
Oracle® Retail EFTLink
Security Guide

Release 22.0
F74402–01
January 2023

Oracle Retail EFTLink Security Guide, Release 22.0

F74402–01

Copyright © 2022, Oracle and/or its affiliates.

Primary Author: Tracy Gunston

Contributors: Matthew Preston, Ian Williams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Send Us Your Comments

 Preface

Audience vii

Related Documents vii

Customer Support vii

Review Patch Documentation viii

Improved Process for Oracle Retail Documentation Corrections viii

Oracle Retail Documentation at the Oracle Help Center viii

Conventions viii

1 Security Guidelines

Oracle Support 1-1

General Principles 1-1

Securing Sensitive Data 1-1

Retailer Responsibilities 1-1

POS Security Considerations 1-2

TLS Encryption 1-2

Solution Specific Responsibilities 1-2

Adyen 1-2

AJB FiPay 1-2

Cayan Core 1-3

PayPal 1-3

PointUS 1-3

Verifone Ocius Sentinel 1-3

Payment System Comms/Security 1-4

2 Secure Configuration

EFTLinkConfig.properties 2-1

TLS 2-1

iii

Crypto-Agility for Communications 2-1

Protocols 2-1

Ciphers 2-2

Recommended Settings (default) 2-2

Full Crypto-Agility Settings List 2-2

Crypto-Agility for Data Storage 2-3

EFTLink Cores 2-4

Adyen Core 2-4

AJB FiPay Core 2-4

Cayan Core 2-4

Ocius Sentinel Core 2-5

OPI Retail Core 2-5

Logging 2-5

Java 2-5

References 2-6

3 Secure Development

Core-Host API 3-1

Scope 3-1

Message Flow 3-2

Channel 0 3-3

Channel 1 3-3

Channel/Socket Contention 3-3

Socket/XML Message Abstraction 3-3

EPSCore/EPSHost 3-4

Javadoc 3-4

EPSCore Event Mapping 3-4

EPSHost Action Mapping 3-4

EPSRequest/EPSResult Classes 3-5

DeviceRequest/DeviceResponse Classes 3-5

Mandatory Content 3-5

Development Considerations 3-5

Logging 3-5

Configurable Properties 3-5

Multi-threading and Synchronisation 3-5

Progress Messages 3-6

Printer Management 3-6

Administration Functions 3-6

Cancellation 3-6

Translation 3-6

iv

EFTLink Server Compatibility 3-6

Core How-Tos 3-7

MiscellaneousData 3-7

Miscellaneous Data Disclaimer 3-7

Session Properties 3-8

Secure Data 3-8

Restricted Access 3-8

Key Storage 3-8

Encrypted File Storage 3-8

Security Standards 3-9

v

Send Us Your Comments

Oracle® Retail EFTLink Security Guide Release 22.0

Oracle welcomes customers' comments and suggestions on the quality and
usefulness of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

• Are the implementation steps correct and complete?

• Did you understand the context of the procedures?

• Did you find any errors in the information?

• Does the structure of the information help you with your tasks?

• Do you need different information or graphics? If so, where, and in what format?

• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note:

Before sending us your comments, you might like to check that you have the
latest version of the document and if any concerns are already addressed. To
do this, access the Online Documentation available on the Oracle Help
Center (OHC) website(docs.oracle.com). It contains the most current
Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: retail-
doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at http://www.oracle.com.

Send Us Your Comments

vi

https://docs.oracle.com/en/
http://www.oracle.com

Preface

This guide serves as a best practice guide for ensuring secure operation of Oracle Retail
EFTLink. Installation and configuration are covered in more detail in separate guides as listed
in the Related Documents section below.

Audience
This document is intended for administrators and engineers who are responsible for secure
deployment of EFTLink.

Related Documents
For more information, see the following documents in the Oracle Retail EFTLink Release
22.0 documentation set:

• Oracle Retail EFTLink Release Notes

• Oracle Retail EFTLink Core Configuration Guide

• Oracle Retail EFTLink Framework Advanced Features Guide

• Oracle Retail EFTLink Framework Installation and Configuration Guide

• Oracle Retail EFTLink Xstore Compatibility Guide

• Oracle Retail EFTLink Rest API Guide

• Oracle Retail EFTLink Validated Partner Cores Guide

• Oracle Retail EFTLink Validated OPI Partners Guide

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

• Exact error message received

• Screen shots of each step you take

vii

https://support.oracle.com

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 22.0) or a later patch release (for example, 22.0.1). If you are installing the
base release and additional patch releases, read the documentation for all releases
that have occurred since the base release before you begin installation.
Documentation for patch releases can contain critical information related to the base
release, as well as information about code changes since the base release.

Improved Process for Oracle Retail Documentation
Corrections

To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced at the Oracle Help Center (OHC) website
(docs.oracle.com), or, in the case of Data Models, to the applicable My Oracle
Support Documentation container where they reside.

This process will prevent delays in making critical corrections available to customers.
For the customer, it means that before you begin installation, you must verify that you
have the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available at the Oracle Help Center at the following URL:

https://docs.oracle.com/en/industries/retail/index.html
An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
F123456-02 is an updated version of a document with part number F123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation at the Oracle Help Center
Oracle Retail product documentation is available on the following website:

https://docs.oracle.com/en/industries/retail/index.html
(Data Model documents are not available through Oracle Help Center. You can obtain
them through My Oracle Support.)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Preface

viii

https://docs.oracle.com/en/
https://docs.oracle.com/en/industries/retail/index.html
https://docs.oracle.com/en/industries/retail/index.html

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

ix

1
Security Guidelines

This chapter describes retailer and solution specific responsibilities for ensuring EFTLink is
securely implemented and configured.

• Oracle Support

• General Principles

• Retailer Responsibilities

• Solution Specific Responsibilities

• Payment System Comms/Security

Oracle Support
It is a best practice to have all Oracle Retail EFTLink support requests submitted through a
single point of contact for that customer environment; the client designated administrator is
usually designated to perform this role.

The link to use when submitting Service Requests (SR) is:

https://support.oracle.com

General Principles
This section describes general principles to be observed.

Securing Sensitive Data
The protection of sensitive data during transit and processing is paramount. Sensitive data
includes personally identifiable information such as PAN Numbers and track 2 data. Ensure
that if configurable, the EPS/payment terminal is set for PCI compliant masking of card PAN
and track 2 data.

Retailer Responsibilities
An instance of EFTLink and any third-party EFT software (dependent on solution) will
typically run on the POS hardware and communicate with each other to process EFT
transactions when requested by the POS software.

The POS Terminals are in the customer facing areas of the store in proximity to both
customers and employees. Physical security of the hardware is the responsibility of the
retailer in addition to operational practices like provisioning employees to appropriate
application roles and shutting registers down when not in use.

Securing the in-store network is a responsibility of the retailer and is assumed to be compliant
with PCI-DSS requirements for topology, wireless access, and wan connections. The
connection to the corporate data centers and the external credit authorizers also are
assumed to follow PCI-DSS requirements for secured connections.

1-1

https://support.oracle.com

The PCI-DSS standards are available at:

https://www.pcisecuritystandards.org/pci_security/
It is recommended that all machines on the store network be kept up to date with
vendor supplied patches, especially security patches. The operating systems on POS
Terminals should be locked down by removing or disabling unneeded functionality,
such as ensure that the system cannot be used for browsing the internet.

POS Security Considerations
POS security recommendations will vary according to the POS software being used.
Please refer to the appropriate POS Security Guide or the POS Implementation Guide
for your product.

TLS Encryption
EFTLink V15.0.1 onwards, secures the connection between the POS and the
framework using TLS encryption. This is enabled by default.

TLS encryption between the POS and the EFTLink framework can be disabled by
setting the Framework configuration file EftlinkConfig.properties TLSEnabled=false,
but this should only be done after consultation with Oracle, as it reduces the security of
the solution, and needs to be disabled at the POS side of the process as well.

Solution Specific Responsibilities
This section gives core specific security guidance.

Adyen
A password for Adyen is required to be encrypted in the adyen.properties file.

For the password to be entered, a keystore can be generated via a batch file which will
be held in the data directory.

Subsequently the password may also be entered into the system for storage using the
batch file, the encrypted password output and this can then be placed into the
adyen.properties file.

AJB FiPay
AJBFiPay has an enable.signature.logging option. Enabling this property (setting to
True) results in exposing the PII (customer signature). The enable.
signature.logging option should therefore only be enabled when requested by
Oracle Support for debugging purposes and should be turned off immediately
debugging has been complete.

EFTLink V15.01 includes a modification to allow the core to be used for reading POS
handled Cards (Gift Cards, Employee Cards and so on) removing the need for a card
swipe attached to the POS itself.

To be able to use this feature, Oracle needs to be consulted, as special configuration
needs to be applied to transfer the full card details of the required cards to the POS.

Chapter 1
Solution Specific Responsibilities

1-2

https://www.pcisecuritystandards.org/pci_security/

Cayan Core
There are specific security implementation considerations for the Cayan Core. The Cayan
Core will be shipped with a public root certificate. When the Cayan Core is initialized a Java
Key Store (JKS) is created and secured. If there is no public certificate stored in the JKS then
the root certificate file is located and converted to an encrypted certificate file and stored
securely in the JKS. The public root certificate file is then deleted from the installation folder.

The certificate is required in order to create the secure socket required for the https session
with the authorization host.

Once the encryption key has been created and stored, and the certificate also secured, the
install procedure requires the entry of several details such as merchantid to be entered via
the POS. As these are entered, they are stored and encrypted as required, and connection to
the pin terminal is then possible. Full details of the procedure are available in the installation
guide for Cayan.

PayPal
The PayPal implementation requires that a keystore containing a self-signed certificate is
generated and stored/trusted on the client. A password is also obfuscated and stored on the
client/server.

PointUS
The PointUs device is paired with EFTLink via a registration process, involving a four-digit
pin.

No secure connection information is held within EFTLink.

Verifone Ocius Sentinel
Verifone Ocius Sentinel requires a user login ID and PIN to be stored on the POS system.

These are transmitted by EFTLink to the Ocius Sentinel application as part of a login process
which is required before Ocius Sentinel can accept EFT requests.

When it is running, the Ocius Sentinel application also has a GUI (GraphicalUserInterface)
which can be accessed by an operator from the Windows System Tray. This GUI has a login
screen. The login screen accepts the same ID and PIN as stored in the EFTLink core
configuration file. Having manually logged into Ocius Sentinel several functions are available
to the user, including processing payments and refunds which bypasses the POS software.

In order to prevent unauthorized use of the Ocius Sentinel application the user login ID and
PIN should be stored encrypted in the EFTLink core configuration file. An encryption tool is
provided to implementers for this purpose and details on its use can be found in the Oracle
Retail EFTLink Core Configuration Guide. It is recommended that batch encryption of user
login ID and PIN data be carried out at a central location and the encrypted data then be
distributed to stores as required. Once encryption has taken place the clear text copy of the
data can be deleted.

Chapter 1
Solution Specific Responsibilities

1-3

Note:

EFTLink is configured to expect encrypted ID and PIN data by default.

Payment System Comms/Security
The following table shows the comms and security for each payment system:

Table 1-1 Payment System Comms/Security

Payment
System

Driver/
Server
Application

Comms Security Notes

EFTLink
Framework

- Socket XML TLS Self-certified certificate
generated as part of build
process.

Certificate stored in a Java
Keystore and included in release

Adyen POS_JNI Not detailed None Uses provided POS_JNI

Cayan - WebService
SOAP

Socket

TLS Encryption key stored in java
keystore and included in release
fileset.

Verifone

Point US

- Verifone
Point US

Data
includes
encrypted
security field

Encryption key established by
initial pairing using RSA
exchange.

Key stored in a Java Keystore.

AJB FiPay FiPay Socket CSV
Text

None

TLG
SolveConnect

SolveConnect Socket XML None

Verifone Ocius
Sentinel

Ocius
Sentinel

Socket XML None

Six Payment
Services

MPD (OPI
mode)

Socket XML None

Worldpay Worldpay Socket None

(YesPay) CSV Text

Chapter 1
Payment System Comms/Security

1-4

2
Secure Configuration

This chapter describes retailer and solution specific responsibilities for ensuring EFTLink is
securely implemented and configured.

• EFTLinkConfig.properties

• TLS

• Crypto-Agility for Communications

• EFTLink Cores

• Logging

• Java

• References

EFTLinkConfig.properties
EFTLink installation defaults to secure values, however these may be overridden if desired
(for example changes to cryptoagility).

The following is a list of configuration options which are secure by default but may be
incorrectly configured to insecure settings.

TLS
Use of TLS over SSL may be specified using the following setting.

TLSEnabled = true
This specifies that a TLS connection is to be used. If this option is not enabled, then
communications between the POS and EFTLink will not be secure and data over this
connection can be viewed.

Default setting: true

Crypto-Agility for Communications
On the connection between POS and EFTLink the protocol and ciphers used to secure the
data can be configured.

Protocols
Restricting the protocols to TLS 1.2

ProtocolsWhiteList=SSLv2Hello,TLSv1.2

Currently the supported protocols include SSL and TLS1 / TLS1.1 which are disabled by the
above setting.

2-1

SSL / TLS1 / TLS1.1 are all considered insecure by today's standards, so only TLS1.2
should be permitted.

SSLV2Hello is retained as this is merely a handshake to determine which protocol to
use - in this case only TLSv1.2

Ciphers
Many ciphers are available on the TLS connection, which may be negotiated
automatically.

Restrictions on the ciphers used however is applied in the software.

Both a blacklist and whitelist are utilized to enable certain ciphers and disable others.

The cipher must be present on the whitelist and not present on the blacklist in order to
be included in the permitted cipher list.

If the blacklist is not specified, only the whitelist will be checked.

For best security, a combination of whitelist and blacklist is configured by default.

If the cipher is a match for both the blacklist and whitelist, the cipher will be excluded.

A full list of ciphers permitted will be logged at the time a connection is attempted.

Recommended Settings (default)
#Crypto-Agility - Communications

#Protocols Secure setting

ProtocolsWhiteList=SSLv2Hello,TLSv1.2

#Cipher Secure setting

CipherWhiteList=TLS_DHE_.*_WITH_AES_128_.*,TLS_ECDHE_.*_WITH_AES_128_
.*,TLS_ECDH_.*_WITH_AES_128_.*_.*,TLS_ECDHE_ECDSA_WITH_AES_128_GC
M_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_R
SA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_S
HA256,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_RSA_WITH_AES_1
28_CBC_SHA

CipherBlackList=SSL_.*,TLS_EMPTY_.*,.*_SHA,.*_3DES_.*,.*_DES_.*,.*_WITH_NUL
L_.*,.*_anon_.*_.*,.*EXPORT.*,.*LOW.*,.*MD5.*,.*DES.*,.*RC2.*,.*RC4.*,.*PSK.*

Full Crypto-Agility Settings List
#Crypto-Agility - Communications

#Protocols Secure setting

ProtocolsWhiteList=SSLv2Hello,TLSv1.2

#Protocols Default

#ProtocolsWhiteList=SSLv2Hello,TLSv1.2

#Protocols Java 1.6 setting for backwards compatibility

Chapter 2
Crypto-Agility for Communications

2-2

#ProtocolsWhiteList=SSLv2Hello,TLSv1.2,TLSv1,TLSv1.1

#Cipher Secure setting

CipherWhiteList=TLS_DHE_.*_WITH_AES_128_.*,TLS_ECDHE_.*_WITH_AES_128_.*,TLS
ECDH.*_WITH_AES_128_.*,TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS
_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_128_G
CM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_W
ITH_AES_128_CBC_SHA256,TLS_RSA_WITH_AES_128_CBC_SHA

CipherBlackList=SSL_.*,TLS_EMPTY_.*,.*_SHA,.*_3DES_.*,.*_DES_.*,.*_WITH_NULL_.*,.*
anon.*_.*,.*EXPORT.*,.*LOW.*,.*MD5.*,.*DES.*,.*RC2.*,.*RC4.*,.*PSK.*

#Cipher Default

#CipherWhiteList=TLS_DHE_.*_WITH_AES_128_.*,TLS_ECDHE_.*_WITH_AES_128_.*,TL
S_ECDH_.*_WITH_AES_128_.*_.*,TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_12
8_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RS
A_WITH_AES_128_CBC_SHA256,TLS_RSA_WITH_AES_128_CBC_SHA

#CipherBlackList=SSL_.*,TLS_EMPTY_.*,.*_SHA,.*_3DES_.*,.*_DES_.*,.*_WITH_NULL_.*,.
*_anon_.*_.*,.*EXPORT.*,.*LOW.*,.*MD5.*,.*DES.*,.*RC2.*,.*RC4.*,.*PSK.*

#Cipher Java 1.6 setting for backwards compatibility

#CipherWhiteList=

#CipherBlackList=SSL_.*

Crypto-Agility for Data Storage
Several of the cores now support crypto agility.

Each core uses a set of parameters in the [corename].properties file.

#############################

Crypto-agility - keystore

#############################

#Key Generator (example AES)

crypto.keygenType = AES

#Cipher Type (example AES/GCM/PKCS5Padding)

crypto.cipherType = AES/GCM/PKCS5Padding

#KeySize

crypto.keySize = 128

#No of iterations in keystore

crypto.iterations = 100000

This currently applies to Adyen, Cayan, Ocius Sentinel, Paybylink, Paypal and Tenderretail
cores.

Chapter 2
Crypto-Agility for Communications

2-3

Currently shipping with the default settings above. The main improvement over
existing default settings are to increase the number of iterations of encryption.

A mechanism has been provided to change the algorithm by running a command from
the prompt with parameters including keystore location and encryption properties to
use. Full details of crypto agility commends for each core is included in the Oracle
Retail EFTLink Core Configuration guide.

EFTLink Cores
Each individual core may also have specific security requirements. These are detailed
here:

Adyen Core
A password for Adyen is entered using the supplied configuration batch file.

The encrypted password is then stored in the adyen.properties file.

AJB FiPay Core
The AJB core may be configured to enable signature logging via the property

enable.signature.logging
By default, this is set to False. This should not be set to TRUE in a secure
environment, as this will expose PII information - the customer signature.

Cayan Core
The cayan communication may be secured by employing an https connection over a
secure socket.

This is done through the cayan.properties file:

#secure port
ced.port = 8443
Performing all Actions on the Pin Entry device over https is the default secure option:

http.action.add_item = https://cedIp:cedPort/v1/pos?Action=AddItem

http.action.del_item = https://cedIp:cedPort/v1/pos?Action=DeleteItem

http.action.del_items = https://cedIp:cedPort/v1/pos?Action=DeleteAllItems

http.action.start_order = https://cedIp:cedPort/v1/pos?Action=StartOrder

http.action.end_order = https://cedIp:cedPort/v1/pos?Action=EndOrder

http.action.cancel_order= https://cedIp:cedPort/v1/pos?Action=Cancel

http.action.status.check= https://cedIp:cedPort/v2/pos?Action=Status

http.action.get_tk = https://cedIp:cedPort/v2/pos?TransportKey=

http.action.keyed_sale = https://cedIp:cedPort/v1/pos?Action=InitiateKeyedSale

Chapter 2
EFTLink Cores

2-4

http.action.update_total= https://cedIp:cedPort/v1/pos?Action=UpdateTotal

http.action.discount_item=https://cedIp:cedPort/v1/pos?Action=DiscountItem

http.action.update_item =https://cedIp:cedPort/v1/pos?Action=UpdateItem

Ocius Sentinel Core
User loginID and PIN are stored encrypted in the EFTLink core configuration file.

As such the following property is required NOT to be altered:

ocius.properties=ocius.keystore
This is the default value (secure by default).

OPI Retail Core
Logging of sensitive data defaults to secure settings and sensitive data is masked by default
using the following setting:

MaskSensitiveDataLoggingEnabled=true
XML returned to the OPICore is also validated against a set of XSDs prior to parsing using
the following setting:

ValidateOPIRetailResponse=true

Logging
By default, all logging is secured as each core includes a number of sensitive fields included
in communication which will be masked.

All logged communications information is also scanned for numbers which could possibly be
full card numbers and are masked by default.

Trace level logging which is not enabled by default should not compromise security of the
application.

The default logger should be configured for info only (debug information should not be
generated in production environment)

This is configured in the log4j2.xml file:

<Loggers>
<Root level="info">

Java
The application should be deployed with Java 1.8. Also, the latest version of the java
framework should also be deployed.

There are several issues which require the latest version of the framework to be used in order
to ensure a secure deployment:

TLS 1.2 requires the use of Java 1.8

Chapter 2
Logging

2-5

Enhanced Cryptography, ensuring better secured communications.

Use of earlier versions of the java framework may require the configuration of TLS and
Crypto agility to be altered which will result in decreased security.

References
The https://confluence.oraclecorp.com/confluence/display/GPS/
OSSA%3A+Secure+Configuration+Program%3A+1.0Oracle Secure Configuration
Wiki page provides information about secure configuration standards for Oracle.
There are links to additional sample documentation and topics related to secure
configuration.

Oracle Retail Documentation will allow navigation to published RGBU product
documentation including links to the installation guide.

Chapter 2
References

2-6

https://confluence.oraclecorp.com/confluence/display/GPS/OSSA%3A+Secure+Configuration+Program%3A+1.0
https://confluence.oraclecorp.com/confluence/display/GPS/OSSA%3A+Secure+Configuration+Program%3A+1.0
http://docs.oracle.com/cd/E69694_01/eftlink/index.html

3
Secure Development

This chapter describes retailer and solution specific responsibilities for ensuring EFTLink is
securely implemented and configured.

• Core-Host API

• Development Considerations

• Core How-Tos

Core-Host API
A standard API is available to payment systems in the EFTLink framework.

Scope
The EFTLink framework presents a standard (Java API) interface for "plugin" payment
system implementations, referred to as "cores". It is within the core that all business logic and
communications processing that is required by that payment system is implemented. The
framework provides an execution environment and access to POS resources such as
operator screen/keyboard and printer. It is a best practice to have all Oracle Retail EFTLink
support requests submitted through a single point of contact for that customer environment;
the client designated administrator is usually designated to perform this role.

3-1

Figure 3-1 EFTLink OPI Server/Router

Message Flow
The EFTLink Core API is a set of Java classes, but it is essential when developing a
new core to also understand the underlying XML socket protocol that is encapsulated
in those classes, to keep in mind how each method call affects the channel/socket
connections and to be aware of the generally multi-threaded nature of the architecture.

The diagram below describes the flow of messages from the client application through
EFTLink to a payment core.

Chapter 3
Core-Host API

3-2

Figure 3-2 Message Flow

Channel 0
Channel 0 payment/admin request from the POS will be presented to the core as method
calls (for example, authorise()). This is a blocking call in that the channel 0 response will not
be sent to the POS until that method returns.

Channel 1
Channel 1 device proxy requests are triggered by the core calling a display/print method on
the EFTLink framework host. This is a blocking call in that the method will not return until the
relevant display/print process has completed on the POS or timed out.

Channel/Socket Contention
There can only be one active request per channel at any one time. Any attempt to use a
channel that is already in use is taken as an implicit cancellation of the in-progress session.
However, this rule is implemented differently on channel 0 and 1. On channel 0 (POs to
EFTLink), the new request (typically a payment request) is rejected as "busy" and the active
session is left to run to completion. On channel 1 (EPS to EFTLink), the old session is
aborted, and the new request (typically a display request) is processed as the new active
session.

Socket/XML Message Abstraction
The Core-Host API abstracts the socket handling and XML message content into a set of
java classes and interfaces. Socket/channel activity is passed to the core as an event (for
example, the authorise() method call). Message content is abstracted into entity classes. For
example, EPSRequest/EPSCard and passed as arguments to those events. All the
properties in the entity classes will have a directly related XML element or attribute, and vice
versa.

Chapter 3
Core-Host API

3-3

The XML protocol specification should be used as the primary point of reference for
how and when a particular property is used.

EPSCore/EPSHost
The key Interfaces that a core has to use are EPSCore and EPSHost. The core
implements EPSCore and so receives events (for example authorization requests)
from the EFTLink framework. The EFTLink framework implements EPSHost to allow
the core to access framework resources and to interact with the POS.

The current version of EPSCore is EPSCore_1_3. Earlier versions are still supported
for backward compatibility, but any new core should implement the highest available
version to benefit from any recent enhancements.

Javadoc
Javadoc for the Core-Host API is available here.

EPSCore Event Mapping
The following table shows the mapping between the XML message and the API
method.

Table 3-1 EPSCore Event Mapping

XML Message API Method

ServiceRequest of type Logon logon

ServiceRequest of type Logoff logoff

ServiceRequest of type Reconciliation reconciliation

ServiceRequest of type Administration maintenance

CardServiceRequest of any type (such as
CardPayment)

authorise

SaleStateNotification of any Type (SaleStart, SaleEnd) posTransactionInProgress

any message of type AbortRequest abort

EPSHost Action Mapping
The following table shows the mapping between the API method and the XML
message.

Table 3-2 EPSHost Action Mapping

API Method XML Message

display DeviceRequest of type Output to CashierDisplay device (simple
text display to operator)

print DeviceRequest of type Output to Printer device (simple print of
preformatted text)

deviceAccess DeviceRequest of any type with extended attributes - timeout
and so on.

Chapter 3
Core-Host API

3-4

https://confluence.oraclecorp.com/confluence/download/attachments/144397706/CoreHost.chm?

EPSRequest/EPSResult Classes
The key entity classes that a core must use are EPSRequest and EPSResult. Most EPSCore
events carry with them an EPSRequest data object. This holds all the details extracted from
the POS XML message. On completing the requested action, the core builds an EPSResult
object to return to the host to show the success/fail status of the operation along with all
related data (for example payment card details).

DeviceRequest/DeviceResponse Classes
As part of processing the POS request, the core is likely to need to display and/or print
messages at the POS. This is done by creating a DeviceRequest object specifying the type of
display required and invoking the deviceAccess() method on the host interface. The host will
build a DeviceResponse object to return to the core to show the success/fail status of the
operation along with all related data (for example keyed data entered by the operator).

Mandatory Content
The core only needs to implement as much of the specified functionality as is required to fulfil
the requirements of the payment system. However, where the protocol defines mandatory
fields that are not covered by this approach, the core must populate those fields with suitable
default values.

Development Considerations
A number of functions must be taken into consideration when developing cores to ensure a
base set of functionalities is available.

Logging
EFTLink uses log4j and maintains a daily log file eftlink_mmdd.log. Core implementers are
encouraged to integrate their logging into this system. For debug purposes, EFTLink also has
a feature where all logging is also echoed to a pop-up dialog box. To support this, individual
class logging should be initializsed by calling getLogger() from the EPSLogger class for
example.

private Logger log = EPSLogger.getLogger(OPICardServiceSession.class);

Configurable Properties
Configurable properties should be put in a textual property file.

Multi-threading and Synchronisation
The system architecture is inherently multi-threaded. Each new call from the framework will
be in a new thread and the communications implementation to the terminal/EPS is likely to
introduce further threads. Care must be taken to ensure these threads are synchronized and
that data is suitably protected.

Chapter 3
Development Considerations

3-5

Progress Messages
Ideally, the core should send regular progress display messages to the POS to keep
the operator informed on the state of the transaction.

Most payment systems report their ongoing status, either by explicit display messages
or some form of status broadcast, but where there is no such status update, the core
should still endeavour to report progress as far as is possible.

Printer Management
The default way of handling printout is to send it directly to the POS as a device proxy
request. However, it is also possible to buffer printout in the core and then include that
text in the authorization response, to allow the POS to merge the EFT voucher into the
standard POS receipt to save paper. Not all POS systems support this feature, so it
should always be made configurable.

It is also possible to tag print lines as being "journal" so that they can be stored rather
than printed. Again, not all POS systems support this feature.

Administration Functions
It is quite common for a payment system to have some maintenance/engineer
functions that need to be executed when installing the terminal or on a regular basis.
Such operations can be put on a maintenance menu, defined as series of device proxy
display requests. The POS invokes this menu via an EFT Maintenance option that
has no business logic associated with it, but just triggers an "Administration" service
request and opens channel 1 for device proxy access.

Cancellation
The POS may have a "cancel" button which can be pressed to try to abort a
transaction that has been started unintentionally or that is taking too long. This is done
by the POS sending an AbortRequest, which in turn is passed to the core as abort().
This should be interpreted as a request not a command - if it is possible to cleanly
close the active transaction, then this should be done, but if not, the request ban be
ignored.

Translation
Textual display and print data received from the payment system should be shown as
is. However ancillary display messages should be shown in the correct language for
the region. EFTLink has a "Text" translation class, and a set of LangXX.properties
country-specify lookup files.

EFTLink Server Compatibility
When deployed in Server mode, there will be multiple instances of the EFTLink main
application class (OPIServer) and multiple instances of the core class, all in memory at
the same time. Each instance runs from its own set of configuration files in a sub-
folder under the main EFTLink folder.

Chapter 3
Development Considerations

3-6

This imposes rules/restrictions on the core:

• No hard-coded file paths. Always access files relative to INSTANCE_ROOT() or DATA().
Only use PRIMARY_ROOT for files that are intentionally the same for all instances.

Note:

When using framework file access helper classes such as EPSFileProperties,
EPSSecureFile and so on, the use of INSTANCE_ROOT() is automatically
applied by the framework.

• Do not store instance-specific data in static storage. Static storage will in effect be shared
between all instances.

• No passing files (for example signature images) by name. The POS will be on a remote
system.

Core How-Tos
Additional information regarding the core:

• MiscellaneousData

• Session Properties

• Secure Data

• Restricted Access

• Key Storage

• Encrypted File Storage

• Security Standards

MiscellaneousData
MiscellaneousData is a free-format text property, available in both the EPSRequest and
EPSResult classes, which can be used for any data that is not covered by the standard
property options. It can be accessed as a String in the normal way, but there is also an option
to reference it as MiscellaneousDataProperties to access it as a collection of key-value pairs
but note that the underlying storage is still the same MiscellaneousData String.

Miscellaneous Data Disclaimer
EFTLink along with some selected Cores, has the ability for additional data to be sent and
received in a field called <MiscellaneousData>.

This can be used by System Implementers (SIs) and Payment Service Providers (PSPs) to
pass additional data in the messages between Xstore and the Payment Providers, using
custom code.

Typically, this is used to add directives which we can trigger different payment workflows
however it can also be used to capture additional payment data for downstream processing
for the Retailer's to use for reconciliation or financial purposes.

Chapter 3
Core How-Tos

3-7

Under no circumstances should any PCI or potentially sensitive PII data be placed in
this field. Oracle will not be responsible for any issues caused by integration changes
made by SIs, Retailers and Payment Providers, that enable sensitive data to be added
into this field.

Session Properties
If the POS has included data in the XML to EFTLink that for some reason is not
mapped into the existing API objects, there is still a means of drilling down into the
Session for more detail. The EPSHost Interface includes a getSession() method
returning an EPSSession object. This is primarily there to allow access to session
variables when processing methods that do not use EPSRequest, such as logon() or
maintenance(), but the EPSSession Interface reference can also be cast back to the
appropriate underlying OPIXxxSession object to get access to the relevant session
properties and even to the XML Document objects.

Secure Data
EFTLink Framework provides three security features to protect data used by the core.

By using these features rather than any bespoke implementation in the core, the
security system is made more future-proof because changes (for example encryption
enhancements) need only be applied in the framework.

Note:

Sensitive text data should not be stored in Java Strings. Better to use a
character array so that the memory can then be explicitly cleared after use.

Restricted Access
The framework provides a DATA() folder with restricted user access rights. Any files
created in that folder will only be accessible by the EFTLink host account.

Key Storage
The EPSKeyStoreManager class can be used to store encryption keys (or in fact any
text-based data). The data will be encrypted and stored in a password-protected Java
Keystore, transparent to the core.

Encrypted File Storage
The EPSSecureFile class can be used to store data in an encrypted file. The read/
write interface presented by EPSSecureFile is based on streams, to avoid restricting it
to any specific data type. Any data that can be expressed as a stream can be
encrypted and serialized in this way. One way of doing this is to define a new
serializable entity class to hold all the relevant sensitive data and interface with
EPSSecureFile using ObjectInputStream and ObjectOutputStream.

Examples of each of these are included in the EPSSimulator core class.

Chapter 3
Core How-Tos

3-8

Further information is available at the following location:

https://confluence.oraclecorp.com/confluence/display/EF/OPIClient-based+Cores

Security Standards
All development must be performed in accordance with the Oracle Software Security
Assurance Standards.

The Oracle Secure Coding Standards (SCS) are mandatory coding standards for all
developers.

Chapter 3
Core How-Tos

3-9

https://confluence.oraclecorp.com/confluence/display/EF/OPIClient-based+Cores

	Contents
	Send Us Your Comments
	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation at the Oracle Help Center
	Conventions

	1 Security Guidelines
	Oracle Support
	General Principles
	Securing Sensitive Data

	Retailer Responsibilities
	POS Security Considerations
	TLS Encryption

	Solution Specific Responsibilities
	Adyen
	AJB FiPay
	Cayan Core
	PayPal
	PointUS
	Verifone Ocius Sentinel

	Payment System Comms/Security

	2 Secure Configuration
	EFTLinkConfig.properties
	TLS
	Crypto-Agility for Communications
	Protocols
	Ciphers
	Recommended Settings (default)
	Full Crypto-Agility Settings List
	Crypto-Agility for Data Storage

	EFTLink Cores
	Adyen Core
	AJB FiPay Core
	Cayan Core
	Ocius Sentinel Core
	OPI Retail Core

	Logging
	Java
	References

	3 Secure Development
	Core-Host API
	Scope
	Message Flow
	Channel 0
	Channel 1
	Channel/Socket Contention

	Socket/XML Message Abstraction
	EPSCore/EPSHost
	Javadoc
	EPSCore Event Mapping
	EPSHost Action Mapping
	EPSRequest/EPSResult Classes
	DeviceRequest/DeviceResponse Classes
	Mandatory Content

	Development Considerations
	Logging
	Configurable Properties
	Multi-threading and Synchronisation
	Progress Messages
	Printer Management
	Administration Functions
	Cancellation
	Translation
	EFTLink Server Compatibility

	Core How-Tos
	MiscellaneousData
	Miscellaneous Data Disclaimer

	Session Properties
	Secure Data
	Restricted Access
	Key Storage
	Encrypted File Storage
	Security Standards

