
Oracle® Retail Integration Cloud
Service
Implementation Guide–Concepts

Release 23.1.201.0
F80201-02
April 2024

Oracle Retail Integration Cloud Service Implementation Guide–Concepts, Release 23.1.201.0

F80201-02

Copyright © 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Send Us Your Comments

 Preface

Audience ix

Documentation Accessibility ix

Customer Support ix

Improved Process for Oracle Retail Documentation Corrections ix

Oracle Retail Documentation on the Oracle Help Center (docs.oracle.com) x

Conventions x

1 Introduction

2 Core Concepts

Key Functional Requirements 2-1

Guaranteed Once-and-Only-Once Successful Delivery 2-1

Preservation of Publication Sequence 2-1

Message Family and Message Types 2-2

Foundation Messages 2-2

Transactional Messages 2-2

RIB Message Envelope and Payloads 2-3

Message Life Cycle 2-3

Messaging Components 2-5

RIB Subsystem Components 2-5

Adapters 2-5

JMS Domains, Destinations, Subscriptions 2-5

JMS Message Selector 2-6

Additional RIB JMS Message Properties 2-7

Simple Message Flow 2-8

The RIB Hospital 2-9

RIB Hospital Dependency Check 2-9

RIB Hospital Insert 2-10

iii

RIB Hospital Tables 2-10

RIB Hospital Retry 2-11

PUB Retry Adapter 2-12

Hospital Attempt (Retry) Count 2-15

JMS Delivery Count 2-15

3 Cloud

Configuring RIB-RWMS for Hybrid Cloud Deployment Topology 3-1

Installation and Setup instructions for RIB-RWMS Secondary (On-Premise) 3-2

Installation Prerequisite 3-3

Prepare the WebLogic Server 3-3

Creating Required RCU Schema Using the Repository Creation Utility 3-11

Creating a WebLogic Domain with wls Policy 3-17

Steps for ear Deployment 3-32

4 RIB Self-Service Enablement

Provisioning RIB-Adapters 4-3

How to Remove Dynamic Adapters Selection in RIB-RMS 4-6

Provisioning System Options 4-7

Provisioning InjectorService URL 4-8

RIB ServiceMonitor 4-9

5 Performance

Performance Factors 5-1

Performance and Parallel Logical Channels 5-1

6 Security

RIB Application Administrators Security Domain 6-1

Integration with SIOCS 6-1

Integration with ROB 6-4

7 Integration with Fusion Middleware

General RIB to Fusion Middleware Architecture 7-1

8 Integration with External Applications

Implementing RIB-EXT 8-1

How to Send/Receive Messages to/from the RIB System 8-2

iv

External Application as a Publisher (rest-app) using OAuth2 8-2

Create OAuth2 Client Application in IDCS 8-3

External Application as a Subscriber (rest-app) 8-8

How to implement Injector Service (Service Contract) using ReST 8-9

How to Secure Injector Service with Oauth2 8-9

RIB-EXT Side of Configuration to Point to External Application 8-10

How to switch Injector Service app Type at Runtime 8-12

How to Change rib-ext injector-service-app-type from REST to SOAP 8-13

How to change rib-ext injector-service-app-type from SOAP to ReST 8-14

Error Handling 8-15

Monitoring Integration 8-15

A Appendix - Sample Files

Sample Application.wadl File A-1

Sample Resource Class A-2

ApplicationMessages.xsd A-3

payload.properties A-5

Sample Request/Response for ReST Injector Service A-5

v

List of Figures

3-1 Retail Integration Suite - Cloud Architecture 3-1

3-2 RIB-RWMS Hybrid Cloud Architecture 3-2

vi

List of Tables

4-1 Self-Service Feature 4-1

6-1 Integrating with ROB 6-5

8-1 Publishing Service Pattern 8-2

8-2 8-10

A-1 Sample Request/Response for ReST Injector Service A-6

vii

Send Us Your Comments

Oracle Retail Integration Cloud Service Implementation Guide–Concepts, Release 23.1.201.0

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this
document.

Your feedback is important, and helps us to best meet your needs as a user of our products.
For example:

• Are the implementation steps correct and complete?

• Did you understand the context of the procedures?

• Did you find any errors in the information?

• Does the structure of the information help you with your tasks?

• Do you need different information or graphics? If so, where, and in what format?

• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your
name, the name of the company who has licensed our products, the title and part number of
the documentation and the chapter, section, and page number (if available).

Note:

Before sending us your comments, you might like to check that you have the latest
version of the document and if any concerns are already addressed. To do this,
access the new Applications Release Online Documentation CD available on My
Oracle Support and www.oracle.com. It contains the most current Documentation
Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative
or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle
local office and inquire about our Oracle University offerings. A list of Oracle offices is available
on our Web site at www.oracle.com.

Send Us Your Comments

viii

Preface

The Oracle Retail Integration Bus Implementation Guide provides detailed information that is
important when implementing RIB.

Audience
The Implementation Guide is intended for the Oracle Retail Integration Bus application
integrators and implementation staff, as well as the retailer's IT personnel.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

• Exact error message received

• Screen shots of each step you take

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content, Oracle
Retail documentation may be republished whenever a critical correction is needed. For critical
corrections, the republication of an Oracle Retail document may at times not be attached to a
numbered software release; instead, the Oracle Retail document will simply be replaced on the
Oracle Technology Network Web site, or, in the case of Data Models, to the applicable My
Oracle Support Documentation container where they reside.

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com

This process will prevent delays in making critical corrections available to customers. For the
customer, it means that before you begin installation, you must verify that you have the most
recent version of the Oracle Retail documentation set. Oracle Retail documentation is available
on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

An updated version of the applicable Oracle Retail document is indicated by Oracle part
number, as well as print date (month and year). An updated version uses the same part
number, with a higher-numbered suffix. For example, part number E123456-02 is an updated
version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all previous
versions.

Oracle Retail Documentation on the Oracle Help Center
(docs.oracle.com)

Oracle Retail product documentation is also available on the following Web site:

https://docs.oracle.com/en/industries/retail/index.html

(Data Model documents can be obtained through My Oracle Support.)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

x

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
https://docs.oracle.com/en/industries/retail/index.html

1
Introduction

RIB acts as a shared communication layer for connecting various Oracle Retail applications
and external applications throughout an enterprise computing infrastructure. It supplements the
core asynchronous messaging backbone with additional application functionality such as
intelligent transformation, routing and error handling.

Communication across the RIB is via xml messages (payloads). These payloads describe the
retail business objects (such as items, purchase orders, suppliers, and so on) in a standard
way and are governed by RIB on behalf of the Oracle Retail applications.

RIB architecture is based on standard Java EE components and the Java Message Service
(JMS). JMS is an integral part of the Java EE (Java Enterprise Edition) Technology stack.

The Integration Gateway Services (IGS) and RIB-ext components provides an integration
infrastructure for external system (3rd Party) connectivity to the Oracle Retail Integration Bus
(RIB) in the form of a tested set of Web service providers and the configurations to connect to
RIB.

The issues and considerations needed to properly deploy and configure the integration solution
within an enterprise are the subject of this guide.

1-1

2
Core Concepts

The RIB is designed as an asynchronous publication and subscription messaging integration
architecture. This allows the decoupling of applications and their systems. For example, a
publishing application need not know about the subscribing applications, other than the
requirement that at least one durable subscriber must exist. It decouples the systems
operationally. Once a subscriber is registered, the RIB persists all published messages until all
subscribers have seen them.

The publishing adapter does not know, or care, how many subscribers are waiting for the
message, what types of adapters the subscribers are, what the subscribers' current states are
(running or stopped), or where the subscribers are located. Delivering the message to all
subscribing adapters is the responsibility of the RIB with the help of the underlying JMS server.

Physically, the message must reside somewhere so that it is available until all subscribers have
processed it. The RIB uses the JMS specification for its messaging infrastructure. The JMS
accepts the message from the publisher and saves it to stable storage, a JMS topic, until it is
ready to be picked up by a subscriber. In all cases, message information must be kept on the
JMS until all subscribers have read and processed it.

The RIB interfaces are organized by message family. Each message family contains
information specific to a related set of operations on a business entity or related business
entities. The publisher is responsible for publishing messages in response to actions
performed on these business entities in the same sequence as they occur.

Each message family has specific message payloads based on agreed upon business
elements between the Oracle Retail applications.

Key Functional Requirements
The design and architecture of the RIB infrastructure is based on two key requirements driven
by the Oracle Retail application business model.

Guaranteed Once-and-Only-Once Successful Delivery
The RIB must preserve and persist all business events (messages) until all applications
(subscribers) have looked at the message and have successfully consumed it or decided they
do not care about that event (message). In other words, RIB must deliver to every subscriber
all messages except those filtered as per a subscribing application's requirements.

A business event (message) must be redelivered to the consumer application if the business
event (message) was not consumed successfully. The redelivery process is bound by the
same rules of sequencing as normal (non-redelivered) business event (message).

Preservation of Publication Sequence
The business event (message) must be delivered to all the subscribing applications in the
order (FIFO) the business event (messages) was published by the publishing application.

To enable this, the publishing application defines a business object ID whose existence informs
RIB that this and all subsequent messages with the same business object ID have to be

2-1

processed in order. Business event (message) ordering (FIFO) is assured only for messages
with the same business object ID within the same message family.

Message Family and Message Types
The RIB messaging adapters and payloads are designed around the concept of a message
family.

Each RIB message belongs to a specific message family. Each message family contains
information specific to a related set of operations on a business entity or related business
entities. The publisher is responsible for publishing messages in response to actions
performed on these entities in the same sequence as they occur.

One example of a message family is the Order message family used to contain information
about purchase order events.

A message family may contain multiple message types. Each message type encapsulates the
information specific to a business entity within one or more business events. For example, the
Order message family is published for events such as Create PO Header, Create PO Detail,
Update PO Header, or Delete PO Detail.

A single business event, such as updating a purchase order, may involve multiple business
entities, such as a line item within the purchase order.

Because a single business event may involve multiple business entities, the application may
publish messages for this event from multiple message families for a single business
transaction. More than one message type within a message family may also be created.

There are two broadly defined types of functional interfaces in the RIB (message families):
foundation data and transactional data.

Foundation Messages
After populating application tables with initial company seed data, item foundation information
is needed. Foundation messages are defined as those with payload that carry basic product
data.

This table is an example from the Oracle Retail Integration Bus Integration Guide.

Functional Area Publishing Applications Subscribing Applications

Items RMS RWMS, SIM

Item Locations RMS SIM

Locations RIB RWMS

Stores RMS RWMS, SIM

Vendor RMS RWMS, SIM

Warehouses RMS RWMS, SIM

Transactional Messages
After populating application tables with initial seed data and after all required item foundation
data messages have been subscribed to, all applications are prepared to publish and
subscribe transaction data messages. Transactional messages communicate business events
involving two or more organizations within a retail supply chain, for instance, among Oracle
Retail Merchandising System (RMS), Oracle Retail Store Inventory Management (SIM), and

Chapter 2
Message Family and Message Types

2-2

Oracle Retail Warehouse Management System (RWMS), external suppliers and financial
systems.

This table is an example from the Oracle Retail Integration Bus Integration Guide.

Functional Area Publishing Applications Subscribing Applications

Allocations RMS RWMS, SIM

Appointments RWMS RMS, SIM

ASN Outbound RWMS, SIM, RMS, RFM RMS, SIM, RWMS,

ASN Inbound RWMS, External, RMS RFM RMS, SIM, RWMS

Inventory Adjustments RWMS, SIM RMS

Inventory Request SIM RMS

Receipts RWMS, SIM RMS

Purchase Order RMS, SIM RWMS, SIM

Stock Order Status RWMS, SIM RMS, SIM

Transfers RMS RWMS, SIM

RIB Message Envelope and Payloads
Whenever a publishing application adapter publishes a message, it wraps the message in an
envelope known as the RIB message envelope. The envelope is a standard message delivery
format where the message information, the data payload, is contained within the overall
delivery information. The envelope itself provides information that the RIB uses, such as RIB
hospital information and routing information.

Note:

Payloads do not support time zone formats.

Message Life Cycle
The publishing application is responsible for creating the initial message contents. The RIB
publishing adapter publishes it to the JMS Server and makes it available to any JMS
subscribers. The RIB knows what subscribers are to receive the message due to the RIB
configuration—this configuration associates a set of subscribers to each publisher and
message family combination.

For PL/SQL Applications, database tables associated with the publishing application typically
stage message information. One or more RIB publishing adapters poll the application via a
stored procedure call. For Java EE Applications, the application calls a RIB Enterprise Java
Bean (EJB) with the payload information to be published. Similarly, SOAP Applications calls
with the payload information in the request to be published.

The message resides on a Java Message Service (JMS) immediately after publication. The
JMS topic provides stable storage for the message in case a system crash occurs before all
message subscribers receive and process it.

A fundamental RIB system requirement is that a message must be delivered to and processed
successfully exactly once by each subscriber. Furthermore, all work performed by the

Chapter 2
RIB Message Envelope and Payloads

2-3

subscriber and the RIB must be atomically committed or rolled back, even if the JMS server is
on a remote host. The standard way to perform this is by using an XA compliant interface and
two-phase commit protocol.

After initial publication, a message may undergo a series of transformation, filtering, or routing
operations. A RIB component that implements these operations is known as a Transformation
and Address Filter/Router (TAFR) component. TAFR is the acronym for Transform, Address,
Filter, and Route. A TAFR is completely internal to the RIB and does not reside in either the
publishing or subscribing application. The RIB performs these intermediate transformation and
routing operations on some messages before making them available to the subscribing
application.

A single TAFR may only transform a given message, only filter the message, only route it, or
combine any of the three operations.

• Transform - A message may be transformed from one message type into another, for
example, WH (warehouse) from RMS to Location for RWMS.

• Filter - A message may be filtered. Filtering can occur based on message type or based on
content.

• Route - A TAFR may route a message. For example, whenever a stock order message is
published for a warehouse with an instance of RWMS, the TAFR routes it to the particular
RWMS instance from where the stock will be fulfilled and not to warehouses that do not
stock the order's items.

TAFR operations are specific to the set of subscribers to a specific message family. Multiple
TAFRs may process a single message for a specific subscriber and different specific TAFRs
may be present for different subscribers. Different sets of TAFRs are necessary for different
message families. If all subscribers to a message can process all messages within a message
family without any TAFR operations, then no TAFR components are needed.

Message processing continues until a subscribing adapter successfully processes the
message or determines that no subscriber needs this message.

When a subscriber gets a message to be processed, the adapter checks to see if the RIB
Hospital contains any messages associated with the same entity as the current message. If so,
then the adapter places the current message in the hospital as well. This is to ensure
messages are always processed in the proper sequence. If proper sequencing is not
maintained, the subscribing application's data can be corrupted.

If an error occurs during message processing, the subscribing adapter notes this internally and
rolls back all database work associated with the message. When the message is re-processed
(because it has yet to be processed successfully), the adapter now recognizes this message is
problematic and checks it into the hospital. If adding the message to error hospital fails, the
subscribing adapter writes the message to the file system. This becomes a poison message
(.xml).

After a message is checked into the RIB Hospital, a retry adapter extracts the message from
the hospital and re-publishes it to the JMS topic for reprocessing. The message remains in the
hospital during all re-tries until the subscribing adapter successfully processes it. Subscribing
retry adapter also processes the poison message. It extracts the message from the poison-
message file and adds it to the error hospital to be retried. The poison message file will be
renamed to processed message (.processed). If the retry adapter fails to process the poison
message, the file is moved to human-workflow file (.humanworkflow).

The unprocessed poison messages should be corrected with a human intervention. They are
made available in object storage bucket at a regular interval. These messages should be
downloaded from object-store, corrected and uploaded back to object store. RIB will process
these uploaded messages through subscriber retry adapter.

Chapter 2
Message Life Cycle

2-4

Messaging Components
The RIB is a messaging system made-up of components that are packaged and shipped as an
integration solution between the Oracle Retail applications. The application boundary between
RIB and Oracle Retail applications can be confusing at times, so this section defines the RIB
components and their responsibility and ownership. A diagram illustrating the RIB integration
message flow follows:

RIB Subsystem Components
This section describes the components of the RIB subsystem.

Adapters
A RIB adapter is a component that coordinates business event (message) generation and
processing with the respective Oracle Retail application interface. Each adapter in the RIB is
created to handle a specific functional interface. RIB adapters are developed using Enterprise
Java Beans (EJB) components architecture, subscribing adapters use Message Driven Beans
(MDBs) and publishing adapters use Stateless Session Beans (SLSBs).

RIB provides four types of adapters that Oracle Retail applications can exploit to integrate with
one another. These adapter types are: publisher, subscriber, TAFR, and hospital retry. They
have been built using different technologies based on their particular needs.

Subscriber and TAFR adapters use Message Driven Bean (MDB) technology to register with
JMS topics and receive messages for further processing.

Publisher and hospital retry adapters make use of the Java SE (Standard Edition) timer facility
to schedule repetitive events that trigger calls to Stateless Session Beans (SLSBs) to query
application tables for messages to publish to the JMS server.

As stated in the introduction, a fifth type of adapter exists for publishing messages in a pushing
fashion. The Oracle Retail applications invoke this adapter at will for publishing messages.

These adapters have not been considered part of the scope of this technical document in
regard to providing a mechanism for starting and stopping them.

Due to the variety of technologies used by the adapters, the goal of this technical design has
been to isolate users from these differences and provide them with a common management
interface that can be used to control the state of the adapters. During the last few years, the
Java Management Extensions (JMX) specification has become a well known standard that
defines the management layer for enterprise Java applications. JMX defines standard
methodologies for declaring enterprise application components as manageable resources that
can be exposed in a consistent way such that any JMX compliant management application can
access and provide means for control.

JMS Domains, Destinations, Subscriptions
JMS defines two types of messaging domains: point-to-point and publish/subscribe. RIB uses
publish/subscribe types of messaging domains for all its communication. Publish/subscribe is a
one-to-many type of message distribution model where one source application en-queues the
message and many destination applications can de-queue the same message and process
independently of the other peer applications. In publish/subscribe the destinations are known
as topics, the en-queue application is known as publisher, and the de-queue is known as
subscriber. Unlike point-to-point, in publish/subscribe the publisher and subscriber are totally

Chapter 2
Messaging Components

2-5

ignorant of each other and do not and should not know about each other's existence. The JMS
Topics retain the messages only as long as it takes to distribute them to current active
(running) subscribers. There is also a timing dependency between publishers and subscribers.

A client that subscribes to a topic can consume only messages published after the client has
created a subscription, and the subscriber must continue to be active in order for it to consume
messages. The JMS specification relaxes this timing dependency to some extent by allowing
clients to create durable subscriptions. By creating durable subscriptions the JMS server will
continue to hold the messages for all registered subscribers for that topic until the subscriber
consumes the message or deletes the subscription.

There are two types of subscribers, non-durable and durable subscribers. The RIB uses only
durable subscribers which allow the Oracle Retail edge applications to be in up or down state
independently but still not lose any messages and catch up when the application comes back
up. Every subscribing RIB adapter registers its durable subscriber with a subscription name
that contains its rib-<app> application name and the adapter name in it.

RIB defines logical grouping of retail specific business objects (BO) and business functions in a
concept called message family. For every message family there is a corresponding JMS topic.
These JMS topics are used as communication pipelines between the source and destination
Oracle Retail applications for exchanging the business objects.

The list of JMS topics used by RIB components is detailed in the Reports section of the Oracle
Retail Integration Bus Integration Guide.

JMS Message Selector
A key aspect of the JMS usage that the RIB relies on is the attachment of message properties
to published messages and the use of selectors by message subscribers. Message properties
are used to convey information about the message outside of the actual message data to
establish a logical channel for messages.

JMS message selectors are used by the RIB to filter the messages that each subscriber picks
up. In other words, using the message properties, selectors act as a filter to weed out
messages a subscriber should not process.

The message property set and used by the RIB messages is called threadValue. The thread
value is associated with a logical channel of a message stream. All messages for a specific
family with a specific business object ID always contain the same threadValue property. This,
combined with the standard first in, first out (FIFO) message ordering on the topic, is integral to
message sequencing. Messages with different threadValue properties are not guaranteed to be
processed in the same relative order as publishing.

Messages published without JMS Message Property present will not be picked up by the
standard subscribing RIB adapters.

Pseudo code for message selector:

(
 (
 (appName is not null) AND
 (appName == $APP_NAME)
) AND
 (
 (retryLocation is not null) AND
 (retryLocation LIKE $ADP_CLASS_DEF)
)
) OR
 (
 (

Chapter 2
Messaging Components

2-6

 (appName is null) OR
 (appName != $APP_NAME)
) AND
 (
 (retryLocation is null) OR
 (retryLocation LIKE $ADP_CLASS_DEF)
)
) AND
 (threadValue == $ADP_INSTANCE_NUMBER)

Additional RIB JMS Message Properties
Every message published by the rib-<app> applications includes a number of JMS user
defined header properties. In the current release, these properties are only set, not used by
any RIB components. In the future, these properties will be used for intelligent performance
enhancement and optimization and for traceability and auditability of RIB messages.

The message properties are as follows:

• Property Name: appName

Type: java.lang.String

Required Property: false

Example: appName=rib-rms

Description: The appName property contains the rib-<app> application name that
published this particular message.

• Property Name: adapterInstance

Type: java.lang.String

Required Property: false

Example: adapterInstance=Item_pub_1

Description: The adapterInstance property contains the rib-<app> adapter instance name
that published this particular message.

• Property Name: family

Type: java.lang.String

Required Property: false

Example: family=Item

Description: The family property contains the name of the RIB family name to which the
message belongs.

• Property Name: needMessageOrderPreservation

Type: boolean

Required Property: false

Example: needMessageOrderPreservation=true

Description: This property will have a value of true if any ribMessage node within the
RibMessages xml has a message that has businessObjectId set. This property will allow
us to take advantage of the fact that now we know which messages need message order
preserving at JMS header level (without opening the message). In the future, we will be
able to take advantage of that information, make our processing parallel, and get better
throughput without losing message sequencing.

Chapter 2
Messaging Components

2-7

• Property Name: topic

Type: java.lang.String

Required Property: false

Example: topic=etItem

Description: This topic property contains the RIB topic name that this particular message is
published to or subscribed from.

• Property Name: ribKernelVersion

Type: java.lang.String

Required Property: false

Example: ribKernelVersion=22.0

Description: The system determines the rib kernel jar version number at runtime and
includes its value in this JMS property.

• Property Name: ribFuncArtifactVersion

Type: java.lang.String

Required Property: false

Example: ribFuncArtifactVersion=22.0

Description: This is a place holder for future enhancement. The idea is the system will
somehow determine the runtime payload version and include that information in the
message for better compatibility management. This property will be enhanced in a future
release.

• Property Name: ribMessageCount

Type: int

Required Property: false

Example: ribMessageCount=12

Description: This property contains the number of ribMessage nodes there are in a
RibMessages xml message. This value gives us some indication of message aggregation
in play. It might be used in the future to better optimize message flow paths based on the
size/number of the messages.

• Property Name: uuid

Type: java.lang.String

Required Property: false

Example: uuid=116cfabd-8949-4f93-bb61-aaa88e168f30

Description: This property contains a universally unique identifier for every message. This
unique identifier will provide better traceability of a message within the JMS system. This
property complements the ribMessageID xml element that is there to trace messages
within the RIB logs.

Simple Message Flow
The typical lifecycle of a message through the RIB is as follows:

1. The publishing adapter creates the message. The event that triggers the message creation
may be a polling operation in case of PL/SQL applications or a synchronous invoke in case

Chapter 2
Simple Message Flow

2-8

of Java EE applications or a request in case of SOAP application. The message is
published to a predetermined JMS topic.

2. The message is now available for all registered subscribers to the JMS topic for pick up.
Subscription is based on the message family.

3. Once a subscriber gets the message, it is free to process that message according to its
own rules. In the case of a transformer adapter, the adapter can open the message, modify
its contents, and then publish the modified message to a new topic. The source topic and
destination topic that a TAFR uses must always be distinct/different topics. There may be
new subscribers to the modified message, and the scenario is repeated for each of these
subscribers.

4. When each subscriber has finished (commit) processing a message, the JMS server
updates the state of the message to reflect that it has been processed by this subscriber.

5. The JMS Server deletes the messages on the topic after delivering it to all the registered
subscribers.

Two types of applications require this data and subscribe to it. One type of subscribing
application requires a certain transformation be applied to the data, but the other type of
subscriber can process the message without any transformations.

The RIB Hospital
The RIB Hospital is a collective term for a set of Java Classes and database tables whose
purpose is to provide a mechanism to handle system and business related errors while
meeting the fundamental RIB requirements:

• Guaranteed once-and-only-once successful delivery.

• Preservation of publication sequence (even in case of failures).

When a message is processed, the adapter checks to see if the RIB Hospital contains any
messages associated with the same businessObjectId as the current message. If so, then the
adapter places the current message in the hospital as well. This is to ensure messages are
always processed in the proper sequence. If proper sequencing is not maintained, then the
subscribing application's data can get corrupted.

If an error occurs during message processing, the subscribing adapter notes this internally and
rolls back all work associated with the message. When the message is re-processed (since it is
yet to be processed successfully), the adapter now recognizes this message is problematic
and checks it into the hospital.

For Publication, there are some RMS publishers that return an 'H' status to denote a problem
creating a new message for a specific business object. This status may be due to database
locks being held by on-line users of an Oracle Forms application or it could also be due to
some data incompatibility found in the GETNXT() procedure. Whenever a publisher recognizes
that a message for a business object cannot be published due to one of these conditions, the
message must go into the RIB Hospital.

After a message is checked into the RIB Hospital, a retry adapter extracts the message from
the hospital and tries to re-publish it to the integration bus.

RIB Hospital Dependency Check
The RIB Hospital dependency check logic assumes that each message family has a single
unique businessObjectId for all business object entities its messages are associated with. This
businessObjectId must be the same for the same business entity across all message types
within the message family. If any message for a specific business entity is placed into the RIB

Chapter 2
The RIB Hospital

2-9

Hospital, then the RIB Hospital dependency check logic automatically inserts any subsequent
messages for the same business object. This is to preserve the message sequencing and
guaranteed exactly once successful message processing. Otherwise, multiple update
messages for a business object may be processed in an incorrect order and create
incompatibilities between applications.

If the businessObjectid is not set, then there is no dependency check. Not all message families
set the businessObjectId or it is not set on all message types. See the Oracle Retail application
documentation (for example, "Message Publication and Subscription Designs" in the Oracle
Retail Merchandising System Operations Guide Volume 2).

RIB Hospital Insert
In an event of failure during message subscription, the error is flagged within the RIB Hospital
software, resulting in rollback of the work done in the retail application, the adapter returns
failure so that the database transaction is rolled back as well, and the message is kept on the
integration bus topic. This is because subscribing adapters are executed within the context of a
distributed transaction, using the XA two-phase commit protocol. This transaction is controlled
by the Java EE Application Server. Immediately after the roll back, JMS re-delivers the
message back to the subscribing adapter and this time the RIB Hospital software detects the
previously flagged message and inserts the message in to the RIB Hospital tables and
message is removed from the JMS topic.

When the initial failure occurs while processing the message, the error is flagged within the
RIB Hospital software, the adapter returns failure so that the database transaction is rolled
back, and the message is kept on the integration bus topic.

Note:

The XA interface is a standard protocol between a transaction manager and a
database or resource manager. Note that both the JMS topic connection and the
database connection must support the XA protocol. For more information regarding
the XA standard, see the URL http://www.opengroup.org.

RIB Hospital Tables
The RIB Hospital tables are:

• RIB_MESSAGE - contains the message payload, all single-field envelope information, and
a concatenated string made from <id> tags. It also contains a unique hospital ID identifying
this record within the hospital.

• RIB_MESSAGE_FAILURE - contains all failure information for each time the message was
processed.

• RIB_MESSAGE_ROUTING_INFO - contains all of the routing element information found in
the message envelope.

• RIB_MESSAGE_HOSPITAL_REF - contains all of the hospital reference information found
in the message envelope.

A database sequence, RIB_MESSAGE_SEQ, is used to maintain a unique message number
associated with each message placed into the RIB Hospital.

Chapter 2
The RIB Hospital

2-10

http://www.opengroup.org

These tables will have been created during the database portion of the Oracle Retail
application installation (for example, RWMS, SIM, RPM, AIP, RFM, OMS, or RMS).

The RIB Hospital tables are internal system tables that maintain the RIB runtime state of the
system. The entries in these tables must not be manipulated by non RIB tools when the RIB is
running.

RIB Hospital Retry
After a message is inserted into the RIB Hospital, the hospital retry adapter is used to re-post
the message to the JMS in order to retry its processing. The assumption is that the error is a
transitory one; records locked or there is an external dependency that has not been met. The
number of times a message is retried is configurable.

The hospital retry is responsible for maintaining state information for hospital records or what
has happened to the record or message information. Each time the message is reprocessed, a
record is kept of the event along with the results. The design is to provide a means to halt
processing for messages that cause errors while allowing continued processing for the good
messages.

One element of this information is whether the message has been queued to the JMS topic for
re-try processing. So manually deleting messages from the hospital database using SQL
directly may produce severe processing problems. Also, deleting messages directly from the
JMS provider may result in a message that is never retried again, as the logic in the retry
assumes the message is queued within the JMS.

There are three kinds of hospital retry adapters:

• Sub Retry Adapter

• JMS Retry Adapter

• Pub Retry Adapter

Chapter 2
The RIB Hospital

2-11

All subscriber side retrying of messages are handled by the Sub Retry Adapter. The Sub Retry
Adapter looks at all messages with reason code SUB, then filters and identifies the messages
that are ready to be reprocessed, keeping message ordering in mind.

Oracle Retail applications are unaware that the integrations of the business data is happening
through a JMS server. RIB abstracts the fact it is using a JMS server from the retail
applications. When the JMS server is down or RIB has some problem publishing to the JMS
server, RIB will not rollback the transaction as long as it is a recoverable problem. In such
situation all messages are inserted to the RIB Hospital with a reason code of JMS and
publications continues on. The JMS Retry Adapter retries all messages with reason code of
JMS at a later time.

All messages with reason code of PUB are retried by the Pub Retry Adapter. RMS is the only
retail application that needs the Pub Retry Adapter.

PUB Retry Adapter
The following diagrams illustrate how the PUB Retry Adapter works.

Chapter 2
The RIB Hospital

2-12

Chapter 2
The RIB Hospital

2-13

Chapter 2
The RIB Hospital

2-14

Hospital Attempt (Retry) Count
When the message first comes through the subscriber, if there is no businessObjectid, then
there is no dependency check performed. If the message cannot be processed, it is then
inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber, that has a businessObjectid, a dependency
check is performed. If there is no dependency and the message cannot be processed, it is then
inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber that does match the ID and family of another
message in the hospital is known to be dependent, so it goes to the hospital immediately, with
an attempt_count = 0.

Exception to this rib-tafr app, in case of rib-tafr attempt_count is 1, even if the message is
inserted into the hospital as a dependent message because tafr adapters work with two topics
and message would already be subscribed once by the tafr, therefore it always has
attempt_count=1.

JMS Delivery Count
JMSXDeliveryCount is a message property set by AQ JMS. This property is checked to see if
the message is being redelivered by the JMS. If the count MAX_REDELIVERY_THRESHOLD
(set to 2) is reached, the RIB subscribers assume that the message is being re-delivered; the
message will be determined as a poison message. The message is written to the file system
(at the same location where application log files are written), and the adapter is shut down in
such scenarios. An administrator must decide how this message will be handled.

Chapter 2
The RIB Hospital

2-15

3
Cloud

This chapter describes the RIB cloud.

The following diagram describes a sample hybrid architecture in which some of the retail
applications are on-premise and some other (including RIB) are in the cloud. In this
architecture, the retail applications RWMS is on-premise, while RIB is on the cloud.

Figure 3-1 Retail Integration Suite - Cloud Architecture

In order to support cloud deployment (including a hybrid cloud), RIB is enhanced with the
addition of two Web services. These are injector and publisher Web services that allow retail
applications to communicate with other applications.

Configuring RIB-RWMS for Hybrid Cloud Deployment Topology
RWMS on-premise cannot communicate with RMS and other retail apps, which are all in cloud
via RIB. As RIB is already supported in cloud, for enabling the integration of RWMS with all
other retail applications which are in the hybrid cloud environment, RIB follows the primary/
secondary approach. The secondary resides close to on-prem RWMS, while the primary is on-
cloud. Communication between primary and secondary is through web service calls. The RIB-
RWMS primary invokes the new web services exposed by secondary RIB-RWMS to send/
receive messages to/from other applications on cloud via RIB.

3-1

For RIB-RWMS to communicate with RWMS on premise and RIB on cloud, it should be
deployed in primary-secondary topology. Hybrid cloud set-up for RWMS involves a two part
installation, one for each primary (cloud) and secondary components (on-premise).

Figure 3-2 RIB-RWMS Hybrid Cloud Architecture

Note:

The client-server architecture is only applicable to RIB and RWMS integration, where
RIB is deployed on Next Gen SaaS Platform and the legacy RWMS is hosted on on-
prem/PaaS.

Installation and Setup instructions for RIB-RWMS Secondary (On-Premise)
This section describes the installation and setup instructions. This includes the
installation prerequisites, preparing the WebLogic server, creating a WebLogic domain,
verifying installation of wls policies, extending an existing domain to add wls policies, and
deploying the EAR file.

Note:

The screen captures included in the following steps are for example only. Therefore,
consider the illustrations as guides only; the values shown may not always apply.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-2

Installation Prerequisite
The rib-rwms secondary (on-premise) application requires Oracle WebLogic Server 12c
(12.2.1.4.0) and must be built with Java 8 (JDK 1.8.0+ 64 bit or later), with the latest security
updates.

Important:

If there is an existing WebLogic 12.x.x or 10.3.xc installation on the server, you must
upgrade to WebLogic 12.2.1.4.0. All middleware components associated with
WebLogic server 10.3.6 should be upgraded to 12.2.1.4.0. Back up the
weblogic.policy file ($WLS_HOME/wlserver/server/lib) before upgrading your
WebLogic server, because this file could be overwritten. Copy over the
weblogic.policy backup file after the WebLogic upgrade is finished and the post-
patching installation steps are completed. For upgrading your WebLogic server to
12.2.1.4.0, use the appropriate Upgrade Installer.

Prepare the WebLogic Server
Take the following steps to prepare the WebLogic server:

1. Find fmw_12.2.1.4.0_infrastructure_Disk1_1of1.zip and download this file to your
system.

2. Extract the contents of this zip file to your system. Use the
fmw_12.2.1.4.0_infrastructure.jar file to run the installer.

3. Run the installer by executing the java -jar fmw_12.2.1.4.0_infrastructure.jar file.
The Welcome window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-3

4. Click Next. The Auto Updates window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-4

5. Select the appropriate radio button and click Next. The Installation Location window
displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-5

6. Click Browse to select the Oracle Home location where the Weblogic server is to be
installed. Click Next. The Installation Type window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-6

7. Select Fusion Middleware Infrastructure and click Next. The installer performs the
prerequisite checks and ensures all required conditions are satisfied.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-7

8. When the prerequisite check completes successfully, click Next. The Installation Summary
window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-8

9. Click Install. The Installation Progress window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-9

10. Click Next when the installation completes. The Installation Complete window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-10

Creating Required RCU Schema Using the Repository Creation Utility
To create a schema user for the domain, take the following steps:

1. Run the RCU from the <MW_HOME>/oracle_common/bin folder. The Welcome window
displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-11

2. Click Next and select the Create Repository option.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-12

3. Click Next. Enter the database credentials where the schema user has to be created.

4. Click Next. Specify the prefix to be used for the schema user creation. For example, INT.
Select Metadata Services, Weblogic Services, and Oracle Platform Security Services.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-13

5. Click Next. Specify the password.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-14

6. Click Next. The window provides the details of tablespaces created as part of schema
creation.

7. Click Next. The Confirmation window displays.

8. Click OK. The Summary window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-15

9. Click Create and proceed to create the schema. This could take a while to complete. The
Completion Summary window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-16

Creating a WebLogic Domain with wls Policy
To create a new WebLogic domain with wls policy, take the following steps:

1. Run config.sh from the <ORACLE_HOME>/oracle_common/common/bin folder. The
Configuration Type window displays.

2. Select Create a new domain, provide Domain Location, and click Next. The Templates
window displays. By default, the Basic WebLogic Server Domain [wlserver] checkbox is
selected. Select the Oracle JRF [oracle_common], Oracle Enterprise Manager [em],
Oracle WSM Policy Manager [oracle_common], and Weblogic Advanced
WebServices for JAX-WS Extension [oracle_common] check boxes.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-17

3. Click Next. The Application location window displays; provide the application location.

4. Click Next. The Administrator Account window displays. Enter the user credentials you
want to use to log in to the WebLogic Administration Console.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-18

5. Click Next. The Domain Mode and JDK window displays. Set the Domain Mode as
Production and select the JDK version (JDK 1.8 with the latest security updates) you want
to use.

6. Click Next. The Database Configuration Type window displays.

a. Select the RCU Data radio button.

b. Select Oracle as the Vendor.

c. Select Oracle's Driver (Thin) for Service connections; Version 9.0.1 and later as
the Driver.

d. Enter the Service, Host Name, Port, Schema Owner, and Schema Password for the
*_STB schema created using RCU.

e. Click Get RCU Configuration.

The Connection Result Log displays the connection status.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-19

7. Click Next. The JDBC Component Schema window displays.

8. Click Next. The JDBC Component Schema Test window displays the status on whether
the JDBC tests on the schemas were successful.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-20

9. Click Next. The Advanced Configuration window displays. Select all the checkboxes,
except the Domain Frontend Host Capture and JMS File Store options, in this window.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-21

10. Click Next. The Administration Server window displays. Enter the Listen Address and the
Listen Port details.

11. Click Next. The Node Manager window displays. Select the Node Manager Type and
enter the Node Manager credentials.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-22

12. Click Next. The Managed Servers window displays.

a. Click Add to add a managed server on which you will deploy the application.

b. Enter the Server Name, Listen Address, and Listen Port for the managed server.

c. Set the Server Groups to JRF-MAN-SVR.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-23

13. Click Next. The Clusters window displays.

a. Click Add to add a cluster. This is an optional step in the procedure.

14. Click Next. The Server Templates window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-24

a. Click Add to add a server template. This is an optional step in the procedure.

15. Click Next. The Coherence Clusters window displays.

a. Add a coherence cluster. This is an optional step in the procedure.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-25

16. Click Next. The Machines window displays.

a. Click Add.

b. Enter the Name and the Node Manager Listen Address for the managed server.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-26

17. Click Next. The Assign Servers to Machines window displays. Add the Admin Server and
the managed server to the computer.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-27

18. Click Next. The Virtual targets window displays.

a. Click Add to add a Virtual target. This is an optional step in the procedure.

19. Click Next. The Partitions window displays.

a. Click Add to add a Partition. This is an optional step in the procedure.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-28

20. Click Next. The Deployments Targeting window displays. Select wsm-pm from
Deployments and add it to Admin Server in Targets.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-29

21. Click Next. The Services Targeting window displays.

22. Click Next. The Configuration Summary window displays. Verify that all information
described in this window is accurate.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-30

23. Click Create. The Configuration Progress window displays a message when the domain is
created successfully.

24. Click Next. The Configuration Success window displays that describes the Domain
Location and Admin Server URL once the configuration is complete.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-31

25. Click Finish to complete creating the WebLogic domain and managed servers.

Steps for ear Deployment
1. Client connector pak contains the latest v24 rib-rwms application distribution for on-prem

installation. Download and extract the RIB kernel for RMWS-secondary-app
RibKernel24.0.000ForRwmsSecondary24.x.xApps_eng_ga.jar.

2. Extract the contents of the jar file.

3. Open rib-deployment-env-info.xml found inside ./rib-rwms-secondary-home/
deployment-home/conf.

4. Edit this file to specify your deployment environment information.

a. Make sure the following entries are present in the <app-in-scope-for-integration>
section:

<app id="rwms" type=" slave-plsql-app" />

b. Update the rib-jms-servers section to provide the AQ JMS server details. Because
the secondary app deploys on premise, it will not have access to AQ JMS on the
cloud. Use RWMS app schema detail for AQ JMS setup. For example:

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-32

c. Update the RIB domain details in the weblogic-application-servers section.

d. Skip updating the rib-func-artifact-server details. Rib-func-artifact deployment
is not required for secondary (on-prem) rib-rwms.

e. Update RIB-RWMS secondary server details. For example:

f. Make sure the datasource URL (host, port n service) entries are updated in the rib-app
section of rib-rwms secondary.

Note:

As the secondary app deploys on-premise, it will not have access to AQ JMS and
Error hospital. Therefore, all the datasources must connect to the RWMS app
schema.

5. Compile: Run the rib-home/application-assembly-home/bin/rib-app-compiler.sh
script with setup-security-credential from the rib-home/application-assembly-home/bin
directory.

Example:

./rib-app-compiler.sh -setup-security-credential

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-33

6. Deploy: Execute the rib-home/deployment-home/bin/rib-app-deployer.sh script with
the appropriate command line parameter.

rib-app-deployer.sh -deploy-rib-app-ear rib-<app>
rib-func-artifact deployment is not required.

7. Verify: Once the rib-rwms secondary app is deployed, open the rib-admin-gui from a web
browser using the credentials provided during compilation:

<http or https://>host:port/rib-rwms-admin-gui

8. Make sure the Publication and Subscription WS are available to use.

Example:

https://ribhost.example.com:17010/
RemotePlsqlPublisherComponentServiceBean/
RemotePlsqlPublisherComponentServiceBeanService?WSDL
https:// ribhost.example.com:17010/
PlsqlApplicationMessageInjectorServiceBean/
PlsqlApplicationMessageInjectorServiceBeanService?WSDL

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-34

4
RIB Self-Service Enablement

The Self-service enablement is a feature for provisioning RIB on cloud post deployment only.
Because of the promising high availability feature of applications on the cloud environment, this
is an essential feature that minimizes the redo of the RIB install cycle post configuration
changes to any RIB-app.

The Self-service enablement allows below provisioning in rib-<app>:

Table 4-1 Self-Service Feature

Self-Service Feature: Self Service Feature on RIB-Admin GUI

Provisioning RIB adapters

Choosing the subset of RIB
adapters in scope for
integration

4-1

Table 4-1 (Cont.) Self-Service Feature

Self-Service Feature: Self Service Feature on RIB-Admin GUI

Provisioning System Options

Dynamically modifying
configurations via, rib-<app>
properties file.

Example shown for rib-ext for
dropping messages for specific
types for subscriptions.
Similarly, the drop messages
types can be configured for
other RIB applications like rib-
sim, rib-rms and so on.

Note: There are other
infrastructure level options that
are available only for AMS or
devops teams to configure or
update, as shown in the
screenshot.

Provisioning Injector Service
URL

Hook to alternate subscribing
retail application installation.
Injector service url can be
updated only for customer
owned apps like -rib-ext , rib-lgf

Chapter 4

4-2

Table 4-1 (Cont.) Self-Service Feature

Self-Service Feature: Self Service Feature on RIB-Admin GUI

RIB ServiceMonitor

Verify InjectorService
provisioned in previous step.

Provisioning RIB-Adapters
Every rib-<app> contains a set of publish and subscribing adapters for exchanging messages
between retail applications. Subscribing adapters are MDB which are resource intensive. The
higher the number of adapters in scope the higher is the resource crunch. In an environment
which does not make use of all the publishing and subscribing adapters bundled with the rib-
app, the user is allowed to choose a subset of the adapters needed based on the RIB
functional flow. This configuration change takes effect dynamically and does not require a
redeployment of the rib-<app>.

Follow the steps below for configuring the rib-<app> adapters in scope of the integration.

1. By default , dynamic adapter selection feature is enabled for rib-ext.
enableDynamicAdapterInstanceSelection flag is applicable ONLY for RIB-EXT and this
flag shouldn't be used in any other rib-apps.

enableDynamicAdapterInstanceSelection=true
2. Only if the above property is set to true, the user can select the adapters dynamically.

Below is the default landing page when RIB adapters added in scope.

3. In the RIB-Admin GUI, the Manage Configuration > Adapter Selection tab provides the list
of all available adapters whose subset can be chosen to publish, subscribe and retry rib
messages based on rib integration flows.

Chapter 4
Provisioning RIB-Adapters

4-3

4. Select the subset of publishing, subscribing and retry adapters depending on the rib-
integration-flow in consideration and click Save.

Consider the below rib-integration flows:

rib-sim publishing the InvReq message

 <message-flow id="31">
 <node id="rib-sim.InvReq_pub" app-name="rib-sim"
 adapter-class-def="InvReq_pub" type="DbToJms">
 <in-db>default</in-db>
 <out-topic>etInvReq</out-topic>
 </node>
 <node id="rib-ext.InvReq_pub" app-name="rib-ext"
 adapter-class-def="InvReq_pub" type="DbToJms">
 <in-db>default</in-db>
 <out-topic>etInvReq</out-topic>
 </node>
 <node id="rib-rms.InvReq_sub" app-name="rib-rms"
 adapter-class-def="InvReq_sub" type="JmsToDb">
 <in-topic>etInvReq</in-topic>
 <out-db>default</out-db>
 </node>
 <node id="rib-ext.InvReq_sub" app-name="rib-ext"
 adapter-class-def="InvReq_sub" type="JmsToDb">
 <in-topic>etInvReq</in-topic>
 <out-db>default</out-db>
 </node>
 </message-flow>

rib-sim subscribing the ItemLoc message from RMS

<message-flow id="6">
 <node id="rib-rms.ItemLoc_pub" app-name="rib-rms"
 adapter-class-def="ItemLoc_pub" type="DbToJms">
 <in-db>default</in-db>
 <out-topic>etItemLocFromRMS</out-topic>
 </node>
 <node id="rib-ext.ItemLoc_pub" app-name="rib-ext"
 adapter-class-def="ItemLoc_pub" type="DbToJms">
 <in-db>default</in-db>
 <out-topic>etItemLocFromRMS</out-topic>
 </node>

Chapter 4
Provisioning RIB-Adapters

4-4

 <node id="rib-sim.ItemLoc_sub" app-name="rib-sim"
 adapter-class-def="ItemLoc_sub" type="JmsToDb">
 <in-topic>etItemLocFromRMS</in-topic>
 <out-db>default</out-db>
 </node>
 <node id="rib-rwms.ItemLoc_sub" app-name="rib-rwms"
 adapter-class-def="ItemLoc_sub" type="JmsToDb">
 <in-topic>etItemLocFromRMS</in-topic>
 <out-db>default</out-db>
 </node>
 <node id="rib-ext.ItemLoc_sub" app-name="rib-ext"
 adapter-class-def="ItemLoc_sub" type="JmsToDb">
 <in-topic>etItemLocFromRMS</in-topic>
 <out-db>default</out-db>
 </node>
 </message-flow>

Considering the above flows, select InvReq_Pub, and ItemLoc_sub and both Hospital
adapters as shown in the image below.

5. Verify that the selected adapters are reflected on the Adapter Manager tab. Newly added
adapters in scope will be down. Newly added adapters in-scope need a start from the GUI
to become ACTIVE as a one time activity; otherwise, newly added adapters won’t show up
on topic on checking from jms-console and won’t even be registered (messages will be
lost). Sometimes you need to start adapters 2-3 times because of one known issue where
the subscriber registration process is times out. Post start of newly added adapters, ensure
adapters are showing up on topic on checking from jms-console. If newly added adapters
are not showing up on topic, please try to start them again from the UI. jms-console will not
show adapters on topic immediately and there is expected 3 to 5 mins of delay.

Chapter 4
Provisioning RIB-Adapters

4-5

6. All the adapters are in scope by default for rib-<app>:

enableDynamicAdapterInstanceSelection = false

This is the default value for all rib-<app>s except rib-ext for rib-ext following flag is set to
true

enableDynamicAdapterInstanceSelection = true

Note:

enableDynamicAdapterInstanceSelection flag is not available for end user
update. Follow the steps in the next section to disable this flag for other rib-
<apps> in case they are enabled.

How to Remove Dynamic Adapters Selection in RIB-RMS
The concept of Dynamic Adapters Selection applies only to the RIB-EXT application and all
other RIB-<apps> such as RIB-RMS, RIB-SIM, RIB-TAFR etc do not support the dynamic
adapters. Due to our documentation defect, which has been fixed now, some of our customers
have used this feature in non RIB-EXT apps, especially in RIB-RMS, which is unsupported and
can cause major issues such as messages piling up on JMS topics and slow down the entire
system. customers should remove dynamic selection of the adapters in any rib-app they might
have configured it in ex: RIB-RMS/RIB-TAF/RIB-SIM

Steps :

1. Log into the RIB-RMS Admin GUI.

2. Go to the Adapter Manager page and capture the list of adapters present on the page.

3. Go to Manage Configurations -> Adapter Selection and select all the adapters.

4. Click Save. Make sure all the adapters are displayed in the Adapter Manager page.

Chapter 4
How to Remove Dynamic Adapters Selection in RIB-RMS

4-6

5. Go to Manage Configurations -> System Options and
set enableDynamicAdapterInstanceSelection to false.

6. Go to the Adapter Manager page and bring down all the adapters that do not belong to the
list collected in step 2.

Provisioning System Options
Application specific properties for the rib-<app> are configured in the rib.properties file. When
RIB is deployed on cloud, the application specific properties can be configured in the RIB-
Admin GUI application. The Manage Configuration > System Options tab allows the user to
edit the properties values post deployment. There are some infrastructure level options that are
available only for AMS or devops teams to configure or update.

Following are the frequently configurable RIB properties:

1. Drop-messages-of-types- for dropping messages for specific types for subscriptions.

2. Updating facility_id and facility_type for rib-tafr.

Chapter 4
Provisioning System Options

4-7

3. A new system option can also be added using 'Add' functionality in UI. Perform the
following steps to add the Facilities for rib-tafr.

• Click the Add button.

• Insert a new Facility ID.

For example: key - facility_id.PROD.12345 value - 1

4. Updating injector service url and policy for rest-app.

5. Updating IDCS host URL. This is needed only for customer owned applications using
Oauth for rest call.

Provisioning InjectorService URL
In the RIB-Admin GUI, the Manage Configuration > Injector Service page allows the user to
configure an injector service URL for a customer-owned applications.

Update injector service URL details by providing new host and port details and the user
credentials for the service.

Chapter 4
Provisioning InjectorService URL

4-8

RIB ServiceMonitor
Once the RIB integration environment is configured for use by various retail application, as a
sanity test the user may need to verify the integration end points. For RIB on cloud, we can
ping-test various webservices consumed by RIB using RIB admin GUI.

In RIB Admin GUI, the RibServiceMonitor page lists all the webservices consumed by the rib-
application and allows the user to ping the same. The webservices are pingable only if the
"ping" operation is supported by the webservice.

Chapter 4
RIB ServiceMonitor

4-9

5
Performance

Performance Factors
The performance of each of these components is influential in the overall performance of the
system:

• The application server(s) topology and configuration.

• The RIB deployment approach.

• The hardware sizing and configuration of the RIB hosts.

• The hardware sizing and configuration of the applications that are connected to the RIB.

• The hardware sizing and configuration of the JMS provider host.

• The hardware sizing and configuration of the RIB Hospitals hosts.

There are other factors that determine the performance of the overall system. Some of these
factors in a RIB environment are:

• Number of channels configured

• Number of messages present in the topic

• Size of the message

• Database clustering

• Application Server topology

• Number of TAFRs in the processing of the message

• Message aggregation

See "Performance Considerations" in the Oracle Retail Integration Bus Operations Guide.

Note:

For more information, see “Performance Considerations," in the Oracle Retail
Integration Bus Operations Guide.

Performance and Parallel Logical Channels
The RIB must provide guaranteed once and only once processing of business events
(messages) across the enterprise. Maintaining the order of business events across the
enterprise is critical to data integrity.

To provide guaranteed sequencing of message processing, RIB requires a guaranteed first in,
first out (FIFO) messaging system with guaranteed FIFO rollback. That is, when you rollback
the message from the consumer you get the same message back the next time so that it is

5-1

processed in sequence. JMS Provider provides this FIFO topic and FIFO rollback capability,
which enables RIB to guarantee message sequencing.

Processing messages in sequence results in operational overhead, as every message must be
checked against the database to find the status of previous messages on which it is dependent
(same businessObjectid). Sequencing creates an inherent bottleneck, in that only one
message is processed at once. For example, messages can come at the rate of 100 messages
per second, but a RIB subscribing adapter can process only one of those messages at a time
to preserve the order. To get around this bottleneck and improve performance, RIB provides
options for optimization and functionality.

First, RIB processes messages in sequence only when the publishing application wants it to be
processed in sequence. The message producer application defines a businessObjectid whose
existence informs RIB that this and all subsequent messages with the same businessObjectid
have to be processed in order.

Second, parallel logical channels can be created for each message flow paths in the
integration system to improve performance. Parallel logical channels are virtual logical
message flow paths within the same physical JMS topics. To add additional channels, each
adapter participating in a message flow must be configured with additional adapter instances.

Using parallel logical channels is not the solution for all performance problems in the
integration system. They can help only when the API for the corresponding applications is
written with non-locking logic and concurrency invocation in mind.

Generally, integration for the retail application APIs are the biggest factor for bottlenecks in the
overall messaging system throughput. It is not appropriate to start creating parallel logical
channels at the first sign of performance problem. It is important to analyze and tune the
integration APIs of the retail applications before considering the use of parallel channels.

Using parallel logical channels increases complexity, CPU demands, and memory requirement,
resulting in more operational overhead. Use them only when, after all other components are
fully tuned, you are still not able to meet your target numbers.

Chapter 5
Performance and Parallel Logical Channels

5-2

6
Security

Security in the integration layer is a big concern for every retail enterprise. The security system
should be open enough to allow trusted remote applications to integrate easily and, at the
same time, lock down unauthorized remote access. To address security concerns, RIB utilizes
the security modules available in the Oracle middle ware and database systems.

There are two categories of administrators in RIB: RIB System Administrators and RIB
Application Administrators. RIB System Administrators are involved in installing, configuring,
deploying defect fixes, and making sure that the integration infrastructure is up and running
properly. They generally are concerned with the business side of the integration system. Their
tasks include bringing up or taking down RIB adapters, and fixing data issues with message
payloads using RIHA. There are separate realms, roles, groups, and users defined for each
category of RIB administrators.

RIB Application Administrators Security Domain
For each rib-<app>.ear deployed, RIB creates the users belonging to the below groups:

• RicsAdminGroup

• RicsOperatorGroup

• RicsMonitorGroup

The default groups and user that RIB creates must not be deleted or modified.

RIB follows a role-based authorization for allowing valid users to perform a defined set of
operations from the rib-admin-gui. The user belonging to each of above groups will be
associated with a well defined role and thus able to perform authorized operations only. It is
recommended that you have a unique user belonging to each group.

Integration with SIOCS
1. RIB will use IDCS OAuth2 for authentication of ReST calls both inbound and outbound

(publisher/injector restful services). The primary authentication mechanism in the cloud is
OAuth2 using the IDCS authenticator. Out-of-the-box configuration expects OAuth2 to be
used.

2. RICS to EICS integration will be a ReST call with OAuth2.

3. The EICS injector URL will be auto-wired as part of RICS provisioning. URL will look
something like:

http://wtss-svc.<SIOCS_SUB-NAMESPACE>.svc.occloud:9999/siocs-int-services/
internal/api/inject

4. The RICS IDCS Client ID and Secret are auto-wired with rib-
sim_oauth2_application_client_user-name-alias as part of provisioning. These will be used
to get the access token for accessing EICS end point.

6-1

Note:

rib-sim_ws_security_user-name_alias is for BasicAuth and should be set empty
for OAuth2 however auto wiring takes care of setting this alias to empty.

5. IDCS Url is also auto-wired, and is set during RICS provisioning. The URL looks something
like:

https://idcs-<TENANT>/oauth2/v1/token

Step Comment

Access rib-sim admin
GUI at https://
<external-load-
balancer>/<sub-
namespace>/rib-sim-
admin-gui

Chapter 6
Integration with SIOCS

6-2

Step Comment

Navigate to Manage
Configurations-> System
Options.

Search and verify the
following system
options:

a. injector.service.app
Type : rest-app

b. Check the
injector.service.end
point.url. URL
should be
something like:

http://wtss-
svc.<SIOCS_SUB-
NAMESPACE>.svc.oc
cloud:9999/siocs-
int-services/api/
ribinjector/
inject

c. Look for
injector.service.secu
rity.policyname,
policy should be
policyC for internal
calls.

d. oauth2.default.auth
orizationServerUrl :
RICS IDCS Host for
making call to get
the access to-ken.

Chapter 6
Integration with SIOCS

6-3

Step Comment

Navigate to Manage
Configurations-> Injector
Service.

Verify the following:

a. Current Injector
Service URL :
should point to
correct injector
service url.

b. rib-
sim_ws_security_us
ername_alias
credential should be
empty.

c. rib-
sim_oauth2_applica
tion_client_user-
name-alias
credential must be
getting populated
with client ID and
secret.

How to verify whether
the SIM injector URL
and credentials are
correct.

Navigate to RIB Service
Monitor Tab

a. Click ping to test
the connectivity.

Integration with ROB
1. RICS to ROB integration is Rest call, Oauth2 Authorization.

2. The integration is configured between ROB and RICS via the ReST service (which is
HTTPS).

3. ROB injector URL looks something like this:

https://<external-load-balancer>/<rob-sub-namespace>/rib-injector-services-web/orcos/
resources/injector/inject

Chapter 6
Integration with ROB

6-4

4. The OB IDCS app Client ID and Secret will be used to get the access token for accessing
ROB end point.

5. The IDCS Url is set during RICS provisioning. The URL looks something like:

https://idcs-<TENANT>/oauth2/v1/token

Note:

rib-rob_ws_security_user-name_alias is for BasicAuth and should be set empty for
OAuth2

Table 6-1 Integrating with ROB

Category Steps Comment

Access RIB
Admin GUI

Access the rib admin
GUI at https://<external-
load-balancer>/rib-rob-
admin-gui

Log in with the admin
user.

Chapter 6
Integration with ROB

6-5

Table 6-1 (Cont.) Integrating with ROB

Category Steps Comment

Verify
Configuratio
n and update

Navigate to Manage
Configurations ->
System options

1. Search for and
verify the following:

destination.retail.ap
pType: rest-app

2. Check the value for
InjectorService
URL
(injector.service.en
dpoint.url).URL
should look
something like this:
https://
omni.retail.us-
phoenix-1.ocs.oc-
test.com/rgbu-
omni-rgbu-stg83-
obcs/rib-injector-
services-web/
orcos/resources/
injector/inject

3. Security Policy
(injector.service.sec
urity.policyname):
policyA

4. IDCS OAuth Server
URL
(oauth2.default.aut
horizationServerUrl
): https://<idcs-
tenant>/oauth2/v1/
token

Verify
username
and
password

Navigate to Manage
Configurations - >
Injector Service

1. Choose rib-
rob_ws_security_u
ser_name_alias
from drop down.

2. Set username and
password to be
empty.

Chapter 6
Integration with ROB

6-6

Table 6-1 (Cont.) Integrating with ROB

Category Steps Comment

Verify
ClientID and
Secret

Navigate to Manage
Configurations - >
Injector Service

Choose rib-
rob_oauth2_application
_client_user-name-alias
from drop down and
verify details

1. Verify a valid Client
ID in username is
set.

2. Verify a valid Client
Secret in password
is set.

Ping test Navigate to Manage
Configurations -> RIB
Service Monitor

1. Click on ping

2. It should return
success

Verify
provided
credentials

How to verify if the ROB
injector URL and
credentials are correct.

1. Get the ROB Client ID and secret.

2. Execute the following curl commands for grant_type cli-
ent_credentials:

ClientId=RGBU_RICS_STG83_APPID
ClientSecret=776381f5-88f5-4995-aa57-ecc7b7a1a8d7
IDCSUrl=https://
idcs-24e4baae56764e91be371e6a2060d66e.identity.c9dev2
.oc9qadev.com
AccessToken=$(curl -i -X POST \
--user $ClientId:$ClientSecret \
-H "Content-Type: application/x-www-form-
urlencoded;charset=UTF-8" \
$IDCSUrl/oauth2/v1/token \
-d
"grant_type=client_credentials&scope=urn:opc:idm:__my
scopes__" | grep -o -P '(?<=access_token":").*(?
=","token_type)')
echo $AccessToken
ribExtServiceUrl=https://omni.retail.us-
phoenix-1.ocs.oc-test.com/rgbu-omni-rgbu-stg83-obcs/
rib-injector-services-web/orcos/resources/injector/
ping
curl -ivkL --noproxy '*' -H "Authorization:
Bearer $AccessToken" -H "Content-Type: application/
xml" -X GET $ribExtServiceUrl

if you get a 200 response, then the configuration is correct

if you get 401 unauthorized, then Client ID and secret are
incorrect

Chapter 6
Integration with ROB

6-7

7
Integration with Fusion Middleware

RIB is certified on the Oracle Fusion Middleware Application Server. All RIB publishers,
subscribers, and TAFRs are Java EE standard components (EJBs and MDBs) that are
deployed and managed by the WebLogic Application Server in managed instances. This
means that the RIB can be deployed into an existing Fusion Middleware architecture without
any changes.

All RIB message payloads are fully standard compliant XSD based. All of the XML payloads
are namespace aware and follow the general standards as well as the conventions that make
them compatible with other Oracle Fusion products such ESB and BPEL. The payload schema
definitions (XSDs) are packaged with each release along with sample messages.

The recommended approach for integration between the RIB and Oracle Fusion Middleware
products is at the JMS topic level. Any standards compliant tool or product that can interface to
the JMS and subscribe and publish messages can be integrated with the RIB.

There are some key functional requirements that an integrating application must follow. It must
have the ability to do the following:

• Connect to a standard JMS and publish to a topic.

• Create a durable subscriber to a RIB JMS topic

• Set user-defined message properties.

• Encode and decode RIB payloads embedded within the RIB message envelope.

General RIB to Fusion Middleware Architecture

7-1

The Oracle Fusion Middleware products, such as ESB and BPEL, use a common standard
JMS Adapter. This adapter can be used to connect to the RIB certified JMS Provider and
topics.

The JMS topics that the RIB creates for publication and subscription are detailed in the Oracle
Retail Integration Bus Integration Guide, along with all of the message payloads for each
message family.

The RIB html encodes each message payload and inserts it into the RIB messages envelope.
Each message has a JMS user-defined property called threadValue that is required to be set
on all in-bound messages. In a multi-channel message flow, the subscriber will need to set the
message selector to an appropriate threadValue to maintain message publication sequencing.

The xml schema definitions for the payloads and the RIB Messages envelopes are packaged
and shipped with the RIB.

The RIB JMS topic names and message flows between the RIB adapters for each of the
Oracle Retail applications are defined in the rib-integration-flows.xml file. This file is the single
source of truth that the RIB release uses at configuration and run-time. It is required to be
accessible within each RIB deployment: http://<server>:<port>/rib-func-artifact/rib-integration-
flows.xml. During installation and configuration, this file is deployed as a part of the functional
artifact war file.

Chapter 7
General RIB to Fusion Middleware Architecture

7-2

8
Integration with External Applications

RIBforExt is the Oracle Retail Enterprise Integration component designed to address the
connectivity requirements for 3rd Party integrations in a hybrid cloud topology where the RIB is
deployed in the Retail Integration Cloud Services.

In a hybrid cloud scenario customers no longer have access to RIB's JMS server and cannot
directly publish and subscribe to messages on the JMS topics. The RIB-EXT app is designed
to fill that gap, it provides Web Service based APIs to publish to and subscribe from the RIB's
JMS from third party systems.

RIBforEXT has all of the RIB flows available for the deployment time configuration based on
the customer use cases.

RIB-EXT out-of-the-box provides the complete set of publishers, subscribers and retry
adapters needed for the external application to integrate with Oracle Retail applications using
RIB infrastructure.

The selective list of publisher and subscriber adapters needed by each specific external
application is defined by the customer's implementation team.

Implementing RIB-EXT
RIB-EXT is an Oracle Retail Integration Application that provides necessary communication
channel for external applications to publish and consume message from RIB's JMS on cloud
and premise.

8-1

Note:

BasicAuth will no longer be supported starting from the RICS v23.1.301.0 release.
RICS will enforce OAuth2 as the required authentication mechanism using the IDCS
authenticator. Oauth2 is being enforced for authorization for ongoing security reasons
and to ensure the customer stays within their OCI IAM limits. Customer/SI partner are
advised to prepare for this change and implement OAuth2 for both inbound and
outbound calls via RIB-EXT.

RICS is also enforcing environment specific Oauth scope for authorization of inbound
web service calls (RIB-EXT). The scope pattern that is used in the RICS IDCS app
creation template is rgbu:rics:RICS-<ENVIRONMENT> where ENVIRONMENT is the
environment type (STG, PRD, UAT, DEV1, DEV2, and so on). For details Refer
Section: Create OAuth2 Client Application in IDCS.

How to Send/Receive Messages to/from the RIB System
For third-party integration, RIB-EXT provides ReST API’s for external applications to send and
receive data from the RIB system. The following sections cover the implementation details.

External Application as a Publisher (rest-app) using OAuth2
The end point of publishing service follows below pattern:

Table 8-1 Publishing Service Pattern

Resource HTTP Method Endpoint

Ping GET GET https://<external_LB_url>/
<rics-sub-namespace>/rib-ext-
services-web/resources/
publisher/ping

Publish POST https://<external_LB_url>/<rics-
sub-namespace>/rib-ext-
services-web/resources/
publisher/publish

• RIB-EXT publishing service REST endpoints are protected using OAuth2 token-based
authentication meaning end points are accessible by sending along an access token.

• Scope will be used for authorization of REST services. Scope for RICS is in the following
format- rgbu:rics:RICS-<Environemnt Type><Environment Index> (that is, rgbu:rics:RICS-
DEV1).

• Client Credentials grant type is supported.

For getting access to RICS publishing service you need to create a client app in IDCS. IDCS
app generates an access token that will be used for making publishing service calls. Follow
steps for creating the client app in IDCS.

Chapter 8
Implementing RIB-EXT

8-2

Create OAuth2 Client Application in IDCS
Use Retail Home for creating the client app in IDCS. Once app is created you will get client id
and client secret both of them necessary to get access token. Follow the instructions below for
generating the access token and making service call using OAuth2 token.

1. Login into retail home as retail home administrator.

2. In retail home screen click on Settings menu icon on the left and then click on Application
Administration.

Chapter 8
Implementing RIB-EXT

8-3

3. On the Application Administra-tion menu click on Application Navigator Setup. Notice all
the hosted applications are listed here with their application and plat-form service url.

Settings -> Application Administration->Application Navigator Settings

4. Look for application with name RICS. If you are not seeing RICS application try refreshing
seed. Steps

a. Select the row with the application code as Rms.

b. Click the Refresh Seed Data button on top right corner of the menu.

c. Wait for some time and refresh the screen.

d. RICS should reflect now.

Chapter 8
Implementing RIB-EXT

8-4

5. If RICS application is not reflecting even after following step 4. Select the row with the
application code as Rms and click on the Actions menu on top left. Select Create IDCS
OAuth 2.0 Client. A dialog will open for entering oauth2 client details.

Note:

Create IDCS OAuth 2.0 Client option is available only for applications those have
platform service URL mentioned. RICS is making use of merch platform service
as both the apps are sharing same IDCS tenancy.

6. Skip this step if RICS application is not showing up. One of either Step 5 or Step 6 needs
to be followed.

Select a row with application code as RICS. Click on the Actions menu on top left and
select Create IDCS OAuth 2.0 Client. A dialog will open for entering oauth2 client details.

Chapter 8
Implementing RIB-EXT

8-5

7. This dialog takes the following values:

App Name is 2-100 characters and will be used as the name in IDCS. Provide unique
application name.

Description is a detailed description of the application.

Scope: <Custom environment-specific scope>

The scope pattern that is used in the RICS IDCS app creation template is
rgbu:rics:<SERVICETYPE>-<ENVIRONMENT> where SERVICETYPE is RICS and
ENVIRONMENT is the environment type (STG, PRD, UAT, DEV1, DEV2, and so on).

For example:

"scope": "rgbu:rics:RICS-PRD""scope": "rgbu:rics:RICS-STG"

Chapter 8
Implementing RIB-EXT

8-6

8. When the application is created, another dialog will open to show the client ID and client
secret of the new application. These values should be copied down to a safe location, as
they will only be shown once. Retail Home cannot retrieve the credentials again after the
dialog is closed.

9. Client ID and Client Secret from previous step will be used for generating access token.

Sample code for generating Access Token:

clientId=RICS_TEST_APPID
clientSecret=998e1e1d-f146-45a5-a9a1-99785e3ebf43
idcsUrl=https://idcs-234e8f7334564936aa0ed93f2c39e9ca.identity.pint.oc9qadev.com
scope=rgbu:rics:RICS-STG99
ec=$(echo -n "$clientId:$clientSecret" | base64 -w 0)

AccessToken=$(curl -iv \
-H "Authorization: Basic $ec" \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
--request POST $idcsUrl/oauth2/v1/token \
-d "grant_type=client_credentials&scope=$scope" | grep -o -P '(?
<=access_token":").*(?=","token_type)')

echo $AccessToken

10. Now service call can be made by passing along the access token generated in previous
step.

Here is sample curl command with Bearer token and rib-ext publisher ping

ribExtServiceUrl=https://rex.retail.us-phoenix-1.ocs.oc-test.com:443/rgbu-rex-eit-
stg99-rics/rib-ext-services-web/resources/publisher/ping
curl -ivkL --noproxy '*' -H "Authorization: Bearer $AccessToken" -H "Content-Type:
application/xml" -X GET $ri-bExtServiceUrl

Sample response

{"message": "ping() was called with input String of: hello"}
11. Publishing a message using access token.

Here is sample curl for publishing a message

Chapter 8
Implementing RIB-EXT

8-7

ribExtServiceUrl=https://rex.retail.us-phoenix-1.ocs.oc-test.com:443/rgbu-rex-eit-
stg99-rics/rib-ext-services-web/resources/publisher/publish
curl -ivkL --noproxy '*' -H "Authorization: Bearer $AccessToken" -H "Content-Type:
application/xml" -X POST $ribExtServiceUrl --data '<v1:ApplicationMessages
xmlns:v1="http://www.oracle.com/retail/integration/rib/ApplicationMessages/v1">
<v1:ApplicationMessage>
<v1:family>InvAdjust</v1:family>
<v1:type>InvAdjustCre</v1:type>
<v1:payloadXml><InvAdjustDesc xmlns="http://www.oracle.com/retail/
integration/base/bo/InvAdjustDesc/v1" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
xsi:schemaLocation="http://www.oracle.com/retail/integration/base/bo/
InvAdjustDesc/v1
http://www.oracle.com/retail/integration/base/bo/InvAdjustDesc/v1/
InvAdjustDesc.xsd"
;><dc_dest_id>DC_ES</
dc_dest_id><InvAdjustDtl><item_id>Aline</
item_id><adjustment_reason_code>stri</
adjustment_reason_code><unit_qty>22.4</unit_qty>
;<transshipment_nbr>ss</transshipment_nbr><from_disposition>ss</
from_disposition><to_disposition>sss</
to_disposition><from_trouble_code>sss</from_trouble_code>
<to_trouble_code>ss</to_trouble_code><from_wip_code>aaa</
from_wip_code><to_wip_code>sss</
to_wip_code><transaction_code>4</
transaction_code><user_id>TestUser</user_id>
<create_date>1999-10-23T20:27:56.32</
create_date><po_nbr>PratapOrd96</po_nbr><doc_type>P</
doc_type><aux_reason_code>string</aux_reason_code>
<weight>12.4</weight><weight_uom>smn;</
weight_uom><unit_cost>20.4</
unit_cost><InvAdjustUin><uin>123</uin>
<status>4</status></InvAdjustUin></InvAdjustDtl></
InvAdjustDesc></v1:payloadXml>
</v1:ApplicationMessage>
</v1:ApplicationMessages>'

Sample response

{"message": "Publish done"}

External Application as a Subscriber (rest-app)
For an external application to consume the message from the RIB's JMS on cloud, it has to
host the Injector Service. Injector Service is a ReST webservice that is made available as a
pluggable jar.

A pluggable jar is provided which contains all the wrapper classes to help in implementing
injector service. rib-injector-services-web-<version>.war is the pluggable jar which can be
included into the external application deployable file for example, ext-app.ear/lib. Once
pluggable jar is added, endpoint for injector service will be exposed as follows:

https://<external-app-host>:<port>/ rib-injector-services-web/resources/injector/inject

Pluggable jar is provided for reference however customer can choose to write their own
injector service by adhering to REST service contract detailed in next section.

Chapter 8
Implementing RIB-EXT

8-8

Note:

For information on pluggable jar, see the Client Connector For Oracle Retail
Integration Cloud Service 24.0.201.0 (Patch) available on My Oracle Support.

How to implement Injector Service (Service Contract) using ReST
Here is the Rest service contract detail:

1. Keep the path as Injector/inject.

@Path("/injector")
2. Use POST for this service. As the input message object itself has identifier (message type-

CRE/MOD) they don't need to use the PUT/PATCH. they can use message type to build
the implementation logic.

@POST
@Path("/inject")
@Consumes({MediaType.APPLICATION_XML})

3. The input would be MediaType.APPLICATION_XML and the structure would be
'ApplicationMessage' object. (file attached for reference).

<xs:element name="ApplicationMessage">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="family" type="string25"/>
 <xs:element name="type" type="string30"/>
 <xs:element name="businessObjectId" type="string255" minOccurs="0"/>
 <xs:element ref="ApplicationMessageRoutingInfo" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="payloadXml" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

4. Customer can utilize the payload.properties file for validation of message family and type.

5. Return type should be JSON, see below example:

String message = "{\"message\": \"Inject successful.\"}";
return Response.ok(message, MediaType.APPLICATION_JSON).build();

6. For exception response customer needs to follow the structure of exceptionVO.

How to Secure Injector Service with Oauth2
Injector service exposed by external service should be secured with OAuth2. This chapters
covers the key points that should be taken into consideration while protecting the resources
exposed by external application.

Prerequisites

• IDCS should be same as RICS.

• Use Client Credentials grant type with scope to provide access to resource.

• Following is the screen shot of a sample IDCS app with scope added

Chapter 8
Implementing RIB-EXT

8-9

Note:

Follow IDCS documentation for detailed instruction on setup.

RIB-EXT Side of Configuration to Point to External Application
Below are the steps to point rib-ext to the correct injector service.

Table 8-2

Category Step Comment

Access RIB
Admin GUI

Access the rib admin GUI at
https://<external-load-
balancer>/rib-ext-admin-gui

Log in with the admin user.

Chapter 8
Implementing RIB-EXT

8-10

Table 8-2 (Cont.)

Category Step Comment

Verify
Configuration
and update

Navigate to Manage
Configurations -> System
options

Search for and verify the
following:

1. destination.retail.appType
: rest-app

2. Update the value for
InjectorService URL
(injector.service.endpoint.
url). URL should point to
inject service provided by
external application.
(e.g.- https://<host:port>/
rib-injector-services-web/
resources/injector/inject

3. Security Policy
(injector.service.security.p
olicyname) : policyA

4. IDCS OAuth Server URL
(oauth2.default.authorizat
ionServerUrl): https://
<idcs-tenant>/oauth2/v1/
token

5. OAuth2 Token Scope:
Update with external
application provided
scope

Update
username and
password to
empty

Navigate to Manage
Configurations - > Injector
Service

Update details.

1. Choose "rib-
(app)_ws_security_user-
name-alias" as Secured
User Alias.

2. Update the Secured User
Name with a blank
userName.

3. Update the Secured User
Password with a blank
password.

4. Click on Save.

Chapter 8
Implementing RIB-EXT

8-11

Table 8-2 (Cont.)

Category Step Comment

Update
ClientID/
Secret

Navigate to Manage
Configurations - > Injector
Service

Update details

1. Choose "rib-
(app)_oauth2_application
_client_user-name-alias"
as Secured User Alias.

2. Update the Secured User
Name with clientID.

3. Update the Secured User
Password with
clientSecret.

Ping Test Navigate to Manage
Configurations -> RIB Service
Monitor

1. Click on ping

2. It should return success

How to verify
provided
injector
service details
are correct

Verify if the provided injector
service URL and credentials
are correct.

Execute the following curl commands

ClientId=56c7eb72f11b43bb98bf2570fa2353eb
ClientSecret=bb18aa22-4bb4-41d1-9ed4-
fea276651e28
IDCSUrl=https://
idcs-24e4baae56764e91be371e6a2060d66e.identity.
c9dev2.oc9qadev.com
AccessToken=$(curl -i -X POST \ --
user $ClientId:$ClientSecret \ -H "Content-
Type: applica-tion/x-www-form-
urlencoded;charset=UTF-8" \
$IDCSUrl/oauth2/v1/token \ -d
"grant_type=client_credentials&scope=urn:opc:id
m:__myscopes__" | grep -o -P '(?
<=access_token":").*(?=","token_type)')
ribExtServiceUrl=https://rgbu-phx-
lbext-351.us.oracle.com/rib-injector-services-
web/resources/injector/ping
curl -ivkL --noproxy '*' -H "Authorization:
Bearer $AccessToken" -H "Content-Type:
applica-tion/xml" -X GET $ribExtServiceUrl

How to switch Injector Service app Type at Runtime
RIB-EXT is a rest-app by default for CFS and expects injector service also to be of ResT type.
ONLY for egress/migration customers who already have injector service SOAP implementation
in GBUCS they should follow these steps to switch from rest to soap based injector calls and
vice-versa.

Chapter 8
Implementing RIB-EXT

8-12

How to Change rib-ext injector-service-app-type from REST to SOAP
1. Open rib-ext admin gui. Go to Manage Configurations > System Options, observe new

prop-erty i.e. injector-service-appType added to allow switching injector service app-type at
runtime.

By default rib-ext is deployed as rest-app so injector-service-appType is defaulted to.

2. Edit injector-service-appType and update this to soap-app. Save the changes.

Chapter 8
Implementing RIB-EXT

8-13

3. Navigate to Manage Configurations > Injector Service tab. Check for the correctness of
injector service URL, ensure it points to correct ext-app injector service.

Update rib-ext_ws_security_user-name-alias with correct username/password needed to
make inject call.

4. Update the value for the Ping Service URL (injector.service.endpoint.ping.url). This
URL should point to a ping service WSDL provided by an external application.

Note:

This feature allows users to provide their ping URL. The ping feature in rib-ext
relies on the ping implemented on the system. Ping is typically used to test the
first-time handshake between the service client and the service provider before
sending the actual data to OIC. The fact that data is moving to OIC tells us that
the integration is working fine.

5. Setup is ready now. Do a ping test from RIB ServiceMonitor tab.

How to change rib-ext injector-service-app-type from SOAP to ReST
1. Navigate to Manage Configurations > System Options from admin GUI. Look for injector-

service-appType, update this property to switch from SOAP to ReST.Save the changes.

2. Navigate to Injector Service tab. Update host/port and security credentials (rib-
ext_ws_security_user-name-alias) if needed.

Chapter 8
Implementing RIB-EXT

8-14

3. Setup is ready now. Do a ping test from RIB Service Monitor tab.

Error Handling
The RIB infrastructure provides a mechanism called RIB error hospital to handle and manage
the error messages. When the publishing or subscription of a message fails in the rib-ext for
some reason, it lands in error hospital with a reason code. The retry adapters in the rib-ext
application are responsible for retrying the messages in error hospital.

Oracle RIB Hospital Administration (RIHA) is a Weblogic application that allows the
management of messages in error hospital. Some of the RIHA operations include:

• Viewing error messages

• Editing error messages

• Retrying error messages

• Stopping error messages

For more information, see the Oracle Retail Integration Bus Hospital Administration Guide.

Monitoring Integration
To monitor live statistics of various components involved in RIB integration system like RIB
adapter, error hospital, JMS server, RTG provides a live monitoring application called the Retail
Integration Console (RIC).

The RIC is the user interface application designed to provide a unified view of the RTG
integration products within the business context of the Oracle Retail applications. It provides
near real time statistics regarding the message flows, JMS topics, historical trends of each
message family, performance comparisons, and static information like application
configuration.

For more information, see the Oracle Retail Integration Console User Guide.

Chapter 8
Implementing RIB-EXT

8-15

A
Appendix - Sample Files

Sample Application.wadl File
<?xml version="1.0" encoding="ISO-8859-1"?>
<ns0:application xmlns:ns0="http://wadl.dev.java.net/2009/02">
 <ns0:doc ns1:generatedBy="Jersey: 2.22.4 2016-11-30 13:33:53" xmlns:ns1="http://
jersey.java.net/"/>
 <ns0:doc ns2:hint="This is simplified WADL with user and core resources only. To get
full WADL with extended resources use the query parameter detail. Link: http://
abc.us.oracle.com:8003/rib-injector-services-web/resources/application.wadl?detail=true"
xmlns:ns2="http://jersey.java.net/"/>
 <ns0:grammars>
 <ns0:include href="application.wadl/xsd0.xsd">
 <ns0:doc title="Generated" xml:lang="en"/>
 </ns0:include>
 </ns0:grammars>
 <ns0:resources base="http://abc.us.oracle.com:8003/rib-injector-services-web/
resources/">
 <ns0:resource path="discover">
 <ns0:method id="discoverAllResources" name="GET">
 <ns0:response>
 <ns0:representation mediaType="application/json"/>
 </ns0:response>
 </ns0:method>
 </ns0:resource>
 <ns0:resource path="/injector">
 <ns0:resource path="/inject">
 <ns0:method id="injectMessage" name="POST">
 <ns0:request>
 <ns0:representation mediaType="application/xml"
element="ns3:ApplicationMessage" xmlns:ns3="http://www.oracle.com/retail/integration/rib/
ApplicationMessages/v1"/>
 </ns0:request>
 <ns0:response>
 <ns0:representation mediaType="*/*"/>
 </ns0:response>
 </ns0:method>
 </ns0:resource>
 <ns0:resource path="/ping">
 <ns0:method id="ping" name="GET">
 <ns0:request>
 <ns0:param name="pingMessage" default="hello" type="xsd:string"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" style="query"/>
 </ns0:request>
 <ns0:response>
 <ns0:representation mediaType="application/json"/>
 </ns0:response>
 </ns0:method>
 </ns0:resource>
 </ns0:resource>
 </ns0:resources>
</ns0:application>

A-1

Sample Resource Class
package com.oracle.retail.rib.integration.services.applicationmessageinjector;

import javax.ejb.EJB;
import javax.ejb.Stateless;
import javax.ws.rs.Consumes;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import com.oracle.retail.integration.rib.applicationmessages.v1.*;
import com.retek.rib.binding.exception.InjectorException;
import com.retek.rib.binding.injector.Injector;
import com.retek.rib.binding.injector.InjectorFactory;
import com.retek.rib.domain.payload.PayloadFactory;
import javax.ws.rs.DefaultValue;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.Response;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import com.oracle.retail.integration.payload.Payload;

@Stateless
@Path("/injector")

public class ApplicationMessageInjectorResource {

 private static Log LOG =
 LogFactory.getLog(ApplicationMessageInjectorResource.class);

 @GET
 @Path("/ping")
 @Produces({MediaType.APPLICATION_JSON})
 public Response ping(@DefaultValue("hello") @QueryParam("pingMessage") String
pingMessage){
 String message = "{\"message\": \"Got " + pingMessage + " from server.\"}";
 return Response.ok(message, MediaType.APPLICATION_JSON).build();
 }

 @POST
 @Path("/inject")
 @Consumes({MediaType.APPLICATION_XML})
 public Response injectMessage(ApplicationMessage applicationMessage) throws
InjectorException{

 verifyNotNull(applicationMessage, "applicationMessage");

 invokeInjectForMessageType(applicationMessage.getFamily(),
applicationMessage.getType(), applicationMessage.getBusinessObjectId(),
applicationMessage.getPayloadXml());

 String message = "{\"message\": \"Inject successful.\"}";
 return Response.ok(message, MediaType.APPLICATION_JSON).build();
 }

 private void invokeInjectForMessageType(String family, String messageType, String

Appendix A
Sample Resource Class

A-2

businessObjectId, String retailPayload)throws InjectorException{

 try {

 verifyNotNull(family, "family");
 verifyNotNull(messageType, "messageType");
 verifyNotNull(retailPayload, "retailPayload");

 Payload payload = PayloadFactory.unmarshalPayload(family, messageType,
retailPayload);

 Injector injector = InjectorFactory.getInstance().getInjector(
 ?? family, messageType);
 if (injector == null) {
 final String eMsg = "Unknown message"
 + " family/type: " + family + "/" + messageType;
 LOG.error(eMsg);
 throw new InjectorException(eMsg);

 }
 if(LOG.isDebugEnabled()){
 LOG.debug("Received inject call for family("+family+")
type("+messageType+") businessObjectId("+businessObjectId+") with payload:\n" +
payload.toString());
 }

 injector.inject(messageType, businessObjectId, payload);
 LOG.debug("Inject call for family("+family+") type("+messageType+")
businessObjectId("+businessObjectId+") return.");

 ?? } catch (InjectorException e) {
 final String eMsg = "Exception calling inject.";
 LOG.error(eMsg, e);
 throw e;
 }catch (Exception re) {
 final String eMsg = "Exception calling inject.";
 LOG.error(eMsg, re);
 throw new RuntimeException(eMsg, re);
 }

 }

 private void verifyNotNull(Object field, String fieldName){
 if(field == null){
 final String eMsg = fieldName + " cannot be null.";
 LOG.error(eMsg);
 throw new IllegalArgumentException(eMsg);
 }
 }

}

ApplicationMessages.xsd
<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.oracle.com/retail/integration/rib/ApplicationMessages/v1"
 xmlns:rib="http://www.oracle.com/retail/integration/rib/
ApplicationMessages/v1"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"

Appendix A
ApplicationMessages.xsd

A-3

 jaxb:extensionBindingPrefixes="xjc"
 jaxb:version="2.0"
 targetNamespace="http://www.oracle.com/retail/integration/rib/
ApplicationMessages/v1"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:annotation>
 <xs:appinfo>

 <jaxb:globalBindings
 fixedAttributeAsConstantProperty="false"
 choiceContentProperty="true"
 enableFailFastCheck="true"
 generateIsSetMethod="true"
 enableValidation="true">
 <!--xjc:javaType name="java.util.Calendar"
 xmlType="xs:dateTime"

adapter="com.oracle.retail.integration.rib.rib_integration_runtime_info.datatypeadapter.C
alendarAdapter"/ -->
 <jaxb:serializable uid="1"/>
 </jaxb:globalBindings>

 <!--jaxb:schemaBindings>
 <jaxb:package
name="com.oracle.retail.integration.rib.ribintegrationruntimeinfo" />
 </jaxb:schemaBindings-->
 </xs:appinfo>
 </xs:annotation>

 <xs:element name="ApplicationMessages">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ApplicationMessage" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ApplicationMessage">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="family" type="string25"/>
 <xs:element name="type" type="string30"/>
 <xs:element name="businessObjectId" type="string255"
 minOccurs="0"/>
 <xs:element ref="ApplicationMessageRoutingInfo" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="payloadXml" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ApplicationMessageRoutingInfo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="string25"/>
 <xs:element name="value" type="string25"/>
 <xs:element ref="ApplicationMessageRoutingInfoDetail" minOccurs="0"
maxOccurs="2"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Appendix A
ApplicationMessages.xsd

A-4

 <xs:element name="ApplicationMessageRoutingInfoDetail">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="string25"/>
 <xs:element name="value" type="string300"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:simpleType name="string255">
 <xs:restriction base="xs:string">
 <xs:maxLength value="255" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="string25">

 <xs:restriction base="xs:string">
 <xs:maxLength value="25" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="string30">
 <xs:restriction base="xs:string">
 <xs:maxLength value="30" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="string300">
 <xs:restriction base="xs:string">
 <xs:maxLength value="300" />
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

payload.properties

payload.properties
ASNIN.ASNINCRE=com.oracle.retail.integration.base.bo.asnindesc.v1.ASNInDesc
ASNIN.ASNINDEL=com.oracle.retail.integration.base.bo.asninref.v1.ASNInRef
ASNIN.ASNINMOD=com.oracle.retail.integration.base.bo.asnindesc.v1.ASNInDesc

WH.WHCRE=com.oracle.retail.integration.base.bo.whdesc.v1.WHDesc
WH.WHDEL=com.oracle.retail.integration.base.bo.whref.v1.WHRef
WH.WHMOD=com.oracle.retail.integration.base.bo.whdesc.v1.WHDesc

Sample Request/Response for ReST Injector Service

Appendix A
payload.properties

A-5

Table A-1 Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

http://
localhost:7001
/rib-injector-
services-web/
resources/
injector/inject

POST application/xm
l

Request are
xml only and
response are
json only.

A valid user
that is part of
IntegrationGro
up.

<v1:ApplicationMe
ssage
xmlns:v1="http://
www.oracle.com/
retail/
integration/rib/
ApplicationMessag
es/v1">
<v1:family>XOrder
</v1:family>
<v1:type>XOrderCr
e</v1:type>
<v1:businessObjec
tId>592824510</
v1:businessObject
Id>
<v1:payloadXml><&
lt;XOrderDesc
xmlns="http:
//www.oracle.com/
retail/
integration/
base/bo/
XOrderDesc/
v1"
xmlns:ns0="h
ttp://
www.oracle.com/
retail/integra-
tion/base/bo/
CustFlexAttriVo/
v1">
<order_no>5
92824510</
order_no>
<supplier>9
9</
supplier>
<currency_code
>USD</
currency_code>
<terms>13&l
t;/terms>
<not_before_da
te>2022-02-09T
00:00:00Z</
not_before_date&g
t;
<not_after_dat
e>2022-02-19T0
0:00:00Z</
not_after_date>
;
<otb_eow_date&

HTTP/1.1 200 OK
Date: Thu, 10
May 2018
16:33:11 GMT
Content-Length:
33
Content-Type:
application/json
X-ORACLE-DMS-
ECID:
4a8e5d3f-1aae-43d
7-ba84-
c6b9c60563c7-0000
0039
X-ORACLE-DMS-
RID: 0
Set-Cookie: JSES-
SIONID=hsFK5jW4B1
QtipC9zhng--
or1WL7ywxCuxsJeVw
dgPpnv6oNUnde!
233126712;
path=/; HttpOnly
{"message":
"Inject
successful."}

Success

Appendix A
Sample Request/Response for ReST Injector Service

A-6

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

gt;2022-02-19T00:
00:00Z</
otb_eow_date>
<status>A&l
t;/status>
<exchange_rate
>1</
exchange_rate>
<include_on_or
d_ind>Y</
include_on_ord_in
d>
<written_date&
gt;2022-02-09T00:
00:00Z</
written_date>
<XOrderDtl>
<item>17425
0093</item>
<location>2
1</
location>
<unit_cost>
10</
unit_cost>
<origin_countr
y_id>US</
origin_country_id
>
<supp_pack_siz
e>1</
supp_pack_size>
;
<qty_ordered&g
t;2</
qty_ordered>
<location_type
>W</
location_type>
<reinstate_ind
>N</
reinstate_ind>
<delivery_date
>2022-02-09T00
:00:00Z</
delivery_date>
</
XOrderDtl>
<orig_ind>2
</orig_ind>
<edi_po_ind>
;N</
edi_po_ind>
<pre_mark_ind&

Appendix A
Sample Request/Response for ReST Injector Service

A-7

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

gt;N</
pre_mark_ind>
</
XOrderDesc>></
v1:payloadXml>
</
v1:ApplicationMes
sage>

Appendix A
Sample Request/Response for ReST Injector Service

A-8

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

If user in not
added in
IntegrationGro
up

<v1:ApplicationMe
ssage
xmlns:v1="http://
www.oracle.com/
retail/
integration/rib/
ApplicationMessag
es/v1">
<v1:family>WH</
v1:family>
<v1:type>WHCR</
v1:type>
<!--Optional:-->
<v1:businessObjec
tId>?</
v1:businessObject
Id>
<!--Zero or more
repetitions:-->
<v1:ApplicationMe
ssageRoutingInfo>
<v1:name>?</
v1:name>
<v1:value>?</
v1:value>
<!--Zero or more
repetitions:-->
<v1:ApplicationMe
ssageRoutingInfoD
etail>
<v1:name>?</
v1:name>
<v1:value>?</
v1:value>
</
v1:ApplicationMes
sageRoutingInfoDe
tail>
</
v1:ApplicationMes
sageRoutingInfo>
<v1:payloadXml>&l
t;WHDesc
xmlns="http:
//www.oracle.com/
retail/
integration/
base/bo/WHDesc/
v1"><w
h>10</
wh><wh_name
>g</
wh_name></
WHDesc></

HTTP/1.1 403
Forbidden
Date: Thu, 05
Aug 2021
10:25:26 GMT
Content-Length:
1166
Content-Type:
text/html; char-
set=UTF-8
<!DOCTYPE HTML
PUBLIC
"-//W3C//DTD
HTML 4.0 Draft//
EN">
<HTML>
<HEAD>
<TITLE>Error
403--Forbidden</
TITLE>
</HEAD>
<BODY bgcol-
or="white">
<FONT
FACE=Helvetica><B
R CLEAR=all>
<TABLE bor-der=0
cellspac-
ing=5><TR><TD><BR
 CLEAR=all>
<FONT
FACE="Helvetica"
COL-OR="black"
SIZE="3"><H2>Erro
r 403--
Forbidden</H2>
</TD></TR>
</TABLE>
<TABLE bor-der=0
width=100%
cellpad-
ding=10><TR><TD
VALIGN=top
WIDTH=100% BGCOL-
OR=white><FONT
FACE="Courier
New"><FONT
FACE="Helvetica"
SIZE="3"><H3>From
 RFC 2068
<i>Hypertext
Transfer
Protocol -- HTTP/
1.1</i>:</H3>

Failure

Appendix A
Sample Request/Response for ReST Injector Service

A-9

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

v1:payloadXml>
</
v1:ApplicationMes
sage>

<FONT
FACE="Helvetica"
SIZE="3"><H4>10.4
.4 403
Forbidden</H4>

<P><FONT
FACE="Courier
New">The server
understood the
request, but is
refusing to
fulfill it.
Authorization
will not help
and the request
SHOULD NOT be
repeated. If the
request method
was not HEAD and
the server
wishes to make
public why the
request has not
been ful-filled,
it SHOULD de-
scribe the
reason for the
refusal in the
entity. This
status code is
commonly used
when the server
does not wish to
reveal exactly
why the request
has been
refused, or when
no other
response is ap-
plica-ble.</
FONT></P>
</TD></TR>
</TABLE>
</BODY>
</HTML>

Appendix A
Sample Request/Response for ReST Injector Service

A-10

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

Wrong User/
pass

<v1:ApplicationMe
ssage
xmlns:v1="http://
www.oracle.com/
retail/
integration/rib/
ApplicationMessag
es/v1">
<v1:family>WH</
v1:family>
<v1:type>WHCR</
v1:type>
<!--Optional:-->
<v1:businessObjec
tId>?</
v1:businessObject
Id>
<!--Zero or more
repetitions:-->
<v1:ApplicationMe
ssageRoutingInfo>
<v1:name>?</
v1:name>
<v1:value>?</
v1:value>
<!--Zero or more
repetitions:-->
<v1:ApplicationMe
ssageRoutingInfoD
etail>
<v1:name>?</
v1:name>
<v1:value>?</
v1:value>
</
v1:ApplicationMes
sageRoutingInfoDe
tail>
</
v1:ApplicationMes
sageRoutingInfo>
<v1:payloadXml>&l
t;WHDesc
xmlns="http:
//www.oracle.com/
retail/
integration/
base/bo/WHDesc/
v1"><w
h>10</
wh><wh_name
>g</
wh_name></
WHDesc></

HTTP/1.1 401
WWW-
Authenticate:
Basic
realm="Authentica
tion required"
Content-Type:
text/
html;charset=utf-
8
Content-
Language: en
Content-Length:
669
Date: Thu, 05
Aug 2021
05:08:40 GMT
Keep-Alive:
timeout=20
Connection: keep-
alive
<!doctype
html><html
lang="en"><head><
title>HTTP
Status 401 â€"
Unauthorized</
title><style
type="text/
css">body {font-
family:Tahoma,Ari
al,sans-serif;}
h1, h2, h3, b
{color:white;back
ground-
color:#525D76;}
h1 {font-
size:22px;} h2
{font-
size:16px;} h3
{font-
size:14px;} p
{font-
size:12px;} a
{color:black;} .l
ine
{height:1px;backg
round-
color:#525D76;bor
der:none;}</
style></
head><body><h1>HT
TP Status 401
â€"

Failure

Appendix A
Sample Request/Response for ReST Injector Service

A-11

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

v1:payloadXml>
</
v1:ApplicationMes
sage>

Unauthorized</
h1><hr
class="line" /
><p>Type
Status Report</
p><p>Descripti
on The
request has not
been applied
because it lacks
valid
authentication
credentials for
the target
resource.</p><hr
class="line" /
><h3>Apache
Tomcat/8.5.64</
h3></body></html>

Appendix A
Sample Request/Response for ReST Injector Service

A-12

	Contents
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Customer Support
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Help Center (docs.oracle.com)
	Conventions

	1 Introduction
	2 Core Concepts
	Key Functional Requirements
	Guaranteed Once-and-Only-Once Successful Delivery
	Preservation of Publication Sequence

	Message Family and Message Types
	Foundation Messages
	Transactional Messages

	RIB Message Envelope and Payloads
	Message Life Cycle
	Messaging Components
	RIB Subsystem Components
	Adapters
	JMS Domains, Destinations, Subscriptions
	JMS Message Selector
	Additional RIB JMS Message Properties

	Simple Message Flow
	The RIB Hospital
	RIB Hospital Dependency Check
	RIB Hospital Insert
	RIB Hospital Tables
	RIB Hospital Retry
	PUB Retry Adapter
	Hospital Attempt (Retry) Count
	JMS Delivery Count

	3 Cloud
	Configuring RIB-RWMS for Hybrid Cloud Deployment Topology
	Installation and Setup instructions for RIB-RWMS Secondary (On-Premise)
	Installation Prerequisite
	Prepare the WebLogic Server
	Creating Required RCU Schema Using the Repository Creation Utility
	Creating a WebLogic Domain with wls Policy

	Steps for ear Deployment

	4 RIB Self-Service Enablement
	Provisioning RIB-Adapters
	How to Remove Dynamic Adapters Selection in RIB-RMS
	Provisioning System Options
	Provisioning InjectorService URL
	RIB ServiceMonitor

	5 Performance
	Performance Factors
	Performance and Parallel Logical Channels

	6 Security
	RIB Application Administrators Security Domain
	Integration with SIOCS
	Integration with ROB

	7 Integration with Fusion Middleware
	General RIB to Fusion Middleware Architecture

	8 Integration with External Applications
	Implementing RIB-EXT
	How to Send/Receive Messages to/from the RIB System
	External Application as a Publisher (rest-app) using OAuth2
	Create OAuth2 Client Application in IDCS
	External Application as a Subscriber (rest-app)
	How to implement Injector Service (Service Contract) using ReST
	How to Secure Injector Service with Oauth2
	RIB-EXT Side of Configuration to Point to External Application
	How to switch Injector Service app Type at Runtime
	How to Change rib-ext injector-service-app-type from REST to SOAP
	How to change rib-ext injector-service-app-type from SOAP to ReST

	Error Handling
	Monitoring Integration

	A Appendix - Sample Files
	Sample Application.wadl File
	Sample Resource Class
	ApplicationMessages.xsd
	payload.properties
	Sample Request/Response for ReST Injector Service

