
Oracle® Retail Integration Cloud
Service
Third Party Integration Guide

G23402-01
January 2025

Oracle Retail Integration Cloud Service Third Party Integration Guide,

G23402-01

Copyright © 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Send Us Your Comments

 Preface

Audience vii

Customer Support vii

Improved Process for Oracle Retail Documentation Corrections vii

Oracle Retail Documentation on the Oracle Technology Network viii

Conventions viii

1 Introduction and Executive Summary

2 Retail Integration Cloud Service Components

Retail Integration Bus (RIB) 2-1

RIB-EXT 2-1

Oracle Retail Bulk Data Infrastructure (BDI) 2-2

BDI-EXT 2-2

Installation Details 2-3

Retail Financial Integration (RFI) 2-3

Retail Financial Integration (RFI) Products 2-3

RFI for Oracle Cloud Financials 2-3

Universal Service Mapper (USM) 2-4

USM Architecture 2-5

Event Listener 2-5

Service Mapper Orchestration 2-5

Service Provider and External Services 2-6

Oracle Warehouse Management CS (Logfire) Integration 2-6

RICS OWMS Integration Flows 2-7

3 RICS Operations Support, Management, and Monitoring

Customer Access to RICS Operation 3-1

iii

Retail Integration Console (RIC) Overview 3-1

JMS Console 3-2

JMS Admin – Live Monitoring 3-4

JMS Browse 3-4

JMS Manage 3-5

JMS Configure 3-5

RIB Hospital Administrator (RIHA) 3-6

RIBForXXX Administrator User Interface 3-7

4 Implementing RIB-EXT

External Application as a Publisher (rest-app) using OAuth2 4-1

Create OAuth2 Client Application in IDCS 4-1

External Application as a Subscriber (rest-app) 4-7

How to implement Injector Service (Service Contract) using ReST 4-8

How to Secure Injector Service with Oauth2 4-8

RIB-EXT Side of Configuration to Point to External Application 4-9

Error Handling 4-14

5 Reference Implementation of Injector Service Using Tomcat

Introduction 5-1

Step-by-step Guide for Testing rib-injector-service war on Tomcat 5-2

Approach for Writing Custom Implementation for Injectors 5-3

6 Implementing BDI-EXT

BDI External Job Admin as Receiver 6-1

External Importer Job 6-1

Configure External Job Admin as Receiver in the Process Flow 6-2

External BDI Process Flow 6-2

7 Monitoring at Run Time

Instance and Central Repository 7-1

Monitoring Data as XML 7-1

Push Versus Pull 7-2

Service Interfaces 7-2

What is an Event? 7-2

How are Event Count and Messages Count Related? 7-2

Adapter Events 7-2

Application Events 7-2

iv

Event Collection Schedule 7-3

Publisher Versus Subscriber Events 7-3

TAFR Instrumentation 7-3

Data Retention 7-3

Metric Definitions 7-4

Event Counts 7-4

Adapter Execution Time 7-4

API Execution Time 7-4

Adapter Status 7-4

Commits and Rollbacks 7-4

Error Hospital Metrics 7-4

RIB Application Status 7-5

A Sample Files

Sample Application.wadl File A-1

Sample Resource Class A-2

ApplicationMessages.xsd A-3

Rest Publisher Pseudo Code A-5

payload.properties A-6

Sample Request/Response for ReST Injector Service A-7

v

Send Us Your Comments

Oracle Retail Integration Cloud Service Third Party Integration Guide

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this
document.

Your feedback is important, and helps us to best meet your needs as a user of our products.
For example:

• Are the implementation steps correct and complete?

• Did you understand the context of the procedures?

• Did you find any errors in the information?

• Does the structure of the information help you with your tasks?

• Do you need different information or graphics? If so, where, and in what format?

• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your
name, the name of the company who has licensed our products, the title and part number of
the documentation and the chapter, section, and page number (if available).

Note:

Before sending us your comments, you might like to check that you have the latest
version of the document and if any concerns are already addressed. To do this,
access the Online Documentation available on the Oracle Technology Network Web
site. It contains the most current Documentation Library plus all documents revised or
released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative
or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle
local office and inquire about our Oracle University offerings. A list of Oracle offices is available
on our Web site at http://www.oracle.com.

Send Us Your Comments

vi

http://www.oracle.com

Preface

This guide provides an overview of third party integration with Oracle Retail Integration Cloud
Service.

Audience
This guide is intended for administrators.

This guide describes the administration tasks for Oracle Retail Integration Cloud Services.

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

• Exact error message received

• Screen shots of each step you take

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content, Oracle
Retail documentation may be republished whenever a critical correction is needed. For critical
corrections, the republication of an Oracle Retail document may at times not be attached to a
numbered software release; instead, the Oracle Retail document will simply be replaced on the
Oracle Technology Network Web site, or, in the case of Data Models, to the applicable My
Oracle Support Documentation container where they reside.

Oracle Retail documentation is available on the Oracle Technology Network at the following
URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

An updated version of the applicable Oracle Retail document is indicated by Oracle part
number, as well as print date (month and year). An updated version uses the same part
number, with a higher-numbered suffix. For example, part number E123456-02 is an updated
version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all previous
versions.

vii

https://support.oracle.com
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

Oracle Retail Documentation on the Oracle Technology Network
Oracle Retail product documentation is available on the following web site:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

(Data Model documents are not available through Oracle Technology Network. You can obtain
these documents through My Oracle Support.)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

viii

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

1
Introduction and Executive Summary

The Retail Integration Cloud Service (RICS) is the SaaS Cloud deployment of the full Retail
Technology's Integration Product Suite and the out-of-box GA application integration flows.

• All of the integration styles and products supported (RIB, RSB, BDI) are deployed in the
RICS SaaS Cloud and are accessible to on-premise applications and other cloud
applications through service APIs.

• Functionality has been added to round out the integration styles and available flows to
support customers of the RICS SaaS offering.

• RICS assumes and supports hybrid cloud topologies; cloud-to-cloud, cloud-to-premise and
premise-to-cloud.

• All of the integration styles and products and the applications supported by RICS are
integrated via REST web services.

The RICS Integration Infrastructure products provide standards and guidance and remove the
complexity from the business applications and provide accepted solutions to recurring
problems within a given integration context. Around these styles and patterns, Oracle Retail
has developed a set of Integration Infrastructure products and supporting tools.

These products expose hundreds of Oracle Retail Application API's as contract driven
integration points exposed for integrations between Oracle Retail applications and customer
3rd Party and Legacy applications.

• Retail Integration Bus (RIB) - Asynchronous JMS Messaging

• Bulk Data Integration (BDI) - Bulk Data Movement

• Retail Financial Integration (RFI) - Integration to Oracle Financial Products (EBS, People
Soft Financials, Oracle Cloud Financials)

• Oracle Warehouse Management Cloud Service integration using the Universal Service
Mapper product.

Note:

All Integration Infrastructure products are fully cloud enabled and will be deployable
as the Oracle Retail Integration Cloud Services and existing integration APIs work
without modification for Cloud, Hybrid-Cloud and On-Premise installations.

As used in this document; RICS third party integrations is the common term used generically
for any customer's custom legacy systems and/or customer purchased third party applications.

The list of these are as great as the customer list and RICS integration applications have
evolved to make those integrations easier and to follow our contracts and integration styles by
providing defined endpoints, guidelines, best practices, and support tooling.

1-1

Retail Integration Cloud Services Architecture

Figure 1-1 RICS Functional Architecture

Chapter 1

1-2

2
Retail Integration Cloud Service Components

Retail Integration Bus (RIB)
The Retail Integration Bus (RIB) is a fire-and-forget, asynchronous messaging backbone and
designed as a "Pub/Sub" JMS messaging architecture, with additional application functionality
added such as intelligent transformation, routing and error handling.

The RIB has been designed, and proven to handle retail volumes of messages, typically
millions during a Tier 1 -Tier 1+ retailer's business day.

The design and architecture of the RIB infrastructure and the Oracle Retail Applications API's
are based on two key requirements driven by the Oracle Retail Application's Business process
models.

• Preservation of Publication Sequence. The business event (message) must be delivered to
all the subscribing applications in the order (FIFO) the business event (messages) was
published by the publishing application.

• Guaranteed Once-and-only-once Successful Delivery. The RIB must preserve and persist
all business events (messages) until all applications (Subscribers) have looked at the
message and have successfully consumed it or decided they do not care about that event
(message).

The RIB is designed as an asynchronous publication and subscription messaging integration
architecture.

The RIB interfaces are organized by message family. Each message family contains
information specific to a related set of operations on a business entity or related business
entities. The publisher is responsible for publishing messages in response to actions
performed on these business entities in the same sequence as they occur.

Each message family has specific message payloads based on agreed upon business
elements between the Oracle Retail applications.

RIB-EXT
Third Party and Legacy Integration has been the corner stone of the Enterprise Integration
components. To that end there are cloud focused enhancements to RIB and RIB-EXT.

RIB-EXT completes the ability of the Integration Cloud Service to expose the RIB as a ReST
service to 3rd Party deployed on-prem or in other cloud deployments.

RIB-EXT is a deployment time configurable component that supports pub/sub to/from the RIB
and an external application by exposing the RIB as ReST services to Retail Applications and
third party deployed on-premises or in other cloud deployments.

• RIB-EXT has all of the RIB flows available for the deployment time configuration based on
the customer use cases.

• RIB-EXT configuration is performed based on the customers use cases for data to and
from the RIB.

2-1

Figure 2-1 RIBforEXT Information Flow

Oracle Retail Bulk Data Infrastructure (BDI)
Batch (Bulk) data is still a predominant integration style within Oracle Retail and its customers.
The movement of bulk data remains important because some work is best suited to being
performed in bulk. Batch processing was there in the early days; it is still here today; and it will
still be here tomorrow. What has changed is the approach to batch processing.

• BDI Architecture and Design is to be On-Premise and Hybrid Cloud ready.

– Lightweight UI's and services provide full coverage and are both customer facing and
operations facing.

• BDI Provides a fully service enabled, fault tolerant, concurrent, high throughput
infrastructure

• BDI Transport layer moves data via services, not files.

• Provides integration job process scheduling and is fully instrumented to provide end-to-end
visibility and re-startability.

• Automated restart recovery at a granular level.

BDI-EXT
BDI is an integration infrastructure product which can integrate Oracle Retail applications to
third party applications. BDI external application is designed to address the complexities for
third party integration with Oracle Retail application. In BDI, bulk data movement happens
between sender and receiver application. External application can only be a receiver.

Please refer to the Oracle Retail Bulk Data Integration Guide – Concepts for the details

BDI is an integration infrastructure product which integrates Oracle Retail applications and
third-party applications. BDI Bulk Data Export Service is designed to address the complexities
for third party integration with Oracle Retail application. In BDI, bulk data movement happens
between sender and receiver application.

Please refer to the Oracle Retail Bulk Data Integration Guide – Integration with External
Applicationsfor the details

Chapter 2
Oracle Retail Bulk Data Infrastructure (BDI)

2-2

Installation Details
Please refer to the Oracle Retail Bulk Data Integration Installation Guide for the details.

Retail Financial Integration (RFI)
The Oracle Retail Financial Integration (RFI) for E-Business Suite (EBS) / PeopleSoft
Financials / CFIN provides integration to a robust enterprise financial system to complement
the Oracle Retail Merchandising system in a retail customer environment.

Retail Financial Integration (RFI) Products
Merchandise Foundation Cloud Service (MFCS) to Financial Applications

• RFI for MFCS to Oracle Cloud Financials

RFI for Oracle Cloud Financials

Figure 2-2 RFI for Oracle Cloud Financials

Chapter 2
Retail Financial Integration (RFI)

2-3

Universal Service Mapper (USM)
The Universal Service Mapper (USM) is an application component of Retail Integration Cloud
Service (RICS) that allows the definition, mapping, and configurations needed to support the
integration between two heterogeneous applications. Typically this would be an Oracle Retail
Application such as RMS, found in the Merchandise Foundation Cloud Service, and an
application external to Oracle Retail such as Oracle Warehouse Management CS.

RICS USM supports two of the styles of integration used within Oracle Retail; message-based
and service-based as inputs. Within the RGBU applications the message-based flows are
across the RIB. It is typical that external applications are predominately service-based so the
output of USM is a call is to an external service.

Service calls from an external service are transformed to the correct style and format of the
internal application.

The functional requirement for the USM is to act as the place to transform the Oracle Retail
application data style and the data format into the data format expected by the external
application, and then to perform the transformations of the external application's response.

Figure 2-3 USM Process Flow

The USM User Interface provides the ability to create and manage Projects in USM and to
view app statistics, metrics about the message flow and the system Logs

The USM Engine is the logic part of the system where the data is received from one
application, mapped to other data and the mapped data is sent to other applications. Data is
communicated through service calls.

• USM hosts all the necessary web-services that are required by both the participating
sender and the receiver applications.

• USM has a configuration file of the service URLs to the participating applications.

• USM has templates that contains the mapping information, the code that does the mapping
and other configuration files to make the application work.

Chapter 2
Universal Service Mapper (USM)

2-4

USM Architecture

Figure 2-4 USM Architecture

Universal Service Mapper has three major components:

• Event Listener [Abstract Service Mapper, Service Def JSON]

• Service Mapper Orchestration [Orchestrator, Template and DVM]

• External Service Invocation and Service Provider

Event Listener
The Event listener is a service hosted by the USM application which is open to receiving data
from any application that is connected to it. The application here is either RIB-LGF or WMS
Cloud. The applications have the following URL pattern set in their target for USM.

http://<host>:<port>

When application sends data, the event listener internally calls the abstract service mapper
which determines family, message type and the operation(s) from the message received by
referring to the Service Def JSON file.

Service Mapper Orchestration
The abstract service mapper in turn now calls the Service mapper orchestrator which decides
which what data is to be populated in the mapper templates. The orchestrator does the
mapping, field by field, from the source application to destination application. Certain key-value
pairs in the DVM in order to maintain context between the applications.

Chapter 2
Universal Service Mapper (USM)

2-5

Service Provider and External Services
The Service Mapper Orchestrator calls the services hosted by the service providers after the
mapping operations are completed. The service providers here are either RIB-LGF or WMS
Cloud, which consume these services via USM. The calls are REST calls. USM holds the
information necessary for it to call these services in a file with the prefix "external_env_json" for
the respective application. These are stored as key-value pairs in JSON file

Oracle Warehouse Management CS (Logfire) Integration
Retail Integration Cloud Service (RICS) is used to integrate MFCS to Oracle Warehouse
Management Cloud (WMS - LogFire).

RICS uses Universal Service Mapper (USM) to perform the mappings required to connect
RICS payloads/services to LogFire interfaces. USM is used to transform and manage the
integration flows in both directions.

Figure 2-5 WMS-RICS Mappings

Chapter 2
Oracle Warehouse Management CS (Logfire) Integration

2-6

RICS OWMS Integration Flows

Figure 2-6 Retail to LogFire Integration Overview

Pre-defined flows between Oracle WMS Cloud and Oracle Retail Applications.

Chapter 2
Oracle Warehouse Management CS (Logfire) Integration

2-7

3
RICS Operations Support, Management, and
Monitoring

RICS exposes UI's for the customer and for the Oracle Support Team that provide
configuration and run time information as well as logs for operational insights and
troubleshooting. This section introduces the primary tools.

Customer Access to RICS Operation
RICS is fully instrumented and exposes metrics via UI's for full operational visibility.

Figure 3-1 Customer Access to RICS Operation

Retail Integration Console (RIC) Overview
RIC is the consolidated Enterprise Integration Monitoring tool and provides full visibility to the
Oracle Retail Integration System in a unified view. The audiences for the tool are business
analysts, operations people, and integration administrators.

Data is presented in graphical and tabular forms along with business context, so it is more
easily understood by business analysts and technical personnel.

RIC directly integrates with the Integration Guide via contextual hyperlinks.

3-1

Figure 3-2 Retail Integration Console

JMS Console
The JMS Console is an administration tool to monitor and manage the RIB's JMS Servers.

Figure 3-3 JMS Console Architecture

Chapter 3
Customer Access to RICS Operation

3-2

Figure 3-4 JMS Console Workflow

The JMS Admin provides an operational view point of RIB's JMS server.

• Monitor - Unattended view of the JMS system.

• Browse - Discover and Drill down into various aspects of the JMS Server.

• Manage - Provide JMS Server operation management functionality.

Chapter 3
Customer Access to RICS Operation

3-3

JMS Admin – Live Monitoring

Figure 3-5 JMS Console

The Live Monitor tab is the landing page of the JMS Console Application. It provides an
unattended high-level view of the JMS Server.

Live Monitoring also provides

• Current message volume information.

• Provides most recent activity details.

• Identify problematic JMS topics and bring to user notice.

• Display a full view of all message activities on all topics.

• Generate alerts based on set thresholds.

• Show visual clues on problematic topics.

• Gives an aggregated view of the system.

The Browse and Manage Tabs provide more specific data metrics and ability to manage
messages on the JMS topics.

JMS Browse
The Browse Tab allows you to discover and drill into the internals of JMS Servers.

• Discover all topics and get a listing of them from the server.

• Drill into each topic and discover all subscribers.

Chapter 3
Customer Access to RICS Operation

3-4

• Drill into each subscriber and get message count information.

• Browse message content inside JMS server

• Browse message headers inside JMS server

JMS Manage
The Manage tab allows you to interact with the JMS server with some core messaging system
functionality.

• Publish messages to JMS topics easily

• Dump messages to files from topics

• Drain messages from topics

• Configure preference for threshold and alerts

JMS Configure

The Configure tab allows you to configure various JMS system functionality.

• Update Repave Lead Notification Delay (in minutes)

• Update Log Level

• Update Email Notification To List

• Update Enable Global Email Notification

Chapter 3
Customer Access to RICS Operation

3-5

RIB Hospital Administrator (RIHA)

Figure 3-6 RIB Hospital Administrator

Oracle Retail Integration Bus Hospital Administration or RIB Hospital Administration (RIHA) is
a tool to manage RIB messages in the RIB hospital error tables.

RIHA can search for hospital records, stop a message from being retried, retry a message for
which maximum system-set retries have been tried, and delete a message from the tables.
RIHA can insert new records into Hospital tables. You can also update existing Hospital
records and message payloads.

Using RIHA is the recommended way to perform all RIB Hospital error table operations.

RIHA Operations

• Delete a Message

• Stop a Message

• Retry a Message

• View and Edit a Message

• Save a Message Locally

• Import a New Hospital Record to Hospital Tables

• Update an Existing Hospital Record

Chapter 3
Customer Access to RICS Operation

3-6

RIBForXXX Administrator User Interface
Each of the RIB components (RIB-RMS, RIB-LGF, and so on) has its own UI that exposes run-
time and configuration details. The Administrator UI provides operations to turn on or off RIB
adapters, control logging levels and to see logs.

Figure 3-7 RIBForXXX Administrator User Interface

Chapter 3
Customer Access to RICS Operation

3-7

4
Implementing RIB-EXT

RIB-EXT is an Oracle Retail Integration Application that provides necessary communication
channel for external applications to publish and consume message from RIB's JMS on cloud
and premise.

External Application as a Publisher (rest-app) using OAuth2
For external applications to publish to the RIB JMS on cloud, it needs to use a publishing
webservice provided by rib-ext.

The end point of publishing service follows below pattern:

Table 4-1 Publishing Service Pattern

Resource HTTP Method Endpoint

Ping GET GET http://<external_LB_url>/
<rics-sub-namespace>/rib-ext-
services-web/resources/
publisher/ping

Publish POST http://<external_LB_url>/<rics-
sub-namespace>/rib-ext-
services-web/resources/
publisher/publish

• RIB-EXT publishing service REST endpoints are protected using OAuth2 token-based
authentication meaning end points are accessible by sending along an access token.

• Scope will be used for authorization of REST services. Scope for RICS is in the following
format- rgbu:rics:RICS-<Environemnt Type><Environment Index> (that is, rgbu:rics:RICS-
DEV1).

• Client Credentials grant type is supported.

For getting access to RICS publishing service you need to create a client app in IDCS. IDCS
app generates an access token that will be used for making publishing service calls. Follow
steps for creating the client app in IDCS.

Create OAuth2 Client Application in IDCS
Use Retail Home for creating the client app in IDCS. Once app is created you will get client id
and client secret both of them necessary to get access token. Follow the instructions below for
generating the access token and making service call using OAuth2 token.

1. Login into retail home as retail home administrator.

4-1

2. In retail home screen click on Settings menu icon on the left and then click on Application
Administration.

Chapter 4
Create OAuth2 Client Application in IDCS

4-2

3. On the Application Administration menu click on Application Navigator Setup. Notice all the
hosted applications are listed here with their application and plat-form service url.

Settings -> Application Administration->Application Navigator Settings

4. Look for application with name RICS. If you are not seeing RICS application try refreshing
seed. Steps

a. Select the row with the application code as Rms.

b. Click the Refresh Seed Data button on top right corner of the menu.

c. Wait for some time and refresh the screen.

d. RICS should reflect now.

Chapter 4
Create OAuth2 Client Application in IDCS

4-3

5. If RICS application is not reflecting even after following step 4. Select the row with the
application code as Rms and click on the Actions menu on top left. Select Create IDCS
OAuth 2.0 Client. A dialog will open for entering oauth2 client details.

Note:

Create IDCS OAuth 2.0 Client option is available only for applications those have
platform service URL mentioned. RICS is making use of merch platform service
as both the apps are sharing same IDCS tenancy.

6. Skip this step if RICS application is not showing up. One of either Step 5 or Step 6 needs
to be followed.

Select a row with application code as RICS. Click on the Actions menu on top left and
select Create IDCS OAuth 2.0 Client. A dialog will open for entering oauth2 client details.

Chapter 4
Create OAuth2 Client Application in IDCS

4-4

7. This dialog takes the following values:

App Name is 2-100 characters and will be used as the name in IDCS. Provide unique
application name.

Description is a detailed description of the application.

Scope: <Custom environment-specific scope>

The scope pattern that is used in the RICS IDCS app creation template is
rgbu:rics:<SERVICETYPE>-<ENVIRONMENT> where SERVICETYPE is RICS and
ENVIRONMENT is the environment type (STG, PRD, UAT, DEV1, DEV2, and so on).

For example:

"scope": "rgbu:rics:RICS-PRD""scope": "rgbu:rics:RICS-STG"

Chapter 4
Create OAuth2 Client Application in IDCS

4-5

8. When the application is created, another dialog will open to show the client ID and client
secret of the new application. These values should be copied down to a safe location, as
they will only be shown once. Retail Home cannot retrieve the credentials again after the
dialog is closed.

9. Client ID and Client Secret from previous step will be used for generating access token.

Sample code for generating Access Token:

clientId=RICS_TEST_APPID
clientSecret=998e1e1d-f146-45a5-a9a1-99785e3ebf43
idcsUrl=https://idcs-234e8f7334564936aa0ed93f2c39e9ca.identity.pint.oc9qadev.com
scope=rgbu:rics:RICS-STG99
ec=$(echo -n "$clientId:$clientSecret" | base64 -w 0)

AccessToken=$(curl -iv \
-H "Authorization: Basic $ec" \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
--request POST $idcsUrl/oauth2/v1/token \
-d "grant_type=client_credentials&scope=$scope" | grep -o -P '(?
<=access_token":").*(?=","token_type)')

echo $AccessToken

10. Now service call can be made by passing along the access token generated in previous
step.

Here is sample curl command with Bearer token and rib-ext publisher ping

ribExtServiceUrl=https://rex.retail.us-phoenix-1.ocs.oc-test.com:443/rgbu-rex-eit-
stg99-rics/rib-ext-services-web/resources/publisher/ping
curl -ivkL --noproxy '*' -H "Authorization: Bearer $AccessToken" -H "Content-Type:
application/xml" -X GET $ri-bExtServiceUrl

Sample response

{"message": "ping() was called with input String of: hello"}
11. Publishing a message using access token.

Here is sample curl for publishing a message

Chapter 4
Create OAuth2 Client Application in IDCS

4-6

ribExtServiceUrl=https://rex.retail.us-phoenix-1.ocs.oc-test.com:443/rgbu-rex-eit-
stg99-rics/rib-ext-services-web/resources/publisher/publish
curl -ivkL --noproxy '*' -H "Authorization: Bearer $AccessToken" -H "Content-Type:
application/xml" -X POST $ribExtServiceUrl --data '<v1:ApplicationMessages
xmlns:v1="http://www.oracle.com/retail/integration/rib/ApplicationMessages/v1">
<v1:ApplicationMessage>
<v1:family>InvAdjust</v1:family>
<v1:type>InvAdjustCre</v1:type>
<v1:payloadXml><InvAdjustDesc xmlns="http://www.oracle.com/retail/
integration/base/bo/InvAdjustDesc/v1" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
xsi:schemaLocation="http://www.oracle.com/retail/integration/base/bo/
InvAdjustDesc/v1
http://www.oracle.com/retail/integration/base/bo/InvAdjustDesc/v1/
InvAdjustDesc.xsd"
;><dc_dest_id>DC_ES</
dc_dest_id><InvAdjustDtl><item_id>Aline</
item_id><adjustment_reason_code>stri</
adjustment_reason_code><unit_qty>22.4</unit_qty>
;<transshipment_nbr>ss</transshipment_nbr><from_disposition>ss</
from_disposition><to_disposition>sss</
to_disposition><from_trouble_code>sss</from_trouble_code>
<to_trouble_code>ss</to_trouble_code><from_wip_code>aaa</
from_wip_code><to_wip_code>sss</
to_wip_code><transaction_code>4</
transaction_code><user_id>TestUser</user_id>
<create_date>1999-10-23T20:27:56.32</
create_date><po_nbr>PratapOrd96</po_nbr><doc_type>P</
doc_type><aux_reason_code>string</aux_reason_code>
<weight>12.4</weight><weight_uom>smn;</
weight_uom><unit_cost>20.4</
unit_cost><InvAdjustUin><uin>123</uin>
<status>4</status></InvAdjustUin></InvAdjustDtl></
InvAdjustDesc></v1:payloadXml>
</v1:ApplicationMessage>
</v1:ApplicationMessages>'

Sample response

{"message": "Publish done"}

External Application as a Subscriber (rest-app)
For an external application to consume the message from the RIB's JMS on cloud, it has to
host the Injector Service. Injector Service is a ReST webservice that is made available as a
pluggable jar.

A pluggable jar is provided which contains all the wrapper classes to help in implementing
injector service. rib-injector-services-web war is the pluggable jar which can be included into
the external application deployable file for example, ext-app.ear/lib. Once pluggable jar is
added, endpoint for injector service will be exposed as follows:

http://<external-app-host>:<port>/ rib-injector-services-web/resources/injector/inject

Pluggable jar is provided for reference however customer can choose to write their own
injector service by adhering to REST service contract detailed in next section.

Chapter 4
External Application as a Subscriber (rest-app)

4-7

Note:

For information on pluggable jar, see the Client Connector for Oracle Retail
Integration Cloud Service 25.0.101.0 (Patch) available on My Oracle Support.

How to implement Injector Service (Service Contract) using
ReST

Here is the Rest service contract detail:

1. Keep the path as Injector/inject.

@Path("/injector")
2. Use POST for this service. As the input message object itself has identifier (message type-

CRE/MOD) they don't need to use the PUT/PATCH. they can use message type to build
the implementation logic.

@POST
@Path("/inject")
@Consumes({MediaType.APPLICATION_XML})

3. The input would be MediaType.APPLICATION_XML and the structure would be
'ApplicationMessage' object. (file attached for reference).

<xs:element name="ApplicationMessage">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="family" type="string25"/>
 <xs:element name="type" type="string30"/>
 <xs:element name="businessObjectId" type="string255" minOccurs="0"/>
 <xs:element ref="ApplicationMessageRoutingInfo" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="payloadXml" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

4. Customer can utilize the payload.properties file for validation of message family and type.

5. Return type should be JSON, see below example:

String message = "{\"message\": \"Inject successful.\"}";
return Response.ok(message, MediaType.APPLICATION_JSON).build();

6. For exception response customer needs to follow the structure of exceptionVO.

How to Secure Injector Service with Oauth2
Primary authentication mechanism in the cloud is OAuth2 using IDCS authenticator. RIB uses
IDCS OAuth2 for authentication of ReST calls both inbound and outbound (publisher/injector
restful services). Hence Injector service exposed by external service should be secured with
OAuth2. This chapters covers the key points that should be taken into consideration while
protecting the resources exposed by external application.

Prerequisites

• IDCS should be same as RICS.

Chapter 4
How to implement Injector Service (Service Contract) using ReST

4-8

• Use Client Credentials grant type with scope to provide access to resource.

• Following is the screen shot of a sample IDCS app with scope added

Note:

Follow IDCS documentation for detailed instruction on setup.

RIB-EXT Side of Configuration to Point to External Application
Below are the steps to point rib-ext to the correct injector service.

Chapter 4
RIB-EXT Side of Configuration to Point to External Application

4-9

Table 4-2

Category Step Comment

Access RIB
Admin GUI

Access the rib admin GUI at
https://<external-load-
balancer>/rib-ext-admin-gui

Log in with the admin user.

Chapter 4
RIB-EXT Side of Configuration to Point to External Application

4-10

Table 4-2 (Cont.)

Category Step Comment

Verify
Configuration
and update

Navigate to Manage
Configurations -> System
options
Search for and verify the
following:

1. destination.retail.appTyp
e: rest-app

2. Update the value for
InjectorService URL
(injector.service.endpoi
nt.url). URL should point
to inject service
provided by external
application. (e.g.-
https://<host:port>/rib-
injector-services-web/
resources/injector/inject

3. Update the value for
Ping Service URL
(injector.service.endpoi
nt.ping.url). URL should
point to ping service
provided by external
application. (e.g.-
https://<host:port>/rib-
injector-services-web/
resources/injector/ping).

4. For 3rd party integration
where the injector
service is hosted on
OIC/on-prem, the below
system property in
JAVA_OPTIONS needs
to be added
oauth2.url.path.wo.vrc=
<context root of injector
service>
Important: context root
of injector service is any
word in injector service
url which can identify
service uniquely.
Eg-
For the following injector
service url https://
<external-lb>/ external-
injector-services/
external/ribinjector/
inject.

Chapter 4
RIB-EXT Side of Configuration to Point to External Application

4-11

Table 4-2 (Cont.)

Category Step Comment

Java_option would be

oauth2.url.path.wo.vrc=r
ibinjector

5. Security Policy
(injector.service.security
.policyname) : policyA

6. IDCS OAuth Server
URL
(oauth2.default.authoriz
ationServerUrl): https://
<idcs-tenant>/
oauth2/v1/token

7. OAuth2 Token Scope:
Default (i.e.-
urn:opc:idm:__myscope
s__). Update with
external application
provided scope.

Supported
Grant Types for
OAuth2

Only client credential grant
type is supported. Follow
steps below.

Update
username and
password to
empty

Navigate to Manage
Configurations - > Injector
Service

Update details.

1. Choose "rib-
(app)_ws_security_user
-name-alias" as
Secured User Alias.

2. Update the Secured
User Name with a blank
userName.

3. Update the Secured
User Password with a
blank password.

4. Click on Save.

Chapter 4
RIB-EXT Side of Configuration to Point to External Application

4-12

Table 4-2 (Cont.)

Category Step Comment

Update
ClientID/Secret

Navigate to Manage
Configurations - > Injector
Service

Update details

1. Choose "rib-
(app)_oauth2_applicatio
n_client_user-name-
alias" as Secured User
Alias.

2. Update the Secured
User Name with
clientID.

3. Update the Secured
User Password with
clientSecret.

Ping Test Navigate to Manage
Configurations -> RIB
Service Monitor

1. Click on ping

2. It should return success

How to verify
provided
injector service
details are
correct

Verify if the provided injector
service URL and credentials
are correct.

Execute the following curl commands

ClientId=56c7eb72f11b43bb98bf2570fa2353eb
ClientSecret=bb18aa22-4bb4-41d1-9ed4-
fea276651e28
IDCSUrl=https://
idcs-24e4baae56764e91be371e6a2060d66e.identity.c
9dev2.oc9qadev.com
AccessToken=$(curl -i -X POST \ --
user $ClientId:$ClientSecret \ -H "Content-
Type: applica-tion/x-www-form-
urlencoded;charset=UTF-8" \
$IDCSUrl/oauth2/v1/token \ -d
"grant_type=client_credentials&scope=urn:opc:idm
:__myscopes__" | grep -o -P '(?
<=access_token":").*(?=","token_type)')
ribExtServiceUrl=https://rgbu-phx-
lbext-351.us.oracle.com/rib-injector-services-
web/resources/injector/ping
curl -ivkL --noproxy '*' -H "Authorization:
Bearer $AccessToken" -H "Content-Type: applica-
tion/xml" -X GET $ribExtServiceUrl

Note:

A Reference implementation for injector service is provided, See Reference
Implementation of Injector Service Using Tomcat for details.

Chapter 4
RIB-EXT Side of Configuration to Point to External Application

4-13

Error Handling
The RIB infrastructure provides a mechanism called RIB error hospital to handle and manage
the error messages. When the publishing or subscription of a message fails in the rib-ext for
some reason, it lands in error hospital with a reason code. The retry adapters in the rib-ext
application are responsible for retrying the messages in error hospital.

Oracle RIB Hospital Administration (RIHA) is a Weblogic application that allows the
management of messages in error hospital. Some of the RIHA operations include:

• Viewing error messages

• Editing error messages

• Retrying error messages

• Stopping error messages

For more information, see the Oracle Retail Integration Bus Hospital Administration Guide.

Chapter 4
RIB-EXT Side of Configuration to Point to External Application

4-14

5
Reference Implementation of Injector Service
Using Tomcat

Introduction
For an external application to consume the message from the RIB's JMS on cloud, it has to
host the Injector Service. Subscriber adapters in rib-ext makes a ReST call to Injector service
to send the message to the external application. This document contains detailed information
that can be used for implementing Rest inject service.

Note:

Tomcat is the only certified application server here.

Important Notes

• Provided rib-injector-service war (inside RibExtConnectorServiceIm-
plPak25.0.000_eng_ga.zip) runs on tomcat and has all the dependencies for rib in order to
consume the message as individual application using RIB-EXT flow.

• No container-managed transaction capability is required.

• Authentication and authorization will be adjusted by the consuming application by editing
web.xml to match their own requirements.

• rib-injector-services-light-web war works as an standalone utility, this war is provided as a
reference implementation for injector service. After the war is deployed, injector service will
be made available as ReST End Point. Service contract WADL should be accessible at
http://<app-host>:<port>/ rib-injector-services-web/resources/application.wadl.

• This pluggable war can be added in to the external application deployable file (for example,
ext-app.ear/lib). After deployment, Injector service should be available for access at the
following:

http://<external-app-host>:<port>/ rib-injector-services-web/resources/injector/inject

• The customer can choose to write their own injector service implementation without using
rib-injector-services war as long as they adhere to the service contract for Injector. Detailed
information is documented in How to implement Injector Service (Service Contract) using
ReST.

• The external application has to write their own implementation logic for the injectors.
However, an implementation jar (injector-sample-impl-25.0.000.jar) is provided for
reference. Customers can write custom implementation logic inside injector-sample-
impl-25.0.000.jar or can choose to implement on their own.

5-1

Step-by-step Guide for Testing rib-injector-service war on Tomcat
1. Copy jersey jars into <tomcat>/lib folder. App server used here is tomcat which is a web

container and doesn't have Jersey libraries packaged inside.

cp <ribExtConnectorPak>/Rest-Injector/rib-injector-services-web/jersey-jars
<tomcat>/lib

Note:

Jersey jars are packaged inside zip.

Note:

Jars packaged here are for reference purpose. You may use different versions of
Jersey jars that may be compatible with external application.

Note:

application-messages-bo-254.0.000.jar is added with jersey zip in order to make
this available inside <tomcat>/lib. This jar contains request/response business
object and is needed for injector service to work.

2. Deploy the rib-injector-services-light-web-25.0.000.war into tomcat by using the following
command.

Note:

Change the name to remove the version number and the word light.

cp rib-injector-services-light-web-25.0.000.war <tomcat>/webapps/rib-injector-
services-web.war

3. Start the application if not already started.

4. Copy injector-sample-impl-25.0.000.jar inside <tomcat-apache>\webapps\rib-injector-
services-web\WEB-INF\lib

5. Test ping. Ping should return response as "Got hello from server.".

 curl -ivl4 --user tomcat:tomcat1 http://localhost:8080/rib-injector-services-web/
resources/injector/ping

6. Test inject call using a sample payload data. Create a file called app-message.data with
the con-tent as follows.

<ApplicationMessage xmlns="http://www.oracle.com/retail/integration/rib/
ApplicationMessages/v1"><family>WH</family><type>WHCRE</type><payloadXml><WHDesc
xmlns="http://www.oracle.com/retail/integration/base/bo/WHDesc/

Chapter 5
Step-by-step Guide for Testing rib-injector-service war on Tomcat

5-2

v1"<wh>10</wh><wh_name>g</wh_name></WHDesc></
payloadXml></ApplicationMessage>

7. Call inject with the above (app-message.data) data. For a successful inject call, response
should be "Inject successful." With the implementation jar provided here, message will get
written to log.

curl -ivl4 --user tomcat:tomcat1 -H 'Content-Type: application/xml' -d @app-
message.data http://localhost:8080/rib-injector-services-web/resources/injector/
inject

Approach for Writing Custom Implementation for Injectors
injector-sample-impl-25.0.000.jar is provided as reference implementation for injector service
however customer can choose to write their own custom implementation logic. Steps listed
here will help customer to write their own injector classes.

1. To start with implementation, create a file with name injectors.xml. This file contains
mapping for the injector implementation class, which will be looked for the given family and
msgType. InjectorFactory looks for the injectors.xml, this should be present in classpath.
Look at injec-tor-sample-impl-25.0.000.jar/retail/injectors.xml for reference.

Sample Code: For Diffs family and DiffCre message type, injector implementation class is
Diffs

<injector_config>
<family name="Diffs">
<injector class="oracle.retail.rib.javaee.api.stubs.injector.file.impl.Diffs">
<type>DIFFCRE</type>
</injector>
<injector class="oracle.retail.rib.javaee.api.stubs.injector.file.impl.Diffs">
<type>DIFFDEL</type>
</injector>
<injector class="oracle.retail.rib.javaee.api.stubs.injector.file.impl.Diffs">
<type>DIFFMOD</type>
</injector>
</family>
..
.
</injector_config>

2. In the given jar, all the injectors class extends SampleInjector. This is the class where logic
for handling the payload will be written. You can write your own implementation class and
Diffs can extend that class.

Sample Code:

public final class Diffs extends SampleInjector{
..
}

3. Custom Implementation class should implement injector interface (contract for inject
method).

Sample code:

import oracle.retail.rib.common.exception.RetailBusinessException;
import oracle.retail.rib.common.exception.RetailSystemException;
import com.oracle.retail.integration.payload.Payload;
import com.retek.rib.binding.injector.Injector;
public class SampleInjector implements Injector {

Chapter 5
Approach for Writing Custom Implementation for Injectors

5-3

// dummy impl for Injector
public void inject(String type, Payload payload)
throws RetailBusinessException, RetailSystemException {
// Write logic here
System.out.println("Inject executed successfully...");
LOG.info("Inject executed successfully...");
}
}

4. Copy custom implementation jar in-side <tomcat-apache>\webapps\rib-injector-services-
web\WEB-INF\lib for it to work.

Chapter 5
Approach for Writing Custom Implementation for Injectors

5-4

6
Implementing BDI-EXT

BDI External Job Admin as Receiver
For example, sender application is RMS and receiver is a third party application. There will be
external application for the integration to happen as External edge application. External edge
application organizes all the importer jobs. Ex-ternal edge application provides GUI and CLI
tool to manage jobs like start/stop/restart jobs.

The External Importer Job imports data set for an Interface Module from Inbound Interface
Tables into application specific transactional tables. Importer jobs are application specific jobs.

External Importer Job
The tables BDI_IMPRTR_IFACE_MOD_DATA_CTL and BDI_IMPORTER_IFACE_ DATA_CTL
act as a handshake between the receiver service and importer jobs. When the Receiver
Service completes processing a data set successfully, it creates an entry in these ta-bles.

An entry in the table BDI_IMPRTR_IFACE_MOD_DATA_CTL indicates to the

Importer Job that a data set is ready to be imported.

The Importer job imports a data set for an Interface Module from inbound tables into
application specific transactional tables. Importer jobs are application (for example SIM/RPAS/
EXTERNAL) specific jobs. It uses the Importer Data Control Tables to identify whether a data
set is ready for import or not.

Figure 6-1 External importer Job

For each required interface, implement the logic in the "import" function of the "<Inter-
faceModule_Name>_Importer_Body.sql" file as in the indicated section below. The sql file is
located in <bdi-edge-external-job-home>/setup-data/ddl/ folder.

6-1

External Importer

1. Importer job is run from App B EXTERNAL Job Admin application through REST or UI.

2. Importer job checks for data sets in importer data control tables.

3. If data set is available for import, importer job downloads data from inbound table.

4. Importer job loads data to App B EXTERNAL staging tables.

Configure External Job Admin as Receiver in the Process Flow
System options properties in bdi-process-flow-admin-deployment-env-info.json allow you to
configure the available destination apps and appsInScope.

allAvailableDestinationApps property mentions all the applications available as destination.

The appsInScope property mentions the applications that are in scope. Add an external
application in the appsInScope property to make it available as a receiver.

"SystemOptions":[
{"name":"allAvailableDestinationApps", "value": "SIM, RPAS, EXTERNAL, OCDS, RFI, RMS"},
{"name":"appsInScope", "value": "SIM, RPAS, OCDS, RFI, EXTERNAL"}

External BDI Process Flow
A process flow is a generic concept and is not limited to BDI. However all the

out-of-box process flows are for data transfers from a retail application to one or more retail
applications.

There are process flow dsl files for each interface from RMS to external and External to other
applications which have all the activities for the particular interface as depicted in below
pictures. Scheduler will trigger the process flow to execute the activities within the dsl file.

Chapter 6
Configure External Job Admin as Receiver in the Process Flow

6-2

Process flows are available out of box to move data end to end. The only thing to implement is
extractor or importer packages or both.

Figure 6-2 Merchandising to External Process Flow

Chapter 6
External BDI Process Flow

6-3

7
Monitoring at Run Time

RIB runtime monitoring enables you to monitor the state and volume of messages running
through the RIB system. It also provides the status of various components of the system. The
current RIB system and message flows are interrogated transparently to collect useful metrics
that immensely enable business users and system administrators to review the state and
health of the system. The monitoring enhancement collects application and adapter statuses,
message event counts, transaction counts, error hospital statistics, and server resource
utilization statistics.

The following graphic describes the architecture of the system:

Figure 7-1 RIB Monitoring ARchitecture

Instance and Central Repository
The monitoring metric data is collected in the rib-<app> instances. The data collected from all
rib-<app> instances are consolidated in the central location. Both the collection and
consolidation server instances store the data in in-memory repositories. Various pieces of data
are collected at different times based on the nature of data and performance considerations. At
any point of time, the repository data shows a complete picture of the state as of the last data
collection time.

Monitoring Data as XML
The collected data is reported in a defined format. The monitoring data is exchanged between
components that produce and consume in XML format. rib-<app> instances produce the data
and the central repository and Retail Integration console (RIC) (or third-party tools) consume
the monitoring data.

7-1

Push Versus Pull
Sometimes, data is collected by scheduled background jobs. Message related data is collected
asynchronously as the messages are consumed/published by adapters. The collected metric
data is kept in a local repository in the rib-<app> instance. This information is pushed to a
central repository (in memory) on a scheduled frequency (every two minutes). If any rib-<app>
is down, the central repository does not receive data from that instance. The Central repository
does not poll for data nor pull data from the rib-<app> instances. This way the central
repository has no dependency on the rib-<app>s.

While each rib-<app> has its own monitoring data, the central repository holds the
consolidated data from all the rib-<app> instances.

Service Interfaces
The monitoring data in the rib-<app> instances and the central repository are made available
to RIB monitoring system as well as the third-party tools via SOAP web services running in the
respective server instances.

What is an Event?
RIB messages flow from the publishing apps to subscribing apps, TAFRs, and error hospital in
the RIB system. Sometimes, messages can be rolled back due to application or system errors.
Each attempted delivery, whether successful or not, is called an Event. The RIB monitoring
system counts the events which include both successful and failed delivery of messages. Also,
any changes in the adapter status, error hospital data, server resource utilization etc. is
considered an event.

There are two types of events - Adapter Events and Application Events.

How are Event Count and Messages Count Related?
Event count includes both successful and failed message counts. There is no reliable way of
getting the exact successful message count without affecting the performance of the system.
Hence, the RIB monitoring system collects event counts instead of message counts. For the
most part, they are similar, but not exact.

Adapter Events
Adapter events are adapter level events like message flows (subscription, publishing) and
adapter statuses. In the RIB monitoring system, message related adapter events are collected
in real-time. Adapter status events are collected by scheduled background threads.

Application Events
Application events are application level events like server resource (CPU, Memory) utilization,
application status, error hospital data, etc. These metrics are collected by scheduled
background threads.

Chapter 7
Push Versus Pull

7-2

Event Collection Schedule
Various events in the system are collected at various times.

Note:

There is a difference between the collection time and reporting time. For example,
even though the event counts are collected in real-time, they are not available in the
central repository immediately.

The following is a complete schedule of collection times:

Table 7-1 Schedule of Collection Times

Metric Event Type Schedule

Event Count Adapter Real time

Adapter Execution Time Adapter Real time

API Execution Time Adapter Real time

Adapter Status Adapter Every three minutes

Application Status Application At startup

Error Hospital Statistics Application Every five minutes

CPU Utilization Application Every five minutes

Memory Utilization Application Every five minutes

Publisher Versus Subscriber Events
The publishing event does not collect certain metrics, like the API Execution Time, since it is
not possible to find out the API execution time once the message is published. It collects only
the Adapter Execution time, which is the time taken to publish the message.

TAFR Instrumentation
TAFRs are monitored for collecting various time metrics. Measuring the time for the TAFR API
execution begins as soon as the TAFR starts transforming the inbound message to an
outbound message and ends when the message get transformed. Collecting Adapter
Execution Time begins as soon as the message is available for the rib-tafr to transform and
ends after routing the message to the destination topic.

Data Retention
The monitoring data is collected in rib-<app> repositories and a central repository in the
functional artifact app. These are in-memory repositories. The information in the repositories is
lost when the application is restarted. Additionally, the repositories are not purged, so the data
collects as long as the applications run. The monitoring data is collected in hourly buckets.
There can only be a maximum of 24 records per day. This strategy reduces the chances of the
system going out of memory.

Chapter 7
Event Collection Schedule

7-3

Metric Definitions
The following sections describe the metrics that are collected by the system.

Event Counts
When a message is subscribed or published, an event is generated to increment the event
count for the hour of the day.

Adapter Execution Time
For a subscriber adapter, the time is noted as soon as the message arrives. At the end of the
onMessage method the difference is calculated. An Adapter Execution Time event is created,
which is used (if applicable) to set the minimum, maximum, and last adapter execution time for
the hour of the day.

For a publishing adapter, the time is noted at the beginning and end of the publishing method,
and the difference is calculated. An Adapter Execution Time event is created, which is used (if
applicable) to set the minimum, maximum, and last adapter execution time for the hour of the
day.

API Execution Time
For a subscriber adapter, the time is noted around the API call and the difference is calculated.
An API Execution Time event is created, which is used (if applicable) to set the minimum,
maximum, and last API execution time for the hour of the day.

For publishing adapter, there is no API execution time.

Adapter Status
A scheduled background job collects the Adapter status and updates the local repository. If the
RIB application is down, since the job cannot run the status of the adapter in the central
repository will be the last known status until the cache expires. After the cache expiry it will be
"Unknown' until the status is reset by the rib-<app>.

Commits and Rollbacks
The commit and rollback count is the same information maintained by WebLogic server for the
EJBs transactions. RIB monitoring system interrogates the JMX MBeans for the commit and
rollback counts and updates the local repository. A message flow may result in more than one
commit and rollback, depending on various scenarios of failures.

Error Hospital Metrics
Error hospital data for the RIB application is queried by a scheduled background thread and
the following information is collected:

• Total Messages in Error Hospital: Total number of messages in the Error Hospital for the
application

• Total Messages in Error Hospital due to dependency: Total number of dependent
messages in the Error Hospital

Chapter 7
Metric Definitions

7-4

• Message Family: Message family of the family-vice statistics

• Adapter class Definition: Adapter information for the message family

• Error count: Number of error messages for the message family

• Dependency count: Number of the dependent messages for the message family

RIB Application Status
Status of the RIB application, e.g., RUNNING, STOPPED etc.

Chapter 7
Metric Definitions

7-5

A
Sample Files

Sample Application.wadl File
<?xml version="1.0" encoding="ISO-8859-1"?>
<ns0:application xmlns:ns0="http://wadl.dev.java.net/2009/02">
 <ns0:doc ns1:generatedBy="Jersey: 2.22.4 2016-11-30 13:33:53" xmlns:ns1="http://
jersey.java.net/"/>
 <ns0:doc ns2:hint="This is simplified WADL with user and core resources only. To get
full WADL with extended resources use the query parameter detail. Link: http://
abc.us.oracle.com:8003/rib-injector-services-web/resources/application.wadl?detail=true"
xmlns:ns2="http://jersey.java.net/"/>
 <ns0:grammars>
 <ns0:include href="application.wadl/xsd0.xsd">
 <ns0:doc title="Generated" xml:lang="en"/>
 </ns0:include>
 </ns0:grammars>
 <ns0:resources base="http://abc.us.oracle.com:8003/rib-injector-services-web/
resources/">
 <ns0:resource path="discover">
 <ns0:method id="discoverAllResources" name="GET">
 <ns0:response>
 <ns0:representation mediaType="application/json"/>
 </ns0:response>
 </ns0:method>
 </ns0:resource>
 <ns0:resource path="/injector">
 <ns0:resource path="/inject">
 <ns0:method id="injectMessage" name="POST">
 <ns0:request>
 <ns0:representation mediaType="application/xml"
element="ns3:ApplicationMessage" xmlns:ns3="http://www.oracle.com/retail/integration/rib/
ApplicationMessages/v1"/>
 </ns0:request>
 <ns0:response>
 <ns0:representation mediaType="*/*"/>
 </ns0:response>
 </ns0:method>
 </ns0:resource>
 <ns0:resource path="/ping">
 <ns0:method id="ping" name="GET">
 <ns0:request>
 <ns0:param name="pingMessage" default="hello" type="xsd:string"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" style="query"/>
 </ns0:request>
 <ns0:response>
 <ns0:representation mediaType="application/json"/>
 </ns0:response>
 </ns0:method>
 </ns0:resource>
 </ns0:resource>
 </ns0:resources>
</ns0:application>

A-1

Sample Resource Class
package com.oracle.retail.rib.integration.services.applicationmessageinjector;

import javax.ejb.EJB;
import javax.ejb.Stateless;
import javax.ws.rs.Consumes;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import com.oracle.retail.integration.rib.applicationmessages.v1.*;
import com.retek.rib.binding.exception.InjectorException;
import com.retek.rib.binding.injector.Injector;
import com.retek.rib.binding.injector.InjectorFactory;
import com.retek.rib.domain.payload.PayloadFactory;
import javax.ws.rs.DefaultValue;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.Response;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import com.oracle.retail.integration.payload.Payload;

@Stateless
@Path("/injector")

public class ApplicationMessageInjectorResource {

 private static Log LOG =
 LogFactory.getLog(ApplicationMessageInjectorResource.class);

 @GET
 @Path("/ping")
 @Produces({MediaType.APPLICATION_JSON})
 public Response ping(@DefaultValue("hello") @QueryParam("pingMessage") String
pingMessage){
 String message = "{\"message\": \"Got " + pingMessage + " from server.\"}";
 return Response.ok(message, MediaType.APPLICATION_JSON).build();
 }

 @POST
 @Path("/inject")
 @Consumes({MediaType.APPLICATION_XML})
 public Response injectMessage(ApplicationMessage applicationMessage) throws
InjectorException{

 verifyNotNull(applicationMessage, "applicationMessage");

 invokeInjectForMessageType(applicationMessage.getFamily(),
applicationMessage.getType(), applicationMessage.getBusinessObjectId(),
applicationMessage.getPayloadXml());

 String message = "{\"message\": \"Inject successful.\"}";
 return Response.ok(message, MediaType.APPLICATION_JSON).build();
 }

 private void invokeInjectForMessageType(String family, String messageType, String

Appendix A
Sample Resource Class

A-2

businessObjectId, String retailPayload)throws InjectorException{

 try {

 verifyNotNull(family, "family");
 verifyNotNull(messageType, "messageType");
 verifyNotNull(retailPayload, "retailPayload");

 Payload payload = PayloadFactory.unmarshalPayload(family, messageType,
retailPayload);

 Injector injector = InjectorFactory.getInstance().getInjector(
 ?? family, messageType);
 if (injector == null) {
 final String eMsg = "Unknown message"
 + " family/type: " + family + "/" + messageType;
 LOG.error(eMsg);
 throw new InjectorException(eMsg);

 }
 if(LOG.isDebugEnabled()){
 LOG.debug("Received inject call for family("+family+")
type("+messageType+") businessObjectId("+businessObjectId+") with payload:\n" +
payload.toString());
 }

 injector.inject(messageType, businessObjectId, payload);
 LOG.debug("Inject call for family("+family+") type("+messageType+")
businessObjectId("+businessObjectId+") return.");

 ?? } catch (InjectorException e) {
 final String eMsg = "Exception calling inject.";
 LOG.error(eMsg, e);
 throw e;
 }catch (Exception re) {
 final String eMsg = "Exception calling inject.";
 LOG.error(eMsg, re);
 throw new RuntimeException(eMsg, re);
 }

 }

 private void verifyNotNull(Object field, String fieldName){
 if(field == null){
 final String eMsg = fieldName + " cannot be null.";
 LOG.error(eMsg);
 throw new IllegalArgumentException(eMsg);
 }
 }

}

ApplicationMessages.xsd
<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.oracle.com/retail/integration/rib/ApplicationMessages/v1"
 xmlns:rib="http://www.oracle.com/retail/integration/rib/
ApplicationMessages/v1"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"

Appendix A
ApplicationMessages.xsd

A-3

 jaxb:extensionBindingPrefixes="xjc"
 jaxb:version="2.0"
 targetNamespace="http://www.oracle.com/retail/integration/rib/
ApplicationMessages/v1"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:annotation>
 <xs:appinfo>

 <jaxb:globalBindings
 fixedAttributeAsConstantProperty="false"
 choiceContentProperty="true"
 enableFailFastCheck="true"
 generateIsSetMethod="true "
 enableValidation="true">
 <!--xjc:javaType name="java.util.Calendar"
 xmlType="xs:dateTime"

adapter="com.oracle.retail.integration.rib.rib_integration_runtime_info.datatypeadapter.C
alendarAdapter"/ -->
 <jaxb:serializable uid="1"/>
 </jaxb:globalBindings>

 <!--jaxb:schemaBindings>
 <jaxb:package
name="com.oracle.retail.integration.rib.ribintegrationruntimeinfo" />
 </jaxb:schemaBindings-->
 </xs:appinfo>
 </xs:annotation>

 <xs:element name="ApplicationMessages">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ApplicationMessage" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ApplicationMessage">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="family" type="string25"/>
 <xs:element name="type" type="string30"/>
 <xs:element name="businessObjectId" type="string255" minOccurs="0"/>
 <xs:element ref="ApplicationMessageRoutingInfo" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="payloadXml" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ApplicationMessageRoutingInfo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="string25"/>
 <xs:element name="value" type="string25"/>
 <xs:element ref="ApplicationMessageRoutingInfoDetail" minOccurs="0"
maxOccurs="2"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Appendix A
ApplicationMessages.xsd

A-4

 <xs:element name="ApplicationMessageRoutingInfoDetail">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="string25"/>
 <xs:element name="value" type="string300"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:simpleType name="string255">
 <xs:restriction base="xs:string">
 <xs:maxLength value="255" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="string25">
 <xs:restriction base="xs:string">
 <xs:maxLength value="25" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="string30">
 <xs:restriction base="xs:string">
 <xs:maxLength value="30" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="string300">
 <xs:restriction base="xs:string">
 <xs:maxLength value="300" />
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

Rest Publisher Pseudo Code
//Import required classes
import com.oracle.retail.integration.base.bo.fulfilorddesc.v1.*
import com.oracle.retail.integration.payload.Payload
import com.retek.rib.domain.payload.PayloadFactory
import com.oracle.retail.integration.rib.applicationmessages.v1.ApplicationMessage;
import com.oracle.retail.integration.rib.applicationmessages.v1.ApplicationMessages;
//Create new instance of your FulfilOrdDesc object and populate it.
FulfilOrdDesc fulfilOrdDesc = new FulfilOrdDesc()
fulfilOrdDesc.setCustomerOrderNo(123)
//Get a string version of the payload
String payloadXml = PayloadFactory.marshalPayload(fulfilOrdDesc)

//Prepare the header message section
ApplicationMessages ams = new ApplicationMessages();
ApplicationMessage am = new ApplicationMessage();
am.setFamily("FULFILORD");
am.setType("FULFILORDPOCRE");
am.setBusinessObjectId("abc"); //optional
//Set the payload xml into the message
am.setPayloadXml(payloadXml);
ams.getApplicationMessage().add(am);

//Call rest url with ams

Appendix A
Rest Publisher Pseudo Code

A-5

String ribPublisherRestUrl = "http://<host>:<port>/rib-ext-services-web/resources/
publisher/publish"

Client client = ClientBuilder.newClient();
WebTarget webTarget = client.target(ribPublisherRestUrl);

String userName = "user";
char[] password = "passed";

String usernameAndPassword = userName + ":" + new String(password);
String authorizationHeaderValue = "Basic " +
java.util.Base64.getEncoder().encodeToString(usernameAndPassword.getBytes());

Invocation.Builder invocationBuilder = webTarget.request().header("Authorization",
authorizationHeaderValue);

Response response = invocationBuilder.post(Entity.entity(ams,
MediaType.APPLICATION_XML));

log.debug("Publish call response(" + response + ").");

payload.properties
ASNIN.ASNINCRE=com.oracle.retail.integration.base.bo.asnindesc.v1.ASNInDesc
ASNIN.ASNINDEL=com.oracle.retail.integration.base.bo.asninref.v1.ASNInRef
ASNIN.ASNINMOD=com.oracle.retail.integration.base.bo.asnindesc.v1.ASNInDesc

WH.WHCRE=com.oracle.retail.integration.base.bo.whdesc.v1.WHDesc
WH.WHDEL=com.oracle.retail.integration.base.bo.whref.v1.WHRef
WH.WHMOD=com.oracle.retail.integration.base.bo.whdesc.v1.WHDesc

Appendix A
payload.properties

A-6

Sample Request/Response for ReST Injector Service
Table A-1 Sample Request/Response for ReST Injector Service

End
Point

Method Media
Type

User/
Password

Request xml Response Comme
nts

http://
localhos
t:7001/
rib-
injector-
services
-web/
resource
s/
injector/
inject

POST applicati
on/xml

Request
are xml
only and
respons
e are
json
only.

A valid
user that
is part of
Integration
Group.

<ApplicationMessage
xmlns="http://
www.oracle.com/
retail/
integration/rib/
ApplicationMessages/
v1">
 <family>Vendor</
family>
 <type>VendorCre</
type>

<businessObjectId>101
11011</
businessObjectId>

<payloadXml><Vendo
rDesc xmlns="http://
www.oracle.com/
retail/integration/
base/bo/
VendorDesc/v1"
xmlns:xsi="http://
www.w3.org/2001/
XMLSchema-
instance"><ns1:
VendorHdrDesc
xmlns:ns1="http://
www.oracle.com/
retail/integration/
base/bo/
VendorHdrDesc/v1"
><ns1:supplier&
gt;10111011</
ns1:supplier><n
s1:sup_name>suppli
er site

HTTP/1.1 200 OK
Date: Thu, 10 May
2018 16:33:11 GMT
Content-Length: 33
Content-Type:
application/json
X-ORACLE-DMS-ECID:
4a8e5d3f-1aae-43d7-
ba84-
c6b9c60563c7-00000039
X-ORACLE-DMS-RID: 0
Set-Cookie: JSES-
SIONID=hsFK5jW4B1Qtip
C9zhng--
or1WL7ywxCuxsJeVwdgPp
nv6oNUnde!233126712;
path=/; HttpOnly
{"message": "In-ject
successful."}

Success

Appendix A
Sample Request/Response for ReST Injector Service

A-7

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End
Point

Method Media
Type

User/
Password

Request xml Response Comme
nts

</
ns1:sup_name><n
s1:contact_name>G
Srilekha</
ns1:contact_name>&
lt;ns1:contact_phone&
gt;1234567</
ns1:contact_phone>
<ns1:sup_status>
;A</
ns1:sup_status><
;ns1:qc_ind>N</
ns1:qc_ind><ns1
:vc_ind>N</
ns1:vc_ind><ns1
:currency_code>PLN
</
ns1:currency_code>
<ns1:terms>Net_
07</
ns1:terms><ns1:
freight_terms>F_01
</
ns1:freight_terms>
<ns1:ret_allow_ind
>N</
ns1:ret_allow_ind>
<ns1:ret_auth_req&
gt;Y</
ns1:ret_auth_req>&
lt;ns1:edi_po_ind>
N</
ns1:edi_po_ind><
;ns1:edi_po_chg>N&
lt;/
ns1:edi_po_chg><
;ns1:edi_po_confirm&g
t;N</
ns1:edi_po_confirm>
;<ns1:edi_

Appendix A
Sample Request/Response for ReST Injector Service

A-8

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End
Point

Method Media
Type

User/
Password

Request xml Response Comme
nts

asn>N</
ns1:edi_asn><ns
1:edi_supp_available_
ind>N</
ns1:edi_supp_availabl
e_ind><ns1:edi_
contract_ind>N<
/
ns1:edi_contract_ind&
gt;<ns1:edi_invc_i
nd>N</
ns1:edi_invc_ind>&
lt;ns1:cost_chg_pct_v
ar>0</
ns1:cost_chg_pct_var&
gt;<ns1:cost_chg_a
mt_var>0</
ns1:cost_chg_amt_var&
gt;<ns1:replen_app
roval_ind>N</
ns1:replen_approval_i
nd><ns1:settlem
ent_code>E</
ns1:settlement_code&g
t;<ns1:pre_mark_in
d>N</
ns1:pre_mark_ind>&
lt;ns1:auto_appr_invc
_ind>N</
ns1:auto_appr_invc_in
d><ns1:dbt_memo
_code>Y</
ns1:dbt_memo_code>
<ns1:freight_charg
e_ind>N</
ns1:freight_charge_in
d><ns1:auto_app
r_dbt_memo_ind>N&l
t;/
ns1:auto_appr_dbt_mem
o_ind><ns1:inv_
mgmt

Appendix A
Sample Request/Response for ReST Injector Service

A-9

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End
Point

Method Media
Type

User/
Password

Request xml Response Comme
nts

_lvl>S</
ns1:inv_mgmt_lvl>&
lt;ns1:backorder_ind&
gt;N</
ns1:backorder_ind>
<ns1:vat_region>
;1002</
ns1:vat_region><
;ns1:prepay_invc_ind&
gt;N</
ns1:prepay_invc_ind&g
t;<ns1:service_per
f_req_ind>N</
ns1:service_perf_req_
ind><ns1:addinv
c_gross_net
 >N</
ns1:addinvc_gross_net
><ns1:delivery_
policy>NEXT</
ns1:delivery_policy&g
t;<ns1:bracket_cos
ting_ind>N</
ns1:bracket_costing_i
nd><ns1:dsd_sup
plier_ind>N</
ns1:dsd_supplier_ind&
gt;<ns1:sup_qty_le
vel>CA</
ns1:sup_qty_level>
<ns1:supplier_pare
nt>1011101</
ns1:supplier_parent&g
t;<ns1:final_dest_
ind>N</
ns1:final_dest_ind>
;</
ns1:VenVendorHdrDesc&
gt;<ns1:VendorAddr
Desc

Appendix A
Sample Request/Response for ReST Injector Service

A-10

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End
Point

Method Media
Type

User/
Password

Request xml Response Comme
nts

xmlns:ns1="http://
www.oracle.com/
retail/integration/
base/bo/
VendorAddrDesc/v1"
><ns1:module>
;SUPP</
ns1:module><ns1
:key_value_1>10111
011</
ns1:key_value_1>&l
t;ns1:seq_no>1<
/
ns1:seq_no><ns1
:addr_type>01</
ns1:addr_type><
ns1:primary_addr_ind&
gt;Y</
ns1:primary_addr_ind&
gt;<ns1:add_1>3
/4/678</
ns1:add_1><ns1:
city>AE</
ns1:city><ns1:c
ountry_id>PL</
ns1:country_id><
;/
ns1:VendorAddrDesc>
;<ns1:VendorAddrDe
sc xmlns:ns1="http://
www.oracle.com/
retail/integration/
base/bo/
VendorAddrDesc/v1"
><ns1:module>
;SUPP</
ns1:module><ns1
:key_value_1>10111
011</
ns1:key_value_1>&l
t;ns1:seq_no>1<
/
ns1:seq_no><ns1
:addr_type>03</
ns1:addr_type><
ns1:primary_addr_ind&
gt;Y</
ns1:primary_addr_ind&
gt;<ns1:add_1>3
/4/678</
ns1:add_1><ns1:
city>AE</
ns1:city><ns1:c
ountry_id>PL</

Appendix A
Sample Request/Response for ReST Injector Service

A-11

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End
Point

Method Media
Type

User/
Password

Request xml Response Comme
nts

ns1:country_id><
;/
ns1:VendorAddrDesc>
;<ns1:VendorAddrDe
sc

xmlns:ns1="http://
www.oracle.com/
retail/integration/
base/bo/
VendorAddrDesc/v1"
><ns1:module>
;SUPP</
ns1:module><ns1
:key_value_1>10111
011</
ns1:key_value_1>&l
t;ns1:seq_no>1<
/
ns1:seq_no><ns1
:addr_type>04</
ns1:addr_type><
ns1:primary_addr_ind&
gt;Y</
ns1:primary_addr_ind&
gt;<ns1:add_1>3
/4/678</
ns1:add_1><ns1:
city>AE</
ns1:city><ns1:c
ountry_id>PL</
ns1:country_id><
;/
ns1:VendorAddrDesc>
;<ns1:VendorAddrDe
sc

Appendix A
Sample Request/Response for ReST Injector Service

A-12

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End
Point

Method Media
Type

User/
Password

Request xml Response Comme
nts

xmlns:ns1="http://
www.oracle.com/
retail/integration/
base/bo/
VendorAddrDesc/v1"
><ns1:module>
;SUPP</
ns1:module><ns1
:

key_value_1>101110
11</
ns1:key_value_1>&l
t;ns1:seq_no>1<
/
ns1:seq_no><ns1
:addr_type>05</
ns1:addr_type><
ns1:primary_addr_ind&
gt;Y</
ns1:primary_addr_ind&
gt;<ns1:add_1>3
/4/678</
ns1:add_1><ns1:
city>AE</
ns1:city><ns1:c
ountry_id>PL</
ns1:country_id><
;/
ns1:VendorAddrDesc>
;<ns1:VendorAddrDe
sc

Appendix A
Sample Request/Response for ReST Injector Service

A-13

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End
Point

Method Media
Type

User/
Password

Request xml Response Comme
nts

xmlns:ns1="http://
www.oracle.com/
retail/integration/
base/bo/
VendorAddrDesc/v1"
><ns1:module>
;SUPP</
ns1:module><ns1
:key_value_1>10111
011</
ns1:key_value_1>&l
t;ns1:seq_no>1<
/
ns1:seq_no><ns1
:addr_type>06</
ns1:addr_type><
ns1:primary_addr_ind&
gt;Y</
ns1:primary_addr_ind&
gt;<ns1:add_1>3
/4/678</
ns1:add_1><ns1:
city>AE</
ns1:city><ns1:c
ountry_id>PL</
ns1:country_id><
;/
ns1:VendorAddrDesc>
;<ns1:VendorOUDesc

xmlns:ns1="http://
www.oracle.com/
retail/integration/
base/bo/
VendorOUDesc/v1"
><ns1:org_unit_
id>1</
ns1:org_unit_id>&l
t;ns1:primary_pay_sit
e_ind>N</
ns1:primary_pay_site_
ind></
ns1:VendorOUDesc>&
lt;/VendorDesc></
payloadXml>
</ApplicationMessage>

Appendix A
Sample Request/Response for ReST Injector Service

A-14

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End
Point

Method Media
Type

User/
Password

Request xml Response Comme
nts

<stockholding_ind>a</
stockholding_ind>

<item_id>nbYDUFLqAcTs
BUnhYuhpcæ±</item_id>
 <origi-
nal_item_id>UxrgzyAgz
DgTDbHfMBjbtæ±</
original_item_id>

<order_line_nbr>3</
order_line_nbr>

<unit_qty>12.4</
unit_qty>
 <status>a</
status>
 <us-
er_id>CAswTBGUzTaNjwg
DwWXEgqCjEmæ±</
user_id>
 <updat-
ed_date>2013-06-13T14
:20:35</updated_date>
 </SOStatusDtl>

<context_type>vRæ±</
context_type>
 <con-
text_value>oDHGRuOeDm
vFPytxgiiJyæ±</
context_value>

<inventory_type>kwæ±<
/inventory_type>

<cust_order_nbr>cwFLu
XBqFPBvkxVmTSBrhovrRO
JAZYCfYncVEhfub-
mAYæ±</
cust_order_nbr>

<fulfill_order_nbr>qS
zQUPkqbEFboWQFxPSqoZ-
NOEJotCMnqbWzXTqRVkVk
Læ±</
fulfill_order_nbr>
</SOStatusDesc>
]]></
payloadXml>
</ApplicationMessage>

Appendix A
Sample Request/Response for ReST Injector Service

A-15

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End
Point

Method Media
Type

User/
Password

Request xml Response Comme
nts

If user in
not added
in
Integration
Group

<v1:ApplicationMessag
e xmlns:v1="http://
www.oracle.com/
retail/
integration/rib/
ApplicationMessages/
v1">
<v1:family>WH</
v1:family>
<v1:type>WHCR</
v1:type>
<!--Optional:-->
<v1:businessObjectId>
?</
v1:businessObjectId>
<!--Zero or more
repetitions:-->
<v1:ApplicationMessag
eRoutingInfo>
<v1:name>?</v1:name>
<v1:value>?</
v1:value>
<!--Zero or more
repetitions:-->
<v1:ApplicationMessag
eRoutingInfoDetail>
<v1:name>?</v1:name>
<v1:value>?</
v1:value>
</
v1:ApplicationMessage
RoutingInfoDetail>
</
v1:ApplicationMessage
RoutingInfo>
<v1:payloadXml><WH
Desc
xmlns="http://
www.oracle.com/
retail/integration/
base/bo/WHDesc/
v1"><wh>
;10</
wh><wh_name>
g</
wh_name></
WHDesc></
v1:payloadXml>
</
v1:ApplicationMessage
>

HTTP/1.1 403
Forbidden
Date: Thu, 05 Aug
2021 10:25:26 GMT
Content-Length: 1166
Content-Type: text/
html; char-set=UTF-8
<!DOCTYPE HTML
PUBLIC "-//W3C//DTD
HTML 4.0 Draft//EN">
<HTML>
<HEAD>
<TITLE>Error 403--
Forbidden</TITLE>
</HEAD>
<BODY bgcol-
or="white">
<FONT
FACE=Helvetica><BR
CLEAR=all>
<TABLE bor-der=0
cellspac-
ing=5><TR><TD><BR
CLEAR=all>
<FONT
FACE="Helvetica" COL-
OR="black"
SIZE="3"><H2>Error
403--Forbidden</H2>
</TD></TR>
</TABLE>
<TABLE bor-der=0
width=100% cellpad-
ding=10><TR><TD
VALIGN=top
WIDTH=100% BGCOL-
OR=white><FONT
FACE="Courier
New"><FONT
FACE="Helvetica"
SIZE="3"><H3>From
RFC 2068
<i>Hypertext
Transfer Protocol --
HTTP/1.1</i>:</H3>
<FONT
FACE="Helvetica"
SIZE="3"><H4>10.4.4
403 For-bidden</H4>

Failure

Appendix A
Sample Request/Response for ReST Injector Service

A-16

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End
Point

Method Media
Type

User/
Password

Request xml Response Comme
nts

<P><FONT
FACE="Courier
New">The server
understood the
request, but is
refusing to fulfill
it. Authorization
will not help and
the request SHOULD
NOT be repeated. If
the request method
was not HEAD and the
server wishes to
make public why the
request has not been
ful-filled, it
SHOULD de-scribe the
reason for the
refusal in the
entity. This status
code is commonly
used when the server
does not wish to
reveal exactly why
the request has been
refused, or when no
other response is ap-
plica-ble.</P>
</TD></TR>
</TABLE>
</BODY>
</HTML>

Appendix A
Sample Request/Response for ReST Injector Service

A-17

Table A-1 (Cont.) Sample Request/Response for ReST Injector Service

End
Point

Method Media
Type

User/
Password

Request xml Response Comme
nts

Wrong
User/pass

<v1:ApplicationMessag
e xmlns:v1="http://
www.oracle.com/
retail/
integration/rib/
ApplicationMessages/
v1">
<v1:family>WH</
v1:family>
<v1:type>WHCR</
v1:type>
<!--Optional:-->
<v1:businessObjectId>
?</
v1:businessObjectId>
<!--Zero or more
repetitions:-->
<v1:ApplicationMessag
eRoutingInfo>
<v1:name>?</v1:name>
<v1:value>?</
v1:value>
<!--Zero or more
repetitions:-->
<v1:ApplicationMessag
eRoutingInfoDetail>
<v1:name>?</v1:name>
<v1:value>?</
v1:value>
</
v1:ApplicationMessage
RoutingInfoDetail>
</
v1:ApplicationMessage
RoutingInfo>
<v1:payloadXml><WH
Desc
xmlns="http://
www.oracle.com/
retail/integration/
base/bo/WHDesc/
v1"><wh>
;10</
wh><wh_name>
g</
wh_name></
WHDesc></
v1:payloadXml>
</
v1:ApplicationMessage
>

HTTP/1.1 401
WWW-Authenticate:
Basic
realm="Authentication
 required"
Content-Type: text/
html;charset=utf-8
Content-Language: en
Content-Length: 669
Date: Thu, 05 Aug
2021 05:08:40 GMT
Keep-Alive:
timeout=20
Connection: keep-
alive
<!doctype html><html
lang="en"><head><titl
e>HTTP Status 401
â€" Unauthorized</
title><style
type="text/css">body
{font-
family:Tahoma,Arial,s
ans-serif;} h1, h2,
h3, b
{color:white;backgrou
nd-color:#525D76;}
h1 {font-size:22px;}
h2 {font-size:16px;}
h3 {font-size:14px;}
p {font-size:12px;}
a
{color:black;} .line
{height:1px;backgroun
d-
color:#525D76;border:
none;}</style></
head><body><h1>HTTP
Status 401 â€"
Unauthorized</h1><hr
class="line" /
><p>Type
Status Report</
p><p>Description</
b> The request has
not been applied
because it lacks
valid authentication
credentials for the
target resource.</
p><hr class="line" /
><h3>Apache Tomcat/
8.5.64</h3></body></
html>

Failure

Appendix A
Sample Request/Response for ReST Injector Service

A-18

	Contents
	Send Us Your Comments
	Preface
	Audience
	Customer Support
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction and Executive Summary
	2 Retail Integration Cloud Service Components
	Retail Integration Bus (RIB)
	RIB-EXT

	Oracle Retail Bulk Data Infrastructure (BDI)
	BDI-EXT
	Installation Details

	Retail Financial Integration (RFI)
	Retail Financial Integration (RFI) Products
	RFI for Oracle Cloud Financials

	Universal Service Mapper (USM)
	USM Architecture
	Event Listener
	Service Mapper Orchestration
	Service Provider and External Services

	Oracle Warehouse Management CS (Logfire) Integration
	RICS OWMS Integration Flows

	3 RICS Operations Support, Management, and Monitoring
	Customer Access to RICS Operation
	Retail Integration Console (RIC) Overview
	JMS Console
	JMS Admin – Live Monitoring
	JMS Browse
	JMS Manage
	JMS Configure

	RIB Hospital Administrator (RIHA)
	RIBForXXX Administrator User Interface

	4 Implementing RIB-EXT
	External Application as a Publisher (rest-app) using OAuth2
	Create OAuth2 Client Application in IDCS
	External Application as a Subscriber (rest-app)
	How to implement Injector Service (Service Contract) using ReST
	How to Secure Injector Service with Oauth2
	RIB-EXT Side of Configuration to Point to External Application
	Error Handling

	5 Reference Implementation of Injector Service Using Tomcat
	Introduction
	Step-by-step Guide for Testing rib-injector-service war on Tomcat
	Approach for Writing Custom Implementation for Injectors

	6 Implementing BDI-EXT
	BDI External Job Admin as Receiver
	External Importer Job
	Configure External Job Admin as Receiver in the Process Flow
	External BDI Process Flow

	7 Monitoring at Run Time
	Instance and Central Repository
	Monitoring Data as XML
	Push Versus Pull
	Service Interfaces
	What is an Event?
	How are Event Count and Messages Count Related?
	Adapter Events
	Application Events
	Event Collection Schedule
	Publisher Versus Subscriber Events
	TAFR Instrumentation
	Data Retention
	Metric Definitions
	Event Counts
	Adapter Execution Time
	API Execution Time
	Adapter Status
	Commits and Rollbacks
	Error Hospital Metrics
	RIB Application Status

	A Sample Files
	Sample Application.wadl File
	Sample Resource Class
	ApplicationMessages.xsd
	Rest Publisher Pseudo Code
	payload.properties
	Sample Request/Response for ReST Injector Service

