
Oracle® Retail Data Store
Implementation Guide

Release 23.1.401.0
F86062-03
December 2023

Oracle Retail Data Store Implementation Guide, Release 23.1.401.0

F86062-03

Copyright © 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Implementation Overview

Separation of Replicated and Custom Data 1-2

Example 1-2

Support for Audit and Delete Tracking 1-2

2 Typical Implementation Events

3 Getting Started

APEX User Management 3-1

Data Visualization Access 3-4

4 Extension

RDS Architecture Basics 4-1

Environment Considerations 4-2

Prerequisites 4-2

Accessing the APEX UI 4-3

Obtaining ORDS Service Credentials 4-3

Generating an ORDS Access Token 4-5

Generating an Access Token Using cURL 4-6

Generating an Access Token Using POSTMAN 4-6

Obtaining a Pre-Authenticated Request (PAR) URL 4-8

Constructing an Object Storage Object URL 4-9

Obtaining Object Storage Credentials 4-11

ORDS RESTful Services 4-11

Implementing a RESTful Service in APEX 4-12

Invoking a RESTful Service from POSTMAN 4-14

ORDS PRE-HOOK 4-15

Using RDS to Build a Data Producing Service 4-15

GET Services 4-16

POST Services 4-16

iii

Long Responses 4-17

Using RDS to Build a Data Consuming Service 4-18

Exporting Data to Object Storage 4-19

Exporting Data Using a PAR 4-19

Exporting Data with a Credential 4-19

Importing Data from Object Storage 4-20

Importing Data Using a PAR 4-21

Importing Data Using a Credential 4-21

Incremental Export 4-22

Jobs 4-23

Retail Home Integrations 4-23

Monitoring Resource Consumption in RDS 4-25

Invoking External Services 4-27

Notification-Based Monitoring 4-27

Setting up the Notification Type 4-27

Implementing a RESTful Service in RDS 4-27

Setting up the POM Job 4-32

In Context Launch of an APEX App 4-35

Launching APEX Apps from Retail Home 4-36

Retail DB Ops Console 4-37

Home 4-37

AWR Reports 4-39

Search Generated AWR Reports 4-39

Generate AWR Custom Reports 4-40

Top SQL 4-41

DBMS Jobs 4-42

Database Metrics 4-44

Application Properties 4-52

Known Limitations 4-54

APEX Roles and Privileges 4-54

Importing Services 4-54

Reserved Application ID Range 4-55

5 Storage and CPU Usage

6 Version Updates

7 Notes

APEX 7-1

iv

Visual Builder Studio 7-1

APEX and Autonomous Databases 7-1

Known Limitations and Issues 7-1

Limits on Service Initiated Queries and PL/SQL Blocks 7-1

Importing of Services 7-1

v

Preface

This guide describes the administration tasks for Oracle Retail Data Store.

Audience

This guide is intended for administrators, and describes the administration tasks for
Oracle Retail Data Store.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

• Exact error message received

• Screen shots of each step you take

Oracle Help Center (docs.oracle.com)

Oracle Retail Product documentation is available on the following website https://
docs.oracle.com/en/industries/retail/html

Comments and Suggestions

Please give us feedback about Oracle Retail Help and Guides. You can send an e-mail
to: retail-doc_us@oracle.com

Oracle Retail Cloud Services and Business Agility

Oracle Retail Merchandising Cloud Services is hosted in the Oracle Cloud with the
security features inherent to Oracle technology and a robust data center classification,
providing significant uptime. The Oracle Cloud team is responsible for installing,
monitoring, patching, and upgrading retail software.

6

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com
https://docs.oracle.com/en/industries/retail/html
https://docs.oracle.com/en/industries/retail/html

Included in the service is continuous technical support, access to software feature
enhancements, hardware upgrades, and disaster recovery. The Cloud Service model helps to
free customer IT resources from the need to perform these tasks, giving retailers greater
business agility to respond to changing technologies and to perform more value-added tasks
focused on business processes and innovation.

Oracle Retail Software Cloud Service is acquired exclusively through a subscription service
(SaaS) model. This shifts funding from a capital investment in software to an operational
expense. Subscription-based pricing for retail applications offers flexibility and cost
effectiveness.

7

1
Implementation Overview

Oracle Retail Data Store (RDS) is a set of infrastructure and tools that allows you to build
extensions on top of Retail application data without affecting the original Retail applications.
These extensions can consist of database objects, web services, and user interfaces. This
Implementation Guide describes the solution and provides information about how you can
use RDS.

The core of RDS is a data replication implementation that uses Oracle GoldenGate to
replicate application data from Retail applications to a centralized Autonomous Data
Warehouse (ADW) database. The data is kept in sync with the source application database in
near-real-time.

This data is made available through Oracle REST Data Services (ORDS) and Application
Express (APEX) workspaces. When a retailer subscribes to RDS, they are given the URLs
and credentials to access these workspaces.

Figure 1-1 Data Replication to RDS via GoldenGate

• PDB - Pluggable Data Base. The source applications in the RGBU that will be replicating
to RDS store their data in pluggable database instances.

• ACFS - ASM (Automatic Storage Management) Cluster File System. A file system used
internally by GoldenGate to store the trail files that hold data replication information.

• ORDS - Oracle Rest Data Services. An Oracle tool that allows customers to create web
services connected directly to data in an Oracle database. RDS customers will use this to
create web services to access their custom data.

• APEX - Application Express. An Oracle tool that allows customers to create UI-based
applications connected directly to data in an Oracle database. RDS customers will use
this to create appliations that operate on their custom data.

1-1

• ADW - Autonomous Data Warehouse. An Oracle Autonomous Database offering
that is tailored toward data warehousing use cases. RDS stores its replicated data
and the customer's custom data here.

Separation of Replicated and Custom Data
The replicated application data is held in read-only schemas (one per source
application schema). The ORDS and APEX workspaces have access to a read-write
schema which can view the read-only schema's database objects. In the read-write
schema, you are free to create any database objects you need to create, and you
have read privileges to the replicated application data. When new database objects
are created in the read-only schema (for example when a patch is applied to the
source application), a scheduled database job in the RDS database grants the
appropriate read permissions for those objects to the read-write schema. This job runs
hourly.

Example

For Merchandising Foundation Cloud Service, an ORDS workspace is available that
grants access to the MFCS_RDS_CUSTOM schema. This schema is initially empty,
but allows creation of database objects, APEX applications, etc. This schema also has
read permissions to database objects in the MFCS_RDS schema, which is where the
actual replicated data resides. A customer can use the ORDS workspace to create
REST data services that can read the tables with replicated data, or can read and
write any custom tables that have been created. A customer can also build APEX
applications on top of the custom tables; the read-only replicated tables can be read
by the APEX application, but cannot be modified.

Each Retail application controls what data it replicates to the RDS database. Refer to
each application's product documentation for details about the data that is made
available in RDS.

Support for Audit and Delete Tracking
With basic replication, the data set in the source and target objects match. Records
that are, for example, deleted in the source are deleted from the target. Records that
are updated in the source are updated in the target, and the previous state of the data
is lost. For a subset of products supporting RDS, an additional set of tables are used
to track these changes so that custom processes in RDS have visibility to key changes
in data. If a table has been marked for audit tracking, every DML operation causes a
new record to be inserted into an RDS only audit tracking table. Audit tracking
produces a running log of all changes that have been made to the source table. If a
table has been marked for delete tracking, when a record is deleted, a new record is
inserted into an RDS only delete tracking table. Please refer to the RDS Data Model
guide for each supported product to understand if that product supports this feature
and to get details on the tables identified for tracking.

Chapter 1
Separation of Replicated and Custom Data

1-2

2
Typical Implementation Events

In any implementation including RDS, there are many steps along the way before a system is
running.

• Provisioning

– Provisioning includes the installation of the RDS Cloud Service including initial
infrastructure required. This includes an ADW instance with schemas available for
replication and extension, ORDS workspaces, and integration into Oracle Retail
Home for display of usage metrics.

• Data Seeding via Data Pump

– The next step is creating an initial data load into RDS from the source application
using Oracle Data Pump tools. This step is done by Oracle when the retailer
indicates they are ready to move forward.

– A prerequisite to this step is that the source application must have data ready to be
replicated; this may be an involved process depending on the application in question.
Refer to documentation for the source application.

– The result of this step is that a baseline set of data has been replicated from the
source application to the RDS read-only schema.

• GoldenGate Hub Configuration

– A GoldenGate Hub instance is configured to replicate data from the source
application's database to the RDS read-only schema.

– This is done by Oracle when the retailer indicates they are ready to move forward.

– The result of this is that the GoldenGate Hub is running and performing active
replication from the source applications' database.

• Extension

– In this step, the retailer uses the tools that are part of RDS to build the custom
extensions they need.

2-1

3
Getting Started

Once RDS is provisioned, the following APEX workspaces are available to use:

Table 3-1 APEX Workspaces

Workspace Name Source Cloud Service

MFCS_RDS_CUSTOM Merchandising Foundation Cloud Service

CE_RDS_CUSTOM Customer Engagement Cloud Service

SIOCS_RDS_CUSTOM Store Inventory Operations Cloud Service

OB_RDS_CUSTOM Order Broker Cloud Service

XO_RDS_CUSTOM Xstore Office Cloud Service

SE_RDS_CUSTOM Supplier Evaluation Cloud Service

BC_RDS_CUSTOM Brand Compliance Cloud Service

RICS_RDS_CUSTOM Retail Integration Cloud Service

OM_RDS_CUSTOM Order Administration Cloud Service

Note:

These workspaces are available even if you have not subscribed to the associated
cloud services, but they contain no database objects or replicated data.

You can access these workspaces by navigating to the workspace login page for your
environment. The URL for this will be delivered to you after provisioning is complete, and
follows the pattern:

https://<base URL>/<environment ID>/ords/

For example:

https://ocacs.ocs.oc-test.com/nryfhvvl5ka2su3imnq6/ords/

APEX User Management
For the purposes of this documentation, there are two types of APEX users, end users and
development users. End users are users with access to the applications built with APEX.
They will log into and use those applications, but not be involved in their development or
management. Development users, on the other hand, can create and manage the APEX
applications the end users use. Within this set of users, there are Developer and Workspace
Administrator roles. Users with Developer role can create and edit APEX applications while
Workspace Administrators can do that as well as manage the application lifecycle and
workspace settings.

3-1

This document will focus on managing Development users. End user authentication is
managed by the Workspace Administrator, who can choose any supported form of
authentication for the APEX applications developed. For details on supported models,
please reference the APEX App Builder User’s Guide, section 20.4 Establishing User
Identity Through Authentication.

Development user authentication is provided through integration with IDCS. The APEX
Workspaces provisioned for RDS are configured to use HTTP Header Variable
authentication. For full details on this model, please refer to the APEX App Builder
User’s Guide, section 20.4.3.4 HTTP Header Variable.

Once provisioned, each workspace comes with a single user. This user is the
Workspace Administrator for that workspace. For initial access, each Workspace
Administrator account must be created in IDCS by the customer. The Workspace
Administrator account passwords and their lifecycle will then be managed by the
customer in IDCS going forward. There is no need to synchronize this user with APEX.
The only requirement is the usernames match.

This is the set of available Workspace Administrators for this release:

• MFCS_RDS_CUSTOM

• CE_RDS_CUSTOM

• SIOCS_RDS_CUSTOM

• OB_RDS_CUSTOM

• XO_RDS_CUSTOM

• SE_RDS_CUSTOM

• BC_RDS_CUSTOM

• RICS_RDS_CUSTOM

• OM_RDS_CUSTOM

In most cases, teams will need to create additional development users in these
workspaces to facilitate the development of APEX applications and REST endpoints.
The Workspace Administrator account has the permissions to create additional
Developer and Workspace Administrator users through the APEX UI. Any additional
users created will need to follow the same pattern as the default user accounts. Create
the users in APEX and create matching usernames in IDCS. Like the default
Workspace Administrator accounts, these new accounts will have their passwords live
in IDCS. For the APEX user creation, use the workspace's Administration menu in the
top right corner to access Manage Users and Groups.

Chapter 3
APEX User Management

3-2

Create the users needed by selecting the Create User button and filling in the form.

For full details, please refer to the APEX Administration Guide.

Chapter 3
APEX User Management

3-3

Data Visualization Access
RDS is provisioned with Oracle Analytics Server Data Visualization capabilities. You
can access these capabilities by navigating to the Retail Home Application Navigator
and tapping Data Visualization or Analytics Publisher.

These links are protected by the same IDCS instance and fully supports single sign-
on.

For full details on taking advantage of Data Visualization and Analytics Publisher in
RDS, please refer to the Visualizing Data in Oracle Analytics Server documentation.

Chapter 3
Data Visualization Access

3-4

4
Extension

RDS Architecture Basics
The defining feature of RDS is the data of each participating product resides in a single
dedicated read-only schema, e.g., MFCS. Product data is made accessible to the customer in
a dedicated companion, writeable schema using synonyms. All custom data objects are
created in this companion, writeable schema. Management and retention of these objects is
wholly the responsibility of the customer.

The product data in RDS is a replica of selected data residing in an operations system such
as MFCS. The MFCS replica contains more than 700 views. Nonetheless, RDS is not part of
MFCS (nor any other participating product), but a repository of MFCS data. Moreover, the
data exchange is one way from MFCS to RDS. Any data movement, directly or indirectly,
from RDS to MFCS is orchestrated by the customer.

Note:

Only views on replicated tables are accessible. Specifically, replicated tables are
not accessible. Moreover, the data exchange is one way from any custom product
schema (for example, MFCS_RDS_CUSTOM) to RDS. Any data movement,
directly or indirectly, from RDS to a product (for example, MFCS) is orchestrated by
the customer. RDS schema are accessible from services, Data Visualization, the
APEX UI. There is no other access pathway.

Although data from multiple products reside in RDS, there is only an informal guarantee that
if there are no updates to a given set of data items, then eventually all accesses will return
temporally consistent results. What this statement means is that after sufficient time has
passed, RDS accurately reflects the state of the enterprise at some point in time in the recent
past (recent could be measured in seconds, minutes, or hours). What qualifies as sufficient
time depends on the temporal consistency of the separate subsystems that make up the
enterprise, which depends metaphorically speaking on when each system closes its book.
Temporal consistency also depends on the replication lag, which varies depending on system
loading. This lag, however, is expected to be minimal under normal operating conditions.
Temporal consistency may prove decidedly less relevant than semantic and data model
differences between the products that reflect the specific problems each product was devised
to solve.

Refer to your product data model to determine what data is available in RDS. Bear in mind,
the data is a replica of inserts and updates as well as deletes. The point is, the data retention
policy in RDS is effectively replicated from the operations system. Selected audit/delete
tables are also retained. The retention period of audit/delete data is one year. Retention of
audit/delete data beyond one year is the responsibility of the customer. The retention period
is not configurable.

4-1

Environment Considerations
When embarking on the customization of a product, it is important to understand how
the RDS implementation environment, which is a SaaS offering, differs from PaaS and
on-premises. First of all, some or all product customization will be accomplished by
making modifications to RDS (the product implementation guide will provide details on
product customization). Those modifications are achieved using APEX.

APEX is a low code development environment. As a result it does not anticipate the
need for (and does not provide) development life cycle tools. Application user
interfaces are composed in an application builder. RESTful services are built in a
similar fashion. In fact, one constructs most database objects using a UI rather than by
executing code. One can, however, use the SQL Workshop to compose small amounts
of PL/SQL (e.g., 100s to 1000s of lines of code). There is no access to SQL*Developer
or SQL*Loader. In fact, most consoles are unavailable. It is an ideal environment for
most business savvy users, but may be foreign to the skilled PL/SQL, front end, or
back end developer. It is important to note that customizations that require coding will
use SQL and PL/SQL. Moreover, most data interchange will rely on JSON formatted
messages. All the examples in this document will employ JSON.

When using APEX, SQL command line type activities are performed in the SQL
Commands tool within the SQL Workshop. For SQL script development (for blocks of
code where reuse is anticipated), however, one uses the SQL Scripts tool.

When using APEX, one logs into a workspace and that workspace provides access to
a single schema. Specifically, one can have access to the data for a single product
within a workspace. In other words, it is not possible to execute a mutli-schema or
cross-schema query from within a workspace. If one needs to combine information
from multiple products, then one constructs schema specific integrations and then
joins that information externally.

Lastly, it is important to remember that since RDS is a SaaS offering, some tools and
features may not be available or availability may be provided with some limitations. It
is important that one understand the dependencies inherent in customizations that one
wishes to migrate. Expect to review these dependencies with an Oracle
Representative.

Prerequisites
In order to implement any meaningful customizations, you will need to meet the
prerequisites listed below. Furthermore, the examples in this chapter can be replicated
in your RDS environment. Replicating the examples will both help you understand the
development context and provide assurance that the prerequisites have been met
prior to starting implementation.

• A Retail Home instance. Contact your RDS System Administrator for details –
Oracle Support does not provide this information.

• An IDCS Authorization Server host. Contact your RDS System Administrator for
details – Oracle Support does not provide this information.

• An Oracle Cloud account. Contact your RDS System Administrator for details on
setting up your Oracle Cloud account.

Chapter 4
Environment Considerations

4-2

https://apex.oracle.com/en/
https://docs.oracle.com/en/database/oracle/application-express/20.2/aeutl/index.html
https://docs.oracle.com/en/database/oracle/application-express/20.2/aeutl/using-SQL-commands.html#GUID-41CC2FC0-F6B6-4737-B7D2-6C9C1B85310C
https://docs.oracle.com/en/database/oracle/application-express/20.2/aeutl/using-SQL-commands.html#GUID-41CC2FC0-F6B6-4737-B7D2-6C9C1B85310C
https://docs.oracle.com/en/database/oracle/application-express/20.2/aeutl/index.html
https://docs.oracle.com/en/database/oracle/application-express/20.2/aeutl/using-SQL-scripts.html#GUID-7288B4B4-E00C-4DC4-89EA-5FA52623A1EF

• A working knowledge of Oracle Retail Home.

• A working knowledge of the Oracle Cloud Console (on the web search for Using the
Oracle Cloud Console for the latest documentation).

• Access to an APEX workspace within an RDS tenant (see user management above).

• Access to a suitable Object Storage service.

• Access to a suitable object storage bucket. RDS does not automatically come with a
customer accessible object storage bucket. Provisioning an object storage bucket for use
with RDS is a customer responsibility. Bear in mind, FTS, when available, will not be able
to produce usable writable PARs for DBMS_CLOUD.EXPORT_DATA (EXPORT_DATA is
expecting a prefix or bucket URI, not an object URI). Readable PARs generated by FTS
for importing data into RDS, however, are usable with DBMS_CLOUD.COPY_DATA.

Accessing the APEX UI

You will need a Retail Home endpoint URL to perform the steps described below.

APEX is a browser-based application. You access APEX by navigating to the Retail Home
Application Navigator and tapping RDS APEX/ORDS (RDS APEX/ORDS is included in the
Application Navigator by default).

It is the responsibility of RDS workspace admin to create development user accounts for
each user requiring access to one or more APEX workspaces. for you so that you will be .
See the APEX User Management section above for additional details.

Before proceeding:

1. Verify access to Retail Home

2. Verify access to the relevant APEX workspaces.

Obtaining ORDS Service Credentials

Chapter 4
Prerequisites

4-3

ORDS services use OAUTH 2 for authentication. All services are authenticated. What
this means in practice is that a short-lived token is used for authentication. That token
is generated using a well-known service, which authenticates using basic auth. The
basic auth credentials (i.e., client id and client secret) are obtained from Retail Home.

1. In Retail Home, navigate to Manage OAUTH Clients page by tapping settings (1),
then tapping the Application Administration menu item (2), and lastly tapping the
Manage OAUTH Clients menu item to arrive at the Manage OAUTH Clients page
(4).

2. Tap the + button.

Chapter 4
Prerequisites

4-4

3. A popup dialog will appear. Provide an App Name and Description. Leave Scope blank.
Tap OK.

4. A new dialog window will appear with a Display Name, Client ID, and Client Secret.
Retain this information. It will not be displayed again. Tap Done when the information
has been copied. Note that new credentials can be created at any time and that
production, stage, and development will have different credentials.

Consult Retail Home Application Administration Guide for additional details on managing
OAUTH clients.

Before proceeding:

1. Verify that a client id and secret can be created in Retail Home.

2. Retain the client id and secret for future use.

Generating an ORDS Access Token

You will need an IDCS Authorization Server endpoint URL and ORDS service credentials to
perform the steps described below.

Chapter 4
Prerequisites

4-5

One uses an IDCS Authorization Server to generate an ORDS access token. Two
access token generation techniques will be described, curl and POSTMAN. One is
likely to use both techniques during the development process.

Generating an Access Token Using cURL

The cURL command for generating an access token has five components:

1. The IDCS Authorization Server endpoint URL

2. A content type

3. An authorization

4. A grant type

5. A scope

Only the IDCS Authorization Server endpoint URL and authorization are customer-
specific. Content type, grant type, and scope are the same for all customers.

The endpoint URL has the following form:

https://<idcs authorization server host>/oauth2/v1/token

The authorization uses Basic Auth. You will need to base64 encode your Basic Auth
credentials using the following format:

clientId:clientSecret

Replace Client ID and Client Secret with credentials obtained using the method
described in the 4.3.2 Obtaining ORDS Service Credentials section above. Then use a
base64 encoding tool to encode the string.

The cURL command to generate a token is as follows:

curl --location --request \
POST 'https://<idcs authorization server host>/oauth2/v1/token' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--header 'Authorization: Basic <base64 clientId:clientSecret>’ \
--data-urlencode 'grant_type=client_credentials' \
--data-urlencode 'scope=urn:opc:idm:__myscopes__'

Generating an Access Token Using POSTMAN

Generating is access token in POSTMAN is typically an integral part of calling other
services. In this section, we will illustrate the process of generating a token directly and
generating it as part of another service invocation. Use the following steps to generate
a token directly:

1. Open POSTMAN and create a new request by clicking on the New button in the
top left corner of the screen.

2. Select HTTP.

3. In the new request tab, select the POST method from the drop-down menu.

Chapter 4
Prerequisites

4-6

4. Enter the IDCS Authorization Server endpoint URL in the "Enter request URL" field.

5. Click the Authorization tab to configure authorization.

6. In the Type drop-down menu, select Basic Auth.

7. Enter your username (client id) and password (client secret) in the fields provided.

8. Next click the Body tab to add the grant type and scope parameters.

9. In the menu, select x-www-form-urlencoded.

10. Next enter two key-value pairs:

Key Value

grant_type client_credentials

scope urn:opc:idm:__myscopes__

11. Once you have configured your request, click on the "Send" button to execute it.

12. The response from the service will be displayed in the "Response" section below the
request configuration. You can view the response headers and body, as well as any
errors or status codes. The response is JSON formatted and should have the following
form:

{
 "access_token": "<token>",
 "token_type": "Bearer",
 "expires_in": 3600
}

13. You can also save the request for future use by clicking on the "Save" button in the top
right corner of the screen and giving it a name.

To use OAuth2 in Postman to invoke a ORDS service, you can follow these steps.

1. Open POSTMAN and create a new request.

2. Select the Authorization tab from the top of the request builder.

3. Select the OAuth 2.0 type from the drop-down menu.

4. Scroll down to Configure New Token.

5. Choose a name for the token configuration.

6. Select client credentials as the grant type.

7. Enter your IDCS Authoization server endpoint URL, client id, client secret, and scope as
you did above.

8. Set client authentication to Send as Basic Auth Header.

9. Scroll down to get new access token.

10. POSTMAN will then display the token details, such as the access token, refresh token,
and token expiration time.

11. Finally, click the Use Token to apply the token to your service.

Before proceeding verify your understanding and validate your ORDS service credentials:

1. Unless you do not expect to use cURL, verify your that you can generate a token using
cURL.

Chapter 4
Prerequisites

4-7

2. Unless you do not plan to use POSTMAN, then verify your understanding by
generating a token using POSTMAN.

3. More than likely, you do not have an ORDS service with which to test
authentication at this point. If you do and you expect to use POSTMAN, then verify
your understanding by invoking an ORDS service.

Obtaining a Pre-Authenticated Request (PAR) URL

If you do not anticipate using Object Storage for integration, you can skip this section.
You will need to use the Oracle Cloud Console to perform the steps below.

A pre-authenticated request, or PAR, provide a way to let users access a bucket or
object without having their own credentials. Users continue to have access to the
bucket or object for as long as the creator of the request has permissions to access
those resources.

When you create a pre-authenticated request, a unique URL is generated. Anyone you
provide with this URL can access the Object Storage resources identified by the pre-
authenticated request. See Using Pre-Authenticated Requests in the Oracle Cloud
Infrastructure Documentation for additional details.

The steps to create a writable PAR for specific object are as follows:

1. Login to you Oracle Cloud account

2. Open the navigation menu in the upper left to work with services and resources.
Services and resources are organized by functional group.

3. Open the navigation menu and click Storage.

Chapter 4
Prerequisites

4-8

4. Then click Buckets.

5. Select the appropriate compartment in the compartment select box. The object storage
buckets in the compartment will be listed.

6. Select the appropriate bucket from the list.

7. In the Resources section, click Pre-Authenticated Request.

8. Specify the Name, select a Pre-Authenticated Request Target, select the Access Type,
and the Expiration date.

9. Click Create Pre-Authenticated Request.

10. Copy the pre-authenticated request URL for your records.

Alternatively, one can create a PAR using from a shell using OCI os. Before proceeding verify
your understanding and verify that you can create PAR.

Constructing an Object Storage Object URL

If you do not anticipate using Object Storage for integration, you can skip this section. You will
need to use the Oracle Cloud Console to perform the steps below.

Unlike a PAR, an Object Storage object URL requires the schema user to have their own
credentials. Like a PAR, the URL will provide a way for users to identify and access a bucket
with a known name. In order to construct a URL, you will need to know:

• the region identifier for your object storage instance

• the namespace in which your object storage is located

• the name of the bucket that you will be using

To obtain the region identifier:

1. Login to the Oracle Cloud Console

2. In the middle right portion of the tool bar at the top of the console page, you will find the
name of the region in which your Object Storage instance is located (you can change

Chapter 4
Prerequisites

4-9

regions from here as well, if need be), e.g., US East (Ashburn). Tap the region to
reveal the region menu.

3. In the region menu, there is a Manage regions menu item. Tap it.

4. A list of regions will be displayed. For each region displayed there is a region
identifier. Note the region identifier for your region. See the figure below:

Once you have the region identifier, you can construct a base URI for your object store
instance, which has the following form:

https://objectstorage.<region-identifier>.oraclecloud.com

For example, the host for a URI for US East (Ashburn) region is:

https://objectstorage.us-ashburn-1.oraclecloud.com

Next find the namespace for your bucket at the top of the General section in the
Bucket Information. Lastly, find the name of the bucket at the top of the bucket page.

The complete URL is:

https://<host>/n/<namespace>/b/<bucket>/o/<object-prefix>

Note that the object prefix is a base name when exporting from ADW. The final object
name will have a multi-part identifier (e.g., which is "1", if it is not a multipart export),
timestamp suffix, a format extension (e.g., ".json") and, if compression was used, a
compression extension (e.g., ".gz"). For example, an object name as listed in the
bucket might look like the following:

ie_export_test_1_20221108T225927023493Z.json.gz

Chapter 4
Prerequisites

4-10

Before proceeding verify your understanding and verify that you can create ab object storage
object UIL.

Obtaining Object Storage Credentials

You will need to use the Oracle Cloud Console to perform the steps below.

In order to read from or write to object storage one will need the necessary credentials. Refer
to Required Keys and OCIDs for details on obtaining credential information for object storage.
The easiest way to obtain the needed credentials is as follows:

1. Navigate to one’s My Profile page in the Oracle Cloud (i.e., tap the profile button/image in
the upper right corner and select My Profile from the drop down).

2. Next tap the API Keys link in the Resources section on the lower left of the screen.

3. Finally tap the Add API Key button and follow the instructions. Part of the process is
downloading one’s private key. The downloaded key is in PEM format. The key will need
to be reformatted as a single long string without the leading and trailing dashes when
using the credential in create credential script. There should be no new lines in the key.

These instructions will make more sense once one goes through the Add API Key process.

ORDS RESTful Services
The point of this section is not to say everything that needs to be said about RESTful
Services. Rather it will describe some patterns one is likely to encounter and how they might
be implemented. Those patterns are as follows:

• Data producing services or outbound integrations are one of the most likely patterns one
will implement. Such services are typically pull producers that generate a chunk of data in
response to an explicit request. A less common producer is one which continues to
generate data without external prompting by invoking an external data consuming
service. In this case, the service is either governed by the DBMS_SCHEDULER or by
and external scheduling system.

• Data consuming services or inbound integrations insert data into RDS. The inbound data
originates in an external system. There is no need to insert data found in the participating
products or subscribe to RICS data originating in these products because it is already
being replicated.

• Bulk import and export services represent another inbound and outbound integration
pattern. In this case, however, data is transferred through object storage rather than
through the service itself. The role of the service is to initiate the transfer.

• The last services pattern concerns process orchestration and monitoring. These service
patterns start, stop, and monitor jobs. In most cases, these services will run
asynchronously. For example, they will submit a job for future execution and return
immediately.

Oracle RESTful Data Services play a role in every integration. Services either directly transfer
the data or initiate that transfer through object storage. For a pull pattern, the service queries
ADW and then returns the query result as its response. For a push pattern, the service is
invoked with a payload that is inserted in a ADW table. In the case of a bulk export
integration, the service initiates the export and then returns a response indicating whether the
export was successfully initiated or not. Lastly, a bulk import integration service initiates the

Chapter 4
ORDS RESTful Services

4-11

https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs

import and then returns a response indicating whether the import was successful or
not. Additional services are required to monitor the progress of import and export jobs.

In most cases, the pattern chooses itself for a given task. Synchronous data services
that push or pull data in response to an explicit request are simple to implement. The
problem is that simple producers do not tend to scale to large volumes of data. First,
there is a non-negotiable hard limit of 300 seconds on query duration. If the query
exceeds this limit, the caller will return a socket hang up error. Moreover, it is also
worth remembering that the database is not infinitely scalable. Specifically, there are
only so many connections available (a max of 100) and there is only so much CPU
capacity. One can't split a huge bulk data task into a multitude of smaller subtasks and
expect them to require fewer CPU seconds. In the worst case, a backlog of REST
invocations builds, and invocations start timing out.

Implementing a RESTful Service in APEX
In order to implement the examples below, you will need:

• Access to the APEX UI and Workspace so that you can create a service

The following paragraphs will only provide an overview of how one creates a RESTful
service. Consult Chapter 7 of the SQL Workshop Guide, Enabling Data Exchange with
RESTful Services. The chapter describes in detail how one creates a RESTful service
in APEX. Bear in mind, documentation is version specific. Although documentation
across versions tends to be quite similar, it is generally best to consult the
documentation for the version of APEX one is using.

To begin, navigate to the APEX UI and select a workspace, such as MFCS, then follow
the steps below:

1. From the APEX UI navigate to the RESTful Services page (i.e., from the APEX
Navigation Bar SQL Workshop > RESTful Services).

2. Click Modules

3. Click Create Module

4. Name your module "imp_guide" and set the Base Path to "/imp_guide/"

5. Click Create Module

A module represents a collection of related services. Begin creating the first service by
creating a template. The steps are as follows:

1. Click Create Template

2. Set the URI Template to "hello_world/:name"

3. Click Create Template

The ":name" path component allows us to introduce and demonstrate a bind variable.

The last step is to create a handler for the service. Create the handler by following
steps below:

1. Click Create Handler

2. Set the Method to GET

3. Set Source Type to Collection Query

4. Set the Source to "select 'Hello World! ' || :name as response from dual"

Chapter 4
Implementing a RESTful Service in APEX

4-12

5. Click Create Handler

The full URL is displayed on the ORDS Handler Definition page. The URL has the following
form:

https://<host>/<tenant-name>/ords/<workspace>/imp_guide/hello_world/<your-
name>

Note that the URL for service handler is displayed on the handler definition page.

Since this is a GET service, it can be tested from a browser. The response for this service, if
your_name was john would be:

{
 "items": [
 {
 "response": "Hello World! john"
 }
],
 "hasMore": false,
 "limit": 25,
 "offset": 0,
 "count": 1,
 "links": [
 {
 "rel": "self",
 "href": "https://<host>/<tenant-name>/ords/mfcs/imp_guide/hello_world/
john"
 },
 {
 "rel": "describedby",
 "href": "https://<host>/<tenant-name>/ords/mfcs/metadata-catalog/
imp_guide/hello_world/item"
 },
 {
 "rel": "first",
 "href": "https://<host>/<tenant-name>/ords/mfcs/imp_guide/hello_world/
john"
 }
]
}

Query parameters become bind variables. For example:

1. Edit the Source of your hello_world service to be "select 'Hello World! ' || :name || ' ' ||
nvl(:last_name, 'Smith') as response from dual"

2. Apply Changes.

The response for this service, if your_name was john?last_name=jones would be:

{
 "items": [
 {
 "response": "Hello World! john jones"
 }

Chapter 4
Implementing a RESTful Service in APEX

4-13

],
 "hasMore": false,
 "limit": 25,
 "offset": 0,
 "count": 1,
 "links": [
 {
 "rel": "self",
 "href": "https://<host>/<tenant-name>/ords/mfcs/imp_guide/
hello_world/john?last_name=jones"
 },
 {
 "rel": "describedby",
 "href": "https://<host>/<tenant-name>/ords/mfcs/metadata-catalog/
imp_guide/hello_world/item"
 },
 {
 "rel": "first",
 "href": "https://<host>/<tenant-name>/ords/mfcs/imp_guide/
hello_world/john?last_name=jones"
 }
]
}

Before proceeding:

1. Create the hello_world service in the APEX UI.

2. Test the service from a browser. You should be challenged (if you have not already
been authenticated) when invoking the service. Use your IDCS login credentials to
authenticate.

Invoking a RESTful Service from POSTMAN
In order to implement the example below, you will need:

• The hello_world service described above.

• Access to POSTMAN. The discussion below assumes familiarity POSTMAN.

• The ORDS OAUTH credentials created in Obtaining ORDS Service Credentials.

Invoking a RESTful service from POSTMAN combines access token generation with
endpoint access. Using POSTMAN allows you to test your services as well as simulate
the fundamental tasks performed in service-based integration. To invoke your
hello_world service using POSTMAN, follow these steps:

1. Open Postman and create a new request by clicking on the "New" button in the
top left corner of the application. Select HTTP Request.

2. In the "Enter URL or paste text" field, enter the endpoint of the hello_world
service.

3. The default HTTP method is GET. Examine the other methods, but leaving the
setting as GET.

4. Click the Params tab and add the last_name parameter (i.e., key is last_name,
value is Smith for example).

Chapter 4
Invoking a RESTful Service from POSTMAN

4-14

5. Click the Authorization tab.

a. Select the OAuth 2.0 type from the drop-down menu.

b. Click on the "Get New Access Token" button.

c. In the "Get New Access Token" popup window, fill in your access token URL (IDCS
Authorization Server endpoint URL), client ID, client secret, grant type, and scopes.

d. Once you have filled in the required fields, click on the Get New Access Token
button.

e. POSTMAN will then display the token details, such as the access token, refresh
token, and token expiration time.

f. Finally, click the Use Token to apply the token to your service.

6. Once you have configured the request, click on the "Send" button to send the request to
the RESTful service.

7. You will see the response from the RESTful service in the "Response" section of the
request window. You can view the response headers, body, and status code to verify that
the request was successful.

Before proceeding invoke your hello_world service from POSTMAN.

ORDS PRE-HOOK
Oracle REST Data Services (ORDS) provides the ability to use PL/SQL based pre-hook
functions that are invoked prior to an ORDS based REST call. These functions can be used
for a variety of purposes including auditing, custom authentication and authorization, and
metrics gathering.

Each provided RDS workspace comes pre-configured with a simple pre-hook function named
ORDS_PREHOOK, and it has a default implementation that simply returns true. As such, it has
no effect on the REST calls made into custom applications. It is provided as a starting point
for extension to teams that required additional processing on each REST call. For those
teams, replacing the implementation of the ORDS_PREHOOK function will enable the additional
capabilities they require. For more information on pre-hook functions, please refer to Oracle
REST Data Services Installation, Configuration, and Development Guide: Overview of Pre-
hook Functions.

Be aware that some extensions, such as those provided by the Oracle Retail Cloud Value
team, use ORDS PRE_HOOK to enhance security. Incomplete configuration of these
extensions as well as failure to communicate their presence to the broader customer
implementation team can result in unexpected authentication failures.

Using RDS to Build a Data Producing Service
A data producing service can be used to deliver data to a UI or fulfill some data need in an
automated business process. The limiting factor is time. The data producing service must be
able to produce a response in less than 300 seconds. If the service exceeds that limit, the
caller will hang up and respond with a socket hang up error. The consumer may be able to
wait longer than 300 seconds, but ORDS will not. The 300 seconds limit is not configurable.

Most data producing services are parameterized to one degree or another. The hello_world
service demonstrated the use of a parameter in the URL template as well as the use of a
query parameter. When considering how best to communicate parameters to a service, the

Chapter 4
ORDS PRE-HOOK

4-15

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/21.2/aelig/developing-REST-applications.html#GUID-1B081D04-39EC-4E3B-8902-AEB2A44EEF34
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/21.2/aelig/developing-REST-applications.html#GUID-1B081D04-39EC-4E3B-8902-AEB2A44EEF34
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/21.2/aelig/developing-REST-applications.html#GUID-1B081D04-39EC-4E3B-8902-AEB2A44EEF34

developer should be aware that a URL has a maximum size (Oracle will not guarantee
support of any maximum). If the parameters are complex or lengthy, then parameters
should be passed to the service in the body of the request. The format of the request
body is up to the developer; however, the body should be easy to parse in PL/SQL,
e.g., JSON formatted requests are easy to parse. If the request includes a body, then
the request method must be POST or PUT. GET methods ignore the request body.

GET Services

In order to implement the example below, you will need:

• Access to the APEX UI.

• The hello_world service described above.

• Access to POSTMAN. The discussion below assumes familiarity POSTMAN.

• The ORDS OAUTH credentials created in Obtaining ORDS Service Credentials.

GET services are particularly easy to implement in the APEX UI. The service source is
the query. Complicated queries should be implemented, when possible, as views to
keep the service source simple. Views are more easily tested. Bear in mind, the
service source is not compiled until the service is invoked. In other words, the first
indication of a compilation error is the error message in the service response.

The hello_world service was configured as a collection query that anticipates
returning multiple rows. The result is also paged, meaning links to next and previous
pages are supplied in the response. The response is also formatted as a JSON object.
For additional details refer to the ORDS Developers Guide.

Before proceeding:

• Review the response to the invocation of the hello_world and make sure that you
understand each element of the response.

• Change the result type to a collection query item and invoke the service. Make
sure you understand each element of the collection query item response.

• Lastly, navigate in your browser to the ORDS Developers Guide. Take the time to
review familiarize yourself with its contents.

POST Services

In order to implement the example below, you will need:

• Access to the APEX UI.

• Access to POSTMAN. The discussion below assumes familiarity POSTMAN.

• The ORDS OAUTH credentials created in Obtaining ORDS Service Credentials.

Sometimes it is necessary to use a POST service in a GET-like setting because the
query string would be too complicated (bin64 encoding is an option, but will not be
discussed here). POST services, however, are more complicated to implement. In this
case, the method is POST and the source type is PL/SQL. The service source is a
PL/SQL block. There is no paging. There is no automatic rendering of the response in
JSON format. The body or payload is retrieved using the implicit bind
variable :body_text. The format of the body is up to you. Bear in mind, whatever
format you choose, you will have to parse or unpack it.

Chapter 4
Using RDS to Build a Data Producing Service

4-16

For example, the following service source:

declare
 payload varchar2(128) := :body_text;
 response varchar2(64);
 first_name varchar2(64);
 last_name varchar2(64);
begin
 first_name := json_value(payload, '$.first_name');
 last_name := json_value(payload, '$.last_name');
 select json_object('response' value '"hello '||
first_name || ' ' || last_name || '"' format json)
 into response
 from dual;
 htp.prn(response);
end;

Illustrates four important tasks:

• Obtaining the service body or payload using :body_text. Note, :body_text can only be
read once.

• Unpacking the payload using json_value.

• Building a JSON response.

• Returning a response using htp.prn.

The service when given a payload of:

{"last_name":"smith", "first_name":"john"}

Returns with a response of:

{"response":"hello john smith"}

Before proceeding, create and test the POST service above using POSTMAN.

Long Responses

In some cases, the response from your service exceeds the capacity of varchar2. When this
happens, replace the varchar2 response with a clob. The procedure, HTP.PRN procedure
used above will not, however, work with a clob. For http printing clobs, I created the
HTP_PRN_CLOB procedure below.

create or replace PROCEDURE HTP_PRN_CLOB(PCLOB IN OUT NOCOPY CLOB)
IS
 V_TEMP VARCHAR2(4000);
 V_CLOB CLOB := PCLOB;
 V_AMOUNT NUMBER := 3999;
 V_OFFSET NUMBER := 1;
 V_LENGTH NUMBER := DBMS_LOB.GETLENGTH(PCLOB);
 V_RESULT CLOB;
BEGIN

Chapter 4
Using RDS to Build a Data Producing Service

4-17

 WHILE V_LENGTH >= V_OFFSET LOOP
 V_TEMP:= DBMS_LOB.SUBSTR(V_CLOB, V_AMOUNT, V_OFFSET);
 HTP.PRN(V_TEMP);
 V_OFFSET := V_OFFSET + LENGTH(V_TEMP);
 END LOOP;
END;

Using RDS to Build a Data Consuming Service
In order to implement the example below, you will need:

• Access to the APEX UI.

• Access to POSTMAN. The discussion below assumes familiarity POSTMAN.

• The ORDS OAUTH credentials created in Obtaining ORDS Service Credentials.

A data consuming service updates an existing a custom RDS table, emphasis on
custom. All the replicated views and tables in RDS are read-only. If you want to add
data to RDS, you will need to create a table for it. The semantics of http methods
strongly encourages you to use the POST, PUT, and DELETE methods modification,
specifically, it discourages creating GET handlers that have side effects. From the
service implementation perspective, a data consuming service is no different than the
POST service described in POST Services. The difference is that the service source
unpacks the payload (or query string parameters) and then inserts a new record or
updates an existing record based on the results of that unpacking.

For example, the following service source inserts a row into a table name
hello_world_names. This table has two columns, last_name and first_name. The
first name is part of the URL and the last name is found in the body of the post
method.

declare
 payload varchar2(128) := :body_text;
 response varchar2(64);
 first_name varchar2(64) := :name;
 last_name varchar2(64);
begin
 last_name := nvl(json_value(payload, '$.last_name'),
 'no_last_name_given');
 insert into hello_world_names (last_name, first_name)
 values (last_name, first_name);
 htp.prn('{"status":"success"}');
end;

Before proceeding:

1. Create hello_world_names table in your RDS.

2. Add (create) a POST handler for your hello_world service described in POST
Servicesto insert a row in the hello_world_names. Use the example source
above.

3. Test your new POST handler using POSTMAN.

Chapter 4
Using RDS to Build a Data Consuming Service

4-18

Exporting Data to Object Storage
In order to implement the example below, you will need:

• Access to Oracle Cloud Console.

• Access to the Object Storage Service.

• Ability to list buckets and their objects.

• Ability to create a PAR.

• Access to the APEX UI.

• Access to POSTMAN. The discussion below assumes familiarity POSTMAN.

• The ORDS OAUTH credentials created in Obtaining ORDS Service Credentials.

There are two approaches to exporting data to object storage. The approaches only differ in
the type for file URI used. The first approach uses a pre-authenticated request (PAR). The
second uses a URI that requires authentication.

Exporting Data Using a PAR

Create a bucket level or prefix PAR using the process described in Section 4.3.4. An object
level PAR will not work. The example code below demonstrates how a PAR can be used to
export data from RDS.

Begin
 dbms_cloud.export_data(
 file_uri_list=> '<your-PAR-goes-here>',
 query => 'select 1 from dual',
 format => json_object('type' value 'csv')
);
 htp.prn('{"status":"success"}');
end;

Before proceeding:

1. Create a bucket level PAR for an export test.

2. Execute the above code in APEX > SQL Commands

a. Verify an export was created by listing the objects in your bucket.

3. Implement an export POST service using the example code above and your PAR.

4. Test the service using POSTMAN.

a. Verify an export was created by listing the objects in your bucket.

Exporting Data with a Credential

In Obtaining Object Storage Credentials, you created credentials that can be used to
import data from and export data to object storage. You will need those credentials to run the

Chapter 4
Exporting Data to Object Storage

4-19

example described here. The first step to exporting data using an unauthenticated file
URI is configure a credential for use in ADW. An example follows.

begin
 DBMS_CLOUD.CREATE_CREDENTIAL (
 credential_name =>'OCI_KEY_CRED',
 user_ocid => '<your-user-ocid>',
 tenancy_ocid=> '<your-tenancy-ocid>',
 private_key=> '<your-private-key>',
 fingerprint=> '<your-fingerprint>'
);
end;

The export code for an unauthenticated file URI adds this credential to the calling
parameters.

begin
 dbms_cloud.export_data(
 credential_name => '<your-credential>',
 file_uri_list=> '<your-URI-goes-here>',
 query => 'select 1 from dual',
 format => json_object('type' value 'csv')
);
 htp.prn('{"status":"success"}');
end;

Before proceeding:

1. Configure your credential using the information you obtained in Obtaining Object
Storage Credentials.

2. Execute the above code in APEX > SQL Commands.

a. Verify an export was created by listing the objects in your bucket.

3. Implement an export POST service using the example code above and your file
URI. The format of the URI is described in Constructing an Object Storage Object
URL.

4. Test the service using POSTMAN.

a. Verify an export was created by listing the objects in your bucket.

Importing Data from Object Storage
In order to implement the example below, you will need:

• Access to Oracle Cloud Console.

• Access to the Object Storage Service.

• Ability to list buckets and their objects.

• Ability to create a PAR.

• Access to the APEX UI.

• Access to POSTMAN. The discussion below assumes familiarity POSTMAN.

Chapter 4
Importing Data from Object Storage

4-20

• The ORDS OAUTH credentials created in section 4.3.2.

• A table in which to import data.

As with exporting, there are two approaches to importing data from object storage. The
approaches only differ in the type for file URI used. The first approach uses a pre-
authenticated request (PAR). The second uses a URI that requires authentication.

Importing Data Using a PAR

Create a readable PAR (bucket level, prefix, or object level) using the process described in
Obtaining a Pre-Authenticated Request (PAR) URL. The example code below demonstrates
how a PAR can be used to export data from RDS. Note that you will need a table into which
your data will be imported and the source file and the destination table will need to be
compatible.

begin
dbms_cloud.copy_data(
 file_uri_list=> '<your-URI-goes-here>',
 table_name => <your-table-name>,
 format => json_object('type' value 'csv'));
end;

Before proceeding:

1. Create a PAR for an import test.

2. Execute the above code in APEX > SQL Commands

a. Verify an import was successful examining the data in your destination table.

3. Implement an import POST service using the example code above and your PAR.

4. Test the service using POSTMAN.

a. Verify an import was successful examining the data in your destination table.

Importing Data Using a Credential

In Obtaining Object Storage Credentials, you created credentials that can be used to
import data from and export data to object storage. You will need those credentials to run the
example described here. The first step to exporting data using an unauthenticated file URI is
configure a credential for use in ADW. You should have done this in Exporting Data with a
Credential. You can reuse that credential here. The import code for an unauthenticated file
URI adds this credential to the calling parameters.

begin
 dbms_cloud.copy_data(credential_name => '<your-credential>',
 file_uri_list=> '<your-URI-goes-here>', table_name => <your-table-
name>, format => json_object('type' value 'csv'));
end;

Before proceeding:

1. Configure your credential using the information you obtained in Section 4.3.6

Chapter 4
Importing Data from Object Storage

4-21

2. Execute the above code in APEX > SQL Commands

a. Verify an import was successful examining the data in your destination table.

3. Implement an import POST service using the example code above and your file
URI. The format of the URI is described in Section 4.3.5.

4. Test the service using POSTMAN.

a. Verify an import was successful examining the data in your destination table.

Incremental Export
In order to implement the example below, you will need:

• Access to the APEX UI.

A common use case is one where you want to incrementally export data from RDS.
The challenge, of course, is keeping track of what you have exported and what is new.
RDS makes keeping track of changes relatively simple. All replicated views include a
CSN_NBR. A CSN is a monotonically increasing identifier generated by Oracle
GoldenGate that uniquely identifies a point in time when a transaction commits to the
database. Its purpose is to ensure transactional consistency and data integrity as
transactions are replicated from source to target. Bear in mind, the CSN_NBR for
seeded data, i.e., data loaded using data pump, will be null. For example, the following
will yield item and csn_nbr for RDS_WV_ITEM_MASTER:

select item, csn_nbr from rds_wv_item_master

When incrementally exporting data, there are two cases, the first export and
subsequent exports. In the first export, you will obtain the current max CSN_NBR from
your fastest changing table:

select max(csn_nbr) from <your-fastest-changing-table>

Call this current CSN max X1. Next you export all rows from the tables of interest
using the where clause:

csn_nbr is NULL or csn_nbr <= X1

This where clause will include all seeded data and any data that was present prior to
the start of the export operation. Specifically, it will exclude any replicated data that
arrives after the export starts. You remember X1 and use it in the next export
operation. X1 becomes the last seen max CSN.

In subsequent exports, I compute a new CSN that becomes X2. I then export data
from all the tables of interest using a where clause like:

csn_nbr > X1 and csn_nbr <= X2.

Use the upper and lower bounds so you do not have to export the same data twice
and new data might be arriving while you export.

Before proceeding:

Chapter 4
Incremental Export

4-22

1. Query the CSN_NBR field for a table of interest.

2. Build an export script use various CSN based where clauses and
DBMS_CLOUD.export_data.

Jobs
An asynchronous approach is generally called for when the likely wait time for process
completion is high. A data export to object storage is generally a good candidate for an
asynchronous start. In the simplest case, one needs to implement three data services: job
start, job stop, and job status. The DBMS_SCHEDULER package provides the functionality
one would need for these services. There is, of course, the option to schedule an export job
to repeat and obviate the need to create a job start service. One could still use a job start
service to invoke an unscheduled export.

One uses the DBMS_SCHEDULER.create_job procedure to create a job that can be started
asynchronously. A typical approach would be to use create job to wrap a procedure. The
create job invokes the procedure immediately (by setting the start_date to SYSTIMESTAMP)
upon creation and is dropped automatically upon completion. The service would return a
unique job name or execution id to be used to stop and monitor the job.

Another service is used to monitor the job status using the returned execution id. The
monitoring service would be used to poll the status of the job. The job status is obtained by
executing a query on the DBMS_SCHEDULER.user_scheduler_job_run_details. A complete
reference implementation of an asynchronous job start and monitoring framework is available
on My Oracle Support. To view the reference implementation:

1. Login to my oracle support.

2. Search for Oracle Retail Data Store Documentation Library

3. Navigate to Sample Code

4. Click on the link Sample Code

Retail Home Integrations
A Retail Home integration is an example of outbound integration with a user interface or
portal. Retail Home Metric tiles without charts are quite simple to implement. For example,
the following data service source (with a source type of collection query) will populate the 2
Metric Tile below:

select
 'PO Receipts' as NAME, 25680 as VALUE,
 'N' as "VALUE_FORMAT" from dual
union

Chapter 4
Jobs

4-23

select
 'In Transit' as name, 112300 as value,
 'N' as "VALUE_FORMAT" from dual

This data service response is:

{"items":[
 {"name":"In Transit","value":112300,"value_format":"N"},
 {"name":"PO Receipts","value":25680,"value_format":"N"}
],
 "hasMore":false,
 "limit":25,
 "offset":0
 "count":2,
 "links":[...]
}

Producing a 4 Metric Summary, however, is more complicated and requires one use a
source type of PL/SQL (the following code only provide values for two of four metrics).

declare
 response varchar2(4000);
begin
 SELECT json_object (
 'items' value
 json_array(
 json_object ('name' value 'Metric 1',
 'value' value 0.5,
 'valueFormat' value 'PC'),
 json_object ('name' value 'Metric 2',
 'value' value 0.25,
 'valueFormat' value 'PC')
),
 'chart' value
 json_object ('type' value 'bar',
 'items' value
 json_array(json_object('name' value 'FEB',
 'value' value 2300),
 json_object('name' value 'MAR',
 'value' value 3100),
 json_object('name' value 'APR',
 'value' value 2900)
),

Chapter 4
Retail Home Integrations

4-24

 'valueFormat' value 'S',
 'seriesName' value 'Sales',
 'valueLabel' value 'Amount'
)
)
 into response FROM DUAL;
 htp.print(response);
end;

Filters, if used, become query string parameters and values in the URL. The query string
parameters manifest in the source as bind variables.

Monitoring Resource Consumption in RDS
Although ADW is self-tuning, it cannot ensure that one's business priorities and resource
consumption are well aligned. For example, the resource consumption of a new, as yet to be
tuned, report may adversely impact higher priority tasks. By monitoring the consumption and
performance of RDS, one is able to pinpoint which tasks could benefit from additional
attention. In some cases, however, even well tuned tasks are long running and resource
intensive. If these tasks are of lower priority, the user would like to run them at a lower priority.
Ultimately, monitoring allows the user to both effectively employ compute services and
determine if resource consumption matches business priorities. Control, on the other hand,
gives the user a means to align resource consumption with priorities. Exerting control will be
the subject of another chapter whereas this chapter will focus on monitoring using AWR
reports.

AWR reports are used to monitor activity in ADW. This section will discuss how to obtain
AWR reports, but it will not discuss how to interpret those reports. Given that each customer's
monitoring needs differ, there is no ready to use AWR report access built into RDS. In other
words, an AWR report is obtained via a customer implemented data service.

There are two steps to creating an AWR report, obtaining snap ids and generating the report
using the appropriate pair of snap ids. Sample code for obtaining snap ids is shown in Listing
1. The code is used as the source for a ORDS GET handler. It illustrates the use of two bind
variables. The first is part of the URI template, the begin_interval_time. The second optional
query string parameter is the end interval time. The times are given as dates for simplicity, but
snap ids are based on timestamps. If the query parameter is not given, the value is null.

Note that a procedure, HTP_PRN_CLOB, is used to output the response. HTP.print, which is
ultimately used to output the response, only handles varchar2 args. Varchar2 strings have a
maximum size of 4000 characters, which is often insufficient. Hence, the output of the query
is put into a CLOB. The CLOB is then output using HTP_PRN_CLOB, which is shown in
Listing 2.

The second step is generating the report. I hard code the snap ids for simplicity. Using the
code in Listing 3 as the source of a GET handler and the URL of the data service, a browser
will render the report. It would not be difficult to add additional bind variables to allow one to
create a narrower snap id interval and combine the snap id query and the report generation.

LISTING 1: OBTAINING SNAP IDS

DECLARE
 from_begin_interval_time date := to_date(:from, 'YY-MM-DD');
 to_end_interval_time date := null;

Chapter 4
Monitoring Resource Consumption in RDS

4-25

 db_id NUMBER;
 inst_id NUMBER;
 response clob;
BEGIN
 dbms_output.enable(1000000);
 if :to is not null then to_end_interval_time := to_date(:to, 'YY-MM-
DD') + 1;
 end if;
 SELECT dbid INTO db_id FROM v$database;
 SELECT instance_number INTO inst_id FROM v$instance;

 SELECT json_arrayagg(
 json_object(
 'snap_id' value snap_id,
 'begin_interval_time' value begin_interval_time,
 'end_interval_time' value end_interval_time
 returning clob format json)
 returning clob) into response
 FROM dba_hist_snapshot
 WHERE dbid = db_id
 AND instance_number = inst_id
 and begin_interval_time >= from_begin_interval_time
 and (to_end_interval_time is null or
 to_end_interval_time >= end_interval_time)
 ORDER BY snap_id DESC;
 HTP PRN CLOB(response);
END;

LISTING 3: GENERATING THE AWR REPORT

DECLARE
 db_id NUMBER;
 inst_id NUMBER;
 start_id NUMBER;
 end_id NUMBER;
 response clob := null;
BEGIN
 dbms_output.enable(1000000);
 SELECT dbid INTO db_id FROM v$database;
 SELECT instance_number INTO inst_id FROM v$instance;
 start_id := 12133;
 end_id := 12134;

 FOR v_awr IN
 (SELECT output FROM
TABLE(DBMS_WORKLOAD_REPOSITORY.AWR_REPORT_HTML(db_id,inst_id,start_id,e
nd_id)))
 LOOP
 response := response || v_awr.output;
 END LOOP;
 HTP PRN CLOB(response);
END;

Chapter 4
Monitoring Resource Consumption in RDS

4-26

Invoking External Services
External services can be invoked using the APEX_WEB_SERVICE package. The UTL_HTTP
is not supported. Specifically, the use of the UTL_HTTP requires white listing using the
access control list (ACL). The privileges to modify the ACL are not available in any of the
product schema.

Notification-Based Monitoring
POM can be used in combination with the data in RDS to establish automated process
monitoring. A POM batch job can be setup to call a RDS data service to generate and send
the Alert to the associated application such as Merchandising.

This document describes the steps needed to setup such an automated process. These
steps are:

1. Setup a notification type in Retail Home

2. Implement a RESTful service in RDS

3. Setup a job in POM to invoke that service

RDS-POM integration will be illustrated for an alert that returns the counts of stock counts
that are open for more than seven days.

Setting up the Notification Type

Typically, an alert/notification results from the monitoring activity. As a first step, a notification
type associated with this monitoring activity needs to exist or be setup in Retail Home. Refer
to Retail Home documentation for details on how to create a notification type. For the
example at hand the notification type is MerchStockCountAlert and is setup for the MFCS
application.

Implementing a RESTful Service in RDS

The first step is to create the data service boiler plate, which consists of the following:

• creating a module

• creating a URI template, and lastly

• creating a POST handler

The steps below describe the implementation of an open stock count RESTful service
suitable for integration with POM.

The alert service must conform to the POM specification. There are two relevant
specifications. The first concerns the format of the JSON body in the POST, which is shown
in the following table. The alert service need not use any of the details in the body of the
POST message.

Chapter 4
Invoking External Services

4-27

Endpoint to start a job.
Method: POST
Body:

Attribute Description

cycleName Name of the Cycle - Nightly, Hourly_1,
Adhoc etc.

flowName Name of the Flow.

processName POM process name

jobName POM job name

agentExecutionId A unique ID assigned by POM for every job
run (Re-run of a failed job would have a
different id compared to the initial run)

parameters Job Parameters (Pipe delimited key-value
pairs -- hey1=value1||key2=value2)

The second specification concerns the response returned. If the notification object is
not null, the content will be sent as a notification by POM.

Attribute Description

executionId Unique Id returned by the target app to
POM for status tracking

executionInfo Any additional info the target app would
like to share with POM

notification This is an optional entry that can contain
the following attributes. The url, type, and
severity fields are optional.
"notification": {
"info": "<message>",
"url": null,
"type": "ErrorNotification",
“severity":1
}

status Submitted/ Running/Error/Completed

Create a Stock Count Module

The first step is to create a module. Module is a hierarchical organizing construct. The
user may have multiple services associated with it or just one. The following screen
shot illustrates what the create module screen looks like prior to creating the module.
Note the module name is stock_count and the base path is /stock_count/.

Chapter 4
Notification-Based Monitoring

4-28

Create a URI Template

Once the module is created, create the URI template. Note the URI template is set to
open_gt_7, i.e., stock counts open for more than seven days.

Chapter 4
Notification-Based Monitoring

4-29

Create a POST Handler

The last step is to create a POST handler. Note the method is POST and the source
type is PL/SQL.

The source of the example alert service is in Listing 1. The body, a sample of which is
shown in Listing 2, of the alert service invocation is accessed using the :body_text
implicit parameter -- a bind variable. This variable can only be read once; so, retrieve it
and store it in a variable. Unpacking the payload and crafting a response will be
common tasks for most RESTful services. The example below illustrates some but not
all that one might encounter. Bear in mind, the example below does not show any error
handling. Experimentation and experience will determine what level of error handling is
warranted. Listing 3 shows a response.

declare
 -- The :body_text bind variable is an implicit parameter.
 -- It can only be read once, so it is captured in a variable
 -- called payload.
 payload varchar2(4000) := :body_text;
 -- The result of the stock count query
 query_result number;
 -- Note that varchar2 is set to the maximum. If the response
 -- could exceed 4000 characters, a CLOB would be needed and
 -- one could not use htp.print directly.
 response varchar2(4000);
 -- The response will return the agentExecutionId in
 -- response as the executionId.
 agent_execution_id varchar2(32);
 -- The notification info destination.
 notificationInfo varchar2(1024);
begin
 -- Get the agent execution id from the payload (i.e., body text).

Chapter 4
Notification-Based Monitoring

4-30

 agent_execution_id := json_value(payload, '$.agentExecutionId');
 -- Get a count of stock counts that have been open for more than
 -- 7 days and put it in query result.
 SELECT count(1)
 into query_result
 FROM rds_wv_stake_prod_loc spl,
 rds_wv_stake_head s
 WHERE s.stocktake_date BETWEEN sysdate - 7 AND sysdate
 AND s.delete_ind = 'N'
 AND spl.cycle_count = s.cycle_count
 AND s.stocktake_type = 'B'
 AND spl.processed != 'S'
 AND spl.cycle_count = s.cycle_count;
 -- Craft notificationInfo as a human readable string.
 notificationInfo := 'Number of stock counts that have been ' ||
 'open for more than 7 days is ' || to_char(query_result) || '.';
 -- Craft the required JSON response. There is no executionInfo.
 select json_object('status' value 'success',
 'executionInfo' value '',
 'executionId' value agent_execution_id,
 'notificationInfo' value notificationInfo) into response from
dual;
 -- Output the response - note htp.print is used here. htp.print
 -- only supports varchar2 so another approach would be needed
 -- if the response is likely to exceed 4000 characters. This could
 -- if error handling (not shown) were to return a stack trace.
 htp.print(response);
end;

Listing 1: An Alert service conforming to POM Requirements

A sample payload for the above job is:

{
 "cycleName": "cycle1",
 "flowName": "flow1",
 "processName": "process1",
 "jobName": "job1",
 "agentExecutionId": "agentExecutionId1234",
 "parameters": ""
}

Listing 2: A Sample Payload

The response of the above service, given the payload in Listing 2 is:

{
 "status":"success",
 "executionInfo":null,
 "executionId":"agentExecutionId1234",
 "notificationInfo":"Number of stock counts that have been open for more
than 7 days is 0."
}

Chapter 4
Notification-Based Monitoring

4-31

Listing 3: A Sample Response

Setting up the POM Job

The user now needs to setup an Adhoc batch job in POM which calls the RESTful
service described above. Adding such a job is done through the spreadsheet as
described in the next section. The user then uploads the spreadsheet to POM then
schedules to run at the desired time.

When the job executes, it will invoke the RESTful service which will return a response
with notification content. POM will then send a notification to the associated application
based on the designated notification type. The notification will contain the notification
content returned from the RESTful service.

Adding the Adhoc Job in Batch Schedule Spreadsheet

Entries as shown below as an example need to be added in the specified tabs of the
batch schedule spreadsheet for every Adhoc job created for an alert.

Figure 4-1 Process Tab

• ProcessName – Add a unique process name in upper case with no spaces. Use
an underscore if needed. It should end with XXX_PROCESS.

• Description – Short description of the process without any special characters.

• Application Name – Mention the application name where the batch process
belongs to. E.g., MFCS

• DependencyType – This needs to be set to ‘Time’.

• AdhocInd – It will be ‘Y’ as we are creating an adhoc job here.

Figure 4-2 Job Tab

• JobName – Unique job name for each alert in upper case only with no spaces.
Use an underscore if needed. It should end with XXX_JOB.

• Description – Short description of the job without any special characters.

• RmsBatch, ScriptFolder and RmsWrapper – Irrelevant for alerts and can be left
empty.

• ParameterValue – This holds the two parameters needed to identify the notification
type and the RDS endpoint. For the example at hand, these are:

– notificationType: This is the notification type setup in Retail Home as described
in the Setting Up a Notification Type section at the top of this document:
MerchStockCountAlert.

Chapter 4
Notification-Based Monitoring

4-32

– restPath : This points to the endpoint defined above: mfcs/stock_count/open_gt_7.

• These need to be separated by a double pipe as depicted in the Job tab screen shot
above.

• ApplicationName – Mention the same application name entered in Process tab. Here, it’s
RMS.

• Modules – Job can be associated with a module of the application.

• JobType – The job type associated with RDS alerts is RDSAlert.

Figure 4-3 ProcessJobMapping

• To map the new process and jobs (it’s one-to-one for adhoc jobs), enter the created
ProcessName, JobName and the day(s) of the week on which the specific Process/Job
needs to be run. If the Job will run on daily basis, leave ‘DaysOfTheWeek’ column blank.

Figure 4-4 Schedule

Ensure that the ‘Version’ is updated to a version greater than the ‘Current Version’ in POM
Application. In this example, the version should be changed on the spreadsheet to
22.1.302.2.1 or 22.1.302.3.

Uploading the Batch Schedule Spreadsheet in POM

1. Login to POM UI and navigate to Tasks -> Schedule Maintenance.

2. Select the Application Scheduler tile and click ‘Import Latest Schedule’ button.

3. Upload the spreadsheet containing the new Adhoc job for alert.

Chapter 4
Notification-Based Monitoring

4-33

Figure 4-5 Upload Batch Schedule

Enable the Newly Added Process/Job

Note that any new job introduced through the spreadsheet will be added in the
disabled state. Enable it using the Batch Administration screen.

Figure 4-6 Batch Administration Screen

Starting/Restarting the Scheduler Day

You will need to start a new scheduler day or restart the existing scheduler day on the
Batch Monitoring screen for the new changes to take effect in the next batch run. See
the Batch Monitoring screen shot below.

You can now run the Alert job in POM in one of two ways:

1. Direct run through the Batch Monitoring screen or

2. Schedule it to run using the POM Scheduler Administration screen.

Direct Run

On the Batch Monitoring screen, select the Standalone tab below the tile area. Then
select the previously added RDS Alert process in the Standalone Entities table and
click on the run action button above the table.

Chapter 4
Notification-Based Monitoring

4-34

Figure 4-7 Batch Monitoring

Schedule through the Scheduler Administration Screen

You can use the POM Scheduler Administration screen to schedule the newly added job to
run as frequently as needed.

Figure 4-8 Scheduler Administration

In Context Launch of an APEX App
In context launch of an APEX App entails navigating to an APEX App from within a product
application using a URL. Once you have deployed your application, loaded the data, and
created users, you can publish your production URL. You can determine the production URL
for your application by either:

• Selecting the application on the Application home page and right clicking the Run button.
Then, select Copy link address or Copy link location depending on your browser.

Chapter 4
In Context Launch of an APEX App

4-35

• Running the application and then copying the URL.

Invoking an APEX app with one or more query parameters requires that the APEX App
Session State Protection and Application Items be appropriately configured.

1. In your APEX App navigate to Shared Components > Security > Session State
Protection. Navigate to the Set Page and Item Protection page of your published
launch page, for example, your App Home page. Next, set page access restriction
to Unrestricted. Always treat query parameter input as untrusted and sanitize
it.

2. Next navigate to Shared Components > Application Logic > Application Items.
Create an application item of the same name as your query parameter.

See Oracle APEX for additional details on URL syntax and managing session state.

Launching APEX Apps from Retail Home
It is quite simple to configure Retail Home to facilitate the launch of an APEX
application.

1. Navigate to the Dashboard Configuration tab and tap the Create button.

Figure 4-9 Dashboard Configuration Tab

2. Fill in the Create Dashboard Tile Dialog. Note there is a field for specifying a URL
for you new dashboard tile.

Chapter 4
Launching APEX Apps from Retail Home

4-36

https://docs.oracle.com/en/database/oracle/apex/22.1/htmdb/index.html

Figure 4-10 Create Dashboard Tile

Retail DB Ops Console
The Retail DB Ops Console provides customers access to tools such as AWR Reports, Top
SQL, etc that helps in database performance troubleshooting.

Home

The Retail DB Ops Console can be accessed from Retail Home’s Application Navigator. The
home page can be accessed by a ‘Viewer’ having RDS_MANAGEMENT_VIEWER or
RDS_MANAGEMENT_VIEWER_PREPROD roles.

The Home page gives a quick view of recent data for the following:

• Latest Generated AWR Reports.

• Current Top SQL

• DBMS Jobs

Chapter 4
Retail DB Ops Console

4-37

Figure 4-11 DB Ops Console

All features can be accessed from the left panel.

Figure 4-12 DB Ops Console Menu

Chapter 4
Retail DB Ops Console

4-38

AWR Reports

The AWR stands for Automated Workload Repository Report and provides a set of tables into
which snapshots of system statistics are stored. Generally, these snapshots are taken on an
hourly basis and include wait interface statistics, top SQL, memory, and I/O information that is
cumulative in nature up to the time of the capture.

The AWR report process takes the cumulative data from two snapshots and subtracts the
earlier snapshot’s cumulative data from the later snapshot and then generates a delta report
showing the statistics and information relevant for the time period requested.

Search Generated AWR Reports

Search Generated AWR Reports screen can be accessed by a ‘Viewer’ having
RDS_MANAGEMENT_VIEWER or RDS_MANAGEMENT_VIEWER_PREPROD roles and
shows a list of generated reports and also allows the user to filter the reports based on the
following:

• Snap ID – The unique key of a snapshot

• Generated By – System or User

• Interval by Date and Hour

Figure 4-13 AWR Reports

The list of generated report logs are listed in the “AWR Generated Report Logs” table that
contains the following information for every Report ID. The ‘Refresh Report Logs’ button can
be used to refresh the table to display the newly generated reports.

• Report ID: Unique ID of the generated report.

Chapter 4
Retail DB Ops Console

4-39

• Start Snap ID: Snap ID of the start snapshot in that time interval.

• End Snap ID: Snap ID of the end snapshot in that time interval.

• Start Interval: Start timestamp of the snapshot interval.

• End Interval: End timestamp of the snapshot interval.

• Generated By: If generated automatically by the system, then SYSTEM is
populated. If generated manually by any user, then that user’s ID is populated.

• Generated Date and Time: Timestamp of the report generation.

• Allow Delete: Indicator that mentions if the report can be deleted or not.

AWR Report Viewer

When clicking on the Report ID, a detailed AWR Report is displayed. The report can
be downloaded or deleted from this window.

Figure 4-14 AWR Report Viewer

Generate AWR Custom Reports

This screen enables an ‘Owner’ having RDS_MANAGEMENT_OWNER or
RDS_MANAGEMENT_OWNER_PREPROD roles to generate reports based on
Interval Start Date and Time and Interval by Number of Hours.

Chapter 4
Retail DB Ops Console

4-40

Figure 4-15 AWR Reports Generation

Top SQL

Top SQL screen displays a list of active SQL instances and their details that the snap process
collects from SQL statements. The instances also can be filtered based on the Session
States – ON CPU and WAITING. This page can be accessed by a ‘Viewer’ having
RDS_MANAGEMENT_VIEWER or RDS_MANAGEMENT_VIEWER_PREPROD roles.

Figure 4-16 Top SQL

Clicking on the SQL ID link opens up a window with more details on the SQL Instance.

Chapter 4
Retail DB Ops Console

4-41

Figure 4-17 SQL Instance Viewer

Clicking on the SQL Full Text link shows the complete SQL statement.

Figure 4-18 SQL Text Viewer

DBMS Jobs

The DBMS Jobs table lists the available DB jobs and their details. This page can be
accessed by a ‘Viewer’ having RDS_MANAGEMENT_VIEWER or
RDS_MANAGEMENT_VIEWER_PREPROD roles.

Chapter 4
Retail DB Ops Console

4-42

Figure 4-19 DBMS Jobs

Clicking on the Job Name opens a window with detailed job log and job run details. For
example, the job log and job run details for ‘RDS_RDS_MANAGEMENT_GRANT_JOB’ is as
shown below.

Figure 4-20 DBMS Scheduler Job Logs

Chapter 4
Retail DB Ops Console

4-43

Figure 4-21 DBMS Scheduler Job Run Details

Database Metrics

Database Metrics shows the following graphical metrics for this environment’s Oracle
APEX and database performance. This page can be accessed by an ‘Administrator’
having RDS_MANAGEMENT_ADMINISTRATOR or
RDS_MANAGEMENT_ADMINISTRATOR_PREPROD roles.

Chapter 4
Retail DB Ops Console

4-44

CPU Utilization

Figure 4-22 CPU Utilization

Chapter 4
Retail DB Ops Console

4-45

Storage Utilization

Figure 4-23 Storage Utilization

Chapter 4
Retail DB Ops Console

4-46

Sessions

Figure 4-24 Sessions

Chapter 4
Retail DB Ops Console

4-47

Execute Count

Figure 4-25 Execute Count

Chapter 4
Retail DB Ops Console

4-48

Running Statements

Figure 4-26 Running Statements

Chapter 4
Retail DB Ops Console

4-49

Queued Statements

Figure 4-27 Queued Statements

Chapter 4
Retail DB Ops Console

4-50

APEX Page Load Time

Figure 4-28 APEX Page Load Time

Chapter 4
Retail DB Ops Console

4-51

APEX Page Events

Figure 4-29 APEX Page Events

Application Properties

The Application Properties page lists the available application properties including
Oracle APEX SMTP settings. The Application Properties are stored as key-value pair,
e.g., oracle.apex.setting.smtp_from: me@email.com. This page can be accessed by
an ‘Administrator’ having RDS_MANAGEMENT_ADMINISTRATOR or
RDS_MANAGEMENT_ADMINISTRATOR_PREPROD roles.

Figure 4-30 Application Properties

Chapter 4
Retail DB Ops Console

4-52

The value for the key can be updated using the Edit window.

Figure 4-31 Edit Property

Sending Email from APEX

To enable sending email from APEX, you must have access to an SMTP server. Provide
values for the following Application Properties:

• oracle.apex.setting.smtp_host_address

• oracle.apex.setting.smtp_username

• oracle.apex.setting.smtp_password

• oracle.apex.setting.smtp_host_port

• oracle.apex.setting.smtp_from

Your settings can be verified by attempting to send a test email by clicking on the ‘Send a
Test Mail’ button. Once you have verified your settings, you can use
the APEX_MAIL package to send emails from Oracle APEX applications.

Chapter 4
Retail DB Ops Console

4-53

Figure 4-32 Send Test Email

Known Limitations
Please review the known limitations below. In general, a known limitation describes a
case where a documented capability is not available or does not work as expected in
the RDS SaaS environment.

APEX Roles and Privileges

APEX roles and privileges are not available for RDS services. Any attempt to attach
privileges to a service will result in that service becoming inaccessible. When invoking
the service the ORDS services container will respond with a 401, authorization
required.

Importing Services

Importing a service using the APEX UI does not work. However, if the exported service
is a SQL script, as a workaround, construct a SQL Script using the APEX SQL
Workshop from the contents of the exported file, then run the script. Bear in mind, the
script may contain schema names. If you are exporting the service from one
workspace for use in another workspace, you will need to modify the schema names.
More modifications may be necessary to make the schema functional in another
workspace. Remember there is no cross-schema access.

Chapter 4
Known Limitations

4-54

Reserved Application ID Range

Oracle has reserved the APEX application ID range from 30001-39999 for future
enhancements. Use of APEX application IDs within this range in custom code may result in
undefined behavior.

Chapter 4
Known Limitations

4-55

5
Storage and CPU Usage

For each RDS instance, the database disk storage and CPU usage is tracked. Usage can be
seen by logging in to Oracle Retail Home and viewing the Application Dashboard. On the list
are two entries: one for RDS CPU Usage, and one for RDS Disk Usage. The entries show
current usage and also display the currently subscribed amounts for CPU and storage, so a
customer can see if they are nearing their subscription limits. The usage is tracked on a
weekly basis, so updates to these charts happen about four times a month. This UI can only
be viewed by Retail Home administrator users. Refer to the Retail Home product
documentation for more information.

Figure 5-1 Retail Home Application Dashboard

5-1

6
Version Updates

Software updates are critical to keeping an environment secure and functioning well. Critical
patch updates are installed on a quarterly basis, for example to the database, APEX/ORDS,
and other tools being used in RDS. These updates may require downtime. If this is the case,
the planned downtime is communicated in advance according to Oracle Retail standards.

6-1

7
Notes

This section provides additional resources when implementing RDS.

APEX
For more information around building performant APEX applications, refer to the Managing
Application Performance section of the APEX App Builder User's Guide.

For full details on developing APEX applications, refer to the APEX documentation.

Visual Builder Studio
For full details on developing Visual Builder applications, refer to the Visual Builder Studio
documentation.

APEX and Autonomous Databases
Because RDS is built using Oracle Autonomous Data Warehouse (ADW), there are
limitations with functionality provided by Oracle Application Express. These limitations are
documented at https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/apex-
restrictions.html

Known Limitations and Issues

Limits on Service Initiated Queries and PL/SQL Blocks

1. Service initiated queries and PL/SQL blocks (i.e., the service source) must complete in
less than 300 seconds. This limitation is standard timeout and not configurable. Queries
and blocks of longer durations must be run asynchronously and report results using other
approaches (i.e., an output table populated by one service and queried by another, output
to object storage, and so on).

2. Service source is limited to 4000 characters. Character count for GET oriented queries
can be reduced using views without sacrificing the automatic to JSON translation.

Importing of Services

The importing of services from the APEX UI does not work as expected. If the service does
not exist, the import fails with a "no data found". Service exporting, however, does work and

7-1

https://docs.oracle.com/en/database/oracle/application-express/21.2/htmdb/managing-application-performance.html#GUID-1684F55B-7782-4B1F-96AB-0D41BCBDB1BA
https://docs.oracle.com/en/database/oracle/application-express/21.2/htmdb/managing-application-performance.html#GUID-1684F55B-7782-4B1F-96AB-0D41BCBDB1BA
https://apex.oracle.com/en/learn/documentation/
https://docs.oracle.com/en/cloud/paas/visual-builder/index.html
https://docs.oracle.com/en/cloud/paas/visual-builder/index.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/apex-restrictions.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/apex-restrictions.html

the exported services are just SQL scripts. These scripts can be run in the APEX SQL
Workshop > SQL Scripts tool. Running the scripts will create the services.

Note:

Exported scripts include schema names. If the workspace in which the script
will be run is not in the same schema as that from which the service was
exported, the SQL script will need to be edited to change the source schema
to the target schema.

Chapter 7
Known Limitations and Issues

7-2

	Contents
	Preface
	1 Implementation Overview
	Separation of Replicated and Custom Data
	Example

	Support for Audit and Delete Tracking

	2 Typical Implementation Events
	3 Getting Started
	APEX User Management
	Data Visualization Access

	4 Extension
	RDS Architecture Basics
	Environment Considerations
	Prerequisites
	Accessing the APEX UI
	Obtaining ORDS Service Credentials
	Generating an ORDS Access Token
	Generating an Access Token Using cURL
	Generating an Access Token Using POSTMAN

	Obtaining a Pre-Authenticated Request (PAR) URL
	Constructing an Object Storage Object URL
	Obtaining Object Storage Credentials

	ORDS RESTful Services
	Implementing a RESTful Service in APEX
	Invoking a RESTful Service from POSTMAN
	ORDS PRE-HOOK
	Using RDS to Build a Data Producing Service
	GET Services
	POST Services
	Long Responses

	Using RDS to Build a Data Consuming Service
	Exporting Data to Object Storage
	Exporting Data Using a PAR
	Exporting Data with a Credential

	Importing Data from Object Storage
	Importing Data Using a PAR
	Importing Data Using a Credential

	Incremental Export
	Jobs
	Retail Home Integrations
	Monitoring Resource Consumption in RDS
	Invoking External Services
	Notification-Based Monitoring
	Setting up the Notification Type
	Implementing a RESTful Service in RDS
	Setting up the POM Job

	In Context Launch of an APEX App
	Launching APEX Apps from Retail Home
	Retail DB Ops Console
	Home
	AWR Reports
	Search Generated AWR Reports
	Generate AWR Custom Reports

	Top SQL
	DBMS Jobs
	Database Metrics
	Application Properties

	Known Limitations
	APEX Roles and Privileges
	Importing Services
	Reserved Application ID Range

	5 Storage and CPU Usage
	6 Version Updates
	7 Notes
	APEX
	Visual Builder Studio
	APEX and Autonomous Databases
	Known Limitations and Issues
	Limits on Service Initiated Queries and PL/SQL Blocks
	Importing of Services

