
Oracle® Retail Integration Cloud
Service
Implementation Guide–Concepts

Release 24.0.201.0
F95627-01
April 2024

Oracle Retail Integration Cloud Service Implementation Guide–Concepts, Release 24.0.201.0

F95627-01

Copyright © 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Send Us Your Comments

 Preface

Audience vii

Documentation Accessibility vii

Customer Support vii

Improved Process for Oracle Retail Documentation Corrections vii

Oracle Retail Documentation on the Oracle Help Center (docs.oracle.com) viii

Conventions viii

1 Introduction

2 Core Concepts

Key Functional Requirements 2-1

Guaranteed Once-and-Only-Once Successful Delivery 2-1

Preservation of Publication Sequence 2-1

Message Family and Message Types 2-2

Foundation Messages 2-2

Transactional Messages 2-3

RIB Message Envelope and Payloads 2-3

Message Life Cycle 2-3

Messaging Components 2-5

RIB Subsystem Components 2-5

Adapters 2-5

JMS Domains, Destinations, Subscriptions 2-6

JMS Message Selector 2-6

Additional RIB JMS Message Properties 2-7

Simple Message Flow 2-9

The RIB Hospital 2-9

RIB Hospital Dependency Check 2-10

iii

RIB Hospital Insert 2-10

RIB Hospital Tables 2-11

RIB Hospital Retry 2-12

PUB Retry Adapter 2-12

Hospital Attempt (Retry) Count 2-15

JMS Delivery Count 2-15

3 Cloud

Configuring RIB-RWMS for Hybrid Cloud Deployment Topology 3-1

Installation and Setup instructions for RIB-RWMS Secondary (On-Premise) 3-2

Installation Prerequisite 3-3

Prepare the WebLogic Server 3-3

Creating Required RCU Schema Using the Repository Creation Utility 3-9

Creating a WebLogic Domain with wls Policy 3-14

Steps for ear Deployment 3-28

4 RIB Self-Service Enablement

Provisioning RIB-Adapters 4-4

How to Remove Dynamic Adapters Selection in RIB-RMS 4-7

Provisioning System Options 4-8

Provisioning InjectorService URL 4-9

RIB ServiceMonitor 4-10

5 Performance

Performance Factors 5-1

Performance and Parallel Logical Channels 5-1

6 Security

RIB Application Administrators Security Domain 6-1

Integration with SIOCS 6-1

Integration with ROB 6-4

7 Integration with Fusion Middleware

General RIB to Fusion Middleware Architecture 7-1

iv

8 Integration with External Applications

Implementing RIB-EXT 8-1

How to Send/Receive Messages to/from the RIB System 8-2

External Application as a Publisher (rest-app) using OAuth2 8-2

Create OAuth2 Client Application in IDCS 8-3

External Application as a Subscriber (rest-app) 8-8

How to implement Injector Service (Service Contract) using ReST 8-9

How to Secure Injector Service with Oauth2 8-9

RIB-EXT Side of Configuration to Point to External Application 8-10

How to switch Injector Service app Type at Runtime 8-14

How to Change rib-ext injector-service-app-type from REST to SOAP 8-14

How to change rib-ext injector-service-app-type from SOAP to ReST 8-16

Error Handling 8-17

Monitoring Integration 8-17

A Appendix - Sample Files

Sample Application.wadl File A-1

Sample Resource Class A-2

ApplicationMessages.xsd A-3

payload.properties A-5

Sample Request/Response for ReST Injector Service A-5

v

Send Us Your Comments

Oracle Retail Integration Cloud Service Implementation Guide–Concepts

Oracle welcomes customers' comments and suggestions on the quality and
usefulness of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

• Are the implementation steps correct and complete?

• Did you understand the context of the procedures?

• Did you find any errors in the information?

• Does the structure of the information help you with your tasks?

• Do you need different information or graphics? If so, where, and in what format?

• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note:

Before sending us your comments, you might like to check that you have the
latest version of the document and if any concerns are already addressed. To
do this, access the new Applications Release Online Documentation CD
available on My Oracle Support and www.oracle.com. It contains the most
current Documentation Library plus all documents revised or released
recently.

Send your comments to us using the electronic mail address: retail-
doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

Send Us Your Comments

vi

Preface

The Oracle Retail Integration Bus Implementation Guide provides detailed information that is
important when implementing RIB.

Audience
The Implementation Guide is intended for the Oracle Retail Integration Bus application
integrators and implementation staff, as well as the retailer's IT personnel.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

• Exact error message received

• Screen shots of each step you take

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content, Oracle
Retail documentation may be republished whenever a critical correction is needed. For
critical corrections, the republication of an Oracle Retail document may at times not be
attached to a numbered software release; instead, the Oracle Retail document will simply be

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com

replaced on the Oracle Technology Network Web site, or, in the case of Data Models,
to the applicable My Oracle Support Documentation container where they reside.

This process will prevent delays in making critical corrections available to customers.
For the customer, it means that before you begin installation, you must verify that you
have the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation on the Oracle Help Center
(docs.oracle.com)

Oracle Retail product documentation is also available on the following Web site:

https://docs.oracle.com/en/industries/retail/index.html

(Data Model documents can be obtained through My Oracle Support.)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
https://docs.oracle.com/en/industries/retail/index.html

1
Introduction

RIB acts as a shared communication layer for connecting various Oracle Retail applications
and external applications throughout an enterprise computing infrastructure. It supplements
the core asynchronous messaging backbone with additional application functionality such as
intelligent transformation, routing and error handling.

Communication across the RIB is via xml messages (payloads). These payloads describe the
retail business objects (such as items, purchase orders, suppliers, and so on) in a standard
way and are governed by RIB on behalf of the Oracle Retail applications.

RIB architecture is based on standard Java EE components and the Java Message Service
(JMS). JMS is an integral part of the Java EE (Java Enterprise Edition) Technology stack.

The Integration Gateway Services (IGS) and RIB-ext components provides an integration
infrastructure for external system (3rd Party) connectivity to the Oracle Retail Integration Bus
(RIB) in the form of a tested set of Web service providers and the configurations to connect to
RIB.

The issues and considerations needed to properly deploy and configure the integration
solution within an enterprise are the subject of this guide.

1-1

2
Core Concepts

The RIB is designed as an asynchronous publication and subscription messaging integration
architecture. This allows the decoupling of applications and their systems. For example, a
publishing application need not know about the subscribing applications, other than the
requirement that at least one durable subscriber must exist. It decouples the systems
operationally. Once a subscriber is registered, the RIB persists all published messages until
all subscribers have seen them.

The publishing adapter does not know, or care, how many subscribers are waiting for the
message, what types of adapters the subscribers are, what the subscribers' current states
are (running or stopped), or where the subscribers are located. Delivering the message to all
subscribing adapters is the responsibility of the RIB with the help of the underlying JMS
server.

Physically, the message must reside somewhere so that it is available until all subscribers
have processed it. The RIB uses the JMS specification for its messaging infrastructure. The
JMS accepts the message from the publisher and saves it to stable storage, a JMS topic,
until it is ready to be picked up by a subscriber. In all cases, message information must be
kept on the JMS until all subscribers have read and processed it.

The RIB interfaces are organized by message family. Each message family contains
information specific to a related set of operations on a business entity or related business
entities. The publisher is responsible for publishing messages in response to actions
performed on these business entities in the same sequence as they occur.

Each message family has specific message payloads based on agreed upon business
elements between the Oracle Retail applications.

Key Functional Requirements
The design and architecture of the RIB infrastructure is based on two key requirements
driven by the Oracle Retail application business model.

Guaranteed Once-and-Only-Once Successful Delivery
The RIB must preserve and persist all business events (messages) until all applications
(subscribers) have looked at the message and have successfully consumed it or decided
they do not care about that event (message). In other words, RIB must deliver to every
subscriber all messages except those filtered as per a subscribing application's requirements.

A business event (message) must be redelivered to the consumer application if the business
event (message) was not consumed successfully. The redelivery process is bound by the
same rules of sequencing as normal (non-redelivered) business event (message).

Preservation of Publication Sequence
The business event (message) must be delivered to all the subscribing applications in the
order (FIFO) the business event (messages) was published by the publishing application.

2-1

To enable this, the publishing application defines a business object ID whose
existence informs RIB that this and all subsequent messages with the same business
object ID have to be processed in order. Business event (message) ordering (FIFO) is
assured only for messages with the same business object ID within the same
message family.

Message Family and Message Types
The RIB messaging adapters and payloads are designed around the concept of a
message family.

Each RIB message belongs to a specific message family. Each message family
contains information specific to a related set of operations on a business entity or
related business entities. The publisher is responsible for publishing messages in
response to actions performed on these entities in the same sequence as they occur.

One example of a message family is the Order message family used to contain
information about purchase order events.

A message family may contain multiple message types. Each message type
encapsulates the information specific to a business entity within one or more business
events. For example, the Order message family is published for events such as Create
PO Header, Create PO Detail, Update PO Header, or Delete PO Detail.

A single business event, such as updating a purchase order, may involve multiple
business entities, such as a line item within the purchase order.

Because a single business event may involve multiple business entities, the
application may publish messages for this event from multiple message families for a
single business transaction. More than one message type within a message family
may also be created.

There are two broadly defined types of functional interfaces in the RIB (message
families): foundation data and transactional data.

Foundation Messages
After populating application tables with initial company seed data, item foundation
information is needed. Foundation messages are defined as those with payload that
carry basic product data.

This table is an example from the Oracle Retail Integration Bus Integration Guide.

Functional Area Publishing Applications Subscribing Applications

Items RMS RWMS, SIM

Item Locations RMS SIM

Locations RIB RWMS

Stores RMS RWMS, SIM

Vendor RMS RWMS, SIM

Warehouses RMS RWMS, SIM

Chapter 2
Message Family and Message Types

2-2

Transactional Messages
After populating application tables with initial seed data and after all required item foundation
data messages have been subscribed to, all applications are prepared to publish and
subscribe transaction data messages. Transactional messages communicate business
events involving two or more organizations within a retail supply chain, for instance, among
Oracle Retail Merchandising System (RMS), Oracle Retail Store Inventory Management
(SIM), and Oracle Retail Warehouse Management System (RWMS), external suppliers and
financial systems.

This table is an example from the Oracle Retail Integration Bus Integration Guide.

Functional Area Publishing Applications Subscribing Applications

Allocations RMS RWMS, SIM

Appointments RWMS RMS, SIM

ASN Outbound RWMS, SIM, RMS, RFM RMS, SIM, RWMS,

ASN Inbound RWMS, External, RMS
RFM

RMS, SIM, RWMS

Inventory Adjustments RWMS, SIM RMS

Inventory Request SIM RMS

Receipts RWMS, SIM RMS

Purchase Order RMS, SIM RWMS, SIM

Stock Order Status RWMS, SIM RMS, SIM

Transfers RMS RWMS, SIM

RIB Message Envelope and Payloads
Whenever a publishing application adapter publishes a message, it wraps the message in an
envelope known as the RIB message envelope. The envelope is a standard message
delivery format where the message information, the data payload, is contained within the
overall delivery information. The envelope itself provides information that the RIB uses, such
as RIB hospital information and routing information.

Note:

Payloads do not support time zone formats.

Message Life Cycle
The publishing application is responsible for creating the initial message contents. The RIB
publishing adapter publishes it to the JMS Server and makes it available to any JMS
subscribers. The RIB knows what subscribers are to receive the message due to the RIB
configuration—this configuration associates a set of subscribers to each publisher and
message family combination.

Chapter 2
RIB Message Envelope and Payloads

2-3

For PL/SQL Applications, database tables associated with the publishing application
typically stage message information. One or more RIB publishing adapters poll the
application via a stored procedure call. For Java EE Applications, the application calls
a RIB Enterprise Java Bean (EJB) with the payload information to be published.
Similarly, SOAP Applications calls with the payload information in the request to be
published.

The message resides on a Java Message Service (JMS) immediately after publication.
The JMS topic provides stable storage for the message in case a system crash occurs
before all message subscribers receive and process it.

A fundamental RIB system requirement is that a message must be delivered to and
processed successfully exactly once by each subscriber. Furthermore, all work
performed by the subscriber and the RIB must be atomically committed or rolled back,
even if the JMS server is on a remote host. The standard way to perform this is by
using an XA compliant interface and two-phase commit protocol.

After initial publication, a message may undergo a series of transformation, filtering, or
routing operations. A RIB component that implements these operations is known as a
Transformation and Address Filter/Router (TAFR) component. TAFR is the acronym for
Transform, Address, Filter, and Route. A TAFR is completely internal to the RIB and
does not reside in either the publishing or subscribing application. The RIB performs
these intermediate transformation and routing operations on some messages before
making them available to the subscribing application.

A single TAFR may only transform a given message, only filter the message, only
route it, or combine any of the three operations.

• Transform - A message may be transformed from one message type into another,
for example, WH (warehouse) from RMS to Location for RWMS.

• Filter - A message may be filtered. Filtering can occur based on message type or
based on content.

• Route - A TAFR may route a message. For example, whenever a stock order
message is published for a warehouse with an instance of RWMS, the TAFR
routes it to the particular RWMS instance from where the stock will be fulfilled and
not to warehouses that do not stock the order's items.

TAFR operations are specific to the set of subscribers to a specific message family.
Multiple TAFRs may process a single message for a specific subscriber and different
specific TAFRs may be present for different subscribers. Different sets of TAFRs are
necessary for different message families. If all subscribers to a message can process
all messages within a message family without any TAFR operations, then no TAFR
components are needed.

Message processing continues until a subscribing adapter successfully processes the
message or determines that no subscriber needs this message.

When a subscriber gets a message to be processed, the adapter checks to see if the
RIB Hospital contains any messages associated with the same entity as the current
message. If so, then the adapter places the current message in the hospital as well.
This is to ensure messages are always processed in the proper sequence. If proper
sequencing is not maintained, the subscribing application's data can be corrupted.

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all database work associated with the message. When the
message is re-processed (because it has yet to be processed successfully), the
adapter now recognizes this message is problematic and checks it into the hospital. If

Chapter 2
Message Life Cycle

2-4

adding the message to error hospital fails, the subscribing adapter writes the message to the
file system. This becomes a poison message (.xml).

After a message is checked into the RIB Hospital, a retry adapter extracts the message from
the hospital and re-publishes it to the JMS topic for reprocessing. The message remains in
the hospital during all re-tries until the subscribing adapter successfully processes it.
Subscribing retry adapter also processes the poison message. It extracts the message from
the poison-message file and adds it to the error hospital to be retried. The poison message
file will be renamed to processed message (.processed). If the retry adapter fails to process
the poison message, the file is moved to human-workflow file (.humanworkflow).

The unprocessed poison messages should be corrected with a human intervention. They are
made available in object storage bucket at a regular interval. These messages should be
downloaded from object-store, corrected and uploaded back to object store. RIB will process
these uploaded messages through subscriber retry adapter.

Messaging Components
The RIB is a messaging system made-up of components that are packaged and shipped as
an integration solution between the Oracle Retail applications. The application boundary
between RIB and Oracle Retail applications can be confusing at times, so this section defines
the RIB components and their responsibility and ownership. A diagram illustrating the RIB
integration message flow follows:

RIB Subsystem Components
This section describes the components of the RIB subsystem.

Adapters
A RIB adapter is a component that coordinates business event (message) generation and
processing with the respective Oracle Retail application interface. Each adapter in the RIB is
created to handle a specific functional interface. RIB adapters are developed using Enterprise
Java Beans (EJB) components architecture, subscribing adapters use Message Driven
Beans (MDBs) and publishing adapters use Stateless Session Beans (SLSBs).

RIB provides four types of adapters that Oracle Retail applications can exploit to integrate
with one another. These adapter types are: publisher, subscriber, TAFR, and hospital retry.
They have been built using different technologies based on their particular needs.

Subscriber and TAFR adapters use Message Driven Bean (MDB) technology to register with
JMS topics and receive messages for further processing.

Publisher and hospital retry adapters make use of the Java SE (Standard Edition) timer
facility to schedule repetitive events that trigger calls to Stateless Session Beans (SLSBs) to
query application tables for messages to publish to the JMS server.

As stated in the introduction, a fifth type of adapter exists for publishing messages in a
pushing fashion. The Oracle Retail applications invoke this adapter at will for publishing
messages.

These adapters have not been considered part of the scope of this technical document in
regard to providing a mechanism for starting and stopping them.

Due to the variety of technologies used by the adapters, the goal of this technical design has
been to isolate users from these differences and provide them with a common management

Chapter 2
Messaging Components

2-5

interface that can be used to control the state of the adapters. During the last few
years, the Java Management Extensions (JMX) specification has become a well
known standard that defines the management layer for enterprise Java applications.
JMX defines standard methodologies for declaring enterprise application components
as manageable resources that can be exposed in a consistent way such that any JMX
compliant management application can access and provide means for control.

JMS Domains, Destinations, Subscriptions
JMS defines two types of messaging domains: point-to-point and publish/subscribe.
RIB uses publish/subscribe types of messaging domains for all its communication.
Publish/subscribe is a one-to-many type of message distribution model where one
source application en-queues the message and many destination applications can de-
queue the same message and process independently of the other peer applications. In
publish/subscribe the destinations are known as topics, the en-queue application is
known as publisher, and the de-queue is known as subscriber. Unlike point-to-point, in
publish/subscribe the publisher and subscriber are totally ignorant of each other and
do not and should not know about each other's existence. The JMS Topics retain the
messages only as long as it takes to distribute them to current active (running)
subscribers. There is also a timing dependency between publishers and subscribers.

A client that subscribes to a topic can consume only messages published after the
client has created a subscription, and the subscriber must continue to be active in
order for it to consume messages. The JMS specification relaxes this timing
dependency to some extent by allowing clients to create durable subscriptions. By
creating durable subscriptions the JMS server will continue to hold the messages for
all registered subscribers for that topic until the subscriber consumes the message or
deletes the subscription.

There are two types of subscribers, non-durable and durable subscribers. The RIB
uses only durable subscribers which allow the Oracle Retail edge applications to be in
up or down state independently but still not lose any messages and catch up when the
application comes back up. Every subscribing RIB adapter registers its durable
subscriber with a subscription name that contains its rib-<app> application name and
the adapter name in it.

RIB defines logical grouping of retail specific business objects (BO) and business
functions in a concept called message family. For every message family there is a
corresponding JMS topic. These JMS topics are used as communication pipelines
between the source and destination Oracle Retail applications for exchanging the
business objects.

The list of JMS topics used by RIB components is detailed in the Reports section of
the Oracle Retail Integration Bus Integration Guide.

JMS Message Selector
A key aspect of the JMS usage that the RIB relies on is the attachment of message
properties to published messages and the use of selectors by message subscribers.
Message properties are used to convey information about the message outside of the
actual message data to establish a logical channel for messages.

JMS message selectors are used by the RIB to filter the messages that each
subscriber picks up. In other words, using the message properties, selectors act as a
filter to weed out messages a subscriber should not process.

Chapter 2
Messaging Components

2-6

The message property set and used by the RIB messages is called threadValue. The thread
value is associated with a logical channel of a message stream. All messages for a specific
family with a specific business object ID always contain the same threadValue property. This,
combined with the standard first in, first out (FIFO) message ordering on the topic, is integral
to message sequencing. Messages with different threadValue properties are not guaranteed
to be processed in the same relative order as publishing.

Messages published without JMS Message Property present will not be picked up by the
standard subscribing RIB adapters.

Pseudo code for message selector:

(
 (
 (appName is not null) AND
 (appName == $APP_NAME)
) AND
 (
 (retryLocation is not null) AND
 (retryLocation LIKE $ADP_CLASS_DEF)
)
) OR
 (
 (
 (appName is null) OR
 (appName != $APP_NAME)
) AND
 (
 (retryLocation is null) OR
 (retryLocation LIKE $ADP_CLASS_DEF)
)
) AND
 (threadValue == $ADP_INSTANCE_NUMBER)

Additional RIB JMS Message Properties
Every message published by the rib-<app> applications includes a number of JMS user
defined header properties. In the current release, these properties are only set, not used by
any RIB components. In the future, these properties will be used for intelligent performance
enhancement and optimization and for traceability and auditability of RIB messages.

The message properties are as follows:

• Property Name: appName

Type: java.lang.String

Required Property: false

Example: appName=rib-rms

Description: The appName property contains the rib-<app> application name that
published this particular message.

• Property Name: adapterInstance

Type: java.lang.String

Required Property: false

Example: adapterInstance=Item_pub_1

Chapter 2
Messaging Components

2-7

Description: The adapterInstance property contains the rib-<app> adapter instance
name that published this particular message.

• Property Name: family

Type: java.lang.String

Required Property: false

Example: family=Item

Description: The family property contains the name of the RIB family name to
which the message belongs.

• Property Name: needMessageOrderPreservation

Type: boolean

Required Property: false

Example: needMessageOrderPreservation=true

Description: This property will have a value of true if any ribMessage node within
the RibMessages xml has a message that has businessObjectId set. This property
will allow us to take advantage of the fact that now we know which messages need
message order preserving at JMS header level (without opening the message). In
the future, we will be able to take advantage of that information, make our
processing parallel, and get better throughput without losing message sequencing.

• Property Name: topic

Type: java.lang.String

Required Property: false

Example: topic=etItem

Description: This topic property contains the RIB topic name that this particular
message is published to or subscribed from.

• Property Name: ribKernelVersion

Type: java.lang.String

Required Property: false

Example: ribKernelVersion=22.0

Description: The system determines the rib kernel jar version number at runtime
and includes its value in this JMS property.

• Property Name: ribFuncArtifactVersion

Type: java.lang.String

Required Property: false

Example: ribFuncArtifactVersion=22.0

Description: This is a place holder for future enhancement. The idea is the system
will somehow determine the runtime payload version and include that information
in the message for better compatibility management. This property will be
enhanced in a future release.

• Property Name: ribMessageCount

Type: int

Required Property: false

Chapter 2
Messaging Components

2-8

Example: ribMessageCount=12

Description: This property contains the number of ribMessage nodes there are in a
RibMessages xml message. This value gives us some indication of message aggregation
in play. It might be used in the future to better optimize message flow paths based on the
size/number of the messages.

• Property Name: uuid

Type: java.lang.String

Required Property: false

Example: uuid=116cfabd-8949-4f93-bb61-aaa88e168f30

Description: This property contains a universally unique identifier for every message. This
unique identifier will provide better traceability of a message within the JMS system. This
property complements the ribMessageID xml element that is there to trace messages
within the RIB logs.

Simple Message Flow
The typical lifecycle of a message through the RIB is as follows:

1. The publishing adapter creates the message. The event that triggers the message
creation may be a polling operation in case of PL/SQL applications or a synchronous
invoke in case of Java EE applications or a request in case of SOAP application. The
message is published to a predetermined JMS topic.

2. The message is now available for all registered subscribers to the JMS topic for pick up.
Subscription is based on the message family.

3. Once a subscriber gets the message, it is free to process that message according to its
own rules. In the case of a transformer adapter, the adapter can open the message,
modify its contents, and then publish the modified message to a new topic. The source
topic and destination topic that a TAFR uses must always be distinct/different topics.
There may be new subscribers to the modified message, and the scenario is repeated for
each of these subscribers.

4. When each subscriber has finished (commit) processing a message, the JMS server
updates the state of the message to reflect that it has been processed by this subscriber.

5. The JMS Server deletes the messages on the topic after delivering it to all the registered
subscribers.

Two types of applications require this data and subscribe to it. One type of subscribing
application requires a certain transformation be applied to the data, but the other type of
subscriber can process the message without any transformations.

The RIB Hospital
The RIB Hospital is a collective term for a set of Java Classes and database tables whose
purpose is to provide a mechanism to handle system and business related errors while
meeting the fundamental RIB requirements:

• Guaranteed once-and-only-once successful delivery.

• Preservation of publication sequence (even in case of failures).

When a message is processed, the adapter checks to see if the RIB Hospital contains any
messages associated with the same businessObjectId as the current message. If so, then the

Chapter 2
Simple Message Flow

2-9

adapter places the current message in the hospital as well. This is to ensure
messages are always processed in the proper sequence. If proper sequencing is not
maintained, then the subscribing application's data can get corrupted.

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all work associated with the message. When the message is
re-processed (since it is yet to be processed successfully), the adapter now
recognizes this message is problematic and checks it into the hospital.

For Publication, there are some RMS publishers that return an 'H' status to denote a
problem creating a new message for a specific business object. This status may be
due to database locks being held by on-line users of an Oracle Forms application or it
could also be due to some data incompatibility found in the GETNXT() procedure.
Whenever a publisher recognizes that a message for a business object cannot be
published due to one of these conditions, the message must go into the RIB Hospital.

After a message is checked into the RIB Hospital, a retry adapter extracts the
message from the hospital and tries to re-publish it to the integration bus.

RIB Hospital Dependency Check
The RIB Hospital dependency check logic assumes that each message family has a
single unique businessObjectId for all business object entities its messages are
associated with. This businessObjectId must be the same for the same business entity
across all message types within the message family. If any message for a specific
business entity is placed into the RIB Hospital, then the RIB Hospital dependency
check logic automatically inserts any subsequent messages for the same business
object. This is to preserve the message sequencing and guaranteed exactly once
successful message processing. Otherwise, multiple update messages for a business
object may be processed in an incorrect order and create incompatibilities between
applications.

If the businessObjectid is not set, then there is no dependency check. Not all message
families set the businessObjectId or it is not set on all message types. See the Oracle
Retail application documentation (for example, "Message Publication and Subscription
Designs" in the Oracle Retail Merchandising System Operations Guide Volume 2).

RIB Hospital Insert
In an event of failure during message subscription, the error is flagged within the RIB
Hospital software, resulting in rollback of the work done in the retail application, the
adapter returns failure so that the database transaction is rolled back as well, and the
message is kept on the integration bus topic. This is because subscribing adapters are
executed within the context of a distributed transaction, using the XA two-phase
commit protocol. This transaction is controlled by the Java EE Application Server.
Immediately after the roll back, JMS re-delivers the message back to the subscribing
adapter and this time the RIB Hospital software detects the previously flagged
message and inserts the message in to the RIB Hospital tables and message is
removed from the JMS topic.

When the initial failure occurs while processing the message, the error is flagged
within the RIB Hospital software, the adapter returns failure so that the database
transaction is rolled back, and the message is kept on the integration bus topic.

Chapter 2
The RIB Hospital

2-10

Note:

The XA interface is a standard protocol between a transaction manager and a
database or resource manager. Note that both the JMS topic connection and the
database connection must support the XA protocol. For more information regarding
the XA standard, see the URL http://www.opengroup.org.

RIB Hospital Tables
The RIB Hospital tables are:

• RIB_MESSAGE - contains the message payload, all single-field envelope information,
and a concatenated string made from <id> tags. It also contains a unique hospital ID
identifying this record within the hospital.

• RIB_MESSAGE_FAILURE - contains all failure information for each time the message
was processed.

• RIB_MESSAGE_ROUTING_INFO - contains all of the routing element information found
in the message envelope.

• RIB_MESSAGE_HOSPITAL_REF - contains all of the hospital reference information
found in the message envelope.

A database sequence, RIB_MESSAGE_SEQ, is used to maintain a unique message number
associated with each message placed into the RIB Hospital.

These tables will have been created during the database portion of the Oracle Retail
application installation (for example, RWMS, SIM, RPM, AIP, RFM, OMS, or RMS).

Chapter 2
The RIB Hospital

2-11

http://www.opengroup.org

The RIB Hospital tables are internal system tables that maintain the RIB runtime state
of the system. The entries in these tables must not be manipulated by non RIB tools
when the RIB is running.

RIB Hospital Retry
After a message is inserted into the RIB Hospital, the hospital retry adapter is used to
re-post the message to the JMS in order to retry its processing. The assumption is that
the error is a transitory one; records locked or there is an external dependency that
has not been met. The number of times a message is retried is configurable.

The hospital retry is responsible for maintaining state information for hospital records
or what has happened to the record or message information. Each time the message
is reprocessed, a record is kept of the event along with the results. The design is to
provide a means to halt processing for messages that cause errors while allowing
continued processing for the good messages.

One element of this information is whether the message has been queued to the JMS
topic for re-try processing. So manually deleting messages from the hospital database
using SQL directly may produce severe processing problems. Also, deleting messages
directly from the JMS provider may result in a message that is never retried again, as
the logic in the retry assumes the message is queued within the JMS.

There are three kinds of hospital retry adapters:

• Sub Retry Adapter

• JMS Retry Adapter

• Pub Retry Adapter

All subscriber side retrying of messages are handled by the Sub Retry Adapter. The
Sub Retry Adapter looks at all messages with reason code SUB, then filters and
identifies the messages that are ready to be reprocessed, keeping message ordering
in mind.

Oracle Retail applications are unaware that the integrations of the business data is
happening through a JMS server. RIB abstracts the fact it is using a JMS server from
the retail applications. When the JMS server is down or RIB has some problem
publishing to the JMS server, RIB will not rollback the transaction as long as it is a
recoverable problem. In such situation all messages are inserted to the RIB Hospital
with a reason code of JMS and publications continues on. The JMS Retry Adapter
retries all messages with reason code of JMS at a later time.

All messages with reason code of PUB are retried by the Pub Retry Adapter. RMS is
the only retail application that needs the Pub Retry Adapter.

PUB Retry Adapter
The following diagrams illustrate how the PUB Retry Adapter works.

Chapter 2
The RIB Hospital

2-12

Chapter 2
The RIB Hospital

2-13

Chapter 2
The RIB Hospital

2-14

Hospital Attempt (Retry) Count
When the message first comes through the subscriber, if there is no businessObjectid, then
there is no dependency check performed. If the message cannot be processed, it is then
inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber, that has a businessObjectid, a dependency
check is performed. If there is no dependency and the message cannot be processed, it is
then inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber that does match the ID and family of another
message in the hospital is known to be dependent, so it goes to the hospital immediately, with
an attempt_count = 0.

Exception to this rib-tafr app, in case of rib-tafr attempt_count is 1, even if the message is
inserted into the hospital as a dependent message because tafr adapters work with two
topics and message would already be subscribed once by the tafr, therefore it always has
attempt_count=1.

JMS Delivery Count
JMSXDeliveryCount is a message property set by AQ JMS. This property is checked to see if
the message is being redelivered by the JMS. If the count
MAX_REDELIVERY_THRESHOLD (set to 2) is reached, the RIB subscribers assume that
the message is being re-delivered; the message will be determined as a poison message.
The message is written to the file system (at the same location where application log files are
written), and the adapter is shut down in such scenarios. An administrator must decide how
this message will be handled.

Chapter 2
The RIB Hospital

2-15

3
Cloud

This chapter describes the RIB cloud.

The following diagram describes a sample hybrid architecture in which some of the retail
applications are on-premise and some other (including RIB) are in the cloud. In this
architecture, the retail applications RWMS is on-premise, while RIB is on the cloud.

Figure 3-1 Retail Integration Suite - Cloud Architecture

In order to support cloud deployment (including a hybrid cloud), RIB is enhanced with the
addition of two Web services. These are injector and publisher Web services that allow retail
applications to communicate with other applications.

Configuring RIB-RWMS for Hybrid Cloud Deployment Topology
RWMS on-premise cannot communicate with RMS and other retail apps, which are all in
cloud via RIB. As RIB is already supported in cloud, for enabling the integration of RWMS
with all other retail applications which are in the hybrid cloud environment, RIB follows the
primary/secondary approach. The secondary resides close to on-prem RWMS, while the
primary is on-cloud. Communication between primary and secondary is through web service
calls. The RIB-RWMS primary invokes the new web services exposed by secondary RIB-
RWMS to send/receive messages to/from other applications on cloud via RIB.

3-1

For RIB-RWMS to communicate with RWMS on premise and RIB on cloud, it should
be deployed in primary-secondary topology. Hybrid cloud set-up for RWMS involves a
two part installation, one for each primary (cloud) and secondary components (on-
premise).

Figure 3-2 RIB-RWMS Hybrid Cloud Architecture

Note:

The client-server architecture is only applicable to RIB and RWMS
integration, where RIB is deployed on Next Gen SaaS Platform and the
legacy RWMS is hosted on on-prem/PaaS.

Installation and Setup instructions for RIB-RWMS Secondary (On-
Premise)

This section describes the installation and setup instructions. This includes the
installation prerequisites, preparing the WebLogic server, creating a WebLogic domain,
verifying installation of wls policies, extending an existing domain to add wls policies,
and deploying the EAR file.

Note:

The screen captures included in the following steps are for example only.
Therefore, consider the illustrations as guides only; the values shown may
not always apply.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-2

Installation Prerequisite
The rib-rwms secondary (on-premise) application requires Oracle WebLogic Server 12c
(12.2.1.4.0) and must be built with Java 8 (JDK 1.8.0+ 64 bit or later), with the latest security
updates.

Important:

If there is an existing WebLogic 12.x.x or 10.3.xc installation on the server, you
must upgrade to WebLogic 12.2.1.4.0. All middleware components associated with
WebLogic server 10.3.6 should be upgraded to 12.2.1.4.0. Back up the
weblogic.policy file ($WLS_HOME/wlserver/server/lib) before upgrading your
WebLogic server, because this file could be overwritten. Copy over the
weblogic.policy backup file after the WebLogic upgrade is finished and the post-
patching installation steps are completed. For upgrading your WebLogic server to
12.2.1.4.0, use the appropriate Upgrade Installer.

Prepare the WebLogic Server
Take the following steps to prepare the WebLogic server:

1. Find fmw_12.2.1.4.0_infrastructure_Disk1_1of1.zip and download this file to your
system.

2. Extract the contents of this zip file to your system. Use the
fmw_12.2.1.4.0_infrastructure.jar file to run the installer.

3. Run the installer by executing the java -jar fmw_12.2.1.4.0_infrastructure.jar file.
The Welcome window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-3

4. Click Next. The Auto Updates window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-4

5. Select the appropriate radio button and click Next. The Installation Location window
displays.

6. Click Browse to select the Oracle Home location where the Weblogic server is to be
installed. Click Next. The Installation Type window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-5

7. Select Fusion Middleware Infrastructure and click Next. The installer performs
the prerequisite checks and ensures all required conditions are satisfied.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-6

8. When the prerequisite check completes successfully, click Next. The Installation
Summary window displays.

9. Click Install. The Installation Progress window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-7

10. Click Next when the installation completes. The Installation Complete window
displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-8

Creating Required RCU Schema Using the Repository Creation Utility
To create a schema user for the domain, take the following steps:

1. Run the RCU from the <MW_HOME>/oracle_common/bin folder. The Welcome window
displays.

2. Click Next and select the Create Repository option.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-9

3. Click Next. Enter the database credentials where the schema user has to be
created.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-10

4. Click Next. Specify the prefix to be used for the schema user creation. For example, INT.
Select Metadata Services, Weblogic Services, and Oracle Platform Security
Services.

5. Click Next. Specify the password.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-11

6. Click Next. The window provides the details of tablespaces created as part of
schema creation.

7. Click Next. The Confirmation window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-12

8. Click OK. The Summary window displays.

9. Click Create and proceed to create the schema. This could take a while to complete.
The Completion Summary window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-13

Creating a WebLogic Domain with wls Policy
To create a new WebLogic domain with wls policy, take the following steps:

1. Run config.sh from the <ORACLE_HOME>/oracle_common/common/bin folder. The
Configuration Type window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-14

2. Select Create a new domain, provide Domain Location, and click Next. The Templates
window displays. By default, the Basic WebLogic Server Domain [wlserver] checkbox
is selected. Select the Oracle JRF [oracle_common], Oracle Enterprise Manager
[em], Oracle WSM Policy Manager [oracle_common], and Weblogic Advanced
WebServices for JAX-WS Extension [oracle_common] check boxes.

3. Click Next. The Application location window displays; provide the application location.

4. Click Next. The Administrator Account window displays. Enter the user credentials you
want to use to log in to the WebLogic Administration Console.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-15

5. Click Next. The Domain Mode and JDK window displays. Set the Domain Mode
as Production and select the JDK version (JDK 1.8 with the latest security
updates) you want to use.

6. Click Next. The Database Configuration Type window displays.

a. Select the RCU Data radio button.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-16

b. Select Oracle as the Vendor.

c. Select Oracle's Driver (Thin) for Service connections; Version 9.0.1 and later as
the Driver.

d. Enter the Service, Host Name, Port, Schema Owner, and Schema Password for
the *_STB schema created using RCU.

e. Click Get RCU Configuration.

The Connection Result Log displays the connection status.

7. Click Next. The JDBC Component Schema window displays.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-17

8. Click Next. The JDBC Component Schema Test window displays the status on
whether the JDBC tests on the schemas were successful.

9. Click Next. The Advanced Configuration window displays. Select all the
checkboxes, except the Domain Frontend Host Capture and JMS File Store
options, in this window.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-18

10. Click Next. The Administration Server window displays. Enter the Listen Address and the
Listen Port details.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-19

11. Click Next. The Node Manager window displays. Select the Node Manager Type
and enter the Node Manager credentials.

12. Click Next. The Managed Servers window displays.

a. Click Add to add a managed server on which you will deploy the application.

b. Enter the Server Name, Listen Address, and Listen Port for the managed
server.

c. Set the Server Groups to JRF-MAN-SVR.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-20

13. Click Next. The Clusters window displays.

a. Click Add to add a cluster. This is an optional step in the procedure.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-21

14. Click Next. The Server Templates window displays.

a. Click Add to add a server template. This is an optional step in the procedure.

15. Click Next. The Coherence Clusters window displays.

a. Add a coherence cluster. This is an optional step in the procedure.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-22

16. Click Next. The Machines window displays.

a. Click Add.

b. Enter the Name and the Node Manager Listen Address for the managed server.

17. Click Next. The Assign Servers to Machines window displays. Add the Admin Server and
the managed server to the computer.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-23

18. Click Next. The Virtual targets window displays.

a. Click Add to add a Virtual target. This is an optional step in the procedure.

19. Click Next. The Partitions window displays.

a. Click Add to add a Partition. This is an optional step in the procedure.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-24

20. Click Next. The Deployments Targeting window displays. Select wsm-pm from
Deployments and add it to Admin Server in Targets.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-25

21. Click Next. The Services Targeting window displays.

22. Click Next. The Configuration Summary window displays. Verify that all
information described in this window is accurate.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-26

23. Click Create. The Configuration Progress window displays a message when the domain
is created successfully.

24. Click Next. The Configuration Success window displays that describes the Domain
Location and Admin Server URL once the configuration is complete.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-27

25. Click Finish to complete creating the WebLogic domain and managed servers.

Steps for ear Deployment
1. Client connector pak contains the latest v24 rib-rwms application distribution for

on-prem installation. Download and extract the RIB kernel for RMWS-secondary-
app RibKernel24.0.000ForRwmsSecondary24.x.xApps_eng_ga.jar.

2. Extract the contents of the jar file.

3. Open rib-deployment-env-info.xml found inside ./rib-rwms-secondary-home/
deployment-home/conf.

4. Edit this file to specify your deployment environment information.

a. Make sure the following entries are present in the <app-in-scope-for-
integration> section:

<app id="rwms" type=" slave-plsql-app" />

b. Update the rib-jms-servers section to provide the AQ JMS server details.
Because the secondary app deploys on premise, it will not have access to AQ
JMS on the cloud. Use RWMS app schema detail for AQ JMS setup. For
example:

c. Update the RIB domain details in the weblogic-application-servers section.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-28

d. Skip updating the rib-func-artifact-server details. Rib-func-artifact
deployment is not required for secondary (on-prem) rib-rwms.

e. Update RIB-RWMS secondary server details. For example:

f. Make sure the datasource URL (host, port n service) entries are updated in the rib-
app section of rib-rwms secondary.

Note:

As the secondary app deploys on-premise, it will not have access to AQ JMS
and Error hospital. Therefore, all the datasources must connect to the RWMS
app schema.

5. Compile: Run the rib-home/application-assembly-home/bin/rib-app-compiler.sh
script with setup-security-credential from the rib-home/application-assembly-home/bin
directory.

Example:

./rib-app-compiler.sh -setup-security-credential

6. Deploy: Execute the rib-home/deployment-home/bin/rib-app-deployer.sh script with
the appropriate command line parameter.

rib-app-deployer.sh -deploy-rib-app-ear rib-<app>
rib-func-artifact deployment is not required.

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-29

7. Verify: Once the rib-rwms secondary app is deployed, open the rib-admin-gui from
a web browser using the credentials provided during compilation:

<http or https://>host:port/rib-rwms-admin-gui

8. Make sure the Publication and Subscription WS are available to use.

Example:

https://ribhost.example.com:17010/
RemotePlsqlPublisherComponentServiceBean/
RemotePlsqlPublisherComponentServiceBeanService?WSDL
https:// ribhost.example.com:17010/
PlsqlApplicationMessageInjectorServiceBean/
PlsqlApplicationMessageInjectorServiceBeanService?WSDL

Chapter 3
Configuring RIB-RWMS for Hybrid Cloud Deployment Topology

3-30

4
RIB Self-Service Enablement

The Self-service enablement is a feature for provisioning RIB on cloud post deployment only.
Because of the promising high availability feature of applications on the cloud environment,
this is an essential feature that minimizes the redo of the RIB install cycle post configuration
changes to any RIB-app.

The Self-service enablement allows below provisioning in rib-<app>:

Table 4-1 Self-Service Feature

Self-
Service
Feature:

Self Service Feature on RIB-Admin GUI

Provisioning
RIB
adapters

Choosing
the subset
of RIB
adapters in
scope for
integration

4-1

Table 4-1 (Cont.) Self-Service Feature

Self-
Service
Feature:

Self Service Feature on RIB-Admin GUI

Provisioning
System
Options

Dynamically
modifying
configuratio
ns via, rib-
<app>
properties
file.

Example
shown for
rib-ext for
dropping
messages
for specific
types for
subscription
s. Similarly,
the drop
messages
types can
be
configured
for other RIB
applications
like rib-sim,
rib-rms and
so on.

Note: There
are other
infrastructur
e level
options that
are available
only for
AMS or
devops
teams to
configure or
update, as
shown in the
screenshot.

Chapter 4

4-2

Table 4-1 (Cont.) Self-Service Feature

Self-
Service
Feature:

Self Service Feature on RIB-Admin GUI

Email
notification
fields are
read only
now which
means
email
notification
configuratio
n can’t be
altered post
provisioning.
If customer
wants to
enable email
notification
or update
configuratio
n then this
request has
to come
through
proper
channel and
can be done
from
backend.

Provisioning
Injector
Service URL

Hook to
alternate
subscribing
retail
application
installation.
Injector
service url
can be
updated
only for
customer
owned apps
like -rib-ext ,
rib-lgf

Chapter 4

4-3

Table 4-1 (Cont.) Self-Service Feature

Self-
Service
Feature:

Self Service Feature on RIB-Admin GUI

RIB
ServiceMoni
tor

Verify
InjectorServi
ce
provisioned
in previous
step.

Provisioning RIB-Adapters
Every rib-<app> contains a set of publish and subscribing adapters for exchanging
messages between retail applications. Subscribing adapters are MDB which are
resource intensive. The higher the number of adapters in scope the higher is the
resource crunch. In an environment which does not make use of all the publishing and
subscribing adapters bundled with the rib-app, the user is allowed to choose a subset
of the adapters needed based on the RIB functional flow. This configuration change
takes effect dynamically and does not require a redeployment of the rib-<app>.

Follow the steps below for configuring the rib-<app> adapters in scope of the
integration.

1. By default , dynamic adapter selection feature is enabled for rib-ext.
enableDynamicAdapterInstanceSelection flag is applicable ONLY for RIB-EXT
and this flag shouldn't be used in any other rib-apps.

enableDynamicAdapterInstanceSelection=true
2. Only if the above property is set to true, the user can select the adapters

dynamically. Below is the default landing page when RIB adapters added in scope.

Chapter 4
Provisioning RIB-Adapters

4-4

3. In the RIB-Admin GUI, the Manage Configuration > Adapter Selection tab provides the
list of all available adapters whose subset can be chosen to publish, subscribe and retry
rib messages based on rib integration flows.

4. Select the subset of publishing, subscribing and retry adapters depending on the rib-
integration-flow in consideration and click Save.

Consider the below rib-integration flows:

rib-sim publishing the InvReq message

 <message-flow id="31">
 <node id="rib-sim.InvReq_pub" app-name="rib-sim"
 adapter-class-def="InvReq_pub" type="DbToJms">
 <in-db>default</in-db>
 <out-topic>etInvReq</out-topic>
 </node>
 <node id="rib-ext.InvReq_pub" app-name="rib-ext"
 adapter-class-def="InvReq_pub" type="DbToJms">
 <in-db>default</in-db>
 <out-topic>etInvReq</out-topic>
 </node>
 <node id="rib-rms.InvReq_sub" app-name="rib-rms"
 adapter-class-def="InvReq_sub" type="JmsToDb">
 <in-topic>etInvReq</in-topic>
 <out-db>default</out-db>
 </node>
 <node id="rib-ext.InvReq_sub" app-name="rib-ext"
 adapter-class-def="InvReq_sub" type="JmsToDb">
 <in-topic>etInvReq</in-topic>
 <out-db>default</out-db>
 </node>
 </message-flow>

rib-sim subscribing the ItemLoc message from RMS

<message-flow id="6">
 <node id="rib-rms.ItemLoc_pub" app-name="rib-rms"
 adapter-class-def="ItemLoc_pub" type="DbToJms">
 <in-db>default</in-db>
 <out-topic>etItemLocFromRMS</out-topic>
 </node>

Chapter 4
Provisioning RIB-Adapters

4-5

 <node id="rib-ext.ItemLoc_pub" app-name="rib-ext"
 adapter-class-def="ItemLoc_pub" type="DbToJms">
 <in-db>default</in-db>
 <out-topic>etItemLocFromRMS</out-topic>
 </node>
 <node id="rib-sim.ItemLoc_sub" app-name="rib-sim"
 adapter-class-def="ItemLoc_sub" type="JmsToDb">
 <in-topic>etItemLocFromRMS</in-topic>
 <out-db>default</out-db>
 </node>
 <node id="rib-rwms.ItemLoc_sub" app-name="rib-rwms"
 adapter-class-def="ItemLoc_sub" type="JmsToDb">
 <in-topic>etItemLocFromRMS</in-topic>
 <out-db>default</out-db>
 </node>
 <node id="rib-ext.ItemLoc_sub" app-name="rib-ext"
 adapter-class-def="ItemLoc_sub" type="JmsToDb">
 <in-topic>etItemLocFromRMS</in-topic>
 <out-db>default</out-db>
 </node>
 </message-flow>

Considering the above flows, select InvReq_Pub, and ItemLoc_sub and both
Hospital adapters as shown in the image below.

5. Verify that the selected adapters are reflected on the Adapter Manager tab. Newly
added adapters in scope will be down. Newly added adapters in-scope need a
start from the GUI to become ACTIVE as a one time activity; otherwise, newly
added adapters won’t show up on topic on checking from jms-console and won’t
even be registered (messages will be lost). Sometimes you need to start adapters
2-3 times because of one known issue where the subscriber registration process is
times out. Post start of newly added adapters, ensure adapters are showing up on
topic on checking from jms-console. If newly added adapters are not showing up
on topic, please try to start them again from the UI. jms-console will not show
adapters on topic immediately and there is expected 3 to 5 mins of delay.

Chapter 4
Provisioning RIB-Adapters

4-6

6. All the adapters are in scope by default for rib-<app>:

enableDynamicAdapterInstanceSelection = false

This is the default value for all rib-<app>s except rib-ext for rib-ext following flag is set to
true

enableDynamicAdapterInstanceSelection = true

Note:

enableDynamicAdapterInstanceSelection flag is not available for end user
update. Follow the steps in the next section to disable this flag for other rib-
<apps> in case they are enabled.

How to Remove Dynamic Adapters Selection in RIB-RMS
The concept of Dynamic Adapters Selection applies only to the RIB-EXT application and all
other RIB-<apps> such as RIB-RMS, RIB-SIM, RIB-TAFR etc do not support the dynamic
adapters. Due to our documentation defect, which has been fixed now, some of our
customers have used this feature in non RIB-EXT apps, especially in RIB-RMS, which is
unsupported and can cause major issues such as messages piling up on JMS topics and
slow down the entire system. customers should remove dynamic selection of the adapters in
any rib-app they might have configured it in ex: RIB-RMS/RIB-TAF/RIB-SIM

Steps :

1. Log into the RIB-RMS Admin GUI.

2. Go to the Adapter Manager page and capture the list of adapters present on the page.

3. Go to Manage Configurations -> Adapter Selection and select all the adapters.

4. Click Save. Make sure all the adapters are displayed in the Adapter Manager page.

Chapter 4
How to Remove Dynamic Adapters Selection in RIB-RMS

4-7

5. Go to Manage Configurations -> System Options and
set enableDynamicAdapterInstanceSelection to false.

6. Go to the Adapter Manager page and bring down all the adapters that do not
belong to the list collected in step 2.

Provisioning System Options
Application specific properties for the rib-<app> are configured in the rib.properties file.
When RIB is deployed on cloud, the application specific properties can be configured
in the RIB-Admin GUI application. The Manage Configuration > System Options tab
allows the user to edit the properties values post deployment. There are some
infrastructure level options that are available only for AMS or devops teams to
configure or update.

Following are the frequently configurable RIB properties:

1. Drop-messages-of-types- for dropping messages for specific types for
subscriptions.

Chapter 4
Provisioning System Options

4-8

2. Updating facility_id and facility_type for rib-tafr.

3. A new system option can also be added using 'Add' functionality in UI. Perform the
following steps to add the Facilities for rib-tafr.

• Click the Add button.

• Insert a new Facility ID.

For example: key - facility_id.PROD.12345 value - 1

4. Updating injector service url and policy for rest-app.

5. Updating IDCS host URL. This is needed only for customer owned applications using
Oauth for rest call.

Provisioning InjectorService URL
In the RIB-Admin GUI, the Manage Configuration > Injector Service page allows the user to
configure an injector service URL for a customer-owned applications.

Chapter 4
Provisioning InjectorService URL

4-9

Update injector service URL details by providing new host and port details and the
user credentials for the service.

RIB ServiceMonitor
Once the RIB integration environment is configured for use by various retail
application, as a sanity test the user may need to verify the integration end points. For
RIB on cloud, we can ping-test various webservices consumed by RIB using RIB
admin GUI.

In RIB Admin GUI, the RibServiceMonitor page lists all the webservices consumed by
the rib-application and allows the user to ping the same. The webservices are pingable
only if the "ping" operation is supported by the webservice.

Chapter 4
RIB ServiceMonitor

4-10

5
Performance

Performance Factors
The performance of each of these components is influential in the overall performance of the
system:

• The application server(s) topology and configuration.

• The RIB deployment approach.

• The hardware sizing and configuration of the RIB hosts.

• The hardware sizing and configuration of the applications that are connected to the RIB.

• The hardware sizing and configuration of the JMS provider host.

• The hardware sizing and configuration of the RIB Hospitals hosts.

There are other factors that determine the performance of the overall system. Some of these
factors in a RIB environment are:

• Number of channels configured

• Number of messages present in the topic

• Size of the message

• Database clustering

• Application Server topology

• Number of TAFRs in the processing of the message

• Message aggregation

See "Performance Considerations" in the Oracle Retail Integration Bus Operations Guide.

Note:

For more information, see “Performance Considerations," in the Oracle Retail
Integration Bus Operations Guide.

Performance and Parallel Logical Channels
The RIB must provide guaranteed once and only once processing of business events
(messages) across the enterprise. Maintaining the order of business events across the
enterprise is critical to data integrity.

To provide guaranteed sequencing of message processing, RIB requires a guaranteed first
in, first out (FIFO) messaging system with guaranteed FIFO rollback. That is, when you
rollback the message from the consumer you get the same message back the next time so

5-1

that it is processed in sequence. JMS Provider provides this FIFO topic and FIFO
rollback capability, which enables RIB to guarantee message sequencing.

Processing messages in sequence results in operational overhead, as every message
must be checked against the database to find the status of previous messages on
which it is dependent (same businessObjectid). Sequencing creates an inherent
bottleneck, in that only one message is processed at once. For example, messages
can come at the rate of 100 messages per second, but a RIB subscribing adapter can
process only one of those messages at a time to preserve the order. To get around this
bottleneck and improve performance, RIB provides options for optimization and
functionality.

First, RIB processes messages in sequence only when the publishing application
wants it to be processed in sequence. The message producer application defines a
businessObjectid whose existence informs RIB that this and all subsequent messages
with the same businessObjectid have to be processed in order.

Second, parallel logical channels can be created for each message flow paths in the
integration system to improve performance. Parallel logical channels are virtual logical
message flow paths within the same physical JMS topics. To add additional channels,
each adapter participating in a message flow must be configured with additional
adapter instances.

Using parallel logical channels is not the solution for all performance problems in the
integration system. They can help only when the API for the corresponding
applications is written with non-locking logic and concurrency invocation in mind.

Generally, integration for the retail application APIs are the biggest factor for
bottlenecks in the overall messaging system throughput. It is not appropriate to start
creating parallel logical channels at the first sign of performance problem. It is
important to analyze and tune the integration APIs of the retail applications before
considering the use of parallel channels.

Using parallel logical channels increases complexity, CPU demands, and memory
requirement, resulting in more operational overhead. Use them only when, after all
other components are fully tuned, you are still not able to meet your target numbers.

Chapter 5
Performance and Parallel Logical Channels

5-2

6
Security

Security in the integration layer is a big concern for every retail enterprise. The security
system should be open enough to allow trusted remote applications to integrate easily and, at
the same time, lock down unauthorized remote access. To address security concerns, RIB
utilizes the security modules available in the Oracle middle ware and database systems.

There are two categories of administrators in RIB: RIB System Administrators and RIB
Application Administrators. RIB System Administrators are involved in installing, configuring,
deploying defect fixes, and making sure that the integration infrastructure is up and running
properly. They generally are concerned with the business side of the integration system. Their
tasks include bringing up or taking down RIB adapters, and fixing data issues with message
payloads using RIHA. There are separate realms, roles, groups, and users defined for each
category of RIB administrators.

RIB Application Administrators Security Domain
For each rib-<app>.ear deployed, RIB creates the users belonging to the below groups:

• RicsAdminGroup

• RicsOperatorGroup

• RicsMonitorGroup

The default groups and user that RIB creates must not be deleted or modified.

RIB follows a role-based authorization for allowing valid users to perform a defined set of
operations from the rib-admin-gui. The user belonging to each of above groups will be
associated with a well defined role and thus able to perform authorized operations only. It is
recommended that you have a unique user belonging to each group.

Integration with SIOCS
1. RIB will use IDCS OAuth2 for authentication of ReST calls both inbound and outbound

(publisher/injector restful services). The primary authentication mechanism in the cloud is
OAuth2 using the IDCS authenticator. Out-of-the-box configuration expects OAuth2 to be
used.

2. RICS to EICS integration will be a ReST call with OAuth2.

3. The EICS injector URL will be auto-wired as part of RICS provisioning. URL will look
something like:

http://wtss-svc.<SIOCS_SUB-NAMESPACE>.svc.occloud:9999/siocs-int-services/
internal/api/inject

4. The RICS IDCS Client ID and Secret are auto-wired with rib-
sim_oauth2_application_client_user-name-alias as part of provisioning. These will be
used to get the access token for accessing EICS end point.

6-1

Note:

rib-sim_ws_security_user-name_alias is for BasicAuth and should be set
empty for OAuth2 however auto wiring takes care of setting this alias to
empty.

5. IDCS Url is also auto-wired, and is set during RICS provisioning. The URL looks
something like:

https://idcs-<TENANT>/oauth2/v1/token

Step Comment

Access rib-sim admin
GUI at https://
<external-load-
balancer>/<sub-
namespace>/rib-
sim-admin-gui

Chapter 6
Integration with SIOCS

6-2

Step Comment

Navigate to Manage
Configurations->
System Options.

Search and verify the
following system
options:

a. injector.service.a
ppType : rest-app

b. Check the
injector.service.e
ndpoint.url. URL
should be
something like:

http://wtss-
svc.<SIOCS_SUB-
NAMESPACE>.svc.
occloud:9999/
siocs-int-
services/api/
ribinjector/
inject

c. Look for
injector.service.se
curity.policyname,
policy should be
policyC for
internal calls.

d. oauth2.default.aut
horizationServer
Url : RICS IDCS
Host for making
call to get the
access to-ken.

Chapter 6
Integration with SIOCS

6-3

Step Comment

Navigate to Manage
Configurations->
Injector Service.

Verify the following:

a. Current Injector
Service URL :
should point to
correct injector
service url.

b. rib-
sim_ws_security_
username_alias
credential should
be empty.

c. rib-
sim_oauth2_appli
cation_client_use
r-name-alias
credential must
be getting
populated with
client ID and
secret.

How to verify whether
the SIM injector URL
and credentials are
correct.

Navigate to RIB
Service Monitor Tab

a. Click ping to test
the connectivity.

Integration with ROB
1. RICS to ROB integration is Rest call, Oauth2 Authorization.

2. The integration is configured between ROB and RICS via the ReST service (which
is HTTPS).

3. ROB injector URL looks something like this:

https://<external-load-balancer>/<rob-sub-namespace>/rib-injector-services-
web/orcos/resources/injector/inject

4. The OB IDCS app Client ID and Secret will be used to get the access token for
accessing ROB end point.

5. The IDCS Url is set during RICS provisioning. The URL looks something like:

https://idcs-<TENANT>/oauth2/v1/token

Chapter 6
Integration with ROB

6-4

Note:

rib-rob_ws_security_user-name_alias is for BasicAuth and should be set empty for
OAuth2

Table 6-1 Integrating with ROB

Category Steps Comment

Access RIB
Admin GUI

Access the rib admin
GUI at https://<external-
load-balancer>/rib-rob-
admin-gui

Log in with the admin
user.

Verify
Configuratio
n and
update

Navigate to Manage
Configurations ->
System options

1. Search for and
verify the following:

destination.retail.a
ppType: rest-app

2. Check the value for
InjectorService
URL
(injector.service.en
dpoint.url).URL
should look
something like this:
https://
omni.retail.us-
phoenix-1.ocs.oc-
test.com/rgbu-
omni-rgbu-stg83-
obcs/rib-injector-
services-web/
orcos/resources/
injector/inject

3. Security Policy
(injector.service.se
curity.policyname):
policyA

4. IDCS OAuth
Server URL
(oauth2.default.aut
horizationServerUrl
): https://<idcs-
tenant>/oauth2/v1/
token

Chapter 6
Integration with ROB

6-5

Table 6-1 (Cont.) Integrating with ROB

Category Steps Comment

Verify
username
and
password

Navigate to Manage
Configurations - >
Injector Service

1. Choose rib-
rob_ws_security_u
ser_name_alias
from drop down.

2. Set username and
password to be
empty.

Verify
ClientID and
Secret

Navigate to Manage
Configurations - >
Injector Service

Choose rib-
rob_oauth2_application
_client_user-name-alias
from drop down and
verify details

1. Verify a valid Client
ID in username is
set.

2. Verify a valid Client
Secret in password
is set.

Ping test Navigate to Manage
Configurations -> RIB
Service Monitor

1. Click on ping

2. It should return
success

Chapter 6
Integration with ROB

6-6

Table 6-1 (Cont.) Integrating with ROB

Category Steps Comment

Verify
provided
credentials

How to verify if the ROB
injector URL and
credentials are correct.

1. Get the ROB Client ID and secret.

2. Execute the following curl commands for grant_type cli-
ent_credentials:

ClientId=RGBU_RICS_STG83_APPID
ClientSecret=776381f5-88f5-4995-aa57-ecc7b7a1a8d7
IDCSUrl=https://
idcs-24e4baae56764e91be371e6a2060d66e.identity.c9dev
2.oc9qadev.com
AccessToken=$(curl -i -X POST \
--user $ClientId:$ClientSecret \
-H "Content-Type: application/x-www-form-
urlencoded;charset=UTF-8" \
$IDCSUrl/oauth2/v1/token \
-d
"grant_type=client_credentials&scope=urn:opc:idm:__m
yscopes__" | grep -o -P '(?<=access_token":").*(?
=","token_type)')
echo $AccessToken
ribExtServiceUrl=https://omni.retail.us-
phoenix-1.ocs.oc-test.com/rgbu-omni-rgbu-stg83-obcs/
rib-injector-services-web/orcos/resources/injector/
ping
curl -ivkL --noproxy '*' -H "Authorization:
Bearer $AccessToken" -H "Content-Type: application/
xml" -X GET $ribExtServiceUrl

if you get a 200 response, then the configuration is correct

if you get 401 unauthorized, then Client ID and secret are
incorrect

Chapter 6
Integration with ROB

6-7

7
Integration with Fusion Middleware

RIB is certified on the Oracle Fusion Middleware Application Server. All RIB publishers,
subscribers, and TAFRs are Java EE standard components (EJBs and MDBs) that are
deployed and managed by the WebLogic Application Server in managed instances. This
means that the RIB can be deployed into an existing Fusion Middleware architecture without
any changes.

All RIB message payloads are fully standard compliant XSD based. All of the XML payloads
are namespace aware and follow the general standards as well as the conventions that make
them compatible with other Oracle Fusion products such ESB and BPEL. The payload
schema definitions (XSDs) are packaged with each release along with sample messages.

The recommended approach for integration between the RIB and Oracle Fusion Middleware
products is at the JMS topic level. Any standards compliant tool or product that can interface
to the JMS and subscribe and publish messages can be integrated with the RIB.

There are some key functional requirements that an integrating application must follow. It
must have the ability to do the following:

• Connect to a standard JMS and publish to a topic.

• Create a durable subscriber to a RIB JMS topic

• Set user-defined message properties.

• Encode and decode RIB payloads embedded within the RIB message envelope.

General RIB to Fusion Middleware Architecture

7-1

The Oracle Fusion Middleware products, such as ESB and BPEL, use a common
standard JMS Adapter. This adapter can be used to connect to the RIB certified JMS
Provider and topics.

The JMS topics that the RIB creates for publication and subscription are detailed in the
Oracle Retail Integration Bus Integration Guide, along with all of the message
payloads for each message family.

The RIB html encodes each message payload and inserts it into the RIB messages
envelope. Each message has a JMS user-defined property called threadValue that is
required to be set on all in-bound messages. In a multi-channel message flow, the
subscriber will need to set the message selector to an appropriate threadValue to
maintain message publication sequencing.

The xml schema definitions for the payloads and the RIB Messages envelopes are
packaged and shipped with the RIB.

The RIB JMS topic names and message flows between the RIB adapters for each of
the Oracle Retail applications are defined in the rib-integration-flows.xml file. This file
is the single source of truth that the RIB release uses at configuration and run-time. It
is required to be accessible within each RIB deployment: http://<server>:<port>/rib-
func-artifact/rib-integration-flows.xml. During installation and configuration, this file is
deployed as a part of the functional artifact war file.

Chapter 7
General RIB to Fusion Middleware Architecture

7-2

8
Integration with External Applications

RIBforExt is the Oracle Retail Enterprise Integration component designed to address the
connectivity requirements for 3rd Party integrations in a hybrid cloud topology where the RIB
is deployed in the Retail Integration Cloud Services.

In a hybrid cloud scenario customers no longer have access to RIB's JMS server and cannot
directly publish and subscribe to messages on the JMS topics. The RIB-EXT app is designed
to fill that gap, it provides Web Service based APIs to publish to and subscribe from the RIB's
JMS from third party systems.

RIBforEXT has all of the RIB flows available for the deployment time configuration based on
the customer use cases.

RIB-EXT out-of-the-box provides the complete set of publishers, subscribers and retry
adapters needed for the external application to integrate with Oracle Retail applications using
RIB infrastructure.

The selective list of publisher and subscriber adapters needed by each specific external
application is defined by the customer's implementation team.

Implementing RIB-EXT
RIB-EXT is an Oracle Retail Integration Application that provides necessary communication
channel for external applications to publish and consume message from RIB's JMS on cloud
and premise.

8-1

Note:

BasicAuth will no longer be supported starting from the RICS v24 release.
RICS will enforce OAuth2 as the required authentication mechanism using
the IDCS authenticator. Oauth2 is being enforced for authorization for
ongoing security reasons and to ensure the customer stays within their OCI
IAM limits. Customer/SI partner are advised to prepare for this change and
implement OAuth2 for both inbound and outbound calls via RIB-EXT.

RICS is also enforcing environment specific Oauth scope for authorization of
inbound web service calls (RIB-EXT). The scope pattern that is used in the
RICS IDCS app creation template is rgbu:rics:RICS-<ENVIRONMENT>
where ENVIRONMENT is the environment type (STG, PRD, UAT, DEV1,
DEV2, and so on). For details Refer Section: Create OAuth2 Client
Application in IDCS.

How to Send/Receive Messages to/from the RIB System
For third-party integration, RIB-EXT provides ReST API’s for external applications to
send and receive data from the RIB system. The following sections cover the
implementation details.

External Application as a Publisher (rest-app) using OAuth2
The end point of publishing service follows below pattern:

Table 8-1 Publishing Service Pattern

Resource HTTP Method Endpoint

Ping GET GET https://
<external_LB_url>/<rics-sub-
namespace>/rib-ext-services-
web/resources/publisher/ping

Publish POST https://<external_LB_url>/
<rics-sub-namespace>/rib-ext-
services-web/resources/
publisher/publish

• RIB-EXT publishing service REST endpoints are protected using OAuth2 token-
based authentication meaning end points are accessible by sending along an
access token.

• Scope will be used for authorization of REST services. Scope for RICS is in the
following format- rgbu:rics:RICS-<Environemnt Type><Environment Index> (that
is, rgbu:rics:RICS-DEV1).

• Client Credentials grant type is supported.

For getting access to RICS publishing service you need to create a client app in IDCS.
IDCS app generates an access token that will be used for making publishing service
calls. Follow steps for creating the client app in IDCS.

Chapter 8
Implementing RIB-EXT

8-2

Create OAuth2 Client Application in IDCS
Use Retail Home for creating the client app in IDCS. Once app is created you will get client id
and client secret both of them necessary to get access token. Follow the instructions below
for generating the access token and making service call using OAuth2 token.

1. Login into retail home as retail home administrator.

2. In retail home screen click on Settings menu icon on the left and then click on
Application Administration.

Chapter 8
Implementing RIB-EXT

8-3

3. On the Application Administra-tion menu click on Application Navigator Setup.
Notice all the hosted applications are listed here with their application and plat-
form service url.

Settings -> Application Administration->Application Navigator Settings

4. Look for application with name RICS. If you are not seeing RICS application try
refreshing seed. Steps

a. Select the row with the application code as Rms.

b. Click the Refresh Seed Data button on top right corner of the menu.

c. Wait for some time and refresh the screen.

d. RICS should reflect now.

Chapter 8
Implementing RIB-EXT

8-4

5. If RICS application is not reflecting even after following step 4. Select the row with the
application code as Rms and click on the Actions menu on top left. Select Create IDCS
OAuth 2.0 Client. A dialog will open for entering oauth2 client details.

Note:

Create IDCS OAuth 2.0 Client option is available only for applications those
have platform service URL mentioned. RICS is making use of merch platform
service as both the apps are sharing same IDCS tenancy.

6. Skip this step if RICS application is not showing up. One of either Step 5 or Step 6 needs
to be followed.

Select a row with application code as RICS. Click on the Actions menu on top left and
select Create IDCS OAuth 2.0 Client. A dialog will open for entering oauth2 client details.

Chapter 8
Implementing RIB-EXT

8-5

7. This dialog takes the following values:

App Name is 2-100 characters and will be used as the name in IDCS. Provide
unique application name.

Description is a detailed description of the application.

Scope: <Custom environment-specific scope>

The scope pattern that is used in the RICS IDCS app creation template is
rgbu:rics:<SERVICETYPE>-<ENVIRONMENT> where SERVICETYPE is RICS
and ENVIRONMENT is the environment type (STG, PRD, UAT, DEV1, DEV2, and
so on).

For example:

"scope": "rgbu:rics:RICS-PRD""scope": "rgbu:rics:RICS-STG"

Chapter 8
Implementing RIB-EXT

8-6

8. When the application is created, another dialog will open to show the client ID and client
secret of the new application. These values should be copied down to a safe location, as
they will only be shown once. Retail Home cannot retrieve the credentials again after the
dialog is closed.

9. Client ID and Client Secret from previous step will be used for generating access token.

Sample code for generating Access Token:

clientId=RICS_TEST_APPID
clientSecret=998e1e1d-f146-45a5-a9a1-99785e3ebf43
idcsUrl=https://idcs-234e8f7334564936aa0ed93f2c39e9ca.identity.pint.oc9qadev.com
scope=rgbu:rics:RICS-STG99
ec=$(echo -n "$clientId:$clientSecret" | base64 -w 0)

AccessToken=$(curl -iv \
-H "Authorization: Basic $ec" \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
--request POST $idcsUrl/oauth2/v1/token \
-d "grant_type=client_credentials&scope=$scope" | grep -o -P '(?
<=access_token":").*(?=","token_type)')

echo $AccessToken

10. Now service call can be made by passing along the access token generated in previous
step.

Here is sample curl command with Bearer token and rib-ext publisher ping

ribExtServiceUrl=https://rex.retail.us-phoenix-1.ocs.oc-test.com:443/rgbu-rex-eit-
stg99-rics/rib-ext-services-web/resources/publisher/ping
curl -ivkL --noproxy '*' -H "Authorization: Bearer $AccessToken" -H "Content-
Type: application/xml" -X GET $ri-bExtServiceUrl

Sample response

{"message": "ping() was called with input String of: hello"}
11. Publishing a message using access token.

Here is sample curl for publishing a message

Chapter 8
Implementing RIB-EXT

8-7

ribExtServiceUrl=https://rex.retail.us-phoenix-1.ocs.oc-test.com:443/rgbu-
rex-eit-stg99-rics/rib-ext-services-web/resources/publisher/publish
curl -ivkL --noproxy '*' -H "Authorization: Bearer $AccessToken" -H
"Content-Type: application/xml" -X POST $ribExtServiceUrl --data
'<v1:ApplicationMessages xmlns:v1="http://www.oracle.com/retail/
integration/rib/ApplicationMessages/v1">
<v1:ApplicationMessage>
<v1:family>InvAdjust</v1:family>
<v1:type>InvAdjustCre</v1:type>
<v1:payloadXml><InvAdjustDesc xmlns="http://www.oracle.com/retail/
integration/base/bo/InvAdjustDesc/v1" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance"
xsi:schemaLocation="http://www.oracle.com/retail/integration/base/bo/
InvAdjustDesc/v1
http://www.oracle.com/retail/integration/base/bo/InvAdjustDesc/v1/
InvAdjustDesc.xsd"
;><dc_dest_id>DC_ES</
dc_dest_id><InvAdjustDtl><item_id>Aline</
item_id><adjustment_reason_code>stri</
adjustment_reason_code><unit_qty>22.4</unit_qty>
;<transshipment_nbr>ss</
transshipment_nbr><from_disposition>ss</
from_disposition><to_disposition>sss</
to_disposition><from_trouble_code>sss</from_trouble_code>
<to_trouble_code>ss</
to_trouble_code><from_wip_code>aaa</
from_wip_code><to_wip_code>sss</
to_wip_code><transaction_code>4</
transaction_code><user_id>TestUser</user_id>
<create_date>1999-10-23T20:27:56.32</
create_date><po_nbr>PratapOrd96</po_nbr><doc_type>P</
doc_type><aux_reason_code>string</aux_reason_code>
<weight>12.4</weight><weight_uom>smn;</
weight_uom><unit_cost>20.4</
unit_cost><InvAdjustUin><uin>123</uin>
<status>4</status></InvAdjustUin></InvAdjustDtl></
InvAdjustDesc></v1:payloadXml>
</v1:ApplicationMessage>
</v1:ApplicationMessages>'

Sample response

{"message": "Publish done"}

External Application as a Subscriber (rest-app)
For an external application to consume the message from the RIB's JMS on cloud, it
has to host the Injector Service. Injector Service is a ReST webservice that is made
available as a pluggable jar.

A pluggable jar is provided which contains all the wrapper classes to help in
implementing injector service. rib-injector-services-web-<version>.war is the pluggable
jar which can be included into the external application deployable file for example, ext-
app.ear/lib. Once pluggable jar is added, endpoint for injector service will be exposed
as follows:

https://<external-app-host>:<port>/ rib-injector-services-web/resources/injector/
inject

Pluggable jar is provided for reference however customer can choose to write

Chapter 8
Implementing RIB-EXT

8-8

their own injector service by adhering to REST service contract detailed in next
section.

Note:

For information on pluggable jar, see the Client Connector For Oracle Retail
Integration Cloud Service 24.0.201.0 (Patch) available on My Oracle Support.

How to implement Injector Service (Service Contract) using ReST
Here is the Rest service contract detail:

1. Keep the path as Injector/inject.

@Path("/injector")
2. Use POST for this service. As the input message object itself has identifier (message

type- CRE/MOD) they don't need to use the PUT/PATCH. they can use message type to
build the implementation logic.

@POST
@Path("/inject")
@Consumes({MediaType.APPLICATION_XML})

3. The input would be MediaType.APPLICATION_XML and the structure would be
'ApplicationMessage' object. (file attached for reference).

<xs:element name="ApplicationMessage">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="family" type="string25"/>
 <xs:element name="type" type="string30"/>
 <xs:element name="businessObjectId" type="string255" minOccurs="0"/>
 <xs:element ref="ApplicationMessageRoutingInfo" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="payloadXml" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

4. Customer can utilize the payload.properties file for validation of message family and type.

5. Return type should be JSON, see below example:

String message = "{\"message\": \"Inject successful.\"}";
return Response.ok(message, MediaType.APPLICATION_JSON).build();

6. For exception response customer needs to follow the structure of exceptionVO.

How to Secure Injector Service with Oauth2
Injector service exposed by external service should be secured with OAuth2. This chapters
covers the key points that should be taken into consideration while protecting the resources
exposed by external application.

Prerequisites

• IDCS should be same as RICS.

Chapter 8
Implementing RIB-EXT

8-9

• Use Client Credentials grant type with scope to provide access to resource.

• Following is the screen shot of a sample IDCS app with scope added

Note:

Follow IDCS documentation for detailed instruction on setup.

RIB-EXT Side of Configuration to Point to External Application
Below are the steps to point rib-ext to the correct injector service.

Table 8-2

Category Step Comment

Access RIB
Admin GUI

Access the rib admin GUI
at https://<external-load-
balancer>/rib-ext-admin-gui

Log in with the admin user.

Chapter 8
Implementing RIB-EXT

8-10

Table 8-2 (Cont.)

Category Step Comment

Verify
Configuratio
n and update

Navigate to Manage
Configurations -> System
options

Search for and verify the
following:

1. destination.retail.appTy
pe: rest-app

2. Update the value for
InjectorService URL
(injector.service.endpo
int.url). URL should
point to inject service
provided by external
application. (e.g.-
https://<host:port>/rib-
injector-services-web/
resources/injector/
inject

3. Update the value for
Ping Service URL
(injector.service.endpo
int.ping.url). This URL
should point to a ping
service provided by an
external application.
(for example -
https://
<host:port>/rib-
injector-
services-web/
resources/
injector/ping).

Note: This feature
allows users to provide
their ping URL, as it
can be a freeform
URL. Previously, it was
assumed ping used
host:port/
injector/ping,
causing ping to fail
when the systems
used its own ping
URL. Now, the ping
feature in rib-ext relies
on the ping
implemented on the
system. Ping is
typically used to test
the first-time
handshake between
the service client and

Chapter 8
Implementing RIB-EXT

8-11

Table 8-2 (Cont.)

Category Step Comment

the service provider
before sending the
actual data over to
OIC. The fact that data
is moving to OIC tells
us that the integration
is working fine.

4. For 3rd party
integration where the
injector service is
hosted on OIC/on-
prem, the below
system property in
JAVA_OPTIONS
needs to be added
oauth2.url.path.wo.vrc
=<context root of
injector service>

Important: context
root of injector service
is any word in injector
service url which can
identify service
uniquely.

Eg-

For the following
injector service url
https://<external-lb>/
external-injector-
services/external/
ribinjector/inject.

Java_option would be

oauth2.url.path.wo.vrc
=ribinjector

5. Security Policy
(injector.service.securit
y.policyname) : policyA

6. IDCS OAuth Server
URL
(oauth2.default.authori
zationServerUrl):
https://<idcs-tenant>/
oauth2/v1/token

7. OAuth2 Token Scope:
Update with external
application provided
scope

Chapter 8
Implementing RIB-EXT

8-12

Table 8-2 (Cont.)

Category Step Comment

Update
username
and
password to
empty

Navigate to Manage
Configurations - > Injector
Service

Update details.

1. Choose "rib-
(app)_ws_security_us
er-name-alias" as
Secured User Alias.

2. Update the Secured
User Name with a
blank userName.

3. Update the Secured
User Password with a
blank password.

4. Click on Save.

Update
ClientID/
Secret

Navigate to Manage
Configurations - > Injector
Service

Update details

1. Choose "rib-
(app)_oauth2_applicati
on_client_user-name-
alias" as Secured User
Alias.

2. Update the Secured
User Name with
clientID.

3. Update the Secured
User Password with
clientSecret.

Ping Test Navigate to Manage
Configurations -> RIB
Service Monitor

1. Click on ping

2. It should return
success

Chapter 8
Implementing RIB-EXT

8-13

Table 8-2 (Cont.)

Category Step Comment

How to verify
provided
injector
service
details are
correct

Verify if the provided
injector service URL and
credentials are correct.

Execute the following curl commands

ClientId=56c7eb72f11b43bb98bf2570fa2353eb
ClientSecret=bb18aa22-4bb4-41d1-9ed4-
fea276651e28
IDCSUrl=https://
idcs-24e4baae56764e91be371e6a2060d66e.ident
ity.c9dev2.oc9qadev.com
AccessToken=$(curl -i -X POST \ --
user $ClientId:$ClientSecret \ -H "Content-
Type: applica-tion/x-www-form-
urlencoded;charset=UTF-8" \
$IDCSUrl/oauth2/v1/token \ -d
"grant_type=client_credentials&scope=urn:op
c:idm:__myscopes__" | grep -o -P '(?
<=access_token":").*(?=","token_type)')
ribExtServiceUrl=https://rgbu-phx-
lbext-351.us.oracle.com/rib-injector-
services-web/resources/injector/ping
curl -ivkL --noproxy '*' -H
"Authorization: Bearer $AccessToken" -H
"Content-Type: applica-tion/xml" -X
GET $ribExtServiceUrl

How to switch Injector Service app Type at Runtime
RIB-EXT is a rest-app by default for CFS and expects injector service also to be of
ResT type. ONLY for egress/migration customers who already have injector service
SOAP implementation in GBUCS they should follow these steps to switch from rest to
soap based injector calls and vice-versa.

How to Change rib-ext injector-service-app-type from REST to SOAP
1. Open rib-ext admin gui. Go to Manage Configurations > System Options, observe

new prop-erty i.e. injector-service-appType added to allow switching injector
service app-type at runtime.

By default rib-ext is deployed as rest-app so injector-service-appType is defaulted
to.

Chapter 8
Implementing RIB-EXT

8-14

2. Edit injector-service-appType and update this to soap-app. Save the changes.

3. Navigate to Manage Configurations > Injector Service tab. Check for the correctness of
injector service URL, ensure it points to correct ext-app injector service.

Update rib-ext_ws_security_user-name-alias with correct username/password needed to
make inject call.

Chapter 8
Implementing RIB-EXT

8-15

4. Update the value for the Ping Service URL
(injector.service.endpoint.ping.url). This URL should point to a ping service
WSDL provided by an external application.

Note:

This feature allows users to provide their ping URL. The ping feature in
rib-ext relies on the ping implemented on the system. Ping is typically
used to test the first-time handshake between the service client and the
service provider before sending the actual data to OIC. The fact that data
is moving to OIC tells us that the integration is working fine.

5. Setup is ready now. Do a ping test from RIB ServiceMonitor tab.

How to change rib-ext injector-service-app-type from SOAP to ReST
1. Navigate to Manage Configurations > System Options from admin GUI. Look for

injector-service-appType, update this property to switch from SOAP to ReST.Save
the changes.

2. Navigate to Injector Service tab. Update host/port and security credentials (rib-
ext_ws_security_user-name-alias) if needed.

Chapter 8
Implementing RIB-EXT

8-16

3. Setup is ready now. Do a ping test from RIB Service Monitor tab.

Error Handling
The RIB infrastructure provides a mechanism called RIB error hospital to handle and manage
the error messages. When the publishing or subscription of a message fails in the rib-ext for
some reason, it lands in error hospital with a reason code. The retry adapters in the rib-ext
application are responsible for retrying the messages in error hospital.

Oracle RIB Hospital Administration (RIHA) is a Weblogic application that allows the
management of messages in error hospital. Some of the RIHA operations include:

• Viewing error messages

• Editing error messages

• Retrying error messages

• Stopping error messages

For more information, see the Oracle Retail Integration Bus Hospital Administration Guide.

Monitoring Integration
To monitor live statistics of various components involved in RIB integration system like RIB
adapter, error hospital, JMS server, RTG provides a live monitoring application called the
Retail Integration Console (RIC).

The RIC is the user interface application designed to provide a unified view of the RTG
integration products within the business context of the Oracle Retail applications. It provides
near real time statistics regarding the message flows, JMS topics, historical trends of each
message family, performance comparisons, and static information like application
configuration.

For more information, see the Oracle Retail Integration Console User Guide.

Chapter 8
Implementing RIB-EXT

8-17

A
Appendix - Sample Files

Sample Application.wadl File
<?xml version="1.0" encoding="ISO-8859-1"?>
<ns0:application xmlns:ns0="http://wadl.dev.java.net/2009/02">
 <ns0:doc ns1:generatedBy="Jersey: 2.22.4 2016-11-30 13:33:53" xmlns:ns1="http://
jersey.java.net/"/>
 <ns0:doc ns2:hint="This is simplified WADL with user and core resources only. To get
full WADL with extended resources use the query parameter detail. Link: http://
abc.us.oracle.com:8003/rib-injector-services-web/resources/application.wadl?
detail=true" xmlns:ns2="http://jersey.java.net/"/>
 <ns0:grammars>
 <ns0:include href="application.wadl/xsd0.xsd">
 <ns0:doc title="Generated" xml:lang="en"/>
 </ns0:include>
 </ns0:grammars>
 <ns0:resources base="http://abc.us.oracle.com:8003/rib-injector-services-web/
resources/">
 <ns0:resource path="discover">
 <ns0:method id="discoverAllResources" name="GET">
 <ns0:response>
 <ns0:representation mediaType="application/json"/>
 </ns0:response>
 </ns0:method>
 </ns0:resource>
 <ns0:resource path="/injector">
 <ns0:resource path="/inject">
 <ns0:method id="injectMessage" name="POST">
 <ns0:request>
 <ns0:representation mediaType="application/xml"
element="ns3:ApplicationMessage" xmlns:ns3="http://www.oracle.com/retail/
integration/rib/ApplicationMessages/v1"/>
 </ns0:request>
 <ns0:response>
 <ns0:representation mediaType="*/*"/>
 </ns0:response>
 </ns0:method>
 </ns0:resource>
 <ns0:resource path="/ping">
 <ns0:method id="ping" name="GET">
 <ns0:request>
 <ns0:param name="pingMessage" default="hello" type="xsd:string"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" style="query"/>
 </ns0:request>
 <ns0:response>
 <ns0:representation mediaType="application/json"/>
 </ns0:response>
 </ns0:method>
 </ns0:resource>
 </ns0:resource>
 </ns0:resources>
</ns0:application>

A-1

Sample Resource Class
package com.oracle.retail.rib.integration.services.applicationmessageinjector;

import javax.ejb.EJB;
import javax.ejb.Stateless;
import javax.ws.rs.Consumes;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import com.oracle.retail.integration.rib.applicationmessages.v1.*;
import com.retek.rib.binding.exception.InjectorException;
import com.retek.rib.binding.injector.Injector;
import com.retek.rib.binding.injector.InjectorFactory;
import com.retek.rib.domain.payload.PayloadFactory;
import javax.ws.rs.DefaultValue;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.Response;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import com.oracle.retail.integration.payload.Payload;

@Stateless
@Path("/injector")

public class ApplicationMessageInjectorResource {

 private static Log LOG =
 LogFactory.getLog(ApplicationMessageInjectorResource.class);

 @GET
 @Path("/ping")
 @Produces({MediaType.APPLICATION_JSON})
 public Response ping(@DefaultValue("hello") @QueryParam("pingMessage")
String pingMessage){
 String message = "{\"message\": \"Got " + pingMessage + " from
server.\"}";
 return Response.ok(message, MediaType.APPLICATION_JSON).build();
 }

 @POST
 @Path("/inject")
 @Consumes({MediaType.APPLICATION_XML})
 public Response injectMessage(ApplicationMessage applicationMessage) throws
InjectorException{

 verifyNotNull(applicationMessage, "applicationMessage");

 invokeInjectForMessageType(applicationMessage.getFamily(),
applicationMessage.getType(), applicationMessage.getBusinessObjectId(),
applicationMessage.getPayloadXml());

 String message = "{\"message\": \"Inject successful.\"}";
 return Response.ok(message, MediaType.APPLICATION_JSON).build();
 }

Appendix A
Sample Resource Class

A-2

 private void invokeInjectForMessageType(String family, String messageType, String
businessObjectId, String retailPayload)throws InjectorException{

 try {

 verifyNotNull(family, "family");
 verifyNotNull(messageType, "messageType");
 verifyNotNull(retailPayload, "retailPayload");

 Payload payload = PayloadFactory.unmarshalPayload(family, messageType,
retailPayload);

 Injector injector = InjectorFactory.getInstance().getInjector(
 ?? family, messageType);
 if (injector == null) {
 final String eMsg = "Unknown message"
 + " family/type: " + family + "/" + messageType;
 LOG.error(eMsg);
 throw new InjectorException(eMsg);

 }
 if(LOG.isDebugEnabled()){
 LOG.debug("Received inject call for family("+family+")
type("+messageType+") businessObjectId("+businessObjectId+") with payload:\n" +
payload.toString());
 }

 injector.inject(messageType, businessObjectId, payload);
 LOG.debug("Inject call for family("+family+") type("+messageType+")
businessObjectId("+businessObjectId+") return.");

 ?? } catch (InjectorException e) {
 final String eMsg = "Exception calling inject.";
 LOG.error(eMsg, e);
 throw e;
 }catch (Exception re) {
 final String eMsg = "Exception calling inject.";
 LOG.error(eMsg, re);
 throw new RuntimeException(eMsg, re);
 }

 }

 private void verifyNotNull(Object field, String fieldName){
 if(field == null){
 final String eMsg = fieldName + " cannot be null.";
 LOG.error(eMsg);
 throw new IllegalArgumentException(eMsg);
 }
 }

}

ApplicationMessages.xsd
<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.oracle.com/retail/integration/rib/ApplicationMessages/v1"
 xmlns:rib="http://www.oracle.com/retail/integration/rib/

Appendix A
ApplicationMessages.xsd

A-3

ApplicationMessages/v1"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 jaxb:extensionBindingPrefixes="xjc"
 jaxb:version="2.0"
 targetNamespace="http://www.oracle.com/retail/integration/rib/
ApplicationMessages/v1"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:annotation>
 <xs:appinfo>

 <jaxb:globalBindings
 fixedAttributeAsConstantProperty="false"
 choiceContentProperty="true"
 enableFailFastCheck="true"
 generateIsSetMethod="true"
 enableValidation="true">
 <!--xjc:javaType name="java.util.Calendar"
 xmlType="xs:dateTime"

adapter="com.oracle.retail.integration.rib.rib_integration_runtime_info.datatypea
dapter.CalendarAdapter"/ -->
 <jaxb:serializable uid="1"/>
 </jaxb:globalBindings>

 <!--jaxb:schemaBindings>
 <jaxb:package
name="com.oracle.retail.integration.rib.ribintegrationruntimeinfo" />
 </jaxb:schemaBindings-->
 </xs:appinfo>
 </xs:annotation>

 <xs:element name="ApplicationMessages">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ApplicationMessage" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ApplicationMessage">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="family" type="string25"/>
 <xs:element name="type" type="string30"/>
 <xs:element name="businessObjectId" type="string255"
 minOccurs="0"/>
 <xs:element ref="ApplicationMessageRoutingInfo" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="payloadXml" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ApplicationMessageRoutingInfo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="string25"/>
 <xs:element name="value" type="string25"/>
 <xs:element ref="ApplicationMessageRoutingInfoDetail"

Appendix A
ApplicationMessages.xsd

A-4

minOccurs="0" maxOccurs="2"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ApplicationMessageRoutingInfoDetail">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="string25"/>
 <xs:element name="value" type="string300"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:simpleType name="string255">
 <xs:restriction base="xs:string">
 <xs:maxLength value="255" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="string25">

 <xs:restriction base="xs:string">
 <xs:maxLength value="25" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="string30">
 <xs:restriction base="xs:string">
 <xs:maxLength value="30" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="string300">
 <xs:restriction base="xs:string">
 <xs:maxLength value="300" />
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

payload.properties

payload.properties
ASNIN.ASNINCRE=com.oracle.retail.integration.base.bo.asnindesc.v1.ASNInDesc
ASNIN.ASNINDEL=com.oracle.retail.integration.base.bo.asninref.v1.ASNInRef
ASNIN.ASNINMOD=com.oracle.retail.integration.base.bo.asnindesc.v1.ASNInDesc

WH.WHCRE=com.oracle.retail.integration.base.bo.whdesc.v1.WHDesc
WH.WHDEL=com.oracle.retail.integration.base.bo.whref.v1.WHRef
WH.WHMOD=com.oracle.retail.integration.base.bo.whdesc.v1.WHDesc

Sample Request/Response for ReST Injector Service

Appendix A
payload.properties

A-5

Table A-1 Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

http://
localhost:700
1/rib-injector-
services-
web/
resources/
injector/inject

POST application/x
ml

Request are
xml only and
response are
json only.

A valid user
that is part of
IntegrationGr
oup.

<v1:ApplicationM
essage
xmlns:v1="http:/
/www.oracle.com/
retail/
integration/rib/
ApplicationMessa
ges/v1">
<v1:family>XOrde
r</v1:family>
<v1:type>XOrderC
re</v1:type>
<v1:businessObje
ctId>592824510</
v1:businessObjec
tId>
<v1:payloadXml><
<XOrderDesc
xmlns="http
://
www.oracle.com/
retail/
integration/
base/bo/
XOrderDesc/
v1"
xmlns:ns0="
http://
www.oracle.com/
retail/integra-
tion/base/bo/
CustFlexAttriVo/
v1">
<order_no>
592824510</
order_no>
<supplier>
99</
supplier>
<currency_cod
e>USD</
currency_code>
;
<terms>13&
lt;/terms>
<not_before_d
ate>2022-02-0
9T00:00:00Z</
not_before_date&
gt;
<not_after_da
te>2022-02-19
T00:00:00Z</

HTTP/1.1 200 OK
Date: Thu, 10
May 2018
16:33:11 GMT
Content-Length:
33
Content-Type:
application/json
X-ORACLE-DMS-
ECID:
4a8e5d3f-1aae-43
d7-ba84-
c6b9c60563c7-000
00039
X-ORACLE-DMS-
RID: 0
Set-Cookie:
JSES-
SIONID=hsFK5jW4B
1QtipC9zhng--
or1WL7ywxCuxsJeV
wdgPpnv6oNUnde!
233126712;
path=/; HttpOnly
{"message":
"Inject
successful."}

Success

Appendix A
Sample Request/Response for ReST Injector Service

A-6

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

not_after_date&g
t;
<otb_eow_date
>2022-02-19T0
0:00:00Z</
otb_eow_date>
<status>A&
lt;/status>
<exchange_rat
e>1</
exchange_rate>
;
<include_on_o
rd_ind>Y</
include_on_ord_i
nd>
<written_date
>2022-02-09T0
0:00:00Z</
written_date>
<XOrderDtl>
;
<item>1742
50093</
item>
<location>
21</
location>
<unit_cost>
;10</
unit_cost>
<origin_count
ry_id>US</
origin_country_i
d>
<supp_pack_si
ze>1</
supp_pack_size&g
t;
<qty_ordered&
gt;2</
qty_ordered>
<location_typ
e>W</
location_type>
;
<reinstate_in
d>N</
reinstate_ind>
;
<delivery_dat
e>2022-02-09T
00:00:00Z</

Appendix A
Sample Request/Response for ReST Injector Service

A-7

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

delivery_date>
;
</
XOrderDtl>
<orig_ind>
2</
orig_ind>
<edi_po_ind&g
t;N</
edi_po_ind>
<pre_mark_ind
>N</
pre_mark_ind>
</
XOrderDesc>><
/v1:payloadXml>
</
v1:ApplicationMe
ssage>

Appendix A
Sample Request/Response for ReST Injector Service

A-8

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

If user in not
added in
IntegrationGr
oup

<v1:ApplicationM
essage
xmlns:v1="http:/
/www.oracle.com/
retail/
integration/rib/
ApplicationMessa
ges/v1">
<v1:family>WH</
v1:family>
<v1:type>WHCR</
v1:type>
<!--Optional:-->
<v1:businessObje
ctId>?</
v1:businessObjec
tId>
<!--Zero or
more
repetitions:-->
<v1:ApplicationM
essageRoutingInf
o>
<v1:name>?</
v1:name>
<v1:value>?</
v1:value>
<!--Zero or
more
repetitions:-->
<v1:ApplicationM
essageRoutingInf
oDetail>
<v1:name>?</
v1:name>
<v1:value>?</
v1:value>
</
v1:ApplicationMe
ssageRoutingInfo
Detail>
</
v1:ApplicationMe
ssageRoutingInfo
>
<v1:payloadXml>&
lt;WHDesc
xmlns="http
://
www.oracle.com/
retail/
integration/
base/bo/WHDesc/

HTTP/1.1 403
Forbidden
Date: Thu, 05
Aug 2021
10:25:26 GMT
Content-Length:
1166
Content-Type:
text/html; char-
set=UTF-8
<!DOCTYPE HTML
PUBLIC
"-//W3C//DTD
HTML 4.0 Draft//
EN">
<HTML>
<HEAD>
<TITLE>Error
403--Forbidden</
TITLE>
</HEAD>
<BODY bgcol-
or="white">
<FONT
FACE=Helvetica><
BR CLEAR=all>
<TABLE bor-
der=0 cellspac-
ing=5><TR><TD><B
R CLEAR=all>
<FONT
FACE="Helvetica"
 COL-OR="black"
SIZE="3"><H2>Err
or 403--
Forbidden</H2>
</
TD></TR>
</TABLE>
<TABLE bor-
der=0
width=100%
cellpad-
ding=10><TR><TD
VALIGN=top
WIDTH=100%
BGCOL-
OR=white><FONT
FACE="Courier
New"><FONT
FACE="Helvetica"

SIZE="3"><H3>Fro

Failure

Appendix A
Sample Request/Response for ReST Injector Service

A-9

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

v1"><
wh>10</
wh><wh_nam
e>g</
wh_name></
WHDesc></
v1:payloadXml>
</
v1:ApplicationMe
ssage>

m RFC 2068
<i>Hypertext
Transfer
Protocol --
HTTP/1.1</
i>:</H3>
<FONT
FACE="Helvetica"

SIZE="3"><H4>10.
4.4 403
Forbidden</H4>

<P><FONT
FACE="Courier
New">The server
understood the
request, but is
refusing to
fulfill it.
Authorization
will not help
and the request
SHOULD NOT be
repeated. If
the request
method was not
HEAD and the
server wishes
to make public
why the request
has not been
ful-filled, it
SHOULD de-
scribe the
reason for the
refusal in the
entity. This
status code is
commonly used
when the server
does not wish
to reveal
exactly why the
request has
been refused,
or when no
other response
is ap-plica-
ble.</P>
</
TD></TR>
</TABLE>

Appendix A
Sample Request/Response for ReST Injector Service

A-10

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

</BODY>
</HTML>

Appendix A
Sample Request/Response for ReST Injector Service

A-11

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

Wrong User/
pass

<v1:ApplicationM
essage
xmlns:v1="http:/
/www.oracle.com/
retail/
integration/rib/
ApplicationMessa
ges/v1">
<v1:family>WH</
v1:family>
<v1:type>WHCR</
v1:type>
<!--Optional:-->
<v1:businessObje
ctId>?</
v1:businessObjec
tId>
<!--Zero or
more
repetitions:-->
<v1:ApplicationM
essageRoutingInf
o>
<v1:name>?</
v1:name>
<v1:value>?</
v1:value>
<!--Zero or
more
repetitions:-->
<v1:ApplicationM
essageRoutingInf
oDetail>
<v1:name>?</
v1:name>
<v1:value>?</
v1:value>
</
v1:ApplicationMe
ssageRoutingInfo
Detail>
</
v1:ApplicationMe
ssageRoutingInfo
>
<v1:payloadXml>&
lt;WHDesc
xmlns="http
://
www.oracle.com/
retail/
integration/
base/bo/WHDesc/

HTTP/1.1 401
WWW-
Authenticate:
Basic
realm="Authentic
ation required"
Content-Type:
text/
html;charset=utf
-8
Content-
Language: en
Content-Length:
669
Date: Thu, 05
Aug 2021
05:08:40 GMT
Keep-Alive:
timeout=20
Connection:
keep-alive
<!doctype
html><html
lang="en"><head>
<title>HTTP
Status 401 â€"
Unauthorized</
title><style
type="text/
css">body {font-
family:Tahoma,Ar
ial,sans-
serif;} h1, h2,
h3, b
{color:white;bac
kground-
color:#525D76;}
h1 {font-
size:22px;} h2
{font-
size:16px;} h3
{font-
size:14px;} p
{font-
size:12px;} a
{color:black;} .
line
{height:1px;back
ground-
color:#525D76;bo
rder:none;}</
style></
head><body><h1>H

Failure

Appendix A
Sample Request/Response for ReST Injector Service

A-12

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End Point Method Media Type User/
Password

Request.xml Response Comments

v1"><
wh>10</
wh><wh_nam
e>g</
wh_name></
WHDesc></
v1:payloadXml>
</
v1:ApplicationMe
ssage>

TTP Status 401
â€"
Unauthorized</
h1><hr
class="line" /
><p>Type
Status Report</
p><p>Descript
ion The
request has not
been applied
because it
lacks valid
authentication
credentials for
the target
resource.</
p><hr
class="line" /
><h3>Apache
Tomcat/8.5.64</
h3></body></
html>

Appendix A
Sample Request/Response for ReST Injector Service

A-13

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Customer Support
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Help Center (docs.oracle.com)
	Conventions

	1 Introduction
	2 Core Concepts
	Key Functional Requirements
	Guaranteed Once-and-Only-Once Successful Delivery
	Preservation of Publication Sequence

	Message Family and Message Types
	Foundation Messages
	Transactional Messages

	RIB Message Envelope and Payloads
	Message Life Cycle
	Messaging Components
	RIB Subsystem Components
	Adapters
	JMS Domains, Destinations, Subscriptions
	JMS Message Selector
	Additional RIB JMS Message Properties

	Simple Message Flow
	The RIB Hospital
	RIB Hospital Dependency Check
	RIB Hospital Insert
	RIB Hospital Tables
	RIB Hospital Retry
	PUB Retry Adapter
	Hospital Attempt (Retry) Count
	JMS Delivery Count

	3 Cloud
	Configuring RIB-RWMS for Hybrid Cloud Deployment Topology
	Installation and Setup instructions for RIB-RWMS Secondary (On-Premise)
	Installation Prerequisite
	Prepare the WebLogic Server
	Creating Required RCU Schema Using the Repository Creation Utility
	Creating a WebLogic Domain with wls Policy

	Steps for ear Deployment

	4 RIB Self-Service Enablement
	Provisioning RIB-Adapters
	How to Remove Dynamic Adapters Selection in RIB-RMS
	Provisioning System Options
	Provisioning InjectorService URL
	RIB ServiceMonitor

	5 Performance
	Performance Factors
	Performance and Parallel Logical Channels

	6 Security
	RIB Application Administrators Security Domain
	Integration with SIOCS
	Integration with ROB

	7 Integration with Fusion Middleware
	General RIB to Fusion Middleware Architecture

	8 Integration with External Applications
	Implementing RIB-EXT
	How to Send/Receive Messages to/from the RIB System
	External Application as a Publisher (rest-app) using OAuth2
	Create OAuth2 Client Application in IDCS
	External Application as a Subscriber (rest-app)
	How to implement Injector Service (Service Contract) using ReST
	How to Secure Injector Service with Oauth2
	RIB-EXT Side of Configuration to Point to External Application
	How to switch Injector Service app Type at Runtime
	How to Change rib-ext injector-service-app-type from REST to SOAP
	How to change rib-ext injector-service-app-type from SOAP to ReST

	Error Handling
	Monitoring Integration

	A Appendix - Sample Files
	Sample Application.wadl File
	Sample Resource Class
	ApplicationMessages.xsd
	payload.properties
	Sample Request/Response for ReST Injector Service

