
Oracle® Retail Bulk Data Integration
Cloud Service
Implementation Guide – Concepts

Release 24.0.201.0
F95638-01
April 2024

Oracle Retail Bulk Data Integration Cloud Service Implementation Guide – Concepts, Release 24.0.201.0

F95638-01

Copyright © 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Send Us Your Comments

 Preface

Audience xi

Documentation Accessibility xi

Customer Support xi

Review Patch Documentation xi

Improved Process for Oracle Retail Documentation Corrections xii

Oracle Help Center (docs.oracle.com) xii

Conventions xii

1 Introduction

Oracle Retail Enterprise Integration Products and Styles 1-1

Standards and Specifications 1-2

Java Platform Enterprise Edition (Java EE) 1-2

Java Batch – JSR 352 1-2

Java EE Server 1-3

Java Batch Overview 1-3

2 Job Administrator

Job Admin Core Components 2-1

Extractor Job 2-1

Downloader-Transporter Job 2-2

Downloader-FileCreator Job 2-10

Receiver Service 2-11

Importer Job 2-11

Importer File Creator Job 2-12

iii

3 Job Admin Services

Job Admin RESTful Services 3-1

Receiver Service 3-1

Batch Service 3-6

Data Service 3-12

Telemetry Service 3-14

End Points for CRUD operations on Job XML 3-15

Bulk API for Batch Job CRUD Operations 3-16

Auto Purge Data 3-19

Configuration of Job Admin 3-24

Job Admin Customization 3-24

Auto Purge Batch Infra Data 3-25

Throttling 3-26

BDI Global Migration Script (BDI_Database_Util_Spec) 3-27

4 Integration with External Applications

Bulk Data Export Service 4-1

5 Job Admin UI

Job Admin UI Security 5-1

Authentication 5-1

Authorization 5-1

Monitoring Batch Jobs Using BDI Job Admin 5-2

Batch Summary Tab 5-2

Manage Jobs Tab 5-2

Job Executions 5-3

Job Launch 5-4

Job Details 5-4

System Logs Tab 5-5

Sample Begin Job Banner 5-5

Sample End Job Banner 5-5

Diagnostics Tab 5-6

Outbound Job Execution Errors 5-6

Inbound Job Execution Errors 5-7

Trace Data 5-7

Sender Data 5-7

Receiver Data 5-8

Receiver Transactions 5-8

Receiver Transmission Details - Partition Level 5-9

iv

Receiver Transmission Details - Block Level 5-9

Inbound job Executions 5-9

Importer Data Control 5-10

Importer Data 5-10

Importer Job Executions 5-10

Importer Data Control for Interface 5-11

Manage Configurations 5-11

Outbound Interface Controls 5-11

Inbound Interface Controls 5-12

System Options 5-12

Job Admin Troubleshooting 5-13

BDI apps deployment Error 5-13

BDI Job Admin runtime WSMException 5-13

REST Service from SOAP UI for Downloader and Transporter job 5-14

BDI Job Admin not able to find UploaderJob.xml file 5-14

Job Fails and Job Admin Log Files Contain No Details of the Failure 5-15

6 Process Flow

Process Flow 6-2

DSL (Domain Specific Language) 6-2

Begin Activity 6-2

Activity 6-2

End Activity 6-2

Process Variables 6-2

External Variables 6-3

Statuses 6-3

Process Flow DSL 6-3

Process Flow DSL characteristics 6-3

DSL Keywords 6-4

Process Flow API 6-5

Process Flow Variables 6-7

Process Flow Instrumentation 6-8

Process Flow Monitor Web Application 6-8

Process Flow Live tab 6-9

Live Progress View Tab 6-10

Manage Process Flow Tab 6-11

Process Flow Executions 6-12

Process Flow Configurations 6-12

Launch Process Flow 6-13

Process Flow Details 6-13

v

Historical Process Flow Executions Tab 6-14

Manage Configurations Tab 6-15

Diagnostics Tab 6-15

System Logs Tab 6-17

Process Flow Notification Feature 6-17

Persisting Process Notifications 6-18

Process Restart 6-19

Statuses 6-20

Activity Features 6-20

Skip Activity 6-21

Hold/Release Activity 6-21

Bulk Skip/Hold 6-21

Callback Service 6-22

Enable or Disable a Process Flow using REST Service 6-30

Process Execution Trace 6-31

Process Metrics Service 6-32

Process Security 6-34

Customizing Process Flows 6-34

Process Flow DSL 6-34

APIs 6-35

How to modify a Process Flow 6-35

Sub Processes 6-35

Process Schema 6-36

Process Customization 6-36

REST Interface 6-38

Auto Purge Process Flow Infra Data 6-38

Troubleshooting 6-39

BDI Process flow runtime XML UnmarshallException 6-39

BDI Process flow stuck in running state 6-40

Process Flow Did Not Start 6-40

Deleted process flow still listed in the UI 6-40

Best Practices for Process Flow DSL 6-40

7 CLI Tools

BDI CLI Job Executor 7-1

Tool Setup 7-1

Tool Usage 7-2

BDI CLI Transmitter 7-2

Tool Setup 7-2

Tool Usage 7-5

vi

File Processing 7-6

Output Logs 7-7

Error Reprocessing 7-7

8 BDI Data Integration Topologies

Sender Side split 8-1

Receiver Side Split 8-3

9 OAuth 2.0

OAuth 2.0 Architecture Diagram 9-1

OAuth 2.0 Concepts 9-1

OAuth 2.0 Use Case Flow 9-2

OAuth 2.0 Terms 9-2

BDI OAuth 2.0 Architecture 9-3

OAuth 2 Service Provider 9-3

Service Provider Configuration 9-3

Scopes 9-3

OHS Configuration 9-4

OAuth Server Public Certificate 9-4

OAuth 2.0 Servlet Filter 9-4

OAuth 2.0 Service Consumer 9-5

Access Services using OAuth 2.0 Consumer API 9-5

Consumer Configuration 9-5

Access Services using Curl 9-6

IDCS WTSS and WLS Configuration Instructions 9-7

10

Pre-implementation Considerations

BDI Software Lifecycle Management 10-1

Preparation Phase 10-1

Application Assembly Phase 10-1

Deployment Phase 10-1

Operation Phase 10-1

Maintenance Phase 10-1

Physical Location Considerations 10-2

High Availability Considerations 10-2

WebLogic Server Cluster Concepts 10-2

bdi-<app> application and WebLogic Application Server Cluster 10-3

Logging 10-3

Update Log Level 10-4

vii

Create/Update/Delete System Options 10-4

Create/Update/Delete System Credentials 10-4

11

Deployment Architecture and Options

Recommended Deployment Options 11-1

Distributed 11-1

12

Implementation Process

13

Performance Considerations

Performance Tuning Downloader-Transporter Jobs 13-1

Performance Tuning Uploader Jobs 13-2

14

Job Admin REST Endpoints

A Process Schema

B Process Flow REST Endpoints

C System Setting Service

Managing System Options using curl C-1

Create system option C-2

Update system option C-2

Delete system option C-2

List system options C-2

Managing credentials using curl C-2

Create credential C-2

Update credential C-2

Delete credential C-3

List Credentials C-3

viii

D Sample Extractor - PL/SQL application code that calls procedures in
PL/SQL package

E Purge Strategy

Execute Purge SQL E-1

F Group and Group Member REST Endpoints

G Glossary

ix

Send Us Your Comments

Oracle Retail Bulk Data Integration Cloud Service Implementation Guide – Concepts

Oracle welcomes customers' comments and suggestions on the quality and
usefulness of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

• Are the implementation steps correct and complete?

• Did you understand the context of the procedures?

• Did you find any errors in the information?

• Does the structure of the information help you with your tasks?

• Do you need different information or graphics? If so, where, and in what format?

• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note:

Before sending us your comments, you might like to check that you have the
latest version of the document and if any concerns are already addressed. To
do this, access the new Applications Release Online Documentation CD
available on My Oracle Support and www.oracle.com. It contains the most
current Documentation Library plus all documents revised or released
recently.

Send your comments to us using the electronic mail address: retail-
doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

Send Us Your Comments

x

Preface

The Oracle Retail Bulk Data Integration Implementation Guide provides detailed information
that is important when implementing BDI.

Audience
The Implementation Guide is intended for the Oracle Retail Bulk Data Integration application
integrators and implementation staff, as well as the retailer's IT personnel.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

• Exact error message received

• Screen shots of each step you take

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 19.0) or a later patch release (for example, 19.0.1). If you are installing the base
release and additional patch releases, read the documentation for all releases that have
occurred since the base release before you begin installation. Documentation for patch

xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com

releases can contain critical information related to the base release, as well as
information about code changes since the base release.

Improved Process for Oracle Retail Documentation
Corrections

To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in
the case of Data Models, to the applicable My Oracle Support Documentation
container where they reside.

Oracle Retail product documentation is available on the following web site:

https://docs.oracle.com/en/industries/retail/index.html

An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Help Center (docs.oracle.com)
Oracle Retail product documentation is available on the following web site:

https://docs.oracle.com/en/industries/retail/index.html

(Data Model documents can be obtained through My Oracle Support.)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xii

https://docs.oracle.com/en/industries/retail/index.html
https://docs.oracle.com/en/industries/retail/index.html

1
Introduction

Bulk Data Integration (BDI) is the Oracle Retail Enterprise Integration Infrastructure product
designed to address the complexities of the movement of bulk data between Oracle Retail
applications and third-party applications. BDI is designed to provide the bulk data integration
to meet the modern needs of cloud and on-premise movement of large data sets in the
deployments of the Oracle Retail applications and fully support both on-premise
configurations and on-cloud configurations in a hybrid cloud-premise deployment.

Oracle Retail Enterprise Integration Products and Styles
There is no one integration approach that addresses all criteria equally well. Therefore,
multiple approaches for integrating applications have evolved over time. Oracle Retail has
focused on three main integration styles:

• Asynchronous JMS Pub/Sub Fire-and-Forget (Retail Integration Bus - RIB)

• Request/Response (Retail Service Backbone - RSB)

• Bulk Data Integration - BDI

Batch (Bulk) data is still a predominant integration style within Oracle Retail and its
Customers.

The movement of bulk data remains important because some work is best suited to being
performed in bulk. Batch processing was there in the early days; it's still here today; and it will
still be here tomorrow. What has changed is the approach to batch processing.

Batch processing is typified by bulk-oriented, non-interactive, background execution.
Frequently long running, it may be data or computationally intensive, executed sequentially or
in parallel, and may be initiated through various invocation models, including ad hoc and on-
demand.

Batch applications have common requirements including logging, checkpoint, and
parallelization. Batch workloads have common requirements such as operational control,
which allow for initiation of, and interaction with, batch instances; such interactions include
stop and restart.

BDI is the latest Oracle Retail Integration product to be released to productize Oracle Retail
bulk data flows for delivery to customers to meet these requirements, and provide the tooling
that is required to automate the creation and packaging of the configurations and to manage
the full life cycle.

Oracle Retail now has integration products designed and built to satisfy all three of the
integration styles used by our customers today.

1-1

Standards and Specifications
BDI, such as RIB and RSB, relies on industry standards and specifications and
leverages the features of the WebLogic Application Server.

In 2011, a working group was formed to study and design an open standard for Java
batch processing. Representatives from many companies, including Oracle, developed
a draft standard. The initial release of the standard was released in 2013. The
standard, known as 352, is now included as part of the Java EE 7 open standard.

BDI is designed and built on these Java EE 7 and Java Batch (JSR 352) specifications
and standards.

Java Platform Enterprise Edition (Java EE)
Java Platform Enterprise Edition (Java EE) is an umbrella standard for Java's
enterprise computing facilities. It bundles together technologies for a complete
enterprise-class server-side development and deployment platform in java.

Java EE specification includes several other API specifications, such as JDBC, RMI,
Transaction, JMS, Web Services, XML, Persistence, mail, and others and defines how
to coordinate among them. Java EE also features some specifications unique to
enterprise computing. These include Enterprise JavaBeans (EJB), servlets, portlets,
Java Server Pages (JSP), Java Server Faces (JSF) and several Web service
technologies.

A Java EE application server manages transactions, security, scalability, concurrency,
pooling, and management of the EJB/Web components that are deployed to it. This
frees the developers to concentrate more on the business logic/problem of the
components rather than spending time building scalable, robust infrastructure on
which to run on.

Java Batch – JSR 352
JSR 352 is a Java specification for building, deploying, and running batch applications.
Batch is an industry metaphor for background bulk processing. A myriad business

Chapter 1
Standards and Specifications

1-2

processes depend on batch processing and demand powerful standards-based facilities for
enabling this essential workload type.

JSR 352 specifies the layers, components and technical services commonly found in robust,
maintainable systems used to address the creation of simple to complex batch applications.

JSR 352 addresses three critical concerns: a batch programming model, a job specification
language, and a batch runtime. This constitutes a separation of concerns.

• Application developers have clear, reusable interfaces for constructing batch style
applications

• Job writers have a powerful expression language for how to execute the steps of a batch
execution

• Solution integrators have a runtime API for initiating and controlling batch execution

JSR 352 defines a Job Specification Language (JSL) to define batch jobs, a set of interfaces
that describes the artifacts that comprise the batch programming model to implement batch
business logic, and a batch runtime for running batch jobs, according to a defined life cycle.

The batch runtime is a part of the Java EE 7 runtime and has full access to all other features
of the platform, including transaction management, persistence, messaging, and more.

Java EE Server
The Oracle WebLogic Server implements the Java EE specification and is the Java EE server
vendor for BDI. The WebLogic server provides many additional services beyond the standard
services required by the Java EE specification.

Note:

Review the WebLogic Application Server documentation for more information:

http://docs.oracle.com/middleware/12213/wls/index.html

http://www.oracle.com/technetwork/middleware/fusion-middleware/documentation/
index.html

Java Batch Overview
Batch processing for Java platform was introduced in Java EE 7. It provides a programming
model for batch applications and a runtime to run and manage batch jobs.

Batch processing is the execution of a series of programs ("jobs") on a computer without
manual intervention.

JSR 352 defines:

• Implementation: A programming model for implementing the artifacts

• Orchestration: A Job Specification Language, which orchestrates the execution of a batch
artifact within a job

• Execution: A runtime environment for executing batch application, according to a defined
lifecycle

Chapter 1
Standards and Specifications

1-3

The diagram below is a simplified version of the batch reference architecture that has
been used for decades. It provides an overview of the components that make up the
domain language of batch processing.

• The Job Operator provides an interface to manage all aspects of job processing,
including operational commands, such as start, restart, and stop, as well as job
repository related commands, such as retrieval of job and step executions.

• The Job Repository holds information about jobs currently running and jobs that
ran in the past.

• A step contains all the necessary logic and data to perform the actual processing.

• A chunk-style step contains ItemReader, ItemProcessor, and ItemWriter.

A job encapsulates the batch process. A job contains one or more steps. A job is put
together using Job Specification language (JSL) that specifies the sequence in which
steps must be executed.

A step is a domain object that encapsulates an independent, sequential phase of a
batch job. Therefore, every Job is composed entirely of one or more steps. A step
contains all of the information necessary to define and control the actual batch
processing.

ItemReader is an abstraction that represents the retrieval of input for a step, one item
at a time. When the ItemReader has exhausted the items it can provide, it will indicate
this by returning null.

ItemWriter is an abstraction that represents the output of a step, one batch or chunk of
items at a time. Generally, an item writer has no knowledge of the input it will receive
next, only the item that was passed in its current invocation.

The remainder of this document describes the implementation of the BDI product
using Java Batch and JavaEE.

Chapter 1
Standards and Specifications

1-4

2
Job Administrator

BDI Job Admin is a web application that provides the runtime and GUI for managing batch
jobs. It provides the following high level functionality.

• RESTful service to start/restart, check status and so on of a job.

• RESTful service to stream data from source system to destination system.

• The Infrastructure for various bulk data integration jobs. This includes the database for
keeping track of data and the batch database for holding information about jobs.

• The User Interface provides ability to:

– Start/restart, and track status of jobs

– Trace data

– View Diagnostic Errors

– Manage options at job and system level

– View the logs

BDI uses instances of Job Admin to run the downloader and importer jobs. For example;
RMS uses an instance of Job Admin to run extractor jobs.

Job Admin Core Components
The BDI Job Admin contains the batch jobs for moving bulk data from source (senders)
systems (for example RMS) to destination (receiver) systems (for example EXT, and so on).
A bulk integration flow moves data for one family from source to destination application(s).

An Integration Flow is made up of the multiple activities: Extractor, Downloader, Transporter,
FileCreator, Uploader, and Importer. These activities are implemented as batch jobs.

An Extractor Job extracts data for a Family from a source system and moves data to the
outbound Interface Tables.

Outbound Interface Tables typically exist in the integration database schema and the schema
resides in the source system database.

Extractor Job
The Extractor Job uses a Batchlet and PL/SQL stored procedures to move data from
transactional tables of source system (for example RMS) to outbound tables. A PL/SQL
stored procedure calls BDI PL/SQL stored procedure to insert data set information in the
outbound data control tables. Extractor jobs are currently implemented to provide full data
(not delta) for an interface.

2-1

BDI Extractor (PL/SQL Application)

1. The Extractor job is run from App A (for example RMS) Extractor Job Admin
application through REST or UI.

2. The Extractor job invokes PL/SQL stored procedure in App A database.

3. A PL/SQL stored procedure is run in the App A database.

4. The PL/SQL stored procedure moves data from transactional tables to the
outbound tables in the BDI schema.

5. The PL/SQL stored procedure inserts entries in downloader data control tables to
indicate the data set is ready for download.

Note:

Review Sample Extractor - PL/SQL application code that calls procedures in
PL/SQL package.

Sample Extractor – PL/SQL application code that calls procedures in PL/SQL
package.

The Downloader Data Control Tables act as a handshake between the Extractor and
the Downloader. There are two Outbound Data Control Tables:

• BDI_DWNLDR_IFACE_MOD_DATA_CTL

• BDI_DWNLDR_IFACE_DATA_CTL

The Extractor job inserts entries in the downloader data control tables to indicate that
data is ready to be downloaded after it completes moving data to outbound interface
tables.

Downloader-Transporter Job
A Downloader-Transporter job downloads the data set from outbound interface tables
for an Interface Module (family) and streams data to a BDI destination application
using the Receiver Service.

Chapter 2
Job Admin Core Components

2-2

If there are multiple Interfaces for an Interface Module, data for all interfaces for that interface
module are downloaded and streamed concurrently to the Receiver Service of BDI
destination application.

BDI Downloader Transporter

1. The Downloader Transporter job is run from the BDI App A Job Admin application
through REST or UI.

2. The Downloader Transporter job checks for new data sets in Downloader Data Control
Tables.

3. If a Data Set is available for download, the Downloader Transporter job downloads a
block of data from the outbound table.

4. The Downloader Transporter job streams downloaded blocks to Receiver Service.

5. The Receiver Service stores meta data in Receiver Service database.

6. By default, the Receiver Service inserts the data directly into receiver and inbound tables.

7. The Receiver Service inserts an entry in the importer data control table indicating that the
data set is ready for upload.

Rules for processing a data set by Downloader Job

1. A full data set is available for download, if it is not processed by a downloader job yet and
if a newer full data set is not processed successfully.

2. If data set id is passed through job parameters (for example jobParameters=dataSetId=1)
to downloader job, it will use the data set if it is available as per the above rule. Otherwise
job will fail.

3. If the data set id is not passed through job parameters to downloader job, it will identify
the next available data set if there is one. Otherwise job completes without processing
any data set.

4. If the downloader-transporter job fails for whatever reason, the data set that it tried to
download can only be downloaded by restarting the job after fixing the issues.

Chapter 2
Job Admin Core Components

2-3

5. If the downloader-transporter job is started instead of a restart, it will either pick up
a new data set or none.

Downloader Data Sets

A Data Set consists of rows between a begin and end sequence number (bdi_seq_id
column) in the Outbound Interface Table. The BDI_SEQ_ID column is automatically
incremented when data is inserted into the outbound table.

The Downloader-Transporter job downloads a single data set that is not downloaded
yet from the outbound interface tables.

If a data set id is passed as job parameter (for example jobParameters=dataSetId=1)
to Downloader-Transporter job, it will use that data set if it is available for download.
Job Parameters as a query parameter. Job Parameters is a comma separated list of
name value pairs. This parameter is optional.

If there are multiple data sets in the outbound tables that are available for download,
then the Downloader-Transporter job picks up the oldest data set.

If there is no data set available in the outbound tables, the Downloader-Transporter job
completes without downloading any data.

If a newer data set is processed by the Downloader-Transporter job, then older data
set cannot be processed.

A data set is divided into Logical Partitions and data in each partition is downloaded by
a separate thread. The Downloader-Transporter job tries to allocate data equally
between partitions. Data in each partition is divided into blocks based on the “item-
count" value in the job and each block is retrieved from an outbound table and streams
it to the destination application using the Receiver Service.

A data set is divided into logical partitions based on the number of partitions specified
in the BDI_DWNLDR_TRNSMITTR_OPTIONS table and the number of rows in the
data set.

The number of rows is calculated by subtracting the begin sequence number from the
end sequence number provided in the BDI_DWNLDR_IFACE_DATA_CTL table. The
number of rows may be approximate as there can be gaps in sequence numbers.

The number of rows allocated to each logical partition is calculated by dividing the
approximate row count with the number of partitions.

Example 2-1 Example 1

Begin Sequence number = 1
End Sequence number = 100
Number of partitions = 2

Approximate row count = 100 - 1 + 1
Items for partition = 100/2 = 50
Data assigned to partition 1
 Begin Sequence number = 1
 End Sequence number = 1 + 50 - 1 = 50
Data assigned to partition 2
 Begin Sequence number = 51
 End Sequence number = 51 + 50 - 1 = 100

Chapter 2
Job Admin Core Components

2-4

Example 2-2 Example 2

Begin Sequence number = 1
End Sequence number = 75
Number of partitions = 2

Approximate row count = 75 - 1 + 1
Items for partition = 75/2 = 37
Extra items = 75 % 2 = 1
Data assigned to partition 1
 Begin Sequence number = 1
 End Sequence number = 1 + 37 - 1 = 37
Data assigned to partition 2
 Begin Sequence number = 38
 End Sequence number = 38 + 37 + 1 - 1 = 75

The Downloader-Transporter job deletes data from outbound tables after the successful
completion of the job if AUTO_PURGE_DATA flag in
BDI_DWNLDR_TRNSMITTR_OPTIONS table is set to TRUE. The default value for this flag
is FALSE. If sender side split topology is used, this flag needs to be changed to FALSE.
Otherwise all destination applications may not get the data.

When a Downloader-Transporter job fails, the error information such as stack trace gets
stored in BDI_JOB_ERROR and BDI_DOWNLOADER_JOB_ERROR tables. Errors are
displayed in the “Diagnostics" tab of the Job Admin GUI. The error information can be used to
fix the issues before restarting the failed job. Note that if there are exceptions in Batch
runtime, then those exceptions won't show up in the Job Error tables and so in the
Diagnostics tab of the Job Admin GUI.

Downloader-Transporter Job Configuration

Seed data for the Downloader-Transporter jobs is loaded to the database during the
deployment of Job Admin. Some of the seed data can be changed from the Job Admin GUI.

BDI_SYSTEM_OPTIONS

During the installation of Job Admin, the following information is provided by the user and that
information is loaded into the BDI_SYSTEM_OPTIONS table.

Table 2-1 System Options

Column Type Comments

VARIABLE_NAME VARCHAR2(255) Name of the system variable

APP_TAG VARCHAR2(255) The application name

VARIABLE_VALUE VARCHAR2(255) Value of the variable

CREATE_TIME TIMESTAMP Time it was created

UPDATE_TIME TIMESTMP Time it was updated

<app>JobAdminBaseUrl - Base URL for Job Admin of destination applications

<app>JobAdminBaseUrlUserAlias - User alias for Job Admin of destination applications

<app> - Destination application name

Chapter 2
Job Admin Core Components

2-5

Example 2-3 Example

MERGE INTO BDI_SYSTEM_OPTIONS USING DUAL ON
(VARIABLE_NAME='rmsJobAdminBaseUrl' and APP_TAG='rms-batch-job-
admin.war') WHEN MATCHED THEN UPDATE SET VARIABLE_VALUE='http://
rxmhost:7001/rms-batch-job-admin', UPDATE_TIME=SYSDATE WHEN NOT
MATCHED THEN INSERT (VARIABLE_NAME, APP_TAG, VARIABLE_VALUE,
CREATE_TIME) VALUES('externalJobAdminBaseUrl','external-batch-job-
admin.war', 'http://rmshost:7001/rms-batch-job-admin', SYSDATE)

BDI_INTERFACE_CONTROL

During the design time, seed data for the BDI_INTERFACE_CONTROL table is
generated for all interface modules (aka families) for a job type (DOWNLOADER,
UPLOADER) so that interface modules are active.

Table 2-2 Interface Control

Column Type Comments

ID NUMBER Primary Key

INTERFACE_CONTROL_C
OMMAND

VARCHAR2(255) ACTIVE or IN_ACTIVE

INTERFACE_MODULE VARCHAR2(255) Name of interface module

SYSTEM_COMPONENT_T
YPE

VARCHAR2(255) DOWNLOADER or UPLOADER

Example 2-4 Example

insert into BDI_INTERFACE_CONTROL (ID, INTERFACE_CONTROL_COMMAND,
INTERFACE_MODULE, SYSTEM_COMPONENT_TYPE) values (1, 'ACTIVE',
'Diff_Fnd', 'DOWNLOADER')

BDI_DWNLDR_TRNSMITTR_OPTIONS

Seed data for BDI_DWNLDR_TRNSMITTR_OPTIONS specifies various configuration
options for the Downloader-Transmitter job. Seed data is generated during design time
and executed during deployment.

Table 2-3 Transmitter Options

Column Type Comments

ID NUMBER Primary Key

INTERFACE_MODULE VARCHAR2(255) Name of interface module

INTERFACE_SHORT_NAM
E

VARCHAR2(255) Name of the interface

RECVR_END_POINT_URL VARCHAR2(255) Name of the URL variable in
BDI_SYSTEM_OPTIONS table

RECVR_END_POINT_URL
_ALIAS

VARCHAR2(255) Name of the URL alias variable
in BDI_SYSTEM_OPTIONS
table

Chapter 2
Job Admin Core Components

2-6

Table 2-3 (Cont.) Transmitter Options

Column Type Comments

PARTITION NUMBER Number of partitions used by
Downloader-Transporter job.
Default value is 10. This value
can be changed through Job
Admin GUI

THREAD NUMBER Number of threads used by
Downloader-Transporter job.
Default value is 10. This value
can be changed through Job
Admin GUI.

QUERY_TEMPLATE VARCHAR2(255) Query to be run by downloader
job

AUTO_PURGE_DATA VARCHAR2(255) This flag indicates Downloader-
Transporter job whether to clean
data set in the outbound table
after the job successfully
downloads the data set. Default
value is set to True. This value
need to be changed based on
the deployment topology used
for bulk data integration.

COLUMN_FILTER VARCHAR2(4000)

ROW_FILTER VARCHAR2(4000)

Example 2-5 Example

MERGE INTO BDI_DWNLDR_TRNSMITTR_OPTIONS USING DUAL ON (ID=1) WHEN MATCHED
THEN UPDATE SET INTERFACE_MODULE='Diff_Fnd', INTERFACE_SHORT_NAME='Diff',
RECVR_END_POINT_URL='externalJobAdminBaseUrl',
RECVR_END_POINT_URL_ALIAS='externalJobAdminBaseUrlUserAlias', PARTITION=10,
THREAD=10, QUERY_TEMPLATE='select * from InterfaceShortName where
(bdi_seq_id between ? and ?) QueryFilter order by bdi_seq_id',
AUTO_PURGE_DATA='TRUE' WHEN NOT MATCHED THEN INSERT (ID, INTERFACE_MODULE,
INTERFACE_SHORT_NAME, RECVR_END_POINT_URL, RECVR_END_POINT_URL_ALIAS,
PARTITION, THREAD, QUERY_TEMPLATE, AUTO_PURGE_DATA) values (1, 'Diff_Fnd',
'Diff', 'externalJobAdminBaseUrl', 'externalJobAdminBaseUrlUserAlias', 10,
10,
'select * from InterfaceShortName where (bdi_seq_id between ? and ?)
QueryFilter order by bdi_seq_id', 'TRUE')

MERGE INTO BDI_DWNLDR_TRNSMITTR_OPTIONS USING DUAL ON (ID=1) WHEN MATCHED
THEN UPDATE SET INTERFACE_MODULE='Diff_Fnd', INTERFACE_SHORT_NAME='Diff',
RECVR_END_POINT_URL='externalJobAdminBaseUrl',
RECVR_END_POINT_URL_ALIAS='externalJobAdminBaseUrlUserAlias', PARTITION=10,
THREAD=10, QUERY_TEMPLATE='select * from InterfaceShortName where
(bdi_seq_id between ? and ?) QueryFilter order by bdi_seq_id',
AUTO_PURGE_DATA='TRUE' WHEN NOT MATCHED THEN INSERT (ID, INTERFACE_MODULE,
INTERFACE_SHORT_NAME, RECVR_END_POINT_URL, RECVR_END_POINT_URL_ALIAS,
PARTITION, THREAD, QUERY_TEMPLATE, AUTO_PURGE_DATA) values (2, 'Diff_Fnd',
'Diff', 'externalJobAdminBaseUrl', 'externalJobAdminBaseUrlUserAlias', 10,

Chapter 2
Job Admin Core Components

2-7

10,
'select * from InterfaceShortName where (bdi_seq_id between ? and ?)
QueryFilter order by bdi_seq_id', 'TRUE')

Downloader-Transporter Job Properties

The following job properties can be changed in the Downloader-Transporter jobs to
tune the performance.

item-count

Item Count is an attribute of the “chunk" element in the Downloader-Transporter job.
The default value for “item-count" is set to 1000. The Downloader job retrieves 1000
rows of data from the database before it sends data to the Receiver Service.

<chunk checkpoint-policy="item" item-count="1000">

This value can be changed to fine tune the performance of the Downloader-
Transporter job. You need to manually change the value in the job xml files in bdi-
<app>-home/setup-data/job/META-INF/batch-jobs folder and reinstall the app.
Increasing the item count will increase memory utilization.

fetchSize

The Fetch Size is a property in the Downloader-Transporter job.

FetchSize property is used by JDBC to fetch n number of rows and cache them. The
default value is set to 1000. Typically “item-count" and “fetchSize" values are identical
to get better performance.

<property name="fetchSize" value="1000"/>
This value can be changed to fine tune the performance of the Downloader-
Transporter job. You need to manually change the value in the job xml files.

Cleanup

The Downloader-Transporter job deletes data from outbound tables after the
successful completion of the job if the AUTO_PURGE_DATA flag in
BDI_DWNLDR_TRNSMITTR_OPTIONS table is set to TRUE. The default value for
this flag is FALSE. If sender side split topology is used, this flag needs to be changed
to FALSE. Otherwise all destination applications may not get the data.

Auto Purge Delay

New system options have been added to introduce delay in purging data.

Auto Purge System Options for auto purge outbound data

autoPurgeOutboundData.global - Valid values are TRUE or FALSE

autoPurgeOutboundData.<Interface Module> - Interface module level system option
that overrides global system option

autoPurgeOutboundDataDelay.global - The value of can be specified in days or
hours.Examples are 24h = 24 hours or 30d = 30 days

autoPurgeOutboundDataDelay.<Interface Module> - Interface module level system
option that overrides global system option. The value of can be specified in days or
hours.Examples are 24h = 24 hours or 30d = 30 days

Chapter 2
Job Admin Core Components

2-8

Auto Purge System Options for auto purge of inbound data

autoPurgeInboundData.global - Valid values are TRUE or FALSE

autoPurgeInboundData.<Interface Module> - Interface module level system option that
overrides global system option

autoPurgeInboundDataDelay.global - The value of can be specified in days or
hours.Examples are 24h = 24 hours or 30d = 30 days

autoPurgeInboundDataDelay.<Interface Module> - Interface module level system option that
over-rides global system option. The value of can be specified in days or hours.Examples are
24h = 24 hours or 30d = 30 days

The value of autoPurgeDelay system option can be specified in days or hours.

Examples

30d - 30 days

24h - 24 hours

If "d" or "h" is not included in the value, then it is considered days.

The default autoPurgeDelay is 30 days. This value applies when autoPurgeDelay system
option is not specified.

Extractor Cleanup Job

Extractor cleanup job purges data from outbound tables for data sets that have been
successfully processed. It uses the above mentioned system options to decide whether to
purge and when to purge data.

Importer Job

Importer job purges data from inbound tables for data sets that have been successfully
processed. It uses the above mentioned system options to decide whether to purge and
when to purge data.

Error Handling

When a Downloader-Transporter job fails, error information like the stack trace gets stored in
the BDI_JOB_ERROR and BDI_DOWNLOADER_JOB_ERROR tables. Errors are displayed
in the “Diagnostics" tab of the Job Admin GUI. The error information can be used to fix the
issues before restarting the failed job.

Note:

If there are exceptions in Batch runtime, then those exceptions won't show up in
Job Error tables and so in Diagnostics tab of Job Admin GUI.

BDI_DOWNLOADER_JOB_ERROR

Chapter 2
Job Admin Core Components

2-9

Table 2-4 Downloader Job Error

Column Type Comments

DOWNLOADER_JOB_ERR
OR_ID

NUMBER Primary key

PARTITION_INDEX VARCHAR2(255) Partition number of data set

BLOCK_NUMBER NUMBER Block number in the partition

BEGIN_SEQ_NUM_IN_BLO
CK

NUMBER Begin sequence number in the
block

END_SEQ_NUM_IN_BLOC
K

NUMBER End sequence number in the
block

JOB_ERROR_ID NUMBER Foreign key to JOB_ERROR
table

BDI_JOB_ERROR

Table 2-5 Job Error

Column Type Comments

JOB_ERROR_ID NUMBER Primary key

CREATE_TIME TIMESTAMP Time when error occurred

TRANSACTION_ID VARCHAR2(255) Transaction Id of the job

INTERFACE_MODULE VARCHAR2(255) Name of the interface module

INTERFACE_SHORT_NAM
E

VARCHAR2(255) Name of the interface

DESCRIPTION VARCHAR2(1000) Error description

STACK_TRACE VARCHAR2(4000) Stack trace

Downloader-FileCreator Job
A DownloaderAndFileCreator job downloads data from outbound interface table for an
interface module (family) and creates a file. It also creates a zero byte trigger file.

The names of the data and trigger files are specified as properties in the
DownloaderAndFileCreator job. It copies the data and trigger files to outbound
locations for destinations specified in "destination" property of the job. The outbound
locations are specified in system options and the job derives the system option key
using destination name. DownloaderAndFileCreator jobs are used by RMS Job Admin
to create files for RPAS.

Example properties for Calendar_Fnd_DownloaderAdnFileCreatorToRpasJob

<property name="fileName" value="rms_clnd.csv.dat"/>
<property name="fileDataFormat" value="CSV"/>
<property name="triggerFileName" value="rms_clnd.complete"/>
<property name="destination" value="MFP,RDF,AP,IP"/>

DownloaderAndFileCreator job allows the order of the columns in the file and columns
to be filtered. The columns specified in the columnFilter property are excluded in the
file. Data in the file is in the order of the columns specified in columnOrder property.

Chapter 2
Job Admin Core Components

2-10

Example properties for columnFilter and columnOrder. The delimiter for columnFilter is
comma and for columnOrder is pipe character.

<property name="columnFilter"
value="BDI_SEQ_ID,BDI_APP_NAME,BDI_DATASET_TYPE,BDI_DATASET_ACTION"/>
<property name="columnOrder" value="TO_CHAR(Day,'YYYYMMDD')|TO_CHAR(Week,'YYYYMMDD')|
Month|Quarter|Half|Year|Week_of_Year|Day_of_Week"/>

DownloaderAndFileCreator job uses multiple job partitions to download data and create files.
It then merges files from all partitions to create a single data file.The following system options
are used by the job for providing flexibility.

mergeFilesFlag

Files created by various partitions are merged by the job by default. Job won't merge files if
this flag is set to False.

triggerFileFlag

Trigger file is created by the job by default. Job won't create trigger file if this flag is set to
False.

copyFilesFlag

Files are copied to outbound locations by default. Job won't copy files to outbound locations if
this flag is False.

overwriteOutboundFilesFlag

Files are not overwritten at outbound location by default. Job will overwrite files if this flag is
set to True.

<Destination>_outboundLocation

Job uses this system option to find out the outbound location for a destination. If there are
multiple destinations, then multiple system options need to be set.

Receiver Service
The Receiver Service is a RESTful service that provides various endpoints to send data
transactionally.

The Receiver Service is part of Job Admin. It stores data as files and keeps track of metadata
in the database. The Receiver Service also supports various merge strategies for merging
files at the end.

The Receiver Service is used by the Downloader-Transporter job to transmit data from
source to destination. By default, the Receiver Service inserts the data directly into receiver
and inbound tables. There is an option to configure whether to transfer data to database or
file system using system option property, receiverOutputType. If system option is not provided
then receiver service defaults to database output type.

Importer Job
The tables BDI_IMPRTR_IFACE_MOD_DATA_CTL and
BDI_IMPORTER_IFACE_DATA_CTL act as a handshake between the receiver service and
importer jobs. When the Receiver Service completes processing a data set successfully, it
creates an entry in these tables.

Chapter 2
Job Admin Core Components

2-11

An entry in the table BDI_IMPRTR_IFACE_MOD_DATA_CTL indicates to the Importer
Job that a data set is ready to be imported.

The Importer job imports a data set for an Interface Module from inbound tables into
application specific transactional tables. Importer jobs are application specific jobs. It
uses the Importer Data Control Tables to identify whether a data set is ready for import
or not.

RPAS Importer

1. Importer job is run from App B RPAS Job Admin application through REST or UI.

2. Importer job checks for data sets in importer data control tables.

3. If data set is available for import, importer job downloads data from inbound table.

4. Importer job loads data to App B RPAS staging tables.

BDI_IMPRTR_IFACE_MOD_DATA_CTL

Importer File Creator Job
Importer File Creator job imports data from inbound table and creates a file at the
outbound location. This job provides the functionality mentioned below.

• Column Filter - Filters data for columns specified in columnFilter property of the
job.

• Row Filter - Filters data based on the predicate provided in the rowFilter property
of the job

• Column Order - Column order can be specified in the columnOrder property of the
job. If it is not specified, job uses order of the columns in the inbound table.

• Merge files - Merges files created for each partition. The system option
"importerMergeFilesFlag" can be set to FALSE not to merge the files. By default,
job merges the files.

• Copy files - Copies files to outbound location. The system option
"importerCopyFilesFlag" can be set to FALSE not to copy the files. By default, job

Chapter 2
Job Admin Core Components

2-12

copies the files. Job expects the system option <Destination>_importerOutboundLocation
if importerCopyFilesFlag is set to TRUE.

• Purge Data - Purges data from inbound tables. AUTO_PURGE_DATA flag in
BDI_IMPORTER_OPTIONS can be set to FALSE not to purge data after successful
completion of the job. Seed data sets the flag to TRUE.

• Import File Location - By default, files are created in "bdi-data" folder. A system option
<Job Name>.importFileLocation can be specified so that files are created in configured
directory. A global system option "importFileLocation" can be specified for all importer file
creator jobs.

• Job won't create any file if dataSetId is not specified

• If dataset has no data, then job will create an empty file.

• Job won't allow processing of a dataset if it is already processed.

Importer File Creator job is currently added only for OMS InvAvailWh_Tx.

Table 2-6 Importer Data

Column Type Comments

IMPORTER_IFACE_MOD_DA
TACTL_ID

NUMBER Primary key

INTERFACE_MODULE VARCHAR2(255) Name of the interface module

SOURCE_SYSTEM_NAME VARCHAR2(255) Name of the source system

SOURCE_DATA_SET_ID NUMBER Source data set id

SRC_SYS_DATA_SET_READ
Y_TIME

TIMESTAMP Time when data set was ready in
outbound tables

DATA_SET_TYPE VARCHAR2(255) Type of data set (FULL or
PARTIAL)

DATA_SET_READY_TIME TIMESTAMP Time when data set was available
in inbound tables

UPLOADER_TRANSACTION_
ID

NUMBER Transaction id of the uploader job

BDI_IMPORTER_IFACE_DATA_CTL

Table 2-7 Importer Data

Column Type Comments

IMPORTER_IFACE_DATA_CT
L_ID

NUMBER Primary key

INTERFACE_SHORT_NAME VARCHAR2(255) Name of the interface

INTERFACE_DATA_BEGIN_S
EQ_NUM

NUMBER Beginning sequence number of the
data set in the inbound table

INTERFACE_DATA_END_SE
Q_NUM

NUMBER Ending sequence number of the
data set in the inbound table

IMPORTER_IFACE_MOD_DA
TACTL_ID

NUMBER Foreign key to
BDI_IMPRTR_IFACE_MOD_DATA_
CTL table

Chapter 2
Job Admin Core Components

2-13

Table 2-7 (Cont.) Importer Data

Column Type Comments

SRC_SYS_INTERFACE_DATA
_COUNT

NUMBER

INTERFACE_DATA_COUNT
NUMBER

NUMBER

Chapter 2
Job Admin Core Components

2-14

3
Job Admin Services

This chapter discusses the Job Admin Services.

Job Admin RESTful Services
Job Admin provides below RESTful services. These services are secured with SSL and basic
authentication.

• Batch Service - Ability to start/stop/restart, check status, and so on of jobs. This service is
typically used by the BDI Process Flow engine.

• Receiver Service - Ability to stream data from one system to another system. This service
is used by the Downloader-Transporter job.

• System Setting Service - Ability to view, change system settings, and credentials. Refer
to System Setting Service for details on System Setting REST resources.

• Data Service - Ability to get data set information using job information such as job name,
execution id or instance id.

• Telemetry Service - Ability to get job metrics for jobs that ran between fromTime and
toTime.

Receiver Service
The Receiver Service is a RESTful service that provides various endpoints to send data
transactionally. Receiver Service is part of Job Admin. Receiver Service uploads the data to
either database or files. By default, the Receiver Service stores the data in the database. It
stores data as files and keeps track of metadata in the database. The Receiver Service also
supports various merge strategies for merging files at the end. The Receiver Service is used
by the Downloader-Transporter job to transmit data from source to destination.Seed data for
Receiver Service is generated during design time and loaded during deployment of the Job
Admin application.

BDI_RECEIVER_OPTIONS

The Receiver Service options can be configured at interface level.

Table 3-1 Receiver Options

Column Type Comments

ID NUMBER Primary key

INTERFACE_MODULE VARCHAR2(255) Name of the interface module

INTERFACE_SHORT_NAME VARCHAR2(255) Name of the interface

3-1

Table 3-1 (Cont.) Receiver Options

Column Type Comments

BASE_FOLDER VARCHAR2(255) This is the base folder for storing
files created by Receiver Service.
Receiver Service creates a
subfolder “bdi-data" under base
folder. Base folder can be changed
from “Manage Configurations" tab
of Job Admin GUI.

FOLDER_TEMPLATE VARCHAR2(255) Folder template provides the folder
structure for storing files created by
Receiver Service.Default value is “$
{basefolder}/${TxId}/${TId}/${BId}/".
TxId - Transaction IdTId -
Transmission IdBId - Block IdThis
value can't be changed.

MERGE_STRATEGY VARCHAR2(255) The strategy for merging files. The
default value is “NO_MERGE". The
valid values are NO_MERGE,
MERGE_TO_PARTITION_LEVEL,
and
MERGE_TO_INTERFACE_LEVEL.
MERGE_TO_PARTITION_LEVELM
erges all files for that partition and
creates the merged file in “${TId}"
folder.MERGE_TO_INTERFACE_L
EVELMerges all files for interface
and creates the merged file in “$
{TxId}" folder.MERGE strategies
are only supported in cases where
the Uploader is not used.

Endpoints

Ping

This endpoint can be used to check whether the Receiver Service is up or not.

HTTP Method: GET

Path: receiver/ping

Response: alive

Begin Receiver Transaction

This is the first endpoint to be called by the client (for example Downloader-
Transporter job) before sending any data. It stores the following metadata in the
BDI_RECEIVER_TRANSACTION table and returns the response in JSON format.

Parameter Description

Transaction Id Transaction Id (Tx#<Job Instance Id>_<Current Time in
millis>_<Source System Name> of the Downloader-
Transporter job

Interface Module Name of the interface module (for example Diff_Fnd)

Chapter 3
Job Admin RESTful Services

3-2

Parameter Description

Source System Name Name of the source system (for example RMS)

sourceSystemId ID of the source system (for example URL)

sourceDataSetId ID of the data set

Data Set Type Type of data set (FULL or PARTIAL)

Source System Data Set Ready
Time

Time when source data set was ready in the outbound
tables

HTTP Method: POST

Path: receiver/beginTransaction/{transactionId}/{interfaceModule}/{sourceSystemName}/
{sourceSystemId}/{sourceDataSetId}/{dataSetType}/{sourceSystemDataSetReadyTime}

Sample Response

{
 “receiverTransactionId": “1",
 “transactionId": “Tx#1",
 “sourceSystemName": “RMS",
 “interfaceModule": “Diff_Fnd",
 “sourceSystemId": “",
 “sourceDataSetId": “",
 “dataSetType": “FULL",
 “sourceSystemDataSetReadyTime": “",
 “dir": “",
 “fileName": “",
 “receiverTransactionStatus": “",
 “receiverTransactionBeginTime": “",
 “receiverTransactionEndTime": “"
}

Begin Receiver Transmission

This end point needs to be called by client (for example Downloader-Transporter job) before
sending any data for a partition. It stores the following metadata in
BDI_RECEIVER_TRANSMISSION table and returns response in JSON format.

Parameter Description

TransmissionId Generated for each partition

InterfaceModule) Name of the interface module (for example Diff_Fnd

InterfaceShortName) Name of the interface (for example Diff

partitionName Partition number

partitionBeginSeqNum Begin sequence number in the partition

partitionEndSeqNum End sequence number in the partition

beginBlockNumber Begin block number

HTTP Method: POST

Path: receiver/beginTransmission/{transactionId}/{transmissionId}/{sourceSystemName}/
{interfaceMod-ule}/{interfaceShortName}/{partitionName}/{partitionBeginSeqNum}/
{partitionEndSeqNum}/{beginBlockNumber}

Chapter 3
Job Admin RESTful Services

3-3

Parameters:

Query Parameter: sourceSystemInterfaceDataCount

Sample Response:

{
 “transmissionId": “1",
 “interfaceModule": “Diff_Fnd",
 “interfaceShortName": “Diff",
 “sourceSystemPartitionName": “1",
 “sourceSystemPartitionBeginSequenceNumber": “1",
 “sourceSystemPartitionEndSequenceNumber": “100",
 “beginBlockNumber": “1",
 “endBlockNumber": “",
 “dir": “",
 “fileName": “",
 “receiverTransmissionStatus": “"
}

Upload Data Block

Clients use this endpoint to send data. This endpoint is typically called by the client
multiple times until there is no more data. It creates a csv file with the data it received
at the below location.

${BASE_FOLDER}/bdi-data/${TxId}/${TId}/${BId}
BASE_FOLDER - Obtained from the BDI_RECEIVER_OPTIONS table

TxId - Transaction Id of the remote Downloader-Transporter job

TId - Transmission Id associated with the transaction id

BId - Block Id associated with transmission id

It also stores the following metadata in the RECEIVER_TRANSMISSION_BLOCK
table.

Parameter Description

BlockNumber Number of the block

ItemCountInBlock Number of items in the block

Dir Directory where file is created

FileName Name of the file

ReceiverBlockStatus Status of the block

CreateTime Time when the block is created

HTTP Method: POST

Path: receiver/uploadDataBlock/{transactionId}/{transmissionId}/{sourceSystemName}/
{interfaceModule}/{interfaceShortName}/{blockNumber}/{itemCountInBlock}

Sample Response

{
 “blockId": “1",
 “transmissionId": “1",
 “blockNumber": “1",

Chapter 3
Job Admin RESTful Services

3-4

 “blockItemCount": “100",
 “dir": “",
 “fileName": “",
 “receiverBlockStatus": “",
 “createTime": “"
}

End Transmission

This end point ends transmission for a partition. It updates “endBlockNumber" and
“receiverTransmisionStatus" in the RECEIVER_TRANSMISSION table.

HTTP Method: POST

Path: receiver/endTransmission/{transmissionId}/{sourceSystemName}/{interfaceModule}/
{interfaceShortName}/{numBlocks}

Sample Response

{
 “transmissionId": “1",
 “interfaceModule": “Diff_Fnd",
 “interfaceShortName": “Diff",
 “sourceSystemPartitionName": “1",
 “sourceSystemPartitionBeginSequenceNumber": “1",
 “sourceSystemPartitionEndSequenceNumber": “100",
 “beginBlockNumber": “1",
 “endBlockNumber": “",
 “dir": “",
 “fileName": “",
 “receiverTransmissionStatus": “"
}

End Transaction

This end point ends the transaction and called once by the client. It updates
“receiverTransactionStatus" and “receiverTranasctionEndTime" in the
RECEIVER_TRANSACTION table. If “mergeStrategy" is set to
“MERGE_TO_PARTITION_LEVEL" or “MERGE_TO_INTERFACE_LEVEL", then it merges
the files and creates the merged file(s) at the appropriate directory. It creates an entry in the
BDI_UPLDER_IFACE_MOD_DATA_CTL table so that Uploader job can pick up the data.

HTTP Method: POST

Path: receiver/endTransaction/{transactionId}/{sourceSystemName}/{interfaceModule}

Sample Response

{
 “receiverTransactionId": “1",
 “transactionId": “Tx#1",
 “sourceSystemName": “RMS",
 “interfaceModule": “Diff_Fnd",
 “sourceSystemId": “",
 “dataSetType": “FULL",
 “sourceSystemDataSetReadyTime": “",
 “dir": “",
 “fileName": “",
 “receiverTransactionStatus": “",
 “receiverTransactionBeginTime": “",
 “receiverTransactionEndTime": “"
}

Chapter 3
Job Admin RESTful Services

3-5

Uploader Interface Module Data Control Table

The BDI_UPLDER_IFACE_MOD_DATA_CTL table acts as a handshake between the
downloader and uploader jobs. When the downloader-transporter job calls
endTransaction on Receiver Service, the Receiver Service creates an entry in this
table if it successfully received data and created files.

An entry in this table indicates to the uploader job that a data set is ready to be
uploaded.

BDI_UPLDER_IFACE_MOD_DATA_CTL

Table 3-2 Module Data Control

Column Type Comments

UPLOADER_IFACE_MOD_
DATA_CTLID

NUMBER Primary key

INTERFACE_MODULE VARCHAR2(255) Name of the interface module

REMOTE_TRANSACTION_
ID

VARCHAR2(255) Transaction Id of Downloader-
Transporter job

SOURCE_DATA_SET_ID NUMBER NUMBER ID of the source data
set

SRC_SYS_DATA_SET_REA
DY_TIME

TIMESTAMP Source Data Set Ready Time

DATA_SET_TYPE VARCHAR2(255) Type of data set (FULL or
PARTIAL)

DATA_SET_READY_TIME TIMESTAMP Time when data set was
available in the outbound tables

DATA_FILE_MERGE_LEVE
L

VARCHAR2(255) Merge level for the files
(NO_MERGE,
MERGE_TO_PARTITION_LEVE
L,
MERGE_TO_INTERFACE_LEV
EL)

SOURCE_SYSTEM_NAME VARCHAR2(255) Name of the source system (for
example RMS)

Receiver Side Split for Multiple Destinations

If there are multiple destinations that receive data from a source, one of the options is
to use the Receiver Service at one destination to receive data from the sender and
then multiple destinations use the data from one Receiver Service to upload to
inbound tables. The requirements for the Receiver Side Split are such that:

• The Receiver Service database schema is shared by all the destinations

• The File system is shared by all destinations

The performance of BDI can be improved by using the receiver side split if there are
multiple destinations.

Batch Service
Batch service is a RESTful service that provides various endpoints to manage batch
jobs in the bulk data integration system. Batch Service is part of Job Admin.

Chapter 3
Job Admin RESTful Services

3-6

Table 3-3 Batch Service

REST Resource HTTP Method Description

/batch/jobs GET Gets all available batch jobs

/batch/jobs/enable-disable POST Enable or disable the jobs

/batch/jobs/{jobName} GET Gets all instances for a job

/batch/jobs/{jobName}/
executions

GET Gets all executions for a job

/batch/jobs/executions GET Gets all executions

/batch/jobs/currently-running-
jobs

GET Gets currently running jobs

/batch/jobs/{jobName}/
{jobInstanceId}/executions

GET Gets job executions for a job
instance

/batch/jobs/{jobName}/
{jobExecutionId}

GET Gets job instance and execution for
a job execution id

/batch/jobs/{jobName} POST Starts a job asynchronously

/batch/jobs/executions/
{jobExecutionId}

POST Restarts a stopped or failed job

/batch/jobs/executions DELETE Stops all running job executions

/batch/jobs/executions/
{jobExecutionId}

DELETE Stops a job execution

/batch/jobs/executions/
{jobExecutionId}

GET Gets execution steps with details

/batch/jobs/executions/
{jobExecutionId}/steps

GET Gets execution steps

/batch/jobs/executions/
{jobExecutionId}/steps/
{stepExecutionId}

GET Gets step details

/batch/jobs/is-job-ready-to-
start/{jobName}

GET Gets job if ready to start

/batch/jobs/group-definitions GET Gets all group definitions

/batch/jobs/job-def-xml-files GET Gets all job xml files

/batch/jobs/resolve-stranded-
job/{jobExecId}

POST Resolve stranded job

Key End Points

Start Job

This end point starts a job asynchronously based on a job name and returns the execution id
of the job in the response. If the given job is disabled it throws the exception "Cannot start the
disabled Job {jobName}. Enable the Job and start it."

Path: /batch/jobs/{jobName}

HTTP Method: POST

Inputs

Job Name as path parameter

Chapter 3
Job Admin RESTful Services

3-7

Job Parameters as a query parameter. Job Parameters is a comma separated list of
name value pairs. This parameter is optional.

Sample Request

http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/
DiffGrp_Fnd_ImporterJob?jobParameters=dataSetId=1

Successful Response

XML

<executionIdVo targetNamespace="">
<executionId>1</executionId>
 <jobName>DiffGrp_Fnd_ImporterJob</jobName>
</executionIdVo>

JSON

{
“executionId": 1,
 “jobName": “DiffGrp_Fnd_ImporterJob"
}

Error Response

XML
<exceptionVo targetNamespace="">
 <statusCode>404</statusCode>
 <status>NOT_FOUND</status>
 <message>HTTP 404 Not Found</message>
 <stackTrace></stackTrace> <!-- optional -->
</exceptionVo>

JSON
{
 “statusCode": “404",
 “status": “NOT_FOUND",
 “message": “HTTP 404 Not Found",
 “stackTrace": “"
}

Error Response in case of disable jobs

JSON
{
 "statusCode": 500,
 "status": "Internal Server Error",
 "message": "Cannot start the disabled Job {jobName}. Enable the Job
 and start it.",
 "stackTrace": "java.lang.RuntimeException:....."
}

Restart Job

This end point restarts a job asynchronously using the job execution id and returns the
new job execution id. If the given job is disabled it throws the exception "Cannot restart
the disabled Job {jobName}. Enable the Job and restart."

Path: /batch/jobs/executions/{executionId}

HTTP Method: POST

Chapter 3
Job Admin RESTful Services

3-8

Inputs

executionId as path parameter

Sample Request

http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/executions/2

Successful Response

XML

<executionIdVo targetNamespace="">
<executionId>2</executionId>
<jobName>DiffGrp_Fnd_ImporterJob</jobName>
</executionIdVo>

JSON

{
 “executionId": 2,
 “jobName": “DiffGrp_Fnd_ImporterJob"
}

Error Response

XML
XML

<exceptionVo targetNamespace="">
<statusCode>500</statusCode>
<status>INTERNAL_SERVER_ERROR</status>
 <message>Internal Server Error</message>
<stackTrace></stackTrace> <!-- optional -->
</exceptionVo>

JSON

{
 “statusCode": “500",
 “Status": “INTERNAL_SERVER_ERROR",
 “Message": “Internal Server Error",
 “stackTrace": “"
}

Error Response in case of disable jobs

JSON
{
 "statusCode": 500,
 "status": "Internal Server Error",
 "message": "Cannot restart the disabled Job {jobName}. Enable the
 Job and restart.",
 "stackTrace": "java.lang.RuntimeException:....."
}

Enable or Disable the jobs

This endpoint enables or disables the jobs using jobId, jobEnableStatus and returns the jobId,
status and message.

Path: /batch/jobs/enable-disable

Chapter 3
Job Admin RESTful Services

3-9

HTTP Method: POST

Inputs

JSON
[
 {
 "jobId": "CodeHead_Fnd_ImporterJob",
 "jobEnableStatus": "false"
 },
 {
 "jobId": "CompanyClosed_Fnd_ReceiverCleanupJob",
 "jobEnableStatus": "true"
 }
]

Sample Request

http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/enable-disable

Successful Response

JSON
[
 {
 "jobId": "Brand_Fnd_ImporterJob",
 "jobEnableStatus": "DISABLED",
 "message": "Job Disabled Successfully"
 },
 {
 "jobId": "Calendar_Fnd_ImporterJob",
 "jobEnableStatus": "ENABLED",
 "message": "Job Enabled Successfully"
 }
]

Check Status of a Job

This endpoint returns the status of a job using the job name and execution id.

Path: /batch/jobs/jobName/{jobExecutionId}

HTTP Method: GET

Inputs

jobName as path parameter

jobExecutionId as path parameter

Sample Request

http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/
DiffGrp_Fnd_ImporterJob/1

Successful Response

XML
<jobInstanceExecutionsVo targetNamespace="">
 <jobName>DiffGrp_Fnd_ImporterJob</jobName>
 <jobInstanceId>1</jobInstanceId>
<resource>http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/
DiffGrp_Fnd_ImporterJob/1</resource>

Chapter 3
Job Admin RESTful Services

3-10

 <jobInstanceExecutionVo>
 <executionId>1<>executionId>
 <executionStatus>COMPLETED</executionStatus>
 <executionStartTime>2016-07-11 15:45:27.356</executionStartTime>
 <executionDuration>10</executionDuration>
 </jobInstanceExecutionVo>
</jobInstanceExecutionsVo>

JSON

{
 “jobName": “DiffGrp_Fnd_ImporterJob",
 “jobInstanceId": 1,
 “resource": “http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/
DiffGrp_Fnd_ImporterJob/1",
 [“jobInstanceExecutionVo": {
 “executionId": 1,
 “executionStatus": “COMPLETED",
 “executionStartTime":"2016-07-11 15:45:27.356",
 “executionDuration": “10"
 }]
 }
}

Error Response

XML

<exceptionVo targetNamespace="">
<statusCode>500</statusCode>
<status>INTERNAL_SERVER_ERROR</status>
 <message>Internal Server Error</message>
<stackTrace></stackTrace> <!-- optional -->
</exceptionVo>

JSON

{
 “statusCode": “500",
 “Status": “INTERNAL_SERVER_ERROR",
 “Message": “Internal Server Error",
 “stackTrace": “"
}

Resolve Stranded Job

This API can be used to mark a stranded job to ABANDON status. This is helpful in scenarios
when a job gets struck in Running status. And the user is not able to run another instance of
the job.

Jobs in State: Started or Starting, Can only be marked to Abandon.

Path: /batch/jobs/resolve-stranded-job/{jobExecId}

HTTP Method: POST

Inputs

jobExecId

Sample Request

Chapter 3
Job Admin RESTful Services

3-11

http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/ resolve-stranded-job/1

Successful Response

XML

<jobExecId>1</jobExecId> <jobInstanceid>1</jobInstanceid>
<stepExecutionInstanceDataList /> </root>

JSON

{
 "batchStatus":"ABANDONED";
 "jobExecId":1,
 "jobInstanceid":1,
 "stepExecutionInstanceDataList":{}
}

Error Response

XML

<statusCode>500</statusCode>
<status>INTERNAL_SERVER_ERROR</status>
 <message>Internal Server Error</message>
<stackTrace></stackTrace> <!-- optional -->

JSON

{
 "message": "Job with Execution Id: 1 is not Running. Can't mark it Abandon.",
 "stackTrace": "java.lang.RuntimeException: Job with Execution Id: 1 is not
Running. Can't mark it Abandon",
 "statusCode": 500
}

Data Service
Data Service is a RESTful service that provides end points to get data set information
based on job level information.

Table 3-4 Data Service

REST Resource HTTP Method Description

/data/dataset/{jobName}/
executions/{jobExecutionId}

GET Gets a data set based on job
name and job execution id

/data/dataset/{jobName}/
instances/{jobInstanceId}

GET Gets a data set based on job
name and job instance id

/data/dataset/
{jobName}nextPending

GET Gets next pending data set
based on job name

Get Data Set for job name and execution id

Job name - Extractor or downloader-transmitter or uploader job name

Execution id - Job execution id

This endpoint is used by a process flow to get the data set id after the extractor job is
run successfully.

Chapter 3
Job Admin RESTful Services

3-12

Sample Request

http://localhost:7001/bdi-batch-job-admin/resources/data/dataset/Diff_Fnd_ExtractorJob/
executions/1

Sample Response

Returns response in either XML or JSON format.

<jobDataSetVo>
 <interfaceModule>Diff_Fnd</interfaceModule>
 <interfaceModuleDataControlId>2</interfaceModuleDataControlId>
 <jobName>Diff_Fnd_ExtractorJob</jobName>
 <jobDataSetInstance>
 <jobInstanceId>1</jobInstanceId>
 <jobDataSetExecutions>
 <jobExecutionId>1</jobExecutionId>
 </jobDataSetExecutions>
 </jobDataSetInstance>
</jobDataSetVo>

Get Data Set for job name and instance id

Job name - Extractor or downloader-transmitter or uploader job

Instance id - Job instance id

Sample Request

http://localhost:7001/bdi-batch-job-admin/resources/data/dataset/Diff_Fnd_ExtractorJob/
instances/1

Sample Response

<jobDataSetVo>
 <interfaceModule>Diff_Fnd</interfaceModule>
 <interfaceModuleDataControlId>2</interfaceModuleDataControlId>
 <jobName>Diff_Fnd_ExtractorJob</jobName>
 <jobDataSetInstance>
 <jobInstanceId>1</jobInstanceId>
 <jobDataSetExecutions>
 <jobExecutionId>1</jobExecutionId>
 </jobDataSetExecutions>
 </jobDataSetInstance>
</jobDataSetVo>

Get next pending data set for job name

This endpoint is applicable only to the downloader-transporter or uploader jobs.

Sample Request

http://localhost:7001/bdi-batch-job-admin/resources/data/dataset/
Diff_Fnd_DownloaderAndTransporterToRpasJob/nextPending

Sample Response

<jobDataSetVo>
 <interfaceModule>Diff_Fnd</interfaceModule>
 <interfaceModuleDataControlId>9</interfaceModuleDataControlId>
</jobDataSetVo>

Chapter 3
Job Admin RESTful Services

3-13

Telemetry Service
Telemetry Service is a RESTful service that provides end points to get job metrics
information.

Table 3-5 Data Service

REST Resource HTTP Method Description

/telemetry/jobs/ GET Gets job metrics based on
fromTime and toTime

/telemetry/jobs/summary GET Gets job metrics summary based
on fromTime and toTime

Job telemetry provides an end point to produce metrics for jobs that ran between
"fromTime" and "toTime".

Path: /telemetry/jobs HTTP Method: GET Parameters:

fromTime - Query parameter

toTime - Query parameter

Sample Request

http://localhost:7001/<app>-batch-job-admin/resources/telemetry/jobs?fromTime=
&toTime=

Sample Response

 Returns response in either XML or JSON format.

<job-runtime-monitoring-info data-requested-at="2018-11-08T00:44:57.113-05:00"
data-requested-from-time="2018-11-07T00:44:57.1-05:00" data-requested-to-
time="2018-11-08T00:44:57.1-05:00">
<jobs-server-runtime-info id="external-batch-job-admin.war" app-status="RUNNING"
up-since="69461" total-jobs-count="2" total-executions-count="2" successful-
executions-count="0" failed-executions-count="2">
<job name="Calendar_Fnd_ImporterJob" slowest-run-duration="0" fastest-run-
duration="0" avg-run-duration="0.0">
<executions execution_count="1" success_count="0" failure_count="1">
<execution execution-id="42" instance_id="42" status="FAILED"
startTime="2018-11-08T00:44:22-05:00" endTime="2018-11-08T00:44:22-05:00">
<step step-execution-id="42" name="batchlet-step" duration="0" status="FAILED"/>
</execution>
</executions>
</job>
</jobs-server-runtime-info>
</job-runtime-monitoring-info>

Job telemetry summary provides an end point to produce metrics for jobs summary
information that ran between "fromTime" and "toTime".

Path: /telemetry/jobs/summaryHTTP Method: GET Parameters:

fromTime - Query parameter

Chapter 3
Job Admin RESTful Services

3-14

toTime - Query parameter

Sample Request

http:// localhost:7001/ <app>-batch-job-admin/resources/telemetry/jobs/summary?fromTime=
&toTime=

Sample Response

 Returns response in either XML or JSON format.

<jobExecutionsSummaryVo data-requested-at="2018-11-08T00:45:50.888-05:00" data-
requested-from-time="2018-11-07T00:45:50.887-05:00" data-requested-to-
time="2018-11-08T00:45:50.887-05:00">
<executions jobName="Calendar_Fnd_ImporterJob" executionId="42" instanceId="42"
status="FAILED" startTime="2018-11-08T00:44:22-05:00"
endTime="2018-11-08T00:44:22-05:00"averageDuration="0.0"/>
<executions jobName="Brand_Fnd_ImporterJob" executionId="41" instanceId="41"
status="FAILED" startTime="2018-11-08T00:43:59-05:00"
endTime="2018-11-08T00:44:02-05:00" averageDuration="0.0"/>
</jobExecutionsSummaryVo>

End Points for CRUD operations on Job XML
End points have been added to Batch Service to allow CRUD operations on Job XML.

CREATE Job XML

This end point creates an entry in BDI_JOB_DEFINITION table. It will throw an exception if
job already exists.

HTTP Method: PUT

Path: /resources/batch/jobs/job-def-xml/{jobName}

Inputs:

Job Name (e.g. Diff_Fnd_ExtractorJob)

Job XML - It has to be valid XML that conforms to Job XML schema. The value of "id" in the
XML should match "jobName" path parameter.

Update Job XML

This end point updates an entry in BDI_JOB_DEFINITION table. It will update if job is not in
running state. This end point throws an exception if job doesn't exist in the table.

HTTP Method: POST

Path: /resources/batch/jobs/job-def-xml/{jobName}

Inputs:

Job Name (e.g. Diff_Fnd_ExtractorJob)

Job XML - It has to be valid XML that conforms to Job XML schema. The value of "id" in the
XML should match "jobName" path parameter.

Delete Job XML

This end point deletes an entry in BDI_JOB_DEFINITION table. It will delete if job is not in
running state and if there is no history in batch database.

Chapter 3
Job Admin RESTful Services

3-15

HTTP Method: DELETE

Path: /resources/batch/jobs/job-def-xml/{jobName}

Inputs:

Job Name (e.g. Diff_Fnd_ExtractorJob)

Delete Job History

This end point deletes history for a job from batch database. It will delete history if job
is not in running state.

HTTP Method: DELETE

Path: /resources/batch/jobs/{jobName}

Inputs:

Job Name (e.g. Diff_Fnd_ExtractorJob)

Bulk API for Batch Job CRUD Operations
ReST Endpoints have been introduced for Bulk create/update and Delete of Jobs in
BDI Job admin application. There were existing end points to create/update/delete the
individual jobs but it would be a great effort to use them sequentially for high number of
jobs. A single end point service which can be used to take care of bulk create OR
update operation for new job set has been added. Another end point for deleting
multiple jobs has been added. Both the end points provide Job Level success and
failure response for Create/Update/Delete.

End point for create/update job definitions

Http method:

Post

Path:

/batch/jobs/bulk/job-definitions

Consumes:

MediaType.APPLICATION_JSON/MediaType.APPLICATION_XML

Sample request:

http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/bulk/job-definitions

Input:

JSON

{"jobDefinitionsVo":[
{ "jobId": "Job11",
 "jobDefXml": "PGpvYi-
BpZD0iSm9iMTEiIHZlcnNpb249IjEuMCIgeG1sbnM9Imh0dHA6Ly94bWxucy5qY3Aub3JnL3htbC9ucy9
qYXZhZWUiPgogIAgHyb3BlcnRpZXM==" },
{"jobId": "Job12",
 "jobDefXml": "PGpvYi-
BpZD0iSm9iMTIiIHZlcnNpb249IjEuMCIgeG1sbnM9Imh0dHA6Ly94bWxucy5qY3Aub3JnL3htbC9ucy9

Chapter 3
Job Admin RESTful Services

3-16

qYXZhZWUiPgoJPHByb3BlcnRpZXM+ " }]
}

Successful Response:

If the result is complete success from endpoint then provide the list of
jobDefinitionVo(List<JobDefinitionVo>) for customer reference.

JSON

{
 "jobDefinitionsVo": [
 {"jobId": "Job1",
 "createTime": "create_timestamp",
 "updateTime": "update_timestamp",
 "status": "Success"
 },
 {"jobId": "Job2",
 "createTime": "create_timestamp",
 "updateTime": "update_timestamp",
 "status": "Success"
 }
]
}

Error Response:

There would be individual calls for each job xml, if any job fails we can still process the next
job and can show the list at the end for failed and success jobs.

Possible issues could be:

• Cannot update job XML if that job is running.

• Cannot create/update the Job if job id was not found in input job xml.

• Cannot create/update the Job if input job xml is not readable/parsable.

JSON

{
 "jobDefinitionsVo" [
 {"jobId": "Job1",
 "createTime": "create_timestamp",
 "updateTime": "update_timestamp"
 "status": "Success"
 },
 {"jobId": "Job2",
 "status": "Failure"
 "message": "Currently job is running"
 },
 {"jobId": "Job3",
 "status": "Failure"
 "message": "Job id not found in job xml"
 }
]
}

Exception Response

End point returns exception response if it is unable to process the request.

Chapter 3
Job Admin RESTful Services

3-17

{
 "statusCode": 500
 "status": "Internal Server Error"
 "message": "Unable to process"
 "stackTrace": ""
}

End point for delete job definitions

Http method:

Delete

Path:

/batch/jobs/bulk/job-definitions

Consumes:

MediaType.APPLICATION_JSON/MediaType.APPLICATION_XML

Sample request:

http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/bulk/job-definitions

Input:

JSON

{
 "jobDefinitionsVo": [
{"jobId":"Job1"},
{"jobId":"Job2"}
]
}

Successful Response:

If the result is complete success from endpoint then provide the list of jobDefinition-
Vo(List<JobDefinitionVo>) for customer reference.

JSON

{
 "jobDefinitionsVo": [
 {"jobId": "Job1",
 "deleteTime": "delete_timestamp",
 "status": "Success"
 },
 {"jobID": "Job2",
 "deleteTime": "delete_timestamp",
 "status": "Success"
 },
]
}

Error Response:

There would be individual calls for each job xml, if any job fails to delete we can still
process the next job and can show the list at the end for failed and success jobs.

Possible issues could be:

Chapter 3
Job Admin RESTful Services

3-18

• Can't delete job if that job is running.

• Can't delete the Job if job id was not found in existing job list.

• Can't delete the Job if job is in enabled status.

• Can't delete the Job if input job list is not readable/parsable.

JSON

{
 "jobDefinitionsVo": [
 {"jobID": "Job1",
 "deleteTime": "delete_timestamp",
 "status": "Success"
 },
 {"JobId": "Job2",
 "status": "Failure",
 "message": "Currently job is running"
 },
 {"jobID": "Job3",
 "status": "Failure",
 "message": "Cant delete job XML as job job3 is not valid. "
 }
]
}

Exception Response

End point returns exception response if it's unable to process the main request.

JSON

{
 "statusCode": 500
 "status": "Internal Server Error"
 "message": "Unable to process"
 "stackTrace": ""
}

Auto Purge Data
A thread runs every hour to identify data sets to be purged based on flags in system options
table and purges the data from inbound tables as well as Job admin tables.

Eligible data sets are purged every hour from inbound table and Job admin table. Data set is
said to be eligible for purge, if either transaction completion date has crossed predefined time
interval or data set ready time has crossed predefined time interval.

Below are steps followed to identify data sets to be purged and purge records from inbound
data tables automatically.

• Auto purge delay for inbound tables can be allowed/restricted for any specific interface by
adding autoPurgeInboundData.{interface_ModuleName} flag in SYSTEM_OPTIONS
table with value TRUE/FALSE respectively.

Example: autoPurgeInboundData.Diff_Fnd

If interface level entry is missing in SYSTEM_OPTIONS table, then value of global flag
autoPurgeInboundData.global is used to decide whether to purge data for interface
module or not.

Chapter 3
Job Admin RESTful Services

3-19

• Auto purge delay for Job admin tables can be allowed/restricted by adding
autoPurgeBatchInfraData flag in SYSTEM_OPTIONS table with value TRUE/
FALSE respetively.

By default in SYSTEM_OPTIONS table, then value of global flag
autoPurgeBatchInfraData is set to TRUE.

• Get purge delay duration for Job admin tables each eligible transaction from
SYSTEM_OPTIONS table. Check for entry " autoPurgeBatchInfraDataDelay " in
SYSTEM_OPTIONS table to get delay duration for each eligible transaction.

Use default delay duration(60 days) if SYSTEM_OPTIONS table does not contain
any entries for auto purge delay. Delay duration can specified either in hours or
days. Refer table below for possible values for delay. Check if data is ready to be
purged based on delay obtained. Data is ready to be purged if duration between
transaction begin time and current time is greater than or equal to delay.

• For each ACTIVE interface modules, check if auto purge flag is set at global level
(autoPurgeInboundData.global) or interface module level (autoPurgeInboundData.
{interface_ModuleName}) from SYSTEM_OPTIONS table. If flag is TRUE either at
global level or at any interface module level, continue with the next steps.

If an entry for auto purge flag is missing in SYSTEM_OPTIONS table, then value
of flag at global level (autoPurgeInboundData.global) is defaulted to TRUE.

• Prepare a list with interface module names that are eligible to be purged based on
value of above flags and get list of datasets that already processed for the
interface module list.

• Get purge delay duration for each inbound tables eligible transaction from
SYSTEM_OPTIONS table. Check for entry "autoPurgeInboundDataDelay.
{interface_name}" in SYSTEM_OPTIONS table to get delay duration for each
eligible transaction.

If no entry is available for interface module, then get global delay duration using
entry "autoPurgeInboundDataDelay.global" of SYSTEM_OPTIONS table.

Use default delay duration(30 days) if SYSTEM_OPTIONS table does not contain
any entries for auto purge delay. Delay duration can specified either in hours or
days. Refer table below for possible values for delay. Check if data is ready to be
purged based on delay obtained. Data is ready to be purged if duration between
transaction begin time and current time is greater than or equal to delay

• If list from above step is not empty, then use the below query to get list of data sets
that are already processed and ready to be purged. If there are data sets eligible
to be purged, proceed with next step, exit otherwise.

Query Template: select tr from ImporterExecutionDataSet dataset,
ImporterTransaction tr, ImporterInterfaceModuleDataControl dmc

where dataset.importerTransactionId = tr.id AND tr.interfaceModule
IN :interfaceNameList

AND (tr.importerTransactionStatus = IMPORTER_COMPLETED)

AND dataset.importerInterfaceModuleDataControlId =
dmc.importerInterfaceModuleDataControlId AND dmc.dataSetDeleteTime IS NULL

• Check if there are any data sets that was ready to be consumed before predifined
number of days. Data set is considered for purging, if data is set is older than
AUTO_PURGE_DELAY_UPPER_LIMIT entry of SYSTEM_OPTIONS table.

Query Template:

Chapter 3
Job Admin RESTful Services

3-20

select modctl

FROM ImporterInterfaceModuleDataControl modctl, ImporterInterfaceDataControl ctl

WHERE modctl.dataSetDeleteTime IS NULL

AND ctl.importerInterfaceModuleDataControl.importerInterfaceModuleDataControlId =
modctl.importerInterfaceModuleDataControlId

AND modctl.dataSetDeleteTime IS NULL

AND modctl.dataSetReadyTime < :autoDelayLimit

Note : autoDelayLimit is the date obtained by subtracting number of days specified in
AUTO_PURGE_DELAY_UPPER_LIMIT option of System Options table with current date.

• For all the data sets that are ready to be purged, get importer data control details(like
begin sequence number, end sequence number, dataset id etc) using transaction ids

Query Template:

SELECT modctl FROM ImporterExecutionDataSet dataset,
ImporterInterfaceModuleDataControl modctl

WHERE modctl.importerInterfaceModuleDataControlId =
dataset.importerInterfaceModuleDataControlId

AND dataset.importerTransactionId IN :transactionIdList

• If there are data sets eligible to be purged from previous steps, then prepare a
consolidated list of data sets to purge them and proceed with next steps, exit otherwise.

Purge records from Inbound tables using details fetched from last step.

Query Template:

delete from {InterfaceShortName} where (bdi_seq_id between ? and ?)

• Update DATA_SET_DELETE_TIME column of BDI_IMPRTR_IFACE_MOD_DATA_CTL
table with current time stamp for the datasets whose inbound data are purged.

Table 3-6 BDI Auto Purge Inbound data

Name Allowed Values Comments

autoPurgeInboundDataDelayU
pperLimit

45 This flag is used to specify
maximum number of days a data
set that is unconsumed, can be
persisted.

After exceeding maximum number
of days, data is purged even if it is
unconsumed.

Ensure that value of this field is a
numeric value

autoPurgeInboundData.global TRUE

FALSE

This flag is used to enable/disable
purging of records if flag is missing
at interface level

autoPurgeInboundData.
{interface_ModuleName}

TRUE

FALSE

Replace {interface_ModuleName}
with name of interface module to
restrict/enable purging of records
for given interface

Example:
autoPurgeInboundData.Diff_Fnd

Chapter 3
Job Admin RESTful Services

3-21

Table 3-6 (Cont.) BDI Auto Purge Inbound data

Name Allowed Values Comments

autoPurgeInboundDataDelay.g
lobal

30d

20h

20

This flag is used to fetch delay
duration if flag is missing at
interface level

h: Numeric value followed by h
indicates duration in hours.

d: Numeric value followed by d
indicates duration in days.

If neither d nor h follows numeric
value or numeric value followed by
non numeric value other than d or
h, delay is considered to be in days.

Example: 20

20a

Ensure that value of this field is a
numeric value followed by d or h

autoPurgeInboundDataDelay.
{interface_name}

30d

20h

20

Replace {interface_ModuleName}
with name of interface module to
specify delay duration specific to
interface.

h: Numeric value followed by h
indicates duration in hours.
Example: 20h

d: Numeric value followed by d
indicates duration in days.
Example:30d

If neither d nor h follows numeric
value or numeric value followed by
non numeric value other than d or
h, delay is considered to be in days.

Example: 20

20a

Ensure that value of this field is a
numeric value followed by d or h

Example:
autoPurgeInboundDataDelay.Diff_F
nd

autoPurgeBatchInfraData TRUE

FALSE

This flag is used to enable/disable
purging of Job admin records

Chapter 3
Job Admin RESTful Services

3-22

Table 3-6 (Cont.) BDI Auto Purge Inbound data

Name Allowed Values Comments

autoPurgeBatchInfraDataDela
y

60d

20h

20

This flag is used to fetch delay
duration for Job admin table purge
if flag is missing at interface level

h: Numeric value followed by h
indicates duration in hours.

d: Numeric value followed by d
indicates duration in days.

If neither d nor h follows numeric
value or numeric value followed by
non numeric value other than d or
h, delay is considered to be in days.

Example: 20

20a

Ensure that value of this field is a
numeric value followed by d or h

Steps to update values in System Options

Approach 1: Update via UI

1. Login to the job admin web page with valid credentials.

2. Click the Manage Configurations tab.

3. Click the System options tab.

4. Search for the system option to update. Example: autoPurgeInboundData.global,
autoPurgeInboundDataDelay.global, autoPurgeInboundDataDelayUpperLimit etc.

5. Click the Edit icon to update the value and click the Save icon to save changes.

Approach 2: Update values via REST service endpoints

Below end point can also be used to update System Options via REST service.

URL:

Chapter 3
Job Admin RESTful Services

3-23

http://<host:port>/<appName>-batch-job-admin/resources/system-setting/system-
options

Request Type :

POST

Input Json Example:

{
 "key": "autoPurgeInboundData.global",
 "value": "false"
 }

Note:

Update key and value in above request with appropriate System Option
name and value to be updated.

Configuration of Job Admin
During the deployment of Job Admin, seed data gets loaded to various tables. Seed
data files are located in the bdi-<app>-home/setup-data/dml folder. If seed data is
changed, Job Admin need to be reinstalled and redeployed. For loading seed data
again during the redeployment, LOADSEEDDATA flag in the BDI_SYSTEM_OPTIONS
table need to be set to TRUE.

Jobs

The following job properties can be changed to improve the performance of the jobs.

Item-count - Number of items read by a job before it writes. Default size is 1000.

fetchSize - Number of items cached by JBDC driver. Default size is 1000.

Receiver Service

The Receiver Service allows maximum number of blocks for transaction based on the
following system option in BDI_SYSTEM_OPTIONS table.

receiverMaxNumBlocks - Default value is set to 10000

Seed data need to be changed to update the maximum number of blocks for the
Receiver Service. To update the seed data, set the LOADSEEDDATA flag to TRUE,
reinstall and redeploy Job Admin. The Value of the LOADSEEDDATA flag can be
changed from the Job Admin Manage Configurations Tab.

Job Admin Customization
During the deployment of Job Admin, seed data is loaded to various tables. Seed data
files are located in the bdi-edge-<app>-job-home/setup-data/dml folder. If seed data is
changed, Job Admin must be reinstalled and redeployed. In order to load seed data
again during the redeployment, the LOADSEEDDATA flag in the BDI_SYSTEM_
OPTIONS table must be set to TRUE.

Chapter 3
Job Admin RESTful Services

3-24

During the deployment, Job XMLs get loaded to BDI_JOB_DEFINITION table. Job XML files
are located in the "bdi-job-home/setup-data/META-INF/batch-jobs" folder. If job xmls are
changed, Job Admin must be reinstalled and redeployed. In order to load job xmls during
redeployment, the LOADJOBDEF flag in the BDI_SYSTEM_OPTIONS table must be set to
TRUE.

Note:

Restart of job does not load job definition from the BDI_JOB_DEFINITION table.
Java Batch loads job xml from JOBSTATUS table during the restart of a job.

If there is an issue with Job XML, job needs to be started after fixing the job XML.

Auto Purge Batch Infra Data
A thread runs every hour to purge data from batch infra tables which have crossed configured
purge delay.

Below steps are followed to purge data from BDI batch infra tables:

• Check if "autoPurgeBatchInfraData" flag is available and is set to true. If yes, continue
with next step. Default "autoPurgeBatchInfraData" to true if missing in System options
table.

• Get value of "autoPurgeBatchInfraDataDelay" from System option table. Default delay to
60 days is missing in System Options table.

• Query table EXECUTIONINSTANCEDATA to get JOBINSTANCEID and JOBEXECID
whose CREATETIME has exceeded delay configured. This list decides records that can
be purged from batch- infra table.

• Create a new method (similar to "deleteJobInstances" in JobOperatorDao) which accepts
list of job instance ids (List<String> jobInstaceIDs) and list of execution ids (List<String>
jobExecIDs).

• Purge data from JOBSTATUS table if ID field matches job ids available in jobInstaceIDs.

• Purge data from STEPSTATUS and STEPEXECUTIONINSTANCEDATA where
JOBEXECID is available in jobExecIDs.

• Purge data from EXECUTIONINSTANCEDATA where JOBEXECID is available in
jobExecID and JOBINSTANCEID available in jobInstaceIDs.

• Purge data from JOBINSTANCEDATA where jobinstanceid is available in jobExecIDs.

• Purge data from CHECKPOINTDATA where ID field is available in jobInstaceIDs.

Follow below steps to update auto purge configurations.

Turn OFF/ON auto purge:

• Login to BDI batch job admin UI with valid Credentials.

• Navigate to "Manage Configurations" tab. Select "System Options".

• Update value of "autoPurgeBatchInfraData" to true/false to turn off/on auto purge

• If "autoPurgeBatchInfraData" is not available add it using "Create New System Options"
option.

Chapter 3
Job Admin RESTful Services

3-25

Update delay:

• Login to BDI batch job admin UI with valid Credentials.

• Navigate to "Manage Configurations" tab. Select "System Options".

• Update value of "autoPurgeBatchInfraDataDelay" to desired delay.

• If "autoPurgeBatchInfraData" is not available add it using "Create New System
Options" option.

Throttling
Throttling is the capability of regulating the rate of input for a system where output rate
is slower than input.

Java Batch runtime will not allow to run multiple instances of a job at same time, it will
say job is currently running and fail the job. There can be only one instance of a job at
any time (unless the job parameters are different).

Throttling is introduced to address the issue caused when there are many job start
requests at the same time. In order to honor the throttle limits "throttleSystemLimit" is
introduced to make sure the system never runs more than the throttle limit for the
group and the system.

Three new tables are added to job schema to handle throttling, these are
BDI_GROUP, BDI_GROUP_LOCK, BDI_GROUP_MEMBER.

Table 3-7 BDI Group

Column Type Comments

GROUP_ID NUMBER Primary Key

APP_TAG VARCHAR2(255) Name of the application

COMMENTS VARCHAR2(255) Comments

GROUP_ATTRIB_NAME_1 VARCHAR2(255) Name of the group attribute ex -
THROTTLE_JOBS_IN_SAME_
GROUP

GROUP_ATTRIB_NAME_2 VARCHAR2(255) Name of the group attribute

GROUP_ATTRIB_NAME_3 VARCHAR2(255) Name of the group attribute

GROUP_ATTRIB_NAME_4 VARCHAR2(255) Name of the group attribute

GROUP_ATTRIB_NAME_5 VARCHAR2(255) Name of the group attribute

GROUP_ATTRIB_VAL_1 VARCHAR2(255) Value of the group attribute

GROUP_ATTRIB_VAL_2 VARCHAR2(255) Value of the group attribute

GROUP_ATTRIB_VAL_3 VARCHAR2(255) Value of the group attribute

GROUP_ATTRIB_VAL_4 VARCHAR2(255) Value of the group attribute

GROUP_ATTRIB_VAL_5 VARCHAR2(255) Value of the group attribute

GROUP_NAME VARCHAR2(255) Name of the group

Chapter 3
Job Admin RESTful Services

3-26

Table 3-8 BDI Group Member

Column Type Comments

GROUP_MEMBER_ID NUMBER Primary Key

APP_TAG VARCHAR2(255) Name of the application

GROUP_ID NUMBER Group id

MEMBER_NAME VARCHAR2(255) Name of the job

MEMBER_TYPE VARCHAR2(255) Type of the member ex - job

Table 3-9 BDI Group Lock

Column Type Comments

LOCK_ID NUMBER Primary Key

APP_TAG VARCHAR2(255) Name of the application

GROUP_NAME VARCHAR2(255) Name of the group

Prerequisite: In weblogic console, make sure the job admin data source has "Supports Global
Transactions" and "Logging Last Resource" checked in the Transaction tab.

Example on how throttling is handled at runtime:Group1 <--(job1, job2, job3)-Throttle value 3
Group2 <-- (job1, job2) - Throttle value2

Step1:

Start job1, job2, job3 from process1, process2, process3 respectively. All 3 start running.

Step2:

Then start again process1 and process2. Both job1 and job2 get throttled.

There can be only one instance of a job at any time (unless the job parameters are different).

BDI Global Migration Script (BDI_Database_Util_Spec)
To make a re-runnable sql script which globally works for all sqls that makes a sql script re-
runnable, there should be a script which creates package with functions/procedures that
returns a necessary result value to the calling function to check whether anything exists in the
schema before proceeding to execute the query on the schema. Below are the list of
functions/procedures used in the package.

Table 3-10 BDI Global Migration Script Function/Procedure Names and Descriptions

Function/Procedure Name Description

checkTableExists It checks whether table exists or not in the schema.

checkColumnExists It checks whether column of a table exists or not in the schema.

checkConstraintExists It checks whether constraint of table exists or not in the schema.

checkIndexExists It checks whether index exists for a table or not in the schema.

Chapter 3
Job Admin RESTful Services

3-27

Table 3-10 (Cont.) BDI Global Migration Script Function/Procedure Names and
Descriptions

Function/Procedure Name Description

createTable It creates table only after checking whether table exists or not in the
schema.

AddColumnToTable It adds column only after checking whether table and column exists or
not in the schema.

modifyColumnType It modifies column datatype/any other related to column changes like
making column not null or primary key.

updateColumnName It updates column name of the table.

AddTableConstraint It adds constraint to table only after checking whether table and
constraint exists or not in the schema.

createIndex It checks whether index exists or not on table in the schema before
index is created.

createSequence It checks whether sequence exists or not on table in the schema
before sequence is created.

Note:

Before running the global migration script you need to provide three
permissions to package.

Permissions are:

• CREATE ANY TABLE TO 'user_schema',

• CREATE ANY SEQUENCE TO 'user-schema'

• CREATE ANY INDEX To 'user_schema'

DB Schema Auto Migration

Schema migration is to make changes to database like alter column, adding new table
on running the migration script. Previously, migration scripts are run manually one by
one on sqlplus or sqldeveloper to migrate from one to another version. Now, with the
db schema auto migration feature with no user intervention in running the migration
scripts, it automatically migrates from currently deployed app version to app version
which will be deployed to web logic. For example, the current deployed app version in
web logic is 16.0.028 and app which will be deployed to web logic is going to be
19.0.000, So db schema auto migration finds scripts between the versions (inclusive of
16.0.028 and 19.0.000), sorts and runs the migration scripts one by one from 16.0.028
to 19.0.000. This feature can be used on passing the -run-db-schema-migration
parameter to bdi-app-admin-deployer.sh script with {-setup-credentials| -use-existing-
credentials}.

Chapter 3
Job Admin RESTful Services

3-28

Note:

DB Schema auto migration feature should be used from >=16.0.028 version of BDI
apps.

Example to run DB Schema auto migration:

sh bdi-app-admin-deployer.sh { -setup-credentials | -use-existing-credentials } -run-
db-schema-migration (Optional parameter)

Chapter 3
Job Admin RESTful Services

3-29

4
Integration with External Applications

BDI is an integration infrastructure product which integrates Oracle Retail applications and
third-party applications. BDI Bulk Data Export Service is designed to address the
complexities for third party integration with Oracle Retail application. In BDI, bulk data
movement happens between sender and receiver application.

Bulk Data Export Service
Bulk Data Export Service is a new Restful Web service packaged under Job Admin, which
allows authenticated user to get latest available data sets (either FULL or PARTIAL), fetch
data for available data set ids and update status of transaction.

Below are the endpoints provided by Bulk Data Export Service. Ensure to invoke endpoints in
below order to export data successfully.

Table 4-1 Bulk Data Export Service

REST Resource HTTP Method Description

j9/bulk-data/export/data-set/
{interfcace_module}?
consumingAppName={consum
ingAppName}&sourceAppNam
e=rms

GET Gets latest available FULL or
PARTIAL dataset for given interface
module

/bulk-data/export/begin?
dataSetId={dataset_id}&consu
mingAppName={ consumingA
ppName }

POST Generates transaction id for given
unprocessed transaction id.

/bulk-data/export/data?
transactionId={transaction_id}
&page={pageNum}&maxRows
PerPage={maxRowsPerPage}

GET Gets data from inbound tables for
provided transaction id.

/bulk-data/export/begin?
dataSetId=15&consumingApp
Name=external

POST Updates transaction status as
SUCCESS/FAILURE based on
input provided.

Endpoints

Ping

This endpoint can be used to ensure that initial handshake with service is successful.

HTTP Method: GET

Path

resources/bulk-data/export/ping

Produces:

4-1

MediaType.APPLICATION_JSON/MediaType.APPLICATION_XML

Sample request:

<hostname>:<port>/<app_name>-batch-job-admin/resources/bulk-data/export/ping

Sample json response:

{
 "returnCode": "PING_SUCCESSFUL",
 "messageDetail": "Pinged Bulk Data Export Service successfully"
}

getAllAvailableFullOrPartialDataSet

This endpoint can be used to get latest available data set. Data sets of type FULL are
given priority over datasets of type PARTIAL. If there are no available datasets of type
FULL, then this endpoint checks for data sets of type PARTIAL. If there are multiple
PARTIAL data sets for given input, then data sets are sorted based on data set ready
time before returning to consumer.

Path parameter consumingAppName and query parameter sourceAppName are not
case sensitive.

Path parameter interfaceModule is case sensitive. Ensure to maintain appropriate
case for interface module in request.

HTTP Method: GET

Path

resources/bulk-data/export/data-set/{interfaceModule is mandatory}?
consumingAppName={consuming app name is
mandatory}&sourceAppName={sourceAppName is optional}

interfaceModule : This field indicates name of interface module for which latest
available data set is to be returned.

consumingAppName : This field indicates requesting system name.

sourceAppName : This field indicates source system name of data set.

Note:

interfaceModule and consumingAppName are mandatory inputs.

Produces

MediaType.APPLICATION_JSON/MediaType.APPLICATION_XML

Sample request

<hostname>:<port>/<app_name>-batch-job-admin/resources/bulk-data/export/data-
set/Diff_Fnd?consumingAppName=external&sourceAppName=RMS

Sample json response

{
 "Message": {

Chapter 4
Bulk Data Export Service

4-2

 "returnCode": "DATA_SET_AVAILABLE",
 "messageDetail": "data set is available for external"
 },
 "interfaceModule": "Diff_Fnd",
 "dataSetType": "FULL",
 "sourceSystemName": "RMS",
 "consumingAppName": "external",
 "AvailableDataSets": {"AvailableDataSet": [{
 "dataSetId": 10,
 "dataSetReadyTime": "2020-03-06T02:21:25-08:00",
 "InterfaceDetail": [
 {
 "interfaceShortName": "DIFF_GRP_DTL",
 "interfaceDataCount": 100
 },
 {
 "interfaceShortName": "DIFF_GRP",
 "interfaceDataCount": 200
 }
]
 }]}
}

Error Response

Response when latest data is not available

{"Message": {
 "returnCode": "NO_AVAILABLE_DATA_SET",
 "messageDetail": "No data set is available for external"
}}

beginExport

This endpoint is used to indicate start of data export. If provided query parameters are valid,
then this endpoint generates a transaction id indicating start of transaction, which is required
to get data.

If there are multiple datasets (of type PARTIAL) returned by
getAllAvailableFullOrPartialDataSet endpoint, ensure to process them in the same order.

HTTP Method: POST

Path

resources/bulk-data/export/begin?dataSetId={dataSetId is
mandatory}&consumingAppName={consuming app name is mandatory}

dataSetId: This field indicates the dataset id that is to be exported.

consumingAppName: This field indicates the consuming application name.

Note:

dataSetId and consumingAppName is mandatory input for this endpoint

Produces

Chapter 4
Bulk Data Export Service

4-3

MediaType.APPLICATION_JSON/MediaType.APPLICATION_XML

Sample request

<hostname>:<port>/<app_name>-batch-job-admin/resources/bulk-data/export/begin?
dataSetId=10&consumingAppName=external

Sample json response

{
 "Message": {
 "returnCode": "TRANSACTION_STARTED",
 "messageDetail": "Transaction started for dataset Id 10"
 },
 "transactionid": "external:Diff_Fnd:10:1585633498380"
}

getData

This endpoint can be used to get data from inbound tables. It uses transaction id
provided in input to identify start and end sequence of available dataset for interface
module. This end point uses pagination to fetch records. Query parameters "page" and
"maxRowsPerPage" can be used to specify page number and number of records per
page respectively.

"hasMorePages" field from response can be used to identify if there are more records
to be fetched for dataset. True value indicates that there are more records to be
fetched and false value indicates that current page is the last page.

"action" node in response signifies the action to be performed on "data" that is
returned.

For example, "action:REPLACE" signifies that replace if existing records with the
current one that is returned by getData endpoint.

"next" field from response can be used to get available data from next page.

page and maxRowsPerPage are optional query parameters.

If query parameter page is missing in request, then value of it will be defaulted to 1 by
Bulk Data Export Service. If query parameter maxRowsPerPage is missing in request,
then value of it will be defaulted to 500 records by Bulk Data Export Service

HTTP Method: GET

Path

resources/bulk-data/export/data?transactionId={transactionId is
mandatory}&page={page}&maxRowsPerPage=500

transactionId: Provide transaction id generated by beginExport endpoint as value of
this field.

page: This is an optional field. Ensure that value of this field is a numeric value.

Value will be defaulted to 1, if not specified in request.

maxRowsPerPage: This is an optional field. Ensure that value of this field is a numeric
value.

Value will be defaulted to 500, if not specified in request

Chapter 4
Bulk Data Export Service

4-4

Note:

transactionId is mandatory input for this endpoint

Maximum number of records that can be returned by getData end point is controlled through
an entry in SYSTEM_OPTIONS table called "ROWS_PER_PAGE_MAX_VALUE".

If value of query parameter maxRowsPerPage is greater than
ROWS_PER_PAGE_MAX_VALUE, then maxRowsPerPage is defaulted to value of entry
"ROWS_PER_PAGE_MAX_VALUE" in SYSTEM_OPTIONS table.

If SYSTEM_OPTIONS table misses entry for ROWS_PER_PAGE_MAX_VALUE, then
ROWS_PER_PAGE_MAX_VALUE is defaulted to 10000 by Bulk Data Export Service.

Refer section "Steps to update values in System Options" to add/update
ROWS_PER_PAGE_MAX_VALUE in SYSTEM_OPTIONS table.

Produces

MediaType.APPLICATION_JSON/MediaType.APPLICATION_XML

Sample request

<host>:<port>/<app_name>-batch-job-admin/resources/bulk-data/export/data?
transactionId=external:Diff_Fnd:10:1585743226654&page=1&maxRowsPerPage=100

Sample Json Response:

{
 "Message": {
 "returnCode": "GET_DATA_SUCCESSFUL",
 "messageDetail": "Records are available for interface module Diff_Fnd"
 },
 "hasMorePages": true,
 "next": "http://blr00ccp:55663/rms-batch-job-admin/resources/bulk-data/export/data?
transactionId=external:Diff_Fnd:10:1585743226654&page=2&maxRowsPerPage=5",
 "interfaceModule": "Diff_Fnd",
 "InterfaceData": [
 {
 "interfaceShortName": "DIFF_GRP_DTL",
 "columnNames": "DIFF_GROUP_ID,DIFF_ID,DISPLAY_SEQ",
 "recordCount": 5,
 "Records": {"Record": [
 {
 "action": "REPLACE",
 "data": "AAA1,AAAAAAAA,11"
 },
 {
 "action": "REPLACE",
 "data": "AAA1,AAAAAAAA,12"
 },
 {
 "action": "REPLACE",
 "data": "AAA1,AAAAAAAA,13"
 },
 {
 "action": "REPLACE",
 "data": "AAA1,AAAAAAAA,14"
 },

Chapter 4
Bulk Data Export Service

4-5

 {
 "action": "REPLACE",
 "data": "AAA1,AAAAAAAA,15"
 }
]}
 },
 {
 "interfaceShortName": "DIFF_GRP",
 "columnNames":
"DIFF_GROUP_DESC,DIFF_GROUP_ID,DIFF_TYPE_DESC,DIFF_TYPE_ID",
 "recordCount": 5,
 "Records": {"Record": [
 {
 "action": "REPLACE",
 "data": "Test Value,AAA1,Test Value,seq"
 },
 {
 "action": "REPLACE",
 "data": "Test Value,AAA1,Test Value,seq"
 },
 {
 "action": "REPLACE",
 "data": "Test Value,AAA1,Test Value,seq"
 },
 {
 "action": "REPLACE",
 "data": "Test Value,AAA1,Test Value,seq"
 },
 {
 "action": "REPLACE",
 "data": "Test Value,AAA1,Test Value,seq"
 }
 }
],
 "currentPageNumber": 1
}

Error Response:

{
 "Message": {
 "returnCode": "GET_DATA_FAILED",
 "messageDetail": "Data set is already processed for dataset id .10"
 },
 "hasMorePages": "false",
 "currentPageNumber": "0"
}

endExport

This endpoint can be used to mark status of data export for a given transaction. It
accepts status of transaction as query parameter.Transaction status will be defaulted
to SUCCESS, if not specified in input.

List of acceptable values for transaction status are "SUCCESS" and "FAILURE"

HTTP Method: POST

Path

resources/bulkdata/export/end?transactionId={transaction id
mandatory}&transactionStatus={optional, default to success}

Chapter 4
Bulk Data Export Service

4-6

transactionId : Provide transaction id generated by beginExport endpoint as input to this field.

transactionStatus: This is an optional input. Value will be defaulted to SUCCESS, if not
specified in input.

List of acceptable values for transaction status are "SUCCESS" and "FAILURE"

Any value apart from above two will result in exception.

Note:

transactionId is mandatory input to this end point

Produces

MediaType.APPLICATION_JSON/MediaType.APPLICATION_XML

Sample request

<host>:<port>/<app_name>-batch-job-admin/resources/bulk-data/export/end?
transactionId=external:Diff_Fnd:10:1585633498380&transactionStatus=SUCCESS

Sample json response

When transactionStatus=SUCCESS

{
 "returnCode": "TRANSACTION_COMPLETE",
 "messageDetail": "Transaction completed successfully."
}

When transactionStatus= FAILURE

{
 "returnCode": "TRANSACTION_FAILED",
 "messageDetail": "Transaction could not be completed.."
}

Error Response

Invalid input for transaction Id:

{
 "returnCode": "TRANSACTION_ERROR",
 "messageDetail": "Transaction status could not be parsed. Provide one of the
following value {SUCCESS,FAILURE}"
}

Steps to test Bulk data export service:

Attached script can be used to test Bulk data export service.

Steps to execute the script:

1. Open the script using any editor or command line.

2. Replace the hostname and port number to point deployed app.

3. Can modify the consumingAppName, by default the script has it as "external"

Chapter 4
Bulk Data Export Service

4-7

4. Save the script.

5. Run the script with interface name. Below is the command to run the script.

Note:

Need to run using bash only. The script only works for a full data set.

bash bdi_poc.sh <Interface_Name> ---- Pass interface name for Full data set.

Example - bash bdi_poc.sh Clearance_Tx

6. Script will prompt for deployed app username and password.

Chapter 4
Bulk Data Export Service

4-8

5
Job Admin UI

The BDI Job Admin UI is a web application that provides the GUI for managing batch jobs
and runtime.

The User Interface provides ability to:

• Start/restart, and track status of jobs

• Enable or Disable the jobs

• Trace data

• View diagnostic errors

• Manage options at job and system level

• View the logs

Job Admin UI Security
Security in the integration layer is a big concern for every retail enterprise. The security
system should be open enough to allow trusted remote applications to integrate easily and, at
the same time, lock down unauthorized remote access. To address security concerns, the
Job Admin utilizes the security models allowed in the Oracle middleware and database
systems.

Authentication
Both the Job Admin UI and REST Services are secured with SSL and basic authentication.

Authorization
The below mentioned roles are defined to restrict access to operations in Job Admin.

• BdiJobAdminRole

• BdiJobOperatorRole

• BdiJobMonitorRole

There are three categories of users in Job Admin: Job Administrators, Job Operators, and
Job Monitors. Batch jobs can be run from Job Admin UI or through the Batch REST service.
Here are the operations that can be performed by the users based on their role.

Function Admin Role Operator Role Monitor Role

Edit configuration from
UI

Yes No No

Create/update/delete
system options

Yes No No

5-1

Function Admin Role Operator Role Monitor Role

Create/update/delete
system credentials

Yes No No

View credentials Yes No No

Run Jobs Yes Yes No

Monitor jobs Yes Yes Yes

Monitoring Batch Jobs Using BDI Job Admin
Batch jobs can be monitored using the Job Admin UI.

Batch Summary Tab

Figure 5-1 Batch Summary Tab

This tab shows the summary of the system and details about the latest batch job
executions. It can be used to quickly find out whether the latest jobs are successful or
not. The last section of this page displays the step summary of the selected job.

Manage Jobs Tab
This tab displays the list of available jobs with their details and allows you to Start a
job, Restart failed jobs, enable or disable the jobs, list the executions of a job.

By default all the jobs are enabled. Select the job row and check/uncheck the check
box of each job and click on save image button in enable column. Only enabled jobs
can be launched/restarted. The Launch/Restart button is disabled for the disabled
jobs. There is an option to enable or disable all the jobs at a time by clicking on
checkbox, present in the enable column, highlighted in red and click on save image
button.

Chapter 5
Monitoring Batch Jobs Using BDI Job Admin

5-2

Note:

Only enabled jobs can be launched or restarted.

The Launch or Restart button is disabled for the disabled jobs.

Figure 5-2 Manage Jobs Tab

Job Executions
This tab shows the executions of the selected jobs. It can be used to restart the failed
executions of a job. The Restart button is available only for restartable executions in the
status column. When the user clicks the restart button it is redirected to the job launch tab
with the restart option and pre-populated value of the job parameters from last run of the
execution. Only enabled jobs can be restarted otherwise the Restart button is disabled. User
can edit the value of the existing parameters except the dataSetId and enter new parameters
in comma separated format.

Note:

Editing the dataSetId during restart can result in errors.

Note:

The url is a infrastructure parameter, the user is not allowed to change its value.

DataSetId in job parameter is not supposed to be edited, and updating same during
restart can result into errors.

Chapter 5
Monitoring Batch Jobs Using BDI Job Admin

5-3

Job Launch
This tab can be used to launch the jobs. Only enabled jobs can be launched. The
Launch button is disabled for the disabled jobs. Job Parameters is an optional input to
launch the jobs. Multiple job parameters can be entered in comma separated value
format. On restart, the user is redirected to the Job Launch tab, and the launch button
is replaced with the restart button. The Job parameters values are pre-populated from
the last failed run of the instance. The user has an option to add or update existing key
values, except dataSetId.

Figure 5-3 Job Launch

Job Details
This tab shows the details of the selected job such as Job Description, Family, Rest
Service Url and Job Xml content.

Figure 5-4 Job Details

Chapter 5
Monitoring Batch Jobs Using BDI Job Admin

5-4

System Logs Tab
This tab shows logs at job and system level. If a job fails, the job level log provides details
about the failure. Information about a job in the log file starts and ends with a banner that
shows details such as job name, instance id, execution id and so on.

Figure 5-5 System Logs Tab

Sample Begin Job Banner

2016-08-03T02:15:00,764 [[ACTIVE] ExecuteThread: '13' for queue: 'weblogic.kernel.Default
(self-tuning)'] INFO DownloaderInterfaceJobListener - Beginning of Downloader
JOB_NAME(Diff_Fnd_DownloaderAndTransporterToExtJob).

2016-08-03T02:15:00,764 [[ACTIVE] ExecuteThread: '13' for queue: 'weblogic.kernel.Default
(self-tuning)'] INFO DownloaderInterfaceJobListener - INTERFACE_MODULE(Diff_Fnd)
EXECUTION_ID(3844) INSTANCE_ID(3844).

2016-08-03T02:15:00,764 [[ACTIVE] ExecuteThread: '13' for queue: 'weblogic.kernel.Default
(self-tuning)'] INFO DownloaderInterfaceJobListener -

Sample End Job Banner

2016-08-03T02:15:02,080 [[ACTIVE] ExecuteThread: '13' for queue: 'weblogic.kernel.Default
(self-tuning)'] INFO DownloaderInterfaceJobListener - End of Downloader
JOB_NAME(Diff_Fnd_DownloaderAndTransporterToExtJob).

2016-08-03T02:15:02,080 [[ACTIVE] ExecuteThread: '13' for queue: 'weblogic.kernel.Default
(self-tuning)'] INFO DownloaderInterfaceJobListener - INTERFACE_MODULE(Diff_Fnd)
EXECUTION_ID(3844) INSTANCE_ID(3844).

2016-08-03T02:15:02,081 [[ACTIVE] ExecuteThread: '13' for queue: 'weblogic.kernel.Default
(self-tuning)'] INFO DownloaderInterfaceJobListener - Total time for Downloader job: 1
seconds.

Chapter 5
Monitoring Batch Jobs Using BDI Job Admin

5-5

2016-08-03T02:15:02,081 [[ACTIVE] ExecuteThread: '13' for queue:
'weblogic.kernel.Default (self-tuning)'] INFO DownloaderInterfaceJobListener -

It also shows whether it processed a data set or not. Here are the keywords that can
be used to search the job level log files.

Key Word Description

JOB_NAME Name of the job

EXECUTION_ID Execution Id of the job

INSTANCE_ID Instance Id of the job

TRANSACTION_ID Transaction Id (Tx#<Job Instance
Id>_<Current Time in millis>_<Source System
Name>)

INTERFACE_MODULE Name of the interface module

INTERFACE_SHORT_NAME Name of the interface

PROCESSING_DATA_SET Indicates and shows the details about the data
set that job is processing

DATA_SET_PROCESSED Indicates that the job successfully processed
the data set

DATA_SET_FAILED Indicates that the job failed to process the data
set

Diagnostics Tab
This tab shows general job level error information such as error description, stack
trace etc as well as job specific error information. Use this tab to identify where a job
failed and fix the issue.

Outbound Job Execution Errors

Figure 5-6 Outbound Job Executions Errors

The following information is displayed for outbound job execution errors. There can be
multiple outbound job execution errors for a job instance.

Chapter 5
Monitoring Batch Jobs Using BDI Job Admin

5-6

Field Name Description

Partition Index Partition in which the error occurred

Block Number Block in which the error occurred

Begin Sequence Number Beginning sequence number in the block

End Sequence Number Ending sequence number in the block

Inbound Job Execution Errors
The following information is displayed for inbound job execution errors. There can be multiple
inbound job execution errors for a job instance.

Field Name Description

File Name Name of the file in which the error occurred

Begin Row Number Beginning row number in the file

End Row Number Ending row number in the file

Trace Data
This tab shows data movement in the BDI. Use this tab to verify that data moved from the
sender to destination inbound tables.

Sender Data

Figure 5-7 Sender Data

This tab shows the following information about the sender data by the sender side Job Admin
(for example rms-batch-job-admin)

Field Name Description

Transaction Id Transaction Id (Tx#<Job Instance Id>_<Current Time in
millis>_<Source System Name>) of the job

Interface Module Name of the interface module

Job Name Name of the batch job

Chapter 5
Monitoring Batch Jobs Using BDI Job Admin

5-7

Field Name Description

Data Set Ready Time Time when sender moved the data outbound tables

Data Set Type Type of data set (FULL or PARTIAL)

Status Status of the job (COMPLETED or FAILED)

Transaction Duration Duration of the job

Receiver Data

Figure 5-8 Receiver Data

This tab shows the following information about the receiver data by the destination
application (for example rms-batch-job-admin).

Receiver Transactions

Field Name Description

Source Transaction Id Transaction Id of the sender job

Source System Name of the sender

Family Name of the interface module

Transaction Status Status of the transaction (COMPLETED or FAILED)

Duration Time it took to send data to Receiver

Source System URL URL of the source job

Chapter 5
Monitoring Batch Jobs Using BDI Job Admin

5-8

Receiver Transmission Details - Partition Level

Field Name Description

Transmission Id Transmission Id of the partition

Family Name of the interface module

Interface Short Name Name of the interface

Source System Partition Name Partition Number

Partition Begin Sequence Number Beginning sequence number in the partition

Partition End Sequence Number Ending sequence number in the partition

Begin Block Number Beginning block number in the partition

End Block Number Ending block number in the partition

Status Status of the transmission (COMPLETED or FAILED)

Duration Time it took to send data for a partition

Receiver Transmission Details - Block Level

Field Name Description

Block Number Block Number in a partition

Block Item Count Number of items in the block

Block Status Status (COMPLETED or FAILED)

File Location Location of the file for the block

Inbound job Executions

Field Name Description

Transaction Id Transaction Id (Tx#<Job Instance Id>_<Current Time in
millis>_<Source System Name>) of the uploader job

Remote Transaction Id Transaction Id of the downloader job

Interface Module Name of the interface module (for example Diff_Fnd)

Source System Name of the source system (for example RMS)

Data Set Type Type of data set (FULL or PARTIAL)

Source Sys Data Set Ready Time Time when source system moved data set to outbound tables

Data Set Ready Time Time when uploader job uploaded data set to inbound tables

File Merge Level Merge level of the file (NO_MERGE,
MERGE_TO_PARTITION_LEVEL,
MERGE_TO_INTERFACE_LEVEL)

Status Status of uploader job (COMPLETED or FAILED)

Chapter 5
Monitoring Batch Jobs Using BDI Job Admin

5-9

Importer Data Control

Field Name Description

Interface Short Name Name of the interface

Begin Sequence Number Begin sequence number of data set in the inbound table

End Sequence Number End sequence number of data set in the inbound table

Data Partition Number of partitions used by uploader job

Thread Number of threads used by uploader job

Merge Strategy Merge strategy used for merging files

Auto Purge Data Flag that indicates whether files need to be cleaned up or not

Importer Data

Figure 5-9 Importer Data

Importer Job Executions

Field Name Description

Transaction Id Transaction Id (Tx#<Job Instance Id>_<Current Time in
millis>_<Source System Name>) of the uploader job

Interface Module Name of the interface module (for example Diff_Fnd)

Source System Name of the source system (for example RMS)

Source Data Set ID Generated by extractor job for group of data

Data Set Ready Time Time when importer job uploaded data set to inbound tables

Source Sys Data Set Ready
Time

Time when source system moved data set to inbound tables

Data Set Type Type of data set (FULL or PARTIAL)

Status Status of importer job (COMPLETED or FAILED)

Chapter 5
Monitoring Batch Jobs Using BDI Job Admin

5-10

Importer Data Control for Interface

Field Name Description

Interface Short Name Name of the interface

Begin Sequence Number Begin sequence number of data set in the inbound table

End Sequence Number End sequence number of data set in the inbound table

Record Count - Sent by
Remote App

Record count sent by remote application

Record Count - Received Record count received

Manage Configurations
This tab allows you to view and edit configurations for the BDI jobs, and it also allows the
user to view, edit and create System Options.

Outbound Interface Controls

Figure 5-10 Outbound Interface Controls

This tab allows the user to manage the outbound interfaces and downloader and transmitter
options for BDI jobs. The user with Admin privileges can edit the configurations.

Chapter 5
Manage Configurations

5-11

Inbound Interface Controls

Figure 5-11 Inbound Interface Controls

This tab allows the user to manage the inbound interfaces, receiver and uploader
options for BDI jobs. The user with Admin privileges can edit the configurations.

System Options

Figure 5-12 System Logs

This tab allows the user to view, edit and create system options. This page displays
the list of system options of the application. The user can modify the value of the
existing system options, create new system options and delete the existing system
options. The user needs admin privileges for editing and creating system options. The
Search option based on system options name and value is also provided on this page.

Chapter 5
Manage Configurations

5-12

Job Admin Troubleshooting
This section describes the job admin errors and its troubleshooting.

BDI apps deployment Error
Issue:

Bdi Job Admin deployment can run into this error if database credentials are invalid:

Caught: javax.management.RuntimeMBeanException: java.lang.RuntimeException:
weblogic.management.provider.EditFailedException: java.lang.NullPointerException
javax.management.RuntimeMBeanException: java.lang.RuntimeException:
weblogic.management.provider.EditFailedException: java.lang.NullPointerException
at weblogic.utils.StackTraceDisabled.unknownMethod()
Caused by: java.lang.RuntimeException:
weblogic.management.provider.EditFailedException: java.lang.NullPointerException
... 1 more
Caused by: weblogic.management.provider.EditFailedException:
java.lang.NullPointerException
... 1 more
Caused by: java.lang.NullPointerException
... 1 more
Solution:

Undo all changes in the Weblogic domain session. Redeploy app with setting up new
credentials and verify deployment is successful.

BDI Job Admin runtime WSMException
Issue:

Log files contain this exception:

oracle.wsm.common.sdk.WSMException: WSM-07620 : Agent cannot enforce policies
due to either failure in retrieving polices or error in validations, detail=
"WSM-02557 The documents required to configure the Oracle Web Services Manager
runtime have not been retrieved from the Policy Manager application (wsm-pm),
possibly because the application is not running or has not been deployed in the
environment. The query "&(@appliesTo~="REST-CLIENT()")(policysets:global:%)" is
queued for later retrieval.
Solution:

Follow BDI Installation guide, and verify WSM- policy manager is configured for admin server
URL.

Open weblogic domain console and Target wsm-pm app to Admin Server.

Chapter 5
Job Admin Troubleshooting

5-13

Bounce Admin server and verify wsm-pm app is in Active State.

REST Service from SOAP UI for Downloader and Transporter job
Issue:

Diff_Fnd_DownloaderAndTransporterJob is successful, Job status is "completed" but
data not transferred from outbound to inbound table and .csv file not created

Rest call to DownloaderAndTransporterJob is successful, Job status is "completed"
but data not transferred from the outbound to inbound table and .csv file not created

Solution:

1. Verify the receiverEndpointUrl for the Table DownloaderTransmitterOptions is
updated to point to where receiver app is deployed in my case
‘blr00abi.idc.oracle.com:7001' in bdi_rms_seed_data.sql.

2. Verify the values in the Interface table DownloaderInterfaceDataControl such as
begin and end sequence number matches with the values mentioned in
bdi_rms_seed_data.sql.

3. Verify the values in the interface table in DB DownloaderTransmitterOptions,the
receiverEndpointUrl is updated to match with bdi_rms_seed_data.sql.

BDI Job Admin not able to find UploaderJob.xml file
Issue:

BDI App B (EXT) Job Admin GUI is showing this exception:

Caused By: java.lang.RuntimeException: Could not find
jobName(OrgHier_Fnd_UploaderJob) xml file. You may have renamed the job
file or your job repository has more jobs than your application. To
resolve the issue either delete the job repository or add the correct job
xml file to the app.
Managed server log contains:

Truncated. see log file for complete stacktrace
Caused By: java.lang.RuntimeException: Could not find
jobName(OrgHier_Fnd_UploaderJob) xml file. You may have renamed the job
file or your job reposiotry has more jobs than your application. To
resolve the issue either delete the job repository or add the correct job
xml file to the app.
at
com.oracle.retail.bdi.batch.job.operator.JobOperatorServiceBean.allAvailab
leBatchJobs(JobOperatorServiceBean.java:167)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:
62)

Chapter 5
Job Admin Troubleshooting

5-14

at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.jav
a:43)
at java.lang.reflect.Method.invoke(Method.java:498)
Truncated. see log file for complete stacktrace
Solution:

The process flow has changed and part or all of a flow has been removed, but batch-db has
not been updated to match. Either log in to the database and delete references to the job
from all tables, or recreate the batch-db using RCU and redeploy BDI.

Job Fails and Job Admin Log Files Contain No Details of the Failure
Issue:

A job fails and the Job Admin log files contain no evidence of or details about the failure.

Solution:

Take a look at the WebLogic Server log files to identify the root cause of the job failure. One
example of this is improper data source configuration.

Chapter 5
Job Admin Troubleshooting

5-15

6
Process Flow

A process flow is a composition of one or more activities. It is written in a DSL script that
contains all the activities that make a data flow from source to destination complete.

A process flow is a generic concept and is not limited to BDI. However all the out-of-box
process flows are for data transfers from a retail application to one or more retail applications.

A process flow encapsulates a sequence of activities. An activity can be synchronous or
asynchronous. In BDI some of these activities are invocations of batch jobs.

Figure 6-1 Process Flow

6-1

Process Flow
This section describes the process flow definitions.

DSL (Domain Specific Language)
Process flow definition is specified in a Domain Specific Language (DSL) built on the
top of Groovy. Since Groovy is built on the top of Java Virtual Machine (JVM) Groovy
can understand Java and Groovy language constructs. Hence the process flow DSL
can understand the DSL, Groovy and Java language constructs. A process is a list of
activities. "begin", "end" and "activity" are the main DSL keywords used in process flow
definition. These are described in detail below.

Begin Activity
The "begin" activity in process flow definition appears as the first activity. There should
be only one "begin" activity. The out of the box process flows may not contain any
executable statements in this activity. This activity is intended to be the one used for
any initialization needed for the process flow.

Activity
Activity has two parts. Name and Action. Name attribute is mandatory and should be
used to name the activity.

The Action section is where the executable code should reside. Any Groovy or Java
code can be coded in this section.

There can be one or more Activities in a process.

End Activity
The "end" activity in the process flow definition appears as the last activity. There
should be only one "end"activity. The out-of-the-box process flows may not contain any
executable statements in this activity. This activity is intended to be the one used for
any finalization needed for the process flow.

Process Variables
Variables used between activities can be created and stored in the processVariables
map. The process engine also uses some of the variables for its own working in the
process variable map. These variables are prefixed with "bdi_internal_". These
variables must not be modified inside any custom code.

Here is how you can use the process variable map for your own use.

// Set Variable
processVariables["VariableName"] = "Some Value"
// Use a variable value
def anotherVariable = processVariables["VariableName"]

Chapter 6
Process Flow

6-2

External Variables
Some of the system level configuration values are available in the externalVariables map.
These values are read-only. The process flow DSL can use these values, but should not
attempt to change it.

For example,
externalVariables["rmsJobAdminBaseUrlUserAlias"]

Statuses
Each activity instance and the process instance maintain the status of execution in the
process schema. The following are the possible values for Activities and Process.

At the "begin" activity, the process is marked as PROCESS_STARTED. If any activity fails,
the process is marked as PROCESS_FAILED. After the "end" action is completed, the
process is marked PROCESS_COMPLETED.

A complete list of process flow status are:

• PROCESS_STARTED

• PROCESS_FAILED

• PROCESS_COMPLETED

• PROCESS_STOPPING

• PROCESS_STOPPED

Similar to process statuses, each activity has also a status. There values are :

• ACTIVITY_STARTED

• ACTIVITY_FAILED

• ACTIVITY_COMPLETED

• ACTIVITY_WAITING_DUE_TO_HOLD_STARTED

• ACTIVITY_WAITING_DUE_TO_HOLD_COMPLETED

• ACTIVITY_WAITING_DUE_TO_JOIN_STARTED

• ACTIVITY_WAITING_DUE_TO_JOIN_COMPLETED

• ACTIVITY_SKIPPED

• ACTIVITY_STOPPING

• ACTIVITY_STOPPED

All the runtime status are persisted in the process schema at runtime when the DSL is
executed.

Process Flow DSL
This section describes the process flow DSL.

Process Flow DSL characteristics
The following are the characteristics of the Process Flow DSL:

Chapter 6
Process Flow

6-3

• Every process flow must have a name. The process flow name must match with
the filename that the process flow is saved into.

• Process flows are written in a DSL and saved as .flo files.

• Process flow is made up of two special activities called “begin" and “end" and
bunch of user defined activity nodes.

• The “begin" and “end" activity will always run.

• User defined activity may or may not run based on “SKIP" or moveTo logic.

• Every user defined activity must have a unique name within a process flow.

• The activity names are used to transfer control from one activity to another.
Jumping to an activity is possible using moveTo function.

• Every activity has an “action" block that does the real work. Groovy/Java code
written inside the action block.

• Local variables can be defined within the action block.

• Process variables are defined on top and are accessible to all activities within the
process.

• There are few implicit variables, like $activityName, $name.

• Errors can be thrown using “error <some message>" function.

• Built-in Conditional branching, looping, error handling.

• Predefined functions for common tasks to reduce boilerplate code.

• Built in REST service DSL to be able to call service with just one line.

• Services available to start/restart/monitor process flows programmatically.

• Can handle chaining of Process Flows.

• Has a built in Service Credential management framework.

• Hybrid Cloud ready.

• Built in activity SKIP functionality.

• Built in activity HOLD and RELEASE functionality

• Built in bulk skip and Hold functionality.

• Built in SPLIT and JOIN functionality between process flows

– SPLIT - one to many

– JOIN - many to one

DSL Keywords
This section lists the DSL keywords:

DSL Keywords Description

process Identifies the process flow. Only one keyword in a process flow.

name Used for naming processes and activities.

var Used for initializing process variables.

begin Begin activity block is the first activity in the DSL. It is mandatory and
can be used for initialization.

Chapter 6
Process Flow

6-4

DSL Keywords Description

activity The executable component of the process flow. A process flow is
composed of many activities.

action Action section is where the executable code should reside. Any
Groovy or Java code can be coded in this section.

on "okay" moveTo Use these keywords inside an activity to move to another activity.

on "error" moveTo Use these keywords inside an activity to move to error activity.

end "end" activity in process flow definition appears as the last activity.
There should be only one "end"activity.

DSL Blacklisted Keywords – In the process definition, changes can be made in DSL (Domain
Specific Language), Groovy, or Java. Since this file is essentially a program, it can modified
to cause damages (e.g., delete files from the system). We have introduced a list of keywords
that are potentially dangerous to use. If a blacklist word is present in the DSL, application
deployment will fail and an error will be written to the server log (for example, java, groovy,
thread etc.).

Process Flow API
This section describes the Process Flow API.

DSL API USAGE Description

triggerProcess(def
baseUrl, String
processDslName, String
credentials, String
processParameters)

triggerProcess(externalVariable
s["url"], "ProcessABC",
externalVariables["urlUserAlias"
], "a=b,c=d")

Method to start a process from DSL. This
method sends a POST request to Process
Flow to start a process. It returns process

startOrRestartJob(def
baseUrl, String
jobName, String
credentials)

startOrRestartJob(externalVari
able s["url"],"JobAbc",
externalVariables["urlUserAlias"
])

Method to start or restart a job in Job
Admin. This method sends a POST request
to a REST end point in Job Admin.

waitForJobCompletedOr
F ailed(def targetActivity,
def url, String
credentials, int
waitMinutes=1)

waitForJobCompletedOrFailed(
"Jo
bAbcActivity",externalVariables[
"u rl"] + "/resources/batch/jobs/
JobAbc/"

+

processVariables["jobExecution
Id"]

,
externalVariables["urlUserAlias"
])

Method to wait for job to be completed or to
fail. This method checks the status of the
job and waits until status is COMPLETED
or FAILED.

waitForProcessInstance
sTo ReachStatus(def
processInstanceList, def
targetStatus=[PROCES
S_ COMPLETED], def
logicalAndOrOr =
LOGICAL_AND, int
waitSeconds=60)

waitForProcessInstancesToRea
chSt atus(["P~1", "Q~1"],
PROCESS_ COMPLETED,
LOGICAL_AND)

Method to wait for other process instances
to reach a status.

Chapter 6
Process Flow

6-5

DSL API USAGE Description

waitForProcessNamesT
oR eachStatus(Map,
processNameToNumber
Of
ExecutionsAfterStartMar
k erTime,
LocalDateTime
startMarkerTime, def
targetStatus =
PROCESS_
COMPLETED, def
logicalAndOrOr =
LOGICAL_AND, def
whichExecutionStatus =
LAST_EXECUTION_
STATUS, int waitMinutes

waitForProcessNamesToReach
Stat us([P:3, Q:3, R:3],
now().minusDays(1),
PROCESS_ COMPLETED,
LOGICAL_AND,
LAST_EXECUTION_STATUS)

Method to wait for processes with names to
reach a status.

persistGlobalUserData(
Str ing key, String value)

persistGlobalUserData("key",
"value")

Method to persist data to be shared with
other processes. Persists key value pairs in
BDI_ SYSTEM_OPTIONS table.

String
findGlobalUserData(Stri
n g key)

findGlobalUserData("key") Gets value from BDI_ SYSTEM_OPTIONS
table for a given key.

Map
findAllGlobalUserData(S
tr ing key)

findAllGlobalUserData() Returns a Map with all user data.

removeGlobalUserData(
St ring key)

removeGlobalUserData("key") Removes data for given key.

Error error "report my error" Generate an error condition and jump to
the end activity. Process will be marked as
failed.

POST POST[externalVariables.url]ˆext
er nalVariables.urlUserAlias

def response =
(POST[externalVariables.url] +
customHttpHeaders &
MediaType.APPLICATION_JSO
N_TYPE ˆ BasicAuth.alias1 |
MediaType.APPLICATION_JSO
N_TYPE) << {} as String

Method to make a POST call to a url.

externalVariables.url - URL system option
key configured in System Options table

customHttpHeaders - [a:"b", c:"d"]

Use "+" to provide custom http headers

Use "&" to provide response media type

Use "ˆ" to provide basic authentication
alias. User name and password will be
Base64 encoded by the API.

Use "|" to provide entity media type

Use "<<" to post data. The data will be in
the format provided in entity media type.

GET GET[externalVariables.url]ˆexte
rn alVariables.urlUserAlias

def response =
(GET[externalVariables.url] +
customHttpHeaders &
MediaType.APPLICATION_JSO
N_TYPE ˆ BasicAuth.alias1) as
String

Method to make a GET call to a URL.

externalVariables.url - URL system option
key configured in System Options table

customHttpHeaders - [a:"b", c:"d"]

Use "+" to provide custom http headers

Use "&" to provide response media type

Use "ˆ" to provide basic authentication
alias. User name and password will be
Base64 encoded by the API

Chapter 6
Process Flow

6-6

DSL API USAGE Description

DELETE DELETE[externalVariables.url]ˆ
ext ernalVariables.urlUserAlias

def response =
(DELETE[externalVariables.url]
+ customHttpHeaders &
MediaType.APPLICATION_JSO
N_TYPE ˆ BasicAuth.alias1) <<
{} as String

Method to make a DELETE call to a URL.

externalVariables.url - URL system option
key configured in System Options table

customHttpHeaders - [a:"b", c:"d"]

Use "+" to provide custom http headers

Use "&" to provide response media type

Use "ˆ" to provide basic authentication
alias. User name and password will be
Base64 encoded by the API

log.info

log.debug

log.error

log.debug "Activity Name:

$activityName"

Adds information to log file.

Process Flow Variables
This section describes the Process Flow Variables.

Variables Implicit or Explicit Usage Examples Description

externalVariables Implicit def myVar =
externalVariables['myKe
y']

These are global
variables that apply to
all process flows. It
comes from System
Options table.
Installation specific key
values will be here.

processVariables Implicit var(["myVar1":"prq",
"myVar2":"xyz",
"myVar3":"mno"])

//get value def aVar =

processVariables['myVar

1']

//put new value
processVariables['myVar

2'] = "abc"

These are process level
variables that can be
shared by all activities.
Process variables are
automatically persisted.
Restart of a process
recovers the process
variables to the right
value where it left off in
the previous run. These
are the most common
variables you should
use. Process variables
must be declared using
the var key word.

Local variables Explicit action{

def a = "xyz" def i = 7

Any variables can be
created with the action
block and used as local
variables. Local
variables

defined in one activity is
not accessible in
another

Chapter 6
Process Flow

6-7

Variables Implicit or Explicit Usage Examples Description

Global external
variables

Explicit persistGlobalUserData("
key1", "value1")

def xyz =

findGlobalUserData("key

1")

removeGlobalUserData(
" key1")

For inter process
dynamic variable
sharing one can persist
new variable to DB.

activityName Implicit println "My activity is

${activityName}"

Current activity name.

Name Implicit Println "My process

name is $
{processName}"

Current process name.

processExecutionId Implicit Println "Current process
execution Id is $
{processExecutionId}"

Current process
execution Id

Process Flow Instrumentation
When the process engine executes the process flow, the before and after snapshots of
the activity are recorded in the process schema.

The information is reported through the Process Flow Admin application. Process Flow
Admin is a web application that provides a GUI to manage task workflows. This is
useful for tracking the process flows as well as troubleshooting. The snapshots also
help when restarting a failed process. From the schema, the process engine can
recreate the context to execute a restart and can resume execution from the activity
that failed in the previous run.

Process Flow Monitor Web Application
Process Flow (Admin UI) is a web user interface provided by Process Flow where
users can view and execute processes, including managing, updating process flow,
manually running processes, viewing process executions and process flow logs.

The following describes various functions available in the Process Flow UI in the
current release.

Note:

It is recommended to use the Chrome web browser to access Process Flow
UI since the calendar widget for datetime fields are supported by Chrome
browser and not by Firefox or IE as of now.

Chapter 6
Process Flow

6-8

Process Flow Live tab

Figure 6-2 Process Flow Live Tab

The Process Flow Live tab shows the details of the currently running processes. The first
section shows the summary of all processes running in the system. The next section shows
the list of all processes running since midnight. The last section shows the activity details of
the selected process. Users also have the option to search for a process by its name.

Build version and date is displayed on the info icon when a user selects the same. The icon is
on the extreme right top corner of the page.

Execution Trace Graph

The Execution Trace Graph is also part of Process Flow Live tab. Execution trace graph
shows the sub processes and jobs called from a process. The arrows show the relationship
between the caller and the callee. The circular nodes of the graph represent the process or
the job that was invoked. On hovering over the node, the details of the execution like name of
the process or job, invocation time, status etc. are displayed.

Figure 6-3 Execution Trace Graph

Chapter 6
Process Flow

6-9

Live Progress View Tab

Figure 6-4 Live Progress View Tab

Live progress graph shows the batch status for a time window. Here are the details of
the graph.

• It shows all the jobs from all the JobAdmins configured in the process flow.

• Currently the time window is 10 hours before the current time and one hour ahead
of the current time.

• Current time is the dotted line axis. The batch start time is the blue axis and batch
end time is the red axis

• The graph will refresh itself every second. So the axis, jobs and all related
information will update

• The time window will move as the current time axis nears the end of the graph

• Each job is represented by an arrow. The color of the arrow will be red (errored
jobs), blue (running jobs) or green (completed jobs). The length of the arrow will be
same as the time taken for the job.

• Same jobs will appear in the same line.

Chapter 6
Process Flow

6-10

Manage Process Flow Tab

Figure 6-5 Manage Process Flow Tab

The Manage Process Flow tab allows the user to Start a process flow, Restart a failed
process flow, enable or disable the process flow, View/Edit a process flow, Stop a running
process flow, List the executions instances of a process flow. User can search process details
on this tab. A failed process flow instance can be restarted only if it is the latest failed
instance and there are no successful executions after that. A process flow can be edited only
by a user with Admin privileges. By default all the process flows are enabled. Select the
process flow row and check/uncheck the check box of each process and click on save image
button in enable column. Only enabled process flows can be launched/restarted. The Run/
Restart button is disabled for the disabled process flows. There is an option to enable or
disable all the process flows at a time by clicking on checkbox, present in the enable column,
highlighted in red and click on save image button.

Note:

Only enabled processes can be launched or restarted. The Run or Restart button is
disabled for the disabled processes.

Chapter 6
Process Flow

6-11

Process Flow Executions

Figure 6-6 Process Flow Executions

This tab shows the executions of the selected process. It can be used to restart the
failed executions of a process. The Restart button is available only for restartable
executions in the status column. When the user clicks the restart button it is redirected
to the process launch tab.

Process Flow Configurations

Figure 6-7

Chapter 6
Process Flow

6-12

This tab provides various features for activity configurations for the selected process like
Skip, Hold, Callback. Admin and operator have permissions to update activity configurations.

Launch Process Flow

Figure 6-8 Launch Process Flow

This tab can be used to start or stop process the selected process. Start Process subtab
used to launch Process. Only enabled processes can be launched. The run button is disabled
for the disabled processes. Process Parameters is an optional input from the user to launch
the process. Process parameter acts as query parameter and refers to a key value pair.
Multiple process parameters can be entered in comma separated value format. Stop Process
subtab is used to Stop a process execution. Stop will be a graceful stop, which means current
executing activity will be first completed and then process will be stopped. If activity is not
running, Stop will not bring any action.

Process Flow Details

Figure 6-9 Process Flow Details

This tab shows process definition in form of a DSL file configured during deployment of the
selected process. The Admin user also has the option to modify process DSL. Once updated
the process DSL from the UI, changes will take into effect into the
BDI_PROCESS_DEFINITION table and no need for process redeployment.

Chapter 6
Process Flow

6-13

Historical Process Flow Executions Tab

Figure 6-10 Historical Process Flow Executions Tab

The Historical Process Flow Execution tab allows the user to look at the history of
process flow executions. The user can specify a date, a time interval and process
status. The application will list all the process flow executions matching the criteria.
The User can select any of the flow to see the activities details of that execution
instance. The page also provides the option to view the before and after values of all
process variables for each activity.

Chapter 6
Process Flow

6-14

Manage Configurations Tab

Figure 6-11 Manage Configurations Tab

The Manage Configurations tab allows users to view, edit and create system options,
configure process notifications and log levels. This page displays the list of system options of
the application. The User can modify the value of the existing system options, create new
system options and delete the existing system options. The User needs admin privileges for
editing and creating system options. The Search option based on the system options name
and value is also provided on this page.

Diagnostics Tab
Ping Feature: The ping utility is to support environment smoke tests and thereby eliminate
any bad configuration in System Options.

• The service URL and credentials used for ping test is derived from pattern based keys in
the System Options.

• The default Ping Service URL is combination of App specific BaseUrl + Discover service
as suffix. POAM ping service URL is combination of BaseUrl + Default ping service as
prefix (services/private/ping)

Chapter 6
Process Flow

6-15

• User can ping individual app URL and see the success/failure message on the
TOP. Also, there will be a status column which shows UP Arrow image for success
and DOWN arrow image for failure.

• User can also use Ping All feature to ping all the URLs at one time and the
responses will be shown on the status column against each URL.

• Reset button is to reset the cache and do a fresh service call.

• All roles are able to ping services i.e. MonitorRole, OperatorRole and AdminRole
users.

Figure 6-12 PING with Success Message

Figure 6-13 PING with Failure Message

Chapter 6
Process Flow

6-16

Figure 6-14 PING All with Message

System Logs Tab

Figure 6-15 System Logs Tab

The System Logs tab shows all the log files created by the process flow execution. Clicking
on the View icon will show the log file contents in the screen.

Process Flow Notification Feature
The Process Flow notification options can be set in the System Options of the Process Flow.
This can be done either at deployment time (through seed data) or at runtime (through the
Manage Configuration tab of the Process Flow Monitoring application)

The options available for notification are:

Chapter 6
Process Flow

6-17

• processFlowNotification.<scope>.enable - value must be True or false. This is for
global enabling or disabling of process flow notification.

• processFlowNotification.<scope>.onStart - value must be True or false. True
means notification will be sent at the start of the process.

• processFlowNotification.<scope>.onRestart - value must be True or false. True
means notification will be sent at the restart of the process.

• processFlowNotification.<scope>.onCompletion - value must be True or false.
True means notification will be sent at the completion of the process.

• processFlowNotification.<scope>.onFailure - value must be True or false. True
means notification will be sent when the process fails.

• processFlowNotification.<scope>.recipients - list of recipient email ids

• processFlowNotification.<scope>.subject – Template of the email subject line

• processFlowNotification.<scope>.content – template of email content

where <scope> value is global or the Process Name.

If Process Name is specified, the global notification option is ignored for that process.
For Subject and Content, if nothing is specified either at the global or process scope,
an internal default format is used.

If Mail Session is not setup in WebLogic, notifications will not be sent. If
processFlowNotification.<scope>.recipients is not set, the value from mail.to property
in the WebLogic Mail Session is used.

For Subject and Content template, following variables can be used. The variable is
case sensitive and the format must match exactly as given below. For multi-line
content, \n can be used to indicate line breaks.

${processUrl}

${processName}

${processExecutionId}

${processStartTime}

${processEndTime}

${processStatus}

Persisting Process Notifications
All process notifications are persisted to the BDI_EMAIL_NOTIFICATION table. There
is a subtab Process Notifications added in Manage Configurations tab which displays
all the notifications.

One notification icon appears right top corner of the screen adjacent to the user if
there is any notification in PENDING status. User will be navigated to the Process
Notifications subtab by clicking on the image.

User can modify the status to COMPLETED after going through the notification and
click on save button so that next time it doesn't appear on the screen.

Chapter 6
Process Flow

6-18

Figure 6-16 Persisting Process Notifications

Repave.Notification lead time by default is 30. It can be modified by the user through System
Options by editing the repave_notification_lead_time.

Figure 6-17 Repave Notification Lead Time

Process Restart
When the activities within a process flow fail, the process status is marked as failed. A failed
process flow can be restarted. If there are multiple failed processes, only the latest failed
instance can be restarted.

Note:

Restart is for an already run and failed instance. This is different from running a new
instance of the process flow.

Chapter 6
Process Flow

6-19

When a process flow is restarted, the system knows the activity that failed in the
previous run. During restart, the process engine will skip all the activities prior to the
failed activity. It will restore the context for the activity and resume execution at the
failed activity.

Process flow execution does not keep the activity history at restart. It will overwrite the
activity records on restart.

Statuses
Each activity instance and the process instance maintain the status of execution in the
process schema. The following are the possible values for Activities and Process.

At the begin activity, the process is marked as PROCESS_STARTED. If any activity
fails, the process is marked as PROCESS_FAILED. After the end action is completed,
the process is marked PROCESS_COMPLETED. A complete list of process flow
statuses includes:

• PROCESS_STARTED

• PROCESS_FAILED

• PROCESS_COMPLETED

• PROCESS_STOPPING

• PROCESS_STOPPED

Similar to process statuses, each activity also has a status. The values include:

• ACTIVITY_STARTED

• ACTIVITY_FAILED

• ACTIVITY_COMPLETED

• ACTIVITY_WAITING_DUE_TO_HOLD_STARTED

• ACTIVITY_WAITING_DUE_TO_HOLD_COMPLETED

• ACTIVITY_WAITING_DUE_TO_JOIN_STARTED

• ACTIVITY_WAITING_DUE_TO_JOIN_COMPLETED

• ACTIVITY_SKIPPED

• ACTIVITY_STOPPING

All the runtime statuses are persisted in the process schema at runtime when the DSL
is executed.

Activity Features
This section describes the Activity features.

• Skip Activity

• REST Endpoint to Set the Skip Activity Flag

• Hold/Release Activity

• REST Endpoint to Set the Hold Activity Flag

• Bulk Skip/Hold

Chapter 6
Process Flow

6-20

• Callback Service

• How to Start Process Flow with Input Parameters

• Call Back from the Process Flow

• How to Invoke the Callback Service Declaratively

• Process Flow Did Not Start

• Deleted Process Flow Still Listed in the UI

Skip Activity
Activities in a process flow can be skipped by setting the skip activity flag through the
Process Flow Configurations tab in Process Flow UI or REST endpoint. Skip flag can be set
to expire based on date and time. If expiry date is not provided, then that activity will be
skipped until skip flag is removed. When an activity is set to skip, process flow engine skips
that activity and runs the next activity in the flow.

REST endpoint to set the skip activity flag

/batch/processes/<processName>/activities/<activityName>?skip=true

Hold/Release Activity
Activities in a process flow can be paused by setting the hold activity flag through the Process
Flow Configurations tab in Process Flow UI or REST endpoint. Hold flag can be set to expire
based on date and time. If expiry date is not provided, then that activity will be paused until
hold flag is removed, and process will remain in PROCESS_STARTED state. When an
activity is set to hold, process flow engine waits on that activity until hold flag is removed or
time expired, and activity state will be moved to
ACTIVITY_WAITING_DUE_TO_HOLD_STARTED.

REST endpoint to set the hold activity flag

/batch/processes/<processName>/activities/<activityName>?hold=true

Note: Don't try to Stop a waiting activity, as it can result into deadlock state.

Bulk Skip/Hold
Bulk skip or hold allows to set skip and/or hold flag for a list of activities in multiple process
flows.

REST Endpoint: /batch/processes/skip-or-hold POST Data:

 {"processActivities": [
 {"processName" : "…",
 "activityName": "…",
 "skip" : true, false if not specified
 "hold" : false, false if not specified
 "actionExpiryDate" : "optional",
 "comments" : "optional"
 },
 {…}
]
}

Chapter 6
Process Flow

6-21

Curl Command to set bulk skip/Hold

curl -i --user processadmin:processadmin1 -X POST -H "Content-Type:application/
json" http://host:port/bdi-process-flow/resources/batch/processes/skip-or-hold -
d '{"processActivities": [
{"processName" : "OrgHier_Fnd_ProcessFlow_From_RMS", "activityName":
"OrgHier_Fnd_ExtractorActivity", "skip":true},
{"processName" : "DiffGrp_Fnd_ProcessFlow_From_RMS", "activityName":
"Activity1", "skip":true}
,{"processName" : "DiffGrp_Fnd_ProcessFlow_From_RMS", "activityName":
"Activity2", "skip":true}
]
}'

Output

{"processActivities":
[{"actionResult":"OK","activityName":"OrgHier_Fnd_ExtractorActivity","processName
":"OrgHier_Fnd_ProcessFlow_From_RMS"},
{"actionResult":"OK","activityName":"Activity1","processName":"DiffGrp_Fnd_Proces
sFlow_From_RMS"},
{"actionResult":"OK","activityName":"Activity2","processName":"DiffGrp_Fnd_Proces
sFlow_From_RMS"}],"netResponse":"SUCCESS"}

Callback Service
Process Flow engine can be configured to call a rest service at each activity. This is
useful if the process flow is invoked by an external system (typically a workflow
system) and the system wants to be informed of the progress of each activity. This
callback can be configured declaratively or programmatically as needed.

The external system will have to implement the CallBack Service that will allow it to
receive information from the BDI process flow. The external system can call the
process flow passing the context information as process flow parameters. The process
flow will pass the information back when it makes the CallBack Service call.

How to start Process Flow with input parameters?

To start a bdi process flow user has to make a REST service call to URL (http://
<host>:<port>/bdi-process-flow/resources/batch/processes/operator/
<processName>) . The call must be a POST call to the URL.

The process flow start call accepts http query parameters. The format of the query
parameters are as follows:

http://localhost:7001/bdi-process-flow/resources/batch/processes/<ProcessName>?
processParameters=callerId=<value1>,correlationId=<value2>,callBackServiceDataDe
tail.<name1>=<value3>,callBackServiceDataDetail.<name2>=<value4>

Spaces are not allowed in query parameters and must be separated by commas.

Example: http://localhost:7001/bdi-process-flow/resources/batch/processes/
Abc_Process?
processParameters=callerId=123,correlationId=abc,callBackServiceDataDetail.def=xy
z,callBackServiceDataDetail.abc=123

Following are the context information that need to be passed to BDI process flow from
calling system.

Chapter 6
Process Flow

6-22

1. callerId: CallerId parameter is used to identify the invoker of process flow.

2. correlationId: Correlation id is the main identifier used by the calling system to tie the
process flow Start call to the eventual CallBack Service call.

3. callBackServiceDataDetail.<name>= These are additional key value pairs that may be
required in future as required by the caller.

All of the above parameters are optional. However, if the context is not passed the caller may
not be able to associate the invocation with the callback.

Call back from Processflow

A new method (invokeCallBackService) is available for Process Flow DSL that will allow
process flow to call an external service. This service has following features.

• The method internally invokes a REST call to the provided URL

• The method uses Basic Authentication for the rest call. The credentials for the method
call must be available in the process flow.

• The payload sent from process flow to the invoking application follows the contract as
shown in the example in the next section. All of the values, other than keyValueEntryVo,
are populated by the Process Flow engine. The DSL writer can modify the
keyValueEntryVo before the callback to pass any custom value from the DSL to invoking
application

• The result of the callback REST service must be a String value.

• If the callback service invocation fails for any reason (.e.g., network issue), the process
flow activity fails and the process flow is marked as failed.

How to invoke the Callback Service declaratively

• Setup the callback URL in processflow system options. To configure a callback URL you
should add system options like <serviceName>CallbackServiceUrl, for eg.,
processCallbackServiceUrl.

– In Process Flow admin console, navigate to Manage Configurations tab and System
Options sub-tab.

Chapter 6
Process Flow

6-23

Figure 6-18 System Options Tab

– Scroll down to Create New System Options, enter System Option Name and
System Option Value. Url should be a valid ReST Service.

Figure 6-19 Create New System Option Value

– Click Save.

Chapter 6
Process Flow

6-24

Figure 6-20 View/Edit System Options

• Setup the callback URL credential alias in process flow. To add callback URL credential
alias you should add credential alias like <serviceName>CallbackServiceUrlUserAlias, for
eg., processCallbackServiceUrlUserAlias.

– In the Create New System Options section, select Create Credentials checkbox.

Figure 6-21 Create Credentials

• Enter System Option Name, Username and Password for the URL provided in the
previous step. If the System Option Name for the URL is processCallbackServiceUrl then
System option name for credential should be processCallbackServiceUrlUserAlias.

Chapter 6
Process Flow

6-25

Figure 6-22 View/Edit System Options

• Click Save.

Figure 6-23 Save System Options and Credentials

Note:

Credentials created through UI are available after server restart, but after
redeployment of the application credentials have to be created again.

• Navigate to Manage Process Flow tab and select process flow, go to Process Flow
Configurations sub-tab.

• Select Callback checkbox for the activities you want callback to be enabled. Select
Callback URL from drop down list.

Chapter 6
Process Flow

6-26

Figure 6-24 Process Flow Configurations

• Click Save.

Figure 6-25 Save Process Flow Configuration

How to invoke the Callback Service programmatically

From the Process Flow DSL activity, you can invoke the callback service as shown in the
examples below. The callBackServiceUrl and callBackServiceUrlUserAlias property must be
setup in the System Options inside process flow.

Example 1: Short Form

Add the following line inside BDI process flow activity.

Chapter 6
Process Flow

6-27

def retValue = invokeCallBackService(externalVariables.callBackServiceUrl,
externalVariables.callBackServiceUrlUserAlias).

Example 2: Long Form

In the long form API the callBackServiceData is an implicit parameter that is
automatically defined and user can update it with additional data inside an activity if
they want.

Add the following line inside BDI process flow activity.

//optionally update some data

callBackServiceData.keyValueEntryVo[0].key = "Some Key"

callBackServiceData.keyValueEntryVo[0].value = "Some Value"

def retValue = invokeCallBackService(externalVariables.callBackServiceUrl,
externalVariables.callBackServiceUrlUserAlias, callBackServiceData)

Callback request Payload structure

The BDI process flow will make a POST REST call to the callBackServiceUrl passing
in the following payload. JSON is the default content type.

JSON Payload Contract

{

"processName": "Abcdef_Process",

"processExceutionId": "123456",

"activityName": "Def_Activity",

"activityExecutionId": "12345678",

"callerId": "XYZ",

"correlationId": "987654321",

"keyValueEntryVo": [

{

"key": "abc",

"value": "def"

},

{

"key": "pqr",

"value": "123"

}

XML Payload Contract

<?xml version="1.0" encoding="UTF-8" ?>
<callBackServiceVo>
 <processName>Abcdef_Process</processName>

Chapter 6
Process Flow

6-28

 <processExceutionId>123456</processExceutionId>
 <activityName>Def_Activity</activityName>
 <activityExecutionId>12345678</activityExecutionId>
 <callerId>XYZ</callerId>
 <correlationId>987654321</correlationId>
 <keyValueEntryVo>
 <key>abc</key>
 <value>def</value>
 </keyValueEntryVo>
 <keyValueEntryVo>
 <key>pqr</key>
 <value>123</value>
 </keyValueEntryVo>
 </callBackServiceVo>

CallBackService Error message contract

Call Back Service Scenarios

Activity Type Activity Action
(Skip or Hold)

Callback
behaviour (if
callback
enabled)

Activity Status
sent by Callback

Activity Status if
Callback fails

Any None Callback will be
called after
action part is
complete

ACTIVITY_COMPL
ETE or
ACTIVITY_FAILED
according to the
action part success
or failure.

ACTIVITY_FAILED

Skip Callback will be
called after
action part is
complete

ACTIVITY_SKIPPE
D

ACTIVITY_FAILED

Hold Callback will be
called when
hold is released
and after the
action part of
the activity runs

ACTIVITY_COMPL
ETE or
ACTIVITY_FAILED
according to the
action part success
or failure.

ACTIVITY_FAILED

Special Cases

startOrRestartJo
bActivity

None Callback will be
called as soon
as the job start
or restart call is
complete

ACTIVITY_COMPL
ETE if the job was
started or restarted
successfully.
ACTIVITY_FAILED
if the job was not
started or restarted
successfully.

ACTIVITY_FAILED

waitForJobCompl
etedOrFailed

None Callback will be
called after the
Job status has
reached
complete or
failed

ACTIVITY_COMPL
ETE if the job
completed
successfully.
ACTIVITY_FAILED
if the job failed.

ACTIVITY_FAILED

Restart
Scenarios

Chapter 6
Process Flow

6-29

Activity Type Activity Action
(Skip or Hold)

Callback
behaviour (if
callback
enabled)

Activity Status
sent by Callback

Activity Status if
Callback fails

startOrRestartJo
bActivity

None Job will be
started or
restarted only if
the Job was not
started earlier or
job failed. If the
activity failed
due to callback
failure the job
will not be
started.

ACTIVITY_COMPL
ETE if the job was
started or restarted
successfully.
ACTIVITY_FAILED
if the job was not
started or restarted
successfully.

ACTIVITY_FAILED

waitForJobCompl
etedOrFailed

None Callback will be
called after
checking the
Job status, if it
has reached
complete or
failed, otherwise
process will wait
for the job to
reach complete
or failed status.

ACTIVITY_COMPL
ETE if the job
completed
successfully.
ACTIVITY_FAILED
if the job failed.

ACTIVITY_FAILED

Enable or Disable a Process Flow using REST Service
This endpoint enables or disables the process flows using name, processEnableStatus
and returns the name, processEnableStatus and message.

Path: /batch/processes/enable-disable

HTTP Method: POST

Inputs

JSON
[
 {
 "name": "MerchHier_Fnd_ProcessFlow_From_RMS",
 "processEnableStatus": "true"
 },
 {
 "name": "ItemLoc_Fnd_ProcessFlow_From_RMS",
 "processEnableStatus": "false"
 }
]

Sample Request

http://localhost:7001/bdi-process-flow/resources/batch/processes/enable-disable

Successful Response

JSON
[

Chapter 6
Process Flow

6-30

 {
 "name": "MerchHier_Fnd_ProcessFlow_From_RMS",
 "processEnableStatus": "ENABLED",
 "message": "Process Enabled Successfully"
 },
 {
 "name": "ItemLoc_Fnd_ProcessFlow_From_RMS",
 "processEnableStatus": "DISABLED",
 "message": "Process Disabled Successfully"
 }
]

Process Execution Trace
The Process Flow engine keeps track of process execution details in the
BDI_PROCESS_CALL_STACK_TRACE table. In order for a sub-process to appear in the
trace, the sub-process must be called with the api as shown below.

triggerProcess(<Base URL>, <Sub Process Name>, <credentials>, <Process Parameter Map>)

Example:

triggerProcess("http://host:port/bdi-process-flow",
"DiffGrp_Fnd_ProcessFlow_From_RMS", "userid:password", null)

REST end point to get process execution trace

http://<host>:<port>/bdi-process-flow/resources/telemetry/processes/execution-trace/
{ProcessExectionId}

Sample Output:

{
 "executionId": "Diff_Fnd_ProcessFlow_From_RMS~8e1c7c11-1302-409d-9102-c55fffbdc1ab",
 "executionName": "Diff_Fnd_ProcessFlow_From_RMS",
 "activityExecutionId": "",
 "url": "",
 "status": "PROCESS_COMPLETED",
 "duration": 0,
 "type": "PROCESS",
 "invocationTime": "2017-07-19T12:21:20.061-06:00",
 "children": [
 {
 "executionId": "ItemImage_Fnd_ProcessFlow_From_RMS~89f46519-50ab-4a51-a6fb-
c6c5395afeca",
 "executionName": "ItemImage_Fnd_ProcessFlow_From_RMS",
 "activityExecutionId": "Activity2~a408b407-c4f0-4137-ba32-6ddd148f0838",
 "url": "http:\/\/msp8917:8001\/bdi-process-flow\/resources\/batch\/processes\/
operator\/ItemImage_Fnd_ProcessFlow_From_RMS",
 "type": "PROCESS",
 "invocationTime": "2017-07-19T12:21:20.534-06:00",
 "children": [
]
 },
 {
 "executionId": "DiffGrp_Fnd_ProcessFlow_From_RMS~bb68a1ea-86a5-4108-aa58-
b9e791d1fb8c",
 "executionName": "DiffGrp_Fnd_ProcessFlow_From_RMS",
 "activityExecutionId": "Activity1~602ad027-7946-4820-acd8-cf452f5fc937",
 "url": "http://host:port/bdi-process-flow/resources/batch/processes/operator/
DiffGrp_Fnd_ProcessFlow_From_RMS",

Chapter 6
Process Flow

6-31

 "type": "PROCESS",
 "invocationTime": "2017-07-19T12:21:20.296-06:00",
 "children": [
 {
 "executionId":
"ItemHdr_Fnd_ProcessFlow_From_RMS~3886b39f-6268-4895-8e5e-300ded42665b",
 "executionName": "ItemHdr_Fnd_ProcessFlow_From_RMS",
 "activityExecutionId": "Activity2~8e9f9a6a-440a-41dd-a648-
f4322102012b",
 "url": "http://host:port/bdi-process-flow/resources/batch/processes/
operator/ItemHdr_Fnd_ProcessFlow_From_RMS",
 "type": "PROCESS",
 "invocationTime": "2017-07-19T12:21:20.705-06:00",
 "children": [

]
 },
 {
 "executionId": "InvAvailWh_Tx_ProcessFlow_From_RMS~6c462406-
a991-4754-9d94-73628091114a",
 "executionName": "InvAvailWh_Tx_ProcessFlow_From_RMS",
 "activityExecutionId": "Activity1~e7f8e9fa-7ba6-4a51-81e2-
bdcfe752c15e",
 "url": "http://host:port/bdi-process-flow/resources/batch/processes/
operator/InvAvailWh_Tx_ProcessFlow_From_RMS",
 "type": "PROCESS",
 "invocationTime": "2017-07-19T12:21:20.538-06:00",
 "children": [
]
 }
]
 }
]
}

Process Metrics Service
Process Metrics provides an end point to produce metrics for processes that ran
between "fromTime" and "toTime".

Path: /telemetry/processes

HTTP Method: GET

Parameters:

fromTime - Query parameter

toTime - Query parameter

Sample Response:

<process-runtime-monitoring-info>
 <data-requested-at>2017-10-09T10:24:27.848-06:00</data-requested-at>
 <data-requested-from-time>2017-03-01T00:00:00-06:00</data-requested-from-
time>
 <data-requested-to-time>2017-08-01T00:00:00-06:00</data-requested-to-time>
 <process-server-runtime-info>
 <id>bdi-process</id>
 <app-status>RUNNING</app-status>
 <up-since>2017-10-09T10:22:34.498-06:00</up-since>

Chapter 6
Process Flow

6-32

 <total-executions-count>16</total-executions-count>
 <successful-executions-count>8</successful-executions-count>
 <failed-executions-count>7</failed-executions-count>
 <process>
 <name>DiffGrp_Fnd_ProcessFlow_From_RMS</name>
 <slowest-run-duration>0.0</slowest-run-duration>
 <fastest-run-duration>120.0</fastest-run-duration>
 <avg-run-duration>60.2315</avg-run-duration>
 <executions>
 <exceution-count>1</exceution-count>
 <success-count>0</success-count>
 <failure-count>1</failure-count>
 <execution>
 <execution-id>
DiffGrp_Fnd_ProcessFlow_From_RMS~650dba75-b632-42ea-963b-802c560d0c6b
</execution-id>
 <status>PROCESS_FAILED</status>
 <start-time>2017-05-17T14:39:32.489-06:00</start-time>
 <end-time>2017-05-17T14:39:33.535-06:00</end-time>
 <activity-exe>
 <activity-exe-id>begin~2ac2bc4d-6233-41ac-a134-5fb73ebba275</
activity-exe-id>
 <name>begin</name>
 <duration>0.0</duration>
 <status>ACTIVITY_COMPLETED</status>
 </activity-exe>
 <activity-exe>
 <activity-exe-id>
DiffGrp_Fnd_ExtractorActivity~035b6e78-411e-4868-b441-f2e79a3dba61
</activity-exe-id>
 <name>DiffGrp_Fnd_ExtractorActivity</name>
 <duration>0.0</duration>
 <status>ACTIVITY_SKIPPED</status>
 </activity-exe>
 <activity-exe>
 <activity-exe-id>
DiffGrp_Fnd_ExtractorStatusActivity~7d92a1c1-721a-416d-86ac-c412f9e49982
</activity-exe-id>
 <name>DiffGrp_Fnd_ExtractorStatusActivity</name>
 <duration>0.0</duration>
 <status>ACTIVITY_SKIPPED</status>
 </activity-exe>
 <activity-exe>
 <activity-exe-id>
DiffGrp_Fnd_GetDataSetIdActivity~423d19e3-8c9d-44b2-93b9-183f41cd0840
</activity-exe-id>
 <name>DiffGrp_Fnd_GetDataSetIdActivity</name>
 <duration>0.0</duration>
 <status>ACTIVITY_SKIPPED</status>
 </activity-exe>
 <activity-exe>
 <activity-exe-id>
DiffGrp_Fnd_DownloaderAndTransporterActivity~70bac2cb-c414-4be8-a5ab-0ef21fd2fc4d
</activity-exe-id>
 <name>DiffGrp_Fnd_DownloaderAndTransporterActivity</name>
 <duration>0.0</duration>
 <status>ACTIVITY_FAILED</status>
 </activity-exe>
 <activity-exe>
 <activity-exe-id>end~5c07a938-864b-4156-bab7-70b96bcb2d74</
activity-exe-id>

Chapter 6
Process Flow

6-33

 <name>end</name>
 <duration>0.0</duration>
 <status>ACTIVITY_FAILED</status>
 </activity-exe>
 </execution>
 </executions>
 </process>
 </process-server-runtime-info>
</process-runtime-monitoring-info>

Process Security
The Process Flow Application uses basic authentication to access the system. The
user must belong to the BdiProcessAdminGroup or BdiProcessOperatorGroup or
BdiProcessMonitorGroup to use the process flow REST services and process flow
admin application.

There are three authorization roles designed for process flow application; Admin Role,
Operator Role and Monitor Role. The Admin role has permissions to use all the
functions provided by the process flow application. The Operator Role has limited
access compared to Admin. The Monitor role has the least access permissions from
all roles, as identified in the table below.

Service/Action Monitor Role Operator Role Admin Role

Update Process DSL No No Yes

Start/Restart Process No Yes Yes

All other services Yes Yes Yes

Skip/Hold/Release No Yes Yes

Customizing Process Flows
This section describes the customizing process flows.

Process Flow DSL
The Process Flow is written in a custom DSL for process. This DSL allows a limited
set of keywords to define a process. These keywords are identified in the table below.
The execution section (Action keyword) can be written in Groovy or Java, since the
DSL is developed on the top of Groovy.

Keyword Description

process Identifies the process flow. Only one keyword in a process flow.

name Used for naming processes and activities

var Used for initializing process variables

begin A special activity that occurs at the beginning of the process
execution. Only one begin activity per process flow

action The main executable section of the Activity. The body of Action can
be in Groovy or Java

on "okay" moveTo .. Jump to a specific activity on matching the condition.

on "error" moveTo .. Use these keywords inside an activity to move to error activity.

Chapter 6
Customizing Process Flows

6-34

Keyword Description

activity The executable component of the process flow. A process flow is
composed of many activities.

end A special activity that occurs at the end of the process execution.
Only one begin activity per process flow

APIs
The process flow engine also provides a few APIs specific to BDI batch jobs. The DSL writers
can use these in the activity section of the script.

How to modify a Process Flow
A process flow can be modified at deployment time. At deployment through the Process Flow
Admin app the flow files that come with the application are in the setup-files/dsl/
available_process_flow_options folder. These files have an extension ".flo". The user can edit
these files in any text editor.

After editing the file save the file to the setup-files/dsl/flows-in-scope folder. The deployment
script will take the process flow file and save in the process flow schema
BDI_PROCESS_DEFINITION.

After deployment, the process flow can be edited by the Admin user through the Process
Flow Admin application, tab Manage Process Flow, sub tab Process Flow Details, sub tab
Process Dsl. The changes will be picked up at the next run.

It is recommended to make any permanent changes at deployment time, since the change
through the Admin App may get overwritten at redeployment.

Note:

For security reasons, usage of certain keywords are not allowed in the Process
Flow DSL. For example keywords System, Thread etc. When defining the process
action in the process flow UI, any such forbidden keywords if used will prevent the
process from being created or updated. A process cannot be saved or run if such
keyword is present in the process action definition.

Sub Processes
In multi-destination process flows, one process may invoke one or more processes
asynchronously. All the processes may run at the same time.

In order to identify these sub processes they are named accordingly. Once invoked, the main
process has no control over the sub processes. Each of the process will run in the same way
as they are invoked independently.

Chapter 6
Sub Processes

6-35

Process Schema
The process instrumentation captures the state of the process at the beginning and
end of each activity. This information is persisted into the process schema. For each
activity there will be two records, one for before activity and the other for after activity.
The schema details are in the Appendix B.

Table Name Description

BDI_PROCESS_DEFINITION This table stores all the process flow definitions. It is
loaded at deployment time.

BDI_PROCESS_EXEC_INSTANCE This table tracks all the process flow executions. There is
a row for each process flow execution.

BDI_ACTIVITY_EXEC_INSTANCE This table tracks all the activity executions. There are 2
rows for each activity execution. One to store the before
context and one to store after context

BDI_ACTIVITY_DYNAMIC_CONFIG This table stores the user runtime choices like SKIP,
HOLD etc at activity level

BDI_SYSTEM_OPTIONS This table has all the system level information like URLs,
credential aliases etc.

BDI_EMAIL_NOTIFICATION This table persist records for email notifications sent

BDI_EXTERNAL_VARIABLE This table does temporary storage of variables during
process execution.

BDI_PROCESS_CALL_STACK This table stores call stack for processes

BDI_GROUP This table stores group names and its attributes.

BDI_GROUP_MEMBER This table stores all group member details.

BDI_GROUP_LOCK This table stores group names and lock ids.

Process Customization
Seed Data

During the deployment of Process Flow, seed data gets loaded. Seed data files are
located in "bdi-process-home/setup-data/dml" folder. If seed data is changed, Process
Flow needs to be reinstalled and redeployed. For loading seed data during
redeployment, LOADSEEDDATA flag in BDI_SYSTEM_OPTIONS need to be set to
TRUE.

Process DSL Reload

Along with seed data, the process DSL also gets loaded to
BDI_PROCESS_DEFINITION table during the deployment time. Process DSLs are
located in "bdi-process-home/setup-data/dsl/flows-in-scope" folder. If you want to load
DSLs again after DSLs are added or update, Process Flow needs to be redeployed.
For loading DSLs during the redeployment, LOADPROCESSDEF flag in
BDI_SYSTEM_OPTIONS table need to be set to TRUE.

Deployment of Process Flow first time loads both seed data and process DSLs.

Redeployment loads seed data depending on the LOADSEEDDATA and
LOADPROCESSDEF flag values.

Chapter 6
Sub Processes

6-36

Before redeployment make sure for every install/upgrade one needs to look at /
available_process_flow_options/rms_enterprise-sender_side_split_flows i.e. /bdi-process-
home/setup-data/dsl//available_process_flow_options/rms_enterprise-
sender_side_split_flows, to ensure they have the correct set of flows for that installation, each
release would bring in functional changes and flows files define the primary functional
definition of a BDI integration flow.

Do the following:

1. Download the process flow archive
BdiProcessFlow24.0.000ForAll24.x.xApps_eng_ga.zipUnzip the downloaded archive.
The Process Home directory will be created under the current directory.

unzip BdiProcessFlow24.0.000ForAll24.x.xApps_eng_ga.zip
2. Modify process flow configuration file (conf/bdi-process-flow-admin-deployment-env-

info.json) to match the deployment environment.

Note:

The alias names in the configuration files should not be changed.

3. BDI Process flow installer copies all the enterprise flows from bdi-process-home/setup-
data/dsl/available_process_flow_options/rms_enterprise-sender_side_split_flows/ to bdi-
process-home/setup-data/dsl/flows-in-scope.

For RFI integration user should copy the flows manually from bdi-process-home/setup-
data/dsl/available_process_flow_options/reim_rfi-no_split_flows / to bdi-process-home/
setup-data/dsl/flows-in-scope, for example:

cp bdi-process-home/setup-data/dsl/available_process_flow_options/reim_rfi-
no_split_flows/* bdi-process-home/setup-data/dsl/flows-in-scope/

4. Configure the appsInScope system options in process flow configuration file.

5. Run the deployer. Make sure that the WebLogic server is running before issuing the
following command.

cd bin
bdi-process-flow-admin-deployer.sh -setup-credentials -deploy-process-flow-admin-
app

Note:

If you have an existing process flow deployment then, login to Process Flow
App, go to Manage Configurations -> System Options and update the following
system options before running the above command. LOADPROCESSDEF =
TRUE and LOADSEEDDATA = TRUE

If you have already configured various credentials required for process flow, you can run
the deployer with the following syntax. It will not ask the credentials again for the
deployment. Make sure you set the LOADPROCESSDEF = true, LOADSEEDDATA =
true.

bdi-process-flow-admin-deployer.sh -use-existing-credentials -deploy-process-flow-
admin-app

Chapter 6
Sub Processes

6-37

6. Make sure the deployment step shows deployment success message at the end.

7. Restrict access to the bdi-process-home folder:

cd bdi-process-home chmod -R 700
8. Bounce the process managed server.

Redeployment scenarios

LOADSEEDDATA LOADPROCESSDEF Behavior

TRUE TRUE Loads both seed data and
process DSLs

TRUE FALSE Loads seed data only

FALSE TRUE Loads process DSLs only

FALSE FALSE Does not load seed data and
process DSLs

REST Interface
Process Flow services are exposed as REST endpoints for the use of other
applications. The list of REST endpoints are given in the Appendix C

Auto Purge Process Flow Infra Data
A timer thread runs every hour to delete data from process flow infra tables which
have crossed specified purge delay.

Below are the steps performed to auto purge process flow execution data.

• Check if "autoPurgeProcessFlowInfraData" flag is available and is set to true. If
yes, continue with next step. Default "autoPurgeProcessFlowInfraData" to true if
missing in System options table.

• Get value of "autoPurgeProcessFlowInfraDataDelay" from System option table.
Default delay to 60 days is missing in System Options table.

• Query table BDI_PROCESS_EXEC_INSTANCE to get
"PROCESS_EXECUTION_ID" whose "process_exec_start_time" has exceeded
delay configured for process flow executions which are in completed or failed
state. This list decides records that can be purged from Process flow infra tables.

• Create a new method which accepts list of execution ids (List<String>
executionIDs).

• Purge data from BDI_ACTIVITY_EXEC_INSTANCE table if
"process_execution_id" field matches ids available in executionIDs.

• Purge data from BDI_PROCESS_CALL_STACK if "caller_process_exec_id" field
matches ids available in executionIDs.

• Purge data from BDI_PROCESS_EXEC_INSTANCE if "process_execution_id"
field matches ids available in executionIDs.

• Purge data from BDI_EMAIL_NOTIFICATION table whose
email_notification_datetime has exceeded delay configured.

Follow below steps to update auto purge configurations.

Chapter 6
Sub Processes

6-38

Turn OFF/ON auto purge:

1. Login to BDI batch job admin UI with valid Credentials.

2. Navigate to "Manage Configurations" tab. Select "System Options".

3. Update value of " autoPurgeProcessFlowInfraData" to true/false to turn off/on auto purge

4. If " autoPurgeProcessFlowInfraData" is not available add it using "Create New System
Options" option.

Update delay:

1. Login to BDI batch job admin UI with valid Credentials.

2. Navigate to "Manage Configurations" tab. Select "System Options".

3. Update value of " autoPurgeProcessFlowInfraDataDelay" to desired delay.

If "autoPurgeBatchInfraData" is not available add it using "Create New System Options"
option.

Troubleshooting
Since the process flow can be written in Groovy and DSL, it is prone to programmer's
mistakes. Any custom DSL must be properly tested before deploying. At present, the process
flow engine can detect syntax errors only at runtime. So it is possible to load an incorrect
process flow and fail during runtime.

At the end of an activity, the process engine invokes the next activity depending on the result
of activity execution (The "moveTo" statement). If you have empty activities (possibly because
you commented out the existing invocation statements), make sure the activity result is valid
(for example, "okay")

If any activity fails, the process is marked as failed. So in case of process failure, look at the
activity details to find out which activity failed. Once the failed activity is identified, the process
variables can be inspected to look for any issues. Next step would be to look at the logs,
through the Process Flow Monitor application to see the details of the issue. Once the issue
is fixed, either restart or a new run of the process flow can be used depending on the
requirement.

BDI Process flow runtime XML UnmarshallException
Error

BDI Process Flow fails and GUI is showing this exception:

Runtime Process Flow exception

[Thread-55] ERROR Logger$error$0 - Error calling activity.
javax.ws.rs.ProcessingException: Unable to unmarshall json object to java
object.
OR
Caused by: javax.xml.bind.UnmarshalException - with linked exception:
[Exception [EclipseLink-25004] (Eclipse Persistence Services -
2.6.1.v20150916-55dc7c3):
org.eclipse.persistence.exceptions.XMLMarshalException.

Chapter 6
Sub Processes

6-39

Exception Description: An error occurred unmarshalling the document
Internal Exception: javax.json.stream.JsonParsingException: Unexpected
char 73 at (line no=1, column no=1, offset=0)]
Reason

Process flow deployed with wrong credentials for apps.

Solution

Delete existing process flow deployment from weblogic domain. Redeploy process
flow with setting up new credentials.

BDI Process flow stuck in running state
Issue:

BDI Process Flow keeps in running status and does not end with failed or completed
state. This even does not allow to cancel an existing running process or start a new
process.

Reason:

This happens because of default JTA Timeout in domain configuration, and resource
connections not able to timeout. There are instructions in BDI installation guide "How
to Set JTA Timeout".

Resolution:

Follow the instructions in the BDI Implementation guide and set JTA timeout. Redeploy
the processflow app to stop the running flow and rebounce the server.

Process Flow Did Not Start
To address this, verify the logs. It could be due to the missing Credentials Access
permission, missing system credentials, or a missing system options or DSL parsing
error.

Deleted process flow still listed in the UI
Deleting a process flow from bdi-process-home doesn't deletes it from the process
flow application, because the process flow application refers the database entries, so
in order to delete a process flow from BDI Process Flow app, the script
DELETE_PROCESS_FLOW.sql(bdi-process-home/setup-data/dml/) has to be run in
BDI ProcesFlowAdminDataSource Schema.

Best Practices for Process Flow DSL
• Use naming conventions for process flows and activities in process flow so that

they are easily identified. It is recommended that name of the process flow
includes “Process" and the name of activities ends with “Activity".

• Use built in “startOrRestartJob" method to start/restart job in Job Admin.

Use built in “waitForJobCompletedOrFailed" method to wait until job is complete or
failed.

Chapter 6
Sub Processes

6-40

• Access system options through “externalVariables".

• Use “processVariables" to share variables between activities.

• Use built in “waitForProcessInstancesToReachStatus" to wait for other process instances.

• Use built in “waitForProcessNamesToReachStatus" to wait for other processes.

• Use the built-in triggerProcess to start a sub process.

• It is recommended to use “flo" as extension for process flow DSL file.

Use the built-in REST DSL to make rest calls.

• Organize process flows as hierarchical parent child flows where parent manages the
child flows. Avoid using too many waitFor calls as active threads are getting blocked.

Chapter 6
Sub Processes

6-41

7
CLI Tools

The BDI suite provides two CLI (Command-Line Interface) tools as part of this release.

• BDI CLI Job Executor BDI

• CLI Batch Transmitter

The following sections describe in detail the above CLI components, their setup and usage.

BDI CLI Job Executor
The BDI CLI Job Executor is a standalone command line utility that helps in basic operation
of BDI batch jobs through commands. It uses the REST services that the BDI Batch Job
Admin provides to list jobs and executions, get status of a job, and start, stop and restart a
batch job.

Tool Setup
To prepare the tool for use, follow these steps.

The bdi-cli-job-executor home directory (where the tool software package is extracted)
contains a 'conf' directory where the tool related configuration file will be present, and 'bin'
directory where the executable to run the tool will be present.

• Configure BDI Batch Job Admin URL and alias name for the credentials to access Job
Admin URL.

– Edit conf/bdi-job-admin-info.json file to add the BDI Batch Job Admin URL value for
the jobAdminUrl property.

* Example: "jobAdminUrl":"http://<hostname>:<port>/bdi-rms-batch-job-admin/"

– Add alias name in the property jobAdminUserAlias.

* Example:

"jobAdminUserAlias":"rmsJobAdminBaseUrlUserAlias"

• Run: bdi-cli-job-executor.sh -setup-credentials

Note:

bdi-cli-job-executor.sh will be in the 'bin' directory.

– This prompts for the credentials for the given alias. Enter the corresponding
username and password to be used to access the Job Admin URL. The credentials
will be stored in the wallet and used to invoke the BDI Job Admin REST services.

7-1

Tool Usage
The BDI CLI Job Executor tool is run using the shell script: bdi-cli-job-executor.sh from
the 'bin' directory.

Usage: bdi-cli-job-executor.sh -[option]

Option Description

list Lists all available job names and details.

bdi-cli-job-executor.sh -list

list runningJobs Lists all currently running jobs and job execution IDs.

bdi-cli-job-executor.sh -list runningJobs

start <jobname> Starts a job of given name.

Example:

bdi-cli-job-executor.sh -start MyBatchJob

restart <jobname>
<executionId>

Restarts a failed job execution with the corresponding execution Id.

Example:

bdi-cli-job-executor.sh -restart MyBatchJob 12345

stop Stops all the running job executions.

bdi-cli-job-executor.sh -stop

stop <executionId> Stops the currently running job execution of given execution Id.

Example:

bdi-cli-job-executor.sh -stop 12345

status <jobname> Gets the status of the job of given job name.

Example:

bdi-cli-job-executor.sh -status MyBatchJob

status <jobname>
<instanceId>

Gets the status of the job of given job name and job instance Id.

Example:

bdi-cli-job-executor.sh -status MyBatchJob 54321

BDI CLI Transmitter
The BDI CLI Transmitter is a standalone command line tool to transmit batch interface
data files to a destination BDI receiver system. It is particularly used where the source
system is non-BDI (that is, the source system does not have or use BDI Batch Job
Admin application) but needs to send interface data files to a receiver system running
the BDI Job Admin application.

The tool uses the BDI Job Admin Receiver REST service URL to transmit the data to
the destination system. So it is necessary that the destination system runs the BDI Job
Admin application to use the tool.

Tool Setup
To prepare the tool for use, follow these steps.

Chapter 7
BDI CLI Transmitter

7-2

• The bdi-cli-transmitter home directory (where the tool software package is extracted)
contains 'conf' directory where the tool related configuration files will be present, and 'bin'
directory where the executable to run the tool will be present.

• Configure conf/bdi-file-transmitter.properties. The following describes the properties to be
configured. The properties file provides some sample values for reference to start with.
The values specified in the properties file can be overridden using the command-line
input options if required, when running the tool for file transmission.

Property Description

source.system.name The name of the source system or application that provides the source
data to be transmitted.

For example, source.system.name=RMS

<receiverAppName>.re
ceiver.url

The Receiver REST service URL of the BDI Receiver application
indicated by <receiverAppName> (should be in lowercase).

For example, if the BDI application is RMS, then specify the property and
value as:

rms.receiver.url=http://<bdi-rms-app-hostname>:<port>/bdi-rms-batch-
job-admin/resources/receiver

<receiverAppName>.re
ceiver.url.useralias

Alias name for the credentials to be used to connect to the
corresponding receiver service. The alias name with the credentials are
stored in a wallet. <receiverAppName> should be in lowercase.

Example: rms.receiver.url.useralias=rmsReceiverUrlUserAlias

<InterfaceModuleName
>.receiver.appname

Name of the BDI receiver application for the interface module
<InterfaceModuleName>.

Specify the name in lowercase.

Example:

Diff_Fnd.receiver.appname=ext

Store_Fnd.receiver.appname=rms

<InterfaceModuleName
>.dataset.type

The data set type of the data to be transmitted for the interface module
identified by <InterfaceModuleName>.

Valid value is FULL or PARTIAL.

Example: Diff_Fnd.dataset.type=FULL

<InterfaceModuleName
>.interfaceShortNames

The interface name(s) for the corresponding interface module
<InterfaceModuleName>. Multiple interface names can be specified
(each separated by a comma) as multiple interfaces can be part of an
interface module. The interface module name and interface names
should be the same as expected by the BDI receiver application where
the files are transmitted.

Example:

Diff_Fnd.interfaceShortNames=Diff
DiffGrp_Fnd.interfaceShortNames=Diff_Grp,Diff_Grp_Dtl

<InterfaceModuleName
>.<InterfaceShortName
>.input.filepath

Specify the file location where the corresponding interface data files to
be transmitted are present. Each interface in a interface module should
have separate file locations.

Example:

Diff_Fnd.Diff.input.filepath=/home/bdi/diff_fnd/diff/files

DiffGrp_Fnd.Diff_Grp.input.filepath=/home/bdi/diffgrp_fnd/diff_grp/files

DiffGrp_Fnd.Diff_Grp_Dtl.input.filepath=/home/bdi/diffgrp_fnd/
diff_grp_dtl/files

• Run: bdi-file-transmitter.sh -setup-credentials.

Chapter 7
BDI CLI Transmitter

7-3

Note:

bdi-file-transmitter.sh will be in the 'bin' directory.

Run -setup-credentials to configure the BDI Receiver service user credentials.
Running this command will prompt for the username and password for each of the
<receiverAppName>.receiver.url.useralias specified in bdi-file-
transmitter.properties file.

The credentials entered for each alias will be stored in a secure wallet and used to
connect to the corresponding BDI Receiver service for transmission of files.

This is a prerequisite step to use the tool but usually a one-time setup before
running bdi-file-transmitter.sh for transmission of files.

• Run: bdi-file-transmitter.sh -get-interface-metadata <receiver-app-name>

Note:

bdi-file-transmitter.sh will be in the 'bin' directory.

For example: bdi-file-transmitter.sh -get-interface-metadata ext

Run bdi-file-transmitter.sh -get-interface-metadata to configure metadata for a
receiver app. On running -get-interface-metadata option the metadata for the
receiver app will be saved in the bdi-cli-transmitter/conf/meta-data/<receiver-app-
name>.

This is a prerequisite step to use the tool usually one-time setup before running
bdi-file-transmitter.sh for transmission of files to a receiver app.

• Optionally, configure conf/bdi-file-transmitter-runtime.properties that contains
parameters (described below) for performance tuning of the tool.

Start with default values as present in the properties file, analyze the performance
and choose optimal values for the parameters for better performance if required.
The tool will use default values for the parameters (mentioned below) when no
values are specified in the properties file.

Property Description

multiple_files_process_limit The maximum number of files to process in parallel at any
given time. Default value is 5.

file_transmission_thread_limit The number of parallel threads to run to process a single
file. Default value is 3.

transmission_record_size The maximum number of records per block or chunk to
transmit to the receiver service per service call. Default
value is 20000.

transmission_timeout The timeout in minutes for file transmission. The process
will timeout and end when the file transmission is still not
complete after the specified time. Default value is 300
minutes.

Chapter 7
BDI CLI Transmitter

7-4

Tool Usage
The BDI CLI Transmitter tool is run using the shell script: bdi-file-transmitter.sh from the 'bin'
directory.

The tool can be run in interactive and noninteractive modes.

Interactive Mode: Run bdi-file-transmitter.sh

For user interactive mode where the program prompts for input, just run bdi-file-transmitter.sh
with no options.

This will prompt for each input with descriptions which will be self-explanatory. The user can
enter value as required or skip optional parameters. When no value is specified for optional
parameters, the tool will try to use the default values as specified in the bdi-file-
transmitter.properties file or stop executing when no default value is present.

Non-Interactive Mode: Run bdi-file-transmitter.sh [input]

The tool can be run with the following inputs as described below.

Note:

The only required input is interface module name, when the other input values are
specified in bdi-file-transmitter.properties file.

Input Description

-m or --interfacemodule
<interfaceModuleName>

(Required) The interface module name. Should be the same as the interface
module name expected by the BDI receiver application.

-i or --
interfaceshortnames
<interfaceShortNames>

(Optional) Multiple interface names should be separated by comma. If not
specified, the program will use the interface names corresponding to the
interface module as specified in bdi-file-transmitter.properties file.

The interface names should be the same as expected by the BDI receiver
application

-s or --sourcesystem
<sourceSystemName>

(Optional) The source system name. If not specified, the program will use
the source.system.name given in the properties file.

-f or --filelocation
<inputFilePaths>

(Optional) The location of interface data file(s) that are to be transmitted.
This can be single file or a directory path with multiple data files of the
interface. Multiple file paths should be separated by comma, for each
interface in the corresponding order. If not specified, the program will use
the input file paths given for the interfaces as given in the properties file.

-a or --receiverapp
<receiverAppName>

(Optional) The BDI receiver app name. This is used to get the receiver url
and/or useralias from properties file if any of those values are not provided.
If not specified, the program will use the receiver app name specified for the
interface in the properties file.

-r or --receiverurl
<fileReceiverUrl>

(Optional) The receiver url. If not specified, the program will use the receiver
url of the receiver app specified for the interface in the properties file, for
transmission of files.

-u or --useralias
<receiverUrlUserAlias>

(Optional) The alias name for the credentials to be used to connect to the
receiver service url. The credentials corresponding to the alias should exist
in the wallet. If not specified, the program will use the receiver url useralias
of the receiver app specified for the interface in the properties file.

Chapter 7
BDI CLI Transmitter

7-5

Input Description

-d or --datasettype
<dataSetType>

(Optional) The data set type that specifies the data transmitted is full or
delta load. Valid value: 'FULL' or 'PARTIAL'. If not specified, the program will
use the interface specific data set type as given in the properties file.

Some examples of running the transmitter tool command-line:

bdi-file-transmitter.sh -m Diff_Fnd
 bdi-file-transmitter.sh -m Diff_Fnd -i Diff
 bdi-file-transmitter.sh -m DiffGrp_Fnd -i Diff_Grp,Diff_Grp_Dtl
 bdi-file-transmitter.sh -m Diff_Fnd -a ext
bdi-file-transmitter.sh -m DiffGrp_Fnd -i Diff_Grp,Diff_Grp_Dtl -f /home/bdi/
diffgrp_fnd/diff_grp/files,/home/bdi/diffgrp_fnd/diff_grp_dtl/files
bdi-file-transmitter.sh -m "Diff_Fnd" -i "Diff" -s "RMS" -d "FULL"
bdi-file-transmitter.sh -m Diff_Fnd -i Diff -s "RMS" -f "/home/bdi/diffgrp_fnd/
diff/files" -a "ext" -r "https://bdisimapphost:9001/bdi-ext-batch-job-admin/
resources/receiver" -d "FULL"

File Processing
The BDI Transmitter tool supports transmission of flat files, for example, .csv files, in
UTF-8 format. The BDI Receiver application supports only csv files. Hence the
interface data files to be transmitted need to contain records with comma-separated
field values.

The order of the fields in the file should be as expected by the BDI Receiver
application, so that each value is inserted in the right columns of the destination
interface tables. No header line should be present in the file (each line is treated as
data record). Each record should be in a newline.

The interface module name and interface names for the files to be transmitted should
be same as expected by the BDI Receiver application.

The transmitter tool can process a single file or a directory containing multiple files. But
the tool does not process files recursively in subdirectories.

Files are processed and transmitted per interface module. Each run of processing of
files of the interface module will be considered a transaction and a Transaction Id will
be generated and associated to the transmission of files (at the interface module
level). Files of multiple interfaces in an interface module will be part of the same
transaction.

Each file transmission within a transaction will have a Transmission Id associated to it.
The same transaction Id and transmission Id are sent to the BDI Receiver application,
so the corresponding transmission details can be seen in the Job Admin console of the
BDI Receiver application.

After successful transmission, the file will be moved to the archive directory:

 <inputFileDirectory>/archive/<interfaceModuleName>/<transactionId>

For example,

if the input file location is '/home/bdi/interface/files' and the interface module of the files
is 'Diff_Fnd', and the transaction Id of the file transmission is
'Tx#5263_1568696470665_RMS', then after successful transmission the file will be
moved to the directory:

Chapter 7
BDI CLI Transmitter

7-6

/home/bdi/interface/files/archive/Diff_Fnd/Tx#5263_1568696470665_RMS.

Output Logs
The transmitter tool outputs messages and logs to the terminal console where the command
is run.

The tool also creates a log file that contains detailed logs about the processing of files. The
log will show the Transaction Id and Transmission Id of each file transmission among other
details.

The log file is created in the logs directory under the tool home directory (bdi-cli-transmitter/
logs).

The name of the log file will be in the format: bdi-file-transmitter_yyyy-mm-dd_hh:mm:ss, for
example bdi-file-transmitter_2016-07-04_10:38:59.

Error Reprocessing
In case of any error in file processing, error in transmission of file to the receiver service,
timeout of file transmission, or any other failure, the file will be moved to the 'failed' directory:
<inputFileDirectory>/failed/<interfaceModuleName>/<transactionId>

For example, if the input file location is '/home/bdi/interface/files' and the interface module of
the files is 'Diff_Fnd', and the transaction Id of the file transmission is
'Tx#5263_1568696470665_RMS', then if the transmission of file fails, the file will be moved to
the directory: /home/bdi/interface/files/failed/Diff_Fnd/Tx#5263_1568696470665_RMS.

A properties file containing the input details corresponding to the failed file will be created.
For example, if the file named 'Item_1.csv' has failed, then a file named
'Item_1.csv.properties' will be created in the 'failed' directory. This acts as the input context
that will be used when the file is reprocessed. The user should not delete or modify this
properties file, if the data file has to be re-processed with the original input context.

Due to parallel processing of files by the transmitter, there may be a scenario where some
records in the file may have been transmitted successfully, but part of the file transmission
may have failed. Even in this case, the entire file will be treated as failed and moved to the
'failed' directory.

Reprocessing will be at the file level and not at the block level where the transmission may
have failed. In the case of partial transmission of file, the BDI Receiver application also marks
the whole transmission as failed and hence the entire file can be retransmitted to be
processed again by the receiver application.

To retry failed files (that did not get transmitted successfully in previous transmission) use the
below command:

bdi-file-transmitter.sh -retry-failed <inputFileDir or inputFilePath>

For example, bdi-file-transmitter.sh -retry-failed /home/bdi/interface/files/failed/Diff_Fnd/
Tx#5263_1568696470665_RMS

bdi-file-transmitter.sh -retry-failed /home/bdi/interface/files/failed/Diff_Fnd/
Tx#5263_1568696470665_RMS/Diff_1.csv

Once a file is successfully reprocessed, it will be renamed as <filename>-retransmitted. For
example, Diff_1.csv-retransmitted. And, the corresponding properties file will be deleted.

Chapter 7
BDI CLI Transmitter

7-7

8
BDI Data Integration Topologies

The BDI infrastructure applications move data from one application to another. So there is
data producing applications and data consuming applications. Depending on the customer
needs, the data produced by an application may be used by one or more consuming
applications. This leads to different deployment architectures for various needs.

In all of the topologies presented, regardless of the examples presented, in practice, the
sender and receiver locations can be on-premise, cloud, or hybrid deployments. BDI is
designed to be location transparent.

A new change has been introduced to BDI process flows i.e multi destination support. With
this change only one instance of BDI process flow will be required at enterprise level.
Enterprise process flow by default follows sender side split topology.

Sender Side split

Figure 8-1 Sender Side Split

In the case of Sender Side Split (SSS), the data is extracted once from the source system.
The extracted data is transmitted to each destination separately.

A detailed diagram of sender side split topology usage in Oracle Retail is shown below.

8-1

Figure 8-2 Sender Side Split Topology

Chapter 8
Sender Side split

8-2

Receiver Side Split

Figure 8-3 Receiver Side Split

The Receiver Side Split (RSS) topology is used for multi destination data transfer such as
Sender Side Split. In this topology data is extracted and transmitted to the destination only
once regardless of the number of destinations. This topology differs from the sender side split
in the number of times the data is transmitted.

Receiver side split can only be used if all the destinations have a shared network drive
access. This is the most optimal multi destination data transfer topology.

A detailed diagram of receiver side split topology usage in Oracle Retail is shown below.

Chapter 8
Receiver Side Split

8-3

Figure 8-4 Receiver Side Split

Chapter 8
Receiver Side Split

8-4

9
OAuth 2.0

OAuth 2.0 is the industry-standard protocol for authorization. The OAuth 2.0 authorization
framework enables a third-party application to obtain limited access to an HTTP service,
either on behalf of a resource owner by orchestrating an approval interaction between the
resource owner and the HTTP service, or by allowing the third-party application to obtain
access on its own behalf.

IDCS provides out of the box OAuth Services, which allows a Client Application to access
protected resources that belong to an end-user (that is, the Resource Owner).

OAuth 2.0 Architecture Diagram

Figure 9-1 OAuth 2.0 Architecture Diagram

OAuth 2.0 Concepts
Business to Business (2-legged flow)

• It usually represents an application that calls another application or service without end
user intervention.

• A client (Business Client application) will make a call to a service, business service (in
OAuth spec, a resource server), and request some business information, passing the
access token.

• Since there is no end user intervention, the client is pre-authorized to have access to the
resource.

9-1

OAuth 2.0 Use Case Flow

Figure 9-2 OAuth 2.0 Use Case Flow

OAuth 2.0 Terms
• Resource Server – The server hosting the protected resource.

• Resource Owner – An entity capable of granting access to a protected resource.

• Client – An application making protected resource requests on behalf of the
resource owner. It can be a server-based, mobile or a desktop application.

• Authorization Server – The server issuing access tokens to the clients after
successfully authenticating the resource owner and obtaining authorization.

Chapter 9
OAuth 2.0 Use Case Flow

9-2

BDI OAuth 2.0 Architecture
BDI uses OAuth 2-legged flow i.e. business to business flow. IDCS provides OAuth services.
OHS is Oracle HTTP server that acts as a listener to incoming requests and route them to
appropriate service.

Figure 9-3 BDI OAuth 2.0 Architecture

OAuth 2 Service Provider
BDI services can be accessed using OAuth 2.0. Use the information provided in Service
Consumer section on how to access BDI services using OAuth 2.0.

Service providers that want to expose services using OAuth 2.0 has to go through the below
steps.

Service Provider Configuration
Service provider needs an OAuth identity domain to register resource server information and
client profile information so that clients can access the services using OAuth 2.0 protocol.

OAuth 2.0 Service provider distribution includes a configuration file "oauth-configuration-env-
info.properties" and install script "oauth-config.sh" to create identity domain, register resource
server and client profile information.

Scopes
Scopes allow certain service endpoints to be restricted to clients.

Here are the available scopes.

• AdminAccessScope

Chapter 9
BDI OAuth 2.0 Architecture

9-3

• OperatorAccessScope

• MonitorAccessScope

Configuration of scopes for service provider

Service provider needs to configure scope of access for all resource servers in "oauth-
configuration-env-info.properties" file.

Here is a sample configuration for scope in service provider. With this configuration,
clients can access only BDI Process Flow end points permitted for operator. Multiple
scopes can be specified as a comma separated list for a resource server.

oauth-configuration-env-info.oauth-resource-server-
interface.resourceServerName=bdi-process-flow,bdi-rms-batch-job-admin
oauth-configuration-env-info.oauth-resource-server-interface.bdi-process-
flow.scopeName=OperatorAccessScope
oauth-configuration-env-info.oauth-resource-server-interface.bdi-rms-batch-job-
admin.scopeName=OperatorAccessScope,MonitorAccessScope

OHS Configuration
In cloud environment, all external HTTP requests are routed through OHS (Oracle
HTTP Server). OHS needs to be configured to add "oauth2" in the URL after root
context and forward the request to appropriate service if the request contains the
HTTP header "Authorization: Bearer <token>". This header indicates that the service is
protected by OAuth 2.0.

OAuth Server Public Certificate
Service provider uses OAuth server public certificate to validate the token provided in
the HTTP request.

Use instructions provided in the OAuth 2.0 Installation Guide to import OAuth server
public certificate into service provider.

OAuth 2.0 Servlet Filter
Service Provider needs to include "OAuth2ServletFilter" class in "web.xml" to intercept
HTTP requests that contain "oauth2" in the path of the URL. The following jars need to
be included in the classpath of service provider. The servlet filter validates the token
provided in the "Authorization" header and forwards to the service if token is valid.

• oauth2-common-19.1.000.jar

• oauth2-service-provider-api-19.1.000.jar

Add the following in "web.xml" of service provider.

<filter>
<filter-name>OAuth2ServletFilter</filter-name> <filter-
class>com.oracle.retail.integration.oauth2.provider.OAuth2ServletFilter</filter-
class>
 <init-param>
<param-name>oauth2.serviceProviderConfigClassName</param-name>
<param-value>com.oracle.retail.bdi.common.util.OAuth2ConfigProvider</param-value>
 </init-param>
</filter>

Chapter 9
OAuth 2 Service Provider

9-4

<filter-mapping>
 <filter-name>OAuth2ServletFilter</filter-name>
 <url-pattern>/oauth2/*</url-pattern>
</filter-mapping>

Add the below security-constraint as the last security constraint in "web.xml".

<security-constraint>
 <web-resource-collection>
 <web-resource-name>OAuth2Paths</web-resource-name>
 <url-pattern>/oauth2/*</url-pattern>
 </web-resource-collection>
</security-constraint>

OAuth 2.0 Service Consumer
A client can access services protected by OAuth 2.0 using the following methods:

• Use OAuth 2.0 Consumer API

• Use Curl

Access Services using OAuth 2.0 Consumer API
OAuth 2.0 consumer API simplifies access of services protected by OAuth 2.0. The
consumer API executes the following steps:

1. Gets the token from IDCS server using client id, client secret, and scope.

2. Adds "Authorization Bearer <token>" HTTP header.

3. Adds "Scope" header with configured scope.

4. Calls the service.

Consumer Configuration
1. Download OAuth2ServiceConsumer19.1.000ForAll19.1.000Apps_eng_ga.zip.

2. Unzip the downloaded archive. The "oauth2-consumer-home" directory will be created
under the current directory.

Unzip OAuth2ServiceConsumer19.1.000ForAll19.1.000Apps_eng_ga.zip

This command extracts the archive. The directories for the installation are shown.

• /conf/oauth2-service-consumer-config.properties

• ./lib/oauth2-common-19.1.000.jar

• ./lib/oauth2-service-consumer-api-19.1.000.jar

• ./README.txt

3. Edit the oauth-service-consumer-config.properties file to create oauth2 domain
environment.

vi oauth-service-consumer-config.properties
4. Provide the following values in the properties file.

Chapter 9
OAuth 2.0 Service Consumer

9-5

Table 9-1 Configuration Property File Values

Configuration Property Description

oauth2.default.authorizatio
nServerUrl

URL of OAuth server that issues tokens for default server

oauth2.default.scopeOfAcc
ess.*

Scope of access - *.<scope> for default server

(scope - AdminAccessScope, OperatorAccessScope,
MonitorAccessScope)

oauth2.default.scopeOfAcc
ess.headers

headers.<scope> for default server

(scope - AdminAccessScope, OperatorAccessScope,
MonitorAccessScope)

oauth2.default.scopeOfAcc
ess.bdi-rms-batch-job-
admin

<Root Context>.<scope> for default server

oauth2.srv1.authorizationS
erverUrl

URL of OAuth server that issues tokens for server "srv1"

OAuth 2.0 Client Sample Code

The following sample code calls discover service of BDI Process Flow application.
Make sure that following jars are included in the classpath.

• oauth2-common-19.1.000.jar

• oauth2-service-consumer-api-19.1.000.jar

import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.WebTarget;
Import
com.oracle.retail.integration.oauth2.consumer.OAuth2RestServiceConsumerTokenAppen
der;
import com.oracle.retail.integration.oauth2.consumer.OAuth2ClientBuilder;
import com.oracle.retail.integration.oauth2.consumer.OAuth2Client;

// Code that calls service protected by OAuth 2
void callService() {
 Client client = ClientBuilder.newClient().register(new
OAuth2RestServiceConsumerTokenAppender("BdiClientID", "BdiClientID1", "srv1"));
 WebTarget target = client.target("https://host:port/bdi-process-flow/
resources/discover");
 String out = target.request().get().readEntity(String.class);
 System.out.println("out=" + out);
}

Access Services using Curl
Curl can be used to call a service. There are two steps for calling a service. First issue
a curl command to get the token from the authorization server and the second curl
command calls the service using the token.

Request Access Token

The following curl command can be used to request access token.

Curl -X POST -H "Authorization: <Base64 encoded credentials for Authorization
Server>" -H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" - H

Chapter 9
OAuth 2.0 Service Consumer

9-6

"Accept-Charset: UTF-8" -H "Connection: keep-alive" -H "Content-Length: <length>" -d
"grant_type=client_credentials&scope=<scope>" <url>

Sample Scope:

bdi-process-flow.OperatorAccessScope

Call Service

Curl -X GET -H "Authorization: Bearer <token>" - H "Scope: <scope>" <url>

Token: Token obtained using the above curl command

Scope: Scope used to obtain the token

Sample URL: http://host:port/bdi-process-flow/oauth2/resources/discover

IDCS WTSS and WLS Configuration Instructions
IDCS

1. If TAS Service Manager Payload is available, run the script create-property-file-from-
service-manager-payload.sh service-manager-payload-file.json

2. If TAS Service Manager Payload is not available, update conf/idcs-tools.properties
manually

e.g.,

TenantId=tenantId

ClientID=RGBURICSApp-APPID

ClientSecret=secret

IdcsUrl=https://idcs.com

3. Change the email-id in input/rics-users.csv add-users.sh rics.

4. add-groups.sh rics

5. add-app.sh rics prod

6. update-idcs-web-tier-policy-json.sh rics prod

7. Add cloudgate to App Roles in IDCS (Currently a manual step, until a solution is figured
out)

App --> Configuration --> Client Configuration --> +Add (Grant the client access to
Identity Cloud Service Admin APIs)

Select "Cloud Gate" --> Save

WTSS

1. Generate routes.config for WTSS generate-wtss-to-app-routes-info-json.sh service-name
environment-label wtssserver-hostname appserver-hostname appserver-port

For example,

generate-wtss-to-app-routes-info-json.sh rics prod <wtsserver-hostname> <appserver-
hostname> 80

2. Generate IDCS connection info json

Chapter 9
IDCS WTSS and WLS Configuration Instructions

9-7

generate-wtss-to-idcs-connection-info-json.sh rics prod

3. Run docker image with the generated files

For example, docker run --name wtss -v <path>/rics-prod-wtss-to-idcs-connection-
info.json:/config/wtss-config.json -v <path>/rics-prod-wtss-to-app-routes-info.json:/
config/routes.json -p 80:9999 -d wtss.docker.com/oracle/wtss

WebLogic

1. Add to each managed server startup : -
Dweblogic.security.SSL.hostnameVerifier=weblogic.security.utils.SSLWLSWildcard
HostnameVerifie

2. Configure IDCS Integrator

Security Realms --> myrealm --> Providers

- Delete OAM and OID providers (if exists)

- Change Control Flag to "SUFFICIENT" or "OPTIONAL" for DefaultAuthenticator

- Add new service provider for IDCS

a. New -->

Name: IDCSIntegrator

Type: OracleIdentityCloudIntegrator

Click OK

b. Click on the created provider

Control Flag: SUFFICIENT

Active Types:

Add "Authorization" to "Chosen:"

Save

c. Click "Provider Specific"

Host: identity.c9dev1.oc9qadev.com

Port: 443

Check SSL Enabled

Tenant: TenantId (from Step #1)

Client Id: (from conf/rics-prod.properties created after Step #4)

Client Secret (from conf/rics-prod.properties created after Step #4)

Confirm Client Secret

Save

Reorder so that IDCS provider is ahead of default provider

OAuth2 (with IDCS) Support in BDI

• For an application service URL call to work with IDCS OAuth2, need to configure
following properties oauth2AuthorizationServerUrl, ClientId, ClientSecret, UserId,
UserPassword.

Chapter 9
IDCS WTSS and WLS Configuration Instructions

9-8

• oauth2AuthorizationServerUrl is configured in BDI System Options table. It needs to point
to IDCS URL from where we can get the token. E.g. https://<hostname>/oauth2/v1/token.

• ClientId, ClientSecret are stored in the wallet using the RICS application alias name "ric-
sOauth2ApplicationClientAlias". For different oauth applications like MFCS we store their
ClientId Cli-entSecret under the alias names "mfcsOauth2ApplicationClientAlias"
respectively.

• ProcessFlow application may call app services that reside in different cloud
services(RICS, MFCS). Each app service URL that ProcessFlow can call is configured in
the BDI System Options table using a "<some name>Url" key naming pattern.

• OAuth2 is enabled or disabled for url "<some name>Url" based on the existence of the
OAuth2 alias "<some name>UrlOAuth2ApplicationClientAlias". This "<some
name>UrlOAuth2ApplicationClientAlias" must point to the alias name of the ClientId,
ClientSecret i.e. "*ricsOauth2ApplicationClientAlias" or
"*mfcsOauth2ApplicationClientAlias". The * in the alias name is an indicator that this alias
actually points to the shared alias ricsOauth2ApplicationClientAlias or
mfcsOauth2ApplicationClientAlias. With this setup we do not have to duplicate the
ClientId, ClientSecret for every app service url.

• The BDI install script is modified to ask for OAuth2 specific questions if it detects OAuth2
provider section (CentralAuthenticationSystem/IdcsAuthenticationProvider) is configured.

• The bdi-process-flow-admin-deployment-env-info.json file now has new OAuth2 sections
(CentralAuthentica-tionSystem/IdcsAuthenticationProvider). In a typical deployment, only
the value of oauth2AuthorizationServerUrl needs to get changed. All the other
configuration is required by the system but the default out of the box values are pre-
configured correctly so the person doing the install does not have to change anything.
Following is a snippet of the json.

Below is the json snippet of OAuth2

"CentralAuthenticationSystem":{

 "IdcsAuthenticationProvider":{

 "oauth2AuthorizationServerUrl":"<hostname>/oauth2/v1/token",
 "oauth2Application":[
 {
 "oauth2ApplicationName" : "RICS",
 "oauth2ApplicationScopeOfAccess" :
{"name":"oauth2.default.scopeOfAccess.*", "value":"urn:opc:idm:__myscopes__"},
 "oauth2ApplicationClientAlias" :
"ricsOauth2ApplicationClientAlias",
 "oauth2ApplicationClientId" : "GET_FROM_WALLET",
 "oauth2ApplicationClientSecret" : "GET_FROM_WALLET"

 },
 {
 "oauth2ApplicationName" : "MFCS",
 "oauth2ApplicationScopeOfAccess" :
{"name":"oauth2.default.scopeOfAccess.*", "value":"urn:opc:idm:__myscopes__"},
 "oauth2ApplicationClientAlias" :
"mfcsOauth2ApplicationClientAlias",
 "oauth2ApplicationClientId" : "GET_FROM_WALLET",
 "oauth2ApplicationClientSecret" : "GET_FROM_WALLET"

 },
]
 },

Chapter 9
IDCS WTSS and WLS Configuration Instructions

9-9

 "OamAuthenticationProvider":{
 }

Chapter 9
IDCS WTSS and WLS Configuration Instructions

9-10

10
Pre-implementation Considerations

Before BDI is installed into an enterprise, there are many factors that need to be considered.
Planning and addressing each of the factors will avoid having to reinstall or re-architect
because of performance or operational problems.

BDI Software Lifecycle Management
Software applications, after being made generally available (GA), have a well defined
lifecycle process. The implementer must manage and perform tasks in these phases:

• Acquire the software components

• Prepare the environment

• Assemble the application

• Deploy and Start the application

• Perform day-to-day monitoring to make sure the application is running properly

• Apply code fixes to the application

Preparation Phase
In this phase, all relevant components are downloaded, extracted, and configured.

Application Assembly Phase
In this phase, site specific configuration changes are made and all relevant BDI wars are
generated.

Deployment Phase
In this phase, using the BDI wars created in the previous step, the wars are deployed to
application server instances.

Operation Phase
In this phase, day-to-day operations of the BDI applications are performed.

Maintenance Phase
In this phase, code fixes, patching, configuration changes and maintenance of the BDI
applications are performed.

10-1

Physical Location Considerations
The Oracle Retail Merchandising System (RMS) is the most important core business
application from the suite of Oracle Retail Product offerings. RMS provides most of the
retail business functionality that offers its customers. In other words RMS is the central
hub of Oracle retail applications. Since RMS is the central hub of retail information/
data and most information/data flows outward from RMS to other edge retail
applications through BDI, the decision on where to physically/logically locate BDI
applications is very important and will have direct impact on the functioning of your
enterprise.

It is recommended to keep the "bdi-rms" integration schema created in the RMS
database server so that the data movement from RMS to outbound tables located in
integration schema is fast. Similarly the "bdi-rms" integration schema is created in the
RMS database server so that the data movement from inbound tables located in the
integration schema to the RMS transactional tables is fast.

It is also recommended to colocate the "rms-batch-job-admin" application near RMS
application and the "rms-batch-job-admin" application near RmS application. The Job
Admin application for BDI External (Externl-batch-job-admin) need to be deployed in a
separate domain. Similarly BDI RmS (rms-batch-job-admin) needs to be deployed in a
separate domain.

Multiple instances of the BDI External application can improve the transfer of bulk data
between RMS and External.

High Availability Considerations
As businesses are maturing and having to do everything quicker, better, faster, and
with less resources and money, they are pushing similar expectation onto their IT
infrastructure. Business users are expecting more out of their IT investments, with zero
down time. Consistent predictable responding systems, which are highly available,
have become a basic requirement of today's business applications.

Modern business application requirements are classified by the abilities that the
system must provide. This list of abilities such as availability, scalability, reliability, audit
ability, recoverability, portability, manageability, and maintainability determine the
success or failure of a business.

With a clustered system many of these business requirement abilities gets addressed
without having to do lots of development work within the business application.
Clustering directly addresses availability, scalability, recoverability requirements which
are very attractive to a business. In reality though it is a tradeoff, a clustered system
increases complexity, is normally more difficult to manage and secure, so one should
evaluate the pros and cons before deciding to use clustering.

Oracle provides many clustering solutions and options; those relevant to BDI are
Oracle database cluster (RAC) and WebLogic Server clusters.

WebLogic Server Cluster Concepts
A WebLogic Server cluster consists of multiple WebLogic Server managed server
instances running simultaneously and working together to provide increased scalability
and reliability. A cluster appears to clients to be a single WebLogic Server instance.

Chapter 10
Physical Location Considerations

10-2

The server instances that constitute a cluster can run on the same machine, or be located on
different machines. You can increase a cluster's capacity by adding additional server
instances to the cluster on an existing machine, or you can add machines to the cluster to
host the incremental server instances. Each server instance in a cluster must run the same
version of WebLogic Server.

In an active-passive configuration, the passive components are only used when the active
component fails. Active-passive solutions deploy an active instance that handles requests
and a passive instance that is on standby. In addition, a heartbeat mechanism is usually set
up between these two instances together with a hardware cluster (such as Sun Cluster,
Veritas, RedHat Cluster Manager, and Oracle CRS) agent so that when the active instance
fails, the agent shuts down the active instance completely, brings up the passive instance,
and resumes application services.

In an active-active model all equivalent members are active and none are on standby. All
instances handle requests concurrently.

An active-active system generally provides higher transparency to consumers and has a
greater scalability than an active-passive system. On the other hand, the operational and
licensing costs of an active-passive model are lower than that of an active-active deployment.

Note:

See the Oracle® Fusion Middleware Using Clusters for Oracle WebLogic Server
documentation for more information.

http://download.oracle.com/docs/cd/E15523_01/web.1111/e13709/toc.htm.

bdi-<app> application and WebLogic Application Server Cluster
BDI uses the Receiver Service to transfer data from one system to another system. The BDI
edge apps can be configured in an active-active cluster mode to achieve better throughput.

In active-active cluster mode, bdi-rms application can send data to multiple instances of the
bdi-external application simultaneously.

Logging
Issue

The "System Logs" tab in the Process Flow and Job Admin UIs show only logs from the
server that UI is connected to.

Solution

Use a common log directory for each of the BDI components. BDI components use the
following directory structure for creating log files.

$DOMAIN_HOME/logs/<server name>/<app name>

Example

$DOMAIN_HOME/logs/server1/rms-job-admin_war

$DOMAIN_HOME/logs/server2/rms-job-admin_war

Chapter 10
Physical Location Considerations

10-3

http://download.oracle.com/docs/cd/E15523_01/web.1111/e13709/toc.htm.

1. Create a common log directory (e.g. /home/logs/bdijobadmin) for each BDI
application.

2. Create symbolic links to the common log directory for each server using the below
command from $DOMAIN_HOME/logs directory.

ln -s /home/logs/bdijobadmin

server1/rms-job-admin_war

ln -s /home/logs/bdijobadmin

server2/rms-job-admin_war

3. If the directory $DOMAIN_HOME/logs/<server>/<app> already exists, it needs to
be deleted before symbolic link is created.

4. App needs to be restarted after symbolic link is created.

When weblogic managed servers are in different machines a shared network disk
has to be used.

Update Log Level
Issue

When log level is updated through UI or REST end point, it updates the log level only
on the server it is connected to.

Solution

Log level needs to be updated through the URL of all the nodes in the cluster using UI
or REST endpoint.

Example

http://server1:port1/rms-batch-job-admin/system-setting/system-logs

http://server2:port2/rms-batch-job-admin/system-setting/system-logs

Create/Update/Delete System Options
Issue

When system options are created/updated/deleted using UI or REST end point, the
changes are reflected only on the server that client is connected to.

Solution

The reset-cache REST endpoint need to be invoked on the other nodes in the cluster
for that application in bdi.

Example

http://server1:port1/rms-batch-job-admin/system-setting/reset-cache

Create/Update/Delete System Credentials
Issue

When system credentials are created/updated/deleted using REST endpoint, the
credentials are created/updated/deleted only on the server that client is connected to.

Chapter 10
Physical Location Considerations

10-4

Solution

The REST endpoint that creates/updates/deletes credentials need to be invoked on all the
nodes in the cluster for that application in BDI.

Example

http://server1:port1/rms-batch-job-admin/system-setting/system-credentials

http://server2:port2/rms-batch-job-admin/system-setting/system-credentials

Chapter 10
Physical Location Considerations

10-5

11
Deployment Architecture and Options

There are no physical location constraints on where bdi-<app> applications can be deployed
as long as they are visible from the same network. But the decision on where to physically
and logically locate your bdi-<app> applications has a huge impact on the high availability,
performance and maintainability of your integration solution, so this decision must be given
careful consideration.

Recommended Deployment Options
The BDI applications can be deployed in a variety of physical and logical configurations
depending on the retailer's needs. Oracle Retail has the two recommended configuration
alternatives.

Distributed
In this deployment, each of the BDI application (bdi-<app>.war) is deployed in a different
WebLogic Application Server than the integrating application (<app>.ear) but it is physically
close to the integrating application. This is the recommended configuration for production
environment.

11-1

Figure 11-1 Distributed Configuration

Chapter 11
Recommended Deployment Options

11-2

12
Implementation Process

This release of BDI defines the full life cycle of the BDI software product. The BDI life cycle
and phases are described in detail in the software lifecycle management section of this
document. For every life cycle phase and task that BDI defines, it provides corresponding
tools and utilities to manage and operate on those phases.

There are several prerequisite steps that should be followed to have a successful BDI
installation and deployment.

• Understand the BDI Core Concepts.

• Understand the deployment options.

• Understand the BDI life cycle.

• Understand the physical and logical requirements and limitations of the BDI Components.

• Understand the BDI Operational Considerations.

The process of implementation should follow these general steps:

• Work with the teams at your organization dedicated to Oracle Retail to coordinate plans
for the number and type of environments needed (for example, Dev, Integration,
Production).

• Each type of environment needs to be sized, deployed, and managed in conjunction with
the implementation of the Oracle Retail applications. It is critical to understand the
volume requirements of the production system so that the appropriate decisions can be
made about the deployment option and the physical location and sizing.

• All deployments have integration to existing retailer systems. It is critical to understand
the position of the BDI as it fits into the overall integration architecture and that the
current operations and architecture team understand the BDI and its capabilities.

• Select a deployment option (distributed or centralized). This may be mixed depending on
the phases of deployment. Development and test may be centralized and production
distributed. Understand the operational complexities of each and plan for the staffing.

• Work with the application server administration teams to determine the physical and
logical placement of the BDI components.

• Work with the system administrator and database administrator to appropriately place,
size, and configure the file systems and databases.

Work with the system administrators to select the central BDI management location, bdi-
home.

• The installation of the BDI has many prerequisites and dependencies that require the
understanding, support and effort of database administrators, system administrators,
application server administrators, and your organization's Oracle Retail application
teams. It is a critical role of the BDI system administrator to work with each team,
regardless of the site organization structure.

• Create operational plans for the BDI life cycle.

• Create plans for environment monitoring and maintenance.

12-1

• Plan to performance test.

Chapter 12

12-2

13
Performance Considerations

The performance of each of these components is influential in the overall performance of the
system:

• The application server(s) topology and configuration.

• The BDI deployment approach.

• The hardware sizing and configuration of the BDI hosts.

• The hardware sizing and configuration of the applications that are connected to the BDI.

There are other factors that determine the performance of the overall system.

• Number of partitions and threads used by the batch jobs.

• Item-count and fetchSize used in the downloader-transporter batch job.

• Item-count used in the uploader batch job.

• Size of the data set

Performance Tuning Downloader-Transporter Jobs
Performance of the Downloader-Transporter job can be tuned using the following options.

• Partition

• Thread

• Item-count

• fetchSize

Default values for "Partition" and "Thread" are 10. The Downloader-Transporter job splits the
data set rows among 10 partitions. If there are lot of rows in a data set, increasing partitions
and threads allow more parallel processing of the data, and can improve the performance.

Keep the partition and thread values the same so that a thread is assigned to each partition
by Batch runtime. If there are more partitions than threads, Batch runtime won't start a
partition until a thread is available to run.

Partition and Thread values for the Downloader-Transporter job can be changed from the
"Manage Configurations" tab of the Job Admin GUI. Partition and Thread values can be
changed just for an interface module.

The Default value for "item-count" and "fetchSize" is 1000. Item-count is an attribute of
"chunk" element and "fetchSize" is a property in the Downloader-Transporter job xml.

The Downloader-Transporter job reads 1000 records from the database and sends data to
Receiver Service for the destination. If performance of a Downloader-Transporter job is not
meeting expectations even after changing partitions and threads, increasing the "item-count"
and "fetchSize" values may improve the performance as it reduces the number of round trips
to the database.

Memory utilization will increase as you increase the "item-count" value.

13-1

Performance Tuning Uploader Jobs
Performance of an Uploader job can be tuned using the following options.

• Partition

• Thread

• Item-count

Default values for "Partition" and "Thread" are 10. The Uploader job splits the list of
files among 10 partitions.

If a Downloader-Transporter job creates a lot of files, increasing partitions and threads
allow parallel processing of more files, and can thus improve the performance.

Partition and thread values are typically the same so that a thread is assigned to each
partition by batch runtime. If there are more partitions than threads, the batch runtime
won't start a partition until a thread is available to run.

Partition and Thread values for the Uploader job can be changed from the "Manage
Configurations" tab of the Job Admin GUI. Partition and Thread values can be
changed just for an interface module.

The Default value for "item-count" is 1000. It is an attribute of the "chunk" element in
the Uploader job xml. The Uploader job reads 1000 records from a file or list of files
and then inserts/updates the data in the inbound table.

If performance of an Uploader job is not meeting expectations even after changing
partitions and threads, increasing the "item-count" value may improve the performance
as it reduces the number of round trips to the database. Memory utilization will
increase as you increase the "item-count" value.

Chapter 13
Performance Tuning Uploader Jobs

13-2

14
Job Admin REST Endpoints

Batch service is a RESTful service that provides various endpoints to manage batch jobs in
Job Admin.

The endpoint "discover" can be used to identify all endpoints provided by Job Admin.

REST Resource HTTP Method Description

/discover GET Lists all available endpoints in
Job Admin

/batch/jobs GET Gets all available batch jobs

/batch/jobs/enable-disable POST Enable or disable jobs

/batch/jobs/{jobName} GET Gets all instances for a job

/batch/jobs/{jobName}/
executions

GET Gets all executions for a job

/batch/jobs/executions GET Gets all executions

/batch/jobs/currently-running-
jobs

GET Gets currently running jobs

/batch/jobs/{jobName}/
{jobInstanceId}/executions

GET Gets job executions for a job
instance

/batch/jobs/{jobName}/
{jobExecutionId}

GET Gets job instance and execution
for a job execution id

/batch/jobs/{jobName} POST Starts a job asynchronously

/batch/jobs/executions/
{jobExecutionId}

POST Restarts a stopped or failed job

/batch/jobs/executions DELETE Stops all running job executions

/batch/jobs/executions/
{jobExecutionId}

DELETE Stops a job execution

/batch/jobs/executions/
{jobExecutionId}

GET Gets execution steps with details

/batch/jobs/executions/
{jobExecutionId}/steps

GET Gets execution steps

/batch/jobs/executions/
{jobExecutionId}/steps/
{stepExecutionId}

GET Gets step details

/batch/jobs/job-def-xml-files GET Gets all job xml files

/batch/jobs/is-job-ready-to-start/
{jobName}

GET Is job ready to start for a given
job name

/batch/jobs/group-definitions GET Gets group definitions

/batch/jobs/job-def-xml/
{jobXmlId}

POST

/telemetry/jobs GET Returns runtime job metrics
between fromTime and toTime

14-1

REST Resource HTTP Method Description

/manage-group/group PUT Update a group

/manage-group/group POST Add a group

/manage-group/group/{groupId} DELETE Delete a group for a given
groupId

/manage-group/group/{groupId} GET Gets group info for a given
groupId

/manage-group/group/name/
{groupName}

DELETE Delete group info for a given
group name

/manage-group/group/name/
{groupName}

GET Gets group info for a given group
name

/manage-group/group/group-
members

PUT Update group members info

/manage-group/group/group-
member

PUT Update group member info

/manage-group/group/group-
member

POST Add a group member

/manage-group/group/
{groupName}/group-member/
{groupMemberName}

DELETE Delete group member for a given
group name and group member
name

/manage-group/group/
{groupName}/group-members

GET Gets group members for a given
group name

/manage-group/group/group-
member/{groupMemberId}

GET Gets group member info for a
given group memberId

/manage-group/group/group-
members/{memberName}/
{memberType}

GET Gets group members for a given
member name and memberType

/manage-group/groups GET Gets all groups

/manage-group/groups PUT Updates all groups

/manage-group/groups POST Creates multiple groups specified
in request with single request.

/manage-group/group/
{groupName}/group-members

POST Adds multiple members to a
given groups at a time.

/manage-group/group/
{groupName}/group-members

DELETE Deletes all members from given
group at once.

/manage-group/groups DELETE Deletes multiple groups at once

batch/jobs/job-def-xml/{jobName} PUT Creates an entry in
BDI_JOB_DEFINITION table. It
will throw an exception if job
already exists.

batch/jobs/job-def-xml/{jobName} POST Updates an entry in
BDI_JOB_DEFINITION table. It
will update if job is not in running
state. This end point throws an
exception if job doesn't exist in
the table

Chapter 14

14-2

REST Resource HTTP Method Description

batch/jobs/job-def-xml/{jobName} DELETE Deletes an entry in
BDI_JOB_DEFINITION table. It
will delete if job is not in running
state and if there is no history in
batch database.

batch/jobs/{jobName} DELETE Deletes history for a job from
batch database. It will delete
history if job is not in running
state.

/batch/jobs/bulk/job-definitions POST End point for bulk create/update
job definitions

/batch/jobs/bulk/job-definitions DELETE End point for bulk delete job
definitions

Chapter 14

14-3

A
Process Schema

The process instrumentation captures the state of the process at the beginning and end of
each activity. This information is persisted into the process schema. For each activity there
will be two records, one for before activity and the other for after activity.

Table Name Description

BDI_PROCESS_DEFINITION This table stores all the process flow definitions. It is loaded at
deployment time.

BDI_PROCESS_EXEC_INSTANCE This table tracks all the process flow executions. There is a row
for each process flow execution.

BDI_ACTIVITY_EXEC_INSTANCE This table tracks all the activity executions. There are 2 rows for
each activity execution. One to store the before context and
one to store after context

BDI_ACTIVITY_DYNAMIC_CONFIG This table stores the user runtime choices like SKIP, HOLD etc
at activity level

BDI_SYSTEM_OPTIONS This table has all the system level information like URLs,
credential aliases etc.

BDI_EMAIL_NOTIFICATION This table persists all the process email notifications.

BDI_PROCESS_CALL_STACK This table stores call stack for processes.

BDI_EXTERNAL_VARIABLE This table does temporary storage of variables during process
execution.

BDI_GROUP This table stores group names and its attributes

BDI_GROUP_LOCK This table stores the lock id and group names

BDI_GROUP_MEMBER This table stores all group member details

BDI_PROCESS_DEFINITION

Column Type Comments

PROCESS_NAME VARCHAR2(255) Name of the process

PROCESS_ENABLE_STATUS VARCHAR2(255) Enable or disable the process (true or false)

PROCESS_CREATE_TIME TIMESTAMP Timestamp when the process was loaded to
database

PROCESS_DEF_CONTENT CLOB The Process Flow DSL

BDI_ACTIVITY_EXEC_INSTANCE

Column Type Comments

ACTIVITY_EXEC_ID VARCHAR2(255) System generated id for activity instance

ACTIVITY_BEGIN_OR_END VARCHAR2(255) "B" for Before Image, "A" for after image

ACTIVITY_EVENT_TIME TIMESTAMP Time when he activity occurred

ACTIVITY_NAME VARCHAR2(255) Name of the activity

A-1

Column Type Comments

ACTIVITY_SEQ_NBR NUMBER Sequence number of the activity

ACTIVITY_STATUS NUMBER Activity Status

PROCESS_EXECUTION_ID VARCHAR2(255) Process Execution Id of the process instance
that initiated the activity

PROCESS_VARIABLES BLOB Serialized process variable map

BDI_PROCESS_EXEC_INSTANCE

Column Type Comments

PROCESS_EXECUTION_ID VARCHAR2(255) Process Execution Id of the
process instance that initiated
the activity.

PROCESS_NAME VARCHAR2(255) Name of the process

PROCESS_EXEC_START_TI
ME

TIMESTAMP Time when the process
execution started

PROCESS_EXEC_END_TIM
E

TIMESTAMP Time when the process
execution started

PROCESS_FIRST_RUN_STA
RT_TIME

TIMESTAMP Time when the process
execution started, does not
change when process is
restarted.

PROCESS_STATUS VARCHAR2(255) Process status

BDI_ACTIVITY_DYNAMIC_CONFIG

Column Type Comments

PROCESS_NAME VARCHAR2(255) Name of the process

ACTIVITY_NAME VARCHAR2(255) Name of the activity

HOLD_FLAG VARCHAR2(255) To hold the activity

SKIP_FLAG VARCHAR2(255) To skip the activity

SKIP_OR_HOLD_EXPIRATIO
N

TIMESTAMP Time when skip or hold activity
expires.

COMMENTS VARCHAR2(255) Comments

INVOKE_CALLBACK_SERVI
CE

VARCHAR2(255) Invoke any callback service

USER_NAME VARCHAR2(255) Username

CALLBACK_SERVICE_URL_
ALIAS

VARCHAR2(255) Callback Service URL Alias

CALLBACK_SERVICE_URL VARCHAR2(255) Callback Service URL

BDI_EMAIL_NOTIFICATION

Appendix A

A-2

Column Type Comments

EMAIL_NOTIFICATION_ID NUMBER Process Execution Id of the
process instance that initiated
the activity

APP_NAME VARCHAR2(100) Name of the application

EMAIL_NOTIFICATION_TO VARCHAR2(500) EMail Ids to whom notification
will be sent

EMAIL_NOTIFICATION_SUBJE
CT

CLOB Notification subject

EMAIL_NOTIFICATION_CONTE
NT

CLOB Notification content

EMAIL_NOTIFICATION_DATETI
ME

TIMESTAMP At what time notification sent

EMAIL_NOTIFICATION_TYPE VARCHAR2(255) Type of information

ACTION_STATUS VARCHAR2(255) status (PENDING/COMPLETED)

COMMENTS VARCHAR2(500)

BDI_SYSTEM_OPTIONS

Column Type Comments

CREATE_TIME TIMESTAMP Time it was created

UPDATE_TIME TIMESTAMP Time it was updated

VARIABLE_NAME VARCHAR2(255) Name of system variable

APP_TAG VARCHAR2(255) The application name

VARIABLE_VALUE VARCHAR2(255) Value of the variable

Appendix A

A-3

B
Process Flow REST Endpoints

The endpoint "discover" can be used to identify all endpoints provided by Process Flow.

REST Resource HTTP Method Description

/discover GET Lists all available endpoints

/batch/processes/enable-disable POST Enable or disable process flows

/batch/processes/operator/
{processName}

POST Start a new Process Flow execution

/batch/processes/executions/
{processName}

GET List Process Executions for the process name

/batch/processes/executions GET List all process execution ids

/batch/processes/executions/status/
{status}

GET List all process execution ids for the specified
status

/batch/processes/executions/time/
{startTime}/{endTime}

GET List all process execution ids for the specified
time range

/batch/processes/external-variables GET List external variables

/batch/processes/external-variables PUT Create external variables

/batch/processes/external-variables POST Update external variables

/batch/processes/external-variables/
{key}

DELETE Delete external variable

/batch/processes/currently-running-
processes

GET List all the currently running process flows

/batch/processes GET Get all the available process definitions

/batch/processes/{processName} GET Get process DSL for the specified process

/batch/processes/executions/
{processName}/
{processExecutionId}/activities/
{activityExecutionId}

GET Get all the activities for the process flow
execution

/batch/processes/{processName}/
activities

GET Get all the activities for the process specified

/batch/processes/operator/
{processName}/{processExecutionId}

POST Restart a process execution instance

/batch/processes/operator/
{processName}/resolve

POST Resolves stranded process by setting the
status of process to PROCESS_FAILED

/batch/processes/{processName}/
{processExecutionId}

DELETE Stops running process

/batch/processes/executions DELETE Stops all running processes

/batch/processes/{processName}/
activities/{activityName}

POST Sets skip, hold flags for activity. Query
parameters that can be passed with this end
point - "skip", "hold", "actionExpiryDate",
"comments".

B-1

REST Resource HTTP Method Description

/batch/processes/{processName}/
activities/{activityName}

GET Returns dynamic configuration for activity

/telemetry/processes GET Returns process runtime metrics between
fromTime and toTime

Appendix B

B-2

C
System Setting Service

The System Setting service is a RESTful service available in all BDI apps (Job Admin and
Process Flow) that provides endpoints to manage system option parameters and credentials
to be used by the BDI apps. The system options are stored in the BDI_SYSTEM_OPTIONS
table.

REST Resource HTTP Method Description

/system-setting/system-options GET Gets all system options from
BDI_SYSTEM_OPTIONS table

/system-setting/system-options PUT Creates a system option in
BDI_SYSTEM_OPTIONS table. Only
admin user is allowed to perform this
operation.

/system-setting/system-options POST Updates a system option in
BDI_SYSTEM_OPTIONS table. Only
admin user is allowed to perform this
operation.

/system-setting/system-options/{key} DELETE Deletes a system option from
BDI_SYSETM_OPTIONS table. Only
admin user is allowed to perform this
operation.

/system-setting/system-options/{key} GET Gets a system option from
BDI_SYSTEM_OPTIONS table

/system-setting/system-logs GET Gets system logs

/system-setting/system-seed-data GET Gets system seed data file

/system-setting/system-seed-data/
reset-after-bounce

POST Resets system seed data after bounce

/system-setting/system-seed-data/
reset-now

POST Resets system seed data now

/system-setting/system-credentials GET Gets system credentials. Only admin user
is allowed to perform this operation.

/system-setting/system-credentials PUT Creates system credentials. Only admin
user is allowed to perform this operation.

/system-setting/system-credentials POST Updates system credentials. Only admin
user is allowed to perform this operation.

/system-setting/system-credentials/
{key}

DELETE Deletes system credentials. Only admin
user is allowed to perform this operation.

/system-setting/reset-cache POST Resets system option cache

Managing System Options using curl
Here are examples of curl commands to list/create/update/delete system options for Process
Flow. These commands can be run for Job Admin as well. Create/update/delete commands
can only be run by administrator.

C-1

Create system option
This command creates "reimappJobAdminBaseUrlUserAlias" system option in Process
Flow.

curl --user userId:password -i -X PUT -H "Content-Type:application/json" http://
server:port/bdi-process-flow/resources/system-setting/system-options -d
'{"key":"reimappJobAdminBaseUrlUserAlias" , "value":"
GET_FROM_WALLET:GET_FROM_WALLET "}'

Update system option
This command updates "reimappJobAdminBaseUrl" system option in Process Flow.

curl --user userId:password -i -X POST -H "Content-Type:application/json" http://
server:port/bdi-process-flow/resources/system-setting/system-options -d
'{"key":"reimappJobAdminBaseUrl" , "value":"http://server:port/reim-batch-job-admin"}'

Delete system option
This command deletes "reimappJobAdminBaseUrl" system option from Process Flow.

curl --user userId:password -i -X DELETE -H "Content-Type:application/json" http://
server:port/bdi-process-flow/resources/system-setting/system-options -d
'{"key":"reimappJobAdminBaseUrl"}'

List system options
This command lists all system options from Process Flow.

curl --user userId:password -i -X GET -H "Content-Type:application/json" http://
server:port/bdi-process-flow/resources/system-setting/system-options

Managing credentials using curl
Here are examples of curl commands to list/create/update/delete credentials for
Process Flow. These commands can be run for Job Admin as well. Create/update/
delete commands can only be run by administrator.

Create credential
This command creates a credential in Process Flow.

curl --user userId:password -i -X PUT -H "Content-Type:application/json" http://
server:port/bdi-process-flow/resources/system-setting/system-credentials -d
'{"userAlias":" reimappJobAdminBaseUrlUserAlias", "userName":"reimjobadmin" ,
"userPassword":"xyzxyz"}'

Update credential
This command updates a credential in Process Flow.

Appendix C
Managing credentials using curl

C-2

curl --user userId:password -i -X POST -H "Content-Type:application/json" http://server:port/
bdi-process-flow/resources/system-setting/system-credentials -d '{"userAlias":"
reimappJobAdminBaseUrlUserAlias", "userName":"reimjobadmin" ,
"userPassword":"wwwqqqq"}'

Delete credential
This command deletes a credential from Process Flow.

curl --user userId:password -i -X GET -H "Content-Type:application/json" http://server:port/
bdi-process-flow/resources/system-setting/system-credentials -d
'{"key":"reimappJobAdminBaseUrl"}'

List Credentials
This command lists credentials from Process Flow.

curl --user userId:password -i -X GET -H "Content-Type:application/json" http://server:port/
bdi-process-flow/resources/system-setting/system-credentials.

Appendix C
Managing credentials using curl

C-3

D
Sample Extractor - PL/SQL application code
that calls procedures in PL/SQL package

BEGIN
-- First call beginDataSet of the corresponding interface module datactl pkg before
loading data to interface tables.
-- Here interfacemodule is Diff_Fnd and dataload is full set. If partial dataset, then
call beginPartialSet_Diff_Fnd
 IF
Diff_Fnd_Out_DataCtl.beginFullSet_Diff_Fnd(O_datacontrol_id,O_error_message) = 0 THEN
 DBMS_OUTPUT.PUT_LINE('interfaceModuleDataControlId: ' ||
O_datacontrol_id);
 ELSE
 DBMS_OUTPUT.PUT_LINE('beginFullSet_Diff_Fnd error: ' || O_error_message);
Return;
 END IF;
-- Call application PL/SQL package to populate outbound interface table
-- Then call endDataSet of the corresponding interface module datactl pkg
 IF
Diff_Fnd_Out_DataCtl.onSuccEndSet_Diff_Fnd(O_datacontrol_id,O_error_message) = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Successfully called onSuccEndSet');
 COMMIT;
 ELSE
 DBMS_OUTPUT.PUT_LINE('onSuccEndSet error: ' || O_error_message);
 ROLLBACK;
 END IF;
EXCEPTION
WHEN OTHERS
THEN
 Call onErrDiscardSet in case of an error
 IF
Diff_Fnd_Out_DataCtl.onErrDiscardSet_Diff_Fnd(O_datacontrol_id,O_error_message) = 0
THEN
 DBMS_OUTPUT.PUT_LINE('Successfully called onErrEndSet');
 ELSE
 DBMS_OUTPUT.PUT_LINE('onErrEndSet error: ' || O_error_message);
 END IF;
END;

D-1

E
Purge Strategy

The purge scripts helps in removing the old transactional data.

This script can run in two modes:

• Silent Mode

Execute the procedure without passing any parameters, it calculates the period and
remove the data. By default it keeps 6 months data and remove older than that. For
example if some one wants to keep only 2 months of data and remove rest of the data,
need to modify the procedure just by updating variable "howManyMonths NUMBER(5) :=
6" to the required value.

howManyMonths = 2;

• Interactive Mode

Pass the fromDate and toDate parameters to the procedure to purge the specified period
of data. Data will be removed for only specified period i.e fromDate to toDate.

From and To dates format should be in below format:

FROMDATE := TO_TIMESTAMP('2017-01-01T00:00:00', 'YYYY-MM-
DD"T"HH24:MI:SS');

TODATE := TO_TIMESTAMP('2017-04-30T23:59:59', 'YYYY-MM-DD"T"HH24:MI:SS');

The deleted data will be committed default in both silent and interactive modes.

Execute Purge SQL
Silent Mode

SET SERVEROUTPUT ON;
DECLARE
FROMDATE TIMESTAMP;
TODATE TIMESTAMP;
BEGIN
FROMDATE := NULL;
TODATE := NULL;
BDI_PURGE_SQL.PURGE_JOB_INT_REPO (
FROMDATE => FROMDATE,
 TODATE => TODATE);
END;

Interactive Mode

SET SERVEROUTPUT ON;
DECLARE
FROMDATE TIMESTAMP;
TODATE TIMESTAMP;
BEGIN
FROMDATE := TO_TIMESTAMP ('2017-01-03T00:00:00', 'YYYY-MM-DD"T"HH24:MI:SS');
TODATE := TO_TIMESTAMP ('2017-01-03T23:59:59', 'YYYY-MM-DD"T"HH24:MI:SS');
BDI_PURGE_SQL.PURGE_JOB_INT_REPO (

E-1

 FROMDATE => FROMDATE,
 TODATE => TODATE);
END;

The purge sql removes the data from the following tables for the respective schema.

Schema Name Sql Name Table Name

job-int-schema purge_job_int_repo.sql BDI_DWNLDR_TRNSMITR_EXE_
DSET

BDI_DWNLDR_TRNSMITTR_TR
ANS

job-rcvr-schema purge_job_rcvr_repo.sql BDI_RECVR_TRANSMISSION_B
LOCK

BDI_RECEIVER_TRANSMISSIO
N

BDI_RECEIVER_TRANSACTION

batch-db-schema purge_batch_db_repo.sql JOBSTATUS

STEPSTATUS

STEPEXECUTIONINSTANCEDAT
A

EXECUTIONINSTANCEDATA

JOBINSTANCEDATA

CHECKPOINTDATA

process-schema purge_process_repo.sql BDI_ACTIVITY_EXEC_INSTANC
E

BDI_PROCESS_CALL_STACK

BDI_PROCESS_EXEC_INSTANC
E

Appendix E
Execute Purge SQL

E-2

F
Group and Group Member REST Endpoints

The Group and Group member service is a RESTful service available in BDI Job Admin that
provides endpoints to manage group and members.

REST Resource HTTP Method Description

/manage-group/groups GET Returns list of all Groups

/manage-group/group/
{groupId}

GET Returns details of the group with
input group ID

/manage-group/group PUT Updates the group details

/manage-group/group POST Creates new group

/manage-group/group/
{groupName}

DELETE Deletes the group with input group
name

/manage-group/group/
{groupName}/group-members

GET Returns all groups members for the
input group name

/manage-group/group/group-
member/{groupMemberId}

GET Returns details of the group member
with input group member ID

/manage-group/group/group-
member

PUT Updates the group member details

/manage-group/group/
{groupName}/group-member

POST Create a new member and adds it to
the group with input group name

/manage-group/group/
{groupName}/group-member/
{groupMemberName}

DELETE Deletes the group member with input
group name and group member
name

/manage-group/group/
{groupName}/group-member/
{groupMemberName}

DELETE Deletes the group member with input
group name and group member
name

/manage-group/groups POST Adds multiple groups provided in
input at a time.

/manage-group/group/
{groupName}/group-members

POST Adds multiple members to a given
groups at a time.

/manage-group/group/
{groupName}/group-members

DELETE Delete all members from given group.

/manage-group/groups DELETE Deletes all groups provided in input.

F-1

G
Glossary

Batch Batch is an industry metaphor for background bulk processing.

Batch Processing Batch processing is the execution of a series of jobs in a program
without manual intervention (non-interactive).

Batch Job The series of steps in a batch process are often called a "job" or
"batch job". A job contains one or more steps that specifies the
sequence in which steps must be executed.

Batchlet In Java Batch a Batchlet is type of batch step that can be used for
any type of background processing that does not explicitly call for a
chunk oriented approach.

Batch Service Batch service is a RESTful service that provides endpoints to
manage Batch Jobs in BDI. The Batch Service is part of Job Admin.

BDI The Oracle Retail Bulk Data Integration Infrastructure (BDI) is an
Enterprise level infrastructure product for moving bulk data between
Sender Applications (for example RMS) and Receiver Applications.

Bulk Integration Flow A bulk integration flow moves data for one family from source to
destination application(s).

CSV file Comma separated values file with .csv extension.

Data Service Data Service is a RESTful service that is used to get data set
information using job information.

Data Set A data set consists of the rows between a begin and end sequence
number in the interface table.

Data Set Type Type of data set - FULL or PARTIAL

Downloader Data Control Table The Downloader data control tables act as a handshake between
the Extractor and Downloader

Downloader-Transporter Job A Downloader-Transporter Job downloads a data set from Outbound
Interface Tables for a family and streams data to a BDI destination
application using the Receiver Service.

Extractor Job An Extractor job extracts data for a family from sender (source)
system and moves the data to Outbound Interface Tables.

Family BDI data flows, identical to the other styles of Oracle Retail
integration products, are organized by retail functional areas such as
Store, Items, PO, Inventory and so on. These functional areas are
called families (for example DiffGrp). Each family can contain one or
more tables (for example DiffGrp and DiffGrp_Dtl).

fetchSize Number of records fetched from the database and cached.

Importer This is a destination application component that takes data from the
inbound interface tables and updates the application tables.

Importer Job The Importer Job imports data set for an Interface Module from
Inbound Interface Tables into application specific transactional
tables. Importer jobs are application-specific jobs.

Inbound Control Tables Receiving applications use the data set metadata information in the
importer control tables to trigger the import process.

G-1

Interface Module Message family (for example DiffGrp_Fnd, InvAvailStore_Tx). An
interface module can contain one or more interfaces (DiffGrp and
DiffGrp_Dtl).

Interface Module XML File Source for creating the DDL for the Interface Tables.

Interface Tables (Outbound and
Inbound)

Interface tables are created in the integration schema of both on the
sender side and receiver side. Sender side interface tables are
called Outbound interface tables and receiver side tables are called
Inbound interface tables.

item-count Number of items read by ItemReader before ItemWriter writes.

ItemReader ItemReader reads one item at a time from the source.

ItemWriter After "item-count" number of items are read, Item Writer writes the
items.

Job Admin Web application for managing and monitoring batch jobs.

Job Operator Job Operator provides an interface to manage jobs.

Job Repository Job Repository holds information about jobs.

Job Specification language (JSL)

Logical Partitions A Data Set is divided into logical partitions and the data in each
partition is downloaded by a separate thread. A Data Set is divided
into logical partitions based on the number of partitions specified in
the BDI_DWNLDR_TRNSMITTR_OPTIONS table and the number
of rows in the data set.

Outbound Control Tables Data Set metadata information is saved in database tables called
the Outbound Control Tables in the BDI Integration schema of each
Sender Application. An entry in BDI Outbound Control Tables
indicates the availability of data set to the next component.

Receiver Application Application that receives data from another application through BDI.

Receiver Service This is the BDI component that receives the data from the
Downloader-Transporter and stores it in a temporary storage

Receiver Side Split If there are multiple destinations that receive data from a Sender
Application, this options is to use the Receiver Service at one
destination to receive data from the sender and then multiple
destinations use the data from one Receiver Service to upload to
Inbound Interface Tables. The requirements for Receiver Side Split
are such that:

• The Receiver Service database schema is shared by all the
destinations.

• The File system is shared by all destinations.

Seed Data Seed data for Downloader-Transporter Jobs or Uploader job is
loaded to the database during the deployment of Job Admin

Sender Application Application that send data to other applications through BDI.

Sender Side Split In the case of Sender Side Split (SSS), the data is extracted once
from the source system. The extracted data is transmitted to each
destination separately. Unlike point to point topology, the extraction
is done only once regardless of the number of destinations.

Step A step contains all the necessary logic and data to perform actual
processing. A chunk-style step contains ItemReader, ItemProcessor
and ItemWriter.

Uploader The Uploader takes data from the temporary storage and populates
the inbound interface tables.

Appendix G

G-2

Uploader Interface Module Data
Control Table

This table acts as a handshake between Downloader and Uploader
jobs.. An entry in this table indicates to Uploader Job that a data set
is ready to be uploaded.

Uploader Job An Uploader Job uploads data from CSV files into Inbound Interface
Tables for an Interface Module. It divides files into logical partitions
and each partition is processed concurrently.

Appendix G

G-3

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Help Center (docs.oracle.com)
	Conventions

	1 Introduction
	Oracle Retail Enterprise Integration Products and Styles
	Standards and Specifications
	Java Platform Enterprise Edition (Java EE)
	Java Batch – JSR 352
	Java EE Server
	Java Batch Overview

	2 Job Administrator
	Job Admin Core Components
	Extractor Job
	Downloader-Transporter Job
	Downloader-FileCreator Job
	Receiver Service
	Importer Job
	Importer File Creator Job

	3 Job Admin Services
	Job Admin RESTful Services
	Receiver Service
	Batch Service
	Data Service
	Telemetry Service
	End Points for CRUD operations on Job XML
	Bulk API for Batch Job CRUD Operations
	Auto Purge Data
	Configuration of Job Admin
	Job Admin Customization
	Auto Purge Batch Infra Data
	Throttling
	BDI Global Migration Script (BDI_Database_Util_Spec)

	4 Integration with External Applications
	Bulk Data Export Service

	5 Job Admin UI
	Job Admin UI Security
	Authentication
	Authorization

	Monitoring Batch Jobs Using BDI Job Admin
	Batch Summary Tab
	Manage Jobs Tab
	Job Executions
	Job Launch
	Job Details
	System Logs Tab
	Sample Begin Job Banner
	Sample End Job Banner

	Diagnostics Tab
	Outbound Job Execution Errors
	Inbound Job Execution Errors
	Trace Data
	Sender Data
	Receiver Data
	Receiver Transactions
	Receiver Transmission Details - Partition Level
	Receiver Transmission Details - Block Level
	Inbound job Executions
	Importer Data Control
	Importer Data
	Importer Job Executions
	Importer Data Control for Interface

	Manage Configurations
	Outbound Interface Controls
	Inbound Interface Controls
	System Options

	Job Admin Troubleshooting
	BDI apps deployment Error
	BDI Job Admin runtime WSMException
	REST Service from SOAP UI for Downloader and Transporter job
	BDI Job Admin not able to find UploaderJob.xml file
	Job Fails and Job Admin Log Files Contain No Details of the Failure

	6 Process Flow
	Process Flow
	DSL (Domain Specific Language)
	Begin Activity
	Activity
	End Activity
	Process Variables
	External Variables
	Statuses

	Process Flow DSL
	Process Flow DSL characteristics
	DSL Keywords
	Process Flow API
	Process Flow Variables

	Process Flow Instrumentation
	Process Flow Monitor Web Application
	Process Flow Live tab
	Live Progress View Tab
	Manage Process Flow Tab
	Process Flow Executions
	Process Flow Configurations
	Launch Process Flow
	Process Flow Details
	Historical Process Flow Executions Tab
	Manage Configurations Tab
	Diagnostics Tab
	System Logs Tab
	Process Flow Notification Feature

	Persisting Process Notifications
	Process Restart
	Statuses
	Activity Features
	Skip Activity
	Hold/Release Activity
	Bulk Skip/Hold
	Callback Service
	How to start Process Flow with input parameters?
	Call back from Processflow
	How to invoke the Callback Service declaratively
	How to invoke the Callback Service programmatically

	Enable or Disable a Process Flow using REST Service
	Process Execution Trace
	Process Metrics Service
	Process Security

	Customizing Process Flows
	Process Flow DSL
	APIs
	How to modify a Process Flow

	Sub Processes
	Process Schema
	Process Customization
	REST Interface
	Auto Purge Process Flow Infra Data
	Troubleshooting
	BDI Process flow runtime XML UnmarshallException
	BDI Process flow stuck in running state

	Process Flow Did Not Start
	Deleted process flow still listed in the UI
	Best Practices for Process Flow DSL

	7 CLI Tools
	BDI CLI Job Executor
	Tool Setup
	Tool Usage

	BDI CLI Transmitter
	Tool Setup
	Tool Usage
	File Processing
	Output Logs
	Error Reprocessing

	8 BDI Data Integration Topologies
	Sender Side split
	Receiver Side Split

	9 OAuth 2.0
	OAuth 2.0 Architecture Diagram
	OAuth 2.0 Concepts
	OAuth 2.0 Use Case Flow
	OAuth 2.0 Terms
	BDI OAuth 2.0 Architecture
	OAuth 2 Service Provider
	Service Provider Configuration
	Scopes

	OHS Configuration
	OAuth Server Public Certificate
	OAuth 2.0 Servlet Filter

	OAuth 2.0 Service Consumer
	Access Services using OAuth 2.0 Consumer API
	Consumer Configuration
	Access Services using Curl

	IDCS WTSS and WLS Configuration Instructions

	10 Pre-implementation Considerations
	BDI Software Lifecycle Management
	Preparation Phase
	Application Assembly Phase
	Deployment Phase
	Operation Phase
	Maintenance Phase

	Physical Location Considerations
	High Availability Considerations
	WebLogic Server Cluster Concepts
	bdi-<app> application and WebLogic Application Server Cluster
	Logging
	Update Log Level
	Create/Update/Delete System Options
	Create/Update/Delete System Credentials

	11 Deployment Architecture and Options
	Recommended Deployment Options
	Distributed

	12 Implementation Process
	13 Performance Considerations
	Performance Tuning Downloader-Transporter Jobs
	Performance Tuning Uploader Jobs

	14 Job Admin REST Endpoints
	A Process Schema
	B Process Flow REST Endpoints
	C System Setting Service
	Managing System Options using curl
	Create system option
	Update system option
	Delete system option
	List system options

	Managing credentials using curl
	Create credential
	Update credential
	Delete credential
	List Credentials

	D Sample Extractor - PL/SQL application code that calls procedures in PL/SQL package
	E Purge Strategy
	Execute Purge SQL

	F Group and Group Member REST Endpoints
	G Glossary

