
Oracle® Retail Data Store
Implementation Guide

Release 23.1.101.0
F76592-01
January 2023

Oracle Retail Data Store Implementation Guide, Release 23.1.101.0

F76592-01

Copyright © 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Implementation Overview

Separation of Replicated and Custom Data 1-2

Example 1-2

Support for Audit and Delete Tracking 1-2

2 Typical Implementation Events

3 Getting Started

APEX User Management 3-1

Data Visualization Access 3-4

4 Extension

RDS Extension Overview 4-1

RDS Architecture Basics 4-1

Environment Considerations 4-1

Prerequisites 4-2

Implementing a RESTful Service in APEX 4-2

URL Pattern 4-3

Handler 4-4

Security 4-5

Authentication 4-5

ORDS PRE-HOOK 4-5

Invoking a Data Service 4-6

Using RDS to Build Integration 4-6

Outbound Integration using a Data Service 4-8

Outbound Integration using Object Storage 4-9

Hypothetical Outbound Integration Problem 4-9

Retail Home Integrations 4-12

An Asynchronous Approach 4-14

Next Steps 4-15

iii

Monitoring Resource Consumption in RDS 4-15

Notification-Based Monitoring 4-17

Setting up the Notification Type 4-17

Implementing a RESTful Service in RDS 4-17

Setting up the POM Job 4-22

In Context Launch of an APEX App 4-25

Launching APEX Apps from Retail Home 4-26

5 Storage and CPU Usage

6 Version Updates

7 Notes

APEX 7-1

Visual Builder Studio 7-1

APEX and Autonomous Databases 7-1

Known Limitations and Issues 7-1

Limits on Service Initiated Queries and PL/SQL Blocks 7-1

Importing of Services 7-1

iv

Preface

This guide describes the administration tasks for Oracle Retail Data Store.

Audience

This guide is intended for administrators, and describes the administration tasks for Oracle
Retail Data Store.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

• Exact error message received

• Screen shots of each step you take

Oracle Help Center (docs.oracle.com)

Oracle Retail Product documentation is available on the following website https://
docs.oracle.com/en/industries/retail/html

Comments and Suggestions

Please give us feedback about Oracle Retail Help and Guides. You can send an e-mail to:
retail-doc_us@oracle.com

Oracle Retail Cloud Services and Business Agility

Oracle Retail Merchandising Cloud Services is hosted in the Oracle Cloud with the security
features inherent to Oracle technology and a robust data center classification, providing
significant uptime. The Oracle Cloud team is responsible for installing, monitoring, patching,
and upgrading retail software.

Included in the service is continuous technical support, access to software feature
enhancements, hardware upgrades, and disaster recovery. The Cloud Service model helps to
free customer IT resources from the need to perform these tasks, giving retailers greater

5

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com
https://docs.oracle.com/en/industries/retail/html
https://docs.oracle.com/en/industries/retail/html

business agility to respond to changing technologies and to perform more value-added
tasks focused on business processes and innovation.

Oracle Retail Software Cloud Service is acquired exclusively through a subscription
service (SaaS) model. This shifts funding from a capital investment in software to an
operational expense. Subscription-based pricing for retail applications offers flexibility
and cost effectiveness.

6

1
Implementation Overview

Oracle Retail Data Store (RDS) is a set of infrastructure and tools that allows you to build
extensions on top of Retail application data without affecting the original Retail applications.
These extensions can consist of database objects, web services, and user interfaces. This
Implementation Guide describes the solution and provides information about how you can
use RDS.

The core of RDS is a data replication implementation that uses Oracle GoldenGate to
replicate application data from Retail applications to a centralized Autonomous Data
Warehouse (ADW) database. The data is kept in sync with the source application database in
near-real-time.

This data is made available through Oracle REST Data Services (ORDS) and Application
Express (APEX) workspaces. When a retailer subscribes to RDS, they are given the URLs
and credentials to access these workspaces.

Figure 1-1 Data Replication to RDS via GoldenGate

• PDB - Pluggable Data Base. The source applications in the RGBU that will be replicating
to RDS store their data in pluggable database instances.

• ACFS - ASM (Automatic Storage Management) Cluster File System. A file system used
internally by GoldenGate to store the trail files that hold data replication information.

• ORDS - Oracle Rest Data Services. An Oracle tool that allows customers to create web
services connected directly to data in an Oracle database. RDS customers will use this to
create web services to access their custom data.

• APEX - Application Express. An Oracle tool that allows customers to create UI-based
applications connected directly to data in an Oracle database. RDS customers will use
this to create appliations that operate on their custom data.

1-1

• ADW - Autonomous Data Warehouse. An Oracle Autonomous Database offering
that is tailored toward data warehousing use cases. RDS stores its replicated data
and the customer's custom data here.

Separation of Replicated and Custom Data
The replicated application data is held in read-only schemas (one per source
application schema). The ORDS and APEX workspaces have access to a read-write
schema which can view the read-only schema's database objects. In the read-write
schema, you are free to create any database objects you need to create, and you
have read privileges to the replicated application data. When new database objects
are created in the read-only schema (for example when a patch is applied to the
source application), a scheduled database job in the RDS database grants the
appropriate read permissions for those objects to the read-write schema. This job runs
hourly.

Example

For Merchandising Foundation Cloud Service, an ORDS workspace is available that
grants access to the MFCS_RDS_CUSTOM schema. This schema is initially empty,
but allows creation of database objects, APEX applications, etc. This schema also has
read permissions to database objects in the MFCS_RDS schema, which is where the
actual replicated data resides. A customer can use the ORDS workspace to create
REST data services that can read the tables with replicated data, or can read and
write any custom tables that have been created. A customer can also build APEX
applications on top of the custom tables; the read-only replicated tables can be read
by the APEX application, but cannot be modified.

Each Retail application controls what data it replicates to the RDS database. Refer to
each application's product documentation for details about the data that is made
available in RDS.

Support for Audit and Delete Tracking
With basic replication, the data set in the source and target objects match. Records
that are, for example, deleted in the source are deleted from the target. Records that
are updated in the source are updated in the target, and the previous state of the data
is lost. For a subset of products supporting RDS, an additional set of tables are used
to track these changes so that custom processes in RDS have visibility to key changes
in data. If a table has been marked for audit tracking, every DML operation causes a
new record to be inserted into an RDS only audit tracking table. Audit tracking
produces a running log of all changes that have been made to the source table. If a
table has been marked for delete tracking, when a record is deleted, a new record is
inserted into an RDS only delete tracking table. Please refer to the RDS Data Model
guide for each supported product to understand if that product supports this feature
and to get details on the tables identified for tracking.

Chapter 1
Separation of Replicated and Custom Data

1-2

2
Typical Implementation Events

In any implementation including RDS, there are many steps along the way before a system is
running.

• Provisioning

– Provisioning includes the installation of the RDS Cloud Service including initial
infrastructure required. This includes an ADW instance with schemas available for
replication and extension, ORDS workspaces, and integration into Oracle Retail
Home for display of usage metrics.

• Data Seeding via Data Pump

– The next step is creating an initial data load into RDS from the source application
using Oracle Data Pump tools. This step is done by Oracle when the retailer
indicates they are ready to move forward.

– A prerequisite to this step is that the source application must have data ready to be
replicated; this may be an involved process depending on the application in question.
Refer to documentation for the source application.

– The result of this step is that a baseline set of data has been replicated from the
source application to the RDS read-only schema.

• GoldenGate Hub Configuration

– A GoldenGate Hub instance is configured to replicate data from the source
application's database to the RDS read-only schema.

– This is done by Oracle when the retailer indicates they are ready to move forward.

– The result of this is that the GoldenGate Hub is running and performing active
replication from the source applications' database.

• Extension

– In this step, the retailer uses the tools that are part of RDS to build the custom
extensions they need.

2-1

3
Getting Started

Once RDS is provisioned, the following APEX workspaces are available to use:

Table 3-1 APEX Workspaces

Workspace Name Source Cloud Service

MFCS_RDS_CUSTOM Merchandising Foundation Cloud Service

CE_RDS_CUSTOM Customer Engagement Cloud Service

SIOCS_RDS_CUSTOM Store Inventory Operations Cloud Service

OB_RDS_CUSTOM Order Broker Cloud Service

XO_RDS_CUSTOM Xstore Office Cloud Service

SE_RDS_CUSTOM Supplier Evaluation Cloud Service

BC_RDS_CUSTOM Brand Compliance Cloud Service

RICS_RDS_CUSTOM Retail Integration Cloud Service

Note:

These workspaces are available even if you have not subscribed to the associated
cloud services, but they contain no database objects or replicated data.

You can access these workspaces by navigating to the workspace login page for your
environment. The URL for this will be delivered to you after provisioning is complete, and
follows the pattern:

https://<base URL>/<environment ID>/ords/

For example:

https://ocacs.ocs.oc-test.com/nryfhvvl5ka2su3imnq6/ords/

APEX User Management
For the purposes of this documentation, there are two types of APEX users, end users and
development users. End users are users with access to the applications built with APEX.
They will log into and use those applications, but not be involved in their development or
management. Development users, on the other hand, can create and manage the APEX
applications the end users use. Within this set of users, there are Developer and Workspace
Administrator roles. Users with Developer role can create and edit APEX applications while
Workspace Administrators can do that as well as manage the application lifecycle and
workspace settings.

3-1

This document will focus on managing Development users. End user authentication is
managed by the Workspace Administrator, who can choose any supported form of
authentication for the APEX applications developed. For details on supported models,
please reference the APEX App Builder User’s Guide, section 20.4 Establishing User
Identity Through Authentication.

Development user authentication is provided through integration with IDCS. The APEX
Workspaces provisioned for RDS are configured to use HTTP Header Variable
authentication. For full details on this model, please refer to the APEX App Builder
User’s Guide, section 20.4.3.4 HTTP Header Variable.

Once provisioned, each workspace comes with a single user. This user is the
Workspace Administrator for that workspace. For initial access, each Workspace
Administrator account must have a matching username in IDCS. The Workspace
Administrator account passwords and their lifecycle will then be managed in IDCS
going forward. There is no need to synchronize this user with APEX. The only
requirement is the usernames match.

This is the set of Workspace Administrators provided with this release:

• MFCS_RDS_CUSTOM

• CE_RDS_CUSTOM

• SIOCS_RDS_CUSTOM

• OB_RDS_CUSTOM

• XO_RDS_CUSTOM

• SE_RDS_CUSTOM

• BC_RDS_CUSTOM

• RICS_RDS_CUSTOM

In most cases, teams will need to create additional development users in these
workspaces to facilitate the development of APEX applications and REST endpoints.
The Workspace Administrator account has the permissions to create additional
Developer and Workspace Administrator users through the APEX UI. Any additional
users created will need to follow the same pattern as the default user accounts. Create
the users in APEX and create matching usernames in IDCS. Like the default
Workspace Administrator accounts, these new accounts will have their passwords live
in IDCS. For the APEX user creation, use the workspace's Administration menu in the
top right corner to access Manage Users and Groups.

Chapter 3
APEX User Management

3-2

Create the users needed by selecting the Create User button and filling in the form.

For full details, please refer to the APEX Administration Guide.

Chapter 3
APEX User Management

3-3

Data Visualization Access
RDS is provisioned with Oracle Analytics Server Data Visualization capabilities. You
can access these capabilities by navigating to the Retail Home Application Navigator
and tapping Data Visualization or Analytics Publisher.

These links are protected by the same IDCS instance and fully supports single sign-
on.

For full details on taking advantage of Data Visualization and Analytics Publisher in
RDS, please refer to the Visualizing Data in Oracle Analytics Server documentation.

Chapter 3
Data Visualization Access

3-4

4
Extension

RDS Extension Overview

RDS Architecture Basics

The defining feature of RDS is the data of each participating product resides in a single
dedicated read-only schema, e.g., MFCS. Product data is made accessible to the customer in
a dedicated companion, writeable schema using synonyms. All custom data objects are
created in this companion, writeable schema. Management and retention of custom data
objects is wholly the responsibility of the customer.

The product data in RDS is a replica of selected data residing in an operations system such
as MFCS. RDS is not part of MFCS, but a repository of MFCS data. Moreover, the data
exchange is one way from MFCS to RDS. Any data movement, directly or indirectly, from
RDS to MFCS is orchestrated by the customer.

Although data from multiple products reside in RDS, there is only an informal guarantee that
if there are no updates to a given set of data items, then eventually all accesses will return
temporally consistent results. What this statement means is that after sufficient time has
passed, RDS accurately reflects the state of the enterprise at some point in time in the recent
past (recent could be measured in seconds, minutes, or hours). What qualifies as sufficient
time depends on the temporal consistency of the separate subsystems that make up the
enterprise, which depends metaphorically speaking on when each system closes its book.
Temporal consistency also depends on the replication lag, which varies depending on system
loading. This lag, however, is expected to be minimal under normal operating conditions.
Temporal consistency may prove decidedly less relevant than semantic and data model
differences between the products that reflect the specific problems each product was devised
to solve.

Refer to your product data model to determine what data is available in RDS. Bear in mind,
the data is a replica of inserts and updates as well as deletes. The point is, the data retention
policy in RDS is effectively replicated from the operations system.

Environment Considerations

When embarking on the customization of a product, it is important to understand how the
RDS implementation environment, which is a SaaS offering, differs from PaaS and on-
premises. First of all, some or all product customization will be accomplished by making
modifications to RDS (the product implementation guide will provide details on product
customization). Those modifications are achieved using APEX.

APEX is a low code development environment. As a result it does not anticipate the need for
(and does not provide) development life cycle tools. Application user interfaces are

4-1

https://apex.oracle.com/en/

composed in an application builder. RESTful services are built in a similar fashion. In
fact, one constructs most database objects using a UI rather than by executing code.
One can, however, use the SQL Workshop to compose small amounts of PL/SQL
(e.g., 100s to 1000s of lines of code). There is no access to SQL*Developer or
SQL*Loader. In fact, most consoles are unavailable. It is an ideal environment for most
business savvy users, but may be foreign to the skilled PL/SQL, front end, or back end
developer. It is important to note that customizations that require coding will use SQL
and PL/SQL. Moreover, most data interchange will rely on JSON formatted messages.
All the examples in this document will employ JSON.

When using APEX, SQL command line type activities are performed in the SQL
Commands tool within the SQL Workshop. For SQL script development (for blocks of
code where reuse is anticipated), however, one uses the SQL Scripts tool.

When using APEX, one logs into a workspace and that workspace provides access to
a single schema. Specifically, one can have access to the data for a single product
within a workspace. In other words, it is not possible to execute a mutli-schema or
cross-schema query from within a workspace. If one needs to combine information
from multiple products, then one constructs schema specific integrations and then
joins that information externally.

Lastly, it is important to remember that since RDS is a SaaS offering, some tools and
features may not be available or availability may be provided with some limitations. It
is important that one understand the dependencies inherent in customizations that one
wishes to migrate. Expect to review these dependencies with an Oracle
Representative.

Prerequisites

In order to fully explore the examples below, one will need to meet the following
prerequisites:

• Have access to an APEX workspace within an RDS tenant,

• IDCS application credentials

• Have access to a suitable Object Storage instance

APEX is a browser-based application. You can access APEX by navigating to the
Retail Home Application Navigator and tapping RDS APEX/ORDS. One’s RDS APEX
workspace admin will be able to provide the necessary details. IDCS application
credentials are needed to generate an access token that can be used to authenticate a
RESTful service invocation. An object storage instance is needed as a data export
destination.

Implementing a RESTful Service in APEX
Oracle RESTful Data Services play a role in both outbound data service and data
export integration patterns. For the data service integration pattern, a RESTful service
synchronously returns the requested data in whole or part (i.e., through data
pagination). For the data export integration pattern, a RESTful service asynchronously
initiates a data export and then returns with a suitable response. Much of the RESTful
service implementation is the same regardless of data integration pattern. Ultimately,
from the perspective of the RESTful service implementation, the two integration

Chapter 4
Implementing a RESTful Service in APEX

4-2

https://docs.oracle.com/en/database/oracle/application-express/20.2/aeutl/index.html
https://docs.oracle.com/en/database/oracle/application-express/20.2/aeutl/using-SQL-commands.html#GUID-41CC2FC0-F6B6-4737-B7D2-6C9C1B85310C
https://docs.oracle.com/en/database/oracle/application-express/20.2/aeutl/using-SQL-commands.html#GUID-41CC2FC0-F6B6-4737-B7D2-6C9C1B85310C
https://docs.oracle.com/en/database/oracle/application-express/20.2/aeutl/index.html
https://docs.oracle.com/en/database/oracle/application-express/20.2/aeutl/using-SQL-scripts.html#GUID-7288B4B4-E00C-4DC4-89EA-5FA52623A1EF

patterns differ only in terms of the actions taken in response to the REST service invocation.

Chapter 7 of the SQL Workshop Guide, Enabling Data Exchange with RESTful Services
describes in great detail how one creates a RESTful service in APEX. Bear in mind, the
above links are version specific. Although documentation across versions tends to be quite
similar, it is generally best to consult the documentation for the version of APEX one is using.
In any case, the following paragraphs will only provide an overview of how one creates the
necessary RESTful service. Consult the documentation for additional details and example
implementations.

The implementation of a RESTful service as two aspects, a URL pattern and a handler. When
designing or composing a URL pattern, one is effectively constructing a dispatch mechanism
that ties a given URL pattern to a specific action. This pattern-action pairing represents an
API through which external systems access customer data residing in RDS.

URL Pattern

The URL pattern consists of three parts: a base path, a module name, and a URI template.
The base path is the same for all RESTful services created within a given workspace,
namely:

https://<host name>/<tenant_name>/ords/<schema name>

where, the host name and tenant name are the same for all a given tenant’s RESTful
services. The schema name is the workspace schema (remember, there is a one-to-one
relationship between workspace and schema). The module name is just a hierarchical
organizing feature. For example, one could have a module called po for RESTful services
associated with purchase orders in MFCS. If this were the case, the path for all purchase
orders services would begin with the following:

https://<host name>/<tenant_name>/ords/mfcs/po/

The last part of the URL pattern is the URI template. The template consists of 0 or more path
components followed by 0 or 1 bind variable. If there are 0 path components and no binding
variable, then the URL template is blank or an empty string. If this were the case, then the
complete URL is:

https://<host name>/<tenant_name>/ords/mfcs/po/

In the more typical case, there are one or more path components with and without a bind
variable. For example, one might have the following purchase order services:

Service Base Path +
Module

URI Template Description

active …/mfcs/po/ active Return PO numbers for active (not
completed or active) purchase orders.

complete …/mfcs/po/ complete Return PO numbers for completed
purchase orders.

expired …/mfcs/po/ expired Return PO numbers for purchase orders
that have expired with being fulfilled.

Chapter 4
Implementing a RESTful Service in APEX

4-3

Service Base Path +
Module

URI Template Description

summary …/mfcs/po/ summary/:po_num Return a summary for the purchase order
with the given number.

detail …/mfcs/po/ detail/:po_num Return the details for the purchase order
with the given number.

If one wanted purchase orders within a given date range, a query string specifying a
date range can be added. For example, the following would return PO numbers
between May 1st and May 15th, 2022.

https://<host name>/<tenant_name>/ords/mfcs/po/active?
from=2022-05-01&to=2022-05-15

The from and to become bind variables in a query.

Handler

The second aspect of a RESTful service is the handler. In any case, each URL pattern
can be associated with up to four handlers, one for each of the following HTTP
methods: GET, POST, PUT, and DELETE.

The source is parameterized using bind variables. Explicit bind variables are part of
the URL, e.g.: po_num, from, and to. Consider the implementation of the handler that
returns the details for a purchase order. The URL pattern might be:

https://<host name>/<tenant_name>/ords/mfcs/po/details/:po_num

The GET handler for this URI pattern could then be:

 select … from purchase_orders where po_num=:po_num;

Ideally, purchase_orders is a view that is identified as part of the public API of the
product data model in RDS. In general, accessing a view versus a table is preferable
because the product makes stronger guarantees regarding the immutability of views
(i.e., they are less likely to change in inconvenient ways).

Query string parameters can also be used to parameterize the RESTful service
handler. The query string parameters are used like the :po_num above. For example,
one can use the from-to range in the URL above to construct a query that returns only
purchase orders within a data range, e.g.:

 select … from purchase_orders where
 supplier_id=:supplier_id and
 order_date >= DATE :from and
 order_date < DATE :to;

It is important that RESTful services respect the semantics of the methods used. The
GET method strongly suggests a synchronous operation with no side effects. Whereas

Chapter 4
Implementing a RESTful Service in APEX

4-4

the semantics of POST, PUT, and DELETE methods are expected to have side effects, but
could be synchronous or asynchronous.

RESTful data services can be paged. Paging can be useful for interactive operations that
only require a subset of data, but it can also be used to return a multi-part result set. In either
case, page data returns a subset of data as well as URLs for the previous and next result set.

Lastly, only explicit bind variables have been described. The term explicit is used because
there are also a number of implicit bind variables, see Implicit Parameters. These include
parameters that provide access to bind variables that implement pagination. They also
provide access to the data portion or payload of an endpoint invocation. There is also a
current_user parameter. This parameter, however, is the schema owner, not the user
accessing the RESTful service.

Security

Authentication

Authentication is achieved using OAUTH 2. What this means is that a RESTful service
invocation is authenticated using an access token. That access token can be obtained, for
example, using curl as shown in Listing 1. The response is a JSON object. This access token
then becomes the Bearer token that authorizes the RESTful service invocation. The client id
and secret can be obtained from the Retail Home Application Administration Guide. See
Chapter 2 Application Navigator Setup, Creating OAUTH Client Apps.

LISTING 1: ACCESS TOKEN GENERATION

curl --location --request POST ‘https://<idcs host>/oauth2/v1/token' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--header 'Authorization: Basic <base64 clientId:clientSecret>’ \
--data-urlencode 'grant_type=client_credentials' \
--data-urlencode 'scope=urn:opc:idm:__myscopes__'

There is no implicit data or row level security. Any such security that is in effect in MFCS,
for example, will not exist in RDS unless explicitly implemented by the customer. An effective
approach to implementing data security will employ the ORDS Pre-hook functionality.

ORDS PRE-HOOK

Oracle REST Data Services (ORDS) provides the ability to use PL/SQL based pre-hook
functions that are invoked prior to an ORDS based REST call. These functions can be used
for a variety of purposes including auditing, custom authentication and authorization, and
metrics gathering.

Each provided RDS workspace comes pre-configured with a simple pre-hook function named
ORDS_PREHOOK, and it has a default implementation that simply returns true. As such, it has
no effect on the REST calls made into custom applications. It is provided as a starting point
for extension to teams that required additional processing on each REST call. For those
teams, replacing the implementation of the ORDS_PREHOOK function will enable the additional
capabilities they require. For more information on pre-hook functions, please refer to Oracle

Chapter 4
Implementing a RESTful Service in APEX

4-5

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/22.1/orddg/implicit-parameters.html#GUID-E7716042-B012-4E44-9F4C-F8D3A1EDE01C
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/21.2/aelig/developing-REST-applications.html#GUID-1B081D04-39EC-4E3B-8902-AEB2A44EEF34

REST Data Services Installation, Configuration, and Development Guide: Overview of
Pre-hook Functions.

Invoking a Data Service

A GET data service can be accessed and tested directly from a browser. If one is not
already logged into the Oracle Cloud, then one will be redirected to a cloud login
screen for authentication. Once authenticated, the data service endpoint will be
invoked. The results of the invocation will be displayed in the browser window. If the
data service is accessed from Retail Home, for example, the user is already
authenticated.

Invoking a POST RESTful service or invoking a RESTful service from an external
system is slightly more complicated. Listing 2 illustrates the invocation of a REST
service endpoint using curl. Note the use of the access token. The response is
dependent on the handler action.

LISTING 2: DATA SERVICE INVOCATION

curl --location --request POST ‘https://<host name>/<tenant id>/ords/
mfcs/pom/job_start' \
--header 'content-type: application/json' \
--header 'Authorization: Bearer <access token>' \
--data-raw '{"param1": "value1", "param2": "value2"}'

Using RDS to Build Integration
There are two approaches to transferring data between RDS and an external system,
use a data service or use object storage to mediate the transfer. For an outbound
integration, one uses a GET data service or exports data from ADW to object storage.
For an inbound integration, one uses a POST (or DELETE if appropriate) data service
or imports data from object storage to ADW. In the case where object storage is
mediating the transfer, the external system is responsible for uploading or downloading
data from object storage. When deciding which approach is best for a given situation,
one should consider the latency tolerance, data volume, and tolerance for complexity.

Chapter 4
Using RDS to Build Integration

4-6

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/21.2/aelig/developing-REST-applications.html#GUID-1B081D04-39EC-4E3B-8902-AEB2A44EEF34
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/21.2/aelig/developing-REST-applications.html#GUID-1B081D04-39EC-4E3B-8902-AEB2A44EEF34

Figure 4-1 Data Integration Option Matrix

Latency tolerance is essentially a measure of how long the consuming process or agent can
or will wait for the requested data to be made available. The most obvious low tolerance
scenario is an interactive setting where latency tolerances are in the sub-second range. A
less obvious scenario is one where the objective is to control some automated process in
which responsiveness is critical. On the other hand, the typical retail ecosystem
encompasses a multitude of automated processes that have a relatively high latency
tolerance so long as the latency does not adversely impact process SLAs.

It is important to note that ORDS has a latency tolerance of 300 seconds. That is, the
RESTful service source execution must complete within 300 seconds or a Socket Hung Up
error will be returned. The 300 second threshold is a hard limit. Bear in mind that DB
execution time jitter, which is the result of DB load variation, can increase typical execution
times. Parameterized RESTful services may also exhibit a wide variation in execution time.
Building a reliable service may entail introducing a retry component. In some cases, it may be
necessary to use an asynchronous execution approach. An asynchronous approach is called
for whenever the execution time for representative use cases plus jitter is likely to exceed the
300 second boundary.

Chapter 4
Using RDS to Build Integration

4-7

The second factor one considers when selecting an integration approach is data
volume. Distinctions between high and low volumes are best measured in terms of
time rather than bytes. Essentially, the amount of data one can rapidly move from one
place to another is ever increasing; however, what one considers long versus short
transit times, though subjective, remain somewhat constant. For example, low data
volumes are associated with transit times measure in seconds whereas high data
volumes are associated with transit times measured in minutes.

Though both latency tolerance and data volume are best measured using time, they
are measuring different things and are useful criteria when selecting an integration
approach for a given problem. Figure 1 presents a data integration option matrix that
provides a conceptual framework for deciding which approach, data service or object
store mediated transfer, is best suited to a given problem. Although the figure is for the
most part self-explanatory, data service with paged result warrants some discussion.
Paged results concern outbound integrations only. These integrations produce JSON
formatted results where each page returns one part of a multi-part result as well as
URLs for the next and previous page.

The last factor one might consider is complexity. Creating a synchronous data service
is relatively simple whereas implementing a data export is quite a bit more
complicated. A synchronous data service includes a RESTful service implementation
and a query implementation. A data export service (a service is used to initiate the
export) includes everything that a data service includes as well as export data,
managing credentials, and managing and monitoring export processes. Sometimes,
however, complexity is not the most important factor when selecting a data integration
pattern.

The remainder of this document will discuss how to implement outbound integration in
RDS using a data services pattern and a data export pattern. Bear in mind, the
examples provided below are illustrative. They are not robust. They do not implement
error handling. The goal is to familiarize the reader with the parts of the problem, the
tools one uses, and the relevant Oracle documentation.

Before the general features of the outbound integration problem are introduced, the
reader should familiarize themselves with the basics of the RDS architecture and
environment as well as prerequisites for implementation.

Outbound Integration using a Data Service

The vast majority of what one needs to know to implement a data integration using a
RESTful service is described in the previous section. This short section will discuss
some of the finer points of implementing actions. There are several key points to
remember:

• Queries consisting of a simple or complex SELECT statement can often be
implemented with a GET method. Queries with complex filtering or lists of inputs
typically require a payload and therefore use of POST method.

• The duration of query or PL/SQL block execution must be less than 300 seconds.
If it is not, the service will fail with a "socket hang up" error. If this occurs, it may be
possible to page the service using a page size that is sufficiently small to
consistently produce durations of less than 300 seconds. If a page service is not
reliable one will need to employ an asynchronous service that populates a result
table or exports data to object storage,

• A handler’s PL/SQL source is not compiled when the handler is saved. Handler
source compilation errors reveal themselves when the REST service is invoked.

Chapter 4
Using RDS to Build Integration

4-8

So, keep the handler source as simple as possible and avoid an approach that frequently
changes the handler source. Essentially, do something simple and then call a procedure
or function to do most of the work.

• If the result is not returned in the handler source as the direct result of a query, one can
compose a JSON object (see APEX_JSON and JSON Data and Oracle Database) and
return it using htp.print. If the resulting response is more than 4000 characters long (the
max length of a varchar2), the response must be emitted in chunks of 4000 characters or
less.

• A handler’s source is not reusable short of copy and paste. If the handler source is likely
to be reusable, then encompass it in a procedure or function.

• One can compose procedures, functions, test scripts, and such in the SQL Workshop
using the SQL Commands and SQL Scripts tools.

Outbound Integration using Object Storage

As mentioned above, it is substantially easier to meet data integration needs using a data
service pattern than it is using a object storage pattern. The data service pattern in the
simplest case requires just a data service. Whereas the RESTful service in the object storage
pattern moves the data only part way to its destination since the service achieved its end
when the data arrives in object storage. Moreover, the data export pattern generally calls for
an asynchronous start because data exports are likely to be long running. With the
asynchronous start comes the requirement that one now manage and monitor the export — if
for no other reason than to trigger the process that moves the data from object storage to its
final destination. The remainder of this example, however, will begin with the description of a
hypothetical, short running, synchronous data export approach in order to avoid introducing
all the complexities of an asynchronous start. The section will conclude with a brief overview
of how one would manage long running asynchronous exports.

Hypothetical Outbound Integration Problem

Consider the following hypothetical problem. The customer wants to export changes to the
item master (i.e., RDS_WV_ITEM_MASTER). The customer will use the csn_nbr column to
keep track of what has been exported. Specifically, the customer will select rows whose
csn_nbr is greater than the max csn_nbr of the previously exported rows. The export process
is assumed to be idempotent.

Exporting changes to the item master is a task well suited to a synchronous data service. The
item master changes slowly, and the volume of data needed to capture those changes is
relatively small. If, however, the export concerned transactions, a synchronous data service
may or may not be appropriate depending on the data volumes.

One would begin by creating an item master module — in the SQL Workshop RESTful
Services Tool — with a name such as item_master. The presumption is that there may be
multiple item master RESTful services and using this approach to naming anticipates that
possibility. Next, one creates a URI template with a template of “changes/:last_csn_nbr.” The
first part of the template, changes, identifies the function of the endpoint. The last part of the
template, :last_csn_nbr, is a bind variable that will be used in a query. The last step is to
create the GET handler for the service.

The most common GET handler has a source type of collection query. If the source type is a
collection query, then all one needs to do is provide a query as the source and ORDS will

Chapter 4
Using RDS to Build Integration

4-9

take care transforming the query result into a JSON string. In order to get the most
recent changes to the item master one would use the following source for the GET
handler:

select … from RDS_WV_ITEM_MASTER where csn_nbr > :last_csn_nbr

The endpoint one would use to get recent changes is:

https://<host>/<tenant>/ords/mfcs/item_master/changes/26771905065

where 26771905065 is the maximum CSN number of the items thus far retrieved. This
design makes it the responsibility of the caller to keep track of the maximum CSN
number used. With that in mind, one needs to make sure that the query returns the
csn_nbr. Without it, it will not be possible to keep track of the maximum CSN number.
The initial item master will have items with NULL valued CSN numbers. One could
obtain all the changes since the initial load using the following endpoint:

https://<host>/<tenant>/ords/mfcs/item_master/changes/0

The final part of the GET handler that will be discussed is pagination. Using the
pagination, one can retrieve the query result in pages of a specified number of rows.
The default pagination size is set at the module level but can be overridden at the
handler level. All results are paginated; however, one can set the page size such that
no more than one page is ever returned. The JSON object that is returned has the
following form:

{
 "items":[…],
 "hasMore":true,
 "limit":25,
 "offset":0,
 “count":25,
 “links":[
 {“rel”:”self”,”href”:".../item_master/changes/26771905065"},
 {“rel”:”describedby”,"href":".../metadata-catalog/item_master/
changes/item"},
 {“rel”:”first”,”href":".../item_master/changes/26771905065?
limit=25"},
 {“rel”:”next”,”href”:".../item_master/changes/26771905065?
offset=50&limit=25"},
 {“rel”:”prev","href":".../item_master/changes/0"}
]
}

The items value is a list of JSON objects where the keys are column names in the
query result. The hasMore value indicates whether there is more data. The limit
specifies the limit used in the query. The offset is the row offset of the first row
returned. Count is the number of rows actually returned. The links value provides
URLs for the first, next, and previous pages of data. Note that if this is the first query
— offset = 0 — there will be no prev link. If hasMore is false, there will be no next link.

Chapter 4
Using RDS to Build Integration

4-10

If one wanted the items included in the initial item master, then one would need to create a
new data service with a URI template of simply “initial”. The get handler source would look
like the following:

select … from RDS_WV_ITEM_MASTER where csn_nbr is null

An interesting variation would be to also create a POST handler to copy the initial item
master into object storage. This approach requires an object storage credential. The creation
of a credential is something done infrequently. Bear in mind that credentials do expire and at
some point credentials need to be refreshed. Once the credential is created, one implements
the data export script. The last part, as implied above, entails creating a RESTful service to
initiate the data export. In this case, a POST handler will be added to the “initial” URI
template.

The construction of credentials in ADW is described in the CREATE_CREDENTIAL
Procedure section of the DBMS_CLOUD Subprograms and REST APIs section. Note that the
form of the CREATE_CREDENTIAL Procedure one uses is:

DBMS_CLOUD.CREATE_CREDENTIAL (
 credential_name IN VARCHAR2,
 user_ocid IN VARCHAR2,
 tenancy_ocid IN VARCHAR2,
 private_key IN VARCHAR2,
 fingerprint IN VARCHAR2);

One composes the create_credential script in either the SQL Scripts or the SQL Commands
tool in the SQL Workshop. A sample create credential script is shown below.

BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL (
 credential_name =>'OCI_KEY_CRED',
user_ocid=>’ocid1.user.oc1...zdyfhw33ozkwuontjceel7fok5nq3bf2vwetkpqsoa',
 tenancy_ocid=>’ocid1.tenancy.oc1...gnemmoy5r7xvoypicjqqge32ewnrcyx2a',
 private_key=>'MIIEogIBAAKCAQEAtUnxbmrekwgVac6Fd....pESQPD8NM//JEBg=',
 fingerprint=> 'f2:db:f9:18:a4:aa:fc:94:f4:f6:6c:39:96:16:aa:27');
END;

Refer to Required Keys and OCIDs for details on obtaining credential information. The
easiest way to obtain the needed credentials is by navigating to one’s My Profile page in the
Oracle Cloud (i.e., tap the profile button/image in the upper right corner and select My Profile
from the drop down). Next tap the API Keys link in the Resources section on the lower left of
the screen. Finally tap the Add API Key button and follow the instructions. Part of the process
is downloading one’s private key. The downloaded key is in PEM format. The key will need to
be reformatted as a single long string without the leading and trailing dashes. There should
be no new lines in the key. These final instructions will make more sense once one goes
through the Add API Key process.

The last step is the actual export itself. In order to copy data from ADW to object storage, one
uses DBMS_CLOUD.EXPORT_DATA, e.g.:

Chapter 4
Using RDS to Build Integration

4-11

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/dbms-cloud-subprograms.html#GUID-742FC365-AA09-48A8-922C-1987795CF36A
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/dbms-cloud-subprograms.html#GUID-742FC365-AA09-48A8-922C-1987795CF36A
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/dbms-cloud-subprograms.html#GUID-3D0A5361-672C-467D-AA90-656B1B4D4E37
https://docs.oracle.com/en/database/oracle/application-express/20.2/aeutl/using-SQL-scripts.html#GUID-7288B4B4-E00C-4DC4-89EA-5FA52623A1EF
https://docs.oracle.com/en/database/oracle/application-express/20.2/aeutl/using-SQL-commands.html#GUID-41CC2FC0-F6B6-4737-B7D2-6C9C1B85310C
https://docs.oracle.com/en/database/oracle/application-express/20.2/aeutl/index.html
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/dbms-cloud-subprograms.html#GUID-F8A70BE2-6060-48A7-9667-0A6B39198071

DBMS_CLOUD.EXPORT_DATA (
 file_uri_list IN CLOB,
 format IN CLOB,
 credential_name IN VARCHAR2 DEFAULT NULL,
 query IN CLOB);

A sample export script is shown below. Note that a JSON response is composed using
json_object and that response is returned using htp.print. To get started with JSON
data see JSON Data and Oracle Database. See HTP for more information on
hypertext procedures.

declare
response varchar2(4000);
begin
 dbms_cloud.export_data(
 credential_name => 'OCI_KEY_CRED',
 file_uri_list=>'',
 query => 'select … from RDS_WV_ITEM_MASTER where csn_nbr is null',
 format => json_object('type' value 'json', 'compression' value 'gzip'));
select json_object('status' VALUE 'success') into response from dual;
htp.print(response);
END;

The URI format in file_uri_list is the Native URI format, see DBMS_CLOUD Package
File URI Formats.

The name of the exported object would have the following form:

transactions1_<part>_<timestamp>.json.gz

Since this export is not multi-part, part is equal to "1." The next step is to consume the
export. How this step is accomplished depends on customer requirements. One could
use a shell oriented approach with Oracle OCI Command Line Interface, see also
Object Storage Service. One could also use a Java or Python API.

Retail Home Integrations

A Retail Home integration is an example of outbound integration with a user interface
or portal. Retail Home Metric tiles without charts are quite simple to implement. For
example, the following data service source (with a source type of collection query) will
populate the 2 Metric Tile below:

Chapter 4
Using RDS to Build Integration

4-12

https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/generation.html#GUID-1084A518-A44A-4654-A796-C1DD4D8EC2AA
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/intro-to-json-data-and-oracle-database.html#GUID-17642E43-7D87-4590-8870-06E9FDE9A6E9
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/file-uri-formats.html#GUID-5D3E1614-ADF2-4DB5-B2B2-D5613F10E4FA
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/file-uri-formats.html#GUID-5D3E1614-ADF2-4DB5-B2B2-D5613F10E4FA
https://docs.oracle.com/en-us/iaas/tools/oci-cli/3.10.5/oci_cli_docs/cmdref/os.html
https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/javasdk.htm
https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/pythonsdk.htm

select
 'PO Receipts' as NAME, 25680 as VALUE,
 'N' as "VALUE_FORMAT" from dual
union
select
 'In Transit' as name, 112300 as value,
 'N' as "VALUE_FORMAT" from dual

This data service response is:

{"items":[
 {"name":"In Transit","value":112300,"value_format":"N"},
 {"name":"PO Receipts","value":25680,"value_format":"N"}
],
 "hasMore":false,
 "limit":25,
 "offset":0
 "count":2,
 "links":[...]
}

Producing a 4 Metric Summary, however, is more complicated and requires one use a source
type of PL/SQL (the following code only provide values for two of four metrics).

declare
 response varchar2(4000);
begin
 SELECT json_object (
 'items' value
 json_array(
 json_object ('name' value 'Metric 1',
 'value' value 0.5,
 'valueFormat' value 'PC'),

Chapter 4
Using RDS to Build Integration

4-13

 json_object ('name' value 'Metric 2',
 'value' value 0.25,
 'valueFormat' value 'PC')
),
 'chart' value
 json_object ('type' value 'bar',
 'items' value
 json_array(json_object('name' value 'FEB',
 'value' value 2300),
 json_object('name' value 'MAR',
 'value' value 3100),
 json_object('name' value 'APR',
 'value' value 2900)
),
 'valueFormat' value 'S',
 'seriesName' value 'Sales',
 'valueLabel' value 'Amount'
)
)
 into response FROM DUAL;
 htp.print(response);
end;

Filters, if used, become query string parameters and values in the URL. The query
string parameters manifest in the source as bind variables.

An Asynchronous Approach

An asynchronous approach is generally called for when the likely wait time for process
completion is high. A data export to object storage is generally a good candidate for an
asynchronous start. In the simplest case, one needs to implement three data services:
job start, job stop, and job status. The DBMS_SCHEDULER package provides the
functionality one would need for these services. There is, of course, the option to
schedule an export job to repeat and obviate the need to create a job start service.
One could still use a job start service to invoke an unscheduled export. The initial item
master export described above, however, is both relatively small and infrequent
enough (probably once) that it does not warrant addressing it with an asynchronous
approach.

One uses the DBMS_SCHEDULER.create_job procedure to create a job that that can
be started asynchronously. A typical approach would be to use create job to wrap a
procedure. The create job invokes the procedure immediately (by setting the
start_date to SYSTIMESTAMP) upon creation and is then dropped automatically upon
completion. The service would return a unique job name or execution id to be used to
stop and monitor the job.

Another service is used to monitor the job status using the returned execution id. The
monitoring service would be used to poll the status of the job. The job status is
obtained by executing a query on the
DBMS_SCHEDULER.user_scheduler_job_run_details. A complete sample
implementation of an asynchronous job start and monitoring framework is available on
My Oracle Support.

Chapter 4
Using RDS to Build Integration

4-14

Next Steps

The first step is to familiarize oneself with the above concepts. Start with a simple hello world
service. First with a GET handler that is invoked from a browser that handles authentication.
Next move on to curl or postman where one has generate access tokens. Lastly, build some
simple queries. If a data export is anticipated, begin with a synchronous approach before
attempting the more complex asynchronous approach.

Monitoring Resource Consumption in RDS
Although ADW is self-tuning, it cannot ensure that one's business priorities and resource
consumption are well aligned. For example, the resource consumption of a new, as yet to be
tuned, report may adversely impact higher priority tasks. By monitoring the consumption and
performance of RDS, one is able to pinpoint which tasks could benefit from additional
attention. In some cases, however, even well tuned tasks are long running and resource
intensive. If these tasks are of lower priority, the user would like to run them at a lower priority.
Ultimately, monitoring allows the user to both effectively employ compute services and
determine if resource consumption matches business priorities. Control, on the other hand,
gives the user a means to align resource consumption with priorities. Exerting control will be
the subject of another chapter whereas this chapter will focus on monitoring using AWR
reports.

AWR reports are used to monitor activity in ADW. This section will discuss how to obtain
AWR reports, but it will not discuss how to interpret those reports. Given that each customer's
monitoring needs differ, there is no ready to use AWR report access built into RDS. In other
words, an AWR report is obtained via a customer implemented data service.

There are two steps to creating an AWR report, obtaining snap ids and generating the report
using the appropriate pair of snap ids. Sample code for obtaining snap ids is shown in Listing
1. The code is used as the source for a ORDS GET handler. It illustrates the use of two bind
variables. The first is part of the URI template, the begin_interval_time. The second optional
query string parameter is the end interval time. The times are given as dates for simplicity, but
snap ids are based on timestamps. If the query parameter is not given, the value is null.

Note that a procedure, HTPPRN, is used to output the response. HTP.print, which is
ultimately used to output the response, only handles varchar2 args. Varchar2 strings have a
maximum size of 4000 characters, which is often insufficient. Hence, the output of the query
is put into a CLOB. The CLOB is then output using HTPPRN, which is shown in Listing 2.

The second step is generating the report. I hard code the snap ids for simplicity. Using the
code in Listing 3 as the source of a GET handler and the URL of the data service, a browser
will render the report. It would not be difficult to add additional bind variables to allow one to
create a narrower snap id interval and combine the snap id query and the report generation.

LISTING 1: OBTAINING SNAP IDS

DECLARE
 from_begin_interval_time date := to_date(:from, 'YY-MM-DD');
 to_end_interval_time date := null;
 db_id NUMBER;
 inst_id NUMBER;
 response clob;
BEGIN

Chapter 4
Monitoring Resource Consumption in RDS

4-15

 dbms_output.enable(1000000);
 if :to is not null then to_end_interval_time := to_date(:to, 'YY-MM-
DD') + 1;
 end if;
 SELECT dbid INTO db_id FROM v$database;
 SELECT instance_number INTO inst_id FROM v$instance;

 SELECT json_arrayagg(
 json_object(
 'snap_id' value snap_id,
 'begin_interval_time' value begin_interval_time,
 'end_interval_time' value end_interval_time
 returning clob format json)
 returning clob) into response
 FROM dba_hist_snapshot
 WHERE dbid = db_id
 AND instance_number = inst_id
 and begin_interval_time >= from_begin_interval_time
 and (to_end_interval_time is null or
 to_end_interval_time >= end_interval_time)
 ORDER BY snap_id DESC;
 HTPPRN(response);
END;

LISTING 2: THE HTPPRN PROCEDURE

create or replace PROCEDURE HTPPRN(PCLOB IN OUT NOCOPY CLOB)
IS
 V_TEMP VARCHAR2(4000);
 V_CLOB CLOB := PCLOB;
 V_AMOUNT NUMBER := 3999;
 V_OFFSET NUMBER := 1;
 V_LENGTH NUMBER := DBMS_LOB.GETLENGTH(PCLOB);
 V_RESULT CLOB;
BEGIN

 WHILE V_LENGTH >= V_OFFSET LOOP
 V_TEMP:= DBMS_LOB.SUBSTR(V_CLOB, V_AMOUNT, V_OFFSET);
 HTP.PRN(V_TEMP);
 V_OFFSET := V_OFFSET + LENGTH(V_TEMP);
 END LOOP;

END;

LISTING 3: GENERATING THE AWR REPORT

DECLARE
 db_id NUMBER;
 inst_id NUMBER;
 start_id NUMBER;
 end_id NUMBER;
 response clob := null;
BEGIN
 dbms_output.enable(1000000);

Chapter 4
Monitoring Resource Consumption in RDS

4-16

 SELECT dbid INTO db_id FROM v$database;
 SELECT instance_number INTO inst_id FROM v$instance;
 start_id := 12133;
 end_id := 12134;

 FOR v_awr IN
 (SELECT output FROM
TABLE(DBMS_WORKLOAD_REPOSITORY.AWR_REPORT_HTML(db_id,inst_id,start_id,end_id)
))
 LOOP
 response := response || v_awr.output;
 END LOOP;
 HTPPRN(response);
END;

Notification-Based Monitoring
POM can be used in combination with the data in RDS to establish automated process
monitoring. A POM batch job can be setup to call a RDS data service to generate and send
the Alert to the associated application such as Merchandising.

This document describes the steps needed to setup such an automated process. These
steps are:

1. Setup a notification type in Retail Home

2. Implement a RESTful service in RDS

3. Setup a job in POM to invoke that service

RDS-POM integration will be illustrated for an alert that returns the counts of stock counts
that are open for more than seven days.

Setting up the Notification Type

Typically, an alert/notification results from the monitoring activity. As a first step, a notification
type associated with this monitoring activity needs to exist or be setup in Retail Home. Refer
to Retail Home documentation for details on how to create a notification type. For the
example at hand the notification type is MerchStockCountAlert and is setup for the MFCS
application.

Implementing a RESTful Service in RDS

The first step is to create the data service boiler plate, which consists of the following:

• creating a module

• creating a URI template, and lastly

• creating a POST handler

The steps below describe the implementation of an open stock count RESTful service
suitable for integration with POM.

Chapter 4
Notification-Based Monitoring

4-17

The alert service must conform to the POM specification. There are two relevant
specifications. The first concerns the format of the JSON body in the POST, which is
shown in the following table. The alert service need not use any of the details in the
body of the POST message.

Endpoint to start a job.
Method: POST
Body:

Attribute Description

cycleName Name of the Cycle - Nightly, Hourly_1,
Adhoc etc.

flowName Name of the Flow.

processName POM process name

jobName POM job name

agentExecutionId A unique ID assigned by POM for every job
run (Re-run of a failed job would have a
different id compared to the initial run)

parameters Job Parameters (Pipe delimited key-value
pairs -- hey1=value1||key2=value2)

The second specification concerns the response returned. If the notification object is
not null, the content will be sent as a notification by POM.

Attribute Description

executionId Unique Id returned by the target app to
POM for status tracking

executionInfo Any additional info the target app would
like to share with POM

notification This is an optional entry that can contain
the following attributes. The url, type, and
severity fields are optional.
"notification": {
"info": "<message>",
"url": null,
"type": "ErrorNotification",
“severity":1
}

status Submitted/ Running/Error/Completed

Create a Stock Count Module

The first step is to create a module. Module is a hierarchical organizing construct. The
user may have multiple services associated with it or just one. The following screen
shot illustrates what the create module screen looks like prior to creating the module.
Note the module name is stock_count and the base path is /stock_count/.

Chapter 4
Notification-Based Monitoring

4-18

Create a URI Template

Once the module is created, create the URI template. Note the URI template is set to
open_gt_7, i.e., stock counts open for more than seven days.

Chapter 4
Notification-Based Monitoring

4-19

Create a POST Handler

The last step is to create a POST handler. Note the method is POST and the source
type is PL/SQL.

The source of the example alert service is in Listing 1. The body, a sample of which is
shown in Listing 2, of the alert service invocation is accessed using the :body_text
implicit parameter -- a bind variable. This variable can only be read once; so, retrieve it
and store it in a variable. Unpacking the payload and crafting a response will be
common tasks for most RESTful services. The example below illustrates some but not
all that one might encounter. Bear in mind, the example below does not show any error
handling. Experimentation and experience will determine what level of error handling is
warranted. Listing 3 shows a response.

declare
 -- The :body_text bind variable is an implicit parameter.
 -- It can only be read once, so it is captured in a variable
 -- called payload.
 payload varchar2(4000) := :body_text;
 -- The result of the stock count query
 query_result number;
 -- Note that varchar2 is set to the maximum. If the response
 -- could exceed 4000 characters, a CLOB would be needed and
 -- one could not use htp.print directly.
 response varchar2(4000);
 -- The response will return the agentExecutionId in
 -- response as the executionId.
 agent_execution_id varchar2(32);
 -- The notification info destination.
 notificationInfo varchar2(1024);
begin
 -- Get the agent execution id from the payload (i.e., body text).

Chapter 4
Notification-Based Monitoring

4-20

 agent_execution_id := json_value(payload, '$.agentExecutionId');
 -- Get a count of stock counts that have been open for more than
 -- 7 days and put it in query result.
 SELECT count(1)
 into query_result
 FROM rds_wv_stake_prod_loc spl,
 rds_wv_stake_head s
 WHERE s.stocktake_date BETWEEN sysdate - 7 AND sysdate
 AND s.delete_ind = 'N'
 AND spl.cycle_count = s.cycle_count
 AND s.stocktake_type = 'B'
 AND spl.processed != 'S'
 AND spl.cycle_count = s.cycle_count;
 -- Craft notificationInfo as a human readable string.
 notificationInfo := 'Number of stock counts that have been ' ||
 'open for more than 7 days is ' || to_char(query_result) || '.';
 -- Craft the required JSON response. There is no executionInfo.
 select json_object('status' value 'success',
 'executionInfo' value '',
 'executionId' value agent_execution_id,
 'notificationInfo' value notificationInfo) into response from
dual;
 -- Output the response - note htp.print is used here. htp.print
 -- only supports varchar2 so another approach would be needed
 -- if the response is likely to exceed 4000 characters. This could
 -- if error handling (not shown) were to return a stack trace.
 htp.print(response);
end;

Listing 1: An Alert service conforming to POM Requirements

A sample payload for the above job is:

{
 "cycleName": "cycle1",
 "flowName": "flow1",
 "processName": "process1",
 "jobName": "job1",
 "agentExecutionId": "agentExecutionId1234",
 "parameters": ""
}

Listing 2: A Sample Payload

The response of the above service, given the payload in Listing 2 is:

{
 "status":"success",
 "executionInfo":null,
 "executionId":"agentExecutionId1234",
 "notificationInfo":"Number of stock counts that have been open for more
than 7 days is 0."
}

Chapter 4
Notification-Based Monitoring

4-21

Listing 3: A Sample Response

Setting up the POM Job

The user now needs to setup an Adhoc batch job in POM which calls the RESTful
service described above. Adding such a job is done through the spreadsheet as
described in the next section. The user then uploads the spreadsheet to POM then
schedules to run at the desired time.

When the job executes, it will invoke the RESTful service which will return a response
with notification content. POM will then send a notification to the associated application
based on the designated notification type. The notification will contain the notification
content returned from the RESTful service.

Adding the Adhoc Job in Batch Schedule Spreadsheet

Entries as shown below as an example need to be added in the specified tabs of the
batch schedule spreadsheet for every Adhoc job created for an alert.

Figure 4-2 Process Tab

• ProcessName – Add a unique process name in upper case with no spaces. Use
an underscore if needed. It should end with XXX_PROCESS.

• Description – Short description of the process without any special characters.

• Application Name – Mention the application name where the batch process
belongs to. E.g., MFCS

• DependencyType – This needs to be set to ‘Time’.

• AdhocInd – It will be ‘Y’ as we are creating an adhoc job here.

Figure 4-3 Job Tab

• JobName – Unique job name for each alert in upper case only with no spaces.
Use an underscore if needed. It should end with XXX_JOB.

• Description – Short description of the job without any special characters.

• RmsBatch, ScriptFolder and RmsWrapper – Irrelevant for alerts and can be left
empty.

• ParameterValue – This holds the two parameters needed to identify the notification
type and the RDS endpoint. For the example at hand, these are:

– notificationType: This is the notification type setup in Retail Home as described
in the Setting Up a Notification Type section at the top of this document:
MerchStockCountAlert.

Chapter 4
Notification-Based Monitoring

4-22

– restPath : This points to the endpoint defined above: mfcs/stock_count/open_gt_7.

• These need to be separated by a double pipe as depicted in the Job tab screen shot
above.

• ApplicationName – Mention the same application name entered in Process tab. Here, it’s
RMS.

• Modules – Job can be associated with a module of the application.

• JobType – The job type associated with RDS alerts is RDSAlert.

Figure 4-4 ProcessJobMapping

• To map the new process and jobs (it’s one-to-one for adhoc jobs), enter the created
ProcessName, JobName and the day(s) of the week on which the specific Process/Job
needs to be run. If the Job will run on daily basis, leave ‘DaysOfTheWeek’ column blank.

Figure 4-5 Schedule

Ensure that the ‘Version’ is updated to a version greater than the ‘Current Version’ in POM
Application. In this example, the version should be changed on the spreadsheet to
22.1.302.2.1 or 22.1.302.3.

Uploading the Batch Schedule Spreadsheet in POM

1. Login to POM UI and navigate to Tasks -> Schedule Maintenance.

2. Select the Application Scheduler tile and click ‘Import Latest Schedule’ button.

3. Upload the spreadsheet containing the new Adhoc job for alert.

Chapter 4
Notification-Based Monitoring

4-23

Figure 4-6 Upload Batch Schedule

Enable the Newly Added Process/Job

Note that any new job introduced through the spreadsheet will be added in the
disabled state. Enable it using the Batch Administration screen.

Figure 4-7 Batch Administration Screen

Starting/Restarting the Scheduler Day

You will need to start a new scheduler day or restart the existing scheduler day on the
Batch Monitoring screen for the new changes to take effect in the next batch run. See
the Batch Monitoring screen shot below.

You can now run the Alert job in POM in one of two ways:

1. Direct run through the Batch Monitoring screen or

2. Schedule it to run using the POM Scheduler Administration screen.

Direct Run

On the Batch Monitoring screen, select the Standalone tab below the tile area. Then
select the previously added RDS Alert process in the Standalone Entities table and
click on the run action button above the table.

Chapter 4
Notification-Based Monitoring

4-24

Figure 4-8 Batch Monitoring

Schedule through the Scheduler Administration Screen

You can use the POM Scheduler Administration screen to schedule the newly added job to
run as frequently as needed.

Figure 4-9 Scheduler Administration

In Context Launch of an APEX App
In context launch of an APEX App entails navigating to an APEX App from within a product
application using a URL. Once you have deployed your application, loaded the data, and
created users, you can publish your production URL. You can determine the production URL
for your application by either:

• Selecting the application on the Application home page and right clicking the Run button.
Then, select Copy link address or Copy link location depending on your browser.

Chapter 4
In Context Launch of an APEX App

4-25

• Running the application and then copying the URL.

Invoking an APEX app with one or more query parameters requires that the APEX App
Session State Protection and Application Items be appropriately configured.

1. In your APEX App navigate to Shared Components > Security > Session State
Protection. Navigate to the Set Page and Item Protection page of your published
launch page, for example, your App Home page. Next, set page access restriction
to Unrestricted. Always treat query parameter input as untrusted and sanitize
it.

2. Next navigate to Shared Components > Application Logic > Application Items.
Create an application item of the same name as your query parameter.

See Oracle APEX for additional details on URL syntax and managing session state.

Launching APEX Apps from Retail Home
It is quite simple to configure Retail Home to facilitate the launch of an APEX
application.

1. Navigate to the Dashboard Configuration tab and tap the Create button.

Figure 4-10 Dashboard Configuration Tab

2. Fill in the Create Dashboard Tile Dialog. Note there is a field for specifying a URL
for you new dashboard tile.

Chapter 4
Launching APEX Apps from Retail Home

4-26

https://docs.oracle.com/en/database/oracle/apex/22.1/htmdb/index.html

Figure 4-11 Create Dashboard Tile

Chapter 4
Launching APEX Apps from Retail Home

4-27

5
Storage and CPU Usage

For each RDS instance, the database disk storage and CPU usage is tracked. Usage can be
seen by logging in to Oracle Retail Home and viewing the Application Dashboard. On the list
are two entries: one for RDS CPU Usage, and one for RDS Disk Usage. The entries show
current usage and also display the currently subscribed amounts for CPU and storage, so a
customer can see if they are nearing their subscription limits. The usage is tracked on a
weekly basis, so updates to these charts happen about four times a month. This UI can only
be viewed by Retail Home administrator users. Refer to the Retail Home product
documentation for more information.

Figure 5-1 Retail Home Application Dashboard

5-1

6
Version Updates

Software updates are critical to keeping an environment secure and functioning well. Critical
patch updates are installed on a quarterly basis, for example to the database, APEX/ORDS,
and other tools being used in RDS. These updates may require downtime. If this is the case,
the planned downtime is communicated in advance according to Oracle Retail standards.

6-1

7
Notes

This section provides additional resources when implementing RDS.

APEX
For more information around building performant APEX applications, refer to the Managing
Application Performance section of the APEX App Builder User's Guide.

For full details on developing APEX applications, refer to the APEX documentation.

Visual Builder Studio
For full details on developing Visual Builder applications, refer to the Visual Builder Studio
documentation.

APEX and Autonomous Databases
Because RDS is built using Oracle Autonomous Data Warehouse (ADW), there are
limitations with functionality provided by Oracle Application Express. These limitations are
documented at https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/apex-
restrictions.html

Known Limitations and Issues

Limits on Service Initiated Queries and PL/SQL Blocks

1. Service initiated queries and PL/SQL blocks (i.e., the service source) must complete in
less than 300 seconds. This limitation is standard timeout and not configurable. Queries
and blocks of longer durations must be run asynchronously and report results using other
approaches (i.e., an output table populated by one service and queried by another, output
to object storage, and so on).

2. Service source is limited to 4000 characters. Character count for GET oriented queries
can be reduced using views without sacrificing the automatic to JSON translation.

Importing of Services

The importing of services from the APEX UI does not work as expected. If the service does
not exist, the import fails with a "no data found". Service exporting, however, does work and

7-1

https://docs.oracle.com/en/database/oracle/application-express/21.2/htmdb/managing-application-performance.html#GUID-1684F55B-7782-4B1F-96AB-0D41BCBDB1BA
https://docs.oracle.com/en/database/oracle/application-express/21.2/htmdb/managing-application-performance.html#GUID-1684F55B-7782-4B1F-96AB-0D41BCBDB1BA
https://apex.oracle.com/en/learn/documentation/
https://docs.oracle.com/en/cloud/paas/visual-builder/index.html
https://docs.oracle.com/en/cloud/paas/visual-builder/index.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/apex-restrictions.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/apex-restrictions.html

the exported services are just SQL scripts. These scripts can be run in the APEX SQL
Workshop > SQL Scripts tool. Running the scripts will create the services.

Note:

Exported scripts include schema names. If the workspace in which the script
will be run is not in the same schema as that from which the service was
exported, the SQL script will need to be edited to change the source schema
to the target schema.

Chapter 7
Known Limitations and Issues

7-2

	Contents
	Preface
	1 Implementation Overview
	Separation of Replicated and Custom Data
	Example

	Support for Audit and Delete Tracking

	2 Typical Implementation Events
	3 Getting Started
	APEX User Management
	Data Visualization Access

	4 Extension
	RDS Extension Overview
	RDS Architecture Basics
	Environment Considerations
	Prerequisites

	Implementing a RESTful Service in APEX
	URL Pattern
	Handler
	Security
	Authentication
	ORDS PRE-HOOK

	Invoking a Data Service

	Using RDS to Build Integration
	Outbound Integration using a Data Service
	Outbound Integration using Object Storage
	Hypothetical Outbound Integration Problem
	Retail Home Integrations
	An Asynchronous Approach
	Next Steps

	Monitoring Resource Consumption in RDS
	Notification-Based Monitoring
	Setting up the Notification Type
	Implementing a RESTful Service in RDS
	Setting up the POM Job

	In Context Launch of an APEX App
	Launching APEX Apps from Retail Home

	5 Storage and CPU Usage
	6 Version Updates
	7 Notes
	APEX
	Visual Builder Studio
	APEX and Autonomous Databases
	Known Limitations and Issues
	Limits on Service Initiated Queries and PL/SQL Blocks
	Importing of Services

