
Oracle® Retail Data Store
Implementation Guide

G44738-01
October 2025

Oracle Retail Data Store Implementation Guide,

G44738-01

Copyright © 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Implementation Overview

Schema Architecture 2

Audit and Delete Tracking 2

APEX Workspaces 2

Auxiliary Workspaces 3

Usage and Access Control 3

Privilege Model 4

Developer Access in RDS 4

Database Developer Privileges 4

Restrictive Custom Privilege Models 4

Report Developer Privileges (Oracle Analytics Server) 5

Report Consumer Privileges (Oracle Analytics Server) 5

Oracle Analytics Server Roles 5

Supported Cloud Services 5

2 Typical Implementation Events

3 Customer Responsibilities

Performance and Scalability 1

Resource Monitoring 1

Maintenance Preparedness 1

Pre-Maintenance Responsibilities 1

Post-Maintenance Responsibilities 2

Extension Management 2

Email Setup 2

Communication with Oracle 2

4 Getting Started

Step 1: Setting Up the Workspace Administrators 1

Prerequisites 1

Steps 1

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page i of viii

Step 2: Setup RDS Database Operations Console Access 2

Prerequisites 2

Steps 2

APEX User Management 2

5 Oracle Analytics Server

Determining Your Tenant Name 1

Prerequisites 1

Steps to Identify the Tenant Name 1

Setup Access to OAS 1

Prerequisites 2

Steps to Assign a User to an OAS Group 2

6 Getting Started with Extensions

Overview 1

Access to Replicated Data 1

Custom Schemas and Workspaces 1

Primary Custom Schema 1

Auxiliary Custom Schemas (Per Cloud Service) 1

Auxiliary APEX Workspaces (RDS_CUSTOM_1, RDS_CUSTOM_2, RDS_CUSTOM_3) 2

Summary: Schema and Workspace Types 2

Schema Access and Grants 2

Grants to Custom Objects 2

Grants to Replicated Objects 3

Grants to Auxiliary Workspace Schema 3

Summary Table 3

Synonym Management 4

Create Synonyms 4

Drop Synonyms 4

Cleanup Synonyms 4

Tools for Extension 5

Oracle APEX 5

Oracle REST Data Services (ORDS) 5

Object Storage and DBMS_CLOUD 5

Environment Considerations 5

Prerequisites 6

Accessing the APEX UI 6

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page ii of viii

7 Obtaining ORDS Service Credentials

Generating an ORDS Access Token 3

Generating an Access Token Using cURL 3

Generating an Access Token Using POSTMAN 4

8 Accessing Object Store

Overview 1

Obtaining a Pre-Authenticated Request (PAR) URL 1

Constructing an Object Storage Object URL 2

Obtaining Object Storage Credentials 4

9 ORDS RESTful Services

Overview 1

Implementing a RESTful Service in APEX 1

Invoking a RESTful Service from POSTMAN 4

10

ORDS PRE-HOOK

11

Using RDS to Build a Data Producing Service

Overview 1

GET Services 1

POST Services 2

Long Responses 3

12

Using RDS to Build a Data Consuming Service

13

Exporting Data to Object Storage

Prerequisites 1

Exporting Data Using a PAR 1

Exporting Data with a Credential 2

14

Importing Data from Object Storage

Prerequisites 1

Importing Data Using a PAR 1

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page iii of viii

Importing Data Using a Credential 2

15

DBMS Scheduler Jobs

16

Retail Home Integrations

In Context Launch of an APEX App 2

Launching APEX Apps from Retail Home 3

17

Invoking External Services

18

Retail DB Ops Console

Home 1

AWR Reports 2

Search Generated AWR Reports 2

Generate AWR Custom Reports 4

Top SQL 4

DBMS Jobs 6

Database Metrics 8

Application Properties 16

Session Management 17

Session Management API 21

Package Overview 22

Procedure and Function Details 22

LIST_RDS_SESSIONS 22

KILL_RDS_SESSION (SID and SERIAL) 22

KILL_RDS_SESSION (AUDSID) 22

19

Sending Email from APEX

20

Monitoring Replication Lag

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page iv of viii

21

Notification-Based Monitoring

Setting up the Notification Type 1

Implementing a RESTful Service in RDS 1

Setting up the POM Job 6

22

Storage and CPU Usage

23

Version Updates

24

Additional Notes

Not Supported/Available in RDS 1

APEX Roles and Privileges Not Supported 1

APEX Workspace Administration Disabled 1

GoldenGate Source/Target Use Not Supported 1

PWA-Enabled APEX Apps Not Supported 1

No Support for SFTP 1

Preconfigured Schema and Workspace Model 1

Immutable Privilege Model for Replicated Objects 2

OAuth Scope Enforcement Not Supported 2

Limited in RDS Environment 2

Service-Initiated Queries Limited to 300 Seconds 2

Service Source Length Limited to 4000 Characters 2

Only OCI SMTP Server Supported 2

APEX Limitations in Autonomous Database 2

Workarounds 2

Explain Plan via APEX UI Requires Workaround 3

Exporting Query Results in APEX 3

Enhancing OAuth Security with ORDS Prehook 4

Retrieving RDS Outbound IP Address 4

Internal Use Only 4

Reserved Application ID Range 4

GoldenGate Metadata Fields Are Not CDC 4

A Query Tuning

Introduction A-1

How SQL Executes - A Conceptual Overview A-1

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page v of viii

Relational Databases: What You Need to Know A-1

A Mental Model You Can Use A-2

Where Problems Show Up A-2

Start Here: Performance Triage A-2

Next Step A-3

Baselining Your Query A-3

Why Baselining Matters A-3

Baseline Tuning A-3

What to Capture A-3

When to Baseline A-4

Baseline Template (Example) A-4

Baseline SQL Script (for Recent Performance Snapshot) A-5

Output Columns A-5

Baselining Procedure A-5

Step 1: Create a Tracking Table A-5

Step 2: Create the Baselining Procedure A-6

Step 3: Example Call A-7

Optional: Automate It Nightly for Key Queries A-7

Step 1: Create a Tracking Table A-7

Step 2: Create a Batch Baselining Procedure A-7

Step 3: Optional: Schedule the Job (DBMS_SCHEDULER) A-7

Is My Query Slow? A-8

Start with your Requirements A-8

How to Think About "Fast Enough" A-8

Measuring Execution Time A-9

Don't Tune Without a Target A-9

Diagnosing a Slow Query A-9

Step 1: Get the SQL_ID A-9

Step 2: Get the Execution Plan A-9

Step 3: Ask These Questions A-10

Step 4: Check for Waits A-10

Step 5: Cross Check Stats A-11

Step 6: Consider Plan History A-12

Diagnosing System Wide Performance Issues A-12

Step 1: Use AWR Reports to Understand System Load A-12

Step 2: Use Database Metrics (DB Ops Console) A-18

Step 3: Triage with "Top SQL" A-18

Check DBMS Jobs (If Relevant) A-18

Step 5: Session Management (Admin Role) A-19

Understanding Plan Instability A-19

What is Plan Instability? A-19

Why Plans Change A-20

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page vi of viii

How to Detect Plan Instability A-20

When Plan Changes are Bad A-20

What To Do A-21

B Using FTS: An Example

Overview B-1

Functions and Procedures B-1

get_idcs_token B-1

generate_par B-1

put_object_in_store B-2

export_query_to_blob B-2

Example Usage B-2

Error Handling B-2

Securely Obtaining an IDCS Token B-3

Overview B-3

Security Considerations B-3

Using the get_idcs_token_for_planning_app Function B-3

Example Usage B-3

Using the export_query_to_object_store Procedure B-3

Prerequisites B-3

Usage B-4

Customization B-4

Example B-4

B-4

get_idcs_token B-4

generate_par B-5

put_object_in_store B-6

export_query_to_blob B-7

C Transferring Table Data

Assumptions C-1

Step 1: Export Tables from Source ADW C-1

Example PL/SQL Block C-1

Step 2: Import Tables to Destination ADW C-2

Example PL/SQL Block C-2

Notes C-3

Optional Enhancements C-3

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page vii of viii

D Data Access Schema (DAS) vs. Retail Data Store (RDS)

Why, What, How D-1

What is the Same D-1

What is Different D-1

Considerations When Moving from DAS to RDS D-2

Key Takeaways D-3

E CPU Utilization Metric Tile Example

Overview E-1

Function: get_cpu_count E-1

Purpose E-1

Error Handling E-1

Function: get_rh_chart_data_json E-2

Purpose E-2

Key Features E-2

Design Note E-2

Function: get_rh_summary_json E-3

Purpose E-3

Output Format E-3

Use Case E-3

Function: get_rh_cpu_utilization_json E-4

Purpose E-4

Design Pattern E-4

Why FORMAT JSON is Used E-4

Anonymous Block (REST Service Source) E-4

Purpose E-4

Key Elements E-5

Context E-5

Example REST Service Response E-5

Summary E-6

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page viii of viii

Preface

This guide describes the administration tasks for Oracle Retail Data Store.

Audience

This guide is intended for administrators, and describes the administration tasks for Oracle
Retail Data Store.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

• Exact error message received

• Screen shots of each step you take

Oracle Help Center (docs.oracle.com)

Oracle Retail Product documentation is available on the following website https://
docs.oracle.com/en/industries/retail/html

Comments and Suggestions

Please give us feedback about Oracle Retail Help and Guides. You can send an e-mail to:
retail-doc_us@oracle.com

Oracle Retail Cloud Services and Business Agility

Oracle Retail Merchandising Cloud Services is hosted in the Oracle Cloud with the security
features inherent to Oracle technology and a robust data center classification, providing
significant uptime. The Oracle Cloud team is responsible for installing, monitoring, patching,
and upgrading retail software.

Included in the service is continuous technical support, access to software feature
enhancements, hardware upgrades, and disaster recovery. The Cloud Service model helps to
free customer IT resources from the need to perform these tasks, giving retailers greater

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 2

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com
https://docs.oracle.com/en/industries/retail/html
https://docs.oracle.com/en/industries/retail/html

business agility to respond to changing technologies and to perform more value-added tasks
focused on business processes and innovation.

Oracle Retail Software Cloud Service is acquired exclusively through a subscription service
(SaaS) model. This shifts funding from a capital investment in software to an operational
expense. Subscription-based pricing for retail applications offers flexibility and cost
effectiveness.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 2

1
Implementation Overview

Oracle Retail Data Store (RDS) is a centralized data infrastructure that consolidates data from
one or more Oracle Retail Cloud Services, depending on your subscription. It enables the
customization of retail data without modifying the underlying cloud services. See "Data
Replication to RDS via GoldenGate".

Your extensions—including database objects, web services, and APEX applications—are built
on top of the replicated data, which serves as the foundation for your enhancements. This
consolidation is achieved by replicating data from multiple cloud services into a single RDS
instance using Oracle’s Golden Gate. Not every database object in the source is replicated.
Each Oracle Retail Cloud Service App team selects database objects for replication-based
business value and suitability for replication.

This Implementation Guide provides an overview of RDS and explains how you can use it to
extend one or more cloud services.

Figure 1-1 Data Replication to RDS through GoldenGate

• PDB - Pluggable Data Base. The source applications in the RGBU that will be replicating
to RDS store their data in pluggable database instances.

• ACFS - Advanced Cluster File System. A file system used internally by GoldenGate to
store the trail files that hold data replication information.

• ORDS - Oracle Rest Data Services. An Oracle tool that allows customers to create web
services connected directly to data in an Oracle database. RDS customers will use this to
create web services to access their custom data.

• APEX - Application Express. An Oracle tool that allows customers to create UI-based
applications connected directly to data in an Oracle database. RDS customers will use this
to create applications that operate on their custom data.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 6

• ADW - Autonomous Data Warehouse. An Oracle Autonomous Database offering that is
tailored toward data warehousing use cases. RDS stores its replicated data and the
customer's custom data here.

Schema Architecture
The schema architecture of RDS consists of read-only replicate schemas that mirror source
cloud service data and read-write custom schemas for extensions.

• Replicated data from each cloud service is structured into a primary replicate schema and,
if required, one or more auxiliary replicate schemas (only some cloud services require
auxiliary schemas).

• Replicate schemas (both primary and auxiliary) are strictly read-only and mirror the data in
the source cloud service.

• No modifications can be made to replicate schemas in RDS. This includes adding indexes,
partitions, or other database objects. It also includes changing history retention rules. RDS
will mirror the source cloud service history retention rules.

Each replicate schema (both primary and auxiliary) is linked to a custom schema, which is
read-write.

• Each custom schema is granted SELECT privileges on views in all replicate schemas,
meaning it can query data from its associated replicate schema and from other cloud
services.

• All extensions reside in the custom schema.

Unlike replicate views, custom database objects are not accessible by default to other
schemas. The schema owner must explicitly grant access privileges before they can be
accessed by other schemas.

Audit and Delete Tracking
By default, basic replication ensures that the source and target datasets remain identical.
When a record is deleted from the source, it is deleted from the target. When a record is
updated, the previous state is lost, because the target reflects only the most recent changes.

For a subset of RDS-supported products, audit and delete tracking tables provide visibility into
historical changes.

• Audit Tracking: If a table is enabled for audit tracking, every INSERT, UPDATE, or DELETE
operation inserts a new record into an RDS-only audit tracking table, maintaining a
historical log of all changes.

• Delete Tracking: If a table is enabled for delete tracking, whenever a record is deleted from
the source, a new record is inserted into an RDS-only delete tracking table instead of being
permanently removed.

At this time, only the Merchandising Foundation Cloud Service supports audit and delete
tracking.

APEX Workspaces
Each primary custom schema is associated with an APEX workspace.

• When logging into the APEX UI, you will select a workspace to work within.

Chapter 1
Schema Architecture

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 6

• Your APEX UI session will be connected to the primary custom schema associated with
that workspace, providing access to custom objects and replicated views within the RDS
environment.

Auxiliary Workspaces
RDS includes three auxiliary APEX workspaces:

• RDS_CUSTOM_1

• RDS_CUSTOM_2

• RDS_CUSTOM_3

These workspaces are isolated environments that do not inherently contain database objects
or have access to other schemas. They are intended for sandboxing code, segmenting
development efforts, and refining security policies.

Usage and Access Control
Default State:

• No direct access to any schema objects.

• No preloaded content or privileges.

Granting Access to Other Schema Objects:

• Access to specific tables, views, procedures, or packages can be selectively granted from
other schemas.

Examples:

GRANT SELECT ON schema_name.table_name TO rds_custom_1;
GRANT EXECUTE ON schema_name.procedure_name TO rds_custom_1;

• Refining Security and Limiting Access:

– Access can be restricted to only necessary objects.

– Views can be used to control data exposure by creating limited result sets.

CREATE VIEW schema_name.view_name AS SELECT column1, column2 FROM
schema_name.table_name WHERE condition; GRANT SELECT ON
schema_name.view_name TO
rds_custom_1;

• Security Considerations

– Least Privilege Principle: Workspaces should only be granted access to necessary
objects.

– No Direct DML Access: By default, these workspaces should not have INSERT, UPDATE,
or DELETE permissions unless explicitly required.

• Potential Use Cases

– Restricted Access: Providing read-only access to custom database objects.

– Sandboxing Code: Developers can test PL/SQL code or APIs within a controlled
environment.

Chapter 1
APEX Workspaces

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 6

– Segmentation of Data Access: Access can be granted selectively to different
workspaces for different use cases. Privilege Model.

– Security Refinement: Restrict access to specific views instead of direct table access to
improve data governance.

Privilege Model
RDS is a SaaS environment that enables the extension of Oracle Retail Cloud Services. RDS
follows a fixed privilege and architecture model that cannot be customized. More specifically,
its privilege model follows the least privilege principle and cannot be modified.

The RDS privilege model is designed to provide developers with the necessary privileges to:

• Develop secure applications and services in a controlled environment.

• Perform diagnostic activities in a live environment when troubleshooting issues.

The same tools and privileges are used for both development and diagnostics. However, while
development occurs in a controlled setting, diagnostic activities are performed in a live
environment where direct development is not expected.

Developer Access in RDS
There are three broad categories of developers based on how they interact with RDS:

1. Database Developers – Access RDS through the APEX UI or a private endpoint, typically
working with PL/SQL and database logic.

2. Report Developers – Access RDS through Oracle Analytics Server (OAS) and focus on
authoring reports. Report developers have a role of *ContentAuthor.

3. Report Consumers - Access RDS through OAS and focus on viewing reports. Report
consumers have a role of *Consumer.

See the RDS Security Guide for details on user roles.

The privilege models employed for each user category differ in meaningful ways but never
exceed the baseline RDS privilege model.

Database Developer Privileges
• Any database developer with access to a primary custom schema (excluding

RDS_CUSTOM_1, RDS_CUSTOM_2, and RDS_CUSTOM_3) has SELECT privileges on all replicated
data.

• By default, database developers do not have access to database objects in other custom
schemas.

Restrictive Custom Privilege Models
The schemas RDS_CUSTOM_1, RDS_CUSTOM_2, and RDS_CUSTOM_3 begin with no privileges to
other schemas. These schemas support a more restrictive privilege model than standard RDS.
Conceptually, they serve as Custom Privilege Models 1, 2, and 3, where access can be
granted incrementally.

Chapter 1
Privilege Model

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 4 of 6

Report Developer Privileges (Oracle Analytics Server)
The Oracle Analytics Server (OAS) as a development environment is used for constructing
reports.

Supported Cloud Services

• Report developers have SELECT access to all tables and views in RDS, including:

– Replicated data

– Custom tables and views

• Report developers can be restricted to specific tools:

– Data Visualization

– BI Publisher

• Report developers can both create reports and set report permissions, but those
permissions encompass either everybody or nobody.

Report Consumer Privileges (Oracle Analytics Server)
Report consumers have view-only access to all reports where viewing by others is permitted.
Like report developers, consumers can be restricted to specific tools.

Oracle Analytics Server Roles
Oracle Analytics Server roles are limited to those provided. You cannot create new roles. Nor
can you modify or delete existing roles.

Supported Cloud Services
The supported cloud services are listed in the "Supported Cloud Services" table. Each listed
service has a:

• Cloud service name: the name it is commonly known as

• A workspace name: the name seen in the APEX UI launch screen

• The primary custom schema name, the schema within which extentions reside

• The primary replication schema, the schema in which replicated objects reside

• Auxiliary replication schema, if any

Table 1-1 Supported Cloud Services

Cloud Service
Application

Workspace
Name

Primary Custom
Schema

Primary Replication
Schema

Auxiliary
Schema

Merchandising
Foundation

MFCS MFCS_RDS_CUSTOM MFCS_RDS

Customer
Engagement

CE CE_RDS_CUSTOM CE_RDS

Store Inventory
Operations

SIOCS SIOCS_RDS_CUSTO
M

SIOCS_RDS

Chapter 1
Supported Cloud Services

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 5 of 6

Table 1-1 (Cont.) Supported Cloud Services

Cloud Service
Application

Workspace
Name

Primary Custom
Schema

Primary Replication
Schema

Auxiliary
Schema

Order Broker OB OB_RDS_CUSTOM OB_RDS
XOffice XO XO_RDS_CUSTOM XO_RDS XO_XADMIN
Supplier Evaluation SE SE_RDS_CUSTOM SE_RDS
Brand Compliance BC BC_RDS_CUSTOM BC_RDS
Retail Integration RICS RICS_RDS_CUSTOM RICS_RDS
Supply Chain Hub RSCH RSCH_RDS_CUSTOM RSCH_RDS
Order
Administration

OM OM_RDS_CUSTOM OM_RDS

N/A RDS CUSTOM
1

RDS_CUSTOM_1

N/A RDS CUSTOM
2

RDS_CUSTOM_2

N/A RDS CUSTOM
3

RDS_CUSTOM_3

Chapter 1
Supported Cloud Services

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 6 of 6

2
Typical Implementation Events

In any implementation including RDS, there are many steps along the way before a system is
running. In the discussion below, cloud services, such as Merchandising Foundation, are the
source cloud services and RDS is the target.

• Provisioning

– Provisioning includes the installation of the RDS Cloud Service including initial
infrastructure required. This includes an ADW instance with schemas available for
replication and extension, ORDS workspaces, and integration into Oracle Retail Home
for display of usage metrics.

• Initial Data Load through Data Pump

– The next step is creating an initial data load into RDS from the source cloud service
using Oracle Data Pump tools. This step is taken by Oracle when the retailer indicates
they are ready to move forward.

– A prerequisite to this step is that the source cloud service must have data ready to be
replicated. The initial load may be an involved process depending on the cloud service
in question. Refer to documentation for the source cloud service.

– The result of this step is that a baseline set of data has been replicated from the
source cloud service to the RDS read-only schema.

• GoldenGate Hub Configuration

– A GoldenGate Hub instance is configured to replicate data from the source cloud
service’s database to the RDS read-only schema.

– This is done by Oracle when the retailer indicates they are ready to move forward.

– The result of this is that the GoldenGate Hub is running and performing active
replication from the source cloud service’s database.

• Extension

– In this step, the retailer uses the tools that are part of RDS to build the custom
extensions they need.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 1

3
Customer Responsibilities

The primary custom schema in RDS is a powerful, writable environment that enables you to
extend Oracle Retail Cloud Services. With this flexibility comes responsibility. As the schema
owner, you are accountable for the performance, reliability, and behavior of your extensions.

This chapter outlines the key responsibilities that ensure your extensions remain performant,
maintainable, and compliant with the RDS operational model.

Performance and Scalability
You are responsible for ensuring that all custom services and queries operate within
acceptable performance boundaries.

• Query Duration Limits: All operations must complete in 300 seconds or less. Ideal
baseline performance should be under 150 seconds.

• Traffic Intensity: Estimate request arrival rates and average processing time to avoid
overload.

• Baseline Testing: Collect timing metrics under representative workloads for all services
and reports.

• Scalability Awareness: RDS has finite resources. Excessive CPU consumption or
session usage can affect availability.

Resource Monitoring
You are expected to monitor and manage consumption of your schema’s allocated resources.

• Session Management: Use the DB Ops Console to identify and terminate runaway, idle,
or zombie sessions.

• CPU and Storage: Track utilization and proactively request increased capacity when
needed.

• Efficiency: Optimize queries and background jobs to minimize resource usage.

Maintenance Preparedness
Custom objects may become invalid during RDS maintenance when underlying views or
dependencies are dropped and recreated. Maintenance preparedness helps prevent downtime
and ensures a smooth return to service.

Pre-Maintenance Responsibilities
1. Notify Users: Let users know in advance to reduce disruption and prevent long-running or

orphaned sessions.

2. Disable Custom Jobs: Suspend scheduled jobs (for example, DBMS_SCHEDULER) to avoid
interference during maintenance.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 3

3. Suspend External Orchestration: Pause external workflows that target RDS to avoid
unexpected connections.

4. Terminate Active Sessions: Ensure that no active sessions are holding locks on custom
objects. Locked objects within dependency chains can cause recompilation failures.

Post-Maintenance Responsibilities
1. Check for Lingering Sessions: Ensure no sessions are preventing recompilation or

consuming resources unnecessarily.

2. Handle Invalid Objects: Invalid custom objects may remain after maintenance due to:

a. Long dependency chains, where objects must be compiled in order.

b. Locked objects, which prevent successful recompilation.

c. Timeouts, if recompilation takes too long or encounters blocked dependencies.

d. You are responsible for resolving invalids in your schema. Refer to the RDS Compile
Invalids Reference Paper (Doc ID 2899701.1) for instructions on resolving these
issues.

3. Notify Users: Let users know that RDS is available again and safe to resume work.

4. Re-enable Jobs and Workflows: Restart any disabled jobs or paused orchestration
processes.

Extension Management
Your primary custom schema is fully writable, and you are responsible for managing everything
created within it.

• Custom Object Ownership: All custom tables, views, packages, and procedures reside in
your schema.

• Cross-Schema Access: Other schemas do not have access to your objects unless
explicitly granted.

• Security and Governance: Apply least privilege principles and use views to control
access when necessary.

• Resilience: Design extensions to handle failure scenarios and resume cleanly after
terminations.

• Grants: You are responsible for managing grants on replicated objects in
RDS_CUSTOM_1/2/3. See Grants to Auxiliary Workspace Schema.

Email Setup
To send email from your RDS ADW instance using the APEX_MAIL package, you must provision
an OCI SMTP server. Only Oracle’s OCI SMTP server is supported for sending email from
RDS ADW.

Communication with Oracle
Proactive communication with Oracle Support helps ensure system stability and availability,
especially during non-routine operations.

Examples of when to notify Oracle:

Chapter 3
Extension Management

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 3

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2899701.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2899701.1

• High-volume data events, such as store rollouts or data migrations.

• Custom retention strategies, such as large-scale archiving.

• Extended integration testing, especially if it may impact system load or replication.

Chapter 3
Communication with Oracle

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 3

4
Getting Started

Step 1: Setting Up the Workspace Administrators
Before you can log in to any of the above APEX Workspaces, you must set up the login details
for the administrator of each workspace.

Prerequisites
1. Access to the OCI Console

2. You have the Retail Home URL for each environment you wish to set up (for example,
PROD and STG)

3. Access to Retail Home

4. The ability to create new users in OCI IAM

Steps
1. Log in to the OCI Console.

2. Create a default workspace administrator account from your OCI Console in OCI IAM for
each subscribed cloud service using the primary schema names in Table 1-1.

a. The Default Workspace Administrator account passwords and their lifecycle will then
be managed by the customer in OCI IAM going forward.

b. There is no need to synchronize this user with APEX. The only requirement is that the
usernames match.

c. For example, create a Workspace Administrator account in OCI IAM with the
username MFCS_RDS_CUSTOM. Once you have created this account you can log in to the
APEX MFCS Workspace using the MFCS_RDS_CUSTOM user ID.

d. These logins will work for all your environments (for example, the MFCS_RDS_CUSTOM
login will grant you access to the MFCS workspace in both STAGE and PRODUCTION).

e. The default administrator logins are secure by default. They are, however, only
intended to provide the initial access necessary to establish access for each
workspace administrator.

3. Log in to the Default Workspace Administrator account on your OCI Console. You will have
to logout first.

a. Verify the reachability of the workspace launch page for your environment using the
Retail Home Application Navigator and selecting RDS APEX/ORDS (RDS APEX/
ORDS is included in the Application Navigator by default).

b. Note that the default workspace administrator will only be able to reach one
workspace.

4. Create one or more workspace administrators for this workspace (see APEX User
Management below). One of those workspace administrators should be yourself.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 5

a. Once you have created your user administrators, logout of the APEX UI.

b. Login as yourself.

c. Disable the default administrator accounts in OCI IAM. You can always recreate the
accounts in the future, if necessary.

5. Verify the reachability of the workspace launch page for your environment using the Retail
Home Application Navigator and selecting RDS APEX/ORDS.

6. Repeat steps 2-5 for each cloud service to which you have subscribed.

7. Using your workspace administrator account set up workspace developer accounts, see
APEX User Management below.

Step 2: Setup RDS Database Operations Console Access

Prerequisites
1. Access to the OCI Console

2. You have the Retail Home URL for each environment you wish to set up (for example,
PROD and STG)

3. Access to Retail Home

4. The ability to assign users to groups in OCI IAM

Steps
1. Log in to the OCI Console.

2. Assign each workspace administrator with access to pre-production environments to the
RDS_MANAGEMENT_ADMINISTRATOR_PREPROD group.

a. Verify reachability of the RDS DB Ops Console for your pre-production environment
using the Retail Home Application Navigator and selecting RDS DB Ops Console
(RDS DB Ops Console is available in the Retail Home Application Navigator by
default).

b. Assign developers to the appropriate RDS_MANAGEMENT pre-production groups based on
the level of access required. See the Retail Data Store Security Guide for additional
details.

3. Assign each workspace administrator with access to production environments to the
RDS_MANAGEMENT_ADMINISTRATOR group.

a. Verify reachability of the RDS DB Ops Console for your production environment using
the Retail Home Application Navigator and selecting RDS DB Ops Console.

b. Assign developers to the appropriate RDS_MANAGEMENT production groups based on the
level of access required. See the Retails Data Store Security Guide for additional
details.

APEX User Management
For the purposes of this documentation, there are two types of APEX users, end users and
development users. End users are users with access to the applications built with APEX. They
will log into and use those applications but not be involved in their development or
management. Development users, on the other hand, can create and manage the APEX

Chapter 4
Step 2: Setup RDS Database Operations Console Access

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 5

applications the end users use. Within this set of users, there are Developer and Workspace
Administrator roles. From the Oracle APEX UI, developers can quickly create web apps
including custom database objects, reports, forms, and RESTful services using a low code
interface.

Note

You will typically grant additional users workspace administrator permissions rather
than continuing to use the default workspace administrator account.

This document will focus on managing Development users. End user authentication is
managed by the Workspace Administrator, who can choose any supported form of
authentication for the APEX applications developed. For details on supported models, please
reference the APEX App Builder User’s Guide, section 21.4 “Establishing User Identity
Through Authentication.”

Development user authentication is provided through integration with Oracle Cloud
Infrastructure Identity and Access Management (OCI IAM). The APEX Workspaces
provisioned for RDS are configured to use HTTP Header Variable authentication. For full
details on this model, please refer to the APEX App Builder User’s Guide, section 21.4.2.4
“HTTP Header Variable.”

In most cases, teams will need to create additional development users to facilitate the
development of APEX applications and REST endpoints. The Workspace Administrator
account has the permissions to create additional Developer and Workspace Administrator
users through the APEX UI. Any additional users created will need to follow the same pattern
as the default user accounts. Create the users in APEX and create matching usernames in
OCI IAM. Like the default Workspace Administrator accounts, these new accounts will have
their passwords live in OCI IAM.

1. Log in to APEX using your workspace administrator account, such as
MFCS_RDS_CUSTOM, which you previously created in OCI IAM.

2. From the APEX start page, access the Administration menu in the upper right corner and
select the Manage Users and Groups option.

Chapter 4
APEX User Management

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 5

3. Click the Create User button within the User Management screen.

4. On the create user form, enter the Username and Email, which are identical to the OCI
IAM user account you wish to add.

5. Under Account Privileges, select whether the User is a workspace administrator or
the User is a developer.

If neither option is selected, then the user will not have the ability to create anything in
APEX but may be able to access applications that are already created.

Chapter 4
APEX User Management

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 4 of 5

6. For the Password, you may enter any value you wish. The APEX password is not used
when authentication is managed by OCI IAM.

7. Ensure the option Require Change of Password on First Use is set to No, as we do not
want APEX to manage the authentication.

8. Under Group Assignments, add one or more privileges to the user if they are a Developer
or Administrator. When you are finished, click Create User at the top of the screen to add
them to APEX.

For details on other user management activities in APEX, refer to the APEX Administration
Guide chapter “Understanding Workspace Administration”.

Chapter 4
APEX User Management

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 5 of 5

5
Oracle Analytics Server

RDS is provisioned with Oracle Analytics Server (OAS), offering Data Visualization and BI
Publisher (also known as Analytics Publisher or BIP) capabilities. These tools are
accessible through the Retail Home Application Navigator by selecting either Data
Visualization or Analytics Publisher.

Access is protected by the same OCI IAM instance used throughout Retail Data Store and
supports Single Sign-On (SSO). Further access control for both tools is managed through OCI
Groups.

This section guides you through the steps required to configure access to OAS.

For more guidance on using Data Visualization and BI Publisher, see Visualizing Data in OAS.

Determining Your Tenant Name

Prerequisites
• You have the Retail Home URL for each environment you plan to configure (for example,

PROD, STG).

• You can access Retail Home through a supported browser.

Steps to Identify the Tenant Name
1. Navigate to Retail Home for the desired environment using the URL provided by your

administrator.

2. In the Application Navigator in the left-hand panel, click Data Visualization or Analytics
Publisher.

3. Observe the URL in your browser’s address bar. It will follow a structure similar to:
https://<hostname>/<tenant-name>/...

4. Identify the tenant name, which follows the hostname. For example, if the URL is:
https://retail.example.com/acme/... then the tenant name is acme.

5. You will use this tenant name as a prefix when assigning users to OAS access groups.

Setup Access to OAS
OAS access groups have the following form:

Group Name Priviliege

<tenante-name>-DVConsumer Data Visualization report viewing
<tenant-name>-DVContentAuthor Data Visualization report creation and maintenance
<tenant-name>-BIConsumer Analytics Publisher report viewing
<tenant-name>-BIContentAuthor Analytics Publisher report creation and maintenance

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 2

https://docs.oracle.com/en/middleware/bi/analytics-server/user-oas/index.html

Note

You cannot create additional roles for Data Visualization or Analytics Publisher. Nor
can you alter the privileges granted to these roles.

Prerequisites
• You have permission to manage IAM users and groups in the OCI tenancy.

• You know the tenant name (for example, acme).

• You know which users need access and their intended roles (viewer or content author;
Data Visualization or BI Publisher).

Steps to Assign a User to an OAS Group
1. Sign in to the OCI Console for your tenancy.

Use the identity domain that Retail Data Store is deployed in.

2. In the left navigation menu, go to: Identity & Security -> Domains.

3. Click the domain where your Retail Data Store is deployed. If you’re unsure which one to
use, ask your tenancy administrator.

4. Click the User Management menu item. Groups will be found at the bottom of the page.

5. Search for and select the group you want to assign the user to. Group names follow this
pattern:

• <tenant-name>-DVConsumer

• <tenant-name>-DVContentAuthor

• <tenant-name>-BIConsumer

• <tenant-name>-BIContentAuthor

6. In the group details, click the Users menu item.

7. Search for users by name or email. Select the appropriate user by checking the box next to
their name, then click Assign user to group.

8. Repeat for additional users and groups as needed.

Assignment of OAS roles (OCI Groups) may take 15 minutes or more to propagate.

Chapter 5
Setup Access to OAS

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 2

6
Getting Started with Extensions

Overview
Oracle Retail Data Store (RDS) enables you to extend Oracle Retail Cloud Services by
developing custom applications, RESTful APIs, and database logic within a controlled, cloud-
based environment. These extensions are built in writable schemas, separate from the read-
only data replicated from the source systems.

This chapter summarizes the structures, tools, and environment characteristics that shape how
you build and deploy extensions in RDS.

Access to Replicated Data
Each cloud service replicates selected operational data into read-only replicate schemas using
Oracle GoldenGate. These schemas expose views only; tables are not accessible or
modifiable. Replicated objects are accessed using a fully qualified name.

For more details on replication design and schema structure, see Chapter 1.

Custom Schemas and Workspaces
All RDS extensions are implemented within writable schemas. These schemas are distinct
from the read-only replicate schemas and are the foundation for all customer-developed
applications, services, and custom logic.

There are three types of writable schemas used in RDS:

Primary Custom Schema
Each cloud service that supports RDS includes a primary custom schema:

• It is writable and associated with an APEX workspace.

• Customers use it to create APEX applications, RESTful services, PL/SQL packages, and
custom tables or views.

• It is granted SELECT privileges on one or more read-only replicate schemas, allowing
access to cloud service data through views.

• All APEX development takes place within this schema’s workspace.

This is the default environment for customer extensions.

Auxiliary Custom Schemas (Per Cloud Service)
Some cloud services provide one or more auxiliary custom schemas, such as XO_XADMIN or
RICS_BDI1:

• These are read-only and not associated with an APEX workspace.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 7

• They are provided for organizational or functional separation within a specific cloud
service.

• They do not have access to replicate views or other schemas by default.

• Customers must explicitly grant privileges from their primary custom schema to access or
use these schemas.

These schemas are useful for modular development or isolating specific components of a
solution.

Auxiliary APEX Workspaces (RDS_CUSTOM_1, RDS_CUSTOM_2,
RDS_CUSTOM_3)

In addition to service-specific schemas, RDS provides three general-purpose writable
schemas:

• These are writable and associated with APEX workspaces, but not tied to any specific
cloud service.

• They start with no privileges—access to replicate views or other schemas must be granted
manually.

• These schemas are ideal for:

– Sandboxing or experimenting with logic.

– Restricting access to certain users or development efforts.

– Refining security by isolating sensitive processes.

They allow advanced users to segment their development environment as needed.

Summary: Schema and Workspace Types

Type Writable APEX
Workspace

Tied to
Cloud
Service

Notes

Primary Custom Schema Yes Yes Yes Main development
environment. SELECT
access to all replicated
schema

Auxiliary Custom Schema Yes No Yes SELECT access to all
replicated schema

Auxiliary APEX Workspaces
(RDS_CUSTOM_1/2/3)

Yes Yes No General-purpose; no
privileges by default

Schema Access and Grants
RDS supports two distinct grant scenarios for enabling access across schemas:

Grants to Custom Objects
Custom tables, views, and packages created in a primary or auxiliary custom schema can be
shared with other schemas using standard GRANT statements.

• These grants must be managed by the object owner.

Chapter 6
Schema Access and Grants

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 7

• Use cases:

– Sharing a lookup table with a REST service defined in another schema.

– Allowing a secondary schema to run a reporting package.

Example:

GRANT SELECT ON \<a-custom-mfcs-table\> TO xocs_rds_custom;

These grants are not recursive—the grantee cannot grant access to others unless explicitly
given the WITH GRANT OPTION.

Grants to Replicated Objects
Access to views in replicate schemas is initially granted to the primary and auxiliary custom
schema with the WITH GRANT OPTION. This means the primary schema can grant access to
replicated views to auxiliary workspace schemas; that is, RDS_CUSTOM_1, RDS_CUSTOM_2, or
RDS_CUSTOM_3.

• This is how auxiliary APEX workspaces get access to replicated data.

• No need for intervention from Oracle or additional metadata configuration.

Example:

GRANT SELECT ON \<an-xocs-view\> TO rds_custom_1;

Because of the WITH GRANT OPTION, any schema that has access to a replicated view can
grant it to another schema. This provides flexibility for customers managing multi-schema
solutions or enforcing separation of concerns.

Grants to Auxiliary Workspace Schema
You should encapsulate grants for each Auxiliary workspace in a procedure, one per auxiliary
workspace. The owner of the procedure should be one of the product workspace schemas (for
example, MFCS), which schema owns which grant procedure is your decision.

Execute permission for each grant procedure should be granted to the appropriate Auxiliary
workspace. The procedure should be declared with "authid definer". The later should allow the
procedure to be called from RDS_CUSTOM_1/2/3 and achieve the desired result.

Ideally, the customer invokes the procedure periodically using a scheduled job, but it can be
invoked in an ad hoc manner. Although we are working on a solution to avoid dropping views
which then drops grants, there is no guarantee that we will not drop a replicated view in the
future.

Summary Table

Grant Type Object Location Granting Schema Notes

Custom object Primary/Auxiliary
Custom / Auxiliary
workspace Schema

Object owner Explicit grant needed

Replicated object Replicate Schema Any schema with
grant option (primary
or auxiliary schema)

Grants allowed due to
WITH GRANT OPTION

Chapter 6
Schema Access and Grants

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 7

Synonym Management
A synonym management API is provided to simplify access to replicated objects. Synonyms
allow replicated objects to be referenced without needing to use a fully qualified name. The API
has three procedures: one for creating synonyms; one for dropping synonyms; and lastly, one
for cleaning up synonyms.

Note

Synonym management only manages synonyms for replicated objects. All API
procedures reside in the RDS_OBJECT_MGMT package. For the sake of brevity, the
package name is not shown in the API description below. Nonetheless, in order to
access the procedures described, you will need to use the full qualified procedure
name (for example, RDS_OBJECT_MGMT.create_synonyms).

Create Synonyms
The create_synonyms procedure creates synonyms for all replicated views in a selected
source schema.

Parameters:

I_source_schema IN VARCHAR2 - Source schema name.
I_target_schema IN VARCHAR2 - Target schema name, if NULL defaults to
current_user.
I_identifier IN VARCHAR2 - Optional prefix for synonym names.
O_status OUT VARCHAR2 - Return status.

Drop Synonyms
The drop_synonyms will drop all synonyms associated with a selected source schema.

Parameters:

I_source_schema IN VARCHAR2 - Source schema name.
I_target_schema IN VARCHAR2 - Target schema name, if NULL defaults to
current_user.
I_identifier IN VARCHAR2 - Optional prefix for synonym names.
O_status OUT VARCHAR2 - Return status.

Cleanup Synonyms
The cleanup_synonyms procedure identifies and drops invalid synonyms (pointing to
nonexistent objects) for a selected source schema.

Parameters:

I_source_schema IN VARCHAR2 - Source schema name.
I_target_schema IN VARCHAR2 - Target schema name, if NULL defaults to

Chapter 6
Synonym Management

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 4 of 7

current_user.
O_status OUT VARCHAR2 - Return status.

Tools for Extension

Oracle APEX
APEX provides a low-code platform for building applications within any custom schema.

• Each APEX workspace is mapped one-to-one with a primary custom schema.

• Developers build forms, reports, dashboards, and services through the browser.

• SQL Workshop provides tools to manage schema objects and write PL/SQL.

• Database objects can be accessed in replicated and auxiliary schema using fully qualified
names.

Oracle REST Data Services (ORDS)
ORDS allows you to expose data and logic as a RESTful services.

• Services execute within your writable schema and can access both custom and replicate
views.

• Methods supported: GET, POST, PUT, and DELETE.

• Designed for data-producing (queries, exports) and data-consuming (inserts, updates)
services.

Services must return within 300 seconds to avoid timeouts. Bulk data flows should be offloaded
to object storage.

Object Storage and DBMS_CLOUD
Bulk data movement is handled through Oracle Object Storage.

• Export using DBMS_CLOUD.EXPORT_DATA and a writable PAR or credentialed URI.

• Import using DBMS_CLOUD.COPY_DATA.

Environment Considerations
RDS is a SaaS platform with a distinct development model. While powerful, it comes with
important constraints.

• APEX-Centric Development: Most development is performed through the browser. There is
no access to SQL*Developer, SQL*Loader, or shell-level tools.

• No Native DevOps Tooling: RDS does not include version control, staging environments, or
deployment pipelines. Teams must manage the code lifecycle externally.

• Low-Code + PL/SQL: Applications and APIs are created through APEX and SQL
Workshop. Custom code can be hundreds or thousands of lines, but large-scale
engineering efforts should be staged externally.

• Strict Object Boundaries: Only replicate views are accessible across schemas. Custom
objects must be explicitly shared using GRANT statements.

Chapter 6
Tools for Extension

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 5 of 7

• Single-Schema Workspaces: Each APEX workspace provides access to one primary
custom schema only.

• Resource Constraints: Session, CPU, and runtime limits apply. Resource-intensive tasks
should be optimized or offloaded to batch processes.

Prerequisites
To implement any meaningful extensions, you will need to meet the prerequisites listed below.
Furthermore, the examples in this chapter can be replicated in your RDS environment.
Replicating the examples will both help you understand the development context and provide
assurance that the prerequisites have been met prior to starting implementation.

• A Retail Home instance. Contact your RDS System Administrator for details – Oracle
Support does not provide this information.

• An IDCS Authorization Server host. Contact your RDS System Administrator for details –
Oracle Support does not provide this information.

• An Oracle Cloud account. Contact your RDS System Administrator for details on setting up
your Oracle Cloud account.

• A working knowledge of Oracle Retail Home.

• A working knowledge of the Oracle Cloud Console (on the web search for Using the Oracle
Cloud Console for the latest documentation).

• Access to an APEX workspace within an RDS tenant (see user management above).

• Access to a suitable Object Storage service.

• Access to a suitable object storage bucket. RDS does not automatically come with a
customer accessible object storage bucket. Provisioning an object storage bucket for use
with RDS is a customer responsibility. Bear in mind, FTS, when available, will not be able
to produce usable writable PARs for DBMS_CLOUD.EXPORT_DATA (EXPORT_DATA is
expecting a prefix or bucket URI, not an object URI). Readable PARs generated by FTS for
importing data into RDS, however, are usable with DBMS_CLOUD.COPY_DATA.

Accessing the APEX UI
You will need access to Retail Home endpoint.

APEX is a browser-based application. You access APEX by navigating to the Retail Home
Application Navigator and selecting RDS APEX/ORDS (RDS APEX/ORDS is included in the
Application Navigator by default).

Chapter 6
Prerequisites

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 6 of 7

It is the responsibility of RDS workspace admin to create development user accounts for each
user requiring access to one or more APEX workspaces. See the APEX User Management
section above for additional details.

Before proceeding:

1. Verify access to Retail Home

2. Verify access to the relevant APEX workspaces.

Chapter 6
Prerequisites

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 7 of 7

7
Obtaining ORDS Service Credentials

ORDS services use OAUTH 2 for authentication. All services are authenticated. What this
means in practice is that a short-lived token is used for authentication. That token is generated
using a well-known service, which authenticates using basic auth. The basic auth credentials
(that is, client id and client secret) are obtained from Retail Home.

For pre-production environments (for example, stage, dev, uat), administrator users for Retail
Home must be assigned the following roles (groups) through the authentication provider for the
environment:

• RETAIL_HOME_ADMIN_PREPROD

• PLATFORM_SERVICES_ADMINISTRATOR_PREPROD

• PLATFORM_SERVICES_ADMINISTRATOR_ABSTRACT_PREPROD

For production environments, administrator users for Retail Home must be assigned the
following roles (groups) through the authentication provider for the environment:

• RETAIL_HOME_ADMIN

• PLATFORM_SERVICES_ADMINISTRATOR

• PLATFORM_SERVICES_ADMINISTRATOR_ABSTRACT

1. In Retail Home, navigate to Manage OAUTH Clients page by tapping settings (1), then
tapping the Application Administration menu item (2), and lastly tapping the Manage
OAUTH Clients menu item to arrive at the Manage OAUTH Clients page (4).

2. Tap the + button.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 5

3. A popup dialog will appear. Provide an App Name and Description. Leave Scope blank.
Tap OK.

4. A new dialog window will appear with a Display Name, Client ID, and Client Secret. Retain
this information. It will not be displayed again. Tap Done when the information has been
copied. Note that new credentials can be created at any time and that production, stage,
and development will have different credentials.

Chapter 7

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 5

Consult Retail Home Application Administration Guide for additional details on managing
OAUTH clients.

Note that, the OCI IAM service is rate limited (see API Rate Limits). Best practice is to reuse
tokens until they expire (one hour). If you encounter a 429 error when requesting a token or
authenticating, you have hit the rate limit. When you encounter a rate limit, back off for one
minute to reset the rate limiter.

Before proceeding:

1. Verify that a client id and secret can be created in Retail Home.

2. Retain the client id and secret for future use.

Generating an ORDS Access Token
You will need an IDCS Authorization Server endpoint URL and ORDS service credentials to
perform the steps described below.

One uses an IDCS Authorization Server to generate an ORDS access token. Two access
token generation techniques will be described, curl and POSTMAN. One is likely to use both
techniques during the development process.

Generating an Access Token Using cURL

The cURL command for generating an access token has five components:

1. The IDCS Authorization Server endpoint URL

2. A content type

3. An authorization

4. A grant type

5. A scope

Only the IDCS Authorization Server endpoint URL and authorization are customer-specific.
Content type, grant type, and scope are the same for all customers.

Chapter 7
Generating an ORDS Access Token

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 5

https://docs.oracle.com/en-us/iaas/Content/Identity/sku/api-rate-limiting.htm

The endpoint URL has the following form:

https://<idcs authorization server host>/oauth2/v1/token

The authorization uses Basic Auth. You will need to base64 encode your Basic Auth
credentials using the following format:

clientId:clientSecret

Replace Client ID and Client Secret with credentials obtained using the method described in
the 4.3.2 Obtaining ORDS Service Credentials section above. Then use a base64 encoding
tool to encode the string.

The cURL command to generate a token is as follows:

curl --location --request \
POST 'https://<idcs authorization server host>/oauth2/v1/token' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--header 'Authorization: Basic <base64 clientId:clientSecret>’ \
--data-urlencode 'grant_type=client_credentials' \
--data-urlencode 'scope=urn:opc:idm:__myscopes__'

Generating an Access Token Using POSTMAN

Generating is access token in POSTMAN is typically an integral part of calling other services.
In this section, we will illustrate the process of generating a token directly and generating it as
part of another service invocation. Use the following steps to generate a token directly:

1. Open POSTMAN and create a new request by clicking on the New button in the top left
corner of the screen.

2. Select HTTP.

3. In the new request tab, select the POST method from the drop-down menu.

4. Enter the IDCS Authorization Server endpoint URL in the "Enter request URL" field.

5. Click the Authorization tab to configure authorization.

6. In the Type drop-down menu, select Basic Auth.

7. Enter your username (client id) and password (client secret) in the fields provided.

8. Next click the Body tab to add the grant type and scope parameters.

9. In the menu, select x-www-form-urlencoded.

10. Next enter two key-value pairs:

Key Value

grant_type client_credentials

scope urn:opc:idm:__myscopes__

11. Once you have configured your request, click on the "Send" button to execute it.

Chapter 7
Generating an ORDS Access Token

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 4 of 5

12. The response from the service will be displayed in the "Response" section below the
request configuration. You can view the response headers and body, as well as any errors
or status codes. The response is JSON formatted and should have the following form:

{
 "access_token": "<token>",
 "token_type": "Bearer",
 "expires_in": 3600
}

13. You can also save the request for future use by clicking on the "Save" button in the top
right corner of the screen and giving it a name.

To use OAuth2 in Postman to invoke a ORDS service, you can follow these steps.

1. Open POSTMAN and create a new request.

2. Select the Authorization tab from the top of the request builder.

3. Select the OAuth 2.0 type from the drop-down menu.

4. Scroll down to Configure New Token.

5. Choose a name for the token configuration.

6. Select client credentials as the grant type.

7. Enter your IDCS Authoization server endpoint URL, client id, client secret, and scope as
you did above.

8. Set client authentication to Send as Basic Auth Header.

9. Scroll down to get new access token.

10. POSTMAN will then display the token details, such as the access token, refresh token, and
token expiration time.

11. Finally, click the Use Token to apply the token to your service.

Before proceeding verify your understanding and validate your ORDS service credentials:

1. Unless you do not expect to use cURL, verify your that you can generate a token using
cURL.

2. Unless you do not plan to use POSTMAN, then verify your understanding by generating a
token using POSTMAN.

3. More than likely, you do not have an ORDS service with which to test authentication at this
point. If you do and you expect to use POSTMAN, then verify your understanding by
invoking an ORDS service.

Chapter 7
Generating an ORDS Access Token

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 5 of 5

8
Accessing Object Store

Overview
You will use object storage for bulk integration operations, high volume import, and export. If
you do not anticipate using Object Storage for integration, you can skip this section. You will
need to use the Oracle Cloud Console to perform the steps below.

Obtaining a Pre-Authenticated Request (PAR) URL
A pre-authenticated request, or PAR, provide a way to let users access a bucket or object
without having their own credentials. Users continue to have access to the bucket or object for
as long as the creator of the request has permissions to access those resources.

When you create a pre-authenticated request, a unique URL is generated. Anyone you provide
with this URL can access the Object Storage resources identified by the pre-authenticated
request. See Using Pre-Authenticated Requests in the Oracle Cloud Infrastructure
Documentation for additional details.

The steps to create a writable PAR for specific object are as follows:

1. Log in to you Oracle Cloud account

2. Open the navigation menu in the upper left to work with services and resources. Services
and resources are organized by functional group.

3. Open the navigation menu and click Storage.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 4

4. Then click Buckets.

5. Select the appropriate compartment in the compartment select box. The object storage
buckets in the compartment will be listed.

6. Select the appropriate bucket from the list.

7. In the Resources section, click Pre-Authenticated Request.

8. Specify the Name, select a Pre-Authenticated Request Target, select the Access Type, and
the Expiration date.

9. Click Create Pre-Authenticated Request.

10. Copy the pre-authenticated request URL for your records.

Alternatively, one can create a PAR using from a shell using OCI os. Before proceeding verify
your understanding and verify that you can create PAR.

Constructing an Object Storage Object URL
If you do not anticipate using Object Storage for integration, you can skip this section. You will
need to use the Oracle Cloud Console to perform the steps below.

Unlike a PAR, an Object Storage object URL requires the schema user to have their own
credentials. Like a PAR, the URL will provide a way for users to identify and access a bucket
with a known name. In order to construct a URL, you will need to know:

• the region identifier for your object storage instance

• the namespace in which your object storage is located

• the name of the bucket that you will be using

To obtain the region identifier:

1. Log in to the Oracle Cloud Console

2. In the middle right portion of the tool bar at the top of the console page, you will find the
name of the region in which your Object Storage instance is located (you can change
regions from here as well, if need be), e.g., US East (Ashburn). Tap the region to reveal the
region menu.

Chapter 8
Constructing an Object Storage Object URL

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 4

3. In the region menu, there is a Manage regions menu item. Tap it.

4. A list of regions will be displayed. For each region displayed there is a region identifier.
Note the region identifier for your region. See the figure below:

Once you have the region identifier, you can construct a base URI for your object store
instance, which has the following form:

https://objectstorage.<region-identifier>.oraclecloud.com

For example, the host for a URI for US East (Ashburn) region is:

https://objectstorage.us-ashburn-1.oraclecloud.com

Next find the namespace for your bucket at the top of the General section in the Bucket
Information. Lastly, find the name of the bucket at the top of the bucket page.

The complete URL is:

https://<host>/n/<namespace>/b/<bucket>/o/<object-prefix>

Note that the object prefix is a base name when exporting from ADW. The final object name
will have a multi-part identifier (e.g., which is "1", if it is not a multipart export), timestamp suffix,
a format extension (e.g., ".json") and, if compression was used, a compression extension (e.g.,
".gz"). For example, an object name as listed in the bucket might look like the following:

ie_export_test_1_20221108T225927023493Z.json.gz

Before proceeding verify your understanding and verify that you can create ab object storage
object UIL.

Chapter 8
Constructing an Object Storage Object URL

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 4

Obtaining Object Storage Credentials
You will need to use the Oracle Cloud Console to perform the steps below.

In order to read from or write to object storage one will need the necessary credentials. Refer
to Required Keys and OCIDs for details on obtaining credential information for object storage.
The easiest way to obtain the needed credentials is as follows:

1. Navigate to one’s My Profile page in the Oracle Cloud (i.e., tap the profile button/image in
the upper right corner and select My Profile from the drop down).

2. Next tap the API Keys link in the Resources section on the lower left of the screen.

3. Finally tap the Add API Key button and follow the instructions. Part of the process is
downloading one’s private key. The downloaded key is in PEM format. The key will need to
be reformatted as a single long string without the leading and trailing dashes when using
the credential in create credential script. There should be no new lines in the key.

These instructions will make more sense once one goes through the Add API Key process.

Chapter 8
Obtaining Object Storage Credentials

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 4 of 4

https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs

9
ORDS RESTful Services

Overview
The point of this section is not to say everything that needs to be said about RESTful Services.
Rather it will describe some patterns one is likely to encounter and how they might be
implemented. Those patterns are as follows:

• Data producing services or outbound integrations are one of the most likely patterns one
will implement. Such services are typically pull producers that generate a chunk of data in
response to an explicit request. A less common producer is one which continues to
generate data without external prompting by invoking an external data consuming service.
In this case, the service is either governed by the DBMS_SCHEDULER or by and external
scheduling system.

• Data consuming services or inbound integrations insert data into RDS. The inbound data
originates in an external system. There is no need to insert data found in the participating
products or subscribe to RICS data originating in these products because it is already
being replicated.

• Bulk import and export services represent another inbound and outbound integration
pattern. In this case, however, data is transferred through object storage rather than
through the service itself. The role of the service is to initiate the transfer.

• The last services pattern concerns process orchestration and monitoring. These service
patterns start, stop, and monitor jobs. In most cases, these services will run
asynchronously. For example, they will submit a job for future execution and return
immediately.

Oracle RESTful Data Services play a role in every integration. Services either directly transfer
the data or initiate that transfer through object storage. For a pull pattern, the service queries
ADW and then returns the query result as its response. For a push pattern, the service is
invoked with a payload that is inserted in a ADW table. In the case of a bulk export integration,
the service initiates the export and then returns a response indicating whether the export was
successfully initiated or not. Lastly, a bulk import integration service initiates the import and
then returns a response indicating whether the import was successful or not. Additional
services are required to monitor the progress of import and export jobs.

In most cases, the pattern chooses itself for a given task. Synchronous data services that push
or pull data in response to an explicit request are simple to implement. The problem is that
simple producers do not tend to scale to large volumes of data. First, there is a non-negotiable
hard limit of 300 seconds on query duration. If the query exceeds this limit, the caller will return
a socket hang up error. Moreover, it is also worth remembering that the database is not
infinitely scalable. Specifically, there are only so many connections available (a max of 100)
and there is only so much CPU capacity. One can't split a huge bulk data task into a multitude
of smaller subtasks and expect them to require fewer CPU seconds. In the worst case, a
backlog of REST invocations builds, and invocations start timing out.

Implementing a RESTful Service in APEX

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 4

In order to implement the examples below, you will need:

• Access to the APEX UI and Workspace so that you can create a service

The following paragraphs will only provide an overview of how one creates a RESTful service.
Consult Chapter 7 of the SQL Workshop Guide, Enabling Data Exchange with RESTful
Services. The chapter describes in detail how one creates a RESTful service in APEX. Bear in
mind, documentation is version specific. Although documentation across versions tends to be
quite similar, it is generally best to consult the documentation for the version of APEX one is
using.

To begin, navigate to the APEX UI and select a workspace, such as MFCS, then follow the
steps below:

1. From the APEX UI navigate to the RESTful Services page (i.e., from the APEX Navigation
Bar SQL Workshop > RESTful Services).

2. Click Modules

3. Click Create Module

4. Name your module "imp_guide" and set the Base Path to "/imp_guide/"

5. Click Create Module

A module represents a collection of related services. Begin creating the first service by creating
a template. The steps are as follows:

1. Click Create Template

2. Set the URI Template to "hello_world/:name"

3. Click Create Template

The ":name" path component allows us to introduce and demonstrate a bind variable.

The last step is to create a handler for the service. Create the handler by following steps
below:

1. Click Create Handler

2. Set the Method to GET

3. Set Source Type to Collection Query

4. Set the Source to "select 'Hello World! ' || :name as response from dual"

5. Click Create Handler

The full URL is displayed on the ORDS Handler Definition page. The URL has the following
form:

https://<host>/<tenant-name>/ords/<workspace>/imp_guide/hello_world/<your-
name>

Note that the URL for service handler is displayed on the handler definition page.

Since this is a GET service, it can be tested from a browser. The response for this service, if
your_name was john would be:

{
 "items": [
 {
 "response": "Hello World! john"
 }

Chapter 9
Implementing a RESTful Service in APEX

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 4

],
 "hasMore": false,
 "limit": 25,
 "offset": 0,
 "count": 1,
 "links": [
 {
 "rel": "self",
 "href": "https://<host>/<tenant-name>/ords/mfcs/imp_guide/hello_world/
john"
 },
 {
 "rel": "describedby",
 "href": "https://<host>/<tenant-name>/ords/mfcs/metadata-catalog/
imp_guide/hello_world/item"
 },
 {
 "rel": "first",
 "href": "https://<host>/<tenant-name>/ords/mfcs/imp_guide/hello_world/
john"
 }
]
}

Query parameters become bind variables. For example:

1. Edit the Source of your hello_world service to be "select 'Hello World! ' || :name || ' ' ||
nvl(:last_name, 'Smith') as response from dual"

2. Apply Changes.

The response for this service, if your_name was john?last_name=jones would be:

{
 "items": [
 {
 "response": "Hello World! john jones"
 }
],
 "hasMore": false,
 "limit": 25,
 "offset": 0,
 "count": 1,
 "links": [
 {
 "rel": "self",
 "href": "https://<host>/<tenant-name>/ords/mfcs/imp_guide/hello_world/
john?last_name=jones"
 },
 {
 "rel": "describedby",
 "href": "https://<host>/<tenant-name>/ords/mfcs/metadata-catalog/
imp_guide/hello_world/item"
 },
 {
 "rel": "first",
 "href": "https://<host>/<tenant-name>/ords/mfcs/imp_guide/hello_world/

Chapter 9
Implementing a RESTful Service in APEX

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 4

john?last_name=jones"
 }
]
}

Before proceeding:

1. Create the hello_world service in the APEX UI.

2. Test the service from a browser. You should be challenged (if you have not already been
authenticated) when invoking the service. Use your IDCS login credentials to authenticate.

Invoking a RESTful Service from POSTMAN
In order to implement the example below, you will need:

• The hello_world service described above.

• Access to POSTMAN. The discussion below assumes familiarity POSTMAN.

• The ORDS OAUTH credentials created in Obtaining ORDS Service Credentials.

Invoking a RESTful service from POSTMAN combines access token generation with endpoint
access. Using POSTMAN allows you to test your services as well as simulate the fundamental
tasks performed in service-based integration. To invoke your hello_world service using
POSTMAN, follow these steps:

1. Open Postman and create a new request by clicking on the "New" button in the top left
corner of the application. Select HTTP Request.

2. In the "Enter URL or paste text" field, enter the endpoint of the hello_world service.

3. The default HTTP method is GET. Examine the other methods, but leaving the setting as
GET.

4. Click the Params tab and add the last_name parameter (i.e., key is last_name, value is
Smith for example).

5. Click the Authorization tab.

a. Select the OAuth 2.0 type from the drop-down menu.

b. Click on the "Get New Access Token" button.

c. In the "Get New Access Token" popup window, fill in your access token URL (IDCS
Authorization Server endpoint URL), client ID, client secret, grant type, and scopes.

d. Once you have filled in the required fields, click on the Get New Access Token button.

e. POSTMAN will then display the token details, such as the access token, refresh token,
and token expiration time.

f. Finally, click the Use Token to apply the token to your service.

6. Once you have configured the request, click on the "Send" button to send the request to
the RESTful service.

7. You will see the response from the RESTful service in the "Response" section of the
request window. You can view the response headers, body, and status code to verify that
the request was successful.

Before proceeding invoke your hello_world service from POSTMAN.

Chapter 9
Invoking a RESTful Service from POSTMAN

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 4 of 4

10
ORDS PRE-HOOK

Oracle REST Data Services (ORDS) provides the ability to use PL/SQL based pre-hook
functions that are invoked prior to an ORDS based REST call. These functions can be used for
a variety of purposes including auditing, custom authentication and authorization, and metrics
gathering.

Each provided RDS workspace comes pre-configured with a simple pre-hook function named
ORDS_PREHOOK, and it has a default implementation that simply returns true. As such, it has no
effect on the REST calls made into custom applications. It is provided as a starting point for
extension to teams that required additional processing on each REST call. For those teams,
replacing the implementation of the ORDS_PREHOOK function will enable the additional
capabilities they require. For more information on pre-hook functions, please refer to Oracle
REST Data Services Installation, Configuration, and Development Guide: Overview of Pre-
hook Functions.

Note that, a pre-hook function is invoked for every REST service call. Therefore, the pre-hook
function must be designed to be efficient. If a pre-hook function is inefficient, then it has a
negative effect on the performance of the REST service call. Invoking the pre-hook involves at
least one additional database round trip. It is critical that the ORDS instance and the database
are located close together so that the round-trip latency overhead is minimized.

Be aware that some extensions, such as those provided by the Oracle Retail Cloud Value
team, use ORDS PRE_HOOK to enhance security. Incomplete configuration of these
extensions as well as failure to communicate their presence to the broader customer
implementation team can result in unexpected authentication failures.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 1

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/21.2/aelig/developing-REST-applications.html#GUID-1B081D04-39EC-4E3B-8902-AEB2A44EEF34
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/21.2/aelig/developing-REST-applications.html#GUID-1B081D04-39EC-4E3B-8902-AEB2A44EEF34
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/21.2/aelig/developing-REST-applications.html#GUID-1B081D04-39EC-4E3B-8902-AEB2A44EEF34

11
Using RDS to Build a Data Producing Service

Overview
A data producing service can be used to deliver data to a UI or fulfill some data need in an
automated business process. The limiting factor is time. The data producing service must be
able to produce a response in less than 300 seconds. If the service exceeds that limit, the
caller will hang up and respond with a socket hang up error. The consumer may be able to
wait longer than 300 seconds, but ORDS will not.

Important

ALL REST service calls must complete within 300 seconds. This hard limit is enforced
by ORDS and cannot be extended.

Most data producing services are parameterized to one degree or another. The hello_world
service demonstrated the use of a parameter in the URL template as well as the use of a query
parameter. When considering how best to communicate parameters to a service, the developer
should be aware that a URL has a maximum size (Oracle will not guarantee support of any
maximum). If the parameters are complex or lengthy, then parameters should be passed to the
service in the body of the request. The format of the request body is up to the developer;
however, the body should be easy to parse in PL/SQL, e.g., JSON formatted requests are easy
to parse. If the request includes a body, then the request method must be POST or PUT. GET
methods ignore the request body.

GET Services
In order to implement the example below, you will need:

• Access to the APEX UI.

• The hello_world service described above.

• Access to POSTMAN. The discussion below assumes familiarity POSTMAN.

• The ORDS OAUTH credentials created in Obtaining ORDS Service Credentials.

GET services are particularly easy to implement in the APEX UI. The service source is the
query. Complicated queries should be implemented, when possible, as views to keep the
service source simple. Views are more easily tested. Bear in mind, the service source is not
compiled until the service is invoked. In other words, the first indication of a compilation error is
the error message in the service response.

The hello_world service was configured as a collection query that anticipates returning
multiple rows. The result is also paged, meaning links to next and previous pages are supplied
in the response. The response is also formatted as a JSON object. For additional details refer
to the ORDS Developers Guide.

Before proceeding:

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 3

• Review the response to the invocation of the hello_world and make sure that you
understand each element of the response.

• Change the result type to a collection query item and invoke the service. Make sure you
understand each element of the collection query item response.

• Lastly, navigate in your browser to the ORDS Developers Guide. Take the time to review
familiarize yourself with its contents.

POST Services
In order to implement the example below, you will need:

• Access to the APEX UI.

• Access to POSTMAN. The discussion below assumes familiarity POSTMAN.

• The ORDS OAUTH credentials created in Obtaining ORDS Service Credentials.

Sometimes it is necessary to use a POST service in a GET-like setting because the query
string would be too complicated (bin64 encoding is an option, but will not be discussed here).
POST services, however, are more complicated to implement. In this case, the method is
POST and the source type is PL/SQL. The service source is a PL/SQL block. There is no
paging. There is no automatic rendering of the response in JSON format. The body or payload
is retrieved using the implicit bind variable :body_text. The format of the body is up to you.
Bear in mind, whatever format you choose, you will have to parse or unpack it.

For example, the following service source:

declare
 payload varchar2(128) := :body_text;
 response varchar2(64);
 first_name varchar2(64);
 last_name varchar2(64);
begin
 first_name := json_value(payload, '$.first_name');
 last_name := json_value(payload, '$.last_name');
 select json_object('response' value '"hello '||
first_name || ' ' || last_name || '"' format json)
 into response
 from dual;
 htp.prn(response);
end;

Illustrates four important tasks:

• Obtaining the service body or payload using :body_text. Note, :body_text can only be
read once.

• Unpacking the payload using json_value.

• Building a JSON response.

• Returning a response using htp.prn.

The service when given a payload of:

{"last_name":"smith", "first_name":"john"}

Chapter 11
POST Services

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 3

Returns with a response of:

{"response":"hello john smith"}

Before proceeding, create and test the POST service above using POSTMAN.

Long Responses
In some cases, the response from your service exceeds the capacity of varchar2. When this
happens, replace the varchar2 response with a clob. The procedure, HTP.PRN procedure
used above will not, however, work with a clob. For http printing clobs, I created the
HTP_PRN_CLOB procedure below.

create or replace PROCEDURE HTP_PRN_CLOB(PCLOB IN OUT NOCOPY CLOB)
IS
 V_TEMP VARCHAR2(4000);
 V_CLOB CLOB := PCLOB;
 V_AMOUNT NUMBER := 3999;
 V_OFFSET NUMBER := 1;
 V_LENGTH NUMBER := DBMS_LOB.GETLENGTH(PCLOB);
 V_RESULT CLOB;
BEGIN

 WHILE V_LENGTH >= V_OFFSET LOOP
 V_TEMP:= DBMS_LOB.SUBSTR(V_CLOB, V_AMOUNT, V_OFFSET);
 HTP.PRN(V_TEMP);
 V_OFFSET := V_OFFSET + LENGTH(V_TEMP);
 END LOOP;
END;

Chapter 11
Long Responses

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 3

12
Using RDS to Build a Data Consuming Service

In order to implement the example below, you will need:

• Access to the APEX UI.

• Access to POSTMAN. The discussion below assumes familiarity POSTMAN.

• The ORDS OAUTH credentials created in Obtaining ORDS Service Credentials.

A data consuming service updates an existing a custom RDS table, emphasis on custom. All
the replicated views and tables in RDS are read-only. If you want to add data to RDS, you will
need to create a table for it. The semantics of http methods strongly encourages you to use the
POST, PUT, and DELETE methods modification, specifically, it discourages creating GET
handlers that have side effects. From the service implementation perspective, a data
consuming service is no different than the POST service described in POST Services. The
difference is that the service source unpacks the payload (or query string parameters) and then
inserts a new record or updates an existing record based on the results of that unpacking.

For example, the following service source inserts a row into a table name
hello_world_names. This table has two columns, last_name and first_name. The first name
is part of the URL and the last name is found in the body of the post method.

declare
 payload varchar2(128) := :body_text;
 response varchar2(64);
 first_name varchar2(64) := :name;
 last_name varchar2(64);
begin
 last_name := nvl(json_value(payload, '$.last_name'),
 'no_last_name_given');
 insert into hello_world_names (last_name, first_name)
 values (last_name, first_name);
 htp.prn('{"status":"success"}');
end;

Before proceeding:

1. Create hello_world_names table in your RDS.

2. Add (create) a POST handler for your hello_world service described in POST Servicesto
insert a row in the hello_world_names. Use the example source above.

3. Test your new POST handler using POSTMAN.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 1

13
Exporting Data to Object Storage

Prerequisites
To implement the example below, you will need:

• Access to Oracle Cloud Console.

• Access to the Object Storage Service.

• Ability to list buckets and their objects.

• Ability to create a PAR.

• Access to the APEX UI.

• Access to POSTMAN. The discussion below assumes familiarity POSTMAN.

• The ORDS OAUTH credentials created in Obtaining ORDS Service Credentials.

There are two approaches to exporting data to object storage. The approaches only differ in
the type for file URI used. The first approach uses a pre-authenticated request (PAR). The
second uses a URI that requires authentication.

Exporting Data Using a PAR
Create a bucket level or prefix PAR using the process described in Section 4.3.4. An object
level PAR will not work. The example code below demonstrates how a PAR can be used to
export data from RDS.

Begin
 dbms_cloud.export_data(
 file_uri_list=> '<your-PAR-goes-here>',
 query => 'select 1 from dual',
 format => json_object('type' value 'csv')
);
 htp.prn('{"status":"success"}');
end;

Before proceeding:

1. Create a bucket level PAR for an export test.

2. Execute the above code in APEX > SQL Commands

a. Verify an export was created by listing the objects in your bucket.

3. Implement an export POST service using the example code above and your PAR.

4. Test the service using POSTMAN.

a. Verify an export was created by listing the objects in your bucket.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 2

Exporting Data with a Credential
In Obtaining Object Storage Credentials, you created credentials that can be used to import
data from and export data to object storage. You will need those credentials to run the example
described here. The first step to exporting data using an unauthenticated file URI is configure a
credential for use in ADW. An example follows.

begin
 DBMS_CLOUD.CREATE_CREDENTIAL (
 credential_name =>'OCI_KEY_CRED',
 user_ocid => '<your-user-ocid>',
 tenancy_ocid=> '<your-tenancy-ocid>',
 private_key=> '<your-private-key>',
 fingerprint=> '<your-fingerprint>'
);
end;

The export code for an unauthenticated file URI adds this credential to the calling parameters.

begin
 dbms_cloud.export_data(
 credential_name => '<your-credential>',
 file_uri_list=> '<your-URI-goes-here>',
 query => 'select 1 from dual',
 format => json_object('type' value 'csv')
);
 htp.prn('{"status":"success"}');
end;

Before proceeding:

1. Configure your credential using the information you obtained in Obtaining Object Storage
Credentials.

2. Execute the above code in APEX > SQL Commands.

a. Verify an export was created by listing the objects in your bucket.

3. Implement an export POST service using the example code above and your file URI. The
format of the URI is described in Constructing an Object Storage Object URL.

4. Test the service using POSTMAN.

a. Verify an export was created by listing the objects in your bucket.

Chapter 13
Exporting Data with a Credential

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 2

14
Importing Data from Object Storage

Prerequisites
To implement the example below, you will need:

• Access to Oracle Cloud Console.

• Access to the Object Storage Service.

• Ability to list buckets and their objects.

• Ability to create a PAR.

• Access to the APEX UI.

• Access to POSTMAN. The discussion below assumes familiarity POSTMAN.

• The ORDS OAUTH credentials created in section 4.3.2.

• A table in which to import data.

As with exporting, there are two approaches to importing data from object storage. The
approaches only differ in the type for file URI used. The first approach uses a pre-authenticated
request (PAR). The second uses a URI that requires authentication.

Importing Data Using a PAR
Create a readable PAR (bucket level, prefix, or object level) using the process described in
Obtaining a Pre-Authenticated Request (PAR) URL. The example code below demonstrates
how a PAR can be used to export data from RDS. Note that you will need a table into which
your data will be imported and the source file and the destination table will need to be
compatible.

begin
dbms_cloud.copy_data(
 file_uri_list=> '<your-URI-goes-here>',
 table_name => <your-table-name>,
 format => json_object('type' value 'csv'));
end;

Before proceeding:

1. Create a PAR for an import test.

2. Execute the above code in APEX > SQL Commands

a. Verify an import was successful examining the data in your destination table.

3. Implement an import POST service using the example code above and your PAR.

4. Test the service using POSTMAN.

a. Verify an import was successful examining the data in your destination table.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 2

Importing Data Using a Credential
In Obtaining Object Storage Credentials, you created credentials that can be used to import
data from and export data to object storage. You will need those credentials to run the example
described here. The first step to exporting data using an unauthenticated file URI is configure a
credential for use in ADW. You should have done this in Exporting Data with a Credential. You
can reuse that credential here. The import code for an unauthenticated file URI adds this
credential to the calling parameters.

begin
 dbms_cloud.copy_data(credential_name => '<your-credential>',
 file_uri_list=> '<your-URI-goes-here>', table_name => <your-table-
name>, format => json_object('type' value 'csv'));
end;

Before proceeding:

1. Configure your credential using the information you obtained in Section 4.3.6

2. Execute the above code in APEX > SQL Commands

a. Verify an import was successful examining the data in your destination table.

3. Implement an import POST service using the example code above and your file URI. The
format of the URI is described in Section 4.3.5.

4. Test the service using POSTMAN.

a. Verify an import was successful examining the data in your destination table.

Chapter 14
Importing Data Using a Credential

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 2

15
DBMS Scheduler Jobs

An asynchronous approach is generally called for when the likely wait time for process
completion is high. A data export to object storage is generally a good candidate for an
asynchronous start. In the simplest case, one needs to implement three data services: job
start, job stop, and job status. The DBMS_SCHEDULER package provides the functionality
one would need for these services. There is, of course, the option to schedule an export job to
repeat and obviate the need to create a job start service. One could still use a job start service
to invoke an unscheduled export.

One uses the DBMS_SCHEDULER.create_job procedure to create a job that can be started
asynchronously. A typical approach would be to use create job to wrap a procedure. The
create job invokes the procedure immediately (by setting the start_date to SYSTIMESTAMP)
upon creation and is dropped automatically upon completion. The service would return a
unique job name or execution id to be used to stop and monitor the job.

Another service is used to monitor the job status using the returned execution id. The
monitoring service would be used to poll the status of the job. The job status is obtained by
executing a query on the DBMS_SCHEDULER.user_scheduler_job_run_details. A complete
reference implementation of an asynchronous job start and monitoring framework is available
on My Oracle Support. To view the reference implementation:

1. Log in to my oracle support.

2. Search for Oracle Retail Data Store Documentation Library

3. Navigate to Sample Code

4. Click on the link Sample Code

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 1

16
Retail Home Integrations

A Retail Home integration is an example of outbound integration with a user interface or portal.
Retail Home Metric tiles without charts are quite simple to implement. For example, the
following data service source (with a source type of collection query) will populate the 2 Metric
Tile below:

select
 'PO Receipts' as NAME, 25680 as VALUE,
 'N' as "VALUE_FORMAT" from dual
union
select
 'In Transit' as name, 112300 as value,
 'N' as "VALUE_FORMAT" from dual

This data service response is:

{"items":[
 {"name":"In Transit","value":112300,"value_format":"N"},
 {"name":"PO Receipts","value":25680,"value_format":"N"}
],
 "hasMore":false,
 "limit":25,
 "offset":0
 "count":2,
 "links":[...]
}

Producing a 4 Metric Summary, however, is more complicated and requires one use a source
type of PL/SQL (the following code only provide values for two of four metrics).

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 4

declare
 response varchar2(4000);
begin
 SELECT json_object (
 'items' value
 json_array(
 json_object ('name' value 'Metric 1',
 'value' value 0.5,
 'valueFormat' value 'PC'),
 json_object ('name' value 'Metric 2',
 'value' value 0.25,
 'valueFormat' value 'PC')
),
 'chart' value
 json_object ('type' value 'bar',
 'items' value
 json_array(json_object('name' value 'FEB',
 'value' value 2300),
 json_object('name' value 'MAR',
 'value' value 3100),
 json_object('name' value 'APR',
 'value' value 2900)
),
 'valueFormat' value 'S',
 'seriesName' value 'Sales',
 'valueLabel' value 'Amount'
)
)
 into response FROM DUAL;
 htp.print(response);
end;

Filters, if used, become query string parameters and values in the URL. The query string
parameters manifest in the source as bind variables.

In Context Launch of an APEX App
In context launch of an APEX App entails navigating to an APEX App from within a product
application using a URL. Once you have deployed your application, loaded the data, and
created users, you can publish your production URL. You can determine the production URL
for your application by either:

Chapter 16
In Context Launch of an APEX App

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 4

• Selecting the application on the Application home page and right clicking the Run button.
Then, select Copy link address or Copy link location depending on your browser.

• Running the application and then copying the URL.

Invoking an APEX app with one or more query parameters requires that the APEX App
Session State Protection and Application Items be appropriately configured.

1. In your APEX App navigate to Shared Components > Security > Session State Protection.
Navigate to the Set Page and Item Protection page of your published launch page, for
example, your App Home page. Next, set page access restriction to Unrestricted. Always
treat query parameter input as untrusted and sanitize it.

2. Next navigate to Shared Components > Application Logic > Application Items. Create an
application item of the same name as your query parameter.

See Oracle APEX for additional details on URL syntax and managing session state.

Launching APEX Apps from Retail Home
It is quite simple to configure Retail Home to facilitate the launch of an APEX application.

1. Navigate to the Dashboard Configuration tab and tap the Create button.

Figure 16-1 Dashboard Configuration Tab

2. Fill in the Create Dashboard Tile Dialog. Note there is a field for specifying a URL for you
new dashboard tile.

Chapter 16
Launching APEX Apps from Retail Home

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 4

https://docs.oracle.com/en/database/oracle/apex/22.1/htmdb/index.html

Figure 16-2 Create Dashboard Tile

Chapter 16
Launching APEX Apps from Retail Home

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 4 of 4

17
Invoking External Services

Publicly accessible, external services can be invoked using the APEX_WEB_SERVICE
package. The UTL_HTTP package is not supported. If you choose to setup a reverse private
endpoint for ADW, you will need to whitelist any external service that you want to invoke from
APEX_WEB_SERVICE.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 1

18
Retail DB Ops Console

Customers are responsible for both tuning their extensions and monitoring their CPU and
storage capacity utilization. The Retail DB Ops Console provides customers the tools
necessary to fulfill this responsibility. Additional capabilities provided in various Oracle DB
packages can provide more detailed metrics and statistics. Consult Oracle documentation for
further information.

Home
The Retail DB Ops Console can be accessed from Retail Home’s Application Navigator. The
home page can be accessed by a ‘Viewer’ having RDS_MANAGEMENT_VIEWER or
RDS_MANAGEMENT_VIEWER_PREPROD roles.

The Home page gives a quick view of recent data for the following:

• Latest Generated AWR Reports.

• Current Top SQL

• DBMS Jobs

Figure 18-1 DB Ops Console

All features can be accessed from the left panel.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 22

Figure 18-2 DB Ops Console Menu

AWR Reports
The AWR stands for Automated Workload Repository Report and provides a set of tables into
which snapshots of system statistics are stored. Generally, these snapshots are taken on an
hourly basis and include wait interface statistics, top SQL, memory, and I/O information that is
cumulative in nature up to the time of the capture.

The AWR report process takes the cumulative data from two snapshots and subtracts the
earlier snapshot’s cumulative data from the later snapshot and then generates a delta report
showing the statistics and information relevant for the time period requested.

Search Generated AWR Reports

Search Generated AWR Reports screen can be accessed by a ‘Viewer’ having
RDS_MANAGEMENT_VIEWER or RDS_MANAGEMENT_VIEWER_PREPROD roles and
shows a list of generated reports and allows the user to filter the reports based on the
following:

• Snap ID – The unique key of a snapshot

• Generated By – System or User

• Interval by Date and Hour

Chapter 18
AWR Reports

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 22

Figure 18-3 AWR Reports

The list of generated report logs is provided in the “AWR Generated Report Logs” table that
contains the following information for every Report ID. The ‘Refresh Report Logs’ button can
be used to refresh the table to display the newly generated reports.

• Report ID: Unique ID of the generated report.

• Start Snap ID: Snap ID of the start snapshot in that time interval.

• End Snap ID: Snap ID of the end snapshot in that time interval.

• Start Interval: Start timestamp of the snapshot interval.

• End Interval: End timestamp of the snapshot interval.

• Generated By: If generated automatically by the system, then SYSTEM is populated. If
generated manually by any user, then that user’s ID is populated.

• Generated Date and Time: Timestamp of the report generation.

• Allow Delete: Indicator that mentions if the report can be deleted or not.

Generated reports are retained for 30 days.

AWR Report Viewer

When clicking on the Report ID, a detailed AWR Report is displayed. The report can be
downloaded or deleted from this window.

Chapter 18
AWR Reports

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 22

Figure 18-4 AWR Report Viewer

Generate AWR Custom Reports

This screen enables an ‘Owner’ having RDS_MANAGEMENT_OWNER or
RDS_MANAGEMENT_OWNER_PREPROD roles to generate reports based on Interval Start
Date and Time and Interval by Number of Hours. Custom reports are retained for 30 days and
then purged.

Figure 18-5 AWR Reports Generation

Top SQL
Top SQL screen displays a list of active SQL instances and their details that the snap process
collects from SQL statements. The instances also can be filtered based on the Session States
– ON CPU and WAITING. This page can be accessed by a ‘Viewer’ having
RDS_MANAGEMENT_VIEWER or RDS_MANAGEMENT_VIEWER_PREPROD roles.

Chapter 18
Top SQL

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 4 of 22

Figure 18-6 Top SQL

Clicking on the SQL ID link opens up a window with more details on the SQL Instance.

Figure 18-7 SQL Instance Viewer

Clicking on the SQL Full Text link shows the complete SQL statement.

Chapter 18
Top SQL

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 5 of 22

Figure 18-8 SQL Text Viewer

DBMS Jobs
The DBMS Jobs table lists the available DB jobs and their details. This page can be accessed
by a ‘Viewer’ having RDS_MANAGEMENT_VIEWER or
RDS_MANAGEMENT_VIEWER_PREPROD roles.

Figure 18-9 DBMS Jobs

Chapter 18
DBMS Jobs

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 6 of 22

Clicking on the Job Name opens a window with detailed job log and job run details. For
example, the job log and job run details for ‘RDS_RDS_MANAGEMENT_GRANT_JOB’ is as
shown below.

Figure 18-10 DBMS Scheduler Job Logs

Figure 18-11 DBMS Scheduler Job Run Details

Chapter 18
DBMS Jobs

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 7 of 22

Database Metrics
A database metrics page can be accessed by an ‘Administrator’ (i.e., someone having
RDS_MANAGEMENT_ADMINISTRATOR or
RDS_MANAGEMENT_ADMINISTRATOR_PREPROD roles). These metrics describe different
aspects of database load. The following table lists the eight database metrics viewable for this
environment’s Oracle APEX and database instance.

Metric Description

CPU Utilization The percentage of processing capacity currently used by active
processes

Storage Utilization The percentage of subscription capacity currently allocated. See the
note on storage utilization below.

Session Count A logical entity in the database instance memory that represents the
state of a current user log in to a database. The metric reflects the level
of concurrent activity being handled by the database.

Execute Count The number of SQL statements executed. The metric provides a
measure of workload by indicating how many SQL statements have
been run during a specific period.

Running Statements The number of SQL statements currently being executed by the
database. The metric indicates the number of active processing tasks
that are consuming resources.

Queued Statements The number of statements that are waiting to be executed, typically
due to resource contention or scheduling within the database. This
metric indicates the quantity of work that is in the backlog.

APEX Load Time The time it takes for an APEX page or application to load and render in
the user’s browser. This metric can be used to assess the overall
usability of your APEX applications from a perceived performance
point of view.

APEX Page Event A count of the APEX page loads, submissions, or processes. This metric
indicates the user activity intensity.

Note

Storage utilization in both the DB Ops Console and Retail Home report subscription
usage. This usage represents high water mark metrics (and in the case of Retail
Home, it's the high water mark per month). A more detailed view of storage
consumption can be obtained using the following query in the SQL Commands page
of the SQL Workshop in the APEX UI.

select owner, cast(sum(bytes) / power(1024,2) as integer) MB from
dba_segments where owner like '%_RDS%' group by owner order by owner

You can view a number of descriptive statistics over a variety of time intervals. The available
statistics are as follows

Statistic Description

Count Returns the number of observations received in the specified interval.

Chapter 18
Database Metrics

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 8 of 22

Statistic Description

Max Returns the highest value observed during the specified interval.

Mean Returns the value of Sum divided by Count during the specified interval.

Min Returns the lowest value observed during the specified interval.

P50 Returns the estimated value of the 50th percentile during the specified interval.

P90 Returns the estimated value of the 90th percentile during the specified interval.

P95 Returns the estimated value of the 95th percentile during the specified interval.

P99 Returns the estimated value of the 99th percentile during the specified interval.

Rate Returns the per-interval average rate of change. The unit is per-second.

Sum Returns all values added together, per interval.

Example screenshots of each metric page are provided in the figures below.

CPU Utilization

Figure 18-12 CPU Utilization

Chapter 18
Database Metrics

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 9 of 22

Storage Utilization

Figure 18-13 Storage Utilization

Chapter 18
Database Metrics

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 10 of 22

Sessions

Figure 18-14 Sessions

Chapter 18
Database Metrics

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 11 of 22

Execute Count

Figure 18-15 Execute Count

Chapter 18
Database Metrics

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 12 of 22

Running Statements

Figure 18-16 Running Statements

Chapter 18
Database Metrics

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 13 of 22

Queued Statements

Figure 18-17 Queued Statements

Chapter 18
Database Metrics

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 14 of 22

APEX Page Load Time

Figure 18-18 APEX Page Load Time

Chapter 18
Database Metrics

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 15 of 22

APEX Page Events

Figure 18-19 APEX Page Events

Application Properties
The Application Properties page lists the available application properties including Oracle
APEX SMTP settings. The Application Properties are stored as key-value pair, e.g.,
oracle.apex.setting.smtp_from: me@email.com. This page can be accessed by an
‘Administrator’ having RDS_MANAGEMENT_ADMINISTRATOR or
RDS_MANAGEMENT_ADMINISTRATOR_PREPROD roles.

Note

Roles are synonymous with OCI groups. An assignment to an OCI group may take up
to 1 hour to propagate.

Chapter 18
Application Properties

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 16 of 22

Figure 18-20 Application Properties

The value for the key can be updated using the Edit window.

Figure 18-21 Edit Property

Session Management
Session management provides a mechanism for managing custom database sessions
interactively. The session management UI allows the user to list and terminate database
sessions based on predefined criteria – that is, sessions that are nominally (but not guaranteed
to be) safe to terminate. Specifically, sessions where the username is ORDS_PUBLIC_USER_DIS
and the schemaname is NULL, or where the username or schemaname contains the substring
_RDS_CUSTOM. These criteria are formulated to minimize the risk of terminating essential, non-
custom sessions. These criteria may, nonetheless, identify essential custom sessions as
candidates for termination. Thus, it remains the responsibility of the user to ensure that the
termination of a session will yield the desired outcome. It is possible that you may wish to
terminate additional sessions that do not fit the above criteria. If so, submit a support request to
terminate one or more sessions that are beyond the scope of the session management UI.
Note that, even when terminating one or more sessions through a support request, you are
responsible for the consequences of termination.

Refer to the “Post Installation Configuration” chapter of the Retail Data Store Security Guide for
details on the OCI groups needed to unlock Session Management capabilities.

Chapter 18
Session Management

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 17 of 22

1. To start managing sessions, tap the Database Sessions button in the navigation side bar
(see Figure 18-22). Database sessions will open on the right side of the parent panel (see
Figure 18-23). Session Management enables the user to:

• View a list of running database sessions (see Figure 18-24)

• End a running database session from the list by clicking end Database Session button:

– enabled/visible for users with the RDS_MANAGEMENT_ADMINISTRATOR role

– available on each row at the last column of the interactive report

• Perform a “Refresh on Demand” with the Refresh Button of the Active Database
Sessions

– disabled/not visible for users without administrator role

Figure 18-22 Navigation to Database Sessions Page

Figure 18-23 Database Sessions Page

Chapter 18
Session Management

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 18 of 22

Figure 18-24 Active Sessions

2. Use the filter functionality under the Actions Menu on the interactive report to filter the
results presented on the page (see Figure 18-25 and Figure 18-26). Available filters are:
Serial Number, SID, User Name, Schema Name, Module, Client Identifier, SQL ID and
SQL Text.

Figure 18-25 Filtering

Chapter 18
Session Management

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 19 of 22

Figure 18-26 Filtering Example

3. To end a database session, tap the End Database Session button (see Figure 18-27) in the
list of database sessions (in the last column of the row). Then tap the End Session button
(or tap Cancel) on the pop-up dialog (see Figure 18-28). This will end the database
session and reload the Active Database Sessions Interactive Report. The ended session is
removed from the list of Active Database Sessions in the Interactive Report when
reloaded.

Figure 18-27 End Database Session

Chapter 18
Session Management

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 20 of 22

Figure 18-28 End Database Session Pop-Up

4. The Database Session Action Logs (see Figure 18-29) enables a user with the
administrator role to:

• View the logs with details of ended sessions

• Refresh the action log with the Refresh Button

• Filter logs using Session User Name, Log Action User Name, and Log Action Date.

Figure 18-29 Action Logs

Session Management API
RDS also provides a session management API for managing custom database sessions
programmatically. Programmatic termination of sessions may be called for when the number of
sessions that need to be terminated would make interactive termination burdensome.

This API consists of a package containing procedures and functions to list and terminate
database sessions based on predefined criteria – that is, sessions that are nominally (but not
guaranteed to be) safe to terminate. Specifically, sessions where the username is
ORDS_PUBLIC_USER_DIS and the schemaname is NULL, or where the username or
schemaname contains the substring _RDS_CUSTOM. These criteria are formulated to minimize

Chapter 18
Session Management API

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 21 of 22

the risk of terminating essential, non-custom sessions. These criteria may, nonetheless,
identify essential custom sessions as candidates for termination. Thus, it remains the
responsibility of the API user to ensure that the termination of a session will yield the desired
outcome.

It is possible that you may wish to terminate additional sessions that do not fit the above
criteria. If so, submit a Support Request to terminate one or more sessions that are beyond the
scope of the session management API. Bear in mind, even when terminating one or more
sessions through a support request, you are responsible for the consequences of termination.

Package Overview
The package MANAGEMENT.RDS_SESSION_MGMT contains the following procedures and functions:

• LIST_RDS_SESSIONS (O_session_list OUT SYS_REFCURSOR): This procedure returns a list
of database sessions that meet the criteria described above.

• KILL_RDS_SESSION (I_sid IN NUMBER, I_serial IN NUMBER, O_status OUT VARCHAR2):
This procedure terminates a session based on the input SID (System Identifier) and
SERIAL. It first validates that the session meets the RDS criteria and then looks up the
instance ID to terminate the session.

• KILL_RDS_SESSION (I_audsid IN NUMBER, O_status OUT VARCHAR2): This procedure
terminates sessions based on the input AUDSID (Audit Session Identifier). It retrieves the
SID, SERIAL, and instance ID based on the AUDSID and then validates and terminates
the session if it meets the RDS criteria.

Procedure and Function Details

LIST_RDS_SESSIONS
This procedure opens a cursor to return sessions that meet the RDS criteria.

It selects sessions from the gv$session view, filtering based on the username, schemaname,
and custom patterns.

KILL_RDS_SESSION (SID and SERIAL)
This procedure first validates that the session with the given SID and SERIAL meets the RDS
criteria. If the session is valid, it retrieves the instance ID for the session and then executes an
ALTER SYSTEM statement to terminate the session.

The status of the operation is returned in the O_status OUT parameter.

KILL_RDS_SESSION (AUDSID)
This procedure retrieves the SID, SERIAL, and instance ID based on the input AUDSID. It then
validates the session and, if valid, terminates the session using an ALTER SYSTEM statement.
The status of the operation is returned in the O_status OUT parameter.

Chapter 18
Session Management API

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 22 of 22

19
Sending Email from APEX

To enable sending email from APEX, you must have access to an SMTP server. Only Oracle’s
OCI SMTP server is supported. To send mail, you will need to provide values for the following
Application Properties (see Section 7.19.6 “Application Properties” for details on setting
property values).

To enable sending email from APEX, you must have access to an SMTP server. Only Oracle’s
OCI SMTP server is supported. To send mail, you will need to provide values for the following
Application Properties (see the Application Properties in the Retail DB Ops Console chapter for
details on setting property values).

oracle.apex.setting.smtp_host_address
oracle.apex.setting.smtp_username
oracle.apex.setting.smtp_password
oracle.apex.setting.smtp_host_port
oracle.apex.setting.smtp_from

Your settings can be verified by sending a test email by clicking the Send a Test Mail button
(see the figure below). Once you have verified your settings, you can use the APEX_MAIL
package to send emails from Oracle APEX applications.

The APEX_MAIL_QUEUE will contain any queued email messages. The APEX_MAIL_LOG will
contain the disposition of sent mail. Specifically, it will indicate whether an email message was
sent successfully or not. See APEX_MAIL package documentation for additional details.

Note

To send email from your RDS ADW instance using the APEX_MAIL package, you must
provision an OCI SMTP server. Only Oracle’s OCI SMTP server is supported for
sending email from RDS ADW.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 2

Figure 19-1 Sending a Test Email

Chapter 19

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 2

20
Monitoring Replication Lag

RDS uses Oracle GoldenGate to replicate application data from Retail applications to its ADW
instance. The data is kept in sync with the source application as changes are made to the
source. You can monitor the lag between source (application) and target (RDS) systems using
the following GoldenGate heartbeat tables and views:

• GGADMIN.GG_HEARTBEAT_SEED

• GGADMIN.GG_HEARTBEAT

• GGADMIN.GG_HEARTBEAT_HISTORY

• GGADMIN.GG_LAG

• GGADMIN.GG_LAG_HISTORY

Refer to Oracle GoldenGate Integrated Heartbeat for details on how to use these tables and
views to assess replication lag. Note that GoldenGate heartbeat has already been enabled in
RDS.

Incoming Path Product Schema Workspace

BC_* ==> BCREP Brand Compliance Cloud Service BC_RDS_CUSTOM Yes

CE_* ==> CEREP Customer Engagement Cloud
Service

CE_RDS_CUSTOM Yes

I1_* ==> I1REP Retail Integration Cloud Service RICS_BDI No

I2_* ==> I2REP Retail Integration Cloud Service RICS_RFI No

I3_* ==> I3REP Retail Integration Cloud Service RICS_RIB_EXT1 No

I4_* ==> I4REP Retail Integration Cloud Service RICS_RIB_LGF1 No

I5_* ==> I5REP Retail Integration Cloud Service RICS_RIB_ROB1 No

I6_* ==> I6REP Retail Integration Cloud Service RICS_RIB_RWMS1 No

I7_* ==> I7REP Retail Integration Cloud Service RICS_RIB_SIM1 No

I8_* ==> I8REP Retail Integration Cloud Service RICS_RIB_TAFR1 No

I9_* ==> I9REP Retail Integration Cloud Service RICS_USM1 No

IN_* ==> INREP Retail Integration Cloud Service XO_RDS_CUSTOM Yes

MF_* ==> MFREP Merchandising Foundation Cloud
Service

MFCS_RDS_CUSTOM Yes

OB_* ==> OBREP Order Broker Cloud Service OB_RDS_CUSTOM Yes

OM_* ==>
OMREP

Order Administration Cloud
Service

OM_RDS_CUSTOM Yes

SI_* ==> SIREP Store Inventory Operations Cloud
Service

SIOCS_RDS_CUSTOM Yes

XO_* ==> XOREP Xstore Office Cloud Service XO_RDS_CUSTOM Yes

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 1

https://www.ateam-oracle.com/post/oracle-goldengate-integrated-heartbeat

21
Notification-Based Monitoring

POM can be used in combination with the data in RDS to establish automated process
monitoring. A POM batch job can be setup to call a RDS data service to generate and send the
Alert to the associated application such as Merchandising.

This document describes the steps needed to setup such an automated process. These steps
are:

1. Setup a notification type in Retail Home

2. Implement a RESTful service in RDS

3. Setup a job in POM to invoke that service

RDS-POM integration will be illustrated for an alert that returns the counts of stock counts that
are open for more than seven days.

Setting up the Notification Type
Typically, an alert/notification results from the monitoring activity. As a first step, a notification
type associated with this monitoring activity needs to exist or be setup in Retail Home. Refer to
Retail Home documentation for details on how to create a notification type. For the example at
hand the notification type is MerchStockCountAlert and is setup for the MFCS application.

Implementing a RESTful Service in RDS
The first step is to create the data service boiler plate, which consists of the following:

• creating a module

• creating a URI template, and lastly

• creating a POST handler

The steps below describe the implementation of an open stock count RESTful service suitable
for integration with POM.

The alert service must conform to the POM specification. There are two relevant specifications.
The first concerns the format of the JSON body in the POST, which is shown in the following
table. The alert service need not use any of the details in the body of the POST message.

Endpoint to start a job.
Method: POST
Body:

Attribute Description

cycleName Name of the Cycle - Nightly, Hourly_1, Adhoc
etc.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 9

Attribute Description

flowName Name of the Flow.

processName POM process name

jobName POM job name

agentExecutionId A unique ID assigned by POM for every job run
(Re-run of a failed job would have a different id
compared to the initial run)

parameters Job Parameters (Pipe delimited key-value pairs
-- hey1=value1||key2=value2)

The second specification concerns the response returned. If the notification object is not null,
the content will be sent as a notification by POM.

Attribute Description

executionId Unique Id returned by the target app to POM
for status tracking

executionInfo Any additional info the target app would like to
share with POM

notification This is an optional entry that can contain the
following attributes. The url, type, and severity
fields are optional.
"notification": {
"info": "<message>",
"url": null,
"type": "ErrorNotification",
“severity":1
}

status Submitted/ Running/Error/Completed

Create a Stock Count Module

The first step is to create a module. Module is a hierarchical organizing construct. The user
may have multiple services associated with it or just one. The following screen shot illustrates
what the create module screen looks like prior to creating the module. Note the module name
is stock_count and the base path is /stock_count/.

Chapter 21
Implementing a RESTful Service in RDS

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 9

Create a URI Template

Once the module is created, create the URI template. Note the URI template is set to
open_gt_7, i.e., stock counts open for more than seven days.

Chapter 21
Implementing a RESTful Service in RDS

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 9

Create a POST Handler

The last step is to create a POST handler. Note the method is POST and the source type is
PL/SQL.

The source of the example alert service is in Listing 1. The body, a sample of which is shown in
Listing 2, of the alert service invocation is accessed using the :body_text implicit parameter -- a
bind variable. This variable can only be read once; so, retrieve it and store it in a variable.
Unpacking the payload and crafting a response will be common tasks for most RESTful
services. The example below illustrates some but not all that one might encounter. Bear in
mind, the example below does not show any error handling. Experimentation and experience
will determine what level of error handling is warranted. Listing 3 shows a response.

declare
 -- The :body_text bind variable is an implicit parameter.
 -- It can only be read once, so it is captured in a variable
 -- called payload.
 payload varchar2(4000) := :body_text;
 -- The result of the stock count query
 query_result number;
 -- Note that varchar2 is set to the maximum. If the response
 -- could exceed 4000 characters, a CLOB would be needed and
 -- one could not use htp.print directly.
 response varchar2(4000);
 -- The response will return the agentExecutionId in
 -- response as the executionId.
 agent_execution_id varchar2(32);
 -- The notification info destination.
 notificationInfo varchar2(1024);
begin
 -- Get the agent execution id from the payload (i.e., body text).

Chapter 21
Implementing a RESTful Service in RDS

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 4 of 9

 agent_execution_id := json_value(payload, '$.agentExecutionId');
 -- Get a count of stock counts that have been open for more than
 -- 7 days and put it in query result.
 SELECT count(1)
 into query_result
 FROM rds_wv_stake_prod_loc spl,
 rds_wv_stake_head s
 WHERE s.stocktake_date BETWEEN sysdate - 7 AND sysdate
 AND s.delete_ind = 'N'
 AND spl.cycle_count = s.cycle_count
 AND s.stocktake_type = 'B'
 AND spl.processed != 'S'
 AND spl.cycle_count = s.cycle_count;
 -- Craft notificationInfo as a human readable string.
 notificationInfo := 'Number of stock counts that have been ' ||
 'open for more than 7 days is ' || to_char(query_result) || '.';
 -- Craft the required JSON response. There is no executionInfo.
 select json_object('status' value 'success',
 'executionInfo' value '',
 'executionId' value agent_execution_id,
 'notificationInfo' value notificationInfo) into response from
dual;
 -- Output the response - note htp.print is used here. htp.print
 -- only supports varchar2 so another approach would be needed
 -- if the response is likely to exceed 4000 characters. This could
 -- if error handling (not shown) were to return a stack trace.
 htp.print(response);
end;

Listing 1: An Alert service conforming to POM Requirements

A sample payload for the above job is:

{
 "cycleName": "cycle1",
 "flowName": "flow1",
 "processName": "process1",
 "jobName": "job1",
 "agentExecutionId": "agentExecutionId1234",
 "parameters": ""
}

Listing 2: A Sample Payload

The response of the above service, given the payload in Listing 2 is:

{
 "status":"success",
 "executionInfo":null,
 "executionId":"agentExecutionId1234",
 "notificationInfo":"Number of stock counts that have been open for more
than 7 days is 0."
}

Listing 3: A Sample Response

Chapter 21
Implementing a RESTful Service in RDS

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 5 of 9

Setting up the POM Job
The user now needs to setup an Ad Hoc batch job in POM which calls the RESTful service
described above. Adding such a job is done through the spreadsheet as described in the next
section. The user then uploads the spreadsheet to POM then schedules to run at the desired
time.

When the job executes, it will invoke the RESTful service which will return a response with
notification content. POM will then send a notification to the associated application based on
the designated notification type. The notification will contain the notification content returned
from the RESTful service.

Note that based on the 300 second limitation on service duration described in Limits on
Service Initiated Queries and PL/SQL Blocks, the POM job setup according to the specification
in this section has a 300 second execution limit. When this limit is reached, the Job in POM will
fail with a timeout error.

Adding the Ad hoc Job in Batch Schedule Spreadsheet

Entries as shown below as an example need to be added in the specified tabs of the batch
schedule spreadsheet for every Ad hoc job created for an alert.

Figure 21-1 Process Tab

• ProcessName – Add a unique process name in upper case with no spaces. Use an
underscore if needed. It should end with XXX_PROCESS.

• Description – Short description of the process without any special characters.

• Application Name – Mention the application name where the batch process belongs to. For
example, MFCS

• DependencyType – This needs to be set to ‘Time’.

• AdhocInd – It will be ‘Y’ as we are creating an ad hoc job here.

Figure 21-2 Job Tab

• JobName – Unique job name for each alert in upper case only with no spaces. Use an
underscore if needed. It should end with XXX_JOB.

• Description – Short description of the job without any special characters.

• RmsBatch, ScriptFolder and RmsWrapper – Irrelevant for alerts and can be left empty.

• ParameterValue – This holds the two parameters needed to identify the notification type
and the RDS endpoint. For the example at hand, these are:

Chapter 21
Setting up the POM Job

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 6 of 9

– notificationType: This is the notification type setup in Retail Home as described in the
Setting Up a Notification Type section at the top of this document:
MerchStockCountAlert.

– restPath : This points to the endpoint defined above: mfcs/stock_count/open_gt_7.

• These need to be separated by a double pipe as depicted in the Job tab screen shot
above.

• ApplicationName – Mention the same application name entered in Process tab. Here, it’s
RMS.

• Modules – Job can be associated with a module of the application.

• Job Type – The job type associated with RDS alerts is RDS.

Figure 21-3 ProcessJobMapping

• To map the new process and jobs (it’s one-to-one for adhoc jobs), enter the created
ProcessName, JobName and the day(s) of the week on which the specific Process/Job
needs to be run. If the Job will run on daily basis, leave ‘DaysOfTheWeek’ column blank.

Figure 21-4 Schedule

Ensure that the ‘Version’ is updated to a version greater than the ‘Current Version’ in POM
Application. In this example, the version should be changed on the spreadsheet to
22.1.302.2.1 or 22.1.302.3.

Uploading the Batch Schedule Spreadsheet in POM

1. Log in to POM UI and navigate to Tasks -> Schedule Maintenance.

2. Select the Application Scheduler tile and click ‘Import Latest Schedule’ button.

3. Upload the spreadsheet containing the new Adhoc job for alert.

Chapter 21
Setting up the POM Job

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 7 of 9

Figure 21-5 Upload Batch Schedule

Enable the Newly Added Process/Job

Note that any new job introduced through the spreadsheet will be added in the disabled state.
Enable it using the Batch Administration screen.

Figure 21-6 Batch Administration Screen

Starting/Restarting the Scheduler Day

You will need to start a new scheduler day or restart the existing scheduler day on the Batch
Monitoring screen for the new changes to take effect in the next batch run. See the Batch
Monitoring screen shot below.

You can now run the Alert job in POM in one of two ways:

1. Direct run through the Batch Monitoring screen or

2. Schedule it to run using the POM Scheduler Administration screen.

Direct Run

On the Batch Monitoring screen, select the Standalone tab below the tile area. Then select the
previously added RDS Alert process in the Standalone Entities table and click on the run action
button above the table.

Chapter 21
Setting up the POM Job

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 8 of 9

Figure 21-7 Batch Monitoring

Schedule through the Scheduler Administration Screen

You can use the POM Scheduler Administration screen to schedule the newly added job to run
as frequently as needed.

Figure 21-8 Scheduler Administration

Chapter 21
Setting up the POM Job

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 9 of 9

22
Storage and CPU Usage

For each RDS instance, the database disk storage and CPU usage is tracked. Usage can be
seen by logging in to Oracle Retail Home and viewing the Application Dashboard. On the list
are two entries: one for RDS CPU Usage, and one for RDS Disk Usage. The entries show
current usage and display the currently subscribed amounts for CPU and storage, so a
customer can see if they are nearing their subscription limits. The usage is tracked on a weekly
basis, so updates to these charts happen about four times a month. This UI can only be
viewed by Retail Home administrator users. Refer to the Retail Home product documentation
for more information.

Figure 22-1 Retail Home Application Dashboard

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 1

23
Version Updates

Software updates are critical to keeping an environment secure and functioning well. Critical
patch updates are installed on a quarterly basis, for example to the database, APEX/ORDS,
and other tools being used in RDS. These updates may require downtime. If this is the case,
the planned downtime is communicated in advance according to Oracle Retail standards.

Please note that for APEX patching, the only notifications for when this will occur are shown on
the APEX workspace login page and the APEX UI home page; no email notification is sent.
Log in at regular intervals to ensure you know when patching will occur, because the ADW
instance will be unreachable during patching and all customer integration using RDS (ORDS)
will fail. Likewise, APEX interaction should be suspended during the patch period.

You can defer major upgrades to APEX (for example, 22.1 to 23.1) for up to 90 days. See the
following information on that process: https://docs.oracle.com/en/cloud/paas/autonomous-
database/serverless/adbsb/apex-apply-defer-updates.html

For ADW patching, you can find the status of the current patch level, as well as the scheduled
date for any future patching by running this query:

SELECT * FROM DB_NOTIFICATIONS WHERE TYPE = 'MAINTENANCE';

You can find more information on ADW patching and maintenance scheduling here: https://
docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/maintenance-
windows-patching.html#GUID-C4F488BA-C2ED-4890-A411-9F99C69CD8DF

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 1

https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/apex-apply-defer-updates.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/apex-apply-defer-updates.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/maintenance-windows-patching.html#GUID-C4F488BA-C2ED-4890-A411-9F99C69CD8DF
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/maintenance-windows-patching.html#GUID-C4F488BA-C2ED-4890-A411-9F99C69CD8DF
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/maintenance-windows-patching.html#GUID-C4F488BA-C2ED-4890-A411-9F99C69CD8DF

24
Additional Notes

This chapter groups implementation guidance under the following categories:

• Not Supported in RDS: Capabilities that are not available in the RDS environment.

• Limited in RDS Environment: Capabilities that exist but have important constraints.

• Workarounds: Features that do not work as expected but can be supported with
additional effort.

• Internal Use Only: Implementation details visible to developers but not intended for use.

Not Supported/Available in RDS

APEX Roles and Privileges Not Supported
APEX roles and privileges are not available for RDS services. Any attempt to attach privileges
to a service will result in that service becoming inaccessible. When invoking the service, the
ORDS services container will respond with a 401, authorization required.

APEX Workspace Administration Disabled
APEX Administration services are not available. For example, you will not be able to create or
remove workspaces. You will, however, be able to manage users as described in APEX User
Management.

GoldenGate Source/Target Use Not Supported
Use of RDS as a Golden Gate source is not supported. The use of RDS as a Golden Gate
target beyond pre-configured retail cloud services is not supported.

PWA-Enabled APEX Apps Not Supported
PWA-enabled APEX applications are not supported in RDS due to a known APEX bug that
results in a 401 Authorization error. Disable the PWA setting in your application as a
workaround.

No Support for SFTP
There is no support for using SFTP. The workaround is to use Object Store.

Preconfigured Schema and Workspace Model
There is no support for the creation of new workspaces, users, or schema. The workspaces
and schema are pre-configured and immutable.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 1 of 4

Immutable Privilege Model for Replicated Objects
The baseline privilege model for replicated database objects cannot be changed. Select
access to replicated data is granted automatically within primary custom schemas.

Individuals with access to a primary custom schema through the APEX UI are automatically
granted select access to all replicated data in RDS. It is not possible to further restrict view- or
row-level access within a primary custom schema.

Individuals with access only to an auxiliary custom schema (RDS_CUSTOM_1/2/3) must be
explicitly granted select on the desired replicated views. Without such grants, they will not have
access to any replicated data.

OAuth Scope Enforcement Not Supported
RDS does not support OAuth scope-based access control for IDCS client apps. Scopes in
the token are not enforced.

Limited in RDS Environment

Service-Initiated Queries Limited to 300 Seconds
Service-initiated queries and PL/SQL blocks (that is, the service source) must complete in less
than 300 seconds. This limitation is a standard timeout and not configurable. Queries and
blocks of longer durations must be run asynchronously and report results using other
approaches (that is, an output table populated by one service and queried by another, output to
object storage, and so on).

Service Source Length Limited to 4000 Characters
Service source is limited to 4000 characters. Character count for GET oriented queries can be
reduced using views without sacrificing the automatic to-JSON translation.

Only OCI SMTP Server Supported
To send email from your RDS ADW instance using the APEX_MAIL package, you must provision
an OCI SMTP server. Only Oracle’s OCI SMTP server is supported for sending email from
RDS ADW.

APEX Limitations in Autonomous Database
Because RDS is built using Oracle Autonomous Data Warehouse (ADW), there are limitations
with functionality provided by Oracle Application Express. These limitations are documented in
Oracle APEX Limitations on Autonomous Database.

Workarounds

Chapter 24
Limited in RDS Environment

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 2 of 4

https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/apex-notes-autonomous.html

Explain Plan via APEX UI Requires Workaround
Explain Plan in the APEX UI does not work as expected. Explain plan requires select access
on replicated TABLES. The APEX user, however, only has access to replicated views by
design. See the Explain Plan prerequisites in SQL Language Reference: Explain Plan.
Nevertheless, you can still access the explain plan functionality using a workaround.

Steps for this workaround:

1. Perform your query against the database - it may be helpful if you include a hint so that
you can later find the SQL_ID for the query when performing step 2. For example we've
added a hint with DEMO_WORKAROUND so that it's easy to find our query:

select /* +DEMO_WORKAROUND */ item, item_desc from rds_wv_item_master
where status = 'A';

2. Next, find the SQL_ID for the query you ran in step 1. In our example, this returned two
rows that had the actual query from step 1 and the other the one we executed against
v$sqlarea. We want the non-v$sqlarea one of those listed:

select sql_id, sql_text from v$sqlarea where upper(sql_text) like
'%DEMO_WORKAROUND%';

3. Next issue the following command to get the execution plan:

select * from table(dbms_xplan.display_cursor(<your SQL_ID>));

Exporting Query Results in APEX
One can export query results using APEX > SQL Workshop > SQL Commands. There is,
however, a known issue where the resulting export is a zero-length file. This problem can occur
when there are duplicate column names in the output file. For example, downloading the
results of this query, which has two columns named DEPTNO, gives a zero-length file:

select e.deptno, d.deptno from emp e, dept d where d.deptno = e.deptno

The export thinks DEPTNO is duplicated in the output and fails. Downloading a variant of the
query that has all unambiguous column names works as expected:

select e.deptno as emp_deptno, d.deptno from emp e,dept d where d.deptno =
e.deptno

Note that the following query is also problematic and will fail:

select * from emp e, dept d where d.deptno = e.deptno

More generally, when joining results, you will need to use AS <your-output-column-name> to
manually disambiguate output column names.

Chapter 24
Workarounds

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 3 of 4

https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/EXPLAIN-PLAN.html#GUID-FD540872-4ED3-4936-96A2-362539931BA0

Enhancing OAuth Security with ORDS Prehook
ORDS services are authenticated through OAUTH, but if your deployment has stage and
production environments that are both protected with the same identity domain, then OAUTH
tokens generated for stage also work for production. If you determine that this degree of
accessibility poses a security concern, you may mitigate this risk by implementing a custom
ORDS_PREHOOK function to perform additional authentication. See ORDS PRE-HOOK for
additional details. Host names for production and non-production environments have distinct
signatures.

Retrieving RDS Outbound IP Address
If the RDS outbound IP address is required for ingress allowlisting, it can be found with the
following query:

select json_value(cloud_identity, '$."OUTBOUND_IP_ADDRESS"[*]') FROM v$pdbs ;

Internal Use Only

Reserved Application ID Range
Oracle has reserved the APEX application ID range from 30001-39999 for future
enhancements. Use of APEX application IDs within this range in custom code may result in
undefined behavior.

GoldenGate Metadata Fields Are Not CDC
You might notice TARGET_COMMIT_DATETIME, LAST_DM, and CSN_NBR columns on replicated
views. These columns are hidden on the source but visible on the target. These columns are
for internal use only by GoldenGate. They are not to be confused with change data capture
support.

Chapter 24
Internal Use Only

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Page 4 of 4

A
Query Tuning

Introduction
When a query slows down, you’re not powerless—and you’re not the first person to encounter
a slow query. Most SQL performance problems are fixable, and this guide gives you a way to
start. This isn’t about blame. It's about control. If you start with the premise that it is something
you did that slowed down the query, then you follow up with the premise there is something
you can do to speed it up. And by doing so, you’ll gain something even more valuable: the
ability to diagnose and avoid problems earlier next time. Even if this is your first slow query, it
won’t be your last. The process you follow here—understanding how SQL executes, capturing
a plan, identifying where things go off track—will make you faster and better at writing efficient
queries in the future. You’ll stop performance issues before they start. Taking ownership
doesn’t mean going it alone—it means being in control. It means asking better questions,
testing smarter ideas, and sometimes solving the issue before it becomes a roadblock.

This guide helps you do that. It gives you the tools, mindset, and examples you need to take
control of performance and build that skill for good.

How SQL Executes - A Conceptual Overview
Most performance problems begin with a SQL statement. Understanding how SQL runs in
a relational database gives you the foundation to troubleshoot when things go wrong.

This overview helps you:

• Grasp the core moving parts behind SQL performance.

• Understand where problems originate.

• Decide what to check first.

Relational Databases: What You Need to Know
Relational databases like Oracle are declarative, set-based engines. You tell them what data
you want (using SQL), and the database figures out how to retrieve it. The execution is driven
by a component called the optimizer, which chooses the most efficient plan it can—based on
statistics, indexes, and data volume.

Every SQL statement is turned into a plan composed of a small number of operations:

• Table access (full scan or index)

• Join (nested loop, hash, merge)

• Filter

• Aggregate

• Sort

The plan is what determines performance.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-1 of A-21

A Mental Model You Can Use
Here’s a simplified way to think about SQL execution, especially if you come from an algorithm
or systems background:

• SQL is a request.

• The optimizer is a planner.

• The execution plan is a strategy.

• Execution is a parallel, resource-aware run of that strategy.

When performance suffers, one or more of these steps failed to line up with reality.

Where Problems Show Up

Problem Area What’s Happening Under the Hood

Query runs forever Bad access path (for example: full table scan)
Query never returns Execution stuck on lock, contention, or temp

space
Query used to be fast Execution plan changed (due to stats, bind

peeking)
Query runs fast once Plan got cached or parallelism kicked in by

chance
System is overloaded Too many concurrent queries, bad query

patterns

Start Here: Performance Triage
Use this decision tree to get oriented quickly:

Is the problem with one query or the whole system?

• One query is slow

– Capture the SQL_ID

– View the execution plan

– Look for bad access paths, joins, temp usage

– See: Diagnosing a Slow Query

• Multiple queries are slow

– Check system resource usage (CPU, I/O, concurrency)

– Identify heavy queries in AWR or SQL Monitor

– See: Diagnosing System-Wide Performance Issues

• Query performance regressed recently

– Check plan history (DBA_HIST_SQL_PLAN)

– See if optimizer stats changed or binds differ

– See: Understanding Plan Instability

Appendix A
How SQL Executes - A Conceptual Overview

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-2 of A-21

Next Step
Pick the path that matches your situation and go straight there. You don’t have to understand
everything about Oracle SQL internals—but the more you understand, the better you’ll be able
to reason about performance.

To start that process, you need a baseline.

Baselining Your Query
Before you ask “Is my query slow?” you need to ask a different question:

How does this query normally behave?

A baseline gives you a point of comparison. It’s the only way to tell whether performance is
degrading, improving, or holding steady. Without one, everything is just a hunch.

Why Baselining Matters
Most performance issues don’t come out of nowhere. They evolve—slowly, then suddenly.
Baselining helps you:

• Detect regressions early

• Justify changes or rollback decisions

• Compare across environments (for example, dev vs. prod)

• Communicate clearly with support

Baseline Tuning
A functional query is not necessarily a fast query. You run your first baseline once you have
formulated a functional query: a query that returns the expected result. You run your baseline
against representative data volumes on a mostly quiet system. Your baseline is the fastest you
can ever expect your query to run. Higher system loading will only slow your query down. In
any case, your first baseline may be your first indication that you have a problem. Specifically,
your baseline fails to meet performance expectations. So your first baseline collection may
evolve into a tuning effort.

What to Capture
For any business-critical or frequently executed query, record the following:

Metric How to Get It (GV$SQL)

SQL_ID SELECT sql_id FROM gv$sql WHERE sql_text
LIKE '%...%'

Elapsed time (avg) elapsed_time / executions
Rows processed rows_processed / executions
Buffer gets Logical I/O (work done)
Disk reads Physical I/O (slower)
Plan hash value Unique ID for execution plan

Appendix A
Baselining Your Query

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-3 of A-21

If the query is already running, use DBMS_SQL_MONITOR or DBMS_XPLAN.DISPLAY_CURSOR to
capture real-time stats.

A SQL ID is a unique identifier for a SQL statement in Oracle. It is constructed by hashing the
text of the SQL statement.

The SQL ID is generated using a hash function that takes the SQL statement text as input. The
resulting hash value is then converted to a 13-character string, which is the SQL ID.

The hashing algorithm used to generate the SQL ID is not publicly documented, but it is
designed to produce a unique identifier for each distinct SQL statement.

Here are some key points to note about SQL IDs:

1. Case sensitivity: SQL IDs are case-sensitive, so the same SQL statement with different
casing will produce different SQL IDs.

2. Whitespace and formatting: SQL IDs are sensitive to whitespace and formatting, so the
same SQL statement with different formatting will produce different SQL IDs.

3. Literal values: SQL IDs are sensitive to literal values, so the same SQL statement with
different literal values will produce different SQL IDs.

4. Bind variables: If a SQL statement uses bind variables, the SQL ID will be the same
regardless of the values bound to the variables.

When to Baseline
• Before go-live

• After a major schema or stats change

• After tuning

• Periodically for high-impact queries

Storing baselines in a spreadsheet or performance table gives you history that support or
DevOps can reference later.

Baseline Template (Example)

SQL_ID Date Avg
Elapsed (s)

Avg Rows Avg Buff
Gets

Avg Disk
Reads

Plan Hash

abcd1234 2025-05-02 2.8 14,200 28,000 64 872349876

Tip

Automate this for key queries with a scheduled job.

If you care about a query, baseline it. You’ll thank yourself later when something changes—
and you need to prove it.

Appendix A
Baselining Your Query

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-4 of A-21

Baseline SQL Script (for Recent Performance Snapshot)
Here’s a sample SQL script to baseline a query by SQL_ID, returning key performance metrics
that you can copy into Excel, store in a logging table, or track over time:

SELECT
 sql_id,
 plan_hash_value,
 TO_CHAR(SYSDATE, 'YYYY-MM-DD') AS baseline_date,
 ROUND(elapsed_time/1000000, 2) AS total_elapsed_sec,
 executions,
 ROUND((elapsed_time/1000000) / NULLIF(executions, 0), 2) AS
avg_elapsed_sec,
 rows_processed,
 ROUND(rows_processed / NULLIF(executions, 0)) AS avg_rows,
 buffer_gets,
 ROUND(buffer_gets / NULLIF(executions, 0)) AS avg_buffer_gets,
 disk_reads,
 ROUND(disk_reads / NULLIF(executions, 0)) AS avg_disk_reads
FROM
 gv$sql
WHERE
 sql_id = '<your SQL_ID>'
ORDER BY
 last_active_time DESC
FETCH FIRST 1 ROWS ONLY;

Output Columns

Column Description

sql_id Identifier of the query
plan_hash_value Unique ID for the current execution plan
baseline_date Date when the baseline was captured
total_elapsed_sec Total time across all executions
executions Number of times the query ran
avg_elapsed_sec Average execution time per run
avg_rows Average rows returned
avg_buffer_gets Logical I/O (how much work Oracle did)
avg_disk_reads Physical I/O (slowest part of query access)

Baselining Procedure
Here’s how to automate nightly baseline logging for important SQL statements by maintaining
a list of SQL_IDs and looping through them in a job.

Step 1: Create a Tracking Table

CREATE TABLE sql_baseline_log (
 log_id NUMBER GENERATED ALWAYS AS IDENTITY,
 log_date DATE DEFAULT SYSDATE,

Appendix A
Baselining Your Query

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-5 of A-21

 sql_id VARCHAR2(13),
 plan_hash_value NUMBER,
 executions NUMBER,
 total_elapsed_s NUMBER(10,2),
 avg_elapsed_s NUMBER(10,2),
 rows_processed NUMBER,
 avg_rows NUMBER,
 buffer_gets NUMBER,
 avg_buffer_gets NUMBER,
 disk_reads NUMBER,
 avg_disk_reads NUMBER,
 PRIMARY KEY (log_id)
);

Step 2: Create the Baselining Procedure

CREATE OR REPLACE PROCEDURE log_sql_baseline(p_sql_id IN VARCHAR2) AS
BEGIN
 INSERT INTO sql_baseline_log (
 sql_id, plan_hash_value, executions,
 total_elapsed_s, avg_elapsed_s,
 rows_processed, avg_rows,
 buffer_gets, avg_buffer_gets,
 disk_reads, avg_disk_reads
)
 SELECT
 sql_id,
 plan_hash_value,
 executions,
 ROUND(elapsed_time / 1e6, 2),
 ROUND(elapsed_time / 1e6 / NULLIF(executions, 0), 2),
 rows_processed,
 ROUND(rows_processed / NULLIF(executions, 0)),
 buffer_gets,
 ROUND(buffer_gets / NULLIF(executions, 0)),
 disk_reads,
 ROUND(disk_reads / NULLIF(executions, 0))
 FROM
 gv$sql
 WHERE
 sql_id = p_sql_id
 ORDER BY
 last_active_time DESC
 FETCH FIRST 1 ROWS ONLY;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Baseline logging failed: ' || SQLERRM);
END;

Appendix A
Baselining Your Query

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-6 of A-21

Step 3: Example Call

BEGIN
 log_sql_baseline('abcdef1234567'); -- Replace with your SQL_ID
END;

Optional: Automate It Nightly for Key Queries
You can maintain a list of important SQL_IDs in a table and loop through them in a scheduled
job. Here’s how to automate nightly baseline logging for important SQL statements by
maintaining a list of SQL_IDs and looping through them in a job.

Step 1: Create a Tracking Table

CREATE TABLE tracked_sql_ids (
 sql_id VARCHAR2(13) PRIMARY KEY,
 description VARCHAR2(200)
);

Insert the SQL_IDs of the queries you care about:

INSERT INTO tracked_sql_ids (sql_id, description)
VALUES ('abcdef1234567', 'Critical dashboard query');

COMMIT;

Step 2: Create a Batch Baselining Procedure

CREATE OR REPLACE PROCEDURE baseline_all_tracked_sql IS
BEGIN
 FOR r IN (SELECT sql_id FROM tracked_sql_ids) LOOP
 BEGIN
 log_sql_baseline(r.sql_id);
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Error logging ' || r.sql_id || ': ' ||
SQLERRM);
 END;
 END LOOP;
END;

This wraps your log_sql_baseline procedure and runs it for each tracked SQL_ID.

Step 3: Optional: Schedule the Job (DBMS_SCHEDULER)

BEGIN
 DBMS_SCHEDULER.create_job (
 job_name => 'baseline_tracked_sql',
 job_type => 'PLSQL_BLOCK',

Appendix A
Baselining Your Query

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-7 of A-21

 job_action => 'BEGIN baseline_all_tracked_sql; END;',
 start_date => SYSTIMESTAMP,
 repeat_interval => 'FREQ=DAILY;BYHOUR=2', -- runs at 2 AM
 enabled => TRUE
);
END;

You now have:

• A log of query performance over time.

• A foundation for spotting regressions.

• A process that runs nightly with minimal overhead.

Is My Query Slow?
Before jumping into diagnosis, it’s worth asking: is the query actually slow—or just slower
than expected? The goal of this section is to help you assess whether a query meets your
requirements or needs tuning.

Start with your Requirements
Not all queries need to be fast. Some run in the background or during batch windows. Others
support REST services, dashboards, or interactive user flows—and those do have time limits.
If you’re running in a REST service (including Oracle REST Data Services, APEX APIs, or
external integrations), Oracle enforces a 300-second (5 minute) timeout. That includes SQL
or PL/SQL blocks.

Rule of thumb:

If your query supports a REST service or user interaction, it must complete in under 300
seconds. Otherwise, it will fail.

How to Think About "Fast Enough"
Ask yourself:

• Is this query blocking a user?

– Yes - Aim for sub-second to low-second response times.

• Is this query supporting a dashboard or interactive page?

– Yes - Sub-5 seconds preferred; sub-30 seconds may be acceptable with feedback (for
example, spinner).

• Is it a background report or batch process?

– Yes - Performance is relative. It may be fine as-is unless it’s consuming too many
resources.

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-8 of A-21

Measuring Execution Time
Even if the user reports that “it’s slow,” confirm it:

SELECT elapsed_time/1000000 AS seconds, executions
FROM gv$sql
WHERE sql_id = '<your-sql-id>';

This shows average time per execution. One run taking 90 seconds may not be a problem—
unless it’s being called hundreds of times per hour or runs in a timeout-sensitive context.

Don't Tune Without a Target
Tuning without knowing your goal leads to wasted time. Instead, start with:

• Functional context: Who/what depends on this query?

• Frequency: How often does it run?

• Failure mode: Has it ever hit a timeout or caused a system issue?

If the answer to any of those is yes—or if the user experience is impacted—then move on to
Diagnosing a Slow Query.

Diagnosing a Slow Query
When a query is slow, the key is to work from facts—not guesses. You don’t need to be an
expert in Oracle internals, but you do need to capture what the database is doing and compare
that to what you expected. This section walks you through a simple and repeatable process.

Step 1: Get the SQL_ID
Before you do anything else, identify the query using its SQL_ID. You can get it:

• From the application or APEX session logs

• Using a query on recent activity:

SELECT sql_id, sql_text
FROM gv$sql
WHERE sql_text LIKE '%target_table%'
AND last_active_time > SYSDATE - 1/24
ORDER BY last_active_time DESC;

Step 2: Get the Execution Plan
Once you have the SQL_ID, pull the most recent execution plan. This tells you how
Oracle is trying to run the query.

SELECT *
FROM table(DBMS_XPLAN.DISPLAY_CURSOR('<your-sql-id>', NULL, 'ALLSTATS LAST'));

This gives you the final plan from the most recent run, including row estimates vs.
actual rows, I/O, and temp usage.

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-9 of A-21

Step 3: Ask These Questions
Review the execution plan and look for red flags:

Question What to Look For

Are there full table scans? Look for TABLE ACCESS FULL on large tables
Are joins using hash or nested loops? Hash joins are usually good for large inputs.

Nested loops on big tables may be slow.
Are estimated rows way off from actual rows? That means bad stats or data skew.
Is there temp usage? Indicates a sort, hash join, or aggregation that

didn’t fit in memory.
Is the plan parallel? Look for PX steps. If it’s not using parallel and it

should, the query may be underutilizing the
ADW architecture.

Step 4: Check for Waits
If the plan looks okay, check what the query is waiting on:

Current Waits

SELECT event, wait_class, time_waited, sid
FROM gv$session
WHERE sql_id = '<your-sql-id>';

Recent Waits

SELECT event, wait_class, time_waited, session_id
FROM gv$active_session_history
WHERE sql_id = '<your-sql-id>';

Look for:

• db file sequential read: Index access (can be okay)

• db file scattered read: Full table scan

• direct path read temp: Temp usage, probably from a spill

• enq: TX: Locking issues

What's a Spill
A spill occurs when operations like sorts, joins, or aggregations require more memory than is
available, causing intermediate data to be written to temporary disk storage instead. This
typically happens in the temporary tablespace and can significantly slow down performance
due to increased disk I/O. Spills indicate that a query exceeded its in-memory processing
capacity and may benefit from SQL tuning.

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-10 of A-21

Step 5: Cross Check Stats
Bad estimates can lead to bad plans. Check the table and column stats:

SELECT table_name, last_analyzed, num_rows, owner
FROM dba_tables
WHERE table_name = '<target-table>';

Also check for histograms:

SELECT column_name, histogram, num_distinct, owner
FROM dba_tab_col_statistics
WHERE table_name = '<target-table>';

If LAST_ANALYZED is old or there are no histograms on skewed columns, you may want to
gather fresh stats.

What's a Skewed Column
A skewed column is a column where some values appear much more frequently than
others—creating an uneven distribution of data. In a well-distributed column, values are fairly
balanced. In a skewed column, a few values dominate the data.

Why Skew Matters

The Oracle optimizer relies on statistics to estimate how many rows a query will return. If it
thinks all values are equally likely (uniform distribution), it may pick a bad plan:

• Use a full table scan instead of an index.

• Choose the wrong join method.

• Under- or over-allocate memory.

How Oracle Handles Skew

When Oracle detects skew, it can collect a histogram to model the actual frequency of column
values. This helps the optimizer make better decisions, especially in bind-sensitive or filter-
heavy queries.

You can check for skewed columns using:

SELECT column_name, histogram, num_distinct
FROM dba_tab_col_statistics
WHERE table_name = '<target-table>' AND owner = '<my-owner>';

Look for FREQUENCY or TOP-FREQUENCY histograms—that means Oracle found skew and
is tracking it.

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-11 of A-21

Step 6: Consider Plan History
Plans can change. To see what changed and when:

SELECT *
FROM dba_hist_sql_plan
WHERE sql_id = '<your-sql-id>'
ORDER BY plan_hash_value, timestamp;

Look for:

• Plan changes over time

• Elapsed time or row differences across plans

Summary: What to do Next
If you found…

• Bad access paths: Add indexes or rewrite joins.

– You won't be able to add indexes to replicated objects

• Mismatched estimates: Check stats and consider histograms.

• Temp spills: Filter earlier.

• Wrong join type: Add hints or use a different query shape.

• Stale plans: Consider SQL plan baselines or profiles.

Diagnosing System Wide Performance Issues
When your entire application or environment feels sluggish—slower pages, delayed jobs, or
timeouts—you need to look beyond individual queries and assess system-wide health. In the
Oracle Retail Data Store (RDS) environment, you have limited infrastructure visibility, but the
DB Ops Console and AWR reports give you powerful tools to diagnose problems effectively.

This section explains where to look and what to interpret using the capabilities provided in the
RDS DB Ops Console.

Step 1: Use AWR Reports to Understand System Load
The Automated Workload Repository (AWR) report is your most powerful tool for
understanding what the system was doing during a specific period. In the RDS DB Ops
Console, you can:

• View automatically generated AWR reports (hourly snapshots)

• Filter and search for reports by date/time

• View full reports directly in the UI or download them for further analysis

To access:

Retail Home -> Application Navigator -> DB Ops Console -> AWR Reports

What AWR Tells You
An AWR report answers the following key questions:

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-12 of A-21

• What was the database doing most during the time window?

• What were the top resource consumers?

• Was the database waiting on something?

• Did any SQL dominate CPU, I/O, or elapsed time?

Focus Areas in the AWR Report

Top 10 Foreground Events by Total Wait Time

• Start here. It tells you what the database spent time waiting on.

• Events to watch:

– db file sequential read or scattered read: I/O-bound

– direct path read/write temp: spills to disk due to memory limits

– enq: TX - row lock contention: blocking transactions

– log file sync: commit contention

– resmgr:cpu quantum: Resource Manager throttling (ADW)

Look at both total time and waits per second to distinguish chronic from bursty issues.

Load Profile

• Gives a high-level view of system intensity.

• Important metrics:

• DB Time(s) – Total time spent on queries and waits

• DB CPU(s) – Portion of DB time spent on CPU

• Executes (SQL) – Query activity volume

• Redo size (bytes) – Change rate and workload size

If DB Time is much higher than CPU, most time was spent waiting, not computing.

SQL Statistics

Sections include:

• Elapsed Time – Longest running queries

• CPU Time – CPU-bound queries

• Buffer Gets – Logical I/O volume (data movement)

• Executions – Most frequently run statements

Identify:

• One-off queries that were expensive

• Repeated queries that may be chatty or inefficient

• SQL with high cost but low rows returned: signs of inefficiency

Buffer Cache Hit Ratio

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-13 of A-21

Hit ratio should be high. Low means excessive disk I/O

Deriving Buffer Cache Hit Ratio from AWR
The buffer cache hit ratio is not listed directly in the AWR report, but you can compute it
using values from the Instance Activity Stats section:

Buffer Cache Hit Ratio = 1 - (physical reads / (db block gets + consistent
gets))

Step-by-Step

1. Open your AWR report.

2. Find the “Instance Activity Stats” section.

3. Locate the following three metrics:

• physical reads

• db block gets

• consistent gets

4. Plug the values into the formula above.

5. Multiply by 100 for a percentage.

A high ratio may look healthy but can mask inefficient access patterns. Use this metric as a
supporting clue, not a primary diagnostic.

Parse to Execute Ratio
Deriving the Parse to Execution Ratio from AWR

• Parse to Execute Ratio – High = too many hard parses (bad reuse)

• Redo per Txn – Spikes can indicate heavy DML or poor batching

Parse to Execute Ratio = parse count/execute count

Step-by-Step

1. Open your AWR report.

2. Find the “Instance Activity Stats” section.

3. Locate the following two metrics:

• parse count (total)

• execute count

1. Plug the values into the formula above.

2. Multiply by 100 for a percentage.

Understanding Temporary Table Space Usage

If direct path read temp or direct path write temp are among the top wait events, it may
indicate a problem. Check the total wait time for these events. If the wait time for these events
is a significant portion of the total wait time, then sorts, hash joins, or group by operations
may be spilling to disk.

You will find path read temp and direct path write temp in the Foreground Wait Events
table. One or both may be missing from the table. If they are missing, temporary table space
usage is unlikely to be a problem.

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-14 of A-21

Blocking and Concurrency

When investigating blocking and concurrency, you are looking for wait events. If the locks and
latches described below are among the top wait events, it may indicate a problem. Check the
total wait time for these events. If the wait time for these events is a significant portion of the
total wait time, you will need to investigate further.

Explicit Locks
Explicit locks are created with LOCK TABLE or SELECT ... FOR UPDATE statements. If a session
is blocked because of a LOCK TABLE, you will see it associated with a enq: TM - contention
wait event. If a session is blocked because of a SELECT ... FOR UPDATE statement, you will
see it associated with a enq: TX - row lock contention wait event. You can find these
statements in SQL text of running sessions.

Implicit Locks
INSERT, UPDATE, or DELETE implicitly acquire locks as well. You will see a blocked session
associated with a enq: TX - row lock contention wait event, if it is blocked by an INSERT,
UPDATE, or DELETE operation.

Latch Locks
Latch locks are lightweight synchronization mechanisms used by Oracle to protect shared
data structures in memory. Here are some common latch locks and their causes:

1. cache buffers chains latch: This latch protects the buffer cache chains, which are used to
manage the buffer cache. Contention on this latch can occur due to:

• High buffer cache activity (for example, frequent reads and writes).

• Poor buffer cache sizing or configuration.

• High concurrency (for example, many sessions accessing the same data).

2. cache buffers lru chain latch: This latch protects the LRU (Least Recently Used) chain,
which is used to manage the buffer cache. Contention on this latch can occur due to:

• High buffer cache activity (for example, frequent reads and writes).

• Poor buffer cache sizing or configuration.

3. redo allocation latch: This latch is used to allocate space in the redo log buffer.
Contention on this latch can occur due to:

• High redo log activity (for example, frequent commits or high DML activity).

• Poor redo log buffer sizing or configuration.

4. redo copy latch: This latch is used to copy redo log data from the log buffer to the redo
log files. Contention on this latch can occur due to:

• High redo log activity (for example, frequent commits or high DML activity).

• Poor redo log buffer sizing or configuration.

5. library cache latch: This latch protects the library cache, which is used to store parsed
SQL statements and other metadata. Contention on this latch can occur due to:

• High SQL parsing activity (for example, frequent execution of dynamic SQL).

• Poor cursor management (for example, not using bind variables).

6. shared pool latch: This latch protects the shared pool, which is used to store shared SQL
and PL/SQL objects. Contention on this latch can occur due to:

• High shared pool activity (for example, frequent parsing or loading of SQL and PL/SQL
objects).

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-15 of A-21

• Poor shared pool sizing or configuration.

Common Causes of Latch Contention

1. High concurrency: Many sessions accessing the same data or resources simultaneously.

2. Inefficient SQL: SQL statements that cause high parsing or execution overhead.

3. Lack of indexing or poor indexing: Insufficient or poorly designed indexing can lead to
high buffer cache activity and latch contention.

4. Mismatch between index design and query goals.

Replicate Objects
Only replication will create locks on replicated objects. Read operations (for example, SELECT
statements) on replicate objects will generally not be blocked by locks. In other words, locking
on replicated objects should not be an issue for replicate objects. You are also unable to create
indexes for replicated objects. As a result, you may find yourself in a position where you lack
the indexing to support your query. You can list indexes for views using the DBA_INDEXES
and DBA_IND_COLUMN tables if you are uncertain about which columns are indexed in each
view.

What to Compare
If this is not your first AWR review, compare against:

• A previous report from the same time of day (for example, yesterday 2–3 PM)

• A known healthy period (for example, baseline from last successful run)

Look for:

• New top SQLs

• Increased wait time or database time

• Different execution patterns (for example, hash joins vs. nested loops)

Report Retention Notes
• AWR reports in the RDS DB Ops Console are retained for 30 days.

• Use the “Refresh Report Logs” button to get the latest list.

• Reports can be downloaded for local storage or comparison.

• Custom reports (if you have RDS_MANAGEMENT_OWNER role) can be generated for
any snapshot range. A snapshot range longer than several hours is not recommended.

When to Escalate or Log a Baseline
If the AWR shows a shift in workload or a clear new bottleneck, capture and store:

• The report ID

• Top SQLs (SQL_ID and plan hash)

• Wait events

• Load profile

This gives you a complete snapshot to compare after changes or to include when engaging
support.

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-16 of A-21

AWR Review Checklist
Snapshot Range Reviewed (Begin Snapshot ID - End Snapshot ID):

Time Window (Start Time – End Time): _________________________

1. SYSTEM LOAD

• DB Time per Second:

– Value: ________ — Is it high for this system?

• CPU Usage per Second:

– Value: ________ — Is DB Time >> CPU time? Suggests waits.

• Executions per Second:

– Value: ________ — Is there a spike or dip?

2. TOP WAIT EVENTS

Wait Event Time (s) Notes [e.g., temp spill, I/O,
locking]

1.
2.
3.

3. TOP SQL STATEMENTS

SQL_ID Metric Value Comment (slow/
overused/etc.)

Elapsed Time
Buffer Gets
Executions

4. TEMPORARY SPACE USAGE

• Temp Waits (for example, direct path read/write temp):

– Observed? Yes / No

– Notes: ___

• Operations likely causing spills (sorts, joins, and so on):

5. INSTANCE EFFICIENCY RATIOS

• Buffer Cache Hit Ratio: _________ %

• Parse to Execute Ratio: _________ (High = too many hard parses?)

6. NOTABLE CHANGES COMPARED TO BASELINE

Area What Changed Details

Workload Increased / Decreased
Waits New / Increased
Top SQL Changed / Same

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-17 of A-21

7. INITIAL CONCLUSION / NEXT STEP

(for example, Investigate temp usage, tune top SQL, compare plans, escalate to
support)

Step 2: Use Database Metrics (DB Ops Console)
Navigate to:

Retail Home -> Application Navigator -> DB Ops Console -> Database Metrics

Table A-1 Key Metrics to Watch

Metric What It Indicates

CPU Utilization High = heavy load; may align with
performance drop

Storage Utilization If near capacity, could be causing issues
Session Count Spike in active sessions = concurrency issue
Execute Count High = heavy workload; baseline expected

volume
Running Statements Indicates how many statements are using

resources
Queued Statements Indicates backlog due to contention
APEX Load Time Perceived slowness for end users
APEX Page Events Intensity of user interaction with APEX apps

Look at trends using 1-minute or 5-minute intervals. Spikes or sustained elevation may confirm
a user-reported slowdown.

Step 3: Triage with "Top SQL"
Navigate to:

DB Ops Console -> Top SQL

• Identify SQLs that are frequently active or waiting.

• Filter by session state: ON CPU vs. WAITING.

• Click into a SQL ID to view execution details and full text.

This is your quickest path to confirm which queries are stressing the system now, even
outside the AWR snapshot window.

Check DBMS Jobs (If Relevant)
Navigate to:

DB Ops Console -> DBMS Jobs

• View failed or long-running jobs.

• Check job history for trends or specific failures during slow periods.

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-18 of A-21

Step 5: Session Management (Admin Role)
If you have admin rights, you can also:

• View active sessions (filter by username, SQL ID, and so on).

• Identify stuck or long-running sessions.

• Use the provided interface or API to terminate safe-to-kill sessions (based on naming
patterns like _RDS_CUSTOM).

Table A-2 Interpretation Tips

Observation Likely Cause / Next Step

High wait time on temp I/O Queries spilling to disk → check joins/sorts
One query dominates Top SQL Regressed plan or unindexed access → tune it
Lots of queued statements Resource bottleneck (e.g., CPU) → throttle, tune
Sharp spike in APEX load time Backend slowness or DB resource saturation
Session count far above normal Application surge, leaking sessions, or blocking

Takeaway
Even without OS access or OEM, you can do meaningful diagnosis using:

• AWR reports for time-window analysis

• Database metrics for real-time and trending load

• Top SQL and jobs to find active bottlenecks

You don’t need to solve everything at once. Start by identifying what changed, what’s
dominant, or what’s waiting, and then follow the evidence.

Understanding Plan Instability
You tune a query, it runs well, and then—suddenly—it doesn’t. This is often due to plan
instability, where Oracle’s optimizer picks a different execution plan for the same SQL text.
Plan changes are normal. But when the new plan performs worse, it becomes a problem.

You should not encounter a plan instability problem. The Oracle Autonomous Database should
keep plan instability from becoming a problem. The steps below will help you make a case and
submit a ticket if you think you have an instability problem.

What is Plan Instability?
Oracle’s optimizer generates a plan each time a query is parsed. If the inputs to the optimizer
change—even slightly—it might produce a different plan. Most of the time, that’s fine. But
sometimes:

• The new plan is much slower.

• The old plan would still be better.

• You didn’t change anything, but the plan changed anyway.

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-19 of A-21

Why Plans Change

Cause Description

Stats changed Table, index, or column stats were refreshed.
Cardinality estimates changed.

Bind peeking The first bind value caused a plan that’s bad for
later values.

No histograms Optimizer assumes uniform data when actual
data is skewed.

New index or object The optimizer sees a new access path and tries
it.

Adaptive optimization Oracle switched plans mid-execution based on
early row counts.

SQL text changed slightly Even whitespace differences result in new
SQL_IDs and plans.

Cursor aged out The plan aged out of the shared pool and was
regenerated.

How to Detect Plan Instability
Use AWR or SQL history views to spot plan changes:

SELECT sql_id, plan_hash_value, COUNT(*)
FROM dba_hist_sql_plan
WHERE sql_id = 'your_sql_id'
GROUP BY sql_id, plan_hash_value
ORDER BY COUNT(*) DESC;

• If there are multiple plan_hash_values for the same sql_id, you’ve had a plan change.

• Look at performance metrics for each plan: which one was faster? More consistent?

SELECT is_bind_sensitive, is_bind_aware, is_shareable
FROM v$sql
WHERE sql_id = 'your_sql_id';

If is_bind_sensitive = Y but is_bind_aware = N, you may be suffering from bind peek
instability.

When Plan Changes are Bad
A plan change is only a problem when the new plan is worse. Symptoms include:

• Increased runtime

• Increased temp usage (due to spills)

• Higher CPU or I/O

• Lower row estimates than actuals

• Drastically different join orders

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-20 of A-21

What To Do
If you believe you have encountered an unstable plan, submit your research in a ticket.
Generally, you will not have access to the tools that will allow you to fix the problem yourself.

Appendix A
Is My Query Slow?

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix A-21 of A-21

B
Using FTS: An Example

Overview
This chapter provides an example of an API that provides a set of functions and procedures to
facilitate data export from a database query to object store using FTS. The API consists of four
main components:

1. get_idcs_token: Obtains an IDCS token for authentication.

2. generate_par: Generates a Pre-Authenticated Request (PAR) for uploading data to an
object store.

3. put_object_in_store: Uploads a BLOB to object store using a PAR.

4. export_query_to_blob: Exports the result of a database query to a BLOB.

Functions and Procedures

get_idcs_token
• Purpose: Obtain an IDCS token for authentication.

• Parameters:

– p_idcs_url: IDCS URL.

– p_idcs_client_id: IDCS client ID.

– p_idcs_client_secret: IDCS client secret.

– p_scope_suffix: IDCS scope suffix.

• Return Value: IDCS token (VARCHAR2).

• Raises: INVALID_IDCS_CREDENTIALS if the IDCS credentials are invalid.

generate_par
• Purpose: Generate a Pre-Authenticated Request (PAR) for uploading data to an object

store.

• Parameters:

– p_base_url: Base URL of object store.

– p_tenant: Tenant ID.

– p_idcs_token: IDCS token obtained using get_idcs_token.

– p_os_prefix: Object store prefix.

– p_file_name: File name to be uploaded.

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix B-1 of B-8

• Return Value: PAR access URI (VARCHAR2).

• Raises: PAR_GENERATION_FAILED if PAR generation fails.

put_object_in_store
• Purpose: Upload a BLOB to object store using a PAR.

• Parameters:

– p_access_uri: PAR access URI obtained using generate_par.

– p_blob_data: BLOB data to be uploaded.

• Raises: UPLOAD_FAILED if the upload fails.

export_query_to_blob
• Purpose: Export the result of a database query to a BLOB.

• Parameters:

– p_sql_query: SQL query to be executed.

• Return Value: BLOB containing the query results.

• Raises: QUERY_EXECUTION_FAILED if the query execution fails.

Example Usage

DECLARE
 l_idcs_token VARCHAR2(4000);
 l_par_uri VARCHAR2(32767);
 l_blob_data BLOB;
BEGIN
 l_idcs_token := get_idcs_token('https://idcs-url.com', 'client-id',
'client-secret', 'scope-suffix');
 l_par_uri := generate_par('https://object-store-url.com', 'tenant-id',
l_idcs_token, 'os-prefix', 'file-name.csv');
 l_blob_data := export_query_to_blob('SELECT * FROM my_table');
 put_object_in_store(l_par_uri, l_blob_data);
END;

Error Handling
The API raises specific exceptions for each function/procedure, allowing the caller to handle
errors accordingly. The exceptions are:

• INVALID_IDCS_CREDENTIALS

• PAR_GENERATION_FAILED

• UPLOAD_FAILED

• QUERY_EXECUTION_FAILED

These exceptions can be caught and handled using standard PL/SQL error handling
mechanisms.

Appendix B
Functions and Procedures

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix B-2 of B-8

Securely Obtaining an IDCS Token

Overview
The get_idcs_token_for_planning_app function provides a secure way to obtain an IDCS
token for the Planning App. This function is designed to be used by authorized users and
applications, and it abstracts away the underlying complexity of obtaining an IDCS token.

Security Considerations
• The get_idcs_token_for_planning_app function is a privileged function that has access

to sensitive information, such as the IDCS client ID and client secret. Therefore, execute
permission on this function is restricted to authorized users and applications.

• The function does not expose the underlying IDCS client ID and client secret, ensuring that
these sensitive values are not compromised.

Using the get_idcs_token_for_planning_app Function
To obtain an IDCS token securely using the get_idcs_token_for_planning_app function,
follow these steps:

1. Ensure that you have the necessary execute permission on the
get_idcs_token_for_planning_app function.

2. Call the get_idcs_token_for_planning_app function using a secure connection (for
example, over a secure database connection).

3. The function will return a valid IDCS token that can be used for authentication and
authorization purposes.

Example Usage

DECLARE
 l_idcs_token VARCHAR2(4000);
BEGIN
 l_idcs_token := get_idcs_token_for_planning_app();
 -- Use the obtained IDCS token for authentication and authorization
purposes
END;

Using the export_query_to_object_store Procedure
The export_query_to_object_store procedure is a template that exports the result of a SQL
query to object store. To use this procedure, you need to replace the hardcoded placeholders
with your actual values.

Prerequisites
• The get_idcs_token_for_planning_app, export_query_to_blob, generate_par, and

put_object_in_store functions/procedures are available and properly configured.

Appendix B
Securely Obtaining an IDCS Token

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix B-3 of B-8

• The object store is properly set up and accessible.

Usage
To use the export_query_to_object_store procedure, simply call it with the SQL query you
want to export as an argument.

BEGIN
 export_query_to_object_store('SELECT * FROM my_table');
END;

Customization
Before using this procedure, you need to modify the export_query_to_object_store
procedure to replace the hardcoded placeholders with your actual values. These placeholders
include:

• Object store prefix

• Base URL

• Tenant ID

• IDCS URL

• File name

You should update the procedure to use your specific values for these placeholders.

Example
Suppose you want to export the result of a query to an object store with a prefix of my_prefix,
base URL of https://example.com, tenant ID of my_tenant, and file name of my_file.csv.
You would need to modify the export_query_to_object_store procedure to use these values.

Once you have customized the procedure, you can use it to export your query results to the
object store.

get_idcs_token

CREATE OR REPLACE FUNCTION get_idcs_token(
 p_idcs_url IN VARCHAR2,
 p_idcs_client_id IN VARCHAR2,
 p_idcs_client_secret IN VARCHAR2,
 p_scope_suffix IN VARCHAR2
) RETURN VARCHAR2
IS
 l_response CLOB;
 l_token VARCHAR2(4000);
 idcs_base_64_identity VARCHAR2(2000);
BEGIN
 idcs_base_64_identity :=

Appendix B

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix B-4 of B-8

REPLACE(REPLACE(REPLACE(UTL_ENCODE.TEXT_ENCODE(p_idcs_client_id || ':' ||
p_idcs_client_secret, 'WE8ISO8859P1', UTL_ENCODE.BASE64), CHR(9)), CHR(10)),
CHR(13));

 APEX_WEB_SERVICE.G_REQUEST_HEADERS.DELETE;
 APEX_WEB_SERVICE.G_REQUEST_HEADERS(1).NAME := 'Authorization';
 APEX_WEB_SERVICE.G_REQUEST_HEADERS(1).VALUE := 'Basic ' ||
idcs_base_64_identity;
 APEX_WEB_SERVICE.G_REQUEST_HEADERS(2).NAME := 'Content-Type';
 APEX_WEB_SERVICE.G_REQUEST_HEADERS(2).VALUE := 'application/x-www-form-
urlencoded; charset=UTF-8';

 l_response := APEX_WEB_SERVICE.MAKE_REST_REQUEST(
 p_url => p_idcs_url,
 p_http_method => 'POST',
 p_parm_name => APEX_UTIL.STRING_TO_TABLE('grant_type:scope'),
 p_parm_value =>
APEX_UTIL.STRING_TO_TABLE('client_credentials,rgbu:rpas:psraf-' ||
p_scope_suffix, ',')
);

 IF l_response IS NULL THEN
 RAISE_APPLICATION_ERROR(-20001, 'Failed to retrieve IDCS token.
Response is null.');
 END IF;

 BEGIN
 APEX_JSON.PARSE(l_response);
 l_token := APEX_JSON.GET_VARCHAR2(p_path => 'access_token');
 EXCEPTION
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(-20002, 'Failed to parse IDCS token
response: ' || SQLERRM);
 END;

 IF l_token IS NULL THEN
 RAISE_APPLICATION_ERROR(-20003, 'IDCS token is null.');
 END IF;

 RETURN l_token;
EXCEPTION
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(-20004, 'Error getting IDCS token: ' ||
SQLERRM);
END get_idcs_token;

generate_par

CREATE OR REPLACE FUNCTION generate_par(
 p_base_url IN VARCHAR2,
 p_tenant IN VARCHAR2,
 p_idcs_token IN VARCHAR2,
 p_os_prefix IN VARCHAR2,
 p_file_name IN VARCHAR2
) RETURN VARCHAR2

Appendix B

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix B-5 of B-8

IS
 l_response CLOB;
 l_req_body CLOB;
 l_access_uri VARCHAR2(32767);
BEGIN
 -- Create the JSON request body for FTS invocation
 l_req_body := create_par_request_body(p_os_prefix, p_file_name);

 -- Get PAR from FTS service
 l_response := apex_web_service.make_rest_request(
 p_url => p_base_url || '/' || p_tenant || '/
RetailAppsReSTServices/services/private/FTSWrapper/upload',
 p_http_method => 'POST',
 p_body => l_req_body,
 p_headers => apex_web_service.g_request_headers
);

 -- Check if the response is not null
 IF l_response IS NULL THEN
 RAISE_APPLICATION_ERROR(-20001, 'Failed to generate PAR: null
response');
 END IF;

 -- Parse the response
 BEGIN
 APEX_JSON.parse(l_response);
 EXCEPTION
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(-20002, 'Failed to parse PAR response: '
|| SQLERRM);
 END;

 -- Get the access URI from the response
 l_access_uri := APEX_JSON.get_varchar2(p_path => 'parList[%d].accessUri',
p0 => 1);

 -- Check if the access URI is not null
 IF l_access_uri IS NULL THEN
 RAISE_APPLICATION_ERROR(-20003, 'Failed to generate PAR: null access
URI');
 END IF;

 RETURN l_access_uri;
EXCEPTION
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(-20004, 'Failed to generate PAR: ' ||
SQLERRM);
END generate_par;

put_object_in_store

CREATE OR REPLACE PROCEDURE put_object_in_store(
 p_access_uri IN VARCHAR2,
 p_blob_data IN BLOB
) AS

Appendix B

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix B-6 of B-8

 l_error_msg VARCHAR2(4000);
BEGIN
 BEGIN
 DBMS_CLOUD.PUT_OBJECT(
 object_uri => p_access_uri,
 contents => p_blob_data
);
 EXCEPTION
 WHEN OTHERS THEN
 l_error_msg := 'Error uploading object to store: ' || SQLERRM;
 -- Log the error
 DBMS_OUTPUT.PUT_LINE(l_error_msg);
 -- Re-raise the error
 RAISE_APPLICATION_ERROR(-20001, l_error_msg);
 END;
END put_object_in_store;

export_query_to_blob

CREATE OR REPLACE FUNCTION export_query_to_blob(
 p_sql_query IN VARCHAR2
) RETURN BLOB
IS
 l_context apex_exec.t_context;
 l_export apex_data_export.t_export;
 l_blob_data BLOB;
BEGIN
 BEGIN
 l_context := apex_exec.open_query_context(
 p_location => apex_exec.c_location_local_db,
 p_sql_query => p_sql_query
);
 EXCEPTION
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(-20001, 'Failed to open query context: '
|| SQLERRM);
 END;

 BEGIN
 l_export := apex_data_export.export (
 p_context => l_context,
 p_format => apex_data_export.c_format_csv
);
 EXCEPTION
 WHEN OTHERS THEN
 apex_exec.close(l_context);
 RAISE_APPLICATION_ERROR(-20002, 'Failed to export data: ' ||
SQLERRM);
 END;

 l_blob_data := l_export.content_blob;

 apex_exec.close(l_context);

 RETURN l_blob_data;

Appendix B

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix B-7 of B-8

EXCEPTION
 WHEN OTHERS THEN
 IF l_context IS NOT NULL THEN
 apex_exec.close(l_context);
 END IF;
 RAISE;
END export_query_to_blob;

Appendix B

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix B-8 of B-8

C
Transferring Table Data

This chapter outlines the steps to move table data from one Oracle Autonomous Data
Warehouse (ADW) database to another using Oracle Cloud Object Storage and a pre-
authenticated request (PAR) URI with read/write permissions.

Assumptions
• You have a list of table names to export.

• You have a read/write prefix-level PAR URI for an Oracle Object Storage bucket.

• You want to export each table as JSON – CSV has issues with null in the last column.

• Each table’s data will be stored under a URI path like <PAR_URI>/table_name.

• You will use DBMS_CLOUD.EXPORT_DATA for export and DBMS_CLOUD.COPY_DATA
for import.

• Multi-part and timestamped files will be generated during export.

• You are importing into existing tables with matching structures in the destination ADW.

Step 1: Export Tables from Source ADW
Use DBMS_CLOUD.EXPORT_DATA to export each table to the Object Store.

Example PL/SQL Block

DECLARE
 c_base_uri VARCHAR2(4000) := '<PAR URI>/<prefix>'; -- without trailing slash
 c_table_list SYS.ODCIVARCHAR2LIST :=
SYS.ODCIVARCHAR2LIST('ITEM_LOC_SOH_EOD', 'ITEM_LOC_SOH', 'ITEM_LOC');
 l_columns CLOB;
 l_query CLOB;
BEGIN
 FOR i IN 1 .. c_table_list.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE('outputing ' || c_table_list(i) || ' to uri: ' ||
c_base_uri || '/' || LOWER(c_table_list(i)));

 -- To guarantee a specific ordering of columns, you can use the ORDER BY
 -- clause within the JSON_ARRAYAGG function.
 SELECT LISTAGG(column_name, ', ')
 WITHIN GROUP (ORDER BY column_id)
 into l_columns
 FROM user_tab_columns
 WHERE table_name = c_table_list(i);

 -- build query
 l_query := 'SELECT ' || l_columns || ' FROM ' || c_table_list(i);

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix C-1 of C-3

 DBMS_OUTPUT.PUT_LINE('columns: ' || l_columns);
 DBMS_OUTPUT.PUT_LINE('query: ' || l_query);
 DBMS_CLOUD.EXPORT_DATA(
 credential_name => NULL, -- PAR requires no credential
 file_uri_list => c_base_uri || '/' || LOWER(c_table_list(i)),
 format => JSON_OBJECT('type' VALUE 'json'),
 query => l_query
);
 END LOOP;
END;

This generates files in object store like:

<PAR_URI>/orders_1_<timestamp1>.json
<PAR_URI>/orders_1_<timestamp1>.json
... and so on

Step 2: Import Tables to Destination ADW
Use DBMS_CLOUD.COPY_DATA to import each exported table using wildcards to match
multi-part, timestamped files. The destination tables already exist. Data is inserted into the
destination table.

Example PL/SQL Block

DECLARE
 c_base_uri VARCHAR2(4000) := '<PAR URI>/<prefix>'; -- same PAR URI used for
export
 c_table_list SYS.ODCIVARCHAR2LIST :=
SYS.ODCIVARCHAR2LIST('ITEM_LOC_SOH_EOD', 'ITEM_LOC_SOH', 'ITEM_LOC');
 l_columnpath CLOB;
BEGIN
 FOR i IN 1 .. c_table_list.COUNT LOOP
 -- To guarantee a specific ordering of columns, use the ORDER BY
 -- clause within the JSON_ARRAYAGG function. Column order in
 -- columnpath must match table column ordering. First column in
 -- columnpath matches first column in table.
 SELECT JSON_ARRAYAGG('$.' || column_name)
 WITHIN GROUP (ORDER BY column_id)
 INTO l_columnpath
 FROM user_tab_columns
 WHERE table_name = c_table_list(i);

 DBMS_OUTPUT.PUT_LINE('Importing ' || c_table_list(i) || ' to uri: ' ||
c_base_uri || '/' || LOWER(c_table_list(i)));
 DBMS_CLOUD.COPY_DATA(
 table_name => c_table_list(i),
 credential_name => NULL,
 file_uri_list => c_base_uri || '/' || LOWER(c_table_list(i)) || '*',
 format => JSON_OBJECT('type' VALUE 'json', 'columnpath' VALUE
l_columnpath)
);

Appendix C
Step 2: Import Tables to Destination ADW

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix C-2 of C-3

 END LOOP;
END;

Notes
• The file_uri_list uses a wildcard * to match all exported file parts.

• Ensure the target tables already exist in the destination ADW with compatible structure.

• This process requires that the PAR remains valid and unexpired during export and import.

• Use LOWER(r.table_name) to maintain consistency in file naming.

Optional Enhancements
• Add error handling and logging.

• Add support for column.

• Add a control table to track exports and imports.

Appendix C
Notes

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix C-3 of C-3

D
Data Access Schema (DAS) vs. Retail Data
Store (RDS)

Why, What, How
When customers move from the legacy Data Access Schema (DAS) to the Retail Data Store
(RDS), they are shifting responsibility for infrastructure, replication, and database operations.
This document helps two audiences:

• Oracle Staff who support customer transitions.

• Customers who currently use DAS and are evaluating or planning moving to RDS.

What is the Same

Area DAS & RDS

Replication technology Both use Oracle GoldenGate to replicate data from Retail
applications.

Data freshness model Replication is generally near real time; lag grows with large
transactions.

Read-only access to application
data

Customers cannot update source application data in either
model.

Schema change buffering Views insulate customers from most base schema changes.
Customer responsibility for
extensions

Customers own and maintain their custom objects and
code.

Environments Prod + Stage included, additional ’l NPE’s are optional.

What is Different

Area DAS RDS

DB
Platform

ADW (recommended) or ATP ADW

Service
Level

SLA determined by Customer
and OCI PaaS SLA

TSA, RTO, RPO based on SaaS SLA

Data
Schemas

MFCS, SIOCS, CE MFCS, SIOCS, CE, OB, XO, SE, BC, RICS, RSCH, OM

Database
Ownershi
p

Customer provisions and
manages the target database.

Oracle provisions and manages an Autonomous Data
Warehouse.

Users &
Schemas

Customer can create new
users/schemas.

Schema set is predefined and immutable.
Customers cannot create new users or schemas.

Subscript
ion

PaaS (storage, compute),
GoldenGate additional

SaaS (storage, compute), GoldenGate included

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix D-1 of D-3

Area DAS RDS

Included
Tools

APEX, ORDS, SQL Dev Web,
SQL Dev Desktop

APEX, ORDS

DB
Connectio
n

Web Access, others with
supported database
connection

Web Access Only, Private Endpoint (additional)

Integratio
n

ORDS, APEX, ADW Adapter,
others with supported
database connection.

ORDS, APEX, Export/Import through Object Storage

GoldenGa
te
Managem
ent

Customer manages
GoldenGate replication on
the target, including the
initial load.

Oracle manages GoldenGate end-to-end, including
the initial load and synchronization of source and
target.

Object Set Customers can configure
which objects to replicate.

Fixed set of objects replicated; not configurable.

Data
Access
Model

Tables and views are both
exposed.

Only views are exposed, with naming like
RDS_WV_<view>. The precise naming convention is
cloud service specific but expect the names to differ
from those in DAS.

Schema
Structure

Replicated data and
extensions may coexist in the
same schema.

Replicated data and extensions are segregated: read-
only application schemas vs. read/write extension
schemas. Three auxiliary schemas (RDS_CUSTOM_1 ,
RDS_CUSTOM_2 , RDS_CUSTOM_3) are also provided
with no default access.

Security
&
Privileges

Customer controls user
accounts, roles, and grants.
Security posture varies by
implementation.

Oracle defines a static, least-privilege model.
Customers have limited security responsibilities.
Custom objects are not accessible outside the owning
schema unless privileges are explicitly granted.

Move
Support

N/A. Oracle may provide recommendations, but
customers are responsible for moving from DAS to
RDS.

Capacity
Planning

Fully managed by customer. Oracle manages infrastructure, but customers must
monitor storage and CPU consumption and request
capacity increases.

Replicatio
n Scope &
Integratio
n

Customer-owned database
can act as a GoldenGate
source or target; customers
can also integrate other
pipelines (ETL, database
links, flat files).

RDS cannot be a GoldenGate target or source.
External data can be brought in only through Object
Store + DBMS_CLOUD, REST services, or OIC with
Private Endpoint, and only into the extension
schema.

Customer
Role

Customers act as both DBA
and developer — responsible
for patching, backups,
replication management,
security model.

Customers act primarily as developers. Oracle
handles DBA functions: patching, upgrades,
replication, backups, security baseline.

Considerations When Moving from DAS to RDS
• Expect renaming of views — All replicated objects are exposed as views. The precise

naming convention is cloud service specific but expect the names to differ from those in
DAS.

• Extensions must be separated — Move custom tables, packages, procedures, and other
database objects into the extension schema.

Appendix D
Considerations When Moving from DAS to RDS

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix D-2 of D-3

• Plan for fixed data set — Customers cannot replicate arbitrary objects into RDS.

• Monitor consumption — Oracle manages ADW, but customers must keep an eye on
storage and CPU usage.

Key Takeaways
• RDS simplifies operations by providing a safe, stable foundation, but removes customer

flexibility. The privilege model is static, replication is not configurable, and customers must
adapt to being developers in a managed world rather than DBAs.

• Oracle will manage replication, initial loads, patching, and the security baseline.

• Customer responsibility is to:

– build and manage access to needed extensions,

– and monitor capacity.

Appendix D
Key Takeaways

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix D-3 of D-3

E
CPU Utilization Metric Tile Example

This document provides a full working example of a PL/SQL-based REST service that exposes
Oracle CPU metrics as a JSON response suitable for Oracle Retail Home dashboard tiles. It
includes a line chart of CPU usage over time and a summary of average CPU utilization for the
past hour.

Overview
The implementation draws on the v$metric_history and v$parameter views to retrieve and
normalize CPU usage. It uses PL/SQL functions to generate the required JSON structure for
visualization. The data is exposed through an anonymous block suitable for use in an APEX
RESTful service.

Function: get_cpu_count

Purpose
This function queries the v$parameter view to determine the number of CPU cores available to
the database instance. This count is used to normalize CPU usage metrics from Oracle’s
internal monitoring views (which report usage across all CPUs). By dividing usage by the CPU
count, the result is expressed as a per-CPU percentage, making it easier to interpret across
systems with different configurations.

Error Handling
If the parameter is not found or an unexpected error occurs, the function returns 0 to ensure
downstream logic can continue gracefully.

CREATE OR REPLACE FUNCTION get_cpu_count RETURN NUMBER IS
 l_cpu_count NUMBER;
BEGIN
 SELECT TO_NUMBER(value)
 INTO l_cpu_count
 FROM v$parameter
 WHERE name = 'cpu_count';
 RETURN l_cpu_count;
EXCEPTION
 WHEN no_data_found THEN
 RETURN 0;
 WHEN OTHERS THEN
 RETURN 0;
END;
/

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix E-1 of E-6

Function: get_rh_chart_data_json

Purpose
This function builds a JSON-formatted line chart showing CPU utilization over time. It uses
v$metric_history, which contains recent time-series metrics (typically at one-minute
intervals), and converts each sample’s end time into a human-readable format (HH24:MI). CPU
usage values are normalized using get_cpu_count.

Key Features
• Uses JSON_ARRAYAGG to collect multiple data points into a single array.

• Wraps the data in a chart structure expected by Oracle Retail Home tiles.

• Includes metadata such as axis titles, tooltip rendering, and value formatting.

Design Note
Because the metric CPU Usage Per Sec returns usage across all CPUs in centiseconds (that
is, 1/100 second), dividing by the CPU count yields per-core utilization (0.00–1.00 range, often
rendered as a percentage with two decimal places).

CREATE OR REPLACE FUNCTION get_rh_chart_data_json RETURN CLOB IS
 l_json CLOB;
BEGIN
 WITH chart_data AS (
 SELECT TO_CHAR(m.end_time, 'HH24:MI') AS sample_time,
 ROUND((m.value / 100) / get_cpu_count(), 2) AS cpu_utilization_pct
 FROM v$metric_history m
 WHERE m.metric_name = 'CPU Usage Per Sec'
)
 SELECT JSON_OBJECT(
 'type' VALUE 'line',
 'items' VALUE JSON_ARRAYAGG(
 JSON_OBJECT(
 'name' VALUE cd.sample_time,
 'series' VALUE 'CPU',
 'value' VALUE cd.cpu_utilization_pct
) ORDER BY cd.sample_time
),
 'renderTooltips' VALUE 'true',
 'valueFormat' VALUE 'PC',
 'renderXAxisLabels' VALUE 'true',
 'renderYAxisLabels' VALUE 'true',
 'xAxisTitle' VALUE 'Time (hours and minutes)',
 'yAxisTitle' VALUE 'CPU Utilization (%)'
)
 INTO l_json
 FROM chart_data cd;

 RETURN l_json;

Appendix E
Function: get_rh_chart_data_json

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix E-2 of E-6

END;
/

Function: get_rh_summary_json

Purpose
This function computes a single-value summary of CPU usage: the average CPU utilization
across all data points in the last hour. Like the chart data, values are normalized using the
number of CPUs.

Output Format
The function produces a JSON array with a single item:

{
 "name": "Avg CPU Utilization (Last Hour)",
 "value": <normalized average>,
 "valueFormat": "PC"
}

Use Case
This value appears prominently at the top of the metric tile as a high-level indicator of system
load.

CREATE OR REPLACE FUNCTION get_rh_summary_json RETURN CLOB IS
 l_json CLOB;
BEGIN
 WITH summary AS (
 SELECT ROUND(AVG((m.value / 100) / get_cpu_count()), 2) AS
avg_cpu_utilization
 FROM v$metric_history m
 WHERE m.metric_name = 'CPU Usage Per Sec'
)
 SELECT JSON_ARRAYAGG(
 JSON_OBJECT(
 'name' VALUE 'Avg CPU Utilization (Last Hour)',
 'value' VALUE avg_cpu_utilization,
 'valueFormat' VALUE 'PC'
)
)
 INTO l_json
 FROM summary;

 RETURN l_json;
END get_summary_json;
/

Appendix E
Function: get_rh_summary_json

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix E-3 of E-6

Function: get_rh_cpu_utilization_json

Purpose
This function combines the output of the previous two functions into a single JSON object with
two keys:

• items: Contains the summary.

• chart: Contains the line chart data.

Design Pattern
The approach ensures separation of concern: each sub-function is responsible for one part of
the structure, and this final function composes them.

Why FORMAT JSON is Used
It preserves the embedded JSON structure when building the outer object, avoiding character-
escaping issues.

CREATE OR REPLACE FUNCTION get_rh_cpu_utilization_json RETURN CLOB IS
 l_json CLOB;
 l_items CLOB;
 l_chart CLOB;
BEGIN
 l_chart := get_rh_chart_data_json();
 l_items := get_rh_summary_json();
 SELECT JSON_OBJECT(
 'items' VALUE l_items FORMAT JSON,
 'chart' VALUE l_chart FORMAT JSON
 RETURNING CLOB
)
 INTO l_json
 FROM dual;

 RETURN l_json;
END get_rh_cpu_utilization_json;
/

Anonymous Block (REST Service Source)

Purpose
This anonymous PL/SQL block serves as the source code for an APEX RESTful service.
When the REST endpoint is invoked, this block executes and returns a complete JSON
response representing CPU usage data.

Appendix E
Function: get_rh_cpu_utilization_json

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix E-4 of E-6

Key Elements
• owa_util.mime_header('application/json'): Sets the HTTP content type to JSON.

• htp.p('Cache-Control: no-cache'): Disables caching to ensure fresh data.

• htp.prn(l_json): Prints the resulting JSON to the response body.

Context
This block is typically configured as the source of a GET method in Oracle APEX RESTful
services. It bridges the backend metric data with the frontend visual tile.

DECLARE
 l_json CLOB;
BEGIN
 l_json := get_rh_cpu_utilization_json;

 owa_util.mime_header('application/json', FALSE);
 htp.p('Cache-Control: no-cache');
 owa_util.http_header_close;

 htp.prn(l_json);
END;

Example REST Service Response
{
 "items": [
 {
 "name": "Avg CPU Utilization (Last Hour)",
 "value": 0.02,
 "valueFormat": "PC"
 }
],
 "chart": {
 "type": "line",
 "items": [
 { "name": "18:26", "series": "CPU", "value": 0.08 },
 { "name": "18:27", "series": "CPU", "value": 0 },
 { "name": "18:28", "series": "CPU", "value": 0.11 },
 ...
],
 "renderTooltips": "true",
 "valueFormat": "PC",
 "renderXAxisLabels": "true",
 "renderYAxisLabels": "true",
 "xAxisTitle": "Time (hours and minutes)",
 "yAxisTitle": "CPU Utilization (%)"
 }
}

Appendix E
Example REST Service Response

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix E-5 of E-6

Figure E-1 CPU Utilization Tile Displaying Average and Time-Series Values Derived
from the REST Service

Summary
This example illustrates how to:

• Extract and normalize CPU usage metrics from Oracle system views.

• Generate JSON structures compatible with Oracle Retail Home tiles.

• Implement an APEX RESTful service using PL/SQL to expose monitoring data.

Appendix E
Summary

Implementation Guide
G44738-01
Copyright © 2025, Oracle and/or its affiliates.

October 22, 2025
Appendix E-6 of E-6

	Contents
	Preface
	1 Implementation Overview
	Schema Architecture
	Audit and Delete Tracking
	APEX Workspaces
	Auxiliary Workspaces
	Usage and Access Control

	Privilege Model
	Developer Access in RDS
	Database Developer Privileges
	Restrictive Custom Privilege Models
	Report Developer Privileges (Oracle Analytics Server)
	Report Consumer Privileges (Oracle Analytics Server)
	Oracle Analytics Server Roles

	Supported Cloud Services

	2 Typical Implementation Events
	3 Customer Responsibilities
	Performance and Scalability
	Resource Monitoring
	Maintenance Preparedness
	Pre-Maintenance Responsibilities
	Post-Maintenance Responsibilities

	Extension Management
	Email Setup
	Communication with Oracle

	4 Getting Started
	Step 1: Setting Up the Workspace Administrators
	Prerequisites
	Steps

	Step 2: Setup RDS Database Operations Console Access
	Prerequisites
	Steps

	APEX User Management

	5 Oracle Analytics Server
	Determining Your Tenant Name
	Prerequisites
	Steps to Identify the Tenant Name

	Setup Access to OAS
	Prerequisites
	Steps to Assign a User to an OAS Group

	6 Getting Started with Extensions
	Overview
	Access to Replicated Data

	Custom Schemas and Workspaces
	Primary Custom Schema
	Auxiliary Custom Schemas (Per Cloud Service)
	Auxiliary APEX Workspaces (RDS_CUSTOM_1, RDS_CUSTOM_2, RDS_CUSTOM_3)
	Summary: Schema and Workspace Types

	Schema Access and Grants
	Grants to Custom Objects
	Grants to Replicated Objects
	Grants to Auxiliary Workspace Schema
	Summary Table

	Synonym Management
	Create Synonyms
	Drop Synonyms
	Cleanup Synonyms

	Tools for Extension
	Oracle APEX
	Oracle REST Data Services (ORDS)
	Object Storage and DBMS_CLOUD

	Environment Considerations
	Prerequisites
	Accessing the APEX UI

	7 Obtaining ORDS Service Credentials
	Generating an ORDS Access Token
	Generating an Access Token Using cURL
	Generating an Access Token Using POSTMAN

	8 Accessing Object Store
	Overview
	Obtaining a Pre-Authenticated Request (PAR) URL
	Constructing an Object Storage Object URL
	Obtaining Object Storage Credentials

	9 ORDS RESTful Services
	Overview
	Implementing a RESTful Service in APEX
	Invoking a RESTful Service from POSTMAN

	10 ORDS PRE-HOOK
	11 Using RDS to Build a Data Producing Service
	Overview
	GET Services
	POST Services
	Long Responses

	12 Using RDS to Build a Data Consuming Service
	13 Exporting Data to Object Storage
	Prerequisites
	Exporting Data Using a PAR
	Exporting Data with a Credential

	14 Importing Data from Object Storage
	Prerequisites
	Importing Data Using a PAR
	Importing Data Using a Credential

	15 DBMS Scheduler Jobs
	16 Retail Home Integrations
	In Context Launch of an APEX App
	Launching APEX Apps from Retail Home

	17 Invoking External Services
	18 Retail DB Ops Console
	Home
	AWR Reports
	Search Generated AWR Reports
	Generate AWR Custom Reports

	Top SQL
	DBMS Jobs
	Database Metrics
	Application Properties
	Session Management
	Session Management API
	Package Overview
	Procedure and Function Details
	LIST_RDS_SESSIONS
	KILL_RDS_SESSION (SID and SERIAL)
	KILL_RDS_SESSION (AUDSID)

	19 Sending Email from APEX
	20 Monitoring Replication Lag
	21 Notification-Based Monitoring
	Setting up the Notification Type
	Implementing a RESTful Service in RDS
	Setting up the POM Job

	22 Storage and CPU Usage
	23 Version Updates
	24 Additional Notes
	Not Supported/Available in RDS
	APEX Roles and Privileges Not Supported
	APEX Workspace Administration Disabled
	GoldenGate Source/Target Use Not Supported
	PWA-Enabled APEX Apps Not Supported
	No Support for SFTP
	Preconfigured Schema and Workspace Model
	Immutable Privilege Model for Replicated Objects
	OAuth Scope Enforcement Not Supported

	Limited in RDS Environment
	Service-Initiated Queries Limited to 300 Seconds
	Service Source Length Limited to 4000 Characters
	Only OCI SMTP Server Supported
	APEX Limitations in Autonomous Database

	Workarounds
	Explain Plan via APEX UI Requires Workaround
	Exporting Query Results in APEX
	Enhancing OAuth Security with ORDS Prehook
	Retrieving RDS Outbound IP Address

	Internal Use Only
	Reserved Application ID Range
	GoldenGate Metadata Fields Are Not CDC

	A Query Tuning
	Introduction
	How SQL Executes - A Conceptual Overview
	Relational Databases: What You Need to Know
	A Mental Model You Can Use
	Where Problems Show Up
	Start Here: Performance Triage
	Next Step

	Baselining Your Query
	Why Baselining Matters
	Baseline Tuning
	What to Capture
	When to Baseline
	Baseline Template (Example)
	Baseline SQL Script (for Recent Performance Snapshot)
	Output Columns

	Baselining Procedure
	Step 1: Create a Tracking Table
	Step 2: Create the Baselining Procedure
	Step 3: Example Call

	Optional: Automate It Nightly for Key Queries
	Step 1: Create a Tracking Table
	Step 2: Create a Batch Baselining Procedure
	Step 3: Optional: Schedule the Job (DBMS_SCHEDULER)

	Is My Query Slow?
	Start with your Requirements
	How to Think About "Fast Enough"
	Measuring Execution Time
	Don't Tune Without a Target

	Diagnosing a Slow Query
	Step 1: Get the SQL_ID
	Step 2: Get the Execution Plan
	Step 3: Ask These Questions
	Step 4: Check for Waits
	Current Waits
	Recent Waits
	What's a Spill

	Step 5: Cross Check Stats
	What's a Skewed Column
	Why Skew Matters
	How Oracle Handles Skew

	Step 6: Consider Plan History
	Summary: What to do Next

	Diagnosing System Wide Performance Issues
	Step 1: Use AWR Reports to Understand System Load
	What AWR Tells You
	Focus Areas in the AWR Report
	Top 10 Foreground Events by Total Wait Time
	Load Profile
	SQL Statistics
	
	Buffer Cache Hit Ratio
	Deriving Buffer Cache Hit Ratio from AWR
	Step-by-Step

	Parse to Execute Ratio
	Deriving the Parse to Execution Ratio from AWR
	Step-by-Step

	Understanding Temporary Table Space Usage
	Blocking and Concurrency
	Explicit Locks
	Implicit Locks
	Latch Locks
	Common Causes of Latch Contention

	Replicate Objects

	What to Compare
	Report Retention Notes
	When to Escalate or Log a Baseline
	AWR Review Checklist

	Step 2: Use Database Metrics (DB Ops Console)
	Step 3: Triage with "Top SQL"
	Check DBMS Jobs (If Relevant)
	Step 5: Session Management (Admin Role)
	Takeaway

	Understanding Plan Instability
	What is Plan Instability?
	Why Plans Change
	How to Detect Plan Instability
	When Plan Changes are Bad
	What To Do

	B Using FTS: An Example
	Overview
	Functions and Procedures
	get_idcs_token
	generate_par
	put_object_in_store
	export_query_to_blob
	Example Usage
	Error Handling

	Securely Obtaining an IDCS Token
	Overview
	Security Considerations
	Using the get_idcs_token_for_planning_app Function
	Example Usage

	Using the export_query_to_object_store Procedure
	Prerequisites
	Usage
	Customization
	Example

	
	get_idcs_token
	generate_par
	put_object_in_store
	export_query_to_blob

	C Transferring Table Data
	Assumptions
	Step 1: Export Tables from Source ADW
	Example PL/SQL Block

	Step 2: Import Tables to Destination ADW
	Example PL/SQL Block

	Notes
	Optional Enhancements

	D Data Access Schema (DAS) vs. Retail Data Store (RDS)
	Why, What, How
	What is the Same
	What is Different
	Considerations When Moving from DAS to RDS
	Key Takeaways

	E CPU Utilization Metric Tile Example
	Overview
	Function: get_cpu_count
	Purpose
	Error Handling

	Function: get_rh_chart_data_json
	Purpose
	Key Features
	Design Note

	Function: get_rh_summary_json
	Purpose
	Output Format
	Use Case

	Function: get_rh_cpu_utilization_json
	Purpose
	Design Pattern
	Why FORMAT JSON is Used

	Anonymous Block (REST Service Source)
	Purpose
	Key Elements
	Context

	Example REST Service Response
	Summary

