through the Control & Tactical Center, as described in the
section on Control & Tactical Center. The sections following this one provide the detailed
configuration settings for each table listed below.

2-1

Table 2-2 Platform Configuration Table Overview

Table Usage

C_ODI_PARAM
(C_ODI_PARAM_VW)

Table used to configure all Oracle Data Integrator (ODI) batch
programs as well as many Retail Insights and AI Foundation load
properties. C_ODI_PARAM_VW is the name of the table shown in
Control Center.

W_LANGUAGES_G Table used to define all languages that need to be supported in the
database for translatable data (primarily for Retail Insights and AI
Foundation Cloud Services).

C_MODULE_ARTIFACT Table used for database table partitioning setup. Defines which
functional areas within the data warehouse will be populated
(and thus require partitioning).

C_MODULE_EXACT_TABLE Table used to configure partition strategies for certain tables in
the data warehouse, including the Plan fact used for loading plans
and budgets to RI/AI Foundation.

C_MODULE_DBSTATS Table used to configure the ad hoc manual stats collection
program COLLECT_STATS_JOB.

C_HIST_LOAD_STATUS Table used to configure historical data loads, configure certain ad
hoc batch processes, and monitor the results of those jobs after
each run.

C_HIST_FILES_LOAD_STATUS Table used to track multiple zip files that are uploaded with
sequence numbers in order to process them automatically
through ad hoc flows.

C_SOURCE_CDC Table used to configure and monitor both historical and ongoing
integration to Planning applications through the Retail Insights
data warehouse.

C_DML_AUDIT_LOG Audit table used to track updates to the C_ODI_PARAM table by
users from APEX or Control Center.

C_ODI_PARAM Initialization
The first table requiring updates is C_ODI_PARAM because your system calendar is populated
using the ODI programs. This table is displayed as C_ODI_PARAM_VW on the Manage System
Configurations screen in the Control & Tactical Center. The following settings must be
updated prior to using the platform. These settings are required even if your project only
includes Planning implementations. Changes to these settings are tracked using the audit table
C_DML_AUDIT_LOG.

Chapter 2
Platform Configurations

2-2

Table 2-3 C_ODI_PARAM Initial Settings

Scenario Name Param Name Configuration Guidance

SIL_DAYDIMENSION START_DT Start date for generating the Gregorian
calendar (this is different from the fiscal
calendar). Set 12+ months before the start of
the planned fiscal calendar to provide
adequate space for adjustments to the fiscal
calendar starting period.
Do not set START_DT to be in the middle of a
fiscal year that is in your calendar file. If you
pick a START_DT that is later than the earliest
period in your file, then the START_DT must
fall on day 1 of a fiscal year, or the data will be
incorrect when loaded.
Example: If your first Fiscal start date is in
February 2020, then it would be fine to start
the Gregorian calendar on
20190101. Starting from the first day of a
year ensures there are no incomplete months
in the Gregorian calendar. Note that START_DT
is well before the start of the Fiscal Calendar.
If you are loading the calendar directly from
Merchandising, refer to section Using RDE for
Calendar Setup (Gen 2 Architecture).

SIL_DAYDIMENSION END_DT End date for generating the Gregorian
calendar (this is different from the fiscal
calendar), non-inclusive. Set 6-12 months
beyond the expected end of the fiscal calendar
to ensure the final year of that calendar does
not extend beyond the available dates. The
END_DT will be automatically updated based
on subsequent loads of CALENDAR.csv to
ensure the END_DT is never earlier than the
last date in the file.
Example: If your Fiscal end period is currently
January 2025, then you could set the
Gregorian END_DT to 20260101. This will end
the system calendar on 20251231 (December
31, 2025), because the END_DT itself is not used.
Ending on the last day of a year ensures there
are no incomplete months in the calendar.

SIL_DAYDIMENSION WEEK_START_DT_VA
L

Starting day of the week for both Gregorian
and Fiscal calendars (1 = Sunday, 2 =
Monday). The default calendar setup uses a
Sunday-to-Saturday week.

GLOBAL START_OF_YEAR_MO
NTH

The name of the Gregorian month associated
with the first fiscal period in your business
calendar. For example, if your fiscal year
starts 06-FEB-22 then set this to FEBRUARY. This
will be used to display month names in RI
reporting on the fiscal calendar.
Default = JANUARY

Chapter 2
Platform Configurations

2-3

Table 2-3 (Cont.) C_ODI_PARAM Initial Settings

Scenario Name Param Name Configuration Guidance

GLOBAL RI_OPTIONALLY_EN
CLOSED_BY

Note: This parameter is deprecated in the new
RAP architecture and was replaced by CTX file
parameters.
Set a character to use for wrapping text strings
in data files, such as a quotation mark ("), to
allow column delimiters to occur within the
strings without causing any failures in the
load process.
The recommended value is "

GLOBAL CURRENCY_CODE Set the default currency code used when
loading CSV-based fact data files if none are
provided on the files themselves. Defaults to
‘USD’.

GLOBAL HIST_ZIP_FILE Change the default name for the ZIP file
package used by the history file load process.
Default=RAP_DATA_HIST.zip

GLOBAL LANGUAGE_CODE Default language code used by the system to
load data.
Do not change unless your source systems are
using a non-English primary language in their
database and datasets.
Default=EN

GLOBAL RI_PART_DDL_CNT_L
IMIT

The maximum number of partitions to create
during the initial setup run. The average
initial setup of the calendar may need
50k-150k partitions.
The recommended value is 500000 (meaning
max 500k partitions)

GLOBAL RI_INV_HIST_DAYS The number of days to retain a zero-balance
record on inventory positions. Excessive
retention of zero balances can cause batch
performance issues due to high data volumes.
But dropping the records too soon may be
detrimental to your business reporting or
analytical processes if you make use of zero-
balance information.
Default=91 days.

GLOBAL RA_INV_WAC_IND Controls the RDE inventory cost calculation.
When set to Y, it will use Weighted Average
Cost (WAC) as the item cost for all items. When
set to N, it will dynamically load
Merchandising valuation methods set per
department or item and apply them, choosing
from average cost, unit cost, or retail-based
cost.

Chapter 2
Platform Configurations

2-4

Table 2-3 (Cont.) C_ODI_PARAM Initial Settings

Scenario Name Param Name Configuration Guidance

GLOBAL RA_INV_TAX_IND Controls the RDE retail calculation and
removal of tax amounts from retail valuation
of stock on hand and on-order amounts. When
set to N, only simple VAT (SVAT) calculations
are supported and taxes are included in the
values. When set to Y, the system dynamically
loads Merchandising global tax and VAT
information and applies it by item/location to
remove taxes.

GLOBAL RA_SLS_TAX_IND Controls the RDE retail calculation and
removal of tax amounts from retail valuation
of sales amounts. When set to N, it is generally
VAT-inclusive on the Retail amounts (but not
profit amounts, which never include VAT).
When set to Y, the system dynamically loads
Merchandising VAT information and applies it
by item/location to remove VAT taxes from all
sales retail and discount amounts.

GLOBAL RI_CLOSED_PO_HIST
_DAYS

The number of days to retain closed purchase
orders on the daily positional snapshots.
Closed purchase orders may be important for
reporting or analytical processes, but typically
are not needed as they do not impact your
open on-order calculations.
Default=30 days.

GLOBAL RI_GEN_PROD_RECL
ASS_IND

Set to Y to enable AIF foundation loads to
automatically generate item-level reclass
records from your hierarchy data. From
version 24 onwards, this is the default method
to handle reclasses. Requires that the product
file in the nightly batch include any reclass
changes so the system can detect when an
item moves between hierarchy positions even
if no other change occurred. Default = Y.

GLOBAL RI_INT_ORG_DS_MA
NDATORY_IND

Set to Y to require input data on the
Organization hierarchy interface for the batch
to run. This will prevent the batch from
executing if the data files were not uploaded
properly for a given day or the file was
missing from the upload.

GLOBAL RI_PROD_DS_MAND
ATORY_IND

Set to Y to require input data on the Product
hierarchy interface for the batch to run. This
will prevent the batch from executing if the
data files were not uploaded properly for a
given day or the file was missing from the
upload.

Chapter 2
Platform Configurations

2-5

Table 2-3 (Cont.) C_ODI_PARAM Initial Settings

Scenario Name Param Name Configuration Guidance

GLOBAL RI_LAST_MKDN_HIS
T_IND

Set to Y to enable the Price fact columns for
LPO (LST_MKDN_RTL_AMT_LCL, LST_MKDN_DT,
LST_PROMO_RTL_AMT_LCL, LST_PROMO_DT) to
be populated during history loads. This will
impact performance of the loads and is
disabled by default.

GLOBAL RI_ITEM_REUSE_IND Enable or disable the ability to re-use item
numbers over time to represent entirely new
items. Also enables retention of existing items
for a number of days, so that if an item drops
and reappears quickly, it is not considered a
new item and will continue to use the existing
records. Set to Y to enable. If this is not
enabled, items that are dropped from the
product interface are immediately closed and
deactivated and cannot be re-opened.
Default = N

GLOBAL RI_ITEM_REUSE_AFT
ER_DAYS

The number of days between when an item is
deleted and when it’s allowed to appear as a
new item having the same ID. This will trigger
the old version of the item to be archived in
the data warehouse using an alternate key, so
the new version of the item is treated as
completely new. For example, setting this to 5
days means that an item can be dropped/
deleted and after 5 days, when the same items
comes again it will be treated as a brand new
item. If the item re-appears in the data before
5 days has passed, it will be treated as the
same item as before and the existing item data
remains active.
Default = 0

GLOBAL ITEM_PARENT_DIFF
_SEPARATOR

Set the field separator used when constructing
the ITEM_PARENT_DIFF level of the product
hierarchy export to PDS. This character will be
used to concatenate the item ID and
differentiator ID.
Default = _

GLOBAL PDS_PROD_INCLUDE
_ITEM_ID

Control whether item identifiers are included
in the PDS product labels or not. When set to a
value of N, only the product descriptions are
included in the labels. When changed to a
value of Y, the item IDs are concatenated in
front of the descriptions on W_PDS_PRODUCT_D.

Chapter 2
Platform Configurations

2-6

Table 2-3 (Cont.) C_ODI_PARAM Initial Settings

Scenario Name Param Name Configuration Guidance

GLOBAL PDS_EXPORT_DAILY
_ONORD

Determines whether the EOW_DATE used in
Purchase Order export data is allowed to
contain non-end-of-week (EOW) dates, or if
the system must convert it to a week-ending
date in all cases. When set to a value of Y,
daily dates are allowed in the EOW_DATE field
on an export (if there is a daily date in the
OTB_EOW_DATE column of ORDER_HEAD.csv).
When set to a value of N, it means the system
automatically converts the input dates from
ORDER_HEAD.csv to week-ending dates only.

SIL_RETAILINVPOSITIONF
ACT

INV_FULL_LOAD_IN
D

Control the Inventory Position fact load
behavior. When set to N it uses the
incremental update behavior where it
requires just the changes to inventory to be
posted, including zeros. When set to Y, it
assumes full nightly snapshots are being
loaded and automatically zeroes out all
inventory positions not sent for that load.
Default = N.

SIL_RETAILPOONORDERF
ACT

PO_FULL_LOAD_IND Control the Purchase Order fact load behavior.
When set to N it uses the incremental update
behavior where it requires just the changes to
POs the be posted, including zeros. When set
to Y, it assumes full nightly snapshots are
being loaded and automatically zeroes out all
POs not sent for that load. Default = N.

SIL_RETAIL_COHEADDIM
ENSION

RI_MIS_COHEAD_RE
Q_IND

Seed missing customer order (CO) head IDs
from sales fact to CO Dimension. If you are
providing customer order IDs on your sales
history load, make sure to set this to Y.

SIL_RETAILCOLINEDIMEN
SION

RI_MIS_COLINE_REQ
_IND

Seed missing customer order (CO) line IDs
from sales fact to CO Dimension. If you are
providing customer order line IDs on your
sales history load, make sure to set this to Y.

SIL_EMPLOYEEDIMENSIO
N

RI_MIS_CASHIER_RE
Q_IND

Seed missing Cashier IDs from sales fact to
Employee dimension. If you are providing
employee IDs on your sales history load, make
sure to set this to Y.

SIL_RETAILCUSTOMERDI
MENSION

RI_MIS_CUSTOMER_
REQ_IND

Seed missing customer IDs from sales fact to
Customer dimension. If you are providing
customer IDs on your sales history load, make
sure to set this to Y.

SIL_RETAILPROMODIMEN
SION

RI_MIS_PROMO_REQ
_IND

Seed missing promotions from the sales
promo fact to the Promotion dimension. If you
are providing promotion IDs on your sales
history load and not providing a Promotion
file, make sure to set this to Y.

Chapter 2
Platform Configurations

2-7

The following key decisions must be made during this initial configuration phase and the proper
flags updated in C_ODI_PARAM:

• Item Number Re-Use – If you expect the same item numbers to be re-used over time to
represent new items, then you must update RI_ITEM_REUSE_IND to Y and
RI_ITEM_REUSE_AF TER_DAYS to a value >=1. Even if you are not sure how item re-use will
occur, it’s better to enable these initially and change them later as needed.

• Tax Handling – Both for historical and ongoing data, you must decide how tax will be
handled in fact data (will tax amounts be included or excluded in retail values, what kind of
tax calculations may be applied when extracting history data, and so on). You may or may
not need any configurations updated depending on your RDE usage.

• Full vs Incremental Positional Loads – In nightly batches, the core positional fact loads
(Purchase Orders and Inventory Positions) support two methods of loading data: full
snapshots and incremental updates. You must decide which of these methods you will use
and set INV_FULL_LOAD_IND and PO_FULL_LOAD_IND accordingly. Incremental updates are
preferred, as they result in lower data volumes and faster nightly batch performance; but
not all source systems support incremental extracts.

If you are using RDE to integrate with Merchandising, pay special attention to the global tax
and WAC configurations, as these control complex calculations that will change how your data
comes into RAP. These options should not be changed once you enable the integrations
because of the impact to the daily data. For example, a large European retailer with presence
in multiple VAT countries may want the following options:

• RA_INV_WAC_IND = N - This will dynamically calculate inventory cost using all three
Merchandising cost methods instead of just using WAC

• RA_INV_TAX_IND = Y - This will enable the removal of tax amounts from retail values so
inventory and PO reporting is VAT-exclusive

• RA_SLS_TAX_IND = Y - This will enable the removal of tax amounts from retail values so
sales reporting is VAT-exclusive

Retail Insights contains many additional configurations in the C_ODI_PARAM table that are not
necessary for platform initialization, but may be needed for your project. This includes
Merchandise Financial Planning and IPOCS-Demand Forecasting configurations for specifying
custom planning levels to be used in the integration between MFP/IPO and RI (when RI will be
used for reporting). The default parameters align with MFP/IPO default plan outputs, but if you
are customizing them to use a different base intersection, then you must also update those
values in C_ODI_PARAM. Refer to the Retail Insights Implementation Guide for complete details
on Planning Configurations.

W_LANGUAGES_G Initialization
The W_LANGUAGES_G table controls all the languages supported in the translatable database
data. This applies to areas such as product names, location names, attribute values, season/
phase descriptions, and other text-based descriptors. Additional languages are used mainly by
Retail Insights, which supports displaying data in multiple languages in reporting and analytics.
It is required to delete all languages from this table that will not be used because every
language code in this table will have records generated for it in some interfaces, creating
unnecessary data that can impact system performance. Starting with version 23.1.201.0, new
environments will only be created with the ‘US’ language code in place; but if you are on an
earlier version then you must manually delete all other entries that will not be used.

For example, product names will automatically have database records initialized for every
supported language in this configuration table, even if the data you are providing does not
contain any of those languages. This creates significant amounts of data in your product

Chapter 2
Platform Configurations

2-8

descriptions table, which may not serve any real purpose for your implementation. If you are
only using a single primary language, then you can safely delete all but one row from
W_LANGUAGES_G. The default row to preserve is the one with a language code of US which is
used for American English.

C_MODULE_ARTIFACT Initialization
The C_MODULE_ARTIFACT table is used by the database to configure table partitioning. Many
tables in the platform are partitioned based on the business calendar (usually by calendar date
or fiscal week) and this partitioning must be performed immediately after the business calendar
is loaded. You should perform this step regardless of which application modules you are
implementing, because all foundation data passes through this architecture.

Before running partitioning procedures, you must validate this table has all rows set to
ACTIVE_FLG=Y and PARTITION_FLG=Y with the exception of W_RTL_PLANFC* tables (PLANFC
module) and SLSPRFC module, which should not be partitioned at this time and must have
flag values of N instead.

You also must choose whether you are planning to load the Planning facts (such as
W_RTL_PLAN1_PROD1_LC1_T1_FS) for plan/budget data in RI or AI Foundation. If you are not
using the table right away, you should also disable the PLAN modules, like PLAN1. You can
revisit this setup later to perform additional partitioning as needed.

C_MODULE_EXACT_TABLE Initialization
The C_MODULE_EXACT_TABLE table is used for defining flexible partitioning strategies on certain
tables. Most data in this table can be left as-is, but you must update this table if you plan to
load Planning or Budget information into the W_RTL_PLAN1_PROD1_LC1_T1_FS interface. The
partition level must align with the data level of your plan (day or week). To configure the plan
partitions, you must update the table C_MODULE_EXACT_TABLE where MODULE_CODE = PLAN1.
Modify the columns PARTITION_COLUMN_TYPE and PARTITION_INTERVAL to be one of the
following values:

Chapter 2
Platform Configurations

2-9

• If your input data will be at Day level, set both columns to DY
• If your input data will be at Week level, set both columns to WK
You must then enable the partitioning process in C_MODULE_ARTIFACT by locating the row for
MODULE_CODE=PLAN1 and setting ACTIVE_FLG=Y and PARTITION_FLG=Y. If your plan data will
extend into the future, you must also change PARTITION_FUTURE_PERIOD to the number of
future months that need partitions built (for example, use a value of 6M to partition 6 months
into the future).

C_HIST_LOAD_STATUS
The C_HIST_LOAD_STATUS table is used to track the progress of historical loads of data,
primarily inventory position and pricing facts. You should edit the following fields on this table
based on your implementation needs:

• HIST_LOAD_LAST_DATE – Specifies the planned final date for the end of your historical loads
(for example, the end of the 2-year period you plan to load into RAP). The history load
programs will assume that you are providing each week of inventory in sequence from
earliest to latest and process the data in that order.

• ENABLED_IND – Turns on or off a specific table load for historical data. Most of the tables in
these processes are only required for Retail Insights, and the rest can be disabled to
improve performance. Set to a value of N to disable a table load.

• MAX_COMPLETED_DATE – The load programs use this to keep track of the last loaded week
of data. It does not allow you to reload this week or any prior week, so if you are trying to
start over again after purging some history, you must also reset this field.

• HIST_LOAD_STATUS – The load programs uses this to track the status of each step in the
load process. If your program gets stuck on invalid records change this field back to
INPROGRESS before re-running the job. If you are restarting a load after erasing history data,
then you need to clear this field of any values.

If you are implementing Retail Insights, then enable all INV and PRICE modules in the table
(set ENABLED_IND to Y). If you are only implementing AI Foundation or Planning application
modules, then the following history tables should be enabled; all others should be disabled (set
ENABLED_IND to N).

• W_RTL_PRICE_IT_LC_DY_F
• W_RTL_PRICE_IT_LC_DY_HIST_TMP
• W_RTL_INV_IT_LC_DY_F
• W_RTL_INV_IT_LC_WK_A
• W_RTL_INV_IT_LC_DY_HIST_TMP
After enabling your desired history load tables, update the value of HIST_LOAD_LAST_DATE on
all rows you enabled. Set the date equal to the final date of history to be loaded. This can be
changed later if you need to set the date further out into the future.

As you load data files for one or more weeks of history per run, the value of
MAX_COMPLETED_DATE and HIST_LOAD_STATUS automatically update to reflect the progress you
have made. If you need to restart the process (for example, you have loaded test data and
need to start over with production data) these two columns must first be cleared of all data
from the Control Center before beginning the history load again.

Chapter 2
Platform Configurations

2-10

C_SOURCE_CDC
The C_SOURCE_CDC table is used for changed data capture (CDC) parameters for the
integrations between the Retail Insights data warehouse and the Planning application
schemas. In general, this table is updated automatically as batches are run. However, it is
important to know when you may need to modify these values.

For most interfaces, the table will initially have no records. The first time an integration batch
program runs, it will take all the data from the source table and move it to the export table. It
will then create a C_SOURCE_CDC record for the target table name, with a value for
LAST_MIN_DATE and LAST_MAX_DATE matching the timeframe extracted. On the next run, it will
look at LAST_MAX_DATE as the new minimum extract date and pulls data greater than that date
from the source table. If you are performing history loads for tables, such as Sales
Transactions, you may need to change these dates if you have to re-send data to Planning for
past periods.

Specifically for positional data (at this time only Inventory Position), the usage is not quite the
same. Positional data will always send the current end-of-week values to Planning, it does not
look at historical weeks as part of the normal batch process. A separate historical inventory
integration program is provided in an ad hoc process, which will allow you to send a range of
weeks where LAST_MIN_DATE is the start of the history you wish to send, and LAST_MAX_DATE is
the final date of history before normal batches take it forward. It is common to load inventory
from end to end in isolation as it is a data-intensive and time-consuming process to gather,
load, and validate inventory positions for multiple years of history.

W_GLOBAL_CURR_G
The W_GLOBAL_CURR_G table is used by Retail Insights to support up to three additional
currencies in reporting and aggregation (other fields above 3 are not used at this time). RI pre-
populates global currency fields in all aggregation tables based on the specified currency
codes. The desired codes are added to one row in this table and must align with the Exchange
Rates data provided separately. This table is available from the Control & Tactical Center and
is not a required configuration for any project unless you wish to report on additional currencies
in Retail Insights.

Example data to be inserted to this table:

DATASOU
RCE_NU
M_ID

TEN
ANT_
ID

GLOBAL
1_CURR_
CODE

GLOBAL
2_CURR_
CODE

GLOBAL
3_CURR_
CODE

GLOBAL
1_RATE_
TYPE

GLOBAL
2_RATE_
TYPE

GLOBAL
3_RATE_
TYPE

DEFAULT_
LOC_RATE
_TYPE

1 DEFA
ULT

INR AED PEN Corporat
e

Corporat
e

Corporat
e

Corporate

Application Configurations
In addition to the platform configurations defined above, each application on the platform has
its own system and runtime options that need to be reviewed and updated. The information
below will guide you to the appropriate content for each application’s configuration options.

Retail Insights
Retail Insights has a significant number of configurations, primarily in the C_ODI_PARAM_VW table
in the Control Center, which controls batch processes and reporting behaviors throughout the

Chapter 2
Application Configurations

2-11

application. If you are implementing Retail Insights as part of your project, review the “Setup
and Configuration” chapter of the Retail Insights Implementation Guide.

AI Foundation Cloud Services and Forecasting
Each AI Foundation application has parameters that are specific to the batch processing, data
movement, algorithms, and user interfaces of those modules. These configurations are stored
in several database tables available through the Control & Tactical Center. If you are
implementing any AI Foundation applications as part of your project, review the Retail AI
Foundation Cloud Services Implementation Guide.

If you are implementing any planning application (Merchandise Financial Planning, IPOCS-
Demand Forecasting, or Assortment Planning), then you are required to configure and use the
Forecasting module in the AI Foundation application interface. This requires initial
configurations to select forecast parameters, as well as post-data load configurations to select
forecast data levels and perform testing of the chosen algorithm. For basic information about
Forecasting and what the AI Foundation application functionality can support, refer to the
“Manage Forecast Configurations” section in the AI Foundation User Guide.

To configure the forecast process for Planning, use the Manage System Configurations
screen in the Control Center to review and modify the configurations in RSE_CONFIG. These
values can be set up now, but you cannot complete the rest of the forecasting process until
your foundation data has been loaded into AI Foundation.

Appl
Code

Parameter Name Description

RSE LOAD_EXTENDED_PROD_HIER Y or N value (default value is Y). Extended
hierarchy refers to a 9-level structure with style
and style/color as extra levels above SKU. This is
used only for specific applications such as AP, IPO,
and LPO. If you are not using one of the listed
applications or you don’t have styles and style/
colors, then you can ignore this parameter (the
extended hierarchy won’t be used even if
generated).

RSE EXTENDED_HIERARCHY_SRC Value can be set as either RMS or NON-RMS. Default
value is NON-RMS. If using RMFCS or RMS-sourced
data, or you are loading RAP with data in RMS-
like format, change this value to RMS.

Data loaded using the RAP foundation CSV files
can be provided in either an RMS or non-RMS
format, but RMS format is preferred (as detailed
later in this document for the PRODUCT.csv file).
All interface samples use RMS-formatted data, so
change this parameter to RMS if you are following
those guidelines.

Chapter 2
Application Configurations

2-12

https://docs.oracle.com/en/industries/retail/retail-science-cloud/22.1.202.0/rscug/control-tactical-center.htm#GUID-74943C66-7704-4EB8-B56E-82192477067A

Appl
Code

Parameter Name Description

PMO PMO_PROD_HIER_TYPE The hierarchy ID to use for the Lifecycle Pricing
Optimization product and the Forecasting
module. AIF applications have 2 product
hierarchies:
• 1 = Basic 7-level hierarchy without styles or

colors
• 3 = Extended 9-level hierarchy with style/

color
Default value is 3. If the extended hierarchy is
enabled and you are using one of the apps listed
above on LOAD_EXTENDED_PROD_HIER, keep this
value as 3. If you are not using the extended
hierarchy (such as for MFP-only
implementations), change this value to 1.

RSE PROD_HIER_SLSTXN_HIER_LEVE
L_ID

This parameter identifies the extended hierarchy
level at which sales transactions are provided (7-
Style, 8-Style/color or 9-Style/color/Size). It MUST
match the extended hierarchy leaf level. Default
value is 9. If you are not using the extended
hierarchy then ignore this parameter, it will not
be used.

PMO PMO_AGGR_INVENTORY_DATA_F
LG

Specifies whether inventory data is present and if
it should be used when aggregating activities data
for LPO and forecasting (only some forecast types
use inventory).
Set this value to N if inventory data is not loaded
or not needed for forecasting (inventory data is
not used for MFP forecasting but it is required for
other applications like Lifecycle Pricing
Optimization and Inventory Planning
Optimization). Default value is Y.

Planning Platform
Planning Applications such as MFP (Merchandise Financial Planning) can be set up using the
Planning Platform (RPASCE). It allows customers to use a Standard GA template version or
configurable planning solution versions. Refer to the Planning application-specific
Implementation Guides for more details about these options.

Chapter 2
Application Configurations

2-13

3
Data Loads and Initial Batch Processing

This chapter describes the common data requirements for implementing any of the Retail
Analytics and Planning modules, where to get additional information for optional or application-
specific data interfaces, and how to load an initial dataset into the cloud environments and
distribute it across your desired applications.

Data Requirements
Preparing data for one or more Retail Analytics and Planning modules can consume a
significant amount of project time, so it is crucial to identify the minimum data requirements for
the platform first, followed by additional requirements that are specific to your implementation
plan. Data requirements that are called out for the platform are typically shared across all
modules, meaning you only need to provide the inputs once to leverage them everywhere. This
is the case for foundational data elements, such as your product and location
hierarchies. Foundation data must be provided for any module of the platform to be
implemented. Foundation data is provided using different sources depending on your current
software landscape, including the on-premise Oracle Retail Merchandising System (RMS) or
3rd-party applications.

3-1

Figure 3-1 Inbound Foundation Data Flows

Retail Insights is used as the foundational data warehouse that collects and coordinates data
on the platform. You do not need to purchase Retail Insights Cloud Service to leverage the
data warehouse for storage and integration; it is included as part of any RAP solution.
Regardless of which RAP solutions you are implementing, the integration flows shown above
are used.

Application-specific data requirements are in addition to the shared foundation data, and may
only be used by one particular module of the platform. These application data requirements
may have different formats and data structures from the core platform-level dataset, so pay
close attention to those additional interface specifications. References and links are provided
later in this chapter to guide you to the relevant materials for application-specific inputs and
data files.

If you are using RMS as your primary data source, then you may not need to produce some or
all of these foundation files, as they will be created by other Oracle Retail processes for you.
However, it is often the case that historical data requires a different set of foundation files from
your future post-implementation needs. If you are loading manually-generated history files, or
you are not using an Oracle Retail data source for foundation data, then review the rest of this
section for details.

Chapter 3
Data Requirements

3-2

Platform Data Requirements
There is a subset of core platform data files that can be created and loaded once and then
used across some or all application modules. These files use a specific format as detailed
below.

Note:

Every application included with Retail Analytics and Planning has additional data
needs beyond this foundation data. But this common set of files can be used to
initialize the system before moving on to those specific requirements.

The first table defines the minimum dimensional data. A dimension is a collection of descriptive
elements, attributes, or hierarchical structures that provide context to your business data.
Dimensions tell the platform what your business looks like and how it operates. This is not the
entire list of possible dimension files, just the main ones needed to use the platform. Refer to
Legacy Foundation File Reference for a complete list of available platform foundation files,
along with a cross-reference to the legacy interfaces they most closely align with. A complete
interface specification document is also available in My Oracle Support to assist you in
planning your application-specific interface needs.

Table 3-1 Common Foundation Dimensions

Dimension Filename(s) Usage

Product PRODUCT.csv The product foundation data includes the items
you sell, their core merchandise attributes, and
their hierarchical structure in your source
systems.

Product PRODUCT_ALT.csv Alternate product attributes and hierarchy levels
intended for downstream Planning application
extensions.

Organization ORGANIZATION.csv The organization foundation data includes all of
your business entities involved in the movement
or sale of merchandise. This includes stores,
warehouses, partner/finisher locations, web
stores, and virtual warehouses. It also includes
your organizational hierarchy and core location
attributes.

Organization ORGANIZATION_ALT.csv Alternate location attributes and hierarchy levels
intended for downstream Planning application
extensions.

Calendar CALENDAR.csv The calendar foundation data defines your
business (or fiscal) calendar. This is the calendar
that you operate in when making critical business
decisions, reporting on financial results, and
planning for the future. The most common
calendar used by all modules of the platform is a
4-5-4 fiscal calendar.

Chapter 3
Data Requirements

3-3

https://support.oracle.com/

Table 3-1 (Cont.) Common Foundation Dimensions

Dimension Filename(s) Usage

Exchange Rates EXCH_RATE.csv Exchange rates define the conversion of monetary
values from the currency they are recorded in to
your primary operating currency. Most data is
provided to the platform in the local currency of
the data source, and it is converted to your
primary currency during the load process.

Product
Attributes

ATTR.csv
PROD_ATTR.csv

Product attributes describe the physical and
operational characteristics of your merchandise
and are a critical piece of information for many AI
Foundation modules, such as Demand
Transference and Size Profile Optimization. They
are not required as an initial input to start data
loads but will eventually be needed for most
applications to function.

System
Parameters

RA_SRC_CURR_PARAM_G.d
at

Parameters file that supports certain batch
processes, such as the ability to load multiple ZIP
files and run batches in sequence. Include this file
with nightly batch uploads to specify the current
business date, which enables the system to run
multiple batches in sequence without customer
input. Required once you begin nightly or weekly
batch uploads.

The other set of foundation files are referred to as facts. Fact data covers all of the actual
events, transactions, and activities occurring throughout the day in your business. Each
module in the platform has specific fact data needs, but the most common ones are listed
below. At a minimum, you should expect to provide Sales, Inventory, and Receipts data for
use in most platform modules. The intersection of all data (meaning which dimensional values
are used) is at a common level of item/location/date. Additional identifiers may be needed on
some files; for example, the sales data should be at the transaction level, the inventory file has
a clearance indicator, and the adjustments file has type codes and reason codes.

Table 3-2 Common Foundation Facts

Dimension Filename(s) Usage

Sales SALES.csv Transaction-level records for customer sales
(wholesale data provided separately). Used
across all modules.

Inventory INVENTORY.csv Physical inventory levels for owned
merchandise as well as consignment and
concession items. Used across all modules.

Receipts RECEIPT.csv Inventory receipts into any location,
including purchase order and transfer
receipts. Used by Insights, Planning, and the
AI Foundation modules to identify the
movement of inventory into a location and
to track first/last receipt date attributes.

Adjustments ADJUSTMENT.csv Inventory adjustments made at a location,
including shrink, wastage, theft, stock
counts, and other reasons. Used by Insights
and Planning modules.

Chapter 3
Data Requirements

3-4

Table 3-2 (Cont.) Common Foundation Facts

Dimension Filename(s) Usage

Purchase Orders ORDER_HEAD.csv
ORDER_DETAIL.csv

The purchase order data for all orders
placed with suppliers. Held at a level of
order number, supplier, item, location, and
date. Separate files are needed for the order
attributes and order quantities/amounts.
Used by Insights and Planning modules.

Markdowns MARKDOWN.csv The currency amount above or below the
listed price of an item when that item's
price is modified for any reason (planned
markdown, POS discount, promotional sale,
and so on). Used By Insights and Planning
modules.

Transfers TRANSFER.csv The movement of inventory between two
locations (both physical and virtual). Used
By Insights and Planning modules.

Returns to Vendor RTV.csv The return of owned inventory to a supplier
or vendor. Used by Insights and Planning
modules.

Prices PRICE.csv The current selling retail value of an item at
a location. Used by Insights and AI
Foundation modules.

Costs COST.csv The base unit cost and derived net costs of
an item at a location. Used by Retail Insights
only.

Wholesale/Franchise SALES_WF.csv Sales and markdown data from wholesale
and franchise operations. Used by all
modules.

Deal Income DEAL_INCOME.csv Income associated with deals made with
suppliers and vendors. Used by Insights and
Planning modules.

Details on which application modules make use of specific files (or columns within a file) can
be found in the Interfaces Guide on My Oracle Support. Make sure you have a full
understanding of the data needs for each application you are implementing before moving on
to later steps in the process. If it is your first time creating these files, read Data File
Generation, for important information about key file structures and business rules that must be
followed for each foundation file.

File Upload Samples
When you first upload foundation data into the platform, you will likely provide a small subset of
the overall set of files required by your applications. The following examples show a possible
series of initial file uploads to help you verify that you are providing the correct sets of data. All
dimension files in initialization and history loads must be full snapshots of data; never send
partial or incremental files.

Chapter 3
Data Requirements

3-5

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2539848.1
https://support.oracle.com

Example #1: Calendar Initialization
When you first configure the system you must upload and process the CALENDAR.csv file. You
will generate the file following the specifications, and also provide a context (ctx) file, as
described in Data File Generation.

File to upload: RAP_DATA_HIST.zip
Zip file contents:

• CALENDAR.csv
• CALENDAR.csv.ctx

Example #2: Product and Location Setup
You have finalized the calendar and want to initialize your core product and organization
dimensions. You must provide the PRODUCT.csv and ORGANIZATION.csv files along with their
context files, as described in Data File Generation.

File to upload: RAP_DATA_HIST.zip
Zip file contents:

• PRODUCT.csv
• PRODUCT.csv.ctx
• ORGANIZATION.csv
• ORGANIZATION.csv.ctx

Example #3: Full dimension load
You have a set of dimension files you want to process using the initial dimension load ad hoc
processes in POM.

File to upload: RAP_DATA_HIST.zip
Zip file contents:

• PRODUCT.csv
• PRODUCT.csv.ctx
• ORGANIZATION.csv
• ORGANIZATION.csv.ctx
• ATTR.csv
• ATTR.csv.ctx
• PROD_ATTR.csv
• PROD_ATTR.csv.ctx
• EXCH_RATE.csv
• EXCH_RATE.csv.ctx

Chapter 3
Data Requirements

3-6

Example #4: Sales Data Load
You have finished the dimensions and you are ready to start processing sales history files.

File to upload: RAP_DATA_HIST.zip
Zip file contents:

• SALES.csv
• SALES.csv.ctx

Example #5: Multi-File Fact Data Load
Once you are confident in your data file format and contents, you may send multiple files as
separate ZIP uploads for sequential loading in the same run. This process uses a numerical
sequence on the end of the ZIP file name. You should still include the base ZIP file to start the
process. The actual method to loop over these files is to use the RI_FLOW_ADHOC standalone
flow in the AIF DATA POM schedule, which executes the fact history load for all the standard
history load files.

Files to upload: RAP_DATA_HIST.zip, RAP_DATA_HIST.zip.1, RAP_DATA_HIST.zip.2,
RAP_DATA_HIST.zip.3
Zip file contents (in each uploaded zip):

• SALES.csv
• SALES.csv.ctx – The CTX is only required in the first ZIP file, but it’s best to always

include it so you can refer to it later in archived files, if needed.

In this example you are loading sales month by month iteratively, but the standalone flow
supports all other fact loads as well. You can also combine multiple fact files (for different facts
with the same period of time) in each ZIP file upload. Track the status of the files in the
C_HIST_FILES_LOAD_STATUS table after each cycle execution; it shows whether the file was
loaded successfully and how many more files are available to process.

Uploading ZIP Packages
When providing data to the platform, push the compressed files into Object Storage using a
ZIP file format. Review the File Transfer Services section for details on how to interact with
Object Storage. The ZIP file you use will depend on the data you are attempting to load. The
default ZIP file packages are below, but the history ZIP file name is configurable in
C_ODI_PARAM using parameter name HIST_ZIP_FILE if a different one is desired.

Table 3-3 Platform ZIP File Usage

Filenames Frequency Notes

RAP_DATA_HIST.zip Ad Hoc Used for:
• Historical files, such as sales and

inventory history for the last 1-2 years.
• Loading initial dimensions, such as

calendar, merchandise, and location
hierarchies prior to history loads.

• Initial seeding loads.

Chapter 3
Data Requirements

3-7

Table 3-3 (Cont.) Platform ZIP File Usage

Filenames Frequency Notes

RAP_DATA_HIST.zip.1
RAP_DATA_HIST.zip.2 …
RAP_DATA_HIST.zip.N

Ad Hoc /
Intraday

Multiple zip uploads are supported for
sending historical fact data which should be
loaded sequentially. Append a sequence
number on the ZIP files starting from 1 and
increasing to N, where N is the number of
files you are loading. Track the status of the
files in C_HIST_FILES_LOAD_STATUS table.

RAP_DATA.zip
RI_RMS_DATA.zip
RI_CE_DATA.zip
RI_MFP_DATA.zip
RI_EXT_DATA.zip

Daily Can be used for daily ongoing loads into the
platform (for RI and foundation common
inputs), and for any daily data going to
downstream applications through AIF DATA
nightly batch. Different files can be used for
different source systems.

RI_REPROCESS_DATA.zip Ad Hoc Used to upload individual files which will be
appended into an existing nightly batch file
set.

ORASE_WEEKLY_ADHOC.zip Ad Hoc Used for loading AI Foundation files with ad
hoc processes.

ORASE_WEEKLY.zip Weekly Used for weekly batch files sent directly to
AI Foundation.

ORASE_INTRADAY.zip Intraday Used for intraday batch files sent directly to
AI Foundation.

Other supported file packages, such as output files and optional input files, are detailed in each
module’s implementation guides. Except for Planning-specific integrations and customizations
(which support additional integration paths and formats), it is expected that all files will be
communicated to the platform using one of the filenames above.

Preparing to Load Data
Implementations can follow this general outline for the data load process:

1. Initialize the business and system calendars and perform table partitioning, which prepares
the database for loading fact data.

2. Load initial dimension data into the dimension and hierarchy tables and perform validation
checks on the data from DV/APEX or using RI reports.

3. If implementing any AI Foundation or Planning module, load the dimension data to those
systems now. Data might work fine on the input tables but have issues only visible after
processing in those systems. Don’t start loading history data if your dimensions are not
working with all target applications.

4. Load the first set of history files (for example, one month of sales or inventory) and validate
the results using DV/APEX.

5. If implementing any AI Foundation or Planning module, stop here and load the history data
to those systems as well. Validate that the history data in those systems is complete and
accurate per your business requirements.

6. Continue loading history data into RAP until you are finished with all data. You can stop at
any time to move some of the data into downstream modules for validation purposes.

Chapter 3
Preparing to Load Data

3-8

7. After history loads are complete, all positional tables, such as Inventory Position, need to
be seeded with a full snapshot of source data before they can be loaded using regular
nightly batches. This seeding process is used to create a starting position in the database
which can be incremented by daily delta extracts. These full-snapshot files can be included
in the first nightly batch you run, if you want to avoid manually loading each seed file
through one-off executions.

8. When all history and seeding loads are completed and downstream systems are also
populated with that data, nightly batches can be started.

Before you begin this process, it is best to prepare your working environment by identifying the
tools and connections needed for all your Oracle cloud services that will allow you to interact
with the platform, as detailed in Implementation Tools and Data File Generation.

Prerequisites for loading files and running POM processes include:

Prerequisite Tool / Process

Upload ZIPs to Object Storage File Transfer Service (FTS) scripts

Invoke adhoc jobs to unpack and load the data Postman (or similar REST API tool)

Monitor job progress after invoking POM
commands

POM UI (Batch Monitoring tab)

Monitoring data loads APEX / DV (direct SQL queries)

Users must also have the necessary permissions in Oracle Cloud Infrastructure Identity and
Access Management (OCI IAM) to perform all the implementation tasks. Before you begin,
ensure that your user has at least the following groups (and their _PREPROD equivalents if using
a stage/dev environment):

Access Needed Groups Needed

Batch Job Execution BATCH_ADMINISTRATOR_JOB
PROCESS_SERVICE_ADMIN_JOB

Database Monitoring <tenant ID>-DVContentAuthor (DV)
DATA_SCIENCE_ADMINISTRATOR_JOB (APEX)

Retail Home RETAIL_HOME_ADMIN
PLATFORM_SERVICES_ADMINISTRATOR
PLATFORM_SERVICES_ADMINISTRATOR_ABSTRACT

RI and AI Foundation Configurations ADMINISTRATOR_JOB

MFP Configurations MFP_ADMIN_STAGE / PROD

IPO Configurations IPO_ADMIN_STAGE / PROD

AP Configurations AP_ADMIN_STAGE / PROD

Calendar and Partition Setup
This is the first step that must be performed in all new environments, including projects that will
not be implementing RI, but only AI Foundation or Planning solutions. Before beginning this
step, ensure your configurations are complete per the initial configuration sections in the prior
chapter. Your START_DT and END_DT variables must be set correctly for your calendar range
(START_DT at least 12 months before start of history data) and the C_MODULE_ARTIFACT table
must have all of the required tables enabled for partitioning. C_MODULE_EXACT_TABLE must be
configured if you need PLAN partitions for planning data loads.

Chapter 3
Calendar and Partition Setup

3-9

1. Upload the calendar file CALENDAR.csv (and associated context file) through Object
Storage (packaged using the RAP_DATA_HIST.zip file).

2. Execute the HIST_ZIP_FILE_LOAD_ADHOC process. Example Postman message body:

{
"cycleName":"Adhoc",
"flowName":"Adhoc",
"processName":"HIST_ZIP_FILE_LOAD_ADHOC"
}

3. Verify that the jobs in the ZIP file load process completed successfully using the POM
Monitoring screen. Download logs for the tasks as needed for review.

4. Execute the CALENDAR_LOAD_ADHOC process. This transforms the data and moves it into all
internal data warehouse tables. It also performs table partitioning based on your input date
range.

Sample Postman message body:

{
 "cycleName":"Adhoc",
 "flowName":"Adhoc",
 "processName":"CALENDAR_LOAD_ADHOC",

"requestParameters":"jobParams.CREATE_PARTITION_PRESETUP_JOB=2018-12-30,job
Params.ETL_BUSINESS_DATE_JOB=2021-02-06"
}

There are two date parameters provided for this command:

a. The first date value specifies the first day of partitioning. It must be some time before
the first actual day of data being loaded. The recommendation is 1-6 months prior to
the planned start of the history so that you have room for back-posted data and
changes to start dates. You should not create excessive partitions for years of data you
won’t be loading however, as it can impact system performance. The date should also
be >= START_DT value set in C_ODI_PARAM_VW, because RAP cannot partition dates that
don’t exist in the system; but you don’t need to partition your entire calendar range.

b. The second date (ETL business date) specifies the target business date, which is
typically the day the system should be at after loading all history data and starting daily
batches. It is okay to guess some date in the future for this value, but note that the
partition process automatically extends 4 months past the date you specified. Your
fiscal calendar must have enough periods in it to cover the 4 months after this date or
this job will fail. This date can be changed later if needed, and partitioning can be re-
executed multiple times for different timeframes.

5. If this is your first time loading a calendar file, check the RI_DIM_VALIDATION_V view to
confirm no warnings or errors are detected. Refer to the AI Foundation Operations Guide
for more details on the validations performed. The validation job will fail if it doesn’t detect
data moved to the final table (W_MCAL_PERIOD_D). Refer to Sample Validation SQLs for
sample queries you can use to check the data.

6. If you need to reload the same file multiple times due to errors, you must Restart the
Schedule in POM and then run the ad hoc process C_LOAD_DATES_CLEANUP_ADHOC before
repeating these steps. This will remove any load statuses from the prior run and give you a
clean start on the next execution.

Chapter 3
Calendar and Partition Setup

3-10

Note:

If any job having STG in the name fails during the run, then review the POM logs
and it should provide the name of an external LOG or BAD table with more
information. These error tables can be accessed from APEX using a support
utility. Refer to the AI Foundation Operations Guide section on “External Table
Load Logs” for the utility syntax and examples.

You can monitor the partitioning process while it’s running by querying the RI_LOG_MSG table
from APEX. This table captures the detailed partitioning steps being performed by the script in
real time (whereas POM logs are only refreshed at the end of execution). If the process fails in
POM after exactly 4 hours, this is just a POM process timeout and it may still be running in the
background so you can check for new inserts to the RI_LOG_MSG table.

The partitioning process will take some time (~5 hours per 100k partitions) to complete if you
are loading multiple years of history, as this may require 100,000+ partitions to be created
across the data model. This process must be completed successfully before continuing with
the data load process. Contact Oracle Support if there are any questions or concerns.
Partitioning can be performed after some data has been loaded; however, it will take
significantly longer to execute, as it has to move all of the loaded data into the proper
partitions.

You can also estimate the number of partitions needed based on the details below:

• RAP needs to partition around 120 week-level tables if all functional areas are enabled, so
take the number of weeks in your history time window multiplied by this number of tables.

• RAP needs to partition around 160 day-level tables if all functional areas are enabled, so
take the number of days in your history time window multiplied by this number of tables.

For a 3-year history window, this results in: 120*52*3 + 160*365*3 = 193,920 partitions. If you
wish to confirm your final counts before proceeding to the next dataload steps, you can
execute these queries from APEX:

select count(*) cnt from dba_tab_partitions where table_owner = 'RADM01' and
table_name like 'W_RTL_%'
select table_name, count (*) cnt from dba_tab_partitions where table_owner =
'RADM01' and table_name like 'W_RTL_%' group by table_name

The queries should return a count roughly equal to your expected totals (it will not be exact, as
the data model will add/remove tables over time and some tables come with pre-built partitions
or default MAXVALUE partitions).

Loading Data from Files
When history and initial seed data comes from flat files, use the following tasks to upload them
into RAP:

Table 3-4 Flat File Load Overview

Activity Description

Initialize Dimensions Initialize dimensional data (products, locations, and so on) to
provide a starting point for historical records to join with. Separate
initial load processes are provided for this task.

Chapter 3
Loading Data from Files

3-11

Table 3-4 (Cont.) Flat File Load Overview

Activity Description

Load History Data Run history loads in one or multiple cycles depending on the data
volume, starting from the earliest date in history and loading
forward to today.

Reloading Dimensions Reload dimensional data as needed throughout the process to
maintain correct key values for all fact data. Dimensional files can be
provided in the same package with history files and ad hoc processes
run in sequence when loading.

Seed Positional Facts Seed initial values for positional facts using full snapshots of all
active item/locations in the source system. This must be loaded for
the date prior to the start of nightly batches to avoid gaps in ongoing
data.

Run Nightly Batches Nightly batches must be started from the business date after the
initial seeding was performed.

Completing these steps will load all of your data into the Retail Insights data model, which is
required for all implementations. From there, proceed with moving data downstream to other
applications as needed, such as AI Foundation modules and Merchandise Financial Planning.

Note:

All steps are provided sequentially, but can be executed in parallel. For example, you
may load dimensions into RI, then on to AI Foundation and Planning applications
before loading any historical fact data. While historical fact data is loaded, other
activities can occur in Planning such as the domain build and configuration updates.

Initialize Dimensions

Loading Dimensions into RI
You cannot load any fact data into the platform until the related dimensions have been
processed and verified. The processes in this section are provided to initialize the core
dimensions needed to begin fact data loads and verify file formats and data completeness.
Some dimensions which are not used in history loads are not part of the initialization process,
as they are expected to come in the nightly batches at a later time.

For the complete list of dimension files and their file specifications, refer to the AI Foundation
Interfaces Guide on My Oracle Support. The steps below assume you have enabled or
disabled the appropriate dimension loaders in POM per your requirements. The process flow
examples also assume CSV file usage, different programs are available for legacy DAT files.
The AI Foundation Operations Guide provides a list of all the job and process flows used by
foundation data files, so you can identify the jobs required for your files and disable unused
programs in POM.

When you are using RDE jobs to source dimension data from RMFCS and you are not
providing any flat files like PRODUCT.csv, it is necessary to disable all file-based loaders in the
RI_DIM_INITIAL_ADHOC process flow from POM. Any job name starting with the following text
can be disabled, because RDE jobs will bypass these steps and insert directly to staging
tables:

Chapter 3
Loading Data from Files

3-12

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2539848.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2539848.1
https://support.oracle.com/

• COPY_SI_

• STG_SI_

• SI_

• STAGING_SI_

1. Disable any dimension jobs you are not using from Batch Administration, referring to the
process flows for DAT and CSV files in the AIF Operations Guide as needed. If you are not
sure if you need to disable a job, it’s best to leave it enabled initially. Restart the POM
schedule in Batch Monitoring to apply the changes.

2. Provide your dimension files and context files through File Transfer Services (packaged
using the RAP_DATA_HIST.zip file). All files should be included in a single zip file upload. If
you are using data from Merchandising, this is where you should run the RDE ADHOC
processes such as RDE_DIM_FLOW_ADHOC.

3. Execute the HIST_ZIP_FILE_LOAD_ADHOC process if you need to unpack a new ZIP file.

4. Execute the RI_DIM_INITIAL_ADHOC process to stage, transform, and load your dimension
data from the files. The ETL date on the command should be at a minimum one day before
the start of your history load timeframe, but 3-6 months before is ideal. It is best to give
yourself a few months of space for reprocessing dimension loads on different dates prior to
start of history. Date format is YYYY-MM-DD; any other format will not be processed. After
running the process, you can verify the dates are correct in the W_RTL_CURR_MCAL_G table.
If the business date was not set correctly, your data may not load properly.

Sample Postman message body:

{
 "cycleName":"Adhoc",
 "flowName":"Adhoc",
 "processName":"RI_DIM_INITIAL_ADHOC",
 "requestParameters":"jobParams.ETL_BUSINESS_DATE_JOB=2017-12-31"
}

Note:

If any job having STG in the name fails during the run, then review the POM logs
and it should provide the name of an external LOG or BAD table with more
information. These error tables can be accessed from APEX using a support
utility. Refer to the AI Foundation Operations Guide section on “External Table
Load Logs” for the utility syntax and examples.

If this is your first dimension load, you will want to validate the core dimensions such as
product and location hierarchies using APEX. Refer to Sample Validation SQLs for sample
queries you can use for this.

If any jobs fail during this load process, you may need to alter one or more dimension data
files, re-send them in a new zip file upload, and re-execute the programs. Only after all core
dimension files have been loaded (CALENDAR, PRODUCT, ORGANIZATION, and EXCH_RATE) can you
proceed to history loads for fact data. Make sure to query the RI_DIM_VALIDATION_V view for
any warnings/errors after the run. Refer to the AI Foundation Operations Guide for more details
on the validation messages that may occur. This view primarily uses the table
C_DIM_VALIDATE_RESULT, which can be separately queried instead of the view to see all the
columns available on it.

Chapter 3
Loading Data from Files

3-13

If you need to reload the same file multiple times due to errors, you must Restart the Schedule
in POM and then run the ad hoc process C_LOAD_DATES_CLEANUP_ADHOC before repeating these
steps. This will remove any load statuses from the prior run and give you a clean start on the
next execution.

Note:

Starting with version 23.1.101.0, the product and organization file loaders have been
redesigned specifically for the initial ad hoc loads. In prior versions, you must not
reload multiple product or organization files for the same ETL business date, as it
treats any changes as a reclassification and can cause data issues while loading
history. In version 23.x, the dimensions are handled as “Type 1” slowly changing
dimensions, meaning the programs do not look for reclasses and instead perform
simple merge logic to apply the latest hierarchy data to the existing records, even if
levels have changed.

As a best practice, you should disable all POM jobs in the RI_DIM_INITIAL_ADHOC process
except the ones you are providing new files for. For example, if you are loading the PRODUCT,
ORGANIZATION, and EXCH_RATE files as your dimension data for AI Foundation, then you could
just execute the set of jobs for those files and disable the others. Refer to the AI Foundation
Operations Guide for a list of the POM jobs involved in loading each foundation file, if you wish
to disable jobs you do not plan to use to streamline the load process.

Hierarchy Deactivation
Beginning in version 23, foundation dimension ad hoc loads have been changed to use Type 1
slowly-changing dimension (SCD) behavior, which means that the system will no longer create
new records every time a parent/child relationship changes. Instead, it will perform a simple
merge on top of existing data to maintain as-is hierarchy definitions. The foundation data
model holds hierarchy records separately from product data, so it is also necessary to perform
maintenance on hierarchies to maintain a single active set of records that should be
propagated downstream to other RAP applications. This maintenance is performed using the
program W_PROD_CAT_DH_CLOSE_JOB in the RI_DIM_INITIAL_ADHOC process. The program will
detect unused hierarchy nodes which have no children after the latest data has been loaded
into W_PROD_CAT_DH and it will close them (set to CURRENT_FLG=N). This is required because, in
the data model, each hierarchy level is stored as a separate record, even if that level is not
being used by any products on other tables. Without the cleanup activity, unused hierarchy
levels would accumulate in W_PROD_CAT_DH and be available in AI Foundation, which is
generally not desired.

There are some scenarios where you may want to disable this program. For example, if you
know the hierarchy is going to change significantly over a period of time and you don’t want
levels to be closed and re-created every time a new file is loaded, you must disable
W_PROD_CAT_DH_CLOSE_JOB. You can re-enable it later and it will close any unused levels that
remain after all your changes are processed. Also be aware that the program is part of the
nightly batch process too, so once you switch from historical to nightly loads, this job will be
enabled and will close unused hierarchy levels unless you intentionally disable it. This job must
be disabled if you are using RDE programs to load Merchandising data.

Loading Dimensions to Other Applications
Once you have successfully loaded dimension data, you should pause the dataload process
and push the dimensions to AI Foundation Cloud Services and the Planning Data Store (if

Chapter 3
Loading Data from Files

3-14

applicable). This allows for parallel data validation and domain build activities to occur while
you continue loading data. Review sections Sending Data to AI Foundation and Sending Data
to Planning for details on the POM jobs you may execute for this.

The main benefits of this order of execution are:

1. Validating the hierarchy structure from the AI Foundation interface provides an early view
for the customer to see some application screens with their data.

2. Planning apps can perform the domain build activity without waiting for history file loads to
complete, and can start to do other planning implementation activities in parallel to the
history loads.

3. Data can be made available for custom development or validations in Innovation
Workbench.

Do not start history loads for facts until you are confident all dimensions are working
throughout your solutions. Once you begin loading facts, it becomes much harder to reload
dimension data without impacts to other areas. For example, historical fact data already loaded
will not be automatically re-associated with hierarchy changes loaded later in the process.

Load History Data
Historical fact data is a core foundational element to all solutions in Retail Analytics and
Planning. As such, this phase of the implementation can take the longest amount of time
during the project, depending on the volumes of data, the source of the data, and the amount
of transformation and validation that needs to be completed before and after loading it into the
Oracle database.

It is important to know where in the RAP database you can look to find what data has been
processed, what data may have been rejected or dropped due to issues, and how far along in
the overall load process you are. The following tables provide critical pieces of information
throughout the history load process and can be queried from APEX.

Table 3-5 Inbound Load Status Tables

Table Usage

C_HIST_LOAD_STATUS Tracks the progress of historical ad hoc load programs for
inventory and pricing facts. This table will tell you which Retail
Insights tables are being populated with historical data, the most
recent status of the job executions, and the most recently
completed period of historical data for each table. Use APEX or
Data Visualizer to query this table after historical data load runs
to ensure the programs are completing successfully and
processing the expected historical time periods.

C_HIST_FILES_LOAD_STATUS Tracks the progress of zip file processing when loading multiple
files in sequence using scheduled standalone process flows.

C_LOAD_DATES Check for detailed statuses of historical load jobs. This is the only
place that tracks this information at the individual ETL thread
level. For example, it is possible for an historical load using 8
threads to successfully complete 7 threads but fail on one thread
due to data issues. The job itself may just return as Failed in POM,
so knowing which thread failed will help identify the records that
may need correcting and which thread should be reprocessed.

Chapter 3
Loading Data from Files

3-15

Table 3-5 (Cont.) Inbound Load Status Tables

Table Usage

W_ETL_REJECTED_RECORDS Summary table capturing rejected fact record counts that do not
get processed into their target tables in Retail Insights. Use this to
identify other tables with specific rejected data to analyze. Does
not apply to dimensions, which do not have rejected record
support at this time.

E$_W_RTL_SLS_TRX_IT_LC_D
Y_TMP

Example of a rejected record detail table for Sales Transactions.
All rejected record tables start with the E$_ prefix. These tables
are created at the moment the first rejection occurs for a load
program. W_ETL_REJECTED_RECORDS will tell you which tables
contain rejected data for a load. These tables may not initially be
granted to APEX for you to read from. To grant access, run the
RABE_GRANT_ACCESS_TO_IW_ADHOC_PROCESS ad hoc process in
the AIF APPS schedule in POM. This will allow you to select from
these error tables to review rejection details.

When loading data from flat files for the first time, it is common to have bad records that cannot
be processed by the RAP load procedures, such as when the identifiers on the record are not
present in the associated dimension tables. The foundation data loads leverage rejected
record tables to capture all such data so you can see what was dropped by specific data load
and needs to be corrected and reloaded. These tables do not exist until rejected records occur
during program execution, and are not initially granted to APEX unless you have run
RABE_GRANT_ACCESS_TO_IW_ADHOC_PROCESS. Periodically monitor these tables for rejected data
which may require reloading.

The overall sequence of files to load will depend on your specific data sources and conversion
activities, but the recommendation is listed below as a guideline.

1. Sales – Sales transaction data is usually first to be loaded, as the data is critical to running
most applications and needs the least amount of conversion.

2. Inventory Receipts – If you need receipt dates for downstream usage, such as in
Lifecycle Pricing Optimization, then you need to load receipt transactions in parallel with
Inventory Positions. For each file of receipts loaded, also load the associated inventory
positions afterwards.

3. Inventory Position – The main stock-on-hand positions file is loaded next. This history
load also calculates and stores data using the receipts file, so INVENTORY.csv and
RECEIPT.csv must be loaded at the same time, for the same periods.

4. Pricing – The price history file is loaded after sales and inventory are complete because
many applications need only the first two datasets for processing. Potentially, price history
may also be the largest volume of data; so it’s good to be working within your other
applications in parallel with loading price data.

5. All other facts – There is no specific order to load any of the other facts like transfers,
adjustments, markdowns, costs, and so on. They can be loaded based on your
downstream application needs and the availability of the data files.

For your first time implementing this history load process, you may also leverage the reference
paper and scripts in My Oracle Support (Doc ID 2539848.1) titled AI Foundation Historical Data
Load Monitoring. This document will guide you through one way you can monitor the progress
of history loads, gather statistics on commonly used tables, and verify that data is moving from
the input tables to the target tables in the database.

Chapter 3
Loading Data from Files

3-16

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2539848.1

Automated History Loads
Once you have performed your history loads manually a couple of times (following all steps in
later sections) and validated the data is correct, you may wish to automate the remaining file
loads. A standalone process flow RI_FLOW_ADHOC is available in POM that can run the fact
history loads multiple times using your specified start times. Follow the steps below to enable
this process:

1. Upload multiple ZIP files using FTS, each containing one set of files for the same historical
period. Name the files like RAP_DATA_HIST.zip, RAP_DATA_HIST.zip.1,
RAP_DATA_HIST.zip.2 and so on, incrementing the index on the end of the zip file name
after the first one.

2. In the POM batch administration screen, ensure all of the jobs in the RI_FLOW_ADHOC are
enabled, matching your initial fact history standalone runs. The following processes in the
process flow are common to all runs and all jobs should be enabled in them:

• FLOW_LOAD_START_PROCESS

• FLOW_LOAD_END_PROCESS

• CLEANUP_C_LOAD_DATES_FLOW_PROCESS

• ZIP_FILE_LOAD_FLOW_PROCESS

• FACT_FLOW_END_PROCESS

3. Schedule the standalone flows from Scheduler Administration to occur at various intervals
throughout the day. Space out the cycles based on how long it took to process your first
file.

4. Monitor the load progress from the Batch Monitoring screen to see the results from each
run. Monitor the table C_HIST_FILES_LOAD_STATUS to verify the ZIP files you uploaded were
all processed successfully. Validate that data is being loaded successfully in your database
periodically throughout the standalone runs. If a run fails for any reason, it will not allow
more runs to proceed until the issue is resolved.

Sales History Load
RAP supports the loading of sales transaction history using actual transaction data or daily/
weekly sales totals. If loading data at an aggregate level, all key columns (such as the
transaction ID) are still required to have some value. The sales data may be provided for a
range of dates in a single file. The data should be loaded sequentially from the earliest week to
the latest week but, unlike inventory position, you may have gaps or out-of-order loads,
because the data is not stored positionally. Refer to Data File Generation for more details on
the file requirements.

Note:

Many parts of AI Foundation require transactional data for sales, so loading
aggregate data should not be done unless you have no better alternative.

If you are not loading sales history for Retail Insights specifically, then there are many
aggregation programs that can be disabled in the POM standalone process. Most aggregation
programs (jobs ending in _A_JOB) populate additional tables used only in BI reporting. The

Chapter 3
Loading Data from Files

3-17

following list of jobs must be enabled in the HIST_SALES_LOAD_ADHOC process to support AIF
and Planning data needs, but all others can be disabled for non-RI projects:

• VARIABLE_REFRESH_JOB

• ETL_REFRESH_JOB

• W_EMPLOYEE_D_JOB

• SEED_EMPLOYEE_D_JOB

• W_PARTY_PER_D_JOB

• SEED_PARTY_PER_D_JOB

• W_RTL_CO_HEAD_D_JOB

• W_RTL_CO_LINE_D_JOB

• SEED_CO_HEAD_D_JOB

• SEED_CO_LINE_D_JOB

• W_RTL_SLS_TRX_IT_LC_DY_F_JOB

• RA_ERROR_COLLECTION_JOB

• RI_GRANT_ACCESS_JOB

• RI_CREATE_SYNONYM_JOB

• ANAYLZE_TEMP_TABLES_JOB

• W_RTL_SLS_IT_LC_DY_TMP_JOB

• W_RTL_SLS_IT_LC_WK_A_JOB

• W_RTL_PROMO_D_TL_JOB

• SEED_PROMO_D_TL_JOB

• W_PROMO_D_RTL_TMP_JOB

• W_RTL_SLSPR_TRX_IT_LC_DY_F_JOB

• W_RTL_SLSPK_IT_LC_DY_F_JOB

• W_RTL_SLSPK_IT_LC_WK_A_JOB

• REFRESH_RADM_JOB

The other process used, HIST_STG_CSV_SALES_LOAD_ADHOC, can be run with all jobs enabled,
as it is only responsible for staging the files in the database. Make sure to check the enabled
jobs in both processes before continuing.

After confirming the list of enabled sales jobs, perform the following steps:

1. Create the file SALES.csv containing one or more days of sales data along with a CTX file
defining the columns which are populated. Optionally include the SALES_PACK.csv file as
well.

2. Upload the history files to Object Storage using the RAP_DATA_HIST.zip file.

3. Execute the HIST_ZIP_FILE_LOAD_ADHOC process.

4. Execute the HIST_STG_CSV_SALES_LOAD_ADHOC process to stage the data in the database.
Validate your data before proceeding. Refer to Sample Validation SQLs for sample queries
you can use for this.

5. Execute the HIST_SALES_LOAD_ADHOC batch processes to load the data. If no data is
available for certain dimensions used by sales, then the load process can seed the

Chapter 3
Loading Data from Files

3-18

dimension from the history file automatically. Enable seeding for all of the dimensions
according to the initial configuration guidelines; providing the data in other files is optional.

Several supplemental dimensions are involved in this load process, which may or may not
be provided depending on the data requirements. For example, sales history data has
promotion identifiers, which would require data on the promotion dimension.

Sample Postman message bodies:

{
 "cycleName":"Adhoc",
 "flowName":"Adhoc",
 "processName":"HIST_STG_CSV_SALES_LOAD_ADHOC"
}

{
 "cycleName":"Adhoc",
 "flowName":"Adhoc",
 "processName":"HIST_SALES_LOAD_ADHOC"
}

Note:

If any job having STG in the name fails during the run, then review the POM logs
and it should provide the name of an external LOG or BAD table with more
information. These error tables can be accessed from APEX using a support
utility. Refer to the AI Foundation Operations Guide section on “External Table
Load Logs” for the utility syntax and examples.

After the load is complete, you should check for rejected records, as this will not cause the job
to fail but it will mean not all data was loaded successfully. Query the table
W_ETL_REJECTED_RECORDS from IW to see a summary of rejections. If you cannot immediately
identify the root cause (for example, missing products or locations causing the data load to skip
the records) there is a utility job W_RTL_REJECT_DIMENSION_TMP_JOB that allows you analyze the
rejections for common reject reasons. Refer to the AIF Operations Guide for details on
configuring and running the job for the first time if you have not used it before.

This process can be repeated as many times as needed to load all history files for the sales
transaction data. If you are sending data to multiple RAP applications, do not wait until all data
files are processed to start using those applications. Instead, load a month or two of data files
and process them into all apps to verify the flows before continuing.

Note:

Data cannot be reloaded for the same records multiple times, as sales data is treated
as additive. If data needs correction, you must post only the delta records (for
example, send -5 to reduce a value by 5 units) or erase the table and restart the load
process using RI_SUPPORT_UTIL procedures in APEX. Raise a Service Request with
Oracle if neither of these options resolve your issue.

Once you have performed the load and validated the data one time, you may wish to automate
the remaining file loads. A standalone process flow RI_FLOW_ADHOC is available in POM that

Chapter 3
Loading Data from Files

3-19

can run the sales history load multiple times using your specified start times. Follow the steps
below to leverage this process:

1. Upload multiple ZIP files each containing one SALES.csv and naming them as
RAP_DATA_HIST.zip, RAP_DATA_HIST.zip.1, RAP_DATA_HIST.zip.2 and so on,
incrementing the index on the end of the zip file name. Track the status of the files in the
C_HIST_FILES_LOAD_STATUS table once they are uploaded and at least one execution of
the HIST_ZIP_FILE_UNLOAD_JOB process has been run.

2. In the POM batch administration screen, ensure all of the jobs in the RI_FLOW_ADHOC are
enabled, matching your initial ad hoc run. Schedule the standalone flows from Scheduler
Administration to occur at various intervals throughout the day. Space out the runs based
on how long it took to process your first file.

3. Monitor the load progress from the Batch Monitoring screen to see the results from each
run cycle.

Inventory Position History Load
RAP supports the loading of inventory position history using full, end-of-week snapshots.
These weekly snapshots may be provided one week at a time or as multiple weeks in a single
file. The data must be loaded sequentially from the earliest week to the latest week with no
gaps or out-of-order periods. For example, you cannot start with the most recent inventory file
and go backward; you must start from the first week of history. Refer to Data File Generation
for more details on the file requirements.

A variety of C_ODI_PARAM_VW settings are available in the Control Center to disable inventory
features that are not required for your implementation. All of the following parameters can be
changed to a value of N during the history load and enabled later for daily batches, as it will
greatly improve the load times:

• RI_INVAGE_REQ_IND – Disables calculation of first/last receipt dates and inventory age
measures. Receipt date calculation is used in RI and required for Lifecycle Pricing
Optimization (as a method of determining entry/exit dates for items). It is also required for
Forecasting for the Short Lifecycle (SLC) methods. Set to Y if using any of these
applications.

• RA_CLR_LEVEL – Disables the mapping of clearance event IDs to clearance inventory
updates. Used only in RI reporting.

• RI_PRES_STOCK_IND – Disables use of replenishment data for presentation stock to
calculate inventory availability measures. Used only in RI reporting.

• RI_BOH_SEEDING_IND – Disables the creation of initial beginning-on-hand records so
analytics has a non-null starting value in the first week. Used only in RI reporting.

• RI_MOVE_TO_CLR_IND – Disables calculation of move-to-clearance inventory measures
when an item/location goes into or out of clearance status. Used only in RI reporting.

• RI_MULTI_CURRENCY_IND – Disables recalculation of primary currency amounts if you are
only using a single currency. Should be enabled for multi-currency, or disabled otherwise.

If you will be loading inventory history after you have already started nightly batches, then you
must also update two additional parameters:

• INV_NIGHTLY_BATCH_IND – Change this to Y to indicate that nightly batches have been run
but you are planning to load history for prior dates

• INV_LAST_HIST_LOAD_DT – Set this to the final week of history data you plan to load, which
must be a week-ending date and it must be before the nightly batches were started

Chapter 3
Loading Data from Files

3-20

Although it is supported, it is not advisable to load history data after nightly batches have
started. It would be difficult to erase or correct historical data after it is loaded without affecting
your nightly batch data as well. For this reason it is best to validate the history data thoroughly
in a non-production environment before loading it to the production system.

The following steps describe the process for loading inventory history:

1. If you need inventory to keep track of First/Last Receipt Dates for use in Lifecycle Pricing
Optimization or Forecasting (SLC) then you must first load a RECEIPT.csv file for the same
historical period as your inventory file (because it is used in forecasting, that may make it
required for your Inventory Planning Optimization loads as well, if you plan to use SLC
forecasting). You must also set RI_INVAGE_REQ_IND to Y. Receipts are loaded using the
process HIST_CSV_INVRECEIPTS_LOAD_ADHOC. Receipts may be provided at day or week
level depending on your history needs.

2. Create the file INVENTORY.csv containing one or more weeks of inventory snapshots in
chronological order along with your CTX file to define the columns that are populated. The
DAY_DT value on every record must be an end-of-week date (Saturday by default).

3. Upload the history file and its context file to Object Storage using the RAP_DATA_HIST.zip
file.

4. Update column HIST_LOAD_LAST_DATE on the table C_HIST_LOAD_STATUS to be the date
matching the last day of your overall history load (will be later than the dates in the current
file). This can be done from the Control & Tactical Center. If you are loading history after
your nightly batches were already started, then you must set this date to be the last week-
ending date before your first daily/weekly batch. No other date value can be used in this
case.

5. Execute the HIST_ZIP_FILE_LOAD_ADHOC process.

6. If you are providing RECEIPT.csv for tracking receipt dates in history, run
HIST_CSV_INVRECEIPTS_LOAD_ADHOC at this time.

7. Execute the HIST_STG_CSV_INV_LOAD_ADHOC process to stage your data into the database.
Validate your data before proceeding. Refer to Sample Validation SQLs for sample queries
you can use for this.

8. Execute the HIST_INV_LOAD_ADHOC batch process to load the file data. The process loops
over the file one week at a time until all weeks are loaded. It updates the
C_HIST_LOAD_STATUS table with the progress, which you can monitor from APEX or DV.
Sample Postman message bodies:

{
 "cycleName":"Adhoc",
 "flowName":"Adhoc",
 "processName":"HIST_STG_CSV_INV_LOAD_ADHOC"
}

{
 "cycleName":"Adhoc",
 "flowName":"Adhoc",
 "processName":"HIST_INV_LOAD_ADHOC"
}

This process can be repeated as many times as needed to load all history files for the
inventory position. Remember that inventory cannot be loaded out of order, and you cannot go
back in time to reload files after you have processed them (for the same item/loc intersections).

Chapter 3
Loading Data from Files

3-21

If you load a set of inventory files and then find issues during validation, erase the tables in the
database and restart the load with corrected files.

If you finish the entire history load and need to test downstream systems (like Inventory
Planning Optimization) then you must populate the table W_RTL_INV_IT_LC_G first (the history
load skips this table). There is a separate standalone job HIST_LOAD_INVENTORY_GENERAL_JOB
in the process HIST_INV_GENERAL_LOAD_ADHOC that you may execute to copy the final week of
inventory from the fact table to this table.

If your inventory history has invalid data, you may get rejected records and the batch process
will fail with a message that rejects exist in the data. If this occurs, you cannot proceed until
you resolve your input data, because rejections on positional data MUST be resolved for one
date before moving onto the next. If you move onto the next date without reprocessing any
rejected data, that data is lost and cannot be loaded at a later time without starting over. When
this occurs:

1. The inventory history load will automatically populate the table
W_RTL_REJECT_DIMENSION_TMP with a list of invalid dimensions it has identified. If you are
running any other jobs besides the history load, you can also run the process
W_RTL_REJECT_DIMENSION_TMP_ADHOC to populate that table manually. You have the choice
to fix the data and reload new files or proceed with the current file

2. After reviewing the rejected records, run REJECT_DATA_CLEANUP_ADHOC, which will erase the
E$ table and move all rejected dimensions into a skip list. You must pass in the module
code you want to clean up data for as a parameter on the POM job (in this case the
module code is INV). The skip list is loaded to the table C_DISCARD_DIMM. Skipped
identifiers will be ignored for the current file load, and then reset for the start of the next
run.

Example Postman message body:

{
"cycleName": "Adhoc",
"flowName":"Adhoc",
"processName":"REJECT_DATA_CLEANUP_ADHOC",
"requestParameters":"jobParams.REJECT_DATA_CLEANUP_JOB=INV"
}

3. If you want to fix your files instead of continuing the current load, stop here and reload your
dimensions and/or fact data following the normal process flows.

4. If you are resuming with the current file with the intent to skip all data in C_DISCARD_DIMM,
restart the failed POM job now. The skipped records are permanently lost and cannot be
reloaded unless you erase your inventory data and start loading files from the beginning.

Log a Service Request with Oracle Support for assistance with any of the above steps if you
are having difficulties with loading inventory history or dealing with rejected records.

Reloading Inventory Data
If you need to reload new inventory data from the beginning, you must first erase the inventory
fact tables and clean up the configurations. Use the Data Cleanup Utility described in the AIF
Operations Guide to truncate all inventory fact tables. You should use the subject area cleanup
for this purpose, passing in a value of Inventory Position as the subject area name. This
utility when run for the inventory subject area will truncate the tables, reset the columns in
C_HIST_LOAD_STATUS, and cleanup metadata relating to the partitions to prepare it for a fresh
load of data. It will not truncate TMP tables, as those will be truncated automatically when the
history load programs are executed.

Chapter 3
Loading Data from Files

3-22

Make sure you check C_HIST_LOAD_STATUS before starting a new inventory load as you may
want to enable different tables or change the HIST_LOAD_LAST_DATE values to align with your
new data. Verify that the MAX_COMPLETED_DATE and HIST_LOAD_STATUS columns are null for all
rows you will be reprocessing.

Price History Load
Certain applications, such as Lifecycle Pricing Optimization, require price history to perform
their calculations. Price history is similar to inventory in that it is a positional, but it can be
loaded in a more compressed manner due to the extremely high data volumes involved. The
required approach for price history is as follows:

1. Update C_HIST_LOAD_STATUS for the PRICE records in the table, specifying the last date of
history load, just as you did for inventory. For whatever value you put in the
HIST_LOAD_LAST_DATE column, ensure that you load price data up to and including that
date. There is logic in the history load to refresh the W_RTL_PRICE_IT_LC_G table; that logic
only runs on the final day of historical processing. But, if you don’t load files all the way up
to that date, it will never run and you may have incorrect data as a result. If you are loading
history after your nightly batches already started, then you must set this date to be the last
week-ending date before your first daily/weekly batch. No other date value can be used in
this case.

2. If you are loading prices for LPO applications specifically, then go to C_ODI_PARAM_VW in the
Control Center and change the parameter RI_LAST_MKDN_HIST_IND to have a value of Y.
This will populate some required fields for LPO markdown and promotion price history.

3. Create an initial, full snapshot of price data in PRICE.csv for the first day of history and load
this file into the platform using the history processes in this section. All initial price records
must come with a type code of 0.

4. Create additional PRICE files containing just price changes for a period of time (such as a
month) with the appropriate price change type codes and effective day dates for those
changes. Load each file one at a time using the history processes.

5. The history procedure will iterate over the provided files day by day, starting from the first
day of history, up to the last historical load date specified in C_HIST_LOAD_STATUS for the
pricing fact. For each date, the procedure checks the staging data for effective price
change records and loads them, then moves on to the next date.

The process to perform price history loads is similar to the inventory load steps. It uses the
PRICE.csv file and the HIST_CSV_PRICE_LOAD_ADHOC process (the price load only has one load
process instead of two like sales/inventory). Just like inventory, you must load the data
sequentially; you cannot back-post price changes to earlier dates than what you have already
loaded. Refer to Data File Generation for complete details on how to build this file.

Just like inventory, the REJECT_DATA_CLEANUP_ADHOC process may be used when records are
rejected during the load. Price loads cannot continue until you review and clear the rejections.

{
 "cycleName": "Adhoc",
 "flowName":"Adhoc",
 "processName":"REJECT_DATA_CLEANUP_ADHOC",
 "requestParameters":"jobParams.REJECT_DATA_CLEANUP_JOB=PRICE"
}

If you will not be loading a complete history file, or you want to skip history and run price
seeding or nightly cycles, then you must be aware of the nightly job behavior as it relates to

Chapter 3
Loading Data from Files

3-23

history. The nightly batch job W_RTL_PRICE_IT_LC_DY_F_JOB has a validation rule that looks for
history data and fails the batch if it is not found. It is looking specifically in the table
W_RTL_PRICE_IT_LC_G, because this table must be populated when the price history job runs
for the last date (the value in HIST_LOAD_LAST_DATE). The reason for this validation is that the
system calculates many additional fields like LAST_MKDN_DT that need to include your historical
price activity. If you run the nightly batch jobs without populating W_RTL_PRICE_IT_LC_G, all
calculated fields will start as null or having only the current night’s price data. If you are not
planning to load complete price history up to the value on HIST_LOAD_LAST_DATE, then you may
disable this validation rule from C_ODI_PARAM_VW in the Manage System Configurations screen.
Look for the RI_CHK_PRICE_G_EMPTY_IND parameter and update the value to N. This will allow
W_RTL_PRICE_IT_LC_DY_F_JOB to complete even if no history has been loaded and the
W_RTL_PRICE_IT_LC_G table is empty.

Reloading Price Data
If you need to reload new price data from the beginning, you must first erase the pricing fact
tables and clean up the configurations. There are two methods available for this and both
should be used as of the current release:

1. Use the Data Cleanup Utility found in the AIF Operations Guide to truncate all price tables.
You may use the subject area cleanup for this purpose, passing in a value of Price as the
subject area name. This is required in order to efficiently delete any large volume tables,
which performs better from this utility.

2. Use the history cleanup standalone process HIST_DATA_CLEANUP_ADHOC, which has only
one job named HIST_DATA_CLEANUP_JOB. This job requires a module code as an input
parameter, so pass in a value of PRICE to erase price data. This job will also take care of
resetting C_HIST_LOAD_STATUS data for pricing loads. This can run after the first step and
will take care of price history TMP table cleanup that the support utility does not do.

Make sure you check C_HIST_LOAD_STATUS before starting a new price load as you may want
to enable different tables or change the HIST_LOAD_LAST_DATE values to align with your new
data. Verify that the MAX_COMPLETED_DATE and HIST_LOAD_STATUS columns are null for all rows
you will be reprocessing.

Purchase Order Loads
Purchase Order data does not support loading of historical records, as all usage of PO data is
for forward-looking calculations, such as open on-order amounts. However, it is common to
need some test data to be loaded prior to nightly batches so that you can validate the purchase
order calculations in your Planning solutions during implementation. When loading PO data,
make sure you develop the files following the guidance in the data files generation section of
this document and in the RAP interfaces guide.

1. Create the files ORDER_HEAD.csv and ORDER_DETAIL.csv containing a full snapshot of
purchase order data for a single date. The DAY_DT value on every record in
ORDER_DETAIL.csv must be the same and represent the current business date in RAP at
the time the file will be loaded. The load will fail for any other value of DAY_DT besides the
current business date, and it will fail if multiple dates are present in the file.

2. Upload the data files and their context files to Object Storage using the
RAP_DATA_HIST.zip file.

3. Execute the HIST_ZIP_FILE_LOAD_ADHOC process.

Chapter 3
Loading Data from Files

3-24

4. Execute the SEED_CSV_W_RTL_PO_ONORD_IT_LC_DY_F_PROCESS_ADHOC batch process to load
the data. Example Postman message body:

{
 "cycleName":"Adhoc", "flowName":"Adhoc",
 "processName":"SEED_CSV_W_RTL_PO_ONORD_IT_LC_DY_F_PROCESS_ADHOC"
}

Purchase Order data functions similar to inventory in that it is a positional fact interface and
cannot be loaded or reloaded multiple times for the same dates. If you load some data for a
given business date and need to change or erase it, you must truncate the tables using
support utilities and then load the new data. You also cannot load the data out of order. Once
you load data for one date, you may only load new files for future dates after that point. The
data warehouse target tables for this data are W_RTL_PO_DETAILS_D (for the ORER_HEAD.csv file)
and W_RTL_PO_ONORD_IT_LC_DY_F (for the ORDER_DETAIL.csv file).

Prior to starting nightly loads of PO data, you must also choose your configuration option for
the parameter PO_FULL_LOAD_IND in the C_ODI_PARAM_VW configuration table in Manage System
Configurations. By default, this parameter is set to N, which means that the nightly interface
expects to get all delta/incremental updates to your existing PO data each night. This delta
includes zero balance records for when a PO is received in the source and moves to zero units
on order. If tracking and sending deltas is not possible, you may change this parameter to Y,
which indicates that your nightly file will be a full snapshot of open order records instead. The
system will automatically zero out any purchase order lines that are not included in your nightly
file, which allows you to extract only the non-zero lines in your source data.

You must also choose the configuration option for the parameter PDS_EXPORT_DAILY_ONORD,
which determines whether the EOW_DATE used in the export data is allowed to contain non-end-
of-week (EOW) dates, or if the system must convert it to a week-ending date in all cases.
When set to a value of Y, it means daily dates are allowed in the EOW_DATE field on the export, if
there is a daily date in the OTB_EOW_DATE column of ORDER_HEAD.csv. When set to a value of N,
it means the system automatically converts the input dates from ORDER_HEAD.csv to be week-
ending dates in all cases. For a base implementation of MFP with no customizations, you may
want this setting to be N to force the export dates to be EOW dates even if the input file has
non-EOW dates from the source. If you are altering RPAS to have a different base calendar
intersection, then you may want to change this to Y instead to allow daily dates.

Other History Loads
While sales and inventory are the most common facts to load history for, you may also want to
load history for other areas such as receipts and transfers. Separate ad hoc history load
processes are available for the following fact areas:

• HIST_CSV_ADJUSTMENTS_LOAD_ADHOC

• HIST_CSV_INVRECEIPTS_LOAD_ADHOC

• HIST_CSV_MARKDOWN_LOAD_ADHOC

• HIST_CSV_INVRTV_LOAD_ADHOC

• HIST_CSV_TRANSFER_LOAD_ADHOC

• HIST_CSV_DEAL_INCOME_LOAD_ADHOC

• HIST_CSV_ICMARGIN_LOAD_ADHOC

• HIST_CSV_INVRECLASS_LOAD_ADHOC

• HIST_STG_CSV_SALES_WF_LOAD_ADHOC

Chapter 3
Loading Data from Files

3-25

• HIST_SALES_WF_LOAD_ADHOC

All of these interfaces deal with transactional data (not positional) so you may use them at any
time to load history files in each area.

Note:

These processes are intended to support history data for downstream applications
such as AI Foundation and Planning, so the tables populated by each process by
default should satisfy the data needs of those applications. Jobs not needed by those
apps are not included in these processes.

Some data files used by AIF and Planning applications do not have a history load process,
because the data is only used from the current business date forwards. For Purchase Order
data (ORDER_DETAIL.csv), refer to the section below on Seed Positional Facts if you need to
load the file before starting your nightly batch processing. For other areas like transfers/
allocations used by Inventory Planning Optimization, those jobs are only included in the nightly
batch schedule and do not require any history to be loaded.

Modifying Staged Data
If you find problems in the data you’ve staged in the RAP database (specific to RI/AIF input
interfaces) you have the option to directly update those tables from APEX, thus allowing you to
reprocess the records without uploading new files through FTS. You have the privileges to
insert, delete, or update records in tables where data is staged before being loaded into the
core data model, such as W_RTL_INV_IT_LC_DY_FTS for inventory data.

Directly updating the staging table data can be useful for quickly debugging load failures and
correcting minor issues. For example, you are attempting to load PRODUCT.csv for the first time
and you discover some required fields are missing data for some rows. You may directly
update the W_PRODUCT_DTS table to put values in those fields and rerun the POM job, allowing
you to progress with your dataload and find any additional issues before generating a new file.
Similarly, you may have loaded an inventory receipts file, but discovered after staging the file
that data was written to the wrong column (INVRC_QTY contains the AMT values and vice versa).
You can update the fields and continue to load it to the target tables to verify it, and then
correct your source data from the next run forwards only.

These privileges extend only to staging tables, such as table names ending in FTS, DTS, FS, or
DS. You cannot modify internal tables holding the final fact or dimension data. You cannot
modify configuration tables as they must be updated from the Control & Tactical Center. The
privileges do not apply to objects in the RDX or PDS database schemas.

Reloading Dimensions
It is common to reload dimensions at various points throughout the history load, or even in-
sync with every history batch run. Ensure that your core dimensions, such as the product and
location hierarchies, are up-to-date and aligned with the historical data being processed. To
reload dimensions, you may follow the same process as described in the Initial Dimension
Load steps, ensuring that the current business load date in the system is on or before the date
in history when the dimensions will be required. For example, if you are loading history files in
a monthly cadence, ensure that new product and location data required for the next month has
been loaded no later than the first day of that month, so it is effective for all dates in the history
data files.

Chapter 3
Loading Data from Files

3-26

It is also very important to understand that history load procedures are unable to handle
reclassifications that have occurred in source systems when you are loading history files. For
example, if you are using current dimension files from the source system to process historical
data, and the customer has reclassified products so they are no longer correct for the historical
time periods, then your next history load may place sales or inventory under the new
classifications, not the ones that were relevant in history. For this reason, reclassifications
should be avoided if at all possible during history load activities, unless you can maintain
historical dimension snapshots that will accurately reflect historical data needs.

Seed Positional Facts
Once sales and inventory history have been processed, you will need to perform seeding of
the positional facts you wish to use. Seeding a fact means to load a full snapshot of the data
for all active item/locations, thus establishing a baseline position for every possible record
before nightly batches start loading incremental updates to those values. Seeding of positional
facts should only occur once history data is complete and daily batch processing is ready to
begin. Seed loads should also be done for a week-ending date, so that you do not have a
partial week of daily data in the system when you start daily batches.

Instead of doing separate seed loads, you also have the option of just providing full snapshots
of all positional data in your first nightly batch run. This will make the first nightly batch take a
long time to complete (potentially 8+ hours) but it allows you to skip all of the steps
documented below. This method of seeding the positional facts is generally the preferred
approach for implementers, but if you want to perform manual seeding as a separate activity,
review the rest of this section. If you are also implementing RMFCS, you can leverage Retail
Data Extractor (RDE) programs for the initial seed load as part of your first nightly batch run,
following the steps in that chapter instead.

If you did not previously disable the optional inventory features in C_ODI_PARAM (parameters
RI_INVAGE_REQ_IND, RA_CLR_LEVEL, RI_PRES_STOCK_IND, RI_BOH_SEEDING_IND,
RI_MOVE_TO_CLR_IND, and RI_MULTI_CURRENCY_IND) then you should review these settings now
and set all parameters to N if the functionality is not required. Once this is done, follow the
steps below to perform positional seeding:

1. Create the files containing your initial full snapshots of positional data. It may be one or
more of the following:

• PRICE.csv
• COST.csv (used for both BCOST and NCOST data interfaces)

• INVENTORY.csv
• ORDER_DETAIL.csv (ORDER_HEAD.csv may already be loaded using dimension process,

but it can also be done now, as it is required to load this file)

• W_RTL_INVU_IT_LC_DY_FS.dat
2. Upload the files to Object Storage using the RAP_DATA_HIST.zip file.

3. Execute the LOAD_CURRENT_BUSINESS_DATE_ADHOC process to set the load date to be the
next week-ending date after the final date in your history load.

{
"cycleName":"Adhoc",
"flowName":"Adhoc",
"processName":"LOAD_CURRENT_BUSINESS_DATE_ADHOC",
"requestParameters":"jobParams.ETL_BUSINESS_DATE_JOB=2017-12-31"
}

Chapter 3
Loading Data from Files

3-27

4. Execute the ad hoc seeding batch processes depending on which files have been
provided. Sample Postman messages:

{
"cycleName":"Adhoc",
"flowName":"Adhoc",
"processName":"SEED_CSV_W_RTL_PRICE_IT_LC_DY_F_PROCESS_ADHOC"
}

{
"cycleName": "Adhoc",
"flowName":"Adhoc",
"processName":"SEED_CSV_W_RTL_NCOST_IT_LC_DY_F_PROCESS_ADHOC"
}

{
"cycleName":"Adhoc",
"flowName":"Adhoc",
"processName":"SEED_CSV_W_RTL_BCOST_IT_LC_DY_F_PROCESS_ADHOC"
}

{
"cycleName":"Adhoc",
"flowName":"Adhoc",
"processName":"SEED_CSV_W_RTL_INV_IT_LC_DY_F_PROCESS_ADHOC"
}

{
"cycleName":"Adhoc",
"flowName":"Adhoc",
"processName":"SEED_CSV_W_RTL_INVU_IT_LC_DY_F_PROCESS_ADHOC"
}

{
"cycleName":"Adhoc",
"flowName":"Adhoc",
"processName":"SEED_CSV_W_RTL_PO_ONORD_IT_LC_DY_F_PROCESS_ADHOC"
}

Once all initial seeding is complete and data has been validated, you are ready to perform a
regular batch run. Provide the data files expected for a full batch, such as RAP_DATA.zip or
RI_RMS_DATA.zip for foundation data, RI_MFP_DATA.zip for externally-sourced planning data
(for RI reporting and AI Foundation forecasting), and any AI Foundation Cloud Services files
using the ORASE_WEEKLY.zip files. If you are sourcing daily data from RMFCS then you need to
ensure that the RDE batch flow is configured to run nightly along with the RAP batch schedule.
Batch dependencies between RDE and RI should be checked and enabled, if they are not
already turned on.

From this point on, the nightly batch takes care of advancing the business date and loading all
files, assuming that you want the first load of nightly data to occur the day after seeding. The
following diagram summarizes a potential set of dates and activities using the history and
seeding steps described in this chapter:

Chapter 3
Loading Data from Files

3-28

Note:

The sequential nature of this flow of events must be followed for positional facts (for
example, inventory) but not for transactional facts (such as sales). Transactional data
supports posting for dates other than what the current system date is, so you can
choose to load sales history at any point in this process.

Run Nightly Batches
As soon as initial seeding is performed (or instead of initial seeding), you need to start nightly
batch runs. If you are using the nightly batch to seed positional facts, ensure your first ZIP file
upload for the batch has those full snapshots included. Once those full snapshots are loaded
through seeding or the first full batch, then you can send incremental files rather than full
snapshots.

Nightly batch schedules can be configured in parallel with the history load processes using a
combination of the Customer Modules Management (in Retail Home) and the POM
administration screens. It is not recommended to configure the nightly jobs manually in POM,
as there are over 500 batch programs; choosing which to enable can be a time-intensive and
error-prone activity. Customer Modules Management greatly simplifies this process and
preserves dependencies and required process flows. Batch Orchestration describes the batch
orchestration process and how you can configure batch schedules for nightly execution.

Once you move to nightly batches, you may also want to switch dimension interfaces from Full
to Incremental loading of data. Several interfaces, such as the Product dimension, can be
loaded incrementally, sending only the changed records every day instead of a full snapshot.
These options use the IS_INCREMENTAL flag in the C_ODI_PARAM_VW table and can be accessed
from the Control & Tactical Center. If you are unsure of which flags you want to change, refer to
the Retail Insights Implementation Guide for detailed descriptions of all parameters.

Note:

At this time, incremental product and location loads are supported when using RDE
for integration or when using legacy DAT files. CSV files should be provided as full
snapshots.

As part of nightly batch uploads, also ensure that the parameter file RA_SRC_CURR_PARAM_G.dat
is included in each ZIP package, and that it is being automatically updated with the current
business date for that set of files. This file is used for business date validation so incorrect files
are not processed. This file will help Oracle Support identify the current business date of a
particular set of files if they need to intervene in the batch run or retrieve files from the archives
for past dates. Refer to the System Parameters File section for file format details.

Chapter 3
Loading Data from Files

3-29

In summary, here are the main steps that must be completed to move from history loads to
nightly batches:

1. All files must be bundled into a supported ZIP package like RAP_DATA.zip for the nightly
uploads, and this process should be automated to occur every night.

2. Include the system parameter file RA_SRC_CURR_PARAM_G.dat in each nightly upload ZIP
and automate the setting of the vdate parameter in that file (not applicable if RDE jobs are
used).

3. Sync POM schedules with the Customer Module configuration using the Sync with MDF
button in the Batch Administration screen, restart the POM schedules to reflect the
changes, and then review the enabled/disabled jobs to ensure the necessary data will be
processed in the batch.

4. Move the data warehouse ETL business date up to the date one day before the current
nightly load (using LOAD_CURRENT_BUSINESS_DATE_ADHOC). The nightly load takes care of
advancing the date from this point forward.

5. Close and re-open the batch schedules in POM as needed to align the POM business date
with the date used in the data (all POM schedules should be open for the current business
date before running the nightly batch).

6. Schedule the start time from the Scheduler Administration screen > RI schedule >
Nightly tab. Enable it and set a start time. Restart your schedule again to pick up the new
start time.

Sending Data to AI Foundation
All AI Foundation modules leverage a common batch infrastructure to initialize the core
dataset, followed by ad hoc, application-specific programs to generate additional data as
needed. Before loading any data into an AI Foundation module, it is necessary to complete
initial dimension loads into the data warehouse using AIF DATA jobs and validate that core
structures (calendar, products, locations) match what you expect to see. Once you are
comfortable with the data that has been loaded in, leverage the following jobs to move data
into one or more AI Foundation applications.

Table 3-6 Extracts for AI Foundation

POM Process Name Usage Details

INPUT_FILES_ADHOC_PROCESS Receive inbound zip files intended for AI
Foundation, archive and extract the files. This
process looks for the ORASE_WEEKLY_ADHOC.zip file.

RSE_MASTER_ADHOC_PROCESS Foundation data movement from the data
warehouse to AI Foundation applications, including
core hierarchies and dimensional data. Accepts
many different parameters to run specific steps in
the load process.

<app>_MASTER_ADHOC_PROCESS Each AI Foundation module, such as SPO or IPO, has
a master job for extracting and loading data that is
required for that application, in addition to the
RSE_MASTER processes. AI Foundation module jobs
may look for a combination of data from RI and
input files in ORASE_WEEKLY_ADHOC.zip.

Because AI Foundation Cloud Services ad hoc procedures have been exposed using only one
job in POM, they are not triggered like AIF DATA procedures. AI Foundation programs accept a

Chapter 3
Sending Data to AI Foundation

3-30

number of single-character codes representing different steps in the data loading process.
These codes can be provided directly in POM by editing the Parameters of the job in the Batch
Monitoring screen, then executing the job through the user interface.

For example, this string of parameters will move all dimension data from the data warehouse to
AI Foundation:

Additional parameters are available when moving periods of historical data, such as inventory
and sales:

Chapter 3
Sending Data to AI Foundation

3-31

A typical workflow for moving core foundation data into AI Foundation is:

1. Load the core foundation files (like Calendar, Product, and Organization) using the AIF
DATA schedule jobs.

2. Use the RSE_MASTER_ADHOC_PROCESS to move those same datasets to AI Foundation Apps,
providing specific flag values to only run the needed steps. The standard set of first-time
flags are -pldg, which loads the core hierarchies required by all the applications.

3. Load some ofyour history files for Sales using the AIF DATA jobs to validate the inputs. For
example, load 1-3 months of sales for all products or a year of sales for only one
department.

4. Load the same range of sales to AI Foundation using the sales steps in the master process
with optional from/to date parameters. The flags to use for this are -xwa, which loads the
transaction table RSE_SLS_TXN as well as all sales aggregates which are shared across AIF.

5. Repeat the previous two steps until all sales data is loaded into both RI and AI Foundation.

Performing the process iteratively provides you early opportunities to find issues in the
data before you’ve loaded everything, but it is not required. You can load all the data into
AI Foundation at one time.

Follow the same general flow for the other application-specific, ad hoc flows into the AI
Foundation modules. For a complete list of parameters in each program, refer to the AI
Foundation Operations Guide.

When loading hierarchies, it is possible to have data issues on the first run due to missing or
incomplete records from the customer. You may get an error like the following:

Error occurred in RSE_DDL_UTIL.create_local_index_stmt - Error while creating
index: CREATE UNIQUEINDEX TMPSTGRSE_LOC_SRC_XREF_2 ON
TMPSTGRSE_LOC_SRC_XREF
(HIER_TYPE_ID,LOC_EXT_ID,LEAF_NODE_FLG,APP_SOURCE_ID) ORA-01452: cannot
CREATE UNIQUE INDEX; duplicate keys found

Chapter 3
Sending Data to AI Foundation

3-32

https://docs.oracle.com/en/industries/retail/retail-insights-cloud/22.1.202.0/rapog/index.html
https://docs.oracle.com/en/industries/retail/retail-insights-cloud/22.1.202.0/rapog/index.html

The INDEX create statement tells you the name of the table and the columns that were
attempting to be indexed. Querying that table is what is required to see what is duplicated or
invalid in the source data. Because these tables are created dynamically when the job is run,
you will need to first grant access to it using a procedure like below in IW:

begin RSE_SUPPORT_UTIL.grant_temp_table(p_prefix => 'STG$RSE_LOC_SRC_XREF');
end;

The value passed into the procedure should be everything after the TMP$ in the table name (not
the index name). The procedure also supports two other optional parameters to be used
instead of or in addition to the prefix:

• p_suffix – Provide the ending suffix of a temporary table, usually a number like 00001101,
to grant access to all tables with that suffix

• p_purge_flg - Purge flag (Y/N) which indicates to drop temporary tables for a given run

Once this is executed for a given prefix, a query like this can retrieve the data causing the
failure:

SELECT * FROM RASE01.TMPSTGRSE_LOC_SRC_XREF WHERE
(HIER_TYPE_ID,LOC_EXT_ID,LEAF_NODE_FLG,APP_SOURCE_ID) IN (SELECT
 HIER_TYPE_ID,LOC_EXT_ID,LEAF_NODE_FLG,APP_SOURCE_ID FROM
 RASE01.TMPSTGRSE_LOC_SRC_XREF GROUP BY
 HIER_TYPE_ID,LOC_EXT_ID,LEAF_NODE_FLG,APP_SOURCE_ID HAVING
count(*) > 1)ORDER BY
HIER_TYPE_ID,LOC_EXT_ID,LEAF_NODE_FLG,APP_SOURCE_ID ;

For location hierarchy data the source of the issue will most commonly come from the
W_INT_ORG_DH table. For product hierarchy, it could be W_PROD_CAT_DH. These are the hierarchy
tables populated in the data warehouse by your foundation data loads.

Sending Data to Planning
If a Planning module is being implemented, then additional AIF DATA schedule jobs should be
executed as part of the initial loads and nightly batch runs. These jobs are available through ad
hoc calls, and the nightly jobs are included in the AIF DATA nightly schedule. Review the list
below for more details on the core Planning extracts available.

Process Overview

Table 3-7 Extracts for Planning

POM Job Name Usage Details

W_PDS_PRODUCT_D_JOB Exports a full snapshot of Product master data
and associated hierarchy levels, including flex
fields for alternates.

W_PDS_ORGANIZATION_D_JOB Exports a full snapshot of Location master data
(for stores and virtual warehouses only) and
associated hierarchy levels, including flex
fields for alternates.

Chapter 3
Sending Data to Planning

3-33

Table 3-7 (Cont.) Extracts for Planning

POM Job Name Usage Details

W_PDS_CALENDAR_D_JOB Exports a full snapshot of Calendar data at the
day level and associated hierarchy levels, for
both Fiscal and Gregorian calendars.

Note:

While the AIF DATA
job exports the
entire calendar,
PDS will only
import 5 years
around the
RPAS_TODAY date
(current year +/- 2
years).

W_PDS_EXCH_RATE_G_JOB Exports a full snapshot of exchange rates.

W_PDS_PRODUCT_ATTR_D_JOB Exports a full snapshot of item-attribute
relationships. This is inclusive of both diffs and
UDAs.

W_PDS_DIFF_D_JOB Exports a full snapshot of Differentiators such
as Color and Size.

W_PDS_DIFF_GRP_D_JOB Exports a full snapshot of differentiator groups
(most commonly size groups used by SPO and
AP).

W_PDS_UDA_D_JOB Exports a full snapshot of User-Defined
Attributes.

W_PDS_BRAND_D_JOB Exports a full snapshot of Brand data
(regardless of whether they are currently
linked to any items).

W_PDS_SUPPLIER_D_JOB Exports a full snapshot of Supplier data
(regardless of whether they are currently
linked to any items).

W_PDS_CUSTSEG_D_JOB Exports a full snapshot of Customer Segments
data (regardless of whether they are currently
linked to any customers).

W_PDS_REPL_ATTR_IT_LC_D_JOB Exports a full snapshot of Replenishment Item/
Location Attribute data (equivalent to
REPL_ITEM_LOC from RMFCS).

W_PDS_DEALINC_IT_LC_WK_A_JOB Incremental extract of deal income data
(transaction codes 6 and 7 from RMFCS) posted
in the current business week.

W_PDS_PO_ONORD_IT_LC_WK_A_JOB Incremental extract of future on-order
amounts for the current business week, based
on the expected OTB date.

Chapter 3
Sending Data to Planning

3-34

Table 3-7 (Cont.) Extracts for Planning

POM Job Name Usage Details

W_PDS_INV_IT_LC_WK_A_JOB Incremental extract of inventory positions for
the current business week. Inventory is always
posted to the current week, there are no back-
posted records.

W_PDS_SLS_IT_LC_WK_A_JOB Incremental extract of sales transactions
posted in the current business week (includes
back-posted transactions to prior transaction
dates).

W_PDS_INVTSF_IT_LC_WK_A_JOB Incremental extract of inventory transfers
posted in the current business week
(transaction codes 30, 31, 32, 33, 37, 38 from
RMFCS).

W_PDS_INVRC_IT_LC_WK_A_JOB Incremental extract of inventory receipts
posted in the current business week. Only
includes purchase order receipts (transaction
code 20 from RMFCS).

W_PDS_INVRTV_IT_LC_WK_A_JOB Incremental extract of returns to vendor
posted in the current business week
(transaction code 24 from RMFCS).

W_PDS_INVADJ_IT_LC_WK_A_JOB Incremental extract of inventory adjustments
posted in the current business week
(transaction codes 22 and 23 from RMFCS).

W_PDS_SLSWF_IT_LC_WK_A_JOB Incremental extract of wholesale and franchise
transactions posted in the current business
week (transaction codes 82, 83, 84, 85, 86, 88
from RMFCS).

W_PDS_MKDN_IT_LC_WK_A_JOB Incremental extract of markdowns posted in
the current business week (transaction codes
11, 12, 13, 14, 15, 16, 17, 18 from RMFCS).

W_PDS_INV_IT_LC_WK_A_INITIAL_JOB Initial history extract for inventory position
data based on the timeframe established in
C_SOURCE_CDC.

W_PDS_FLEXFACT1_F_JOB Exports flexible fact data from the data
warehouse that can be at any configurable
level of hierarchies. Can be used to extend PDS
with additional measures. Flex Fact 1 is also
used by LPO to display custom measures.

W_PDS_FLEXFACT2_F_JOB Exports flexible fact data from the data
warehouse that can be at any configurable
level of hierarchies. Can be used to extend PDS
with additional measures.

W_PDS_FLEXFACT3_F_JOB Exports flexible fact data from the data
warehouse that can be at any configurable
level of hierarchies. Can be used to extend PDS
with additional measures.

W_PDS_FLEXFACT4_F_JOB Exports flexible fact data from the data
warehouse that can be at any configurable
level of hierarchies. Can be used to extend PDS
with additional measures.

Chapter 3
Sending Data to Planning

3-35

Table 3-7 (Cont.) Extracts for Planning

POM Job Name Usage Details

W_PDS_ORG_ATTR_STR_D_JOB Exports a full snapshot of custom flex location
attributes and other location attribute types to
PDS, for string-type attributes only.

W_PDS_ORG_ATTR_NBR_D_JOB Exports a full snapshot of custom flex location
attributes to PDS, for number-type attributes
only.

W_PDS_ORG_ATTR_DT_D_JOB Exports a full snapshot of custom flex location
attributes to PDS, for date-type attributes only.

W_PDS_PRODUCT_ATTR_STR_D_JOB Exports a full snapshot of custom flex product
attributes to PDS, for string-type attributes
only.

W_PDS_PRODUCT_ATTR_NBR_D_JOB Exports a full snapshot of custom flex product
attributes to PDS, for number-type attributes
only.

W_PDS_PRODUCT_ATTR_DT_D_JOB Exports a full snapshot of custom flex product
attributes to PDS, for date-type attributes only.

W_PDS_PROD_ORG_ATTR_STR_D_JOB Exports a full snapshot of custom flex product/
location attributes to PDS, for string-type
attributes only.

W_PDS_PROD_ORG_ATTR_NBR_D_JOB Exports a full snapshot of custom flex product/
location attributes to PDS, for number-type
attributes only.

W_PDS_PROD_ORG_ATTR_DT_D_JOB Exports a full snapshot of custom flex product/
location attributes to PDS, for date-type
attributes only.

The PDS jobs are linked with several ad hoc processes in POM, providing you with the ability
to extract specific datasets on-demand as you progress with history and initial data loads. The
table below summarizes the ad hoc processes, which can be called using the standard
methods such as cURL or Postman.

Table 3-8 AIF DATA Ad Hoc Processes for Planning

POM Process Name Usage Details

LOAD_PDS_DIMENSION_PROCESS_ADHOC Groups all of the dimension (D/G table)
extracts for PDS into one process for ad
hoc execution. Disable individual jobs
in POM to run only some of them.

LOAD_PDS_FACT_PROCESS_ADHOC Groups all of the fact (F/A table) extracts
for PDS into one process for ad hoc
execution. Disable individual jobs in
POM to run only some of them.

Chapter 3
Sending Data to Planning

3-36

Table 3-8 (Cont.) AIF DATA Ad Hoc Processes for Planning

POM Process Name Usage Details

LOAD_PDS_FACT_INITIAL_PROCESS_ADHOC History extract process for inventory
positions, run only to pull a full
snapshot of inventory from the data
warehouse for one or multiple weeks of
data. You must set the start and end
dates for extraction in the
C_SOURCE_CDC table before running this
process. The dates must be week-ending
dates aligning with the first and last
week to export.

C_LOAD_DATES_CLEANUP_ADHOC Purge the successful job records from
C_LOAD_DATES, which is necessary
when you are running the same jobs
multiple times per business date.

Most of the PDS fact jobs leverage the configuration table C_SOURCE_CDC to track the data that
has been extracted in each run. On the first run of an incremental job in
LOAD_PDS_FACT_PROCESS_ADHOC, the job extracts all available data in a single run. From that
point forwards, the extract incrementally loads only the data that has been added or modified
since the last extract, based on W_UPDATE_DT columns in the source tables. There are two
exceptions to this incremental process: Inventory and On Order interfaces. The normal
incremental jobs for these two interfaces will always extract the latest day’s data only, because
they are positional facts that send the full snapshot of current positions to PDS each time they
run.

To move inventory history prior to the current day, you must use the initial inventory extract to
PDS (LOAD_PDS_FACT_INITIAL_PROCESS_ADHOC). It requires manually entering the start/end
dates to extract, so you must update C_SOURCE_CDC from the Control & Tactical Center for the
inventory table record. LAST_MIN_DATE is the start of the history you wish to send, and
LAST_MAX_DATE is the final date of history. For example, if you loaded one year of inventory, you
might set LAST_MIN_DATE to 04-JUN-22 and LAST_MAX_DATE to 10-JUN-23. Make sure that the
timestamps on the values entered are 00:00:00 when saved to the database, otherwise the
comparison between these values and your input data may not align.

For all other jobs, the extract dates are written automatically to C_SOURCE_CDC alongside the
extract table name after each execution and can be overwritten as needed when doing multiple
loads or re-running for the same time period. If you run the same process more than once, use
C_LOAD_DATES_CLEANUP_ADHOC to reset the run statuses before the next run, then edit
C_SOURCE_CDC to change the minimum and maximum dates that you are pulling data for.
Review the table below for a summary of the configuration tables involved in PDS extracts.

Table 3-9 Planning Integration Configuration Tables

Table Usage

C_SOURCE_CDC Configuration and tracking table that shows the interfaces
supported for data warehouse to Planning integration and
the currently processed date ranges.

Chapter 3
Sending Data to Planning

3-37

Table 3-9 (Cont.) Planning Integration Configuration Tables

Table Usage

C_LOAD_DATES Tracks the execution of jobs and the most recent run status
of each job. Prevents running the same job repeatedly if it
was already successful, unless you first erase the records
from this table.

RAP_INTF_CONFIG Configuration and tracking table for integration ETL
programs between all RAP modules. Contains their most
recent status, run ID, and data retention policy.

RAP_INTF_RUN_STATUS RAP integration run history and statuses.

RAP_LOG_MSG RAP integration logging table, specific contents will vary
depending on the program and logging level.

After the planning data has been extracted from the data warehouse to PDS staging tables
(W_PDS_*), the Planning applications use the same programs to extract both full and
incremental data for each interface. You can run the dimension and fact loads for planning from
the Online Administration (OAT) tasks, or use the RPASCE schedule in POM. Refer to the
relevant implementation guides for MFP, AP, or IPO for details on these processes.

Usage Examples
The following examples show how to leverage the PDS extract processes to move data from
the data warehouse tables to the PDS staging tables, where the data can be picked up by the
Planning applications.

Scenario 1: Initial Dimension Extract

1. Perform the initial loads into the data warehouse as described in the section Initialize
Dimensions.

2. Enable all jobs in the ad hoc process LOAD_PDS_DIMENSION_PROCESS_ADHOC and execute it.

3. Verify that data has been moved successfully to the target tables, such as
W_PDS_CALENDAR_D, W_PDS_PRODUCT_D, and W_PDS_ORGANIZATION_D.

Scenario 2: Initial Sales Extract

1. Perform the initial sales loads into the data warehouse as described in the section Sales
History Load.

2. Enable the job W_PDS_SLS_IT_LC_WK_A_JOB in the ad hoc process
LOAD_PDS_FACT_PROCESS_ADHOC and execute the process.

3. Verify that data has been moved successfully to the target tables W_PDS_SLS_IT_LC_WK_A
and W_PDS_GRS_SLS_IT_LC_WK_A.

4. Repeat the same steps for any other transactional history loads, such as adjustments,
transfers, and RTVs (using the appropriate PDS job as described in the prior section).

Scenario 3: Initial Inventory Extract

1. Perform the initial inventory loads into the data warehouse as described in the section
Inventory Position History Load.

Chapter 3
Sending Data to Planning

3-38

2. Open the C_SOURCE_CDC table in Manage System Configurations and locate the row for
W_RTL_INV_IT_LC_WK_A. Edit the values in the LAST_MIN_DATE and LAST_MAX_DATE columns
to fully encompass your range of historical dates in the inventory history.

3. Enable the job W_PDS_INV_IT_LC_WK_A_INITIAL_JOB in the ad hoc process
LOAD_PDS_FACT_INITIAL_PROCESS_ADHOC and execute the process.

4. If the job fails with error code “ORA-01403: no data found,” it generally means that the
dates in C_SOURCE_CDC are not set or do not align with your historical data. Update the
dates and re-run the job.

5. Verify that data has been moved successfully to the target table W_PDS_INV_IT_LC_WK_A.

Scenario 4: Updated Data Extracts

1. Load additional history data as required for the project. For example, you may have started
with one month of data for testing and are now going to load an additional 2 years of data.

2. If the C_LOAD_DATES_CLEANUP_ADHOC process was not run at the start of your current data
load, run it now to ensure there are no previous run statuses from past PDS export runs
that will interfere with new runs.

3. Run LOAD_PDS_DIMENSION_PROCESS_ADHOC to ensure the dimensions for PDS are in sync
with the new history data being loaded.

4. Review C_SOURCE_CDC and alter the minimum/maximum dates on each table, if required. If
you want to re-push your entire history for a fact, including the previously loaded data, then
you will need to adjust the dates before running the extracts.

5. Run LOAD_PDS_FACT_PROCESS_ADHOC for all the facts, such as sales and receipts, that have
had new history loaded in the data warehouse.

6. Run LOAD_PDS_FACT_INITIAL_PROCESS_ADHOC to pull the desired range of inventory
periods.

7. Verify the target tables contain the expected data before starting the import into Planning
applications.

Customized Planning Integrations
Some implementations require additional custom data exports into Planning applications which
supplement or entirely replace the standard integrations available between AIF and RPAS
applications. The PL/SQL package RAF_INTF_SUPPORT_UTIL is available in Innovation
Workbench (IW) to support this type of integration requirement. The process to publish data
from IW to any existing interface will be similar to the example described here. For this
example, the interface will be RDF_FCST_PARAM_CAL_EXP.

To review the interface configuration details for this interface, the following query can be
executed:

SELECT * FROM rap_intf_cfg WHERE intf_name = 'RDF_FCST_PARM_CAL_EXP';

The PUBLISH_APP_CODE and CUSTOMER_PUBLISHABLE_FLG values are important to note from the
result of this query. First, to publish data to an interface, the publishable flag must be Y for any
interface that IW will be populating. If there is a need to publish data for an interface not

Chapter 3
Customized Planning Integrations

3-39

configured for custom extensions, an SR is required that requests that the following update be
made, which will allow publishing data for that interface:

UPDATE rap_intf_cfg
 SET customer_publishable_flg='Y'
 WHERE intf_name = 'RDF_FCST_PARM_CAL_EXP';
/
COMMIT;
/

Once the above has been done, the implementer can write code in IW that will publish data to
this interface, so that the subscribing application modules can consume it. A sample of how to
do this follows:

DECLARE
 --The following is used to capture the ID for a published interface dataset
 v_run_id NUMBER;
 -- The following is used to allow isolated writing to the interface
 v_partition_name VARCHAR2(30);

BEGIN
 rap_intf_support_util.prep_intf_run('PDS', 'RDF_FCST_PARM_CAL_EXP',
v_run_id, v_partition_name);

 -- Use of Append ensures efficiency, and requires PARTITION
(partition_name)
-- syntax, to ensure the ability to concurrently write to the table
 EXECUTE IMMEDIATE 'INSERT /*+ append */ INTO RDF_FCST_PARM_CAL_EXP
partition ('||v_partition_name|| ') ';

 --NOTE: the is to be replaced with the actual list of columns and an
appropriate SELECT statement to provide the values to insert into the table.
 --Of importance, it should be noted that the run_id column must be
populated with the value that was returned into the v_run_id variable above.
 --After the data has been populated into the above table, it can be made
available for retrieval by consuming application modules by the following:
 --Note, the 'PDS' value that is shown below, is fixed according to what
was obtained from the query of RAP_INTF_CFG.

 rap_intf_support_util.publish_data('PDS', v_run_id,
'RDF_FCST_PARM_CAL_EXP', 'Ready');

END;
/

Once the above steps have been completed, the data will be ready to be consumed by the
application modules that use this interface.

Chapter 3
Customized Planning Integrations

3-40

Note:

If an attempt is made to call any of the routines inside RAP_INTF_SUPPORT_UTIL for an
interface where theCUSTOMER_PUBLISHABLE_FLG is not set to Y, then an error will be
provided indicating that "No Interfaces for [<values they provided to the procedure>]
are allowed/available to be published from custom code." If this occurs, follow the
instructions described above to submit an SR asking for permission to publish data to
that interface.

Generating Forecasts for MFP
Before you can complete an MFP implementation, you must set up and run forecasting within
AI Foundation Cloud Services. Review the steps below for the initial setup of Forecasting:

1. In Manage Forecast Configurations in the AI Foundation UI, start by setting up a run
type in the Setup train stop.

2. Click the + icon above the table and fill in the fields in the popup. For MFP forecasting, the
forecast method should be selected as Automatic Exponential Smoothing.

3. Create a run type for each forecast measure/forecast intersection combination that is
required for MFP.

4. Create test runs in the Test train stop once you are done setting up the run types:

a. Click a run type in the top table, then click on the + icon in the bottom table to create a
run.

b. If necessary, change the configurations parameters for the estimation process and
forecast process in their respective tabs in the Create Run popup.

For example, if you want to test a run using Bayesian method, edit the Estimation
Method parameter in the Estimation tab using the edit icon above the table.

c. After modifying and reviewing the configuration parameters, click the Submit button to
start the run.

5. Once the run is complete, the status changes to Forecast Generation Complete.

Doing test runs is an optional step. In addition to that, you will need to modify and review the
configurations of the run type, activate the run type, enable auto-approve and map the run type
to the downstream application (in this case to MFP). In the Manage train stop, select a row,
click Edit Configurations Parameters and edit the estimation and forecast parameters as
needed. Once you are done, go to Review tab, click Validate, then close the tab.

Note:

If the run type is active, you will only be able to view the parameters. To edit the
parameters, the run type must be inactive.

To activate the run type and enable the auto-approve, select a run type in the table and click
the corresponding buttons above the table. Lastly, to map the run type to MFP, go to the Map
train stop and click the + icon to create a new mapping.

When configuring forecasts for the MFP base implementation, the following list of forecast runs
may be required, and you will want to configure and test each run type following the general

Chapter 3
Generating Forecasts for MFP

3-41

workflow above. Additional runs can be added to satisfy your MFP implementation
requirements.

Note:

The “Channel” level in MFP is often referred to as “Area” level in RI and AI
Foundation, so be sure to select the correct levels which align to your hierarchy.

MFP Plan MFP Levels Method Data Source Measure

MFP Merch Target Department-
Channel-Week

Auto ES Store Sales Regular and
Promotion Gross
Sales Amt

MFP Merch Target Department-
Channel-Week

Auto ES Store Sales Clearance Gross
Sales Amt

MFP Merch Target Department-
Channel-Week

Auto ES Store Sales Regular and
Promotion Gross
Sales Unit

MFP Merch Target Department-
Channel-Week

Auto ES Store Sales Clearance Gross
Sales Unit

MFP Merch Target Department-
Channel-Week

Auto ES Store Sales Total Returns
Amount

MFP Merch Target Department-
Channel-Week

Auto ES Store Sales Total Returns
Units

MFP Merch Plan Subclass-Channel-
Week

Auto ES Store Sales Regular and
Promotion Gross
Sales Amt

MFP Merch Plan Subclass-Channel-
Week

Auto ES Store Sales Clearance Gross
Sales Amt

MFP Merch Plan Subclass-Channel-
Week

Auto ES Store Sales Regular and
Promotion Gross
Sales Unit

MFP Merch Plan Subclass-Channel-
Week

Auto ES Store Sales Clearance Gross
Sales Unit

MFP Merch Plan Subclass-Channel-
Week

Auto ES Store Sales Total Returns
Amount

MFP Merch Plan Subclass-Channel-
Week

Auto ES Store Sales Total Returns
Units

MFP Location
Target

Company-
Location-Week

Auto ES Store Sales Total Gross Sales
Amount

MFP Location
Target

Company-
Location-Week

Auto ES Store Sales Total Gross Sales
Unit

MFP Location
Target

Company-
Location-Week

Auto ES Store Sales Total Returns
Amount

MFP Location
Target

Company-
Location-Week

Auto ES Store Sales Total Returns
Units

MFP Location
Plan

Department-
Location-Week

Auto ES Store Sales Total Gross Sales
Amount

MFP Location
Plan

Department-
Location-Week

Auto ES Store Sales Total Gross Sales
Unit

Chapter 3
Generating Forecasts for MFP

3-42

MFP Plan MFP Levels Method Data Source Measure

MFP Location
Plan

Department-
Location-Week

Auto ES Store Sales Total Returns
Amount

MFP Location
Plan

Department-
Location-Week

Auto ES Store Sales Total Returns
Units

Generating Forecasts for Inventory Planning Optimization Cloud
Service-Demand Forecasting

The same forecasting interface described in the previous section for MFP is also used to
generate the base demand and initial forecasts for Inventory Planning Optimization Cloud
Service-Demand Forecasting (IPOCS-Demand Forecasting). Demand and forecasts must be
generated in AI Foundation as part of your Forecasting implementation. The general workflow
is the same, but the forecasting levels and methods used will vary depending on your
implementation needs. For example, your IPOCS-Demand Forecasting forecasts may be at an
item/location/week level of granularity instead of higher levels like MFP requires. You will also
use other forecasting methods such as Causal-Short Life Cycle instead of the MFP default
method (Auto ES).

IPOCS-Demand Forecasting directly integrates the demand and forecast parameters between
AI Foundation Cloud Services and PDS tables using the RAP data exchange layer (RDX) as
needed. Outputs from the forecasting engine will be written to tables prefixed with RSE_FCST_*.
Outputs from IPOCS-Demand Forecasting back into the data exchange layer will be in tables
prefixed with RDF_APPR_FCST_*. For more details on importing the forecasts after they are
generated, refer to the IPO Demand Forecasting Implementation Guide.

Implementation Flow Example
The steps below describe a minimal implementation workflow for IPOCS-Demand Forecasting,
which has the most complex process of the Planning applications. A similar process would be
followed for other Planning applications, except the integration would largely be one-way (AIF
pushing data to MFP/AP). Note that these manual steps are provided for first-time
implementations and testing, all jobs would be automated as part of nightly batches before
going live with the application.

Retail Insights is used as the foundational data warehouse that collects and coordinates data
on the platform. You do not need to purchase Retail Insights Cloud Service to leverage the
data warehouse for storage and integration, it is included as part of any RAP solution.
Regardless of which RAP solutions you are implementing, the integration flows shown below
are the same.

This section has high-level steps to provide an understanding of the major events in the setup
process, but detailed explanations may be found in the AI Foundation Implementation Guide
sections on “Forecast Configuration for IPO-DF and AIF” and "Workflow for IPO-DF
Implementation". Refer to that document for additional configuration guidance, this section is
only a summary to help you understand the interactions between the applications.

Chapter 3
Generating Forecasts for Inventory Planning Optimization Cloud Service-Demand Forecasting

3-43

https://docs.oracle.com/en/industries/retail/ai-foundation-cloud-service/23.1.201.0/aifim/

Figure 3-2 Integration Summary

1. Integrate your foundation data (core dimensions and fact history) using either RMFCS
direct loads or object storage file uploads and run the load programs following the steps
described earlier in this chapter.

2. Move foundation data to the Data Exchange (RDX) using the
LOAD_PDS_DIMENSION_PROCESS_ADHOC and LOAD_PDS_FACT_PROCESS_ADHOC processes.

3. AI Foundation and Forecast Setup Flow

a. Move the data to AI Foundation using the RSE_MASTER_ADHOC_JOB process (passing in
the appropriate parameters for your data).

Chapter 3
Implementation Flow Example

3-44

b. Set up run types and execute test runs in the Forecasting module of AI Foundation,
then approve and map those runs to IPOCS-Demand Forecasting. Set up Flex Groups
in AIF to be used with the forecasts in IPOCS-Demand Forecasting.

c. Export AIF setup data for IPOCS-Demand Forecasting to the Data Exchange (RDX)
using the jobs below (MFP and AP do not require most of these jobs, instead you
would simply run RSE_FCST_EXPORT_ADHOC_PROCESS jobs for MFP/AP exports):

• RSE_FCST_RUN_TYPE_CONF_EXPORT_ADHOC_PROCESS
• RSE_PROMO_OFFER_EXPORT_ADHOC_PROCESS
• RSE_FCST_EXPORT_ADHOC_PROCESS (enabling the IPOCS-Demand Forecasting job

only)

4. IPOCS-Demand Forecasting Setup Flow

a. Import hierarchy and foundation data from RDX to IPOCS-Demand Forecasting.

b. Import any app-specific non-foundation files from Object Storage to IPOCS-Demand
Forecasting directly.

c. Perform your initial IPOCS-Demand Forecasting Workflow Tasks following the IPO-DF
Implementation and User Guides, such as building the domain, setting up forecast
parameters, new items, what-ifs, and so on.

d. Run the IPOCS-Demand Forecasting Pre-Forecast and Export Forecast Parameters
Batches.

5. Forecast Execution Flow

Chapter 3
Implementation Flow Example

3-45

a. Import the updated IPOCS-Demand Forecasting parameters to AIF using the jobs:

• RSE_RDX_FCST_PARAM_ADHOC_PROCESS
• RSE_FCST_RDX_NEW_ITEM_ENABLE_ADHOC_PROCESS
• RSE_LIKE_RDX_RSE_ADHOC_PROCESS
• PMO_EVENT_IND_RDF_ADHOC_PROCESS

b. Return to the AIF Forecasting module and generate new forecasts using the IPOCS-
Demand Forecasting parameters. Create new runs under the same run type as before,
generate the forecast(s), approve the demand parameters, and click Approve Base
Demand and Forecast. Ensure you activate the run type from the Manager Forecast
Configurations screen and enable auto-approve (if starting nightly runs).

c. Export the forecasts using the RSE_FCST_EXPORT_ADHOC_PROCESS (you can directly run
the IPOCS-Demand Forecasting job RSE_RDF_FCST_EXPORT_ADHOC_JOB),
RSE_FCST_RUN_TYPE_CONF_EXPORT_ADHOC_PROCESS, and
RSE_PROMO_OFFER_SALES_EXPORT_ADHOC_PROCESS.

d. Import the forecasts to IPOCS-Demand Forecasting. Also re-run any of the previous
IPOCS-Demand Forecasting steps if any other data has changed since the last run.

6. Forecast Approval Flow

a. Perform IPOCS-Demand Forecasting Workflow Tasks to review/modify/approve the
final forecasts (Run Post Forecast Batch, Build Forecast Review, run Forecast What-
Ifs)

b. Export the approved forecast from IPOCS-Demand Forecasting using the Export
Approved Forecast OAT Task or the associated POM job.

c. Use AIF POM jobs to process the approved forecast and generate flat file exports for
RMFCS (if required):

• RSE_RDX_APPD_FCST_ADHOC_PROCESS (import final forecast to AIF)

• RSE_RDF_APPR_FCST_EXPORT_ADHOC_PROCESS (export week level)

• RSE_RDF_APPR_FCST_DAY_EXPORT_ADHOC_PROCESS (export day level)

Chapter 3
Implementation Flow Example

3-46

Generating Forecasts for AP
The same forecasting interface described in the previous section for MFP is also used to
generate the Assortment Planning forecasts. When configuring forecasts for the AP base
implementation, the following list of forecast runs may be required, and you will want to
configure and test each run type. Additional runs can be added to satisfy your AP
implementation requirements.

Note:

Although AP has an in-season plan, it still leverages Auto ES as the base forecasting
method.

Bayesian (which includes plan data in the forecast) is set up as the estimation method for the
run. This is also why Store Sales is set as the data source for all runs, because all runs have
the ability to include plan data based on the estimation methods used (in addition to store
sales).

AP Plan AP Levels Method Data Source Measure

Item Plan Pre-
Season

Item-Location-
Week

Auto ES Store Sales Regular and
Promotion Gross
Sales Units

Item Plan In-
Season

Item-Location-
Week

Auto ES (with
Bayesian
estimation
method)

Store Sales Regular and
Promotion Gross
Sales Units

Subclass Plan Pre-
Season

Subclass-
Location-Week

Auto ES Store Sales Regular and
Promotion Gross
Sales Units

Loading Plans to RI
If you are implementing a Planning module and need to generate plan-influenced forecasts
(such as the AP in-season forecast) then you will need to first integrate your plans into RI
(which acts as the singular data warehouse for this data both when the plans come from
Oracle Retail solutions and when they come from outside of Oracle).

If you are pushing the plans from MFP or AP directly, then you will enable a set of POM jobs to
copy plan outputs directly to RI tables. You may also use an ad hoc process to move the plan
data on-demand during the implementation.

Table 3-10 Plan Extracts from MFP and AP

POM Job Name Usage Details

W_RTL_PLAN1_PROD1_LC1_T1_FS_SDE_JOB Extract the MFP plan output from the
MFP_PLAN1_EXP table in the RDX schema.

W_RTL_PLAN2_PROD2_LC2_T2_FS_SDE_JOB Extract the MFP plan output from the
MFP_PLAN2_EXP table in the RDX schema.

Chapter 3
Generating Forecasts for AP

3-47

Table 3-10 (Cont.) Plan Extracts from MFP and AP

POM Job Name Usage Details

W_RTL_PLAN3_PROD3_LC3_T3_FS_SDE_JOB Extract the MFP plan output from the
MFP_PLAN3_EXP table in the RDX schema.

W_RTL_PLAN4_PROD4_LC4_T4_FS_SDE_JOB Extract the MFP plan output from the
MFP_PLAN4_EXP table in the RDX schema.

W_RTL_PLAN5_PROD5_LC5_T5_FS_SDE_JOB Extract the AP plan output from the
AP_PLAN1_EXP table in the RDX schema.

In all of the jobs above, the target table name is in the job name (such as
W_RTL_PLAN2_PROD2_LC2_T2_FS as the target for the PLAN2 extract). Once the data is moved to
the staging layer in RI, the source-agnostic fact load jobs will import the data
(W_RTL_PLAN2_PROD2_LC2_T2_FS is loaded to W_RTL_PLAN2_PROD2_LC2_T2_F, and so on). The
fact tables in RI are then available for AI Foundation jobs to import them as needed for
forecasting usage.

The plan tables in RI have configurable levels based on your Planning implementation. The
default levels are aligned to the standard outputs of MFP and AP if you do not customize or
extend them. If you have modified the planning solution to operate at different levels, then you
must also reconfigure the RI interfaces to match. This includes the use of flexible alternate
hierarchy levels (for example, the PRODUCT_ALT.csv interface) which require custom
configuration changes to the PLAN interfaces before you can bring that data back to RI and AIF.
These configurations are in C_ODI_PARAM_VW, accessed from the Control & Tactical Center in AI
Foundation. For complete details on the plan configurations in RI, refer to the Retail Insights
Implementation Guide.

Loading Forecasts to RI
If you are implementing IPOCS-Demand Forecasting and RI, then you may want to integrate
your approved forecast with RI for reporting. The same RI interfaces are used both for IPOCS-
Demand Forecasting forecasts and external, non-Oracle forecasts.

If you are pushing the forecast from IPOCS-Demand Forecasting, use a set of POM jobs to
copy forecast outputs directly to RI tables. You may also use an ad hoc process to move the
forecast data on-demand during the implementation. The process names for the two interfaces
are LOAD_PLANFC1_DATA_ADHOC and LOAD_PLANFC2_DATA_ADHOC. These processes should be
scheduled to run automatically outside of batch, as this is the preferred way to integrate
forecast data (because the volume can be large and you do not want it to impact the nightly
batch cycle times).

You must also map the desired forecast run type to the RI application code from the AI
Foundation user interface. Once this is done, the integration jobs can detect data to extract.
Only one run type can be mapped to RI at this time; use a SKU/store/week run type, unless
you have reconfigured the RI interfaces for some other intersection.

Chapter 3
Loading Forecasts to RI

3-48

Table 3-11 Forecast Extracts from AIF and IPOCS-Demand Forecasting

POM Job Name Usage Details

W_RTL_PLANFC_PROD1_LC1_T1_FS_SDE_JOB Extracts the baseline forecast from the AI
Foundation table
RSE_FCST_DEMAND_DTL_CAL_EXP in the RDX
schema.

W_RTL_PLANFC_PROD2_LC2_T2_FS_SDE_JOB Extracts the final, approved forecast from the
AI Foundation view RSE_RDF_APPR_FCST_VW,
which contains only the approved forecast
export from IPOCS-Demand Forecasting.
Requires a run type mapped to the RI app
code.

In all of the jobs above, the target table name is in the job name (such as
W_RTL_PLANFC_PROD1_LC1_T1_FS as the target for the PLANFC1 extract). Once the data is moved
to the staging layer in RI, the source-agnostic fact load jobs will import the data
(W_RTL_PLANFC_PROD1_LC1_T1_FS is loaded to W_RTL_PLANFC_PROD1_LC1_T1_F, and so on).

The forecast tables in RI have configurable levels based on your implementation. The default
levels are aligned to the standard outputs of AI Foundation and IPOCS-Demand Forecasting
(item/location/week) if you do not customize or extend them. If you have modified the IPOCS-
Demand Forecasting solution to operate at different levels, then you must also reconfigure the
RI interfaces to match. These configurations are in C_ODI_PARAM_VW, accessed from the
Control & Tactical Center in AI Foundation. For complete details on the forecast configurations
in RI, refer to the Retail Insights Implementation Guide.

Loading Aggregate History Data
If you are only looking to implement a Planning solution or certain basic modules of AI
Foundation and you cannot provide transaction-level history data, then you have the option to
load pre-aggregated historical fact data into RAP, bypassing the usual transaction-level
interfaces. The custom fact aggregates allow for up to 4 different intersections of measure data
at levels at or above item/location/date. The fact columns are generic and accept various
numeric measure data across all typical functional areas (sales, receipts, inventory, transfers,
and so on) in the same interface. The non-numeric fields on each interface are only for
integration to PDS; they won’t be used by AI Foundation.

The aggregate fact interface files and their associated data warehouse tables are listed below.
Refer to the RAP Interfaces Guide in My Oracle Support for complete file specifications.

Filename Staging Table Target Table

W_RTL_FACT1_PROD1_LC1_T1_FS.
dat

W_RTL_FACT1_PROD1_LC1_T1_
FS

W_RTL_FACT1_PROD1_LC1_
T1_F

W_RTL_FACT2_PROD2_LC2_T2_FS.
dat

W_RTL_FACT2_PROD2_LC2_T2_
FS

W_RTL_FACT2_PROD2_LC2_
T2_F

W_RTL_FACT3_PROD3_LC3_T3_FS.
dat

W_RTL_FACT3_PROD3_LC3_T3_
FS

W_RTL_FACT3_PROD3_LC3_
T3_F

W_RTL_FACT4_PROD4_LC4_T4_FS.
dat

W_RTL_FACT4_PROD4_LC4_T4_
FS

W_RTL_FACT4_PROD4_LC4_
T4_F

Chapter 3
Loading Aggregate History Data

3-49

https://support.oracle.com/

You must configure the data intersections for these tables before you can use them, as each
table can only have one intersection defined. The parameters are in the C_ODI_PARAM_VW table
in the Control & Tactical Center Manage System Configurations screen. The parameters for
each interface are listed below.

Parameter Name Default Value

RI_FACT1_ATTR_LEVEL ALL

RI_FACT1_CAL_LEVEL DAY

RI_FACT1_ORG_LEVEL LOCATION

RI_FACT1_PROD_LEVEL ITEM

RI_FACT1_SUPP_LEVEL ALL

RI_FACT2_ATTR_LEVEL ALL

RI_FACT2_CAL_LEVEL DAY

RI_FACT2_ORG_LEVEL LOCATION

RI_FACT2_PROD_LEVEL ITEM

RI_FACT2_SUPP_LEVEL ALL

RI_FACT3_ATTR_LEVEL ALL

RI_FACT3_CAL_LEVEL DAY

RI_FACT3_ORG_LEVEL LOCATION

RI_FACT3_PROD_LEVEL ITEM

RI_FACT3_SUPP_LEVEL ALL

RI_FACT4_ATTR_LEVEL ALL

RI_FACT4_CAL_LEVEL DAY

RI_FACT4_ORG_LEVEL LOCATION

RI_FACT4_PROD_LEVEL ITEM

RI_FACT4_SUPP_LEVEL ALL

In the current release, the ATTR and SUPP parameters should remain as ALL; other options are
not supported when integrating the data throughout the platform. You can configure the PROD,
ORG, and CAL levels for each interface to match the intersection of data being loaded there.
Valid parameter values for each type are listed below.

Product (PROD) Organization (ORG) Calendar (CAL)

CMP COMPANY YEAR

DIV CHAIN HALFYEAR

GRP AREA QUARTER

DEPT REGION PERIOD

CLS DISTRICT WEEK

SBC LOCATION DAY

ITEM

Before using the interfaces, you must also partition them using either day- or week-level
partitioning (depending on the data intersections specified above). Partitioning is controlled
using two tables accessible from the Control & Tactical Center: C_MODULE_ARTIFACT and
C_MODULE_EXACT_TABLE.

Chapter 3
Loading Aggregate History Data

3-50

In C_MODULE_ARTIFACT, locate the rows where the module code starts with FACT (such as
FACT1) and set them to both ACTIVE_FLG=Y and PARTITION_FLG=Y.

Locate the same modules in C_MODULE_EXACT_TABLE and modify the columns
PARTITION_COLUMN_TYPE and PARTITION_INTERVAL to be either WK (for week level data) or DY
(for day level data). Lastly, run the partitioning process as described in Calendar and Partition
Setup.

After the interfaces are configured and partitioned, you must prepare the data files for upload
following these guidelines:

• All key columns on the interface must be populated, even if you have specified ALL as the
data level. You should use a default value of -1 to populate these fields. This includes the
fields PROD_DH_NUM, PROD_DH_ATTR, ORG_DH_NUM, SUPPLIER_NUM, and CAL_DATE.

• The calendar (CAL_DATE) field must always be a date. If loading the data above day level,
use the end-of-period date. The format must match the date mask specified on the context
(CTX) file.

• The PLANNING_TYPE_CODE field was originally used to specify whether the planning domain
was COST or RETAIL, but this makes no functional difference in the datafile at this time and
can be set to any value for your own reference.

• The VERSION_NUM field is for future use, it can be defaulted to a value of 0.

• The DATASOURCE_NUM_ID field must be provided with a hard-coded value of 1, similar to all
other interface specifications that contain this column.

• The INTEGRATION_ID field must be provided with a unique value that identifies the record,
such as a concatenation of all primary key values.

• The data file should be formatted based on the options specified in the associated context
(CTX) file, such as choosing to use pipes or commas for delimiters.

To load the files into the data warehouse, use the standalone process in the AIF DATA
schedule named HIST_AGGR_FACT_LOAD_ADHOC. Make sure you enable and run all jobs related
to your target table (such as W_RTL_FACT1_PROD1_LC1_T1_F). The sequence of jobs to be
executed for one table is like this:

1. VARIABLE_REFRESH_JOB

2. ETL_REFRESH_JOB

3. W_RTL_FACT1_PROD1_LC1_T1_FS_COPY_JOB

4. W_RTL_FACT1_PROD1_LC1_T1_FS_STG_JOB

5. W_FACT1_PROD1_LC1_T1_F_VALIDATOR_JOB

6. W_RTL_FACT1_PROD1_LC1_T1_TMP_JOB

7. W_RTL_FACT1_PROD1_LC1_T1_F_JOB

8. RABE_TO_RTLWSP_GRANTS_JOB

To push the data downstream to Planning applications, use the standalone processes named
LOAD_PDS_FACT1_AGGR_PROCESS_ADHOC through LOAD_PDS_FACT4_AGGR_PROCESS_ADHOC. The
planning loads will populate RDX schema tables, such as W_PDS_FACT1_PROD1_LC1_T1_F,
which can then be used for customizations and extensions in PDS (in the GA solutions this
data would not be used).

After data is loaded into the core data warehouse tables, you will also need to configure and
load the AI Foundation application tables before the data is accessible to any AIF modules.
Because the intersections for the data are flexible and the populated columns are unknown

Chapter 3
Loading Aggregate History Data

3-51

until the data is loaded, you will need to instruct the system on how to use your aggregate
data.

The measure metadata will be stored in the AIF table RSE_MD_CDA. This table is loaded
programmatically using an ad hoc job in the RSP schedule named
RSE_AGGREGATE_METADATA_LOAD_ADHOC_JOB. The program will detect the columns with data and
add entries for each measure with a generic name assigned. Once the program is complete,
you can modify the UI display name to be something meaningful to end-users from the Control
& Tactical Center.

The measures themselves will first be loaded into RSE_PR_LC_CAL_CDA, which is the staging
area in AIF to prepare the measures for the applications. After the metadata is configured, you
may run another ad hoc job in the RSP schedule named
RSE_AGGREGATE_ACTUALS_LOAD_ADHOC_JOB. This will populate the columns in
RSE_PR_LC_CAL_CDA based on their metadata.

Lastly, you must map the measure data into the application tables that require access to
aggregate facts. This is performed using the configuration table RSE_MD_FACT_COLUMN_MAP,
which is accessible for inserts and updates in the Control & Tactical Center. Possible
configuration options supported by the AIF applications will be listed in their respective
implementation guides, but a sample set of values is provide below for a sales and inventory
measure mapping, which will be the most common use cases:

SOURCE_TABLE SOURCE_COLUM
N

TARGET_TABLE TARGET_COLUM
N

W_RTL_FACT1_PROD1_LC1_T1_F SLSRG_QTY RSE_SLS_PR_LC_WK SLS_QTY

W_RTL_FACT1_PROD1_LC1_T1_F BOH_QTY RSE_INV_PR_LC_WK_A INV_QTY_BOH

Separate POM jobs are included in the RSP schedule to move the data from the CDA tables to
their final target tables. The jobs will come in pairs and have job names ending in
AGGR_MEAS_SETUP_ADHOC_JOB followed by AGGR_MEAS_PROCESS_ADHOC_JOB. For example, to
load the sales table in the sample mapping, use
RSE_SLS_PR_LC_WK_AGGR_MEAS_SETUP_ADHOC_JOB and
RSE_SLS_PR_LC_WK_AGGR_MEAS_PROCESS_ADHOC_JOB. For additional details on the individual AIF
application usage of these mappings and jobs, refer to the AIF Implementation Guide.

If you need in-season forecasts, then you must plan to configure MFP or AP plan exports to RI
as part of your planning implementation. You must populate the same columns on the plan
exports that you are using on the FACT1-4 interfaces for actuals. When doing in-season
forecasts with aggregated data, it expects the same column in a PLAN and FACT table at the
same intersection so that it can load the associated plan measure for the actuals and do a
plan-influenced forecast run. For example, if you are populating the SLS_QTY column on the
FACT1 interface, then you must also send an SLS_QTY value on the PLAN1 interface or else it
won’t be used in the plan-influenced forecast.

Migrate Data Between Environments
The process of moving all your data from one cloud environment to another is referred to as a
“lift-and-shift” process. It is common to perform all of the dataload activities in this chapter in
one environment, then have the final dataset copied into another environment (instead of
reloading it all from the beginning). This activity is performed by Oracle and can be requested
using a Service Request. The lift-and-shift process can take several days to complete,
depending on data volumes and how many other Oracle applications may be involved. It is
expected that you will raise SRs to schedule the activity at least 2-3 weeks in advance of the
target date.

Chapter 3
Migrate Data Between Environments

3-52

When requesting the activity, you may specify if you need to migrate the entire database (both
data and structures) or only the data. The first time doing this process must be a full migration
of data and structures to synchronize the source and target environments. It is currently
recommended to begin your implementation in the Production environment to avoid needing a
lift-and-shift in order to go live. Around the time of your go-live date, you can request a lift-and-
shift be done into your non-production environments to synchronize the data for future use.

Note:

The product versions between the source and target must be aligned. It is the project
team’s responsibility to plan for appropriate upgrades and lift-and-shift activities such
that this will be true.

Chapter 3
Migrate Data Between Environments

3-53

4
Integration with Merchandising

This chapter describes the various integrations between Retail Merchandising Foundation
Cloud Services (RMFCS) and the Retail Analytics and Planning platform. RMFCS can be used
as the primary source of foundation data for RAP and pre-built integrations and batch
programs exist to move data between cloud applications. You may also use an on-premise
installation of the Retail Merchandising System (RMS), in which case you must establish the
integration to the RAP cloud following the guidance in this chapter.

Architecture Overview
In prior releases, the integration between RMFCS and RI/AIF used a tool named the Retail
Data Extractor (RDE) to generate data files for RI/AIF to consume. These programs have been
fully integrated to the RAP batch flow and directly insert the data from RMFCS to RAP. The
integration uses an instance of Oracle Golden Gate to copy RMFCS tables to the local
database, where the Data Extractor jobs can source all required data and transform it for use
in RAP. If you are familiar with the prior RDE architecture, then you need to be aware of the
following major changes:

1. RDE_DM01 database objects are now located in the RADM01 schema. RDE_RMS01 database
objects are now in the RABE01USER schema. The RABE01USER now has access to extract
records from RMFCS through the Golden Gate replicated schema.

2. The C_ODI_PARAM configuration tables have been merged and all RDE configurations are
accessed from the Control & Tactical Center.

3. File-based integration has been removed. All data is moved directly between database
source and target tables with no option to produce flat files.

4. RDE’s batch schedule has been merged with RI’s schedule in POM. Jobs have been
renamed and assigned modules such that it is easy to identify and disable/enable RDE
jobs as needed.

5. Customer Engagement (CE) integration jobs have been included in RDE for when CE is
set up to replicate data to RAP. File-based integration is no longer required.

6. All jobs relating to file extraction, ZIP file creation, or data cleanup in RMS have been
removed.

Because RDE jobs are now a part of the RAP nightly batch cycle, they have been assigned
modules in the Customer Modules framework (accessed using Retail Home) and can be
enabled or disabled in bulk depending on your use-cases.

• RDE_RMS – These are the RDE components in relation to RMS

• RDE_CE – These are the RDE components in relation to CE

If you are not integrating data from RMFCS or CE then you will need to disable these modules
to prevent them from running in your nightly batch cycles. RI and AIF jobs are programmed to
start automatically after the RDE jobs complete, but if the RDE jobs are disabled then the
dependencies will be ignored.

4-1

Merchandising Foundation Cloud Service Data Mapping
After Golden Gate makes the copy of all data residing in the source Merchandising Foundation
Cloud Service (MFCS) environment, there is a mapping layer that connects the replicated
database schema to Retail Data Extractor (RDE) programs. This mapping layer consists of two
parts:

• The replicated schema contains wrapper view (WV) objects on top of the cloned tables to
provide a layer of abstraction between the source and destination. If the underlying table
changes in the source it does not necessarily have to impact the target systems, since the
view could remain unchanged. For example, the source table ITEM_MASTER has a wrapper
view RDS_WV_ITEM_MASTER on top of it.

• Within the target RAP database, synonyms are created to map each wrapper view back to
its source system name. The synonyms are what are granted to RDE and Innovation
Workbench. For example, there is a synonym named ITEM_MASTER which is used by RDE
to extract data from the RDS_WV_ITEM_MASTER view. The ITEM_MASTER synonym can also be
directly queried from Innovation Workbench instead of trying to query the original wrapper
view object. The synonyms reside in the RABE01USER user in the database.

This architecture is used for almost all objects from MFCS, with the following exceptions:

• The synonym for ITEM_LOC_SOH points to the MFCS table ITEM_LOC_SOH_EOD, which is the
end-of-day inventory snapshot. This is required for RAP to ensure it receives the same
end-of-day inventory positions that MFCS and other applications will show. The
ITEM_LOC_SOH table itself is not used in RAP integrations at this time due to the constantly
changing data from 24/7 inventory program activity.

• The synonym for MV_CURRENCY_CONVERSION_RATES refers to
V_CURRENCY_CONVERSION_RATES. This is because MV_CURRENCY_CONVERSION_RATES cannot
be replicated to a Golden Gate schema, so MFCS created the
V_CURRENCY_CONVERSION_RATES view as a replacement.

• RAP uses the RMS_CALENDAR synonym to refer to the CALENDAR table. This is because RI
also has a CALENDAR table in its schema and the object names would have conflicted within
RDE.

Batch Schedule Definitions
The RDE jobs have been labeled and categorized by their primary purpose, so you can easily
identify jobs you may want to enable or disable for your implementation. The bulk of the RDE
jobs are divided into two main classifications, which are dimension jobs (those with
RDE_EXTRACT_DIM_* in their job names) and fact jobs (those with RDE_EXTRACT_FACT_* in their
job names). They are also grouped into execution phases based on their functional usage, as
described in the tables below. The phases are all run in parallel to each other and don’t have
dependencies between them, they are purely for ease of use.

Table 4-1 RDE Dimension Phases

DIMENSION PHASE
No.

GROUPING FACTOR

P1 Consists of dimension jobs that populate the GRP1, GRP2, and GRP3 staging
tables

P2 Consists of the Security jobs (RAF table entries)

Chapter 4
Merchandising Foundation Cloud Service Data Mapping

4-2

Table 4-1 (Cont.) RDE Dimension Phases

DIMENSION PHASE
No.

GROUPING FACTOR

P3 Consists of dimension jobs related to the item (for example, Merch
hierarchy, item charges, item season, RDW_DELETE*)

P4 Consists of dimension jobs related to Custom Flex Attributes (CFA)

P5 Consists of dimension jobs related to Replenishment

P6 Consists of dimension jobs related to Merch Organization Hierarchy (for
example, location list, location traits, organization financial information,
and so on)

P7 Consists of dimension jobs related to Transfers (for example, transfer
details, transfer charges, and so on)

P8 Consists of dimension jobs related to extract of codes used by
Merchandising (for example, Inventory Adjustment reasons, Inventory
status types, codes, and so on)

P9 Consists of dimension jobs related to the supplier (for example, supplier
traits, supplier information, and so on)

P10 Consists of dimension jobs related to Purchase Orders (for example, PO
Details, Shipment Details, ELC, and so on)

P11 Consists of dimension jobs related to allocation (for example, Allocation
detail, allocation charges, and so on)

P12 Consists of dimension jobs related to Merchandising Calendar
information

P13 Consists of dimension jobs related to Merchandising promotions

P14 Consists of dimension jobs related to employee information

P15 Consists of dimension jobs related to competitor information

P16 Consists of dimension jobs related to Merchandising Parameter tables
(*_GS).

P17 Consists of dimension jobs related to buyer information

P18 Consists of Merchandising Lookup Dimension information.

P19 Consists of Company Closure Dimension information.

P20 Consists of Deal Dimension information.

Table 4-2 RDE Fact Phases

FACT
PHASE No.

GROUPING FACTOR

P1 Consists of cost fact information jobs (for example, Base Cost, net Cost, and so on)

P2 Consists of price fact information jobs (for example, item price, competitor price,
and so on)

P3 Consists of purchase order fact jobs

P4 Consists of transfer / RTV fact jobs

P5 Consists of Supplier fact jobs

P6 Consists of Stock Ledger fact jobs

Chapter 4
Batch Schedule Definitions

4-3

Table 4-2 (Cont.) RDE Fact Phases

FACT
PHASE No.

GROUPING FACTOR

P7 Consists of fact jobs related to inventory (for example, unavailable inventory,
inventory receipt, and so on)

P8 Consists of fact jobs related to transactions - they mostly read from
IF_TRAN_DATA (for example, deal income, intercompany margin, and so on)

P9 Consists of Allocation fact jobs

P10 Consists of stock count fact jobs

P11 Consists of replenishment fact jobs

Ad Hoc Processes
There are several standalone ad hoc processes available for executing the RDE programs
outside of a normal batch cycle. These processes can be used to integrate dimension or fact
data to RAP during initial implementation, or simply to run the extracts and validate the outputs
without actually loading them into the platform. The table below summarizes these processes
and their usage.

Table 4-3 RDE Ad Hoc Processes

Process Name Usage

RDE_DIM_FLOW_ADHOC Execute the dimension data extracts from RMFCS
and write the result to RAP input staging tables
directly. Data can then be moved into RAP if
desired by using the RI_DIM_INITIAL_ADHOC
process.

RDE_CE_DIM_FLOW_ADHOC Execute the dimension data extracts from CE and
write the result to RAP input staging tables directly.
Data can then be moved into RAP if desired by
using the RI_DIM_INITIAL_ADHOC process.

RDE_FACT_FLOW_ADHOC Execute the fact data extracts from RMFCS and
write the result to RAP input staging tables directly.
This is mainly intended to allow a complete run of
RDE fact jobs outside the normal batch process,
loading the data into RI would require the use of
numerous fact jobs and processes depending on
the data needed. This process may run as full or
incremental loads depending on the POM system
options used for ODI runs.

RDE_POSITIONALFACT_SEED_ADHOC Run all of the positional fact seed jobs needed to
create full snapshots of positional data in RAP.
After running these jobs, you may use the
SEED_*_ADHOC processes to load each dataset (you
must disable the COPY/STG steps of the seed
processes before running them, because those
steps will attempt to load from flat files instead of
RMFCS).

Chapter 4
Ad Hoc Processes

4-4

Table 4-3 (Cont.) RDE Ad Hoc Processes

Process Name Usage

RDE_INVPOS_SEED_ADHOC Run the inventory position fact seed job needed to
create full snapshots of inventory data in RI. After
running these jobs, you may use the
SEED_W_RTL_INV_IT_LC_DY_F_PROCESS_ADHOC
process to load it (you must disable the COPY/STG
steps of the seed processes before running them,
because those steps will attempt to load from flat
files instead of RMFCS).

RDE_INVRTVFACT_INITIAL_ADHOC Extract RTV transaction history from RMFCS to RAP
staging tables. Load the data into RAP using the
HIST_CSV_INVRTV_LOAD_ADHOC process (you must
disable the COPY/STG steps of the processes before
running them, because those steps will attempt to
load from flat files instead of RMFCS).

RDE_IVADJILDSDE_INITIAL_ADHOC Extract adjustment transaction history from
RMFCS to RAP staging tables. Load the data into
RAP using the
HIST_CSV_ADJUSTMENTS_LOAD_ADHOC process (you
must disable the COPY/STG steps of the processes
before running them, because those steps will
attempt to load from flat files instead of RMFCS).

RDE_IVTSFILDSDE_INITIAL_ADHOC Extract transfer transaction history from RMFCS to
RAP staging tables. Load the data into RAP using
the HIST_CSV_TRANSFER_LOAD_ADHOC process (you
must disable the COPY/STG steps of the processes
before running them, because those steps will
attempt to load from flat files instead of RMFCS).

RDE_DEALINILDSDE_INITIAL_ADHOC Extract deal income transaction history from
RMFCS to RAP staging tables. Load the data into
RAP using the
HIST_CSV_DEAL_INCOME_LOAD_ADHOC process (you
must disable the COPY/STG steps of the processes
before running them, because those steps will
attempt to load from flat files instead of RMFCS).

RDE_INVRECLASSSDE_HIST_ADHOC Extract inventory reclass transaction history from
RMFCS to RAP staging tables. Load the data into
RAP using the HIST_CSV_INVRECLASS_LOAD_ADHOC
process (you must disable the COPY/STG steps of
the processes before running them, because those
steps will attempt to load from flat files instead of
RMFCS).

RDE_INTCMPMRGINSDE_HIST_ADHOC Extract intercompany margin transaction history
from RMFCS to RAP staging tables. Load the data
into RAP using the
HIST_CSV_ICMARGIN_LOAD_ADHOC process (you
must disable the COPY/STG steps of the processes
before running them, because those steps will
attempt to load from flat files instead of RMFCS).

Chapter 4
Ad Hoc Processes

4-5

Table 4-3 (Cont.) RDE Ad Hoc Processes

Process Name Usage

RDE_EXTRACT_SALES_ADHOC Extract daily sales data from the Sales Audit
staging tables to the RAP staging tables. This
process is mainly intended to test the sales extracts
outside the normal batch and to validate the data
transformations, or use the RAP sales history load
ad hoc processes to bring the sales into the
platform.

RDE_TSFILDSDE_INITIAL_ADHOC Extracts a full snapshot of data from RMFCS for the
transfer details fact (W_RTL_TSF_IT_LC_DY_FS).
Intended for data validation and history
conversion. Meant to be loaded into the RAP data
warehouse using the nightly batch jobs.

RDE_SHIPDETAILSDE_INITIAL_ADHOC Extracts a full snapshot of data from RMFCS for the
shipment details dimension
(W_RTL_SHIP_DETAILS_DS). Intended for data
validation and history conversion. Meant to be
loaded into RAP data warehouse using the nightly
batch jobs.

RDE_SHIPILDSDE_INITIAL_ADHOC Extracts a full snapshot of data from RMFCS for the
shipment details fact (W_RTL_SHIP_IT_LC_DY_FS).
Intended for data validation and history
conversion. Meant to be loaded into RAP data
warehouse using the nightly batch jobs.

RDE_ALLOCDETAILDYSDE_INITIAL_ADHOC Extracts a full snapshot of data from RMFCS for the
allocation dimension (W_RTL_ALC_DETAILS_DS).
Intended for data validation and history
conversion. Meant to be loaded into RAP data
warehouse using the nightly batch jobs.

RDE_POONALCILDSDE_INITIAL_ADHOC Extracts a full snapshot of data from RMFCS for the
PO orders on allocation fact
(W_RTL_PO_ONALC_IT_LC_DY_FS). Intended for data
validation and history conversion. Meant to be
loaded into RAP data warehouse using the nightly
batch jobs.

RDE_REPLDAYSDE_INITIAL_ADHOC Extracts a full snapshot of data from RMFCS for the
Replenishment Days dimension
(W_RTL_REPL_DAY_DS). Intended for data validation
and history conversion. Meant to be loaded into
RAP data warehouse using the nightly batch jobs.

RDE_REPLSUPDIMSDE_INITIAL_ADHOC Extracts a full snapshot of data from RMFCS for the
Replenishment Supplier Dims dimension
(W_RTL_REPL_SUP_SIM_DS). Intended for data
validation and history conversion. Meant to be
loaded into RAP data warehouse using the nightly
batch jobs.

Batch Dependency Setup (Gen 2 Architecture)
RDE jobs have pre-defined dependencies with RI, as well as interschedule dependencies with
RMFCS. When you enable the RDE jobs, the dependencies with RI/AIF will be enabled

Chapter 4
Batch Dependency Setup (Gen 2 Architecture)

4-6

automatically, but you will need to manually enable/disable the RMFCS interschedule
dependencies based on your needs.

You should start with all dependencies enabled, and only disable them if you are trying to run
the batch cycle out of sync from the RMFCS batch. The inter-schedule dependencies fall into
two categories: discreet jobs that perform some check on RMFCS data, and POM
dependencies that cross-reference another RMFCS batch program. The first category of jobs
check the availability of data from the RMFCS signaling table called RMS_RDE_BATCH_STATUS.
The RDE jobs that check the signaling table in RMFCS are:

• RDE_INTERSCHED_CHECK_RESAEXTRACT_PROCESS / RDE_INTERSCHED_CHECK_RESAEXTRACT_JOB
- Checks the completion of the RESA_EXTRACT job in RMFCS

• RDE_INTERSCHED_CHECK_INVSNAPSHOT_PROCESS / RDE_INTERSCHED_CHECK_INVSNAPSHOT_JOB
- Checks the completion of the INVENTORY_SNAPSHOT job that signifies that the
ITEM_LOC_SOH_EOD table in RMFCS is now available for the RDE extract

• RDE_INTERSCHED_CHECK_STAGETRANDATA_PROCESS /
RDE_INTERSCHED_CHECK_STAGETRANDATA_JOB - Checks the completion of the
STAGE_TRAN_DATA job that signifies whether the IF_TRAN_DATA table in RMFCS is now
available for the RDE extract

If the RDE jobs run in parallel with the RMFCS batch, then all these jobs must be enabled. If
you are running RDE jobs outside the RMFCS batch, then these jobs must be disabled during
those runs. The jobs will wait indefinitely for a signal from the RMFCS batch, which they will
never receive if you are running RDE jobs independently.

The second category of dependencies are found on the RDE jobs themselves when you click
on a job to view its details in POM or click the Interschedule Dependencies link in Batch
Monitoring UI. These jobs are listed below, along with the RMFCS jobs they depend on. You
must verify these are enabled before trying to run RDE batches (unless the associated RMFCS
job is disabled, in which case the RDE dependency can be turned off as well). If any of these
are disabled, you will need to use Batch Administration to enable them by locating each job
and clicking into the details to enable all dependencies for it.

• RDE_SETUP_INCRMNTL_DEALACT_PROCESS / RDE_SETUP_INCRMNTL_DEALACT_JOB – This RDE
job waits for the following MFCS jobs to complete:

– RPM_PRICE_EVENT_EXECUTION_PROCESS / RPM_PRICE_EVENT_EXECUTION_JOB
• RDE_EXTRACT_DIM_P5_REPLDAYSDE_PROCESS / RDE_EXTRACT_DIM_P5_REPLDAYSDE_JOB – This

RDE job waits for the following MFCS jobs to complete:

– REPLENISHMENT_PROCESS / RPLEXT_JOB
• RDE_EXTRACT_DIM_P3_PRDITMATTRSDE_PROCESS / RDE_EXTRACT_DIM_P3_PRDITMATTRSDE_JOB

– This RDE job waits for the following MFCS jobs to complete:

– REPLENISHMENT_PROCESS / RPLEXT_JOB
• CSTISLDSDE_PROCESS / CSTISLDSDE_JOB – This RDE job waits for the following MFCS jobs

to complete:

– ALLOCBT_PROCESS / ALLOCBT_JOB

– BATCH_RFMCURRCONV_PROCESS / BATCH_RFMCURRCONV_JOB

– COSTCOMPUPD_ELCEXPRG_PROCESS / ELCEXCPRG_JOB

– EDIDLCON_PROCESS / EDIDLCON_JOB

– EXPORT_STG_PURGE_PROCESS / EXPORT_STG_PURGE_JOB

– EDIUPAVL_PROCESS / EDIUPAVL_JOB

Chapter 4
Batch Dependency Setup (Gen 2 Architecture)

4-7

– LIKESTOREBATCH_PROCESS / LIKESTOREBATCH_JOB

– POSCDNLD_PROCESS / POSCDNLD_POST_JOB

– REPLINDBATCH_PROCESS / REPLINDBATCH_JOB

– SALESPROCESS_PROCESS / SALESUPLOADARCH_JOB

– STKVAR_PROCESS / STKVAR_JOB

• RDEBATCH_INITIAL_START_PROCESS / RDEBATCH_INITIAL_START_MILEMARKER_JOB – This
RDE job waits for the RMFCS job STOP_RIB_ADAPTOR_INV_PROCESS /
STOP_RIB_ADAPTOR_INV_JOB to complete.

If you cannot see any dependencies in the POM UI, then your POM system options may have
them disabled. Make sure to check the System Configuration for AIF DATA and ensure the
dependency options are set to Enabled.

Batch Link Setup (Gen 2 Architecture)
Aside from the dependencies, you also need to be aware of the Schedule Link that is defined
between MERCH and AIF DATA schedules. By default, the schedule link will be disabled, so
you must go into the AIF DATA schedule links section from Batch Monitoring and enable any
links shown. The schedule link will allow RDE and RI jobs to start automatically after
Merchandising jobs are run in their nightly batch cycle. There is one schedule link defined that
will trigger the RDE job RDEBATCH_INITIAL_START_MILEMARKER_JOB after Merchandising runs. If
the MERCH and AIF DATA schedules are in the same POM instance, then you must enable
the Schedule Link before running any batches. If they are in different instances, then the link
will not be visible and cannot be used.

Module Setup in Retail Home (Gen 2 Architecture)
Before you configure any individual jobs in POM itself, it is best to set up your Customer
Modules in Retail Home to reflect your planned data flows. Go to the Customer Modules
Management screen as an administrator user and review the options following this guidance:

• Under the RAP > RAP_COMMON section:

– Enable or disable the BATCH modules per your functional needs (enable everything if
unsure).

– Disable the HISTORY module if you are planning to immediately start loading
Merchandising data. Enable it if you will load history data using CSV file interfaces.

– Enable or disable the AIF modules based on your AI Foundation solution plans.
Ensure AIF > CONTROLFILES is disabled as RDE jobs supercede this functionality.

– Enable the RDE_CE and RDE_RMS modules fully, depending on which source
applications are available in your environments.

– Disable RDXBATCH if you are not using any Planning solution in RAP or enable it if
you do plan to use MFP, AP, or IPO.

– Disable SIBATCH and SICONTROLFILES module sets, because they are superceded
by RDE integration.

Chapter 4
Batch Link Setup (Gen 2 Architecture)

4-8

– Disable the ZIP_FILES modules unless you have a need for one of them for non-
Mechandising data.

• (For RI customers) Under the RI > RCI section, enable or disable the module depending
on your plans to use Retail Insights customer-related functionality. Disable the RI > RCI >
CONTROLFILES and SICONTROLFILES modules, because RDE jobs replace this
functionality. The BATCH modules can be left enabled if you are unsure whether these
modules are needed.

• (For RI customers) Under the RI > RMI section, enable or disable the module depending
on your plans to use Retail Insights merchandising-related functionality. Disable the RI >
RMI > CONTROLFILES and SICONTROLFILES modules, because RDE jobs replace this
functionality. The BATCH modules can be left enabled if you are unsure whether these
modules are needed.

Once all modules are configured, go back into the POM Batch Administration UI and perform a
Sync with MDF action on the AIF DATA schedule. This is a one-time activity to streamline the
POM schedule setup, after which you will want to perform a review of the POM schedule and
refine the enabled/disabled jobs further to cover any specific file or data requirements.

Even if you are not syncing with MDF at this time, you must still perform the Retail Home setup
because the CONTROLFILES and SICONTROLFILES modules are used implicitly by AIF
DATA schedule programs to know which data files to expect in the batch runs. Any
misconfiguration could lead to the program DAT_FILE_VALIDATE_JOB failing or running for
several hours while waiting for data files you didn’t provide. Similarly, if you misconfigure the
ZIP_FILES modules, then you will encounter errors/delays in the ZIP_FILE_WAIT_JOB as it
looks for the expected ZIP files.

Batch Job Setup (Gen 2 Architecture)
The way you configure the integration with RMFCS varies depending on where your
Merchandising applications reside. In this scenario, you have both RMFCS and CE in our 2nd

generation architecture and the version number is 22.1 or greater.

If you followed the Retail Home setup steps prior to this section, then most of the jobs listed
below should already be configured to your specifications. However, it is still good to validate
the necessary jobs are enabled/disabled per the requirements before attempting any batch
run. Take the following steps to review/configure the RDE portion of the AIF DATA batch
schedule:

• Enable the jobs RDE_SETUP_INCRMNTL_RESA_JOB, RDE_SETUP_INCRMNTL_DEALACT_JOB,
RDE_SETUP_INCRMNTL_JOB, and RDE_INCRMNTL_AUDIT_PRG_JOB which are mandatory for
sales integration with Sales Audit and Deals integration with MFCS.

• Disable the batch schedule link between BATCH_INITIAL_START_PROCESS /
GENERIC_BATCH_MILE_MARKER_JOB and RDE schedule’s RDE_BATCHFINAL_PROCESS /
RDE_BATCHFINAL_EXTLOAD_SUCCESS_JOB (if one is visible). This batch link should be
disabled now because RDE is a part of AIF DATA’s schedule and is on the same POM and
batch pod, which was not true in prior architectures.

• If the client opts not to integrate the ORCE customer data, the ORCE jobs can be disabled
(those with RDE_EXTRACT_CE_*). These jobs are under the following modules:

– RDE_CE

– RDE_CE_BATCH

– RDE_CE_REQUIRED

– RDE_CE_OPTIONAL

Chapter 4
Batch Job Setup (Gen 2 Architecture)

4-9

– RDE_CE_CUSTOMER

– RDE_CE_CUSTSEG

– RDE_CE_LOYALTY

• If the client opts to integrate the ORCE customer data (which means that the ORCE jobs
are enabled - those with RDE_EXTRACT_CE_*), the following AIF DATA jobs should be
disabled as the customer data will directly be populated without an input file:

– W_RTL_CUST_DEDUP_DS_COPY_JOB

– W_RTL_CUST_DEDUP_DS_STG_JOB

– W_RTL_CUST_LYL_AWD_TRX_DY_FS_COPY_JOB

– W_RTL_CUST_LYL_AWD_TRX_DY_FS_STG_JOB

– W_RTL_CUST_LYL_TRX_LC_DY_FS_STG_JOB

– W_RTL_CUST_LYL_TRX_LC_DY_FS_COPY_JOB

– W_RTL_CUST_LYL_ACCT_DS_COPY_JOB

– W_RTL_CUST_LYL_PROG_DS_COPY_JOB

– W_RTL_CUSTSEG_DS_COPY_JOB

– W_RTL_CUSTSEG_DS_STG_JOB

– W_RTL_CUSTSEG_DS_ORASE_JOB

– W_RTL_CUST_CUSTSEG_DS_COPY_JOB

– W_RTL_CUST_CUSTSEG_DS_STG_JOB

– W_RTL_CUST_CUSTSEG_DS_ORASE_JOB

– W_RTL_CUSTSEG_ATTR_DS_COPY_JOB

– W_RTL_CUSTSEG_ATTR_DS_STG_JOB

– W_RTL_CUST_HOUSEHOLD_DS_COPY_JOB

– W_RTL_CUST_HOUSEHOLD_DS_STG_JOB

– W_RTL_CUST_ADDRESS_DS_COPY_JOB

– W_RTL_CUST_ADDRESS_DS_STG_JOB

– W_PARTY_PER_DS_COPY_JOB

– W_PARTY_PER_DS_STG_JOB

– W_RTL_PARTY_PER_ATTR_DS_COPY_JOB

– W_RTL_PARTY_PER_ATTR_DS_STG_JOB

– W_HOUSEHOLD_DS_COPY_JOB

– W_HOUSEHOLD_DS_STG_JOB

• Disable most of the AIF DATA copy jobs (those with *_COPY_JOB) except ones needed for
non-RMFCS sources. These jobs should be disabled because these jobs will copy files
and upload them from object storage. This is not needed because data is loaded directly
into the staging tables and flat files are not expected to arrive for processing. Most of these
jobs are under the following modules:

– RI_DAT_STAGE

– RSP_DAT_STAGE

Chapter 4
Batch Job Setup (Gen 2 Architecture)

4-10

• Disable most of the AIF DATA stage jobs (those with *_STG_JOB)) except ones needed for
non-RMFCS sources. These jobs should be disabled as these jobs read from a flat file
which are not available if using this integration. Most of these jobs are under the following
modules:

– RI_DAT_STAGE

– RSP_DAT_STAGE

• Disable the RAP Simplified Interface jobs (those with SI_*, COPY_SI_*, and STG_SI_* at
the start of the name) as RMFCS will be the source of data to feed RI. Most of these jobs
are under the modules with the patterns below:

– RI_SI*

– RSP_SI*

• Disable the AIF DATA program W_PROD_CAT_DH_CLOSE_JOB, which is used to close unused
hierarchy levels when non-Merchandising incremental hierarchy loads are used in RAP. It
must not run with Merchandising, because the product hierarchy data is already being
managed by RDE extracts.

• Disable the AIF DATA programs ETL_REFRESH_JOB and BATCH_START_NOTIFICATION_JOB
(specifically the versions belonging to process SIL_INITIAL_PROCESS) because these are
redundant with jobs included in the RDE schedule.

• If you are not providing any flat file uploads and using only RMFCS data, you may disable
the jobs in CONTROL_FILE_VALIDATION_PROCESS, which will prevent any data files from
being processed (and potentially overwriting the RMFCS data).

• Disable the job named TRUNCATE_STAGE_TABLES_JOB, which is used only for data file loads
and cannot be run when RDE jobs are used for direct integration. A similar job named
RDE_TRUNCATE_STAGE_TABLES_JOB should remain enabled as this does apply to RDE job
execution.

Batch Job Setup (Gen 1 Architecture)
If your RMFCS version is in the Oracle cloud but the version number is 19.3 or earlier, then
follow this process to configure the integration. In this case, RDE is a separate module
installed in the RMFCS cloud, so the batch must be reconfigured accordingly to have the
correct dependencies.

1. Disable all the inter-schedule dependencies related to RDE in the RI schedule, as there is
a separate batch schedule used for RDE that contains these:

• CSTISLDSDE_PROCESS / CSTISLDSDE_JOB dependency with RMFCS ALLOCBT_PROCESS /
ALLOCBT_JOB

• CSTISLDSDE_PROCESS / CSTISLDSDE_JOB dependency with RMFCS
BATCH_RFMCURRCONV_PROCESS / BATCH_RFMCURRCONV_JOB

• CSTISLDSDE_PROCESS / CSTISLDSDE_JOB dependency with RMFCS
COSTCOMPUPD_ELCEXPRG_PROCESS / ELCEXCPRG_JOB

• CSTISLDSDE_PROCESS / CSTISLDSDE_JOB dependency with RMFCS EDIDLCON_PROCESS /
EDIDLCON_JOB

• CSTISLDSDE_PROCESS / CSTISLDSDE_JOB dependency with RMFCS
EXPORT_STG_PURGE_PROCESS / EXPORT_STG_PURGE_JOB

• CSTISLDSDE_PROCESS / CSTISLDSDE_JOB dependency with RMFCS EDIUPAVL_PROCESS /
EDIUPAVL_JOB

Chapter 4
Batch Job Setup (Gen 1 Architecture)

4-11

• CSTISLDSDE_PROCESS / CSTISLDSDE_JOB dependency with RMFCS
LIKESTOREBATCH_PROCESS / LIKESTOREBATCH_JOB

• CSTISLDSDE_PROCESS / CSTISLDSDE_JOB dependency with RMFCS POSCDNLD_PROCESS /
POSCDNLD_POST_JOB

• CSTISLDSDE_PROCESS / CSTISLDSDE_JOB dependency with RMFCS
REPLINDBATCH_PROCESS / REPLINDBATCH_JOB

• CSTISLDSDE_PROCESS / CSTISLDSDE_JOB dependency with RMFCS
SALESPROCESS_PROCESS / SALESUPLOADARCH_JOB

• CSTISLDSDE_PROCESS / CSTISLDSDE_JOB dependency with RMFCS STKVAR_PROCESS /
STKVAR_JOB

• RDEBATCH_INITIAL_START_PROCESS / RDEBATCH_INITIAL_START_MILEMARKER_JOB
dependency with RMFCS STOP_RIB_ADAPTOR_INV_PROCESS / STOP_RIB_ADAPTOR_INV_JOB

1. Disable the batch link related to RMFCS in the RI schedule:

a. SETUP_PROCESS / REFRESHODIVARIABLES_JOB dependency with RMFCS
STOP_RIB_ADAPTOR_INV_PROCESS / STOP_RIB_ADAPTOR_INV_JOB

2. Disable all the ORCE jobs in AIF DATA (those with RDE_EXTRACT_CE*). These jobs should
not be executed because RDE is not in Gen 2 Architecture. The Customer Data jobs in RI
should be enabled instead (for example, W_RTL_CUSTSEG_DS_COPY_JOB,
W_RTL_CUSTSEG_DS_STG_JOB)

3. Disable all the RDE jobs in AIF DATA (those with RDE_EXTRACT_*). These jobs should not
be executed as a separate RDE job schedule in POM will be setup for it. These jobs are
under the RDE_RMS_* modules.

4. Make sure that the AIF DATA copy jobs (those with *_COPY_JOB) are enabled. These jobs
should be enabled as these jobs will copy files and upload them to the object storage
which is the source of the files for RI processing.

5. Make sure that the AIF DATA stage jobs (those with *_STG_JOB) are enabled. These jobs
should be enabled as these jobs will read from flat files and load them into the RI staging
tables.

6. Disable the AIF DATA Simplified Interface jobs (those with SI_*) as MFCS will be the
source of data to feed RI. Most of these jobs are under the following modules with the
pattern below:

a. RI_SI*

b. RSP_SI*

Batch Setup for RMS On-Premise
If your RMS application is installed on a local server outside the Oracle cloud, then you will
need to integrate your local RDE installation with the RAP cloud following the guidance below.
Additionally, you should also perform all the steps in the prior section to disable the RDE
components of the RI POM schedule and enable the file load procedures, since you will be
sending in files from RDE.

1. Download the latest RDE version 22 patch from My Oracle Support, as the changes to
support Object Storage upload are deployed by running the installer and upgrading your
RDE environment.

2. Disable FTP Configuration in RDE by setting the input.do.install.ftp to false in the
ant.install.properties file. This must be disabled because File Transfer Services (FTS)

Chapter 4
Batch Setup for RMS On-Premise

4-12

for the Retail Analytics and Planning cloud services are made available in this release,
replacing the current SFTP process

3. Check that the FTS configuration file ra_objstore.cfg is available in RDE's $MMHOME/etc
directory. The FTS configuration file contains the following variable set-up used for the
Object Storage:

• RA_FTS_OBJSTORE_IND – This will be set to Y so that FTS will be enabled

• RA_FTS_OBJSTORE_URL – This is the Base URL

• RA_FTS_OBJSTORE_ENVNAMESPACE – This is the Tenant

• RA_FTS_OBJSTORE_IDCS_URL – This is the IDCS URL appended with /oauth2/v1/token
at the end

• RA_FTS_OBJSTORE_IDCS_CLIENTID – This is the Client ID

• RA_FTS_OBJSTORE_IDCS_CLIENTSECRET – This is the Client ID Secret

• RA_FTS_OBJSTORE_IDCS_SCOPE – This is the IDCS Scope

• RI_OBJSTORE_UPLOAD_PREFIX – This is the Storage Prefix and is set to ris/
incomingpointing to the correct Object Storage directory for RI input files

Refer to the File Transfer Services section of this document for instructions on how to get
the values for each of the variables above.

4. Enable the File Transfer Service (FTS) in RDE by setting the RA_FTS_OBJSTORE_IND to Y in
the FTS Configuration file ra_objstore.cfg found in RDE’s $MMHOME/etc directory. This
must be enabled so that the RDE nightly zip file job (RTLRDEZIP_PROCESS / RTLRDEZIP_JOB)
and all existing ad hoc zip file jobs (RTLUASDE_INITIAL_DIMMENSION_LOAD_ADHOC /
RTLRDEZIP_HIST_JOB, RTLRDEZIP_HIST_PROCESS_ADHOC / RTLRDEZIP_HIST_JOB,
INVRTVFACT_ADHOC / ADHOCINVRTVSDE_JOB, SEEDPOSITIONALFACT_ADHOC / SEEDRDEZIP_JOB)
will automatically upload files to the Object Storage through FTS for RI to pick up and
download for further processing.

5. Once these changes are applied, it will no longer be possible to upload to SFTP; you will
be sending the ZIP files only to Object Storage as specified in the install properties and
configuration changes.

RDE Job Configuration
RDE programs have many configuration options available in the C_ODI_PARAM_VW table in the
Control & Tactical Center. These must be reviewed prior to running RDE jobs. For any RDE job
having an incremental flag below, the associated jobs in the RI/AIF DATA batch schedule also
have incremental flags that must be updated at the same time. Having the RDE and AIF DATA
flags be out of sync can result in data loss.

In addition to these parameters, it is also important to understand the MFCS settings relating to
data purging and configure them accordingly before using RDE to extract data. Because RDE
runs only at the end of the day after MFCS has started a nightly cycle, it is critical that no table
in MFCS is set to purge data immediately (purge days <= 1). It is best if all purge-related
MFCS settings are extended far enough so that, even if an RDE batch is missed for a day or
two, there will not be any data lost due to MFCS nightly purge programs.

One MFCS setting in particular, EDI_REV_DAYS, must be updated to be high enough so that
there is no chance of purging old order revisions while they might still receive updates that
RDE needs to extract. We recommend changing this value to be at least 30 days (or longer, if
you have any processes that might update an order 30+ days after initially closing it). The

Chapter 4
RDE Job Configuration

4-13

associated purchase order purge setting, ORDER_HISTORY_MONTHS, must also be more than a
month out.

Scenario Parameter Usage

GLOBAL RPM_PROMO_EVENT_LEVEL Enable (set to Y) if using legacy RPM on-
premise functionality.

GLOBAL RETURN_REASON_CAT_CODE Merchandising code type for customer
return reason codes.

GLOBAL RTVR_REASON_CAT_CODE Merchandising code type for RTV reason
codes.

GLOBAL WHOLESALE_CHANNEL Identify whether there is a wholesale
channel setup in Merchandising.

GLOBAL ITEM_GRP1_IS_INCREMENTAL Controls whether item attributes are
incremental or full snapshots on the daily
load.

GLOBAL RMS_VERS_CHECK Controls the behavior of code that is
linked to a specific Merchandising
version.

GLOBAL RA_INV_WAC_IND Controls the inventory cost calculation in
RDE. When set to Y it will use Weighted
Average Cost (WAC) as the item cost for all
items. When set to N it will dynamically
load Merchandising valuation methods set
per department or item and apply them,
choosing from average cost, unit cost, and
retail-based cost.

GLOBAL RA_INV_TAX_IND Controls the calculation and removal of
tax amounts from retail valuation of stock
on hand and on-order amounts. When set
to N, only simple VAT (SVAT) calculations
are supported and non-VAT items are left
as-is. When set to Y, the system
dynamically loads Merchandising global
tax and VAT information and applies it by
item/location.

SDE_RETAILINVREC
EIPTSFACT

VWH_NO_ALC_RCPTS Specify a type of warehouse that cannot
receive allocations in the feed to RI.
Converts the allocations to normal
transfer receipts. Uses codes from
VWH_TYPE column in Merchandising.

SDE_RETAILINVREC
EIPTSFACT

STORE_NO_ALC_RCPTS Specify a type of store that cannot receive
allocations in the feed to RI. Converts the
allocations to normal transfer receipts.

SDE_RETAILITEMDI
MENSION

IS_INCREMENTAL Controls whether the product dimension
is a full snapshot or incremental changes
only for the daily load.

SDE_RETAILITEMLO
CATIONRANGEDIME
NSION

IS_INCREMENTAL Controls whether the product location
range dimension is a full snapshot or
incremental changes only for the daily
load.

SDE_RETAILITEMSU
PPLIERDIMENSION

IS_INCREMENTAL Controls whether the supplier-item
dimension is a full snapshot or
incremental changes only for the daily
load.

Chapter 4
RDE Job Configuration

4-14

Scenario Parameter Usage

SDE_RETAILSUBSTI
TUTEITEMDIMENSI
ON

IS_INCREMENTAL Controls whether the substitute-item
dimension is a full snapshot or
incremental changes only for the daily
load.

SDE_RETAILITEMLO
CATIONDIMENSION

IS_INCREMENTAL Controls whether the product location
attribute dimension is a full snapshot or
incremental changes only for the daily
load.

SDE_RETAILITEMLO
CCFADIMENSION

IS_INCREMENTAL Controls whether the product location
CFAS dimension is a full snapshot or
incremental changes only for the daily
load.

SDE_RETAILSUPPCF
ADIMENSION

IS_INCREMENTAL Controls whether the supplier CFAS
dimension is a full snapshot or
incremental changes only for the daily
load.

SDE_RETAILLOCATI
ONCFADIMENSION

IS_INCREMENTAL Controls whether the location CFAS
dimension is a full snapshot or
incremental changes only for the daily
load.

SDE_RETAILITEMCF
ADIMENSION

IS_INCREMENTAL Controls whether the product CFAS
dimension is a full snapshot or
incremental changes only for the daily
load.

The flags that impact the incremental/full load behavior for the AIF DATA jobs linked to RDE
jobs are also provided below and should be configured at the same time.

Scenario Parameter Usage

SIL_ITEMDIMENSIO
N

IS_INCREMENTAL Controls whether the product dimension
is a full snapshot or incremental changes
only for the daily load.

SIL_RETAILITEMCFA
DIMENSION

IS_INCREMENTAL Controls whether the product CFAS
dimension is a full snapshot or
incremental changes only for the daily
load.

SIL_RETAILITEMLO
CCFADIMENSION

IS_INCREMENTAL Controls whether the product location
CFAS dimension is a full snapshot or
incremental changes only for the daily
load.

SIL_RETAILLOCATIO
NCFADIMENSION

IS_INCREMENTAL Controls whether the location CFAS
dimension is a full snapshot or
incremental changes only for the daily
load.

SIL_RETAILSUPPCFA
DIMENSION

IS_INCREMENTAL Controls whether the supplier CFAS
dimension is a full snapshot or
incremental changes only for the daily
load.

SIL_RETAILSUBSTIT
UTEITEMDIMENSIO
N

IS_INCREMENTAL Controls whether the substitute item
dimension is a full snapshot or
incremental changes only for the daily
load.

Chapter 4
RDE Job Configuration

4-15

Scenario Parameter Usage

SIL_RETAILPROMOT
IONDIMENSION

RI_INCREMENTAL_IND Controls whether the promotion
dimension is a full snapshot or
incremental changes only for the daily
load.

Using RDE for Calendar Setup (Gen 2 Architecture)
RDE can be used to integrate the calendar from Merchandising for initial setup of a new RAP
environment; however there are several manual steps you must take to perform this activity.
You have the option of following the steps below, or you can perform the file-based calendar
load as defined in Calendar and Partition Setup. Whichever option you choose, the calendar
must be set up before you can load any other data from Merchandising.

1. The out-of-box Merchandising calendar does not conform to the preferred RAP calendar
structure. The RAP calendar must start from Day 1 of a fiscal year, and the Merchandising
calendar does not (if no changes were made to it after provisioning). You must use the
Calendar Maintenance functions of Merchandising to edit the business calendar, adding or
deleting periods such that the first fiscal period defined is period 1 of the fiscal year, and
the first date for that period is day 1 of that fiscal year. Refer to the Configure Calendar
section of the Merchandising Implementation Guide for details.. For example, if your fiscal
calendar starts in February 2020, then the first record in the CALENDAR table must be for this
same month. YEAR_454 will be 2020 and MONTH_454 will be 2.

2. Configure C_ODI_PARAM for your START_DT and END_DT. START_DT must be set in one of
these ways:

a. The first day of a fiscal year in the calendar (that is, the same date as the FIRST_DAY
value for the first fiscal period of an FY).

b. Some date earlier than anything in the CALENDAR table. If your first CALENDAR period is
February 2020, then START_DT can be set to 20190101. The only reason to do this is if
you want the Gregorian calendar to have additional Gregorian years available for any
downstream use.

3. Configure the jobs in the AIF DATA schedule for loading the data. You will need the RDE
job RDE_EXTRACT_DIM_P12_MCALPERIODSDE_JOB to extract the data, which is part of the
RDE_DIM_FLOW_ADHOC process. Configure the CALENDAR_LOAD_ADHOC process to load this
data and perform initial environment setup activities. You must disable the following jobs:

• COPY_SI_CALENDAR_JOB
• STG_SI_CALENDAR_JOB
• SI_W_MCAL_PERIODS_DS_JOB

4. Run RDE_EXTRACT_DIM_P12_MCALPERIODSDE_JOB to extract the data from Merchandising
and verify that the table W_MCAL_PERIOD_DS contains the full calendar information by
querying it from APEX.

5. Run the modified CALENDAR_LOAD_ADHOC process and all later steps starting with step 4 in
the Calendar and Partition Setup.

6. If you have any failure on the DIM_CALENDAR_VALIDATOR_JOB, it means your Merchandising
calendar may need more changes to align with the RAP data requirements. Modify the
data in the source and start over, being sure to use C_LOAD_DATES_CLEANUP_ADHOC to clear
any failure statuses from the database before restarting.

Chapter 4
Using RDE for Calendar Setup (Gen 2 Architecture)

4-16

https://docs.oracle.com/en/industries/retail/retail-merchandising-foundation-cloud/23.1.201.0/rmsim/getting-started.htm#GUID-E074F716-7648-4358-9B06-D5B59F12FBF5

If the validator job rule CAL_R2 continues to happen after updating the Merchandising calendar,
but you know that your first calendar year is not meeting the requirements and want to bypass
the error for now, then you would need to update the table C_DIM_RULE_LIST from the Control &
Tactical Center. Change the error type for this rule to W so that it only throws a warning in the
batch program instead of failing. For example, if your Merchandising calendar starts in 2010
and you are not going to load any data until 2020 in RAP, then having an invalid first year of
the calendar is not going to block you from other data load activities.

Using RDE for Dimension Loads (Gen 2 Architecture)
RDE can be used to integrate the foundation dimensions such as Product and Location
hierarchies from Merchandising for initial setup of a new RAP environment. However, there are
several manual steps you must take to perform this activity.

• The AIF DATA ad hoc process RDE_DIM_FLOW_ADHOC must be configured and run. Enable
all jobs in the process if you want to extract all foundation dimensions, or selectively
disable jobs you do not wish to run. Restart your POM schedule and then execute the
process. The process will extract data from Merchandising tables (replicated to RAP
through Golden Gate Hub) and directly insert data to RAP foundation staging tables. For
example, the job RDE_EXTRACT_DIM_P3_PRDHIERSDE_JOB will source data from
Merchandising hierarchy tables like CLASS and DEPS and directly insert them into the
W_PROD_CAT_DHS table in RAP.

• Some dimension extracts support full or incremental extract options as parameters instead
of database configurations. The jobs that support this will have parameters on the job such
as rdeitemsupcountrydimext.ksh #SysOpt.rdeMMHOME I, where the last value is either I
or F for incremental/full extraction logic. You have the option to switch between I and F as
needed to change the extract logic. RDE_EXTRACT_CLRPRICESDE_XTERN_JOB and
RDE_EXTRACT_DIM_P5_REPLSUPDIMSDE_JOB are two examples of jobs that support this
parameter.

• The AIF DATA ad hoc process RI_DIM_INITIAL_ADHOC will then be used to import the
foundation data from the staging tables to the target tables. Before running the process,
you must make sure all jobs are disabled relating to flat file loads, because you are
bypassing those steps with the RDE jobs. Disable all jobs having a name with COPY, STG,
STAGING, or SI in the job name. Following the same flow for product hierarchy data as in
step 1, you need to disable these jobs relating to the product hierarchy flat file load:

– COPY_SI_PRODUCT_JOB

– STG_SI_PRODUCT_JOB

– SI_W_PROD_CAT_DHS_JOB

The remaining job that is active for the product hierarchy load is W_PROD_CAT_DH_TYPE1_JOB,
which loads the RDE data from W_PROD_CAT_DHS to the W_PROD_CAT_DH table.

• Once you have disabled all flat file jobs, restart the POM schedule as needed and then run
the RI_DIM_INITIAL_ADHOC process. This moves all Merchandising data from the RAP
staging tables into the data warehouse internal tables. Once all jobs are complete, the
remaining steps to move data to AIF and PDS are the same as documented in the Data
Loads and Initial Batch Processing chapter.

Chapter 4
Using RDE for Dimension Loads (Gen 2 Architecture)

4-17

Using RDE for Initial Seeding (Gen 2 Architecture)
RDE nightly batch programs can be used to perform initial seeding and full snapshots of
positional facts without running any ad hoc processes for data loading. This provides a way to
seamlessly transition from history data loads to nightly batch loads.

Prerequisites for starting this process are:

• You must have already initialized the RAP calendar and performed database partitioning
(either by using RDE as described in the prior sections or by loading a calendar file
following the Calendar and Partition Setup process).

• If you will load any historical data for prior dates, you must do that first and come back to
this section when you are ready to cut over from history loads to RDE direct integration.

• The current business date in the data warehouse must be one day prior to the current
business date being extracted from MFCS (also known as VDATE). If this was not already
updated as part of loading historical data, then you must use the ad hoc process
LOAD_CURRENT_BUSINESS_DATE_ADHOC to set it now.

Follow the steps below to perform this transition to nightly batches:

1. Navigate to the System Options in POM for the AIF DATA batch schedule.

2. Update the variables RDE_RunFactVersion and RDE_RunFactODIVersion. By default,
they should have a value of I as their rightmost input parameter, which is the normal
incremental batch run. Change the value to F, which will trigger a full snapshot batch run.
Do not change any other values already in these options except the letter I or F at the end.
The RDE_DIM_FLOW_ADHOC process also uses these parameters to extract either full or
incremental datasets, if you want to use that process to extract the fact data outside of
nightly batch.

3. If you are running the extract outside the Merchandising nightly batch, then disable or skip
the interschedule validation jobs (any job starting with RDE_INTERSCHED*) as well as
RDE_SETUP_INCRMNTL_RESA_JOB and RDE_SETUP_INCRMNTL_DEALACT_JOB in the RDE portion
of the batch flow that will prevent you from running without MFCS nightly jobs. These jobs
look for status updates from MFCS nightly jobs and eventually fail if no updates are found.

4. Schedule and run the full Merchandising and AIF nightly batch cycle and validate that all
nightly data was processed as expected in your RAP solutions. If you want to validate the
RDE extracts prior to running the rest of the nightly batches in RAP (for example, to
confirm the full extracts worked as intended) you may place a Hold on one of the first data
warehouse load jobs in the schedule, such as BATCH_START_NOTIFICATION_JOB.

There are numerous validations and checkpoints in the AIF DATA batch that aim to prevent
improper use of the nightly batch cycle by failing the batch when an issue is detected. These
jobs are listed below, along with reasons they might fail if this is your first time running a nightly
batch cycle.

Job Reasons for Failure

RDE_BATCHFINAL_CHKBATCHSTATU
SSDE_JOB

Checks the C_LOAD_DATES table for any failed RDE extract
jobs. This fails if there is at least one extract job that failed.
The purpose is to give you a chance to correct RDE failures
before you start loading the RAP data warehouse.

Chapter 4
Using RDE for Initial Seeding (Gen 2 Architecture)

4-18

Job Reasons for Failure

ZIP_FILE_WAIT_JOB This job is normally disabled when RDE is used; but if it is
enabled, it will wait for ZIP files from Object Storage and
eventually fail if none are found. If you are not providing
any ZIP files, disable the job.

DAT_FILE_VALIDATE_JOB Associated with the ZIP file jobs, and validates that all
required files are present and fails if not. If you are not
providing any ZIP files, disable this job.

ETL_REFRESH_JOB This should be disabled when RDE jobs are in use; it fails
if you have it enabled incorrectly. It is a check on
C_LOAD_DATES statuses at the start of a non-MFCS batch
cycle.

FACT_POSFACT_VALIDATOR_JOB Checks that the DAY_DT values on all positional fact loads
(such as Inventory Position) is equal to the current
business date only (positional facts do not support back-
posting data) and fails if any issues are found. This usually
means that the business date in RAP is not correct (at this
point in batch, the RAP business date should equal the
MFCS VDATE that was extracted by the RDE jobs in this
run).

DIM_CALENDAR_VALIDATOR_JOB Checks that the incoming calendar is properly formed
with no fatal errors in the configuration of fiscal periods.
For MFCS data, this can fail if the system options for the
MFCS calendar are out of sync with the actual data in the
CALENDAR table.

DIM_PROD_VALIDATOR_JOB Checks that the incoming product hierarchy and item data
is properly formed and complete. MFCS data can fail
several of the validation rules; review the AIF Operations
Guide for details.

DIM_ORG_VALIDATOR_JOB Checks that the incoming location hierarchy and store/
warehouse data is properly formed and complete. MFCS
data can fail several of the validation rules; review the AIF
Operations Guide for details.

Using RDE for Initial Seeding (Gen 1 Architecture)
RDE ad hoc batch programs in the RMFCS 19.x cloud can be used for initial seeding of RAP
but the process is different from the 2nd generation architecture, as the integration is through
flat files, not direct loads. This section assumes you have already set up your RAP
applications, including calendar loads and partitioning, following the file-based approach
documented in Setup and Configuration and Data Loads and Initial Batch Processing. Do not
proceed with these steps until you have at least done the initial calendar and partition setup.

For daily batches, integration from RDE (in Merchandising) to RAP occurs automatically as
part of the RDE ZIP file upload jobs. RDE will push the ZIP file to the File Transfer Services
location used by AI Foundation for incoming data (ris/incoming path in FTS). At this point,
you have the option to run the AI Foundation batch jobs to use that ZIP or download it from
FTS to manually modify it and re-upload it. Once the AI Foundation nightly batches are
enabled, you would also enable the batch link connecting AIF to RDE, and then the entire end-
to-end process will occur without user intervention.

For initial seeding, you would follow the process below:

Chapter 4
Using RDE for Initial Seeding (Gen 1 Architecture)

4-19

1. Set up a full RDE batch (by enabling batch links/dependencies to the RMFCS schedule)
and let it run nightly to get the full set of RDE files for dimensions and facts.

2. The file will be pushed automatically to RAP FTS. Download the RI_RMS_DATA.zip file from
FTS; do not load it into RAP yet.

3. Run the process SEEDPOSITIONALFACT_ADHOC, which will extract full snapshots of all
positional data, zip them, and push them to the RAP FTS location.

4. Download the RIHIST_RMS_DATA.zip file from FTS and copy the full snapshots of positional
facts into the RI_RMS_DATA.zip file generated by the RDE nightly process (replacing the
incremental files that were extracted).

5. Upload the modified RDE nightly ZIP file to RAP FTS at the ris/incoming location (same
as you would for all nightly batches going forward). Upload any additional ZIP files you
need for the nightly batches, such as ORASE_WEEKLY.zip or RAP_DATA.zip, if you want
these other files loaded in the same batch.

6. Advance the ETL business date in AIF to one day before the current batch, if it’s not
already set to that date, using the ad hoc process LOAD_CURRENT_BUSINESS_DATE_ADHOC.
Review any configurations in C_ODI_PARAM and RSE_CONFIG tables which may have been
altered for your historical loads but need updates for nightly batch data. For example, you
may want to update RI_INVAGE_REQ_IND in C_ODI_PARAM if you need calculations of first/
last receipt dates and inventory age from the RMFCS data.

7. Schedule a run of the full AIF nightly batch. Ensure your AIF POM schedule dates for the
nightly batch run is aligned with the completed run of RMFCS/RDE, because, from this
point forward, the batch schedules will need to remain in sync.

Your transactional facts, such as sales and receipts, should already have history loaded up to
this first run of nightly batches, because the next RDE nightly batch will only extract data for
the current vdate in RMFCS (for example, it will use the contents of the IF_TRAN_DATA daily
transaction table for most fact updates besides sales, which come from Sales Audit directly).
Once this first AIF batch completes using the full snapshot of positional data, you may prepare
for regular nightly batches which will use the incremental extracts from RDE.

The calendar validator job rule CAL_R2 may cause the batch to fail if this is the first time using
Merchandising calendar data directly. This is because the default system calendar in
Merchandising does not follow RAP recommendations, which is that the first year of the
calendar must be a complete fiscal year. If this happens, verify that the first year of the
Merchandising calendar exists much earlier than any actual data in RAP (for example, the
Merchandising calendar starts in 2010 but RAP data only exists from year 2020 onwards). If
this is confirmed, you may change the validation rule to be a warning instead of an error.
Update the table C_DIM_RULE_LIST from the Control & Tactical Center. Change the error type
for this rule to W so that it only throws a warning in the batch program instead of failing, and
then restart the failed validator job as needed.

Chapter 4
Using RDE for Initial Seeding (Gen 1 Architecture)

4-20

5
Batch Orchestration

This chapter describes the tools, processes, and implementation considerations for configuring
and maintaining the batch schedules used by the Retail Analytics and Planning. This includes
nightly, weekly, and ad hoc batch cycles added in the Process Orchestration and Monitoring
(POM) tool for each of the RAP applications.

Overview
All applications on the Retail Analytics and Planning have either a nightly or weekly batch
schedule. Periodic batches allow the applications to move large amounts of data during off-
peak hours. They can perform long-running calculations and analytical processes that cannot
be completed while users are in the system, and close out the prior business day in
preparation for the next one.

To ensure consistency across the platform, all batch schedules have some level of
interdependencies established, where jobs of one application require processes from another
schedule to complete successfully before they can begin. The flow diagram below provides a
high-level view of schedule dependencies and process flows across RAP modules.

5-1

Figure 5-1 Batch Process High-Level Flow

Chapter 5
Overview

5-2

The frequency of batches will vary by application. However, the core data flow through the
platform must execute nightly. This includes data extraction from RMS by way of RDE (if used)
and data loads into Retail Insights and AI Foundation.

Downstream applications from Retail Insights, such as Merchandise Financial Planning, may
only execute the bulk of their jobs on a weekly basis. This does not mean the schedule itself
can run weekly (as MFP batch has been run in previous versions); those end-of-week
processes now rely on consumption and transformations of data happening in nightly batches.
For example, Retail Insights consumes sales and inventory data on a daily basis. However, the
exports to Planning (and subsequent imports in those applications) are only run at the end of
the week, and are cumulative for all the days of data up to that point in the week.

For this reason, assume that most of the data flow and processing that is happening within the
platform will happen every day and plan your file uploads and integrations with non-Oracle
systems accordingly.

While much of the batch process has been automated and pre-configured in POM, there are
still several activities that need to be performed which are specific to each implementation.
TheTable 5-1 table summarizes these activities and the reasons for doing them. Additional
details will be provided in subsequent sections of this document

Table 5-1 Common Batch Orchestration Activities

Activity Description

Initial Batch Setup By default, most batch processes are enabled for all of the
applications. It is the implementer’s responsibility to disable
batches that will not be used by leveraging the Customer
Modules Management screen in Retail Home.

Configure POM Integrations The POM application supports external integration methods
including external dependencies and process callbacks.
Customers that leverage non-Oracle schedulers or batch
processing tools may want to integrate POM with their existing
processes.

Schedule the Batches Schedules in POM must be given a start time to run
automatically. Once started, you have a fixed window of time to
provide all the necessary file uploads, after which time the
batch will fail due to missing data files.

Batch Flow Details It is possible to export the batch schedules from POM to review
process/job mappings, job dependencies, inter-schedule
dependencies, and other details. This can be very useful when
deciding which processes to enable in a flow or when debugging
fails at specific steps in the process, and how that impacts
downstream processing.

Initial Batch Setup
As discussed in Implementation Tools, setting up the initial batches requires access to two
tools: POM and Retail Home. Refer to that chapter if you have not yet configured your user
accounts to enable batch management activities.

When using POM and Customer Modules Management, it is required to enable or disable the
application components based on implementation needs. The sections below describe which
modules are needed to leverage the core integrations between applications on the platform. If
a module is not present in the below lists, then it is only useful if you are implementing that
specific application and require that specific functionality. For example, most modules within

Chapter 5
Initial Batch Setup

5-3

Retail Insights are not required for the platform as a whole and can be disabled if you do not
plan to implement RI.

After you make changes to the modules, make sure to synchronize your batch schedule in
POM following the steps in Implementation Tools. If you are unsure whether a module should
be enabled or not, you can initially leave it enabled and then disable jobs individually from
POM as needed.

Common Modules
The following table lists the modules that are used across all platform implementations. These
modules process core foundation data, generate important internal datasets, and move data
downstream for other applications to use. Verify in your environment that these are visible in
Customer Modules Management and are enabled.

Table 5-2 RAP Common Batch Modules

Application Module Usage Notes

RAP RAP_COMMON >
BATCH

Contains the minimum set of batch processes needed to
load data into the platform and prepare it for one or
more downstream applications (such as MFP or AI
Foundation) when RI is not being implemented. This
allows implementers to disable RI modules entirely to
minimize the number of active batch jobs.

RAP RAP_COMMON >
RDXBATCH

Contains the batch processes for extracting data from
the RAP data warehouse to send to one or more
Planning applications.

RAP RAP_COMMON >
ZIP_FILES

Choose which ZIP packages must be present before the
nightly batch process begins. The batch only looks for
the enabled files when starting and fails if any are not
present.

RAP RAP_COMMON >
SIBATCH

Choose which input interfaces will be executed for
loading flat files into RAP. Disabled interfaces will not
look for or load the associated file even if it is provided.

RAP RAP_COMMON >
SICONTROLFILES

Choose which input files must be present before the
nightly batch process begins. Active control files mark a
file as required, and the batch fails if it is not provided.
Inactive control files are treated as optional and are
loaded if their associated job is enabled, but the batch
will not fail if they are not provided.

RAP HISTORY > BATCH Choose which functional areas require history data or
data corrections, either now or after you start batches.
Refer to the Module Name column for the matching CSV
file names and enable the modules where you plan to
provide data. This affects the ADHOC processes in the
Standalone schedule.

RAP RAP_COMMON >
EGRESS

These modules must be disabled for most
implementations, unless you are an existing v19 or
earlier customer that is working with Oracle to migrate
your environments (also known as a Core Update for
Planning applications).

Chapter 5
Initial Batch Setup

5-4

Figure 5-2 Example of RAP Common Modules

If you are implementing some or all of AI Foundation or Retail Insights, then there are some
additional modules to review. These modules may or may not be required, as they are based
on which interface files you plan to load as part of the nightly batch process.

Application Module Usage Notes

RAP AIF>CONTROLFILES Enable only the files you plan to send
based on your AI Foundation/Retail
Insights implementation plan. Refer to
the Interfaces Guide for details. This is
only used for non-foundation or legacy
DAT files. This directly affects what files
are required to be in the zip files, when
an AIF DATA Daily Batch is executed.
Required files that are missing will fail
the batch.

RAP AIF > BATCH Enable RSP_REQUIRED if you are
implementing any AI Foundation
module, plus others based on your
application needs. For example, if you
are loading sales then enable
RSP_SALES. If you are loading
inventory, then enable RSP_INVPOS, and
so on.

After setting up the common modules and syncing with POM, ensure that certain critical batch
processes in the AIF DATA schedule (which is used by all of RAP) are enabled in Batch
Monitoring. This can be used as a check to validate the POM sync occurred:

• RESET_ETL_THREAD_VAL_STG_JOB

• TRUNCATE_STAGE_TABLES_JOB (unless you are using RDE with RMFCS v22+, then
this must be disabled instead)

• DELETE_STATS_JOB

• RI_UPDATE_TENANT_JOB

Chapter 5
Initial Batch Setup

5-5

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2539848.1

Some of these jobs begin in a disabled state in POM (depending on the product version) so the
POM sync should ensure they are enabled. If they are not enabled after the POM sync, be
sure to enable them before attempting any batch runs.

Additionally, there are certain jobs that must remain disabled unless advised to enable them by
Oracle. Make sure the following jobs are disabled in the AIF DATA schedule after syncing with
POM:

• OBIEE_CACHE_CLEAR_JOB

• ODI_LOG_EXTRACTOR_JOB

• ODI_LOG_LOADER_JOB

• If you are not providing a file named RA_SRC_CURR_PARAM_G.dat in all ZIP uploads, disable
BATCH_VALIDATION_JOB, RA_SRC_CURR_PARAM_G_COPY_JOB, and
RA_SRC_CURR_PARAM_G_STG_JOB

• If you are using stock ledger in RI, only one of the following can be used and the other
must be disabled: W_RTL_STCKLDGR_SC_LC_MH_F_GREG_JOB,
W_RTL_STCKLDGR_SC_LC_MH_F_JOB

RI Modules
The following table lists modules within the Retail Insights offer codes which may be used if
you are implementing any part of Retail Insights. Disable the RI module entirely if you are not
implementing Retai lInsights at this time, because all your batch configurations should be
covered by the RAP common modules.

Table 5-3 RI Batch Modules

Application Module Usage Notes

RI RMI > BATCH Enable some or all of the
modules in this section to use
Merchandising data in Retail
Insights.

RI RCI > BATCH Enable some or all of the
modules in this section to use
Customer and Consumer data
in Retail Insights.

AI Foundation Modules
The following table lists modules within the AI Foundation applications which may be used by
one or more other RAP applications, in addition to the common modules from the prior section.
This primarily covers forecasting and integration needs for Planning application usage. It is
important to note that the underlying process for generating forecasts leverages jobs from the
Lifecycle Pricing Optimization (LPO) application, so you will see references to that product
throughout the POM batch flows and in Retail Home modules.

Chapter 5
Initial Batch Setup

5-6

Table 5-4 AI Foundation Shared Batch Modules

Application Module Usage Notes

AI Foundation FCST > Batch Collection of batch jobs associated with
foundation loads, demand estimation,
and forecast generation/export. The
modules under this structure are
needed to get forecasts for Planning.

To initialize data for the forecasting program, use the ad hoc POM process
RSE_MASTER_ADHOC_JOB described in Sending Data to AI Foundation. After the platform is
initialized, you may use the Forecast Configuration user interface to set up and run your initial
forecasts. For complete details on the requirements and implementation process for
forecasting, refer to the Retail AI Foundation Cloud Services Implementation Guide.

For reference, the set of batch programs that should be enabled for forecasting are listed
below (not including foundation data loads common to all of AI Foundation). Enable these by
syncing POM with MDF modules, though it is best to validate that the expected programs are
enabled after the sync.

Note:

Jobs with PMO in the name are also used for Lifecycle Pricing Optimization and are
shared with the forecasting module.

Job Name

PMO_ACTIVITY_LOAD_START_JOB

PMO_ACTIVITY_STG_JOB

PMO_ACTIVITY_LOAD_JOB

PMO_ACTIVITY_LOAD_END_JOB

PMO_CREATE_BATCH_RUN_JOB

PMO_RUN_EXEC_SETUP_JOB

PMO_RUN_EXEC_START_JOB

PMO_RUN_EXEC_PROCESS_JOB

PMO_RUN_EXEC_END_JOB

RSE_CREATE_FCST_BATCH_RUN_JOB

RSE_FCST_BATCH_PROCESS_JOB

RSE_FCST_BATCH_RUN_END_JOB

RSE_CREATE_FCST_BATCH_RUN_ADHOC_JOB

RSE_FCST_BATCH_PROCESS_ADHOC_JOB

There are also two processes involved in forecast exports to MFP, one as part of weekly batch
and the other as an ad hoc job which you can run during implementation.

Job Name

RSE_MFP_FCST_EXPORT_JOB

Chapter 5
Initial Batch Setup

5-7

Job Name

RSE_MFP_FCST_EXPORT_ADHOC_JOB

Maintenance Cycles
The AIF DATA schedule also includes a standalone maintenance batch flow called
RI_MAINTENANCE_ADHOC. You need to enable and schedule this process to run nightly,
sometime prior to the main nightly batch.

1. From Batch Administration, go into the AIF DATA schedule Standalone tab and locate the
RI_MAINTENANCE_ADHOC flow. If the jobs are disabled, then enable them now.

2. Go into Schedule Administration and add a new schedule for the flow, enable it, and
schedule it to run once every day. It is recommended to start it several hours prior to the
actual nightly batch; for example, it can run starting at 8 pm local time if your nightly batch
starts at 2 am the following morning. These processes should not impact normal user
activity in the applications and are safe to run even if users are still logged in.

3. From Batch Monitoring, restart the AIF DATA schedule to apply the changes.

The maintenance cycle is responsible for creating table partitions, repairing unusable indexes,
purging old log files, and purging certain records relating to deleted items and locations. All of
these activities are necessary to ensure the data warehouse operates efficiently over time as
data continues to accumulate in the system. These jobs are kept outside of the nightly batch
flow because there is a chance they will need several hours to run in some instances, such as
when a large number of new partitions need to be created at the start of a fiscal quarter or a
particularly large number of log files have to be purged.

Batch Setup Example
This section will guide you through an example of setting modules in Retail Home and syncing
with POM. A basic implementation of MFP with forecasting in AIF might send all the following
foundation data files (and their CTX files):

• CALENDAR.csv

• PRODUCT.csv

• ORGANIZATION.csv

• EXCH_RATE.csv

• SALES.csv

• INVENTORY.csv

• RECEIPT.csv

• TRANSFER.csv

• MARKDOWN.csv

• ADJUSTMENT.csv

• ORDER_HEAD.csv

• ORDER_DETAIL.csv

• RTV.csv

• RA_SRC_CURR_PARAM_G.dat

Chapter 5
Initial Batch Setup

5-8

These files will be bundled into a single ZIP file named RAP_DATA.zip. To configure the
Customer Modules for this batch implementation, perform the following steps:

1. At the top level, you may disable the RI module entirely (if it’s visible), because you are not
implementing that solution

2. Enable and expand the RAP module. Within the RAP_COMMON sub-module, enable only the
following components and disable the rest:

• RAP>RAP_COMMON>ZIP_FILES: RAP_DATA_ZIP

• RAP>RAP_COMMON>SICONTROLFILES: RAP_SI_DIM_CALENDAR,
RAP_SI_DIM_EXCHANGE_RATES, RAP_SI_DIM_ONORDER,
RAP_SI_DIM_ORGANIZATION, RAP_SI_DIM_PRODUCT,
RAP_SI_FACT_ADJUSTMENT, RAP_SI_FACT_INVENTORY,
RAP_SI_FACT_MARKDOWN, RAP_SI_FACT_ORDER_DETAIL,
RAP_SI_FACT_RECEIPT, RAP_SI_FACT_RTV, RAP_SI_FACT_SALES,
RAP_SI_FACT_TRANSFER

• RAP>RAP_COMMON>SIBATCH: RAP_SI_INVADJ, RAP_SI_INVPOS,
RAP_SI_INVRECEIPT, RAP_SI_INVRTV, RAP_SI_INVTRANSFER,
RAP_SI_MARKDOWN, RAP_SI_ONORDER, RAP_SI_PO, RAP_SI_REQUIRED,
RAP_SI_SALES

• RAP>RAP_COMMON>RDXBATCH: RAP_RDX_INVADJ, RAP_RDX_INVPOS,
RAP_RDX_INVECEIPT, RAP_RDX_INVRTV, RAP_RDX_INVTRANSFER,
RAP_RDX_MARKDOWN, RAP_RDX_PO, RAP_RDX_REQUIRED,
RAP_RDX_SALES

• RAP>RAP_COMMON>BATCH: RAP_INVADJ, RAP_INVPOS, RAP_INVRECEIPT,
RAP_INVRTV, RAP_INVTRANSFER, RAP_MARKDOWN, RAP_PO,
RAP_REQUIRED, RAP_SALES

3. To use AIF for forecasting, you will also need certain parts of the AI Foundation modules
(named RSP in Retail Home). Enable the RSP root module, expand it, and enable the
FCST module. All options under FCST should also be enabled. Disable all other RSP
modules here.

4. If you are integrating with Merchandising using the RDE batch jobs, then you are likely not
providing flat files for most things, and the setup process will be different. Refer to
Integration with Merchandising to understand the batch setup process in more detail.

Once all changes are made, make sure to Save the updates using the button below the table.
Only after saving the changes will they be available to sync with POM.

The next set of steps will be performed from POM:

1. Go to the Batch Administration screen for each schedule (Nightly tabs of AIF DATA and
AIF APPS schedules) and disable ALL jobs in the Nightly schedule. By disabling all jobs,
the next step will selectively enable just what is needed.

2. Click Sync with MDF in each schedule. Wait for the sync to complete (it will take some
time and the screen will prevent any updates while syncing).

3. Review the list of jobs that are now enabled to verify that it is correct (for example, that the
jobs relating to PRODUCT file loads are all enabled similarly to when you ran historical
data loads).

4. Inter-schedule dependencies must also be enabled at this time from Batch Administration
screen. You will need to locate the jobs having dependencies and turn them on within the
job details screen. Update the following jobs in each schedule to enable any inter-schedule
dependencies they have:

Chapter 5
Initial Batch Setup

5-9

Schedule Job Name

AIF APPS RSE_WEEKLY_INPUT_FILES_START_JOB

RPASCE MFP_POST_DATA_IMP_START_JOB

RPASCE RPASCE_DATA_IMP_START_JOB

RPASCE RPASCE_HIER_IMP_START_JOB

5. Go to the Batch Monitoring screen. If you have a schedule already open for a past
business date, click Close Schedule. If you are already on the current business date then
just click Restart Schedule and skip the next step.

6. Change the POM business date to the date you will be loading nightly batch data for (for
example if your data files will have data for 2/25/2023 then that should also be the
business date). Open a new schedule using the provided button.

7. Enable and schedule the batches to run from Schedule Administration. The inter-schedule
dependencies will ensure downstream jobs are not run until the necessary dependencies
are complete (for example, RSP jobs will wait for RI loads to complete).

Note:

Updating the schedule times also requires a Restart Schedule action to be
performed afterwards.

8. If you have not already enabled the schedule for the RI_MAINTENANCE_ADHOC flow, make
sure to do that now.

9. Make sure the business date in the data warehouse is one day prior to the first day of data
you plan to load through the nightly batch. If necessary, use the standalone POM process
LOAD_CURRENT_BUSINESS_DATE_ADHOC to advance the business date. For example, if your
first nightly batch is loading data for 2023-04-30 then you must ensure the data warehouse
is currently on business date 2023-04-29. The nightly batch will automatically advance the
date starting with 2023-04-30.

10. If you chose not to provide the RA_SRC_CURR_PARAM_G.dat file for ensuring proper business
date validation, then go back to Batch Administration in the AIF DATA nightly schedule and
disable BATCH_VALIDATION_JOB, RA_SRC_CURR_PARAM_G_COPY_JOB, and
RA_SRC_CURR_PARAM_G_STG_JOB.

The next set of steps may or may not be needed depending on your business calendar
configuration:

1. From the Batch Administration Nightly schedules, locate the column for Days of the Week.
By default, weekly jobs may run on either Saturday or Sunday (varies by process). You
must align the weekly jobs to your week-ending dates for anything involved in integration
or calculations, such as RDX and PDS batch jobs.

2. For example, if you wish to set your week-ending date as Saturday for all jobs involved in
RI > Planning integrations, filter the AIF DATA Schedule job names using each of the
following codes: PDS, RDX

3. For each set of PDS or RDX jobs, look at the Days of the Week value. Anything that is not
set to run Saturday should be modified by editing the job record and changing the day to
Saturday. You might also want some jobs to run daily, in which case you select all days of
the week here.

4. Repeat this process in the RPASCE schedule, moving any jobs to the desired Day of the
Week value.

Chapter 5
Initial Batch Setup

5-10

5. When all changes are done, be sure to Restart Schedule from the Batch Monitoring
screen.

Lastly, ensure that the following jobs are disabled in the AIF DATA schedule after all other
setup is done, as they should not be used in the current version:

• OBIEE_CACHE_CLEAR_JOB

• ODI_LOG_EXTRACTOR_JOB

• ODI_LOG_LOADER_JOB

You are now ready to begin running your nightly batches. As soon as you run the first batch
cycle, you must continue to run AIF DATA and AIF APPS batch cycles every night in sequence.
You must not skip any days, because some jobs have internal processing based on the day of
week that they execute and skipping days will prevent proper operation of these jobs. If you
are not providing daily fact data, then you must still run the daily batches with a full set of
dimension files, such as products and locations; you can never run a batch without dimension
files present and populated with data. The recommended approach is for the source system
providing data files to always package and upload a nightly ZIP file every day even when no
data is changing. The uploaded ZIP should contain the dimension data plus empty fact files
where daily data is not being generated.

Adjustments in POM
While the bulk of your batch setup should be done in Retail Home, it may be necessary to fine-
tune your schedule in POM after the initial configuration is complete. You may need to disable
specific jobs in the nightly schedules (usually at Oracle’s recommendation) or reconfigure the
ad hoc processes to use different programs. The general steps to perform this activity are:

1. From Retail Home, click the link to navigate to POM or go to the POM URL directly if
known. Log in as a batch administrator user.

2. Navigate to the Batch Administration screen.

3. Select the desired application tile, and then select the schedule type from the nightly,
recurring, or standalone options.

4. Search for specific job names, and then use the Enabled option to turn the program on or
off.

5. From the Batch Monitoring screen, click Restart Schedule to apply the changes.

Note:

If you sync with MDF again in the future, it may re-enable jobs that you turned off
inside a module that is turned on in Retail Home. For that reason, the module
configuration is typically used only during implementation, then POM is used once
you are live in production.

Managing Multiple Data Sources
Some implementations require sourcing fact data from more than one source. For example,
your inventory data may be coming from Merchandising Foundation CS (MFCS) but your sales
data will come from an external 3rd-party application. In such cases, it will be necessary to
manually configure your batch schedule for AIF DATA to selectively enable the jobs for your
chosen data flow and disable all other paths for that data. The diagrams in this section
highlight each possible data flow from an outside source into the AIF DATA data warehouse.

Chapter 5
Managing Multiple Data Sources

5-11

Each numbered entry point into the data flow is mutually exclusive, you cannot run multiple
data flows at the same time or it can result in duplicated or invalid data being loaded. For
example, if you are entering the diagram from point 1, you would want to ensure all AIF DATA
jobs along that path are enabled, and also disable the jobs for unused entry points (2 and 4).
The entry points in every diagram are explained in more detail below.

Entry Point Explanation

1 This is the data flow for Retail Data Extractor for MFCS v19 or earlier. In this flow,
RDE is a separate module that runs on the MFCS server and POM instance and
creates flat files to export to AIF DATA. This data flow includes on-premise
instances of MFCS/RDE.

2 This is the data flow for Retail Data Extractor for MFCS v23 or later. In this flow,
RDE jobs are a part of the AIF DATA batch schedule and will directly read from
MFCS and insert to AIF DATA staging tables without using any files.

3 This is the data flow for legacy AIF DATA flat file formats, which use the same file
structures as RDE v19 or earlier. New implementations will generally not use this
entry point for foundation fact data.

4 This is the data flow for simplified foundation interfaces in RAP v23 or later that
use CSV file formats. When data is not coming from MFCS, it should usually enter
here.

Adjustments
This is the data flow diagram for inventory adjustment transactions. Enable only the jobs for
your chosen load method and disable the jobs for all other entry points.

Costs
This is the data flow diagram for base cost and net costs. Enable only the jobs for your chosen
load method and disable the jobs for all other entry points.

Chapter 5
Managing Multiple Data Sources

5-12

Deal Income
This is the data flow diagram for deal income transactions. Enable only the jobs for your
chosen load method and disable the jobs for all other entry points.

Intercompany Margin
This is the data flow diagram for intercompany margin transactions. Enable only the jobs for
your chosen load method and disable the jobs for all other entry points.

Chapter 5
Managing Multiple Data Sources

5-13

Inventory Position
This is the data flow diagram for inventory positions. Enable only the jobs for your chosen load
method and disable the jobs for all other entry points.

Inventory Reclass
This is the data flow diagram for inventory reclass transactions. Enable only the jobs for your
chosen load method and disable the jobs for all other entry points.

Chapter 5
Managing Multiple Data Sources

5-14

Markdowns
This is the data flow diagram for markdown transactions. Enable only the jobs for your chosen
load method and disable the jobs for all other entry points.

Prices
This is the data flow diagram for daily price updates. Enable only the jobs for your chosen load
method and disable the jobs for all other entry points.

Chapter 5
Managing Multiple Data Sources

5-15

Purchase Orders
This is the data flow diagram for purchase order updates. Enable only the jobs for your chosen
load method and disable the jobs for all other entry points.

Receipts
This is the data flow diagram for inventory receipt transactions. Enable only the jobs for your
chosen load method and disable the jobs for all other entry points.

Chapter 5
Managing Multiple Data Sources

5-16

Returns to Vendor
This is the data flow diagram for inventory returns to vendor. Enable only the jobs for your
chosen load method and disable the jobs for all other entry points.

Sales
This is the data flow diagram for sales transactions. Enable only the jobs for your chosen load
method and disable the jobs for all other entry points.

Chapter 5
Managing Multiple Data Sources

5-17

Sales Pack
This is the data flow diagram for sales transactions at component level that are spread down
from pack item sales. Enable only the jobs for your chosen load method and disable the jobs
for all other entry points.

Sales Wholesale
This is the data flow diagram for wholesale and franchise sales transactions. Enable only the
jobs for your chosen load method and disable the jobs for all other entry points.

Chapter 5
Managing Multiple Data Sources

5-18

Transfers
This is the data flow diagram for inventory transfer transactions. Enable only the jobs for your
chosen load method and disable the jobs for all other entry points.

Configure POM Integrations
Retailers often have external applications that manage batch execution and automation of
periodic processes. They might also require other downstream applications to be triggered
automatically based on the status of programs in the Retail Analytics and Planning. POM
supports the following integrations that should be considered as part of your implementation
plan.

Chapter 5
Configure POM Integrations

5-19

Table 5-5 POM Integrations

Activity References

Trigger RAP batches from an external
program

POM Implementation Guide > Integration > Invoking
Cycles in POM

Trigger external processes based on
RAP batch statuses

POM Implementation Guide > Integration > External
Status Update

Add external dependencies into the
RAP batch to pause execution at
specific points

POM Implementation Guide > Integration > External
Dependency

Schedule the Batches
Once you are ready to begin regularly scheduled batch processing, you must log in to POM to
enable each batch cycle and provide a start time for the earliest one in the batch sequence.
The general steps are:

1. Log into POM as an administrator user.

2. Access the Scheduler Administration screen.

3. Select each available tile representing a batch schedule and select the Nightly batch
option. AIF DATA and AIF APPS schedules must run every night once they are enabled;
you cannot run them weekly or skip any days.

4. Edit the rows in the table to enable each batch and enter a start time. You can start all of
the batches with similar times or stagger them apart based on how long you think they
need to wait before their dependencies will be fulfilled by the linked applications. After any
change to the schedule times, you must also Restart the Schedule in Batch Monitoring for
it to take effect.

5. For each batch after AIF DATA that must execute, you must verify the inter-schedule
dependencies are enabled for those batches. You can find the dependencies and enable
them by going to the Batch Monitoring screen and selecting each batch’s Nightly set of
jobs. Click the number in front of Inter-Schedule Dependencies and click Enable to the
right of each displayed row if the current status is Disabled. This should change the status
of the row to Pending.

Refer to the POM User Guide for additional information about the Scheduler screens and
functionality. Scheduling the batch to run automatically is not required if you are using an
external process or scheduler to trigger the batch instead.

For the AIF DATA nightly batch (which consumes the foundation input files for platform data),
the batch will first look for all the required input ZIP packages configured through Customer
Modules Management. The batch will wait for 4 hours for all required files, after which it will fail
with an error in POM. When choosing a start time for the batch, it is best to start the 4-hour
window an hour before you expect to have all the files uploaded for it to use. The batch
performs reclassification of aggregate tables as its first step, which can take the full hour to
complete in the case of very large reclassifications. This still provides 3+ hours during which
you can schedule all file uploads and non-Oracle integration processes to occur.

The other application batches, such as those for the AI Foundation modules, begin
automatically once the required Retail Insights batch jobs are complete (assuming you have
enabled those batches). Batch dependencies have been pre-configured to ensure each
downstream process begins as soon as all required data is present.

Chapter 5
Schedule the Batches

5-20

Batch Flow Details
POM allows you to export the full batch schedule configuration to a spreadsheet for review.
This is an easier way to see all of the jobs, processes, and dependencies that exist across all
batch schedules that you are working with on the platform. Perform the following steps to
access batch configuration details:

1. From Retail Home, click the link to navigate to POM, or go to the POM URL directly if
known. Log in as a batch administrator user.

2. Navigate to the Batch Administration screen.

3. Select the desired application tile, and then select the schedule type from the nightly,
recurring, or standalone options.

4. Click the Export Config button to download the schedule data.

5. Choose your preferred format (XLS or JSON).

• XLS is meant for reviewing it visually.

• JSON is used for importing the schedule to another environment.

6. Save the file to disk and open it to review the contents.

For more details about the tabs in the resulting XLS file, refer to the POM User Guide, “Export/
Import Schedule Configuration”.

Planning Applications Job Details
Planning applications such as Merchandise Financial Planning schedule jobs through POM,
and run ad hoc tasks directly using Online Administration Tasks (OAT) within the application.
POM is the preferred approach for scheduling jobs in RAP for managing interdependencies
with jobs from RI and AI Foundation. Refer to the application Administration Guides for more
details on scheduling tasks through OAT.

Planning applications also use a special Batch Framework that controls jobs using batch
control files. You may configure these batch control files for various supported changes within

Chapter 5
Batch Flow Details

5-21

the application. The POM schedule for Planning internally calls an OAT task controlled by the
batch control entries. A standard set of nightly and weekly jobs for Planning are defined to
schedule them in POM. You also have the option to disable or enable the jobs either directly
through POM, or by controlling the entries in batch control files. Refer to the Planning
application-specific Implementation Guides for details about the list of jobs and how jobs can
be controlled by making changes to batch control files.

Reprocessing Nightly Batch Files
When a nightly batch fails due to a corrupt or improperly formed data file, you may want to re-
send just the fixed data file and not the entire nightly ZIP upload. An ad hoc POM process is
available for uploading individual data files and appending them to the current nightly batch
run. The process is called REPROCESS_ZIP_FILE_PROCESS_ADHOC. It expects a file
RI_REPROCESS_DATA.zip to be uploaded using File Transfer Services (FTS). The ad hoc
program will import and unpack the ZIP file and directly move any contents into the staging
area with all existing data files sent from a previous upload. No existing file will be deleted; it
will overwrite only the files provided in RI_REPROCESS_DATA.zip.

Once a new file has been placed, you will still need to re-run the jobs to import that file. Or, if a
COPY job for that file is what failed, re-run that job and the batch will resume from there.

Chapter 5
Reprocessing Nightly Batch Files

5-22

6
Data Processing and Transformations

The Retail Analytics and Planning is a data-driven set of applications performing many
transformations and calculations as part of normal operations. Review this chapter to learn
about the most common types of data transformation activities occurring within the platform
that may impact the data you send into the platform and the results you see as an end user.

Data Warehouse Aggregate Tables
The RAP data warehouse (used to maintain all foundation data for the RAP applications)
accepts most data at a common base intersection of item, location, and date. However,
downstream applications such as Planning or AI Foundation may need this data at higher
levels of aggregation than that. To support those data needs, the data warehouse pre-
aggregates the incoming fact data to certain higher levels, depending on the requirements of
the consuming application. For Planning purposes, all fact data is aggregated to a common
level of item, location, and fiscal week before it is exported for downstream consumption.
Review the sections below to learn more about how data moves through the foundation data
warehouse for all our applications to use.

Table Structures
If you are currently loading data into the data warehouse using AIF DATA batch jobs and need
to access database tables for debugging or validation purposes, there are naming and format
conventions used on each aggregate table. A base intersection table is abbreviated using the
following notations:

Table 6-1 Data Warehouse Base Fact Structure

Table Name Component Explanation

W_ Most data warehouse tables start with a “W” to denote a core
data warehouse object.

IT Abbreviation for Item

LC Abbreviation for Location

DY Abbreviation for Day

WK Abbreviation for Week

_D Dimensional tables end with “D”

_F Base intersection fact tables end with “F”

_A Aggregate tables end with “A”

Using the above notation, you may interpret the table W_RTL_SLS_IT_LC_WK_A as “Sales
aggregate table at the item/location/week intersection”.

Key Columns
Most fact tables in the data warehouse use the same key column structure, which consists of
two types of internal identifiers. The first identifier is referred to as a WID value. The WID on a

6-1

fact table is a foreign key reference to a dimension table’s ROW_WID column. For example, a
PROD_WID column in a sales table is referring to the ROW_WID on W_PRODUCT_D (the product
dimension table). Joining the WIDs on a fact and a dimension will allow you to look up user-
facing descriptors for the dimensions, such as the product number.

The second identifier is known as SCD1_WID and refers to slowly changing dimensions, which is
a common data warehousing concept. The IDs on the SCD1_WID columns are carried forward
through reclassifications and other dimensional changes, allowing you to locate a single
product throughout history, even if it has numerous records in the parent dimension table. For
example, joining PROD_SCD1_WID from a sales table with SCD1_WID on W_PRODUCT_D will receive
all instances of that product’s data throughout history, even if the product has several different
ROW_WID entries due to reclassifications, which insert new records to the dimension for the
same item.

The other core structure to understand is Date WIDs (key column DT_WID). These also join with
the ROW_WID of the parent dimension (W_MCAL_DAY_D usually), but the format of the WID allows
you to extract the date value directly if needed, without table joins. The standard DT_WID value
used is a combination of 1 + date in YYYYMMDD + 000. For example, 120210815000 is the
DT_WID value for “August 15, 2021”.

Fact and Dimension Relationships
When a fact interface such as SALES.csv is loaded into the data warehouse, the programs
perform many joins between the incoming data and the associated dimensions and
hierarchies. The data warehouse enforces strict data integrity rules across tables; this requires
that, for every fact record, all associated dimension records are present and active. For a
record to be considered the active dimension record, it must have effective dates that
encompass the same date on the fact record. For example:

• A record in the SALES.csv file for a given nightly batch cycle has key values of:

– ITEM = 1285001

– ORG_NUM = 4400

– DAY_DT = 05-MAY-23

• For this record to be loaded successfully, the item, location, and date must all be present
and active within the associated dimension tables:

– For the item, a record must exist in W_PRODUCT_D_RTL_TMP having a matching item
number in column PROD_IT_NUM, and the value of DAY_DT from the sale must be
between SRC_EFF_FROM_DT and SRC_EFF_TO_DT.

– For the location, a record must exist in W_INT_ORG_DH_RTL_TMP having a matching
location number in column ORG_NUM, and the value of DAY_DT from the sale must be
between EFFECTIVE_FROM_DT and EFFECTIVE_TO_DT.

– For the date, a record must exist in W_MCAL_DAY_D having the same date on
MCAL_DAY_DT.

• If the fact record has other key columns such as suppliers, buyers, reasons, statuses, and
so on, then similar dimension joins may be used across all of them.

If any join between the fact table and dimension tables is unable to find matches based on the
above criteria, then the fact record will not load into the data warehouse and will instead be
rejected and moved into separate tables for review.

Chapter 6
Data Warehouse Aggregate Tables

6-2

Transformations from Data Warehouse to Planning

Data Filtering and Conversions
In addition to simply aggregating the incoming fact data from item/location/date to item/
location/week level, it is also important to understand what the data warehouse is doing with
the data as it moves from the input files to the outbound interfaces. The table below
summarizes the transformations and business logic applied to shared data warehouse facts
used by RAP applications.

Table 6-2 Foundation Data Transformations

Transformation Explanation

Currency Conversion As part of the nightly batch, AIF DATA jobs will use exchange rate
information to convert all incoming data from the source
currency to the primary business currency. All data sent to
downstream applications is in the primary currency. The data
model maintains separate columns for both local and primary
currency amounts for RI and AIF usage.

Tax Handling The data model includes non-US taxes, such as VAT, in the sales
retail amounts based on the indicators set up in the source
system (such as Sales Audit) and in the data extraction jobs (RDE).
When sending the sales data to Planning and AI Foundation, the
default sales values may include VAT and only specific VAT-
exclusive fields will remove it. You may optionally remove VAT
from all data using configuration changes.

Transaction Date Usage All fact data coming into the system includes a transaction date
on the record. AIF DATA jobs aggregate from day to week level
using transaction dates and does not alter or re-assign any
records to different dates from what is provided. Transaction
data in the past will be added to their historical week in the
aggregates, no matter how far back it is dated.

Pack Item Handling Downstream applications are currently only interested in the
component item level, so AIF DATA will not send any fact data for
pack items to other applications. Pack item sales must be spread
to the component item level and loaded into the Sales Pack
interface if this data is required for AI Foundation or Planning.
All inventory, purchase order, and transaction data must be
loaded at the component item level only.

Stockholding Locations Inventory data for Planning is only exported for stockholding
locations. A store indicated as a non-stockholding location on the
location dimension will not be included in outbound inventory
data. Physical warehouses which are not stockholding (because
you use virtual warehouses) will also not be included.

Warehouse Types Planning solutions assume that virtual warehouses are used as
the stockholding locations for the business, and physical
warehouses will be non-stockholding. For this reason, virtual
warehouses are used to integrate data from the data warehouse
to Planning, and no data is sent for the physical warehouses
(except to indicate on each virtual WH the ID and name of the
associated physical WH). If you don’t use virtual WHs, you can
mark your physical WHs as virtual for the purposes of
integration.

Chapter 6
Transformations from Data Warehouse to Planning

6-3

Table 6-2 (Cont.) Foundation Data Transformations

Transformation Explanation

Future On Order Planning applications require a forward-looking view of
purchase orders based on the OTB EOW Date. The data
warehouse accepts the actual purchase order details on the
interfaces but will then transform the on-order amounts to be
future-dated using the provided OTB EOW Dates. Orders which
are past the OTB date will be included in the first EOW date, they
will never be in the past.

Include On Order Purchase Order data is limited by the Include On Order Flag on
the Order Head interface. A value of N will not be included in the
calculations for Planning.

Orderable Items Purchase Order data is limited by the Orderable Flag on the
Product interface. A value of N will not be included in the
calculations for Planning.

Sellable Items Regular non-pack items must be flagged as sellable to be
interfaced to Planning as they do not want non-sellable item data
in PDS at this time. This does not apply to pack items, which may
be sellable or non-sellable because non-sellable pack items are
often used for replenishment in IPO.

Inventory Adjustment Types The system accepts 3 types of inventory adjustments using the
codes 22, 23, and 41. For Planning, only the first two codes are
exported. Code 22 relates to Shrink and code 23 relates to Non-
Shrink.

Inventory Receipt Types The system accepts 3 types of inventory receipts using the codes
20, 44~T, and 44~A. For Planning, all codes are sent but the 44s
are summed together. Code 20 relates to purchase order receipts.
Code 44 relates to Transfer receipts and Allocation receipts. Only
code 20 is used by MFP in the GA solution.

Inventory Transfer Types The system accepts 3 types of transfers using the codes N, B, and I
(normal, book, and intercompany). All three types are sent to
planning along with the type codes.

Data Mappings
When you are generating input files to RAP, you may also want to know which columns are
being moved to the output and how that data translates from what you see in the file to what
you see in Planning applications. The list of mappings below describes how the data in the
foundation data warehouse is exported to PDS.

Note:

Conversions and filters listed in the prior section of this chapter apply to all of this
data (for example, data may be stored in local currency in RI but is always converted
to the primary currency for export).

Chapter 6
Transformations from Data Warehouse to Planning

6-4

Product Mapping
The item dimension and product hierarchy data is loaded mainly from the PRODUCT.csv file or
from RMFCS. The primary data warehouse table for item data is W_PRODUCT_D while the
hierarchy comes from W_PROD_CAT_DH, but several temporary tables are used to pre-calculate
the values before export. The mapping below is used by the interface program to move data
from the data warehouse to RDX. The temporary table W_RTL_ITEM_PARENT_TMP is generated
using data from W_PROD_CAT_DH, W_PRODUCT_ATTR_D, W_PRODUCT_D_TL, W_RTL_IT_SUPPLIER_D,
and W_DOMAIN_MEMBER_LKP_TL. The export filters out non-pack items that have SELLABLE_FLG=N
on the interface file or from Merchandising.

There is a configuration that alters the behavior of the ITEM_DESC, ITEM_PARENT_DIFF_DESC,
and ITEM_PARENT_DESC fields. You may optionally update the C_ODI_PARAM_VW parameter
PDS_PROD_INCLUDE_ITEM_ID to Y. When you do, the item ID will be concatenated into the
description field on W_PDS_PRODUCT_D for all 3 levels of item.

There is also a configuration that alters the behavior of the ITEM_PARENT_DIFF field. You may
optionally update the C_ODI_PARAM_VW parameter ITEM_PARENT_DIFF_SEPARATOR to any
character (or to a null value). When you do, the concatenation of the ID values will use the
given separator value instead of the default underscore character.

Measure Target Table Target Column Data Source

Item W_PDS_PRODUCT
_D

ITEM W_RTL_ITEM_PARENT_TMP.PRO
D_IT_NUM

Item Desc W_PDS_PRODUCT
_D

ITEM_DESC W_RTL_ITEM_PARENT_TMP.PRO
DUCT_NAME

Item Parent
Diff

W_PDS_PRODUCT
_D

ITEM_PARENT_DIFF CASE WHEN
W_RTL_ITEM_PARENT_TMP.DIFF
_AGGREGATE_ID = ''-1'' THEN
W_RTL_ITEM_PARENT_TMP.PARE
NT_PROD_NUM ELSE
W_RTL_ITEM_PARENT_TMP.PARE
NT_PROD_NUM||'$
{ ITEM_PARENT_DIFF_SEPARATO
R}||
W_RTL_ITEM_PARENT_TMP.DIFF
_AGGREGATE_ID END

Item Parent
Diff Desc

W_PDS_PRODUCT
_D

ITEM_PARENT_DIFF_DES
C

CASE WHEN
W_RTL_ITEM_PARENT_TMP.DIFF
_AGGREGATE_ID = ''-1'' THEN
W_RTL_ITEM_PARENT_TMP.PARE
NT_PRODUCT_NAME ELSE
W_RTL_ITEM_PARENT_TMP.PARE
NT_PRODUCT_NAME||''_''||
NVL(W_RTL_ITEM_PARENT_TMP.
DIFF_AGGREGATE_DESC ,
W_RTL_ITEM_PARENT_TMP.DIFF
_AGGREGATE_ID) END

Item Parent W_PDS_PRODUCT
_D

ITEM_PARENT W_RTL_ITEM_PARENT_TMP.PARE
NT_PROD_NUM

Item Parent
Desc

W_PDS_PRODUCT
_D

ITEM_PARENT_DESC W_RTL_ITEM_PARENT_TMP.PARE
NT_PRODUCT_NAME

Subclass ID W_PDS_PRODUCT
_D

SUBCLASS_ID W_RTL_ITEM_PARENT_TMP.SUBC
LASS_ID

Chapter 6
Transformations from Data Warehouse to Planning

6-5

Measure Target Table Target Column Data Source

Subclass Label W_PDS_PRODUCT
_D

SUB_NAME W_RTL_ITEM_PARENT_TMP.PRO
D_SC_NUM||'' ''||
W_RTL_ITEM_PARENT_TMP.SBC_
DESC

Class ID W_PDS_PRODUCT
_D

CLASS_ID W_RTL_ITEM_PARENT_TMP.CLAS
S_ID

Class Label W_PDS_PRODUCT
_D

CLASS_NAME W_RTL_ITEM_PARENT_TMP.PRO
D_CL_NUM||'' ''||
W_RTL_ITEM_PARENT_TMP.CLS_
DESC

Department W_PDS_PRODUCT
_D

DEPT W_RTL_ITEM_PARENT_TMP.PRO
D_DP_NUM

Department
Label

W_PDS_PRODUCT
_D

DEPT_NAME W_RTL_ITEM_PARENT_TMP.PRO
D_DP_NUM||'' ''||
W_RTL_ITEM_PARENT_TMP.DP_D
ESC

Group W_PDS_PRODUCT
_D

GROUP_NO W_RTL_ITEM_PARENT_TMP.PRO
D_GP_NUM

Group Label W_PDS_PRODUCT
_D

GROUP_NAME W_RTL_ITEM_PARENT_TMP.PRO
D_GP_NUM||'' ''||
W_RTL_ITEM_PARENT_TMP.GRP_
DESC

Division W_PDS_PRODUCT
_D

DIVISION W_RTL_ITEM_PARENT_TMP.PRO
D_DV_NUM

Division Label W_PDS_PRODUCT
_D

DIV_NAME W_RTL_ITEM_PARENT_TMP.PRO
D_DV_NUM||'' ''||
W_RTL_ITEM_PARENT_TMP.DIV_
DESC

Company W_PDS_PRODUCT
_D

COMPANY W_RTL_ITEM_PARENT_TMP.CMP_
NUM

Company
Label

W_PDS_PRODUCT
_D

CO_NAME W_RTL_ITEM_PARENT_TMP.CMP_
NUM||'' ''||
W_RTL_ITEM_PARENT_TMP.CMP_
DESC

Forecastable
Flag

W_PDS_PRODUCT
_D

FORECAST_IND W_RTL_ITEM_PARENT_TMP.FORE
CAST_IND

Class W_PDS_PRODUCT
_D

CLASS_DISPLAY_ID W_RTL_ITEM_PARENT_TMP.PRO
D_CL_NUM

Subclass W_PDS_PRODUCT
_D

SUBCLASS_DISPLAY_ID W_RTL_ITEM_PARENT_TMP.PRO
D_SC_NUM

Brand W_PDS_PRODUCT
_D

BRAND_NAME W_RTL_ITEM_PARENT_TMP.BRA
ND

Brand Label W_PDS_PRODUCT
_D

BRAND_DESCRIPTION W_RTL_ITEM_PARENT_TMP.BRA
ND_DESC

Supplier W_PDS_PRODUCT
_D

SUPPLIER NVL(W_PARTY_ORG_D.SUPPLIER
_NUM''-1'')

Supplier Label W_PDS_PRODUCT
_D

SUP_NAME NVL(W_PARTY_ORG_D.ORG_NAM
E''N/A'')

Diff 1 W_PDS_PRODUCT
_D

DIFF_1 W_PRODUCT_D.DIFF_1

Chapter 6
Transformations from Data Warehouse to Planning

6-6

Measure Target Table Target Column Data Source

Diff 1 Type W_PDS_PRODUCT
_D

DIFF_1_TYPE W_PRODUCT_D.DIFF_1_TYPE

Diff 2 W_PDS_PRODUCT
_D

DIFF_2 W_PRODUCT_D.DIFF_2

Diff 2 Type W_PDS_PRODUCT
_D

DIFF_2_TYPE W_PRODUCT_D.DIFF_2_TYPE

Diff 3 W_PDS_PRODUCT
_D

DIFF_3 W_PRODUCT_D.DIFF_3

Diff 3 Type W_PDS_PRODUCT
_D

DIFF_3_TYPE W_PRODUCT_D.DIFF_3_TYPE

Diff 4 W_PDS_PRODUCT
_D

DIFF_4 W_PRODUCT_D.DIFF_4

Diff 4 Type W_PDS_PRODUCT
_D

DIFF_4_TYPE W_PRODUCT_D.DIFF_4_TYPE

Cost Zone
Group ID

W_PDS_PRODUCT
_D

COST_ZONE_GROUP_ID W_PRODUCT_D.COST_ZONE_GRO
UP_ID

UOM Conv
Factor

W_PDS_PRODUCT
_D

UOM_CONV_FACTOR W_PRODUCT_D.UOM_CONV_FACT
OR

Store Order
Multiple

W_PDS_PRODUCT
_D

STORE_ORD_MULT W_PRODUCT_D.STORE_ORD_MUL
T

Retail Label
Type

W_PDS_PRODUCT
_D

RETAIL_LABEL_TYPE W_PRODUCT_D.RETAIL_LABEL_T
YPE

Retail Label
Value

W_PDS_PRODUCT
_D

RETAIL_LABEL_VALUE W_PRODUCT_D.RETAIL_LABEL_V
ALUE

Handling
Temp

W_PDS_PRODUCT
_D

HANDLING_TEMP W_PRODUCT_D.HANDLING_TEM
P

Handling
Sensitivity

W_PDS_PRODUCT
_D

HANDLING_SENSITIVITY W_PRODUCT_D.HANDLING_SENS
ITIVITY

Catch Weight
Flag

W_PDS_PRODUCT
_D

CATCH_WEIGHT_IND W_PRODUCT_D.CATCH_WEIGHT_
IND

Waste Type W_PDS_PRODUCT
_D

WASTE_TYPE W_PRODUCT_D.WASTE_TYPE

Waste Percent W_PDS_PRODUCT
_D

WASTE_PCT W_PRODUCT_D.WASTE_PCT

Default Waste
Percent

W_PDS_PRODUCT
_D

DEFAULT_WASTE_PCT W_PRODUCT_D.DEFAULT_WASTE
_PCT

Item Service
Level

W_PDS_PRODUCT
_D

ITEM_SERVICE_LEVEL W_PRODUCT_D.ITEM_SERVICE_L
EVEL

Gift Wrap Flag W_PDS_PRODUCT
_D

GIFT_WRAP_IND W_PRODUCT_D.GIFT_WRAP_IND

Ship Alone
Flag

W_PDS_PRODUCT
_D

SHIP_ALONE_IND W_PRODUCT_D.SHIP_ALONE_IND

Order Type W_PDS_PRODUCT
_D

ORDER_TYPE W_PRODUCT_D.ORDER_TYPE

Sales Type W_PDS_PRODUCT
_D

SALE_TYPE W_PRODUCT_D.SALE_TYPE

Deposit Item
Type

W_PDS_PRODUCT
_D

DEPOSIT_ITEM_TYPE W_PRODUCT_D.DEPOSIT_ITEM_T
YPE

Chapter 6
Transformations from Data Warehouse to Planning

6-7

Measure Target Table Target Column Data Source

Container Item W_PDS_PRODUCT
_D

CONTAINER_ITEM W_PRODUCT_D.CONTAINER_ITE
M

Deposit Price
Per UOM

W_PDS_PRODUCT
_D

DEPOSIT_IN_PRICE_PER_
UOM

W_PRODUCT_D.DEPOSIT_IN_PRIC
E_PER_UOM

AIP Case Type W_PDS_PRODUCT
_D

AIP_CASE_TYPE W_PRODUCT_D.AIP_CASE_TYPE

Perishable
Flag

W_PDS_PRODUCT
_D

PERISHABLE_IND W_PRODUCT_D.PERISHABLE_IND

Catch Weight
UOM

W_PDS_PRODUCT
_D

CATCH_WEIGHT_UOM W_PRODUCT_D.CATCH_WEIGHT_
UOM

Orderable Flag W_PDS_PRODUCT
_D

ORDERABLE_FLG W_PRODUCT_D.ORDERABLE_FLG

Inventoried
Flag

W_PDS_PRODUCT
_D

INVENTORIED_FLG W_RTL_ITEM_PARENT_TMP.INVE
NTORIED_FLG

Flexible
Attribute 1

W_PDS_PRODUCT
_D

FLEX1_CHAR_VALUE COALESCE(W_PRODUCT_FLEX_D.
FLEX1_CHAR_VALUE,
W_PRODUCT_D.FLEX1_CHAR_VA
LUE)

Flexible
Attribute 2

W_PDS_PRODUCT
_D

FLEX2_CHAR_VALUE COALESCE(W_PRODUCT_FLEX_D.
FLEX2_CHAR_VALUE,
W_PRODUCT_D.FLEX2_CHAR_VA
LUE)

Flexible
Attribute 3

W_PDS_PRODUCT
_D

FLEX3_CHAR_VALUE COALESCE(W_PRODUCT_FLEX_D.
FLEX3_CHAR_VALUE,
W_PRODUCT_D.FLEX3_CHAR_VA
LUE)

Flexible
Attribute 4

W_PDS_PRODUCT
_D

FLEX4_CHAR_VALUE COALESCE(W_PRODUCT_FLEX_D.
FLEX4_CHAR_VALUE,
W_PRODUCT_D.FLEX4_CHAR_VA
LUE)

Flexible
Attribute 5

W_PDS_PRODUCT
_D

FLEX5_CHAR_VALUE COALESCE(W_PRODUCT_FLEX_D.
FLEX5_CHAR_VALUE,
W_PRODUCT_D.FLEX5_CHAR_VA
LUE)

Flexible
Attribute 6

W_PDS_PRODUCT
_D

FLEX6_CHAR_VALUE COALESCE(W_PRODUCT_FLEX_D.
FLEX6_CHAR_VALUE,
W_PRODUCT_D.FLEX6_CHAR_VA
LUE)

Flexible
Attribute 7

W_PDS_PRODUCT
_D

FLEX7_CHAR_VALUE COALESCE(W_PRODUCT_FLEX_D.
FLEX7_CHAR_VALUE,
W_PRODUCT_D.FLEX7_CHAR_VA
LUE)

Flexible
Attribute 8

W_PDS_PRODUCT
_D

FLEX8_CHAR_VALUE COALESCE(W_PRODUCT_FLEX_D.
FLEX8_CHAR_VALUE,
W_PRODUCT_D.FLEX8_CHAR_VA
LUE)

Flexible
Attribute 9

W_PDS_PRODUCT
_D

FLEX9_CHAR_VALUE COALESCE(W_PRODUCT_FLEX_D.
FLEX9_CHAR_VALUE,
W_PRODUCT_D.FLEX9_CHAR_VA
LUE)

Chapter 6
Transformations from Data Warehouse to Planning

6-8

Measure Target Table Target Column Data Source

Flexible
Attribute 10

W_PDS_PRODUCT
_D

FLEX10_CHAR_VALUE COALESCE(W_PRODUCT_FLEX_D.
FLEX10_CHAR_VALUE,
W_PRODUCT_D.FLEX10_CHAR_V
ALUE)

Flexible
Attribute 11

W_PDS_PRODUCT
_D

FLEX11_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX11_CH
AR_VALUE

Flexible
Attribute 12

W_PDS_PRODUCT
_D

FLEX12_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX12_CH
AR_VALUE

Flexible
Attribute 13

W_PDS_PRODUCT
_D

FLEX13_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX13_CH
AR_VALUE

Flexible
Attribute 14

W_PDS_PRODUCT
_D

FLEX14_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX14_CH
AR_VALUE

Flexible
Attribute 15

W_PDS_PRODUCT
_D

FLEX15_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX15_CH
AR_VALUE

Flexible
Attribute 16

W_PDS_PRODUCT
_D

FLEX16_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX16_CH
AR_VALUE

Flexible
Attribute 17

W_PDS_PRODUCT
_D

FLEX17_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX17_CH
AR_VALUE

Flexible
Attribute 18

W_PDS_PRODUCT
_D

FLEX18_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX18_CH
AR_VALUE

Flexible
Attribute 19

W_PDS_PRODUCT
_D

FLEX19_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX19_CH
AR_VALUE

Flexible
Attribute 20

W_PDS_PRODUCT
_D

FLEX20_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX20_CH
AR_VALUE

Flexible
Attribute 21

W_PDS_PRODUCT
_D

FLEX21_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX21_CH
AR_VALUE

Flexible
Attribute 22

W_PDS_PRODUCT
_D

FLEX22_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX22_CH
AR_VALUE

Flexible
Attribute 23

W_PDS_PRODUCT
_D

FLEX23_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX23_CH
AR_VALUE

Flexible
Attribute 24

W_PDS_PRODUCT
_D

FLEX24_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX24_CH
AR_VALUE

Flexible
Attribute 25

W_PDS_PRODUCT
_D

FLEX25_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX25_CH
AR_VALUE

Flexible
Attribute 26

W_PDS_PRODUCT
_D

FLEX26_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX26_CH
AR_VALUE

Flexible
Attribute 27

W_PDS_PRODUCT
_D

FLEX27_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX27_CH
AR_VALUE

Flexible
Attribute 28

W_PDS_PRODUCT
_D

FLEX28_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX28_CH
AR_VALUE

Flexible
Attribute 29

W_PDS_PRODUCT
_D

FLEX29_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX29_CH
AR_VALUE

Flexible
Attribute 30

W_PDS_PRODUCT
_D

FLEX30_CHAR_VALUE W_PRODUCT_FLEX_D.FLEX30_CH
AR_VALUE

Pack Flag W_PDS_PRODUCT
_D

PACK_FLG W_PRODUCT_D.PACK_FLG

Image
Filename

W_PDS_PRODUCT
_D

PRODUCT_IMAGE_NAME W_PRODUCT_ATTR_D.
PRODUCT_IMAGE_NAME

Chapter 6
Transformations from Data Warehouse to Planning

6-9

Measure Target Table Target Column Data Source

Image Address W_PDS_PRODUCT
_D

PRODUCT_IMAGE_ADDR W_PRODUCT_ATTR_D.
PRODUCT_IMAGE_ADDR

Attr Image
Filename

W_PDS_PRODUCT
_D

PRODUCT_ATTR_IMAGE_
NAME

W_PRODUCT_ATTR_D.
PRODUCT_ATTR_IMAGE_NAME

Attr Image
Address

W_PDS_PRODUCT
_D

PRODUCT_ATTR_IMAGE_
ADDR

W_PRODUCT_ATTR_D.
PRODUCT_ATTR_IMAGE_ADDR

Image URL W_PDS_PRODUCT
_D

PRODUCT_IMAGE W_PRODUCT_ATTR_D.
PRODUCT_IMAGE_ADDR ||
W_PRODUCT_ATTR_D.
PRODUCT_IMAGE_NAME

Parent Image
Filename

W_PDS_PRODUCT
_D

ITEM_PARENT_IMAGE_N
AME

W_PRODUCT_ATTR_D.
PRODUCT_IMAGE_NAME (for
parent style item)

Parent Image
Address

W_PDS_PRODUCT
_D

ITEM_PARENT_ADDR W_PRODUCT_ATTR_D.
PRODUCT_IMAGE_ADDR (for
parent style item)

Parent Image
URL

W_PDS_PRODUCT
_D

ITEM_PARENT_IMAGE W_PRODUCT_ATTR_D.
PRODUCT_IMAGE_ADDR ||
W_PRODUCT_ATTR_D.
PRODUCT_IMAGE_NAME (for
parent style item)

Sellable Flag W_PDS_PRODUCT
_D

SELLABLE_FLG W_PRODUCT_ATTR_D.PRODUCT_
ATTR4_NAME

Initial Item
Cost

W_PDS_PRODUCT
_D

INITIAL_ITEM_COST W_PRODUCT_ATTR_D.PRODUCT_
ATTR1_NUM_VALUE

Initial Item
Retail

W_PDS_PRODUCT
_D

INITIAL_ITEM_RETAIL W_PRODUCT_ATTR_D.PRODUCT_
ATTR5_NUM_VALUE

Organization Mapping
The location dimension and organization hierarchy data is loaded mainly from the
ORGANIZATION.csv file or from RMFCS. The primary data warehouse table for location data is
W_INT_ORG_D while the hierarchy comes from W_INT_ORG_DH, but several other tables are used
to pre-calculate the values before export. The mapping below is used by the interface program
to move data from the data warehouse to RDX. W_DOMAIN_MEMBER_LKP_TL is the holding table
for translatable description strings. W_INT_ORG_ATTR_D is for location attributes. Other tables
ending in TL are for lookup strings for specific entities like store names. The mappings are
separated by store and warehouse, when different logic is used based on the location type.
Only virtual warehouses are exported here, physical warehouse records are excluded from the
export.

Measure Target Table Target Column Data Source

Location W_PDS_ORGANIZ
ATION_D

LOCATION W_INT_ORG_D.ORG_NUM

Location Label W_PDS_ORGANIZ
ATION_D

LOC_NAME W_INT_ORG_D.ORG_NUM||'' ''||
W_INT_ORG_D_TL.ORG_NAME

District W_PDS_ORGANIZ
ATION_D

DISTRICT 'WH''||W_INT_ORG_D.ORG_NUM
(warehouses),
W_INT_ORG_DH_RTL_TMP.ORG_D
S_NUM (stores)

Chapter 6
Transformations from Data Warehouse to Planning

6-10

Measure Target Table Target Column Data Source

District Label W_PDS_ORGANIZ
ATION_D

DISTRICT_NAME W_INT_ORG_D_TL.ORG_NAME
(warehouses),
W_DOMAIN_MEMBER_LKP_TL.D
OMAIN_MEMBER_NAME (stores)

Region W_PDS_ORGANIZ
ATION_D

REGION ''WH''||W_INT_ORG_D.ORG_NUM
(warehouses),
W_INT_ORG_DH_RTL_TMP.ORG_R
G_NUM (stores)

Region Label W_PDS_ORGANIZ
ATION_D

REGION_NAME W_INT_ORG_D_TL.ORG_NAME
(warehouses),
W_DOMAIN_MEMBER_LKP_TL.D
OMAIN_MEMBER_NAME (stores)

Area W_PDS_ORGANIZ
ATION_D

AREA ''WH''||W_INT_ORG_D.ORG_NUM
(warehouses),
W_INT_ORG_DH_RTL_TMP.ORG_A
R_NUM (stores)

Area Label W_PDS_ORGANIZ
ATION_D

AREA_NAME W_INT_ORG_D_TL.ORG_NAME
(warehouses),
W_DOMAIN_MEMBER_LKP_TL.D
OMAIN_MEMBER_NAME (stores)

Chain W_PDS_ORGANIZ
ATION_D

CHAIN ''WH''||W_INT_ORG_D.ORG_NUM
(warehouses),
W_INT_ORG_DH_RTL_TMP.ORG_C
H_NUM (stores)

Chain Label W_PDS_ORGANIZ
ATION_D

CHAIN_NAME W_INT_ORG_D_TL.ORG_NAME
(warehouses),
W_DOMAIN_MEMBER_LKP_TL.D
OMAIN_MEMBER_NAME (stores)

Company W_PDS_ORGANIZ
ATION_D

COMPANY W_INT_ORG_DH.ORG_TOP_NUM

Company
Label

W_PDS_ORGANIZ
ATION_D

CO_NAME W_DOMAIN_MEMBER_LKP_TL.D
OMAIN_MEMBER_NAME

Company
Primary
Currency

W_PDS_ORGANIZ
ATION_D

COMPANY_CURRENCY RA_SRC_CURR_PARAM_G.COMPA
NY_CURRENCY

Location Type
Code

W_PDS_ORGANIZ
ATION_D

LOC_TYPE W_INT_ORG_ATTR_D.ORG_ATTR4
2_NAME

Location Type W_PDS_ORGANIZ
ATION_D

LOC_TYPE_NAME ''Warehouse'' or "Store"

Physical
Warehouse ID
for VWH

W_PDS_ORGANIZ
ATION_D

PHYSICAL_WH W_INT_ORG_ATTR_D.ORG_ATTR1
4_NAME

Physical
Warehouse
Name

W_PDS_ORGANIZ
ATION_D

PHYSICAL_WH_NAME W_INT_ORG_D_TL.ORG_NAME

Channel ID W_PDS_ORGANIZ
ATION_D

CHANNEL_ID NVL(TO_CHAR(W_INT_ORG_ATTR
_D.ORG_ATTR5_NUM_VALUE)
''NA'')

Channel Desc W_PDS_ORGANIZ
ATION_D

CHANNEL_NAME NVL(W_INT_ORG_ATTR_D.ORG_A
TTR5_NAME ''UNASSIGNED'')

Chapter 6
Transformations from Data Warehouse to Planning

6-11

Measure Target Table Target Column Data Source

Store Class W_PDS_ORGANIZ
ATION_D

STORE_CLASS CASE
NVL(W_INT_ORG_ATTR_D.ORG_A
TTR41_NAME,''-1'') WHEN ''-1''
THEN ''NA'' ELSE
W_INT_ORG_ATTR_D.ORG_ATTR4
1_NAME END

Store Class
Desc

W_PDS_ORGANIZ
ATION_D

STORE_CLASS_DESCRIPT
ION

CASE
NVL(W_DOMAIN_MEMBER_LKP_
TL.DOMAIN_MEMBER_NAME,''-1''
) WHEN ''-1'' THEN ''NA'' ELSE
W_DOMAIN_MEMBER_LKP_TL.D
OMAIN_MEMBER_NAME END

Store Format W_PDS_ORGANIZ
ATION_D

STORE_FORMAT CASE
NVL(W_INT_ORG_ATTR_D.ORG_A
TTR22_NAME,''-1'') WHEN ''-1''
THEN ''NA'' ELSE
W_INT_ORG_ATTR_D.ORG_ATTR2
2_NAME END

Store Format
Desc

W_PDS_ORGANIZ
ATION_D

STORE_FORMAT_NAME CASE
NVL(W_DOMAIN_MEMBER_LKP_
TL.DOMAIN_MEMBER_NAME,''-1''
) WHEN ''-1'' THEN ''NA'' ELSE
W_DOMAIN_MEMBER_LKP_TL.D
OMAIN_MEMBER_NAME END

Store Close
Date

W_PDS_ORGANIZ
ATION_D

STORE_CLOSE_DATE W_INT_ORG_ATTR_D.ORG_ATTR3
_DATE

Store Open
Date

W_PDS_ORGANIZ
ATION_D

STORE_OPEN_DATE W_INT_ORG_ATTR_D.ORG_ATTR2
_DATE

Store Remodel
Date

W_PDS_ORGANIZ
ATION_D

REMODEL_DATE W_INT_ORG_ATTR_D.ORG_ATTR1
_DATE

Location
Currency Code

W_PDS_ORGANIZ
ATION_D

CURRENCY W_INT_ORG_D.W_CURR_CODE

Store Type W_PDS_ORGANIZ
ATION_D

STORE_TYPE W_INT_ORG_ATTR_D.ORG_ATTR2
3_NAME

Stockholding
Flag

W_PDS_ORGANIZ
ATION_D

STOCKHOLDING_IND NVL(W_INT_ORG_ATTR_D.ORG_A
TTR19_NAME, ’Y’)

Default
Warehouse ID

W_PDS_ORGANIZ
ATION_D

DEFAULT_WH_ID W_INT_ORG_ATTR_D.ORG_ATTR2
0_NAME

Store Format
Description

W_PDS_ORGANIZ
ATION_D

STORE_FORMAT_DESC W_INT_ORG_ATTR_D.ORG_ATTR2
1_NAME

Store Format
ID

W_PDS_ORGANIZ
ATION_D

STORE_FORMAT_ID W_INT_ORG_ATTR_D.ORG_ATTR2
2_NAME

Store UPS Disst W_PDS_ORGANIZ
ATION_D

STORE_UPS_DIST W_INT_ORG_ATTR_D.ORG_ATTR2
4_NAME

Time Zone W_PDS_ORGANIZ
ATION_D

TIME_ZONE W_INT_ORG_ATTR_D.ORG_ATTR2
5_NAME

Transfer Zone
ID

W_PDS_ORGANIZ
ATION_D

TRANSFER_ZONE_ID W_INT_ORG_ATTR_D.ORG_ATTR2
6_NAME

Transfer Zone
Description

W_PDS_ORGANIZ
ATION_D

TRANSFER_ZONE_DESC W_INT_ORG_ATTR_D.ORG_ATTR2
7_NAME

Chapter 6
Transformations from Data Warehouse to Planning

6-12

Measure Target Table Target Column Data Source

VAT Region ID W_PDS_ORGANIZ
ATION_D

VAT_REGION_ID W_INT_ORG_ATTR_D.ORG_ATTR2
8_NAME

VAT Include
Flag

W_PDS_ORGANIZ
ATION_D

VAT_INCLUDE_FLG W_INT_ORG_ATTR_D.ORG_ATTR2
9_NAME

Virtual
Warehouse
Flag

W_PDS_ORGANIZ
ATION_D

VIRTUAL_WH_FLG W_INT_ORG_ATTR_D.ORG_ATTR3
0_NAME

Transfer Entity
ID

W_PDS_ORGANIZ
ATION_D

TRANSFER_ENTITY_ID W_INT_ORG_ATTR_D.ORG_ATTR3
1_NAME

Transfer Entity
Description

W_PDS_ORGANIZ
ATION_D

TRANSFER_ENTITY_DES
C

W_INT_ORG_ATTR_D.ORG_ATTR3
2_NAME

Wholesale/
Franchise Cust
Type

W_PDS_ORGANIZ
ATION_D

WF_CUST_TYPE W_INT_ORG_ATTR_D.ORG_ATTR3
5_NAME

Wholesale/
Franchise
Group ID

W_PDS_ORGANIZ
ATION_D

WF_GROUP_ID W_INT_ORG_ATTR_D.ORG_ATTR3
6_NAME

Wholesale/
Franchise
Group Name

W_PDS_ORGANIZ
ATION_D

WF_GROUP_NAME W_INT_ORG_ATTR_D.ORG_ATTR3
7_NAME

Wholesale/
Franchise Cust
ID

W_PDS_ORGANIZ
ATION_D

WF_CUST_ID W_INT_ORG_ATTR_D.ORG_ATTR3
8_NAME

Wholesale/
Franchise Cust
Name

W_PDS_ORGANIZ
ATION_D

WF_CUST_NAME W_INT_ORG_ATTR_D.ORG_ATTR3
9_NAME

Sister Store ID W_PDS_ORGANIZ
ATION_D

SISTER_STORE_ID W_INT_ORG_ATTR_D.ORG_ATTR4
0_NAME

Store Class
Type

W_PDS_ORGANIZ
ATION_D

STORE_CLASS_TYPE W_INT_ORG_ATTR_D.ORG_ATTR4
1_NAME

Store Class
Desc

W_PDS_ORGANIZ
ATION_D

STORE_CLASS_DESC W_INT_ORG_ATTR_D.ORG_ATTR4
4_NAME

Customer
Order Location
Indicator

W_PDS_ORGANIZ
ATION_D

CUST_ORDER_LOC_IND W_INT_ORG_ATTR_D.ORG_ATTR4
8_NAME

Customer
Order
Shipping
Indicator

W_PDS_ORGANIZ
ATION_D

CUST_ORDER_SHIP_IND W_INT_ORG_ATTR_D.ORG_ATTR4
9_NAME

Gift Wrapping
Indicator

W_PDS_ORGANIZ
ATION_D

GIFT_WRAPPING_IND W_INT_ORG_ATTR_D.ORG_ATTR5
0_NAME

Location
Language ISO
Code

W_PDS_ORGANIZ
ATION_D

LANG_ISO_CODE W_INT_ORG_ATTR_D.ORG_ATTR5
1_NAME

WH Delivery
Policy

W_PDS_ORGANIZ
ATION_D

WH_DELIVERY_POLICY W_INT_ORG_ATTR_D.ORG_ATTR5
4_NAME

WH
Redistribution
Indicator

W_PDS_ORGANIZ
ATION_D

WH_REDIST_IND W_INT_ORG_ATTR_D.ORG_ATTR5
5_NAME

Chapter 6
Transformations from Data Warehouse to Planning

6-13

Measure Target Table Target Column Data Source

WH
Replenishment
Indicator

W_PDS_ORGANIZ
ATION_D

WH_REPL_IND W_INT_ORG_ATTR_D.ORG_ATTR5
6_NAME

WH Finisher
Indicator

W_PDS_ORGANIZ
ATION_D

WH_FINISHER_IND W_INT_ORG_ATTR_D.ORG_ATTR5
7_NAME

Virtual WH
Type

W_PDS_ORGANIZ
ATION_D

VIRTUAL_WH_TYPE W_INT_ORG_ATTR_D.ORG_ATTR5
8_NAME

DUNS Number W_PDS_ORGANIZ
ATION_D

DUNS_NUMBER W_INT_ORG_ATTR_D.ORG_ATTR5
9_NAME

DUNS Location W_PDS_ORGANIZ
ATION_D

DUNS_LOC W_INT_ORG_ATTR_D.ORG_ATTR6
0_NAME

Selling Area
Sq. Ft.

W_PDS_ORGANIZ
ATION_D

SELLING_AREA W_INT_ORG_ATTR_D.ORG_ATTR1
_NUM_VALUE

Linear
Distance

W_PDS_ORGANIZ
ATION_D

LINEAR_DISTANCE W_INT_ORG_ATTR_D.ORG_ATTR2
_NUM_VALUE

Total Sq. Ft. W_PDS_ORGANIZ
ATION_D

TOTAL_AREA W_INT_ORG_ATTR_D.ORG_ATTR3
_NUM_VALUE

WH Inbound
Handling Days

W_PDS_ORGANIZ
ATION_D

INBOUND_HANDLING_D
AYS

W_INT_ORG_ATTR_D.ORG_ATTR6
_NUM_VALUE

Stop Order
Days

W_PDS_ORGANIZ
ATION_D

STOP_ORDER_DAYS W_INT_ORG_ATTR_D.ORG_ATTR7
_NUM_VALUE

Start Order
Days

W_PDS_ORGANIZ
ATION_D

START_ORDER_DAYS W_INT_ORG_ATTR_D.ORG_ATTR8
_NUM_VALUE

Flexible
Attribute 1

W_PDS_ORGANIZ
ATION_D

FLEX1_CHAR_VALUE COALESCE(W_ORGANIZATION_F
LEX_D.FLEX1_CHAR_VALUE,W_I
NT_ORG_ATTR_D.FLEX1_CHAR_V
ALUE)

Flexible
Attribute 2

W_PDS_ORGANIZ
ATION_D

FLEX2_CHAR_VALUE COALESCE(W_ORGANIZATION_F
LEX_D.FLEX2_CHAR_VALUE,W_I
NT_ORG_ATTR_D.FLEX2_CHAR_V
ALUE)

Flexible
Attribute 3

W_PDS_ORGANIZ
ATION_D

FLEX3_CHAR_VALUE COALESCE(W_ORGANIZATION_F
LEX_D.FLEX3_CHAR_VALUE,W_I
NT_ORG_ATTR_D.FLEX3_CHAR_V
ALUE)

Flexible
Attribute 4

W_PDS_ORGANIZ
ATION_D

FLEX4_CHAR_VALUE COALESCE(W_ORGANIZATION_F
LEX_D.FLEX4_CHAR_VALUE,W_I
NT_ORG_ATTR_D.FLEX4_CHAR_V
ALUE)

Flexible
Attribute 5

W_PDS_ORGANIZ
ATION_D

FLEX5_CHAR_VALUE COALESCE(W_ORGANIZATION_F
LEX_D.FLEX5_CHAR_VALUE,W_I
NT_ORG_ATTR_D.FLEX5_CHAR_V
ALUE)

Flexible
Attribute 6

W_PDS_ORGANIZ
ATION_D

FLEX6_CHAR_VALUE COALESCE(W_ORGANIZATION_F
LEX_D.FLEX6_CHAR_VALUE,W_I
NT_ORG_ATTR_D.FLEX6_CHAR_V
ALUE)

Flexible
Attribute 7

W_PDS_ORGANIZ
ATION_D

FLEX7_CHAR_VALUE COALESCE(W_ORGANIZATION_F
LEX_D.FLEX7_CHAR_VALUE,W_I
NT_ORG_ATTR_D.FLEX7_CHAR_V
ALUE)

Chapter 6
Transformations from Data Warehouse to Planning

6-14

Measure Target Table Target Column Data Source

Flexible
Attribute 8

W_PDS_ORGANIZ
ATION_D

FLEX8_CHAR_VALUE COALESCE(W_ORGANIZATION_F
LEX_D.FLEX8_CHAR_VALUE,W_I
NT_ORG_ATTR_D.FLEX8_CHAR_V
ALUE)

Flexible
Attribute 9

W_PDS_ORGANIZ
ATION_D

FLEX9_CHAR_VALUE COALESCE(W_ORGANIZATION_F
LEX_D.FLEX9_CHAR_VALUE,W_I
NT_ORG_ATTR_D.FLEX9_CHAR_V
ALUE)

Flexible
Attribute 10

W_PDS_ORGANIZ
ATION_D

FLEX10_CHAR_VALUE COALESCE(W_ORGANIZATION_F
LEX_D.FLEX10_CHAR_VALUE,W_I
NT_ORG_ATTR_D.FLEX10_CHAR_
VALUE)

Flexible
Attribute 11

W_PDS_ORGANIZ
ATION_D

FLEX11_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
11_CHAR_VALUE

Flexible
Attribute 12

W_PDS_ORGANIZ
ATION_D

FLEX12_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
12_CHAR_VALUE

Flexible
Attribute 13

W_PDS_ORGANIZ
ATION_D

FLEX13_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
13_CHAR_VALUE

Flexible
Attribute 14

W_PDS_ORGANIZ
ATION_D

FLEX14_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
14_CHAR_VALUE

Flexible
Attribute 15

W_PDS_ORGANIZ
ATION_D

FLEX15_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
15_CHAR_VALUE

Flexible
Attribute 16

W_PDS_ORGANIZ
ATION_D

FLEX16_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
16_CHAR_VALUE

Flexible
Attribute 17

W_PDS_ORGANIZ
ATION_D

FLEX17_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
17_CHAR_VALUE

Flexible
Attribute 18

W_PDS_ORGANIZ
ATION_D

FLEX18_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
18_CHAR_VALUE

Flexible
Attribute 19

W_PDS_ORGANIZ
ATION_D

FLEX19_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
19_CHAR_VALUE

Flexible
Attribute 20

W_PDS_ORGANIZ
ATION_D

FLEX20_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
20_CHAR_VALUE

Flexible
Attribute 21

W_PDS_ORGANIZ
ATION_D

FLEX21_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
21_CHAR_VALUE

Flexible
Attribute 22

W_PDS_ORGANIZ
ATION_D

FLEX22_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
22_CHAR_VALUE

Flexible
Attribute 23

W_PDS_ORGANIZ
ATION_D

FLEX23_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
23_CHAR_VALUE

Flexible
Attribute 24

W_PDS_ORGANIZ
ATION_D

FLEX24_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
24_CHAR_VALUE

Flexible
Attribute 25

W_PDS_ORGANIZ
ATION_D

FLEX25_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
25_CHAR_VALUE

Flexible
Attribute 26

W_PDS_ORGANIZ
ATION_D

FLEX26_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
26_CHAR_VALUE

Flexible
Attribute 27

W_PDS_ORGANIZ
ATION_D

FLEX27_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
27_CHAR_VALUE

Flexible
Attribute 28

W_PDS_ORGANIZ
ATION_D

FLEX28_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
28_CHAR_VALUE

Chapter 6
Transformations from Data Warehouse to Planning

6-15

Measure Target Table Target Column Data Source

Flexible
Attribute 29

W_PDS_ORGANIZ
ATION_D

FLEX29_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
29_CHAR_VALUE

Flexible
Attribute 30

W_PDS_ORGANIZ
ATION_D

FLEX30_CHAR_VALUE W_ORGANIZATION_FLEX_D.FLEX
30_CHAR_VALUE

Calendar Mapping
The calendar hierarchy data is loaded from the CALENDAR.csv file or from RMFCS. The
calendar must be a fiscal calendar (such as 4-4-5 or 4-5-4). The primary data warehouse table
having day-level data is W_MCAL_DAY_D. AIF DATA jobs automatically generate the calendar
using the start/end dates for the fiscal periods in the input file. AIF DATA jobs also generate an
internal Gregorian calendar at the same time the fiscal calendar is loaded, and this data is
exported alongside the fiscal calendar for extensions and customizations.

Measure Target Table Target Column Data Source

Day Date W_PDS_CALENDA
R_D

DAY W_MCAL_DAY_D.MCAL_DAY_DT

Week Ending
Date

W_PDS_CALENDA
R_D

WEEK W_MCAL_DAY_D.MCAL_WEEK_E
ND_DT

Month
Number

W_PDS_CALENDA
R_D

MONTH W_MCAL_DAY_D.MCAL_PERIOD

Quarter
Number

W_PDS_CALENDA
R_D

QUARTER W_MCAL_DAY_D.MCAL_QTR

Half Year
Number

W_PDS_CALENDA
R_D

HALF CASE WHEN
W_MCAL_DAY_D.MCAL_QTR <= 2
THEN 1 ELSE 2 END

Year Number W_PDS_CALENDA
R_D

YEAR W_MCAL_DAY_D.MCAL_YEAR

Week of Year W_PDS_CALENDA
R_D

WEEK_OF_YEAR W_MCAL_DAY_D.MCAL_WEEK_O
F_YEAR

Day of Week W_PDS_CALENDA
R_D

DAY_OF_WEEK W_MCAL_DAY_D.MCAL_DAY_OF_
WEEK

Gregorian Day
of Week

W_PDS_CALENDA
R_D

GREG_DAY_OF_WEEK W_MCAL_DAY_D.CAL_DAY_OF_T
HE_WEEK_CODE

Gregorian Day
of Month

W_PDS_CALENDA
R_D

GREG_DAY_OF_MONTH W_MCAL_DAY_D.CAL_DAY_OF_M
ONTH

Gregorian Day
of Year

W_PDS_CALENDA
R_D

GREG_DAY_OF_YEAR W_MCAL_DAY_D.CAL_DAY_OF_YE
AR

Gregorian
Week ID

W_PDS_CALENDA
R_D

GREG_WEEK_ID W_MCAL_DAY_D.CAL_WEEK_WI
D

Gregorian
Week Ending
Date

W_PDS_CALENDA
R_D

GREG_WEEK_END_DT W_MCAL_DAY_D.CAL_WEEK_EN
D_DT

Gregorian
Week Name

W_PDS_CALENDA
R_D

GREG_WEEK_NAME W_MCAL_DAY_D.CAL_WEEK_NA
ME

GregorianMon
th ID

W_PDS_CALENDA
R_D

GREG_MONTH_ID W_MCAL_DAY_D.CAL_MONTH_W
ID

Chapter 6
Transformations from Data Warehouse to Planning

6-16

Measure Target Table Target Column Data Source

Gregorian
Month of Year

W_PDS_CALENDA
R_D

GREG_MONTH W_MCAL_DAY_D.CAL_MONTH

Gregorian
Month Ending
Date

W_PDS_CALENDA
R_D

GREG_MONTH_END_DT W_MCAL_DAY_D.CAL_MONTH_E
ND_DT

Gregorian
Month Name

W_PDS_CALENDA
R_D

GREG_MONTH_NAME W_MCAL_DAY_D.W_CAL_MONTH
_CODE

Gregorian
Quarter ID

W_PDS_CALENDA
R_D

GREG_QTR_ID W_MCAL_DAY_D.CAL_QTR_WID

Gregorian
Quarter of
Year

W_PDS_CALENDA
R_D

GREG_QTR W_MCAL_DAY_D.CAL_QTR

Gregorian
Quarter
Ending Date

W_PDS_CALENDA
R_D

GREG_QTR_END_DT W_MCAL_DAY_D.CAL_QTR_END_
DT

Gregorian
Quarter Name

W_PDS_CALENDA
R_D

GREG_QTR_NAME W_MCAL_DAY_D.CAL_QTR_NAME

Gregorian Half
of Year

W_PDS_CALENDA
R_D

GREG_HALF W_MCAL_DAY_D.CAL_HALF

Gregorian Half
Name

W_PDS_CALENDA
R_D

GREG_HALF_NAME W_MCAL_DAY_D.CAL_HALF_NA
ME

Gregorian Year W_PDS_CALENDA
R_D

GREG_YEAR W_MCAL_DAY_D.CAL_YEAR

Gregorian Year
Ending Date

W_PDS_CALENDA
R_D

GREG_YEAR_END_DT W_MCAL_DAY_D.CAL_YEAR_END
_DT

Gregorian Half
of Year ID

W_PDS_CALENDA
R_D

GREG_HALF_ID W_MCAL_DAY_D.CAL_YEAR ||
W_MCAL_DAY_D.CAL_HALF

Exchange Rate Mapping
The exchange rate data is loaded from the EXCH_RATE.csv file or from RMFCS.

Measure Target Table Target Column Data Source

Start Date W_PDS_EXCH_RAT
E_G

EFFECTIVE_DATE W_EXCH_RATE_G.START_DT

From Currency
Code

W_PDS_EXCH_RAT
E_G

FROM_CURRENCY_CODE W_EXCH_RATE_G.W_FROM_CURC
Y_CODE

To Currency
Code

W_PDS_EXCH_RAT
E_G

TO_CURRENCY_CODE W_EXCH_RATE_G.W_TO_CURCY_C
ODE

Exchange Rate
Type

W_PDS_EXCH_RAT
E_G

EXCHANGE_TYPE W_EXCH_RATE_G.RATE_TYPE

Exchange Rate W_PDS_EXCH_RAT
E_G

EXCHANGE_RATE W_EXCH_RATE_G.EXCH_RATE

User Defined Attributes (UDA) Mapping
The user-defined attributes label data is loaded from the ATTR.csv file or from RMFCS. This
table is only for the attribute group and value labels and hierarchy. UDA type code refers to 3

Chapter 6
Transformations from Data Warehouse to Planning

6-17

types (LV, FF, or DT) which is a list of values, free-form text, or date attribute type. Different
implementations may require different subsets of UDAs from their source system.

Measure Target Table Target Column Data Source

UDA Type W_PDS_UDA_D UDA_TYPE_CODE W_RTL_PRODUCT_ATTR_D.PROD_
ATTR_TYPE

UDA Group ID W_PDS_UDA_D UDA_ID W_RTL_PRODUCT_ATTR_D.PROD_
ATTR_GROUP_ID

UDA Group
Desc

W_PDS_UDA_D UDA_DESC W_DOMAIN_MEMBER_LKP_TL.D
OMAIN_MEMBER_NAME

UDA Value ID W_PDS_UDA_D UDA_VALUE W_RTL_PRODUCT_ATTR_D.PROD_
ATTR_ID

UDA Value
Desc

W_PDS_UDA_D UDA_VALUE_DESC W_DOMAIN_MEMBER_LKP_TL.D
OMAIN_MEMBER_NAME

Differentiator Attributes Mapping
The differentiator data is loaded from the ATTR.csv file or from RMFCS. This table is only for
the attribute group and value labels and hierarchy. Diffs include any input data marked as type
DIFF, as well as pre-defined diff types such as COLOR and SIZE.

Measure Target Table Target Column Data Source

Diff Group ID W_PDS_DIFF_D DIFF_TYPE_ID W_RTL_PRODUCT_ATTR_D.PROD_
ATTR_GROUP_ID

Diff Group
Desc

W_PDS_DIFF_D DIFF_TYPE_DESC W_RTL_PRODUCT_ATTR_D_TL.PR
OD_ATTR_TYPE_DESC

Diff ID W_PDS_DIFF_D DIFF_ID W_RTL_PRODUCT_ATTR_D.PROD_
ATTR_ID

Diff Desc W_PDS_DIFF_D DIFF_DESC W_RTL_PRODUCT_ATTR_D_TL.PR
OD_ATTR_DESC

Item Attributes Mapping
The item attribute relationship data is loaded from the PROD_ATTR.csv file or from RMFCS. This
is the relationship between items (SKUs) and their attributes (UDAs).

Measure Target Table Target Column Data Source

Item W_PDS_PRODUCT
_ATTR_D

ITEM W_PRODUCT_D_RTL_TMP.PROD_I
T_NUM

UDA Type W_PDS_PRODUCT
_ATTR_D

UDA_TYPE W_RTL_ITEM_GRP1_D.
FLEX_ATTRIB_2_CHAR

UDA Group ID W_PDS_PRODUCT
_ATTR_D

UDA_ID W_RTL_ITEM_GRP1_D.
FLEX_ATTRIB_1_CHAR

UDA Group
Desc

W_PDS_PRODUCT
_ATTR_D

UDA_DESC W_DOMAIN_MEMBER_LKP_TL.
DOMAIN_MEMBER_NAME

UDA Value ID W_PDS_PRODUCT
_ATTR_D

UDA_VALUE W_RTL_ITEM_GRP1_D.
FLEX_ATTRIB_3_CHAR

UDA Value
Desc

W_PDS_PRODUCT
_ATTR_D

UDA_VALUE_DESC W_DOMAIN_MEMBER_LKP_TL.
DOMAIN_MEMBER_NAME

Chapter 6
Transformations from Data Warehouse to Planning

6-18

Differentiator Group Mapping
The differentiator groups data is loaded from the DIFF_GROUP.csv file or from RMFCS. These
are for assortment planning diff group hierarchy and are the same groups used in AIF Size
Profile Science.

Measure Target Table Target Column Data Source

Diff Type W_PDS_DIFF_GRP
_D

DIFF_TYPE_ID W_RTL_DIFF_GRP_D. DIFF_TYPE

Diff ID W_PDS_DIFF_GRP
_D

DIFF_ID W_RTL_DIFF_GRP_D. DIFF_ID

Diff Desc W_PDS_DIFF_GRP
_D

DIFF_DESC W_DOMAIN_MEMBER_LKP_TL.
DOMAIN_MEMBER_NAME

Diff Group ID W_PDS_DIFF_GRP
_D

DIFF_GROUP_ID W_RTL_DIFF_GRP_D.
DIFF_GROUP_ID

Diff Group
Desc

W_PDS_DIFF_GRP
_D

DIFF_GROUP_DESC W_RTL_DIFF_GRP_D_TL.
DIFF_GROUP_DESC

Brand Mapping
The brand data is loaded from the PRODUCT.csv file or from RMFCS. The product data load
programs will insert the brand information into the additional tables used below (as long as
these tables are enabled during foundation loads).

Measure Target Table Target Column Data Source

Brand ID W_PDS_BRAND_D BRAND_NAME W_RTL_PRODUCT_BRAND_D.
BRAND_ID

Brand Desc W_PDS_BRAND_D BRAND_DESCRIPTION W_RTL_PRODUCT_BRAND_D_TL.
BRAND_DESCR

Replenishment Attribute Mapping
The replenishment attribute data is loaded from the PROD_LOC_REPL.csv file or from RMFCS.
This data is not used by any planning solution in the default templates, but it is made available
for customer extensions.

Measure Target Table Target Column Data Source

Item W_PDS_REPL_ATT
R_IT_LC_D

ITEM W_PRODUCT_D_RTL_TMP.PROD_I
T_NUM

Location W_PDS_REPL_ATT
R_IT_LC_D

LOCATION W_INT_ORG_D_RTL_TMP.ORG_NU
M

Food Stamp
Flag

W_PDS_REPL_ATT
R_IT_LC_D

FOOD_STAMP_IND W_INVENTORY_PRODUCT_ATTR_
D.INV_ATTR1_NAME

Reward
Eligible Flag

W_PDS_REPL_ATT
R_IT_LC_D

REWARD_ELIGIBLE_IND W_INVENTORY_PRODUCT_ATTR_
D.INV_ATTR2_NAME

Natl Brand
Comp Item

W_PDS_REPL_ATT
R_IT_LC_D

NATL_BRAND_COMP_ITE
M

W_INVENTORY_PRODUCT_ATTR_
D.INV_ATTR3_NAME

Elect Mkt
Clubs

W_PDS_REPL_ATT
R_IT_LC_D

ELECT_MKT_CLUBS W_INVENTORY_PRODUCT_ATTR_
D.INV_ATTR4_NAME

Chapter 6
Transformations from Data Warehouse to Planning

6-19

Measure Target Table Target Column Data Source

Store
Reorderable
Flag

W_PDS_REPL_ATT
R_IT_LC_D

STORE_REORDERABLE_I
ND

W_INVENTORY_PRODUCT_ATTR_
D.INV_ATTR5_NAME

Manual Price
Entry

W_PDS_REPL_ATT
R_IT_LC_D

MANUAL_PRICE_ENTRY W_INVENTORY_PRODUCT_ATTR_
D.INV_ATTR6_NAME

WIC Flag W_PDS_REPL_ATT
R_IT_LC_D

WIC_IND W_INVENTORY_PRODUCT_ATTR_
D.INV_ATTR7_NAME

In Store
Market Basket

W_PDS_REPL_ATT
R_IT_LC_D

IN_STORE_MARKET_BAS
KET

W_INVENTORY_PRODUCT_ATTR_
D.INV_ATTR8_NAME

Returnable
Flag

W_PDS_REPL_ATT
R_IT_LC_D

RETURNABLE_IND W_INVENTORY_PRODUCT_ATTR_
D.INV_ATTR9_NAME

Launch Date W_PDS_REPL_ATT
R_IT_LC_D

LAUNCH_DATE W_INVENTORY_PRODUCT_ATTR_
D.INV_ATTR1_DATE

Refundable
Flag

W_PDS_REPL_ATT
R_IT_LC_D

REFUNDABLE_IND W_INVENTORY_PRODUCT_ATTR_
D.REFUNDABLE_IND

Back Order
Flag

W_PDS_REPL_ATT
R_IT_LC_D

BACK_ORDER_IND W_INVENTORY_PRODUCT_ATTR_
D.BACK_ORDER_IND

Replenishment
Supplier Num

W_PDS_REPL_ATT
R_IT_LC_D

REPL_SUPPLIER_NUM W_INVENTORY_PRODUCT_ATTR_
D.REPL_SUPPLIER_NUM

Replenishment
Country Code

W_PDS_REPL_ATT
R_IT_LC_D

REPL_COUNTRY_CODE W_INVENTORY_PRODUCT_ATTR_
D.REPL_COUNTRY_CODE

Replenishment
Review Cycle

W_PDS_REPL_ATT
R_IT_LC_D

REPL_REVIEW_CYCLE W_INVENTORY_PRODUCT_ATTR_
D.REPL_REVIEW_CYCLE

Replenishment
Stock Cat

W_PDS_REPL_ATT
R_IT_LC_D

REPL_STOCK_CAT W_INVENTORY_PRODUCT_ATTR_
D.REPL_STOCK_CAT

Replenishment
Source Wh

W_PDS_REPL_ATT
R_IT_LC_D

REPL_SOURCE_WH W_INVENTORY_PRODUCT_ATTR_
D.REPL_SOURCE_WH

Replenishment
Activate Dt

W_PDS_REPL_ATT
R_IT_LC_D

REPL_ACTIVATE_DT W_INVENTORY_PRODUCT_ATTR_
D.REPL_ACTIVATE_DT

Replenishment
Deactivate Dt

W_PDS_REPL_ATT
R_IT_LC_D

REPL_DEACTIVATE_DT NVL(W_INVENTORY_PRODUCT_A
TTR_D.REPL_DEACTIVATE_DT ,'21
00-01-01')

Replenishment
Pres Stock

W_PDS_REPL_ATT
R_IT_LC_D

REPL_PRES_STOCK W_INVENTORY_PRODUCT_ATTR_
D.REPL_PRES_STOCK

Replenishment
Demo Stock

W_PDS_REPL_ATT
R_IT_LC_D

REPL_DEMO_STOCK W_INVENTORY_PRODUCT_ATTR_
D.REPL_DEMO_STOCK

Replenishment
Min Stock

W_PDS_REPL_ATT
R_IT_LC_D

REPL_MIN_STOCK W_INVENTORY_PRODUCT_ATTR_
D.REPL_MIN_STOCK

Replenishment
Max Stock

W_PDS_REPL_ATT
R_IT_LC_D

REPL_MAX_STOCK W_INVENTORY_PRODUCT_ATTR_
D.REPL_MAX_STOCK

Replenishment
Service Level

W_PDS_REPL_ATT
R_IT_LC_D

REPL_SERVICE_LEVEL W_INVENTORY_PRODUCT_ATTR_
D.REPL_SERVICE_LEVEL

Replenishment
Pickup
Leadtime

W_PDS_REPL_ATT
R_IT_LC_D

REPL_PICKUP_LEADTIM
E

W_INVENTORY_PRODUCT_ATTR_
D.REPL_PICKUP_LEADTIME

Replenishment
Wh Leadtime

W_PDS_REPL_ATT
R_IT_LC_D

REPL_WH_LEADTIME W_INVENTORY_PRODUCT_ATTR_
D.REPL_WH_LEADTIME

Chapter 6
Transformations from Data Warehouse to Planning

6-20

Measure Target Table Target Column Data Source

Replenishment
Active Flag

W_PDS_REPL_ATT
R_IT_LC_D

REPL_ACTIVE_FLAG CASE WHEN
W_INVENTORY_PRODUCT_ATTR_
D.REPL_ACTIVE_FLAG IS NULL
THEN CASE WHEN
NVL(W_INVENTORY_PRODUCT_A
TTR_D.REPL_DEACTIVATE_DT ,'21
00-01-01') > current_dt THEN ''Y''
ELSE ''N'' END ELSE
W_INVENTORY_PRODUCT_ATTR_
D.REPL_ACTIVE_FLAG END

Exit Date W_PDS_REPL_ATT
R_IT_LC_D

EXIT_DATE W_INVENTORY_PRODUCT_ATTR_
D.EXIT_DATE

Promo Exclude
Flg

W_PDS_REPL_ATT
R_IT_LC_D

PROMO_EXCL_FLG W_INVENTORY_PRODUCT_ATTR_
D.PROMO_EXCL_FLG

Mkdn Exclude
Flg

W_PDS_REPL_ATT
R_IT_LC_D

MKDN_EXCL_FLG W_INVENTORY_PRODUCT_ATTR_
D.MKDN_EXCL_FLG

Replenishment
Order Ctrl

W_PDS_REPL_ATT
R_IT_LC_D

REPL_ORDER_CTRL W_INVENTORY_PRODUCT_ATTR_
D.REPL_ORDER_CTRL

Replenishment
Method

W_PDS_REPL_ATT
R_IT_LC_D

REPL_METHOD W_INVENTORY_PRODUCT_ATTR_
D.REPL_METHOD

Incr Percent W_PDS_REPL_ATT
R_IT_LC_D

INCR_PCT W_INVENTORY_PRODUCT_ATTR_
D.INCR_PCT

Min Supply
Days

W_PDS_REPL_ATT
R_IT_LC_D

MIN_SUPPLY_DAYS W_INVENTORY_PRODUCT_ATTR_
D.MIN_SUPPLY_DAYS

Max Supply
Days

W_PDS_REPL_ATT
R_IT_LC_D

MAX_SUPPLY_DAYS W_INVENTORY_PRODUCT_ATTR_
D.MAX_SUPPLY_DAYS

Time Supply
Horizon

W_PDS_REPL_ATT
R_IT_LC_D

TIME_SUPPLY_HORIZON W_INVENTORY_PRODUCT_ATTR_
D.TIME_SUPPLY_HORIZON

Inv Selling
Days

W_PDS_REPL_ATT
R_IT_LC_D

INV_SELLING_DAYS W_INVENTORY_PRODUCT_ATTR_
D.INV_SELLING_DAYS

Lost Sales
Factor

W_PDS_REPL_ATT
R_IT_LC_D

LOST_SALES_FACTOR W_INVENTORY_PRODUCT_ATTR_
D.LOST_SALES_FACTOR

Reject Store
Order Flag

W_PDS_REPL_ATT
R_IT_LC_D

REJECT_STORE_ORD_IND W_INVENTORY_PRODUCT_ATTR_
D.REJECT_STORE_ORD_IND

Non Scaling
Flag

W_PDS_REPL_ATT
R_IT_LC_D

NON_SCALING_IND W_INVENTORY_PRODUCT_ATTR_
D.NON_SCALING_IND

Max Scale
Value

W_PDS_REPL_ATT
R_IT_LC_D

MAX_SCALE_VALUE W_INVENTORY_PRODUCT_ATTR_
D.MAX_SCALE_VALUE

Terminal Stock
Qty

W_PDS_REPL_ATT
R_IT_LC_D

TERMINAL_STOCK_QTY W_INVENTORY_PRODUCT_ATTR_
D.TERMINAL_STOCK_QTY

Season Id W_PDS_REPL_ATT
R_IT_LC_D

SEASON_ID W_INVENTORY_PRODUCT_ATTR_
D.SEASON_ID

Phase Id W_PDS_REPL_ATT
R_IT_LC_D

PHASE_ID W_INVENTORY_PRODUCT_ATTR_
D.PHASE_ID

Last Review
Date

W_PDS_REPL_ATT
R_IT_LC_D

LAST_REVIEW_DATE W_INVENTORY_PRODUCT_ATTR_
D.LAST_REVIEW_DATE

Next Review
Date

W_PDS_REPL_ATT
R_IT_LC_D

NEXT_REVIEW_DATE W_INVENTORY_PRODUCT_ATTR_
D.NEXT_REVIEW_DATE

Chapter 6
Transformations from Data Warehouse to Planning

6-21

Measure Target Table Target Column Data Source

Unit Tolerance W_PDS_REPL_ATT
R_IT_LC_D

UNIT_TOLERANCE W_INVENTORY_PRODUCT_ATTR_
D.UNIT_TOLERANCE

Percent
Tolerance

W_PDS_REPL_ATT
R_IT_LC_D

PCT_TOLERANCE W_INVENTORY_PRODUCT_ATTR_
D.PCT_TOLERANCE

Use Tolerance
Flag

W_PDS_REPL_ATT
R_IT_LC_D

USE_TOLERANCE_IND W_INVENTORY_PRODUCT_ATTR_
D.USE_TOLERANCE_IND

Last Delivery
Date

W_PDS_REPL_ATT
R_IT_LC_D

LAST_DELIVERY_DATE W_INVENTORY_PRODUCT_ATTR_
D.LAST_DELIVERY_DATE

Next Delivery
Date

W_PDS_REPL_ATT
R_IT_LC_D

NEXT_DELIVERY_DATE W_INVENTORY_PRODUCT_ATTR_
D.NEXT_DELIVERY_DATE

MBR Order Qty W_PDS_REPL_ATT
R_IT_LC_D

MBR_ORDER_QTY W_INVENTORY_PRODUCT_ATTR_
D.MBR_ORDER_QTY

Adj Pickup
Lead Time

W_PDS_REPL_ATT
R_IT_LC_D

ADJ_PICKUP_LEAD_TIME W_INVENTORY_PRODUCT_ATTR_
D.ADJ_PICKUP_LEAD_TIME

Adj Supp Lead
Time

W_PDS_REPL_ATT
R_IT_LC_D

ADJ_SUPP_LEAD_TIME W_INVENTORY_PRODUCT_ATTR_
D.ADJ_SUPP_LEAD_TIME

Tsf Po Link No W_PDS_REPL_ATT
R_IT_LC_D

TSF_PO_LINK_NO W_INVENTORY_PRODUCT_ATTR_
D.TSF_PO_LINK_NO

Last ROQ W_PDS_REPL_ATT
R_IT_LC_D

LAST_ROQ W_INVENTORY_PRODUCT_ATTR_
D.LAST_ROQ

Store Ord
Multiple

W_PDS_REPL_ATT
R_IT_LC_D

STORE_ORD_MULT W_INVENTORY_PRODUCT_ATTR_
D.STORE_ORD_MULT

Unit Cost W_PDS_REPL_ATT
R_IT_LC_D

UNIT_COST W_INVENTORY_PRODUCT_ATTR_
D.UNIT_COST

Supplier Lead
Time

W_PDS_REPL_ATT
R_IT_LC_D

SUPP_LEAD_TIME W_INVENTORY_PRODUCT_ATTR_
D.SUPP_LEAD_TIME

Inner Pack
Size

W_PDS_REPL_ATT
R_IT_LC_D

INNER_PACK_SIZE W_INVENTORY_PRODUCT_ATTR_
D.INNER_PACK_SIZE

Supplier Pack
Size

W_PDS_REPL_ATT
R_IT_LC_D

SUPP_PACK_SIZE W_INVENTORY_PRODUCT_ATTR_
D.SUPP_PACK_SIZE

Tier W_PDS_REPL_ATT
R_IT_LC_D

TIER W_INVENTORY_PRODUCT_ATTR_
D.TIER

Height W_PDS_REPL_ATT
R_IT_LC_D

HEIGHT W_INVENTORY_PRODUCT_ATTR_
D.HEIGHT

Round Lvl W_PDS_REPL_ATT
R_IT_LC_D

ROUND_LVL W_INVENTORY_PRODUCT_ATTR_
D.ROUND_LVL

Round To
Inner Percent

W_PDS_REPL_ATT
R_IT_LC_D

ROUND_TO_INNER_PCT W_INVENTORY_PRODUCT_ATTR_
D.ROUND_TO_INNER_PCT

Round To Case
Percent

W_PDS_REPL_ATT
R_IT_LC_D

ROUND_TO_CASE_PCT W_INVENTORY_PRODUCT_ATTR_
D.ROUND_TO_CASE_PCT

Round To
Layer Percent

W_PDS_REPL_ATT
R_IT_LC_D

ROUND_TO_LAYER_PCT W_INVENTORY_PRODUCT_ATTR_
D.ROUND_TO_LAYER_PCT

Round To
Pallet Percent

W_PDS_REPL_ATT
R_IT_LC_D

ROUND_TO_PALLET_PCT W_INVENTORY_PRODUCT_ATTR_
D.ROUND_TO_PALLET_PCT

Service Level
Type

W_PDS_REPL_ATT
R_IT_LC_D

SERVICE_LEVEL_TYPE W_INVENTORY_PRODUCT_ATTR_
D.SERVICE_LEVEL_TYPE

Tsf Zero SOH
Flag

W_PDS_REPL_ATT
R_IT_LC_D

TSF_ZERO_SOH_IND W_INVENTORY_PRODUCT_ATTR_
D.TSF_ZERO_SOH_IND

Chapter 6
Transformations from Data Warehouse to Planning

6-22

Measure Target Table Target Column Data Source

Multiple Runs
Per Day Flag

W_PDS_REPL_ATT
R_IT_LC_D

MULT_RUNS_PER_DAY_I
ND

W_INVENTORY_PRODUCT_ATTR_
D.MULT_RUNS_PER_DAY_IND

Add Lead Time
Flag

W_PDS_REPL_ATT
R_IT_LC_D

ADD_LEAD_TIME_IND W_INVENTORY_PRODUCT_ATTR_
D.ADD_LEAD_TIME_IND

Deposit Code W_PDS_REPL_ATT
R_IT_LC_D

DEPOSIT_CODE W_INVENTORY_PRODUCT_ATTR_
D.DEPOSIT_CODE

Proportional
Tare Percent

W_PDS_REPL_ATT
R_IT_LC_D

PROPORTIONAL_TARE_P
CT

W_INVENTORY_PRODUCT_ATTR_
D.PROPORTIONAL_TARE_PCT

Fixed Tare
Value

W_PDS_REPL_ATT
R_IT_LC_D

FIXED_TARE_VALUE W_INVENTORY_PRODUCT_ATTR_
D.FIXED_TARE_VALUE

Fixed Tare
UOM

W_PDS_REPL_ATT
R_IT_LC_D

FIXED_TARE_UOM W_INVENTORY_PRODUCT_ATTR_
D.FIXED_TARE_UOM

Return Policy W_PDS_REPL_ATT
R_IT_LC_D

RETURN_POLICY W_INVENTORY_PRODUCT_ATTR_
D.RETURN_POLICY

Stop Sale Flag W_PDS_REPL_ATT
R_IT_LC_D

STOP_SALE_IND W_INVENTORY_PRODUCT_ATTR_
D.STOP_SALE_IND

Report Code W_PDS_REPL_ATT
R_IT_LC_D

REPORT_CODE W_INVENTORY_PRODUCT_ATTR_
D.REPORT_CODE

Reference Date
Type For Exit

W_PDS_REPL_ATT
R_IT_LC_D

REFERENCE_DATE_TYPE
_FOR_EXIT

W_INVENTORY_PRODUCT_ATTR_
D.REFERENCE_DATE_TYPE_FOR_
EXIT

Weeks To Exit W_PDS_REPL_ATT
R_IT_LC_D

WEEKS_TO_EXIT W_INVENTORY_PRODUCT_ATTR_
D.WEEKS_TO_EXIT

Optimize Flag W_PDS_REPL_ATT
R_IT_LC_D

OPTIMIZE_IND W_INVENTORY_PRODUCT_ATTR_
D.OPTIMIZE_IND

Supplier Mapping
The supplier data is loaded from the PRODUCT.csv file or from RMFCS. The product data load
programs will insert the supplier information into the additional tables used below (as long as
these tables are enabled during foundation loads).

Measure Target Table Target Column Data Source

Supplier ID W_PDS_SUPPLIER
_D

SUPPLIER W_PARTY_ORG_D .SUPPLIER_NU
M

Supplier Desc W_PDS_SUPPLIER
_D

SUP_NAME W_PARTY_ORG_D .ORG_NAME

Customer Segment Mapping
The customer segment data is loaded from the W_RTL_CUSTSEG_DS.dat file or from AI
Foundation exports of the segment data back into the data warehouse table W_RTL_CUSTSEG_D.
The data is exported to PDS for use in Assortment Planning, which has the ability to select a
customer segment to use for AIF integrations like Demand Transference results.

Measure Target Table Target Column Data Source

Segment ID W_PDS_CUSTSEG_
D

CUSTSEG_ID W_RTL_CUSTSEG_D.CUSTSEG_ID

Chapter 6
Transformations from Data Warehouse to Planning

6-23

Measure Target Table Target Column Data Source

Segment Name W_PDS_CUSTSEG_
D

CUSTSEG_NAME NVL(W_RTL_CUSTSEG_D.CUSTSE
G_NAME,'UNKNOWN SEGMENT')

Segment Desc W_PDS_CUSTSEG_
D

CUSTSEG_DESC W_RTL_CUSTSEG_D.CUSTSEG_DE
SC

Segment Type W_PDS_CUSTSEG_
D

CUSTSEG_TYPE W_RTL_CUSTSEG_D.CUSTSEG_TY
PE

Segment
Source Type

W_PDS_CUSTSEG_
D

CUSTSEG_SRC_TYPE W_RTL_CUSTSEG_D.CUSTSEG_SR
C_TYPE

Segment
Organization
Hierarchy Key

W_PDS_CUSTSEG_
D

ORG_HIER_KEY W_RTL_CUSTSEG_D.ORG_HIER_K
EY

Custom Flex Attribute Mapping
Custom flex attributes (also known as CFAS) data comes from RMFCS. This data is passed
through the data warehouse and transformed to match RPAS data requirements. The CFAS
data is exported to the planning integration schema in 9 tables: 3 sets of tables for each
intersection of item, location, and item/location, with each set broken out by datatype (string,
number, date). Each set of tables will uses anidentical structure where the source data in the
data warehouse (which is in multiple columns) is pivoted into a single column having all the
attribute values for a given intersection and datatype.

Specifically for location attributes, the same table may optionally include location attributes
from other sources which can then be used to extend your Planning applications with that data.
CFAS attributes are exported automatically from the data warehouse when they are integrated
from MFCS; but for the other types, it requires additional configurations. The reason for
requiring configurations is that location attributes data does not come with associated group
IDs and group names that Planning requires to use the data, so the implementer must
separately generate these groupings first.

The list of supported tables on this integration are below:

Source Tables Target Table

W_INT_ORG_D_CFA
W_INT_ORG_ATTR_D
W_ORGANIZATION_FLEX_D

W_PDS_ORG_ATTR_STR_D

W_INT_ORG_D_CFA W_PDS_ORG_ATTR_NBR_D

W_INT_ORG_D_CFA W_PDS_ORG_ATTR_DT_D

W_PRODUCT_D_CFA W_PDS_PRODUCT_ATTR_STR_D

W_PRODUCT_D_CFA W_PDS_PRODUCT_ATTR_NBR_D

W_PRODUCT_D_CFA W_PDS_PRODUCT_ATTR_DT_D

W_RTL_IT_LC_D_CFA W_PDS_PROD_ORG_ATTR_STR_D

W_RTL_IT_LC_D_CFA W_PDS_PROD_ORG_ATTR_NBR_D

W_RTL_IT_LC_D_CFA W_PDS_PROD_ORG_ATTR_DT_D

All of the tables include an ATTR_ID column that is automatically generated from either the
CFAS attribute group name or the user-supplied group names, stripped of unsupported
characters for ID columns. They also have an ATTR_VALUE column containing the attribute
values from the source table, which is a combination of all the values in all columns having the

Chapter 6
Transformations from Data Warehouse to Planning

6-24

same data type (CHAR, NUM, DATE). ATTR_VALUE for string types are a trimmed version with
unsupported characters removed. Also specific to string types, there is an ATTR_VALUE_DESC
column which has the unmodified string value from the source table.

To leverage location string attributes for non-CFAS data, you need to load the location group
definitions to the common translation lookup table in the data warehouse,
W_DOMAIN_MEMBER_LKP_TL. From APEX, you may insert the group names to the staging table
W_DOMAIN_MEMBER_DS_TL and then run the associated POM job W_DOMAIN_MEMBER_LKP_TL_JOB
to populate the target table. You need to populate the columns with specific values as
described below:

Column Usage

DOMAIN_CODE Use RTL_ORG_ATTR for columns in
W_INT_ORG_ATTR_D and RTL_ORG_FLEX for
columns in W_ORGANIZATION_FLEX_D

DOMAIN_MEMBER_CODE Specify the exact column in the source table
having this attribute in it, such as
FLEX1_CHAR_VALUE

DOMAIN_MEMBER_NAME Specify the name of the attribute group, such as
Climate

LANGUAGE_CODE Specify the primary language code used for all
translated lookup data, such as US

SRC_LANGUAGE_CODE Specify the primary language code used for all
translated lookup data, such as US

Sales Mapping
Data for sales is loaded from the SALES.csv file or from RMFCS (Sales Audit). The primary
data warehouse table is the week-level aggregate generated by the historical and daily load
processes. All data mappings in this area are split out by retail type. Any measure having
reg/pro/clr in the name are being filtered on that retail type code as part of the export. When
you provide input data to RAP, you specify the retail type code as R, P, or C, and those values
are used here to determine the output. A custom 4th option (using type code O for Other) is also
allowed, as long as you extend the W_XACT_TYPE_D dimension in the data warehouse to have
the extra type code. Other sales are only included in the Total Sales measures in the PDS
export. The data only includes non-pack item sales, as it expects pack sales to be spread to
their component level when used.

Measure Target Table Target Column Data Source

Gross Reg
Sales Units

W_PDS_SLS_IT_LC
_WK_A

SALES_REG_UNITS W_RTL_SLS_IT_LC_WK_A.SLS_QT
Y +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_QTY

Gross Pro Sales
Units

W_PDS_SLS_IT_LC
_WK_A

SALES_PRO_UNITS W_RTL_SLS_IT_LC_WK_A.SLS_QT
Y +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_QTY

Gross Clr Sales
Units

W_PDS_SLS_IT_LC
_WK_A

SALES_CLR_UNITS W_RTL_SLS_IT_LC_WK_A.SLS_QT
Y +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_QTY

Chapter 6
Transformations from Data Warehouse to Planning

6-25

Measure Target Table Target Column Data Source

Gross Reg
Sales Cost

W_PDS_SLS_IT_LC
_WK_A

SALES_REG_COST (W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-SLS_PROFIT_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-SLSPK_PROF_AMT)

Gross Pro Sales
Cost

W_PDS_SLS_IT_LC
_WK_A

SALES_PRO_COST (W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-SLS_PROFIT_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-SLSPK_PROF_AMT)

Gross Clr Sales
Cost

W_PDS_SLS_IT_LC
_WK_A

SALES_CLR_COST (W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-SLS_PROFIT_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-SLSPK_PROF_AMT)

Gross Reg
Sales Retail

W_PDS_SLS_IT_LC
_WK_A

SALES_REG_RETAIL W_RTL_SLS_IT_LC_WK_A.SLS_AM
T +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_AMT

Gross Pro Sales
Retail

W_PDS_SLS_IT_LC
_WK_A

SALES_PRO_RETAIL W_RTL_SLS_IT_LC_WK_A.SLS_AM
T +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_AMT

Gross Clr Sales
Retail

W_PDS_SLS_IT_LC
_WK_A

SALES_CLR_RETAIL W_RTL_SLS_IT_LC_WK_A.SLS_AM
T +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_AMT

Gross Reg
Sales Tax

W_PDS_SLS_IT_LC
_WK_A

SALES_REG_TAX W_RTL_SLS_IT_LC_WK_A.SLS_TA
X_AMT +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_TAX_AMT

Gross Pro Sales
Tax

W_PDS_SLS_IT_LC
_WK_A

SALES_PRO_TAX W_RTL_SLS_IT_LC_WK_A.SLS_TA
X_AMT +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_TAX_AMT

Gross Clr Sales
Tax

W_PDS_SLS_IT_LC
_WK_A

SALES_CLR_TAX W_RTL_SLS_IT_LC_WK_A.SLS_TA
X_AMT +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_TAX_AMT

Net Reg Sales
Units

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_REG_UNITS (W_RTL_SLS_IT_LC_WK_A.SLS_QT
Y-RET_QTY) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_QTY-RETPK_QTY)

Net Pro Sales
Units

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_PRO_UNITS (W_RTL_SLS_IT_LC_WK_A.SLS_QT
Y-RET_QTY) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_QTY-RETPK_QTY)

Net Clr Sales
Units

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_CLR_UNITS (W_RTL_SLS_IT_LC_WK_A.SLS_QT
Y-RET_QTY) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_QTY-RETPK_QTY)

Chapter 6
Transformations from Data Warehouse to Planning

6-26

Measure Target Table Target Column Data Source

Net Reg Sales
Cost

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_REG_COST (W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-RET_AMT) -
(W_RTL_SLS_IT_LC_WK_A.SLS_PR
OFIT_AMT-RET_PROFIT_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-RETPK_AMT) -
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_PROF_AMT-
RETPK_PROF_AMT)

Net Pro Sales
Cost

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_PRO_COST (W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-RET_AMT) -
(W_RTL_SLS_IT_LC_WK_A.SLS_PR
OFIT_AMT-RET_PROFIT_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-RETPK_AMT) -
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_PROF_AMT-
RETPK_PROF_AMT)

Net Clr Sales
Cost

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_CLR_COST (W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-RET_AMT) -
(W_RTL_SLS_IT_LC_WK_A.SLS_PR
OFIT_AMT-RET_PROFIT_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-RETPK_AMT) -
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_PROF_AMT-
RETPK_PROF_AMT)

Net Reg Sales
Retail

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_REG_RETAIL (W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-RET_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-RETPK_AMT)

Net Pro Sales
Retail

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_PRO_RETAIL (W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-RET_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-RETPK_AMT)

Net Clr Sales
Retail

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_CLR_RETAIL (W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-RET_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-RETPK_AMT)

Net Reg Sales
Retail
Excluding VAT

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_REG_RETAIL
_VAT_EXCL

(W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-RET_AMT) -
 (W_RTL_SLS_IT_LC_WK_A.SLS_T
AX_AMT-RET_TAX_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-RETPK_AMT) -
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_TAX_AMT-RETPK_TAX_AMT)

Net Pro Sales
Retail
Excluding VAT

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_PRO_RETAIL
_VAT_EXCL

(W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-RET_AMT) -
 (W_RTL_SLS_IT_LC_WK_A.SLS_T
AX_AMT-RET_TAX_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-RETPK_AMT) -
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_TAX_AMT-RETPK_TAX_AMT)

Chapter 6
Transformations from Data Warehouse to Planning

6-27

Measure Target Table Target Column Data Source

Net Clr Sales
Retail
Excluding VAT

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_CLR_RETAIL
_VAT_EXCL

(W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-RET_AMT) -
 (W_RTL_SLS_IT_LC_WK_A.SLS_T
AX_AMT-RET_TAX_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-RETPK_AMT) -
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_TAX_AMT-RETPK_TAX_AMT)

Net Reg Sales
Tax

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_REG_TAX (W_RTL_SLS_IT_LC_WK_A.SLS_TA
X_AMT-RET_TAX_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_TAX_AMT-RETPK_TAX_AMT)

Net Pro Sales
Tax

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_PRO_TAX (W_RTL_SLS_IT_LC_WK_A.SLS_TA
X_AMT-RET_TAX_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_TAX_AMT-RETPK_TAX_AMT)

Net Clr Sales
Tax

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_CLR_TAX (W_RTL_SLS_IT_LC_WK_A.SLS_TA
X_AMT-RET_TAX_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_TAX_AMT-RETPK_TAX_AMT)

Returns Reg
Units

W_PDS_SLS_IT_LC
_WK_A

RETURNS_REG_UNITS W_RTL_SLS_IT_LC_WK_A.RET_QT
Y +
W_RTL_SLSPK_IT_LC_WK_A.RETP
K_QTY

Returns Pro
Units

W_PDS_SLS_IT_LC
_WK_A

RETURNS_PRO_UNITS W_RTL_SLS_IT_LC_WK_A.RET_QT
Y +
W_RTL_SLSPK_IT_LC_WK_A.RETP
K_QTY

Returns Clr
Units

W_PDS_SLS_IT_LC
_WK_A

RETURNS_CLR_UNITS W_RTL_SLS_IT_LC_WK_A.RET_QT
Y +
W_RTL_SLSPK_IT_LC_WK_A.RETP
K_QTY

Returns Reg
Cost

W_PDS_SLS_IT_LC
_WK_A

RETURNS_REG_COST (W_RTL_SLS_IT_LC_WK_A.RET_A
MT-RET_PROFIT_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.RET
PK_AMT-RETPK_PROF_AMT)

Returns Pro
Cost

W_PDS_SLS_IT_LC
_WK_A

RETURNS_PRO_COST (W_RTL_SLS_IT_LC_WK_A.RET_A
MT-RET_PROFIT_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.RET
PK_AMT-RETPK_PROF_AMT)

Returns Clr
Cost

W_PDS_SLS_IT_LC
_WK_A

RETURNS_CLR_COST (W_RTL_SLS_IT_LC_WK_A.RET_A
MT-RET_PROFIT_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.RET
PK_AMT-RETPK_PROF_AMT)

Returns Reg
Retail

W_PDS_SLS_IT_LC
_WK_A

RETURNS_REG_RETAIL W_RTL_SLS_IT_LC_WK_A.RET_A
MT +
W_RTL_SLSPK_IT_LC_WK_A.RETP
K_AMT

Returns Pro
Retail

W_PDS_SLS_IT_LC
_WK_A

RETURNS_PRO_RETAIL W_RTL_SLS_IT_LC_WK_A.RET_A
MT +
W_RTL_SLSPK_IT_LC_WK_A.RETP
K_AMT

Chapter 6
Transformations from Data Warehouse to Planning

6-28

Measure Target Table Target Column Data Source

Returns Clr
Retail

W_PDS_SLS_IT_LC
_WK_A

RETURNS_CLR_RETAIL W_RTL_SLS_IT_LC_WK_A.RET_A
MT +
W_RTL_SLSPK_IT_LC_WK_A.RETP
K_AMT

Returns Reg
Tax

W_PDS_SLS_IT_LC
_WK_A

RETURNS_REG_TAX W_RTL_SLS_IT_LC_WK_A.RET_TA
X_AMT +
W_RTL_SLSPK_IT_LC_WK_A.RETP
K_TAX_AMT

Returns Pro
Tax

W_PDS_SLS_IT_LC
_WK_A

RETURNS_PRO_TAX W_RTL_SLS_IT_LC_WK_A.RET_TA
X_AMT +
W_RTL_SLSPK_IT_LC_WK_A.RETP
K_TAX_AMT

Returns Clr
Tax

W_PDS_SLS_IT_LC
_WK_A

RETURNS_CLR_TAX W_RTL_SLS_IT_LC_WK_A.RET_TA
X_AMT +
W_RTL_SLSPK_IT_LC_WK_A.RETP
K_TAX_AMT

Total Gross
Sales Units

W_PDS_SLS_IT_LC
_WK_A

SALES_TOTAL_UNITS W_RTL_SLS_IT_LC_WK_A.SLS_QT
Y +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_QTY

Total Gross
Sales Cost

W_PDS_SLS_IT_LC
_WK_A

SALES_TOTAL_COST (W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-SLS_PROFIT_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-SLSPK_PROF_AMT)

Total Gross
Sales Retail

W_PDS_SLS_IT_LC
_WK_A

SALES_TOTAL_RETAIL W_RTL_SLS_IT_LC_WK_A.SLS_AM
T +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_AMT

Total Gross
Sales Tax

W_PDS_SLS_IT_LC
_WK_A

SALES_TOTAL_TAX W_RTL_SLS_IT_LC_WK_A.SLS_TA
X_AMT +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_TAX_AMT

Total Net Sales
Units

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_TOTAL_UNIT
S

(W_RTL_SLS_IT_LC_WK_A.SLS_QT
Y-RET_QTY) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_QTY-RETPK_QTY)

Total Net Sales
Cost

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_TOTAL_COST (W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-RET_AMT) -
(W_RTL_SLS_IT_LC_WK_A.SLS_PR
OFIT_AMT-RET_PROFIT_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-RETPK_AMT) -
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_PROF_AMT-
RETPK_PROF_AMT)

Total Net Sales
Retail

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_TOTAL_RETA
IL

(W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-RET_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-RETPK_AMT)

Total Net Sales
Tax

W_PDS_SLS_IT_LC
_WK_A

NET_SALES_TOTAL_TAX (W_RTL_SLS_IT_LC_WK_A.SLS_TA
X_AMT-RET_TAX_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_TAX_AMT-RETPK_TAX_AMT)

Chapter 6
Transformations from Data Warehouse to Planning

6-29

Measure Target Table Target Column Data Source

Custom
Measures 1 -
20

W_PDS_SLS_IT_LC
_WK_A

FLEX1_NUM_VALUE
through
FLEX20_NUM_VALUE

W_RTL_
SLS_IT_LC_WK_A.FLEX1_NUM_VA
LUE through
W_RTL_SLS_IT_LC_WK_A.FLEX20
_NUM_VALUE

Gross Sales Mapping
A separate sales aggregate is also provided for Inventory Planning Optimization Cloud
Service-Demand Forecasting (IPOCS-Demand Forecasting), which filters and aggregates the
sales differently from the base extract for the other Planning applications. This export includes
only gross sales and has a single set of measure columns with a separate field for the retail
type (reg/pro/clr). The data is filtered to include only sales for non-warehouse locations. The
data only includes non-pack item sales, as it expects pack sales to be spread to their
component level when used.

Measure Target Table Target Column Data Source

Gross Sales
Units

W_PDS_GRS_SLS_I
T_LC_WK_A

SALES_UNITS W_RTL_SLS_IT_LC_WK_A.SLS_QT
Y +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_QTY

Gross Sales
Cost

W_PDS_GRS_SLS_I
T_LC_WK_A

SALES_COST (W_RTL_SLS_IT_LC_WK_A.SLS_A
MT-SLS_PROFIT_AMT) +
(W_RTL_SLSPK_IT_LC_WK_A.SLS
PK_AMT-SLSPK_PROF_AMT)

Gross Sales
Retail

W_PDS_GRS_SLS_I
T_LC_WK_A

SALES_RETAIL W_RTL_SLS_IT_LC_WK_A.SLS_AM
T +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_AMT

Gross Sales
Tax

W_PDS_GRS_SLS_I
T_LC_WK_A

SALES_TAX W_RTL_SLS_IT_LC_WK_A.SLS_TA
X_AMT +
W_RTL_SLSPK_IT_LC_WK_A.SLSP
K_TAX_AMT

Inventory Position Mapping
Data is loaded from the INVENTORY.csv file or from RMFCS. The primary data warehouse table
is the week-level aggregate generated by the historical load process. Only data for
stockholding locations (STOCKHOLDING_FLG=Y) is exported to PDS.

Measure Target Table Target Column Data Source

Inventory
Units

W_PDS_INV_IT_LC_
WK_A

REGULAR_INVENTOR
Y_UNITS

W_RTL_INV_IT_LC_WK_A.INV_SOH
_QTY + INV_IN_TRAN_QTY

Inventory Cost W_PDS_INV_IT_LC_
WK_A

REGULAR_INVENTOR
Y_COST

W_RTL_INV_IT_LC_WK_A.INV_SOH
_COST_AMT +
INV_IN_TRAN_COST_AMT

Inventory
Retail

W_PDS_INV_IT_LC_
WK_A

REGULAR_INVENTOR
Y_RETAIL

W_RTL_INV_IT_LC_WK_A.INV_SOH
_RTL_AMT +
INV_IN_TRAN_RTL_AMT

Chapter 6
Transformations from Data Warehouse to Planning

6-30

Measure Target Table Target Column Data Source

Unit Cost W_PDS_INV_IT_LC_
WK_A

UNIT_COST W_RTL_INV_IT_LC_WK_A.INV_UNI
T_COST_AMT

Average Cost W_PDS_INV_IT_LC_
WK_A

AV_COST W_RTL_INV_IT_LC_WK_A.INV_AVG
_COST_AMT

Unit Retail W_PDS_INV_IT_LC_
WK_A

UNIT_RETAIL W_RTL_INV_IT_LC_WK_A.INV_UNI
T_RTL_AMT

Custom
Measures 1 - 20

W_PDS_INV_IT_LC_
WK_A

FLEX1_NUM_VALUE
through
FLEX20_NUM_VALUE

W_RTL_INV_IT_LC_WK_A.FLEX1_N
UM_VALUE through
W_RTL_INV_IT_LC_WK_A.FLEX20_
NUM_VALUE

On Order Mapping
Data is loaded from the ORDER_HEAD.csv and ORDER_DETAIL.csv files or from RMFCS.
Purchase order data is transformed from the raw order line details into a forward-looking total
on-order amount based on the OTB end-of-week date on the order. The calendar date on the
export is further altered based on the parameter PDS_EXPORT_DAILY_ONORD in C_ODI_PARAM_VW
to either allow or prevent non-week-ending dates. Data is also filtered to remove orders not
flagged as Include On Order.

Measure Target Table Target
Column

Data Source

On Order
Units

W_PDS_PO_ONORD_IT_
LC_WK_A

ON_ORDER_U
NITS

W_RTL_PO_ONORD_IT_LC_DY_F.PO_ONO
RD_QTY

On Order Cost W_PDS_PO_ONORD_IT_
LC_WK_A

ON_ORDER_C
OST

W_RTL_PO_ONORD_IT_LC_DY_F.PO_ONO
RD_COST_AMT_LCL

On Order
Retail

W_PDS_PO_ONORD_IT_
LC_WK_A

ON_ORDER_R
ETAIL

W_RTL_PO_ONORD_IT_LC_DY_F.PO_ONO
RD_RTL_AMT_LCL

Custom
Measures 1 -
20

W_PDS_PO_ONORD_IT_
LC_WK_A

FLEX1_NUM_
VALUE
through
FLEX20_NUM
_VALUE

W_RTL_PO_ONORD_IT_LC_WK_A.FLEX1_
NUM_VALUE through
W_RTL_PO_ONORD_IT_LC_WK_A.FLEX20
_NUM_VALUE

Markdown Mapping
Data is loaded from the MARKDOWN.csv file or from RMFCS. The primary data warehouse table
is the week-level aggregate generated by the historical load process.

Measure Target Table Target Column Data Source

Regular
Markdown

W_PDS_MKDN_IT_
LC_WK_A

REG_MARKDOWN_RETA
IL

W_RTL_MKDN_IT_LC_WK_A.M
KDN_AMT where retail type =
R

Promotion
Markdown
(Regular)

W_PDS_MKDN_IT_
LC_WK_A

PROMO_MARKDOWN_R
ETAIL_REG

W_RTL_MKDN_IT_LC_WK_A.M
KDN_AMT where retail type =
P and CLEARANCE_FLG = N

Promotion
Markdown
(Clearance)

W_PDS_MKDN_IT_
LC_WK_A

PROMO_MARKDOWN_R
ETAIL_CLEAR

W_RTL_MKDN_IT_LC_WK_A.M
KDN_AMT where retail type =
P and CLEARANCE_FLG = Y

Chapter 6
Transformations from Data Warehouse to Planning

6-31

Measure Target Table Target Column Data Source

Clearance
Markdown

W_PDS_MKDN_IT_
LC_WK_A

CLEAR_MARKDOWN_RE
TAIL

W_RTL_MKDN_IT_LC_WK_A.M
KDN_AMT where retail type =
C

Markup W_PDS_MKDN_IT_
LC_WK_A

MARKUP W_RTL_MKDN_IT_LC_WK_A.M
KUP_AMT where retail type = R

Markup Cancel W_PDS_MKDN_IT_
LC_WK_A

MARKUP_CANCEL W_RTL_MKDN_IT_LC_WK_A.M
KUP_CAN_AMT

Markdown
Cancel

W_PDS_MKDN_IT_
LC_WK_A

MARKDOWN_CANCEL W_RTL_MKDN_IT_LC_WK_A.M
KDN_CAN_AMT

Intercompany
Markup

W_PDS_MKDN_IT_
LC_WK_A

INTERCOMPANY_MARK
UP

W_RTL_MKDN_IT_LC_WK_A.M
KUP_AMT where retail type = I

Intercompany
Markdown

W_PDS_MKDN_IT_
LC_WK_A

INTERCOMPANY_MARK
DOWN

W_RTL_MKDN_IT_LC_WK_A.M
KDN_AMT where retail type = I

Custom
Measures 1 - 20

W_PDS_
MKDN_IT_LC_WK_
A

FLEX1_NUM_VALUE
through
FLEX20_NUM_VALUE

W_RTL_
MKDN_IT_LC_WK_A.FLEX1_NU
M_VALUE through W_RTL_
MKDN_IT_LC_WK_A.FLEX20_N
UM_VALUE

Wholesale/Franchise Mapping
Data is loaded from the SALES_WF.csv file or from RMFCS. The primary data warehouse table
is the week-level aggregate generated by the historical load process.

Measure Target Table Target Column Data Source

Franchise
Sales Units

W_PDS_SLSWF_IT_L
C_WK_A

FRANCHISE_SALES_
UNITS

W_RTL_SLSWF_IT_LC_WK_A.SLSWF
_QTY

Franchise
Sales Cost

W_PDS_SLSWF_IT_L
C_WK_A

FRANCHISE_SALES_
COST

W_RTL_SLSWF_IT_LC_WK_A.SLSWF
_ACQ_COST_AMT

Franchise
Sales Retail

W_PDS_SLSWF_IT_L
C_WK_A

FRANCHISE_SALES_
RETAIL

W_RTL_SLSWF_IT_LC_WK_A.SLSWF
_AMT

Franchise
Sales Tax

W_PDS_SLSWF_IT_L
C_WK_A

FRANCHISE_SALES_
TAX

W_RTL_SLSWF_IT_LC_WK_A.SLSWF
_TAX_AMT

Franchise
Returns Units

W_PDS_SLSWF_IT_L
C_WK_A

FRANCHISE_RETUR
NS_UNITS

W_RTL_SLSWF_IT_LC_WK_A.RETWF
_QTY

Franchise
Returns Cost

W_PDS_SLSWF_IT_L
C_WK_A

FRANCHISE_RETUR
NS_COST

W_RTL_SLSWF_IT_LC_WK_A.RETWF
_ACQ_COST_AMT

Franchise
Returns Retail

W_PDS_SLSWF_IT_L
C_WK_A

FRANCHISE_RETUR
NS_RETAIL

W_RTL_SLSWF_IT_LC_WK_A.RETWF
_AMT

Franchise
Returns Tax

W_PDS_SLSWF_IT_L
C_WK_A

FRANCHISE_RETUR
NS_TAX

W_RTL_SLSWF_IT_LC_WK_A.RETWF
_TAX_AMT

Franchise
Restocking Fee

W_PDS_SLSWF_IT_L
C_WK_A

FRANCHISE_RESTOC
K_FEE

W_RTL_SLSWF_IT_LC_WK_A.RETWF
_RSTK_FEE_AMT

Franchise
Markdown

W_PDS_SLSWF_IT_L
C_WK_A

WF_MARKDOWN_R
ETAIL

W_RTL_SLSWF_IT_LC_WK_A.SLSWF
_MKDN_AMT - RETWF_MKDN_AMT

Franchise
Markup

W_PDS_SLSWF_IT_L
C_WK_A

WF_MARKUP_RETAI
L

W_RTL_SLSWF_IT_LC_WK_A.SLSWF
_MKUP_AMT - RETWF_MKUP_AMT

Chapter 6
Transformations from Data Warehouse to Planning

6-32

Inventory Adjustments Mapping
Data is loaded from the ADJUSTMENT.csv file or from RMFCS. The primary data warehouse
table is the week-level aggregate generated by the historical load process.

Measure Target Table Target Column Data Source

Shrink Units W_PDS_INVADJ_IT_L
C_WK_A

SHRINK_UNITS W_RTL_INVADJ_IT_LC_WK_A.INVA
DJ_QTY where adj type = 22

Shrink Cost W_PDS_INVADJ_IT_L
C_WK_A

SHRINK_COST W_RTL_INVADJ_IT_LC_WK_A.INVA
DJ_COST_AMT where adj type = 22

Shrink Retail W_PDS_INVADJ_IT_L
C_WK_A

SHRINK_RETAIL W_RTL_INVADJ_IT_LC_WK_A.INVA
DJ_RTL_AMT where adj type = 22

Non-Shrink
Adjustments
Units

W_PDS_INVADJ_IT_L
C_WK_A

NON_SHRINK_ADJ_
UNITS

W_RTL_INVADJ_IT_LC_WK_A.INVA
DJ_QTY where adj type = 23

Non-Shrink
Adjustments
Cost

W_PDS_INVADJ_IT_L
C_WK_A

NON_SHRINK_ADJ_
COST

W_RTL_INVADJ_IT_LC_WK_A.INVA
DJ_COST_AMT where adj type = 23

Non-Shrink
Adjustments
Retail

W_PDS_INVADJ_IT_L
C_WK_A

NON_SHRINK_ADJ_
RETAIL

W_RTL_INVADJ_IT_LC_WK_A.INVA
DJ_RTL_AMT where adj type = 23

Inventory Receipts Mapping
Data is loaded from the RECEIPT.csv file or from RMFCS. The primary data warehouse table is
the week-level aggregate generated by the historical load process.

Measure Target Table Target Column Data Source

PO Receipt
Units

W_PDS_INVRC_IT_LC_
WK_A

PO_RECEIPT_UN
ITS

W_RTL_INVRC_IT_LC_WK_A.INVRC_
QTY where rcpt type code = 20

PO Receipt Cost W_PDS_INVRC_IT_LC_
WK_A

PO_RECEIPT_CO
ST

W_RTL_INVRC_IT_LC_WK_A.INVRC_
COST_AMT where rcpt type code = 20

PO Receipt
Retail

W_PDS_INVRC_IT_LC_
WK_A

PO_RECEIPT_RE
TAIL

W_RTL_INVRC_IT_LC_WK_A.INVRC_
RTL_AMT where rcpt type code = 20

Transfer/
Allocation
Receipt Units

W_PDS_INVRC_IT_LC_
WK_A

TSF_RECEIPT_U
NITS

W_RTL_INVRC_IT_LC_WK_A.INVRC_
QTY where rcpt type code = 44~A or
44~T

Transfer/
Allocation
Receipt Cost

W_PDS_INVRC_IT_LC_
WK_A

TSF_RECEIPT_CO
ST

W_RTL_INVRC_IT_LC_WK_A.INVRC_
COST_AMT where rcpt type code =
44~A or 44~T

Transfer/
Allocation
Receipt Retail

W_PDS_INVRC_IT_LC_
WK_A

TSF_RECEIPT_RE
TAIL

W_RTL_INVRC_IT_LC_WK_A.INVRC_
RTL_AMT where rcpt type code =
44~A or 44~T

PO Receipt
Custom
Measures 1 - 20

W_PDS_INVRC_IT_LC_
WK_A

PO_FLEX1_NUM
_VALUE through
PO_FLEX20_NU
M_VALUE

W_RTL_INVRC_IT_LC_WK_A.FLEX1_
NUM_VALUE through
W_RTL_INVRC_IT_LC_WK_A.FLEX20_
NUM_VALUE where rcpt type code =
20

Chapter 6
Transformations from Data Warehouse to Planning

6-33

Measure Target Table Target Column Data Source

Transfer
Receipt Custom
Measures 1 - 20

W_PDS_INVRC_IT_LC_
WK_A

TSF_FLEX1_NUM
_VALUE through
TSF_FLEX20_NU
M_VALUE

W_RTL_INVRC_IT_LC_WK_A.FLEX1_
NUM_VALUE through
W_RTL_INVRC_IT_LC_WK_A.FLEX20_
NUM_VALUE where rcpt type code =
44~A or 44~T

Inventory Transfers Mapping
Data is loaded from the TRANSFER.csv file or from RMFCS. The primary data warehouse table
is the week-level aggregate generated by the historical load process.

Measure Target Table Target
Column

Data Source

Transfer Type W_PDS_INVTSF_IT_LC
_WK_A

TSF_TYPE W_XACT_TYPE_D.W_XACT_TYPE_CODE in
(N,B,I) (for normal/book/intercompany
tsfs)

Transfer
Inbound
Units

W_PDS_INVTSF_IT_LC
_WK_A

TSF_IN_UNIT
S

W_RTL_INVTSF_IT_LC_WK_A.TSF_TO_LOC
_QTY

Transfer
Inbound Cost

W_PDS_INVTSF_IT_LC
_WK_A

TSF_IN_COST W_RTL_INVTSF_IT_LC_WK_A.TSF_TO_LOC
_COST_AMT

Transfer
Inbound
Retail

W_PDS_INVTSF_IT_LC
_WK_A

TSF_IN_RETA
IL

W_RTL_INVTSF_IT_LC_WK_A.TSF_TO_LOC
_RTL_AMT

Transfer
Outbound
Units

W_PDS_INVTSF_IT_LC
_WK_A

TSF_OUT_UN
ITS

W_RTL_INVTSF_IT_LC_WK_A.TSF_FROM_L
OC_QTY

Transfer
Outbound
Cost

W_PDS_INVTSF_IT_LC
_WK_A

TSF_OUT_CO
ST

W_RTL_INVTSF_IT_LC_WK_A.TSF_FROM_L
OC_COST_AMT

Transfer
Outbound
Retail

W_PDS_INVTSF_IT_LC
_WK_A

TSF_OUT_RE
TAIL

W_RTL_INVTSF_IT_LC_WK_A.TSF_FROM_L
OC_RTL_AMT

Inventory RTVs Mapping
Data is loaded from the RTV.csv file or from RMFCS. The primary data warehouse table is the
week-level aggregate generated by the historical load process.

Measure Target Table Target
Column

Data Source

RTV Units W_PDS_INVRTV_IT_L
C_WK_A

RTV_UNITS W_RTL_INVRTV_IT_LC_WK_A.RTV_QTY

RTV Cost W_PDS_INVRTV_IT_L
C_WK_A

RTV_COST W_RTL_INVRTV_IT_LC_WK_A.RTV_COS
T_AMT

RTV Retail W_PDS_INVRTV_IT_L
C_WK_A

RTV_RETAIL W_RTL_INVRTV_IT_LC_WK_A.RTV_RTL
_AMT

RTV Restocking
Fee

W_PDS_INVRTV_IT_L
C_WK_A

RTV_RESTOCK
_FEE

W_RTL_INVRTV_IT_LC_WK_A.RTV_RST
CK_COST_AMT

Chapter 6
Transformations from Data Warehouse to Planning

6-34

Inventory Reclass Mapping
Data is loaded from the INV_RECLASS.csv file or from RMFCS. The primary data warehouse
table is the week-level aggregate generated by the historical load process.

Measure Target Table Target Column Data Source

Reclass In
Units

W_PDS_INVRECLASS_IT
_LC_WK_A

RECLASS_IN_U
NITS

W_RTL_INVRCL_IT_LC_WK_A.RCL_TO_
LOC_QTY

Reclass In
Cost

W_PDS_INVRECLASS_IT
_LC_WK_A

RECLASS_IN_C
OST

W_RTL_INVRCL_IT_LC_WK_A.RCL_TO_
LOC_COST_AMT

Reclass In
Retail

W_PDS_INVRECLASS_IT
_LC_WK_A

RECLASS_IN_R
ETAIL

W_RTL_INVRCL_IT_LC_WK_A.RCL_TO_
LOC_RTL_AMT

Reclass Out
Units

W_PDS_INVRECLASS_IT
_LC_WK_A

RECLASS_OUT_
UNITS

W_RTL_INVRCL_IT_LC_WK_A.RCL_FRO
M_LOC_QTY

Reclass Out
Cost

W_PDS_INVRECLASS_IT
_LC_WK_A

RECLASS_OUT_
COST

W_RTL_INVRCL_IT_LC_WK_A.RCL_FRO
M_LOC_COST_AMT

Reclass Out
Retail

W_PDS_INVRECLASS_IT
_LC_WK_A

RECLASS_OUT_
RETAIL

W_RTL_INVRCL_IT_LC_WK_A.RCL_FRO
M_LOC_RTL_AMT

Deal Income Mapping
Data is loaded from the DEAL_INCOME.csv file or from RMFCS. The primary data warehouse
table is the week-level aggregate generated by the historical load process.

Measure Target Table Target Column Data Source

Deal Income
Sales Based

W_PDS_DEALINC_IT
_LC_WK_A

DEAL_INCOME_SA
LES

W_RTL_DEALINC_IT_LC_WK_A.DEA
L_SLS_COST_AMT

Deal Income
Purchases
Based

W_PDS_DEALINC_IT
_LC_WK_A

DEAL_INCOME_PU
RCHASES

W_RTL_DEALINC_IT_LC_WK_A.DEA
L_PRCH_COST_AMT

Custom
Measures 1 - 20

W_PDS_
DEALINC_IT_LC_WK
_A

FLEX1_NUM_VALU
E through
FLEX20_NUM_VAL
UE

W_RTL_
DEALINC_IT_LC_WK_A.FLEX1_NUM
_VALUE through W_RTL_
DEALINC_IT_LC_WK_A.FLEX20_NU
M_VALUE

Intercompany Margin Mapping
Data is loaded from the IC_MARGIN.csv file or from RMFCS. The primary data warehouse table
is the week-level aggregate generated by the historical load process.

Measure Target Table Target Column Data Source

Intercompany
Margin

W_PDS_ICM_IT_LC_
WK_A

INTERCOMPANY_M
ARGIN

W_RTL_ICM_IT_LC_WK_A.IC_MA
RGIN_AMT

Allocation Detail Mapping
Data is loaded from the W_RTL_ALC_DETAILS_DS.dat and W_RTL_ALC_IT_LC_DY_FS.dat files or
from RMFCS. This data is low-level daily allocation details specifically for IPO usage.

Chapter 6
Transformations from Data Warehouse to Planning

6-35

Measure Target Table Target Column Data Source

Allocation
Number

W_PDS_ALC_IT_LC_D
Y_F

ALLOC_NO W_RTL_ALC_DETAILS_D.ALLOC_NO

Item W_PDS_ALC_IT_LC_D
Y_F

ITEM W_PDS_PRODUCT_D.ITEM

To Location W_PDS_ALC_IT_LC_D
Y_F

TO_LOC W_PDS_ORGANIZATION_D.LOCATIO
N

To Location
Type

W_PDS_ALC_IT_LC_D
Y_F

TO_LOC_TYPE W_PDS_ORGANIZATION_D.LOC_TYP
E

From
Location

W_PDS_ALC_IT_LC_D
Y_F

FROM_LOC W_RTL_ALC_DETAILS_D.SOURCE_W
H

From
Location Type

W_PDS_ALC_IT_LC_D
Y_F

FROM_LOC_TYPE 'W'

In Store Date W_PDS_ALC_IT_LC_D
Y_F

IN_STORE_DATE W_RTL_ALC_IT_LC_DY_F.IN_STORE_
DATE

Transferred
Qty

W_PDS_ALC_IT_LC_D
Y_F

TRANSFERRED_QT
Y

W_RTL_ALC_IT_LC_DY_F.TRANSFER
RED_QTY

Received Qty W_PDS_ALC_IT_LC_D
Y_F

RECEIVED_QTY W_RTL_ALC_IT_LC_DY_F.RECEIVED_
QTY

Allocated Qty W_PDS_ALC_IT_LC_D
Y_F

ALLOCATED_QTY W_RTL_ALC_IT_LC_DY_F.ALLOCATE
D_QTY

Prescaled Qty W_PDS_ALC_IT_LC_D
Y_F

PRESCALED_QTY W_RTL_ALC_IT_LC_DY_F.PRESCALED
_QTY

Reconciled
Qty

W_PDS_ALC_IT_LC_D
Y_F

RECONCILED_QTY W_RTL_ALC_IT_LC_DY_F.RECONCILE
D_QTY

Distro Qty W_PDS_ALC_IT_LC_D
Y_F

DISTRO_QTY W_RTL_ALC_IT_LC_DY_F.DISTRO_QT
Y

Selected Qty W_PDS_ALC_IT_LC_D
Y_F

SELECTED_QTY W_RTL_ALC_IT_LC_DY_F.SELECTED_
QTY

Cancelled Qty W_PDS_ALC_IT_LC_D
Y_F

CANCELLED_QTY W_RTL_ALC_IT_LC_DY_F.CANCELLE
D_QTY

Item Avg Cost W_PDS_ALC_IT_LC_D
Y_F

ITEM_AVG_COST_A
MT_LCL

W_RTL_ALC_IT_LC_DY_F.ITEM_AVG_
COST_AMT_LCL

Pack Flag W_PDS_ALC_IT_LC_D
Y_F

PACK_FLG W_PDS_PRODUCT_D.PACK_FLG

Transfer Detail Mapping
Data is loaded from the W_RTL_TSF_DETAILS_DS.dat and W_RTL_TSF_IT_LC_DY_FS.dat files or
from RMFCS. This data is low-level daily transfer details specifically for IPO usage.

Measure Target Table Target Column Data Source

Transfer
Number

W_PDS_TSF_IT_LC_DY
_F

TSO_NO W_RTL_TSF_DETAILS_D.TSF_NO

Item W_PDS_TSF_IT_LC_DY
_F

ITEM W_PDS_PRODUCT_D.ITEM

To Location W_PDS_TSF_IT_LC_DY
_F

TO_LOC W_PDS_ORGANIZATION_D.LOCATION

Chapter 6
Transformations from Data Warehouse to Planning

6-36

Measure Target Table Target Column Data Source

To Location
Type

W_PDS_TSF_IT_LC_DY
_F

TO_LOC_TYPE W_PDS_ORGANIZATION_D.LOC_TYPE

From
Location

W_PDS_TSF_IT_LC_DY
_F

FROM_LOC W_RTL_TSF_DETAILS_D.FROM_LOC

From
Location
Type

W_PDS_TSF_IT_LC_DY
_F

FROM_LOC_TYPE W_RTL_TSF_DETAILS_D.FROM_LOC_T
YPE

Expected DC
Date

W_PDS_TSF_IT_LC_DY
_F

EXP_DC_DATE W_RTL_TSF_DETAILS_D.EXP_DC_DATE

Delivery
Date

W_PDS_TSF_IT_LC_DY
_F

DELIVERY_DATE W_RTL_TSF_DETAILS_D.DELIVERY_DA
TE

Not After
Date

W_PDS_TSF_IT_LC_DY
_F

NOT_AFTER_DATE W_RTL_TSF_DETAILS_D.NOT_AFTER_
DATE

Transfer Qty W_PDS_TSF_IT_LC_DY
_F

TSF_QTY W_RTL_TSF_IT_LC_DY_F.TSF_QTY

Fill Qty W_PDS_TSF_IT_LC_DY
_F

FILL_QTY W_RTL_TSF_IT_LC_DY_F.FILL_QTY

Shipped Qty W_PDS_TSF_IT_LC_DY
_F

SHIP_QTY W_RTL_TSF_IT_LC_DY_F.SHIP_QTY

Received
Qty

W_PDS_TSF_IT_LC_DY
_F

RECEIVED_QTY W_RTL_TSF_IT_LC_DY_F.RECEIVED_Q
TY

Reconciled
Qty

W_PDS_TSF_IT_LC_DY
_F

RECONCILED_QTY W_RTL_TSF_IT_LC_DY_F.RECONCILED
_QTY

Distro Qty W_PDS_TSF_IT_LC_DY
_F

DISTRO_QTY W_RTL_TSF_IT_LC_DY_F.DISTRO_QTY

Selected Qty W_PDS_TSF_IT_LC_DY
_F

SELECTED_QTY W_RTL_TSF_IT_LC_DY_F.SELECTED_Q
TY

Cancelled
Qty

W_PDS_TSF_IT_LC_DY
_F

CANCELLED_QTY W_RTL_TSF_IT_LC_DY_F.CANCELLED_
QTY

Item Avg
Cost

W_PDS_TSF_IT_LC_DY
_F

TSF_AVG_COST_AM
T_LCL

W_RTL_TSF_IT_LC_DY_F.TSF_AVG_COS
T_AMT_LCL

Item Unit
Cost

W_PDS_TSF_IT_LC_DY
_F

UNIT_COST_AMT_L
CL

W_RTL_TSF_IT_LC_DY_F.UNIT_COST_A
MT_LCL

Pack Flag W_PDS_TSF_IT_LC_DY
_F

PACK_FLG W_PDS_PRODUCT_D.PACK_FLG

Transformations in Planning
Planning applications allow the loading of fact data at the load intersection level (such as Item
and Location) but uses the data within the application at an aggregated level (called the base
intersection). In MFP, though all facts are loaded at the item level, it only needs data to plan at
the Subclass level. The data will be aggregated from item level to subclass level for all the
configured metrics to be directly used by the application. During re-classifications (such as
when one item is moved from one subclass to another subclass), after the new hierarchy
details are imported into MFP it also triggers re-classification of all fact data. Re-aggregation of
fact data then happens only for shared facts having different load and base intersections.

In Planning applications, fact data is grouped as dynamic fact groups based mainly on the
base intersection and interface details, as defined in the Data Interface of the Application

Chapter 6
Transformations in Planning

6-37

Configuration. RI and AI Foundation use a relational data model, whereas Planning
applications internally use a hierarchical data model. Data from RAP, stored using the relational
data model, needs to be transformed to be loaded into Planning applications. A similar
approach is necessary for data coming out of planning applications to AI Foundation or
external sources. These data transformations happen as part of the interfaces defined in
interface.cfg (Interfaces Configuration File), which is a mapping of dimensions and
measures from Planning applications to external system table columns. Refer to the
application-specific Implementation Guides for more information about Planning Data
Interfaces.

Chapter 6
Transformations in Planning

6-38

7
Implementation Tools

Review the sections below to learn about the tools and common components used within the
Retail Analytics and Planning. Many of these tools are used both for initial implementation and
for ongoing maintenance activities, so implementers should be prepared to transfer knowledge
of these tools to the customer before completing the project.

Retail Home
One of the first places you will go in a new RAP environment is Retail Home. It serves both as
the customer portal for Oracle Retail cloud applications and as a centralized place for certain
common configurations, such as Customer Module Management. Module management allows
implementers to quickly configure the complex batch schedules and interdependencies of RAP
applications using a simplified module-based layout. Optional batch programs, such as those
used for Retail Insights or AI Foundation applications, can be turned off from this tool and it
synchronizes with the batch scheduler to ensure all related programs are disabled
automatically.

For more general information about Retail Home and the other features it provides, review the
Retail Home Administration Guide.

Because Customer Modules are a necessary part of configuring and using a RAP
environment, see the steps below for how to access this feature.

1. To access Retail Home, access the URL sent to your cloud administrator on first
provisioning a new environment. It should look similar to the URL format below.

https://{service}.retail.{region}.ocs.oraclecloud.com/{solution-customer-
env}/retailhome

2. Navigate to Settings → Application Administration → Customer Modules
Management. Confirm the table on this page loads without error and displays multiple
rows of results. If an error occurs, contact Oracle Support.

3. You may enable or disable various modules, depending on your implementation plans. For
example, if you are not implementing any Retail Insights modules, then the sections for
“RCI” and “RMI” can be deactivated.

7-1

Note:

Other components within the RI parent module may still be necessary. Detailed
module requirements are described in Batch Orchestration

In addition to Customer Modules, you may also use Retail Home’s Resource Bundle
Customization (RBC) feature to change translatable strings in the applications to custom
values. Use the steps below to verify this feature is available:

1. Navigate to Settings → Application Administration → Application Navigator Setup.

2. Confirm that a row already exists for each application in the platform, including Retail
Insights, Retail AI Foundation Cloud Services, and Merchandise Financial Planning.

3. On Retail Insights, select the row and click Edit.

a. If not enabled, change the Platform Service toggle to an enabled state.

b. Check all of the boxes that appear.

c. Enter a valid platform service URL.

If your platform services URL is blank and you do not know the URL, log a Service
Request to receive it from Oracle.

4. Repeat the steps above for the AI Foundation and MFP modules, if necessary.

5. Navigate to Settings → Resource Bundles → Resource Text Strings once the navigator
and platform service setup is validated.

6. Set the following values in the dropdown menus:

a. Application: Retail Insights

Chapter 7
Retail Home

7-2

b. Bundle: Retail Insights

c. Language: AMERICAN (en)

7. Click the Search button and wait for results to return.

• If multiple rows of results are returned, then you have successfully verified the feature
is enabled and functioning properly.

• If you receive an error, contact Oracle Support.

If you need additional details on how the RBC feature is used within each application module,
refer to the product-specific documentation sets, such as the Retail Insights Administration
Guide.

Process Orchestration and Monitoring (POM)
The Process Orchestration and Monitoring (POM) application is a user interface for scheduling,
tracking, and managing both nightly as well as intraday batch jobs for applications such as RI,
MFP, and AI Foundation. Two important screens from the POM application are Batch
Monitoring and Batch Administration. The Batch Monitoring window provides a runtime view of
the statuses and dependencies of the different batch cycles running on the current business
day. Batch Administration allows you to modify the batch schedules and synchronize them with
Retail Home.

For general information about POM and the features it provides, review the POM
Implementation Guide and POM User Guides.

POM and Customer Modules Management
A required implementation step for RAP will be to synchronize customer modules from Retail
Home to POM to set up your starting batch processes and turn off any processes you are not
using. The steps below explain the general process for syncing POM and Retail Home, which
are used by Retail Insights and AI Foundation applications to set up the nightly batches. They
are also required for the RAP common components used by all the modules.

1. Log in to the Retail Home application as a user with the RETAIL_HOME_ADMIN (or
RETAIL_HOME_ADMIN_PREPROD) user role.

2. Navigate to Settings ->Application Administration -> Customer Modules
Management.

3. Configure your batch modules as needed, disabling any components which you do not
plan to implement, then click the Save button to complete the setup.

4. Now log in to the POM application URL with a user granted the BATCH_ADMINISTRATOR_JOB
or pre-prod equivalent role.

5. Navigate to Tasks -> Batch Administration.

Chapter 7
Process Orchestration and Monitoring (POM)

7-3

6. Click on the tile named AIF DATA <Release_#> to view the RI and data warehouse batch
jobs, which should be loaded into the table below the tiles.

7. Click the Sync with MDF button (above the table) and then click the OK button in the
Warning message popup. Once clicked, the Platform Services calls are initiated between
Retail Home and POM to sync the module status.

8. While the modules are synchronizing, you will see a message: 'Some features are disabled
while a schedule is being synced'. Do not attempt to modify the schedule or make other
changes while the sync is in progress.

9. Once the sync is complete, a JSON file with the batch schedule summary is downloaded.
This file contains the current and previous status of an application and module in MDF and
POM after sync. For example:
{"scheduleName":"RI","synced":true,"enabledModules":
[{"state":"MATCHED_MODULE","mdfStatus":"ENABLED","prevMdfStatusInPom":"E

Chapter 7
Process Orchestration and Monitoring (POM)

7-4

NABLED","prevStatusInPom":"ENABLED","publishToPom":true,"applicationName":
"RI","moduleName":"RMI_SI_ONORDER","matchedModule":true},…

10. Click the Nightly or the Standalone tab above the table and enter a filter for the Module
column (based on the modules that were activated or deactivated) and press Enter. The
jobs will be enabled or disabled based on the setup in Customer Modules Management.

11. Navigate to Tasks → Batch Monitoring. Click on the same application tile as before. If the
batch jobs are not listed, change the Business Date option to the 'Last Schedule Date'
shown on the tile.

12. Once the date is changed, the batch jobs are loaded in the table. Click the Restart
Schedule button so that module changes are reflected in the new schedule. Click OK on
the confirmation pop-up. After a few seconds, a 'Restarted' message is displayed.

13. In the same screen, filter the Job column (for example,'W_HOUSEHOLD') to check the
status of jobs. The status is either 'Loaded' or 'Disabled' based on the configuration in the
Customer Modules Management screen in Retail Home.

Note:

A specific module in Retail Home may appear under several applications, and jobs
within a module may be used by multiple processes in POM. The rule for
synchronizing modules is, if a given POM job is enabled in at least one module, it will
be enabled in POM (even if it is disabled in some other modules). Only when a job is
not needed for any modules will it be disabled.

Control & Tactical Center
Retail Insights and AI Foundation modules make use of a centralized configuration interface
named the Control & Tactical Center. From here the user can review and override the system
configurations for different applications through the Manage System Configurations screen.
The table can be filtered by Application and their configured tables. There is also a Description
section on the right side that displays the details of the filtered table.

Chapter 7
Control & Tactical Center

7-5

Here are the steps for accessing and using this feature:

1. To access the system configurations, start from the Retail Home URL sent to your cloud
administrator on first provisioning a new environment. It should look similar to the URL
format below.

https://{service}.retail.{region}.ocs.oraclecloud.com/{solution-customer-
env}/retailhome

2. Using the Retail Home application menu, locate the link for the Retail AI Foundation Cloud
Services. Alternatively, you can directly navigate to the application using a URL similar to
the format below.

https://{service}.retail.{region}ocs.oraclecloud.com/{solution-customer-
env}/orase/faces/Home

3. In the task menu, navigate to Control & Tactical Center → Strategy & Policy
Management. A new window opens.

Note:

Make sure your user has the ADMINISTRATOR_JOB role in OCI IAM before logging
into the system.

4. Click Manage System Configurations in the new application screen.

5. Select an application in the dropdown menu to pick the desired set of configurations.
Based on the selection, the Filter and Table options are populated with the configured
columns and data. The Description section also displays the details of the selected table.

Specifically for the initial environment setup, you will be working mainly within the Retail
Insights group of configuration tables. You will also use the Strategy & Policy Management
interface to access the forecasting configurations needed to set up and generate forecasts for
Planning applications. It is also used to manage the business policies and rules used by
Lifecycle Pricing Optimization. Any required configurations in these areas will be covered later
in this document.

Data Visualizer
Retail Analytics and Planning implementations largely involve processing large volumes of
data through several application modules, so it is important to know how to access the
database to review settings, monitor load progress, and validate data tables. Database access

Chapter 7
Data Visualizer

7-6

is provided through the Oracle Data Visualization (DV) tool, which is included with all Retail
Analytics and Planning environments. The URL to access the DV application will be similar to
the below URL:

https://{analytics-service-region}/{tenant-id}/dv/?pageid=home

Note:

The best way to write ad hoc SQL against the database is through APEX. However,
Data Visualizer can be used to create reusable datasets based on SQL that can be
built into reports for longer term usage.

The RAP database comprises several areas for the individual application modules, but the
majority of objects from RI and AIF are exposed in DV as a connection to the RAFEDM01
database user. This user has read-only access to the majority of database objects which are
involved in RI and AI Foundation implementations, as well as the tables involved in publishing
data to the Planning modules. Follow the steps below to verify access to this database
connection:

1. Log in to the DV application with a user that includes the DVContentAuthor group in OCI
IAM (group names vary by cloud service; they will be prefixed with the tenant ID).

2. Expand the navigation panel using the Navigator icon in the upper left corner.

3. Click Data and, once the screen loads, click Connections. Confirm that you have a
connection already available for RAFEDM01-Connection (Retail Analytics Front End Data
Mart).

Chapter 7
Data Visualizer

7-7

4. Click the connection. The Add Data Set screen will load using the selected connection. A
list of database users are displayed in the left panel.

 If any errors are displayed or a password is requested, contact Oracle Support for
assistance.

5. Expand the RAFEDM01 user.

6. Select C_ODI_PARAM from the list of database tables and drag-and-drop the table name
into the center of the screen.

7. Wait for the table to be analyzed and results to be displayed. Confirm that multiple rows of
data are shown in the bottom panel:

Chapter 7
Data Visualizer

7-8

8. If you are performing a one-time query that does not need to be repeated or reused, you
can stop at this point. You can also add a Manual SQL query using the SQL object at the
top of the left panel, to write simple queries on the database. However, if you want to
create a reusable dataset, or expose the data for multiple users, proceed to the next steps.

9. Click the Save icon in the upper right corner of the screen and provide a name for the new
dataset:

10. Click the table name (C_ODI_PARAM) at the bottom of the screen to modify the dataset
further for formatting and custom fields (if desired).

11. You can format the dataset on this screen for use in DV projects. You may rename the
columns, change the datatype between Measure and Attribute, create new columns based
on calculated values, and extract values from existing columns (such as getting the month
from a date). Refer to Oracle Analytics documentation on Dataset creation for full details.
When finished, click Create Workbook in the upper right corner to open a new workbook
with it.

Chapter 7
Data Visualizer

7-9

Once you have verified database connectivity, you may continue on to creating more datasets
and workbooks as needed. Datasets will be saved for your user and can be reused at later
dates without having to re-query the database. Saved datasets can be accessed using the
Data screen from the Navigator panel.

File Transfer Services
File Transfer Services (FTS) for the Retail Analytics and Planning cloud services are being
made available in this release, replacing SFTP in new environments. They will allow you to
manage uploading and downloading files to Oracle Cloud Infrastructure Object Storage, which
is an internet-scale, high-performance storage platform that offers reliable and cost-efficient
data durability.

Access to files is through a pre-authenticated request (PAR), which is a URL that requires no
further authentication to upload or download files to the cloud. To retrieve a PAR, you must use
the appropriate file transfer REST service. These new services will enable you to import files to
and export files from Object Storage used by the solutions. The primary role of these services
is to ensure that only valid external users can call the service by enforcing authorization
policies. Where supported, the files can be compressed (zipped) before upload.

The general flow of activities involving FTS and an external integrating system are as follows
for transferring files into our cloud service:

1. The third-party solution calls the service, requesting pre-authentication to upload files from
Object Storage, including the incoming prefix and file name. On receiving the PAR, the file
is uploaded using the URL included within the response. A PAR has a validity of 10
minutes; an upload can take longer than 10 minutes but after it is returned it must be
started within that period.

2. The cloud service batch processing will retrieve the files from Object Storage, after they
have passed an anti-virus and malware scan.

3. The batch processing will delete the file from Object Storage to ensure it is not re-
processed in the next batch run. The batch processing uncompresses the file and
processes the data.

Chapter 7
File Transfer Services

7-10

To interact with FTS you must use the REST APIs provided. The table below lists the API end
points for different file operations.

Operation Method FTS API Endpoint

Ping GET {baseUrl}/services/private/FTSWrapper/ping
List Prefixes GET {baseUrl}/services/private/FTSWrapper/listprefixes
List Files GET {baseUrl}/services/private/FTSWrapper/listfiles
Move Files POST {baseUrl}/services/private/FTSWrapper/movefiles
Delete Files DELETE {baseUrl}/services/private/FTSWrapper/delete
Request
Upload PAR

POST {baseUrl}/services/private/FTSWrapper/upload

Request
Download PAR

POST {baseUrl}/services/private/FTSWrapper/download

The {baseUrl} is the URL for your RAP service that is supplied to you when your service is
provisioned, and can be located from Retail Home as it is also the platform service URL. Refer
to the Required Parameters section for additional parameters you will need to make FTS
requests.

Required Parameters
To leverage File Transfer Services, several pieces of information are required. This information
is used in API calls and also inserted into automated scripts, such as the test script provided
later in this document.

Chapter 7
File Transfer Services

7-11

The below parameters are required for uploading data files to object storage.

BASE_URL="https://__YOUR_TENANT_BASE_URL__"
TENANT="__YOUR-TENANT_ID__"
IDCS_URL="https://_YOUR__IDCS__URL__/oauth2/v1/token"
IDCS_CLIENTID="__YOUR_CLIENT_APPID__"
IDCS_CLIENTSECRET="__YOUR_CLIENT_SECRET___"
IDCS_SCOPE="rgbu:rsp:psraf-__YOUR_SCOPE__"

Base URL
The substring before the first ‘/’ in the Application URL is termed as the base URL.

Example URL: https://rap.retail.eu-frankfurt-1.ocs.oraclecloud.com/rgbu-rap-
hmcd-stg1-rsp/orase/faces/Home
In the above URL, BASE_URL = https://rap.retail.eu-frankfurt-1.ocs.oraclecloud.com

Tenant
The string after the Base URL and before the Application URL starts would be the Tenant.

Example URL: https://rap.retail.eu-frankfurt-1.ocs.oraclecloud.com/rgbu-rap-
hmcd-stg1-rsp/orase/faces/Home
In the above URL, TENANT = rgbu-rap-hmcd-stg1-rsp

OCI IAM URL
Your authentication URL is the one used when you first access any of your cloud services and
are redirected to a login screen. You will get the base URL from the login screen and combine
it with the necessary path to fetch the authentication token.

Example Base URL: https://oci—iam-
a4cbf187f29d4f41bc03fffb657d5513.identity.oraclecloud.com/
Using the above URL, IDCS_URL = https://oci—iam-
a4cbf187f29d4f41bc03fffb657d5513.identity.oraclecloud.com/oauth2/v1/token

OCI IAM Scope
The authentication scope is a code associated with the specific environment you are planning
to interact with. It has a static prefix based on the application, appended with an environment-
specific code and index.

Base format: rgbu:rsp:psraf-<ENV><ENVINDEX>
Where <ENV> is replaced with one of the codes in (PRD, STG) and <ENVINDEX> is set to 1, unless
you have multiple staging environments, and then the index can be 2 or greater. For these
applications (that is, RI and AIF) use the rsp code. For other applications, the code is rpas.

To determine this information, look at the URL for your environment, such as:

https://rap.retail.eu-frankfurt-1.ocs.oraclecloud.com/rgbu-rap-hmcd-stg1-rsp/
orase/faces/Home

Chapter 7
File Transfer Services

7-12

In the tenant string, you can see the code stg1. This can be added to your scope string
(ensuring it is in uppercase characters only).

IDCS_SCOPE = rgbu:rsp:psraf-STG1

Client ID and Secret
The client ID and secret are authentication keys generated for your specific connection and
must be passed with every request. Retail Home provides an interface to get these values
when you login with a user having the PLATFORM_SERVICES_ADMINISTRATOR group.

1. Navigate to the Manage OAuth Clients screen from the Settings menu, under Application
Administration.

2. Click the plus (+) icon to create a new OAuth 2.0 client.

3. Enter the requested details in the window. The application name should be unique to the
connection you are establishing and cannot be used to generate multiple client ID/secret
pairs.

The application name cannot be re-used for multiple requests. It also cannot contain
spaces. The scope should be the string previously established in OCI IAM Scope. The
description is any value you wish to enter to describe the application name being used.

4. Click OK to submit the form and display a new popup with the client ID and secret for the
specified Application Name. Do NOT close the window until you have captured the
information and verified it matches what is shown on screen. Once you close the window,
you cannot recover the information and you will need to create a new application.

Chapter 7
File Transfer Services

7-13

MFP Example
To determine IDCS_SCOPE, refer to the tenant string portion (for example, rgbu-rap-cust-stg1-
mfpscs) of your cloud service URL (for example,https://rap.retail.us-
ashburn-1.ocs.oraclecloud.com/rgbu-rap-cust-stg1-mfpscs/rpasceui/)

Planning Cloud Service URL Patterns SCOPE

https://rap.retail.us-
ashburn-1.ocs.oraclecloud.com/rgbu-rap-cust-
stg1-mfpscs/rpasceui/

rgbu:rpas:psraf-MFPSCS-STG1

https://rap.retail.us-
ashburn-1.ocs.oraclecloud.com/rgbu-rap-cust-
stg1-rpasce/rpasceui/

rgbu:rpas:psraf-RPASCE-STG1

Based on the tenant string (for example, rgbu-rap-cust-stg1-mfpscs), the environment index
is stg1 and the application is mfpscs. For this combination, the IDCS scope will look like the
configuration below (ensuring it is in uppercase characters only):

IDCS_SCOPE = rgbu:rpas:psraf-MFPSCS-STG1

Create the OAuth Client in Retail Home with the following parameters:

• App Name: MFP_STG1
• Description: FTS for MFP on STG1
• Scope 1: rgbu:rpas:psraf-MFPSCS-STG1
This generates an OAuth Client with details like this:

• Oauth client:

• App Name: MFP_STG1

• Client Id: MFP_STG1_APPID

• Client Secret: 6aae7818-309b-4e7a-874e-f26356a675b1

You will need to capture Client Id and Client Secret. So set the FTS script variables as follows:

BASE_URL="https://rap.retail.eu-frankfurt-1.ocs.oraclecloud.com"
TENANT="rgbu-rap-hmcd-stg1-mfpscs"
IDCS_URL="https://oci—iam-
a4cbf187f29d4f41bc03fffb657d5513.identity.oraclecloud.com/oauth2/v1/token"
IDCS_CLIENTID="MFP_STG1_APPID"
IDCS_CLIENTSECRET="6aae7818-309b-4e7a-874e-f26356a675b1"
IDCS_SCOPE="rgbu:rpas:psraf-MFPSCS-STG1"

IPO Example
To determine the IDCS_SCOPE, refer to the tenant string portion (for example, rgbu-rap-cust-
stg1-ipocs) of your cloud service URL (for example, https://rap.retail.us-
ashburn-1.ocs.oraclecloud.com/rgbu-rap-cust-stg1-ipo/rpasceui/)

Chapter 7
File Transfer Services

7-14

Planning Cloud Service URL Patterns SCOPE

https://rap.retail.us-
ashburn-1.ocs.oraclecloud.com/rgbu-rap-cust-
stg1-ipocs/rpasceui/

rgbu:rpas:psraf-IPOCS-STG1

https://rap.retail.us-
ashburn-1.ocs.oraclecloud.com/rgbu-rap-cust-
stg1-rpasce/rpasceui/

rgbu:rpas:psraf-RPASCE-STG1

Based on the tenant string (for example, rgbu-rap-cust-stg1-ipocs), the environment index
is stg1 and the application is ipocs. For this combination, the IDCS scope will look like the
configuration below (ensuring it is in uppercase characters only):

IDCS_SCOPE = rgbu:rpas:psraf-IPOCS-STG1

Create the OAuth Client in Retail Home with the following parameters:

• App Name: IPOCS_STG1
• Description: FTS for IPOCS on STG1
• Scope 1: rgbu:rpas:psraf-IPOCS-STG1
This generates an OAuth Client with details like this:

• Oauth client:

• App Name: IPOCS_STG1

• Client Id: IPOCS_STG1_APPID

• Client Secret: 6aae7818-309b-4e7a-874e-f26356a675b1

You will need to capture Client Id and Client Secret. So set the FTS script variables as follows:

BASE_URL="https://rap.retail.eu-frankfurt-1.ocs.oraclecloud.com"
TENANT="rgbu-rap-hmcd-stg1-ipocs"
IDCS_URL="https://oci—iam-
a4cbf187f29d4f41bc03fffb657d5513.identity.oraclecloud.com/oauth2/v1/token"
IDCS_CLIENTID="IPOCS_STG1_APPID"
IDCS_CLIENTSECRET="6aae7818-309b-4e7a-874e-f26356a675b1"
IDCS_SCOPE="rgbu:rpas:psraf-IPOCS-STG1"

AP Example
To determine the IDCS_SCOPE, refer to the tenant string portion (for example, rgbu-rap-cust-
stg1-apcs) of your cloud service URL (for example, https://rap.retail.us-
ashburn-1.ocs.oraclecloud.com/rgbu-rap-cust-stg1-apcs/rpasceui/)

Planning Cloud Service URL Patterns SCOPE

https://rap.retail.us-
ashburn-1.ocs.oraclecloud.com/rgbu-rap-cust-
stg1-apcs/rpasceui/

rgbu:rpas:psraf-APCS-STG1

Chapter 7
File Transfer Services

7-15

Planning Cloud Service URL Patterns SCOPE

https://rap.retail.us-
ashburn-1.ocs.oraclecloud.com/rgbu-rap-cust-
stg1-rpasce/rpasceui/

rgbu:rpas:psraf-RPASCE-STG1

Based on the tenant string (for example, rgbu-rap-cust-stg1-apcs), the environment index is
stg1 and the application is apcs. For this combination, the IDCS scope will look like the
configuration below (ensuring it is in uppercase characters only):

IDCS_SCOPE = rgbu:rpas:psraf-APCS-STG1

Create the OAuth Client in Retail Home with the following parameters:

• App Name: AP_STG1
• Description: FTS for AP on STG1
• Scope 1: rgbu:rpas:psraf-AP-STG1
This generates an OAuth Client with details like this:

• Oauth client:

• App Name: AP_STG1

• Client Id: AP_STG1_APPID

• Client Secret: 6aae7818-309b-4e7a-874e-f26356a675b1

You will need to capture Client Id and Client Secret. So set the FTS script variables as follows:

BASE_URL="https://rap.retail.eu-frankfurt-1.ocs.oraclecloud.com"
TENANT="rgbu-rap-hmcd-stg1-apcs"
IDCS_URL="https://oci—iam-
a4cbf187f29d4f41bc03fffb657d5513.identity.oraclecloud.com/oauth2/v1/token"
IDCS_CLIENTID="AP_STG1_APPID"
IDCS_CLIENTSECRET="6aae7818-309b-4e7a-874e-f26356a675b1"
IDCS_SCOPE="rgbu:rpas:psraf-AP-STG1"

Common HTTP Headers
Each call to FTS should contain the following HTTP headers:

Content-Type: application/json
Accept: application/json
Accept:-Language: en
Authorization: Bearer {ClientToken}

The {ClientToken} is the access token returned by OCI IAM after requesting client
credentials. This is refreshed periodically to avoid authentication errors.

Chapter 7
File Transfer Services

7-16

Retrieving Identity Access Client Token
The access client token is returned from a POST call to the OCI IAM URL, provided at
provisioning, along with the following:

Headers

Content-Type: application/x-www-form-urlencoded
Accept: application/json
Authorization: Basic {ociAuth}

ociAuth is the base64 encoding of your {clientId}:{clientSecret}

Data (URLEncoded)

grant_type=client_credentials
scope=rgbu :rpas :psraf-{environment}

FTS API Specification
An example shell script implementing these API calls can be found in Sample Public File
Transfer Script for Planning Apps and Sample Public File Transfer Script for RI and AIF. The
sample script will require all of the parameters discussed so far in this chapter to be added to it
before it can be used to issue FTS commands. Refer to the table below for a more detailed list
of services available in FTS.

Note:

The baseUrl in these examples is not the same as the BASE_URL variable passed into
cURL commands. The baseUrl for the API itself is the hostname and tenant, plus the
service implementation path (for example, RetailAppsPlatformServices). The
sample scripts provided in the appendix show the full path used by the API calls.

Ping Returns the status of the service, and provides an external health-
check.

Method GET

Endpoint {baseUrl}/services/private/FTSWrapper/ping
Parameters Common headers

Request None

Response { appStatus:200 }
The appStatus code follows HTTP return code standards.

List Prefixes Returns a list of the known storage prefixes. These are analogous to
directories, and are restricted to predefined choices per service.

Method GET

Endpoint {baseUrl}/services/private/FTSWrapper/listprefixes

Chapter 7
File Transfer Services

7-17

Parameters Common headers

Request None

Response A JSON array of strings containing the known prefixes.

List Files Returns a list of the file within a given storage prefix.

Method GET

Endpoint {baseUrl}/services/private/FTSWrapper/listfiles
Parameters Common headers

Request Query parameters (…/listfiles?{parameterName}) that can be
appended to the URL to filter the request:
prefix – the storage prefix to use

contains – files that contain the specified substring

scanStatus – file status returned by malware/antivirus scan

limit – control the number of results in a page

offset – page number

sort – the sort order key

Response A JSON resultSet containing array of files. For each file, there is
metadata including: name, size, created and modified dates, scan status
and date, scan output message.

Move Files Moves one or more files between storage prefixes, while additionally
allowing the name to be modified

Method GET

Endpoint {baseUrl}/services/private/FTSWrapper/movefiles
Parameters Common headers

Request An array of files containing the current and new storage prefixes and
file names, as shown below.

{"listOfFiles": [
 {"currentPath":
 { "storagePrefix": "string",
 "fileName": "string"},
 "newPath": {
 "storagePrefix": "string",
 "fileName": "string"
 }
 }
]
}

Response HTTP 200, request succeeded;
HTTP 500, an error was encountered.

Delete Files Deletes one more or files

Method DELETE

Endpoint {baseUrl}/services/private/FTSWrapper/delete

Chapter 7
File Transfer Services

7-18

Parameters Common headers

Request A JSON array of files to be deleted. One or more pairs of
storagePrefix and filename elements can be specified within the
array.

{"listOfFiles":
 [
 {
 "storagePrefix": "string",
 "fileName": "string"
 }
]
}

Response A JSON array of each file deletion attempted and the result.

Request Upload PAR Request PAR for uploading one or more files

Method POST

Endpoint {baseUrl}/services/private/FTSWrapper/upload
Parameters Common headers

Request A JSON array of files to be uploaded. One or more pairs of
storagePrefix and filename elements can be specified within the
array.

{ "listOfFiles":
 [
 {
 "storagePrefix": "string",
 "fileName": "string"
 }
]
}

Response A parList containing an array containing elements corresponding to
the request including the PAR accessUri and name of file.

Request Download
PAR

Request PARs for downloading one or more files

Method POST

Endpoint {baseUrl}/services/private/FTSWrapper/download
Parameters Common headers

Chapter 7
File Transfer Services

7-19

Request A JSON array of files to be downloaded. One or more pairs of
storagePrefix and filenames can be specified within the array.

{ "listOfFiles":
 [
 {
 "storagePrefix": "string",
 "fileName": "string"
 }
]
}

Response A parList containing an array containing elements corresponding to
the request including the PAR accessUri and name of file.

FTS Script Usage
Assuming you have taken the sample script and named it file_transfer.sh on a Unix
system, you may use commands like those below to call the APIs.

Upload Files
For RAP input files (excluding direct-to-RPASCE input files) the input files must be uploaded to
the object storage with a prefix of ris/incoming.

• Prefix: ris/incoming
• File Name: RI_RMS_DATA.zip
• Command:

sh file_transfer.sh uploadfiles ris/incoming RI_RMS_DATA.zip

Download Files
For RAP output files (excluding direct-from-RPASCE output files) the files must be downloaded
from the object storage with a prefix of ris/outgoing.

• Prefix: ris/outgoing
• File Name: cis_custseg_exp.csv
• Command:

sh file_transfer.sh downloadfiles ris/outgoing cis_custseg_exp.csv

Download Archives
For RAP files that are automatically archived as part of the batch process, you have the ability
to download these files for a limited number of days before they are erased (based on the file
retention policy in your OCI region). Archive files are added to sub-folders so the steps are
different from a standard download.

1. POM job logs will show the path to the archive

For example: incoming-10072022-163233/RAP_DATA.zip

Chapter 7
File Transfer Services

7-20

2. Create the directory in your local server matching the archive name.

For example: mkdir incoming-10072022-163233
3. Use the downloadfiles command with the ris/archive prefix and the file path as the sub-

folder and filename together.

For example: sh file_transfer.sh downloadfiles ris/archive
incoming-10072022-163233/RAP_DATA.zip

BI Publisher
The BI Publisher component of Oracle Analytics is available for reporting and export file
generation where the data needs to be written into a specific template or layout and must be
delivered to other sources such as email or Object Storage (OS). SFTP is no longer available,
so if you have previously used SFTP as the report delivery method, you will now use OS.

Configuring Burst Reports for Object Storage
After configuring the Publisher data model, as you build your burst query by navigating to the
bursting section, you need to be aware of some of the key parameters to be supplied to the
burst query that are specific to Object Storage.

Sample Bursting Query for object storage as the delivery channel:

select 0 KEY,
'<template_name>' TEMPLATE,
'RTF' TEMPLATE_FORMAT,
'en-US' LOCALE,
'PDF' OUTPUT_FORMAT,
'OBJECTSTORAGE' DEL_CHANNEL,
'<output_name>' OUTPUT_NAME,
'OS' PARAMETER1,
'<prefix>'PARAMETER2,
'<file_name>' PARAMETER3
FROM "Retail Insights As-Is"

Key parameters that are specific to object storage are:

• DEL_CHANNEL — This needs to be keyed in as OBJECTSTORAGE.

• PARAMETER1 — Use OS as the parameter value for this, because this is the preconfigured
server name. The value for this should be kept as OS and should not be changed.

• PARAMETER2 — Prefix under the object storage bucket where the file will be uploaded. The
prefix should not start or end with a / character; for example ris/outgoing is a possible
prefix to use.

• PARAMETER3 — File name. The file will be created under the prefix; for example a filename
of order_list with type as PDF will be created as ris/outgoing/order_list.pdf

Delivering Scheduled Reports through Object Storage
If the report is not using a bursting definition then, while adding the destination for the reports
delivery when you schedule a report job, you will need the following set of inputs that are
required to push the file to object storage.

Chapter 7
BI Publisher

7-21

• Server – The server is preconfigured as OS for any tenant. OS must always be selected.

• Prefix – The prefix under the object storage bucket where the file will be uploaded.

• File Name – The file name with which the scheduled report output will be delivered to the
object storage.

The way you set up these inputs is the same as when using the bursting option. For additional
details on how to set up reports delivery through object storage, refer to Set Output Options in
Oracle Cloud Visualizing Data and Building Reports in Oracle Analytics Cloud.

Downloading Reports from Object Storage
Once the reports are sent to object storage, use the createPar service to get a link to download
the files. This service is available using a Retail Home API, which generates a Pre-
authenticated Request (PAR) to download the file. The PAR is not accessible using File
Transfer Services (FTS) commands; you must directly download the file by first calling the API
and then pulling the data down from the returned URL.

For details on the service API, refer to the Retail Home Administration Guide Appendix B.

Sample message body when calling the Retail Home service:

{
 "disUrl": "https://rgbu.gbua.ocs.oc-test.com",
 "name": "Productlist",
 "dateExpires": "2024-01-31",
 "objectName": "ris/incoming/Productlist.pdf"
}

When making the request, you must also add a context type header with a value of
application/json or you will not receive a response. If the requested file is found, then you
will get a response like the following:

{
 "status": "Success",
 "id": "B0ji5Vir/nDfUQVaFHNhYVjgHoRPO8ZnFjTUPcQIyXcEtY8HUoqeJNsdyFzqreqv:ris/
incoming/Productlist.pdf",
 "url": "https://objectstorage.us-phoenix-1.oraclecloud.com/p/
X6BRpziLKQ3xoRcSToi68L31NHxm2rhTc2lbrTpvmWm9vIpCVWNiC63tYTCWgxYW/n/
oraclegbudevcorp/b/
cds_gbua_cndevcorp_rgbu_rgbu_tpn24ouxsgftuy5qh4te_RIRSP_STG5009_1/o/ris/
incoming/Productlist.pdf"
}

The URL can be passed into any method you would normally use to download a file, such as a
wget command.

Application Express (APEX)
The Retail Analytics and Planning includes a dedicated instance of Application Express
(APEX) that is pre-configured for read-only database access to RAP tables and views. APEX is
managed as a part of the Innovation Workbench (IW) module that includes APEX and Data

Chapter 7
Application Express (APEX)

7-22

https://docs.oracle.com/en/cloud/paas/analytics-cloud/acubi/set-output-options.html#GUID-1065C5FA-3B95-4D1D-8B7F-FB83C65EB0D2
https://docs.oracle.com/en/industries/retail/retail-home/23.1.301.0/rhmag/use-rtl-home-svc-retrieve-export-oas-rpt.htm#use-rtl-home-svc-retrieve-export-oa-28980D51

Studio. You can access APEX from a task menu link in the AI Foundation Cloud Services
interface, or by navigating directly to the ORDS endpoint like below:

https://{base URL}/{solution-customer-env}/ords

For example:

https://ocacs.ocs.oc-test.com/nrfy45ka2su3imnq6s/ords/

For first time setup of the administrator user account for APEX, refer to the RAP Administration
Guide.

After you are logged into APEX, click the SQL Workshop icon or access the SQL Workshop
menu to enter the SQL Commands screen. This screen is where you will enter SQL to query
the RAP database objects in the RI and AI Foundation schemas.

To see the list of available objects to query, access the Object Browser. All RI and AI
Foundation objects are added as synonyms, so select that menu option from the panel on the
left.

If you do not see any RI tables in the synonym list, then you may need to run a set of ad hoc
jobs in POM to expose them. Run the following two programs from the AI Foundation
schedule’s standalone job list:

Chapter 7
Application Express (APEX)

7-23

• RADM_GRANT_ACCESS_TO_IW_ADHOC_JOB

• RABE_GRANT_ACCESS_TO_IW_ADHOC_JOB

Once the jobs execute successfully, start a new session of APEX and navigate back to the list
of Synonyms in the Object Browser screen to confirm the table list is updated.

Database Access Levels
Your ability to query and interact with AIF database objects depends on the environment you
are working with (Production or Non-Production). The following grants and privileges are given
to end users in APEX specifically for tables and views in the RI and AIF database users.

Database Grant Non-Prod Prod

Insert (Staging Tables) Yes Yes

Insert (Internal Tables) Yes No

Update (Staging Tables) Yes Yes

Update (Internal Tables) Yes No

Delete (Staging Tables) Yes Yes

Delete (Internal Tables) Yes No

Truncate No No

Create Object No No

Alter Object No No

Drop Object No No

A staging table is generally any table that receives data from an outside source, which can
include flat files, direct integration between two Oracle solutions, or web services. For example,
W_PRODUCT_DS is the staging table in the RADM01 schema that receives product information.
Internal tables include the target tables where staged data will be moved to for the applications
to read from during normal operations, temporary (TMP) tables, and configuration tables. There
are a few exceptions made for application objects that must not be altered, but all tables that
contain data you should need to interact with will be accessible in non-prod environments.
W_PRODUCT_D is an example of a target table for the W_PRODUCT_DS staging table.

Postman
For automated API calls, Postman is the preferred way to interact with POM in order to call ad
hoc processes and perform data load activities. The steps below explain how to configure
Postman for first-time use with POM.

Note:

POM versions earlier than v21 allow Basic Authentication, while v21+ requires OAuth
2.0 as detailed below.

1. As a pre-requisite, retrieve the Client ID and Client Secret from Retail Home’s ‘Create
IDCS OAuth 2.0 Client’. Refer to the Retail Home Administration Guide for complete
details on retrieving the Client ID and Client Secret info if you have not done it before.

2. In the Postman application, click New->HTTP Request.

Chapter 7
Postman

7-24

3. Set Request Type as POST and set the Request URL (Example for RI schedule):

https://<Region-LB>/<POM-Subnamespace>/ProcessServices/services/private/
executionEngine/schedules/RI/execution

For example:

https://home.retail.us-region-1.ocs.oc-test.com/rgbu-common-rap-prod-pom/
ProcessServices/services/private/executionEngine/schedules/RI/execution

4. Perform the following steps before sending the POST request to retrieve your
authentication token:

a. Authorization Tab:

Type: OAuth 2.0
Add authorization data to: Request Headers

b. Configure the New Token:

i. Token Name: PROD5555
ii. Grant Type: Client Credentials
iii. Access Token URL: https://<Customer-OCI_IAM>/oauth2/v1/token

For example: https://oci—iam-fe5f77f8a44.identity.c9dev.oc9dev.com/
oauth2/v1/token

iv. Client ID: A unique “API Key” generated when registering your application in the
Identity Cloud Services admin console.

v. Client Secret: A private key similar to a password that is generated when
registering your application in the Identity Cloud Services admin console.

vi. Scope: rgbu:pom:services-administrator-<Env-INDEX>
For example: rgbu:pom:services-administrator-PROD5555

vii. Client Authentication: Send as Basic Auth header

Chapter 7
Postman

7-25

c. Click the Get New Access Token button.

5. The Access Token is displayed in the MANAGE ACCESS TOKENS pop-up window. Click
the Use Token button.

Chapter 7
Postman

7-26

6. The generated token is populated in the Access Token section.

7. In the Parameters, provide a key of skipVersion with a value of true.

8. Click the Body tab to enter the JSON for running POM batches.

9. Select the raw radio button and JSON file type.

10. Enter the JSON XML and click the Send button in the Body tab.

a. If the returned Status is "200 OK" and 'executionEngineInfo': “STARTED” is in the
response body, then the batch started as expected.

Chapter 7
Postman

7-27

b. If the status is not 200 and either of 401 (authorization error) or 500 (incorrect body
content) or 404 (server down) and so on, then perform error resolution as needed.

Example request and response for the HIST_ZIP_FILE_LOAD_ADHOC process:

Additional examples of Postman Body JSON XML are listed below.

Nightly Batch

{
"cycleName" : "Nightly",
"flowName" : "Nightly",
"requestType" : "POM Scheduler"
}

With One Process – Applicable for Nightly and Ad Hoc

{
"cycleName" : "Nightly",
"flowName" : "Nightly",
"requestType" : "POM Scheduler",
"processName" : "LOAD_AGGREGATION_BCOST_IT_DY_A_PROCESS"
}

With Dynamic Parameters – Applicable for Nightly and Ad Hoc

{
"cycleName" : "Adhoc",
"flowName" : "Adhoc",
"requestType" : "POM Scheduler",
"processName" : "HIST_INVRTV_LOAD_ADHOC",
"requestParameters" : "jobParams.HIST_LOAD_INVRTV_DAY_JOB=2020-09-09

Chapter 7
Postman

7-28

2021-09-09"
}

Chapter 7
Postman

7-29

8
Data File Generation

When you are implementing the Retail Analytics and Planning without using an Oracle
merchandising system for foundation data, or you are providing history data from non-Oracle
sources, you will need to create several data files following the platform specifications. This
chapter will provide guidance on the data file formats, structures, business rules, and other
considerations that must be accounted for when generating the data.

Important:

Do not begin data file creation for RAP until you have reviewed this chapter and have
an understanding of the key data structures used throughout the platform.

For complete column-level definitions of the interfaces, including datatype and length
requirements, refer to the RI and AI Foundation Interfaces Guide in My Oracle Support. From
the same document, you may also download Data Samples for all of the files covered in this
chapter.

Files Types and Data Format
The shared platform data files discussed in this chapter may use a standard comma-delimited
(CSV) file format, with text strings enclosed by quotation marks or other characters. The files
must be UTF-8 encoded; other encoding types such as ANSI are not supported and may fail in
the loads due to unrecognized characters. The files expect the first line to be column headers,
and lines 2+ should contain the input data. For specific columns in each of these files, the
following standards can be used as a guideline (though they can be changed by configuration
options).

Table 8-1 Foundation File Formatting

Datatype Format Example Explanation

Number 0.00 340911.10 Numbers should be unformatted with periods
for decimal places. Commas or other symbols
should not be used within the numerical
values.

Character “abc” “Item #4561” Any alphanumeric string can be optionally
enclosed by quotation marks to encapsulate
special characters such as commas in a
descriptive value. Unique identifier columns,
like ITEM ID, that are CHAR or VARCHAR2
datatypes require careful attention, because
any characters in the string will be a part of
that identifier, even spaces and underscores.
For example, “ abc” and “abc “ are treated
as different values unless you perform
trimming on the field to remove spaces.

8-1

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2539848.1
https://support.oracle.com

Table 8-1 (Cont.) Foundation File Formatting

Datatype Format Example Explanation

Date YYYYMMDD 20201231 Dates should be provided as simple 8-digit
values with no formatting in year-month-day
sequences.

Context Files
Before creating and processing a data file on the platform, choose the fields that will be
populated and instruct the platform to only look for data in those columns. This configuration is
handled through the use of Context (CTX) Files that are uploaded alongside each base data
file. For example, the context file for PRODUCT.csv will be PRODUCT.csv.ctx (appending
the .ctx file descriptor to the end of the base filename).

Within each context file you must provide a single column containing:

• One or more parameters defining the behavior of the file load and the format of the file.

• The list of fields contained in the source file, in the order in which they appear in the file
specification:

– #TABLE#<Staging Table Name>#

– #DELIMITER#<Input Value>#

– #DATEFORMAT#<Input Value>#

– #REJECTLIMIT#<Input Value>#

– #RECORDDELIMITER#<Input Value>#

– #IGNOREBLANKLINES#<Input Value>#

– #SKIPHEADERS#<Input Value>#

– #TRIMSPACES#<Input Value>#

– #TRUNCATECOL#<Input Value>#

– #COLUMNLIST#<Input Value>#

<COL1>

<COL2>

<COL3>

The following is an example context file for the CALENDAR.csv data file:

File Name: CALENDAR.csv.ctx
File Contents:

#TABLE#W_MCAL_PERIOD_DTS#
#DELIMITER#,#
#DATEFORMAT#YYYY-MM-DD#
#REJECTLIMIT#1#
#RECORDDELIMITER#\n#
#IGNOREBLANKLINES#false#
#SKIPHEADERS#1#
#TRIMSPACES#rtrim#

Chapter 8
Files Types and Data Format

8-2

#TRUNCATECOL#false#
#COLUMNLIST#
MCAL_CAL_ID
MCAL_PERIOD_TYPE
MCAL_PERIOD_NAME
MCAL_PERIOD
MCAL_PERIOD_ST_DT
MCAL_PERIOD_END_DT
MCAL_QTR
MCAL_YEAR
MCAL_QTR_START_DT
MCAL_QTR_END_DT
MCAL_YEAR_START_DT
MCAL_YEAR_END_DT

The file must be UNIX formatted and have an end-of-line character on every line, including the
last one. As shown above, the final EOL may appear as a new line in a text editor. The
#TABLE# field is required: it indicates the name of the database staging table updated by the
file. The COLUMNLIST tag is also required: it determines the columns the customer uses in
their .dat or .csv file. The column list must match the order of fields in the file from left to right,
which must also align with the published file specifications. Include the list of columns after the
#COLUMNLIST# tag. Most of the other parameters are optional and the rows can be excluded
from the context file. However, this will set values to system defaults that may not align with
your format.

Note:

Both RI and AI Foundation can use these context files to determine the format of
incoming data.

The server maintains a copy of all the context files used, so you do not need to send a context
file every time. If no context files are found, the Analytics and Planning uses the last known
configuration.

For additional format options, the available values used are from the DBMS_CLOUD package
options in ADW.

If you want to retrieve the latest copy of the context files, the RI_ZIP_UPLOAD_CTX_JOB job in
process RI_ZIP_UPLOAD_CTX_ADHOC can be run from the AIF DATA standalone schedule in
POM. This job will extract all the context files from the custom_ext_table_config directory,
package them in a zip file, and upload that file to Object Storage. The zip file is named
RAP_CTX.zip, and will use ris/outgoing as the prefix for File Transfer Services (FTS) to
access it.

In addition to being able to obtain copies of the files, there is also a database table named
C_DIS_ADW_EXT_TABLE_CONFIG that holds the context file information that was last uploaded to
the database. Except for the COLUMN_LIST and FORMAT_OPTIONS columns, the data in the other
columns on the table is editable using the Control & Tactical Center screen in AI Foundation,
so you can provide override values. The table does not have any initial data; it is populated
when a CTX file is processed by RI_UPDATE_TENANT_JOB. When a CTX file is provided and data
is also present in the table, the priority is to use the CTX file. If a CTX file was not provided in
the current batch run, then the data on this table will be used. After the batch run, this table will
reflect the most recently used CTX file configurations.

Chapter 8
Files Types and Data Format

8-3

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/format-options.html#GUID-08C44CDA-7C81-481A-BA0A-F7346473B703
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/format-options.html#GUID-08C44CDA-7C81-481A-BA0A-F7346473B703

A change in format data in the table will trigger an update to ADW only if the values are
different from what was last sent. This is done by comparing the entries at the FORMAT_OPTIONS
column. Modifying the COLUMN_LIST in this table will not trigger a request to ADW to update the
options. COLUMN_LIST is not editable through the Control & Tactical Center screen, as it only
serves as a view to show the contents of the last payload sent to ADW. Sending the updates
through a CTX file is the preferred method for modifying the column list. If no CTX files are
provided, the RI_UPDATE_TENANT_JOB will end immediately instead of pushing the same
configurations to ADW again. If you notice slow performance on this job then you can stop
providing CTX files when they are not changing, and the job will finish within 10-20 seconds.

There is an OVERRIDE_REJECTLIMIT_TO_DT column on the table that will determine whether a
REJECTLIMIT value other than zero is used. If this date column is null or is already past the
current date, then the REJECTLIMIT will be reset to 0 and will trigger an update to ADW. The
REJECTLIMIT value provided in the table will be used until the date specified in this column.

Application-Specific Data Formats
Each application within the Retail Analytics and Planning may require data to be provided
using specific rules and data formats, which can differ from those used in the common platform
files. This section describes the use-cases for alternate data formats and lays out the basic
rules that must be followed.

Retail Insights
Retail Insights has a large number of legacy interfaces that do not follow the shared platform
data formats. These interfaces are populated with files named after their target database table
with a file extension of .dat, such as W_PRODUCT_DS.dat. All files ending with a .dat extension
are pipe-delimited files by default (using the | symbol as the column separator) but can be
changed using CTX file options. These files also have a Unix line-ending character by default,
although the line-ending character can be configured to be a different value, if needed. These
files may be created by a legacy Merchandising (RMS) extract process or may be produced
through existing integrations to an older version of RI or AI Foundation.

Table 8-2 Retail Insights Legacy File Formatting

Datatype Format Example Explanation

Number 0.00 340911.10 Unformatted numbers with periods for
decimal places. Commas or other symbols
cannot be used within the numerical values.

Character abc Item #4561 Any alphanumeric string will provided as-is,
with the exception that it must NOT contain
pipe characters or line-ending characters.

Date YYYY-MM-
DD;00:00:00

2020-05-09;00:0
0:00

Dates without timestamps must still use a
timestamp format, but they must be hard-
coded to have a time of 00:00:00. Date fields
(such as DAY_DT columns) must NOT have a
non-zero time, or they will not load
correctly.

Timestamp YYYY-MM-
DD;HH:MM:SS

2020-05-09;09:3
5:19

Use full date-and-time formatting ONLY
when a full timestamp is expected on the
column. This is not commonly used and
should be noted in the interface
specifications, if supported.

Chapter 8
Files Types and Data Format

8-4

This file format is used when integrating with legacy solutions such as the Retail
Merchandising System (RMS) through the Retail Data Extractor (RDE) on v19 or earlier
versions.

Example data from the file W_RTL_PLAN1_PROD1_LC1_T1_FS.dat:

70|-1|13|-1|2019-05-04;00:00:00|RETAIL|0|1118.82|1|70~13~2019-05-04;00:00:00~0
70|-1|13|-1|2019-05-11;00:00:00|RETAIL|0|476.09|1|70~13~2019-05-11;00:00:00~0
70|-1|13|-1|2019-05-18;00:00:00|RETAIL|0|296.62|1|70~13~2019-05-18;00:00:00~0

Retail AI Foundation Cloud Services
Modules within the AI Foundation Cloud Services leverage the same Context (CTX) file
concepts as described in the common foundation file formats. You may control the structure
and contents of AI Foundation files using the parameters in the context files. The full list of
interfaces used by AI Foundation modules is included in the Interfaces Guide.

Planning Platform
Planning solutions using PDS (Planning Data Schema), such as Merchandise Financial
Planning, have two main types of files:

 Hierarchy/Dimension Files – Foundation Data for the Hierarchy/Dimensions.

 Measure/Fact Files – Factual Data specific to loadable metric/measures.

When loading directly to Planning applications, both types of files should only be in CSV format
and they should contain headers. Headers contain the details of the dimension names for
Hierarchy/Dimension Files and the fact names for Measure/Fact Files.

Hierarchy/Dimension Files uses the naming convention <Hierarchy Name>.hdr.csv.dat and
Measure Files can be any meaningful fact-grouping name, but with allowed extensions such
as .ovr, .rpl, or .inc.

• OVR extension is used for override files

• RPL extension is used to delete and replace position-based data sets

• INC extension is for incremental files that can increment positional data.

If using the common foundation CSV files, most of the data can be interfaced using those
shared integrations. However, certain files (such as the VAT Hierarchy) must be directly loaded
to Planning: it does not come from the RAP data warehouse at this time. Refer to the
application-specific Planning Implementation Guides for more details about the list of files that
are not included in foundation integrations.

Dimension Files
A dimension is a collection of descriptive elements, attributes, or hierarchical structures that
provide context to your business data. Dimensions tell the platform what your business looks
like and how it operates. They describe the factual data (such as sales transactions) and
provide means for aggregation and summarization throughout the platform. Dimensions follow
a strict set of business rules and formatting requirements that must be followed when
generating the files.

There are certain common rules that apply across all of the dimension files and must be
followed without exception. Failure to adhere to these rules may result in failed data loads or
incorrectly structured datasets in the platform.

Chapter 8
Dimension Files

8-5

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2539848.1

• All dimension files must be provided as full snapshots of the source data at all times,
unless you change the configuration of a specific dimension to be IS_INCREMENTAL=Y
where incremental loads are supported. Incremental dimension loading should only be
done once nightly/weekly batch processing has started. Initial/history dimension loads
should always be full snapshots.

• Hierarchy levels must follow a strict tree structure, where each parent has a 1-to-N
relationship with the children elements below them. You cannot have the same child level
identifier repeat across more than one parent level, with the exception of Class/Subclass
levels (which may repeat on the ID columns but must be unique on the UID columns). For
example, Department 12 can only exist under Division 1, it cannot also exist under Division
2.

• Hierarchy files (product, organization, calendar) must have a value in all non-null fields for
all rows and must fill in all the required hierarchy levels without exception. For example,
even if your non-Oracle product data only has 4 hierarchy levels, you must provide the
complete 7-level product hierarchy to the platform. Fill in the upper levels of the hierarchy
with values to make up for the differences, such as having the division and group levels
both be a single, hard-coded value.

• Any time you are providing a key identifier of an entity (such as a supplier ID, channel ID,
brand ID, and so on) you should fill in the values on all rows of the data file, using a
dummy value for rows that don’t have that entity. For example, for items that don’t have a
brand, you can assign them to a generic “No Brand” value to support filtering and reporting
on these records throughout the platform. You may find it easier to identify the “No Brand”
group of products when working with CDTs in the AI Foundation Cloud Services or when
creating dashboards in RI, compared to leaving the values empty in the file.

• Any hierarchy-level ID (department ID, region ID, and so on) or dimensional ID value
(brand name, supplier ID, channel ID, store format ID, and so on) intended for Planning
applications must not have spaces or special characters on any field, or it will be rejected
by the PDS load. ID columns to be used in planning should use a combination of numbers,
letters, and underscores only.

• Any change to hierarchy levels after the first dimension is loaded will be treated as a
reclassification and will have certain internal processes and data changes triggered as a
result. If possible, avoid loading hierarchy changes to levels above Item/Location during
the historical load process. If you need to load new hierarchies during the history loads,
make sure to advance the business date in the data warehouse using the specified jobs
and date parameters, do NOT load altered hierarchies on top of the same business date
as previous loads.

• All fields designated as flags (having FLG or FLAG in the field name) must have a Y or N
value. Filters and analytics within the system will generally assume Y/N is used and not
function properly if other values (like 0/1) are provided.

• Retail Insights requires that all hierarchy identifiers above item/location level MUST be
numerical. The reporting layer is designed around having numerical identifiers in
hierarchies and no data will show in reports if that is not followed. If you are not
implementing Retail Insights, then alphanumeric hierarchy IDs could be used, though it is
not preferred.

Product File
The product file is named PRODUCT.csv, and it contains most of the identifying information
about the merchandise you sell and the services you provide. The file structure follows certain
rules based on the Retail Merchandising Foundation Cloud Services (RMFCS) data model, as
that is the paradigm for retail foundation data that we are following across all RAP foundation
files.

Chapter 8
Dimension Files

8-6

The columns below are the minimum required data elements, but the file supports many more
optional fields, as listed in the Interfaces Guide. Optional fields tend to be used as reporting
attributes in RI and are nullable descriptive fields. Optional fields designated for use in a AI
Foundation or Planning module are generally nullable too, but should generally be populated
with non-null values to provide more complete data to those modules.

Table 8-3 Product File Required Fields

Column Header Usage

ITEM Product number which uniquely identifies the record. Could be
any of these records:
• a sub-transaction level item (such as a UPC) which has a SKU

as a parent and Style as a grandparent
• a transaction-level SKU (with or without parents) or pack item
• a style or "level 1" item which is above transaction level
Style/colors are NOT considered as items and do not need to be
provided as separate records.

ITEM_PARENT Parent item associated with this record when the item level is 2 or
3. If you are not providing level 2 or 3 item records, then you may
set this value to -1 on all rows as no items will have parents.

REQUIRED when providing multiple levels of items to establish the
parent/child relationships.

ITEM_GRANDPARENT Grandparent item associated with this record when the item level
is 3. If you are not providing level 3 item records, then you may set
this value to -1 on all rows as no items will have grandparents.

REQUIRED when providing multiple levels of items to establish the
parent/child relationships.

ITEM_LEVEL Item Level (1, 2, or 3) of this record from the source system. Used
to determine what level of item is being provided to the target
systems. Item level 2 should have a parent item, and item level 3
should provide both parent and grandparent.
Typical fashion item levels are:
• Level 1 – Style
• Level 2 – SKU (transaction level)
• Level 3 – UPC/EAN/barcode

TRAN_LEVEL Transaction level (1 or 2) of the item from the source system.
Identifies which level is used as the transaction level in RI and AI
Foundation.

PACK_FLG Pack flag (where N = regular item, Y = pack item). Defaults to N if
not provided.
REQUIRED column if the retailer has packs, optional otherwise. If
pack items are going to be included, then also note that additional
interfaces SALES_PACK.csv and PROD_PACK.csv become required.

DIFF_AGGREGATE Combined differentiator values are used in defining the diff
aggregate level (in between Item level 1 and 2 for a multi-level
item). For example, for a fashion item, this will be the Color.
Specify this on the transaction item-level records. This is used to
dynamically create the planning item-parent (SKUP) level, so it
must follow RPAS format rules (a combination of numbers, letters,
and underscores only, no spaces or other characters).

Chapter 8
Dimension Files

8-7

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2539848.1

Table 8-3 (Cont.) Product File Required Fields

Column Header Usage

DIFF_AGGREGATE_DESC Optional description associated with the DIFF_AGGREGATE ID
provided above, to be used on the integration to PDS applications
when constructing the planning item-parent level descriptions. If
no description is provided, then the DIFF_AGGREGATE value will be
used in both the IDs and descriptions.

LVL4_PRODCAT_ID Default level for Subclass, which is the first level above item in the
hierarchy structure. Sometimes referred to as segment or
subsegment. All items of any type are mapped to a subclass as
their first level. Parent items are not to be treated as hierarchy
levels in the file.

LVL4_PRODCAT_UID Unique identifier of the Subclass. In many merchandising systems
the subclass is not unique on its own, so a separate, unique key
value must be provided in this case.

LVL5_PRODCAT_ID Default level for Class (sometimes referred to as Subcategory).

LVL5_PRODCAT_UID Unique identifier of the Class. In many merchandising systems the
class is not unique on its own, so a separate unique key value must
be provided in this case.

LVL6_PRODCAT_ID Default Level for Department (also referred to as Category).

LVL7_PRODCAT_ID Default Level for Group.

LVL8_PRODCAT_ID Default Level for Division.

TOP_PRODCAT_ID Default Level for Company. Only one company is supported at this
time, you may not have 2+ companies in the same dataset.
Typically, this is hard-coded to a value of 1 for the company ID.

ITEM_DESC Product Name or primary item description. When you are
providing multiple levels of items, this may contain the style name,
SKU name, or sub-transaction item name (for example, UPC
description).

LVL4_PRODCAT_DESC Default Level for Subclass Description.

LVL5_PRODCAT_DESC Default Level for Class Description.

LVL6_PRODCAT_DESC Default Level for Department Description.

LVL7_PRODCAT_DESC Default Level for Group Description.

LVL8_PRODCAT_DESC Default Level for Division Description.

TOP_PRODCAT_DESC Default Level for Company Description.

INVENTORIED_FLG Indicates whether the item carries stock on hand. Data sent to
Planning apps is generally only for inventoried items (Y), but you
may have non-inventoried items loaded for other purposes (N).
The flags are used from the SKU level item records, values on the
style or UPC level item records can be defaulted to some value,
they are not currently used.

SELLABLE_FLG Indicates whether the item is sellable to customers. Data sent to
Planning apps is only for sellable items (Y) or pack items
(PACK_FLG=Y), but you may have non-sellable items loaded for
other purposes (N). The flags are used from the SKU level item
records, values on the style or UPC level item records can be
defaulted to some value; they are not currently used.

Chapter 8
Dimension Files

8-8

The product hierarchy fields use generic level names to support non-traditional hierarchy
structures (for example, your first hierarchy level may not be called Subclass, but you are still
loading it into the same position in the file). Other file columns such as LVL1 to LVL3 exist in the
interface but are not yet used in any module of the platform.

Note:

Multi-level items are not always required and depend on your use-cases. For
example, the lowest level (ITEM_LEVEL=3) for sub-transaction items is only used in
Retail Insights for reporting on UPC or barcode level attribute values. Most
implementations will only have ITEM_LEVEL=1 and ITEM_LEVEL=2 records. If you are a
non-fashion retailer you may only have a single item level (for SKUs) and the other
levels could be ignored. The reason for having different records for each item level is
to allow for different attributes at each level, which can be very important in Retail
Insights analytics. You may also need to provide multiple item levels for optimizing or
planning data at a Style or Style/Color level in the non-RI modules. When providing
multiple item level records, note that the item IDs must be unique across all levels
and records.

Example data for the PRODUCT.csv file columns above, including all 3 supported item levels
(style, SKU, and UPC):

ITEM,ITEM_PARENT,ITEM_GRANDPARENT,ITEM_LEVEL,TRAN_LEVEL,PACK_FLG,DIFF_AGGREGAT
E,LVL4_PRODCAT_ID,LVL4_PRODCAT_UID,LVL5_PRODCAT_ID,LVL5_PRODCAT_UID,LVL6_PRODC
AT_ID,LVL7_PRODCAT_ID,LVL8_PRODCAT_ID,TOP_LVL_PRODCAT_ID,ITEM_DESC,LVL4_PRODCA
T_DESC,LVL5_PRODCAT_DESC,LVL6_PRODCAT_DESC,LVL7_PRODCAT_DESC,LVL8_PRODCAT_DESC
,TOP_LVL_PRODCAT_DESC,INVENTORIED_FLG,SELLABLE_FLG
190085210200,-1,-1,1,2,N,,8,9001,3,910,3,2,1,1,2IN1 SHORTS,Shorts,Active
Apparel,Women's Activewear,Activewear,Apparel,Retailer Ltd,Y,Y
190085205725,190085210200,-1,2,2,N,BLK,8,9001,3,910,3,2,1,1,2IN1
SHORTS:BLACK:LARGE,Shorts,Active Apparel,Women's
Activewear,Activewear,Apparel,Retailer Ltd,Y,Y
190085205923,190085210200,-1,2,2,N,DG,8,9001,3,910,3,2,1,1,2IN1 SHORTS:DARK
GREY:LARGE,Shorts,Active Apparel,Women's
Activewear,Activewear,Apparel,Retailer Ltd,Y,Y
1190085205725,190085205725,190085210200,3,2,N,,8,9001,3,910,3,2,1,1,2IN1
SHORTS:BLACK:LARGE:BC,Shorts,Active Apparel,Women's
Activewear,Activewear,Apparel,Retailer Ltd,Y,Y
1190085205923,190085205923,190085210200,3,2,N,,8,9001,3,910,3,2,1,1,2IN1
SHORTS:DARK GREY:LARGE:BC,Shorts,Active Apparel,Women's
Activewear,Activewear,Apparel,Retailer Ltd,Y,Y

This example and the field descriptions covered in this section all follow the standard
Merchandising Foundation (RMFCS) structure for product data, and it is strongly
recommended that you use this format for RAP. If you are a legacy Planning customer or have
specific needs for extended hierarchies, the preferred approach is to convert your non-RMS
hierarchy structure to a standard RMS-like foundation format. This conversion involves:

• Provide only the SKUs and Styles as separate item records (dropping the style/color level
from the hierarchy). The Style will be the ITEM_PARENT value on the SKU records and
ITEM_GRANDPARENT will always be -1.

• Populate the field DIFF_AGGREGATE at the SKU level with the differentiator previously used
in the style/color level. For example, a legacy style/color item ID of S1000358:BLUE will

Chapter 8
Dimension Files

8-9

instead create S1000358 as the ITEM for the style-level record and the ITEM_PARENT in the
SKU record. The value BLUE is written in the DIFF_AGGREGATE field in the SKU-level record
(DIFF_AGGREGATE can be set to -1 or left null on style level records).

• When constructing the extended hierarchies in Planning and AI Foundation, the styles and
diff aggregate values are concatenated together to dynamically create the style/color level
of the hierarchy where needed.

Following this approach for your product hierarchy ensures you are aligned with the majority of
Oracle Retail applications and will be able to take up additional retail applications in the future
without restructuring your product data again.

For other fields not shown here, they are optional from a data load perspective but may be
used by one or more applications on the platform, so it is best to consider all fields on the
interface and populate as much data as you can. For example, supplier information is a
requirement for Inventory Planning Optimization, and brand information is often used in
Clustering or Demand Transference. Also note that some fields come in pairs and must be
provided together or not at all. This includes:

• Brand name and description

• Supplier ID and description

Description fields can be set to the same value as the identifier if no other value is known or
used, but you must include both fields with non-null values when you want to provide the data.

Product Alternates
You may also use the file PRODUCT_ALT.csv to load additional attributes and hierarchy levels
specifically for use in Planning applications. The file data is always at item level and may have
up to 30 flexible fields for data. These columns exist in the PRODUCT.csv file if you are a non-
RMFCS customer so this separate file would be redundant. If you are using RMFCS, then this
file provides a way to send extra data to Planning that does not exist in RMFCS.

When using flex fields as alternate hierarchy levels, there are some rules you will need to
follow:

• All hierarchies added this way must have an ID and Description pair as two separate
columns

• The ID column for an alternate hierarchy must ONLY contain numbers; no other characters
are permitted

Numerical ID fields are required for integration purposes. When a plan is generated in MFP or
AP using an alternate hierarchy, and you wish to send that plan data to AIF for in-season
forecasting, the alternate hierarchy ID used must be a number for the integration to work. If
your alternate hierarchy level will not be used as the base intersection of a plan, then it does
not need to be limited to numerical IDs (although it is still recommended to do so). This
requirement is the same for all hierarchy levels when Retail Insights is used, as RI can only
accept numerical hierarchy IDs for all levels (for both base levels and alternates).

For example, you might populate FLEX1_CHAR_VALUE with numerical IDs for an alternate level
named “Subsegment”. You will put the descriptions into FLEX2_CHAR_VALUE. These values can
be mapped into PDS by altering the interface.cfg file, and the values may be used to define
plans or targets in MFP. When you export your plans for AIF, they are written into integration
tables such as MFP_PLAN1_EXP using the numerical identifiers from FLEX1_CHAR_VALUE as the
plan level. This is further integrated to RI tables like W_RTL_PLAN1_PROD1_LC1_T1_FS (columns
ORG_DH_NUM and PROD_DH_NUM for location/product IDs respectively). This is where numerical
IDs become required for these interfaces to function; they will not load the data if the IDs are

Chapter 8
Dimension Files

8-10

non-numerical. Once loaded into W_RTL_PLAN1_PROD1_LC1_T1_F and similar tables, AIF reads
the plan data to feed in-season forecast generation.

Loading the data into data warehouse tables at a flex field level requires additional
configuration. Refer to the RI Implementation Guide for details. AIF also requires additional
setup to use alternate hierarchies. Refer to the section “Building Alternate Hierarchy in AIF” in
the AIF Implementation Guide for details.

Re-Using Product Identifiers
It may happen over time that the same product keys (such as SKU numbers) will be re-used to
represent brand new items. There are two parameters in C_ODI_PARAM_VW that must be
updated to enable this functionality (RI_ITEM_REUSE_IND and RI_ITEM_REUSE_AFTER_DAYS). Set
RI_ITEM_REUSE_IND to Y and set RI_ITEM_REUSE_AFTER_DAYS to some number greater than 0.
The combination of these parameters will alter the product hierarchy load in the following ways:

1. Once enabled, if an item is deleted (when using incremental loads) or stops appearing in
the nightly product files (when using full snapshot loads) it will NOT be closed, it will remain
as current_flg=Y for the number of days specified in the configuration.

2. If the item re-appears in the product file the next night, then the existing item record
remains open with current_flg=Y and it will be as if it was never dropped or deleted.

3. If the item re-appears in the product file only after the set number of days has elapsed,
then the old version of the product is both closed and archived (example below). The
incoming item record is inserted as a new item with no history.

Here is an example of re-using an item:

1. Item number 1001 is created as a new item in a source system, such as RMFCS.

2. Item exists for a period of time while accumulating fact data such as sales and inventory.

3. Item becomes inactive and is eventually deleted from the source system, which marks it
inactive in RAP after the set number of days for re-use has passed.

4. After another period of time (such as 1 month) the same item number 1001 is added back
in the source system, representing a completely new item with different attributes and
hierarchies. The window between the old and new item is configured in C_ODI_PARAM_VW as
mentioned in the Setup and Configuration chapter.

5. When item 1001 comes to RAP again, the old version of this item will be archived using a
value appended to the code (for example, 1001_230101) across all product tables in the
data warehouse (the item data would already have been dropped from Planning when the
re-use number of days had elapsed). Item 1001 is then inserted as a new item not
associated in any way with the prior instance of that ID. The history that already exists for
item 1001 is now associated with the archived item 1001_230101, and new fact data will
be associated only with the new definition of item 1001 going forward.

The same process flow applies both when you are creating the PRODUCT.csv file from a non-
Oracle source and when you use RMFCS to provide the data.

Organization File
The organization file will contain most of the identifying information about the locations where
you sell or store merchandise, including physical locations (such as a brick & mortar store) and
virtual locations (such as a web store or virtual warehouse entity). The file structure follows
certain rules based on the Retail Merchandising Foundation Cloud Services (RMFCS) data
model, as that is the paradigm for retail foundation data that we are following across all RAP

Chapter 8
Dimension Files

8-11

foundation files. The columns below are the minimum required data elements, but the file
supports many more optional fields, as listed in the Interfaces Guide.

Table 8-4 Organization File Required Fields

Column Header Usage

ORG_NUM The external identifier for a location, including stores, warehouses,
and partner locations. This value MUST be a number if you will use
Retail Insights. RI cannot use non-numeric organization IDs.

ORG_TYPE_CODE The type code of the location. It must be one of S, W, or E, representing a
Store, Warehouse, or External location.

CURR_CODE This is the 3-character base currency code of the organizational entity,
such as USD or CAN.

ORG_HIER10_NUM Default Level for District, which is the first level above Location in the
hierarchy. Hierarchy values MUST be a number if you will use Retail
Insights. RI cannot use non-numeric hierarchy IDs.

ORG_HIER11_NUM Default Level for Region.

ORG_HIER12_NUM Default Level for Area. Also referred to as the Channel level in some
Planning applications.

ORG_HIER13_NUM Default Level for Chain.

ORG_TOP_NUM Default Level for Company.
Only one company is supported at this time. You may not have 2+
companies in the same instance.

ORG_DESC Short name or short description of the location.

ORG_SECONDARY_DESC Full name or long description of the location.

ORG_HIER10_DESC Default Level for District Description.

ORG_HIER11_DESC Default Level for Region Description.

ORG_HIER12_DESC Default Level for Area Description. Also referred to as the Channel
level in some Planning applications.

ORG_HIER13_DESC Default Level for Chain Description.

ORG_TOP_DESC Default Level for Company Description.

PHYS_WH_ID The physical warehouse ID linked to a virtual warehouse. Must be
specified for warehouses, can be null otherwise. A physical warehouse
record can have its own ID as the value here. A virtual warehouse
should have the linked physical warehouse ID that contains the virtual
location.

VIRTUAL_WH_FLG Indicates whether the warehouse record is a physical or virtual WH.
Planning GA solutions only use virtual WHs so flag must be Y to send
the WH to Planning. Physical warehouse records (VIRTUAL_WH_FLG=N)
are not used by planning applications but are used for AI Foundation
(such as for Inventory Planning Optimization).

The organization hierarchy fields use generic level names to support non-traditional hierarchy
levels (for example, your first hierarchy level may not be called District, but you are still loading
it into the same position in the file which is used for Districts). Other levels, such as 1 to 9, have
columns in the interface but are not yet used in any module of the platform.

Warehouses get special handling both in the input interface load and throughout the RAP
applications. Warehouses are not considered a part of the organization hierarchy structure.
While you are required to put some value in the hierarchy level fields for warehouses (because
the columns are not nullable) those values are not currently used. Instead, the values will be

Chapter 8
Dimension Files

8-12

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2539848.1

discarded and the warehouses are loaded with no parent levels in the data warehouse tables.
You should provide a unique reserved value like 1 or 9999 on all hierarchy level numbers
between location and company for warehouses, just to ensure the data is loaded without
violating any multi-parentage rules. When exporting the warehouse locations to Planning
applications, each warehouse ID is assigned its own name and number for each parent level,
prefixed with WH to make the level IDs distinct from any store hierarchy level. The warehouses
must then be mapped to channels from the MFP user interface before you can use their data.

Example data for the ORGANIZATION.csv file columns above as well as some optional fields
available on the interface:

ORG_NUM,ORG_TYPE_CODE,CURR_CODE,STATE_PROV_NAME,COUNTRY_REGION_NAME,ORG_HIER10
_NUM,ORG_HIER11_NUM,ORG_HIER12_NUM,ORG_HIER13_NUM,ORG_TOP_NUM,ORG_DESC,ORG_SEC
ONDARY_DESC,ORG_HIER10_DESC,ORG_HIER11_DESC,ORG_HIER12_DESC,ORG_HIER13_DESC,OR
G_TOP_DESC,CHANNEL_ID,CHANNEL_NAME,PHYS_WH_ID,STOCKHOLDING_FLG,STORE_FORMAT_DE
SC,STORE_FORMAT_ID,STORE_TYPE,TRANSFER_ZONE_ID,TRANSFER_ZONE_DESC,VIRTUAL_WH_F
LG,STORE_CLASS_TYPE,STORE_CLASS_DESC,WH_DELIVERY_POLICY,WH_REPL_IND,DUNS_NUMBE
R,STORE_REMODEL_DT,STORE_CLOSE_DT,INBOUND_HANDLING_DAYS,FLEX1_CHAR_VALUE,FLEX2
_CHAR_VALUE,FLEX3_CHAR_VALUE,FLEX4_CHAR_VALUE,FLEX5_CHAR_VALUE,FLEX6_CHAR_VALU
E,FLEX7_CHAR_VALUE,FLEX8_CHAR_VALUE,FLEX9_CHAR_VALUE,FLEX10_CHAR_VALUE
1000,S,USD,North Carolina,United
States,1070,170,1,1,1,Charlotte,Charlotte,North Carolina,Mid-Atlantic,Brick &
Mortar,US,Retailer Ltd,1,North America,,Y,Store,1,C,101,Zone
101,N,1,A,,,,,,,WH-1,Warehouse - US,1,Store Pick Up / Take
With,3,Comp,6,Mixed Humid,1,Very Large
1001,S,USD,Georgia,United States,1023,400,1,1,1,Atlanta,Atlanta,Georgia,South
Atlantic,Brick & Mortar,US,Retailer Ltd,1,North America,,Y,Kiosk,2,C,101,Zone
101,N,6,F,,,,,,,WH-1,Warehouse - US,2,Deliver/Install at
Customer ,3,Comp,7,Hot Humid,3,Medium
1002,S,USD,Texas,United States,1104,230,1,1,1,Dallas,Dallas,Texas,Gulf
States,Brick & Mortar,US,Retailer Ltd,1,North America,,Y,Store,1,C,101,Zone
101,N,6,F,,,,,,,WH-1,Warehouse - US,3,Home Delivery,3,Comp,4,Hot Dry,3,Medium

It is important that your organization hierarchy follow the standard rules laid out at the
beginning of this chapter. All IDs must be unique (within their level) and IDs can never be re-
used under multiple parents. All IDs must be numbers if you are using Retail Insights. The
entire 6-level structure must be filled out, even if your source system doesn’t have that many
levels.

Note:

You may duplicate a higher level down to lower levels if you need to fill it out to meet
the data requirements.

Also note that some optional fields come in pairs and must be provided together or not at all.
This includes:

• Banner ID and description

• Channel ID and description

• Store format ID and description

Description fields can be set to the same value as the identifier if no other value is known or
used, but you must include both fields with non-null values when you provide the data.

Chapter 8
Dimension Files

8-13

Organization Alternates
You may also use the file ORGANIZATION_ALT.csv to load additional attributes and hierarchy
levels specifically for use in Planning applications. The file data is always at location level and
may have up to 30 flexible fields for data. These columns exist on the ORGANIZATION.csv file if
you are a non-RMFCS customer, so this separate file would be redundant. If you are using
RMFCS, then this file provides a way to send extra data to Planning that does not exist in
RMFCS.

When using flex fields as alternate hierarchy levels, there are some rules you will need to
follow:

• All hierarchies added this way must have an ID and Description pair as two separate
columns

• The ID column for an alternate hierarchy must ONLY contain numbers, no other characters
are permitted

Numerical ID fields are required for integration purposes. When a plan is generated in MFP or
AP using an alternate hierarchy, and you wish to send that plan data to AIF for in-season
forecasting, the alternate hierarchy ID used must be a number for the integration to work. If
your alternate hierarchy level will not be used as the base intersection of a plan, then it does
not need to be limited to numerical IDs (although it is still recommended to do so). This
requirement is the same for all hierarchy levels when Retail Insights is used, as RI can only
accept numerical hierarchy IDs for all levels (both base levels and alternates).

For example, you might populate FLEX1_CHAR_VALUE with numerical IDs for an alternate level
named “Subsegment”. You will put the descriptions into FLEX2_CHAR_VALUE. These values can
be mapped into PDS by altering the interface.cfg file, and the values can be used to define
plans or targets in MFP. When you export your plans for AIF, they are written into integration
tables such as MFP_PLAN1_EXP using the numerical identifiers from FLEX1_CHAR_VALUE as the
plan level. This is further integrated to RI tables like W_RTL_PLAN1_PROD1_LC1_T1_FS (columns
ORG_DH_NUM and PROD_DH_NUM for location/product IDs respectively). This is where numerical
IDs become required for these interfaces to function; they will not load the data if the IDs are
non-numerical. Once loaded into W_RTL_PLAN1_PROD1_LC1_T1_F and similar tables, AIF reads
the plan data to feed in-season forecast generation.

Loading the data into data warehouse tables at a flex field level requires additional
configuration. Refer to the RI Implementation Guide for details. AIF also requires additional
setup to use alternate hierarchies. Refer to the section “Building Alternate Hierarchy in AIF” in
the AIF Implementation Guide for details.

Calendar File
The calendar file contains your primary business or fiscal calendar, defined at the fiscal-period
level of detail. The most common fiscal calendar used is a 4-5-4 National Retail Federation
(NRF) calendar or a variation of it with different year-ending dates. This calendar defines the
financial, analytical, or planning periods used by the business. It must contain some form of
fiscal calendar, but if you are a business that operates solely on the Gregorian calendar, a
default calendar file can be generated by an ad hoc batch program to initialize the system.
However, if you are implementing a planning solution, you must use the Fiscal Calendar as
your primary calendar, and only this calendar will be integrated from the data warehouse to
Planning.

Chapter 8
Dimension Files

8-14

Table 8-5 Calendar File Required Fields

Column Header Usage

MCAL_CAL_ID Identifies the accounting calendar. At this time a hard-coded
value of Retail Calendar~41 is expected here, no other value
should be used.

MCAL_PERIOD_TYPE Identifies the accounting period type (4 or 5). This represents if
the fiscal period has 4 or 5 weeks.

MCAL_PERIOD_NAME Name of the fiscal period, such as Period01, Period02, and so
on. Do not include the year in this name, as the system will
automatically add that during the load.

MCAL_PERIOD Period number within a year, for a 4-5-4 calendar this should be
between 1 and 12.

MCAL_PERIOD_ST_DT Identifies the first date of the period in YYYYMMDD format
(default format can be changed in CTX files).

MCAL_PERIOD_END_DT Identifies the last date of the period in YYYYMMDD format
(default format can be changed in CTX files).

MCAL_QTR Identifies the quarter of the year to which this period belongs.
Possible values are 1, 2, 3 and 4.

MCAL_YEAR Identifies the fiscal year in YYYY format.

MCAL_QTR_START_DT Identifies the start date of the quarter in YYYYMMDD format
(default format can be changed in CTX files).

MCAL_QTR_END_DT Identifies the end date of the quarter in YYYYMMDD format
(default format can be changed in CTX files).

MCAL_YEAR_START_DT Identifies the start date of the year in YYYYMMDD format
(default format can be changed in CTX files).

MCAL_YEAR_END_DT Identifies the end date of the year in YYYYMMDD format
(default format can be changed in CTX files).

The hard-coded calendar ID is used to align with several internal tables that are designed to
support multiple calendars but currently have only one in place, and that calendar uses the
provided value of MCAL_CAL_ID above.

The fiscal calendar should have, at a minimum, a 5-year range (2 years in the past, the current
fiscal year, and 2 years forward from that) but is usually much longer so that you do not need
to update the file often. Most implementations should start with a 10-15 year fiscal calendar
length. The calendar should start at least 1 full year before the planned beginning of your
history files and extend at least 1 year beyond your expected business needs in all RAP
modules.

Example data for the CALENDAR.csv file columns above:

MCAL_CAL_ID,MCAL_PERIOD_TYPE,MCAL_PERIOD_NAME,MCAL_PERIOD,MCAL_PERIOD_ST_DT,MC
AL_PERIOD_END_DT,MCAL_QTR,MCAL_YEAR,MCAL_QTR_START_DT,MCAL_QTR_END_DT,MCAL_YEA
R_START_DT,MCAL_YEAR_END_DT
Retail
Calendar~41,4,Period01,1,20070204,20070303,1,2007,20070204,20070505,20070204,2
0080202
Retail
Calendar~41,5,Period02,2,20070304,20070407,1,2007,20070204,20070505,20070204,2
0080202

Chapter 8
Dimension Files

8-15

Retail
Calendar~41,4,Period03,3,20070408,20070505,1,2007,20070204,20070505,20070204,2
0080202
Retail
Calendar~41,4,Period04,4,20070506,20070602,2,2007,20070506,20070804,20070204,2
0080202

Exchange Rates File
The exchange rates file captures conversion rates between any two currency codes that may
appear in your fact data. The standard practice for fact data is to load the source system
values in the original currency and allow the platform to convert the amounts to the primary
currency. This file facilitates that process and triggers bulk updates in nightly processing any
time you wish to change your exchange rates for financial reporting purposes. Adding new
rates to the file with an effective date equal to the batch date triggers a mass update to all
positional facts, converting all the amounts to the new exchange rate even if the item/location
did not otherwise change in the source system.

Note that you do not have to provide exchange rates data for the following scenarios:

• You are loading your data already converted to primary currency

• You only use a single currency for your entire business

• You are only implementing a AI Foundation module and expect to perform those processes
in the local currency amounts

Even when exchange rates are not required as a separate file, you must still populate the
currency codes (DOC_CURR_CODE, LOC_CURR_CODE) in the fact data files with values. Review the
scenarios below to understand how to set these values and provide the associated rates.

Scenario 1 - No Conversion

For this use-case, all data is in the desired currency before sending it to Oracle. You do not
want the platform to convert your data from source currency to primary currency. All fact
records must have LOC_CURR_CODE = DOC_CURR_CODE. For example, set both values to USD for
sales in the U.S. and both values to CAD for sales in Canada that you pre-converted.
EXCH_RATE.csv data is not required or used for records having the same currency code on both
columns.

Scenario 2 – Only One Currency

If your business only operates in one region and uses a single currency code, then you don’t
need to provide exchange rate data. All fact records must have LOC_CURR_CODE =
DOC_CURR_CODE. For example, set both values to USD on all rows if your primary operating
currency is USD. EXCH_RATE.csv data is not required or used for records having the same
currency code on both columns.

Scenario 3 – Multiple Currencies

When you do plan to provide data in multiple source currencies, you must also provide the
exchange rates into and out of those currencies. Your fact data must have DOC_CURR_CODE set
to the currency of the source system where the transaction was recorded (for example, a sale
in Canada has a document currency of CAD). The value of LOC_CURR_CODE will be the same on
all records and must be the primary operating currency of your business (if you operate mainly
in the United States then it will be USD).

Chapter 8
Dimension Files

8-16

Exchange rates should be provided using the standard international rates (for example USD >
CAD may be 1.38) but the fact load will perform lookups in reverse. Fact conversions are
applied as a division process. For example, “transaction amount / exchange rate” is the
formula to convert from document currency to primary currency; so when converting from CAD
> USD the system will look up the value for USD > CAD and divide by that number to get the
final value.

Table 8-6 Exchange Rate File Required Fields

Column Header Usage

START_DT Contains the effective start date of the exchange rate. Set to the
current business date to trigger new rate conversions.

END_DT Contains the effective end date of the exchange rate. Default to
21000101 if the rate should be effective indefinitely.

EXCHANGE_RATE Contains the exchange rate for the specified currency/type/
effective date combination.

FROM_CURRENCY_CODE Code of the currency to be exchanged.

TO_CURRENCY_CODE Code of the currency to which a currency is exchanged.

Sample data for the EXCH_RATE.csv file columns above:

START_DT,END_DT,EXCHANGE_RATE,FROM_CURRENCY_CODE,TO_CURRENCY_CODE
20180514,21000101,0.8640055,CAD,USD
20180514,21000101,0.1233959,CNY,USD

The exchange rates data must also satisfy the following criteria if you are loading data for use
in Retail Insights reporting:

1. Rates must be provided in both directions for every combination of currencies that can
occur in your dataset (for example, USD > CAD and CAD > USD).

2. Dates must provide complete coverage of your entire timeframe in the dataset, both for
historical and current data. The current effective records for all rates can use 2100-01-01
as the end date. Dates cannot overlap, only a single rate must be effective per day.

3. Rates should not change more often than absolutely necessary based on the business
requirements. If you are implementing RI with positional data, a rate change triggers a
complete recalculation of the stock on hand cost/retail amounts for the entire business
across all pre-calculated aggregate tables. When RI is not used for financial reporting you
might only change the rates once each fiscal year, to maintain a single constant currency
for analytical purposes.

Attributes Files
Product attributes are provided on two files: one file for the attribute-to-product mappings and
another for attribute descriptions and codes. These files should be provided together to fully
describe all the attributes being loaded into the system. The attribute descriptors file must be a
full snapshot of all attribute types and values at all times. The product attribute mapping file
should start as a full snapshot but can move to incremental (delta) load methods once nightly
batches begin, if you can extract the information as deltas only.

Product attributes are a major component of the RI and AI Foundation modules and drive
many analytical processes but are not required for some planning modules like MFP.

Chapter 8
Dimension Files

8-17

Table 8-7 Attribute File Required Fields

Column Header Usage

ATTR_VALUE_ID Unique identifier for a user-defined attribute or product
differentiator. This interface contains ALL values regardless of
whether they are used on items yet or not. These values must also
match the ATTR_ID on the other file.

ATTR_VALUE_DESC Descriptive value for a user-defined attribute or product
differentiator, such as Brown, Cotton, Size12, and so on

ATTR_GROUP_ID Unique identifier for a group of user-defined attributes, or the name/
code for the differentiator group. Reserved attribute types like SIZE
and COLOR must all have a single, hard-coded value associated with
the group in this field (For example, all sizes must be in the SIZE
group, don’t specify group IDs for sizes_pants, sizes_shirts, and
so on. This is handled separately). This group ID value must also
match the ATTR_GRP_ID value on the second file.

ATTR_GROUP_DESC Descriptive value for a group of user-defined attributes, such as
Color Family or Web Exclusive Code, or the description of the
differentiator type such as Color.

ATTR_TYPE_CODE Indicates the type of UDA or differentiator. UDA types should be
hard-coded as one of FF, LV, or DT, for Freeform, List of Values, or
Date.
LV type attributes are fixed lists and write values to translation
lookup tables, while FF and DT fields do not.

For non-UDA types, some diffs have special reserved codes for this
field as well, which should be used when applicable, and include
SIZE, FABRIC, SCENT, FLAVOR, STYLE, and COLOR. Other differentiators
not using these codes should specify a hard-coded type of DIFF.

Sample data for the ATTR.csv file columns above:

ATTR_VALUE_ID,ATTR_VALUE_DESC,ATTR_GROUP_ID,ATTR_GROUP_DESC,ATTR_TYPE_CODE
13,No_Sugar_IN13,45008,UDA_ING_2018.01.16.01.00,FF
14,Zero_Carbs_IN14,45008,UDA_ING_2018.01.16.01.00,FF
3,Distressed,80008,Wash,LV
STEEL,Steel,METAL,Metals,DIFF
CHOC,Chocolate,FLAVOR,Flavor,FLAVOR
GRAY_43214,Gray,COLOR,Color,COLOR
32X32_9957,32X32,SIZE,Size,SIZE

Table 8-8 Product Attribute File Required Fields

Column Header Usage

ITEM The item number associated with the specified attribute value.

ATTR_ID Identifier for an attribute value, such as the UDA value ID or Diff ID
which is mapped to the item on the record, or the ID for the item list this
item belongs to. These values must also match the ATTR_VALUE_ID on the
other file.

Chapter 8
Dimension Files

8-18

Table 8-8 (Cont.) Product Attribute File Required Fields

Column Header Usage

ATTR_GRP_TYPE The attribute group type. This is a set of fixed values which must be
selected from what RAP supports. Supported values are ITEMDIFF,
ITEMUDA, ITEMLIST, COLOR, and PRODUCT_ATTRIBUTES. These codes
determine the target columns for the data (for example, lists, diffs, and
UDAs use different internal columns in the data model).
PRODUCT_ATTRIBUTES type code encapsulates the other named
differentiator types like Size, Fabric, and so on. COLOR has a special type
code due to it being a common level between Style and SKU for fashion
retailers, so it is handled separately.

ATTR_GRP_ID Identifier for the attribute group containing the value on this record.
Must match a ATTR_GROUP_ID in the other file. Varies by ATTR_GRP_TYPE
value used:
• If ATTR_GRP_TYPE is in ITEMDIFF, COLOR, PRODUCT_ATTRIBUTES, then

specify the Diff Type ID or one of the reserved values like SIZE or
COLOR.

• If ATTR_GRP_TYPE is ITEMUDA, specify UDA Group ID.
• If ATTR_GRP_TYPE is ITEMLIST, this field is not used, leave null.

DIFF_GRP_ID Differentiator group used to assign the diff attribute on this item; for
example the Size Group ID used when generating SKUs from a parent
Style. Only SKUs will have diff groups associated with them. Only diffs
will have groups, not UDAs or other record types. This is not the same as
an attribute group, which is the overall grouping of attribute values
across all items. This is used mainly for Size Profile Science.
Foreign key reference to DIFF_GROUP.csv.

DIFF_GRP_DESC Descriptive value of the diff group mapped to this item/attribute record.

Sample data for the PROD_ATTR.csv file columns above:

ITEM,ATTR_ID,ATTR_GRP_TYPE,ATTR_GRP_ID,DIFF_GRP_ID,DIFF_GRP_DESC
91203747,13,ITEMUDA,45008,,
91203747,3,ITEMUDA,80008,,
190496585706,STEEL,ITEMDIFF,METAL,,
86323133004,GRAY_43214,COLOR,COLOR,,
190085302141,CHOC,PRODUCT_ATTRIBUTES,FLAVOR,,
345873291,32X32_9957,PRODUCT_ATTRIBUTES,SIZE,S13,Pant Sizes

Fact Files

Fact Data Key Columns
Fact data files, such as sales and inventory, share many common characteristics and
standards that can be followed regardless of the specific file. The table below summarizes
those key elements and their minimum requirements. You will generally always want to
populate these fields where they exist on an interface file.

Chapter 8
Fact Files

8-19

Table 8-9 Common Fact Data Fields

Column Header Usage

ITEM Unique identifier of a transaction item. Must align with the product
records in the PRODUCT.csv file where ITEM_LEVEL = TRAN_LEVEL.

ORG_NUM Unique identifier of an organizational entity. Must align with the location
records in the ORGANIZATION.csv file.

DAY_DT Transaction date or business date for the fact data entry, formatted as
YYYYMMDD. Must be a valid date within the range of periods in
CALENDER.csv.

RTL_TYPE_CODE Retail types define a general category for the record that varies by
interface. For Sales and Markdowns, it must be one of R/P/C, representing
the regular/promo/clearance status of the transaction.

*_QTY Fields ending with QTY represent the quantity or units of an item on the
record, such as the units sold on a transaction line or the units of on-hand
inventory.

*_AMT_LCL Fields containing AMT_LCL represent the currency amount of a record in
the local currency of the source system, such as sales retail amount in
Canadian dollars from a Canada location, or the cost value of on-hand
inventory at your U.S. warehouse.

DOC_CURR_CODE The original document currency of the record in the source system. For
example, a sale made in Canada may have a value of CAD in this field.

LOC_CURR_CODE The local operating currency of your main office or headquarters. A
company based in the United States would use USD in this field.

ETL_THREAD_VAL If you are providing any data files ending in a .dat extension, then it
might contain an ETL_THREAD_VAL column. This column must be hard-
coded to be 1 on all rows without exception; it should not be null and
should not be any values greater than 1. This is a legacy field that allowed
multi-threading in older generations of RAP architecture.

Nearly all fact files share a common intersection of an item, location, and date as specified
above. Such files are expected to come into the platform on a nightly basis and contain that
day’s transactions or business activity.

Most fact data also supports having currency amounts in their source currency, which is then
automatically converted to your primary operating currency during the load process. There are
several currency code and exchange rate columns on such interfaces, which should be
populated if you need this functionality. The most important ones are shown in the list above,
and other optional column for global currencies can be found in the Interfaces Guide. When
you provide these fields, they must all be provided on every row of data, you cannot leave out
any of the values or it will not load properly.

Here are sample records for commonly used historical load files having a small set of fields
populated. These fields are sufficient to see results in RI reporting and move the data to AI
Foundation or MFP but may not satisfy all the functional requirements of those applications.
Review the Interfaces Guide for complete details on required/optional columns on these
interfaces.

SALES.csv:

ITEM,ORG_NUM,DAY_DT,MIN_NUM,RTL_TYPE_CODE,SLS_TRX_ID,PROMO_ID,PROMO_COMP_ID,CA
SHIER_ID,REGISTER_ID,SALES_PERSON_ID,CUSTOMER_NUM,SLS_QTY,SLS_AMT_LCL,SLS_PROF

Chapter 8
Fact Files

8-20

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2539848.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2539848.1

IT_AMT_LCL,RET_QTY,RET_AMT_LCL,RET_PROFIT_AMT_LCL,TRAN_TYPE,LOC_CURR_CODE,DOC_
CURR_CODE
1235842,1029,20210228,0,R,202102281029,-1,-1,96,19,65,-1,173,1730,605.5,0,0,0,
SALE,USD,USD
1235842,1029,20210307,0,R,202103071029,-1,-1,12,19,55,-1,167,1670,584.5,0,0,0,
SALE,USD,USD
1235842,1029,20210314,0,R,202103141029,-1,-1,30,18,20,-1,181,1810,633.5,0,0,0,
SALE,USD,USD

INVENTORY.csv:

ITEM,ORG_NUM,DAY_DT,CLEARANCE_FLG,INV_SOH_QTY,INV_SOH_COST_AMT_LCL,INV_SOH_RTL
_AMT_LCL,INV_UNIT_RTL_AMT_LCL,INV_AVG_COST_AMT_LCL,INV_UNIT_COST_AMT_LCL,PURCH
_TYPE_CODE,DOC_CURR_CODE,LOC_CURR_CODE
72939751,1001,20200208,N,0,0,0,104.63,0,48.52,0,USD,USD
73137693,1001,20200208,N,0,0,0,104.63,0,48.52,0,USD,USD
75539075,1001,20200208,N,0,0,0,101.73,0,47.44,0,USD,USD

PRICE.csv:

ITEM,ORG_NUM,DAY_DT,PRICE_CHANGE_TRAN_TYPE,SELLING_UOM,STANDARD_UNIT_RTL_AMT_L
CL,SELLING_UNIT_RTL_AMT_LCL,BASE_COST_AMT_LCL,LOC_CURR_CODE,DOC_CURR_CODE
89833651,1004,20200208,0,EA,93.11,93.11,53.56,USD,USD
90710567,1004,20200208,0,EA,90.41,90.41,50.74,USD,USD
90846443,1004,20200208,0,EA,79.87,79.87,44.57,USD,USD

Fact Data Incremental Logic
Daily or weekly fact data files can be provided incrementally instead of as full snapshots, but
the specific handling of incremental changes can be different for the various fact types. The
table below summarizes the incremental update logic used on the core fact areas.

Facts Incremental Logic

Transactional (Sales,
Receipts,
Markdowns,
Adjustments, RTVs,
and so on)

Loading transaction data into RAP uses additive merge logic when new
data comes into the tables. If the target intersection doesn’t exist, it will
insert it. If the target intersection DOES exist, then it will merge the
records by adding together the source and target fields. For example, an
existing sales transaction that is revised will add together the Quantity
and Amount fields from the source and target.
Note: When posting a partial revision, send zeros in fields that should not
be adjusted.

Positional
(Inventory, Purchase
Order, Price, Cost,
and so on)

Positional data loaded into RAP must always be for the current date — it
cannot be back-posted — and will merge into the target tables with the
incoming values (the new day’s position is a combination of existing data
from yesterday merged with the incoming data). You must send a zero if a
given position was moved to zero or dropped from the source system;
otherwise it would continue to carry forward the last non-zero position in
the database. Refer to the detailed sections later in this chapter for
Inventory Position and Pricing examples.

Chapter 8
Fact Files

8-21

Facts Incremental Logic

Non-Transactional
and Non-Positional
Facts (Store Traffic,
Flex Facts, History
Planning Facts)

Some interfaces that are not related to any transactional or positional
data elements, like the Store Traffic or Planning interfaces, use non-
additive merge logic. When an existing intersection comes into the staging
table, it is merged to the target table but overwrites/replaces the target
values with the source values.

Multi-Threading and Parallelism
Due to the high data volumes of most fact data (such as sales and inventory), it is necessary to
process the data using multiple CPU threads on the database. In RAP’s second-generation
architecture, multi-threading is handled automatically. You must not attempt to alter any
threading parameters to force a specific thread count greater than 1. If you are providing any
data files ending in a .dat extension, then it might contain an ETL_THREAD_VAL column. This
column must be hard-coded to be 1 on all rows without exception; it should not be null and
should not be any value greater than 1. Similarly, there are database parameters named
LOC_NUM_OF_THREAD in the C_ODI_PARAM_VW table. These must be set to a value of 1 and should
not be altered to any value greater than 1.

Sales Data Requirements
Sales data (SALES.csv) operates with the assumption that the source system for the data is an
auditing system (like Oracle Sales Audit) or non-Oracle data warehouse system. It applies
minimal transformations to the inputs and assumes all the needed cleansing and preparation of
transaction data has happened outside of RI. Whether you are sourcing history data from one
of those systems or directly from a POS or non-Oracle auditing application, there are some
business rules that should be followed.

Requirement File Type Explanation

Sales Units Historical
and
Ongoing

The values provided for unit quantities should represent the
total transaction-line values for an item, split across the gross
sales units and return units. In the case of an exchange, you
could have both sales and return units on the same line, but
most of the time only SLS or RET fields will have a value.
These values will be subtracted from each other to form Net
Sales Quantity metrics, so they should almost always be
positive.

Sales Retail
Amounts

Historical
and
Ongoing

The retail amounts on a sale or return represent the actual
selling/return value, after all discounts are subtracted from
the base price of the item. In the case of an exchange, you
could have both sales and return units on the same line, but
most of the time only SLS or RET fields will have a value.
These values will be subtracted from each other to form Net
Sales Amount metrics, so they should almost always be
positive.

Chapter 8
Fact Files

8-22

Requirement File Type Explanation

Sales Profit
Amounts

Historical
and
Ongoing

Profit calculations must take into consideration the cost of the
item at the time it was sold, and will vary based on the
retailer's costing methods. The standard approach is to use
the value for Weighted Average Cost (WAC) multiplied by the
units sold/returned, and subtract that total cost value from
the retail amount. An item that is sold and later returned may
not have the same profit amounts, if the cost has changed
between the two transactions or the return was not for the
full price of the item. Most POS systems do not track item
costs, so providing this data requires an external process to
do the calculations for you.

Sales Taxes Historical
and
Ongoing

Tax amounts generally represent Value Added Tax (VAT);
however this column could be used to capture other tax
amounts if loading directly from the POS or external audit
system.

Employee Discounts Historical
and
Ongoing

These columns are specifically for employee discounts when
the employee purchases a product at the POS and gets a
special discount (or has the discounted amount returned later
on). These values are just the discount amount, meaning the
reduction in value from the selling price.

Promotional
Discounts

Historical
and
Ongoing

These values represent the total discount taken off the initial
selling price for the line-item in the transaction. These values
will almost always be populated for promotional sales.
However, a regular or clearance sale could have a further
discount applied (like a coupon) and that should also be
captured here. These values are used to populate the Sales
Promotion fact table for retail type “P” transactions. So make
sure that any change in price related to a promotion is
included in this discount amount, so that it is copied into
other tables for Promotion-level reporting.

Liabilities Historical
and
Ongoing

Liabilities are sales that have not yet been charged to the
customer, either due to layaway practices or customer orders
that are posted as a liability transaction before they are
fulfilled. Liabilities are posted with a positive value when
incurred, and reversed with a negative value when they are
converted into a regular sale or cancelled. Liabilities are a
separate set of metrics in RI and do not interact with sales
values, as it is expected that the liability will always result in
a cancellation or a sale being posted at a later date.

Liability Cancels Historical
and
Ongoing

Liabilities that are cancelled should first be reversed and
then posted to these fields as a positive amount. A cancelled
liability will have no impact on sales and has a separate set of
metrics in RI. The retailer can use liability cancellation
metrics to track the value of customer orders that were
cancelled before being charged.

Retail Type Historical
and
Ongoing

The retail type represents the category of sale as one of
Regular, Promotion, or Clearance. We use the codes R/P/C to
denote this value. The priority order when assigning a code is
C > P > R, meaning that a clearance sale will always have a
clearance type, even if it is also affected by a promotion. This
matches the financial practices of RMFCS and Sales Audit,
which treat all clearance sales as clearance activity on the
stock ledger.

Chapter 8
Fact Files

8-23

Requirement File Type Explanation

Transaction
Reversals and
Revisions

Historical
and
Ongoing

When using Sales Audit to audit sales, the export process will
automatically handle reversing a transaction and posting
revisions to a transaction. Without that, you must manually
create a process to send reversals and revisions to the data
warehouse matching the same data format. These two
records come at the same time. A reversal is an exact
opposite of the original transaction line (usually all negative
values, unless the original value was negative). This will be
added to existing data and zero it out. The revision record
should come next and contain the current actual values on
the transaction (not the delta or difference in values).
Keep in mind that, depending on the method used for
calculating sales cost/profit amounts, a reversal and revision
may have different values from the original profit amount.
This could result in a very small residual profit from the prior
revision.

Backposted Sales Ongoing
(Daily)

Sales can be backposted for days prior to the current business
date. They will be loaded against their backposted transaction
date and aggregated up into the existing sales data for that
date. No transformations are done, even if the backposted
sale is significantly older (for example,1+ years ago). It will be
inserted and aggregated using that past date.

Original Selling
Locations

Historical
and
Ongoing

When including the original selling location of a return
transaction, you must also make sure that is a real location
included on your Organization input data. Some source
systems allow the manual entry of a return’s original selling
location, so ensure that all such locations are included, or the
records will be rejected by the data warehouse.

The columns you provide in the sales file will vary greatly depending on your application needs
(for example ,you may not need the sales profit columns if you don’t care about Sales Cost or
Margin measures). The most commonly used columns are listed below with additional usage
notes.

Column Header Usage

ITEM Must be the transaction level item or SKU number for the sale and
must have a record in the PRODUCT.csv file.

ORG_NUM Must be the store or warehouse number that will get credit for the
sale. Note that the location where the sale occurred is not always the
location that should be credited for it (for example, a web order
placed in-store can still be credited to a web location). Must have a
record in ORGANIZATION.csv file.

DAY_DT The date that the transaction occurred in the source system. Must be a
valid date within the periods in the CALENDAR.csv file.

MIN_NUM Hour and minute of the transaction in 24-hour, 4-digit format; for
example, 11:23 PM would be 2323. Currently only used in Retail
Insights reporting; default to 0 if not needed.

Chapter 8
Fact Files

8-24

Column Header Usage

IT_SEQ_NUM Sequence of a line in the transaction. Every line of a transaction must
have its own sequence number. This facilitates uniqueness
requirements where the same item could have multiple lines. Without
a unique sequence number, the line would not be unique on the input
file and the system would see them as duplicate records (duplicate
sales lines without a sequence number will be ignored). If you are pre-
summing your sales lines such that there will never be duplicate rows,
then this column is not needed.

RTL_TYPE_CODE This is the sales type using one of (R, P, C), where R = regular, P =
promotion, C = clearance. This is a critical piece of information for
many AIF and Planning purposes. For example, in some AIF modules
like SPO, you can choose to include or exclude sales by retail type in
the calculations. In forecasting, you can generate different forecasts
based on the retail type, which can feed into Planning measures
which are split by reg/pro/clr designations.

SLS_TRX_ID Unique identifier for a sales transaction. By default, it is expected sales
data will come at the most granular level (transaction-line). If you are
not able to provide true transaction-level data, you can specify some
other unique value in this field. This value is part of the business key
for the table, so you need to be able to reference the same keys over
time (such as when revising or reversing existing transactions).

PROMO_ID
PROMO_COMP_ID

This two-part identifier maps to the Promotion and Offer associated
with a transaction line. They are required if you wish to load sales by
promotion for Retail Insights or certain AI Foundation modules such
as Demand Transference. They are also required if you wish to
perform promotion lift estimation as part of IPOCS-Demand
Forecasting, since the system needs to know the specific promotion
linked to a set of sales transactions. When providing these values, also
provide the PROMOTION.csv file.

CUSTOMER_NUM
CUSTOMER_TYPE

Customer identifier on a sales transaction, which is a critical piece of
information for many AI Foundation modules, such as Customer
Segmentation and Consumer Decisions Trees. CUSTOMER_TYPE should
not be used at this time, it serves no purpose in downstream modules.
If you do include the column, hard-code it to a value of CUSTID on all
rows, otherwise CUSTOMER_NUM values will be ignored.

SLS_QTY
SLS_AMT_LCL
SLS_PROFIT_AMT_LCL
SLS_TAX_AMT_LCL

Represents the gross sales values for the transaction line (meaning
before returns). Will almost always be positive, except in cases of
negative profit amounts or if you are reversing a prior transaction
line to zero out the amounts. Tax amount is for VAT and other special
taxes outside the United States (should not be used for US sales tax).

RET_QTY
RET_AMT_LCL
RET_PROFIT_AMT_LCL
RET_TAX_AMT_LCL

Represents customer return transactions. Will almost always be
positive, except in cases of negative profit amounts or if you are
reversing a prior transaction line to zero out the amounts. Both gross
sales and returns are positive because they are subtracted from each
other to determine net sales. Tax amount is for VAT and other special
taxes outside the United States (should not be used for US sales tax).

REVISION_NUM If you will be allowing transactions to get revisions from your source
system (such as when a sales audit system changes the sales amount
after a user audited the transaction) then you should use this field to
track the revision number. The initial transaction should come as 1
and later revisions should be posted with a value of 2 or greater.
Revision numbers will be stored on the data warehouse table for
tracking and auditing purposes.

Chapter 8
Fact Files

8-25

Column Header Usage

LOC_CURR_CODE
DOC_CURR_CODE

The currency codes linked to the sales amounts on the transaction.
The values in these fields will control how the system converts the
amount (such as SLS_AMT_LCL) and how the EXCH_RATE.csv file data
will be used. If you are providing the data in the source currency from
the point of sale, then DOC_CURR_CODE will be the currency of the
source system. LOC_CURR_CODE is the primary reporting currency you
wish RAP applications to operate in, so it will generally be a single,
hard-coded value on all your data files. Review the section on
Exchange Rate dimension data for additional scenarios.

Sales Pack Data
If you have pack items (sets of SKUs or multiple units of SKUs sold as one item) then you will
need to spread sales of such items from the pack item level to the individual component SKU
level. The interface file SALES_PACK.csv is provided to load component sales values at a
summary level of item/location/date. This data is included in sales calculations for both AI
Foundation and Planning applications by adding together the sales of SKUs sold individually
on SALES.csv and the sales of items inside packs on SALES_PACK.csv.

As an example, assume you have a SKU# 1090 which is a white T-shirt. This item is sold
individually to customers, but it is also included in a pack of three shirts. The 3-pack is sold
using a separate SKU# 3451. You must provide the data for this scenario as follows:

• When SKU 1090 sells to a customer, you will have a transaction for 1 unit on SALES.csv
• When SKU 3451 sells to a customer, you will have a transaction for 1 unit on SALES.csv,

plus a record for SKU 1090 for 3 units on SALES_PACK.csv (representing the 3 units inside
the pack that sold).

When this data is loaded into other applications like MFP, you will see a total of 4 units of sales
for SKU 1090, because we will sum together the sales from both interfaces. The pack-level
sale of SKU 3451 is not exported to Planning applications because that would result in double-
counting at an aggregate level, but it can be used for other purposes such as Retail Insights
reports.

When you are providing SALES_PACK.csv you must also provide the pack item/component item
relationships using a dimension file PROD_PACK.csv. Refer to the RAP Interfaces Guide for the
full interface specifications of both of these files.

Inventory Data Requirements
Inventory data (INVENTORY.csv) has several special requirements that need to be followed
when generating historical data and ongoing daily feeds, due to the way the data is stored
within Retail Insights as well as the different use-cases in each of the AI Foundation and
Planning applications. A retailer may not have the data in the required format in their source
system, and adjustments would have to be made in the data extraction process to ensure
these rules are followed.

Chapter 8
Fact Files

8-26

Requirement File Type Explanation

Records may be
needed before the
item/location has
any stock on hand

Historical
and
Ongoing

The inventory position contains fields for inventory
movement, such as on-order, in-transit, and reserved
quantities. As soon as any of those values may contain data
for an item/location (and you intend to use those fields in
RAP), a record should be included for inventory, even if the
actual stock on hand is still zero that day or week.

Zero balances may
be needed for stock
on hand

Historical
and
Ongoing

In general, you are not required to provide zero balance
records in history data, just send the non-zero records. The
need for zeros in the data falls into one of two use cases:
• Daily Batch: If no change comes into the system on a

given day, we carry forward that balance. This means
that you cannot send only non-zero values in the daily
data files, as it is assumed the last known value is also the
current value for the day or week. You must send a zero
balance any time the inventory has moved from non-zero
to zero.

• History Load: The history file does not carry balances
forward, the sent data is directly inserted. Null values are
assumed to be zero in AIF and PDS. This means a zero
balance record is unnecessary. However, for integration
purposes, a zero balance stock-on-hand may be desired
because it is used to determine the Markdown measure
classification (clearance or non-clearance promo
markdowns).

Clearance indicator
is used to show the
end-of-period status
of the item/
location’s inventory

Historical
and
Ongoing

Inventory data has a required column for a Clearance Flag (Y/
N) to indicate for a given day or week what the status of that
item/location’s inventory is. The flag is intended to be the
end-of-period clearance status of the item/location, so in the
history data you should not send multiple records for the
same item/location if the flag changed in the middle of the
week. Send only one record with the correct flag for the end-
of-week value. Default to N if you don’t use it or don’t know it.

Any change to
values on the
inventory position
should send an
update of the full
record from the
source system.

Ongoing
(Daily)

If you are using other inventory values besides stock on hand
(such as on-order or in-transit), you must ensure the extracts
will send a complete record to the inventory interface when
any of those values change. For example, a new item/location
may carry an on-order balance or in-transit balance for
several weeks before it has any stock on hand, so your
extracts must trigger changes to those values, not just
changes to stock on hand.

For historical loads, this results in the following flow of data across all your files:

1. Generate the first month of week-ending inventory balances in INVENTORY.csv for all active
item/locations in each week of data. Load using the historical inventory load ad hoc
process. Make sure you load Receipts data in parallel with inventory data if you need to
capture historical first/last receipt dates against the stock positions (for IPO or LPO usage).

2. Repeat the monthly file generation process, including sets of week-ending balances in
chronological order. Remember that you cannot load inventory data out of order, once a
given intersection (item/loc/week) is loaded you cannot go back and reload or modify it
without deleting it first. Make sure all the requirements listed in the table above are
satisfied for every week of data. Depending on your data volumes you can include more
than one month in a single file upload.

Chapter 8
Fact Files

8-27

3. Load every week of inventory snapshots through to the end of your historical period. If
there will be a gap of time before starting nightly batches, plan to load an additional history
file at a later date to catch up. Make sure you continue loading Receipts data in parallel
with inventory data if first/last receipt date calculations are needed.

4. When you are ready to cutover to batches, you must also re-seed the positions of all item/
locations that need to have an inventory record on Day 1 of nightly batch execution (same
as for all positional facts in RI). This is needed to fill in any gaps where currently active
item/locations are not present in the historical files but need to have an inventory record
added on day 1. Use the Seeding Adhoc process for Inventory to do this step, or include a
full inventory snapshot file in your first nightly batch run to set all active positions.

The columns you provide on the inventory file will vary depending on your application needs
(for example, you may not need the in-transit or on-order columns if you are only providing
data for IPOCS-Demand Forecasting). The most commonly used columns are listed below with
additional usage notes.

Column Header Usage

ITEM Must be the transaction-level item or SKU number for the inventory
position and must have a record in the PRODUCT.csv file. Should not
be a pack item; all inventory data should be held against the
individual components.

ORG_NUM Must be the location number that is holding the inventory. Must have
a record in the ORGANIZATION.csv file. If a location is flagged as non-
stockholding in the ORGANIZATION.csv file, then it should not have
any data in this file.

DAY_DT The date that the inventory position record is for. In historical files it
must be a week-ending date. In nightly batch files it must be the
current system business date on all rows; you cannot post inventory
for any other date.

CLEARANCE_FLG Must be a value of Y or N to indicate the inventory is on clearance or
not. Differentiating inventory status is important to RI, AI Foundation,
and Planning applications anywhere you would be viewing or
planning clearance sales separately from regular sales. Depending on
your planning configuration needs, you cannot plan/forecast
clearance sales without also having clearance inventory (like when
you are specifically forecasting clearance sales and want to compare
to clearance inventory). If you are not implementing a solution that
separates regular and clearance activities, then you would set this
value to N on all rows.

INV_SOH_QTY
INV_SOH_COST_AMT_LC
L
INV_SOH_RTL_AMT_LCL

Stock on hand and available to sell. The cost and retail amounts are
the total cost/retail value of all units of stock. All the values on this
interface are close-of-business values (for example, stock on hand at
end of day or end of week). Pack item inventory should be broken
down into their component quantities and amounts and summed
together with the stock for the same SKUs held individually. Only one
row should be provided per item/location/date.

INV_IN_TRAN_QTY
INV_IN_TRAN_COST_AM
T_LCL
INV_IN_TRAN_RTL_AMT
_LCL

Stock in-transit between two owned locations (such as from
warehouse-to-store or store-to-store). This stock is shipped but not yet
received. It will be summed together with SOH values for MFP to show
total owned stock for a location, inclusive of units that will arrive at
that location soon. All the same criteria listed for SOH values apply to
these fields as well.

Chapter 8
Fact Files

8-28

Column Header Usage

INV_UNIT_RTL_AMT_LC
L

The base unit retail value of an item at the location for this stock
position. Used by multiple applications to display the retail value for a
specific item/location in the context of owned inventory. May or may
not be the same value as the Selling Price provided on the PRICE.csv
file depending on how the business calculates the retail value of
owned inventory. Other columns like INV_SOH_RTL_AMT_LCL should
be a multiplication of this value times the unit quantity.

INV_AVG_COST_AMT_LC
L
INV_UNIT_COST_AMT_L
CL

The average cost and unit cost of owned inventory for this item/
location. The default cost used by retailers is usually the average cost
(also known as Weighted Average Cost or WAC). Other columns like
INV_SOH_COST_AMT_LCL should be a multiplication of one of these
values times the unit quantity.

LOC_CURR_CODE
DOC_CURR_CODE

The currency codes linked to the cost and retail amounts on the
inventory data. The values in these fields will control how the system
converts the amount (such as INV_SOH_COST_AMT_LCL) and how the
EXCH_RATE.csv file data will be used. If you are providing the data in
the source currency from the store or warehouse location, then
DOC_CURR_CODE will be the currency of the source location. If the data
is already all on one currency, then DOC_CURR_CODE will be that
currency code. LOC_CURR_CODE is the primary reporting currency you
wish RAP applications to operate in, so it will generally be a single
hard-coded value on all your data files. Review the section on
Exchange Rate dimension data for additional scenarios.

Price Data Requirements
Pricing data (PRICE.csv) has several special requirements that need to be followed when
generating historical data and ongoing daily feeds, due to the way the data is stored within
Retail Insights as well as the different use-cases in the RI and AI Foundation applications. A
retailer may not have the data in the required format in their source system, and adjustments
would have to be made in the data extraction process to ensure these rules are followed.

Requirement File Type Explanation

The first price file
must include
records for all
active item/
locations

Historical The pricing fact is stored positionally, meaning that it first
needs a starting position for an entity (for example, an initial
price for an item/location) and then it may not be sent again
unless there is a change to the value. The very first price file
loaded into the data warehouse must contain a starting
position for all active item/locations. How you determine
which item/locations were active on that day in history will
depend on your source system (for example, you can base it
on items having stock on hand, historical ranging status, or a
price history table if you have one).

The first record
sent for an item/
location must come
as a new price
transaction type

Historical
and
Ongoing

Price records have a column for the price type
(PRICE_CHANGE_TRAN_TYPE) with a fixed list of possible
values. The value 0 represents a new price, which means it is
the first time our system is getting a price for this item/
location. All item/locations must be given a type 0 record as
their first entry in the historical or ongoing data files. All the
initial position records in the first file will have type=0. Also,
all new item/locations coming in later files must first come
with type=0.

Chapter 8
Fact Files

8-29

Requirement File Type Explanation

Price records
should follow a
specific lifecycle
using the type
codes

Historical
and
Ongoing

The typical flow of price changes that will occur for an item/
location should be as follows:
• New price/cost (PRICE_CHANGE_TRAN_TYPE=0)
• Regular cost changes (PRICE_CHANGE_TRAN_TYPE=2)
• Regular price changes (PRICE_CHANGE_TRAN_TYPE=4)
• Promotional/temporary markdowns

(PRICE_CHANGE_TRAN_TYPE=9)
• Clearance markdowns (PRICE_CHANGE_TRAN_TYPE=8)
• Price reset due to new selling cycle or season change

(PRICE_CHANGE_TRAN_TYPE=0)
An item/location may have many changes with types 2/4/8/9
before eventually staying at 8 (for a final markdown) or
resetting to 0 (if the item lifecycle should restart).

Price changes are
for the end-of-day
value only

Historical
and
Ongoing

An item price may change many times a day, but you must
only send the end-of-day final position for the item/location.
The file interface assumes only one record will be sent per
item/location/effective date, representing the final price on
that date.

For historical loads, this results in the following flow of data across all your files:

1. Generate an initial position PRICE.csv that has all type=0 records for the item/locations you
want to specify a starting price for. Load this as the very first file using the historical load ad
hoc process.

2. Generate your first month of price change records. This will have a mixture of all the price
change types. New item/location records may come in with type=0 and records already
established can get updates using any of the other type codes. Only send records when a
price or cost value changes; do not send every item/location on every date. You also must
not send more than one change per item/location/date.

3. Repeat the monthly file generation (or more than one month if your data volume for price
changes is low) and load process until all price history has been loaded for the historical
timeframe.

4. When you are ready for the cutover to batches, you must also re-seed the positions of all
item/locations that need a price record on Day 1 of nightly batch execution (same as for all
positional facts in RI). This is needed to fill in any gaps where currently active item/
locations are not present in the historical files, but need a price record added on day 1.
Use the Seeding Ad Hoc process for Pricing to do this step, not the historical load.

In most cases, you will be providing the same set of price columns for any application. These
columns are listed below with additional usage notes.

Column Header Usage

ITEM Must be the transaction-level item or SKU number and must have a
record in the PRODUCT.csv file. You should provide a price record for
all sellable or inventoried items.

ORG_NUM Must be the location number where the item on the record is ranged
to. Must have a record in ORGANIZATION.csv file. A price should be
provided for every location where a transaction could occur for the
item on the record, such as a sale or return.

Chapter 8
Fact Files

8-30

Column Header Usage

DAY_DT The date that the price record is for. In historical files it will be the
effective date of the price change. In nightly batch files it must be the
current system business date on all rows, you cannot post prices for
any other date. The data sent nightly is for price changes effective for
that one date.

PRICE_CHANGE_TRAN_T
YPE

The type of price change event, represented by a numerical code as
defined in the business rules earlier in this section. This is NOT part of
the primary key, meaning that you can only provide a single price per
item/location/date.

SELLING_UNIT_RTL_AM
T_LCL

The current selling retail price of the item, at the specified location, on
the specified business date. The selling price will generally reflect the
current “ticket price” of the item that a customer would pay before
transaction-level adjustments like coupons or loyalty awards. The
price is also a key input to certain forecast functions (LLC, causal,
promo lift).

BASE_COST_AMT_LCL The unit cost of the item at this location. Only used by AI Foundation
and Retail Insights reporting. In LPO, the price and cost are both used
to determine the Gross Margin amount for the item/location in pricing
objectives.

LOC_CURR_CODE
DOC_CURR_CODE

The currency codes linked to the cost and retail amounts on the price
data. The values in these fields will control how the system converts
the amount (such as SELLING_UNIT_RTL_AMT_LCL) and how the
EXCH_RATE.csv file data will be used. If you are providing the data in
the source currency from the store or warehouse location, then
DOC_CURR_CODE will be the currency of the source location. If the data
is already all on one currency, then DOC_CURR_CODE will be that
currency code. LOC_CURR_CODE is the primary reporting currency you
wish RAP applications to operate in, so it will generally be a single
hard-coded value on all your data files. Review the section on
Exchange Rate dimension data for additional scenarios.

ORIG_SELLING_RTL_AM
T_LCL

This is a nullable column provided for specifying the original full
price of an item/location in cases where you need to update the
original price as part of a different price change posting.
For example, an item may begin selling at a store only after it has
been marked down. The first price change event is a markdown (type
8) and you also populate this field on the same row to indicate what
the original price was prior to the markdown.

LST_REG_RTL_AMT_LCL This is a nullable column provided for specifying the most recent
regular price of an item/location in cases where you need to update
the regular price as part of a different price change posting.
For example, an item may begin selling at a store only after it has
been marked down. The first price change event is a markdown (type
8) and you also populate this field on the same row to indicate what
the last regular price was prior to the markdown.

Receipts Data Requirements
Receipts data (RECEIPT.csv) is used specifically for receipt transactions where inventory units
are received into an owned location (like a store or warehouse), and that receipt impacts the
stock on hand for the location. The file is used for several purposes throughout RAP: it is
needed by MFP for inventory plans, by IPO and LPO for determining first and last receiving
dates by item/location, and by RI for reporting on receipt activity. The receipts data must be
loaded in parallel with inventory position if AIF modules are being implemented, because the

Chapter 8
Fact Files

8-31

calculations for IPO/LPO are done up front during each load of inventory position and receipt
files.

Rule Explanation

Receipt Types The receipts are provided using a type code, with 3 specific codes supported:
• 20 – This code is for purchase order receipts, which are usually shipments

from a supplier into a warehouse (but can be into stores).
• 44~A – These are allocation transfer receipts resulting from allocations

issued to move warehouse inventory down to stores. The receipt occurs
for the store location on the day it receives the shipment.

• 44~T – These are generic non-allocation transfer receipts between any two
locations.

MFP GA solution only uses type 20 transactions but the rest of the RAP
solutions use all types.

Receipts vs.
Transfers

Transfer receipts are not the same thing as transfers (TRANSFER.csv) and both
datasets provide useful information. Transfer receipts are specific to the
receiving location only and occur at the time the units arrive. Transfers are
linked to both the shipping and receiving locations, and they should be sent at
the time the transfer is initiated. The MFP GA solution receives transfers from
the TRANSFER.csv file only, but the other solutions will want both
RECEIPT.csv and TRANSFER.csv files to have the transfer-related data.

Unplanned
Receipts

It is possible for a location to receive inventory it did not ask for (for example,
there is no associated PO or allocation linked to those units). Such receipts
should still appear as a type 44~T receipt transaction, so long as those units of
inventory do get pulled into the location’s stock on hand.

In most cases, you will be providing the same set of receipt columns for any application. These
columns are listed below with additional usage notes.

Column Header Usage

ITEM Must be the transaction level item or SKU number and must have a
record in the PRODUCT.csv file.

ORG_NUM Must be the location number where the item is received. Must have a
record in ORGANIZATION.csv file.

DAY_DT The date that the receipt occurred on. Receipts can occur on any date
both in history and nightly batch files.

INVRC_TYPE_CODE Indicates the type of receipt into a location using merchandising
transaction codes 20 (purchase order receipt), 44~A (allocation
transfer receipt), or 44~T (non-allocation transfer receipt). Only PO
receipts are used in MFP, as they represent actual inventory entering
the company, and not just movement between two owned locations.

INVRC_QTY
INVRC_COST_AMT_LCL
INVRC_RTL_AMT_LCL

The units being received and the total cost/retail value of those units
relative to the receiving location.

Chapter 8
Fact Files

8-32

Column Header Usage

LOC_CURR_CODE
DOC_CURR_CODE

The currency codes linked to the cost and retail amounts on the
receipt data. The values in these fields will control how the system
converts the amount (such as INVRC_COST_AMT_LCL) and how the
EXCH_RATE.csv file data will be used. If you are providing the data in
the source currency from the store or warehouse location, then
DOC_CURR_CODE will be the currency of the source location. If the data
is already all on one currency, then DOC_CURR_CODE will be that
currency code. LOC_CURR_CODE is the primary reporting currency you
wish RAP applications to operate in, so it will generally be a single
hard-coded value on all your data files. Review the section on
Exchange Rate dimension data for additional scenarios.

Transfer Data Requirements
Transfer data (TRANSFER.csv) is used to capture movement of inventory between two locations
(warehouses or stores). Transfer transactions are sent at the time the transfer is initiated at the
shipping location. Transfer transactions are used primarily in Planning applications and RI
reporting.

Rule Explanation

Transfer Types Transfers are provided using a type code, with 3 specific codes supported:
• N – Normal transfers are physical movement of inventory between two

locations that impacts the stock on hand
• B – Book transfers are financial movement of inventory in the system of

record that doesn’t result in any physical movement, but still impacts the
stock on hand

• I – Intercompany transfers involve inventory moved into or out of
another location that is part of a different legal entity, and therefore the
transfer is treated like a purchase transaction in the source system

Most transfers are categorized as Normal (N) by default. All transfer types are
sent to Planning but would be loaded into separate measures as needed based
on the type. Because transfers and receipts are separate measures used for
different purposes, there is no overlap despite having similar information in
both files.

Transfer In vs.
Transfer Out

The transfers file has two sets of measures for the unit/cost/retail value into
the location and out of the location. Typically these values contain the same
data, but since they are aggregated and displayed separately in the target
systems, they are also separate on the input so you have full control over what
goes into each measure. For example, a transfer in of 5 units to location 102
would also have a transfer out of 5 units leaving location 56 (on the same
record).

In most cases, you will be providing the same set of transfer columns for any application.
These columns are listed below with additional usage notes.

Column Header Usage

ITEM Must be the transaction level item or SKU number and must have a
record in the PRODUCT.csv file.

ORG_NUM Must be the location number where the item inventory is being
shipped to (i.e. the receiving location). Must have a record in
ORGANIZATION.csv file.

Chapter 8
Fact Files

8-33

Column Header Usage

DAY_DT The date that the transfer was initiated on (NOT the date when it
completes or is received). Transfers can occur on any date both in
history and nightly batch files.

FROM_ORG_NUM Must be the location number where the item inventory is being
moved out of (that is, the shipping location). Must have a record in
ORGANIZATION.csv file.

TSF_TYPE_CODE The numerical code representing the transfer type, as described in the
business rules for transfers earlier in this section. This is a part of the
primary key, meaning you may have multiple records for the same
item/location/from-location/date with different transfer type codes.

TSF_TO_LOC_QTY
TSF_TO_LOC_COST_AMT
_LCL
TSF_TO_LOC_RTL_AMT_
LCL

The units and total cost/retail values for the transfer relative to the
“to” location (ORG_NUM). Will be separately aggregated and displayed
in MFP.

TSF_FROM_LOC_QTY
TSF_FROM_LOC_COST_A
MT_LCL
TSF_FROM_LOC_RTL_AM
T_LCL

The units and total cost/retail values for the transfer relative to the
“from” location (FROM_ORG_NUM). Will be separately aggregated and
displayed in MFP.

LOC_CURR_CODE
FROM_DOC_CURR_CODE
FROM_LOC_CURR_CODE
DOC_CURR_CODE

The currency codes linked to the cost and retail amounts on the
transfer data. The values in these fields will control how the system
converts the amount (such as TSF_TO_LOC_COST_AMT_LCL) and how
the EXCH_RATE.csv file data will be used. If you are providing the data
in the source currency from the store or warehouse location, then
DOC_CURR_CODE will be the currency of the source location. If the data
is already all on one currency, then DOC_CURR_CODE will be that
currency code. LOC_CURR_CODE is the primary reporting currency you
wish RAP applications to operate in, so it will generally be a single
hard-coded value on all your data files. The FROM columns will be the
same thing applied for the FROM_ORG_NUM location. Review the section
on Exchange Rate dimension data for additional scenarios.

Adjustment Data Requirements
Adjustments data (ADJUSTMENT.csv) is used to capture manual changes to stock on hand
made for any reason that does not fall into one of the other categories like sales or receipts.
Adjustments are used only in Planning and RI applications.

Chapter 8
Fact Files

8-34

Rule Explanation

Adjustment
Types

The adjustments are provided using a type code, with 3 specific codes
supported:
• 22 – These adjustments are your standard changes to inventory for

wastage, spoilage, losses, and so on. In Planning they are categorized as
Shrink adjustments.

• 23 – These adjustments are for specific changes that impact the Cost of
Goods Sold but are not an unplanned shrink event, such as charitable
donations. In Planning they are categorized as Non-Shrink adjustments.

• 41 – These adjustments are targeted to reporting needs specifically and
are the result of a stock count activity where the inventory levels were
already adjusted in the store’s inventory as part of the count, but you
want the adjustment captured anyway to report against it

Only types 22 and 23 go to Planning applications. Type 41 is used within RI for
reporting.

Reason Codes Reason codes are used to identify the specific type of adjustment that occurred
for that item, location, and date. If you are loading data for Planning apps,
then they are not required because Planning apps do not look at reason codes.
They are only used for RI reporting. There are no required codes; it will
depend on the data in your source system. The codes should be numerical,
and there is a Description field that must also be provided for the display
name.

Positive and
Negative Values

Adjustments should be positive by default. A positive adjustment on the input
file means a decrease in the stock on hand at the location. A negative
adjustment means an increase to stock on hand (basically you have adjusted
the units back into the location’s inventory, which is less common). When the
data is sent to MFP, the default planning import will invert the signs for the
positive adjustments to become subtractions to inventory.

In most cases, you will be providing the same set of adjustment columns for any application.
These columns are listed below with additional usage notes.

Column Header Usage

ITEM Must be the transaction level item or SKU number and must have a
record in the PRODUCT.csv file.

ORG_NUM Must be the location number where the item inventory was adjusted.
Must have a record in ORGANIZATION.csv file.

DAY_DT The date that the adjustment occurred on. Adjustments can occur on
any date both in history and nightly batch files.

INVADJ_TYPE_CODE Indicates the type of adjustment to inventory using transaction codes
22 (shrink adjustment), 23 (non-shrink adjustment), or 41 (stock count
adjustment). The codes determine the associated Planning measures
the data is placed into. Code 41 is only used in Retail Insights
reporting.

INVADJ_QTY
INVADJ_COST_AMT_LCL
INVADJ_RTL_AMT_LCL

The units and total cost/retail values for the adjustment. The cost and
retail amounts may have varying calculations in your source system
depending on how shrink and non-shrink inventory adjustments are
determined. Adjustments can be negative or positive depending on
whether inventory is being removed or added to the stock on hand.
The sign is reversed by MFP, meaning negative amounts on the input
will display as positive values on the MFP measures.

Chapter 8
Fact Files

8-35

Column Header Usage

LOC_CURR_CODE
DOC_CURR_CODE

The currency codes linked to the cost and retail amounts on the
adjustment data. The values in these fields will control how the
system converts the amount (such as INVADJ_COST_AMT_LCL) and how
the EXCH_RATE.csv file data will be used. If you are providing the data
in the source currency from the store or warehouse location, then
DOC_CURR_CODE will be the currency of the source location. If the data
is already all on one currency, then DOC_CURR_CODE will be that
currency code. LOC_CURR_CODE is the primary reporting currency you
wish RAP applications to operate in, so it will generally be a single
hard-coded value on all your data files. Review the section on
Exchange Rate dimension data for additional scenarios.

RTV Data Requirements
Return to vendor data (RTV.csv) is used to capture returns of inventory from your stores or
warehouses back to the original vendor. An RTV is a transaction that decreases your owned
inventory at a location because you are shipping units to a non-owned location. RTVs are used
only in Planning and RI applications.

Rule Explanation

Supplier IDs,
Reason Codes,
Status Codes

All of the reason code, supplier number, and status code fields in an RTV
record are optional and used only for RI reporting purposes, because planning
applications do not report at those levels. If you are not specifying these
values, leave the columns out of the file entirely, and a default value of -1 will
be assigned to the record in those columns.

Positive and
Negative Values

RTV transactions should always be positive values. Only send negative values
to reverse a previously-sent transaction in order to zero it out from the
database.

In most cases, you will be providing the same set of RTV columns for any application. These
columns are listed below with additional usage notes.

Column Header Usage

ITEM Must be the transaction level item or SKU number and must have a
record in the PRODUCT.csv file.

ORG_NUM Must be the location number where the RTV is being shipped out
from. Must have a record in ORGANIZATION.csv file.

DAY_DT The date that the RTV occurred on. RTVs can occur on any date both in
history and nightly batch files.

RTV_QTY
RTV_COST_AMT_LCL
RTV_RTL_AMT_LCL

The units and total cost/retail values for the returns to vendor.

Chapter 8
Fact Files

8-36

Column Header Usage

LOC_CURR_CODE
DOC_CURR_CODE

The currency codes linked to the cost and retail amounts on the RTV
data. The values in these fields will control how the system converts
the amount (such as RTV_COST_AMT_LCL) and how the EXCH_RATE.csv
file data will be used. If you are providing the data in the source
currency from the store or warehouse location, then DOC_CURR_CODE
will be the currency of the source location. If the data is already all on
one currency, then DOC_CURR_CODE will be that currency code.
LOC_CURR_CODE is the primary reporting currency you wish RAP
applications to operate in, so it will generally be a single hard-coded
value on all your data files. Review the section on Exchange Rate
dimension data for additional scenarios.

Markdown Data Requirements
Markdown data (MARKDOWN.csv) is used to capture changes in retail value of owned inventory
due to a permanent or temporary price change. Markdowns are used only in Planning and RI
applications. There are separate measures on the input file for markdown and markup effects
depending on the kind of price change and direction of the change. For regular and clearance
price changes, the file captures the total change in value of owned inventory units on the day
the price change goes into effect. For promotional or temporary price changes, the file should
have only the marginal effects of the price change when any of that inventory is sold to a
customer (since the overall value of your inventory is not changed by a temporary promotion).

Rule Explanation

Markdown
Amounts

Markdown amounts are only the change in total value of inventory, not the
total value itself. Permanent and clearance price changes result in markdown
amounts derived like this:
Markdown Retail = (SOH*Old Retail) – (SOH*New Retail)
Markdown Retail = (150*15) – (150*12) = $450
Promotional price changes do not need the total markdown amount
calculation, and instead send a promotion markdown amount at the time of
any sale:
Promotional Markdown Retail = (Units Sold*Old Retail) – (Units Sold*New
Retail)
Promotional Markdown Retail = (5*17) – (5*15) = $10
Markdown amounts will generally be positive values when the price was
decreased, and the target systems will know when to add or subtract the
markdown amounts where needed.

Markdown
Types

The markdowns are provided using a type code, with 3 specific codes
supported:
• R – Regular permanent price changes that are not considered a clearance

price
• C – Clearance markdowns which are permanent and intended to be used

at end-of-life for the item
• P – Promotional markdowns which are temporary price changes or

discounts that are limited to a period of time
Markup
Handling

When a regular price is increased or a clearance price is set back to regular
price, you can send a separate transaction with positive Markup values
populated in the record. You do not need to send negative values to reverse a
markdown; the target systems can use the markup measures to do that. A
similar rule applies to the markdown/markup cancel measures.

Chapter 8
Fact Files

8-37

Rule Explanation

Inventory Usage
for PDS
Measures

Markdown data is joined with inventory data when you are exporting it to
Planning applications, specifically to calculate two markdown measures (reg-
promo and clearance-promo markdown amounts). The markdown export uses
the clearance flag from the inventory history to determine the measure
rollups. If there is no inventory record for a given item/loc/week intersection,
the markdown data will default into the reg-promo markdown measure.

In most cases, you will be providing the same set of markdown columns for any application.
These columns are listed below with additional usage notes.

Column Header Usage

ITEM Must be the transaction level item or SKU number and must have a
record in the PRODUCT.csv file.

ORG_NUM Must be the location number where the markdown transaction
occurred. Must have a record in ORGANIZATION.csv file.

DAY_DT The date that the markdown occurred on. Markdowns can occur on
any date both in history and nightly batch files.

RTL_TYPE_CODE The type of markdown using one of R/P/C characters to identify it as
described in the business rules above. The type code determines
which measures in Planning will get the data. Regular and clearance
markdowns are considered as “inventory devaluation” while promo
markdowns are shown as “markdowns”. Promo markdowns are
further split into clearance-promo and reg-promo using the clearance
flag from Inventory Position data.

MKDN_QTY
MKDN_AMT_LCL

The units affected by a markdown and the total change in retail value
as a result of a markdown. Both values will be positive numbers when
representing a decrease in retail value as the result of a markdown.

MKUP_QTY
MKUP_AMT_LCL

The units affected by a markup and the total change in retail value as
a result of a markup. Both values will be positive numbers when
representing an increase in retail value as the result of a markup.

MKDN_CAN_QTY
MKDN_CAN_AMT_LCL

The units affected by a cancelled markdown and the total change in
retail value as a result of the cancellation. Both values will be positive
numbers when representing an increase in retail value as the result of
the cancellation.

MKUP_CAN_QTY
MKUP_CAN_AMT_LCL

The units affected by a cancelled markup and the total change in retail
value as a result of the cancellation. Both values will be positive
numbers when representing a decrease in retail value as the result of
the cancellation.

DOC_CURR_CODE
LOC_CURR_CODE

The currency codes linked to the retail amounts on the markdown
data. The values in these fields will control how the system converts
the amount (such as MKDN_AMT_LCL) and how the EXCH_RATE.csv file
data will be used. If you are providing the data in the source currency
from the store or warehouse location, then DOC_CURR_CODE will be the
currency of the source location. If the data is already all on one
currency, then DOC_CURR_CODE will be that currency code.
LOC_CURR_CODE is the primary reporting currency you wish RAP
applications to operate in, so it will generally be a single hard-coded
value on all your data files. Review the section on Exchange Rate
dimension data for additional scenarios.

Chapter 8
Fact Files

8-38

Purchase Order Data Requirements
Purchase order data (ORDER_HEAD.csv and ORDER_DETAIL.csv) is used to capture the raw PO
details at the lowest level. Purchase orders are used in Planning, IPO, and RI applications. For
Planning, the PO data is aggregated from the order level to a forward-looking summary based
on the open-to-buy (OTB) week date. The raw details are used as-is in RI and IPO.

Rule Explanation

Daily Data
Requirements

It is expected that the PO header and detail files start as full daily snapshots of
all active or recently closed orders. The detail data is maintained positionally
so that, if no update is received, we will continue to carry forward the last
known value. Once daily batches have started, you can transition the PO
details file only to an incremental update file (header file must always be a
complete snapshot). When sending data incrementally, you must include all
order updates for a given date, both for open and closed orders. If an order
changed at the header level (such as closing or cancelling the order), you
should send all the detail lines in that order even if some didn’t change. This
includes when order lines are fully received and move to 0 units remaining,
these changes must be sent to RAP. If you are unable to satisfy these
incremental data requirements, you may change the parameter
PO_FULL_LOAD_IND to Y to instead provide full snapshots of only non-zero
order lines and the system will zero out the rest of the orders automatically.

Historical Data
and Past Dates

The Order interfaces do not support loading historical data or data with past
dates on the detailed order-line records. Every time you load orders, it is for
the current set of data for a single business date. The DAY_DT value on the
detail file should be the same on all rows and be set to the business date the
data is for. You also cannot reload the same date multiple times; the detail
table follows the rules for positional facts as described in Positional Data
Handling section below.

Order Status The header file for POs has a variety of attributes but one of the most
important is the status, which should be either A (active) or C (closed). Active
orders are used in the PO calculations. When sending daily PO files, you must
include both active and closed order updates, because we need to know an
order has been completed so it can stop being included in calculations.

OTB EOW Date The OTB end-of-week date is used for the Planning aggregations to create a
forward-looking view of expected receipts from POs. Open order quantities
are aggregated to the OTB week before being exported to Planning. If the OTB
week has elapsed, the order quantities are included in next week’s OTB roll-up
regardless of how far in the past the date is, because the earliest that PO can
come as receipts is in the next business week.

Include On
Order Indicator

There is a required flag on the order header file to tell the system that an
order should be included in calculations for Planning or not. When the flag is
set to Y, that order’s details will be used for the aggregated on-order values. If
set to N, the order details will not be used (but will still be present in the
database for other purposes like RI reporting and inventory optimization).

The ORDER_HEAD.csv and ORDER_DETAIL.csv files both have a minimum set of required fields to
make the integrations within RAP function, so those will be listed out below with additional
usage notes. The two files are tightly coupled and it’s expected that you send both at the same
time; you will never send only one of them.

Chapter 8
Fact Files

8-39

Table 8-10 ORDER_HEAD.csv

Column Header Usage

ORDER_NO Unique identifier of a purchase order in the source system. This must
be the same number used across the entire life of the order, so that
you can post updates and revisions to it over time. If your source
system changes the order number for any reason, be aware that you
may need to keep track of old order numbers to post the updates to
RAP for the right orders.

STATUS Tells the system if the order is active (A) or closed/cancelled (C). Only
active orders will be used for Planning applications, even if a closed
order still has on-order quantities on the records. It is important that
you post closed orders to RAP when they close, so that we have an
accurate status for all orders.

OTB_EOW_DATE The week-ending date where the open order quantities should be
considered for Open To Buy (OTB) planning. This will drive the
aggregation of the purchase order data into future weeks before it is
loaded into Planning applications. When the OTB_EOW_DATE is in the
past, any remaining open order quantities will be pushed into the
next possible week-ending date that is in the future, because those
units cannot be received before that time.

INCLUDE_ON_ORDER_IN
D

A flag to instruct the system on which orders should be considered for
Open to Buy and any other open on-order calculations. If the flag is N
then the order will not be sent to Planning, but it can still be used in
Retail Insights reporting or custom extensions.

Table 8-11 ORDER_DETAIL.csv

Column Header Usage

ITEM Must be the transaction level item or SKU number and must have a
record in the PRODUCT.csv file. Should not be a pack item, even if the
supplier would be delivering in packs. It is expected that inventory
and purchase order data are always at the component item level. Pack
item data should be spread to their components before sending this
file.

ORG_NUM Must be the location number where the order was placed from and
will be received at. Must have a record in ORGANIZATION.csv file. It is
usually a warehouse but can be a store if you allow direct-to-store
deliveries.

DAY_DT The current business date in the system for this data load. You cannot
send order data for any other date except the current business date, as
this is a positional table like Inventory. Past/future dates will not be
accepted. The purpose of this column is mainly for reference and
archival purposes (for example, when looking at old data files you will
know which business date this set of records was for).

ORDER_NO A cross-reference to the order number on ORDER_HEAD.csv.

Chapter 8
Fact Files

8-40

Table 8-11 (Cont.) ORDER_DETAIL.csv

Column Header Usage

PO_ONORD_QTY
PO_ONORD_COST_AMT_
LCL
PO_ONORD_RTL_AMT_L
CL

The current outstanding order quantities and total cost/retail value of
the units on order. These values represent the expected units that
have not been received yet. Because this interface is positional (like
inventory) we will carry forward the last known quantities every day
unless you update the system with new records. This means that, even
when the order is received or cancelled, we must eventually get a
record that moves all of these columns to 0, or we will carry forward
the non-zero values forever.

DOC_CURR_CODE
LOC_CURR_CODE

The currency codes linked to the cost and retail amounts on the order
data. The values in these fields will control how the system converts
the amount (such as PO_ONORD_COST_AMT_LCL) and how the
EXCH_RATE.csv file data will be used. If you are providing the data in
the source currency from the store or warehouse location, then
DOC_CURR_CODE will be the currency of the source location. If the data
is already all on one currency, then DOC_CURR_CODE will be that
currency code. LOC_CURR_CODE is the primary reporting currency you
wish RAP applications to operate in, so it will generally be a single
hard-coded value on all your data files. Review the section on
Exchange Rate dimension data for additional scenarios.

It’s also necessary to understand the lifecycle of a purchase order and how that should be
reflected in the data files over time. RAP will require data to be sent for each step in the order
process as outlined below.

1. When the order is approved, the ORDER_HEAD file should contain a row for the order with
status=A and the ORER_DETAIL should contain the items on the order with non-zero
quantities for the on-order amounts.

2. As the lines of the order are received, ORDER_HEAD should continue to have the row for the
order with every update, and ORDER_DETAIL should be sent with the order lines that require
changes from the last known value. If you have the ability to detect which order lines
changed, you only need to send those. RAP will remember and carry forward any order
lines that were not updated. If you can’t detect the changes to order lines, just send all
lines in the order every time.

3. If any lines are cancelled from the order, you must send that update as a set of zero values
on the PO_ONORD_* columns in ORDER_DETAIL to zero out the cancelled lines in RAP.
Similarly, if the entire order is canceled or closed before being fully received, you must
send all lines of the order with zero values on the PO_ONORD_* columns in ORDER_DETAIL
and also update ORDER_HEAD to have a status of C. If this is not possible in your source
system, you must configure the parameter PO_FULL_LOAD_IND to a value of Y in Manage
System Configurations, then you will be allowed to send full loads of only non-zero order
lines and the system will zero out the rest.

4. As order lines start to be received normally, send the new order quantities for each
change, including when a line is fully received and moves to 0 units on order. When an
order becomes fully received we need all rows of data in RAP to move to 0 for that order’s
values, so that we stop including it in future on-order rollups. If PO_FULL_LOAD_IND=Y then
we don’t need zero balance updates from you, just stop sending the order details when it
reaches zero and we will zero it out automatically.

Chapter 8
Fact Files

8-41

5. When an order is finally fully-received and closed, send one final update where
ORDER_HEAD shows the status as C and the ORDER_DETAIL data is moved to 0 units on order
for any lines not updated yet.

Depending on your source system, it can be difficult to detect all of these changes to the
purchase orders over time and send only incremental updates. In such cases, you may always
post all orders to RAP which are active or have been closed within recent history and we will
merge the data into the system on top of the existing order records. Then the main requirement
that must be accounted for is the cancelling or removal of order lines from an order, which
must still be tracked and sent to RAP even if your source system deletes the data (unless
PO_FULL_LOAD_IND=Y).

Other Fact File Considerations
The following section describes additional data considerations that may apply to your
implementation depending on the types and volumes of data being provided to the platform.
Review each topic closely, as it affects the data provided in the foundation files.

Positional Data Handling
The largest sets of fact data in the platform tend to be those that represent every possible item/
location combination (such as prices or costs). To efficiently store and process these data
volumes, a data warehouse technique known as compression is used to capture only the
changed records on a day-to-day basis, effectively maintaining a “current position” for every set
of identifiers, which is updated during each batch execution. The output of this compression
process is called positional data, and the following functional areas use this method of data
load and storage:

• Inventory (INV and INVU)

• Prices (PRICE)

• Costs (BCOST and NCOST)

• Purchase Orders (PO_ONORD) and Allocations On Order (PO_ONALC)

Positional data loads follow very specific rules and cannot be processed in the same manner
as non-positional data such as sales transactions.

Table 8-12 Positional Data Rules

Rule Explanation

Data Must be
Sequential

Positional data must be loaded in the order of the calendar date on which it
occurs and cannot be loaded out-of-order. For example, when loading history
data for inventory, you must provide each week of inventory one after the
other, starting from Week 1, 2, 3, and so on.

Data Cannot be
Back Posted

Positional data cannot be posted to any date prior to the current load date or
business date of the system. If your current load date is Week 52 2021, you
cannot post records back to Week 50: those past positions are unable to be
changed. Any corrections that need to be loaded must be effective from the
current date forward.

Chapter 8
Fact Files

8-42

Table 8-12 (Cont.) Positional Data Rules

Rule Explanation

Data Must be
Seeded

Because positional data must maintain the current position of all data
elements in the fact (even those that are inactive or not changing) it is
required to initialize or “seed” positional facts with a starting value for every
possible combination of identifiers. This happens at two times:

1. The first date in your history files must be full snapshots of all item/
locations that need a value, including zero balances for things like
inventory.

2. Special seed programs are provided to load initial full snapshots of data
after history is finished, to prepare you for nightly batch runs. After
seeding, you are allowed to provide incremental datasets (posting only the
positions that change, not the full daily or weekly snapshot). Incremental
loads are one of the main benefits of using positional data, as they greatly
reduce your nightly batch runtime.

Throughout the initial data load process, there will be additional steps called out any time a
positional load must be performed, to ensure you accurately capture both historical and initial
seed data before starting nightly batch runs.

System Parameters File
The dimension file for RA_SRC_CURR_PARAM_G.dat is not used as part of your history load
process directly, but instead provides an important piece of information to the platform for
operational activities. This file must contain the current business date associated with the files
in the ZIP package. The file should be included with the nightly ZIP upload that contains your
foundation data, such as RI_RMS_DATA.zip or RAP_DATA.zip. You may use a CTX file to
change the column delimiter used in the file, but you should retain the other format
characteristics exactly as shown below (for example, the date format must be YYYYMMDD and it
does not need a header row).

The file has only two generic columns, PARAM_NAME and PARAM_VALUE. When data is sourced
from RMFCS, it will be automatically generated and sent to RAP in the nightly batch. If your
data does not come from RMFCS, then you need to include the file manually. Currently, only
two rows will be used, but future releases may look for additional parameters in the file.

For non-MFCS customers, the file should contain at least the following rows:

VDATE|20220101
PRIME_CURRENCY_CODE|USD

For anyone that will be using MFCS now or at any time in the future, you instead should
provide the full set of parameters that MFCS would eventually be generating for you, like so:

PRIME_CURRENCY_CODE|USD
CONSOLIDATION_CODE|C
VAT_IND|Y
STKLDGR_VAT_INCL_RETL_IND|Y
MULTI_CURRENCY_IND|Y
CLASS_LEVEL_VAT_IND|Y
DOMAIN_LEVEL|D
CALENDAR_454_IND|4

Chapter 8
Fact Files

8-43

VDATE|20230506
NEXT_VDATE|20230507
LAST_EOM_DATE|20240131
CURR_BOM_DATE|20240201
MAX_BACKPOST_DAYS|10
PRIME_EXCHNG_RATE|1
PRIMARY_LANG|EN
DEFAULT_TAX_TYPE|GTAX
INVOICE_LAST_POST_DATE|20170101

The parameter value with VDATE is the current business date that all your other files were
generated for in YYYYMMDD format. The date should match the values on your fact data, such as
the DAY_DT columns in sales, inventory, and so on. This format is not configurable and should
be provided as shown. The parameter value with PRIME_CURRENCY_CODE is used by the system
to set default currencies on fact files when you do not provide them yourself or if there are null
currency codes on a row.

Assuming you will be using RDE jobs to extract data from MFCS later on, the other parameters
can be provided as shown above or with any other values. The first time you run the RDE job
ETLREFRESHGENSDE_JOB, it will extract all the parameter values from MFCS and directly update
the RA_SRC_CURR_PARAM_G table records. The update from MFCS assumes that
RA_SRC_CURR_PARAM_G already has rows for all of the above parameters, which is why it is
important to initialize the data as shown if you are loading data from flat files.

Chapter 8
Fact Files

8-44

9
Extensibility

The Retail Analytics and Planning (RAP) suite of applications can be extended and customized
to fit the needs of your implementation.

Custom applications, services and interfaces can be developed for AI Foundation using the
Innovation Workbench module. Innovation Workbench is also the first choice for programmatic
extensibility within RAP applications and provides access to data from both PDS and AIF.

Planning application configurations can be extended using the native RPASCE platform
functionality, and further extended using Innovation Workbench.

Retail Insights can be extended with custom datasets brought into the application using Data
Visualizer. This chapter will provide an overview of the RAP extensibility capabilities with links
and references to find more information.

Note:

Before continuing with this section, please read the application-specific
implementation/user guides.

This chapter includes the following sections:

• AI Foundation Extensibility

• Planning Applications Extensibility

• Programmatic Extensibility of RPASCE Through Innovation Workbench

• Input Data Extensibility

AI Foundation Extensibility
The Innovation Workbench as a part of the AI Foundation module consists primarily of
Application Express (APEX) and Data Studio. These tools provide significant extensibility
features for custom analytical applications, advanced data science processes, 3rd party
integrations, and much more. Some examples of IW capabilities for AI Foundation include:

• Custom database schema with full read/write access allows you to store data, run queries,
perform custom calculations, and debug integrations across the RAP platform

• Use advanced Oracle database features like Oracle Data Mining (ODM) and other
machine-learning models

• Use Notebooks in Data Studio to create custom Python scripts for analytics, data mining,
or machine learning

• Notebooks and APEX jobs can be scheduled to run automatically to refresh data and
calculations

• Create Restful API services both to request data from IW out to other systems and to
consume non-Oracle data into the platform

9-1

• Build flat file integrations into and out of IW for large data movements and custom dataset
extensions

• Build custom monitoring and utilities to manage integrations and science models with
business IT processes

More details on Innovation Workbench features and examples of custom extensions can be
found in the AI Foundation Implementation Guide chapter on Innovation Workbench.

Custom Hooks for IW Extensions
The AIF DATA POM schedule contains 20 generic jobs that support execution of custom
PL/SQL procedures in IW. Use these jobs in POM to hook your extensions directly to the AIF
DATA batch schedule for automated nightly execution without needing to rely on
DBMS_SCHEDULER jobs. 10 of the jobs are placed just after the staging table loads, but before
any internal tables are populated, allowing you to edit or create data in staging tables directly.
The other 10 jobs are placed at the end of the AIF DATA batch for custom post-load activities.

Table 9-1 AIF DATA Jobs for IW

Job Name Description

RI_IW_CUSTOM_1_JOB Execute Custom IW Procedure 1

RI_IW_CUSTOM_2_JOB Execute Custom IW Procedure 2

RI_IW_CUSTOM_3_JOB Execute Custom IW Procedure 3

RI_IW_CUSTOM_4_JOB Execute Custom IW Procedure 4

RI_IW_CUSTOM_5_JOB Execute Custom IW Procedure 5

RI_IW_CUSTOM_6_JOB Execute Custom IW Procedure 6

RI_IW_CUSTOM_7_JOB Execute Custom IW Procedure 7

RI_IW_CUSTOM_8_JOB Execute Custom IW Procedure 8

RI_IW_CUSTOM_9_JOB Execute Custom IW Procedure 9

RI_IW_CUSTOM_10_JOB Execute Custom IW Procedure 10

RI_IW_PRELOAD_CUSTOM_1_JOB Execute Custom IW Preload Procedure 1

RI_IW_PRELOAD_CUSTOM_2_JOB Execute Custom IW Preload Procedure 2

RI_IW_PRELOAD_CUSTOM_3_JOB Execute Custom IW Preload Procedure 3

RI_IW_PRELOAD_CUSTOM_4_JOB Execute Custom IW Preload Procedure 4

RI_IW_PRELOAD_CUSTOM_5_JOB Execute Custom IW Preload Procedure 5

RI_IW_PRELOAD_CUSTOM_6_JOB Execute Custom IW Preload Procedure 6

RI_IW_PRELOAD_CUSTOM_7_JOB Execute Custom IW Preload Procedure 7

RI_IW_PRELOAD_CUSTOM_8_JOB Execute Custom IW Preload Procedure 8

RI_IW_PRELOAD_CUSTOM_9_JOB Execute Custom IW Preload Procedure 9

RI_IW_PRELOAD_CUSTOM_10_JOB Execute Custom IW Preload Procedure 10

Here are the steps to enable the functionality:

1. Create a package and package body for the process that needs to be run as a custom job.
After logging into AI Foundation, from the task menu go to Innovation Workbench ->
Manage Workbench and then in APEX go to SQL Workshop. On the right-hand side click
Package under Create Object and proceed with creating the package specification,
package body, and create the procedure inside the package body.

Chapter 9
AI Foundation Extensibility

9-2

2. Back in AI Foundation, use the Manage System Configuration screen in the Control Center
to modify the table RI_CUSTOM_JOB_CFG and edit values for the following columns:

a. PACKAGE_NAME: Enter the name of the package that was created in IW.

b. PROCEDURE_NAME: Enter the name of the procedure in your package that was created in
IW.

c. PROCEDURE_DESCR: Enter a description, if desired.

d. RUN_TIME_LIMIT: The run time limit is 900 seconds by default. It can be changed to a
different value if needed. If the custom process runs for longer than the value indicated
in RUN_TIME_LIMIT when running as a part of the batch process, the custom process
will stop and move on to the next job/process.

e. CONNECTION_TYPE: Valid values are LOW and MEDIUM. This value should almost always
be LOW unless the job is supposed to run a process that would need multiple threads.
HIGH is not a valid value. If HIGH is entered, it will switch to LOW by default when the
job runs.

f. ENABLE_FLG: Set this value to Y to indicate that this job should be executed as part of
the batch process.

3. The POM jobs should be enabled in the Nightly batch once configured. Alternatively, you
may use the ad hoc process RI_IW_CUSTOM_ADHOC to run the jobs outside of the batch.

Because these jobs are added as part of the nightly batch, they do not allow extended
execution times (>900 seconds) by default. If you are building an extension that requires long-
running jobs, those should be scheduled using the DBMS_SCHEDULER package from within IW
itself so that you don’t cause batch delays.

Planning Applications Extensibility
Planning applications have a number of paths for extensibility. The configuration itself is
extensively customizable in terms of business logic and rules, fact definition, data integration,
and the user interface.

Provided that the application extensibility framework is followed, any customizations will be
preserved in future patch and service upgrades.

Additionally, there is programmatic extensibility provided through the incorporation of PDS into
Innovation Workbench. This allows the customer to extend the features provided by planning
applications and build their own novel functionality. In addition, they can leverage the rich
abilities and data already provided by IW.

Supported Application Configuration Customization
The following sections list the customizations that are allowed for application configuration. The
following configuration components can be customized:

Note:

These customizations must be made through RPASCE Configuration Tools.

• Solution

• Measures

Chapter 9
Planning Applications Extensibility

9-3

• Rules and Rule groups

• Workbooks and worksheets

• Hierarchy

• Taskflow

• Styles

For the customizations to be recognized, all names of custom-realized measures, rule sets,
rule groups, rules, workbooks, worksheets, and styles should begin with the prefix c_ or C_.

Custom worksheets may only be added into existing workbook tabs for plug-in generated
solutions.

Rules for Customizing Hierarchy
The following hierarchy customizations can be made to the application configurations:

• New hierarchies may be added, and/or new dimensions added to the existing hierarchy.
However, no dimension may be added to a calendar hierarchy that is lower than “day”.
Finally, no change can be made to internal hierarchies.

• Changes are permitted to the labeling of existing hierarchies or dimensions.

• All dimension and roll-up orders in the product, RHS product, location, and RHS location
hierarchy must be preserved in the custom configuration.

Rules for Adding Measures
The following rules apply when adding measures to the application configurations:

• Customers may add new custom measures into the custom solution and reference them
as an external measure in the extensible solutions.

• Customers can also add new custom metrics as a major component in the extensible
solutions. It is strongly recommended to not mix custom metrics with application metrics.

• Custom measures should follow the naming convention and should begin with a C_ or c_
prefix.

• Only the published GA measures can be used in custom rules and custom workbooks.
Only writable GA measures can be used on the left-hand side of a rule expression. The
read-only GA measures can only be used on the right-hand side of the rule expression.

Publishing Measures
The published GA measures can be divided into the following categories:

Read only—can only be used on the right-hand side of the expression

Writable—can be used on both the left-hand side and right-hand side of the expression

RuleGroupOnlyWritable—a specific measure that can be read/written in the specified rule
group

Loadable—measures that can be loaded using OAT and can be present in the custom load
batch control file

WorkbookMeasureOverride—measures which property can be overridden in the associated
workbook

Chapter 9
Planning Applications Extensibility

9-4

ReadableExecutionSet—list of GA batch control execution set names that can be called from
within a custom batch control execution file

The list of published measures will change based upon configuration. Therefore, the list is
dynamically generated at each configuration regeneration.

The contents of the list are saved in a file named: publishedMeasures.properties.

The file is located under [config]/plugins. Before writing custom rules, regenerate your
application configuration and then open the file to search for published application measures.

Custom Measure Characteristics:

• Each line of the file contains multiple fields that are pipe (“|”) separated.

• The first field is one of the category names previously listed.

• The second field is the name of the measure or execution set.

• The third field is the measure label.

• For RuleGroupOnlyWritable, the fourth field is the rule group name.

• For WorkbookMeasureOverride, the fourth field is the name of the workbook in which this
measure is allowed to be overridden.

Sample Custom Measure

ReadOnly|PreSeaProf|Seasonal Profile
ReadOnly|activefcstitem01|Active Forecast Items
ReadOnly|activefcstitem07|Active Forecast Items

Generally, forecasting parameter overrides such as Forecast Method Override, Custom
Exception, Custom Exception Metric, auxiliary inputs to applications such as Promotion
Aggregation Profile, and Grouping Membership are writable because an implementer may set
them up through customized rules.

Rules for Adding Custom Rules
The following rules apply when adding custom rules to the Application configuration:

• Custom rule sets, rule groups and rule names should begin with the C_ or c_ prefix.

• Custom rule groups should not include any GA rules.

• Custom rules can use the published read-only GA measures listed in the
publishedMeasures.properties file. However, the custom rules cannot modify the value
of the read-only GA measure. Hence the read-only GA measure cannot appear on the LHS
of a custom rule.

• Custom Rules can be added to custom rule group. They can also be added to the plug-in
generated GA workbook rule groups such as load rule group, calc rule group, refresh rule
group, commit rule group and custom menu rule. However, Custom Rules cannot be
added to a plug-in generated batch rule group.

Rules for Workbooks and Worksheets Extensibility
The following rules apply when adding custom rules to the workbooks and worksheets
extensibility:

• New Custom workbook and worksheets names should begin with the C_ or c_ prefix.

Chapter 9
Planning Applications Extensibility

9-5

• Apart from the Custom Solution, custom workbooks can also be added to the extensible
GA solutions.

Workbook Measure Override Extensibility
Certain GA measures can be overridden in the GA workbook. These measures are listed in the
WorkbookMeasureOverride section of the published<app>Measures.properties file.

For example:

WorkbookMeasureOverride|<measure name>|<measure label>|<workbook template>

This indicates that the measure can be overridden in the workbook.

The following rules apply to override measure properties:

• Base State and Agg State can be overridden.

• Range property of static picklists can be overridden.

Note:

Options can only be removed; new options cannot be added.

Elapsed Lock Override
Elapsed Lock Override on RPASCE is supported in the following scenarios:

• Custom measures in a workbook can have the Elapsed Lock Override set to true.

• Custom workbooks can have this field set to true for GA measures that are in the Writable
list of the published measures.

Note:

If a GA measure has not been enabled as Elapsed Lock Override, the following
steps can achieve the same behavior:

1. Make sure the GA measure is writable.

2. Register a custom measure and load it from the GA measure.

3. Set the custom measure as Elapsed Lock Override.

4. Edit the custom measure in the workbook.

5. Commit the custom measure back into the GA measure.

Rules for Adding Custom Real-time Alerts into Existing Workbooks
Perform the following steps when adding custom real-time alerts into existing workbooks.

Chapter 9
Planning Applications Extensibility

9-6

Note:

These steps must be performed using RPASCE Configuration Tools. Copying,
pasting or direct editing of XML files is unsupported.

1. To add custom real-time alert into existing workbooks, all measures related to the custom
real-time alert need to be added to the workbook.

2. Create a style for the custom real-time alert in the configuration.

3. Create a custom real-time alert in a workbook using the measures and style created from
the previous steps.

4. If a real-time alert defined in custom solution will be used in a GA workbook, the real-time
alert measure should be imported as an external measure in the corresponding GA
solution.

5. We must ensure that the rule group consistency is maintained while adding any custom
rules that might be needed to calculate an alert measure.

The application plug-in will preserve a custom real-time alert during regeneration

Adding a Custom Solution
A custom solution is a separate solution within the configuration. It can be used to
accommodate custom workbooks, rules, alerts to do custom reporting, custom logic, and
threshold alerts by using GA measures (based on the extensible GA measures in Table 9-2). In
addition, measures and alerts defined in the custom solution can be plugged into existing
workbooks in GA solution based on the contexts defined. Clients are allowed to create their
own custom solutions by following the rules mentioned above. To use a GA measure in custom
workbooks, the GA measure should be imported as an external measure in custom solution.

Adding Custom Styles
New styles can be added in the Style Definition window of Configuration Tools. The custom
style name should be prefixed with either c_ or C_. Style names that do not adhere to the
naming convention will be caught during the configuration validation. Any new style added will
be retained during upgrades and patches.

Validating the Customized Configuration
A script, ra_config_validation.sh, has been provided to allow the customer or implementer
to validate that the customizations conform to the rules outlined above. For details of the script,
refer to Configuration Validation.

This script can be run on Windows with the application starter kit. To do this, the implementer
will need to make sure that they have a pristine copy of the GA configuration as well as the
custom configuration.

For example, if the GA configuration has been copied to C:\Oracle\configurations\GA\RDF
and the custom configuration is in C:\Oracle\configurations\RDF, then the script can be
called from a Cygwin zsh shell:

$RPAS_HOME/bin/ra_config_validation.sh -n RDF -d /cygdrive/c/Oracle/
configurations -c /cygdrive/c/Oracle/configurations/GA/RDF/RDF.xml

Chapter 9
Planning Applications Extensibility

9-7

Successful Run of the Validation Script
If all the validations pass, it will output the following message:

Message for Successful Run of Validation Script

09:04:47 : INFORMATION : ra_config_validation.sh[0] - ra_config_validation.sh
completed.
09:04:47 : INFORMATION : ra_config_validation.sh[0] - Program completed
successfully.
09:04:47 : INFORMATION : ra_config_validation.sh[0] - Exiting script with
code: 0

Unsuccessful Run of the Validation Script
If all the validations do not pass, it will output the following message:

Note:

The bold line shows where the details of the validation failure are in the log. (In the
actual log, this line is not bold.)

Message for Unsuccessful Run of Validation Script

09:15:12 : INFORMATION : ra_config_validation.sh[0] - For details of
validation, look in '/cygdrive/d/retek/logs/2017-07-18/
rdf_config_validation.091506.1/rdf_config_validation.log'.
09:15:12 : INFORMATION : ra_config_validation.sh[0] - _call executing command
'execplug-inTask.sh RDF:com.retek.labs.rdf.plug-
in.installer.RDFConfigurationValidation /cygdrive/c/Oracle/
configurations/GA/RDF/RDF.xml /cygdrive/c/Oracle/configurations RDF'
09:15:17 : INFORMATION : ra_config_validation.sh[0] - _call of command
'execplug-inTask.sh RDF:com.retek.labs.rdf.plug-
in.installer.RDFConfigurationValidation /cygdrive/c/Oracle/
configurations/GA/RDF/RDF.xml /cygdrive/c/Oracle/configurations RDF' complete
09:15:17 : ERROR : ra_config_validation.sh[0] - Nonzero exit status code.
09:15:17 : INFORMATION : ra_config_validation.sh[0] - Exiting script with
code: 9

Taskflow Extensibility
The application taskflow is extensible, the implementer can add custom taskflow components
such as activities, tasks, steps, tabs, and worksheets. Any custom taskflow component added
to a GA taskflow component will be retained after plug-in automation. As part of extensibility,
applications provide a mechanism wherein the implementor can hide certain components of
the GA configuration and taskflow by editing a property file. The property file is a simple text
file named extend_app.properties and is located inside the plug-in directory of the
configuration. A sample file is included in the plug-ins directory of the GA configuration for
reference.

For example, <App>\plug-ins\extend_app.properties

Chapter 9
Planning Applications Extensibility

9-8

The format of the file is shown as:

Stage|Component|Action|Value

An example entry is:

Customization | Worksheet | Hide | activity_ni.task_niattmaint.NITREVSht1

Each line consists of four fields separated by the | character. The value field can contain a
comma-separated list of values. Note that the value field should specify the fully qualified name
of the taskflow component. Refer to the sample file. Any line that begins with a # character is
considered a comment line and is ignored.

The names of the Taskflow entities can be found in the taskflow.xml file located in the
configuration directory.

The various GA configuration components that can be hidden are listed in the following table:

Component Description

Activity Hides the specified taskflow activity. The value field is the taskflow
activity name.

Task Hides the specified Taskflow task. The value field is the taskflow task
name.

Step Hides the specified Taskflow step. The value field is the taskflow step
name.

Tab Hides the specified Taskflow tab. The value field is the taskflow tab
name.

Worksheet Hides the specified worksheet. The value field is the worksheet name.

Realtime Alert Hides the specified Real-time Alert. The value field is the real-time alert
name.

Customizing the Batch Process
This section describes how to customize the GA batch process to meet the business needs of
the retailer. Details on the GA batch process are described in the Oracle® Retail Inventory
Planning Optimization Cloud Service-Demand Forecasting / Inventory Planning Optimization
Cloud Service-Lifecycle Allocation and Replenishment Administration Guide. The Configured
Batch tasks have the following tasks related to batch control:

• Retrieve Batch Control File – allows the current batch control files to be retrieved for
inspection and modification.

• Update Batch Control File – After inspecting the current batch control files, the
implementor can edit the batch control files to customize the batch process.

Details on the previous two tasks are described in the Oracle Retail Predictive Application
Server Cloud Edition Implementation Guide.

The application batch process is based on the RPASCE Enterprise Edition Batch Framework,
which makes use of a set of control files. Table 9-2 lists the batch control files that can be
customized. For detailed information on the RPASCE Batch Framework, refer to the Oracle
Retail Predictive Application Server Implementation Guide.

Chapter 9
Planning Applications Extensibility

9-9

Table 9-2 Customizable Batch Control Files

Control File Description

batch_exec_list.txt This is the controller and entry point for all the other services,
specifying groups of services to be run in a specific order.

batch_calc_list.txt This control file groups all the calc services that need to run
using mace.

batch_refresh_list.txt This control file groups all Workbook refresh rule groups

batch_loadmeas_list.txt This control file groups measures that need to be loaded into
domain using the measure load service

batch_exportmeas_list.txt This control file groups measures that need to be exported out of
the domain using export measure service.

batch_xform_list.txt This control file handles the transform file service to perform
file transformations to support simple integration capabilities.

batch_oat_list.txt This file lists the configured batch tasks that appear in the OAT
drop down list.

Custom Hooks and Boolean Scalar Measures for Flow Control
There are two ways to customize the batch control files:

Custom Hooks

Boolean Scalar Measures for Flow Control

The custom hooks are an optional batch set executed by GA batch control files. The
implementer can define the contents of these batch sets in the customized batch control files
that can be uploaded. If these hooks are not defined, then the batch process skips these
hooks; otherwise, its contents are executed.

The application also defines a list of Boolean Scalar Measures in the domain to control
whether certain GA-defined batch sets can be skipped or not. The following tables list the
hooks and Boolean Scalar Measures.

Please refer to Application Specific Batch Control Information for details and examples.

Batch Control File Customization Guidelines
Follow these guidelines for Batch Control File Customization:

• The file batch_oat_list.txt is the only batch control file in which customers can overwrite
the label for GA set names listed in OAT.

• For all other batch control files, avoid overwriting GA set names. GA batch control files
have provided various hooks for the batch process. For additional custom steps, try to put
them into the hooks.

• GA batch control files have provided a mechanism to skip certain GA steps using boolean
scalar measure that can be set in the domain.

• For a GA hierarchy that is unused in your implementation (such as attribute hierarchy),
provide an empty hierarchy file. For unused GA measures, there is no requirement to
provide the data file. RPASCE will be able to skip it if no files are provided.

• Do not remove any GA clnd hierarchy reorder steps; these steps are essential to the
proper functioning of the application.

Chapter 9
Planning Applications Extensibility

9-10

• For ease of maintenance, all custom batch set name or step names should be prefixed
with c_

Examples

The following is an example of custom batch_exec_list.txt, batch_calc_list.txt,
batch_loadmeas_list.txt, and batch_exportmeas_list.txt.

In this example, the following modification were added to the batch _weekly process:

• Hierarchy and measure data file were unpacked.

• Custom measures were loaded after GA measure load.

• Outlier indicators for preprocessing were calculated use custom rules

• Custom approval alerts were run after GA alerts and before approval

• Promotion effects were exported after GA exports

Custom Batch Control Validation
The extensible / custom batch control files need to follow the guidelines previously to
futureproof the retailer. That means the retailer should receive software updates without
breaking the existing customizations. To ensure that the batch control file guidelines are
adhered to, a batch control validation module has been added.

The ra_config_validation.sh script has an optional parameter -b <parent directory of
batch control files> which will validate the batch control files.

Batch control validation rules:

• Apart from batch_oat_list.txt, none of the set names in the other batch control files can
be overridden. That is, GA set names cannot be used in custom batch control files.

• None of the custom batch control files can call the GA set names.

• The batch_calc_list.txt file can only specify custom rule group names. Cannot specify
expressions and GA rule group names.

• The batch_loadmeas.txt_list file can specify measures that are listed in the Loadable or
Writable list of the published measures in the published<app>Measures.properties file

• The batch_exportmeas_list.txt file can specify measures that are listed in the ReadOnly
or Writable list of the published measures in the published<app>Measures.properties file.

• All custom set names should have a prefix of c_.

Note:

The batch control validation is called automatically during domain build or patch. It is
also called when the batch control files are uploaded using the Upload Batch Control
files from OAT.

Dashboard Extensibility
Currently, IPOCS-Demand Forecasting supports Dashboard Extensibility by allowing the
Dashboard Settings configuration file to be customized. The other planning applications, such

Chapter 9
Planning Applications Extensibility

9-11

as MFP and AP, support customizing the dashboard, but these are not extensible (please refer
to Customizing the MFP/AP Dashboard).

IPOCS-Demand Forecasting Dashboard Extensibility
For detailed information on Dashboard components, please refer to the chapter, “Configuring
Dashboards in RPASCE EE” in the Oracle Retail Predictive Application Server Cloud Edition
(RPASCE) Configuration Tools User Guide.

As part of extensible dashboard, the following are supported:

• Adding custom Metric and Exception profiles.

• Adding a custom tile to GA Metric and Exception profiles.

• Removing GA tiles and profiles.

Figure 9-1 shows the IPOCS-Demand Forecasting Dashboard as seen in the UI. It consists of
two Metric profiles and two Exception profiles.

Figure 9-1 IPOCS-Demand Forecasting Dashboard

In Figure 9-2,the Overview Metric profile is selected, and the Total Sales tile is highlighted with
two sub-measures: Promo Sales and Markdown Sales.

Chapter 9
Planning Applications Extensibility

9-12

Figure 9-2 IPOCS-Demand Forecasting Dashboard Selection

Note:

The Exception profiles consist of Exception Tiles, and the Metric Profile consists of
metric tiles of the type Comparison Tile. Currently, IPOCS-Demand Forecasting does
not support the Variance Metric tile.

Dashboard Intersection
The IPOCS-Demand Forecasting GA Dashboard workbook is built at the Sub-class, District
level which is controlled by the Dashboard Intersection specified in the IPOCS-Demand
Forecasting plug-in. Refer to the "IPOCS-Demand Forecasting / IPOCS-Lifecycle Allocation
and Replenishment Configuration" section in the Oracle® Retail Inventory Planning
Optimization Cloud Service-Demand Forecasting/ Inventory Planning Optimization Cloud
Service-Lifecycle Allocation and Replenishment Implementation Guide. The Dashboard
intersection also defines the level to which we can drill down the Product and Location filters in
the Dashboard.

Figure 9-3 Product / Location Filters in the Dashboard

Chapter 9
Planning Applications Extensibility

9-13

Process to Customize the Dashboard
Dashboard profiles correspond to a worksheet in the Dashboard workbook template in the
configuration; and the measures displayed in the tiles are measures present in the worksheet
corresponding to that profile. Customizing the dashboard is a three-step process:

In the Configuration, add the worksheet, measures, and rules to the Dashboard workbook
template.

Regenerate the configuration by running the plug-in automation and then validate the
configuration by running the ra_config_validation.sh script. Refer to the section, Validating
the Customized Configuration for more information.

Customize the GA Dashboard Settings file in the Deployment Tool.

Note:

The Deployment Tool is a utility within the Configuration Tools. Refer to the section,
Deployment Tool – Dashboard Settings Resource in the Oracle Retail Predictive
Application Server Cloud Edition (RPASCE) Configuration Tools User Guide.

The IPOCS-Demand Forecasting GA Dashboard Settings configuration file is found within the
configuration: RDF\plugins\dashboardSettings.json

Steps to add a custom profile:

1. In the Configuration Tool, add custom worksheet and measures to the worksheet in the
dashboard workbook template in the configuration. Also add load/calc rules for the
measures.

2. In the Deployment Tool, open the GA Dashboard Settings configuration file.

3. Add the custom profile (Exception or Metric) to the Dashboard Settings configuration file.

4. Save the file in the Deployment Tool.

Steps to add a custom tile:

1. Identify the profile and worksheet to which the custom tiles need to be added.

2. In the Configuration Tool, add the custom measures to the corresponding worksheet. Also
add load/calc rules for the measures.

3. In the Deployment Tool, open the GA Dashboard Settings configuration file.

4. Based on whether Exception or Metric profile, add the Exception tile or Comparison Metric
Tile.

5. Save the file in the Deployment Tool.

Steps to remove GA tiles and profiles:

Note:

Do not remove the GA measures or worksheet from the Dashboard workbook
template in the configuration.

Chapter 9
Planning Applications Extensibility

9-14

1. In the Deployment Tool, open the GA Dashboard Settings configuration file.

2. Delete the GA profile or tile.

3. Save the file in the Deployment Tool.

Save the Dashboard Settings Configuration file in the same location in the configuration, that
is: RDF\plugins\dashboardSettings.json. Because this file is stored inside the configuration,
whenever the customer uploads the configuration to the Object Store, the customized
Dashboard Configuration file will be used by the application during the domain build or patch
process.

Once the domain is built or patched, if minor changes need to be made to the Dashboard that
do not require a configuration change, then RPASCE provides a mechanism to Upload and
Retrieve JSON files from the application.

This is supported through the Configured Batch OAT task -> Manage JSON File option.
Refer to the Oracle Retail Predictive Application Server Cloud Edition (RPASCE)
Administration Guide for detailed information on the OAT tasks.

Steps to Retrieve/Upload the Dashboard Configuration File:

1. Go to the Configured Batch OAT task -> Manage JSON Files -> Retrieve option.

2. The dashboard settings file will be downloaded into the Object Store as RDF_json.tar.gz
3. Un-tar the file and open it in the Deployment Tools.

4. Edit the file. Note that only minor updates that do not require a configuration change can
be made at this time.

5. Save the file and zip it up as RDF_json.tar.gz and then upload it to the Object Store

6. Then go to the Configured Batch OAT task -> Manage JSON Files -> Upload option.

7. Log out and log in to the client.

8. The Dashboard should be updated with the changes

Applying Changes to the Cloud Environment
To implement these changes in the cloud environment, it is necessary to either build a new
domain or patch the domain. Refer to the "Build/Patch Application" chapter in the Oracle®

Retail Inventory Planning Optimization Cloud Service-Demand Forecasting / Inventory
Planning Optimization Cloud Service-Lifecycle Allocation and Replenishment Administration
Guide.

Customizing the MFP/AP Dashboard
The application Dashboard gets data from the regular dashboard workbook template like any
other workbook segments to define the measures used in metric tiles that are shown in the
dashboard. This Dashboard can be customized using the same extensibility rules for regular
workbooks for adding new measures into that dashboard workbook (pl_db). The customer can
then update the MFP/AP Dashboard JSON file to include the newly added custom measures to
show as tiles in the Dashboard.

Following are the steps for customizing the Dashboard:

1. Update application Configuration to include the required new custom measures and rules
to include those measures in the existing dashboard template (pl_db) in the application
Configuration within regular extensibility framework. Patch the domain with the new
updated configuration.

Chapter 9
Planning Applications Extensibility

9-15

2. Download the application dashboard JSON file (dashboardSettings.json) from the Starter
kit or directly from the customer-provisioned environment by running the Online
Administration Tools task Patch Application Task -> Manage JSON Files -> Retrieve
JSON files to Object Storage. This will download the JSON file into the Object Storage
location at outgoing/dashboardSettings.json.

3. Open the downloaded dashboard JSON file using the RPASCE Configuration Tools ->
Utilities -> Deployment Tool and selecting the Open option under
dashdoardSettings.json.

4. It should open the dashboard JSON file in edit mode. The customer can then edit the
dashboard to add the newly added measures into their required profiles. They can also
add new profiles or change profiles but can only use the measures available in the
dashboard workbook. For more information on working with the JSON file using RPASCE
Configuration Tools, see the Oracle Retail Predictive Application Server Cloud Edition
Configuration Tools User Guide.

5. Once the JSON file is updated, it can be uploaded into the MFP environment by uploading
the file to the Object Storage location as incoming/config/dashboardSettings.json, and
running the Online Administration Tool task Patch Application Task -> Manage JSON
Files > Update JSON files from Object Storage. Successful completion of the task will
copy the file to the required location under the application domain.

6. After uploading, rebuild the dashboard to view the updated dashboard.

7. The entire process can be validated in the Virtual machine before trying to upload the
completed JSON file into the customer environment.

RAP Integration Interface Extensibility
interface.cfg is a PDS configuration file that defines the bidirectional exchange of hierarchy
and fact data between AIF and PDS, through RDX. For detailed information about the interface
configuration file, please refer to the Oracle Retail Predictive Application Server Cloud Edition
Implementation Guide.

The extensibility of interface.cfg is supported provided that the below guidelines are
followed.

Note:

The permissible and restricted interface customization is published in the file
publishedMeasures.properties located in the [config]/plugins directory.

Type Rule Comments/Sample Entries

Hierarchy A new hierarchy
interface can be
defined provided
the table already
exists in RDX.

Fact A new fact interface
can be defined
provided the table
already exists in
RDX.

Note that the interface parameter (second field) must
be different than the GA interface.

Chapter 9
Planning Applications Extensibility

9-16

Type Rule Comments/Sample Entries

Views Custom views
cannot be defined.
GA interfaces that
are views can be
customized.

Hierarchy The dimension
mapping for a GA
hierarchy interface
can be modified,
provided it is
allowed in the
published property
file.

RSE_FCST_DEMAND_DTL_CAL_EXP:L01:DATA:rdf_sys
baseline01:DEMAND_FCST_QTY::custom_modRSE_FC
ST_DEMAND_DTL_CAL_EXP:L01:DATA:rdf_sysfrcst0
1:BASELINE_FCST_QTY::custom_mod

Hierarchy Custom dimensions
can be added to a
GA interface and
mapped to existing
RDX fields.

For example, if adding custom dimension 'area' to
the LOC hierarchy, customize the
W_PDS_ORGANIZATION_D interface:

W_PDS_ORGANIZATION_D:PDS:HDM50:AREA:AREA::cu
stom_add
Note that custom dimensions should have IDs >= 50

Hierarchy Custom (New)
hierarchy can be
added, provided
table exists in RDX..

Note that custom dimensions should have IDs >= 50

Facts
(Import)

Existing GA facts
can be imported
from a different
source field
(controlled by an
extensibility
property file).

GA entry:
 RSE_FCST_DEMAND_DTL_CAL_EXP:L_CF_:DATA:rdf_
sysbaseline_CF_:BASELINE_FCST_QTY:
Custom entry:
RSE_FCST_DEMAND_DTL_CAL_EXP:L_CF_:DATA:rdf_s
ysbaseline_CF_:FLEX_FIELD1: :custom_mod

Facts
(Import)

Custom facts can
import from
existing fields from
a source table in
RDX.

RSE_FCST_DEMAND_SRC_EXP:L01:DATA:c_outageind
01:STOCKOUT_IND::custom_add

Facts
(Export)

GA facts can be
exported to another
external field
alongside the GA
entry.

RDF_APPR_FCST_CAL_EXP:APPC01:DATA:rdf_appbas
eline01:APPR_BASELINE_FCST:RDF_APPR_FCST_CAL
_EXP:APPC01:DATA:rdf_appbaseline01:APPR_BASE
LINE_FCST1::custom_add

Facts
(Export)

The external field
can be populated by
a different fact.
Delete the GA entry
and add the custom
entry.

RDF_APPR_FCST_CAL_EXP:APPC01:DATA:rdf_appfrc
st01:APPR_DEMAND_FCST::custom_delRDF_APPR_FC
ST_CAL_EXP:APPC01:DATA:c_appfrcst01:APPR_DEM
AND_FCST::custom_add

Facts (default value) The default value
can be customized
for only facts
allowed in property
file.

Chapter 9
Planning Applications Extensibility

9-17

Type Rule Comments/Sample Entries

InterfaceFilters
(Allow)

Filters for an
interface can be
customized,
provided it is
allowed and not
restricted in the
property file.
Note that the GA
filter entry needs to
be marked as
deleted and then a
custom entry added.

Validation | InterfaceFilter | Allow |
RSE_FCST_DEMAND_DTL_CAL_EXP,RSE_FCST_DEMAND_
DTL_EXP
means the above interfaces can have the filters
customized.

InterfaceFilters
(Restrict)

Although an
interface is allowed
for filters to be
customized, some
filters can be
marked as
restricted and
cannot be
customized.

Validation | InterfaceFilter | Restrict |
RSE_FCST_DEMAND_DTL_CAL_EXP:RUN_ID;BASELINE_
FCST_QTY,RSE_FCST_DEMAND_DTL_EXP:RUN_ID
In this case, the RUN_ID and BASELINE_FCST_QTY
filters cannot be customized. Other filters in this
interface can be customized.

Note:

1. Any customization in the interface.cfg file should be marked with a custom_???
keyword in the 7th field.

2. Note the keywords used to extend the GA interface.cfg:

a. custom_mod: to indicate an existing GA entry is being modified

b. custom_del: to indicate an existing GA entry is being removed

c. custom_add: to indicate a custom entry is being added.

3. If we are deleting and adding an entry, make sure they are consecutive entries.

Validations for a custom interface.cfg file:

• Custom entries cannot have more than seven (7) fields.

• Filter entries can only have custom_add or custom_del keywords.

• Entries cannot be deleted from the Hierarchy interface. Therefore, custom_del entries are
not valid for the Hierarchy interface.

• Dimensions specified in the Hierarchy interface must be valid dimensions in the
configuration.

• Custom dimensions added to the Hierarchy interface should have a dimension ID greater
than or equal to 50.

• For Fact/Data interfaces, the dimensions/IDs cannot be modified.

• Only Hierarchy dimensions published in the property file can be modified.

• Only Interface and Facts published in the property file can be modified.

Chapter 9
Planning Applications Extensibility

9-18

• Only Interface Filters published and not restricted in the property file can be edited.

Follow this process to update the interface.cfg file:

1. Download the Application interface configuration from OAT

2. Update the interface.cfg using the previously listed guidelines.

3. Upload the updated interface.cfg to object store and then patch or build the application.

Application Specific Batch Control Information
Below sections describes Batch Control details that are specific to IPOCS-Demand
Forecasting:

Table 9-3 Custom Hooks

Hook Description

hook_calc_attb_CF_ This hook is executed right after GA attributes exception
navifin_CF_ is calculated and before approval business
rule group are calculated. If any custom calculated
attributes have been set up to be used in approval by
implementor. This is the place to insert custom attributes
calculations.
CF needs to be replaced by a level number.

hook_frcst_adjust_CF_ This hook is provided to add custom forecast adjustment
calculations. This hook is before the business rule group
related calculation, approval, and navigation logic.
CF needs to be replaced by a level number.

hook_frcst_alert_CF_ This hook is provided to merge the user specified
parameters associated with approval business rule group
before running exceptions. After merging the user
specified parameters, the custom approval exceptions
and exception metric should be executed.
CF needs to be replaced by a level number.

hook_frcst_approval_CF_ This hook is provided to perform any post-processing to
approval forecast after GA approval step.
CF needs to be replaced by a level number.

hook_navi_attb_CF_ This hook is provided so that implementor can calculate
the custom calculated attributes used in the navigation
business rule groups.
CF needs to be replaced by a level number.

hook_populate_aprvrulg_eligiblemask
CF

This hook is for populate rulgeligmask_CF measure using
custom logic. This measure is the eligible mask at sku/
store/rulegroup. It can be populated with custom logic to
calculate eligible items for approval business rule
groups.
CF needs to be replaced by a level number.

hook_post_export This hook is after export.

hook_post_forecast This hook is between forecast and export.

hook_post_preprocess This hook is after the preprocessing phase and before
generating the forecasts.

Chapter 9
Planning Applications Extensibility

9-19

Table 9-3 (Cont.) Custom Hooks

Hook Description

hook_pre_forecast This hook is after New Item calculation and before the
forecast generation step.

hook_pre_post_data_load This hook is between GA measure load and
post_data_load rule group run.

hook_IPO_COM_DATA_IMP_OBS_D
hook_IPO_COM_DATA_IMP_OBS_W
hook_IPO_COM_DATA_IMP_RDX_D
hook_IPO_COM_DATA_IMP_RDX_W

This hook is for the calling steps using any import of
common data interfaces.

hook_IPO_COM_HIER_IMP_OBS_D
hook_IPO_COM_HIER_IMP_OBS_W
hook_IPO_COM_HIER_IMP_RDX_D
hook_IPO_COM_HIER_IMP_RDX_W

This hook is for the calling steps using any import of
common hierarchies.

hook_IPO_HIER_IMP_OBS_D
hook_IPO_HIER_IMP_OBS_W
hook_IPO_HIER_IMP_RDX_D
hook_IPO_HIER_IMP_RDX_W

This hook is for the calling steps using any import of
application-specific hierarchies.

hook_IPO_INIT_EXP_OBS_D
hook_IPO_INIT_EXP_OBS_W
hook_IPO_INIT_EXP_RDX_D
hook_IPO_INIT_EXP_RDX_W

This hook is for calling steps for initial batch exports.

hook_IPO_POST_BATCH_D
hook_IPO_POST_BATCH_W

This hook is for calling steps after the batch has run.

hook_IPO_POST_DATA_IMP_OBS_D
hook_IPO_POST_DATA_IMP_OBS_W
hook_IPO_POST_DATA_IMP_RDX_D
hook_IPO_POST_DATA_IMP_RDX_W

This hook is for the calling steps using any import of
application-specific data interfaces after the calc steps.

hook_IPO_POST_EXP_OBS_D
hook_IPO_POST_EXP_OBS_W
hook_IPO_POST_EXP_RDX_D
hook_IPO_POST_EXP_RDX_W

This hook is for the calling steps using any exports after
the batch aggregations.

hook_IPO_PRE_BATCH_D
hook_IPO_PRE_BATCH_W

This hook is for calling steps prior to the batch being run.

hook_IPO_PRE_DATA_IMP_OBS_D
hook_IPO_PRE_DATA_IMP_OBS_W
hook_IPO_PRE_DATA_IMP_RDX_D
hook_IPO_PRE_DATA_IMP_RDX_W

This hook is for the calling steps using any import of
application-specific data interfaces.

hook_IPO_PRE_EXP_OBS_D
hook_IPO_PRE_EXP_OBS_W
hook_IPO_PRE_EXP_RDX_D
hook_IPO_PRE_EXP_RDX_W

This hook is for calling steps prior to exports.

hook_IPO_WB_BUILD_D
hook_IPO_WB_BUILD_W

This hook is for the calling steps specific to workbook
refresh or build.

Chapter 9
Planning Applications Extensibility

9-20

Table 9-4 Boolean Scalar Measures

Boolean Scalar Measure Description

appfalrton_CF_ This measure is set by the plug-in only.
CF needs to be replaced by level number.

cslpeakalrton_CF_ This measure is set by the plug-in only.
CF needs to be replaced by level number.

flysalrton_CF_ This measure is set by the plug-in only.
CF needs to be replaced by level number.

fralrton_CF_ This measure is set by the plug-in only.
CF needs to be replaced by level number.

runnewitembatch This measure is defaulted to true. Set it to false if new
item is not configured or user would like to skip new
item batch for pre-forecast batch.

runfrcst_CF_ This measure is defaulted to true. Set it to false if
customer would like to avoid running forecast on certain
final level.
CF needs to be replaced by level number.

runnewitem_CF_ This measure is defaulted to true. Set it to false if
customer would like to avoid incorporate new item
forecast on certain final level.
CF needs to be replaced by level number.

runrulgeligga_CF_ This measure is defaulted to false. If enabled, this makes
sure that the only forecastable items are handled by the
business rule engine.
CF needs to be replaced by level number.

Batch Control Samples
The following sections list samples of batch control processes.

Chapter 9
Planning Applications Extensibility

9-21

batch_exec_list.txt

unpack data file before data load
hook_pre_load | unpack | rdf_hier.tar.gz
hook_pre_load | unpack | rdf_meas.tar.gz

load custom measures after GA hier and measure load
hook_pre_post_data_load | measload | c_weeklyLoad

calculate outlier indicator used in preprocess using custom rules
hook_ppsindicator | calc | c_outlier_calc

calculate custom approval alerts after GA approval alerts
hook_frcst_alert07 | exec | c_calc_cust_alerts

custom export
hook_post_export | measexport | c_export_promoeffects
c_calc_cust_alerts | calc |c_custalert1
c_calc_cust_alerts | calc |c_custalert2

batch_calc_list.txt

#outlier calculation
c_outlier_calc | G | GROUP | c_HBICalcTodayIdx
c_outlier_calc | G | GROUP | c_dataprocess
c_outlier_calc | G | GROUP | c_calc_outlier

#custom approval alerts calculation
c_custalert1 | G | GROUP | c_custalert1
c_custalert2 | G | GROUP | c_custalert2

batch_loadmeas_list.txt

load custom measure
c_weeklyLoad | M | c_ActiveItem
c_weeklyLoad | M | c_DisContinue

batch_exportmeas_list.txt

export custom measure
c_export_promoeffects|O|promoeffects.csv.dat
c_export_promoeffects|X|storsku_lprm
c_export_promoeffects|F|c_ExportMask
c_export_promoeffects|S|ftp
c_export_promoeffects|M|prmbldeff07

Chapter 9
Planning Applications Extensibility

9-22

Below sections describe Batch Control details that are specific to MFP:

The following table describes the Custom Hooks available in the batch process if the customer
is scheduling jobs directly through the OAT.

Table 9-5 Custom Hooks in the Batch Process to Directly Run from OAT

Hook Description

hook_postbuild This hook is added at the end of the postbuild batch,
which runs after the initial domain build.

hook_postpatch This hook is added at the end of the service patch process,
which runs after the service patch.

hook_batch_daily_pre This hook is added before the daily batch process.

hook_batch_daily_post This hook is added at the end of the daily batch process
before the dashboard build.

hook_batch_weekly_pre This hook is added before the weekly batch process.

hook_batch_weekly_post This hook is added at the end of the weekly batch process
before the workbook refresh and segment build.

If the customer is using the JOS/POM flow schedule to schedule jobs in MFP, then the
following hooks can be used. The MFP JOS/POM job flow is connected to use the same set
names, like the hooks shown in the following table without hook_* in it and in turn calls each of
the corresponding hooks. So the customer can easily customize their MFP batch flow based
on their needs by simply changing the hooks or adding additional steps to the existing, pre-
configured hooks.

The naming convention followed is:

• _RDX is used for any integration step using RDX.

• _OBS is used for any steps using Object Storage.

• _D is for jobs that run daily.

• _W is for jobs that run weekly.

Table 9-6 Custom Hooks in the Batch Process if JOS/POM is Used to Schedule the
Flow

Hook Description

hook_MFP_PRE_EXP_RDX_D This hook is for the calling steps using the Daily Export
Interfaces to RDX as soon as the batch starts.

hook_MFP_PRE_EXP_OBS_D This hook is for the calling steps using the Daily Export
Interfaces to Object Storage as soon as the batch starts.

hook_MFP_PRE_EXP_RDX_W This hook is for calling steps using the Weekly Export
Interfaces to RDX as soon as the batch starts.

hook_MFP_PRE_EXP_OBS_W This hook is for the calling steps using the Weekly Export
Interfaces to Object Storage as soon as the batch starts.

hook_MFP_COM_HIER_IM P_RDX_D This hook is for the calling steps using any Daily Import of
common hierarchies from RDX.

hook_MFP_COM_HIER_IM P_OBS_D This hook is for the calling steps using any Daily Import of
common hierarchies from Object Storage.

Chapter 9
Planning Applications Extensibility

9-23

Table 9-6 (Cont.) Custom Hooks in the Batch Process if JOS/POM is Used to Schedule
the Flow

Hook Description

hook_MFP_COM_HIER_IM P_RDX_W This hook is for the calling steps using any Weekly Import
of common hierarchies from RDX.

hook_MFP_COM_HIER_IM P_OBS_W This hook is for the calling steps using any Weekly Import
of common hierarchies from Object Storage.

hook_MFP_COM_DATA_IM P_RDX_D This hook is for the calling steps using any Daily Import of
common data interfaces from RDX.

hook_MFP_COM_DATA_IM P_OBS_D This hook is for the calling steps using any Daily Import of
common data interfaces from Object Storage.

hook_MFP_COM_DATA_IM P_RDX_W This hook is for the calling steps using any Weekly Import
of common data interfaces from RDX.

hook_MFP_COM_DATA_IM P_OBS_W This hook is for the calling steps using any Weekly Import
of common data interfaces from Object Storage.

hook_MFP_HIER_IMP_RD X_D This hook is for the calling steps using any Daily Import of
application-specific hierarchies from RDX.

hook_MFP_HIER_IMP_OB S_D This hook is for the calling steps using any Daily Import of
application-specific hierarchies from Object Storage.

hook_MFP_HIER_IMP_RD X_W This hook is for the calling steps using any Weekly Import
of application-specific hierarchies from RDX.

hook_MFP_HIER_IMP_OB S_W This hook is for the calling steps using any Weekly Import
of application-specific hierarchies from Object Storage.

hook_MFP_PRE_DATA_IMP_RDX_D This hook is for the calling steps using any Daily Import of
application-specific data interfaces from RDX.

hook_MFP_PRE_DATA_IMP_OBS_D This hook is for the calling steps using any Daily Import of
application-specific data interfaces from Object Storage.

hook_MFP_PRE_DATA_IMP_RDX_W This hook is for the calling steps using any Weekly Import
of application-specific data interfaces from RDX.

hook_MFP_PRE_DATA_IMP_OBS_W This hook is for the calling steps using any Weekly Import
of application-specific data interfaces from Object Storage.

hook_MFP_BATCH_AGG_D This hook is for the calling steps doing any regular daily
batch aggregation after hierarchy and data loads.

hook_MFP_BATCH_AGG_ W This hook is for the calling steps doing any regular weekly
batch aggregation after hierarchy and data loads.

hook_MFP_POST_DATA_IM P_RDX_D This hook is for the calling steps using any Daily Import of
application-specific data interfaces from RDX after the calc
steps.

hook_MFP_POST_DATA_IM P_OBS_D This hook is for the calling steps using any Daily Import of
application-specific data interfaces from Object Storage
after the calc steps.

hook_MFP_POST_DATA_IM
P_RDX_W

This hook is for the calling steps using any Weekly Import
of application-specific data interfaces from RDX after the
calc steps.

hook_MFP_POST_DATA_IM
P_OBS_W

This hook is for the calling steps using any Weekly Import
of application-specific data interfaces from Object Storage
after the calc steps.

hook_MFP_POST_EXP_RD X_D This hook is for the calling steps using any Daily Exports to
RDX after the batch aggs.

Chapter 9
Planning Applications Extensibility

9-24

Table 9-6 (Cont.) Custom Hooks in the Batch Process if JOS/POM is Used to Schedule
the Flow

Hook Description

hook_MFP_POST_EXP_OB S_D This hook is for the calling steps using any Daily Exports to
Object Storage after the batch aggs.

hook_MFP_POST_EXP_RD X_W This hook is for the calling steps using any Weekly Exports
to RDX after the batch aggs.

hook_MFP_POST_EXP_OB S_W This hook is for the calling steps using any Weekly Exports
to Object Storage after the batch aggs.

hook_MFP_WB_BUILD_D This hook is for the calling steps specific to workbook
refresh or build in the daily cycle.

hook_MFP_WB_BUILD_W This hook is for the calling steps specific to workbook
refresh or build in the weekly cycle.

Boolean Scalar Measures for Flow Control
The following table describes the Boolean Scalar measures.

Table 9-7 Boolean Scalar Measures

Boolean Scalar
Measure

Description

drdvrmsb This measure is defaulted to true. Set it to true if MFP is integrated with
RMF CS.

drdvrdxb This measure is defaulted to false. Set it to true enable RAP integration
for hierarchy and transaction data.

drdvexpdb This measure is defaulted to true. If set to false, it will skip exporting
the standard exports in the daily batch.

drdvexpwb This measure is defaulted to true. If set to false, it will skip exporting
the standard exports in the weekly batch.

Batch Control Samples
The following sections show samples of the batch control processes.

batch_exec_list.txt

Load a custom hierarchy, measure before weekly
batch hook_batch_weekly_pre |hierload |suph~0~N
hook_batch_weekly_pre |measload |c_load_vndr

Run Batch calc and new custom exports after end of weekly batch
hook_batch_weekly_post |calc |c_calc_vndr
hook_batch_weekly_post |exportmeasure |c_exp_vndr

batch_calc_list.txt

Run newly added custom calc rule group in
batch c_calc_vndr | G | GROUP | c_batch_agg_vndr

Chapter 9
Planning Applications Extensibility

9-25

batch_loadmeas.txt

Load custom measure
c_load_vndr | M |c_drtyvndrfndr

batch_exportmeas.txt

Export custom measure
c_exp_vndr|O|vendo_plan.csv.dat
c_exp_vndr|X|storsclsweek
c_exp_vndr|F|c_exportmask
c_exp_vndr|M|c_mpcpvndrplan

Below sections describes Batch Control details that are specific to AP:

The following table describes the Custom Hooks available in the batch process.

Table 9-8 Custom Hooks in the Batch Process

Hook Description

hook_postbuild_pre This hook is added at the beginning of the postbuild batch which
runs after the initial domain build.

hook_postbuild_post This hook is added at the end of the postbuild batch which runs
after the initial domain build.

hook_postpatch This hook is added at the end of the service patch process which
runs after the service patch.

hook_batch_daily_pre This hook is added before the daily batch process.

hook_batch_daily_post This hook is added at the end of daily batch process before the
dashboard build.

hook_batch_weekly_pre This hook is added before the weekly batch process.

hook_batch_weekly_post This hook is added at the end of the weekly batch process before the
workbook refresh and segment build.

If the customer is using the JOS/POM flow schedule to schedule jobs in AP, then the following
hooks can be used. The AP JOS/POM job flow is connected to use the same set names
similar to the hooks shown in the following table without hook_* in it and in turn calls each of
the corresponding hooks. So the customer can easily customize their AP batch flow based on
their needs by simply changing the hooks or adding additional steps to the existing pre-
configured hooks.

The naming convention followed is:

• _RDX that is used for any integration step using RDX.

• _OBS is used for any steps using Object Storage.

• _D is for jobs that runs daily.

• _W is for jobs that runs weekly.

Chapter 9
Planning Applications Extensibility

9-26

Table 9-9 Custom Hooks in the Batch Process

Hook Description

hook_AP_PRE_EXP_RDX_D This hook is for the calling steps using the Daily Export Interfaces to
RDX as soon as the batch starts.

hook_AP_PRE_EXP_OBS_D This hook is for the calling steps using the Daily Export Interfaces to
Object Storage as soon as the batch starts.

hook_AP_PRE_EXP_RDX_W This hook is for calling steps using the Weekly Export Interfaces to
RDX as soon as the batch starts.

hook_AP_PRE_EXP_OBS_W This hook is for the calling steps using the Weekly Export Interfaces
to Object Storage as soon as the batch starts.

hook_AP_COM_HIER_IMP_
RDX_D

This hook is for the calling steps using any Daily Import of common
hierarchies from RDX.

hook_AP_COM_HIER_IMP_
OBS_D

This hook is for the calling steps using any Daily Import of common
hierarchies from Object Storage.

hook_AP_COM_HIER_IMP_
RDX_W

This hook is for the calling steps using any Weekly Import of
common hierarchies from RDX.

hook_AP_COM_HIER_IMP_
OBS_W

This hook is for the calling steps using any Weekly Import of
common hierarchies from Object Storage.

hook_AP_COM_DATA_IMP_
RDX_D

This hook is for the calling steps using any Daily Import of common
data interfaces from RDX.

hook_AP_COM_DATA_IMP_
OBS_D

This hook is for the calling steps using any Daily Import of common
data interfaces from Object Storage.

hook_AP_COM_DATA_IMP_
RDX_W

This hook is for the calling steps using any Weekly Import of
common data interfaces from RDX.

hook_AP_COM_DATA_IMP_
OBS_W

This hook is for the calling steps using any Weekly Import of
common data interfaces from Object Storage.

hook_AP_HIER_IMP_RDX_
D

This hook is for the calling steps using any Daily Import of
application-specific hierarchies from RDX.

hook_AP_HIER_IMP_OBS_D This hook is for the calling steps using any Daily Import of
application-specific hierarchies from Object Storage.

hook_AP_HIER_IMP_RDX_
W

This hook is for the calling steps using any Weekly Import of
application-specific hierarchies from RDX.

hook_AP_HIER_IMP_OBS_
W

This hook is for the calling steps using any Weekly Import of
application-specific hierarchies from Object Storage.

hook_AP_PRE_DATA_IMP_
RDX_D

This hook is for the calling steps using any Daily Import of
application-specific data interfaces from RDX.

hook_AP_PRE_DATA_IMP_
OBS_D

This hook is for the calling steps using any Daily Import of
application-specific data interfaces from Object Storage.

hook_AP_PRE_DATA_IMP_
RDX_W

This hook is for the calling steps using any Weekly Import of
application-specific data interfaces from RDX.

hook_AP_PRE_DATA_IMP_
OBS_W

This hook is for the calling steps using any Weekly Import of
application-specific data interfaces from Object Storage.

hook_AP_BATCH_AGG_D This hook is for the calling steps doing any regular daily batch
aggregation after hierarchy and data loads.

hook_AP_BATCH_AGG_W This hook is for the calling steps doing any regular weekly batch
aggregation after hierarchy and data loads.

hook_AP_POST_DATA_IMP_
RDX_D

This hook is for the calling steps using any Daily Import of
application-specific data interfaces from RDX after the calc steps.

Chapter 9
Planning Applications Extensibility

9-27

Table 9-9 (Cont.) Custom Hooks in the Batch Process

Hook Description

hook_AP_POST_DATA_IMP_
OBS_D

This hook is for the calling steps using any Daily Import of
application-specific data interfaces from Object Storage after the
calc steps.

hook_AP_POST_DATA_IMP_
RDX_W

This hook is for the calling steps using any Weekly Import of
application-specific data interfaces from RDX after the calc steps.

hook_AP_POST_DATA_IMP_
OBS_W

This hook is for the calling steps using any Weekly Import of
application-specific data interfaces from Object Storage after the
calc steps.

hook_AP_POST_EXP_RDX_
D

This hook is for the calling steps using any Daily Exports to RDX
after the batch aggs.

hook_AP_POST_EXP_OBS_
D

This hook is for the calling steps using any Daily Exports to Object
Storage after the batch aggs.

hook_AP_POST_EXP_RDX_
W

This hook is for the calling steps using any Weekly Exports to RDX
after the batch aggs.

hook_AP_POST_EXP_OBS_
W

This hook is for the calling steps using any Weekly Exports to Object
Storage after the batch aggs.

hook_AP_WB_BUILD_D This hook is for the calling steps specific to workbook refresh or
build in the daily cycle.

hook_AP_WB_BUILD_W This hook is for the calling steps specific to workbook refresh or
build in the weekly cycle.

Boolean Scalar Measures for Flow Control
The following table describes the Boolean Scalar measures.

Table 9-10 Boolean Scalar Measures

Boolean Scalar
Measure

Description

drdvrmsb This measure is defaulted to true. Set it to true if AP is integrated with
RMF CS.

drdvexpdb This measure is defaulted to true. If set to false, it will skip exporting the
standard exports in the daily batch.

drdvexpwb This measure is defaulted to true. If set to false, it will skip exporting the
standard exports in the weekly batch.

Batch Control Samples
The following sections show samples of the batch control processes.

batch_exec_list.txt

Load a custom hierarchy, measure before weekly batch
hook_batch_weekly_pre |hierload |suph~0~N
hook_batch_weekly_pre |measload |c_load_vndr

Run Batch calc and new custom exports after end of weekly batch

Chapter 9
Planning Applications Extensibility

9-28

hook_batch_weekly_post |calc |c_calc_vndr
hook_batch_weekly_post |exportmeasure |c_exp_vndr

batch_calc_list.txt

Run newly added custom calc rule group in batch
c_calc_vndr | G | GROUP | c_batch_agg_vndr

batch_loadmeas.txt

Load custom measure
c_load_vndr | M |c_drtyvndrfndr

batch_exportmeas.txt

Export custom measure
c_exp_vndr|O|vendo_plan.csv.dat
c_exp_vndr|X|storsclsweek
c_exp_vndr|F|c_expmask
c_exp_vndr|M|c_mpcpvndrpln

Programmatic Extensibility of RPASCE Through Innovation
Workbench

Innovation Workbench is the first choice for programmatic extensibility of RAP applications.

This section describes how Innovation Workbench (IW) can be used to extend RPASCE.

IW provides the ability for customers to upload and use custom PL/SQL functions and
procedures within the RPASCE framework. These customer-supplied PL/SQL functions and
procedures will, by default, have read access to all the metadata tables and fact data that is
present across different RPASCE applications within PDS, such as MFP, IPOCS-Demand
Forecasting, AP, and so on.

Facts that are marked as customer-managed in the application configuration will additionally
have write access and can be modified by the customer-supplied code. The ability to change
fact data is a deliberate opt-in, as any data modification made by the custom PL/SQL must
conform to the RPASCE norms to be successful.

RPASCE provides a helper PL/SQL package: rp_g_rpas_helper_pkg. This is the package that
the custom PL/SQL functions and procedures should use. These will help simplify commonly
used tasks, such as looking up the fact table name for a fact or finding the NA value of a FACT.

Finally, the applications will be able to invoke the custom PL/SQL functions and procedures
from within the RPASCE rules and expressions framework using the new special expression
execplsql.

Architectural Overview
The figures in this section describe how the IW schema fits into the PDS and RAP contexts
respectively.

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-29

Innovation Workbench from an RPASCE Context
The figure below shows a high-level architecture diagram of the IW schema in an RPASCE
context. The interaction between the PDS schema and IW schema and how users interact with
the IW schema is captured in this figure.

Innovation Workbench from a RAP Context
The figure below depicts how the IW schema fits into the larger RAP context, including AIF.
Within the IW schema, the customer has access to data from both AIF and PDS
configurations, which allows for the development of innovative extensions. These can be
invoked from RPASCE, APEX, Data Studio notebooks, or an external context through ORDS
web services.

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-30

RPASCE Configuration Tools Changes

Measure Properties
If the customer-provided PL/SQL functions and procedures require write-access to any
RPASCE measures, then they must be marked as "Customer-Managed" in the application
configuration.

In ConfigTools Workbench, a new column Customer Managed is added to the Measure
Definition Table. This new column is defaulted to empty, which means false.

To mark a measure as customer managed the value should be changed to true.

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-31

The "customer-managed" measures must have a database field specified, otherwise an error
will be thrown.

Note:

The "customer-managed" measures cannot be used in cycle groups and the left-
hand side of special expressions because these measures need to be in the same
fact group. Making part of these measures as customer-managed measures/facts will
split this fact group because customer-managed measures are assigned to a
separate fact group.

Rules and Expressions
To invoke the uploaded PL/SQL functions and procedures, add rules with the special
expression execplsql into the RPASCE rule definitions in the configtools. For more details
about the special expression execplsql please refer to the section Special Expression -
execplsql in this document.

Example

In the example below, a rule containing execplsql is added to rule group cust6.

One requirement is that a cmf rulegroup must have only plsqlexec rules. It is not possible to
mix other kinds of rules with the plsqlexec rule. There can be many plsqlexec rules in the
same rulegroup. Also please make sure keep only one expression in each rule.

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-32

Integration Configuration

The Integration Configuration Tool will have a new column Customer-Managed for the
Integration Map table. The integration configuration is generated internally and is only shown
here for information purposes.

<integration_map>
 <entry>
 <fact>ADDVChWhMapT</fact>
 <domain>mfpcs</domain>
 <measure>ADDVChWhMapT</measure>
 <outbound>N</outbound>
 <customer-managed>Y</customer-managed>
 </entry>
</integration_map>

RPASCE Special Expression - execplsql
The special expression execplsql provides the ability to invoke the customer uploaded
PL/SQL functions and procedures from within the RPASCE rules and expressions framework.
Both functions and procedures are supported. Also execplsql is variadic and can take an
arbitrary number of arguments that can be of different types according to the PL/SQL
signature. The number and type depend on the signature of the function or procedures being
executed. The first two arguments to execplsql are reserved to indicate the package name
and the function or procedure name to be executed.

Example

drdvsrcti<-execplsql("RP_CUSTOM_PKG","sum",drdvsrctt, adhdlcratet,
add2locopnd)

In this example the LHS measure drdvsrcti is a scalar integer measure. It will be set to the
integer value returned by the function named sum in the customer uploaded
package RP_CUSTOM_PKG.

Arguments

LHS

The LHS measure must be a scalar integer measure. It will be set to the integer value returned
by the customer-uploaded PL/SQL function or procedure. The integer value is meant to be a
return code indicating the result of the procedure or function execution. In case of exceptions,
RPASCE will set the LHS measure to a value of -1 to indicate an error. If there are any
exceptions or failures, then the logs will provide further information regarding the reason for the
failure.

RHS

• First argument:

The type of the first argument is string. It can either be a string constant or a scalar string
measure. The first argument is the name of the customer-uploaded package. For more

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-33

details regarding uploading custom packages refer to section Uploading Custom PL/SQL
Packages.

• Second Argument:

The type of the first argument is string. It can either be a string constant or a scalar string
measure. The second argument is the name of a function or procedure within in the
custom package specified as the first argument of execplsql. This function or procedure
will be executed by the execplsql special expression when it is evaluated.

If a function is being specified, make sure the return type is declared as a number in the
PL/SQL function declaration.

If a procedure is being specified, make sure there is exactly 1 out type parameter of
type number in the PL/SQL procedure declaration.

Examples
Consider the PL/SQL function SUM present in the package RP_CUSTOM_PKG. To execute the SUM
function in the RPASCE application batch, first upload RP_CUSTOM_PKG as described in the
section Uploading Custom PL/SQL Packages. The PL/SQL function SUM is declared as below
in the package RP_CUSTOM_PKG.

function SUM (lhsMeas IN VARCHAR2, rhsMeas1 IN VARCHAR2, rhsMeas2 IN
VARCHAR2) return number;

Here is a sample definition of the SUM function that adds 2 measures and writes the result to a
third measure. Note that the measure lhsMeas is an IN type argument although the function
SUM updates it. The measure lhsMeas must be marked as a customer managed measure as
described in the Measure Properties subsection of the RPASCE Configuration Tools Changes
section.

 FUNCTION sum (
 lhsmeas IN VARCHAR2,
 rhsmeas1 IN VARCHAR2,
 rhsmeas2 IN VARCHAR2
) RETURN NUMBER IS
-- EXPR 1: lhsMeas = rhsMeas2 + rhsMeas1

 na_ut_lhsmeas BINARY_DOUBLE := cell_dbl(lhsmeas, NULL);
 na_ut_rhsmeas1 BINARY_DOUBLE := cell_dbl(rhsmeas1, NULL);
 na_ut_rhsmeas2 BINARY_DOUBLE := cell_dbl(rhsmeas2, NULL);
 lhsfactgroup VARCHAR2(4000);
 rhs1factgroup VARCHAR2(4000);
 rhs2factgroup VARCHAR2(4000);
 lhsfacttable VARCHAR2(4000);
 rhs1facttable VARCHAR2(4000);
 rhs2facttable VARCHAR2(4000);
 stmt VARCHAR2(8000);
 BEGIN
 rp_g_common_pkg.clear_facts(varchar2_table(lhsmeas));
 SELECT
 fact_group
 INTO lhsfactgroup
 FROM
 rp_g_fact_info_md

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-34

 WHERE
 fact_name = lhsmeas;

 SELECT
 fact_group
 INTO rhs1factgroup
 FROM
 rp_g_fact_info_md
 WHERE
 fact_name = rhsmeas1;

 SELECT
 fact_group
 INTO rhs2factgroup
 FROM
 rp_g_fact_info_md
 WHERE
 fact_name = rhsmeas2;

 lhsfacttable := 'rp_g_'
 || lhsfactgroup
 || '_ft';
 rhs1facttable := 'rp_g_'
 || rhs1factgroup
 || '_ft';
 rhs2facttable := 'rp_g_'
 || rhs2factgroup
 || '_ft';
 na_ut_lhsmeas := (na_ut_rhsmeas2 + na_ut_rhsmeas1);

 stmt := 'MERGE INTO '
 || lhsfacttable
 || ' lhs
 USING (
 SELECT
 (coalesce(rhsft01.partition_id,
rhsft02.partition_id)) AS partition_id,
 (coalesce(rhsft01.dept_id,
rhsft02.dept_id)) AS dept_id,
 (coalesce(rhsft01.stor_id,
rhsft02.stor_id)) AS stor_id,
 ((coalesce(rhsft02.'
 || rhsmeas2
 || ', '
 || na_ut_rhsmeas2
 || ') + coalesce(rhsft01.'
 || rhsmeas1
 || ', '
 || na_ut_rhsmeas1
 || '))) AS '
 || lhsmeas
 || '
 FROM
 (
 SELECT
 partition_id,

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-35

 dept_id,
 stor_id,
 '
 || rhsmeas1
 || '
 FROM
 '
 || rhs1facttable
 || '
) rhsft01
 FULL OUTER JOIN (
 SELECT
 partition_id,
 dept_id,
 stor_id,
 '
 || rhsmeas2
 || '
 FROM
 '
 || rhs2facttable
 || '
) rhsft02 ON rhsft01.partition_id = rhsft02.partition_id
 AND rhsft01.dept_id = rhsft02.dept_id
 AND rhsft01.stor_id = rhsft02.stor_id
)
 rhs_final ON (lhs.partition_id = rhs_final.partition_id
 AND lhs.dept_id = rhs_final.dept_id
 AND lhs.stor_id = rhs_final.stor_id)
 WHEN MATCHED THEN UPDATE
 SET lhs.'
 || lhsmeas
 || '= nullif(rhs_final.'
 || lhsmeas
 || ', '
 || na_ut_lhsmeas
 || ') DELETE
 WHERE
 rhs_final.'
 || lhsmeas
 || ' = '
 || na_ut_lhsmeas
 || '
 WHEN NOT MATCHED THEN
 INSERT (
 lhs.partition_id,
 lhs.dept_id,
 lhs.stor_id,
 lhs.'
 || lhsmeas
 || ')
 VALUES
 (rhs_final.partition_id,
 rhs_final.dept_id,
 rhs_final.stor_id,
 nullif(rhs_final.'

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-36

 || lhsmeas
 || ', '
 || na_ut_lhsmeas
 || '))
 WHERE
 rhs_final.'
 || lhsmeas
 || ' != '
 || na_ut_lhsmeas;

 dbms_output.put_line(stmt);
 EXECUTE IMMEDIATE stmt;
 COMMIT;
 RETURN 0;
 END sum;

Now to execute this SUM function from the application batch, add the rule below to application
configuration as described in the Rules and Expressions subsection of RPASCE Configuration
Tools Changes section. Add the rule group containing the rule to the batch control files as
described in the section RPASCE Batch Control File Changes. Patch the application with the
updated configuration and batch control files.

drdvsrcti<-execplsql("RP_CUSTOM_PKG","sum",drdvsrctt, adhdlcratet,
add2locopnd)

Here all 3 measures are placeholder scalar string measures that will point to the actual real
measures that are being summed.

In this example, the input scalar measures are mapped as follows:

• drdvsrctt: lpwpsellthrmn - dept_stor - customer managed (LHS measure)

Label: Wp Sell Thru R % Min Threshold

• adhdlcratet: lpwprtnmn - dept_stor (RHS1)

Label: Wp Returns R % Min Threshold

• add2locopnd: lpwprtnmx - dept_stor (RHS2)

Label: Wp Returns R % Max Threshold

Alternately, the rule could have been configured as below. However, that would mean that it is
not possible to change the input measures as part of the batch. It will need a patch to update
the input measures to the SUM procedure.

Note:

The measures are in quotes as they are passed to PL/SQL as string constants. If the
quotes are missing, then RPASCE will throw an error indicating that it is not possible
to invoke execplsql using non-scalar measures.

drdvsrcti<-execplsql("RP_CUSTOM_PKG","sum",'lpwpsellthrmn' ,
'lpwprtnmn' ,'lpwprtnmx')

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-37

Execute this rule group through batch and build a measure analysis workbook with the
involved measures. It can then be verified that the SUM evaluated correctly.

If measure lhsMeas is not specified as a customer-managed measure in the application
configuration, then the error below will be thrown when execplsql is evaluated.

<E OCI_ERROR - (1031):
<E SQL Sid 'rpas_iw_conn' ORA-01031: insufficient privileges

The following examples demonstrate execplsql and how a special expression can invoke
PL/SQL with a variable number and type of input arguments.

 intscalar01<-execplsql("RP_CUSTOM_PKG","custom_procedure1","dvsn", true, 1,
1)

 intscalar01<-execplsql("RP_CUSTOM_PKG","custom_procedure2","dvsn",
1123.5813, 23, -1)

 intscalar01<-execplsql("RP_CUSTOM_PKG","custom_function1","dvsn", true, 1)

 intscalar01<-execplsql("RP_CUSTOM_PKG","custom_function2","dvsn", 1)

 intscalar01<-execplsql("RP_CUSTOM_PKG","custom_function2",strscalar1,
intscalar02)

 intscalar01<-execplsql("RP_CUSTOM_PKG","custom_procedure3","dvsn",
datescalar2, 1, 1)

The PL/SQL counterparts are defined, through very simple demonstration code, in the example
custom package below.

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-38

rp_custom_pdg.pkb

create or replace package body RP_CUSTOM_PKG is

procedure custom_procedure1(arg1 in varchar2, arg2 in CHAR, arg3 in number,
ret out number)
is
begin
 ret:=23;
end custom_procedure1;

procedure custom_procedure2(arg1 in varchar2, arg2 in BINARY_DOUBLE, arg3 in
number, ret out number)
is
begin
 ret:=23;
end custom_procedure2;

procedure custom_procedure3(arg1 in varchar2, arg2 in BINARY_DOUBLE, arg3 in
timestamp, ret out number)
is
begin
 dbms_output.put_line('arg3: ' || arg3);
 ret:=23;
end custom_procedure3;

function custom_function1(arg1 in varchar2, arg2 in CHAR, arg3 in number)
return number
is
 ret integer;
begin
 ret:=23;
 return ret;
end custom_function1;

function custom_function2(arg1 in varchar2, arg3 in number) return number
is
 ret number;
begin
 ret:=23;
 return ret;
end custom_function2;

function SUM
(lhsMeas IN VARCHAR2,
rhsMeas1 IN VARCHAR2,
rhsMeas2 IN VARCHAR2) return number
is
-- EXPR 1: lhsMeas = rhsMeas2 + rhsMeas1

 na_ut_lhsMeas BINARY_DOUBLE := cell_dbl(lhsMeas, NULL);
 na_ut_rhsMeas1 BINARY_DOUBLE := cell_dbl(rhsMeas1, NULL);
 na_ut_rhsMeas2 BINARY_DOUBLE := cell_dbl(rhsMeas2, NULL);
 lhsFactGroup varchar2(4000);

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-39

 rhs1FactGroup varchar2(4000);
 rhs2FactGroup varchar2(4000);
 lhsFactTable varchar2(4000);
 rhs1FactTable varchar2(4000);
 rhs2FactTable varchar2(4000);
 stmt varchar2(8000);
BEGIN

 rp_g_common_pkg.clear_facts(varchar2_table(lhsMeas));
 select fact_group into lhsFactGroup from RP_G_FACT_INFO_MD where
FACT_NAME = lhsMeas;
 select fact_group into rhs1FactGroup from RP_G_FACT_INFO_MD where
FACT_NAME = rhsMeas1;
 select fact_group into rhs2FactGroup from RP_G_FACT_INFO_MD where
FACT_NAME = rhsMeas2;
 lhsFactTable := 'rp_g_' || lhsFactGroup || '_ft';
 rhs1FactTable := 'rp_g_' || rhs1FactGroup || '_ft';
 rhs2FactTable := 'rp_g_' || rhs2FactGroup || '_ft';
 na_ut_lhsMeas := (na_ut_rhsMeas2 + na_ut_rhsMeas1);

 -- UPDATE rp_g_fact_info_md
 -- SET
 -- table_na =
 -- CASE lower(fact_name)
 -- WHEN 'b' THEN
 -- to_char(na_ut_lhsMeas)
 -- END
 -- WHERE
 -- lower(fact_name) IN (lhsMeas);

 stmt := 'MERGE INTO ' || lhsFactTable || ' lhs
 USING (
 SELECT
 (coalesce(rhsft01.partition_id,
rhsft02.partition_id)) AS partition_id,
 (coalesce(rhsft01.dept_id,
rhsft02.dept_id)) AS dept_id,
 (coalesce(rhsft01.stor_id,
rhsft02.stor_id)) AS stor_id,
 ((coalesce(rhsft02.' || rhsMeas2 || ', ' ||
na_ut_rhsMeas2 || ') + coalesce(rhsft01.' || rhsMeas1 || ', ' ||
na_ut_rhsMeas1 || '))) AS '|| lhsMeas||'
 FROM
 (
 SELECT
 partition_id,
 dept_id,
 stor_id,
 '|| rhsMeas1 ||'
 FROM
 ' || rhs1FactTable || '
) rhsft01
 FULL OUTER JOIN (
 SELECT
 partition_id,
 dept_id,

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-40

 stor_id,
 ' || rhsMeas2 || '
 FROM
 ' || rhs2FactTable || '
) rhsft02 ON rhsft01.partition_id = rhsft02.partition_id
 AND rhsft01.dept_id = rhsft02.dept_id
 AND rhsft01.stor_id = rhsft02.stor_id
)
 rhs_final ON (lhs.partition_id = rhs_final.partition_id
 AND lhs.dept_id = rhs_final.dept_id
 AND lhs.stor_id = rhs_final.stor_id)
 WHEN MATCHED THEN UPDATE
 SET lhs.' || lhsMeas || '= nullif(rhs_final.' || lhsMeas || ', ' ||
na_ut_lhsMeas || ') DELETE
 WHERE
 rhs_final.' || lhsMeas || ' = ' || na_ut_lhsMeas || '
 WHEN NOT MATCHED THEN
 INSERT (
 lhs.partition_id,
 lhs.dept_id,
 lhs.stor_id,
 lhs.' || lhsMeas || ')
 VALUES
 (rhs_final.partition_id,
 rhs_final.dept_id,
 rhs_final.stor_id,
 nullif(rhs_final.' || lhsMeas || ', ' || na_ut_lhsMeas || '))
 WHERE
 rhs_final.' || lhsMeas || ' != ' || na_ut_lhsMeas ;

 DBMS_OUTPUT.PUT_LINE (stmt);

execute immediate stmt;

commit;

return 0;

END SUM;

end RP_CUSTOM_PKG;

rp_custom_pkg.pks

create or replace package RP_CUSTOM_PKG is

procedure custom_procedure1(arg1 in varchar2, arg2 in CHAR, arg3 in number,
ret out number);
procedure custom_procedure2(arg1 in varchar2, arg2 in BINARY_DOUBLE, arg3 in
number, ret out number);
procedure custom_procedure3(arg1 in varchar2, arg2 in BINARY_DOUBLE, arg3 in
timestamp, ret out number);

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-41

function custom_function1(arg1 in varchar2, arg2 in CHAR, arg3 in number)
return number ;
function custom_function2(arg1 in varchar2, arg3 in number) return number;
function SUM (lhsMeas IN VARCHAR2, rhsMeas1 IN VARCHAR2, rhsMeas2 IN
VARCHAR2) return number;
end RP_CUSTOM_PKG;

Limitations
Boolean arguments must be recast as character types, the PL/SQL function or procedure
should declare them as a CHAR type. RPASCE will set the char to T for true and F for false. On
the expression side it is handled similarly to how boolean types are handled by an RPASCE
expression. Pass a scalar boolean measure or boolean constant (true or false) to
the execplsql special expression.

Validations and Common Error Messages
Common validation error messages are documented in the table below. However, there can be
other kinds of errors (for example, unexpected privilege related errors).

Error message Reason

Output argument type of the procedure must
be NUMBER.

The procedure specified has an OUT parameter,
but it is not of the NUMBER type.

Function or procedure not found. Check the name of the function or procedure in
the custom package. Could be case mismatch or
privilege issue too.

No output type found. There is no OUT parameter associated with the
procedure specified.

Only 1 output argument allowed. There is more than one OUT parameter
associated with the procedure specified.

Input arg not a scalar measure. Only scalar string measures and string
constants are allowed as input. Check whether
quotes are missing in case of constants.

Expecting <type> but received <type>. Mismatch in argument type between PL/SQL
function or procedure signature and the
arguments passed to execplsql expression.

Only 1 measure allowed on the LHS. There can be only 1 measure on the LHS of the
execplsql expression and it must be a scalar
int measure.

RHS size must be more than 2. First 2 args are
package name and procedure name.

Not enough arguments passed in to the
execplsql expression. There must be at least 2:
package name and procedure/function name.

LHS must be a measure Found LHS to be a constant instead of a
measure.

LHS must be a scalar measure. There is an LHS measure but it is not scalar.

LHS measure must be of type integer. There is an LHS measure and it is not scalar,
but it is not of type integer.

Number of input args <number> does not
match the procedure signature number
<number>.

Mismatch in number of arguments between
PL/SQL function or procedure signature and
the arguments passed to execplsql expression.

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-42

Error message Reason

ExecPLSQLExpression incrementalEval not
supported!

If other errors are bypassed and execplsql is
used along with other the workbook calculation
rules.

PL/SQL type <type> is not supported. Unexpected type in the PL/SQL function or
procedure signature.

RPASCE Batch Control File Changes
Invoking the CMF rulegroup from batch is done by adding the rulegroup to the batch control
files. The example below shows how to add a CMF rule group to batch control files. There are
no additional steps required here. Please refer to any GA application implementation guide for
more information on adding rulegroups to batch control files.

File: batch_calc_list.txt

iw_sum | group | cust7

In this example, the calc set name is iw_sum, which is of type group, meaning it is executing a
rule group. The third item is the rule group name, which is cust7. Rule group cust7 has a CMF
property set and contains execplsql rules.

File: batch_oat_list.txt

calc | iw_sum | IW Sum

Here the Batch Control Group Name is calc and the batch set name is iw_sum, meaning it will
look at file batch_calc_list.txt for an entry named iw_sum. We already added it in the step
above. The third item is the label, which shows up on the UI in the drop down when user tries
to execute the batch calc group OAT task.

File: batch_exec_list.txt

iw_all | calc | iw_sum

Here iw_all is the Batch Set Name. Batch task type is calc and parameter is iw_sum. When
iw_all is invoked, it will look for an entry named iw_sum in the batch_calc_list.txt. Please
check the first step above for the entry in batch_calc_list.txt.

The iw_all can be made part of a daily batch as shown in the example below.

File: batch_exec_list.txt

Daily Batch Cyle
batch_daily | exec | *hook_batch_daily_pre
batch_daily | exec | DRDVEXPDB ? export_all
batch_daily | exec | batch_oo
batch_daily | exec | *hook_batch_daily_post
batch_daily | exec | re_daily
batch_daily | exec | iw_all

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-43

RPASCE Deployment
The customer-managed PL/SQL functions and procedures are uploaded to the IW schema.
For more information on uploading the custom packages, refer to the section Uploading
Custom PL/SQL Packages.

During evaluation of the execplsql special expression, RPASCE switches to the IW schema
user, to limit the scope of writable data access, and then executes the function or procedure.
However, during application deploy and patch, RPASCE code grants the necessary privileges
to the IW schema user. These grants ensure that the IW schema user can read all the fact
tables and metadata tables in the PDS through synonyms, and write access is only provided to
fact tables for the measures marked as customer-managed in the application configuration.

If the configuration is modified such that additional measures are now marked as customer
managed, or if existing customer-managed measures are made non-customer-managed, then
the application patch operation will update the privileges accordingly.

Uploading Custom PL/SQL Packages
Refer to Chapter 20 of Oracle Retail AI Foundation Cloud Services Implementation Guide for
further details on interacting with IW schema (RTLWSP01).

RPASCE Helper Functions and API for IW
RPASCE provides a package RP_G_RPAS_HELPER_PKG with useful methods that can be called
from custom code.

Following are the types that are available in RP_G_RPAS_HELPER_PKG:

TYPE t_pair IS RECORD(
 l_level varchar2(10),
 l_dim varchar2(10)
);

TYPE dim_level_array is varray(8) of t_pair;

TYPE level_array is varray(50) of varchar2(10);

Following are the functions that are available in RP_G_RPAS_HELPER_PKG.

function get_fact_name(meas_name_in IN varchar2) return varchar2;

This function returns the fact name based on the measure name passed. Measure name is
defined in Configuration.

declare
 l_fact varchar2(30);
begin
 l_fact := rp_g_rpas_helper_pkg.get_fact_name('drtynslsu');
end;

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-44

https://docs.oracle.com/cd/F17841_01/orscs/pdf/2224010/aifcs-2224010-impg.pdf

function get_na_value(fact_name_in IN varchar2) return varchar2;

Function returns NA Value for a fact.

declare
 l_fact varchar2(30);
 l_na_value number;
begin
 l_fact := rp_g_rpas_helper_pkg.get_fact_name('drtynslsu');
 l_na_value := rp_g_rpas_helper_pkg.get_na_value(l_fact);
end;

function get_logical_space(fact_name_in IN varchar2) return number;

Function returns logical space for a fact. Logical space is the unpopulated space for a fact.

declare
 l_fact varchar2(30);
 l_log_space number;
begin
 l_fact := rp_g_rpas_helper_pkg.get_fact_name('drtynslsu');
 l_log_space := rp_g_rpas_helper_pkg.get_logical_space(l_fact);
end;

function get_fact_group_name(fact_name_in IN varchar2) return varchar2;

Function returns the Fact Group name for a fact.

declare
 l_fact varchar2(30);
 l_group varchar2(30);
begin
 l_fact := rp_g_rpas_helper_pkg.get_fact_name('drtynslsu');
 l_group := rp_g_rpas_helper_pkg.get_fact_group_name(l_fact);
end;

function get_table_name(fact_name_in IN varchar2) return varchar2;

Function returns the Oracle table name that contains the fact as a column.

declare
 l_fact varchar2(30);
 l_table varchar2(30);
begin
 l_fact := rp_g_rpas_helper_pkg.get_fact_name('drtynslsu');
 l_table := rp_g_rpas_helper_pkg.get_table_name(l_fact);
end;

function get_number_of_partitions return integer;

Function returns the number of partitions in PDS.

declare
 l_parts number;

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-45

begin
 l_parts := rp_g_rpas_helper_pkg.get_number_of_partitions;
end;

function get_partition_level return varchar2;

Function returns the level at which is PDS is partitioned (for example, dept,clss).

declare
 l_part_level varchar2(30);
begin
 l_part_level := rp_g_rpas_helper_pkg.get_partition_level;
end;

function clear_fact(fact_name_in varchar2) return boolean;

Function will clear the data for the fact.

declare
 l_result boolean;
begin
 l_result := rp_g_rpas_helper_pkg.clear_fact('drtynslsu');
end;

function get_base_intx(fact_name_in IN varchar2) return varchar2;

Function returns the base intersection of the fact.

declare
 l_fact varchar2(30);
 l_intx varchar2(30);
begin
 l_fact := rp_g_rpas_helper_pkg.get_fact_name('drtynslsu');
 l_intx := rp_g_rpas_helper_pkg.get_base_intx(l_fact);
end;

function intx_to_level(intx_in IN varchar2) return dim_level_array;

Function returns the levels and dimensions that are part of an intersection in an array.

declare
 l_fact varchar2(30);
 l_intx varchar2(30);
 l_array dim_level_array;
begin
 l_fact := rp_g_rpas_helper_pkg.get_fact_name('drtynslsu');
 l_intx := rp_g_rpas_helper_pkg.get_base_intx(l_fact);
 l_array := rp_g_rpas_helper_pkg.intx_to_level(l_intx);
end;

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-46

function get_parent_levels(level_in IN varchar2) return level_array;

This returns all the parent levels of the passed level.

declare
 l_array level_array;
begin
 l_array := rp_g_rpas_helper_pkg.get_parent_levels('styl');
end;

function get_child_levels(level_in IN varchar2) return level_array;

This returns all the child levels of the passed level.

declare
 l_array level_array;
begin
 l_array := rp_g_rpas_helper_pkg.get_child_levels('styl');
end;

function is_higher_level(level1_in IN varchar2, level2_in IN varchar2) return boolean;

Function return true if level1_in is higher than level2_in. Otherwise false.

declare
 l_val boolean;
begin
 l_val := rp_g_rpas_helper_pkg.is_higher_level('styl', 'dept');
end;

function is_lower_level(level1_in IN varchar2, level2_in IN varchar2) return boolean;

Function return true if level1_in is lower than level2_in. Otherwise false.

declare
 l_val boolean;
begin
 l_val := rp_g_rpas_helper_pkg.is_lower_level('dept', 'styl');
end;

PL/SQL Best Practices

Number PL/SQL Best Practice Comments

1 Use the functions and procedures
provided by Oracle

Try minimize writing your own
functions and procedures.

2 Use Oracle's Searching and Sorting
routines

The built-in routines are highly
optimized.

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-47

Number PL/SQL Best Practice Comments

3 Take advantage of the ways Oracle
performs control logic evaluation

If you have multiple conditions that
control branching, Oracle evaluates
them in the order you provide them. It
will not evaluate all the conditions
unless it needs to.
Order your conditions in a manner that
allows Oracle to take short cuts.
If there are two conditions, then put the
most restrictive condition first.

4 Avoid implicit datatype conversions Avoid comparing variables that have
different datatypes. The time spent on
the implicit datatype conversions
during each execution could be
reclaimed if the datatypes were
converted to a consistent set prior to
comparisons.

5 Size VARCHAR2 variables properly VARCHAR2(1000) vs. VARCHAR2(2000)
If the size is less than 2000, then PL/SQL
allocates enough memory to hold
the declared length of the variable.
But if the size is greater than or equal to
2000, PL/SQL dynamically allocates only
enough memory to handle the actual
value.

6 Use PL/SQL within SQL statements There are potential performance gains
by including a PL/SQL function as part
of a query.

7 Use DBMS_PROFILER to identify
problems

Capture the profiling statistics to
identify the lines in your code that take
the most time.

8 Use PL/SQL features for Bulk
operations

Avoid row by row operations and use
FORALL and BULK COLLECT.

9 Use JOIN methods carefully Based on the conditions in your query,
the available indexes, and available
statistics, the optimizer chooses which
JOIN operation to use. You can influence
the optimizer to use a different JOIN
method.

Abbreviations and Acronyms
APEX - Application Express

RAP - Retail Analytics Platform

RPASCE - Retail Predictive Application Server Cloud Edition

IW - Innovation Workbench

LHS - Left hand side (of expression)

RHS - Right hand side (of expression)

CMF - customer managed fact (rule group property)

Chapter 9
Programmatic Extensibility of RPASCE Through Innovation Workbench

9-48

Input Data Extensibility
There are additional ways to provide input data to RAP for attributes and measures you want
available to RPASCE applications while still leveraging the common foundation input file
formats. Some of these extensions are designed specifically for Planning (such as additional
fact measure fields on some interfaces) while others are shared across all of RAP (such as the
flexible fact tables in RI).

Additional Source for Product Attributes
If you are integrating product attribute data from RMFCS, then you may encounter scenarios
where not all product attributes are available in that system and you need to load them
separately for Planning purposes only. You have the option to load additional product attributes
directly to RAP on the existing foundation interface files for ATTR.csv and PROD_ATTR.csv, and
this data will be merged with the RMFCS foundation data. This is handled using special jobs in
the AIF DATA batch schedule listed below:

• SI_W_RTL_PRODUCT_ATTR_DS_MERGE_JOB

• SI_W_RTL_ITEM_GRP1_DS_MERGE_JOB

• SI_W_DOMAIN_MEMBER_DS_TL_MERGE_JOB

These jobs should not be enabled in POM unless you are planning to load data from an
additional source, because they will conflict with the normal version of these interfaces (which
follows a truncate and load process instead of a merge). When the MERGE jobs are turned on, it
is assumed that all other SI_* type jobs (like SI_W_RTL_ITEM_GRP1_DS_JOB) are already
disabled, because the core foundation dataset is coming directly from RMFCS and not from flat
files. The only exception is that you will also need to keep the COPY/STG jobs enabled for the
files you are sending in:

• COPY_SI_ATTR_JOB / STG_SI_ATTR_JOB

• COPY_SI_PROD_ATTR_JOB / STG_SI_PROD_ATTR_JOB

The merge functionality is limited to two types of attributes: ITEMUDA and ITEMLIST. New
attributes going to AIF or Planning must be of type ITEMUDA and it is the implementer’s
responsibility to ensure the attributes being added from the secondary source do not conflict
with the data coming from RMFCS. The UDA attributes will be combined in the same table in
RAP and downstream applications like AIF and MFP will have no knowledge of which source
provided the data. ITEMLIST data from secondary sources is meant specifically for the LPO
application in AIF when you are leveraging product groups in that application and do not want
to use RMFCS item lists for that purpose.

Additional Source for Foundation Data
Some foundation data interfaces support merging two sources of information together into the
same target table. One of the sources must be MFCS while the other may be an external
source that generates a CSV file for the nightly batch. This is currently supported for
Promotions, Shipments, Sales, and Inventory. These jobs should not be enabled in POM
unless you are planning to load data from an additional source, because they will conflict with
the normal version of these interfaces (which follows a truncate and load process instead of a
merge). When the MERGE jobs are turned on, it is expected that all other SI_* type jobs (like
SI_W_RTL_SHIP_DETAILS_DS_JOB) will be manually disabled, because the core foundation
dataset is coming directly from MFCS and not from these jobs.

Chapter 9
Input Data Extensibility

9-49

Secondary Data
Source

AIF DATA Jobs to Enable AIF DATA Jobs to Disable

PROMO_DETAIL.csv SI_W_RTL_PROMO_IT_LC_DS_MER
GE_JOB
COPY_SI_PROMO_DETAIL_JOB
STG_SI_PROMO_DETAIL_JOB

SI_W_RTL_PROMO_IT_LC_DS_JOB

SHIPMENT_HEAD.csv SI_W_RTL_SHIP_DETAILS_DS_MER
GE_JOB
COPY_SI_SHIPMENT_HEAD_JOB
STG_SI_SHIPMENT_HEAD_JOB

SI_W_RTL_SHIP_DETAILS_DS_JOB

SHIPMENT_DETAIL.csv SI_W_RTL_SHIP_IT_LC_DY_FS_MER
GE_JOB
COPY_SI_SHIPMENT_DETAIL_JOB
STG_SI_SHIPMENT_DETAIL_JOB

SI_W_RTL_SHIP_IT_LC_DY_FS_JOB

SALES.csv SI_W_RTL_SLS_TRX_IT_LC_DY_FS_
MERGE_JOB
COPY_SI_SALES_JOB
STG_SI_SALES_JOB

SI_W_RTL_SLS_TRX_IT_LC_DY_FS_
JOB

SALES_PACK.csv SI_W_RTL_SLSPK_IT_LC_DY_FS_ME
RGE_JOB
COPY_SI_SALES_PACK_JOB
STG_SI_SALES_PACK_JOB

SI_W_RTL_SLSPK_IT_LC_DY_FS_JOB

INVENTORY.csv SI_W_RTL_INV_IT_LC_DY_FS_MERG
E_JOB
COPY_SI_INVENTORY_JOB
STG_SI_INVENTORY_JOB

SI_W_RTL_INV_IT_LC_DY_FS_JOB

The way the data is merged depends on the interface. For PROMO_DETAIL.csv, the Pricing CS
data always takes priority, and the CSV file data is inserted where it does not match an existing
record. This is because the promotion header interface (W_RTL_PROMO_DS / D tables and
PROMOTION.csv file) from Pricing CS already follows that logic and this detail-level table needs
to match it. You should aim to ensure that there is no overlap between the Pricing CS data and
the external CSV file data.

Fact data uses configurable merge logic. For shipment data, it is a configuration option
whether you want MFCS data or the CSV files to get first priority when merging. Update the
C_ODI_PARAM_VW table from the Control Center for parameter SHIP_SI_MERGE_PRIORITY. When
set to MFCS, the CSV file data will only be inserted if there is no matching record. When set to
EXT (or any other value), the external file data will overwrite any matching records from MFCS
and insert for all other records. Sales and inventory use the same logic based on the value in
parameters SALES_SI_MERGE_PRIORITY and INV_SI_MERGE_PRIORITY.

Additional Source for Data Security
Some applications, such as RI and LPO, use data security configurations to limit what users
see in the user interface. These tables are normally populated from MFCS or from a set of flat
files such as RAF_SEC_USER.dat, as defined in the RAP interfaces guide. If you want to use
Innovation Workbench to populate these tables, however, you must leverage an alternate data
flow and batch program. The steps to maintain this data from IW are:

Chapter 9
Input Data Extensibility

9-50

1. Create programs or REST APIs that insert data into the following staging tables from IW:

 RAF_FILTER_GROUP_MERCH_STG
 RAF_FILTER_GROUP_ORG_STG
 RAF_SEC_USER_STG
 RAF_SEC_GROUP_STG
 RAF_SEC_USER_GROUP_STG

2. From POM, enable and run the adhoc process RAF_SEC_FILTER_LOAD_ADHOC in the AIF
DATA schedule, which contains just one job named RAF_SEC_FILTER_LOAD_JOB. This job
truncates the target data warehouse tables (like RAF_SEC_USER), then insert the contents
from the staging table to the target table.

3. If you are moving the data downstream to LPO or other AIF applications, run the
associated data security load jobs for those applications.

The relationship between the internal RAF tables is shown in the diagram below.

Note:

The same set of RAF_* tables exist in multiple database schemas, so you must be
careful when querying and loading them. When you want to query the tables
populated by the AIF DATA job, you must specify RADM01 as the owner of the table
(such as select * from RADM01.RAF_SEC_USER). When you want to query the tables
owned by AIF APPS, you must specify RASE01 as the owner.

Additional Sources for Measures
Some of the foundation data file interfaces into RAP have ways to add more measure data
than what the out-of-box planning solutions are using.

Custom Sales Type
The SALES.csv file has transaction data differentiated with a Retail Type (RTL_TYPE_CODE) field.
By default, this accepts only R, P, or C as the types. You may extend this with a 4th custom type
called Other (using type code O). To do this, you must first load a custom file into the
W_XACT_TYPE_D interface to add the additional sales type code (standalone POM jobs are

Chapter 9
Input Data Extensibility

9-51

available for this table load). Once that is done, you may include the 4th type code on records
in SALES.csv. The additional sales type will be exported to PDS in two different ways:

1. The MFP sales interface (W_PDS_SLS_IT_LC_WK_A) has a set of fields for Total Sales, which
will be inclusive of Other sales. This allows you to have the default measures for Reg, Pro,
and Clr sales and custom non-GA measures for Total Sales (which will not be equal to
R+P+C sales). You could use total sales measures minus the other types to arrive at
values specifically for Other sales or any other combination of retail types.

2. The IPOCS-Demand Forecasting sales interface (W_PDS_GRS_SLS_IT_LC_WK_A) will
maintain the separate rows for other sales on the output since that interface has the retail
type code on it directly. You may define custom measures to load the Other sales into
IPOCS-Demand Forecasting.

Custom Fact Measures
The following files have been extended with 20 generic numerical fields on the end of the files:

• SALES.csv

• MARKDOWN.csv

• INVENTORY.csv

• ORDER_DETAIL.csv

• DEAL_INCOME.csv

• RECEIPT.csv

These flex fields will be loaded exactly as-is with no conversions or transformations, except to
aggregate them from the input data to the base intersection of item/location/fiscal week. All flex
fields use SUM as the aggregation method. If a flex field in the output PDS table has a prefix,
like PO_FLEX1_NUM_VALUE, it means it is additionally splitting the data by that type, such as PO
vs. Transfer receipt measures. If there is no prefix, then the flex measure is summed only to
item/location/week level. These fields provide a way to send additional custom measures to
Planning applications when the source of the measures is the same as your basic foundation
data. Refer to the RAP Data Interfaces Guide in My Oracle Support (Doc ID 2539848.1) for the
complete file specifications.

Additional Custom Fact Data
Most implementations have greater fact and measure requirements than the default solution
interfaces provide. While it is possible to load additional data directly into the RPASCE PDS,
there is the option to send some of this data into the Retail Insights data model alongside your
foundation data files. This makes it available for many more use cases within RAP, such as
reporting, data visualization and extensions in IW.

There are four flexible fact interfaces (referred to as Flex Facts) in the Retail Insights data
warehouse that can also be used as general-purpose data interfaces in RAP (even if you do
not subscribe to RI itself). These interfaces have W_RTL_FLEXFACT at the start of the file and
table names. For details on how to configure and use these interfaces, refer to the Retail
Insights Implementation Guide chapter on “Planning and Flex Fact Configurations”.

Extensibility Example – Product Hierarchy
A common scenario for extensibility is the need to add more product hierarchy levels to some
solutions like MFP beyond what the base application supports. It is possible to define
additional custom hierarchy levels in various RAP solutions following the general workflow

Chapter 9
Extensibility Example – Product Hierarchy

9-52

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2539848.1

below. For this example, we assume a new product level named “Sub-Category” will be added.
This level will be placed between the Department and Class levels within the main hierarchy in
AIF and RPAS applications.

Input File Changes
To add an additional product hierarchy level into the RAP foundation data files, you must
leverage the FLEX fields available on either PRODUCT.csv or PRODUCT_ALT.csv files. Either file
may be used, as the columns are merged together into one table before sending it
downstream. For this example, we will use PRODUCT_ALT.csv columns FLEX1_CHAR_VALUE and
FLEX2_CHAR_VALUE. The FLEX1 values are the unique identifiers for the hierarchy positions,
while the FLEX2 values are the description for display in user interfaces. The file is generated at
the item level the same way as PRODUCT.csv and must follow the same rules for hierarchy
construction (IDs must be unique within the level, you must not have multiple parents for the
same children in the level below this one, and so on). Example rows from the file may be:

ITEM,FLEX1_CHAR_VALUE,FLEX2_CHAR_VALUE
30018,100101,WOMEN'S CLOTHING
30019,100101,WOMEN'S CLOTHING
51963371,100103,WOMEN'S INSPIRATION
1101247,100104,WOMEN'S FAST FASHION

Once you have generated this data for all items in the hierarchy, then you will load it into the
platform following the Initialize Dimensions process in Data Loads and Initial Batch Processing.
The following jobs in the RI_DIM_INITIAL_ADHOC process are used to load this file:

• COPY_SI_PRODUCT_ALT_JOB

• STG_SI_PRODUCT_ALT_JOB

• SI_W_PRODUCT_FLEX_DS_JOB

• W_PRODUCT_FLEX_D_JOB

You should already have loaded a PRODUCT.csv file at this stage, or you should load it at the
same time as the PRODUCT_ALT.csv file, so that the full product hierarchy is available in the
data warehouse. Once loaded, the data for the alternate levels will be available in the
W_PRODUCT_FLEX_D table for review. At this stage, the data is only available in the data
warehouse table; it has not been configured for use in any other solution.

AI Foundation Setup
To see the additional hierarchy level in AI Foundation applications, you must create an
alternate product hierarchy that includes both the new level and all other levels from your
product hierarchy that you wish to use.

The first step in defining the alternate product hierarchy in AIF is setting up the configuration
tables RSE_ALT_HIER_TYPE_STG and RSE_ALT_HIER_LEVEL_STG. These tables are updated from
the Manage System Configurations screen in the Control & Tactical Center. For this example,
the data you create may look like the following:

Chapter 9
Extensibility Example – Product Hierarchy

9-53

Table 9-11 RSE_ALT_HIER_LEVEL_STG Sample

HIER_TY
PE_NAM
E

HIE
R_L
EVE
L_I
D

DES
CR

ID_SRC_CO
LUMN_NAM
E

ID_SRC_OBJ_
NAME

NAME_SRC_C
OLUMN_NAM
E

NAME_SRC_O
BJ_NAME

UI_DESCR

PROD_SU
BCAT

1 CMP TOP_PRODC
AT_ID

W_PRODUCT_
DTS

TOP_PRODCAT
_DESC

W_PRODUCT_
DTS

Company

PROD_SU
BCAT

2 DIV LVL8_PRODC
AT_ID

W_PRODUCT_
DTS

LVL8_PRODCA
T_DESC

W_PRODUCT_
DTS

Division

PROD_SU
BCAT

3 GRP LVL7_PRODC
AT_ID

W_PRODUCT_
DTS

LVL7_PRODCA
T_DESC

W_PRODUCT_
DTS

Group

PROD_SU
BCAT

4 DEP
T

LVL6_PRODC
AT_ID

W_PRODUCT_
DTS

LVL6_PRODCA
T_DESC

W_PRODUCT_
DTS

Departmen
t

PROD_SU
BCAT

5 SUB
CAT

FLEX1_CHAR
_VALUE

W_PRODUCT_
ALT_DTS

FLEX2_CHAR_
VALUE

W_PRODUCT_
ALT_DTS

Sub
Category

PROD_SU
BCAT

6 CLS LVL5_PRODC
AT_ID

W_PRODUCT_
DTS

LVL5_PRODCA
T_DESC

W_PRODUCT_
DTS

Class

PROD_SU
BCAT

7 SBC LVL4_PRODC
AT_ID

W_PRODUCT_
DTS

LVL4_PRODCA
T_DESC

W_PRODUCT_
DTS

Sub Class

PROD_SU
BCAT

8 SKU ITEM W_PRODUCT_
DTS

ITEM_DESC W_PRODUCT_
DTS

Stock
Keeping
Unit

Table 9-12 RSE_ALT_HIER_TYPE_STG Sample

DELETE_FLG DESCR NAME OBJ_TYPE_NAME

N Product Hierarchy with Sub-
Category

PROD_SUBCAT PRODUCT

The configurations specified in this example show how to refer to the default hierarchies (which
are loaded through the staging table W_PRODUCT_DTS) and the alternate hierarchies (loaded
through the table W_PRODUCT_ALT_DTS). When referring to a default hierarchy level, you should
use the parameters shown here for all the SRC fields. You can modify the HIER_LEVEL_ID to
change the placement of the levels within the structure; however the standard hierarchy rules
must still pass after reorganizing them (for example, you cannot place DEPT below CLS because
then the same child node may have multiple parent nodes).

After your configuration is finalized, you may generate the alternate hierarchy in AIF using
RSE_MASTER_ADHOC_JOB with the -X flag. This will only load the alternate hierarchy; it assumes
you have also loaded the main hierarchy using the -p flag, or you are loading both of them
together using -pX. For nightly batch job details, refer to the AI Foundation Implementation
Guide, section “Building Alternate Hierarchy in AIF”.

It is also necessary to update RSE_CONFIG options to use the new hierarchy. For example, to
use the hierarchy in LPO, change the PMO_PROD_HIER_TYPE parameter to the ID for the new
hierarchy. You can find the ID for the hierarchy in table RSE_ HIER_TYPE column ID, which is
viewable in Manage System Configurations. Custom hierarchies will have ALT_FLG=Y in their
rows of the table.

Chapter 9
Extensibility Example – Product Hierarchy

9-54

If you will use the alternate hierarchy in forecast generation for Planning, then the rest of the
data aggregation and forecasting processes are the same, whether you are using the standard
product hierarchy or the alternate one. You will follow all steps outlined in the AI Foundation
Implementation Guide sections for “Forecast Configuration for MFP and AP” and “Forecast
Configuration for IPO-DF and AIF” as needed. A summary of those steps are:

1. Set up the configuration to use your alternate hierarchy

2. Create your run types and select your desired intersections, which can include the new
alternate hierarchy levels as the forecast level

3. Perform aggregation, estimation, and forecasting processes following the usual steps in
the AIF guides

4. Run the ad hoc jobs from POM to export the forecast results to Planning, such as
RSE_MFP_FCST_EXPORT_ADHOC_JOB

If you generate a forecast using the custom level, then the export to PDS will appear for that
level description as defined in RSE_ALT_HIER_LEVEL_STG.DESCR. In this example, you may
generate a forecast at the SUBCAT / AREA / Fiscal Week levels for use in MFP. These are the
level names that will appear in the forecast export and must be configured for use in MFP.

Planning Data Store Setup
Planning applications such as MFP and AP can also leverage the same additional hierarchy
levels provided on the foundation input files. The first step is to export the hierarchies from the
data warehouse to PDS. This can be done using the same set of ad hoc jobs in the AIF DATA
schedule in POM, as described in Sending Data to Planning. The flex fields from
W_PRODUCT_FLEX_D will be written to the same PDS staging table, W_PDS_PRODUCT_D.

Once it reaches the staging table in the RDX schema, the same can be interfaced to PDS
hierarchies by making changes to interface.cfg. Follow the steps below for integrating the
new dimension into PDS for the Product Hierarchy, which includes changes to interface.cfg
for importing the dimension and to export and import AIF data at the new dimension level.

• Update the configuration for either GA (template activated) or non-GA (template de-
activated) to include the new dimension in the hierarchy structure. In the example below,
say ‘Sub-Category’ was added as dimension ‘scat’ between Class and Department.

• Update the interface.cfg to interface the newly added dimension from the corresponding
mapped column from RDX.

In the below example we added entries for HDM50 and HDL50 to map the dimension position
and label for the dimension from the RDX staging table. If you are using the GA template
or if you are not using a template but starting from GA configuration, use numbers starting
from 50 for new dimensions. If it is a fully custom configuration, you may use any
numbering.

Hierarchy Importer Mappings for Product Hierarchy

W_PDS_PRODUCT_D:PDS:HDM01:SKU:ITEM:

Chapter 9
Extensibility Example – Product Hierarchy

9-55

W_PDS_PRODUCT_D:PDS:HDM04:SCLS:SUBCLASS_ID:
W_PDS_PRODUCT_D:PDS:HDM05:CLSS:CLASS_ID:
W_PDS_PRODUCT_D:PDS:HDM06:DEPT:DEPT:
W_PDS_PRODUCT_D:PDS:HDM07:PGRP:GROUP_NO:
W_PDS_PRODUCT_D:PDS:HDM08:DVSN:DIVISION:
W_PDS_PRODUCT_D:PDS:HDM09:CMPP:COMPANY:
W_PDS_PRODUCT_D:PDS:HDM50:SCAT:FLEX1_CHAR_VALUE:
W_PDS_PRODUCT_D:PDS:HDL01::ITEM_DESC:
W_PDS_PRODUCT_D:PDS:HDL04::SUB_NAME:
W_PDS_PRODUCT_D:PDS:HDL05::CLASS_NAME:
W_PDS_PRODUCT_D:PDS:HDL06::DEPT_NAME:
W_PDS_PRODUCT_D:PDS:HDL07::GROUP_NAME:
W_PDS_PRODUCT_D:PDS:HDL08::DIV_NAME:
W_PDS_PRODUCT_D:PDS:HDL09::CO_NAME:
W_PDS_PRODUCT_D:PDS:HDL50::FLEX2_CHAR_VALUE:

Note:

If using GA template with extensibility, you also need to add custom_add as the
last column for newly added columns.

W_PDS_PRODUCT_D:PDS:HDM50:SCAT:FLEX1_CHAR_VALUE:custom_add
…
W_PDS_PRODUCT_D:PDS:HDL50::FLEX2_CHAR_VALUE:custom_add

• To export plans generated at the new level to AIF to use in forecast generation, then create
plans at the new level and export the plans defined at that level to AIF. Assuming the
intersection of the plans are new dimension level, ensure the product dimension (DIM02 in
the example below) (which is mapped to PROD_KEY)is set to SCAT to identify the product
intersection of data in PDS as Sub-Category. For AIF to understand the prod level as Sub-
Category, set the PROD_LEVEL value to SUBCAT, as defined in the AIF alternate hierarchy
setup.

MFP_PLAN1_EXP:MPOP:DIM01:WEEK:CLND_KEY:
MFP_PLAN1_EXP:MPOP:DIM02:SCAT:PROD_KEY:
MFP_PLAN1_EXP:MPOP:DIM03:CHNC:LOC_KEY:
MFP_PLAN1_EXP:MPOP:DATA::CLND_LEVEL:WEEK
MFP_PLAN1_EXP:MPOP:DATA::PROD_LEVEL:SUBCAT
MFP_PLAN1_EXP:MPOP:DATA::LOC_LEVEL:AREA
…
MFP_PLAN1_EXP:MPOP:DATA:MFP_MPOPLDOWD:CAL_DATE:
MFP_PLAN1_EXP:MPOP:DATA:MFP_MPOPSLSU:SLS_QTY:
MFP_PLAN1_EXP:MPOP:DATA:MFP_MPOPSLSR:SLS_RTL_AMT:

Note:

Some export tables to AIF may not have PROD_LEVEL or PROD_HIER_LEVEL
defined. If not they are not present, then that specific interface table is only
meant for pre-defined product levels and you cannot change it.

Chapter 9
Extensibility Example – Product Hierarchy

9-56

• If AIF is generating the forecast at the new ‘SUBCAT’ level and exporting the forecast data,
then the same can be pulled into MFP using the following updates to the forecast interface.
Assuming the new forecast measures are defined at the Sub-Category level instead of
existing Subclass level in GA, then below are the changes needed. Update the dimension
for product to SCAT to specify the intersection for import measures as identified by PDS and
also set the filter criteria for imported data in PROD_HIER_LEVEL to SUBCAT as identified by
AIF hierarchy setup.

RSE_FCST_DEMAND_EXP:MPP:DIM01:WEEK:FCST_DATE_FROM:
RSE_FCST_DEMAND_EXP:MPP:DIM02:SCAT:PROD_EXT_KEY:
RSE_FCST_DEMAND_EXP:MPP:DIM03:CHNC:LOC_EXT_KEY:
RSE_FCST_DEMAND_EXP:MPP:DATA:MFP_MPWPDMDP1U:REG_PR_SLS_QTY:
RSE_FCST_DEMAND_EXP:MPP:DATA:MFP_MPWPDMDP1R:REG_PR_SLS_AMT:
…
RSE_FCST_DEMAND_EXP:MPP:FILTER::CAL_HIER_LEVEL:Fiscal Week
RSE_FCST_DEMAND_EXP:MPP:FILTER::PROD_HIER_LEVEL:SUBCAT
RSE_FCST_DEMAND_EXP:MPP:FILTER::LOC_HIER_LEVEL:CHANNEL
RSE_FCST_DEMAND_EXP:MPP:FILTER::CUSTSEG_EXT_KEY:
RSE_FCST_DEMAND_EXP:MPP:FILTER::FCST_TYPE:NPI

Note:

Some import tables from AIF may not have PROD_LEVEL or PROD_HIER_LEVEL
defined. If they are not present, then that specific interface table is only meant for
pre-defined product levels and you cannot change it.

In-Season Forecast Setup
All the prior steps describe the setup needed to get the first round of plans and forecasts
generated, which for MFP is the pre-season workflow. If you also plan to use forecasts for in-
season planning in MFP then you must configure the flow of approved plans from MFP back
through the data warehouse for AIF to consume. This data flow starts from the MFP export
tables (such as MFP_PLAN1_EXP) and passes through the data warehouse plan tables (such as
W_RTL_PLAN1_PROD1_LC1_T1_F).

To configure these interfaces, use the parameters on C_ODI_PARAM_VW in the Manage System
Configurations screen. Our plan data at the levels of SUBCAT / AREA / WEEK will need this set of
parameters:

Param Name Param Value

RI_PLAN1_CAL_LEVEL WEEK
RI_PLAN1_ORG_LEVEL AREA
RI_PLAN1_PROD_LEVEL FLEX1
RI_PLAN1_SUPP_LEVEL ALL
RI_PLAN1_ATTR_LEVEL ALL

The product level of FLEX1 correlates with the column in the W_PRODUCT_ALT_DTS table that you
used to load the alternate hierarchy level in the very beginning of the process, and matches the
field mapped during AIF alternate hierarchy setup.

To integrate the data from MFP to the data warehouse, the jobs in the AIF DATA schedule in
POM that are used are:

Chapter 9
Extensibility Example – Product Hierarchy

9-57

• W_RTL_PLAN1_PROD1_LC1_T1_FS_SDE_JOB

• W_RTL_PLAN1_PROD1_LC1_T1_F_JOB

These jobs are included in the AIF DATA nightly schedule and can also be found in the ad hoc
process LOAD_PLANNING1_DATA_ADHOC. This process populates the table
W_RTL_PLAN1_PROD1_LC1_T1_F, which can then be loaded to the AIF forecasting module using
the AIF APPS schedule job RSE_FCST_SALES_PLAN_LOAD_JOB. This job populates the table
RSE_FCST_SALES_PLAN_DTL which is used in generating plan-influenced forecasts.

Chapter 9
Extensibility Example – Product Hierarchy

9-58

A
Legacy Foundation File Reference

The following table provides a cross-reference for legacy application input files and the Retail
Analytics and Planning files that replace them. This list covers foundation data flows which
span multiple applications, such as MFP and RI. Other foundation files exist which do not
replace multiple application files; those are specified in the Interfaces Guide in My Oracle
Support.

File Group File Type Legacy
Planning Files

Legacy RI/AI Foundation
Files

RAP Files

Product Dimension prod.csv.dat W_PRODUCT_DS.dat
W_PRODUCT_DS_TL.dat
W_PROD_CAT_DHS.dat
W_DOMAIN_MEMBER_DS
_TL.dat
W_RTL_PRODUCT_BRAND
_DS.dat
W_RTL_PRODUCT_BRAND
_DS_TL.dat
W_RTL_IT_SUPPLIER_DS.d
at
W_PARTY_ORG_DS.dat
W_RTL_PRODUCT_IMAGE_
DS.dat
W_PRODUCT_ATTR_DS.dat
W_RTL_ITEM_GRP1_DS.da
t

PRODUCT.csv

Organization Dimension loc.csv.dat
stor_metrics.csv.
ovr

W_INT_ORG_DS.dat
W_INT_ORG_DS_TL.dat
W_INT_ORG_DHS.dat
W_DOMAIN_MEMBER_DS
_TL.dat (for RTL_ORG)
W_RTL_CHANNEL_DS.dat
W_INT_ORG_ATTR_DS.dat

ORGANIZATION.cs
v

Calendar Dimension clnd.csv.dat W_MCAL_PERIOD_DS.dat CALENDAR.csv

Exchange
Rates

Dimension curh.csv.dat
curr.csv.ovr

W_EXCH_RATE_GS.dat EXCH_RATE.csv

Attributes Dimension patr.csv.dat
patv.csv.ovr

W_RTL_PRODUCT_ATTR_D
S.dat
W_RTL_PRODUCT_ATTR_D
S_TL.dat
W_DOMAIN_MEMBER_DS
_TL.dat (for Diffs)
W_RTL_PRODUCT_COLOR
_DS.dat

ATTR.csv

A-1

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2539848.1
https://support.oracle.com/
https://support.oracle.com/

File Group File Type Legacy
Planning Files

Legacy RI/AI Foundation
Files

RAP Files

Diff Groups Dimension sizh.hdr.csv.dat W_RTL_DIFF_GRP1_DS.dat
W_RTL_DIFF_GRP1_DS_TL
.dat

DIFF_GROUP.csv

Product
Attribute
Assignments

Dimension prdatt.csv.ovr W_RTL_ITEM_GRP1_DS.da
t

PROD_ATTR.csv

Sales Fact rsal.csv.ovr
psal.csv.ovr
csal.csv.ovr
nsls.csv.ovr
rtn.csv.ovr

W_RTL_SLS_TRX_IT_LC_D
Y_FS.dat
W_RTL_SLSPK_IT_LC_DY_
FS.dat

SALES.csv
SALES_PACK.csv

Inventory Fact eop.csv.ovr
eopx.csv.ovr
wsal.csv.ovr

W_RTL_INV_IT_LC_DY_FS.
dat

INVENTORY.csv

Markdown Fact mkd.csv.ovr W_RTL_MKDN_IT_LC_DY_
FS.dat

MARKDOWN.csv

On Order Fact oo.csv.ovr W_RTL_PO_DETAILS_DS.d
at
W_RTL_PO_ONDORD_IT_L
C_DY_FS.dat

ORDER_HEAD.csv
ORDER_DETAIL.cs
v

PO Receipts Fact rcpt.csv.ovr W_RTL_INVRC_IT_LC_DY_
FS.dat

RECEIPT.csv

Transfers Fact tranx.csv.ovr W_RTL_INVTSF_IT_LC_DY_
FS.dat

TRANSFER.csv

Adjustments Fact tran.csv.ovr W_RTL_INVADJ_IT_LC_DY_
FS.dat
W_REASON_DS.dat

ADJUSTMENT.csv
REASON.csv

RTVs Fact tran.csv.ovr W_RTL_INVRTV_IT_LC_DY
_FS.dat

RTV.csv

Costs Fact slsprc.csv.ovr W_RTL_BCOST_IT_LC_DY_
FS.dat
W_RTL_NCOST_IT_LC_DY_
FS.dat

COST.csv

Prices Fact slsprc.csv.ovr W_RTL_PRICE_IT_LC_DY_F
S.dat

PRICE.csv

W/F Sales
and Fees

Fact tran.csv.ovr W_RTL_SLSWF_IT_LC_DY_
FS.dat

SALES_WF.csv

Vendor
Funds (TC
6/7)

Fact tran.csv.ovr W_RTL_DEALINC_IT_LC_D
Y_FS.dat

DEAL_INCOME.cs
v

Reclass
In/Out (TC
34/36)

Fact tran.csv.ovr W_RTL_INVRECLASS_IT_L
C_DY_FS.dat

INV_RECLASS.csv

Intercompan
y Margin (TC
39)

Fact tran.csv.ovr W_RTL_ICM_IT_LC_DY_FS.
dat

IC_MARGIN.csv

Appendix A

A-2

B
Context File Table Reference

The following table maps CSV data files to internal tables for the purpose of creating Context
Files. The first parameter on the Context file is a TABLE property containing the table name into
which the CSV data will be loaded. For legacy context file usage, the name of the context file
itself should match the internal table name.

File Type Filenames Internal Tables

Product PRODUCT.csv W_PRODUCT_DTS

Product Alternates PRODUCT_ALT.csv W_PRODUCT_ALT_DTS

Organization ORGANIZATION.csv W_INT_ORG_DTS

Organization
Alternates

ORGANIZATION_ALT.csv W_ORGANIZATION_ALT_DTS

Calendar CALENDAR.csv W_MCAL_PERIODS_DTS

Exchange Rates EXCH_RATE.csv W_EXCH_RATE_DTS

Attributes ATTR.csv W_ATTR_DTS

Diff Groups DIFF_GROUP.csv W_DIFF_GROUP_DTS

Product Attribute
Assignments

PROD_ATTR.csv W_PRODUCT_ATTR_DTS

Employee EMPLOYEE.csv W_EMPLOYEE_DTS

Application Codes CODES.csv W_RTL_CODE_DTS

Pack Items PROD_PACK.csv W_RTL_ITEM_GRP2_DTS

Promotions PROMOTION.csv W_RTL_PROMO_EXT_DTS

Supplier SUPPLIER.csv W_SUPPLIER_DTS

Item Loc Attributes PROD_LOC_ATTR.csv W_PROD_LOC_ATTR_DTS

Replenishment
Attributes

PROD_LOC_REPL.csv W_INVENTORY_PRODUCT_ATTR_DTS

Season Phase SEASON.csv W_RTL_SEASON_PHASE_DTS

Season Phase Item
Mapping

PROD_SEASON.csv W_RTL_SEASON_PHASE_IT_DTS

Comp Stores STORE_COMP.csv W_RTL_LOC_COMP_MTX_DTS

Item Deletes PROD_DELETE.csv W_RTL_ITEM_DEL_TMPS

Item Loc Deletes PROD_LOC_DELETE.csv W_RTL_IT_LC_DEL_TMPS

Sales SALES.csv W_RTL_SLS_TRX_IT_LC_DY_FTS

Sales Pack SALES_PACK.csv W_RTL_SLSPK_IT_LC_DY_FTS

Inventory INVENTORY.csv W_RTL_INV_IT_LC_DY_FTS

Markdown MARKDOWN.csv W_MARKDOWN_FTS

On Order ORDER_HEAD.csv W_ORDER_HEAD_FTS

On Order Detail ORDER_DETAIL.csv W_ORDER_DETAIL_FTS

PO Receipts RECEIPT.csv W_RECEIPT_FTS

Transfers TRANSFER.csv W_RTL_INVTSF_IT_LC_DY_FTS

B-1

File Type Filenames Internal Tables

Adjustments ADJUSTMENT.csv W_ADJUSTMENT_FTS

RTVs RTV.csv W_RTL_INVRTV_IT_LC_DY_FTS

Costs COST.csv W_COST_FTS

Prices PRICE.csv W_RTL_PRICE_IT_LC_DY_FTS

W/F Sales and Fees SALES_WF.csv W_RTL_SLSWF_IT_LC_DY_FTS

Vendor Funds DEAL_INCOME.csv W_RTL_DEALINC_IT_LC_DY_FTS

Reclass In/Out INV_RECLASS.csv W_RTL_INVRECLASS_IT_LC_DY_FTS

Intercompany
Margin

IC_MARGIN.csv W_RTL_ICM_IT_LC_DY_FTS

Appendix B

B-2

C
Sample Public File Transfer Script for Planning
Apps

This example provides an example of how file transfers can be implemented through a shell
script. It requires: bash, curl and jq.

#!/bin/bash

Sample Public FTS script

EDIT HERE to reflect your environment

BASE_URL="https://__YOUR_TENANT_BASE_URL__"
TENANT="__YOUR-TENANT_ID__"
IDCS_URL="https://_YOUR__IDCS__URL__/oauth2/v1/token"
IDCS_CLIENTID="__YOUR_CLIENT_APPID__"
IDCS_CLIENTSECRET="__YOUR_CLIENT_SECRET___"
IDCS_SCOPE="rgbu:rpas:psraf-__YOUR_SCOPE__"

FINISHED

clientToken() {
 curl -sX POST "${IDCS_URL}" \
 --header "Authorization: Basic ${IDCS_AUTH}" \
 --header "Content-Type: application/x-www-form-urlencoded" \
 --data-urlencode "grant_type=client_credentials" \
 --data-urlencode "scope=${IDCS_SCOPE}" | jq -r .access_token
}

ping() {
 echo "Pinging"
 curl -sfX GET "${BASE_URL}/${TENANT}/RetailAppsReSTServices/services/
private/FTSWrapper/ping" \
 --header 'Accept: application/json' \
 --header 'Accept-Language: en' \
 --header "Authorization: Bearer ${CLIENT_TOKEN}" | jq
}

listPrefixes() {
 echo "Listing storage prefixes"
 curl -sfX GET "${BASE_URL}/${TENANT}/RetailAppsReSTServices/services/
private/FTSWrapper/listprefixes" \
 --header 'Accept: application/json' \
 --header 'Accept-Language: en' \
 --header "Authorization: Bearer ${CLIENT_TOKEN}" | jq
}

C-1

listFiles() {
 echo "Listing files for ${1}"
 curl -sfX GET "${BASE_URL}/${TENANT}/RetailAppsReSTServices/services/
private/FTSWrapper/listfiles?prefix=${1}" \
 --header 'Accept: application/json' \
 --header 'Accept-Language: en' \
 --header "Authorization: Bearer ${CLIENT_TOKEN}" | jq
}

deleteFiles() {
 echo "Deleting files"
 json=$(fileCollection $@)
 curl --show-error -sfX DELETE "${BASE_URL}/${TENANT}/
RetailAppsReSTServices/services/private/FTSWrapper/delete" \
 --header 'content-type: application/json' \
 --header 'Accept: application/json' \
 --header 'Accept-Language: en' \
 --header "Authorization: Bearer ${CLIENT_TOKEN}" \
 -d "${json}" | jq
}

fileMover() {
 movement="${1}"
 shift

 json=$(fileCollection $@)
 requestPAR "${movement}" "${json}"
}

fileCollection() {
 local json="{ \"listOfFiles\": [__FILES__] }"

 sp="${1}"
 shift

 while (("${#}")); do
 list="${list} { \"storagePrefix\": \"${sp}\", \"fileName\":
\"${1}\" }"
 if [[${#} -gt "1"]]; then
 list="${list},"
 fi
 shift
 done

 echo "${json/__FILES__/${list}}"
}

requestPAR() {
 use="${1}"
 echo "Requesting PARs for ${use}"
 pars="$(curl --show-error -sfX POST "${BASE_URL}/${TENANT}/
RetailAppsReSTServices/services/private/FTSWrapper/${use}" \
 --header 'content-type: application/json' \
 --header 'Accept: application/json' \
 --header 'Accept-Language: en' \
 --header "Authorization: Bearer ${CLIENT_TOKEN}" \

Appendix C

C-2

 -d "${2}")"

 if [["$?" -ne "0"]]; then
 echo "Error retreiving PAR, check files specified."
 echo "${pars}"
 exit 1
 fi

 list=$(jq -r ".parList[]|[.name, .accessUri]|@csv" <<< "${pars}")

 while IFS='' read -r line; do
 fn=$(echo ${line}|cut -d\, -f1|tr -d \")
 par=$(echo ${line}|cut -d\, -f2|tr -d \")

 if [[${use} == "upload"]]; then
 echo "Uploading ${fn} to ${par}"
 curl -o log -X PUT --data-binary "@${fn}" "${par}"
 else
 echo "Downloading ${fn} from ${par}"
 curl -o ${fn} -X GET "${par}"
 fi
 done <<< "${list}"
}

#Entry point
IDCS_AUTH=$(echo -n ${IDCS_CLIENTID}:${IDCS_CLIENTSECRET} | base64 -w0)
CLIENT_TOKEN=$(clientToken)

case "${1}" in
 ping)
 ping
 ;;
 listprefixes)
 shift
 listPrefixes
 ;;
 listfiles)
 shift
 listFiles ${@}
 ;;
 deletefiles)
 shift
 deleteFiles ${@}
 ;;
 uploadfiles)
 shift
 fileMover upload ${@}
 ;;
 downloadfiles)
 shift
 fileMover download ${@}
 ;;
 *)
 echo "Usage: $0"
 echo " ping : test service

Appendix C

C-3

functionality"
 echo " listprefixes : list registered
prefixes"
 echo " listfiles [prefix] : list files within
a prefix"
 echo " deletefiles [prefix] [file1] [file2] ... : delete files with
this prefix"
 echo " uploadfiles [prefix] [file1] [file2] ... : upload files with
this prefix"
 echo " downloadfiles [prefix] [file1] [file2] ... : download files
with this prefix"
 echo
 exit 0
 ;;
esac

Appendix C

C-4

D
Sample Public File Transfer Script for RI and
AIF

#!/bin/bash

Sample Public FTS script

EDIT HERE to reflect your environment

BASE_URL="https://__YOUR_TENANT_BASE_URL__"
TENANT="__YOUR-TENANT_ID__"
IDCS_URL="https://_YOUR__IDCS__URL__/oauth2/v1/token"
IDCS_CLIENTID="__YOUR_CLIENT_APPID__"
IDCS_CLIENTSECRET="__YOUR_CLIENT_SECRET___"
IDCS_SCOPE="rgbu:rsp:psraf-__YOUR_SCOPE__"

FINISHED

clientToken() {
 curl -sX POST "${IDCS_URL}" \
 --header "Authorization: Basic ${IDCS_AUTH}" \
 --header "Content-Type: application/x-www-form-urlencoded" \
 --data-urlencode "grant_type=client_credentials" \
 --data-urlencode "scope=${IDCS_SCOPE}" | jq -r .access_token
}

ping() {
 echo "Pinging"
 curl -sfX GET "${BASE_URL}/${TENANT}/RIRetailAppsPlatformServices/
services/private/FTSWrapper/ping" \
 --header 'Accept: application/json' \
 --header 'Accept-Language: en' \
 --header "Authorization: Bearer ${CLIENT_TOKEN}" | jq
}

listPrefixes() {
 echo "Listing storage prefixes"
 curl -sfX GET "${BASE_URL}/${TENANT}/RIRetailAppsPlatformServices/
services/private/FTSWrapper/listprefixes" \
 --header 'Accept: application/json' \
 --header 'Accept-Language: en' \
 --header "Authorization: Bearer ${CLIENT_TOKEN}" | jq
}

listFiles() {
 echo "Listing files for ${1}"
 curl -sfX GET "${BASE_URL}/${TENANT}/RIRetailAppsPlatformServices/

D-1

services/private/FTSWrapper/listfiles?prefix=${1}" \
 --header 'Accept: application/json' \
 --header 'Accept-Language: en' \
 --header "Authorization: Bearer ${CLIENT_TOKEN}" | jq
}

deleteFiles() {
 echo "Deleting files"
 json=$(fileCollection $@)
 curl --show-error -sfX DELETE "${BASE_URL}/${TENANT}/
RIRetailAppsPlatformServices/services/private/FTSWrapper/delete" \
 --header 'content-type: application/json' \
 --header 'Accept: application/json' \
 --header 'Accept-Language: en' \
 --header "Authorization: Bearer ${CLIENT_TOKEN}" \
 -d "${json}" | jq
}

fileMover() {
 movement="${1}"
 shift

 json=$(fileCollection $@)
 requestPAR "${movement}" "${json}"
}

fileCollection() {
 local json="{ \"listOfFiles\": [__FILES__] }"

 sp="${1}"
 shift

 while (("${#}")); do
 list="${list} { \"storagePrefix\": \"${sp}\", \"fileName\":
\"${1}\" }"
 if [[${#} -gt "1"]]; then
 list="${list},"
 fi
 shift
 done

 echo "${json/__FILES__/${list}}"
}

requestPAR() {
 use="${1}"
 echo "Requesting PARs for ${use}"
 pars="$(curl --show-error -sfX POST "${BASE_URL}/${TENANT}/
RIRetailAppsPlatformServices/services/private/FTSWrapper/${use}" \
 --header 'content-type: application/json' \
 --header 'Accept: application/json' \
 --header 'Accept-Language: en' \
 --header "Authorization: Bearer ${CLIENT_TOKEN}" \
 -d "${2}")"

 if [["$?" -ne "0"]]; then

Appendix D

D-2

 echo "Error retreiving PAR, check files specified."
 echo "${pars}"
 exit 1
 fi

 list=$(jq -r ".parList[]|[.name, .accessUri]|@csv" <<< "${pars}")

 while IFS='' read -r line; do
 fn=$(echo ${line}|cut -d\, -f1|tr -d \")
 par=$(echo ${line}|cut -d\, -f2|tr -d \")

 if [[${use} == "upload"]]; then
 echo "Uploading ${fn} to ${par}"
 curl -o log -X PUT --data-binary "@${fn}" "${par}"
 else
 echo "Downloading ${fn} from ${par}"
 curl -o ${fn} -X GET "${par}"
 fi
 done <<< "${list}"
}

#Entry point
IDCS_AUTH=$(echo -n ${IDCS_CLIENTID}:${IDCS_CLIENTSECRET} | base64 -w0)
CLIENT_TOKEN=$(clientToken)

case "${1}" in
 ping)
 ping
 ;;
 listprefixes)
 shift
 listPrefixes
 ;;
 listfiles)
 shift
 listFiles ${@}
 ;;
 deletefiles)
 shift
 deleteFiles ${@}
 ;;
 uploadfiles)
 shift
 fileMover upload ${@}
 ;;
 downloadfiles)
 shift
 fileMover download ${@}
 ;;
 *)
 echo "Usage: $0"
 echo " ping : test service
functionality"
 echo " listprefixes : list registered
prefixes"

Appendix D

D-3

 echo " listfiles [prefix] : list files within
a prefix"
 echo " deletefiles [prefix] [file1] [file2] ... : delete files with
this prefix"
 echo " uploadfiles [prefix] [file1] [file2] ... : upload files with
this prefix"
 echo " downloadfiles [prefix] [file1] [file2] ... : download files
with this prefix"
 echo
 exit 0
 ;;
esac

Appendix D

D-4

E
Sample Validation SQLs

This set of sample SQL commands provides scripts to run using APEX which can help validate
your initial dimension and fact loads, especially if it is the first time loading the data and quality
is unknown. Do not load data into the platform without performing some level of validation on it
first, as this will greatly reduce the time spent reworking and reloading data.

--
-- Checks for CALENDAR.csv file load
--
-- Verify initial calendar data before staging it further, row counts should
match data file
SELECT * FROM W_MCAL_PERIOD_DTS

-- Check total counts, all counts should be same. This can indirectly check
for nulls in required columns.
SELECT
count(*),count(MCAL_CAL_ID),count(MCAL_PERIOD_TYPE),count(MCAL_PERIOD_NAME),
count(MCAL_PERIOD),count(MCAL_PERIOD_ST_DT),count(MCAL_PERIOD_END_DT),count(MC
AL_QTR),
count(MCAL_YEAR),count(MCAL_QTR_START_DT),count(MCAL_QTR_END_DT),count(MCAL_YE
AR_START_DT),
count(MCAL_YEAR_END_DT) FROM W_MCAL_PERIOD_DTS

-- This should not return any rows
SELECT * FROM W_MCAL_PERIOD_DTS WHERE MCAL_CAL_ID IS NULL or MCAL_CAL_ID !=
'Retail Calendar~41'

-- Checking duplicate rows, if any. This should not return any rows.
SELECT MCAL_YEAR,MCAL_PERIOD_NAME,count(*) FROM W_MCAL_PERIOD_DTS GROUP BY
MCAL_YEAR,MCAL_PERIOD_NAME having count(MCAL_PERIOD_NAME) > 1

-- Check number of periods per year. Should always be 12.
SELECT MCAL_YEAR,count(MCAL_PERIOD_NAME) FROM W_MCAL_PERIOD_DTS GROUP BY
MCAL_YEAR ORDER BY MCAL_YEAR
SELECT MCAL_YEAR,count(MCAL_PERIOD) FROM W_MCAL_PERIOD_DTS GROUP BY MCAL_YEAR
ORDER BY MCAL_YEAR

-- After Load procedures completed, check following tables
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from W_MCAL_PERIOD_D
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from W_MCAL_DAY_D
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from W_MCAL_WEEK_D

--

E-1

-- Checks for PRODUCT.csv file load
--
-- Verify initial product data before staging it further, row counts should
match data file
select * from W_PRODUCT_DTS

-- Check total count, all counts should be same. This can indirectly check
for nulls in required columns.
SELECT
count(*),count(item),count(distinct(item)),count(item_level),count(tran_level)
,
count(LVL4_PRODCAT_ID),count(LVL4_PRODCAT_UID),count(LVL5_PRODCAT_ID),count(LV
L5_PRODCAT_UID),
count(LVL6_PRODCAT_ID),count(LVL7_PRODCAT_ID),count(LVL8_PRODCAT_ID),count(TOP
_PRODCAT_ID),
count(ITEM_DESC),count(LVL4_PRODCAT_DESC),count(LVL5_PRODCAT_DESC),count(LVL6_
PRODCAT_DESC),
count(LVL7_PRODCAT_DESC),count(LVL8_PRODCAT_DESC),count(TOP_PRODCAT_DESC)
FROM W_PRODUCT_DTS

-- Check individual counts to make sure it aligns with your source data
SELECT
count(*),count(ITEM_PARENT),count(distinct(ITEM_PARENT)),count(ITEM_GRANDPAREN
T),count(distinct(ITEM_GRANDPARENT)) FROM W_PRODUCT_DTS WHERE ITEM_LEVEL = 1
SELECT
count(*),count(ITEM_PARENT),count(distinct(ITEM_PARENT)),count(ITEM_GRANDPAREN
T),count(distinct(ITEM_GRANDPARENT)) FROM W_PRODUCT_DTS WHERE ITEM_LEVEL = 2
SELECT
count(*),count(ITEM_PARENT),count(distinct(ITEM_PARENT)),count(ITEM_GRANDPAREN
T),count(distinct(ITEM_GRANDPARENT)) FROM W_PRODUCT_DTS WHERE ITEM_LEVEL = 3

-- Checking duplicate rows, if any. This should not return any rows.
SELECT item,count(1) FROM W_PRODUCT_DTS GROUP BY item having count(1) > 1

-- Check item_level, should not have NULL, should have values only 1,2 or 3.
Make sure Count makes sense
SELECT item_level, count(*) FROM W_PRODUCT_DTS GROUP BY item_level ORDER BY 1

-- Check tran_level, should not have NULL, should have only one value for our
purpose. Make sure Count makes sense
SELECT tran_level, count(*) FROM W_PRODUCT_DTS GROUP BY tran_level ORDER BY 1

-- After DTS to DS job executed, check following tables for data
SELECT /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) FROM W_PRODUCT_DS
SELECT /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) FROM W_PRODUCT_DS_TL
SELECT /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) FROM W_PROD_CAT_DHS
SELECT /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) FROM W_DOMAIN_MEMBER_DS_TL

-- Expect records for "MCAT" which is the product hierarchy labels code
SELECT DOMAIN_CODE, DOMAIN_TYPE_CODE,LANGUAGE_CODE,
SRC_LANGUAGE_CODE,count(1)
FROM W_DOMAIN_MEMBER_DS_TL GROUP BY DOMAIN_CODE,

Appendix E

E-2

DOMAIN_TYPE_CODE,LANGUAGE_CODE, SRC_LANGUAGE_CODE

-- After Load procedures completed, check following tables
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from w_prod_cat_dh
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from w_product_d
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from w_product_d_tl

-- check for MCAT records for hierachy labels, should align with hierachy
level counts
select domain_code,count(*) from W_DOMAIN_MEMBER_LKP_TL group by domain_code

--
-- Checks for ORGANIZATION.csv file load
--
-- Verify initial location data before staging it further, row counts should
match data file
SELECT * FROM W_INT_ORG_DTS

-- Check total count, all counts should be same. This can indirectly check
for nulls in required columns.
SELECT
count(*),count(ORG_NUM),count(distinct(ORG_NUM)),count(ORG_TYPE_CODE),count(CU
RR_CODE),
count(ORG_HIER10_NUM),count(ORG_HIER11_NUM),count(ORG_HIER12_NUM),count(ORG_HI
ER13_NUM),
count(ORG_TOP_NUM),count(ORG_DESC),count(ORG_HIER10_DESC),count(ORG_HIER11_DES
C),
count(ORG_HIER12_DESC),count(ORG_HIER13_DESC),count(ORG_TOP_DESC) FROM
W_INT_ORG_DTS

-- Checking duplicate rows, if any. This should not return any rows.
SELECT ORG_NUM,count(1) FROM W_INT_ORG_DTS GROUP BY ORG_NUM having count(1) >
1

-- Check ORG_TYPE_CODE, CURR_CODE should not have nulls
-- ORG_TYPE_CODE should be either "S" for Store or "W" for Warehouse
SELECT ORG_TYPE_CODE, CURR_CODE, count(*) FROM W_INT_ORG_DTS GROUP BY
ORG_TYPE_CODE, CURR_CODE ORDER BY 2,1

-- After DTS to DS job executed, check following tables for expected data
SELECT /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) FROM W_INT_ORG_DS
SELECT /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) FROM W_INT_ORG_DS_TL
SELECT /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) FROM W_INT_ORG_DHS
SELECT /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) FROM W_DOMAIN_MEMBER_DS_TL
-- Expect records for "RTL_ORG" which is the location hierarchy labels code
SELECT DOMAIN_CODE, DOMAIN_TYPE_CODE,LANGUAGE_CODE,
SRC_LANGUAGE_CODE,count(1)
FROM W_DOMAIN_MEMBER_DS_TL GROUP BY DOMAIN_CODE,

Appendix E

E-3

DOMAIN_TYPE_CODE,LANGUAGE_CODE, SRC_LANGUAGE_CODE

-- Org hierarchy level validation on DHS table before loading it to DH
-- On first loading a new hierarchy, this must return with zero issues in the
level structure. DO NOT proceed if any issues show up.
SELECT '1',
 'LOCATION org_hier9_num' LEVEL_DESC,
 location_a.org_hier9_num C_LEVEL,
 location_a.org_hier10_num P1_LEVEL,
 location_a.org_hier11_num P2_LEVEL,
 location_a.org_hier12_num P3_LEVEL,
 location_a.org_hier13_num P4_LEVEL,
 location_a.org_top_num P5_LEVEL
 FROM w_int_org_dhs location_a, w_int_org_dhs location_b
 WHERE location_a.level_name = 'LOCATION'
 AND location_b.level_name = location_a.level_name
 AND location_a.org_hier9_num = location_b.org_hier9_num
 AND (location_a.org_hier10_num <> location_b.org_hier10_num
 or location_a.org_hier11_num <> location_b.org_hier11_num
 or location_a.org_hier12_num <> location_b.org_hier12_num
 or location_a.org_hier13_num <> location_b.org_hier13_num
 or location_a.org_top_num <> location_b.org_top_num)
 UNION ALL
 SELECT '1',
 'DISTRICT org_hier10_num' LEVEL_DESC,
 location_a.org_hier10_num C_LEVEL,
 null P1_LEVEL,
 location_a.org_hier11_num P2_LEVEL,
 location_a.org_hier12_num P3_LEVEL,
 location_a.org_hier13_num P4_LEVEL,
 location_a.org_top_num P5_LEVEL
 FROM w_int_org_dhs location_a, w_int_org_dhs location_b
 where location_a.level_name = 'DISTRICT'
 and location_b.level_name = location_a.level_name
 and location_a.org_hier10_num = location_b.org_hier10_num
 and (location_a.org_hier11_num <> location_b.org_hier11_num
 or location_a.org_hier12_num <> location_b.org_hier12_num
 or location_a.org_hier13_num <> location_b.org_hier13_num
 or location_a.org_top_num <> location_b.org_top_num)
 UNION ALL
 SELECT '1',
 'REGION org_hier11_num' LEVEL_DESC,
 location_a.org_hier11_num C_LEVEL,
 NULL P1_LEVEL,
 NULL P2_LEVEL,
 location_a.org_hier12_num P3_LEVEL,
 location_a.org_hier13_num P4_LEVEL,
 location_a.org_top_num P5_LEVEL
 FROM w_int_org_dhs location_a, w_int_org_dhs location_b
 where location_a.level_name = 'REGION'
 and location_b.level_name = location_a.level_name
 and location_a.org_hier11_num = location_b.org_hier11_num
 and (location_a.org_hier12_num <> location_b.org_hier12_num
 or location_a.org_hier13_num <> location_b.org_hier13_num
 or location_a.org_top_num <> location_b.org_top_num)
 UNION ALL

Appendix E

E-4

 SELECT '1',
 'AREA org_hier12_num' LEVEL_DESC,
 location_a.org_hier12_num C_LEVEL,
 NULL P1_LEVEL,
 NULL P2_LEVEL,
 NULL P3_LEVEL,
 location_a.org_hier13_num P4_LEVEL,
 location_a.org_top_num P5_LEVEL
 FROM w_int_org_dhs location_a, w_int_org_dhs location_b
 where location_a.level_name = 'AREA'
 and location_b.level_name = location_a.level_name
 and location_a.org_hier12_num = location_b.org_hier12_num
 and (location_a.org_hier13_num <> location_b.org_hier13_num
 or location_a.org_top_num <> location_b.org_top_num)
 UNION ALL
 SELECT '1',
 'CHAIN org_hier13_num' LEVEL_DESC,
 location_a.org_hier13_num C_LEVEL,
 NULL P1_LEVEL,
 NULL P2_LEVEL,
 NULL P3_LEVEL,
 NULL P4_LEVEL,
 location_a.org_top_num P5_LEVEL
 FROM w_int_org_dhs location_a, w_int_org_dhs location_b
 where location_a.level_name = 'CHAIN'
 and location_b.level_name = location_a.level_name
 and location_a.org_hier13_num = location_b.org_hier13_num
 and location_a.org_top_num <> location_b.org_top_num;

-- After Load procedures completed, check following tables for final
dimension data
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from w_int_org_dh
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from w_int_org_d
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from w_int_org_d_tl

-- check for RTL_ORG records for the descriptions of hierarchy levels
select domain_code,count(*) from W_DOMAIN_MEMBER_LKP_TL group by domain_code

--
-- Checks on EXCH_RATE.csv file load
--
select * from w_exch_rate_dts

select * from w_exch_rate_gs

select * from w_exch_rate_g

--
-- Checks on ATTR.csv and PROD_ATTR.csv file load
--
select * from w_attr_dts

Appendix E

E-5

select * from w_product_attr_dts
select * from w_rtl_item_grp1_ds
select * from w_rtl_item_grp1_d

--
-- Check on W_DOMAIN_MEMBER_LKP_TL issues while loading dimensions
--
--- DOMAIN MEMBER DUPLICATE RECORD ERROR ---
SELECT DOMAIN_CODE,DOMAIN_TYPE_CODE,DOMAIN_MEMBER_CODE,count(1) FROM
W_DOMAIN_MEMBER_DS_TL GROUP BY
DOMAIN_CODE,DOMAIN_TYPE_CODE,DOMAIN_MEMBER_CODE having count(1) > 1

SELECT DOMAIN_TYPE_CODE, DOMAIN_MEMBER_CODE, DOMAIN_MEMBER_NAME FROM
W_DOMAIN_MEMBER_DS_TL WHERE (DOMAIN_CODE,DOMAIN_TYPE_CODE,DOMAIN_MEMBER_CODE)
IN
(SELECT DOMAIN_CODE,DOMAIN_TYPE_CODE,DOMAIN_MEMBER_CODE FROM
W_DOMAIN_MEMBER_DS_TL GROUP BY
DOMAIN_CODE,DOMAIN_TYPE_CODE,DOMAIN_MEMBER_CODE having count(1) > 1)
ORDER BY 1,2,3

--
-- Checks on SALES.csv file
--
-- Verify initial sales data before staging it further, check all columns are
populated with expected values (i.e. CTX was properly formed)
select * from W_RTL_SLS_TRX_IT_LC_DY_FTS

-- Should match the record count from last loaded SALES.csv file
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from W_RTL_SLS_TRX_IT_LC_DY_FTS

-- Should match W_RTL_SLS_TRX_IT_LC_DY_FTS count
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from W_RTL_SLS_TRX_IT_LC_DY_FS

-- Should match or be close W_RTL_SLS_TRX_IT_LC_DY_FS count
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from W_RTL_SLS_TRX_IT_LC_DY_F

-- Look for sls_trx_id in stage but not final sales table
select * from
(
select fs.fs_trx_id, tg_trx_id
from
(select /*+ parallel */ sls_trx_id fs_trx_id from w_rtl_sls_trx_it_lc_dy_fs)
fs left outer join
(select sls_trx_id tg_trx_id from w_rtl_sls_trx_it_lc_dy_f union all select
sls_trx_id from e$_w_rtl_sls_trx_it_lc_dy_tmp) tg
on (fs.fs_trx_id = tg.tg_trx_id)
) where tg_trx_id is null;

-- Look for sls_trx_id/prod_it_wid in stage but not final sales table
select * from
(

Appendix E

E-6

select fs.prod_it_wid, fs.fs_trx_id, prod_wid, tg_trx_id
from
(select /*+ parallel */ prod_it_wid, sls_trx_id fs_trx_id from
w_rtl_sls_trx_it_lc_dy_tmp) fs left outer join
(select prod_wid, sls_trx_id tg_trx_id from w_rtl_sls_trx_it_lc_dy_f) tg
on (fs.prod_it_wid = tg.prod_wid and fs.fs_trx_id = tg.tg_trx_id)
) where tg_trx_id is null or prod_wid is null;

--
-- Checks on INVENTORY.csv file
--
-- Verify initial inventory data before staging it further, check all columns
are populated with expected values (i.e. CTX was properly formed)
select * from W_RTL_INV_IT_LC_DY_FTS

-- Should match the record count from last loaded INVENTORY.csv file
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from W_RTL_INV_IT_LC_DY_FTS

-- Check that data is making it to target tables after load
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from W_RTL_INV_IT_LC_DY_F
select /*+ OPT_PARAM('_optimizer_answering_query_using_stats' 'FALSE') */
count(*) from W_RTL_INV_IT_LC_WK_A

-- inventory validation check after rejected records occur (Support needs to
run this currently, APEX doesn't provide E$ or TMP tables)
SELECT 'E$_W_RTL_INV_IT_LC_DY_TMP','PROD_IT_NUM' DIMM_NAME,PROD_IT_NUM
DIMM_VALUE ,NULL,CHECK_DATE,EFFECTIVE_FROM_DT,EFFECTIVE_TO_DT,'INVALID_PROD_IT
_NUM' INVALID_REASON,NULL,NULL
FROM
(SELECT DISTINCT PROD_IT_NUM,TRUNC(CHECK_DATE) CHECK_DATE, NULL
EFFECTIVE_FROM_DT, NULL EFFECTIVE_TO_DT FROM E$_W_RTL_INV_IT_LC_DY_TMP WHERE
PROD_IT_NUM NOT IN (SELECT PROD_IT_NUM FROM W_PRODUCT_D_RTL_TMP) UNION ALL
SELECT DISTINCT DIMM.PROD_IT_NUM, TRUNC(ERR.CHECK_DATE) CHECK_DATE,
DIMM.SRC_EFF_FROM_DT EFFECTIVE_FROM_DT, DIMM.SRC_EFF_TO_DT EFFECTIVE_TO_DT
from W_PRODUCT_D_RTL_TMP DIMM, E$_W_RTL_INV_IT_LC_DY_TMP ERR WHERE
DIMM.PROD_IT_NUM = ERR.PROD_IT_NUM AND (ERR.DAY_DT > DIMM.SRC_EFF_TO_DT OR
ERR.DAY_DT < DIMM.SRC_EFF_FROM_DT) AND NOT EXISTS (SELECT 1 FROM
W_PRODUCT_D_RTL_TMP DIMM1 WHERE ERR.PROD_IT_NUM = DIMM1.PROD_IT_NUM AND
(ERR.DAY_DT <= DIMM1.SRC_EFF_TO_DT AND ERR.DAY_DT >= DIMM.SRC_EFF_FROM_DT)))
UNION ALL
SELECT 'E$_W_RTL_INV_IT_LC_DY_TMP','ORG_NUM' DIMM_NAME,ORG_NUM
DIMM_VALUE ,NULL,CHECK_DATE,EFFECTIVE_FROM_DT,EFFECTIVE_TO_DT,'INVALID_ORG_DH_
NUM' INVALID_REASON,NULL,NULL
FROM
(SELECT DISTINCT ORG_NUM,TRUNC(CHECK_DATE) CHECK_DATE, NULL
EFFECTIVE_FROM_DT, NULL EFFECTIVE_TO_DT FROM E$_W_RTL_INV_IT_LC_DY_TMP WHERE
ORG_NUM NOT IN (SELECT ORG_NUM FROM W_INT_ORG_DH_RTL_TMP) UNION ALL SELECT
DISTINCT DIMM.ORG_NUM, TRUNC(ERR.CHECK_DATE) CHECK_DATE,
DIMM.EFFECTIVE_FROM_DT EFFECTIVE_FROM_DT, DIMM.EFFECTIVE_TO_DT
EFFECTIVE_TO_DT from W_INT_ORG_DH_RTL_TMP DIMM, E$_W_RTL_INV_IT_LC_DY_TMP ERR
WHERE DIMM.ORG_NUM = ERR.ORG_NUM AND (ERR.DAY_DT > DIMM.EFFECTIVE_TO_DT OR
ERR.DAY_DT < DIMM.EFFECTIVE_FROM_DT) AND NOT EXISTS (SELECT 1 FROM
W_INT_ORG_DH_RTL_TMP DIMM1 WHERE ERR.ORG_NUM = DIMM1.ORG_NUM AND (ERR.DAY_DT

Appendix E

E-7

<= DIMM1.EFFECTIVE_TO_DT AND ERR.DAY_DT >= DIMM.EFFECTIVE_FROM_DT)))
UNION ALL
SELECT 'E$_W_RTL_INV_IT_LC_DY_TMP','ORG_NUM' DIMM_NAME,ORG_NUM
DIMM_VALUE,NULL,CHECK_DATE,EFFECTIVE_FROM_DT,EFFECTIVE_TO_DT,'INVALID_ORG_NUM'
 INVALID_REASON,NULL,NULL
FROM
(SELECT DISTINCT ORG_NUM,TRUNC(CHECK_DATE) CHECK_DATE, NULL
EFFECTIVE_FROM_DT, NULL EFFECTIVE_TO_DT FROM E$_W_RTL_INV_IT_LC_DY_TMP WHERE
ORG_NUM NOT IN (SELECT ORG_NUM FROM W_INT_ORG_D_RTL_TMP) UNION ALL SELECT
DISTINCT DIMM.ORG_NUM, TRUNC(ERR.CHECK_DATE) CHECK_DATE,
DIMM.EFFECTIVE_FROM_DT EFFECTIVE_FROM_DT, DIMM.EFFECTIVE_TO_DT
EFFECTIVE_TO_DT from W_INT_ORG_D_RTL_TMP DIMM, E$_W_RTL_INV_IT_LC_DY_TMP ERR
WHERE DIMM.ORG_NUM = ERR.ORG_NUM AND (ERR.DAY_DT > DIMM.EFFECTIVE_TO_DT OR
ERR.DAY_DT < DIMM.EFFECTIVE_FROM_DT))
UNION ALL
SELECT 'E$_W_RTL_INV_IT_LC_DY_TMP','DAY_DT'
DIMM_NAME,TO_CHAR(DAY_DT,'YYYYMMDD') DIMM_VALUE,
NULL,CHECK_DATE,EFFECTIVE_FROM_DT,EFFECTIVE_TO_DT,'INVALID_DAY_DT'
INVALID_REASON,NULL,NULL
FROM
(SELECT DISTINCT DAY_DT,TRUNC(CHECK_DATE) CHECK_DATE, NULL EFFECTIVE_FROM_DT,
NULL EFFECTIVE_TO_DT FROM E$_W_RTL_INV_IT_LC_DY_TMP WHERE (DATASOURCE_NUM_ID,
DAY_DT) NOT IN (SELECT MDAY.DATASOURCE_NUM_ID,MCAL_DAY_DT FROM W_MCAL_DAY_D
MDAY,W_MCAL_CONTEXT_G MTEXT WHERE MDAY.MCAL_CAL_WID=MTEXT.MCAL_CAL_WID AND
MTEXT.ORG_ID IN (Select PARAM_VALUE From C_ODI_PARAM Where PARAM_NAME =
'ORG_ID' AND SCENARIO_NAME = 'GLOBAL') AND MTEXT.CALENDAR_ID IN (Select
PARAM_VALUE From C_ODI_PARAM Where PARAM_NAME = 'CALENDAR_ID' AND
SCENARIO_NAME = 'GLOBAL')));

Appendix E

E-8

F
Accessibility

This section documents support for accessibility in the Retail Analytics and Planning solutions.
It describes the support for accessibility and assistive technologies within the underlying
technology used by the solutions. Additionally, it covers any accessibility support and
considerations built into the application beyond the capabilities of the underlying platform.

ADF-Based Applications
The central user interface for the AI Foundation Cloud Services is built using ADF Faces.
Application Development Framework (ADF) Faces user-interface components have built-in
accessibility support for visually and physically impaired users. User agents such as a web
browser rendering to nonvisual media such as a screen reader can read component text
descriptions to provide useful information to impaired users.

ADF Faces provides two levels of application accessibility support:

• Default: By default, ADF Faces generates components that have rich user interface
interaction, and are also accessible through the keyboard.

Note:

In the default mode, screen readers cannot access all ADF Faces components. If
a visually impaired user is using a screen reader, it is recommended to use the
Screen Reader mode

• Screen Reader: ADF Faces generates components that are optimized for use with screen
readers. The Screen Reader mode facilitates the display for visually impaired users, but
will degrade the display for sighted users (without visual impairment).

Additional fine-grained accessibility levels as described below are also supported:

• High-contrast: ADF Faces can generate high-contrast–friendly visual content. High-
contrast mode is intended to make ADF Faces applications compatible with operating
systems or browsers that have high-contrast features enabled. For example, ADF Faces
changes its use of background images and background colors in high-contrast mode to
prevent the loss of visual information.

Note:

ADF Faces’ high-contrast mode is more beneficial if used in conjunction with
your browser's or operating system's high-contrast mode. Also, some users
might find it beneficial to use large-font mode along with high-contrast mode.

• Large-fonts: ADF Faces can generate browser-zoom-friendly content. In default mode,
most text and many containers have a fixed font size to provide a consistent and defined
look. In large-font mode, text and containers have a scalable font size. This allows ADF
Faces both to be compatible with browsers that are set to larger font sizes and to work with
browser-zoom capabilities.

F-1

Note:

If you are not using large-font mode or browser-zoom capabilities, you should
disable large-font mode. Also, some users might find it beneficial to use high-
contrast mode along with the large-font mode.

AIF provides the ability to switch between the above accessibility support levels in the
application, so that users can choose their desired type of accessibility support, if required. It
exposes a user preferences screen in which the user can specify the accessibility preferences/
mode which will allow the user to operate in that mode.

Configuring Application for Screen Reader Mode
Users can configure their session to the accessibility mode by setting user references on the
home page of the application as shown below. Perform the following procedure to configure a
user preference for screen reader mode.

1. Log into the AIF application. Close any open tabs, as they will prevent the accessibility
screen from opening.

2. Select Preferences from the logged-in user menu in the application home page.

Figure F-1 Logged-in User Menu

3. Click Accessibility in the Tasks pane to open the Accessibility tab.

Figure F-2 Accessibility Tab

Appendix F
ADF-Based Applications

F-2

4. Select Screen Reader to enable accessibility mode, and click Save.

Figure F-3 Enabling the Screen Reader

5. Click Back to Home to return to the home page.

Now the application is enabled in the screen reader mode to assist a vision-challenged
user. Some of the graphical content is also displayed in a tabular mode.

Setting Accessibility to Default
Perform the following procedure to set Accessibility mode to Default mode.

1. From the application home page, select Preferences from the logged in user menu.

Figure F-4 Logged-in User Menu

2. Click Accessibility in the Tasks pane to open the Accessibility tab.

Appendix F
ADF-Based Applications

F-3

Figure F-5 Accessibility Tab

3. Select Default mode.

Figure F-6 Accessibility Settings

4. Click Save to save the settings.

5. Follow the same sequence of steps for the High Contrast and Font Size options within the
same screen, as needed.

JET-Based Applications
Some components of the AI Foundation solutions (such as Profile Science and Inventory
Planning Optimization) and the interface for the Planning solutions are built using Oracle
JavaScript Extension Toolkit (JET).

Appendix F
JET-Based Applications

F-4

Oracle JET components have built-in accessibility support that conforms to the Web Content
Accessibility Guidelines version 2.0 at the AA level (WCAG 2.0 AA), developed by the World
Wide Web Consortium (W3C).

Note:

Because different browsers themselves support accessibility somewhat differently,
user experience tends to differ on different web-browsers.

Oracle JET components provide support for:

• Keyboard and touch navigation

Oracle JET components follow the Web Accessibility Initiative - Accessible Rich Internet
Application (WAI-ARIA) guidelines.

• Zoom

Oracle JET supports browser zooming up to 200%.

• Screen reader

Oracle JET supports screen readers such as JAWS, Apple VoiceOver, and Google
Talkbalk by generating content that complies with WAI-ARIA standards, and no special
mode is needed.

• Oracle JET component roles and names

Each Oracle JET component has an appropriate role, such as button, link, and so on, and
each component supports an associated name (label), if applicable.

• Sufficient color contrast

Oracle JET provides the Alta theme which is designed to provide a luminosity contrast ratio
of at least 4.5:1.

OAS-Based Applications
Retail Insights uses the Oracle Analytics Server as its user interface, and benefits from all the
native accessibility features added to that platform. For details on the accessibility features in
OAS, refer to the Accessibility Features and Tips chapter in the Oracle® Analytics Visualizing
Data in Oracle Analytics Server guide.

RPASCE Configuration Tools
The configuration tools for the Retail Predictive Application Server Cloud Edition (RPASCE) is
a separate component used with the Planning applications and it has its own set of
accessibility features. Refer to the Accessibility chapter in the Oracle Retail Predictive
Application Server Cloud Edition Configuration Tools User Guide.

Report Authoring Guidelines
Users of the Retail Analytics and Planning solutions may leverage Oracle Analytics for creating
custom content such as reports and dashboards. It is possible to develop this content with

Appendix F
OAS-Based Applications

F-5

https://docs.oracle.com/en/middleware/bi/analytics-server/user-oas/accessibility-features-and-tips.html#GUID-D3C1FD68-DE1A-463D-9869-EB67FD3F78A1
https://docs.oracle.com/en/industries/retail/retail-predictive-application-server-cloud-edition/22.1.202.0/rcmss/accessibility.htm#GUID-B50DB48D-8DF5-462F-AE67-05B9140C994B

accessibility in mind without sacrificing any features or functionality. Some general guidelines
for creating accessible content are provided below.

Color Usage in Tables and Graphs
The default set of color pallets used in Oracle Analytics for cell shading and visualizations are
designed with accessibility in mind and should provide sufficient contrast between on-screen
elements. If you are choosing your own colors, avoid using multiple similar colors for data
elements, and do not convey important information solely through the color of the element. To
select a color range or specify your own, right-click on a visual element and use the Color
menu option for Manage Assignments.

Figure F-7 Color Properties

Text and Label Usage
By default, every table or graph view added to a report will have a title included. Use the text
properties of each view to add additional text such as graph labels, hover text, and custom
view headers. All views should include these textual elements to better support users who are
visually impaired or leveraging an accessibility feature like large fonts or screen readers. To
access the text properties, click the view and navigate to the left-side panel that appears.

Appendix F
Report Authoring Guidelines

F-6

Figure F-8 View Properties

Layout and Canvas Usage
Oracle Analytics allows you to arrange multiple views within a single on-screen layout, as well
as create multiple canvases with tabs and longer report layouts with automatic scrollbars
added as needed. It is best to keep each canvas simple and focused on only a couple of
views. Avoid using a large number of small charts or tables placed tightly together on-screen
and avoid requiring the user to scroll down the page repeatedly to see all the visuals. Create
multiple canvases to simplify your layouts and use a similar arrangement of data in each
canvas to make it easy to navigate and read.

Figure F-9 Example of Multiple Canvas Tabs

Appendix F
Report Authoring Guidelines

F-7

	Contents
	Send Us Your Comments
	Preface
	1 Introduction
	Overview
	Architecture
	Getting Started

	2 Setup and Configuration
	Configuration Overview
	Platform Configurations
	C_ODI_PARAM Initialization
	W_LANGUAGES_G Initialization
	C_MODULE_ARTIFACT Initialization
	C_MODULE_EXACT_TABLE Initialization
	C_HIST_LOAD_STATUS
	C_SOURCE_CDC
	W_GLOBAL_CURR_G

	Application Configurations
	Retail Insights
	AI Foundation Cloud Services and Forecasting
	Planning Platform

	3 Data Loads and Initial Batch Processing
	Data Requirements
	Platform Data Requirements
	File Upload Samples
	Example #1: Calendar Initialization
	Example #2: Product and Location Setup
	Example #3: Full dimension load
	Example #4: Sales Data Load
	Example #5: Multi-File Fact Data Load

	Uploading ZIP Packages

	Preparing to Load Data
	Calendar and Partition Setup
	Loading Data from Files
	Initialize Dimensions
	Loading Dimensions into RI
	Hierarchy Deactivation
	Loading Dimensions to Other Applications

	Load History Data
	Automated History Loads
	Sales History Load
	Inventory Position History Load
	Reloading Inventory Data
	Price History Load
	Reloading Price Data
	Purchase Order Loads
	Other History Loads

	Modifying Staged Data
	Reloading Dimensions
	Seed Positional Facts
	Run Nightly Batches

	Sending Data to AI Foundation
	Sending Data to Planning
	Process Overview
	Usage Examples

	Customized Planning Integrations
	Generating Forecasts for MFP
	Generating Forecasts for Inventory Planning Optimization Cloud Service-Demand Forecasting
	Implementation Flow Example
	Generating Forecasts for AP
	Loading Plans to RI
	Loading Forecasts to RI
	Loading Aggregate History Data
	Migrate Data Between Environments

	4 Integration with Merchandising
	Architecture Overview
	Merchandising Foundation Cloud Service Data Mapping
	Batch Schedule Definitions
	Ad Hoc Processes
	Batch Dependency Setup (Gen 2 Architecture)
	Batch Link Setup (Gen 2 Architecture)
	Module Setup in Retail Home (Gen 2 Architecture)
	Batch Job Setup (Gen 2 Architecture)
	Batch Job Setup (Gen 1 Architecture)
	Batch Setup for RMS On-Premise
	RDE Job Configuration
	Using RDE for Calendar Setup (Gen 2 Architecture)
	Using RDE for Dimension Loads (Gen 2 Architecture)
	Using RDE for Initial Seeding (Gen 2 Architecture)
	Using RDE for Initial Seeding (Gen 1 Architecture)

	5 Batch Orchestration
	Overview
	Initial Batch Setup
	Common Modules
	RI Modules
	AI Foundation Modules
	Maintenance Cycles
	Batch Setup Example
	Adjustments in POM

	Managing Multiple Data Sources
	Adjustments
	Costs
	Deal Income
	Intercompany Margin
	Inventory Position
	Inventory Reclass
	Markdowns
	Prices
	Purchase Orders
	Receipts
	Returns to Vendor
	Sales
	Sales Pack
	Sales Wholesale
	Transfers

	Configure POM Integrations
	Schedule the Batches
	Batch Flow Details
	Planning Applications Job Details
	Reprocessing Nightly Batch Files

	6 Data Processing and Transformations
	Data Warehouse Aggregate Tables
	Table Structures
	Key Columns
	Fact and Dimension Relationships

	Transformations from Data Warehouse to Planning
	Data Filtering and Conversions
	Data Mappings
	Product Mapping
	Organization Mapping
	Calendar Mapping
	Exchange Rate Mapping
	User Defined Attributes (UDA) Mapping
	Differentiator Attributes Mapping
	Item Attributes Mapping
	Differentiator Group Mapping
	Brand Mapping
	Replenishment Attribute Mapping
	Supplier Mapping
	Customer Segment Mapping
	Custom Flex Attribute Mapping
	Sales Mapping
	Gross Sales Mapping
	Inventory Position Mapping
	On Order Mapping
	Markdown Mapping
	Wholesale/Franchise Mapping
	Inventory Adjustments Mapping
	Inventory Receipts Mapping
	Inventory Transfers Mapping
	Inventory RTVs Mapping
	Inventory Reclass Mapping
	Deal Income Mapping
	Intercompany Margin Mapping
	Allocation Detail Mapping
	Transfer Detail Mapping

	Transformations in Planning

	7 Implementation Tools
	Retail Home
	Process Orchestration and Monitoring (POM)
	POM and Customer Modules Management

	Control & Tactical Center
	Data Visualizer
	File Transfer Services
	Required Parameters
	Base URL
	Tenant
	OCI IAM URL
	OCI IAM Scope
	Client ID and Secret
	MFP Example
	IPO Example
	AP Example

	Common HTTP Headers
	Retrieving Identity Access Client Token
	FTS API Specification
	FTS Script Usage
	Upload Files
	Download Files
	Download Archives

	BI Publisher
	Configuring Burst Reports for Object Storage
	Delivering Scheduled Reports through Object Storage
	Downloading Reports from Object Storage

	Application Express (APEX)
	Database Access Levels

	Postman

	8 Data File Generation
	Files Types and Data Format
	Context Files
	Application-Specific Data Formats
	Retail Insights
	Retail AI Foundation Cloud Services
	Planning Platform

	Dimension Files
	Product File
	Product Alternates
	Re-Using Product Identifiers

	Organization File
	Organization Alternates

	Calendar File
	Exchange Rates File
	Attributes Files

	Fact Files
	Fact Data Key Columns
	Fact Data Incremental Logic
	Multi-Threading and Parallelism
	Sales Data Requirements
	Sales Pack Data

	Inventory Data Requirements
	Price Data Requirements
	Receipts Data Requirements
	Transfer Data Requirements
	Adjustment Data Requirements
	RTV Data Requirements
	Markdown Data Requirements
	Purchase Order Data Requirements
	Other Fact File Considerations
	Positional Data Handling

	System Parameters File

	9 Extensibility
	AI Foundation Extensibility
	Custom Hooks for IW Extensions

	Planning Applications Extensibility
	Supported Application Configuration Customization
	Rules for Customizing Hierarchy
	Rules for Adding Measures
	Publishing Measures

	Rules for Adding Custom Rules
	Rules for Workbooks and Worksheets Extensibility
	Workbook Measure Override Extensibility
	Elapsed Lock Override

	Rules for Adding Custom Real-time Alerts into Existing Workbooks
	Adding a Custom Solution
	Adding Custom Styles
	Validating the Customized Configuration
	Successful Run of the Validation Script
	Unsuccessful Run of the Validation Script

	Taskflow Extensibility
	Customizing the Batch Process
	Custom Hooks and Boolean Scalar Measures for Flow Control
	Batch Control File Customization Guidelines

	Custom Batch Control Validation
	Dashboard Extensibility
	IPOCS-Demand Forecasting Dashboard Extensibility
	Dashboard Intersection
	Process to Customize the Dashboard
	Applying Changes to the Cloud Environment

	Customizing the MFP/AP Dashboard
	RAP Integration Interface Extensibility
	Application Specific Batch Control Information
	Batch Control Samples
	Boolean Scalar Measures for Flow Control

	Batch Control Samples
	Boolean Scalar Measures for Flow Control

	Batch Control Samples

	Programmatic Extensibility of RPASCE Through Innovation Workbench
	Architectural Overview
	Innovation Workbench from an RPASCE Context
	Innovation Workbench from a RAP Context

	RPASCE Configuration Tools Changes
	Measure Properties
	Rules and Expressions
	Integration Configuration

	RPASCE Special Expression - execplsql
	Arguments
	Examples
	Limitations
	Validations and Common Error Messages

	RPASCE Batch Control File Changes
	RPASCE Deployment
	Uploading Custom PL/SQL Packages

	RPASCE Helper Functions and API for IW
	PL/SQL Best Practices
	Abbreviations and Acronyms

	Input Data Extensibility
	Additional Source for Product Attributes
	Additional Source for Foundation Data
	Additional Source for Data Security
	Additional Sources for Measures
	Custom Sales Type
	Custom Fact Measures

	Additional Custom Fact Data

	Extensibility Example – Product Hierarchy
	Input File Changes
	AI Foundation Setup
	Planning Data Store Setup
	In-Season Forecast Setup

	A Legacy Foundation File Reference
	B Context File Table Reference
	C Sample Public File Transfer Script for Planning Apps
	D Sample Public File Transfer Script for RI and AIF
	E Sample Validation SQLs
	F Accessibility
	ADF-Based Applications
	Configuring Application for Screen Reader Mode
	Setting Accessibility to Default

	JET-Based Applications
	OAS-Based Applications
	RPASCE Configuration Tools
	Report Authoring Guidelines
	Color Usage in Tables and Graphs
	Text and Label Usage
	Layout and Canvas Usage

