
Oracle® Retail Merchandising
Foundation Cloud Service
Batch Operations Guide

Release 22.1.401.0
F71432-03
October 2023

Oracle Retail Merchandising Foundation Cloud Service Batch Operations Guide, Release 22.1.401.0

F71432-03

Copyright © 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Send Us Your Comments

 Preface

Audience xlii

Documentation Accessibility xlii

Customer Support xlii

Improved Process for Oracle Retail Documentation Corrections xliii

Oracle Retail Documentation on the Oracle Help Center (docs.oracle.com) xliii

Conventions xliii

1 Introduction

Volume 1 - Batch Overviews and Designs 1-1

Volume 2 - Message Publication and Subscription Designs 1-1

Batch Schedule 1-1

Batch Wrapper Overview 1-2

2 Administration Batch

Program Summary 2-1

Archive and Truncate Purge History Tables (batch_archive_purge_hist.ksh) 2-2

Schedule 2-2

Design Overview 2-2

Restart/Recovery 2-3

I/O Specifications 2-3

Design Assumptions 2-3

Daily Purge of Foundation Data (daily_purge_job) 2-3

Schedule 2-3

Design Overview 2-3

Restart Recovery 2-4

Key Tables Affected 2-4

I/O Specification 2-7

iii

Daily Purge of Foundation Data (dlyprg) 2-7

Schedule 2-8

Design Overview 2-8

Restart Recovery 2-8

I/O Specification 2-8

Design Assumptions 2-8

Increment Virtual Business Date (dtesys) 2-8

Schedule 2-9

Design Overview 2-9

Restart/Recovery 2-9

I/O Specification 2-9

Design Assumptions 2-9

Load Spreadsheet Templates (ld_iindfiles.ksh and loadods.ksh) 2-10

Schedule 2-10

Design Overview 2-10

Restart/Recovery 2-10

Design Assumptions 2-10

Merch API Cache Refresh Wrapper Script (merchapirefreshwrap) 2-10

Schedule 2-11

Design Overview 2-11

Restart/Recovery 2-11

Design Assumptions 2-11

Pre/Post Helper Processes for Batch Programs (prepost) 2-11

Schedule 2-12

Design Overview 2-12

Restart/Recovery 2-14

Purge Aged Competitive Pricing Data (cmpprg.pc) 2-15

Schedule 2-15

Design Overview 2-15

Restart/Recovery 2-15

Design Assumptions 2-15

Purge Aged Competitive Pricing Data (comp_pricing_purge_job) 2-15

Schedule 2-15

Design Overview 2-16

Restart/Recovery 2-16

Key Tables Affected 2-16

Design Assumptions 2-16

Purge and Archive Old Files in Batch Server (archivelogs) 2-16

Schedule 2-17

Design Overview 2-17

Restart/Recovery 2-17

iv

Key Tables Affected 2-17

Design Assumptions 2-17

Purge Asynchronous Job Tables (async_job_status_retry_cleanup.ksh) 2-17

Schedule 2-18

Design Overview 2-18

Restart/Recovery 2-18

Key Tables Affected 2-18

Input/Out Specification 2-18

Purge Dashboard Working Tables (rms_oi_purge.ksh) 2-18

Design Overview 2-19

Scheduling Constraints 2-19

Restart/Recovery 2-19

Key Tables Affected 2-19

Design Assumptions 2-20

Purge Export Data (data_export_purge_job) 2-20

Schedule 2-20

Design Overview 2-20

Restart/Recovery 2-20

Key Tables Affected 2-20

Integration Contract 2-21

Design Assumptions 2-21

Purge Export Data (export_stg_purge.ksh) 2-21

Schedule 2-21

Design Overview 2-21

Restart/Recovery 2-22

Design Assumptions 2-22

Purge Forecast Data (fcstprg) 2-22

Schedule 2-22

Design Overview 2-22

Restart/Recovery 2-22

Design Assumptions 2-22

Purge Forecast Data (forecast_data_purge_job) 2-22

Schedule 2-23

Design Overview 2-23

Restart/Recovery 2-23

Key Tables Affected 2-23

Design Assumptions 2-23

Purge Job Auditing Logs (job_audit_logs_purge_job) 2-24

Schedule 2-24

Design Overview 2-24

Restart/Recovery 2-24

v

Key Tables Affected 2-24

Design Assumptions 2-25

Purge Manage Admin Records (admin_api_purge.ksh) 2-25

Schedule 2-25

Design Overview 2-25

Restart/Recovery 2-25

I/O Specifications 2-25

Purge Notifications (raf_notification_purge.ksh) 2-25

Schedule 2-26

Design Overview 2-26

Restart/Recovery 2-26

Design Assumptions 2-26

Refresh Materialized Views (refreshmview.ksh) 2-26

Design Overview 2-26

Schedule 2-27

Restart/Recovery 2-27

I/O Specification 2-27

Retail Business Metrics Calculation (rbm_metrics_calc_job) 2-27

Schedule 2-27

Design Overview 2-27

Restart/Recovery 2-29

Key Tables Affected 2-29

Design Assumptions 2-29

Retain Item Forecast History (rms_oi_forecast_history.ksh) 2-29

Design Overview 2-30

Scheduling Constraints 2-30

Restart/Recovery 2-30

Key Tables Affected 2-30

Design Assumptions 2-30

Subscription Metrics Update (subscription_metrics_update_job) 2-31

Schedule 2-31

Design Overview 2-31

Restart/Recovery 2-31

Key Tables Affected 2-31

Design Assumptions 2-31

Tax Event Purge (tax_event_purge_job) 2-31

Scheduling 2-32

Design Overview 2-32

Restart/Recovery 2-32

Key Tables Affected 2-32

Input/Output Specification 2-32

vi

Tax Event Purge (taxevntprg) 2-32

Schedule 2-33

Design Overview 2-33

Restart/Recovery 2-33

Design Assumptions 2-33

Truncate Table Script (trunctbl.ksh) 2-33

Schedule 2-33

Design Overview 2-33

Restart/Recovery 2-34

Design Assumptions 2-34

Merch API Data Rebuild Request Wrapper Script (merchapidatarebuildrequest) 2-34

Schedule 2-34

Design Overview 2-34

Restart/Recovery 2-35

Design Assumptions 2-35

Merch API Delta Processing Wrapper Script (merchapiwrap) 2-35

Schedule 2-35

Design Overview 2-35

Restart/Recovery 2-35

Design Assumptions 2-35

3 Foundation Data Maintenance

Apply Pending Cost Component and ELC Changes to Purchase Orders
(batch_ordcostcompupd) 3-2

Schedule 3-2

Design Overview 3-2

Restart/Recovery 3-3

Design Assumptions 3-3

Apply Pending Item Cost Component Updates (batch_itmcostcompupd) 3-3

Schedule 3-3

Design Overview 3-3

Restart/Recovery 3-3

Design Assumptions 3-3

Apply Pending Rate Changes to Expense Profiles (batch_expprofupd) 3-4

Schedule 3-4

Design Overview 3-4

Restart/Recovery 3-4

Design Assumptions 3-4

Apply Pending Up-Charge Cost Component Changes to Departments (batch_depchrgupd) 3-4

Schedule 3-5

Design Overview 3-5

vii

Restart/Recovery 3-5

Design Assumptions 3-5

Build Diff Ratios Based on Sales History (dfrtbld) 3-5

Schedule 3-5

Design Overview 3-5

Restart/Recovery 3-6

I/O Specification 3-6

Output File Layout 3-6

Design Assumptions 3-6

Like Store Batch Processing (likestorebatch) 3-6

Schedule 3-6

Design Overview 3-7

Restart/Recovery 3-7

Design Assumptions 3-7

Process Pending Merchandise Hierarchy Changes from External Systems (cremhierdly) 3-7

Schedule 3-8

Design Overview 3-8

Restart/Recovery 3-8

Design Assumptions 3-8

Purge Aged Cost Component Exceptions (elc_except_purge_job) 3-8

Schedule 3-8

Design Overview 3-9

Restart/Recovery 3-9

Key Tables Affected 3-9

Design Assumptions 3-10

Purge Aged Cost Component Exceptions (elcexcprg) 3-10

Schedule 3-10

Design Overview 3-10

Restart/Recovery 3-11

Design Assumptions 3-11

Purge Aged Price History Data (prchstprg) 3-11

Schedule 3-11

Design Overview 3-11

Restart/Recovery 3-11

Performance Considerations 3-11

Design Assumptions 3-12

Purge Aged Price History Data (price_hist_purge_job) 3-12

Schedule 3-12

Design Overview 3-12

Restart/Recovery 3-13

Key Tables Affected 3-13

viii

Purge Aged Store Ship Schedule (activity_sched_purge_job) 3-13

Schedule 3-13

Design Overview 3-14

Restart/Recovery 3-14

Key Tables Affected 3-14

Design Assumptions 3-14

Purge Aged Store Ship Schedule (schedprg) 3-14

Schedule 3-15

Design Overview 3-15

Restart/Recovery 3-15

Design Assumptions 3-15

Purge Inactive Currency Rates (currency_rates_purge_job) 3-15

Design Overview 3-15

Restart/Recovery 3-16

Key Tables Affected 3-16

Design Assumptions 3-16

Purge Manage Admin Records (admin_api_purge) 3-16

Schedule 3-16

Design Overview 3-17

Restart/Recovery 3-17

I/O Specification 3-17

Rebuild Dynamic Item Lists (itmlrbld) 3-17

Design Overview 3-17

Schedule 3-17

Restart/Recovery 3-17

Design Assumptions 3-17

Rebuild Dynamic Location Lists (lclrbld) 3-18

Schedule 3-18

Design Overview 3-18

Restart/Recovery 3-18

Design Assumptions 3-18

Rebuild Dynamic Location Lists (loc_list_rebuild_job) 3-18

Schedule 3-18

Design Overview 3-19

Restart/Recovery 3-19

Key Tables Affected 3-19

Design Assumptions 3-19

Reclassify Items in Merchandise Hierarchy (reclsdly) 3-19

Schedule 3-20

Design Overview 3-20

Restart/Recovery 3-20

ix

Design Assumptions 3-20

Refresh Address Materialized View (refmvlocprimaddr) 3-20

Schedule 3-20

Design Overview 3-20

Restart/Recovery 3-21

Design Assumptions 3-21

Refresh Currency Conversion Materialized View (batch_rfmvcurrconv) 3-21

Schedule 3-21

Design Overview 3-21

Restart/Recovery 3-21

Design Assumptions 3-21

Refresh Localization Materialized View (refmvl10entity) 3-21

Schedule 3-22

Design Overview 3-22

Restart/Recovery 3-22

Locking Strategy 3-22

Security Considerations 3-22

Performance Considerations 3-22

I/O Specification 3-22

Rollup of Supplier Data (supmth) 3-22

Schedule 3-22

Design Overview 3-23

Restart/Recovery 3-23

Design Assumptions 3-23

Store Add Asynchronous Process (CORESVC_STORE_ADD_SQL. ADD_STORE) 3-23

Business Overview 3-24

Key Tables Affected 3-24

Design Assumptions 3-24

Queue Creation 3-25

Design Overview - Process Steps 3-25

Package Impact 3-25

Function Level Description - ADD_STORE 3-25

Function Level Description - ENQUEUE_STORE_ADD 3-26

Function Level Description - ENQUEUE_STORE_ADD_RETRY 3-26

Function Level Description - NOTIFY_STORE_ADD 3-27

Operations and Monitoring 3-27

Running entire Store-Add as Batch in Case of AQ Issues 3-27

Building Schedule Dependencies between Async Process and other Batches 3-27

Monitoring Progress of Store-Add Processes 3-27

Store Add Asynchronous Process (straddbatch.ksh) 3-28

Business Overview 3-28

x

Key Tables Affected 3-28

Design Assumptions 3-29

Queue Creation 3-29

Design Overview - Process Steps 3-29

Running entire store-add as batch in case of AQ issues 3-29

Building Schedule Dependencies between Async process and other batches 3-30

Monitoring Progress of Store-Add Processes 3-30

Update Allocation and Transfer Based on Changes to Up-Charges (batch_alloctsfupd) 3-30

Schedule 3-30

Design Overview 3-30

Restart/Recovery 3-31

Design Assumptions 3-31

Update ELC Components (batch_compeffupd) 3-31

Schedule 3-31

Design Overview 3-31

Restart/Recovery 3-32

Design Assumptions 3-32

4 Item Maintenance

Program Summary 4-1

Daily Purge of Item-Location Data (item_loc_purge_job) 4-1

Schedule 4-1

Design Overview 4-1

Restart/Recovery 4-2

Key Tables Affected 4-2

I/O Specification 4-3

Global Tax Solution Builder (gtsbuilder) 4-3

Schedule 4-3

Design Overview 4-3

Restart/Recovery 4-4

Design Assumptions 4-4

Mass VAT Updates for Items/Locations (vatdlxpl) 4-4

Schedule 4-4

Design Overview 4-4

Restart/Recovery 4-4

Design Assumptions 4-4

Purge Item Induction Staging Tables (itm_indctn_purge.ksh) 4-5

Design Overview 4-5

Scheduling Constraints 4-5

Restart/Recovery 4-5

xi

Scheduled Item Maintenance (sitmain) 4-6

Schedule 4-6

Design Overview 4-6

Restart/Recovery 4-6

Design Assumptions 4-6

5 Purchase Order

Program Summary 5-1

Apply Deal Discounts to Purchase Orders (orddscnt) 5-1

Schedule 5-2

Design Overview 5-2

Restart/Recovery 5-2

Design Assumptions 5-2

Auto Close Purchase Orders (ordautcl) 5-2

Schedule 5-2

Design Overview 5-2

Category 1 5-3

Category 2 5-3

Category 3 5-3

Restart/Recovery 5-3

Design Assumptions 5-3

Auto Close Purchase Orders (order_auto_close_job) 5-4

Schedule 5-4

Design Overview 5-4

Category 1 5-4

Category 2 5-4

Category 3 5-5

Restart/Recovery 5-5

Key Tables Affected 5-5

Design Assumptions 5-7

Build Purchase Orders for Vendor Generated Orders (vrplbld) 5-7

Schedule 5-7

Design Overview 5-7

Restart/Recovery 5-7

Design Assumptions 5-8

Generate Pre-Issued Order Numbers (genpreiss) 5-8

Schedule 5-8

Design Overview 5-8

Restart/Recovery 5-8

Design Assumptions 5-8

xii

Purge Aged Open To Buy Data (otb_purge_job) 5-8

Schedule 5-9

Design Overview 5-9

Restart/Recovery 5-9

Key Tables Affected 5-9

Design Assumptions 5-9

Purge Aged Open To Buy Data (otbprg) 5-9

Schedule 5-10

Design Overview 5-10

Restart/Recovery 5-10

Design Assumptions 5-10

Purge Aged Purchase Orders (order_purge_job) 5-10

Schedule 5-10

Design Overview 5-10

Restart/Recovery 5-11

Key Tables Affected 5-11

Design Assumptions 5-15

Purge Aged Purchase Orders (ordprg) 5-15

Schedule 5-16

Design Overview 5-16

Restart/Recovery 5-16

Design Assumptions 5-16

Purge PO Induction Staging Tables (po_indctn_purge.ksh) 5-16

Schedule 5-17

Design Overview 5-17

Restart/Recovery 5-17

Design Assumptions 5-17

Scale Purchase Orders Based on Supplier Constraints (supcnstr) 5-17

Schedule 5-18

Design Overview 5-18

Restart/Recovery 5-18

Locking Strategy 5-18

Design Assumptions 5-18

Update Retail Values on Open Purchase Orders (ordupd) 5-18

Schedule 5-19

Design Overview 5-19

Restart/Recovery 5-19

Design Assumptions 5-19

Write Purchase Order Information to Purchase Order History Tables (order_revision_job) 5-19

Schedule 5-19

Design Overview 5-20

xiii

Restart/Recovery 5-20

Key Tables Affected 5-20

Design Assumptions 5-21

Write Purchase Order Information to Purchase Order History Tables (ordrev) 5-21

Schedule 5-21

Design Overview 5-21

Restart/Recovery 5-21

Design Assumptions 5-22

6 Deals

Program Summary 6-1

Calculate Actual Impact of Billback Deals (dealact) 6-1

Schedule 6-2

Design Overview 6-2

Restart/Recovery 6-2

Design Assumptions 6-2

Calculate Weekly/Monthly Income Based on Turnover (dealinc) 6-2

Schedule 6-2

Design Overview 6-2

Restart/Recovery 6-3

Design Assumptions 6-3

Calculates/Update Forecasted Values for Deals (dealfct) 6-3

Schedule 6-3

Design Overview 6-3

Restart/Recovery 6-3

Design Assumptions 6-4

Close Expired Deals (deal_close_job) 6-4

Schedule 6-4

Design Overview 6-4

Restart/Recovery 6-4

Key Tables Affected 6-5

Close Expired Deals (dealcls) 6-5

Schedule 6-5

Design Overview 6-5

Restart/Recovery 6-5

Design Assumptions 6-5

Daily Posting of Deal Income to Stock Ledger (dealday) 6-5

Schedule 6-6

Design Overview 6-6

Restart/Recovery 6-6

xiv

Design Assumptions 6-6

Deal Calculation Queue Insert Multithreading (batch_ditinsrt.ksh) 6-6

Schedule 6-6

Design Overview 6-7

Restart/Recovery 6-7

Design Assumptions 6-7

Insert into Deal Calculation Queue (ditinsrt) 6-7

Schedule 6-7

Design Overview 6-7

Restart/Recovery 6-7

Design Assumptions 6-8

Purge Closed Deals (deal_purge_job) 6-8

Schedule 6-8

Design Overview 6-8

Restart/Recovery 6-8

Key Tables Affected 6-9

Purge Closed Deals (dealprg) 6-9

Schedule 6-10

Design Overview 6-10

Restart/Recovery 6-10

Design Assumptions 6-10

Purge Closed Deals Actuals Item/Location (deal_actuals_purge_job) 6-10

Schedule 6-10

Design Overview 6-11

Restart/Recovery 6-11

Key Tables Affected 6-11

Update OTB After Deal Discounts (discotbapply) 6-11

Schedule 6-12

Design Overview 6-12

Restart/Recovery 6-12

Schedule 6-12

7 Contracts

Program Summary 7-1

Apply Type A, C and D Contracts to Orders Created by Replenishment (cntrprss) 7-1

Schedule 7-2

Design Overview 7-2

Restart/Recovery 7-2

Design Assumptions 7-2

Contract Maintenance and Purging (cntrmain) 7-2

xv

Schedule 7-2

Design Overview 7-3

Restart/Recovery 7-3

Design Assumptions 7-3

Contract Maintenance and Purging (contract_purge_job) 7-3

Schedule 7-3

Design Overview 7-3

Restart/Recovery 7-4

Key Tables Affected 7-4

Design Assumptions 7-4

Create Replenishment Orders for Item/Locations on Type B Contracts (cntrordb) 7-4

Schedule 7-4

Design Overview 7-5

Restart/Recovery 7-5

Design Assumptions 7-5

8 Cost Changes

Program Summary 8-1

Cost Change Purge (ccprg) 8-1

Schedule 8-1

Design Overview 8-1

Restart/Recovery 8-2

Design Assumptions 8-2

Cost Change Purge (cost_change_purge_job) 8-2

Schedule 8-2

Design Overview 8-2

Restart/Recovery 8-3

Key Tables Affected 8-3

Design Assumptions 8-3

Process Scheduled Ownership Change Data (ownership_change_process) 8-3

Schedule 8-4

Design Overview 8-4

Restart/Recovery 8-5

Design Assumptions 8-5

Purge Processed and Aged Ownership Change Data (ownership_change_purge) 8-5

Schedule 8-5

Design Overview 8-5

Restart/Recovery 8-5

Design Assumptions 8-6

Supplier Cost Change Extract (sccext) 8-6

xvi

Schedule 8-6

Design Overview 8-6

Restart/Recovery 8-6

Design Assumptions 8-6

9 Future Cost

Future Cost Events 9-1

Future Cost Engine Run Type Configuration 9-2

Synchronous 9-2

Asynchronous 9-3

Batch 9-4

Future Cost Engine Concurrency Control 9-5

Future Cost Engine Error Handling 9-5

Future Cost Engine Threading/Chunking 9-6

Future Cost Process 9-6

Program Summary 9-7

Execute Batch Calculation/Recalculation of Future Cost Values (fcexec) 9-7

Schedule 9-7

Design Overview 9-8

Restart/Recovery 9-8

Design Assumptions 9-8

Future Cost Table Maintenance (future_cost_purge_job) 9-8

Schedule 9-8

Design Overview 9-8

Restart/Recovery 9-9

Locking Strategy 9-9

Security Considerations 9-9

Performance Considerations 9-9

Key Tables Affected 9-9

I/O Specification 9-9

Prepare Threads for Batch Calculation/Recalculation of Future Cost Values (fcthreadexec) 9-10

Schedule 9-10

Design Overview 9-10

Restart/Recovery 9-10

Design Assumptions 9-10

Pricing Cost Refresh (rms_oi_pricecostrefresh.ksh) 9-10

Design Overview 9-11

Scheduling Constraints 9-11

Restart/Recovery 9-11

Key Tables Affected 9-11

xvii

Design Assumptions 9-11

Purge Aged Cost Events (cost_event_purge_job) 9-11

Design Overview 9-12

Restart/Recovery 9-12

Key Tables Affected 9-12

Design Assumptions 9-13

Purge Aged Cost Events (costeventprg) 9-13

Schedule 9-13

Design Overview 9-13

Restart/Recovery 9-14

Design Assumptions 9-14

Use Pending Price Changes to Drive Recalculation of Pricing Cost for some Franchise
Item/Locations (fc_pricechg) 9-14

Schedule 9-14

Design Overview 9-14

Restart/Recovery 9-14

Design Assumptions 9-14

WAC Refresh (rms_oi_wacvarrefresh.ksh) 9-15

Design Overview 9-15

Scheduling Constraints 9-15

Restart/Recovery 9-15

Key Tables Affected 9-15

Design Assumptions 9-16

10

Invoice Matching

Program Summary 10-1

Close Aged Shipments to Prevent them from Matching Open Invoices
(invc_ship_close_job) 10-1

Schedule 10-1

Design Overview 10-2

Restart/Recovery 10-2

Key Tables Affected 10-2

Close Aged Shipments to Prevent them from Matching Open Invoices (invclshp) 10-2

Schedule 10-3

Design Overview 10-3

Restart/Recovery 10-3

Design Assumptions 10-3

Purge Aged Invoices (invoice_purge_job) 10-3

Schedule 10-3

Design Overview 10-3

Restart/Recovery 10-4

xviii

Key Tables Affected 10-4

Purge Aged Invoices (invprg) 10-4

Schedule 10-5

Design Overview 10-5

Restart/Recovery 10-5

Design Assumptions 10-5

11

Replenishment

Replenishment Sub Processes 11-1

Manage Replenishment Attributes 11-1

Calculate Recommended Order Quantities 11-2

Build Orders and Transfers 11-2

Cleanup Replenishment Data 11-3

Approve Replenishment Orders (rplapprv) 11-3

Schedule 11-4

Design Overview 11-4

Restart/Recovery 11-5

Design Assumptions 11-5

Build Replenishment Orders (rplbld) 11-5

Schedule 11-5

Design Overview 11-5

Restart/Recovery 11-6

Design Assumptions 11-6

Calculate Net Inventory (replroq.ksh) 11-6

Schedule 11-6

Design Overview 11-6

Restart/Recovery 11-7

Design Assumptions 11-7

Calculate ROQ for Profitable Investment Buys (ibcalc) 11-7

Schedule 11-7

Design Overview 11-7

Restart/Recovery 11-8

Design Assumptions 11-8

Determines Eligible Investment Buy Opportunities (ibexpl) 11-8

Schedule 11-8

Design Overview 11-8

Restart/Recovery 11-9

Design Assumptions 11-9

Multithreading Wrapper for reqext (batch_reqext.ksh) 11-9

Schedule 11-9

xix

Design Overview 11-9

Restart/Recovery 11-10

Design Assumptions 11-10

Purge Aged Buyer Worksheet Results (buyer_wksht_purge_job) 11-10

Schedule 11-10

Design Overview 11-10

Restart/Recovery 11-10

Key Tables Affected 11-11

Design Assumptions 11-11

Purge Aged Investment Buy Results (investment_buy_purge_job) 11-11

Schedule 11-11

Design Overview 11-11

Restart/Recovery 11-12

Key Tables Affected 11-12

Design Assumptions 11-12

Purge Aged Replenishment Results (replenishment_purge_job) 11-12

Schedule 11-12

Design Overview 11-12

Restart/Recovery 11-13

Key Tables Affected 11-13

Design Assumptions 11-13

Purge Aged Replenishment Results (rplprg) 11-13

Schedule 11-14

Design Overview 11-14

Restart/Recovery 11-14

Design Assumptions 11-14

Purge Aged Store Orders Results (store_orders_purge_job) 11-14

Schedule 11-14

Design Overview 11-14

Restart/Recovery 11-15

Key Tables Affected 11-15

Design Assumptions 11-15

Purge Replenishment Attribute History (rplathistprg) 11-15

Schedule 11-15

Design Overview 11-16

Restart/Recovery 11-16

Design Assumptions 11-16

Purge Replenishment Results History by Month (rplprg_month) 11-16

Schedule 11-16

Design Overview 11-16

Restart/Recovery 11-16

xx

Design Assumptions 11-17

Purge Scheduled Replenishment Induction Staging Tables (repl_indctn_purge.ksh) 11-17

Schedule 11-17

Design Overview 11-17

Restart/Recovery 11-17

Design Assumptions 11-17

Recalculate Maximum Levels for Floating Point Replenishment (repladj) 11-18

Schedule 11-18

Design Overview 11-18

Restart/Recovery 11-18

Design Assumptions 11-18

ROQ Calculation and Distribution for Item/Locs Replenished from WH (reqext) 11-18

Schedule 11-19

Design Overview 11-19

Restart/Recovery 11-19

Design Assumptions 11-19

ROQ Calculation and Distribution for Item/Locs Replenished from Supplier (rplext.ksh) 11-19

Schedule 11-20

Design Overview 11-20

Restart/Recovery 11-20

Locking Strategy 11-20

Performance Considerations 11-20

Design Assumptions 11-21

Split Replenishment Orders Among Suppliers (supsplit) 11-21

Schedule 11-21

Design Overview 11-21

Restart/Recovery 11-21

Design Assumptions 11-21

Sync Replenishment Franchise Orders (repl_wf_order_sync.ksh) 11-21

Schedule 11-22

Design Overview 11-22

Restart/Recovery 11-22

Design Assumptions 11-22

Truck Splitting Optimization for Replenishment (rplsplit) 11-22

Schedule 11-22

Design Overview 11-22

Restart/Recovery 11-23

Design Assumptions 11-23

Update Replenishment Calculation Attributes (rplatupd) 11-23

Schedule 11-23

Design Overview 11-23

xxi

Restart/Recovery 11-24

Design Assumptions 11-24

Update Replenishment Calculation Attributes by Item/Locrilmaint) 11-24

Schedule 11-24

Design Overview 11-24

Restart/Recovery 11-24

Design Assumptions 11-24

Update Replenishment Order Taxes (batch_rplapprvgtax.ksh) 11-25

Schedule 11-25

Design Overview 11-25

Restart/Recovery 11-25

Design Assumptions 11-25

Update Replenishment Size Profile (replsizeprofile) 11-25

Schedule 11-26

Design Overview 11-26

Restart/Recovery 11-26

Design Assumptions 11-26

12

Inventory

Program Summary 12-1

Adjust Inventory for Wastage Items (wasteadj) 12-1

Schedule 12-1

Design Overview 12-1

Restart/Recovery 12-2

Design Assumptions 12-2

Purge Aged Customer Orders (customer_order_purge.ksh) 12-2

Schedule 12-2

Design Overview 12-2

Restart/Recovery 12-2

Design Assumptions 12-2

Purge Aged Customer Orders (customer_orders_purge_job) 12-2

Schedule 12-3

Design Overview 12-3

Restart/Recovery 12-3

Key Tables Affected 12-3

Security Considerations 12-3

Purge Aged Inventory Adjustments (inv_adj_purge_job) 12-3

Schedule 12-4

Design Overview 12-4

Restart/Recovery 12-4

xxii

Key Tables Affected 12-4

Design Assumptions 12-4

Purge Aged Inventory Adjustments (invaprg) 12-5

Schedule 12-5

Design Overview 12-5

Restart/Recovery 12-5

Design Assumptions 12-5

Refresh End of Day Inventory Snapshot (refeodinventory) 12-5

Schedule 12-5

Design Overview 12-6

Restart/Recovery 12-6

Design Assumptions 12-6

13

Transfers, Allocation, and RTV

Program Summary 13-1

Close Mass Return Transfers (mrtupd) 13-1

Schedule 13-2

Design Overview 13-2

Restart/Recovery 13-2

Design Assumptions 13-2

Close Overdue Transfers (transfer_close_job) 13-2

Schedule 13-2

Design Overview 13-2

Restart/Recovery 13-3

Key Tables Affected 13-3

Design Assumptions 13-3

Close Overdue Transfers (tsfclose) 13-3

Schedule 13-4

Design Overview 13-4

Restart/Recovery 13-4

Design Assumptions 13-4

Close Transactions with no Expected Appointments, Shipments or Receipts
(doc_queue_close_job) 13-4

Schedule 13-5

Design Overview 13-5

Restart/Recovery 13-5

Key Tables Affected 13-5

Design Assumptions 13-6

Close Transactions with no Expected Appointments, Shipments or Receipts (docclose) 13-6

Schedule 13-6

Design Overview 13-6

xxiii

Restart/Recovery 13-6

Design Assumptions 13-6

Create Book Transfers for Allocations Between Warehouses in the Same Physical
Warehouse (allocbt) 13-7

Schedule 13-7

Design Overview 13-7

Restart/Recovery 13-8

Design Assumptions 13-8

Create Return to Vendor for Mass Return Transfer (mrtrtv) 13-8

Schedule 13-8

Design Overview 13-8

Restart/Recovery 13-9

Design Assumptions 13-9

Create Transfers for Mass Return Transfer (mrt) 13-9

Schedule 13-9

Design Overview 13-9

Restart/Recovery 13-9

Design Assumptions 13-9

Detail Receive Damaged or Tampered with Cartons (tamperctn) 13-10

Schedule 13-10

Design Overview 13-10

Restart/Recovery 13-10

Design Assumptions 13-10

Purge Aged Mass Return Transfers and RTV (mrt_purge_job) 13-10

Design Overview 13-11

Restart/Recovery 13-11

Key Tables Affected 13-11

Design Assumptions 13-12

Purge Aged Mass Return Transfers and RTV (mrtprg) 13-12

Schedule 13-12

Design Overview 13-12

Restart/Recovery 13-12

Design Assumptions 13-13

Purge Aged Returns to Vendors (rtv_purge_job) 13-13

Schedule 13-13

Design Overview 13-13

Restart/Recovery 13-13

Key Tables Affected 13-13

Design Assumptions 13-14

Purge Aged Returns to Vendors (rtvprg) 13-14

Schedule 13-14

xxiv

Design Overview 13-14

Restart/Recovery 13-15

Design Assumptions 13-15

Purge Aged Transfers (transfer_purge_job) 13-15

Schedule 13-15

Design Overview 13-15

Restart/Recovery 13-15

Key Tables Affected 13-16

Design Assumptions 13-17

Purge Aged Transfers (tsfprg) 13-17

Schedule 13-17

Design Overview 13-18

Restart/Recovery 13-18

Design Assumptions 13-18

Reconcile Received Dummy Carton IDs with Expected Cartons (dummyctn) 13-18

Schedule 13-18

Design Overview 13-18

Restart/Recovery 13-19

Design Assumptions 13-19

Stage Regular Price Changes on Open Allocations and Transfers (distropcpub) 13-19

Schedule 13-19

Design Overview 13-19

Restart/Recovery 13-19

I/O Specification 13-19

Design Assumptions 13-20

14

Sales Posting

Program Summary 14-2

Archive Successfully Posted Transactions (salesuploadarch.ksh) 14-2

Schedule 14-2

Design Overview 14-2

Performance Considerations 14-2

Design Assumptions 14-2

Main Processing of Staged Sale/Return Transactions (salesprocess.ksh) 14-3

Schedule 14-3

Design Overview 14-3

POSU Chunking 14-3

Restart/Recovery 14-4

Locking Strategy 14-4

Security Considerations 14-4

xxv

Performance Considerations 14-4

I/O Specification 14-5

Design Assumptions 14-5

Financial Transactions 14-5

Purge Aged Archived POSU Transactions (salesuploadpurge.ksh) 14-6

Schedule 14-7

Design Overview 14-7

Performance Considerations 14-7

Design Assumptions 14-7

Purge FILE_UPLOAD_STATUS and FILE_UPLOAD_ERRORS Tables
(file_upload_errors_purge.ksh) 14-7

Schedule 14-7

Design Overview 14-7

Restart/Recovery 14-8

I/O Specification 14-8

Design Assumptions 14-8

15

Sales History

Program Summary 15-1

Monthly Sales History Rollup By Department, Class And Subclass (hstbldmth) 15-1

Schedule 15-1

Design Overview 15-2

Restart/Recovery 15-2

Design Assumptions 15-2

Monthly Sales History Rollup By Diffs (hstbldmth_diff) 15-2

Schedule 15-2

Design Overview 15-2

Restart/Recovery 15-3

Locking Strategy 15-3

Design Assumptions 15-3

Monthly Stock on Hand, Retail and Average Cost Values Update (hstmthupd) 15-3

Schedule 15-3

Design Overview 15-3

Restart/Recovery 15-3

I/O Specification 15-4

Purge Aged Sales History (history_purge_job) 15-4

Design Overview 15-4

Restart/Recovery 15-5

Key Tables Affected 15-5

Purge Aged Sales History (hstprg) 15-5

Schedule 15-6

xxvi

Design Overview 15-6

Restart/Recovery 15-6

Design Assumptions 15-6

Purge Aged Sales History by Diff (hist_diff_purge_job) 15-6

Schedule 15-6

Design Overview 15-6

Restart/Recovery 15-7

Key Tables Affected 15-7

Purge Aged Sales History by Diff (hstprg_diff) 15-7

Schedule 15-7

Design Overview 15-7

Restart/Recovery 15-8

Design Assumptions 15-8

Weekly Sales History Rollup by Department, Class, and Subclass (hstbld) 15-8

Schedule 15-8

Design Overview 15-8

Restart/Recovery 15-8

Design Assumptions 15-9

Weekly Sales History Rollup by Diff (hstbld_diff) 15-9

Schedule 15-9

Design Overview 15-9

Restart/Recovery 15-9

Design Assumptions 15-9

Key Tables Affected 15-9

Weekly Stock on Hand and Retail Value Update for Item/Location (hstwkupd) 15-10

Schedule 15-10

Design Overview 15-10

Restart/Recovery 15-10

I/O Specification 15-10

Design Assumptions 15-10

16

Stock Count

Program Summary 16-1

Calculate Actual Current Shrinkage and Budgeted Shrink to Apply to Stock Ledger (stkdly) 16-1

Schedule 16-2

Design Overview 16-2

Restart/Recovery 16-2

Design Assumptions 16-2

Create Stock Count Requests Based on Schedules (stake_sched_explode_job) 16-2

Schedule 16-2

xxvii

Design Overview 16-3

Restart/Recovery 16-3

Key Tables Affected 16-3

Design Assumption 16-4

Create Stock Count Requests Based on Schedules (stkschedxpld) 16-4

Schedule 16-4

Design Overview 16-4

Restart/Recovery 16-5

Design Assumption 16-5

Explode Stock Count Requests to Item Level (stkxpld) 16-5

Schedule 16-5

Design Overview 16-5

Restart/Recovery 16-5

Design Assumption 16-5

Process Stock Count Results (stockcountprocess.ksh) 16-6

Schedule 16-6

Design Overview 16-6

Restart/Recovery 16-6

Design Assumption 16-6

Purge Aged Stock Count (stkprg) 16-6

Schedule 16-7

Design Overview 16-7

Restart/Recovery 16-7

Design Assumption 16-7

Purge Aged Stock Count (stock_count_purge_job) 16-7

Schedule 16-7

Design Overview 16-7

Restart/Recovery 16-8

Key Tables Affected 16-8

Design Assumption 16-8

Stock Count Snapshot Update (stkupd) 16-8

Schedule 16-9

Design Overview 16-9

Restart/Recovery 16-9

Design Assumption 16-9

Update Stock On Hand Based on Stock Count Results (stkvar) 16-9

Schedule 16-9

Design Overview 16-9

Restart/Recovery 16-10

Design Assumption 16-10

xxviii

17

Stock Ledger

Program Summary 17-2

Append Stock Ledger Information to History Tables (salapnd) 17-2

Schedule 17-2

Design Overview 17-3

Restart/Recovery 17-3

Design Assumptions 17-3

Daily Rollup of Transaction Data for Stock Ledger (saldly) 17-3

Schedule 17-3

Design Overview 17-3

Restart/Recovery 17-4

Design Assumption 17-4

End Of Half Rollup of Data/Calculations for Stock Ledger (saleoh) 17-4

Schedule 17-4

Design Overview 17-4

Restart/Recovery 17-5

Design Assumptions 17-5

End of Year Inventory Position Snapshot (nwpyearend) 17-5

Schedule 17-5

Design Overview 17-5

Restart/Recovery 17-5

Design Assumptions 17-6

External Transaction Data Process (trandataprocess.ksh) 17-6

Schedule 17-6

Design Overview 17-6

Restart/Recovery 17-8

Design Assumptions 17-8

Monthly Rollup of Data/Calculations for Stock Ledger (salmth) 17-8

Schedule 17-8

Design Overview 17-8

Restart/Recovery 17-9

Design Assumptions 17-9

Purge of Aged End of Year Inventory Positions (nwp_purge_job) 17-9

Schedule 17-9

Design Overview 17-9

Restart/Recovery 17-10

Key Tables Affected 17-10

Design Assumptions 17-10

Purge of Aged End of Year Inventory Positions (nwppurge) 17-10

Schedule 17-10

xxix

Design Overview 17-11

Restart/Recovery 17-11

Design Assumptions 17-11

Purge Stock Ledger History (salprg) 17-11

Schedule 17-11

Design Overview 17-11

Restart/Recovery 17-12

Design Assumptions 17-12

Purge Stock Ledger History (stkledgr_hist_purge_job) 17-12

Schedule 17-12

Design Overview 17-12

Restart/Recovery 17-13

Key Tables Affected 17-13

Design Assumptions 17-13

Stage Stock Ledger Transactions for Additional Processing (salstage) 17-13

Schedule 17-14

Design Overview 17-14

Restart/Recovery 17-14

Design Assumptions 17-14

Stock Ledger Table Maintenance (salmaint) 17-14

Schedule 17-14

Design Overview 17-14

Restart/Recovery 17-15

Locking Strategy 17-15

Security Considerations 17-15

Performance Considerations 17-15

I/O Specification 17-15

Stock Ledger Table Maintenance (stock_ledger_purge_job) 17-15

Schedule 17-15

Design Overview 17-15

Restart/Recovery 17-16

Locking Strategy 17-16

Security Considerations 17-16

Performance Considerations 17-16

Key Tables Affected 17-16

I/O Specification 17-16

Weekly Rollup of Data/Calculations for Stock Ledger (salweek) 17-16

Schedule 17-17

Design Overview 17-17

Restart/Recovery 17-17

xxx

Design Assumptions 17-17

18

Franchise Management

Program Summary 18-1

Apply Supplier Cost Change to Franchise Orders (wf_apply_supp_cc.ksh) 18-2

Schedule 18-2

Design Overview 18-2

Restart/Recovery 18-2

Design Assumptions 18-2

Franchise Customer Staging Purge (fcustupldpurge) 18-2

Schedule 18-3

Design Overview 18-3

Restart/Recovery 18-3

Design Assumptions 18-3

Franchise Order Close (wf_orders_close_job) 18-3

Schedule 18-3

Design Overview 18-3

Restart/Recovery 18-4

Key Tables Affected 18-4

Design Assumptions 18-4

Franchise Order Close (wfordcls) 18-4

Schedule 18-5

Design Overview 18-5

Restart/Recovery 18-5

Design Assumptions 18-5

Franchise Order Purge (wf_orders_purge_job) 18-5

Design Overview 18-5

Restart/Recovery 18-6

Key Tables Affected 18-6

Design Assumptions 18-6

Franchise Order Purge (wfordprg) 18-7

Schedule 18-7

Design Overview 18-7

Restart/Recovery 18-7

Design Assumptions 18-7

Franchise Return Close (wf_returns_close_job) 18-7

Schedule 18-8

Design Overview 18-8

Restart/Recovery 18-8

Key Tables Affected 18-8

xxxi

Design Assumptions 18-8

Franchise Return Close (wfretcls) 18-9

Schedule 18-9

Design Overview 18-9

Restart/Recovery 18-9

Design Assumptions 18-9

Franchise Return Purge (wf_returns_purge_job) 18-9

Schedule 18-9

Design Overview 18-10

Restart/Recovery 18-10

Key Tables Affected 18-10

Design Assumptions 18-10

Franchise Return Purge (wfrtnprg) 18-11

Schedule 18-11

Design Overview 18-11

Restart/Recovery 18-11

Design Assumptions 18-11

Process Cost Buildup Template Upload (fcosttmplprocess) 18-11

Schedule 18-12

Design Overview 18-12

Restart/Recovery 18-12

Design Assumptions 18-12

Process Uploaded Franchise Customers and Customer Groups (fcustomerprocess) 18-12

Schedule 18-12

Design Overview 18-13

Restart/Recovery 18-13

Commit Points 18-13

Design Assumptions 18-13

Program Flow 18-13

Purge Staged Cost Template Data (fcosttmplpurge) 18-14

Schedule 18-14

Design Overview 18-14

Restart/Recovery 18-14

Design Assumptions 18-15

Purge Staged Cost Template Data (wf_cost_template_purge_job) 18-15

Schedule 18-15

Design Overview 18-15

Restart/Recovery 18-15

Key Tables Affected 18-15

Design Assumptions 18-16

xxxii

19

Sales Audit

Import Process 19-2

Preparing for Import 19-2

Importing Data 19-2

Import Processing Programs 19-3

Auditing Processing Programs 19-4

Sales Audit Processing Programs 19-5

Export Process 19-5

Full Disclosure and Post-export Changes 19-6

Export Programs 19-6

Calculate Totals Based on Client Defined Rules (sa_totals_calc_job) 19-6

Schedule 19-6

Design Overview 19-7

Restart/Recovery 19-7

Key Tables Affected 19-7

Design Assumptions 19-8

Calculate Totals Based on Client Defined Rules (satotals) 19-8

Schedule 19-8

Design Overview 19-8

Restart/Recovery 19-8

Design Assumptions 19-9

Complete Transaction Import Processing (saimptlogfin) 19-9

Schedule 19-9

Design Overview 19-9

Restart/Recovery 19-9

Design Assumptions 19-9

Create Store Day for Expected Transactions (sastdycr) 19-9

Schedule 19-10

Design Overview 19-10

Restart/Recovery 19-10

Design Assumptions 19-10

Evaluate Transactions and Totals based on Client Defined Rules (sa_rules_eval_job) 19-10

Schedule 19-10

Design Overview 19-11

Restart/Recovery 19-11

Key Tables Affected 19-11

Design Assumptions 19-12

Evaluate Transactions and Totals based on Client Defined Rules (sarules) 19-12

Schedule 19-12

Design Overview 19-12

xxxiii

Restart/Recovery 19-12

Design Assumptions 19-13

Extract Totals and Rules (sa_rules_total_extract) 19-13

Schedule 19-13

Design Overview 19-13

Restart/Recovery 19-14

Design Assumptions 19-14

Generate Next Sequence for Escheatment Processing (saescheat_nextesn) 19-14

Schedule 19-14

Design Overview 19-14

Restart/Recovery 19-15

Design Assumptions 19-15

Get Reference Data for Sales Audit Import Processing (sagetref) 19-15

Schedule 19-15

Design Overview 19-15

Restart/Recovery 19-16

I/O Specification 19-16

File Name: Item File 19-17

File Name: Waste Data File 19-17

File Name: Reference Item Data 19-18

File Name: Primary Variant Data File 19-18

File Name: Variable Weight UPC Definition File 19-18

File Name: Valid Store/Day Combination File 19-19

File Name: Codes File 19-19

File Name: Error Information File 19-19

File Name: Store POS Mapping File 19-20

File Name: Tender Type Mapping File 19-20

File Name: Merchant Code Mapping File 19-20

File Name: Partner Mapping File 19-20

File Name: Supplier Mapping File 19-21

File Name: Employee Mapping File 19-21

File Name: Banner Information File 19-21

File Name: Currency Information File 19-21

File Name: Promotion Information File 19-22

File Name: Warehouse Information File 19-22

File Name: Inventory Status Information File 19-22

Design Assumptions 19-22

A Note about Primary Variant Relationships 19-23

Migrate Totals and Rules (sa_rules_total_upload) 19-24

Schedule 19-24

Design Overview 19-24

xxxiv

Restart/Recovery 19-25

Design Assumptions 19-25

Pre/Post Helper Processes for ReSA Batch Programs (saprepost) 19-26

Schedule 19-26

Design Overview 19-26

Restart/Recovery 19-26

Design Assumptions 19-26

Prevent Duplicate Export of Total Values from ReSA (sapreexp) 19-27

Schedule 19-27

Design Overview 19-27

Restart/Recovery 19-27

Design Assumptions 19-27

Processing to Allow Re-Upload of Deleted Transactions (saimptlogtdup_upd) 19-27

Schedule 19-28

Design Overview 19-28

Restart/Recovery 19-28

Design Assumptions 19-28

Purge Aged RTLOG Data (sartlogdatapurge) 19-28

Schedule 19-28

Design Overview 19-28

Performance Considerations 19-29

Design Assumptions 19-29

Restart/Recovery 19-29

Tables Affected 19-29

Purge Aged Store/Day Transaction, Total Value and Error Data from Sales Audit (sapurge) 19-29

Schedule 19-29

Design Overview 19-29

Restart/Recovery 19-30

Design Assumptions 19-30

Purge Into History Tables (b8d_sa_purge) 19-31

Schedule 19-31

Design Overview 19-31

Restart/Recovery 19-31

Key Tables Affected 19-31

Purge the Invalid In-progress Sales Bucket (sainprogresspurge) 19-34

Schedule 19-34

Design Overview 19-34

Performance Considerations 19-34

Design Assumptions 19-34

Restart/Recovery 19-34

xxxv

Tables Affected 19-34

Index

xxxvi

List of Figures

9-1 Future Cost Engine - SYNC Mode 9-3

9-2 Future Cost Engine - ASYNC Mode 9-4

9-3 Future Cost Engine - Batch Mode 9-5

9-4 Future Cost Process 9-6

17-1 Process Flow - Stock Ledger 17-1

18-1 Process Flow 18-14

19-1 Oracle Retail Sales Audit Dataflow Diagram 19-2

19-2 Oracle Retail Sales Import Process 19-4

19-3 Primary Variant Relationships 19-24

xxxvii

List of Tables

2-1 Key Tables Affected 2-4

2-2 Pre/Post Helper Functions 2-12

2-3 Key Tables Affected 2-16

2-4 Key Tables Affected 2-18

2-5 Key Tables Affected 2-19

2-6 Key Tables Affected 2-20

2-7 Key Tables Affected 2-24

2-8 Key Tables Affected 2-32

2-9 Actions and Tables Processed by Batch 2-34

3-1 dfrtbld.pc - Input File Layout 3-6

3-2 Key Tables Affected 3-9

3-3 ELCEXCPRG.PC - Cascade Options 3-10

3-4 Key Tables Affected 3-13

3-5 Key Tables Affected 3-14

3-6 Key Tables Affected 3-16

3-7 Key Tables Affected 3-19

3-8 Key Tables Affected 3-24

3-9 Key Tables Affected 3-28

3-10 Options for Cascading Updates 3-31

4-1 Item Maintenance - Program Summary 4-1

4-2 4-2

4-3 Scheduling Constraints 4-5

5-1 Key Tables Affected 5-5

5-2 Key Tables Affected 5-9

5-3 Key Tables Affected 5-11

5-4 Key Tables Affected 5-20

6-1 Key Tables Affected 6-5

6-2 Key Tables Affected 6-9

6-3 Key Tables Affected 6-11

7-1 Key Tables Affected 7-4

8-1 Key Tables Affected 8-3

9-1 Cost Events and Cost Event Types 9-1

9-2 Key Tables Affected 9-9

9-3 Key Tables Affected 9-11

9-4 Key Tables Affected 9-12

xxxviii

9-5 Key Tables Affected 9-15

10-1 Key Tables Affected 10-2

10-2 Key Tables Affected 10-4

11-1 Key Tables Affected 11-11

11-2 Key Tables Affected 11-12

11-3 Key Tables Affected 11-13

11-4 Key Tables Affected 11-15

12-1 Key Tables Affected 12-3

12-2 Key Tables Affected 12-4

13-1 Key Tables Affected 13-3

13-2 Key Tables Affected 13-5

13-3 Key Tables Affected 13-11

13-4 Key Tables Affected 13-13

13-5 Key Tables Affected 13-16

14-1 Concurrent Threads and Chunk Size 14-3

14-2 Transaction Records 14-5

15-1 Key Tables Affected 15-5

15-2 Key Tables Affected 15-7

15-3 Key Tables Affected 15-9

16-1 Key Tables Affected 16-3

16-2 Key Tables Affected 16-8

17-1 Key Tables Affected 17-10

17-2 Key Tables Affected 17-13

17-3 Key Tables Affected 17-16

18-1 Key Tables Affected 18-4

18-2 Key Tables Affected 18-6

18-3 Key Tables Affected 18-8

18-4 Key Tables Affected 18-10

18-5 Key Tables Affected 18-15

19-1 Key Tables Affected 19-7

19-2 Key Tables Affected 19-11

19-3 Itemfile - File Layout 19-17

19-4 wastefile - File Layout 19-17

19-5 Ref_itemfile - File Layout 19-18

19-6 prim_variantfile - File Layout 19-18

19-7 varupcfile - File Layout 19-18

19-8 storedayfile - File Layout 19-19

xxxix

19-9 codefile - File Layout 19-19

19-10 errorfile- File Layout 19-19

19-11 storeposfile- File Layout 19-20

19-12 tendertypefile - File Layout 19-20

19-13 merchcodesfile - File Layout 19-20

19-14 partnerfile - File Layout 19-20

19-15 supplierfile - File Layout 19-21

19-16 employeefile - File Layout 19-21

19-17 bannerfile - File Layout 19-21

19-18 currencyfile - File Layout 19-22

19-19 promfile - File Layout 19-22

19-20 whfile - File Layout 19-22

19-21 invstatusfile - File Layout 19-22

19-22 Helper Functions 19-26

xl

Send Us Your Comments

Oracle Retail Merchandising Foundation Cloud Service Operations Guide, Volume 1 - Batch
Overviews and Designs

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this
document.

Your feedback is important, and helps us to best meet your needs as a user of our products.
For example:

• Are the implementation steps correct and complete?

• Did you understand the context of the procedures?

• Did you find any errors in the information?

• Does the structure of the information help you with your tasks?

• Do you need different information or graphics? If so, where, and in what format?

• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your
name, the name of the company who has licensed our products, the title and part number of
the documentation and the chapter, section, and page number (if available).

Note:

Before sending us your comments, you might like to check that you have the latest
version of the document and if any concerns are already addressed. To do this,
access the Online Documentation available on the Oracle Technology Network Web
site. It contains the most current Documentation Library plus all documents revised
or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative
or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle
local office and inquire about our Oracle University offerings. A list of Oracle offices is
available on our Web site at http://www.oracle.com.

xli

http://www.oracle.com

Preface

This Oracle Retail Merchandising Foundation Cloud Service Operations Guide -
Volume 1– Batch Overviews and Designs provides critical information about the
processing and operating details of the Oracle Retail Merchandising Foundation Cloud
Service, including the following:

• System configuration settings

• Technical architecture

• Functional integration dataflow across the enterprise

• Batch processing

Audience
This guide is for:

• Systems administration and operations personnel

• Systems analysts

• Business analysts who need information about Merchandising System processes
and interfaces

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

Preface

xlii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com

• Detailed step-by-step instructions to re-create

• Exact error message received

• Screen shots of each step you take

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content, Oracle
Retail documentation may be republished whenever a critical correction is needed. For
critical corrections, the republication of an Oracle Retail document may at times not be
attached to a numbered software release; instead, the Oracle Retail document will simply be
replaced on the Oracle Technology Network Web site, or, in the case of Data Models, to the
applicable My Oracle Support Documentation container where they reside.

This process will prevent delays in making critical corrections available to customers. For the
customer, it means that before you begin installation, you must verify that you have the most
recent version of the Oracle Retail documentation set. Oracle Retail documentation is
available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

An updated version of the applicable Oracle Retail document is indicated by Oracle part
number, as well as print date (month and year). An updated version uses the same part
number, with a higher-numbered suffix. For example, part number E123456-02 is an updated
version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all previous
versions.

Oracle Retail Documentation on the Oracle Help Center
(docs.oracle.com)

Oracle Retail product documentation is also available on the following Web site:

https://docs.oracle.com/en/industries/retail/index.html

(Data Model documents can be obtained through My Oracle Support.)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xliii

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
https://docs.oracle.com/en/industries/retail/index.html

1
Introduction

Welcome to the Oracle Retail Merchandising Operations Guide. This guide is designed to
inform you about background processing, batches, and integration for the Merchandising and
Sales Audit solutions. This guide is broken into two volumes:

Volume 1 - Batch Overviews and Designs
Batch overviews tie a functional area description to the batch processes illustrated in the
designs. Batch designs describe how, at a technical level, an individual batch module works
and the database tables that it affects. In addition, the batch designs contain scheduling
information. Batch designs can be referenced by name through the table of contents of this
volume.

Note:

Integration batches are covered in Volume 2 in the "Scheduled Integration" section

Volume 2 - Message Publication and Subscription Designs
This volume contains details about Merchandising and Sales Audit integrations. These
integrations fall into four main categories:

• Message-based Integration - These are covered in two sections: publication and
subscription. Publication covers RIB messages published from Merchandising to other
solutions. Subscription covers RIB message that are subscribed to by Merchandising
from other solutions.

• SOAP Web Services - This chapter provides a summary of the provider and consumer
SOAP services supported by Merchandising and Sales Audit, including details on
security, URLs, and payload information.

• ReSTful Web Services - This chapter provides a summary of the ReST services
supported by Merchandising and Sales Audit, including details on security, URLs, and
payload information.

• Scheduled Integration - This chapter provides a summary of integrations that are
scheduled either to be run once per day or periodically throughout the day. There are
generally two types of integrations – those that expect or produce files and those that
move data between integration tables, also referred to as Bulk Data Integration (BDI).

Batch Schedule
The batch schedule is a program list with pre/post dependencies for each batch job. For each
individual implementation, the schedule is a suggested starting point for the installation.

1-1

Some programs are specific to products that may not be installed, so these programs
may not be used at all. For example, integration related jobs for Merchandising
integration with Oracle Retail Planning solutions.

Note:

When the Merchandising end of day batch jobs are running, the online task
flow screens are unavailable. Prior to the batch jobs starting, users are
warned to save their work and exit. After a period of approximately five
minutes, the batch run starts and users are logged out of the online
application. They are not able to access any tasks in the applications until
the batch schedule has completed.

Batch Wrapper Overview
In order for the scheduler to execute the different Merchandising programs, batch
wrappers have been created based on the following categories:

• Wrapper for Pro*C programs

• Wrapper for KSH scripts

• Wrapper for Perl scripts

• Wrapper for file-based programs

These wrappers validate that the user has sufficient privileges to access required
directories. These are sub directories of the ${RETAIL_HOME} directory.

• Incoming Directory - Staging directory used for .zip files from external systems to
be used as input files in Merchandising programs.

• Outgoing Directory - Staging directory used for .zip files generated from
Merchandising programs for use by external systems. Files in the outgoing
directory will be uploaded to Object Storage through File Transfer Service with a
prefix of “outgoing/”

• Outgoing Directory To SIOCS – Staging directory used for .zip files generated from
Merchandising programs for use by SIOCS. If SIOCS is on premise, files in the
outgoing to SIOCS directory will be uploaded to Object Storage through File
Transfer Service with a prefix of “outgoing/to_siocs”.

• Data Directory - Has 6 sub directories used for File processing and archiving.

– In Directory - Unzipped files from the Incoming Directory. This directory is used
by Merchandising programs as the source for input files.

– Out Directory - Generated output files from Merchandising programs. These
files will be zipped and moved to the Outgoing Directory.

– Processed Directory - All processed files from In Directory will be moved to
this directory. This folder will archive input files.

– Reject Directory - Generated reject files from Merchandising programs.

– Temp Directory - Temporary directory for unzipping files.

– Archive Directory - Output files will be archived in this directory.

Chapter 1
Batch Wrapper Overview

1-2

• Wrapper for single-threaded programs.

• Wrapper for multi-threaded programs.

• Batch-specific wrappers.

Chapter 1
Batch Wrapper Overview

1-3

2
Administration Batch

This chapter contains information about a number of batch processes perform administrative
processes in Merchandising. These processes range from incrementing the current business
date for transactions (known in Merchandising as vdate) to purging unused data.

Program Summary
The batch programs covered in this section include the following:

• Archive and Truncate Purge History Tables (batch_archive_purge_hist.ksh)

• Daily Purge of Foundation Data (dlyprg)

• Refresh Materialized Views (refreshmview.ksh)

• Increment Virtual Business Date (dtesys)

• Load Spreadsheet Templates (ld_iindfiles.ksh and loadods.ksh)

• Merch API Cache Refresh Wrapper Script (merchapirefreshwrap)

• Merch API Data Rebuild Request Wrapper Script (merchapidatarebuildrequest)

• Merch API Delta Processing Wrapper Script (merchapiwrap)

• Pre/Post Helper Processes for Batch Programs (prepost)

• Purge Aged Competitive Pricing Data (cmpprg.pc)

• Purge and Archive Old Files in Batch Server (archivelogs)

• Purge Asynchronous Job Tables (async_job_status_retry_cleanup.ksh)

• Purge Dashboard Working Tables (rms_oi_purge.ksh)

• Purge Export Data (export_stg_purge.ksh)

• Purge Forecast Data (fcstprg)

• Purge Manage Admin Records (admin_api_purge.ksh)

• Purge Notifications (raf_notification_purge.ksh)

• Retail Business Metrics Calculation (rbm_metrics_calc_job)

• Subscription Metrics Update (subscription_metrics_update_job)

• Retain Item Forecast History (rms_oi_forecast_history.ksh)

• Tax Event Purge (taxevntprg)

• Truncate Table Script (trunctbl.ksh)

Additionally, this chapter contains details on some background processes that can be run as
an alternative to jobs that run during the nightly batch cycle:

• Daily Purge of Foundation Data (daily_purge_job)

• Purge Aged Competitive Pricing Data (comp_pricing_purge_job)

2-1

• Purge Export Data (data_export_purge_job)

• Purge Forecast Data (forecast_data_purge_job)

• Purge Job Auditing Logs (job_audit_logs_purge_job)

• Tax Event Purge (tax_event_purge_job)

Archive and Truncate Purge History Tables
(batch_archive_purge_hist.ksh)

Module Name batch_archive_purge_hist.ksh

Description Archive and Truncate Purge History Tables

Functional Area Administration

Module Type Admin

Module Technology ksh

Catalog ID RMS477

Wrapper Script N/A

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this program is to archive and truncate purge history tables regularly in
Merchandising.

When you 'delete' a record in the Merchandising user interface, information is
generally not immediately deleted at the database level; instead, data is marked as
being in deleted status and also inserted into the DAILY_PURGE table. Next the purge
processes will delete the data from Merchandising transaction tables. Before deleting
data from these tables, transaction data will be archived by inserting into purge history
tables by the transaction purge processes.

The batch_archive_purge_hist.ksh will export the purge history table data as a dump
file using Oracle Rest Data Services (ORDS) data pump export service and move the
dump file to Object Storage site for customer pick up. And after successful export of
the transaction data, purge history tables are truncated.

This script has the below functions:

1. check_archive_dates - checks for the archive last run date. Based on the last
archive date and the archive frequency input parameter, decides whether to
archive and truncate the purge history tables or not. This ensures that even though
this batch job is scheduled to run daily, the actual archiving and purging of the
purge history tables will only occur every X number of days based on the input
parameter.

2. truncate_prg_hist_tables - Truncates purge history tables after successful export
of the transaction data.

Chapter 2
Archive and Truncate Purge History Tables (batch_archive_purge_hist.ksh)

2-2

3. update_rms_archive_date - update the Merchandising archive date, after the successful
archiving and truncation of purge history tables.

Restart/Recovery
This program does not contain restart/recovery logic.

I/O Specifications
N/A

Design Assumptions
N/A

Daily Purge of Foundation Data (daily_purge_job)

Module Name daily_purge_job

Description Daily Purge of Foundation Data

Functional Areas Administration

Module Type Admin - Adhoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

When you 'delete' a record in the RMFCSS user interface, information is generally not
immediately deleted at the database level; instead, data is marked as being in deleted status
and also inserted into the daily purge table.

A thread assignment program will filter eligible records from daily purge table wherein all
entities ready for purging aside/except from Item-Location records. These records are
chunked and Thread ID is assigned for each. They will be stored temporarily in a staging
table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete specific Foundation Data entities from the respective
RMFCS tables. Complex referential integrity relationships determine whether data can
actually be deleted from the database (for example, a store cannot be deleted if any
transactions related to the store are still on current transaction tables). This program checks
these complex rules. If the deletion request passes the rules, this job will continues to delete
the data. If it is not able to delete the data, it writes a record to the daily purge error log table

Chapter 2
Daily Purge of Foundation Data (daily_purge_job)

2-3

for further investigation. This program will continue to attempt to delete marked data
until all references have been purged from the system and the deletion of the
foundation data entity finally succeeds. It will free up and clean the staging table
afterwards. There is a STOP ON NEXT feature in bulk processing (through a loop)
where Administrators can stop this batch with a flip of this indicator.

Restart Recovery
N/A

Key Tables Affected

Table 2-1 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_DAILY_PURGE_STG Yes No No No

DAILY_PURGE Yes No No Yes

DAILY_PURGE_ERROR_LOG Yes Yes No Yes

LOC_LIST_DETAIL No No No Yes

MONTH_DATA_BUDGET Yes No No Yes

HALF_DATA_BUDGET Yes No No Yes

VAT_DEPS Yes No No Yes

SKULIST_CRITERIA Yes No No Yes

DOMAIN_DEPT Yes No No Yes

FORECAST_REBUILD Yes No No Yes

SUP_DATA Yes No No Yes

DEPT_SALES_HIST Yes No No Yes

DEPT_SALES_FORECAST Yes No No Yes

DEAL_ITEMLOC Yes No No Yes

DEPS Yes No No Yes

STOCK_LEDGER_INSERTS Yes No No Yes

STAKE_SCHEDULE Yes No No Yes

DEPT_CHRG_DETAIL Yes No No Yes

WH_DEPT Yes No No Yes

DEPT_CHRG_HEAD Yes No No Yes

SUP_BRACKET_COST Yes No No Yes

SUP_REPL_DAY Yes No No Yes

SUP_INV_MGMT Yes No No Yes

FILTER_GROUP_MERCH Yes No No Yes

IB_RESULTS Yes No No Yes

WEEK_DATA Yes No No Yes

Chapter 2
Daily Purge of Foundation Data (daily_purge_job)

2-4

Table 2-1 (Cont.) Key Tables Affected

Table Select Insert Update Delete

DAILY_DATA Yes No No Yes

MONTH_DATA Yes No No Yes

TRAN_DATA_HISTORY Yes No No Yes

HALF_DATA Yes No No Yes

PARTNER Yes No No Yes

SHIPMENT Yes No No Yes

COST_ZONE_GROUP_LOC Yes No No Yes

COST_ZONE Yes No No Yes

COST_ZONE_GROUP Yes No No Yes

UDA_ITEM_DEFAULTS Yes No No Yes

DOMAIN_CLASS Yes No No Yes

CLASS_SALES_HIST Yes No No Yes

CLASS_SALES_FORECAST Yes No No Yes

CLASS Yes No No Yes

DOMAIN_SUBCLASS Yes No No Yes

OTB Yes No No Yes

DIFF_RATIO_DETAIL Yes No No Yes

DIFF_RATIO_HEAD Yes No No Yes

SUBCLASS_SALES_HIST Yes No No Yes

SUBCLASS_SALES_FOREC
AST

Yes No No Yes

SUBCLASS Yes No No Yes

MERCH_HIER_DEFAULT Yes No No Yes

WH Yes No No Yes

WH_ADD Yes No No Yes

STORE_SHIP_DATE Yes No No Yes

LOC_TRAITS_MATRIX Yes No No Yes

COST_ZONE_GROUP_LOC Yes No No Yes

ITEM_EXP_DETAIL Yes No No Yes

ITEM_EXP_HEAD Yes No No Yes

EXP_PROF_DETAIL Yes No No Yes

EXP_PROF_HEAD Yes No No Yes

STORE_GRADE_STORE Yes No No Yes

DAILY_SALES_DISCOUNT Yes No No Yes

LOAD_ERR Yes No No Yes

STORE Yes No No Yes

EDI_SALES_DAILY Yes No No Yes

COMP_STORE_LINK Yes No No Yes

Chapter 2
Daily Purge of Foundation Data (daily_purge_job)

2-5

Table 2-1 (Cont.) Key Tables Affected

Table Select Insert Update Delete

SEC_GROUP_LOC_MATRIX Yes No No Yes

LOC_CLSF_HEAD Yes No No Yes

LOC_CLSF_DETAIL Yes No No Yes

SOURCE_DLVRY_SCHED Yes No No Yes

SOURCE_DLVRY_SCHED_D
AYS

Yes No No Yes

SOURCE_DLVRY_SCHED_E
XC

Yes No No Yes

COMPANY_CLOSED_EXCEP Yes No No Yes

LOCATION_CLOSED Yes No No Yes

POS_STORE Yes No No Yes

STORE_HIERARCHY Yes No No Yes

ADDR Yes No No Yes

TIF_EXPLODE Yes No No Yes

WALK_THROUGH_STORE Yes No No Yes

SKULIST_DETAIL Yes No No Yes

INV_STATUS_QTY Yes No No Yes

REPL_ATTR_UPDATE_LOC Yes No No Yes

REPL_ATTR_UPDATE_HEAD Yes No No Yes

REPL_ATTR_UPDATE_ITEM Yes No No Yes

COST_SUSP_SUP_DETAIL Yes No No Yes

ITEM_HTS_ASSESS Yes No No Yes

ITEM_HTS Yes No No Yes

REQ_DOC Yes No No Yes

ITEM_IMPORT_ATTR Yes No No Yes

TIMELINE Yes No No Yes

COND_TARIFF_TREATMENT Yes No No Yes

ITEM_IMAGE Yes No No Yes

ITEM_SUPP_UOM Yes No No Yes

DEAL_SKU_TEMP Yes No No Yes

DEAL_DETAIL Yes No No Yes

ITEM_SUPP_COUNTRY Yes No No Yes

ITEM_SUPP_COUNTRY_DIM Yes No No Yes

RECLASS_ITEM Yes No No Yes

SUP_AVAIL Yes No No Yes

ITEM_SUPPLIER Yes No No Yes

ITEM_MASTER Yes No No Yes

PACK_TMPL_DETAIL Yes No No Yes

SUPS_PACK_TMPL_DESC Yes No No Yes

Chapter 2
Daily Purge of Foundation Data (daily_purge_job)

2-6

Table 2-1 (Cont.) Key Tables Affected

Table Select Insert Update Delete

PACK_TMPL_HEAD Yes No No Yes

UDA_ITEM_LOV Yes No No Yes

UDA_ITEM_DATE Yes No No Yes

UDA_ITEM_FF Yes No No Yes

ITEM_SEASONS Yes No No Yes

ITEM_TICKET Yes No No Yes

COMP_SHOP_LIST Yes No Yes Yes

TICKET_REQUEST Yes No No Yes

PRICE_HIST Yes Yes No Yes

PACKITEM_BREAKOUT Yes No No Yes

PACKITEM Yes No No Yes

POS_MERCH_CRITERIA Yes No No Yes

ITEM_CHRG_HEAD Yes No No Yes

ITEM_CHRG_DETAIL Yes No No Yes

RECLASS_COST_CHG_QUE
UE

Yes No No Yes

ITEM_PUB_INFO Yes No No Yes

ITEM_MFQUEUE Yes No No Yes

ITEM_XFORM_HEAD Yes No No Yes

ITEM_XFORM_DETAIL Yes No No Yes

DEAL_ITEM_LOC_EXPLODE Yes No No Yes

ITEM_APPROVAL_ERROR Yes No No Yes

I/O Specification
N/A

Daily Purge of Foundation Data (dlyprg)

Module Name dlyprg.pc

Description Daily Purge of Foundation Data

Functional Areas Administration

Module Type Admin

Module Technology ProC

Catalog ID RMS218

Wrapper Script rmswrap.ksh

Chapter 2
Daily Purge of Foundation Data (dlyprg)

2-7

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this program is to delete specific Foundation Data entities from
Merchandising.

When users ‘delete' a record in the Merchandising user interface, information is
generally not immediately deleted at the database level; instead, data is marked as
being in deleted status and also inserted into the DAILY_PURGE table.

Complex referential integrity relationships determine whether data can actually be
deleted from the database (for example, a store cannot be deleted if any transactions
related to the store are still on current transaction tables). Dlyprg.pc checks these
complex rules. If the deletion request passes the rules, dlyprg.pc deletes the data. If
dlyprg.pc is not able to delete the data, it writes a record to a log table for further
investigation. Dlyprg will continue to attempt to delete marked data until all references
have been purged from the system and the deletion of the foundation data entity finally
succeeds.

Restart Recovery
This program has inherent restart ability. Records that have been successfully purged
are deleted from the DAILY_PURGE table. This ensures that if the program is
restarted, it does not attempt to delete records that have been previously processed.

I/O Specification
N/A

Design Assumptions
N/A

Increment Virtual Business Date (dtesys)

Module Name dtesys.pc

Description Increment Virtual Business Date

Functional Area Administration

Module Type Admin

Module Technology ProC

Catalog ID RMS220

Wrapper Script rmswrap.ksh

Chapter 2
Increment Virtual Business Date (dtesys)

2-8

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program updates the PERIOD table for various dates required in Merchandising
such as vdate, end-of-month and end-of-week dates.

Vdate (short for virtual business date) is used by Merchandising to maintain a consistent
‘virtual' business date (without regard for actual date changes at midnight or different dates in
different timezone) for accounting purposes. Sysdate from the database is used to capture
audit time and date stamps on transactions.

Note:

Vdate is used to determine the business date for the financial impact of
transactions.

Generally, dtesys is run without additional input parameters and increments the data by one
day. However, if a specific date is passed into the program as a parameter, the system date
will be updated to that date.

Special processing also occurs:

• Weekly

When vdate = next_eow_date_unit, the program increments the last_eow_date_unit and
next_eow_date_unit columns on system_variables. The last_eow_date_unit is updated to
the current next_eow_date_unit and the next_eow_date_unit is updated to the next end-
of-week date (calculated).

• Monthly

When vdate = next_eom_date_unit, the program updates the last_eom_date_unit and
next_eom_date_unit columns on system_variables. The last_eom_date_unit is updated
to the current next_eom_date_unit and the next_eom_date_unit is updated to the next
end-of-month date (calculated).

Restart/Recovery
N/A

I/O Specification
N/A

Design Assumptions
N/A

Chapter 2
Increment Virtual Business Date (dtesys)

2-9

Load Spreadsheet Templates (ld_iindfiles.ksh and
loadods.ksh)

Module Name ld_iindfiles.ksh, loadods.ksh

Description Load Spreadsheet Templates

Functional Area Item Maintenance

Module Type Install

Module Technology ksh

Catalog ID RMS199

Wrapper Script N/A

Schedule
N/A

Design Overview
These scripts are used to load data from template files to the Merchandising template
tables as part of installation. They load templates used by induction processes for
Merchandising and Pricing, as well as templates used for spreadsheet load of
foundation data. They may also be run ad hoc in situations where the base files need
to be reset.

Note:

There is no wrapper script for these programs. They are invoked directly by
the installer.

Restart/Recovery
N/A

Design Assumptions
N/A

Merch API Cache Refresh Wrapper Script
(merchapirefreshwrap)

Module Name merchapirefreshwrap.ksh

Chapter 2
Load Spreadsheet Templates (ld_iindfiles.ksh and loadods.ksh)

2-10

Description Wrapper shell script to process all the refresh
requests present in
MERCHAPI_ASYNC_REQUEST table.

Functional Area Foundation and Inventory Tracking

Module Type Business Processing

Module Technology Ksh

Catalog ID TBD

Runtime Parameters N/A

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This wrapper batch program is used to process all the requests present in the
MERCHAPI_ASYNC_REQUEST table. This table captures requests at an API level for the
following scenarios:

• API Enablement - When the API is enabled through the UI when an entry is made into
the MERCHAPI_ASYNC_REQUEST table. This wrapper will do the initial load of the
respective merchapi cache table and set the enable flag in the merchapi_config table.

• API Disablement - When an enabled API is disabled through the UI, an entry is made
into the MERCHAPI_ASYNC_REQUEST table. This wrapper will clear the respective
merchapi cache table and disable the API in merchapi_config table.

• Data Refresh – The data refresh request can be submitted using
merchapidatarebuildrequest.ksh, which makes an entry in the
MERCHAPI_ASYNC_REQUEST table. Depending on the type of data refresh (truncate/
load or rebuild) the merchapi cache table is rebuilt.

Each API has a separate cache table and respective PLSQL package for API enable, disable
and rebuild, which is maintained in the MERCH_BATCH_PARAM table. This wrapper script
scans through the MERCAPI_ASYNC_REQUEST table, picks the request ID, completes the
processing, and continues with the subsequent request. Duplicate or Invalid requests are
ignored during processing. If the API is multi-thread enabled in the merch_batch_param
table, this wrapper will spawn multiple threads to process the data.

Restart/Recovery
N/A

Design Assumptions
N/A

Pre/Post Helper Processes for Batch Programs (prepost)

Module Name prepost.pc

Chapter 2
Pre/Post Helper Processes for Batch Programs (prepost)

2-11

Description Pre/Post Helper Processes for Batch Programs

Functional Area Administration

Module Type Business Processing

Module Technology ProC

Catalog ID N/A

Individual pre/post jobs have Catalog IDs

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The pre/post module facilitates multi-threading by allowing general system
administration functions (such as table deletions or mass updates) to be completed
after all threads of a particular program have been processed.

This program will take three parameters: username/password to log on to Oracle, a
program before or after which this script must run and an indicator telling whether the
script is a pre or post function. It will act as a shell script for running all pre-program
and post-program updates and purges (the logic was removed from the programs
themselves to enable multi-threading and restart/recovery).

Pre/Post contains the following helper functions, which are should be individually
scheduled with the related main programs.

Table 2-2 Pre/Post Helper Functions

Catalog ID Prepost Job Related Main
Program Catalog ID

Related Main
Program

RMS400 prepost rpl pre RMS315 rplext

RMS401 prepost salweek post RMS346 salweek

RMS402 prepost salmth post RMS343 salmth

RMS403 prepost rplapprv pre RMS300 rplapprv

RMS404 prepost rplatupd pre RMS313 rplatupd

RMS405 prepost rplatupd post RMS313 rplatupd

RMS406 prepost rilmaint pre RMS311 rilmaint

RMS407 prepost rilmaint post RMS311 rilmaint

RMS408 prepost supmth post RMS369 supmth

RMS409 prepost sccext post RMS355 sccext

RMS410 prepost hstbld pre RMS239 hstbld

RMS411 prepost hstbld post RMS239 hstbld

RMS413 prepost edidlprd post RMS47 edidlprd

RMS414 prepost edidlprd pre RMS47 edidlprd

Chapter 2
Pre/Post Helper Processes for Batch Programs (prepost)

2-12

Table 2-2 (Cont.) Pre/Post Helper Functions

Catalog ID Prepost Job Related Main
Program Catalog ID

Related Main
Program

RMS417 prepost cntrordb post RMS232 cntrordb

RMS418 prepost fsadnld post N/A N/A

RMS419 prepost btchcycl N/A No related main
process. Is used to
enable DB policies
that might have been
disabled in order to
run batch.

RMS421 prepost poscdnld post N/A poscdnld

RMS423 prepost htsupld pre N/A htsupld

RMS425 prepost reclsdly pre RMS302 reclsdly

RMS426 prepost reclsdly post RMS302 reclsdly

RMS427 prepost ibcalc pre RMS249 ibcalc

RMS428 prepost fcstprg pre RMS227 fcstprg

RMS429 prepost fcstprg post RMS249 fcstprg

RMS430 prepost reqext pre RMS310 reqext

RMS431 prepost reqext post RMS310 reqext

RMS432 prepost stkupd pre N/A Stkupd

RMS433 prepost replroq pre RMS308 Replroq

RMS434 prepost rplext post RMS315 Rplext

RMS438 prepost saleoh pre RMS337 Saleoh

RMS440 prepost salweek pre RMS346 salweek

RMS441 prepost dealinc pre RMS211 Dealinc

RMS442 prepost dealday pre RMS208 dealday

RMS443 prepost dealday post RMS208 dealday

RMS444 prepost dealact_nor
pre

RMS206 Dealact

RMS445 prepost dealact_po
pre

RMS206 Dealact

RMS446 prepost dealact_sales
pre

RMS206 Dealact

RMS447 prepost dealfct pre RMS209 Dealfct

RMS448 prepost dealcls post RMS209 Dealcls

RMS449 prepost hstbldmth post RMS241 hstbldmth

RMS450 prepost vendinvc pre N/A vendinvc

RMS451 prepost vendinvf pre N/A vendinvf

RMS452 prepost vendinvc post N/A vendinvc

RMS453 prepost vendinvf post N/A vendinvf

RMS454 prepost docclose pre RMS219 docclose

Chapter 2
Pre/Post Helper Processes for Batch Programs (prepost)

2-13

Table 2-2 (Cont.) Pre/Post Helper Functions

Catalog ID Prepost Job Related Main
Program Catalog ID

Related Main
Program

RMS455 prepost stkprg post RMS360 stkprg

RMS456 prepost wfordupld pre RMS392 wfordupld

RMS457 prepost wfretupld pre N/A wfretupld

RMS458 prepost replsizeprofile
pre

RMS309 replsizeprofile

RMS459 prepost supsplit pre RMS370 supsplit

RMS461 prepost
batch_ordcostcompup
d pre

RMS190 batch_ordcostcompup
d

RMS462 prepost
batch_ordcostcompup
d post

RMS190 batch_ordcostcompup
d

RMS463 prepost
batch_costcompupd
post

RMS190 batch_ordcostcompup
d

RMS465 prepost dlyprg post RMS218 dlyprg

RMS466 prepost tsfprg pre RMS380 tsfprg

RMS467 prepost tsfprg post RMS380 tsfprg

RMS468 prepost fcexec pre RMS223 fcexec

RMS469 prepost start_batch
pre

N/A Sets the batch running
ind to ‘Y' to limit front
end use of the system.

RMS470 prepost end_batch
post

N/A Sets the batch running
ind to ‘N' to reenable
all front end use of the
system.

This should be the last
job in the batch cycle.

RMS488 prepost btchcycl post N/A This job reenables all
policies in the
Merchandising owning
schema.

RMS489 prepost dealfct post RMS209 Dealfct

prepost sitmain pre RMS357 sitmain

prepost sitmain post RMS357 Sitmain

prepost ediupack post ediupack

Restart/Recovery
N/A

Chapter 2
Pre/Post Helper Processes for Batch Programs (prepost)

2-14

Purge Aged Competitive Pricing Data (cmpprg.pc)

Module Name cmpprg.pc

Description Purge Aged Competitive Pricing Data

Functional Area Competitive Pricing

Module Type Admin

Module Technology ProC

Catalog ID RMS198

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program deletes from the competitive price history table and the competitive shopping
list table based purge criteria based on system parameter settings. The Competitive Pricing
Months parameter will determine how many months competitive price history should be
maintained before deletion. The Competitive Pricing List Days parameter will determine how
long a requested shopping list should remain on the shopping list table if it is not complete by
the requested shop date.

Restart/Recovery
N/A

Design Assumptions
N/A

Purge Aged Competitive Pricing Data (comp_pricing_purge_job)

Module Name comp_pricing_purge_job

Description Purge Aged Competitive Pricing Data

Functional Area Competitive Pricing

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 2
Purge Aged Competitive Pricing Data (cmpprg.pc)

2-15

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from competitive price history
and competitive shipping list tables based on its purge criteria from system parameter
settings. The Competitive Pricing List Days parameter will determine how long a
requested shopping list should remain on the shopping list table if it is not complete by
the requested shop date. These records are chunked and Thread ID is assigned for
each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from competitive price history and
competitive shipping list tables. It will free up and clean the staging table afterwards.
There is a STOP ON NEXT feature in bulk processing (through a loop) where
Administrators can stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 2-3 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

PURGE_CONFIG_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_COMP_PRICING_PURG
E_STG

Yes Yes No Yes

COMP_PRICE_HIST Yes No No Yes

COMP_SHOP_LIST Yes No No Yes

Design Assumptions
N/A

Purge and Archive Old Files in Batch Server (archivelogs)

Module Name archivelogs.ksh

Description Purge and Archive Aged files in RMS Batch
server

Functional Area Administration

Chapter 2
Purge and Archive Old Files in Batch Server (archivelogs)

2-16

Module Type Admin – Ad hoc

Module Technology ksh

Catalog ID

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This ad hoc job archives 7-day-old files from the following folders:

• ${RETAIL_HOME}/data/processed,
• ${RETAIL_HOME}/log,
• ${RETAIL_HOME}/log/sqlloader
• ${RETAIL_HOME}/error
This job also purges 189-day-old files from the following folders:

• ${RETAIL_HOME}/data/processed/archive
• ${RETAIL_HOME}/log/archive
• ${RETAIL_HOME}/log/sqlloader/archive
• ${RETAIL_HOME}/error/archive
• ${RETAIL_HOME}/data/archive

Restart/Recovery
N/A

Key Tables Affected
N/A

Design Assumptions
N/A

Purge Asynchronous Job Tables
(async_job_status_retry_cleanup.ksh)

Module Name async_job_status_retry_cleanup.ksh

Description Purge Asynchronous Job Tables

Functional Area Administration

Chapter 2
Purge Asynchronous Job Tables (async_job_status_retry_cleanup.ksh)

2-17

Module Type Admin

Module Technology ksh

Catalog ID RMS180

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch job cleans up the Merchandising asynchronous jobs tables. The
asynchronous job management tables (RMS_ASYNC_STATUS and
RMS_ASYNC_RETRY) track each asynchronous call that is made. These tables are
used to see error information and help with retrying failed calls.

This program will be run ad hoc and will accept a parameter of # days of information
that will be deleted.

Restart/Recovery
N/A

Key Tables Affected

Table 2-4 Key Tables Affected

Table Select Insert Update Delete

RMS_ASYNC_STATUS No No No Yes

RMS_ASYNC_RETRY No No No Yes

Input/Out Specification
N/A

Purge Dashboard Working Tables (rms_oi_purge.ksh)

Module Name rms_oi_purge.ksh

Description Purge data from the dashboard working tables

Functional Area Operational Insight Dashboard Reports

Module Type Admin

Module Technology Ksh

Catalog ID RMS490

Runtime Parameters $UP (database connect string)

Chapter 2
Purge Dashboard Working Tables (rms_oi_purge.ksh)

2-18

Design Overview
This batch program calls OI_UTILITY.PURGE_RMS_OI_TABLES to truncate the data in the
Merchandising Operational Insight Dashboard staging tables. During normal operation, the
staged data for the session are deleted when a user closes the report window. This program
provides a way to clean up and control the size of the staging tables if data failed to be
deleted due to abnormal termination of the session.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc

Frequency Daily

Scheduling Considerations When no user is on-line using the OI dashboard reports.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
N/A

Key Tables Affected

Table 2-5 Key Tables Affected

Table Select Insert Update Delete

RMS_OI_BUYER_EARLY_LATE_SHIP No No No Yes

RMS_OI_BUYER_ORDERS_TO_APPROVE No No No Yes

RMS_OI_INV_ANA_OPEN_ORDER No No No Yes

RMS_OI_INV_ANA_VARIANCE No No No Yes

RMS_OI_INV_CTL_NEG_INV No No No Yes

RMS_OI_INV_ORD_ERRORS No No No Yes

RMS_OI_INV_ORD_ITEM_ERRORS No No No Yes

RMS_OI_MISSING_STOCK_COUNT No No No Yes

RMS_OI_OVERDUE_SHIP_ALLOC No No No Yes

RMS_OI_OVERDUE_SHIP_TSF No No No Yes

RMS_OI_OVERDUE_SHIP_RTV No No No Yes

RMS_OI_STK_ORD_PEND_CLOSE No No No Yes

RMS_OI_STOCK_COUNT_VARIANCE No No No Yes

RMS_OI_TSF_PEND_APPROVE No No No Yes

RMS_OI_UNEXPECTED_INV No No No Yes

RMS_OI_DATA_STWRD_INCOMP_ITEMS No No No Yes

Chapter 2
Purge Dashboard Working Tables (rms_oi_purge.ksh)

2-19

Design Assumptions
N/A

Purge Export Data (data_export_purge_job)

Module Name data_export_purge_job

Description Purging of all the extracted records (week old) for Xstore.

Functional Area Foundation1

Module Type Admin - Ad hoc

Module Technology Background processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of one step processing only. It will retain the
business logic processing from original KSH script algorithm.

The Business logic program will removed all old/aged records from the following
staging tables related to data exported information which are considered week old
regardless if data is extracted or not.

Restart/Recovery
N/A

Key Tables Affected

Table 2-6 Key Tables Affected

Table Select Insert Update Delete

MERCHHIER_EXPORT_STG No No No Yes

ORGHIER_EXPORT_STG No No No Yes

STORE_EXPORT_STG No No No Yes

DIFFS_EXPORT_STG No No No Yes

DIFFGRP_EXPORT_STG No No No Yes

ITEM_EXPORT_STG No No No Yes

VAT_EXPORT_STG No No No Yes

RELITEM_EXPORT_STG No No No Yes

Chapter 2
Purge Export Data (data_export_purge_job)

2-20

Table 2-6 (Cont.) Key Tables Affected

Table Select Insert Update Delete

DATA_EXPORT_HIST No No No Yes

Integration Contract
N/A

Design Assumptions
N/A

Purge Export Data (export_stg_purge.ksh)

Module Name export_stg_purge.ksh

Description Purging of all the extracted records (week old) for Xstore.

Functional Area Foundation

Module Type Integration

Module Technology Ksh

Catalog ID RMS265

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch job will be used to remove records that are a week old from the following staging
tables.

• Merchandise Hierarchy Export Staging

• Organizational Hierarchy Export Staging

• Store Export Staging

• Differentiator Export Staging

• Differentiator Group Export Staging

• Item Export Staging

• VAT Export Staging

• Related Item Export Staging

• Data Export History

Batch will purge all the records (Week old records) from its respective staging table whether
data get extracted or not.

Chapter 2
Purge Export Data (export_stg_purge.ksh)

2-21

Restart/Recovery
N/A

Design Assumptions
N/A

Purge Forecast Data (fcstprg)

Module Name fcstprg.pc

Description Purge Forecast Data

Functional Area Interface - Planning

Module Type Admin

Module Technology ProC

Catalog ID RMS227

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program deletes data from the Merchandising forecast information tables. This
program serves to delete data by domains so that they can re-loaded with new
forecast information from a forecasting system such as Demand Forecasting.

Restart/Recovery
N/A

Design Assumptions
N/A

Purge Forecast Data (forecast_data_purge_job)

Module Name forecast_data_purge_job

Description Purge Forecast Data

Functional Area Interface - Planning

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Chapter 2
Purge Forecast Data (fcstprg)

2-22

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from RMS forecast information tables
based on passed Domain ID. By default, all domains are captured and considered for purging
criteria. These records are chunked and Thread ID is assigned for each. They will be stored
temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from their respective RMFCS forecast
information tables. Data deletion is performed by partition truncation, table truncation or
deletion by domain. The method of deletion is dependent on whether or not the table is
partitioned. This program serves to delete data by domains so that they can re-loaded with
new forecast information from a forecasting system such as Demand Forecasting.. It will free
up and clean the staging table afterwards. There is a STOP ON NEXT feature in bulk
processing (through a loop) where Administrators can stop this batch with a flip of this
indicator.

Restart/Recovery
N/A

Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS Yes No No No

B8D_FORECAST_DATA_PURG
E_STG

Yes Yes No Yes

ITEM_FORECAST No No No Yes

DEPT_SALES_FORECAST No No No Yes

CLASS_SALES_FORECAST No No No Yes

SUBCLASS_SALES_FORECAS
T

No No No Yes

Design Assumptions
NA

Chapter 2
Purge Forecast Data (forecast_data_purge_job)

2-23

Purge Job Auditing Logs (job_audit_logs_purge_job)

Module Name job_audit_logs_purge_job

Description Purge Old Job Auditing Logs

Functional Area Administration

Module Type Admin - Ad hoc

Module Technology Background processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of one step processing only. This new program/job
will use the newly created support program maintain for purging records where
affected table is partitioned.

The Business logic program will invoke a call to a new program specific for handling
historical logging table that is considered a partitioned table. A package function is
called passing the target table name and will execute the proper deletion/purging of
records from target table by exercising table partitioning handling such as Dropping
Interval Partition (same as truncate or delete from table). There is a STOP ON NEXT
feature in bulk processing (through a loop) where Administrators can stop job with a
flip of this indicator.

The purge program considered the system parameter setting, Job Logging History
Months (job_log_hist_months) to determine those records that are older than a
predetermined number of months.

Restart/Recovery
N/A

Key Tables Affected

Table 2-7 Key Tables Affected

Table Select Insert Update Delete

SYSTEM_OPTIONS Yes No No No

PERIOD Yes No No No

RMS_BATCH_STATUS Yes No No No

ALL_TAB_PARTITIONS Yes No No No

ALL_PART_TABLES Yes No No No

Chapter 2
Purge Job Auditing Logs (job_audit_logs_purge_job)

2-24

Table 2-7 (Cont.) Key Tables Affected

Table Select Insert Update Delete

JOB_AUDIT_LOGS No Yes No Yes

Design Assumptions
N/A

Purge Manage Admin Records (admin_api_purge.ksh)

Module Name admin_api_purge.ksh

Description Purge Manage Admin records

Functional Area Administration

Module Type Admin

Module Technology ksh

Catalog ID N/A

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This script purges data from tables used for uploading Foundation Data from spreadsheets
based on the retention days specified in the system parameter-
PROC_DATA_RETENTION_DAYS for both Merchandising and Sales Audit and will help in
keeping the size of these tables controlled.

Restart/Recovery
N/A

I/O Specifications
N/A

Purge Notifications (raf_notification_purge.ksh)

Module Name raf_notification_purge.ksh

Description Purge notifications from the Retail Application Framework table

Functional Area Notifications

Module Type Admin

Chapter 2
Purge Manage Admin Records (admin_api_purge.ksh)

2-25

Module Technology Ksh

Catalog ID RMS80

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program calls
RAF_NOTIFICATION_TASK_PKG.DEL_NOTIF_PAST_RETENTION to delete
notifications that are generated by Merchandising and Sales Audit and have passed
the preconfigured number of retention days. This program provides a way to clean up
and control the size of the RAF notification tables.

Restart/Recovery
N/A

Design Assumptions
N/A

Refresh Materialized Views (refreshmview.ksh)

Module Name refreshmview.ksh

Description Refreshes dept_sales_forecast, class_sales_forecast,
subclass_sales_forecast, dept_sales_hist, class_sales_hist
subclass_sales_hist, mv_subclass_loc_hist and
mv_restart_stock_count materialized views

Functional Area Financials

Module Type Ad hoc

Module Technology ksh

Catalog ID N/A

Wrapper Script rmswrap_shell.ksh

Design Overview
This is a batch job that will refresh the specified materialized view. The materialized
views that are refreshed are dept_sales_forecast, class_sales_forecast,
subclass_sales_forecast, dept_sales_hist, class_sales_hist,
subclass_sales_hist, mv_subclass_loc_hist and mv_restart_stock_count.

This program can be run ad hoc and will accept the materialized view name as the
parameter. Nested refresh of the materialized view can be controlled using the optional
parameter (Valid values: Y - True and N - False). By default, the refresh is nested.

Chapter 2
Refresh Materialized Views (refreshmview.ksh)

2-26

Schedule
Oracle Retail Merchandising Batch Schedule

Restart/Recovery
N/A

I/O Specification
N/A

Retail Business Metrics Calculation (rbm_metrics_calc_job)

Module Name rbm_metrics_calc_job

Description Retail Business Metrics Calculation job

Functional Area Retail Business Metrics

Module Type Admin – Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This job is a background job that computes the business metric for all metrics marked as
enabled (active_ind = ‘Y’) in the rbm_master table. The purpose of each metric is detailed
in the metric_desc and comments columns in rbm_master table.

RBM_ID METRIC_NAME METRIC_DESC COMMENTS

100 active_item_locs Count of transaction-
level item locations
where the status is
active, and the item
status is approved

Count of item location records
where the item/location status
is A (active) and the item
status is A (approved). Only
transaction-level items should
be considered.

101 gross_active_item_locs Count of all item
locations where the
status is active

Count of item location records
where the item/location status
is A (active) should be
considered.

110 sales_audit_trans Count of sales audit
transaction header
records

Count of sales audit
transaction header records,
across all stores.

Chapter 2
Retail Business Metrics Calculation (rbm_metrics_calc_job)

2-27

RBM_ID METRIC_NAME METRIC_DESC COMMENTS

111 sales_audit_tran_line_items Count of sales audit
transaction item
records

Count of sales audit
transaction item records,
across all stores.

120 po_receipts Count of the
purchase orders

Count of the shipments by
receipt date where the order
number is not null, across all
locations.

121 po_lines_recieved Count of purchase
order lines received

Count of transaction data
records, for transaction code
20, by receipt date, where the
adjustment code is null,
across all locations.

130 stock_order_receipts Count of stock order
(transfer or
allocation) receipts

Count of the shipments by
receipt date where the BOL
number is not null, across all
locations.

131 stock_order_lines_recieved Count of stock order
lines received
(transfer or
allocation)

Count of shipment transaction
data records for transaction
code 44 by day across all
locations.

140 cost_changes Total number of cost
changes executed

Sum by effective date the cost
change header records with a
status of Extracted (E) .

141 cost_change_details Total number of cost
changes executed at
detail level

Sum by effective date the cost
change detail records with a
status of Extracted (E) .

142 cost_change_details_loc Total number of cost
changes executed at
detail location level

Sum by effective date the cost
change detail location records
with a status of Extracted (E) .

500 price_changes Total number of
price changes that
have been executed

Sum of count of the price
changes by effective date
where the status is Executed
(5).

510 Clearances Total number of
clearance events
(both markdowns
and resets) executed

Sum of count of the Executed
events (clearances) by
effective date where the
status is Executed (5).

600 Allocations Total number of
allocations sent to
Merchandising for
execution

Sum of count of allocations
(ALC_ALLOC) in Approved or
PO Created status by last
update date.

601 allocation_line_items Total number of
allocation lines sent
to Merchandising for
execution

Sum of count of allocation
details (ALC_ITEM_LOC) for
allocations in Approved or PO
Created status by last update
date.

700 Invoices Total number of
merchandise
invoices posted to AP

Sum of count of documents of
type Merchandise Invoice
(MRCHI) with a status of Posted
(POSTED) by posted date.

Chapter 2
Retail Business Metrics Calculation (rbm_metrics_calc_job)

2-28

RBM_ID METRIC_NAME METRIC_DESC COMMENTS

701 invoices_line_items Total number of
invoice lines posted
to AP

Sum of count of detail lines
for merchandise invoices in
Posted status by posted date.

710 other_documents Total number of
documents posted to
AP, excluding
merchandise
invoices

Sum of count of documents
that are not type Merchandise
Invoice (MRCHI) with a status
of Posted (POSTED) by posted
date.

The data will be computed at the frequency indicated by calc_freq in the rbm_master table
wherein D stands for daily, W stands for weekly, and M stands for monthly. The weekly metrics
are calculated on the day indicated in the calc_weekday column. The monthly metrics are
calculated on the day of the month indicated by the calc_day column.

The aggregate_method column indicates whether the calculated metric will be averaged or
summed across the data points collected. Do not change the aggregate_method because
data collected up until the date of change will have a different meaning after the change.
rbm_id is a pre-populated ID with dependencies in the rbm_values table and therefore should
not be changed.

The metrics can be enabled or disabled using the Retail Business Metric Data Induction
Template.

The computed data is stored in the rbm_values table. This data can then be used for
reporting. For example, the aggregated active item locations data is consumed by
Subscription Metrics Update (subscription_metrics_update_job), which in turn writes
subscription metrics to the platform table to be used in reports in Retail Home.

Restart/Recovery
N/A

Key Tables Affected

Table Select Insert Update Delete

RBM_MASTER Yes No No No

RBM_VALUES Yes Yes Yes No

Design Assumptions
N/A

Retain Item Forecast History (rms_oi_forecast_history.ksh)

Module Name rms_oi_forecast_history.ksh

Description Retain 4 weeks of Item Forecast History

Functional Area Item Forecast, Inventory Analyst Report

Chapter 2
Retain Item Forecast History (rms_oi_forecast_history.ksh)

2-29

Module Type Admin

Module Technology Ksh

Catalog ID RMS491

Wrapper Script rmswrap_shell.ksh

Design Overview
This batch program preserves 4 weeks of weekly forecasted sales data from
ITEM_FORECAST in the ITEM_FORECAST_HISTORY table before ITEM_FORECAST is
truncated and refreshed by the load_item_forecast.ksh weekly batch program. The
data in ITEM_FORECAST_HISTORY is used to support the Inventory Variance to Forecast
report in the Inventory Analyst dashboard. If the system is not configured to use this
report (for example, rms_oi_system_options.ia_variance_to_forecast_ind is N),
then running this batch job will NOT copy any data to ITEM_FORECAST_HISTORY.

To support potentially large volume of data on ITEM_FORECAST and
ITEM_FORECAST_HISTORY, ITEM_FORECAST_HISTORY is interval partitioned by EOW_DATE
with a partition interval of 7 days and an interval high value of EOW_DATE+1. EOW_DATE
must be a valid EOW_DATE based on calendar type – (4) 454 or (C) Standard Calendar.

Scheduling Constraints

Schedule Information Description

Frequency Weekly

Scheduling Considerations Before load_item_forecast.ksh weekly runs that
truncates the data in ITEM_FORECAST table.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_FORECAST Yes No No No

ITEM_FORECAST_HIST No Yes No Yes

Design Assumptions
N/A

Chapter 2
Retain Item Forecast History (rms_oi_forecast_history.ksh)

2-30

Subscription Metrics Update (subscription_metrics_update_job)

Module Name subscription_metrics_update_job

Description Subscription Metrics Update

Functional Area Subscription Metrics

Module Type Admin – Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This job is a background job that executes after rbm_metrics_calc_job. First, the
rbm_metric_calc_job aggregates the number of active item locations for the current month.
After that, subscription_metrics_update_job reads the aggregated value, converts to
Metrics UOM, and writes to the Platform tables. Retail Home displays the dashboard graph
using the values populated in the Platform tables.

Restart/Recovery
N/A

Key Tables Affected

Table Select Insert Update Delete

RAF_SUBS_METRIC_USAGE Yes Yes No No

RAF_SUBS_METRIC_QTY Yes Yes Yes No

Design Assumptions
N/A

Tax Event Purge (tax_event_purge_job)

Module Name tax_event_purge_job

Description Tax Event Purge

Functional Area Purchase Order

Module Type Admin - Ad hoc

Module Technology Background Processing

Chapter 2
Subscription Metrics Update (subscription_metrics_update_job)

2-31

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Scheduling
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from tax calculated event table
based on its purge criteria (retention number of days) with default value of 90 days and
its tax event result defined as "C"ompleted Successfully. These records are chunked
and Thread ID is assigned for each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from tax calculated event table. It will
free up and clean the staging table afterwards. There is a STOP ON NEXT feature in
bulk processing (through a loop) where Administrators can stop this batch with a flip of
this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 2-8 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_TAX_EVENT_PURGE_S
TG

Yes Yes No Yes

TAX_CALC_EVENT No No No Yes

PERIOD Yes No No No

Input/Output Specification
N/A

Tax Event Purge (taxevntprg)

Module Name Taxevntprg

Chapter 2
Tax Event Purge (taxevntprg)

2-32

Description Tax Event Purge

Functional Area Purchase Order

Module Type Admin

Module Technology PROC

Catalog ID RMS373

Wrapper Script N/A

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch purges the tax events from the tax calculation event table. The records to be
purged are based on its last update timestamp along with the tax event result.

Restart/Recovery
N/A

Design Assumptions
N/A

Truncate Table Script (trunctbl.ksh)

Module Name trunctbl.ksh

Description Truncate Table Script

Functional Area Foundation

Module Type Admin

Module Technology KSH

Catalog ID RMS475

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program performs truncate operations on a Merchandising table or a specific partition. It
accepts an input table name and an optional partition name. If no partition name is passed,
then the truncate is applied on the entire table.

This program must be run as either the Merchandising schema owner, or be run by a user
that has been granted the following system privileges:

Chapter 2
Truncate Table Script (trunctbl.ksh)

2-33

• drop any table

• alter any table

Currently, the following action and tables are processed by the batch. For the runtime
parameters, refer to the Oracle Retail Merchandising Batch Schedule.

Table 2-9 Actions and Tables Processed by Batch

Table Partition

NIL_INPUT_WORKING N/A

Restart/Recovery
N/A

Design Assumptions
N/A

Merch API Data Rebuild Request Wrapper Script
(merchapidatarebuildrequest)

Module Name merchapidatarebuildrequest.ksh

Description Wrapper shell script to submit data refresh
requests.

Functional Area Foundation and Inventory tracking.

Module Type Business Processing

Module Technology Ksh

Catalog ID TBD

Runtime Parameters N/A

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This wrapper batch program is used to make an entry in the
MERCHAPI_ASYNC_REQUEST table for data refresh requests. There are two data
refresh types: one is TRUNCATE_AND_LOAD and the other one is REBUILD.

• TRUNCATE_AND_LOAD will be used for severe data corruption.

• REBUILD is used to build the JSON message for all the records.

The LAST_UPDATE_DATETIME update is dependent on the value of
REFRESH_UPDATE_TIMESTAMP_IND. The silent update (REBUILD with no
timestamp update) is applicable when a new field is added or removing the deprecated

Chapter 2
Merch API Data Rebuild Request Wrapper Script (merchapidatarebuildrequest)

2-34

fields and don’t want to force-publish these changes. REBUILD with timestamp update is
used in case of data discrepancies within Merchandising and Cache table or Merchandising
and consuming system.

Restart/Recovery
N/A

Design Assumptions
N/A

Merch API Delta Processing Wrapper Script (merchapiwrap)

Module Name merchapiwrap.ksh

Description Wrapper shell script to pre-process the Delta
records for Merch integration API publishing.

Functional Area Foundation and Inventory Tracking.

Module Type Business Processing

Module Technology Ksh

Catalog ID TBD

Runtime Parameters N/A

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This wrapper batch program is used to populate/merge the delta changes that were made to
the base Merchandising tables into respective MERCHAPI cache tables based on the ICL
entries. Each API has a separate cache table and respective API package to refresh the
table. Based on the Job name, it retrieves all the Job parameters from the
MERCH_BATCH_PARAM table and calls the Delta PLSQL dynamically to process all the
changes that were logged in the respective ICL table. All the ICL records which are in “N”
status and consumer configured for that particular API are picked up for processing. First, it
updates all the “N” records to “I” (In-Progress) and deletes all the “I” records once these are
processed successfully.

Restart/Recovery
N/A

Design Assumptions
N/A

Chapter 2
Merch API Delta Processing Wrapper Script (merchapiwrap)

2-35

3
Foundation Data Maintenance

Foundation Data is basic information that is required for Merchandising to function properly.
Most foundation data is managed through the Merchandising user interface or integrations
from external systems. However, there are some batch processes that relate to Foundation
Data. This chapter describes the batch processes that are used to maintain general
foundation data.

Programs in this chapter can be divided into five basic categories:

• Updates to Cost Components that must be applied to other foundation data and
transactions

– Apply Pending Cost Component and ELC Changes to Purchase Orders
(batch_ordcostcompupd)

– Apply Pending Item Cost Component Updates (batch_itmcostcompupd)

– Apply Pending Rate Changes to Expense Profiles (batch_expprofupd)

– Apply Pending Up-Charge Cost Component Changes to Departments
(batch_depchrgupd)

– Update Allocation and Transfer Based on Changes to Up-Charges
(batch_alloctsfupd)

– Update ELC Components (batch_compeffupd)

• Rebuilds of detail information for lists/groups

– Build Diff Ratios Based on Sales History (dfrtbld)

– Rebuild Dynamic Item Lists (itmlrbld)

– Rebuild Dynamic Location Lists (lclrbld)

– Refresh Address Materialized View (refmvlocprimaddr)

– Refresh Currency Conversion Materialized View (batch_rfmvcurrconv)

– Refresh Localization Materialized View (refmvl10entity)

• Application of pending changes

– Like Store Batch Processing (likestorebatch)

– Process Pending Merchandise Hierarchy Changes from External Systems
(cremhierdly)

– Reclassify Items in Merchandise Hierarchy (reclsdly)

• Rollup of detailed information

– Rollup of Supplier Data (supmth)

• Foundation Data Purges

– Purge Aged Cost Component Exceptions (elcexcprg)

– Purge Aged Price History Data (prchstprg)

– Purge Aged Store Ship Schedule (schedprg)

3-1

– Purge Manage Admin Records (admin_api_purge)

As an alternative to running some of the above processes in the batch cycle, a
background process can be used. These include:

• Purge Aged Cost Component Exceptions (elc_except_purge_job)

• Purge Aged Price History Data (price_hist_purge_job)

• Purge Aged Store Ship Schedule (activity_sched_purge_job)

• Purge Inactive Currency Rates (currency_rates_purge_job)

• Rebuild Dynamic Location Lists (loc_list_rebuild_job)

• Store Add Asynchronous Process (CORESVC_STORE_ADD_SQL.
ADD_STORE)

• Store Add Asynchronous Process (straddbatch.ksh)

Note:

For more information on Foundation Data, see the Item Maintenance
chapter.

Apply Pending Cost Component and ELC Changes to
Purchase Orders (batch_ordcostcompupd)

Module Name batch_ordcostcompupd.ksh

Description Apply Pending Cost Component and ELC Changes to Purchase Orders

Functional Area Foundation Data

Module Type Business Processing

Module Technology ksh

Catalog ID RMS190

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
In Merchandising, you are allowed to make rate changes to cost components and
expense profiles and assign future effective dates for the updates. Additionally, when
these future rate changes are specified, you can choose to cascade these changes to
lower levels. For orders, changes can be cascaded down from each of the different
types:

• Expense Profiles (country, supplier, or partner)

• Cost Components (expense or assessment)

Chapter 3
Apply Pending Cost Component and ELC Changes to Purchase Orders (batch_ordcostcompupd)

3-2

This script will process the updates for open orders for each of these types of rate updates
once the rate changes reach their effective date.

Restart/Recovery
N/A

Design Assumptions
N/A

Apply Pending Item Cost Component Updates
(batch_itmcostcompupd)

Module Name batch_itmcostcompupd.ksh

Description Apply Pending Item Cost Component Updates

Functional Area Foundation Data

Module Type Business Processing

Module Technology ksh

Catalog ID RMS189

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
In Merchandising, you are allowed to make rate changes to cost components, up-charges
and expense profiles and assign future effective dates to the changes. Additionally, when
these future rate changes are specified, you can choose to cascade these changes to lower
levels. For items, changes can be cascaded down from each of the different types:

• Expense Profiles (country, supplier, or partner)

• Cost Components (expense, assessment, or up-charge)

• Department-level Up-charges

This script will process the updates for items for each of these types of rate updates once the
rate changes reach their effective date.

Restart/Recovery
N/A

Design Assumptions
N/A

Chapter 3
Apply Pending Item Cost Component Updates (batch_itmcostcompupd)

3-3

Apply Pending Rate Changes to Expense Profiles
(batch_expprofupd)

Module Name batch_expprofupd.ksh

Description Apply Pending Rate Changes to Expense Profiles

Functional Area Foundation Data

Module Type Business Processing

Module Technology ksh

Catalog ID RMS188

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
In Merchandising, you are allowed to make rate changes to expense type cost
components and assign future effective dates to the changes. Additionally, when these
future rate changes are specified, you can choose to cascade these changes to lower
levels. For expense type cost components, this includes the ability to cascade the
changes to country, supplier, and partner expense profiles. This script will process the
updates to country, supplier, and partner expense profiles once the rate changes reach
their effective date.

Restart/Recovery
N/A

Design Assumptions
N/A

Apply Pending Up-Charge Cost Component Changes to
Departments (batch_depchrgupd)

Module Name batch_depchrgupd.ksh

Description Apply Pending Up-Charge Cost Component Changes to Departments

Functional Area Foundation Data

Module Type Business Processing

Module Technology ksh

Catalog ID RMS186

Wrapper Script rmswrap_shell.ksh

Chapter 3
Apply Pending Rate Changes to Expense Profiles (batch_expprofupd)

3-4

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
In Merchandising, you are allowed to make rate changes to up-charges and assign future
effective dates for the updates. Additionally, when these future rate changes are specified,
you can choose to cascade these changes to lower levels. For up-charges, this includes the
ability to cascade the changes made at the cost component level (for up-charge components)
to department level up-charges. This script will process the updates to department level up-
charges once the rate changes reach their effective date.

Restart/Recovery
N/A

Design Assumptions
N/A

Build Diff Ratios Based on Sales History (dfrtbld)

Module Name dfrtbld.pc

Description Build Diff Ratios Based on Sales History

Functional Area Foundation Data

Module Type Business Processing

Module Technology ProC

Catalog ID RM S214

Wrapper Script rmswrap_multi_out.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
Diff ratios are used by Merchandising as a way to assign a ratio to a group of diffs or diff
combinations based on sales history. The parameters for how these are created are setup
online in Merchandising and include specifying a subclass and one or more diff groups for a
particular date range. Users also specify how often the ratios should be refreshed and what
types of sales should be considered, regular, promotional and/or clearance.

For ratios that are due to be rebuilt, this batch program uses this information and summarizes
the total sales for items with the subclass and diff groups selected. It then calculates a
percent to each diff combination/store. Diff ratios are used for PO distribution within
Merchandising.

Chapter 3
Build Diff Ratios Based on Sales History (dfrtbld)

3-5

Restart/Recovery
This program is for multithreading and restart/recovery.

I/O Specification
This batch will create a comma delimited output data file for sql loader to upload data
to table DIFF_RATIO_DETAIL. The control script for the sql loader is dfrtbld.ctl.

Output File Layout

Table 3-1 dfrtbld.pc - Input File Layout

Field Name Field Type Default Value Description

Diff_ratio_id N/A N/A N/A

Seq_no N/A N/A N/A

store N/A N/A N/A

Diff_1 N/A N/A N/A

Diff_2 N/A N/A N/A

Diff_3 N/A N/A N/A

qty N/A N/A N/A

pct N/A N/A N/A

Design Assumptions
N/A

Like Store Batch Processing (likestorebatch)

Module Name likestorebatch.ksh

Description Like Store Batch Processing

Functional Area Foundation

Module Type Business Processing

Module Technology Ksh

Catalog ID N/A

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 3
Like Store Batch Processing (likestorebatch)

3-6

Design Overview
This batch program is used to process stores from the store add staging table with like stores
to copy attributes and items from an existing store to a new store.

Previously, the like store functionality was also processed within the store add asynchronous
process. However, this posed an issue when the like store process abnormally ends, which
will hold up the store add process. There was also a performance consideration with the like
store process, as it was possible that a single like store can have millions of items, which will
take a long time to process, thus preventing the store add asynchronous process to process
new records. The like store process has been decoupled from the store add program and
now runs as a separate hourly batch job, removing the dependency between both processes.

The like store batch program picks up all rows from the store add staging table wherein the
process status is set to 02STOREADD_POST and the like store column is populated. It will
then gather all items associated to the like store and explode this to the like store staging
table and process all the inserted records by chunk. Chunking is based on the system
parameter maximum chunk size, and it should be noted that there is no sorting or grouping
done when chunking the rows.

For each chunk, records are inserted into the temporary table for store add, which will serve
as the driving table for the like store process of each thread.

For each successfully processed chunk, it will delete all the matching rows from the like store
staging table. Once all rows are processed, the process status column is updated for the
specific store, depending on whether there are records remaining in the like store staging
table for that store. If there are no more entries for a store, then the store will be deleted from
the store add table. If there are entries remaining, then the status will be updated to
05LIKESTORE_FAIL.

Restart/Recovery
In case of failure, the like store batch will not pick up any new entries from the store add table
until the issue has been rectified. Errors are determined by looking up like store staging, if
there are any rows left from the previous run. Successfully processed records are deleted
from the staging table.

Design Assumptions
N/A

Process Pending Merchandise Hierarchy Changes from
External Systems (cremhierdly)

Module Name cremhierdly.pc

Description Process Pending Merchandise Hierarchy Changes from External Systems

Functional Area Foundation Data

Module Type Business Processing

Module Technology ProC

Catalog ID RMS204

Chapter 3
Process Pending Merchandise Hierarchy Changes from External Systems (cremhierdly)

3-7

Runtime Parameters rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program reads merchandise hierarchy records from the pending
merchandise hierarchy table whose effective date is tomorrow or earlier. The pending
merchandise hierarchy table is populated by the Merchandise Hierarchy Reclass
Subscription API. Each record is then used to either insert or update existing
merchandise hierarchy data in Merchandising based on the action and hierarchy
types. The inserted/updated records are deleted from the pending merchandise
hierarchy table after they have been successfully processed.

This program is only required if updates to the merchandise hierarchy in
Merchandising are being managed outside the application.

Restart/Recovery
This program is setup for multithreading and restart/recovery.

Design Assumptions
N/A

Purge Aged Cost Component Exceptions
(elc_except_purge_job)

Module Name rtvprg.pc

Description Purge Aged Returns to Vendors

Functional Area Transfers, Allocations and RTVs

Module Type Admin

Module Technology ProC

Catalog ID RMS320

Runtime Parameters N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 3
Purge Aged Cost Component Exceptions (elc_except_purge_job)

3-8

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

In RMFCS, you are allowed to make rate changes to cost components, up-charges and
expense profiles with future effective dates. Additionally, when these future rate changes are
specified, you can choose to cascade these changes to lower levels. The options for how the
updates can be cascaded are described in the table below:

Updated Entity Cascade Options

Expense Profiles (Country, Supplier, or Partner) Order, Item

Cost Component (Expense) Country, Supplier, Partner, Item, Order

Cost Component (Assessment) Item, Order

Cost Component (Up-charge) Department, Item, Transfer/Allocation

Department Level Up-Charges Item, Transfer/Allocation

When the processes that apply these changes run, they may raise exceptions if the rate for
an entity has been overwritten prior to the application of the future rate change. If so, then
exceptions are written to the cost component exceptions log table.

Thread assignment program will filter eligible records from cost component exceptions log
table based on its purge criteria from defined number of retention months (default to 6
months). These records are chunked and Thread ID is assigned for each. They will be stored
temporarily in a staging table.

The Business logic will process all records from the staging table. Using bulk processing, this
program will delete the records from cost component exceptions log table. It will free up and
clean the staging table afterwards. There is a STOP ON NEXT feature in bulk processing
(through a loop) where Administrators can stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 3-2 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_ELC_EXC_PURGE_STG Yes Yes No Yes

COST_COMP_EXC_LOG No No No Yes

Chapter 3
Purge Aged Cost Component Exceptions (elc_except_purge_job)

3-9

Design Assumptions
N/A

Purge Aged Cost Component Exceptions (elcexcprg)

Module Name ELCEXCPRG.PC

Description Purge Aged Cost Component Exceptions

Functional Area Costing

Module Type Admin

Module Technology ProC

Catalog ID RM S222

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
In Merchandising, you are allowed to make rate changes to cost components, up-
charges and expense profiles with future effective dates. Additionally, when these
future rate changes are specified, you can choose to cascade these changes to lower
levels. The options for how the updates can be cascaded are described in the table
below:

Table 3-3 ELCEXCPRG.PC - Cascade Options

Updated Entity Cascade Options

Expense Profiles (Country,
Supplier, or Partner)

Order, Item

Cost Component (Expense) Country, Supplier, Partner, Item, Order

Cost Component
(Assessment)

Item, Order

Cost Component (Up-
charge)

Department, Item, Transfer/Allocation

Department Level Up-
Charges

Item, Transfer/Allocation

When the processes that apply these changes run, they may raise exceptions if the
rate for an entity has been overwritten prior to the application of the future rate change.
If so, then exceptions are written to the COST_COMP_EXC_LOG table. This program
purges the records from this table based on a number of retention months that is
passed as a runtime parameter.

Chapter 3
Purge Aged Cost Component Exceptions (elcexcprg)

3-10

Restart/Recovery
N/A

Design Assumptions
N/A

Purge Aged Price History Data (prchstprg)

Module Name prchstprg.pc

Description Purge Aged Price History Data

Functional Area Foundation Data

Module Type Admin

Module Technology ProC

Catalog ID RMS298

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program deletes price history records, which are older than the price history
retention days system parameter.

This program ensures that the most recent price history record for the item/location/
transaction type combination is preserved and deletes all aged records.

Restart/Recovery
This program will use the commit_max_ctr on the restart_control table to periodically commit
SQL delete operations. Restart/Recovery is achieved by processing records that have not
been deleted. The restart bookmark table stores the current partition position as the
bookmark string to restart a thread.

However, in cases where the price history table is very large, a particularly large rollback
segment may be specified to reduce the risk of exceeding rollback segment space. This will
depend on the size of normal rollback segments and the size of the price history table.

Performance Considerations
The commit max counter field should be set to prevent excessive rollback space usage, and
to reduce the overhead of file I/O. The recommended commit counter setting is 10000
records (subject to change based on experimentation). In case the price history table is very
large then the number of partitions on the table may be increased and then after the number
of threads for this program should be increased.

Chapter 3
Purge Aged Price History Data (prchstprg)

3-11

Design Assumptions
N/A

Purge Aged Price History Data (price_hist_purge_job)

Module Name price_hist_purge_job

Description Purge Aged Price History Data

Functional Area Foundation Data

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from price history tables based
on its purge criteria from system parameter settings which is Price History Retention
Days. These records are chunked and Thread ID is assigned for each. They will be
stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the old/aged records from price history table and
keep only the most recent records for the item/location/transaction type combinations.
It will free up and clean the staging table afterwards. There is a STOP ON NEXT
feature in bulk processing (through a loop) where Administrators can stop this batch
with a flip of this indicator.

The decision to insert or not to insert the records into the history tables is based on the
Archive Indicator and Archive Job Indicator from the Background Process
Configuration table.

1. If both the Archive Indicator and Archive Job Indicator values are Y, then the data
from the base tables are inserted into the history tables.

2. If both indicators are set to ‘N’, then the records are deleted from the base tables
without inserting into the history tables.

Chapter 3
Purge Aged Price History Data (price_hist_purge_job)

3-12

Note:

For more information on how to configure this process for archiving, see the
Merchandising Implementation Guide section entitled "Background Process
Configuration".

Restart/Recovery
N/A

Key Tables Affected

Table 3-4 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_PRICE_HIST_PURGE_STG Yes Yes No Yes

PRICE_HIST No No No Yes

DBA_TAB_PARTITIONS Yes No No No

PRICE_HIST_PRG_HIST No Yes No No

Purge Aged Store Ship Schedule (activity_sched_purge_job)

Module Name activity_sched_purge_job

Description Purge Aged Store Ship Schedule

Functional Area Foundation Data

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID

Runtime Parameters Database connection

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 3
Purge Aged Store Ship Schedule (activity_sched_purge_job)

3-13

Design Overview
This background job is composed of two steps of processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from location closed, company
closed exceptions and company closed tables based on its purge criteria from system
parameter settings. The Location Closed History Months parameter will determine how
long a location and/or company with close date should remain on the associated
tables. These records are chunked and Thread ID is assigned for each. They will be
stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from location closed, company closed
exceptions and company closed tables. It will free up and clean the staging table
afterwards. There is a STOP ON NEXT feature in bulk processing (through a loop)
where Administrators can stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 3-5 Key Tables Affected

Table Select Insert Update Delete

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_SCHED_PURGE_STG Yes Yes No Yes

COMPANY_CLOSED_EXCEP No No No Yes

COMPANY_CLOSED No No No Yes

COMPANY_CLOSED_TL No No No Yes

LOCATION_CLOSED No No No Yes

LOCATION_CLOSED_TL No No No Yes

Design Assumptions
N/A

Purge Aged Store Ship Schedule (schedprg)

Module Name schedprg.pc

Description Purge Aged Store Ship Schedule

Chapter 3
Purge Aged Store Ship Schedule (schedprg)

3-14

Functional Area Foundation Data

Module Type Admin

Module Technology ProC

Catalog ID RMS356

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program will purge all old records related to store ship dates and location and company
closed dates and exceptions. Old records are determined by the Ship Schedule History
months and Location Closed History months system parameters.

Restart/Recovery
This program will use the commit max counter on the restart control table to periodically
commit delete operations. Periodic commits are performed to ensure that rollback segments
are not exceeded in case of considerable volume.

Design Assumptions
N/A

Purge Inactive Currency Rates (currency_rates_purge_job)

Module Name currency_rates_purge_job

Description Purge inactive currency rates

Functional Area Foundation

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible currency rates records based on its purge
criteria from system parameter settings. The currency rates purge months parameter in
system options will hold the number of months after which an inactive exchange rate can be
purged from the system. The inactive currency rates which are earlier than system options
purge months are captured for deletion. These records are chunked and Thread ID is
assigned for each. They will be stored temporarily in a staging table.

Chapter 3
Purge Inactive Currency Rates (currency_rates_purge_job)

3-15

The Business logic program will process all records from the staging table. Using bulk
processing, this program will purge the records from currency rates table. It will free up
and clean the staging table afterwards.

There is a STOP ON NEXT feature in bulk processing (through a loop) where
Administrators can stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 3-6 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_CURRENCY_RATES_P
URGE_STG

Yes Yes No Yes

CURRENCY_RATES Yes No No Yes

Design Assumptions
N/A

Purge Manage Admin Records (admin_api_purge)

Module Name admin_api_purge.ksh

Description Purge Manage Admin records

Functional Area Administration

Module Type Admin

Module Technology ksh

Catalog ID

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 3
Purge Manage Admin Records (admin_api_purge)

3-16

Design Overview
This script purges data from tables used for uploading Foundation Data from spreadsheets
based on the retention days specified in the system parameter-
PROC_DATA_RETENTION_DAYS for both Merchandising and Sales Audit and will help in
keeping the size of these tables controlled.

Restart/Recovery
N/A

I/O Specification
N/A

Rebuild Dynamic Item Lists (itmlrbld)

Module Name itmlrbld.pc

Description Rebuild Dynamic Item Lists

Functional Area Foundation Data

Module Type Business Processing

Module Technology ProC

Catalog ID RMS255

Runtime Parameters rmswrap_multi.ksh

Design Overview
This program is used to rebuild dynamic item lists based on the criteria defined when the item
list was created. Once run, the item list will be updated to include only items that currently
meet the defined criteria for the item list. All item's which no longer fit the criteria will be
removed. Any addition or deletion of items as part of item list would reflect in scheduled Item
Maintenance if corresponding item list is used.

Schedule
Oracle Retail Merchandising Batch Schedule

Restart/Recovery
The logical unit of work for this program is item list (skulist). The v_restart_item_list view is
used for threading. Table-based restart/recovery is used by the batch program.

Design Assumptions
N/A

Chapter 3
Rebuild Dynamic Item Lists (itmlrbld)

3-17

Rebuild Dynamic Location Lists (lclrbld)

Module Name lclrbld.pc

Description Rebuild Dynamic Location Lists

Functional Area Foundation Data

Module Type Business Processing

Module Technology ProC

Catalog ID RMS255

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program is used to rebuild dynamic location lists based on the criteria defined
when the location list was created. Once run, the location list will be updated to include
only the locations that currently meet the defined criteria for the list, including adding
any new locations. Any locations which no longer fit the criteria will be removed.

Restart/Recovery
The logical unit of work for this program is a location list. The restart location list view
is used for threading. Table-based restart/recovery is used by the batch program.

Design Assumptions
N/A

Rebuild Dynamic Location Lists (loc_list_rebuild_job)

Module Name loc_list_rebuild_job

Description Rebuild Dynamic Location Lists

Functional Area Foundation Data

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 3
Rebuild Dynamic Location Lists (lclrbld)

3-18

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from location list header table which are
based on the criteria defined when it was created. These records are chunked and Thread ID
is assigned for each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will rebuild the location lists. Once run, the location list will be
updated to include only the locations that currently meet the defined criteria for the list,
including adding any new locations. Any locations which no longer fit the criteria will be
removed. It will free up and clean the staging table afterwards. There is a STOP ON NEXT
feature in bulk processing (through a loop) where Administrators can stop this batch with a
flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 3-7 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_LOC_LIST_REBUILD_STG Yes Yes No Yes

LOC_LIST_HEAD Yes No Yes No

LOC_LIST_DETAIL Yes Yes No Yes

Design Assumptions
N/A

Reclassify Items in Merchandise Hierarchy (reclsdly)

Module Name reclsdly.pc

Description Reclassify Items in Merchandise Hierarchy

Functional Area Foundation

Module Type Business Processing

Module Technology ProC

Catalog ID RMS302

Wrapper Script rmswrap.ksh

Chapter 3
Reclassify Items in Merchandise Hierarchy (reclsdly)

3-19

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program is used to reclassify items from one department/class/subclass
combination to another. Reclassification events that are due to go into effect the next
day are processed by this batch process. Before the reclassification is executed,
validation is performed to make sure that there are no issues which would prevent the
reclassification from moving forward. If not, then the updates are made to update the
item's merchandise hierarchy, as well as other related updates, such as moving the
value of the inventory in the stock ledger and notifying the Pricing service of the
update. Any issues that prevent the item from being reclassified raise a non-fatal error
in the program and write the error to the mass change rejections table.

Restart/Recovery
The logical unit of work is the combination of the reclass number and item. Restart
ability is also based on reclass number and item.

Design Assumptions
N/A

Refresh Address Materialized View (refmvlocprimaddr)

Module Name refmvlocprimaddr.pc

Description Refresh Address Materialized View

Functional Area Foundation Data

Module Type Admin

Module Technology ProC

Catalog ID RMS305

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program refreshes the materialized view for location/primary address based
on the address and warehouse tables. The view will contain primary address
information for all locations, including company stores, customer stores, physical and
virtual warehouses and external finishers.

Chapter 3
Refresh Address Materialized View (refmvlocprimaddr)

3-20

Restart/Recovery
N/A

Design Assumptions
N/A

Refresh Currency Conversion Materialized View
(batch_rfmvcurrconv)

Module Name batch_rfmvcurrconv.ksh

Description Refresh Currency Conversion Materialized View

Functional Area Foundation Data

Module Type Admin

Module Technology ksh

Catalog ID RMS193

Wrapper Scripts rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This script refreshes the materialized view MV_CURRENCY_CONVERSION_RATES.

Restart/Recovery
N/A

Design Assumptions
N/A

Refresh Localization Materialized View (refmvl10entity)

Module Name REFMVL10ENTITY.PC

Description Refresh Materialized view MV_L10N_ENTITY

Functional Area Administration

Module Type Admin

Module Technology ProC

Catalog ID RMS304

Chapter 3
Refresh Currency Conversion Materialized View (batch_rfmvcurrconv)

3-21

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program refreshes the materialized view MV_L10N_ENTITY that is based on
ADDR, OUTLOC, COMPHEAD, COUNTRY_ATTRIB table.

Restart/Recovery
This batch program uses table-based restart/recovery.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

I/O Specification
N/A

Rollup of Supplier Data (supmth)

Module Name supmth.pc

Description Rollup of Supplier Data

Functional Area Inventory

Module Type Business Processing

Module Technology ProC

Catalog ID RMS369

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 3
Rollup of Supplier Data (supmth)

3-22

Design Overview
The primary function of this batch is to convert daily transaction data to monthly data. After all
data is converted, the daily information is deleted to reset the system for the next period. This
is done by the batch's post processing function in prepost.

This module accumulates supplier data amounts by department/supplier/transaction type and
creates or updates one supplier month row for each department/supplier combination. Based
on the transaction type on supplier data, the following transactions are written to supplier
month:

• type 1 – purchases at cost (written for consignment sales and orders received at POS or
online)

• type 2 – purchases at retail (written for consignment sales and orders received at POS or
online)

• type 3 – claims at cost (written for claim dollars refunded on RTV orders)

• type 10 – markdowns at retail (net amount based on markdowns, markups, markdown
cancellations and markup cancellations)

• type 20 – order cancellation costs (written for all supplier order cancellations)

• type 30 – sales at retail (written for consignment stock sales)

• type 40 – quantity failed (written for QC shipments with failed quantities)

• type 70 – markdowns at cost (net amount based on supplier cost markdowns)

Restart/Recovery
The logical unit of work is dept, supplier.

Design Assumptions
N/A

Store Add Asynchronous Process
(CORESVC_STORE_ADD_SQL. ADD_STORE)

Module Name CORESVC_STORE_ADD_SQL. ADD_STORE

Description Asynchronous Process

Functional Area Foundation Data

Module Type Admin

Module Technology PL SQL

Catalog ID RMS496

Runtime Parameters N/A

Chapter 3
Store Add Asynchronous Process (CORESVC_STORE_ADD_SQL. ADD_STORE)

3-23

Business Overview
This asynchronous process creates new stores in Merchandising, along with all their
associated records when a new store is initiated online in Merchandising or via the
Store Subscription API. Previously, the likestore functionality is also processed within
the store add asynchronous process, but this has now been decoupled from the store
add program and now runs as a separate hourly batch job, removing the dependency
between both processes.

Key Tables Affected

Table 3-8 Key Tables Affected

Table Select Insert Update Delete

STORE _ADD Yes No No Yes

STORE Yes Yes No No

STOCK_LEDGER_INSERTS No Yes No No

RPM_ZONE No Yes No No

RPM_ZONE_LOCATION No Yes No No

RMS_ASYNC_STATUS Yes Yes Yes No

RMS_ASYNC_RETRY Yes Yes Yes No

RMS_ASYNC_JON Yes No No No

LOC_TRAITS_MATRIX No Yes No No

COST_ZONE No Yes No No

COST_ZONE_GROUP_LOC No Yes No No

STORE_HIERARCHY No Yes No No

WF_COST_RELATIONSHIP No Yes No No

SOURCE_DLVRY_SCHED No Yes No No

SOURCE_DLVRY_SCHED_E
XC

No Yes No No

SOURCE_DLVRY_SCHED_D
AYS

No Yes No No

COMPANY_CLOSED_EXCEP No Yes No No

LOCATION_CLOSED No Yes No No

POS_STORE No Yes No No

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

STORE_ADD_L10N_EXT Yes Yes No Yes

STORE_ADD_CFA_EXT Yes Yes No Yes

Design Assumptions
The materialized views MV_LOC_SOB, MV_L10N_ENTITY and
MV_LOC_PRIM_ADDR will be refreshed after the store has been added. It is

Chapter 3
Store Add Asynchronous Process (CORESVC_STORE_ADD_SQL. ADD_STORE)

3-24

assumed that the materialized view will still be available to other processes during the
refresh.

Queue Creation
The function RMS_ASYNC_QUEUE_SQL.CREATE_QUEUE_SUBSCRIBER is called to drop
and recreate the queue table if one already exists. This function is called with the JOB_TYPE
as STORE_ADD (for example, the constant ASYNC_JOB_STORE_ADD) to create a queue
for store processing.

Design Overview - Process Steps
This section describes the key design aspect of the store add process.

The overall process consists of 3 steps as outlined below.

1. New (status-code: 00NEW). This is the status when store is just created.

2. Store-Add (status-code: 01STOREADD)

3. Store-Add-Post (status-code: 02STOREADD_POST)

The status-code of the current completed step of the process is updated in
store_add.process_status column.

If STORE_ADD.LIKESTORE column is not null for the store, the status will remain in
02STOREADD_POST and the record will be picked up by the likestorebatch.ksh which runs
as an hourly job. If not, then the STORE entry will be removed from the STORE_ADD table.

Package Impact
Package name: coresvc_store_add_sql

Spec file name: coresvc_store_adds.pls

File name: coresvc_store_adds/b.pls

Function Level Description - ADD_STORE
Function: ADD_STORE
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_rms_async_id IN RMS_ASYNC_STATUS.RMS_ASYNC_ID%TYPE)

This function contains the core logic for adding a new store to Merchandising. The process of
adding a store to Merchandising starts with store.fmb form. When a user creates a new store
by using the form, an entry is made in the STORE_ADD table. Also entries are made into
RMS_ASYNC_STATUS with the status as new and RMS_ASYNC_RETRY tables with a new
RMS_ASYNC_ID. The RMS_ASYNC_ID is placed in the queue for processing. The de-
queue process picks the RMS_ASYNC_ID generated and based on the JOB_TYPE
(STORE_ADD) calls the CORESVC_STORE_ADD_SQL.ADD_STORE for further
processing.

This function:

• Calls PM_NOTIFY_API_SQL.NEW_LOCATION to create pricing records to update the
Pricing tables.

Chapter 3
Store Add Asynchronous Process (CORESVC_STORE_ADD_SQL. ADD_STORE)

3-25

• Calls the functions L10N_FLEX_ATTRIB_SQL.ADD_STORE_ATTRIB and
CFA_SQL.ADD_STORE_ATTRIB.

• Makes entries into cost-zone tables.

• If like-store is mentioned and delivery schedule needs to be copied then copy
source-delivery-schedule information. Hence entries are made into
SOURCE_DLVRY_SCHED, SCHED_EXC and SCHED_DAYS tables.

• If like-store is mentioned and locations close information needs to be copied then
make entries into COMPANY_CLOSED_EXCEP and LOCATION_CLOSED tables
based on like store.

• Calls the function STKLEDGR_SQL.STOCK_LEDGER_INSERT to make entry
into STOCK_LEDGER_INSERTS table.

• Copies WF_COST_RELATIONSHIP and DEAL_PASSTHRU data for the specified
costing location.

• If like-store is mentioned then call the local function LIKE_STORE.

• The MV_LOC_SOB, MV_L10N_ENTITY and MV_LOC_PRIM_ADDR materialized
views are refreshed as well.

• After completion of the process, it deletes the records from
STORE_ADD_L10N_EXT, STORE_ADD_CFA_EXT and STORE_ADD tables.

On successful creation of the store you are prompted with a message saying the
RMS_ASYNC_ID is processed successfully. In case there is a failure during the store
creation you will also be notified. You have to use the Asynchronous Job log form to
view and reprocess the failed store. On clicking on reprocess in the Asynchronous Job
log form an entry is made into the RMS_ASYNC_RETRY table. The RMS_ASYNC_ID
is again placed in the queue for processing.

Spec file name: rmsasyncprocs/b.pls

Function Level Description - ENQUEUE_STORE_ADD
Function: ENQUEUE_STORE_ADD
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_rms_async_id IN RMS_ASYNC_STATUS.RMS_ASYNC_ID%TYPE)

This function adds the RMS_ASYNC_ID associated with the JOB_TYPE STORE_ADD
created from the store form to the asynchronous queue. It also makes entries into the
RMS_ASYNC_STATUS and RMS_ASYNC_RETRY table to track the status of the
asynchronous job.

Function Level Description - ENQUEUE_STORE_ADD_RETRY
Function: ENQUEUE_STORE_ADD_RETRY
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_rms_async_id IN RMS_ASYNC_STATUS.RMS_ASYNC_ID%TYPE)

This function puts the RMS_ASYNC_ID associated with a STORE_ADD event to the
asynchronous queue again for re-processing. It is invoked through the asynchronous
job log form.

Chapter 3
Store Add Asynchronous Process (CORESVC_STORE_ADD_SQL. ADD_STORE)

3-26

Function Level Description - NOTIFY_STORE_ADD
Procedure: NOTIFY_STORE_ADD(context raw,
 reginfo sys.aq$_reg_info,
 descr sys.aq$_descriptor,
 payload raw,
 payloadl number)

This procedure is called during the de-queue process. This procedure calls the function
CORESVC_STORE_ADD_SQL.ADD_STORE for store creation. Once the store creation is
completed successfully it calls the function
RMS_ASYNC_PROCESS_SQL.WRITE_SUCCESS to update the status of the
RMS_ASYNC_ID as success. During a failure in store creation it calls the function
RMS_ASYNC_PROCESS_SQL.WRITE_ERROR to update the status as error and also to
update the error message. You are notified of the success/failure of the store creation
process.

Operations and Monitoring
This section describes the details required for running and monitoring this process.

Running entire Store-Add as Batch in Case of AQ Issues
In case of Oracle AQ issues if a store-add step is not running in async mode then the entire
store-add process can also be run in batch using below command.

storeaddbatch.ksh $UP

This is provided only as a workaround in case of AQ issues. The recommended method is to
let the store-add step be processed in Async through AQ as it is designed.

Building Schedule Dependencies between Async Process and other Batches
Customers may need to build scheduling dependencies between async processes and other
batch programs. For example, making pos-extract batches dependent upon completion of a
Like-store step of the store-add process. To do that, create a job in the scheduler by using the
following command and make the required batches dependent upon this job.

straddasyncwait.ksh $UP "03LIKESTORE"

Similarly, if the batch program needs to be made dependent upon other steps, schedule jobs
by passing desired status.

Monitoring Progress of Store-Add Processes
The current completed step of the store-add process is updated in the
store_add.process_status column. In case of a Like-Store step (which is a separate batch
program), the status of a store will remain in 02STOREADD_POST, until it is processed by
the likestore batch program, which will in turn change the status to 03LIKETORE.

Once the process is completed, the store will be subsequently removed from the
STORE_ADD table. If not, then the status will be changed to '05LIKESTORE_FAIL'.

Chapter 3
Store Add Asynchronous Process (CORESVC_STORE_ADD_SQL. ADD_STORE)

3-27

Store Add Asynchronous Process (straddbatch.ksh)

Module Name straddbatch.ksh

Description Store Add Asynchronous Process

Functional Area Foundation Data

Module Type Admin

Module Technology .ksh

Catalog ID RMS496

Runtime Parameters N/A

Business Overview
This asynchronous process creates new stores in Merchandising, along with all their
associated records when a new store is initiated online in Merchandising or via the
Store Subscription API.

Key Tables Affected

Table 3-9 Key Tables Affected

Table Select Insert Update Delete

STORE _ADD Yes No No Yes

STORE Yes Yes No No

STOCK_LEDGER_INSERTS No Yes No No

RPM_ZONE No Yes No No

RPM_ZONE_LOCATION No Yes No No

RMS_ASYNC_STATUS Yes Yes Yes No

RMS_ASYNC_RETRY Yes Yes Yes No

RMS_ASYNC_JON Yes No No No

LOC_TRAITS_MATRIX No Yes No No

COST_ZONE No Yes No No

COST_ZONE_GROUP_LOC No Yes No No

STORE_HIERARCHY No Yes No No

WF_COST_RELATIONSHIP No Yes No No

SOURCE_DLVRY_SCHED No Yes No No

SOURCE_DLVRY_SCHED_E
XC

No Yes No No

SOURCE_DLVRY_SCHED_D
AYS

No Yes No No

COMPANY_CLOSED_EXCEP No Yes No No

LOCATION_CLOSED No Yes No No

POS_STORE No Yes No No

Chapter 3
Store Add Asynchronous Process (straddbatch.ksh)

3-28

Table 3-9 (Cont.) Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

STORE_ADD_L10N_EXT Yes Yes No Yes

STORE_ADD_CFA_EXT Yes Yes No Yes

Design Assumptions
The materialized views MV_LOC_SOB, MV_L10N_ENTITY and MV_LOC_PRIM_ADDR will
be refreshed after the store has been added. It is assumed that the materialized view will still
be available to other processes during the refresh.

Queue Creation
The function RMS_ASYNC_QUEUE_SQL.CREATE_QUEUE_SUBSCRIBER is called to drop
and recreate the queue table if one already exists. This function is called with the JOB_TYPE
as STORE_ADD (for example, the constant ASYNC_JOB_STORE_ADD) to create a queue
for store processing.

Design Overview - Process Steps
This section describes the key design aspect of the store add process.

The overall process consists of 3 steps as outlined below.

1. New (status-code: 00NEW). This is the status when store is just created.

2. Store-Add (status-code: 01STOREADD)

3. Store-Add-Post (status-code: 02STOREADD_POST)

The status-code of the current completed step of the process is updated in
store_add.process_status column.

If STORE_ADD.LIKESTORE column is not null for the store, the status will remain in
02STOREADD_POST and the record will be picked up by the likestorebatch.ksh which runs
as an hourly job. If not, then the STORE entry will be removed from the STORE_ADD table.

Running entire store-add as batch in case of AQ issues
In case of Oracle AQ issues if store-add step is not running in async mode then entire store-
add proess can also be run in batch using below command

storeaddbatch.ksh $UP

This is provided only as a workaround in case of AQ issues. The recommended method is to
let store-add step be processed in Async through AQ as it is designed.

Chapter 3
Store Add Asynchronous Process (straddbatch.ksh)

3-29

Building Schedule Dependencies between Async process and other
batches

Customers may need to build scheduling dependencies between async processes and
other batch programs. For example, making pos-extract batches dependent upon
completion of Like-store step of the store-add process. To do that, create a job in
scheduler using following command and make required batches dependent upon this
job.

straddasyncwait.ksh $UP "03LIKESTORE"

Similarly, if batch program needs to be made dependent upon other steps, schedule
jobs by passing desired status.

Monitoring Progress of Store-Add Processes
The current completed step of the store-add process is updated in
store_add.process_status column. In case of a Like-Store step (which is a separate
batch program) the status of a store will remain in 02STOREADD_POST, until it is
processed by the likestore batch program, which will in turn change the status to
03LIKETORE.

Once the process is completed, the store will be subsequently removed from the
STORE_ADD table. If not, then the status will be changed to '05LIKESTORE_FAIL'.

Update Allocation and Transfer Based on Changes to Up-
Charges (batch_alloctsfupd)

Module Name batch_alloctsfupd.ksh

Description Update Allocation and Transfer Based on Changes to Up-Charges

Functional Area Foundation Data

Module Type Business Processing

Module Technology ksh

Catalog ID RMS184

Wrapper Script wmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
In Merchandising, you are allowed to make rate changes to up-charge cost
components and department level up-charges and assign future effective dates to the
changes. One of the things that can be designated when these future rate changes are
specified is whether this update should also impact any open transfers or allocations
with items in the department. If they have been flagged to update open transfers and

Chapter 3
Update Allocation and Transfer Based on Changes to Up-Charges (batch_alloctsfupd)

3-30

allocations, then this script will process the updates once they reach their effective date.

Restart/Recovery
N/A

Design Assumptions
N/A

Update ELC Components (batch_compeffupd)

Module Name batch_compeffupd.ksh

Description Apply Pending Cost Component, Up-charge and ELC Changes

Functional Area Foundation Data

Module Type Business Processing

Module Technology KSH

Catalog ID RMS185

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
In Merchandising, users are allowed to make rate changes to cost components, up-charges
and expense profiles and assign future effective dates to the changes. Additionally, when
these future rate changes are specified, users can choose to cascade these changes to lower
levels. The options for how the updates can be cascaded are described in the table below:

Table 3-10 Options for Cascading Updates

Updated Entity Cascade Options

Expense Profiles (Country,
Supplier, or Partner)

Order, Item

Cost Component (Expense) Country, Supplier, Partner, Item, Order

Cost Component
(Assessment)

Item, Order

Cost Component (Up-charge) Department, Item, Transfer/Allocation

Department Level Up-Charges Item, Transfer/Allocation

This batch process is used to process updates to cost components of all types at the
expense component level, updates to department level up-charges, and updates to expense
profiles at the supplier, country, or partner level. The cascading to other levels is handled in
the dependent processes which are run after this process:

• Allocation and Transfer Up-charge Update (batch_alloctsfupd)

Chapter 3
Update ELC Components (batch_compeffupd)

3-31

• Expense Profile Update (batch_expprofupd)

• Item Cost Component Update (batch_itmcostcompupd)

• Purchase Order Cost Component Update (batch_ordcostcompupd)

• Department Up-charge (batch_depchrgupd)

Restart/Recovery
N/A

Design Assumptions
N/A

Chapter 3
Update ELC Components (batch_compeffupd)

3-32

4
Item Maintenance

This chapter contains information about the batch processes that relate to item maintenance.

Program Summary
Table 4-1 Item Maintenance - Program Summary

Program Description

gtsbuilder Global Tax Solution Builder

item_loc_purge_job Daily Purge of Item-Location Data

itm_indctn_purge.ksh Purge Item induction staging tables

sitmain.pc Scheduled Item Maintenance

vatdlxpl.pc Mass VAT Updates for Items/Locations

Daily Purge of Item-Location Data (item_loc_purge_job)

Module Name item_loc_purge_job

Description Daily Purge of Item-Location Data

Functional Area Administration

Module Type Admin - Adhoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

When users 'delete' an item-location record in the Merchandising user interface, information
is generally not immediately deleted at the database level; instead, data is marked as being
in deleted status and also inserted into the DAILY_PURGE table.

Thread assignment program (ITEM_LOC_PURGE_THREAD) will filter eligible records from
daily purge (DAILY_PURGE) table wherein all entities ready for purging are exclusively
related to Item-Location (ITEM_LOC table) records. These records are chunked and Thread

4-1

ID is assigned for each. They will be stored temporarily in a staging table
B8D_ITEM_LOC_PURGE_STG.

The Business logic program (ITEM_LOC_PURGE) will process all records from the
staging table. Using bulk processing, this program will delete item-location data from
item-location related and associated tables. Complex referential integrity relationships
determine whether data can actually be deleted from the database. This program
checks these complex rules. If the deletion request passes the rules, this job will
continues to delete the data. If it is not able to delete the data, it writes a record to the
DAILY_PURGE_ERROR_LOG table for further investigation. This program will
continue to attempt to delete marked data until all references have been purged from
the system and the deletion of the item-location data finally succeeds. It will free up
and clean the staging table afterwards. There is a STOP ON NEXT feature in bulk
processing (through a loop) where Administrators can stop this batch with a flip of this
indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 4-2

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_ITEM_LOC_PURGE_STG Yes No No No

DAILY_PURGE Yes No No Yes

DAILY_PURGE_ERROR_LOG Yes Yes No Yes

REPL_RESULTS Yes No No Yes

BUYER_WKSHT_MANUAL Yes No No Yes

SUB_ITEMS_DETAIL Yes No No Yes

SUB_ITEMS_HEAD Yes No No Yes

REPL_ATTR_UPDATE_EXCLUDE Yes No No Yes

MASTER_REPL_ATTR Yes No No Yes

REPL_DAY Yes No No Yes

REPL_ITEM_LOC Yes No No Yes

REPL_ITEM_LOC_UPDATES Yes Yes No Yes

REPL_ITEM_LOC_SUPP_DIST Yes No No Yes

COST_SUSP_SUP_DETAIL_LOC Yes No No Yes

FUTURE_COST Yes No No Yes

ITEM_LOC_MFQUEUE Yes No No Yes

ITEM_LOC Yes No No Yes

ITEM_LOC_SOH Yes No No Yes

Chapter 4
Daily Purge of Item-Location Data (item_loc_purge_job)

4-2

Table 4-2 (Cont.)

Table Select Insert Update Delete

ITEM_LOC_TRAITS Yes No No Yes

ITEM_LOC_CFA_EXT Yes No No Yes

ITEM_SUPP_COUNTRY_BRACKET_COST Yes No No Yes

ITEM_SUPP_COUNTRY_LOC_CFA_EXT Yes No No Yes

ITEM_SUPP_COUNTRY_LOC Yes No No Yes

I/O Specification
N/A

Global Tax Solution Builder (gtsbuilder)

Module Name gtsbuilder.ksh

Description GTS Builder Processing

Functional Area Foundation

Module Type Business Processing

Module Technology Ksh

Catalog ID TBD

Runtime Parameters rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program is used to process new, modified or expired rules of the global tax
solution. The criteria to find these rules are based on the rule status and the field END_DATE.

Any rule with status UPDATED or APPROVED will be considered to be processed. Rules in
status ACTIVE but with the field END_DATE filled with a date older than the tax builder
execution date will also be picked for processing.

The processing logic in each of the above scenarios will be:

• Processing rules in status UPDATED: rules can be updated exclusively in the field
END_DATE. In this case the date informed in the rule will be updated in
GTS_MERCHT_TAX and GTS_ITEM_TAX tables. Once these updates are done, the
status of the rule will be changed back to ACTIVE.

• Processing rules in status APPROVED: rules in this status are basically new rules
included in the system. The GTS builder process will also identify rules with conditions at
parent level regions or higher level of merchandise hierarchy (dept or class) and will store
new records into GTS_MERCH_TAX and GTS_ITEM_TAX table for the lowest level of

Chapter 4
Global Tax Solution Builder (gtsbuilder)

4-3

region (child regions) and merchandise hierarchy (subclass). Once these updates
are done, the status of the rule will be changed to ACTIVE.

• Processing rules in status ACTIVE: the process will look for the field
END_DATE in active rules. If this field is filled with a date older than the execution
date, the process will simply change the rule status to CLOSED. No updates will
be performed at merchandise level tax tables nor item level tax tables.

Restart/Recovery
In case of failure, the GTS builder batch will continue picking new or updated rules to
process. During activation if any rule fails an error will be stored and the rule will have
it status modified to "worksheet" for further review.

Design Assumptions
N/A

Mass VAT Updates for Items/Locations (vatdlxpl)

Module Name vatdlxpl.pc

Description Mass VAT Updates for Items/Locations

Functional Area Item Maintenance

Module Type Business Processing

Module Technology ProC

Catalog ID RMS384

Runtime Parameters rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program updates VAT information for each item associated with a given
VAT region and VAT code.

Restart/Recovery
This batch program performs commits to the database for every commit max number
of rows.

Design Assumptions
N/A

Chapter 4
Mass VAT Updates for Items/Locations (vatdlxpl)

4-4

Purge Item Induction Staging Tables (itm_indctn_purge.ksh)

Module Name itm_indctn_purge.ksh

Description Purge item induction staging tables

Functional Area Foundation-Items

Module Type Admin

Module Technology Shell Script

Catalog ID RMS498

Runtime Parameters N/A

Design Overview
The purpose of this module is to remove old item records from the staging tables. Records
that are candidates for deletion are:

• Processes that have successfully been processed or processed with warnings that have
been uploaded to Merchandising or downloaded to S9T

• Processes that have status = 'PE', processed with errors and have no linked data

• Processes in error status where all other related records containing the process ID have
been processed successfully

• Processes that have errors and are past the data retention days
(system_options.proc_data_retention_days)

• All item records within a process where all related records for the item in the other
staging tables are successfully uploaded to Merchandising. The process tracker record
for that process should not be deleted if there are other item records that are not
uploaded to Merchandising.

Scheduling Constraints

Table 4-3 Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc

Frequency Daily

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
Restart ability is implied, because the records that are selected from the cursor are deleted
before the commit.

Chapter 4
Purge Item Induction Staging Tables (itm_indctn_purge.ksh)

4-5

Scheduled Item Maintenance (sitmain)

Module Name sitmain.pc

Description Scheduled Item Maintenance

Functional Area Item Maintenance

Module Type Business Processing

Module Technology ProC

Catalog ID RMS357

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
Scheduled item maintenance is a method of performing mass changes on item/
location information. Scheduled item maintenance uses item and location lists to make
the process of changing lots of information very easy for end users.This program
explodes the intersection of these items and location lists to make the scheduled
changes at the specific item/location level.

Restart/Recovery
This program has inherent restart ability because records are deleted from the
scheduled item detail table as they are processed. The logical unit of work is an item/
location combination.

Design Assumptions
N/A

Chapter 4
Scheduled Item Maintenance (sitmain)

4-6

5
Purchase Order

Purchase orders can be created through the Merchandising UI or through integration with
third-party systems. Once purchase orders are created in Merchandising, there are a number
of batch processes that manage PO data.

Program Summary
The following batch designs are included in this functional area:

• Apply Deal Discounts to Purchase Orders (orddscnt)

• Auto Close Purchase Orders (ordautcl)

• Auto Close Purchase Orders (order_auto_close_job) - background job

• Build Purchase Orders for Vendor Generated Orders (vrplbld)

• Generate Pre-Issued Order Numbers (genpreiss)

• Purge Aged Open To Buy Data (otb_purge_job) - background purge process

• Purge Aged Open To Buy Data (otbprg)

• Purge Aged Purchase Orders (order_purge_job) - background purge process

• Purge Aged Purchase Orders (ordprg)

• Purge PO Induction Staging Tables (po_indctn_purge.ksh)

• Scale Purchase Orders Based on Supplier Constraints (supcnstr)

• Update Retail Values on Open Purchase Orders (ordupd)

• Write Purchase Order Information to Purchase Order History Tables (order_revision_job)
- background process

• Write Purchase Order Information to Purchase Order History Tables (ordrev)

See also the Merchandising Operations Guide Volume 2 for details on the following purchase
order related integrations:

• Download of Purchase Order from Merchandising to Suppliers (edidlord)

• Upload Purchase Order and Purchase Order Change Acknowledgements from Suppliers
to Merchandising (ediupack)

• Upload of PO induction data through batch (poindbatch.ksh)

Apply Deal Discounts to Purchase Orders (orddscnt)

Module Name orddscnt.pc

Description Apply Deal Discounts to Purchase Orders

Functional Area Purchase Orders

Module Type Business Processing

5-1

Module Technology ProC

Catalog ID RMS283

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This module applies deals to a purchase order by calculating the discounts and
rebates that are applicable to a purchase order. It will fetch orders that need to be
recalculated for cost from the DEAL_CALC_QUEUE table. Using the dealordlib shared
library, it will update the unit cost and populate the ORDLOC_DISCOUNT and
ORDHEAD_DISCOUNT tables.

Restart/Recovery
This program has inherent restart ability, since records are deleted from
deal_calc_queue as they are processed. Recommended maximum commit counter is
low.

Design Assumptions
N/A

Auto Close Purchase Orders (ordautcl)

Module Name ordautcl.pc

Description Auto Close Purchase Orders

Functional Area Purchase Orders

Module Type Admin

Module Technology ProC

Catalog ID RMS282

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program is used to process POs that need to be deleted or closed that
meet certain conditions. The criteria are as mentioned below:

Chapter 5
Auto Close Purchase Orders (ordautcl)

5-2

Category 1
• The order is not in ‘C'ompleted status and was previously approved.

• The number of days between the latest ship date and the current date is greater than the
‘Approved PO Close Delay' system parameter.

• There are no open shipments for the order.

• End of week date should not be null.

Category 2
• The order is not in ‘C'ompleted status and was previously approved.

• A specified amount of time (‘Approved PO Close Delay' system parameter) after the not
after date of the PO has passed.

• A specified amount of time (‘Partially Received PO Close Delay' system parameter) after
the not after date has passed.

• A specified amount of time (‘Partially Received PO Close Delay' system parameter) after
the expected receipt date (or shipped date if the expected date has not been captured)
has passed.

• There are no open appointments in the system for the order.

Category 3
• The order has a status of worksheet or submitted, and the order has never been

previously approved.

• The number of days between the current date and the order creation date is greater than
the ‘Worksheet PO Clean Up Delay' system parameter.

• The order is a manual order (not created by replenishment).

• End of week date should not be null.

Retrieved orders are subsequently processed based on their category:

1. Category 1 orders will be closed. Closing an order involves adjusting the order quantities,
shipment quantities and OTB. Any allocation associated with the order will also be closed
if it is released ‘X' number of days before vdate. The ‘X' number of days is defaulted from
an external system and set on the Merchandising codes table for code_type ‘DEFT'.

2. For Category 2 orders, orders will be closed if there are no pending receipts or if the
‘Auto Close Partially Received' system indicator is set to ‘Y'.

3. Category 3 orders will be deleted from the system.

Restart/Recovery
Restart recovery is implicit since the program purges and cancels records in the database
one order at a time.

Design Assumptions
N/A

Chapter 5
Auto Close Purchase Orders (ordautcl)

5-3

Auto Close Purchase Orders (order_auto_close_job)

Module Name order_auto_close_job

Description Auto Close Purchase Orders

Functional Area Purchase Orders

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from order header table based
on defined criteria. This program is used to process POs that need to be deleted or
closed that meet certain conditions. The criteria are as mentioned below:

Category 1
• The order is not in ‘C'ompleted status and was previously approved.

• The number of days between the latest ship date and the current date is greater
than the ‘Approved PO Close Delay' system parameter.

• There are no open shipments for the order.

• End of week date should not be null.

Category 2
• The order is not in ‘C'ompleted status and was previously approved.

• A specified amount of time (‘Approved PO Close Delay' system parameter) after
the not after date of the PO has passed.

• A specified amount of time (‘Partially Received PO Close Delay' system
parameter) after the not after date has passed.

• A specified amount of time (‘Partially Received PO Close Delay' system
parameter) after the expected receipt date (or shipped date if the expected date
has not been captured) has passed.

• There are no open appointments in the system for the order.

Chapter 5
Auto Close Purchase Orders (order_auto_close_job)

5-4

Category 3
• The order has a status of worksheet or submitted, and the order has never been

previously approved.

• The number of days between the current date and the order creation date is greater than
the ‘Worksheet PO Clean Up Delay' system parameter.

• The order is a manual order (not created by replenishment).

• End of week date should not be null.

These records are chunked and Thread ID is assigned for each. They will be stored
temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will process retrieved records based on their category:

1. Category 1 orders will be closed. Closing an order involves adjusting the order quantities,
shipment quantities and OTB. Any allocation associated with the order will also be closed
if it is released ‘X' number of days before vdate. The ‘X' number of days is defaulted from
an external system and set on the RMFCS codes table for code type ‘DEFT'.

2. For Category 2 orders, orders will be closed if there are no pending receipts or if the
‘Auto Close Partially Received' system indicator is set to ‘Y'.

3. Category 3 orders will be deleted from the system.

It will free up and clean the staging table afterwards. There is a STOP ON NEXT feature in
bulk processing (through a loop) where Administrators can stop this batch with a flip of this
indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 5-1 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_ORDER_AUTO_CLOSE_S
TG

Yes No Yes Yes

ORDHEAD Yes No Yes Yes

SHIPMENT Yes No Yes No

APPT_HEAD Yes No No No

APPT_DETAIL Yes No No No

SHIPSKU Yes No Yes No

ORDLOC No No Yes Yes

Chapter 5
Auto Close Purchase Orders (order_auto_close_job)

5-5

Table 5-1 (Cont.) Key Tables Affected

Table Select Insert Update Delete

ALLOC_DETAIL No No Yes Yes

OBLIGATION_COMP No No No Yes

WO_DETAIL No No No Yes

WO_HEAD No No No Yes

WO_SKU_LOC No No No Yes

WO_WIP No No No Yes

ALLOC_CHRG No No No Yes

ALLOC_HEADER No No No Yes

ORDLOC_DISCOUNT No No No Yes

TIMELINE No No No Yes

ORDSKU_TEMP No No No Yes

ORDLOC_TEM No No No Yes

ALLOC_CHRG_TEMP No No No Yes

ALLOC_DETAIL_TEMP No No No Yes

ALLOC_HEADER_TEMP No No No Yes

ORDLOC_EXP_TEMP No No No Yes

ORDSKU_HTS_ASSESS_TEMP No No No Yes

ORDSKU_HTS_TEMP No No No Yes

ORDLOC_DISCOUNT_TEMP No No No Yes

TIMELINE_TEMP No No No Yes

REQ_DOC_TEMP No No No Yes

WO_DETAIL_TEMP No No No Yes

WO_HEAD_TEMP No No No Yes

ORDLOC_WKSHT No No No Yes

ORDLOC_REV No No No Yes

ORDSKU_REV No No No Yes

ORDSKU No No No Yes

ORDCUST No No No Yes

ORDHEAD_REV No No No Yes

ORDLC No No No Yes

DEAL_COMP_PROM No No No Yes

DEAL_ITEMLOC No No No Yes

DEAL_THRESHOLD No No No Yes

DEAL_DETAIL No No No Yes

DEAL_QUEUE No No No Yes

DEAL_CALC_QUEUE No No No Yes

DEAL_HEAD No No No Yes

ORD_INV_MGMT No No No Yes

Chapter 5
Auto Close Purchase Orders (order_auto_close_job)

5-6

Table 5-1 (Cont.) Key Tables Affected

Table Select Insert Update Delete

REPL_RESULTS No No No Yes

REV_ORDERS No No No Yes

REQ_DOC No No No Yes

ORD_PREISSUE No No No Yes

Design Assumptions
N/A

Build Purchase Orders for Vendor Generated Orders (vrplbld)

Module Name vrplbld.pc

Description Build Purchase Orders for Vendor Generated Orders

Functional Area Purchase Orders

Module Type Business Processing

Module Technology ProC

Catalog ID RMS387

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This purpose of this module is to continue the process started by the batch program
ediupack.pc of building purchase orders that reflect the vendor-generated orders as received
through the EDI 855. This module will process records from the temporary EDI order table
and create the purchase orders on the PO tables.

The post-processing function of this batch on the prepost batch truncates the EDI temporary
order table.

Restart/Recovery
The logical unit of work for the program is a vendor order number, department and supplier
combination. The program's restartability is dependent on the value of the Department Level
Orders system parameter. Allowing multi-department orders (that is, the indicator is set to 'N')
will restart the program from the last successfully processed vendor order number and
supplier. If the system requires a department on the orders (that is, the indicator is set to 'Y'),
then the program will restart from the last successfully processed vendor order number,
department, and supplier.

Chapter 5
Build Purchase Orders for Vendor Generated Orders (vrplbld)

5-7

Design Assumptions
N/A

Generate Pre-Issued Order Numbers (genpreiss)

Module Name genpreiss.pc

Description Generate Pre-Issued Order Numbers

Functional Area Purchase Orders

Module Type Admin

Module Technology ProC

Catalog ID RMS237

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
Based on records on the SUPP_PREISSUE table, this batch program reserves order
numbers for suppliers that do Vendor Managed Inventory (VMI) by placing these pre-
generated order numbers on the ORD_PREISSUE table.

Restart/Recovery
The logical unit of work for this program is set at thesupplier level, based on a single
record from the SUPP_PREISSUE table. It uses v_restart_supplier to achieve restart/
recovery.

The changes will be posted when the commit_max_ctr value is reached and the value
of the counter is subject to change based on implementation. The commit_max_ctr
field should be set to prevent excessive rollback space usage, and to reduce the
overhead of file I/O.

Design Assumptions
N/A

Purge Aged Open To Buy Data (otb_purge_job)

Module Name otb_purge_job

Description Purge Aged Open To Buy Data

Functional Area Open To Buy

Module Type Admin - Ad hoc

Module Technology Background Processing

Chapter 5
Generate Pre-Issued Order Numbers (genpreiss)

5-8

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two-step processing. It will have a threading assignment
and a business logic processing.

Thread assignment program will filter eligible records from open-to-buy (OTB) table based on
calculated End-of-Week purge date as derived from the current date which is at least one half
old. The current and previous half's OTB data is retained and kept in the system. These
records are chunked and Thread ID is assigned for each. They will be stored temporarily in a
staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from open-to-buy (OTB) table. It will free up
and clean the staging table afterwards. There is a STOP ON NEXT feature in bulk processing
(through a loop) where Administrators can stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 5-2 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_OTB_PURGE_STG Yes Yes No Yes

OTB No No No Yes

Design Assumptions
N/A

Purge Aged Open To Buy Data (otbprg)

Module Name otbprg.pc

Description Purge Aged Open To Buy Data

Chapter 5
Purge Aged Open To Buy Data (otbprg)

5-9

Functional Area Open To Buy

Module Type Admin

Module Technology ProC

Catalog ID RMS291

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program runs at the end of the half to delete rows from the OTB table that
are at least one half old. The current and previous half's OTB data is retained. The
number of days that OTB records are retained by Merchandising is not configurable
via a system parameter.

Restart/Recovery
There is no restart/recovery in this module. Up to 10,000 records are deleted and
committed at a time to avoid excessive rollback space in usage.

Design Assumptions
N/A

Purge Aged Purchase Orders (order_purge_job)

Module Name order_purge_job

Description Purge Aged Purchase Orders

Functional Area Purchase Orders

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two-step processing. It will have a threading
assignment and a business logic processing.

Chapter 5
Purge Aged Purchase Orders (order_purge_job)

5-10

Thread assignment program will filter eligible records from order header and other associated
and order-related tables based on its conditions below:

1. If importing is not enabled in the system (as defined by the import system indicator = 'N')
and if invoice matching is not installed, then all details associated with an order are
deleted when the order has been closed for more months than specified in 'Order History
Months' purge parameter. Orders will only be deleted if all allocations associated, if any,
have been closed.

2. If invoice matching is installed, then all details associated with an order are deleted when
the order has been closed for more months than specified in the 'Order History Months'
purge parameter. Orders are deleted only if allocations associated have been closed,
shipments from the order have been completely matched to invoices or closed, and all
those invoices have been posted.

3. If importing is enabled in the system (as defined by the import system indicator = 'Y') and
if invoice matching is not installed, then all details associated with the order are deleted
when the order has been closed for more months than specified in the 'Order History
Months' purge option. This action presupposes that all ALC records associated with an
order are in 'Processed' status, specified in the ALC header and allocations associated to
the order, if any, have been closed.

4. If invoice matching is installed, then all details associated with an order are deleted when
the order has been closed for more months than specified in the 'Order History Months'
purge parameter. This action presupposes that all ALC records associated with an order
are in 'Processed' status, specified in ALC head, all allocations associated to the order, if
any, have been closed, all shipments from the order have been completely matched to
invoices or closed, and all those invoices have been posted.

5. If the order to be purged is an import PO and it doesn't have a letter of credit (LC) then
purge the related records related to obligations, ALC and ICB transfers.

These records are chunked and Thread ID is assigned for each. They will be stored
temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from order header and other associated and
order-related tables. It will free up and clean the staging table afterwards. There is a STOP
ON NEXT feature in bulk processing (through a loop) where Administrators can stop this
batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 5-3 Key Tables Affected

Table Select Insert Update Delete

PURGE_CONFIG_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

Chapter 5
Purge Aged Purchase Orders (order_purge_job)

5-11

Table 5-3 (Cont.) Key Tables Affected

Table Select Insert Update Delete

B8D_ORDER_PURGE_STG Yes Yes No Yes

ORDHEAD Yes No No Yes

ORDLC Yes No No No

ALLOC_HEADER Yes No No Yes

SHIPMENT Yes No No Yes

SHIPSKU Yes No Yes Yes

INVC_HEAD Yes No No Yes

ORDLOC_REV No No No Yes

ORDHEAD_REV No No No Yes

ALLOC_REV No No No Yes

ALC_HEAD Yes No No Yes

ALC_COMP_LOC No No No Yes

OBLIGATION_COMP_LOC No No No Yes

OBLIGATION_COMP No No No Yes

OBLIGATION No No No Yes

TRANSPORTATION Yes No No Yes

MISSING_DOC No No No Yes

TRANS_PACKING No No No Yes

TRANS_DELIVERY No No No Yes

TRANS_CLAIMS No No No Yes

TRANS_LIC_VISA No No No Yes

TRANS_SKU No No No Yes

CE_ORD_ITEM Yes No No Yes

CE_LIC_VISA No No No Yes

CE_CHARGES No No No Yes

CE_SHIPMENT No No No Yes

CE_PROTEST No No No Yes

CE_FORMS No No No Yes

CE_HEAD v No No Yes

APPT_HEAD Yes No No Yes

APPT_DETAIL Yes No No Yes

DOC_CLOSE_QUEUE No No No Yes

DAILY_PURGE No Yes No No

ORDSKU Yes No No Yes

ITEM_MASTER Yes No No No

PACKITEM Yes No No No

PACK_TMPL_HEAD Yes No No No

RTV_DETAIL No No No Yes

Chapter 5
Purge Aged Purchase Orders (order_purge_job)

5-12

Table 5-3 (Cont.) Key Tables Affected

Table Select Insert Update Delete

WO_DETAIL No No No Yes

CARTON No No No Yes

WO_HEAD Yes No No Yes

ALLOC_CHRG No No No Yes

ALLOC_DETAIL No No No Yes

TIMELINE No No No Yes

ORDLOC No No No Yes

ORDLOC_DISCOUNT No No No Yes

ORDLOC_EXP No No No Yes

ORDSKU_HTS_ASSESS No No No Yes

ORDSKU_HTS No No No Yes

REQ_DOC No No No Yes

ORDSKU_REV No No No Yes

ORDLOC_INVC_COST No No Yes Yes

ORDCUST Yes No No Yes

ORDCUST_DETAIL No No No Yes

ORDCUST_CUSTOMER_DETAI
L

No No No Yes

ORD_XDOCK_TEMP No No No Yes

INVC_XREF No No No Yes

INVC_MATCH_WKSHT No No No Yes

ORDLOC_WKSHT No No No Yes

SUP_VIOLATION No No No Yes

REV_ORDERS No No No Yes

LC_ORDAPPLY No No No Yes

ORDHEAD_DISCOUNT No No No Yes

RUA_RIB_INTERFACE No No No Yes

ORDLOC_TEMP No No No Yes

ALLOC_CHRG_TEMP No No No Yes

ALLOC_DETAIL_TEMP No No No Yes

ALLOC_HEADER_TEMP No No No Yes

ORDSKU_TEMP No No No Yes

ORDLOC_EXP_TEMP No No No Yes

ORDSKU_HTS_ASSESS_TEMP No No No Yes

ORDSKU_HTS_TEMP No No No Yes

ORDLOC_DISCOUNT_TEMP No No No Yes

TIMELINE_TEMP No No No Yes

REQ_DOC_TEMP No No No Yes

Chapter 5
Purge Aged Purchase Orders (order_purge_job)

5-13

Table 5-3 (Cont.) Key Tables Affected

Table Select Insert Update Delete

WO_DETAIL_TEMP No No No Yes

WO_HEAD_TEMP No No No Yes

REPL_RESULTS_TEMP No No No Yes

DEAL_COMP_PROM No No No Yes

DEAL_HEAD Yes No No Yes

DEAL_THRESHOLD No No No Yes

DEAL_DETAIL No No No Yes

DEAL_QUEUE No No No Yes

ORD_INV_MGMT No No No Yes

REPL_RESULTS No No No Yes

INVC_DETAIL No No No Yes

INVC_NON_MERCH No No No Yes

INVC_MERCH_VAT No No No Yes

INVC_DETAIL_VAT No No No Yes

INVC_DISCOUNT No No No Yes

INVC_TOLERANCE No No No Yes

INVC_MATCH_QUEUE No No No Yes

TSFHEAD No No No Yes

TSFDETAIL No No No Yes

TSFDETAIL_CHRG No No No Yes

DEAL_ITEMLOC_ITEM No No No Yes

DEAL_ITEMLOC_DCS No No No Yes

DEAL_ITEMLOC_DIV_GRP No No No Yes

DEAL_ITEMLOC_PARENT_DIF
F

No No No Yes

ORDHEAD_L10N_EXT No No No Yes

ORD_TAX_BREAKUP No No No Yes

ORDHEAD_CFA_EXT No No No Yes

DEALHEAD_CFA_EXT No No No Yes

TSFHEAD_CFA_EXT No No No Yes

SHIPSKU_LOC_PRG_HIST No Yes No No

SHIPSKU_PRG_HIST No Yes No No

SHIPMENT_PRG_HIST No Yes No No

ALLOC_CHRG_PRG_HIST No Yes No No

ALLOC_DETAIL_PRG_HIST No Yes No No

ALLOC_HEADER_PRG_HIST No Yes No No

ORDLOC_REV_PRG_HIST No Yes No No

ORDSKU_REV_PRG_HIST No Yes No No

Chapter 5
Purge Aged Purchase Orders (order_purge_job)

5-14

Table 5-3 (Cont.) Key Tables Affected

Table Select Insert Update Delete

ORDHEAD_REV_PRG_HIST No Yes No No

ORDCUST_DETAIL_PRG_HIST No Yes No No

ORDCUST_PRG_HIST No Yes No No

ORDLOC_CFA_EXT_PRG_HIS
T

No Yes No No

ORDLOC_PRG_HIST No Yes No No

ORDLOC_DISCOUNT_PRG_HI
ST

No Yes No No

ORDLOC_EXP_PRG_HIST No Yes No No

ORDSKU_HTS_ASSESS_PRG_
HIST

No Yes No No

ORDSKU_HTS_PRG_HIST No Yes No No

ORDSKU_CFA_EXT_PRG_HIS
T

No Yes No No

ORDSKU_PRG_HIST No Yes No No

ORDHEAD_DISCOUNT_PRG_H
IST

No Yes No No

ORDHEAD_L10N_EXT_PRG_HI
ST

No Yes No No

ORD_TAX_BREAKUP_PRG_HI
ST

No Yes No No

ORDHEAD_CFA_EXT_PRG_HI
ST

No Yes No No

ORDHEAD_PRG_HIST No Yes No No

Design Assumptions
N/A

Purge Aged Purchase Orders (ordprg)

Module Name ordprg.pc

Description Purge Aged Purchase Orders

Functional Area Purchase Orders

Module Type Admin

Module Technology ProC

Catalog ID RMS285

Runtime Parameters N/A

Chapter 5
Purge Aged Purchase Orders (ordprg)

5-15

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this module is to remove old purchase orders from the system.

If importing is not enabled in the system (as defined by the import system indicator =
‘N') and if invoice matching is not installed, then all details associated with an order are
deleted when the order has been closed for more months than specified in ‘Order
History Months' purge parameter. Orders will only be deleted if all allocations
associated, if any, have been closed.

If invoice matching is installed, then all details associated with an order are deleted
when the order has been closed for more months than specified in the ‘Order History
Months' purge parameter. Orders are deleted only if allocations associated have been
closed, shipments from the order have been completely matched to invoices or closed,
and all those invoices have been posted.

If importing is enabled in the system (as defined by the import system indicator = ‘Y')
and if invoice matching is not installed, then all details associated with the order are
deleted when the order has been closed for more months than specified in the ‘Order
History Months' purge option. This action presupposes that all ALC records associated
with an order are in ‘Processed' status, specified in ALC_HEAD (status) and
allocations associated to the order, if any, have been closed.

If invoice matching is installed, then all details associated with an order are deleted
when the order has been closed for more months than specified in the ‘Order History
Months' purge parameter. This action presupposes that all ALC records associated
with an order are in ‘Processed' status, specified in ALC_HEAD (status), all allocations
associated to the order, if any, have been closed, all shipments from the order have
been completely matched to invoices or closed, and all those invoices have been
posted.

If the order to be purged is an import PO and it doesn't have a letter of credit (LC) then
purge the related records related to obligations, ALC and ICB transfers.

Restart/Recovery
Restart ability will be implied, because the records that are selected from the driving
cursor will be deleted before the commit. Restart library functions will still be included
to ensure that rollback segments are not exceeded (by committing at intervals) and to
perform basic record keeping functionality.

Design Assumptions
N/A

Purge PO Induction Staging Tables (po_indctn_purge.ksh)

Module Name po_indctn_purge.ksh

Chapter 5
Purge PO Induction Staging Tables (po_indctn_purge.ksh)

5-16

Description Purge PO induction staging tables

Functional Area Purchase Orders

Module Type Admin

Module Technology Shell Script

Catalog ID RMS499

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this module is to remove old purchase order records from the staging tables.
Records that are candidates for deletion are:

• Processes that have successfully been processed or processed with warnings that have
been uploaded to Merchandising or downloaded to S9T

• Processes that have status = 'PE' processed with errors and have no liked data

• Processes in error status where all other related records containing the process ID have
been processed successfully

• Processes that are passed the data retention days
(system_options.proc_data_retention_days)

• All order records within a process where all related records for the order in the other
staging tables are successfully uploaded to Merchandising. The process tracker record
should not be deleted if there are other orders that are not uploaded to Merchandising.

Restart/Recovery
Restart ability will be implied, because the records that are selected from the cursor will be
deleted before the commit.

Design Assumptions
N/A

Scale Purchase Orders Based on Supplier Constraints
(supcnstr)

Module Name supcnstr.pc

Description Scale Purchase Orders Based on Supplier Constraints

Functional Area Purchase Orders

Module Type Business Processing

Module Technology ProC

Chapter 5
Scale Purchase Orders Based on Supplier Constraints (supcnstr)

5-17

Catalog ID RMS368

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program will process all orders eligible for scaling during the nightly
replenishment run. The purpose of this program is to select all of the orders created by
the replenishment programs which are eligible for scaling. Once selected, the program
will serve as a wrapper program and send each order number into the supplier
constraint scaling library to actually perform the scaling on the order.

The orders which will be eligible for scaling are as follows:

If due order processing was used, only orders with a written date of today, origin type
of zero (0) (replenishment order), due order processing indicator of Yes, due order
indicator of Yes and a scale order to constraint indicator of Y will be processed. This
encompasses all due orders created by replenishment which have constraints
associated with them.

If due order processing was not used, only orders with a written date of today, origin
type of zero (0) (replenishment order), order approve indicator of Yes, status of
'W'orksheet, due order processing indicator of No, due order indicator of Yes, and a
scale order to constraint indicator of Yes will be processed. This encompasses all
approved orders created by replenishment which have constraints associated with
them.

For Franchise POs, their associated Franchise Orders will be updated when quantities
of the franchise POs are changed due to supplier constraint.

Restart/Recovery
The logic unit of work for this program is an order number.

Locking Strategy
This batch locks order inventory management and order header tables during day
runs.

Design Assumptions
N/A

Update Retail Values on Open Purchase Orders (ordupd)

Module Name ordupc.pc

Description Update Retail Values on Open Purchase Orders

Chapter 5
Update Retail Values on Open Purchase Orders (ordupd)

5-18

Functional Area Purchase Orders

Module Type Business Processing

Module Technology ProC

Catalog ID RMS287

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program will be used to automatically change all retail prices on purchase orders when a
retail price change is implemented for an item on the order with the status of 'Worksheet','
Submit' and ‘Approve'.

Open to buy is updated to give a more accurate picture of the retail value of open orders if
the order is ‘Approved' and if the department calculate the OTB as retail.

Restart/Recovery
This program does not contain restart/recovery logic.

Design Assumptions
N/A

Write Purchase Order Information to Purchase Order History
Tables (order_revision_job)

Module Name order_revision_job

Description Write Purchase Order Information to Purchase Order History Tables

Functional Area Purchase Orders

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 5
Write Purchase Order Information to Purchase Order History Tables (order_revision_job)

5-19

Design Overview
This background job is composed of two-step processing. It will have a threading
assignment and a business logic processing.

Order changes made by the client that may need to be sent to the vendor. The order
changes should always be referred to as 'versions' and kept clearly distinct from order
'revisions' which are vendor changes uploaded via the ediupack program.

Thread assignment program will filter eligible records from order revision history and
order header tables based on its order status ('A'pproved or 'C'losed) and supplier that
exists from supplier table. When orders are approved or when approved orders are
modified, this program selects order numbers from the order revision history table.
These records are chunked and Thread ID is assigned for each. They will be stored
temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will writes versions of approved orders and its current order
information to the order/allocation revision history tables. After the new version has
been written to the order revision tables, all records will be deleted from the order
revision history table for that order record. If an order is not in approved status at the
time the batch program runs, then none of the above processing will occur. These
records will stay on the order revision history table until the PO is approved or deleted.
It will free up and clean the staging table afterwards. There is a STOP ON NEXT
feature in bulk processing (through a loop) where Administrators can stop this batch
with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 5-4 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_ORDER_REVISION_ST
G

Yes Yes No Yes

REV_ORDERS Yes No No Yes

ORDHEAD Yes No Yes No

SUPS Yes No No No

ORDHEAD_REV Yes Yes No No

ORDSKU Yes No No No

ORDLOC Yes No No No

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No

Chapter 5
Write Purchase Order Information to Purchase Order History Tables (order_revision_job)

5-20

Table 5-4 (Cont.) Key Tables Affected

Table Select Insert Update Delete

ORDSKU_REV No Yes No No

ORDLOC_REV No Yes No No

ALLOC_REV No Yes No No

Design Assumptions
N/A

Write Purchase Order Information to Purchase Order History
Tables (ordrev)

Module Name ordrev.pc

Description Write Purchase Order Information to Purchase Order History Tables

Functional Area Purchase Orders

Module Type Admin

Module Technology ProC

Catalog ID RMS286

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
Ordrev.pc will write versions of approved orders to the order revision history tables. When
orders are approved or when approved orders are modified, this program selects order
numbers from the REV_ORDERS table and writes current order information to the order/
allocation revision tables. After the new version has been written to the order revision tables,
all records will be deleted from the REV_ORDERS table for that order_no.

This program processes order changes made by the client that may need to be sent to the
vendor. The order changes should always be referred to as ‘versions' and kept clearly distinct
from order ‘revisions' which are vendor changes uploaded via the ediupack program.

If an order is not in approved status at the time the batch program runs, then none of the
above processing will occur. These records will stay on the REV_ORDERS table until the PO
is approved or deleted.

Restart/Recovery
Restart ability will be implied because the records that are selected from the driving cursor
will be deleted before the commit. Restart library functions will still be included to ensure that

Chapter 5
Write Purchase Order Information to Purchase Order History Tables (ordrev)

5-21

rollback segments are not exceeded (by committing at intervals) and to perform basic
record keeping functionality.

Design Assumptions
N/A

Chapter 5
Write Purchase Order Information to Purchase Order History Tables (ordrev)

5-22

6
Deals

Deals are complex business processes that can either affect the cost a retailer pays for
goods purchased from a supplier (off invoice deals) or generate income from suppliers/
partners (billback/rebate deals). These basic types of deals require different processing. This
chapter contains information about the batch processes that support all types of Deals.

For additional information about Deals, including detailed flow diagrams, see the Deals white
paper found in the Merchandising Documentation Library (Doc ID: 1585843.1).

Program Summary
This chapter contains an overview of Deals related batch processes:

• Calculate Actual Impact of Billback Deals (dealact)

• Calculate Weekly/Monthly Income Based on Turnover (dealinc)

• Calculates/Update Forecasted Values for Deals (dealfct)

• Close Expired Deals (deal_close_job) - background job

• Close Expired Deals (dealcls)

• Daily Posting of Deal Income to Stock Ledger (dealday)

• Deal Calculation Queue Insert Multithreading (batch_ditinsrt.ksh)

• Insert into Deal Calculation Queue (ditinsrt)

• Purge Closed Deals (deal_purge_job) - background job

• Purge Closed Deals (dealprg)

• Purge Closed Deals Actuals Item/Location (deal_actuals_purge_job) - background job

• Update OTB After Deal Discounts (discotbapply)

See also the Merchandising Operations Guide Volume 2 for details on the following batch-
based integrations related to deals:

• Upload of Deals from 3rd Party Systems (dealupld)

• Stage Complex Deal Invoice Information (vendinvc)

• Stage Fixed Deal Invoice Information (vendinvf)

Calculate Actual Impact of Billback Deals (dealact)

Module Name dealact.pc

Description UCalculate Actual Impact of Billback Deals

Functional Area Deals

Module Type Business Processing

Module Technology ProC

6-1

Catalog ID RMS206

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program will run on a daily basis and calculate actuals information to update the
deal actuals table at the item/location level for bill back non rebate deals, bill back
purchase order rebate deals and bill back sales and receipts deals.

Restart/Recovery
The database commit will take place when the number of deal_id/deal_detail_id
records processed is equal to commit max counter in the restart control table.

Design Assumptions
N/A

Calculate Weekly/Monthly Income Based on Turnover
(dealinc)

Module Name dealinc.pc

Description Calculate Weekly/Monthly Income Based on Turnover

Functional Area Deals

Module Type Business Processing

Module Technology ProC

Catalog ID RMS211

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program generates income for each item/location for bill-back deals.

Dealinc.pc retrieves deal attributes and actuals data from the deals tables for complex
deals. It then calculates the income and will update the actuals table with the
calculated income value. Additionally the program will insert the income value into the
TEMP_TRAN_DATA table using the tran types deal sales and deal purchases.

Chapter 6
Calculate Weekly/Monthly Income Based on Turnover (dealinc)

6-2

Subsequent programs will run to perform forecast processing for active deals and to roll up
TEMP_TRAN_DATA rows inserted by the multiple instances of this module and insert/update
DAILY_DATA with the summed values and then insert details from TEMP_TRAN_DATA into
TRAN_DATA. Income is calculated by retrieving threshold details for each deal component
and determining how to perform the calculation (that is, Linear/Scalar, Actuals Earned/Pro-
Rate).

Restart/Recovery
A commit will take place after the number of deals records processed is equal to the commit
max counter from the RESTART_CONTROL table.

Design Assumptions
N/A

Calculates/Update Forecasted Values for Deals (dealfct)

Module Name dealfct.pc

Description Calculates/Update Forecasted Values for Deals

Functional Area Deals

Module Type Business Processing

Module Technology ProC

Catalog ID RMS209

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program aggregates income for each item/location and recalculates forecasted values. It
maintains forecast periods, deal component totals and deal totals.

After determining which active deals need to have forecast periods updated with actuals, the
program will then sum up all the actuals for the deal reporting period and update the table
with the summed values and change the period from a forecast period to a fixed period. The
program will also adjust either the deal component totals or the remaining forecast periods to
ensure that the deal totals remain correct. For each deal, the program will also maintain
values held at header level.

Restart/Recovery
A commit will take place after the number of deals records processed is equal to the commit
max counter from the RESTART_CONTROL table.

Chapter 6
Calculates/Update Forecasted Values for Deals (dealfct)

6-3

Design Assumptions
N/A

Close Expired Deals (deal_close_job)

Module Name deal_close_job

Description Close Expired Deals

Functional Area Deals

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two-step processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from deal header table that
reached their close date. The purpose of this module is to close any active deals that
have reached their close date. Closed deals are still available in the system for
reference and audit purposes, but as the deals are expired, they will not be applied or
processed. These records are chunked and Thread ID is assigned for each. They will
be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will update the records from deal header table to "C"losed
status. Any existing Deal records from the deal queue table will be re-inserted again
through calling FUTURE_COST_EVENT_SQL.ADD_DEALS program. It will free up
and clean the staging table afterwards. There is a STOP ON NEXT feature in bulk
processing (through a loop) where Administrators can stop this batch with a flip of this
indicator.

Restart/Recovery
N/A

Chapter 6
Close Expired Deals (deal_close_job)

6-4

Key Tables Affected

Table 6-1 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_DEAL_CLOSE_STG Yes Yes No Yes

DEAL_HEAD Yes No Yes No

DEAL_QUEUE Yes Yes No No

Close Expired Deals (dealcls)

Module Name dealcls.pc

Description Close Expired Deals

Functional Area Deals

Module Type Admin

Module Technology ProC

Catalog ID RMS207

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this module is to close any active deals that have reached their close date.
Closed deals are still available in the system for reference and audit purposes, but because
the deals are expired, they will not be applied or processed.

Restart/Recovery
N/A

Design Assumptions
N/A

Daily Posting of Deal Income to Stock Ledger (dealday)

Module Name dealday.pc

Chapter 6
Close Expired Deals (dealcls)

6-5

Description Daily Posting of Deal Income to Stock & General Ledgers

Functional Area Deals

Module Type Business Processing

Module Technology ProC

Catalog ID RMS208

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch module posts all the deal income records to the Stock Ledger and the
Genera Ledger.

This program extracts data inserted by dealinc.pc. In order to simplify this program, a
dealday pre function (in prepost.pc) will sum up the data into a temporary table. A
dealday post function (in prepost.pc) will copy data to transaction table and then purge
temporary tables.

Restart/Recovery
A commit will take place after the number of dept/class/subclass records processed is
greater than or equal to the max counter from the RESTART_CONTROL table.

Design Assumptions
N/A

Deal Calculation Queue Insert Multithreading
(batch_ditinsrt.ksh)

Module Name batch_ditinsrt.ksh

Description Deal Calculation Queue Insert Multithreading

Functional Area Deals

Module Type Business Processing

Module Technology Ksh

Catalog ID RMS187

Wrapper Script N/A

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 6
Deal Calculation Queue Insert Multithreading (batch_ditinsrt.ksh)

6-6

Design Overview
The purpose of this module is to multithread the ditinsrt batch program.

Restart/Recovery
A commit occurs when all details of a deal are processed. Inherent restart/recovery is
achieved through deleting deals from the DEAL_QUEUE table when they are processed.
Because DEAL_QUEUE is part of the driving cursor, processed deals will not be fetched
again when the program restarts.

Design Assumptions
N/A

Insert into Deal Calculation Queue (ditinsrt)

Module Name ditinsrt.pc

Description Insert into Deal Calculation Queue

Functional Area Deals

Module Type Business Processing

Module Technology ProC

Catalog ID RMS217

Wrapper Script N/A

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program will populate the DEAL_CALC_QUEUE table with orders that may be
affected by non vendor-funded, non PO-specific deals that are on the DEAL_QUEUE table
(for future processing by orddscnt.pc).

Orders that had been applied to deals that no longer apply will also be inserted into the
DEAL_CALC_QUEUE table. Processed records will then be deleted from the DEAL_QUEUE
table

Restart/Recovery
A commit occurs when all details of a deal are processed.

Inherent restart/recovery is achieved through deleting deals from the DEAL_QUEUE table
when they are processed. Because DEAL_QUEUE is part of the driving cursor, processed
deals will not be fetched again when the program restarts.

Chapter 6
Insert into Deal Calculation Queue (ditinsrt)

6-7

Design Assumptions
N/A

Purge Closed Deals (deal_purge_job)

Module Name deal_purge_job

Description Purge Closed Deals

Functional Area Deals

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two-step processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from complex deal header and
fixed deals tables based on its purge criteria from system parameter settings. The
Deal History Months parameter will determine old/aged deals after they have held in
specific number of months after they were closed. PO-specific deals will not be
covered in this purge processing. These records are chunked and Thread ID is
assigned for each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from either complex deal related
tables or fixed deal related tables depending if indicator is complex deal or not. For
Fixed Deals, DELETE_RECORDS_SQL.DEL_FIXED_DEAL is called while complex
deals will be processed with call to DELETE_RECORDS_SQL.DEL_DEAL. It will free
up and clean the staging table afterwards. There is a STOP ON NEXT feature in bulk
processing (through a loop) where Administrators can stop this batch with a flip of this
indicator.

Restart/Recovery
N/A

Chapter 6
Purge Closed Deals (deal_purge_job)

6-8

Key Tables Affected

Table 6-2 Key Tables Affected

Table Select Insert Update Delete

DEAL_HEAD Yes No No Yes

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_DEAL_PURGE_STG Yes Yes No Yes

DEAL_HEAD_CFA_EXT No No No Yes

FIXED_DEAL Yes No No Yes

DEAL_ITEM_LOC_EXPLODE No No No Yes

DEAL ACTUALS_FORECAST No No No Yes

DEAL_ITEMLOC_DIV_GRP No No No Yes

DEAL_ITEMLOC_DCS No No No Yes

DEAL_ITEMLOC_ITEM No No No Yes

DEAL_ITEMLOC_PARENT_DIF
F

No No No Yes

DEAL_COMP_PROM No No No Yes

DEAL_PROM No No No Yes

DEAL_THRESHOLD_REV No No No Yes

DEAL_THRESHOLD No No No Yes

DEAL_QUEUE No No No Yes

POP_TERMS_FULFILLMENT No No No Yes

POP_TERMS_DEF No No No Yes

DEAL_DETAIL No No No Yes

FIXED_DEAL_MERCH_LOC No No No Yes

FIXED_DEAL_MERCH No No No Yes

FIXED_DEAL_DATES No No No Yes

FIXED_DEAL_GL_REF_DATA No No No Yes

KEY_MAP_GL No No No Yes

Purge Closed Deals (dealprg)

Module Name dealprg.pc

Description Purge Closed Deals

Functional Area Deals

Module Type Admin

Module Technology ProC

Chapter 6
Purge Closed Deals (dealprg)

6-9

Catalog ID RMS212

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this batch program is to purge deals after they have been held in the
system for the specified number of history months after they are closed. The number
of months of history is defined in the PURGE_CONFIG_OPTIONS table in the
DEAL_HISTORY_MONTHS column.

The batch program will also delete deal performance tables based on the specified
number of history months. This program will not cover PO-specific deals, which will be
purged with the PO.

Restart/Recovery
This program has inherent restart/recovery since records that were processed are
deleted from the table. As a result, the driving cursor will never fetch the same records
again.

Design Assumptions
N/A

Purge Closed Deals Actuals Item/Location
(deal_actuals_purge_job)

Module Name deal_actuals_purge_job

Description Purge Closed Deals

Functional Area Deals

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 6
Purge Closed Deals Actuals Item/Location (deal_actuals_purge_job)

6-10

Design Overview
This background job is composed of two-step processing. It will have a threading assignment
and a business logic processing.

Thread assignment program will filter eligible records from complex deal header and deal
actuals forecast tables based on updated last invoice date that were processed beyond the
current date. These records are chunked and Thread ID is assigned for each. They will be
stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from either deal actuals item-location table
only. It will free up and clean the staging table afterwards. There is a STOP ON NEXT feature
in bulk processing (through a loop) where Administrators can stop this batch with a flip of this
indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 6-3 Key Tables Affected

Table Select Insert Update Delete

DEAL_HEAD Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_DEAL_ACTUALS_PURGE
_STG

Yes Yes No No

DEAL_ACTUALS_ITEM_LOC No No No Yes

DEAL ACTUALS_FORECAST Yes No No No

Update OTB After Deal Discounts (discotbapply)

Module Name discotbapply.pc

Description Update OTB After Deal Discounts

Functional Area Deals

Module Type Business Processing

Module Technology ProC

Catalog ID RMS215

Wrapper Script rmswrap_multi.ksh

Chapter 6
Update OTB After Deal Discounts (discotbapply)

6-11

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
Deals processing can change the cost on purchase orders. When this occurs (in the
batch program orddscnt.pc), Open To Buy (OTB) must also be updated to ensure that
budgets reflect reality. This program updates these OTB buckets.

Restart/Recovery
This program has inherent restart ability, because records are deleted from
DISC_OTB_APPLY as they are processed. Array processing is used. Records are
array fetched from DISC_OTB_APPLY table, processed and committed to the
database.

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 6
Update OTB After Deal Discounts (discotbapply)

6-12

7
Contracts

Contract batch modules create purchase orders from contracts and purge obsolete contracts.
There are four types of supplier contracts in Merchandising: A, B, C, and D.

• Type A (Plan/Availability): The contract contains a plan of manufacturing quantity by
ready date. Supplier availability is matched to the ready date. Orders are raised against
the plan as suggested by replenishment requirements, provided there is sufficient
supplier availability. You can also raise manual orders.

• Type B (Plan/No Availability): The contract contains a plan of manufacturing quantity by
ready date and dispatch-to location or locations. There are one or more ready dates,
which is the date that the items are due at the dispatch-to location. Supplier availability is
not required. Orders are raised automatically from the contract based on ready dates.

• Type C (No Plan/No Availability): The contract is an open contract with no production
schedule and no supplier availability declared. The contract lists the items that are used
to satisfy a total commitment cost. Orders are raised against the contract based on
replenishment requirements. The retailer can also raise manual orders.

• Type D (No Plan/Availability): The contract is an open contract with no production
schedule. The supplier declares availability as stock is ready. The contract lists the items
that are used to satisfy a total commitment cost. Orders are raised against the contract,
based on replenishment requirements and supplier availability. The retailer can raise
manual orders.

Program Summary
The following batch designs are included in this functional area:

• Apply Type A, C and D Contracts to Orders Created by Replenishment (cntrprss)

• Contract Maintenance and Purging (cntrmain)

• Contract Maintenance and Purging (contract_purge_job) - background process

• Create Replenishment Orders for Item/Locations on Type B Contracts (cntrordb)

See also the Merchandising Operations Guide Volume 2 for the following batch-based
integrations related to contracts:

• Upload Item Availability for Type A & D Contracts from Suppliers (ediupavl)

• Download Contracts to Suppliers (edidlcon)

Apply Type A, C and D Contracts to Orders Created by
Replenishment (cntrprss)

Module Name cntrprss.pc

Description Apply Type A, C & D Contracts to Orders Created by Replenishment

7-1

Functional Area Contracts

Module Type Business Processing

Module Technology ProC

Catalog ID RMS202

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This module evaluates contracts of type A, C, and D to determine whether an order
should be created from the contract. Contracts are ranked so that orders are created
off the best contracts first, based on lead-time, cost, contract status (such as, closed
preferred over open), and contract type (such as,. type C are preferred over D). This
updates the temporary orders created by the item replenishment extract (rplext)
module with the contract and supplier information of the best available contract for
each item and populates the repl_results table.

Restart/Recovery
As the item requirements can span across different locations, the logical unit of work
varies for each item requirement. For each item requirement, records are committed to
the database.

Design Assumptions
• This module should only be run if contracting is turned on in the system.

Contract Maintenance and Purging (cntrmain)

Module Name cntrmain.pc

Description Contract Maintenance and Purging

Functional Area Contracts

Module Type Admin

Module Technology ProC

Catalog ID RMS231

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 7
Contract Maintenance and Purging (cntrmain)

7-2

Design Overview
This program is used to mark contracts that have reached their end date to completed (for
types A and B) or review status (for types C and D). This module also purges contracts that
have remained in cancelled, worksheet, submitted, or complete status for a user-defined
number of months without any orders and contacts marked for deletion. The number of
months is determined by the system parameter for order history months.

Restart/Recovery
This batch program has two processing functions, one for purging and another for updating
contracts. The purge function (delete_contracts) deletes and commits records via arrays
whose size is defined in commit max counter while the update function (reset_inactive)
updates records in bulk based on the update criteria. The program as a whole is inherently
restartable.

Design Assumptions
• This module should only be run if contracting is turned on in the system.

Contract Maintenance and Purging (contract_purge_job)

Module Name contract_purge_job

Description Contract Maintenance and Purging

Functional Area Contracts

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two-step processing. It will have a threading assignment
and a business logic processing.

Thread assignment program will filter eligible records from contract header table based on its
purge criteria from system parameter settings. The Order History Months parameter will
determine number of months a contract elapsed in the system comparing current date and
contract's status date. Contracts are also considered for deletion when they remained in
cancelled, worksheet, submitted, or complete status for a user-defined number of months
without any orders and contacts marked for deletion. These records are chunked and Thread
ID is assigned for each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will mark contracts that have reached their end date to completed

Chapter 7
Contract Maintenance and Purging (contract_purge_job)

7-3

(for types A and B) or review status (for types C and D). It will free up and clean the
staging table afterwards. There is a STOP ON NEXT feature in bulk processing
(through a loop) where Administrators can stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 7-1 Key Tables Affected

Table Select Insert Update Delete

PURGE_CONFIG_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_CONTRACT_MAIN_PU
RGE_STG

Yes Yes No Yes

CONTRACT_HEADER Yes No Yes Yes

CONTRACT_DETAIL No No No Yes

CONTRACT_COST No No No Yes

ORDHEAD Yes No No No

Design Assumptions
N/A

Create Replenishment Orders for Item/Locations on Type B
Contracts (cntrordb)

Module Name cntrordb.pc

Description Create Replenishment Orders for Item/Locations on Type B Contracts

Functional Area Contracts

Module Type Business Processing

Module Technology ProC

Catalog ID RMS232

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 7
Create Replenishment Orders for Item/Locations on Type B Contracts (cntrordb)

7-4

Design Overview
This module automatically creates replenishment orders for items on an approved, orderable
type ‘B' contract based on production dates.

Type B (Plan/No Availability) contracts contain a plan of manufacturing quantity by ready date
and dispatch-to location or locations. There are one or more ready dates, which is the date
that the items are due at the dispatch-to location. Supplier availability is not required. This
program automatically writes POs from the contract based on ready dates.

Prepost cntrordb post – updates the system level variable last_cont_order_date to the current
vdate

Restart/Recovery
The logical unit of work is contract no. Records are committed to the database when no of
records processed reaches commit_max_counter maintained in RESTART_CONTROL table.

Design Assumptions
• This module should only be run if contracting is turned on in the system.

Chapter 7
Create Replenishment Orders for Item/Locations on Type B Contracts (cntrordb)

7-5

8
Cost Changes

Suppliers often change the cost of items.

Cost is an important factor in individual transactions and many financial calculations in
Merchandising. Changes in cost must be reflected in the information stored in Merchandising
and pending transactions.

Program Summary
The following batch designs are included in this functional area:

• Cost Change Purge (ccprg)

• Cost Change Purge (cost_change_purge_job) - background process

• Process Scheduled Ownership Change Data (ownership_change_process)

• Purge Processed and Aged Ownership Change Data (ownership_change_purge)

• Supplier Cost Change Extract (sccext)

Cost Change Purge (ccprg)

Module Name ccprg.pc

Description Purge Aged Cost Changes

Functional Area Cost Change

Module Type Admin

Module Technology ProC

Catalog ID RMS476

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program is responsible for removing old cost changes from the system. Cost changes
are removed from the system using the following criteria:

• The status of the cost change is either Delete or Canceled.

• The status of the cost change is Rejected and the effective date of the cost change has
met the requirement for the number of days that rejected cost changes are held.

• The status of the cost change is Extracted and the effective date of the cost change has
met the requirement for the number of days that extracted cost changes are held.

8-1

The number of days that rejected cost changes are held is determined by the system
parameter Retention of Rejected Cost Changes
(RETENTION_OF_REJECTED_COST_CHG). The number of days that extracted cost
changes are held is determined by the system parameter Retention of Extracted Cost
Changes (RETN_EXTRACTED_COST_CHG).

Restart/Recovery
N/A

Design Assumptions
N/A

Cost Change Purge (cost_change_purge_job)

Module Name cost_change_purge_job

Description Purge Aged Cost Changes

Functional Area Cost Change

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Schedule

Design Overview
This background job is composed of two-step processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from cost change header table
based on its purge criteria from system parameter settings. The Retention of Rejected
Cost Changes parameter will determine the number of days that rejected cost changes
are held. The Retention of Extracted Cost Changes parameter will determine the
number of days extracted cost changes are held. It also should meet the following
criteria:

• The status of the cost change is either Delete or Canceled.

• The status of the cost change is Rejected and the effective date of the cost
change has met the requirement for the number of days that rejected cost
changes are held.

• The status of the cost change is Extracted and effective date of the cost change
has met the requirement for the number of days that extracted cost changes are
held.

These records are chunked and Thread ID is assigned for each. They will be stored
temporarily in a staging table.

Chapter 8
Cost Change Purge (cost_change_purge_job)

8-2

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from cost change header and other related
cost change tables. It will free up and clean the staging table afterwards. There is a STOP
ON NEXT feature in bulk processing (through a loop) where Administrators can stop this
batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 8-1 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

PURGE_CONFIG_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Ys No No

B8D_COST_CHANGE_PURGE_
STG

Yes Yes No Yes

COST_SUSP_SUP_HEAD Yes No No Yes

COST_SUSP_SUP_DETAIL Yes No No Yes

COST_SUSP_SUP_DETAIL_LO
C

Yes No No Yes

Design Assumptions
N/A

Process Scheduled Ownership Change Data
(ownership_change_process)

Module Name ownership_change_process.ksh

Description Processes scheduled ownership change records from the Ownership Change
related tables.

Functional Area Foundation Data

Module Type Business Processing

Module Technology Ksh

Catalog ID N/A

Wrapper Script rmswrap_shell.ksh

Chapter 8
Process Scheduled Ownership Change Data (ownership_change_process)

8-3

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program process scheduled and approved ownership change transaction
records that are set to go into effect the next day. It updates costing and ownership
attributes of item/supplier/country or item/supplier/country/location combinations.

Additionally, primary supplier and country is updated for item/location records. This
process will also trigger creation of PO and RTV depending on ownership change type
along with relevant tran data postings to account for financial impacts of such
transactions. There will not be any tran data entries if non-inventoried consignment
items are involved. In case the item on the ownership change has child items, then the
children will also be updated with the same changes as the parent item. On successful
completion of the batch, overall status of the Ownership transaction will be updated to
'Processed'.

To account for changes in the item and other transactions that can happen between
the time the ownership change was approved and it's picked by the batch for
processing; following validations are performed at the time of batch execution. The
batch program will fail to process for the ownership change transaction if any of the
item/supplier/country/location fails the following validations.

1. The item should not be part of any pack; the exception being when its component
of sellable only complex pack or an orderable (non-sellable) buyer complex pack

2. The location should not be included in any other approved Ownership Change
transaction for the similar Item/Supplier/Country combination

3. Item should be associated with supplier site and country as specified in the items
table.

4. Current Primary supplier site of the location should be same as the one specified
in Items table (When the change type is Update Primary Supplier)

5. The item/supplier/country/location combination should not exist on any approved
and not closed Purchase Order

6. The item/supplier/country/location combination should not exist on any open
Return to Vendor

7. Any replenishment attribute should not be active for item/supplier/country/location
combination

8. The item/supplier/country/location combination should not exist on any Cost
Change scheduled on or after the effective date of the ownership change

9. Item/supplier/country/location should currently have a purchase type that
corresponds to the ownership change type. For example: If Change Type is
'Owned to Consignment' then allow those locations with Purchase Type at Item/
Supplier/Country/Location as 'Owned'. Similar treatment for other Change Types.

10. The item/supplier/country location should have a purchase type of either
consignment or concession (When the change type is Update Primary Supplier).

Chapter 8
Process Scheduled Ownership Change Data (ownership_change_process)

8-4

The item/supplier/country/location should have the same purchase type for the current
and new supplier/country; either both are consignment or both are concession. (When
the change type is Update Primary Supplier).

Restart/Recovery
N/A

Design Assumptions
N/A

Purge Processed and Aged Ownership Change Data
(ownership_change_purge)

Module Name ownership_change_purge.ksh

Description Purges old processed ownership change records from the Ownership
Change related tables.

Functional Area Foundation Data

Module Type Admin

Module Technology Ksh

Catalog ID N/A

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program purges old and processed records from the ownership change related
tables based on the Ownership Change Purge Days system parameter.

Note:

This process also supports archiving, if desired. For more information on how to
configure this process for archiving, see the Merchandising Implementation Guide
section titled "Background Configuration Process".

Restart/Recovery
N/A

Chapter 8
Purge Processed and Aged Ownership Change Data (ownership_change_purge)

8-5

Design Assumptions
N/A

Supplier Cost Change Extract (sccext)

Module Name sccext.pc

Description Apply Pending Cost Changes to Items

Functional Area Cost Change

Module Type Business Processing

Module Technology ProC

Catalog ID RMS355

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The sccext module selects supplier cost change records that are set to go into effect
the next day and updates the Merchandising item/supplier/country tables with the new
cost. The item/location tables are also updated with the new cost if the cost change
impacts the primary supplier/country for an item/location, as this is considered a base
cost change. The process also triggers a recalculation of cost and deal application for
pending purchase orders.

Restart/Recovery
The logical unit of work for the program is a cost change. The program is also
restartable from the last successfully processed cost change record.

Design Assumptions
N/A

Chapter 8
Supplier Cost Change Extract (sccext)

8-6

9
Future Cost

The Future Cost Engine calculates the expected cost of an item/supplier/origin country/
location at a given point into the future. These values are used to help in many scenarios (for
example, when trying to determine what a margin will be at a point in the future, or when
doing investment buying).

The future cost engine can execute as either a synchronous, asynchronous or batch process.
The focus of this chapter is the batch processes. To support the discussion of the batch
processes, there is general discussion of the engine that is also applicable to the
synchronous and asynchronous execution of the engine.

There are also two other programs that are referenced in this chapter related to cost - Pricing
Cost Refresh and WAC Refresh. These are both used to refresh materialized views that are
used by the WAC Variance report that is displayed by default on the Finance Analyst
dashboard.

Future Cost Events
There are three basic events that drive recalculation of FUTURE_COST. They are supplier
cost changes, deals, and estimated landed cost components. When these events are added
or removed from Merchandising, they impact the calculated values on future cost. These
transactions are known as primary events.

There are other events that determine if primary events still apply to a given item/supplier/
origin country/location combination. They are reclassifications, merchandise hierarchy
changes, organization hierarchy changes, cost zone location moves, item/cost zone changes,
and supplier hierarchy changes. These are secondary events.

There are also two special events that cause new time lines to be created in
FUTURE_COST. They are new item loc (when item/locations are ranged) and new item/
supplier/country/location relationships (add and remove). These are initialization events.

The ITEM_LOC.PRIMARY_COST_PACK column plays a special roll in costing. When a
primary costing pack is defined for an item, that item's costing values are based on the
primary_costing_pack not the item itself. When a primary costing pack is added, changed, or
removed, this is a primary pack event.

Table 9-1 Cost Events and Cost Event Types

Cost Event Cost Event Type

Supplier Cost Change Primary

Deal Primary

ELC Component Primary

Reclassification Secondary

Merchandise hierarchy Secondary

Organization hierarchy Secondary

9-1

Table 9-1 (Cont.) Cost Events and Cost Event Types

Cost Event Cost Event Type

Cost zone location moves Secondary

Item/cost zone changes Secondary

Supplier hierarchy Secondary

New Item Location Initialization

Item/supplier/country/location
relationships

Initialization

Primary cost pack Primary Pack

WF Cost Template N/A

WF Cost Template
Relationship

N/A

Deal Pass through N/A

Future Cost Engine Run Type Configuration
The Future Cost Engine can be configured by cost event type in one of three ways:

• Synchronous

• Asynchronous

• Batch

The method to be used by each cost event type is controlled by the configuration
defined in the COST_EVENT_RUN_TYPE_CONFIG table.

Synchronous
When running in synchronous mode, the Future Cost Engine is run in the same
transaction as the client that calls it. For example if the cost change event is
configured to run in synchronous mode, the work done in the Future Cost Engine for
the approval of a cost change runs in the same transaction as the flipping of the status
of the cost change to ‘A' status. That means the user in the screen will have a busy
cursor until the Future Cost Engine completes.

Cost event types with an EVENT_RUN_TYPE set to ‘SYNC' on
COST_EVENT_RUN_TYPE_CONFIG will run in synchronous mode.

Chapter 9
Future Cost Engine Run Type Configuration

9-2

Figure 9-1 Future Cost Engine - SYNC Mode

Asynchronous
When running in asynchronous mode, the Future Cost Engine is run in a separate transaction
than the client that calls it. For example if the cost change event is configured to run in
asynchronous mode, the work done in the Future Cost Engine for the approval of a cost
change runs in a different transaction as the flipping of the status of the cost change to ‘A'
status. This means that control returns to the user in the screen while the Future Cost Engine
runs in the background.

Cost event types with an EVENT_RUN_TYPE set to ‘ASYNC' on
COST_EVENT_RUN_TYPE_CONFIG runs in asynchronous mode.

Chapter 9
Future Cost Engine Run Type Configuration

9-3

Figure 9-2 Future Cost Engine - ASYNC Mode

Batch
When running in batch mode, the Future Cost Engine is run during the nightly batch
run. For example if the cost change event is configured to run in batch mode, the work
done in the Future Cost Engine for the approval of a cost change runs during the next
batch run after the approval of the cost change.

Chapter 9
Future Cost Engine Run Type Configuration

9-4

Cost event types with an EVENT_RUN_TYPE set to ‘BATCH' on
COST_EVENT_RUN_TYPE_CONFIG runs in batch mode.

The fcexec.pc batch program and its associated prepost pre job contain logic to run the
Future Cost Engine in batch mode.

Figure 9-3 Future Cost Engine - Batch Mode

Future Cost Engine Concurrency Control
Concurrency control is handled in the Future Cost Engine by locking the FUTURE_COST
table. The sole job of the Future Cost Engine is maintaining the FUTURE_COST table and its
helper DEAL_ITEM_LOC_EXPLODE. The first step in processing is to lock the item/supplier/
origin country/location combinations that the cost event covers (after the identification of item/
supplier/origin country/location combinations and chunking has been done). If a lock cannot
be obtained, another cost event is already processing some of the data that is required.
When this occurs the Future Cost Engine stops processing and records the results
accordingly and the cost event can be retried at a later time.

Future Cost Engine Error Handling
The COST_EVENT_RESULT table is used to track all runs of the Future Cost Engine
whether or not they succeeded. The table records a cost event ID and thread ID, the result
code, and any error message that may exist. A special screen is used to search/access the
results

Chapter 9
Future Cost Engine Concurrency Control

9-5

Future Cost Engine Threading/Chunking
The Future Cost Engine deals with large amounts of data. Its inputs can vary greatly in
size. Its inputs can be one large driver or a group of smaller drivers.

In order to deal with this volume and variation in input a configurable threading/
chunking mechanism is built into the Future Cost Engine.

When the transaction control is set to BATCH, the chunks are run in a threaded
manner using the Pro*C batch program to coordinate execution.

Future Cost Process

Note:

This process focuses on batch runs of the future cost engine.

Figure 9-4 Future Cost Process

• Administrators configure the system (COST_EVENT_RUN_TYPE) to define which
cost events types will be processed synchronously, asynchronously or in batch.
Configuration by cost event type also determines some threading and chunking
parameters.

• Merchandising transactions that should drive future cost recalculation write Cost
Events (COST_EVENT and cost event type specific tables).

• Future Cost Engine recalculates future cost

Chapter 9
Future Cost Engine Threading/Chunking

9-6

Note:

This process flow focuses on batch recalculations, but synchronous or
asynchronous processes could easily be substituted in this step.

• fcthreadexec.pc prepares threads for processing

• fcexec.pc recalculates future cost and writes it the future cost table (FUTURE_COST)

• Merchandising processes use future cost information to determine investment buy,
margin, and so on.

• fc_pricechg.pc performs special calculation of pricing cost for franchise locations

• costeventprg.pc purges aged cost events from the working cost event tables.

Program Summary
The following batch programs are included in this chapter:

• Execute Batch Calculation/Recalculation of Future Cost Values (fcexec)

• Future Cost Table Maintenance (future_cost_purge_job) - background process

• Prepare Threads for Batch Calculation/Recalculation of Future Cost Values
(fcthreadexec)

• Pricing Cost Refresh (rms_oi_pricecostrefresh.ksh)

• Purge Aged Cost Events (cost_event_purge_job) - background process

• Purge Aged Cost Events (costeventprg)

• Use Pending Price Changes to Drive Recalculation of Pricing Cost for some Franchise
Item/Locations (fc_pricechg)

• WAC Refresh (rms_oi_wacvarrefresh.ksh)

Execute Batch Calculation/Recalculation of Future Cost Values
(fcexec)

Module Name fcexec.pc

Description Execute Batch Calculation/Recalculation of Future Cost Values

Functional Area Costing

Module Type Business Processing

Module Technology ProC

Catalog ID RMS223

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 9
Program Summary

9-7

Design Overview
The fcexec.pc batch program executes the future cost engine in batch mode. Cost
events set up to run in batch mode are threaded in the fcthreadexec.pc batch process
and passed to the future cost engine for processing by this program. This program
should be always run after the fcthreadexec.pc batch.

This batch program only serves as a wrapper to call the cost engine, the Key Tables
Affected section does not list the tables affected by the cost engine. The future cost
engine is threaded by item/supplier/country/location.

Restart/Recovery
The logical unit of work for this batch program is the cost_event_process_id on the
COST_EVENT table.

Design Assumptions
N/A

Future Cost Table Maintenance (future_cost_purge_job)

Module Name future_cost_purge_job

Description Future Cost Table Maintenance

Functional Area Costing

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from future cost table for
purging. These records are chunked, and Thread ID is assigned for each. They will be
stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete future-cost data from future-cost table. It will free
up and clean the staging table afterwards. There is a STOP ON NEXT feature in bulk
processing (through a loop) where Administrators can stop this batch with a flip of this
indicator.

Chapter 9
Future Cost Table Maintenance (future_cost_purge_job)

9-8

Note:

This process also supports archiving, if desired. For more information on how to
configure this process for archiving, see the Merchandising Implementation Guide
section titled "Background Configuration Process".

Restart/Recovery
N/A

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table 9-2 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

SYSTEM_OPTIONS Yes No No No

PERIOD Yes No No No

FUTURE_COST Yes No No Yes

B8D_FUTURE_COST_PURGE_STG Yes Yes No Yes

JOB_AUDIT_LOGS No Yes No No

FUTURE_COST_PRG_HIST No Yes No No

I/O Specification
N/A

Chapter 9
Future Cost Table Maintenance (future_cost_purge_job)

9-9

Prepare Threads for Batch Calculation/Recalculation of
Future Cost Values (fcthreadexec)

Module Name fcthreadexec.pc

Description Prepare Threads for Batch Calculation/Recalculation of Future Cost
Values

Functional Area Costing

Module Type Admin

Module Technology ProC

Catalog ID RMS230

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The fcthreadexec.pc batch program is responsible for threading the cost events based
on the max_tran_size that is provided in the cost_event_run_type_config table.

This program must always be run before the fcexec batch.

Restart/Recovery
The logical unit of work for this batch program is the cost_event_process_id on the
COST_EVENT table.

Design Assumptions
N/A

Pricing Cost Refresh (rms_oi_pricecostrefresh.ksh)

Module Name rms_oi_pricecostrefresh.ksh

Description Refreshes the MV_PRICING_COST to reflect the most recent pricing cost
of an item/location in FUTURE_COST.

Functional Area Financial Dashboard

Module Type Admin

Module Technology Ksh

Catalog ID RMS477

Wrapper Script rmswrap_shell.ksh

Chapter 9
Prepare Threads for Batch Calculation/Recalculation of Future Cost Values (fcthreadexec)

9-10

Design Overview
This shell script will refresh the MV_PRICING_COST snapshot to reflect the most recent pricing
cost for an item/location in FUTURE_COST. It will in turn insert/update into the
RMS_OI_WAC_VARIANCE_CALC to reflect the change in WAC as a result of the change in the
ITEM_LOC.AV_COST of an item/location. This information is used by the WAC Variance report
displayed by default in the Finance Analyst dashboard.

Scheduling Constraints

Schedule Information Description

Processing Cycle Every 6 AM outside the batch window.

Frequency Daily

Scheduling Considerations Must run before rms_oi_wacvarrefresh.ksh
Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
N/A

Key Tables Affected

Table 9-3 Key Tables Affected

Table Select Insert Update Delete

RMS_OI_WAC_VARIANCE_CALC Yes No Yes No

MV_PRICING_COST Yes No No No

ITEM_LOC_SOH Yes No No No

STORE Yes No No No

WH Yes No No No

CURRENCY_RATES Yes No No No

Design Assumptions
N/A

Purge Aged Cost Events (cost_event_purge_job)

Module Name cost_event_purge_job

Description Purge Aged Cost Events

Functional Area Future Cost

Chapter 9
Purge Aged Cost Events (cost_event_purge_job)

9-11

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Design Overview
This background job is composed of two-step processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from cost event table based on
its purge criteria from system parameter settings. The Cost Events History Days
parameter will determine cost events that were old/aged from the creation date. These
cost event records should exist from Cost Event Configuration table. These records
are chunked and Thread ID is assigned for each. They will be stored temporarily in a
staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from specific cost event related tables
as per Run Event Type. It will free up and clean the staging table afterwards. There is
a STOP ON NEXT feature in bulk processing (through a loop) where Administrators
can stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 9-4 Key Tables Affected

Table Select Insert Update Delete

PURGE_CONFIG_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_COST_EVENT_PURGE
_STG

Yes Yes No Yes

COST_EVENT No No No Yes

COST_EVENT_RESULT No No No Yes

COST_EVENT_THREAD No No No Yes

COST_EVENT_SUPP_COUN
TRY

No No No Yes

COST_EVENT_NIL No No No Yes

COST_EVENT_PRIM_PACK No No No Yes

COST_EVENT_COST_CHG No No No Yes

COST_EVENT_RECLASS No No No Yes

Chapter 9
Purge Aged Cost Events (cost_event_purge_job)

9-12

Table 9-4 (Cont.) Key Tables Affected

Table Select Insert Update Delete

COST_EVENT_DEAL No No No Yes

COST_EVENT_MERCH_HIE
R

No No No Yes

COST_EVENT_ORG_HIER No No No Yes

COST_EVENT_COST_ZONE No No No Yes

COST_EVENT_ELC No No No Yes

COST_EVENT_SUPP_HIER No No No Yes

COST_EVENT_ITEM_COST_
ZONE

No No No Yes

COST_EVENT_RUN_TYPE_
CONFIG

Yes No No No

COST_EVENT_DEAL_PASST
HRU

No No No Yes

COST_EVENT_COST
RELATIONSHIP

No No No Yes

COST_EVENT_COST_TMPL No No No Yes

Design Assumptions
N/A

Purge Aged Cost Events (costeventprg)

Module Name costeventprg.pc

Description Purge Aged Cost Events

Functional Area Future Cost

Module Type Admin

Module Technology ProC

Catalog ID RMS203

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program purges tables used by the Future Cost calculation engine. Records from
the COST_EVENT and its related tables are purged from the system based on the Cost
Event History Days (cost_event_hist_days) system parameter.

Chapter 9
Purge Aged Cost Events (costeventprg)

9-13

Restart/Recovery
The logical unit of work is the event type on the COST_EVENT_RUN_TYPE_CONFIG
table. Records are deleted serially per event type. Restart recovery is based on
deleted records. Restarting on a failed run will resume from records not yet deleted on
the prior failed run.

Design Assumptions
N/A

Use Pending Price Changes to Drive Recalculation of
Pricing Cost for some Franchise Item/Locations
(fc_pricechg)

Module Name fc_pricechg.ksh

Description Use Pending Price Changes to Drive Recalculation of Pricing Cost for
some Franchise Item/Locations

Functional Area Future Cost

Module Type Business Processing

Module Technology ksh

Catalog ID RMS497

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This script checks for any item/locations that have scheduled price changes for the
next day. If there are corresponding item/location rows in the future cost table with the
percent-off-retail type template associated then the pricing cost of those future cost
records will be recalculated by this program.

Restart/Recovery
N/A

Design Assumptions
N/A

Chapter 9
Use Pending Price Changes to Drive Recalculation of Pricing Cost for some Franchise Item/Locations (fc_pricechg)

9-14

WAC Refresh (rms_oi_wacvarrefresh.ksh)

Module Name rms_oi_wacvarrefresh.ksh

Description Refreshes the RMS_OI_WAC_VARIANCE_CALC with WAC update on an item/
location

Functional Area Financial Dashboard

Module Type Admin

Module Technology Ksh

Catalog ID RMS478

Runtime Parameters $UP (database connect string)

Design Overview
This shell script will refresh the RMS_OI_WAC_VARIANCE_CALC to show the change in WAC for
an item/location, based on the change in the ITEM_LOC.AV_COST during the day. It is used by
the WAC Variance report shown by default in the Finance Analyst dashboard.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc. During the Day outside the batch window.

Frequency Every 2 hours

Scheduling Considerations Must run after rms_oi_pricecostrefresh.ksh
Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
N/A

Key Tables Affected

Table 9-5 Key Tables Affected

Table Select Insert Update Delete

RMS_OI_WAC_VARIANCE_CALC Yes No Yes No

MV_PRICING_COST Yes No No No

ITEM_LOC_SOH Yes No No No

STORE Yes No No No

WH Yes No No No

CURRENCY_RATES Yes No No No

Chapter 9
WAC Refresh (rms_oi_wacvarrefresh.ksh)

9-15

Design Assumptions
N/A

Chapter 9
WAC Refresh (rms_oi_wacvarrefresh.ksh)

9-16

10
Invoice Matching

Merchandising and Sales Audit stage invoice records to be integrated to the Invoice Matching
solution for returns to vendor (RTV), consignment orders and returns, deals, importing
partners, obligations, and customs entry. The programs described in this chapter ensure that
open transactions are closed and old data is purged related to this integration.

In addition to the programs listed below, there are two integration programs related to this
functional area:

• edidlinv (Download of Invoice For Invoice Matching)

• saexpim (Export DSD and Escheatment from Sales Audit to Invoice Matching)

These are both described in Merchandising Inbound and Outbound Integration Guide.

Program Summary
The following batch designs are included in this functional area:

• Close Aged Shipments to Prevent them from Matching Open Invoices
(invc_ship_close_job) - background job

• Close Aged Shipments to Prevent them from Matching Open Invoices (invclshp)

• Purge Aged Invoices (invoice_purge_job)

• Purge Aged Invoices (invprg) - background job

Close Aged Shipments to Prevent them from Matching Open
Invoices (invc_ship_close_job)

Module Name invc_ship_close_job

Description Close Aged Shipments to Prevent them from Matching Open Invoices

Functional Area Invoice Matching

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

10-1

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from order-shipment and order
header tables based on its purge criteria. The Close Open Ship Days parameter will
determine number of days that all shipment records that have remained opened and
not associated with any open invoices. These records are chunked and Thread ID is
assigned for each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will update the records from order-shipment table by setting
the invoice match status to 'C'losed. It will free up and clean the staging table
afterwards. There is a STOP ON NEXT feature in bulk processing (through a loop)
where Administrators can stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 10-1 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_INVC_CLOSE_SHIP_ST
G

Yes Yes No Yes

ORDHEAD Yes No No No

SHIPMENT Yes No Yes No

SHIPSKU Yes No No No

INVC_HEAD Yes No No No

INVC_XREF Yes No No No

Close Aged Shipments to Prevent them from Matching
Open Invoices (invclshp)

Module Name invclshp.pc

Description Close Aged Shipments to Prevent them from Matching Open Invoices

Functional Area Invoice Matching

Chapter 10
Close Aged Shipments to Prevent them from Matching Open Invoices (invclshp)

10-2

Module Type Admin

Module Technology ProC

Catalog ID RMS252

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program will close all shipments that have remained open for a specified number
of days as defined by the ‘Close Open Ship Days' system parameter and are not associated
with any open invoices. This will be accomplished by setting the invc_match_status on the
SHIPMENT table to ‘C'losed.

Restart/Recovery
N/A

Design Assumptions
N/A

Purge Aged Invoices (invoice_purge_job)

Module Name invoice_purge_job

Description Purge Aged Invoices

Functional Area Invoice Matching

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from invoice header table based on its
purge criteria from system parameter settings. The Order History Months parameter will
determine the number of months older than month ages between current date and invoice
match date, invoice date (if match date is not available). These old posted invoices that have

Chapter 10
Purge Aged Invoices (invoice_purge_job)

10-3

not already been purged by Order Purge Job (invoices associated to an order) will be
included for deletion. This includes all types of invoices-non-merchandise, credit notes,
credit note requests, debit memos, and consignment invoices. Regular merchandise
invoices will primarily be deleted through order purge job but will be deleted by this job
if they still exist in the system. This program deletes only from the RMFCS invoice
tables preceded with 'INVC'. These records are chunked and Thread ID is assigned for
each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from invoice-related tables by calling
INVC_SQL.DELETE_INVC. It will free up and clean the staging table afterwards.
There is a STOP ON NEXT feature in bulk processing (through a loop) where
Administrators can stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 10-2 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

PURGE_CONFIG_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_INVOICE_PURGE_STG Yes Yes No Yes

INVC_HEAD Yes No No Yes

SA_TRAN_HEAD Yes No No No

SHIPSKU Yes No No No

INVC_DETAIL No No No Yes

INVC_NON_MECH No No No Yes

INVC_MERCH_VAT No No No Yes

INVC_DETAIL_VAT No No No Yes

INVC_DISCOUNT No No No Yes

INVC_TOLERANCE No No No Yes

ORDLOC_INVC_COST No No Yes No

INVC_MATCH_QUEUE No No No Yes

Purge Aged Invoices (invprg)

Module Name Invprg.pc

Description Purge Aged Invoices

Chapter 10
Purge Aged Invoices (invprg)

10-4

Functional Area Invoice Matching

Module Type Admin

Module Technology ProC

Catalog ID RMS253

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program will purge old posted invoices that have not already been purged by ordprg.pc
(which purges invoices associated with an order). This includes all types of invoices-non-
merchandise, credit notes, credit note requests, debit memos, and consignment invoices.
Regular merchandise invoices will primarily be deleted through the order purge batch
(ordprg.pc) but will be deleted by invprg.pc if they still exist in the system. The invoices
considered are those older than the number of months defined in the
purge_config_options.ORDER_HISTORY_MONTHS column. The age of the invoices will be
determined from the match date; if there is no match date, the invoice date will be used.

Note:

This program deletes only from the Merchandising invoice tables preceded with
‘INVC'.

Restart/Recovery
N/A

Design Assumptions
N/A

Chapter 10
Purge Aged Invoices (invprg)

10-5

11
Replenishment

Replenishment is a complex business process that monitors stock levels and creates
transactions to ensure that stores and warehouses have optimal stock levels.

Merchandising supports a number of replenishment methods, which are associated with each
item/location being replenished. Each replenishment method uses a specific calculation to
determine the correct stock orders to create. Depending on the locations, inventory in the
supply chain, and other factors, these stock orders can be either purchase orders sent to a
supplier, transfers of inventory from a warehouse to store, or both, such as in the case of a
cross-docked order.

The main purpose of this chapter is to describe the batch processes involved in
replenishment. For additional information about the parameters and different replenishment
methods, see the Merchandising Documentation Library (Doc ID: 1585843.1).

Replenishment Sub Processes
Replenishment can be divided into four major sub-processes:

Manage Replenishment Attributes

Replenishment attributes are set up for item/locations, or higher levels, using the
Merchandising UI or uploaded from an external system using one of the supported integration
methods. Attribute updates managed at levels higher than item/location or that are scheduled
for future updates require backend processing to help manage the updates. Additionally, for
some methods or configurations, there is other supporting data that requires batch processes
to periodically refresh data, including that for size profiles and maximums for Floating Point
replenishment.

• Update Replenishment Size Profile (replsizeprofile) is used to copy size profile
information from Allocation to Merchandising. If used, the size profiles in this table are
used to spread attributes from the parent item/diff level down to the transaction item level.

11-1

• Update Replenishment Calculation Attributes (rplatupd) is used to stage
updates, when replenishment attributes are updated at a level above transaction
item/location in Merchandising. This includes attributes maintained using item lists,
parent items, location lists, or other location groupings.

• Update Replenishment Calculation Attributes by Item/Locrilmaint) works in
conjunction with the Update Replenishment Calculation Attributes process, but is
used to update certain attributes of items and item/locations to the replenishment
working tables, such as store order multiple, item status, pack sizes, and so on.

• Recalculate Maximum Levels for Floating Point Replenishment (repladj) is
used to calculate the maximum level for all item/locations set up to use the
Floating Point replenishment method based on sales history.

Calculate Recommended Order Quantities

The next section of replenishment programs are focused around generating
recommended order quantities (ROQs). Many user and batch processes combine to
calculate ROQ. Item/location combinations follow different paths to calculate ROQ
depending on whether they are replenished from a warehouse or from a supplier.

• Calculate Net Inventory (replroq.ksh) is used to calculate the net inventory
values that are used throughout the replenishment batch processing.

• ROQ Calculation and Distribution for Item/Locs Replenished from WH
(reqext) is used to calculate and create orders for item/stores that are sourced
from warehouses. The batch_reqext process is used to run reqext with multiple
threads.

• ROQ Calculation and Distribution for Item/Locs Replenished from Supplier
(rplext.ksh) evaluates all other item/locations not processed by reqext and
calculates recommended order quantities. These are written to REPL_RESULTS
to be built into orders in a later process.

If using the Investment Buy feature in Merchandising, then there are two other
programs that are relevant for ROQ calculation:

• Determines Eligible Investment Buy Opportunities (ibexpl)

• Calculate ROQ for Profitable Investment Buys (ibcalc)

Build Orders and Transfers

Chapter 11
Replenishment Sub Processes

11-2

This section of programs create purchase orders and transfers based on the calculated
ROQs.

• Split Replenishment Orders Among Suppliers (supsplit) splits recommended order
quantities using the ratios defined for an item/location, if using the supplier distribution
ratios feature.

• Build Replenishment Orders (rplbld) uses ROQs and investment buy results to build
replenishment orders, including grouping like line items together to consolidate orders,
where possible.

• Scale Purchase Orders Based on Supplier Constraints (supcnstr) scales POs based
on supplier constraints. See the Purchase Order chapter for details on this process.

• Truck Splitting Optimization for Replenishment (rplsplit) splits POs and Allocations to
optimize truck loads

• Approve Replenishment Orders (rplapprv) reviews all orders created as part of the
replenishment process and determines which orders can be approved. In order to be
approved, an order must have an order control of Automatic and must meet vendor
minimums.

Additional batch processes that may apply for this section of batches, depending on your
implementation:

• Update Replenishment Order Taxes (batch_rplapprvgtax.ksh) updates tax
information when configured to run Brazil Tax as your default tax type.

• Sync Replenishment Franchise Orders (repl_wf_order_sync.ksh) creates
appropriate franchise orders for approved allocations created during replenishment

Cleanup Replenishment Data
The programs in this section are used to clean up temporary tables used in the above
programs, or to remove historical attribute and result information.

• Purge Aged Replenishment Results (rplprg)

• Purge Replenishment Attribute History (rplathistprg)

• Purge Replenishment Results History by Month (rplprg_month)

• Purge Scheduled Replenishment Induction Staging Tables (repl_indctn_purge.ksh) - see
the Merchandising Operations Guide Volume 2 for details on integrating replenishment
attributes from an external source.

There is also an option of running a background process for some of the above cleanup jobs,
as an alternative to running during the batch schedule. The background job options are:

• Purge Aged Replenishment Results (replenishment_purge_job)

• Purge Aged Buyer Worksheet Results (buyer_wksht_purge_job)

• Purge Aged Investment Buy Results (investment_buy_purge_job)

• Purge Aged Store Orders Results (store_orders_purge_job)

Approve Replenishment Orders (rplapprv)

Module Name rplapprv.pc

Chapter 11
Approve Replenishment Orders (rplapprv)

11-3

Description Approve Replenishment Orders

Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS300

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program looks at all replenishment, vendor and contract orders created during the
nightly batch run to determine if they can be approved. These orders are compared
with any vendor minimums that may exist. Orders that do not meet the vendor
minimums are either deleted or placed in worksheet status. A flag, held at the supplier
inventory management level, determines what action is taken on orders that fail
minimums. Vendor generated orders are not subject to these minimum checks.

Vendor minimums can be held at the order, item, or location level. Order and location
level minimums are held on the supplier inventory management table. There is a flag
that determines if they are applied at the order level or at the location level. Vendor
minimums at the item level are held on the item/supplier/country table.

When an order fails the minimums, and the flag is set to 'N', a failure at any level
causes the order to be placed in worksheet status. When the flag is 'Y', a failure at the
location level causes the offending location to be deleted; a failure at the item level
causes the problematic item to be deleted; and a failure at the order level caused the
entire order to be deleted.

For any orders that fail vendor minimums when the flag is set to 'Y', a record is written
to the supplier minimum failures table for reporting purposes. This table is purged
during the pre-processing of this batch program.

After order records are updated, any applicable deals, brackets and allowances are
applied to the orders by subsequent processes. Open to buy is then updated for any
orders built in approved status. If any orders are contract orders, the contract amounts
are updated as well to reflect any order record deletions.

If any orders are Franchise POs, the associated Franchise Orders are also approved if
they pass the credit check. If they fail the credit check, both Franchise POs and orders
will remain in Worksheet.

An order may not pass vendor minimum checks assuming that the vendor minimum
checks are performed for a physical warehouse. If the vendor minimum is not met for a
physical location, all the virtual warehouses on the order within the physical
warehouse will need to be removed along with associated allocations.

The pre-processing function for this batch program on prepost truncates the supplier
minimum failures table.

Chapter 11
Approve Replenishment Orders (rplapprv)

11-4

Restart/Recovery
The logical unit of work is order number. Records will be committed to the database when
commit max counter defined in the restart control table is reached.

Design Assumptions
N/A

Build Replenishment Orders (rplbld)

Module Name rplbld.pc

Description Build Replenishment Orders

Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS314

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program builds Merchandising orders from recommended order quantities (ROQ)
generated by the replenishment extract and investment buy calculation processes. The apply
type A, C & D contracts to orders created by replenishment batch associates contracts with
the ROQs created by the ROQ calculation and distribution for item/locations replenished from
supplier program. These ROQs are placed on a temporary table by the replenishment extract
and investment buy calculation processes. All records on the temporary tables are processed
by this batch each night. These temporary table records are placed into logical groups, and a
Merchandising order is created for each logical group.

In order to be placed in the same order group, the item/location ROQs from the temporary
tables must share a common supplier, have the same order_status ('W'orksheet or
'A'pproved), and be on the same contract (or not be associated with a contract). Depending
on flags on the order inventory management table, two other criteria can be used for splitting
order groups. First, if the inventory management level is set to 'D'ept, only items in a single
department are allowed in an ordering group. Secondly, the single location indicator can be
set to 'Y'es. If this is the case, only one location is allowed per ordering group. Finally, an item
may only exist in an ordering group with a single origin country. When an item/location ROQ
temporary table record is encountered with a different origin country than the one it exists
with in the current ordering group, it is placed in a different ordering group.

To assist the recalculation and order scaling processes of replenishment ROQs, the
replenishment results record, associated with the order temporary table record being
processed, is updated with the order number and allocation number that the order temporary
table record was placed with. Investment Buy results is also updated with the order number.

Chapter 11
Build Replenishment Orders (rplbld)

11-5

If the location to be replenished is a Franchise location and the replenishment Order
Control is Semi-Automatic or Automatic, Franchise POs will be created per Costing
Location/Location. Associated Franchise Orders will also be created.

Restart/Recovery
The logical unit of work is supplier, contract number, and order status. Records will be
committed to the database when commit max counter defined in the restart control
table is reached.

Design Assumptions
N/A

Calculate Net Inventory (replroq.ksh)

Module Name replroq.ksh

Description Calculate Net Inventory

Functional Area Replenishment

Module Type Business Processing

Module Technology ksh

Catalog ID RMS308

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This module performs the bulk of the logic to process and persist the replenishment
data into replenishment net inventory temp table. (The information on this table is
extracted by the reqext batch program.)

The wrapper script does the following things:

• Insert records into the staging table and determines the thread id of each record.

• Retrieves the max concurrent thread from to determine the maximum number of
concurrent process the wrapper should run at a time.

• Moves the records from a staging table to a temporary table and will calculate the
net inventory position and determine the ROQ of items which are on
replenishment.

The pre-processing function of this batch program in prepost truncates the records
from the replenishment net inventory temp tables, and builds replenishment
distribution temp and replenishment allocation in temp tables.

Chapter 11
Calculate Net Inventory (replroq.ksh)

11-6

Restart/Recovery
The program processes all items on the replenishment day table for the current day. If the
program fails, the program can be restarted and it will process the remaining records on
replenishment ROQ table.

Design Assumptions
N/A

Calculate ROQ for Profitable Investment Buys (ibcalc)

Module Name ibcalc.pc

Description Calculate ROQ for Profitable Investment Buys

Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS249

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The batch program is the calculation engine for investment buy processing. It identifies
investment buy (IB) opportunities and calculates recommended order quantities (ROQs) that
will meet the target return-on-investment (ROI)

This module will calculate forward buy opportunities using:

• Carrying costs

• Ordering parameters

• Deals – future and expiring

• Cost changes – future

• Forecasts

• Inventory levels

• Target ROI (return on investment)

The deals and cost change components will be contained on the future cost table. This table
will hold a record for each future date that has a costing event (for example, a cost change,
deal activation/deactivation). This process utilizes the default costing bracket and default deal
thresholds in the calculations.

The pre-processing for this batch in the prepost program sets the status of investment buy
from 'W' (worksheet) to 'U' (unprocessed).

Chapter 11
Calculate ROQ for Profitable Investment Buys (ibcalc)

11-7

Restart/Recovery
The logical unit of work is item and location combination.

Design Assumptions
N/A

Determines Eligible Investment Buy Opportunities (ibexpl)

Module Name ibexpl.pc

Description Determines Eligible Investment Buy Opportunities

Functional Area Investment Buy

Module Type Business Processing

Module Technology ProC

Catalog ID RMS250

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The batch program pre-qualifies investment buy (IB) eligible wh/dept and IB eligible
supp/dept/locs.

The warehouse/department table holds IB parameters at the warehouse or at the
warehouse/department level. If there are IB parameters defined at the warehouse/
department level, they are used. If there are no IB parameters defined at the
warehouse/department level, the IB parameters at the warehouse level are used. If IB
parameters are not defined at either level, then system level IB parameters are used.
The first part of this program sends IB parameters to the warehouse/department level
no matter what level they are held at in the database. The results are written to the
warehouse/department explode table.

Next the warehouse/department explode table is combined with supplier inventory
management data to get the final list of all eligible supplier/department/locations. The
supplier inventory management data determines whether or not a given sup/dept/loc
combo is IB eligible. The main problem is that this table can store information at
different levels depending upon the supplier's inventory management level. Valid
options for this level are:

The main problem is that this table can store information at different levels depending
upon the supplier's inventory management level.

Valid options for this level are:

• Supplier (S)

• Supplier/department (D)

Chapter 11
Determines Eligible Investment Buy Opportunities (ibexpl)

11-8

• Supplier/location (L)

• Supplier/department/location (A)

If the record is not found at the defined level, it needs to look up the hierarchy as shown
below, up to the highest level (supplier). If no record exists as the supplier level, it is not IB
eligible.

• Supplier

• Supplier/department -> Supplier

• Supplier/location -> Supplier

• Supplier/department/location -> Supplier/department ' Supplier

The second part of this program explodes the supplier inventory management data down to
the supplier/department/location level by filling in the implied rows. The exploded supplier
inventory management information is only done for IB eligible warehouse/department
combinations from the warehouse/department explode table. The results are placed on the
SIM explode table.

Restart/Recovery
N/A

Design Assumptions
N/A

Multithreading Wrapper for reqext (batch_reqext.ksh)

Module Name batch_reqext.ksh

Description Multithreading Wrapper for reqext

Functional Area Replenishment

Module Type Admin

Module Technology ksh

Catalog ID RMS192

Wrapper Script N/A

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this module is to run the reqext batch program multithreaded.

prepost reqext pre - create the transfer header records for unique combination of Warehouse
and Store, stock category, and department.

prepost reqext post – update transfer status to Approved.

Chapter 11
Multithreading Wrapper for reqext (batch_reqext.ksh)

11-9

Restart/Recovery
N/A - this script only serves as a wrapper for the batch process reqext.pc.

Design Assumptions
N/A

Purge Aged Buyer Worksheet Results
(buyer_wksht_purge_job)

Module Name buyer_wksht_purge_job

Description Purge Aged Buyer Worksheet Results

Functional Area Replenishment

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from buyer worksheet manual
results table based on its purge criteria from system parameter settings. The
Replenishment Result Purging Cycle parameter will determine those unneeded
records that are older than predetermined number of days from its creation date.
These records are chunked and Thread ID is assigned for each. They will be stored
temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete old records from buyer worksheet manual table. It
will free up and clean the staging table afterwards. There is a STOP ON NEXT feature
in bulk processing (through a loop) where Administrators can stop this batch with a flip
of this indicator.

Restart/Recovery
N/A

Chapter 11
Purge Aged Buyer Worksheet Results (buyer_wksht_purge_job)

11-10

Key Tables Affected

Table 11-1 Key Tables Affected

Table Select Insert Update Delete

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_BUYER_WKSHT_PURGE_
STG

Yes Yes No Yes

BUYER_WKSHT_MANUAL No No No Yes

Design Assumptions
N/A

Purge Aged Investment Buy Results
(investment_buy_purge_job)

Module Name investment_buy_purge_job

Description Purge Aged Investment Buy Results

Functional Area Replenishment

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from investment buy results table based
on its purge criteria from system parameter settings. The Replenishment Result Purging
Cycle parameter will determine those unneeded records that are older than predetermined
number of days from its creation date. These records are chunked and Thread ID is assigned
for each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete old records from investment buy results table. It will free

Chapter 11
Purge Aged Investment Buy Results (investment_buy_purge_job)

11-11

up and clean the staging table afterwards. There is a STOP ON NEXT feature in bulk
processing (through a loop) where Administrators can stop this batch with a flip of this
indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 11-2 Key Tables Affected

Table Select Insert Update Delete

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_INVESTMENT_BUY_PU
RGE_STG

Yes Yes No Yes

IB_RESULTS No No No Yes

Design Assumptions
N/A

Purge Aged Replenishment Results
(replenishment_purge_job)

Module Name replenishment_purge_job

Description Purge Aged Replenishment Results

Functional Area Replenishment

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The replenishment extraction programs write a number of records to Replenishment
Results. This table holds information that is relevant to replenishment processes. Over
time, records on this table become unneeded and must be cleared out.

Chapter 11
Purge Aged Replenishment Results (replenishment_purge_job)

11-12

This background job is composed of one step processing only. It will retain the business logic
processing from the original batch program algorithm.

The Business logic program will invoke a call to a new program specific for handling historical
tables such as replenishment results table that are considered partitioned tables.
PARTITION_SQL.PURGE_INTERVAL_PARTITION is called passing the target table name
"REPL_RESULTS" and will execute the proper deletion/purging of records from target table
by exercising table partitioning handling such as Dropping Interval Partition (same as truncate
or delete from table).

The purge program considered the system parameter setting, Replenishment Results
Purging Cycle to determine those records that are older than a predetermined number of
days.

Restart/Recovery
N/A

Key Tables Affected

Table 11-3 Key Tables Affected

Table Select Insert Update Delete

SYSTEM_OPTIONS Yes No No No

PERIOD Yes No No No

RMS_BATCH_STATUS Yes No No No

ALL_TAB_PARTITIONS Yes No No‘ No

ALL_PART_TABLES Yes No No No

JOB_AUDIT_LOGS No Yes No No

REPL_RESULTS No No No Yes

Design Assumptions
N/A

Purge Aged Replenishment Results (rplprg)

Module Name rplprg.pc

Description Purge Aged Replenishment Results

Functional Area Replenishment

Module Type Admin

Module Technology ProC

Catalog ID RMS316

Wrapper Script rmswrap.ksh

Chapter 11
Purge Aged Replenishment Results (rplprg)

11-13

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The replenishment extraction programs write a number of records to replenishment
results. Store orders populate the store orders table. The investment buy process
writes records to IB results and the Buyer Worksheet Form populates buyer worksheet
manual table. These tables hold information that is relevant to replenishment
processes. Over time, records on these tables become unneeded and must be cleared
out. The replenishment purge program goes through these tables and clears out those
records that are older than a predetermined number of days. The purging cycles
(number of days) are maintained as a system parameter.

Restart/Recovery
Because this program performs only deletes, there is no need for restart/recovery or
multithreading, and there is no driving cursor. However, this program still needs an
entry on restart control to determine the number of records to be deleted between
commits.

Design Assumptions
N/A

Purge Aged Store Orders Results (store_orders_purge_job)

Module Name store_orders_purge_job

Description Purge Aged Store Orders Results

Functional Area Replenishment

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment will filter eligible records from store orders results table based on
its purge criteria from system parameter settings. The Replenishment Result Purging
Cycle parameter will determine those unneeded records that are older than

Chapter 11
Purge Aged Store Orders Results (store_orders_purge_job)

11-14

predetermined number of days from its creation date. These records are chunked and Thread
ID is assigned for each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete old records from store orders results table. It will free up
and clean the staging table afterwards. There is a STOP ON NEXT feature in bulk processing
(through a loop) where Administrators can stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 11-4 Key Tables Affected

Table Select Insert Update Delete

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_STORE_ORDERS_PURG
E_STG

Yes Yes No Yes

STORE_ORDERS No No No Yes

Design Assumptions
N/A

Purge Replenishment Attribute History (rplathistprg)

Module Name rplathistprg.pc

Description Purge Replenishment Attribute History

Functional Area Replenishment

Module Type Admin

Module Technology ProC

Catalog ID RMS312

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 11
Purge Replenishment Attribute History (rplathistprg)

11-15

Design Overview
The batch will purge data from the replenishment attributes update history table if it's
older than the defined number of retention weeks as specified in the system
parameters.

Restart/Recovery
N/A

Design Assumptions
N/A

Purge Replenishment Results History by Month
(rplprg_month)

Module Name rplprg_month.pc

Description Purge Replenishment Results History by Month

Functional Area Replenishment

Module Type Admin

Module Technology ProC

Catalog ID RMS317

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The replenishment extraction programs write a number of records to replenishment
results. Store orders populate the store orders table. The investment buy process
writes records to IB results and the Buyer Worksheet Form populates buyer worksheet
manual table. These tables hold information that is relevant to replenishment
processes. Over time, records on these tables become unneeded and must be cleared
out.

The monthly replenishment purge program goes through these tables and clears out
those records that are older than a predetermined number of days defined as a system
parameter. The eways ewInvAdjustToRMS, ewReceiptToRMS need to be shutdown
when this program is run.

Restart/Recovery
Because this program performs only deletes, there is no need for restart/recovery or
multithreading, and there is no driving cursor. However, this program still needs an

Chapter 11
Purge Replenishment Results History by Month (rplprg_month)

11-16

entry on restart control to determine the number of records to be deleted between commits.

Design Assumptions
N/A

Purge Scheduled Replenishment Induction Staging Tables
(repl_indctn_purge.ksh)

Module Name repl_indctn_purge.ksh

Description Purge scheduled replenishment induction staging tables

Functional Area Inventory Management

Module Type Admin

Module Technology Shell Script

Catalog ID N/A

Wrapper Script N/A

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this module is to remove old scheduled replenishment records from the
staging tables. Records that are candidates for deletion are:

• Processes that have successfully been processed or processed with warnings that have
been uploaded to Merchandising or downloaded to S9T

• Processes in error status where all other related records containing the process ID have
been processed successfully

• Processes that are past the data retention days (that is, the action date is earlier than the
retention date)

Restart/Recovery
Restart ability will be implied, because the records that are selected from the cursor will be
deleted before the commit.

Design Assumptions
N/A

Chapter 11
Purge Scheduled Replenishment Induction Staging Tables (repl_indctn_purge.ksh)

11-17

Recalculate Maximum Levels for Floating Point
Replenishment (repladj)

Module Name repladj.pc

Description Recalculate Maximum Levels for Floating Point Replenishment

Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS307

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch module recalculates the maximum stock levels for all item-location
combinations with replenishment method of 'F' (floating point). The floating model
stock method will dynamically calculate an order-up-to-level. The calculated order-up-
to-level is used to update the item/location replenishment table.

The maximum model stock (used for calculating order-up-to-level) is derived using the
sales history of various periods of time in order to accommodate seasonality as well as
trend. The sales history is obtained from the item/location history table.

Restart/Recovery
The module has restart/recovery based on item/ location. Records will be committed to
the database when maximum commit counter defined in the restart control table is
reached.

Design Assumptions
N/A

ROQ Calculation and Distribution for Item/Locs Replenished
from WH (reqext)

Module Name reqext.pc

Description ROQ Calculation and Distribution for Item/Locations Replenished from
Warehouse

Functional Area Replenishment

Module Type Business Processing

Chapter 11
Recalculate Maximum Levels for Floating Point Replenishment (repladj)

11-18

Module Technology ProC

Catalog ID RMS310

Runtime Parameters rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This module performs the automatic replenishment of items from warehouses to stores. It
runs through every item-store combination set to be reviewed on the current day, and
calculates the quantity of the item, known as the recommended order quantity (ROQ) that
needs to be transferred to the store (if any). In addition, it distributes this ROQ over any
applicable alternate items associated with the item.

Once the transfer quantity of an item has been calculated, transfers are created and records
are written to the replenishment results tablebased on the replenishment order control
indicator. For franchise stores, separate transfers are created based on the need date and
will be linked back to a Franchise Order through the Franchise Order Number field.

This batch will also insert records into the respective tables for supporting the localization
feature. This will be applicable only if localizations are enabled.

The pre-processing function of this batch in prepost will create transfer header records for
unique combinations of warehouse and store, stock category and department.

The post-processing function of this batch will update the transfer status to Approved.

Restart/Recovery
The logical unit of work is an item/source warehouse. Restart/recovery is achieved implicitly
because item/location replenishment records that have been processed are updated with a
last review date and only records that have not been reviewed today will be picked up by the
driving cursor again. Records will be committed to the database when the maximum commit
counter defined in the restart control table is reached. During the night run the batch
processed only those store order records with delivery slot. The review dates are not updated
during day run. During night all the records are processed irrespective of the delivery slots.

Design Assumptions
N/A

ROQ Calculation and Distribution for Item/Locs Replenished
from Supplier (rplext.ksh)

Module Name rplext.ksh

Description ROQ Calculation and Distribution for Item/Locs Replenished from Supplier

Functional Area Replenishment

Chapter 11
ROQ Calculation and Distribution for Item/Locs Replenished from Supplier (rplext.ksh)

11-19

Module Type Business Processing

Module Technology KSH

Catalog ID RMS315

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
Vendor Replenishment Extraction, which uses bulk processing logic, is the driving
program for the replenishment process. It cycles through every item-location
combination that is ready to be reviewed on the current day, and calculates the
quantity of the item that needs to be ordered to the location. The program then writes
these temporary order line items to the temporary order table and replenishment
results. The temporary order table is later reviewed by the batch in its evaluation of
orders against contract types A, C, D, whereas replenishment results is processed by
build replenishment orders.

The wrapper script does the following things:

• Calls the function will insert records into the replenishment ROQ table and
determines the thread id of each record.

• Retrieves the max concurrent thread from configuration table to determine the
maximum number of concurrent processes the wrapper should run at a time.

• For each thread, call the function that will move the records from the
replenishment ROQ table to the replenishment ROQ global temporary table and
the processed records will be inserted to the temporary order and replenishment
results tables.

The pre-processing function for this program in the prepost batch truncates records
form the temporary order table and the missed order table.

The post-processing function for this program truncates the replenishment distro temp
and replenishment allocation in temp table.

Restart/Recovery
If the program fails, the program can be restarted and it will process the remaining
records on replenishment table.

Locking Strategy
STORE_ORDER table records are locked while calculating ROQ.

Performance Considerations
The values on RMS_PLSQL_BATCH_CONFIG can be change to alter the behavior of
the chunking and threading process.

Chapter 11
ROQ Calculation and Distribution for Item/Locs Replenished from Supplier (rplext.ksh)

11-20

MAX_CHUNK_SIZE - determines the maximum number of rows that should be processed for
a given thread. Currently, this is set to 10000.

MAX_CONCURRENT_THREAD - determines the maximum number of parallel threads for a
given run. Currently, this is set to 32.

Design Assumptions
N/A

Split Replenishment Orders Among Suppliers (supsplit)

Module Name supsplit.pc

Description Split Replenishment Orders Among Suppliers

Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS370

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program splits replenishment orders among different suppliers based on the supplier
distribution ratio setup for an item/location on replenishment. It applies to Direct to Store,
Crossdock replenishments and warehouse stocked replenishments where a purchase order
will be created from a supplier.

Restart/Recovery
The logical unit of work for this program is set at item level. Records will be committed to the
database when commit max counter defined in the restart control table is reached.

Design Assumptions
N/A

Sync Replenishment Franchise Orders
(repl_wf_order_sync.ksh)

Module Name repl_wh_order_sync.ksh

Description Sync Replenishment Franchise Orders

Functional Area Replenishment

Chapter 11
Split Replenishment Orders Among Suppliers (supsplit)

11-21

Module Type Business Processing

Module Technology ksh

Catalog ID RMS306

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This module will serve as the wrapper for a package function which will check the
crossdock orders created during replenishment and create franchise order records for
any allocations where the destination location is a franchise store.

Restart/Recovery
N/A

Design Assumptions
N/A

Truck Splitting Optimization for Replenishment (rplsplit)

Module Name rplsplit.pc

Description Truck Splitting Optimization for Replenishment

Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS318

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this program is to select all the orders eligible for truck splitting, which
are created by the replenishment programs. The orders that are eligible will be sent
into the truck splitting logic and the resulting orders will be created.

The orders, which will be eligible for splitting, are as follows:

• The order must have been created today by replenishment with the order approve
indicator set to Yes.

Chapter 11
Truck Splitting Optimization for Replenishment (rplsplit)

11-22

• The order must not have been already split.

• The order must be a single location order and the location must be a warehouse.

• The order must not have any allocations associated.

Orders will only be split if they meet criteria for splitting as defined in the supplier inventory
management parameters.

Restart/Recovery
The logical unit of work for this program is set at order level. Records will be committed to the
database when commit max counter defined in the restart control table is reached.

Design Assumptions
N/A

Update Replenishment Calculation Attributes (rplatupd)

Module Name rplatupd.pc

Description Update Replenishment Calculation Attributes

Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS313

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The batch module reads replenishment attributes from the replenishment attribute item and
location tables and processes the item location relationships to determine what
replenishment attributes for what locations have to be updated. Replenishment attributes for
each item/location are recorded in a separate table. Review cycle information is kept on
another table, and the rejected records are written to the mass change rejections table for
later reporting.

The pre-processing function of this batch program on prepost truncates records in the mass
change rejections table.

The post-processing function of this batch program on prepost locks and deletes records
form the various replenishment attributes tables.

Chapter 11
Update Replenishment Calculation Attributes (rplatupd)

11-23

Restart/Recovery
The logical unit of work is replenishment attribute id, item, and location. Records will
be committed to the database when commit max counter defined in the restart control
table is reached.

Design Assumptions
N/A

Update Replenishment Calculation Attributes by Item/
Locrilmaint)

Module Name rilmaint.pc

Description Update Replenishment Calculation Attributes by Item/Location

Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS311

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This module transfers the replenishment attributes from the item/location
replenishment updates table to the item/location replenishment table. Item/location
replenishment updates is populated when certain attributes impacting replenishment
are modified. These attributes are located across the entire system and are monitored
for changes by a series of triggers and modules. Once a change is logged in the item/
location replenishment updates table, this program will note the type of change and
will update item/location replenishment table appropriately.

Restart/Recovery
The logical unit of work for this batch program is item, change type and location.
Records are committed to the database once the maximum commit counter defined in
the restart control table is reached.

Design Assumptions
N/A

Chapter 11
Update Replenishment Calculation Attributes by Item/Locrilmaint)

11-24

Update Replenishment Order Taxes (batch_rplapprvgtax.ksh)

Module Name batch_rplapprvgtax.ksh

Description Update Replenishment Order Taxes

Functional Area Replenishment

Module Type Business Processing

Module Technology ksh

Catalog ID RMS194

Wrapper Script N/A

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This script calls a function to enable parallel execution via multiple thread calls compute taxes
for approved replenishment orders. Computed taxes are inserted/updated into the order tax
breakup table.

This batch should be run only for Global Tax (GTAX) configuration.

Restart/Recovery
The logical unit of work is a set of purchase orders. Purchase order numbers in the
replenishment approval GTAX queue table are assigned a thread number given the number
of slots.

The same table drives the restart and recovery as well. Purchase orders in a thread that
successfully complete execution are deleted from replenishment approval GTAX queue. Any
restart after a fatal error will include the failed purchase order numbers when assigning new
threads.

Design Assumptions
This program should only be run in Global Tax (GTAX) installations.

Update Replenishment Size Profile (replsizeprofile)

Module Name replsizeprofile.pc

Description Update Replenishment Size Profile

Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS309

Wrapper Script batch_replsizeprofile.ksh

Chapter 11
Update Replenishment Order Taxes (batch_rplapprvgtax.ksh)

11-25

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The batch module will do a total synchronization update of the Merchandising size
profile table with data from the Allocation size profile table if the Allocation product is
installed. It will also do a complete refresh of the size profile materialized view used by
the replenishment attributes update batch and the replenishment attributes screen
when size curves are applied to the items being replenished.

Restart/Recovery
N/A

Design Assumptions
N/A

Chapter 11
Update Replenishment Size Profile (replsizeprofile)

11-26

12
Inventory

Most inventory processes in Merchandising are performed via the UI and near real time RIB
integrations. However, some inventory related batch processes exist to manage inventory
data.

Program Summary
The following batch designs are included in this chapter:

• Adjust Inventory for Wastage Items (wasteadj)

• Purge Aged Customer Orders (customer_order_purge.ksh)

• Purge Aged Customer Orders (customer_orders_purge_job) - background job

• Purge Aged Inventory Adjustments (inv_adj_purge_job) - background job

• Purge Aged Inventory Adjustments (invaprg)

• Refresh End of Day Inventory Snapshot (refeodinventory)

Adjust Inventory for Wastage Items (wasteadj)

Module Name wasteadj.pc

Description Adjust Inventory for Wastage Items

Functional Area Inventory

Module Type Business Processing

Module Technology ProC

Catalog ID RMS388

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program reduces inventory of spoilage type wastage items to account for natural
wastage that occurs over the shelf life of the product. This program affects only items with
spoilage type wastage identified on ITEM_MASTER with a waste_type of ‘SP' (spoilage).
Sales type wastage is accounted for at the time of sale.

This program should be scheduled to run prior to the stock count and stock ledger batch to
ensure that the stock adjustment taken during the current day is credited to the appropriate
day.

12-1

Restart/Recovery
The logical unit of work is an item/location. This batch program commits when the
number of records processed has reached commit_max_ctr. If the program aborts, it
restarts from the last successfully processed item /location.

Design Assumptions
N/A

Purge Aged Customer Orders (customer_order_purge.ksh)

Module Name customer_order_purge.ksh

Description Purge Aged Customer Orders

Functional Area Purchase Orders

Module Type Admin

Module Technology ksh

Catalog ID RMS205

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This module will serve as the wrapper for the package function which will purge the
store fulfillment customer order records from the customer order tables based on the
history months system parameter. This will also purge the obsolete records having the
status 'X' where the customer order could not be created.

Restart/Recovery
N/A

Design Assumptions
N/A

Purge Aged Customer Orders (customer_orders_purge_job)

Module Name customer_orders_purge_job

Description Download Sales and Stock On Hand From RMS to Suppliers

Functional Area Inventory

Module Type Integration

Chapter 12
Purge Aged Customer Orders (customer_order_purge.ksh)

12-2

Module Technology ProC

Catalog ID RMS47

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of one step processing only. It will retain the business logic
processing from original KSH script algorithm.

The Business logic program will remove all store fulfillment customer order records from
customer order and customer order detail tables based on the purge criteria from the system
parameter setting, customer order history months. This will also purge the obsolete records
having status 'X' where the customer order could not be created.

Restart/Recovery
N/A

Key Tables Affected

Table 12-1 Key Tables Affected

Table Select Insert Update Delete

ORDCUST Yes No No Yes

ORDCUST_DETAIL Yes No No Yes

ORDCUST_CUSTOMER_DETAI
L

Yes No No No

PURGE_CONFIG_OPTIONS Yes No No No

PERIOD Yes No No No

Security Considerations
N/A

Purge Aged Inventory Adjustments (inv_adj_purge_job)

Module Name inv_adj_purge_adj

Description Purge Aged Inventory Adjustments

Functional Area Inventory

Module Type Admin - Ad hoc

Module Technology Background Processing

Chapter 12
Purge Aged Inventory Adjustments (inv_adj_purge_job)

12-3

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two-step processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from inventory adjustment table
based on its purge criteria from system parameter settings. The Inventory Adjustment
Months parameter will determine records to kept before they are purged whole
adjustment date has elapsed from a pre-determined number of months. These records
are chunked and Thread ID is assigned for each. They will be stored temporarily in a
staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from inventory adjustment table. It will
free up and clean the staging table afterwards. There is a STOP ON NEXT feature in
bulk processing (through a loop) where Administrators can stop this batch with a flip of
this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 12-2 Key Tables Affected

Table Select Insert Update Delete

PURGE_CONFIG_OPTIONS Yes No No No

PERIOD Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_INV_ADJ_PURGE_STG Yes Yes No Yes

INV_ADJ No No No Yes

Design Assumptions
N/A

Chapter 12
Purge Aged Inventory Adjustments (inv_adj_purge_job)

12-4

Purge Aged Inventory Adjustments (invaprg)

Module Name invaprg.pc

Description Purge Aged Inventory Adjustments

Functional Area Inventory

Module Type Admin

Module Technology ProC

Catalog ID RMS251

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program will delete all inventory adjustment records whose adjustment date has
elapsed a pre-determined number of months. The number of months that inventory
adjustment records are kept before they are purged by this batch is defined by the system
parameter Inventory Adjustment Months.

Restart/Recovery
N/A

Design Assumptions
N/A

Refresh End of Day Inventory Snapshot (refeodinventory)

Module Name refeodinventory.ksh

Description Refresh End of Day Inventory Snapshot

Functional Area Inventory Tracking

Module Type Business Processing

Module Technology Ksh

Catalog ID RMS303

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 12
Purge Aged Inventory Adjustments (invaprg)

12-5

Design Overview
This script refreshes the item/location stock on hand end of day snapshot. This end of
day snapshot is used for assorted history build programs. The script does the
following:

• Truncates the item/location stock on hand end of day snapshot table.

• Inserts all records from the item/location stock on hand table into the item/location
stock on hand end of day snapshot table.

Restart/Recovery
N/A

Design Assumptions
• All of the daily updates pertaining to stock on hand have been performed during

prior batch phases.

• The executing schema has DROP ANY TABLE privileges. This is needed to
perform the truncate on the item/location end of day snapshot table.

• The item/location end of day snapshot table is owned by the schema name
specified in the TABLE_OWNER column of the SYSTEM_OPTIONS view.

Chapter 12
Refresh End of Day Inventory Snapshot (refeodinventory)

12-6

13
Transfers, Allocation, and RTV

Transfers, Allocations and Return to Vendor (RTV) transactions move inventory among
locations. The majority of processing associated with these transactions occurs through the
user interface and near real time RIB integration with store systems, such as Oracle Retail
Store Inventory and Operations CS (SIOCS), and warehouse systems, such as Oracle WMS
Cloud. However, Merchandising does use a variety of batch programs to maintain the data
related to these transactions.

Program Summary
The following batch designs are included in this chapter:

• Close Mass Return Transfers (mrtupd)

• Close Overdue Transfers (transfer_close_job) - background process

• Close Overdue Transfers (tsfclose)

• Close Transactions with no Expected Appointments, Shipments or Receipts
(doc_queue_close_job) - background process

• Close Transactions with no Expected Appointments, Shipments or Receipts (docclose)

• Create Book Transfers for Allocations Between Warehouses in the Same Physical
Warehouse (allocbt)

• Create Return to Vendor for Mass Return Transfer (mrtrtv)

• Create Transfers for Mass Return Transfer (mrt)

• Detail Receive Damaged or Tampered with Cartons (tamperctn)

• Purge Aged Mass Return Transfers and RTV (mrt_purge_job) - background process

• Purge Aged Mass Return Transfers and RTV (mrtprg)

• Purge Aged Returns to Vendors (rtv_purge_job) - background process

• Purge Aged Returns to Vendors (rtvprg)

• Purge Aged Transfers (transfer_purge_job) - background process

• Purge Aged Transfers (tsfprg)

• Reconcile Received Dummy Carton IDs with Expected Cartons (dummyctn)

• Stage Regular Price Changes on Open Allocations/Transfers so Publishing Sends New
Retail to Subscribing Applications (distropcpub)

Close Mass Return Transfers (mrtupd)

Module Name mrtupd.pc

Description Close Mass Return Transfers

Functional Area Transfers, Allocations and RTVs

13-1

Module Type Admin

Module Technology ProC

Catalog ID RMS276

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program updates the status of MRTs and their associated transfers to closed
status, for MRTs or transfers associated with an MRT that remain open after the
transfer and/or RTV not after dates have passed. MRTs that have transfers in progress
(shipped but not received) will not be closed by this program.

Restart/Recovery
The logical unit of work for this program is warehouse. This program is multi-threaded
using the restart all locations view.

Design Assumptions
N/A

Close Overdue Transfers (transfer_close_job)

Module Name transfer_close_job

Description Close Overdue Transfers

Functional Area Transfers, Allocations and RTVs

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from transfer header table and
other associated transfer-related tables. Based on its system parameter settings, it will
process unshipped and partially shipped 'overdue' transfers. If this functionality is

Chapter 13
Close Overdue Transfers (transfer_close_job)

13-2

enabled (by setting the system parameter Transfer Close Overdue to Yes), then this program
will evaluate transfers to determine if they are overdue. The way that a transfer is considered
overdue depends on the source and destination locations. There are separate system
parameters for each of store to store, store to warehouse, warehouse to store, and
warehouse to warehouse types of transfers. . These records are chunked and Thread ID is
assigned for each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will update the records from transfer header and other associated
transfer tables. For unshipped transfers, the transfer status is updated to delete and transfer
reserved and expected inventory is backed out on ITEM_LOC_SOH for the sending and
receiving locations respectively. For transfers that are shipped but not fully received, an entry
is made into doc_close_queue table. These transfers are picked up by docclose batch and
closed after reconciliation. It will free up and clean the staging table afterwards. There is a
STOP ON NEXT feature in bulk processing (through a loop) where Administrators can stop
this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 13-1 Key Tables Affected

Table Select Insert Update Delete

SYSTEM_OPTIONS Yes No No No

INV_MOVE_UNIT_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_TRANSFER_CLOSE_STG YEs Yes No Yes

TSFHEAD Yes No Yes No

ALLOC_HEADER Yes No Yes No

ITEM_MASTER Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_LOC_SOH Yes No Yes No

DOC_CLOSE_QUEUE No Yes No No

Design Assumptions
N/A

Close Overdue Transfers (tsfclose)

Module Name tsfclose.pc

Description Close Overdue Transfers

Chapter 13
Close Overdue Transfers (tsfclose)

13-3

Functional Area Transfers, Allocations and RTVs

Module Type Admin

Module Technology ProC

Catalog ID RMS379

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program processes unshipped and partially shipped transfers that are
considered 'overdue', based on system parameter settings. If this functionality is
enabled, then this program will evaluate transfers to determine if they are overdue.
The way that a transfer is considered overdue depends on the source and destination
locations. There are separate system parameters for each of store to store, store to
warehouse, warehouse to store, and warehouse to warehouse types of transfers.

For unshipped transfers, the transfer status is updated to delete and transfer reserved
and expected inventory is backed out from the table for the sending and receiving
locations respectively. For transfers that are shipped but not fully received, an entry is
made into the document close queue table. These transfers are picked up by docclose
batch and closed after reconciliation.

Restart/Recovery
The logical unit of work for this module is defined as a unique tsf_no. The restart
transfer view is used for threading. This batch program uses table-based restart/
recovery. The commit happens in the database when the commit max counter is
reached.

Design Assumptions
N/A

Close Transactions with no Expected Appointments,
Shipments or Receipts (doc_queue_close_job)

Module Name doc_queue_close_job

Description Close Transactions with no Expected Appointments, Shipments or
Receipts

Functional Area Transfers, Allocation, and RTVs

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Chapter 13
Close Transactions with no Expected Appointments, Shipments or Receipts (doc_queue_close_job)

13-4

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from document close queue table
based on un-Closed status of POs, Transfers and Allocations. These unique documents that
do not have any outstanding appointments, shipments or receipts expected, receipts without
appointments will be recorded on the document close queue table. Likewise, allocations
sourced from an inbound receipt of another document (for example, POs, Transfers,
Allocations, ASNs and BOLs) can only be closed if the sourcing document is closed. These
records are chunked and Thread ID is assigned for each. They will be stored temporarily in a
staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will update the records of each document type to attempt closure of
each document. PO-type documents will call APPT_DOC_CLOSE_SQL.CLOSE_PO
program. Transfer-type documents will call APPT_DOC_CLOSE_SQL.CLOSE_TSF program.
Allocation-type documents will call APPT_DOC_CLOSE_SQL.CLOSE_ALL_ALLOCS
program. All successful closure of document will be removed its entry from document close
queue table. It will free up and clean the staging table afterwards. There is a STOP ON NEXT
feature in bulk processing (through a loop) where Administrators can stop this batch with a
flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 13-2 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_DOC_CLOSE_QUEUE_ST
G

Yes Yes No Yes

DOC_CLOSE_QUEUE Yes No No Yes

ORDHEAD No No Yes No

DEAL_CALC_QUEUE No No No Yes

ITEM_LOC_SOH No No Yes No

Chapter 13
Close Transactions with no Expected Appointments, Shipments or Receipts (doc_queue_close_job)

13-5

Table 13-2 (Cont.) Key Tables Affected

Table Select Insert Update Delete

TSFHEAD No No Yes No

ALLOC_HEADER No No Yes No

Design Assumptions
N/A

Close Transactions with no Expected Appointments,
Shipments or Receipts (docclose)

Module Name docclose.pc

Description Close Transactions with no Expected Appointments, Shipments or
Receipts

Functional Area Transfers, Allocation, and RTVs

Module Type Business Processing

Module Technology ProC

Catalog ID RMS219

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program will be used to attempt to close POs, transfers, and allocations that do
not have any outstanding appointments, shipments or receipts expected. Receipts
without appointments are recorded on a queue table. Allocations sourced from an
inbound receipt of another document (such as, POs, Transfers, Allocations, ASNs and
BOL) can only be closed if the sourcing document is closed. This batch program will
retrieve unique documents from the table and use existing functions to attempt closure
for each.

Restart/Recovery
The logical unit of work is a unique doc and doc_type combination. The program is
restartable on the doc number

Design Assumptions
N/A

Chapter 13
Close Transactions with no Expected Appointments, Shipments or Receipts (docclose)

13-6

Create Book Transfers for Allocations Between Warehouses in
the Same Physical Warehouse (allocbt)

Module Name allocbt.ksh

Description Create Book Transfers for Allocations Between Warehouses in the Same
Physical Warehouse

Functional Area Inventory Movement

Module Type Business Processing

Module Technology ksh

Catalog ID RMS175

Wrapper Scripts rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
In Merchandising, when an allocation is received that involves a movement of stock between
two warehouses, it should be determined if the source and any of the destination warehouses
belong to the same physical warehouse. If so, that portion of the allocation should be treated
as a book transfer and not sent down to RWMS for processing. This batch job identifies such
allocations and creates book transfers once the allocation source is received and/or the
release date for the allocation is reached.

Allocations can be sourced either from a warehouse's available inventory or from an inbound
receipt. These allocations are integrated into Merchandising's Allocation tables and can be
identified as the following:

1. Warehouse Sourced Allocations:

a. Order number is NULL and doc is NULL on the allocation header table.

2. Purchase Ordered Sourced Allocations (Cross Doc POs):

a. Order number holds the PO number and doc type is 'PO' on the allocation header
table.

b. Linked shipments are identified through the order number value on the shipment and
the allocation header tables.

3. Transfer Sourced Allocations:

a. Order number holds the transfer number and doc type is 'TSF' on the allocation
header table.

b. Linked shipments are identified through the distro number on the shipment/item table
and the order number on the allocation header table.

4. Allocation Sourced from an Inbound Allocation:

a. Order number holds the allocation number and doc type is 'ALLOC' on the allocation
header table.

Chapter 13
Create Book Transfers for Allocations Between Warehouses in the Same Physical Warehouse (allocbt)

13-7

b. Linked shipments are identified through the distribution number on the
shipment/item table and the order number on the allocation header table.

5. ASN Sourced Allocations:

a. Doc holds the ASN number and doc type is 'ASN' on the allocation header
table.

b. Linked shipments are identified through the ASN on the shipment table and
the doc on the allocation header table.

6. BOL Sourced Allocations:

a. Doc holds the BOL number and doc type is 'BOL' on the allocation header
table.

b. Linked shipments are identified through the BOL number on the shipment
table and the doc value on the allocation header table.

This batch job supports all above allocation scenarios and calls a core package
function to create book transfers.

Restart/Recovery
N/A

Design Assumptions
N/A

Create Return to Vendor for Mass Return Transfer (mrtrtv)

Module Name mrtrtv.pc

Description Create Return To Vendor for Mass Return Transfer

Functional Area Transfers, Allocations and RTVs

Module Type Business Processing

Module Technology ProC

Catalog ID RMS275

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program creates RTVs for approved mass return transfers that require an
RTV to be created automatically and have an RTV create date earlier than or equal to
the current date. RTVs are created in either Input or Approved status, depending on
how the MRT was created. The program will then set the status of all processed MRTs
to ‘R' in the MRT table, which indicates that the RTVs have been created.

Chapter 13
Create Return to Vendor for Mass Return Transfer (mrtrtv)

13-8

Restart/Recovery
The logical unit of work for this program is set at the warehouse level. Threading is done by
store using the restart all locations view.

Design Assumptions
N/A

Create Transfers for Mass Return Transfer (mrt)

Module Name mrt.pc

Description Create Transfers for Mass Return Transfer

Functional Area Transfers, Allocations and RTVs

Module Type Business Processing

Module Technology ProC

Catalog ID RMS273

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program creates individual transfers for each ‘from' location on an approved Mass
Return Transfer. Transfers will be created in approved status, however for MRTs with a
Quantity Type of ‘Manual', meaning the MRT was created for a specific quantity rather than
‘All Inventory', if the SOH at the sending location is lower than the requested quantity the
status will be created in Input status. In addition, if the Transfer Not After Date specified on
the MRT is earlier than or equal to the current date, the status of the associated transfers will
also be set to Input.

Restart/Recovery
The logical unit of work is a from/to location combination. This may represent a transfer of
multiple items from a location (store or warehouse) to a warehouse, depending on how the
MRT was created. Restart/recovery is based on from/to location as well. The batch program
uses the restart all locations view to thread processing by warehouse (to location).

Design Assumptions
N/A

Chapter 13
Create Transfers for Mass Return Transfer (mrt)

13-9

Detail Receive Damaged or Tampered with Cartons
(tamperctn)

Module Name tamperctn.pc

Description Detail Receive Damaged or Tampered with Cartons

Functional Area Transfers, Allocations and RTVs

Module Type Business Processing

Module Technology ProC

Catalog ID RMS371

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program looks for items that were intended to be received as a pack and attempts
to match based on component quantity. It reads records from the staging table for the
carton ID for pack items not received and attempts to match on the components of the
pack and quantity. If a match is found, then the dummy carton is received against the
matching carton. If a match is not found, an error is written to an error file and the
record remains on the staging table. These unprocessed records are eventually
purged from the staging table when the receipt transaction date is older than the
current date minus Close Open Shipments After Days.

This program is only run if the Receive Pack Component system parameter is set to
Yes.

Restart/Recovery
N/A

Design Assumptions
N/A

Purge Aged Mass Return Transfers and RTV
(mrt_purge_job)

Module Name mrt_purge_job

Description Purge Aged Mass Return Transfers and RTVs

Functional Area Transfers, Allocations and RTVs

Module Type Admin - Ad hoc

Chapter 13
Detail Receive Damaged or Tampered with Cartons (tamperctn)

13-10

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Design Overview
This background job is composed of two-step processing. It will have a threading assignment
and a business logic processing.

Thread assignment program will filter eligible records from mass return transfer (MRT) table
based on its purge criteria from system parameter settings. The MRT Transfer Retention
days parameter will determine the time elapsed with MRT close date is less than the current
date. Only MRTs with closed status (and all associated transfers that are also closed) are
captured for deletion. These records are chunked and Thread ID is assigned for each. They
will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will purge the records from mass return transfer (MRT) table and its
associated transfers and RTVs. It will free up and clean the staging table afterwards. There is
a STOP ON NEXT feature in bulk processing (through a loop) where Administrators can stop
this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 13-3 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No Yes

B8D_MRT_PURGE_STG Yes Yes No Yes

TSFHEAD Yes No No Yes

TSFDETAIL No No No Yes

SHIPMENT No No No Yes

SHIPSKU Yes No No Yes

SHIPITEM_INV_FLOW No No No Yes

CARTON No No No Yes

APPT_HEAD Yes No No Yes

APPT_DETAIL Yes No No Yes

DOC_CLOSE_QUEUE No No No Yes

Chapter 13
Purge Aged Mass Return Transfers and RTV (mrt_purge_job)

13-11

Table 13-3 (Cont.) Key Tables Affected

Table Select Insert Update Delete

INVC_HEAD Yes No No Yes

INVC_DETAIL Yes No No Yes

MRT Yes No No Yes

MRT_ITEM Yes No No Yes

MRT_ITEM_LOC Yes No No Yes

RTV_HEAD Yes No No Yes

RTV_DETAIL No No No Yes

TSFDETAIL_CHRG No No No Yes

Design Assumptions
N/A

Purge Aged Mass Return Transfers and RTV (mrtprg)

Module Name mrtprg.pc

Description Purge Aged Mass Return Transfers and RTVs

Functional Area Transfers, Allocations and RTVs

Module Type Admin

Module Technology ProC

Catalog ID RMS274

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this module is to purge mass return transfer (MRT) records, and their
associated transfers and RTVs. Only MRTs with a status of closed in which all
transfers associated with the MRT are also closed and where the time elapsed
between the current date and the close date is at least equal to the system parameter
value for MRT Transfer Retention days.

Restart/Recovery
The logical unit of work for this batch program is a warehouse location. The program is
multithreaded using restart all locations view.

Chapter 13
Purge Aged Mass Return Transfers and RTV (mrtprg)

13-12

Design Assumptions
N/A

Purge Aged Returns to Vendors (rtv_purge_job)

Module Name rtv_purge_job

Description Purge Aged Returns to Vendors

Functional Area Transfers, Allocations and RTVs

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from return-to-vendor header table
based on its purge criteria from system parameter settings. The RTV Order History Months
parameter will determine the number of months between their completion date and current
date exceeds as defined to be outdated records. These old/outdated RTV records should
have all debit memos associated to have been posted. These records are chunked and
Thread ID is assigned for each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from return-to-vendor header and other
related/associated RTV tables. It will free up and clean the staging table afterwards. There is
a STOP ON NEXT feature in bulk processing (through a loop) where Administrators can stop
this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 13-4 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

Chapter 13
Purge Aged Returns to Vendors (rtv_purge_job)

13-13

Table 13-4 (Cont.) Key Tables Affected

Table Select Insert Update Delete

JOB_AUDIT_LOGS No Yes No No

B8D_RTV_PURGE_STG Yes Yes No Yes

RTV_HEAD No No No Yes

RTV_DETAIL No No No Yes

INVC_HEAD Yes No No Yes

INVC_DETAIL No No No Yes

INVC_NON_MERCH Yes No No Yes

INVC_MERCH_VAT Yes No No Yes

INVC_DETAIL_VAT Yes No No Yes

INVC_MATCH_QUEUE Yes No No Yes

INVC_DISCOUNT Yes No No Yes

INVC_TOLERANCE Yes No No Yes

ORDLOC_INVC_COST Yes No Yes No

INVC_MATCH_WKSHT Yes No No Yes

INVC_XREF Yes No No Yes

RTVITEM_INV_FLOW No No No Yes

RTV_HEAD_CFA_EXT No No No Yes

Design Assumptions
N/A

Purge Aged Returns to Vendors (rtvprg)

Module Name rtvprg.pc

Description Purge Aged Returns to Vendors

Functional Area Transfers, Allocations and RTVs

Module Type Admin

Module Technology ProC

Catalog ID RMS320

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program purges outdated RTV transactions from Merchandising. RTVs are
considered outdated if they number of months between their completion date and the

Chapter 13
Purge Aged Returns to Vendors (rtvprg)

13-14

current date exceeds the system parameter RTV Order History Months and where all debit
memos associated with the RTV have been posted.

Restart/Recovery
N/A

Design Assumptions
N/A

Purge Aged Transfers (transfer_purge_job)

Module Name transfer_purge_job

Description Purge Aged Transfers

Functional Area Transfers, Allocations and RTVs

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from transfer header table and other
associated transfer-related tables based on its purge criteria from system parameter settings.
The Transfer History Months parameter will determine what transfer records are ready for
purging that are considered closed or deleted in status and comparison of transfer close date
with tomorrow's current date. These records are chunked and Thread ID is assigned for each.
They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from transfer header and other associated
transfer tables. It will free up and clean the staging table afterwards. There is a STOP ON
NEXT feature in bulk processing (through a loop) where Administrators can stop this batch
with a flip of this indicator.

Restart/Recovery
N/A

Chapter 13
Purge Aged Transfers (transfer_purge_job)

13-15

Key Tables Affected

Table 13-5 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_TRANSFER_PURGE_S
TG

Yes Yes No Yes

TSFHEAD Yes No No Yes

TSFDETAIL No No No Yes

ALLOC_HEADER Yes No No Yes

ALLOC_DETAIL No No No Yes

ALLOC_CHRG Yes No No Yes

ALLOC_PURGE_QUEUE Yes No No No

DOC_PURGE_QUEUE Yes No No No

SHIPSKU Yes No No Yes

CARTON No No No Yes

TSFHEAD_CFA_EXT No No No Yes

TSFHEAD_L10N_EXT No No No Yes

TSF_ITEM_COST No No No Yes

TSF_ITEM_WO_COST No No No Yes

TSF_PACKING Yes No No Yes

TSF_PACKING_DETAIL No No No Yes

TSF_XFORM Yes No No Yes

TSF_XFORM_DETAIL No No No Yes

TSF_WO_HEAD Yes No No Yes

TSF_WO_DETAIL No No No Yes

TSFDETAIL_CHRG No No No Yes

ORDCUST Yes No No Yes

ORDCUST_CUSTOMER_DE
TAIL

No No No Yes

ORDCUST_DETAIL No No No Yes

ORDCUST_PUB_INFO No No No Yes

SHIPITEM_INV_FLOW No No No Yes

SHIPSKU_PRG_HIST No Yes No No

ORDCUST_DETAIL_PRG_HI
ST

No Yes No No

ORDCUST_PRG_HIST No Yes No No

Chapter 13
Purge Aged Transfers (transfer_purge_job)

13-16

Table 13-5 (Cont.) Key Tables Affected

Table Select Insert Update Delete

TSFDETAIL_CHRG_PRG_HI
ST

No Yes No No

TSF_WO_DETAIL_PRG_HIST No Yes No No

TSF_WO_HEAD_PRG_HIST No Yes No No

TSF_XFORM_DETAIL_PRG_
HIST

No Yes No No

TSF_XFORM_PRG_HIST No Yes No No

TSF_PACKING_DETAIL_PRG
_HIST

No Yes No No

TSF_PACKING_PRG_HIST No Yes No No

TSF_ITEM_WO_COST_PRG
_HIST

No Yes No No

TSF_ITEM_COST_PRG_HIS
T

No Yes No No

TSFDETAIL_PRG_HIST No Yes No No

TSFHEAD_L10N_EXT_PRG_
HIST

No Yes No No

TSFHEAD_CFA_EXT_PRG_H
IST

No Yes No No

TSFHEAD_PRG_HIST No Yes No No

Design Assumptions
N/A

Purge Aged Transfers (tsfprg)

Module Name tsfprg.pc

Description Purge Aged Transfers

Functional Area Transfers, Allocations and RTVs

Module Type Admin

Module Technology ProC

Catalog ID RMS380

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 13
Purge Aged Transfers (tsfprg)

13-17

Design Overview
This module purges closed or deleted transfers and their associated records after a
set number of days, based on the Transfer History Months system parameter.

Restart/Recovery
This batch program is multithreaded using the restart transfer view. The logical unit of
work is a transfer number. This batch program commits to the database for every
commit max counter number of transfers processed.

Design Assumptions
• This batch program does not process Mass Return Transfers (MRT) and

Franchise transfers (FO and FR). Purging of MRT and Franchise Order and
Return records are done by mrtprg, wfordprg, wfrtnprg respectively.

Reconcile Received Dummy Carton IDs with Expected
Cartons (dummyctn)

Module Name dummyctn.pc

Description Reconcile Received Dummy Carton IDs with Expected Cartons

Functional Area Transfers, Allocations and RTVs

Module Type Business Processing

Module Technology ProC

Catalog ID RMS233

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
When stock orders are received, if a carton number or barcode cannot be read due to
damage to the box or other factors, a dummy ID is assigned to it and its detail received
at the store or warehouse. The dummy ID and the details of the carton received are
then written to a staging table during the receiving process. This batch process scans
stock orders to find transfers or allocations that contain cartons that were not received
to see if any shipments contain un-received cartons that match the dummy carton
receipt (both item and quantity). If a match is found, then the dummy carton is received
against the matching carton. If a match is not found, an error is written to an error file
and the record remains on the staging table.

These unprocessed records are eventually purged from the staging table when the
receipt transaction date is older than the current date minus Close Open Shipments
After Days.

Chapter 13
Reconcile Received Dummy Carton IDs with Expected Cartons (dummyctn)

13-18

Restart/Recovery
This program deletes from the dummy carton staging table. The program will restart by
processing the records that remain on the dummy carton staging table.

Design Assumptions
N/A

Stage Regular Price Changes on Open Allocations and
Transfers (distropcpub)

Module Name distropcpub.pc

Description Stage Regular Price Changes on Open Allocations/Transfers so Publishing
Sends New Retail to Subscribing Applications

Functional Area Transfers, Allocations, and RTV

Module Type Integration

Module Technology ProC

Catalog ID RMS216

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program will look for any regular price change (transaction type 4 or 11 from the price
history table) that is due to go into effect tomorrow. Then, for any open allocations or transfers
where the ‘to' location and items that have price changes going into effect, it places a record
on the allocation or transfer publishing queue tables, such that they can be picked up by the
RIB and sent to the subscribing systems.

Restart/Recovery
The logical unit of work is store. The driving cursor retrieves all item/locations that have price
changes in effect from the next day. It also gets all of the component items of the non-sellable
packs that have price changes.

I/O Specification

Integration Type Download from Merchandising

File Name N/A

Integration Contract IntCon000196

ALLOC_MFQUEUE table

Chapter 13
Stage Regular Price Changes on Open Allocations and Transfers (distropcpub)

13-19

Integration Type Download from Merchandising

File Name N/A

Integration Contract IntCon000197

TSF_MFQUEUE table

Design Assumptions
N/A

Chapter 13
Stage Regular Price Changes on Open Allocations and Transfers (distropcpub)

13-20

14
Sales Posting

If not using Sales Audit, such as if you are using a 3rd party sales auditing solution, sales and
returns from your point-of-sale (POS) and order management (OMS) solutions can be
integrated directly to Merchandising using the Upload Sales job.

Once the data is staged in Merchandising, other modules take over the posting of that data to
sales transaction, sales history, and stock-on-hand tables. This is the processing used by
data integrated from the Oracle Retail Sales Audit solution (as part of the Merchandising
Foundation Cloud Service), as well.

The Sales Posting process consists of a number of related programs.

1. Upload POSU File for Processing (uploadsales.ksh) reads the input file and writes its
contents to a series of staging tables. Process Multiple POSU Files
(uploadsales_all.ksh) wraps uploadsales.ksh to process multiple files.

2. Main Processing of Staged Sales/Returns (salesprocess.ksh) reads the staged data
and performs major validation, financial and inventory processing.

3. Reject POSU Transactions (salesgenrej.ksh) creates a reject file for transactions that
fail validation.

4. Archive Successfully Posted Transactions (salesuploadarch.ksh) archives
successfully processed transactions and clears them out of the staging tables.

5. Purge Aged Archived POSU Transactions (salesuploadpurge.ksh) purges
transactions from the archive tables after the transactions age out of the system.

14-1

Program Summary
The following batch designs are included in this chapter

• Archive Successfully Posted Transactions (salesuploadarch.ksh)

• Main Processing of Staged Sale/Return Transactions (salesprocess.ksh)

• Purge Aged Archived POSU Transactions (salesuploadpurge.ksh)

• Purge FILE_UPLOAD_STATUS and FILE_UPLOAD_ERRORS Tables
(file_upload_errors_purge.ksh)

These integration programs are described in the Merchandising Operations Guide
Volume 2:

• uploadsales.ksh (Upload POSU File for Processing)

• uploadsales_all.ksh (Process Multiple POSU Files)

• salesgenrej.ksh (Reject POSU Transactions)

Archive Successfully Posted Transactions
(salesuploadarch.ksh)

Module Name salesuploadarch.ksh

Description Archive Successfully Posted Transactions

Functional Area Sales Processing

Module Type Admin

Module Technology Ksh

Catalog ID RMS340

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this module is to archive the successfully posted transactions, and
clear the staging table.

Performance Considerations
Since the archive tables would be handling a large volume of data. Administrators
should consider enlarging the tablespace to accommodate the average volume of
data.

Design Assumptions
N/A

Chapter 14
Program Summary

14-2

Main Processing of Staged Sale/Return Transactions
(salesprocess.ksh)

Module Name salesprocess.ksh

Description Main Processing of Staged Sale/Return Transactions

Functional Area Sales Posting

Module Type Business Processing

Module Technology ksh

Catalog ID RMS151

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of the SALESPROCESS.KSH module is to process sales and return details
from an external point of sale system (either POS or OMS). The sales/return transactions will
be validated against Oracle Retail item/store relations to ensure the sale is valid, but this
validation process can be eliminated if the sales that are being passed in, have been
screened by sales auditing. The following common functions will be performed on each sales/
return record read from the input file:

• Read sales/return transaction record

• Lock associated record in Merchandising

• Validate item sale

• Check whether TAX maintenance is required, and if so determine the TAX amount for the
sale.

• Write all financial transactions for the sale and any relevant markdowns to the stock
ledger.

• Post item/location/week sales to the relevant sales history tables

• Perform last sales processing to maintain accurate sales information in the system

POSU Chunking

Table 14-1 Concurrent Threads and Chunk Size

MAX_CONCURRENT_THRE
ADS

MAX_CHUNK_SIZE

2 3

Number of Threads: 11

Chapter 14
Main Processing of Staged Sale/Return Transactions (salesprocess.ksh)

14-3

Thread 1 Chunk 1 THEAD 1 Item 1

Thread 1 Chunk 1 THEAD 2 Item 1

Thread 1 Chunk 1 THEAD 3 Item 2

Thread 1 Chunk 1 THEAD 4 Item 2

Thread 1 Chunk 1 THEAD 5 Item 3

Thread 2 Chunk 2 THEAD 6 Item 5

Thread 2 Chunk 2 THEAD 7 Item 6

Thread 2 Chunk 2 THEAD 8 Item 7

Thread 3 Chunk 3 THEAD 9 Item 8

Thread 3 Chunk 3 THEAD 10 Item 9

Thread 3 Chunk 3 THEAD 11 Item 10

In this run, threads would be allocated first to chunks 1 and 2. The other threads would
only be picked up once either thread 1 or 2 has finished its processing.

Restart/Recovery
The logical unit of work for salesprocess.ksh is a set of a single or multiple valid item
sales transactions at a given store location. This set is defined as a chunk. Based on
the example above, if for some reason, chunk 2 raised an error, THEAD 4, 5, and 6
wouldn't be posted in Merchandising. Other chunks, if there are no errors, would be
processed. User has to correct the transaction details and upload the updated POSU
file that includes the affected THEAD lines for reprocessing.

Locking Strategy
Since the sales upload processes are run multiple times a day in a trickle-polling
system, a locking mechanism is put in place to allow on-line transactions and the
salesprocess.ksh module to run at the same time.

Because multithreading logic based on chunks is applied, it is possible that a record is
locked by another thread. Without a mechanism to perform waiting/retrying, record
locking errors would happen more frequently.

In the table RMS_PLSQL_BATCH_CONFIG, RETRY_LOCK_ATTEMPTS is the
number of times the thread will try to acquire the lock for a table and
RETRY_WAIT_TIME is the number of seconds the thread will wait before it retries.
Once the number of retries is equal to the limit defined, the whole chunk wouldn't be
processed. This would create a reject file with which you can use to upload again to
the staging table.

Security Considerations
N/A

Performance Considerations
The number of threads, the amount of waiting time, number for retries, and average
volume of data should be considered.

Chapter 14
Main Processing of Staged Sale/Return Transactions (salesprocess.ksh)

14-4

Be careful when increasing the number of threads. When the number exceeds the capacity of
the server, new jobs wouldn't be able to start when this program is running and would impact
other users of the system.

Because this is multithreaded and can be executed during the store day, it is prone to locking
errors. Record locking errors would happen if the thread reached the maximum number of
retries (RETRY_LOCK_ATTEMPT) to fetch the lock. To prevent this, increase the value of the
retries and let the value of RETRY_WAIT_TIME remain at 1. This means that it would retry
every second until the maximum number of retries have been reached.

It is also important to know the average volume of data. It is a determinant of what would be
the chunk size. If the chunk is too small, it couldn't utilize processing the records in bulk. If the
chunk size is too large, in such that, all records would be in one chunk, it wouldn't utilize the
multithreaded approach and thus, be inefficient.

I/O Specification

Integration Type Upload to Merchandising

File Name N/A; at this point, the POSU data has already been uploaded to the staging
tables

Integration Contract IntCon000103

The module will have the ability to re-process a POSU reject file directly. The file format will
therefore be identical to the input file layout for the uploadsales.ksh process. A reject line
counter will be kept in the program and is required to ensure that the file line count in the
trailer record matches the number of rejected records. If no errors occur, no reject files would
be generated.

Design Assumptions
Tax Handling:

POS can send either transactional level tax details in TTAX lines or item-level tax details in
IGTAX lines through the RTLOG file to Sales Audit. These tax details will be passed on to
Merchandising in the TTAX lines of the POSU file. Even though POS can pass multiple
IGTAX/TTAX lines to Sales Audit and from Sales Audit to Merchandising, Merchandising only
supports one tax code per item. If multiple taxes for an item are sent from POS to Sales
Audit, they will be summed to a single tax in Merchandising sales upload process and
assigned one of the applicable tax codes when writing tran_data 88.

Financial Transactions
salesprocess.ksh writes transaction records to the TRAN_DATA table primarily through its
write_tran_data function. From the entire list of valid transaction codes (For the full list of
transaction codes, see the chapter “General ledger batch" in this volume of the
Merchandising Operations Guide), for the column TRAN_CODE, salesupload.ksh writes the
following:

Table 14-2 Transaction Records

Transaction Code Description

01 Net Sales (retail & cost)

Chapter 14
Main Processing of Staged Sale/Return Transactions (salesprocess.ksh)

14-5

Table 14-2 (Cont.) Transaction Records

Transaction Code Description

02 Net sales (retail & cost) where - retail is always VAT exclusive, written
only if system_options.stkldgr_vat_incl_retl_ind = Y

03 Non-inventory Items Sales/Returns

04 Customer Returns (retail & cost)

05 Non-inventory VAT Exclusive Sales

06 Deal Income (sales)

11 Markup (retail only)

12 Markup cancel (retail only)

13 Permanent Markdown (retail only)

14 Markdown cancel (retail only)

15 Promotional Markdown (retail only), including ‘in-store' markdown

20 Purchases (retail & cost)

24 Return to Vendor (RTV) from inventory (retail & cost)

60 Employee discount (retail only)

Note:

Where value-added-tax is enabled (system_options table,
stkldgr_vat_incl_retl_ind column shows ‘Y') and the retail accounting method
is also enabled, salesupload.ksh writes an additional transaction record for
code 02.

Any items sold on consignment are written as a code 20 (Purchases) as well
as a 01 (Net Sales) along with all other applicable transactions, like returns.
The 20 reflects the fact that the item is purchased at the time it is sold, in
other words, a consignment sale.

Purge Aged Archived POSU Transactions
(salesuploadpurge.ksh)

Module Name salesuploadpurge.ksh

Description Purge Aged Archived POSU Transactions

Functional Area Sales Processing

Module Type Admin

Module Technology Ksh

Catalog ID RMS341

Wrapper Script rmswrap_shell.ksh

Chapter 14
Purge Aged Archived POSU Transactions (salesuploadpurge.ksh)

14-6

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this module is delete the archive tables for the rejects, retry records and the
posted transaction based on the given retention period.

Performance Considerations
The retention period for the archived data should be carefully considered. Disregarding this
would result in the tablespace size reaching its limit and would not be able to accommodate
additional archive records.

Design Assumptions
N/A

Purge FILE_UPLOAD_STATUS and FILE_UPLOAD_ERRORS
Tables (file_upload_errors_purge.ksh)

Module Name file_upload_errors_purge.ksh

Description Purge FILE_UPLOAD_STATUS and FILE_UPLOAD_ERRORS Tables.

Functional Area Administration

Module Type Admin

Module Technology Ksh

Catalog ID N/A

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this program is to purge FILE_UPLOAD_STATUS and
FILE_UPLOAD_ERRORS tables regularly in Merchandising.

To validate the status of sales file upload process in Merchandising, the error handling in
sales upload process has been enhanced to capture the following attributes of file upload
status in FILE_UPLOAD_STATUS and FILE_UPLOAD_ERRORS tables.

• Filename

• Status

• # of lines in file

Chapter 14
Purge FILE_UPLOAD_STATUS and FILE_UPLOAD_ERRORS Tables (file_upload_errors_purge.ksh)

14-7

• # of Records uploaded

• # of Records failed processing

• Date/Time process started

• Date/Time processing completes

• Location (store or warehouse where file originated). For stock counts this would be
the physical warehouse.

If errors are identified, the error message, line text and line ID are captured in the
FILE_UPLOAD_ERRORS table. The FILE_UPLOAD_STATUS and
FILE_UPLOAD_ERRORS tables are replicated thru golden gate, so that customer can
verify the upload file results through DAS views.

The file_upload_errors_purge.ksh script is scheduled to run as part of the nightly
batch, to purge FILE_UPLOAD_STATUS and FILE_UPLOAD_ERRORS tables
regularly in Merchandising based on the retention days input parameter.

Restart/Recovery
This program does not contain restart/recovery logic.

I/O Specification
N/A

Design Assumptions
N/A

Chapter 14
Purge FILE_UPLOAD_STATUS and FILE_UPLOAD_ERRORS Tables (file_upload_errors_purge.ksh)

14-8

15
Sales History

Merchandising maintains sales history at a variety of levels. Item level sales history drives
Merchandising replenishment, ratio build, and is exported to planning applications. Sales
history rolled up to levels of the merchandise hierarchy is used by Oracle Retail Allocation.
Rolled up sales history is also useful for custom reporting.

Program Summary
The following batch designs are included in this chapter:

• Monthly Sales History Rollup By Department, Class And Subclass (hstbldmth)

• Monthly Sales History Rollup By Diffs (hstbldmth_diff)

• Monthly Stock on Hand, Retail and Average Cost Values Update (hstmthupd)

• Purge Aged Sales History (hstprg)

• Purge Aged Sales History by Diff (hstprg_diff)

• Weekly Sales History Rollup by Department, Class, and Subclass (hstbld)

• Weekly Sales History Rollup by Diff (hstbld_diff)

• Weekly Stock on Hand and Retail Value Update for Item/Location (hstwkupd)

As an alternative to some of the scheduled batch processes, there is also an option to run
some of the above programs as a background process, instead of during the batch cycle.
This includes:

• Purge Aged Sales History (history_purge_job)

• Purge Aged Sales History by Diff (hist_diff_purge_job)

Monthly Sales History Rollup By Department, Class And
Subclass (hstbldmth)

Module Name hstbldmth.pc

Description Monthly Sales History Rollup by Department, Class, and Subclass

Functional Area Sales History

Module Type Business Processing

Module Technology ProC

Catalog ID RMS241

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

15-1

Design Overview
The monthly sales history roll up routine will extract sales history information for each
item from the ITEM_MASTER and ITEM_LOC_HIST_MTH (item location history by
month) tables. The history information will be rolled up to the subclass, class and dept
level to be written to: subclass_sales_hist_mth (subclass/location/month/sales type),
class_sales_hist_mth (class/location/month/sales type) and dept_sales_hist_mth
(department/location/month/sales type).

This program may be run in parallel with hstbld since they both read from
HIST_REBUILD_MASK. The table HIST_REBUILD_MASK table must not be
truncated before both programs finish running.

Restart/Recovery
The logical unit of work for the hstbldmth module is department, location, sales type
and end of month date with a recommended commit counter setting of 1,000.
Processed records are committed each time the record counter equals the maximum
recommended commit number.

Design Assumptions
N/A

Monthly Sales History Rollup By Diffs (hstbldmth_diff)

Module Name hstbldmth_diff.pc

Description Monthly Sales History Rollup by Diffs

Functional Area Sales History

Module Type Business Processing

Module Technology ProC

Catalog ID RMS242

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The sales history rollup routine will extract sales history information for each
ITEM_PARENT from the ITEM_LOC_HIST_MTH table and rolls the data to month
level. The history information will be rolled up to the item differentiator level to be
written to: item_diff_loc_hist_mth and item_parentloc_hist_mth. For each item, data to
be retrieved includes sales quantity and stock. This data must be collected from
several tables including ITEM_LOC_HIST_MTH, ITEM_LOC, and ITEM_MASTER.

Chapter 15
Monthly Sales History Rollup By Diffs (hstbldmth_diff)

15-2

Restart/Recovery
N/A

Locking Strategy
The package HSTBLD_DIFF_PROCESS locks the following tables for update:

ITEM_DIFF_LOC_HIST_MTH

ITEM_PARENTLOC_HIST_MTH

Design Assumptions
N/A

Monthly Stock on Hand, Retail and Average Cost Values Update
(hstmthupd)

Module Name hstmthupd.pc

Description Monthly Stock on Hand, Retail and Average Cost Values Update

Functional Area Sales History

Module Type Business Processing

Module Technology ProC

Catalog ID RMS158

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program runs monthly to update the stock on hand, retail values and average cost
for each item/location on the ITEM_LOC_HIST_MTH (item location history by month) table. If
the item/location does not exist on the ITEM_LOC_HIST_MTH table, then the new record is
written to a comma delimited file which is later uploaded to ITEM_LOC_HIST_MTH table
using SQL*Loader (hstmthupd.ctl).

Restart/Recovery
The logical unit of work for this program is the item/location record. Threading is done by
store using the v_restart_store_wh view. The commit_max_ctr field on the
RESTART_CONTROL table will determine the number of transactions that equal a logical
unit of work. Table-based restart/recovery is used.

Chapter 15
Monthly Stock on Hand, Retail and Average Cost Values Update (hstmthupd)

15-3

I/O Specification

Integration Type Download from Merchandising

File Name Determined by runtime parameter

Integration Contract IntCon000175

hstmthupd.ctl

Purge Aged Sales History (history_purge_job)

Module Name history_purge_job

Description Purge Aged Sales History

Functional Area Sales Posting

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from department, class, subclass
sales history tables based on its purge criteria from system parameter settings. The
Item History Months parameter will determine record which is older than the specific
number of retention months of fashion style history. These records are chunked and
Thread ID is assigned for each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from sales history tables by
department, class and subclass tables. It will also invoke a call to a new program
specific for handling historical tables that are considered partitioned tables.
PARTITION_SQL.PURGE_INTERVAL_PARTITION is called passing each target table
names "ITEM_LOC_HIST", "ITEM_LOC_HIST_MTH", and
"DAILY_SALES_DISCOUNT". This called program will execute the proper deletion/
purging of records from target table by exercising table partitioning handling such as
Dropping Interval Partition (same as truncate or delete from table). There is a STOP
ON NEXT feature in bulk processing (through a loop) where Administrators can stop
this batch with a flip of this indicator.

The decision to insert or not to insert the records into the history tables is based on the
Archive Indicator and Archive Job Indicator from the Background Process
Configuration table.

1. If both the Archive Indicator and Archive Job Indicator values are Y, then the data
from the base tables are inserted into the history tables.

2. If both indicators are set to N, then the records are deleted from the base tables
without inserting into the history tables.

Chapter 15
Purge Aged Sales History (history_purge_job)

15-4

Note:

For more information on how to configure this process for archiving, see the
Merchandising Implementation Guide section entitled “Background Process
Configuration”.

Restart/Recovery
N/A

Key Tables Affected

Table 15-1 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

PURGE_CONFIG_OPTIONS Yes No No No

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_HIST_PURGE_STG Yes Yes No Yes

ALL_PART_TABLES Yes No No No

ALL_TAB_PARTITIONS Yes No No No

ITEM_LOC_HIST No No No Yes

ITEM_LOC_HIST_MTH No No No Yes

SUBCLASS_SALES_HIST No No No Yes

CLASS_SALES_HIST No No No Yes

DEPT_SALES_HIST No No No Yes

DAILY_SALES_DISCOUNT No No No Yes

DAILY_SALES_DISCOUNT_PRG_HIST No Yes No No

ITEM_LOC_HIST_PRG_HIST No Yes No No

Purge Aged Sales History (hstprg)

Module Name hstprg.pc

Description Purge Aged Sales History

Functional Area Sales Posting

Module Type Admin

Module Technology ProC

Catalog ID RMS244

Chapter 15
Purge Aged Sales History (hstprg)

15-5

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
Deletes records from ITEM_LOC_HIST, SUBCLASS_SALES_HIST,
CLASS_SALES_HIST, DEPT_SALES_HIST and DAILY_SALES_DISCOUNT tables,
where data is older than the specified number of months. Number of months for
retention of fashion style history is specified by
system_options.ITEM_HISTORY_MONTHS.

Restart/Recovery
N/A

Design Assumptions
N/A

Purge Aged Sales History by Diff (hist_diff_purge_job)

Module Name hist_diff_purge_job

Description Purge Aged Sales History by Diff

Functional Area Sales History

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from item-parent-location history
by diff and item-location history by diff tables based on its purge criteria from system
parameter settings. The Item History Months parameter will determine old sales
history differentiator data on a specified system set date. These records are chunked
and Thread ID is assigned for each. They will be stored temporarily in a staging table.

Chapter 15
Purge Aged Sales History by Diff (hist_diff_purge_job)

15-6

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from sales history differentiator and item-
parent-location history tables. It will free up and clean the staging table afterwards. There is a
STOP ON NEXT feature in bulk processing (through a loop) where Administrators can stop
this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 15-2 Key Tables Affected

Table Select Insert Update Delete

PURGE_CONFIG_OPTIONS Yes No No No

PERIOD Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_HIST_DIFF_PURGE_STG Yes Yes No Yes

ITEM_DIFF_LOC_HIST No No No Yes

ITEM_PARENT_LOC_HIST No No No Yes

Purge Aged Sales History by Diff (hstprg_diff)

Module Name hstprg_diff.pc

Description Purge Aged Sales History by Diff

Functional Area Sales History

Module Type Admin

Module Technology ProC

Catalog ID RMS245

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The tables, ITEM_DIFF_LOC_HIST and ITEM_PARENT_LOC_HIST are purged of sales
history differentiator data, which is older than a specified system set date. This date is stored
in the purge_config_options.ITEM_HISTORY_MONTHS column.

Chapter 15
Purge Aged Sales History by Diff (hstprg_diff)

15-7

Restart/Recovery
N/A

Design Assumptions
N/A

Weekly Sales History Rollup by Department, Class, and
Subclass (hstbld)

Module Name hstbld.pc

Description Weekly Sales History Rollup by Department, Class, and Subclass

Functional Area Sales History

Module Type Business Processing

Module Technology ProC

Catalog ID RMS239

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The sales history rollup routine will extract sales history information for each item from
the item and item location history tables. The history information will be rolled up to the
subclass, class, and dept level to be written to history tables.

The rebuild program can be run in one of two ways:

First, if the program is run with a run-time parameter of ‘rebuild', the program will read
data (dept, class, and subclass) off the manually input HIST_REBUILD_MASK table,
which will determine what to rebuild.

Secondly, if the program is run with a run-time parameter of ‘weekly', the program will
build sales information for all dept/class/subclass combinations only for the current end
of week date.

Restart/Recovery
The logical unit of work for this program is set at the store/dept/class level. Threading
is done by store using the v_restart_store view.

The commit_max_ctr field on the RESTART_CONTROL table will determine the
number of transactions that equal a logical unit of work.

Chapter 15
Weekly Sales History Rollup by Department, Class, and Subclass (hstbld)

15-8

Design Assumptions
N/A

Weekly Sales History Rollup by Diff (hstbld_diff)

Module Name hstbld_diff.pc

Description Weekly Sales History Rollup by Diff

Functional Area Sales History

Module Type Business Processing

Module Technology ProC

Catalog ID RMS240

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The sales history rollup routine will extract sales history information for each item_parent from
the ITEM_LOC_HIST table. The history information will be rolled up to the item differentiator
level to be written to: item_diff_loc_hist and item_parent_loc_hist.

For each item, data to be retrieved includes sales qty and stock. This data must be collected
from several tables including ITEM_LOC_HIST, ITEM_LOC, and ITEM_MASTER.

Restart/Recovery
N/A

Design Assumptions
N/A

Key Tables Affected

Table 15-3 Key Tables Affected

Table Select Insert Update Delete

ITEM_PARENT_LOC_HIST No Yes Yes No

ITEM_DIFF_LOC_HIST No Yes Yes No

ITEM_LOC Yes No No No

ITEM_LOC_HIST Yes No No No

ITEM_MASTER Yes No No No

Chapter 15
Weekly Sales History Rollup by Diff (hstbld_diff)

15-9

Table 15-3 (Cont.) Key Tables Affected

Table Select Insert Update Delete

SYSTEM_VARIABLES Yes No No No

PERIOD Yes No No No

Weekly Stock on Hand and Retail Value Update for Item/
Location (hstwkupd)

Module Name hstwkupd.pc

Description Weekly Stock on Hand and Retail Value Update for Item/Location

Functional Area Sales History

Module Type Business Processing

Module Technology ProC

Catalog ID RMS159

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program runs weekly to update the current stock on hand, retail values and
average cost for each item/location on ITEM_LOC_HIST is using SQL*Loader
(hstwkupd.ctl). The program must be run on the last day of the week as scheduled.

Restart/Recovery
The logical unit of work for HSTWKUPD is item/location. The program is threaded by
location using the v_restart_store_wh view.

I/O Specification

Integration Type Download from Merchandising

File Name Determined by runtime parameter

Integration Contract IntCon000176

hstwkupd.ctl

Design Assumptions
N/A

Chapter 15
Weekly Stock on Hand and Retail Value Update for Item/Location (hstwkupd)

15-10

16
Stock Count

A stock count is a comparison of an inventory snapshot at a point in time to an actual
inventory count received from a location. Stock count batch processes can be divided into
two categories: processes that prepare future stock counts and processes that process
results. The programs stkschedxpld and stkxpld prepare future stock counts. All other
programs are involved in processing results.

For more information about Stock Counts, including the interaction of UI and batch processes
and data flow see the Stock Count Overview in Merchandising Documentation Library (Doc
ID: 1585843.1).

Program Summary
The following batch designs are included in this functional area:

• Calculate Actual Current Shrinkage and Budgeted Shrink to Apply to Stock Ledger
(stkdly)

• Create Stock Count Requests Based on Schedules (stake_sched_explode_job) -
background job

• Create Stock Count Requests Based on Schedules (stkschedxpld)

• Explode Stock Count Requests to Item Level (stkxpld)

• Process Stock Count Results (stockcountprocess.ksh)

• Purge Aged Stock Count (stkprg)

• Purge Aged Stock Count (stock_count_purge_job) - background job

• Stock Count Snapshot Update (stkupd)

• Update Stock On Hand Based on Stock Count Results (stkvar)

See Merchandising Operations Guide Volume 2 for details on the following stock count
integration programs:

• Conversion of Warehouse Stock Count Results File to Merchandising Integration
Contract (lifstkup.pc)

• Upload Stock Count Results from Stores/Warehouses (stockcountupload.ksh)

Calculate Actual Current Shrinkage and Budgeted Shrink to
Apply to Stock Ledger (stkdly)

Module Name stkdly.pc

Description Calculate Actual Current Shrinkage and Budgeted Shrink to Apply to Stock
Ledger

Functional Area Stock Counts

16-1

Module Type Business Processing

Module Technology ProC

Catalog ID RMS359

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The Stock Count Shrinkage Update batch calculates the 'value' variances for Unit &
Value stock counts. The main functions are to calculate actual shrinkage amount that
is used to correct the book stock value on the stock ledger and to calculate a budgeted
shrinkage rate that will be applicable until the next count. Additionally, future
transaction data snapshots are aggregated and stored into a table which will be used
for shrinkage calculations in month end stock ledger batch process. The month end
stock ledger batch process then uses these values when calculating ending inventory
for the month.

Restart/Recovery
This batch program is multithreaded using the restart department view. The logical unit
of work for this program is department/class/location.

Design Assumptions
N/A

Create Stock Count Requests Based on Schedules
(stake_sched_explode_job)

Module Name stake_sched_explode_job

Description Create Stock Count Requests Based on Schedules

Functional Area Stock Counts

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 16
Create Stock Count Requests Based on Schedules (stake_sched_explode_job)

16-2

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from stake count schedule and store or
location list tables based on its review criteria from system parameter settings. The Stake
Count Review Days parameter will determine and evaluate scheduled counts that are
planned for x days from the current day. These records are chunked and Thread ID is
assigned for each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will create stock count requests based in the pre-defined schedules
for a location. For Unit counts, the item list specified is exploded out to the transaction-level
and written to the count/item/location table. For Unit & Value counts, the transaction-level
items contained in the specified department/class/subclass will be written to the count/item/
location and count/product/location tables. If the schedule was created using a location list,
then this process also explodes that down to the store or virtual warehouse level. It will free
up and clean the staging table afterwards. There is a STOP ON NEXT feature in bulk
processing (through a loop) where Administrators can stop this batch with a flip of this
indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 16-1 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_STKSCHED_EXPLODE_S
TG

Yes Yes No Yes

STAKE_SCHEDULE Yes No Yes No

V_RESTART_STORE_WH Yes No No No

PERIOD Yes No No No

CODE_DETAIL Yes No No No

STAKE_HEAD No Yes No No

STAKE_LOCATION No Yes No No

STAKE_PRODUCT No Yes No No

STAKE_PROD_LOC No Yes No No

STAKE_SKU_LOC Yes Yes No No

ITEM_MASTER Yes No No No

DEPS Yes No No No

Chapter 16
Create Stock Count Requests Based on Schedules (stake_sched_explode_job)

16-3

Table 16-1 (Cont.) Key Tables Affected

Table Select Insert Update Delete

SUBCLASS Yes No No No

PACKITEM Yes No No No

ITEM_LOC Yes No No No

SKULIST_DETAIL Yes No No No

LOC_LIST_DETAIL Yes No No No

LOCATION_CLOSED Yes No No No

COMPANY_CLOSED Yes No No No

INV_TRACK_UNIT_OPTIONS Yes No No No

Design Assumption
N/A

Create Stock Count Requests Based on Schedules
(stkschedxpld)

Module Name stkschedxpld.pc

Description Create Stock Count Requests Based on Schedules

Functional Area Stock Counts

Module Type Business Processing

Module Technology ProC

Catalog ID N/A

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch process is used to create stock count requests based on pre-defined
schedules for a location. It evaluates all scheduled counts, that are planned for x
number of days from the current day. The number of days prior to the planned count
date by which the count requests are created is determined by the system parameter
Stock Count Review Days.

For Unit counts, the item list specified is exploded out to the transaction-level and
written to the count/item/location table. For Unit & Value counts, the transaction-level
items contained in the specified department/class/subclass will be written to the count/
item/location table and count/product/location tables. If the schedule was created
using a location list, then this process also explodes that down to the store or virtual
warehouse level.

Chapter 16
Create Stock Count Requests Based on Schedules (stkschedxpld)

16-4

Restart/Recovery
The logical unit of work for this module is schedule, location. The changes will be posted
when the maximum commit counter value is reached.

Design Assumption
N/A

Explode Stock Count Requests to Item Level (stkxpld)

Module Name stkxpld.pc

Description Explode Stock Count Requests to Item Level

Functional Area Stock Counts

Module Type Business Processing

Module Technology ProC

Catalog ID RMS364

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The Stock Count Explode batch is a nightly batch is used to explode stock count requests
created at the department, class or subclass level to the item level. This process must run
before the stock count snapshot is taken and is run for counts x days prior to the count based
on the system parameter setting, Stock Count Lockout Days.

The batch process picks up product groups (departments, classes or subclasses) from the
count/product table and inserts records into the count/item/location table and the count/
product/location table (for Unit & Value counts) for all items in the product group that exist for
the locations on the count. Only approved inventoried items are added to stock counts.

For transformable items, both the non-inventoried sellable items and inventoried orderable
items that are contained in a product group will also be added to the count. For deposit items,
only the content, crate and packs can be counted.

Restart/Recovery
This batch program is multithreaded using the restart all locations view. The logical unit of
work for this program is a cycle count/location.

Design Assumption
N/A

Chapter 16
Explode Stock Count Requests to Item Level (stkxpld)

16-5

Process Stock Count Results (stockcountprocess.ksh)

Module Name stockcountprocess.ksh

Description Process Stock Count Results

Functional Area Stock Counts

Module Type Business Processing

Module Technology ksh

Integration Catalog
ID

RMS366

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The Stock Count Process batch processes actual count data from the selected store
or physical warehouse to count/item/location table from the data staged by
STOCKCOUNTUPLOAD.KSH. For a physical warehouse, this process also calls the
Merchandising distribution library to apportion quantities to the virtual warehouses in
Merchandising.

Restart/Recovery
The logical unit of work for stockcountprocess.ksh is a set of a single or multiple valid
items at a given location. This set is defined as a chunk. Based on the example above,
if for some reason, chunk 2 raised an error, INPUT FILE 6, 7, and 8 wouldn't be
processed by this program. Other chunks, if there are no errors, would be processed.
User has to correct the transaction details and upload the input file again that includes
the affected CHUNKS for reprocessing.

Design Assumption
N/A

Purge Aged Stock Count (stkprg)

Module Name stkprg.pc

Description Purge Stock Count

Functional Area Stock Counts

Module Type Admin

Module Technology ProC

Catalog ID RMS360

Wrapper Script rmswrap_multi.ksh

Chapter 16
Process Stock Count Results (stockcountprocess.ksh)

16-6

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
Purge Stock Counts is a data cleanup process to remove old counts from Merchandising.
This batch process deletes records from the stock count tables with a stock take date earlier
than the last end of month start date or those that have been otherwise flagged for delete.
This process deletes records from stock count header and all corresponding child tables.

Restart/Recovery
This program is multi-threaded based on location and the logic of restart and recovery is
based on cycle count and location. The deletion of stock count header and stock count
product tables is performed in prepost as a post action.

This is done because stkprg is multi-threaded and each thread may have only deleted part of
cycle count detail records; hence the records from stock count head and stock count product
can only be deleted in the post program when all the details have been deleted.

Design Assumption
N/A

Purge Aged Stock Count (stock_count_purge_job)

Module Name stock_count_purge_job

Description Purge Stock Count

Functional Area Stock Counts

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two-step processing. It will have a threading assignment
and a business logic processing.

Thread assignment program will filter eligible records from stock count header table based on
its purge criteria from system variable settings. The Last End-of-Month Start Month
parameter will determine records with earlier stock take date or those that have been flagged

Chapter 16
Purge Aged Stock Count (stock_count_purge_job)

16-7

for deletion. These records are chunked and Thread ID is assigned for each. They will
be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from stock count related tables. It will
free up and clean the staging table afterwards. There is a STOP ON NEXT feature in
bulk processing (through a loop) where Administrators can stop this batch with a flip of
this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 16-2 Key Tables Affected

Table Select Insert Update Delete

SYSTEM_VARIABLES Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_STOCK_COUNT_PURG
E_STG

Yes Yes No Yes

STAKE_LOCATION Yes No No Yes

STAKE_QTY No No No Yes

STAKE_CONT No No No Yes

STAKE_SKU_LOC No No No Yes

STAKE_PROD_LOC No No No Yes

STAKE_PRODUCT No No No Yes

STAKE_HEAD Yes No No Yes

Design Assumption
N/A

Stock Count Snapshot Update (stkupd)

Module Name stkupd.pc

Description Stock Count Snapshot Update

Functional Area Stock Counts

Module Type Business Processing

Module Technology ProC

Integration Catalog
ID

RMS362

Wrapper Script rmswrap_multi.ksh

Chapter 16
Stock Count Snapshot Update (stkupd)

16-8

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The Stock Count Snapshot Update is a nightly batch program used to take a ‘snapshot' of
inventory, cost and retail values prior to the count commencing. This will be used to calculate
the book value of the count. The stock count snapshot includes stock on hand, in-transit-qty,
cost (either WAC or standard cost, based on system settings) and retail for each item-location
record. The snapshot is taken on the day that the count is scheduled. Additionally, transaction
data snapshots of future-dated transactions are captured and stored in a table that will be
used by Stock Count Shrinkage Update batch.

Restart/Recovery
This program is multithread using the restart all locations view. The logical unit of work is an
item/location.

Design Assumption
N/A

Update Stock On Hand Based on Stock Count Results (stkvar)

Module Name stkvar.pc

Description Update Stock On Hand Based on Stock Count Results

Functional Area Stock Counts

Module Type Business Processing

Module Technology ProC

Integration Catalog ID RMS363

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The Stock Count Stock on Hand Updates batch process updates stock on hand based on the
unit count results. For Unit counts, it also writes transaction data records for any variances to
transaction code 22. For Unit & Value counts, it also computes the total cost and total retail
value of the count and updates the count/product/location table with this information. The
post processing for this batch inserts dept/class/subclass/location records into the week,
month and half data tables in cases wherein they don't exist.

Chapter 16
Update Stock On Hand Based on Stock Count Results (stkvar)

16-9

Restart/Recovery
The logical unit of work for this program is item, location type and location. This
program is multithread using the restart stock count view. After the maximum commit
counter number of rows is processed, intermittent commits are done to the database
and the item/location information is written to restart tables for restart/recovery.

Design Assumption
N/A

Chapter 16
Update Stock On Hand Based on Stock Count Results (stkvar)

16-10

17
Stock Ledger

The stock ledger holds financial data that allows you to monitor your company's performance.
It incorporates financial transactions related to merchandising activities, including sales,
purchases, transfers, and markdowns; and is calculated weekly or monthly. The stock ledger
accounts for inventory in buckets (how much inventory was returned, how much damaged,
and so on). For additional information about stock ledger, including configuration and
calculations, see the Merchandising Documentation Library (Doc ID: 1585843.1).

Figure 17-1 Process Flow - Stock Ledger

Different Merchandising transactions, such as sales, receipts, and adjustments, write to the
working transaction data table (TRAN_DATA). Additionally, transactions can be uploaded
from an external source using the External Transaction Data Upload (trandataload), which
are then loaded using trandataprocess. This is the starting point for the batch processes
shown above.

1. Stage Stock Ledger Transactions for Additional Processing (salstage) moves
transaction data from the working table to the snapshot transaction data table for
additional processing.

2. Daily Rollup of Transaction Data for Stock Ledger (saldly) rolls up the snapshot
transaction data and persists it to the daily rollup table.

3. Append Stock Ledger Information to History Tables (salapnd) moves data from the
snapshot transaction data table to the history table.

4. Weekly Rollup of Data/Calculations for Stock Ledger (salweek) rolls up daily stock
ledger data to weekly stock ledger data.

5. Monthly Rollup of Data/Calculations for Stock Ledger (salmth) rolls up weekly stock
ledger data to monthly stock ledger data.

6. End Of Half Rollup of Data/Calculations for Stock Ledger (saleoh) rolls up monthly
stock ledger data to half level stock ledger data.

17-1

There are other programs in this section as well related to removing old records and
capturing additional details for specific accounting requirements. For details on the
trandataload upload, see Merchandising Operations Guide Volume 2.

Program Summary
The following batch designs are included in this functional area:

• Append Stock Ledger Information to History Tables (salapnd)

• Daily Rollup of Transaction Data for Stock Ledger (saldly)

• End Of Half Rollup of Data/Calculations for Stock Ledger (saleoh)

• End of Year Inventory Position Snapshot (nwpyearend)

• External Transaction Data Process (trandataprocess.ksh)

• Monthly Rollup of Data/Calculations for Stock Ledger (salmth)

• Purge of Aged End of Year Inventory Positions (nwppurge)

• Purge Stock Ledger History (salprg)

• Stage Stock Ledger Transactions for Additional Processing (salstage)

• Stock Ledger Table Maintenance (salmaint)

• Weekly Rollup of Data/Calculations for Stock Ledger (salweek)

Alternatively, for some of the purge processes, there is an option to run a background
process to purge old data. These processes are:

• Purge of Aged End of Year Inventory Positions (nwp_purge_job)

• Purge Stock Ledger History (stkledgr_hist_purge_job)

• Stock Ledger Table Maintenance (stock_ledger_purge_job)

Append Stock Ledger Information to History Tables
(salapnd)

Module Name salapnd.pc

Description Append Stock Ledger Information to History Tables

Functional Area Stock Ledger

Module Type Admin

Module Technology ProC

Catalog ID RMS335

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 17
Program Summary

17-2

Design Overview
The purpose of this program is to move data from the staging table for transaction data into
the historical transaction data table. This requires placing a lock on the staging table to
ensure that no new data will be added to it while the movement is occurring (to handle
trickling or real-time processing), moving the data to the historical table, and finally truncating
the data from the staging table.

Restart/Recovery
N/A

Design Assumptions
N/A

Daily Rollup of Transaction Data for Stock Ledger (saldly)

Module Name saldly.pc

Description Daily Rollup of Transaction Data for Stock Ledger

Functional Area Stock Ledger

Module Type Business Processing

Module Technology ProC

Catalog ID RMS336

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program is responsible for performing the daily summarization processing in the stock
ledger in which transaction-level records are fetched from the transaction-level staging table
and summed to the subclass/location/day/currency level. Once the records are summarized,
they are written to the DAILY_DATA table in both primary as well as the local currency. If the
local currency is same as the primary currency, the program will insert records only in local
currency.

To call this program the end of day process for the stock ledger would not be completely
correct, however, because a day does not really 'close' in the stock ledger until the month
closes. Each time that the Daily Stock Ledger Processing program runs, all transaction-level
data is processed, whether it is for the current date, a date since the last month closing or
even a date prior to the last month closing. For transactions occurring on the current date or
since the last month close, they are processed by simply summarizing the date and updating
the current information on DAILY_DATA for the date of the transaction. However, if a
transaction occurred prior to the last month that was closed (for example:. the transaction
was dated 3/15 and the last end of month date was 3/20), then that transaction will be dated
with the current date and summarized with the current date's records. Also, in this last case, a

Chapter 17
Daily Rollup of Transaction Data for Stock Ledger (saldly)

17-3

warning message will be written to the batch log that alerts you to the problem. The
message you will receive is "*ALERT* Transactions have been found for previous
months." The sadly post program identifies dept/class/subclass/location combinations
within the transactions created during the day which are not available in week and
month data tables. These combinations are seeded into the week and month data
tables to ensure seamless roll up in the stock ledger.

Restart/Recovery
The logical unit of work is department/class/subclass. This batch program is
multithreaded using the v_restart_dept view.

Design Assumption
N/A

End Of Half Rollup of Data/Calculations for Stock Ledger
(saleoh)

Module Name saloeh.pc

Description End Of Half Rollup of Data/Calculations for Stock Ledger

Functional Area Stock Ledger

Module Type Business Processing

Module Technology ProC

Catalog ID RMS337

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The End of Half Stock Ledger Processing is different from many of the other 'End of'
processes in that it is also the program that controls how many months of stock ledger
data remain on the tables, in addition to the updates to the Half Data table. This
program should be run after the end-of-month processing for month 6 has run and
before the end-of-month processing for month 1 has run.

The first step for this program is to delete records from stock ledger tables that are 18
months or older. Specifically, the tables that are deleted from are DAILY_DATA,
WEEK_DATA, MONTH_DATA, HALF_DATA, and HALF_DATA_BUDGET. The 18-
month limit is not a system parameter - it is hard-coded into the program.

The next step in this program is for new records to be written into
HALF_DATA_BUDGET for each department/location for next year's half.

This program also rolls up the inter-stock take shrink amount and inter-stock take
sales amount from the HALF_DATA table at the department/location level for this half

Chapter 17
End Of Half Rollup of Data/Calculations for Stock Ledger (saleoh)

17-4

and calculates the shrinkage percent to insert into HALF_DATA_BUDGET for the next year's
half.

Restart/Recovery
There is no main driving cursor for this program. The different functions of this batch program
have their own driving cursors. All the driving cursors are threaded by department using the
v_restart_dept view. The logical unit of work (LUW) for the delete functions is a half number
while the different insert functions have the following LUWs

• half_data() - dept/class/subclass/location

• half_data_budget() - dept/location

Data is committed every time the number of rows processed exceeds commit_max_ctr.

Design Assumptions
N/A

End of Year Inventory Position Snapshot (nwpyearend)

Module Name nwpyearend.pc

Description End of Year Inventory Position Snapshot

Functional Area Stock Count

Module Type Business Processing

Module Technology ProC

Catalog ID RMS278

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program takes a snapshot of the item's stock position and cost at the end of the year.
When the end of year NWP snapshot process runs, it takes a snapshot of stock and weighted
average cost (WAC) for every item/location combination currently holding stock. If there is not
a record already on the NWP table for an item/location/year combination in the snapshot, a
new record is added for that item/location/year combination.

Restart/Recovery
The logical unit of work for this program is set at the location/item level. Threading is done by
supplier using the v_restart_store_wh view to thread properly. The commit_max_ctr field
should be set to prevent excessive rollback space usage, and to reduce the overhead of file
I/O. The changes will be posted when the commit_max_ctr value is reached and the value of
the counter is subject to change based on implementation.

Chapter 17
End of Year Inventory Position Snapshot (nwpyearend)

17-5

Design Assumptions
• NWP refers to 'Niederstwertprinzip' and is a legal German accounting financial

inventory reporting requirement for calculating year-end inventory position based
on the last receipt cost.

• The NWP Indicator system parameter supports this German specific inventory
reporting requirement. For German customers, this needs to be 'Y' to allow for the
annual NWP calculations & processes.

• This is not relevant for customers outside Germany.

External Transaction Data Process (trandataprocess.ksh)

Module Name trandataprocess.ksh

Description External Transaction Data Process

Functional Area Finance

Module Type Business Processing

Module Technology KSH

Catalog ID RMS377

Wrapper Script rmswrap_shell_out.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This process, along with trandataload.ksh, provides a mechanism to write records
directly into the TRAN_DATA tables based on a file from an external system. The
primary purpose of this functionality is to allow additional costs to be included in stock
ledger valuation that cannot be included based on existing Merchandise functionality.
Records written to the TRAN_DATA tables do not necessarily have a connection to
any Merchandising transaction, and are based on a determination made outside of
Merchandising. The records written through this mechanism function exactly the same
as records written by normal Merchandising processes. For cost based transactions,
the information must be passed at an item/location level. For retail-based transactions,
it can be at either an item/location or subclass/location level.

Note:

There is no support for recalculating or impacting unit inventory in
Merchandising based on the transactions passed in, and only cost or retail
value in the stock ledger is impacted - although the weighted average cost
(WAC) may also be impacted if that method of accounting is used in
Merchandising.

Chapter 17
External Transaction Data Process (trandataprocess.ksh)

17-6

Trandataprocess batch processes the data on STAGE_EXT_TRAN_DATA and inserts into
the TRAN_DATA table. This batch should be run after trandataload.ksh.

This batch validates the records on the staging table. The status records that fail validation
are updated to 'E'rror on the staging table with error message.

The records which pass the validations are inserted into TRAN_DATA table and Weighted
Average Cost is recalculated in case the WAC_recalc_ind is 'Y' for the record.

This script accepts the following input parameters:

• Database Connect string.

• Number of parallel threads - optional parameter. This is to override the value set on
RESTART_CONTROL table.

This script calls the TRAN_DATA_IMPORT_SQL to import the transaction records on
STAGE_EXT_TRAN_DATA table that haven't been processed yet. Each thread of the
program processes a single chunk of data. After processing the Chunk, the status of the
chunk is updated to 'P'rocessed.

The batch program performs the below validations on the staged records before inserting to
TRAN_DATA. Status of the records which fail validations will be updated to 'E'rror on
STAGE_EXT_TRAN_DATA along with the reasons for validation failure.

• Validates Dept, Class, and Subclass against SUBCLASS table.

• Validates location and loc_type against STORE and WH tables.

• Validates tran_code against TRAN_DATA_CODES table.

• If Item is not NULL validate if the item exists and is a transaction level item.

• If Item is not NULL validate if the item belongs to the dept/class/subclass.

• If Item not NULL validate if it is ranged to the location.

• Validate that item is not a pack.

• Item can be NULL only if it belongs to a Retail accounting department.

• When RECAL_WAC_IND = 'Y', ITEM and TOTAL_COST should not be NULL.

• Both total_cost and total_retail cannot be null.

• The loc_type should be 'W' or 'S' or 'E'.

• For TRAN_CODES - 37, 38, 63 and 64, GL_REF_NO should not be NULL

• For TRAN_CODES - 22 and 23 total cost should not be NULL

• For TRAN_CODES - 11, 12, 13, 14, 15, 16, 60, 80, and 81, total retail should not be
NULL or total cost should be NULL.

• For TRAN_CODES - 1, 4, 20, 24, 27, 30, 31, 37 and 38, total cost should not be NULL
OR (total_retail should not be NULL and sellable_ind is 'Y')

Once records are validated, the batch program calculates the Weighted Average Cost (WAC)
for the records with WAC_RECALC_IND = 'Y'. In case the calculated WAC <= 0 and if there
is inventory present the location then a cost variance record (TRAN_CODE - 70) is inserted
into TRAN_DATA. Cost variance transaction is also posted for those item locations which
have no or negative inventory.

Chapter 17
External Transaction Data Process (trandataprocess.ksh)

17-7

Restart/Recovery
N/A

Design Assumptions
N/A

Monthly Rollup of Data/Calculations for Stock Ledger
(salmth)

Module Name salmth.pc

Description Monthly Rollup of Data/Calculations for Stock Ledger

Functional Area Stock Ledger

Module Type Business Processing

Module Technology ProC

Catalog ID RMS343

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The Monthly Stock Ledger Processing program is responsible for performing the
monthly summarization processing in the stock ledger in which day-level records are
fetched from the transaction-level staging table and summed to the subclass/location/
month level. Once the records are summarized, they are written to the MONTH_DATA
table. This program processes one month for each program run - starting the latest
month to be closed. For example, if it is currently June and both April and May are
open, when the program runs, then only April will be closed.

In addition to the summarization processes done by this program, there are several
month ending calculations done as well. The closing stock value, half to date goods
available for sale (HTD GAFS), shrinkage and gross margin are calculated by calling a
package function, based on the accounting method designated for the department -
cost or retail. Additionally, the closing stock value for a processed month becomes
opening stock value for the next month. Also, when this program is run, it will write a
'shell' record for the next month, populating the key fields on the table (subclass,
location, and so on), the opening stock values at cost and retail, the inter-stock take
sales and shrinkage amounts and the HTD GAFS at cost and retail. It may be noted
that these shell records will be created only for those subclass/location/month
combinations that have a non-zero value of either ending inventory, HTD GAFS or
inter-stock take amounts.

This program can be run at any time during the month - not necessarily just at month-
end. Open stock counts from the month may exist based on the system parameter

Chapter 17
Monthly Rollup of Data/Calculations for Stock Ledger (salmth)

17-8

(CLOSE_MTH_WITH_OPN_CNT_IND). If this indicator is 'Y', then retailers are able to keep
a count open across a single month closing in the stock ledger and still close the month
financially. A Unit & Value stock count is considered as open until all variances (both unit and
value) have been reviewed and applied. Special processing exists if it is allowed and there
are open stock counts from the current month. Open stock counts from previous months
however cannot exist regardless of the setting.

Restart/Recovery
The logical unit of work (LUW) for this batch program is a dept/class/subclass/loc_type/
location/currency_ind record. This batch program is threaded by department using the
v_restart_dept view. Processed records are committed to the database after the LUW count
has reached the commit_max_ctr.

Design Assumptions
N/A

Purge of Aged End of Year Inventory Positions (nwp_purge_job)

Module Name nwp_purge_job

Description Purge of Aged End of Year Inventory Positions

Functional Area Stock Ledger

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from year-end inventory position table
based on its purge criteria from system parameter settings. The NWP Retention Period
parameter will determine certain amount of years have passed for NWP records before
purging. These records are chunked and Thread ID is assigned for each. They will be stored
temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from year-end inventory position table. It will
free up and clean the staging table afterwards. There is a STOP ON NEXT feature in bulk
processing (through a loop) where Administrators can stop this batch with a flip of this
indicator.

Chapter 17
Purge of Aged End of Year Inventory Positions (nwp_purge_job)

17-9

Restart/Recovery
N/A

Key Tables Affected

Table 17-1 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_NWP_PURGE_STG Ys Yes No Yes

NWP Yes No No Yes

Design Assumptions
• NWP refers to 'Niederstwertprinzip' and is a legal German accounting financial

inventory reporting requirement for calculating year-end inventory position based
on the last receipt cost.

• The NWP Indicator system parameter supports this German specific inventory
reporting requirement. For German customers, this needs to be 'Y' to allow for the
annual NWP calculations & processes.

• This is not relevant for customers outside Germany.

Purge of Aged End of Year Inventory Positions (nwppurge)

Module Name nwppurge.pc

Description Purge of Aged End of Year Inventory Positions

Functional Area Stock Ledger

Module Type Admin

Module Technology ProC

Catalog ID RMS277

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 17
Purge of Aged End of Year Inventory Positions (nwppurge)

17-10

Design Overview
This program purges the records from the table NWP after a certain amount of years have
passed. The number of years is held in the configurable system level parameter
NWP_RETENTION_PERIOD.

Restart/Recovery
Restart/recovery is not applicable, but the records will be committed based on the commit
max counter setup in the restart control table.

Design Assumptions
• NWP refers to 'Niederstwertprinzip' and is a legal German accounting financial inventory

reporting requirement for calculating year-end inventory position based on the last receipt
cost.

• The NWP Indicator system parameter supports this German specific inventory reporting
requirement. For German customers, this needs to be 'Y' to allow for the annual NWP
calculations & processes.

• This is not relevant for customers outside Germany.

Purge Stock Ledger History (salprg)

Module Name salprg.pc

Description Purge Stock Ledger History

Functional Area Stock Ledger

Module Type Admin

Module Technology ProC

Catalog ID RMS344

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program is used to purge old transaction-level stock ledger records from the Transaction
Data History table. The Retain Transaction Data (TRAN_DATA_RETAINED_DAYS_NO)
system parameter is used to define how many days the Transaction Data History records
should be kept in the system. This program will be run nightly to remove any records older
than the current date - the "Retain Transaction Data" days.

This batch also purges data from the MONTH_DATA_ERRORS table in a manner similar to
that used for TRAN_DATA_ERRORS. Records that have been posted to GL (posted to
GL='Y') can be purged from the table during the subsequent batch run. Records posted to
Clearing (Posted to GL='C'learing) during end-of-month processing for any given month will
be purged by the batch during the end-of-month processing for the following month.

Chapter 17
Purge Stock Ledger History (salprg)

17-11

Restart/Recovery
N/A

Design Assumptions
N/A

Purge Stock Ledger History (stkledgr_hist_purge_job)

Module Name stkledgr_hist_purge_job

Description Purge Stock Ledger History

Functional Area Stock Ledger

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from general ledger key mapping
table based on its purge criteria from system parameter settings. The Retain
Transaction Data Days parameter will determine how many days the Transaction Data
History records should be kept in the system. These records are chunked and Thread
ID is assigned for each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from general ledger key mapping
table. PARTITION_SQL.PURGE_INTERVAL_PARTITION is also called passing the
target table name "TRAN_DATA_HISTORY" and will execute the proper deletion/
purging of records from target table by exercising table partitioning handling such as
Dropping Interval Partition (same as truncate or delete from table). It will free up and
clean the staging table afterwards. There is a STOP ON NEXT feature in bulk
processing (through a loop) where Administrators can stop this batch with a flip of this
indicator.

The decision to insert or not to insert the records into the history tables is based on the
Archive Indicator and Archive Job Indicator from the Background Process
Configuration table.

1. If both the Archive Indicator and Archive Job Indicator values are Y, then the data
from the base tables are inserted into the history tables.

Chapter 17
Purge Stock Ledger History (stkledgr_hist_purge_job)

17-12

2. If both indicators are set to ‘N’, then the records are deleted from the base tables without
inserting into the history tables.

Note:

For more information on how to configure this process for archiving, see the
Merchandising Implementation Guide section titled "Background Process
Configuration".

Restart/Recovery
N/A

Key Tables Affected

Table 17-2 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_STKLEDGR_HIST_PURGE_STG Yes Yes No Yes

TRAN_DATA_HISTORY No No No Yes

KEY_MAP_GL No No No Yes

TRAN_DATA_HISTORY_PRG_HIST No Yes No No

Design Assumptions
N/A

Stage Stock Ledger Transactions for Additional Processing
(salstage)

Module Name salstage.pc

Description Stage Stock Ledger Transactions for Additional Processing

Functional Area Stock Ledger

Module Type Business Processing

Module Technology ProC

Catalog ID RMS345

Wrapper Script rmswrap.ksh

Chapter 17
Stage Stock Ledger Transactions for Additional Processing (salstage)

17-13

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
In order to make the rollup and extraction of the stock ledger transaction data flexible,
this program moves the data on the TRAN_DATA to the IF_TRAN_DATA staging table.
This will enable the processes that are writing records to TRAN_DATA to continue in a
seamless manner, whereas the processes that rolls the data up to a different level or
extract the data to external systems can work without affecting batch timetables.

This process will be achieved by locking the TRAN_DATA table and moving all of the
data to the staging table. The original TRAN_DATA table will be emptied and the lock
on the table will be released. Before this processing occurs, the staging table will first
be emptied to ensure that data is not processed twice. Because the data on the
TRAN_DATA and IF_TRAN_DATA tables is very transitional, these tables will fill up
and be truncated at least once a day if not several times per day.

Restart/Recovery
N/A

Design Assumptions
N/A

Stock Ledger Table Maintenance (salmaint)

Module Name salmaint.pc

Description Stock Ledger Table Maintenance

Functional Area Stock Ledger

Module Type Admin

Module Technology ProC

Catalog ID RMS342

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This module calls a function to drop partitions on HALF_DATA, DAILY_DATA,
WEEK_DATA and MONTH_DATA tables.

Chapter 17
Stock Ledger Table Maintenance (salmaint)

17-14

Restart/Recovery
N/A

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

I/O Specification
N/A

Stock Ledger Table Maintenance (stock_ledger_purge_job)

Module Name stock_ledger_purge_job

Description Stock Ledger Table Maintenance

Functional Area Stock Ledger

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of one step processing only. It will retain the business logic
processing from the original batch program algorithm.

The Business logic program will invoke a call to a new program specific for handling historical
tables such as Half Data table, and so on. that are considered partitioned tables.
PARTITION_SQL.PURGE_INTERVAL_PARTITION is called passing each target table
names "HALF_DATA", "DAILY_DATA", "WEEK_DATA", and "MONTH_DATA" This called
program will execute the proper deletion/purging of records from target table by exercising
table partitioning handling such as Dropping Interval Partition (same as truncate or delete
from table).

Chapter 17
Stock Ledger Table Maintenance (stock_ledger_purge_job)

17-15

Restart/Recovery
N/A

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table 17-3 Key Tables Affected

Table Select Insert Update Delete

SYSTEM_OPTIONS Yes No No No

SYSTEM_VARIABLES Yes No No No

RMS_BATCH_STATUS Yes No No No

JOB_AUDIT_LOGS No Yes No No

ALL_PART_TABLES Yes No No No

ALL_TAB_PARTITIONS Yes No No No

HALF_DATA No No No Yes

DAILY_DATA No No No Yes

WEEK_DATA No No No Yes

MONTH_DATA No No No Yes

I/O Specification
N/A

Weekly Rollup of Data/Calculations for Stock Ledger
(salweek)

Module Name salweek.pc

Description Weekly Rollup of Data/Calculations for Stock Ledger

Functional Area Stock Ledger

Module Type Business Processing

Chapter 17
Weekly Rollup of Data/Calculations for Stock Ledger (salweek)

17-16

Module Technology ProC

Catalog ID RMS346

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule.

Design Overview
This program is responsible for performing the weekly summarization processing in the stock
ledger. This program processes all weeks that are in the month for which month-end process
has not been run, up to the current week. It rolls up data on DAILY_DATA,
DAILY_DATA_TEMP and WEEK_DATA_TEMP to the corresponding dept/class/subclass/
location/half-month/week/currency level and updates the WEEK_DATA table.

This program processes all weeks that are in the month for which month-end process has not
been run, up to the current week. This program can be run at any time during the week - not
necessarily just at week-end, as it must be run before the Monthly Stock Ledger Processing,
which can be run at any time after the closing of a month.

In addition to the summarization processes done by this program, there are several week
ending calculations done as well. The closing stock value, half to date goods available for
sale (HTD GAFS), shrinkage and gross margin are calculated by calling a package function,
based on the accounting method designated for the department - cost or retail. Additionally,
the closing stock value for a processed week becomes opening stock value for the next
week. Also, if this program is run at the end of the week, it will write a 'shell' record for the
next week, populating the key fields on the table (subclass, location, and so on), the opening
stock values at cost and retail and the HTD GAFS at cost and retail. It may be noted that
these shell records will be created only for those subclass/location/ week combinations that
have a non-zero value of ending inventory or a non-zero value of HTD GAFS.

Restart/Recovery
The logical unit of work is dept/class/subclass combination. A commit will take place when
number of dept/class/subclass combination records processed is equal to commit max
counter in restart control table.

Design Assumptions
N/A

Chapter 17
Weekly Rollup of Data/Calculations for Stock Ledger (salweek)

17-17

18
Franchise Management

To scale up business operations and market presence, particularly in new markets, retailers
may choose to utilize business partners to manage branded or co-branded stores while
retaining the retailer's business processes and value proposition. Businesses who partner
with a retailer to expand the retailer's presence are known as franchisees. Retailers using the
Franchise Management component in Merchandising can choose to manage inventory for
some, all, or none of the franchise locations in the solution.

The batch processes that are used for Franchise Management in Merchandising fall primarily
into the following areas:

• Managing customer groups and customers

• Managing franchise costing

• Managing franchise orders and returns

Program Summary
The following batch designs are included in this functional area:

• Apply Supplier Cost Change to Franchise Orders (wf_apply_supp_cc.ksh)

• Franchise Customer Staging Purge (fcustupldpurge)

• Franchise Order Close (wf_orders_close_job) - background process

• Franchise Order Close (wfordcls)

• Franchise Order Purge (wf_orders_purge_job) - background process

• Franchise Order Purge (wfordprg)

• Franchise Return Close (wf_returns_close_job) - background process

• Franchise Return Close (wfretcls)

• Franchise Return Purge (wf_returns_purge_job) - background process

• Franchise Return Purge (wfrtnprg)

• Process Cost Buildup Template Upload (fcosttmplprocess)

• Process Uploaded Franchise Customers and Customer Groups (fcustomerprocess)

• Purge Staged Cost Template Data (fcosttmplpurge)

• Purge Staged Cost Template Data (wf_cost_template_purge_job) - background process

See also Merchandising Operations Guide Volume 2 for details on Franchise related
scheduled integration programs:

• Upload Cost Buildup Template (fcosttmplupld.ksh)

• Franchise Customer Upload (fcustomerupload.ksh)

• Franchise Order Upload (wfordupld.ksh)

• Franchise Return Upload (wfretupld.ksh)

18-1

• Upload of Franchise Sales to Merchandising (wfslsupld.ksh)

• Franchise Billing Extract (wfbillex)

Apply Supplier Cost Change to Franchise Orders
(wf_apply_supp_cc.ksh)

Module Name wf_apply_supp_cc.ksh

Description Apply Supplier Cost Change to Franchise Orders

Functional Area Franchise Management

Module Type Business Processing

Module Technology ksh

Catalog ID RMS389

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This function updates approved franchise orders for supplier sourced records whose
items/franchise stores are impacted by supplier cost changes. Only those item/
franchise store combinations that use cost templates based on supplier cost or have
not had a fixed cost defined on the order are eligible to be updated. Only those
supplier cost changes that were flagged as recalculating orders result in this update.

Restart/Recovery
N/A

Design Assumptions
• The pricing cost for franchise orders in input or pending credit approval status is

not updated because the order cost will be updated based on any changes on
franchise order approval.

Franchise Customer Staging Purge (fcustupldpurge)

Module Name fcustomerupldpurge.ksh

Description Franchise Customer Staging Purge

Functional Area Franchise Management

Module Type Admin

Module Technology ksh

Catalog ID RMS493

Wrapper Script rmswrap_shell.ksh

Chapter 18
Apply Supplier Cost Change to Franchise Orders (wf_apply_supp_cc.ksh)

18-2

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This module purges data from the staging tables used by the Franchise Customer Upload
and Franchise Customer Process scripts. It is designed to purge all the data from the staging
tables that have passed the system parameter for Foundation Staging Retention days.

Restart/Recovery
N/A

Design Assumptions
N/A

Franchise Order Close (wf_orders_close_job)

Module Name wf_orders_close_job

Description Franchise Order Close

Functional Area Franchise Management

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two-step processing. It will have a threading assignment
and a business logic processing.

Thread assignment program will filter eligible records from franchise order header table
based on its conditions are met:

• Franchise Order is not in Input (I) or Requires Credit Approval (R) status.

• All the transfers associated with the franchise order are in closed/deleted status.

• All the allocations associated with franchise order are in closed status.

• All the purchase orders associated with franchise order are in closed status.

• Store orders associated with franchise order do not have a null processed date or a need
qty > 0.

Chapter 18
Franchise Order Close (wf_orders_close_job)

18-3

These records are chunked and Thread ID is assigned for each. They will be stored
temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will update the records from franchise order header table to
"D" (Closed) status. It will free up and clean the staging table afterwards. There is a
STOP ON NEXT feature in bulk processing (through a loop) where Administrators can
stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 18-1 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_WF_ORDERS_CLOSE_
STG

Yes Yes No Yes

WF_ORDER_HEAD Yes No Yes No

TSFHEAD Yes No No No

STORE_ORDERS Yes No No No

ORDHEAD Yes No No No

ALLOC_DETAIL Yes No No No

ALLOC_HEADER Yes No No No

Design Assumptions
N/A

Franchise Order Close (wfordcls)

Module Name wfordcls.pc

Description Franchise Order Close

Functional Area Franchise Management

Module Type Admin

Module Technology ProC

Catalog ID RMS391

Wrapper Script rmswrap_multi.ksh

Chapter 18
Franchise Order Close (wfordcls)

18-4

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program is used to close the Franchise orders if the conditions below are met:

• Franchise Order is not in Input (I) or Requires Credit Approval (R) status.

• All the transfers associated with the franchise order are in closed/deleted status.

• All the allocations associated with franchise order are in closed status.

• All the purchase orders associated with franchise order are in closed status.

• Store orders associated with franchise order do not have a null processed date or a need
qty > 0.

Restart/Recovery
The logical unit of work for this module is defined as a unique franchise order number. The
restart franchise order view is used for threading. This batch program uses table-based
restart/recovery. The commit happens in the database when the maximum commit counter is
reached.

Design Assumptions
N/A

Franchise Order Purge (wf_orders_purge_job)

Module Name wf_orders_purge_job

Description Franchise Order Purge

Functional Area Franchise Management

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Design Overview
This background job is composed of two-step processing. It will have a threading assignment
and a business logic processing.

Thread assignment program will filter eligible records from franchise orders header table
based on its conditions are met and number of days elapsed as defined by system parameter
setting, Franchise History Months:

• All Franchise Order Details have its NOT_AFTER_DATE not yet elapsed as declared by
the system parameter setting.

Chapter 18
Franchise Order Purge (wf_orders_purge_job)

18-5

• All the franchise returns associated with the franchise order were deleted or
purged.

• All the billing records associated with the franchise order are not yet extracted or
where not enough time has elapsed since they were extracted as defined by the
system parameter setting.

• All transfers, Orders and Store Orders associated with the franchise order were
purged through their respective purge process.

These records are chunked and Thread ID is assigned for each. They will be stored
temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from franchise orders header and
other related franchise order tables. It will free up and clean the staging table
afterwards. There is a STOP ON NEXT feature in bulk processing (through a loop)
where Administrators can stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 18-2 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_WF_ORDERS_PURGE_
STG

Yes Yes No Yes

WF_ORDER_HEAD Yes No No Yes

WF_ORDER_DETAIL Yes No No Yes

WF_BILLING_SALES Yes No No Yes

WF_ORDER_AUDIT No No No Yes

WF_ORDER_EXP No No No Yes

TSFHEAD Yes No No No

ORDHEAD Yes No No No

ALLOC_DETAIL Yes No No No

STORE_ORDERS Yes No No No

Design Assumptions
N/A

Chapter 18
Franchise Order Purge (wf_orders_purge_job)

18-6

Franchise Order Purge (wfordprg)

Module Name wfordprg.pc

Description Franchise Order Purge

Functional Area Franchise Management

Module Type Admin

Module Technology ProC

Catalog ID RMS392

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program is used to purge franchise orders from Merchandising after a set number
of days have elapsed, as defined by the system parameter Franchise History Months.
Additionally, in order to be purged via this process, the franchise orders must have no
associated franchise returns and must not have any billing records that have not been
extracted or where not enough time has elapsed since they were extracted, as defined by the
Franchise History Months system parameter.

Restart/Recovery
The logical unit of work for this module is defined as a unique franchise order number. The
restart franchise order view is used for threading. This batch program uses table-based
restart/recovery. The commit happens in the database when the maximum commit counter is
reached.

Design Assumptions
• Transfers, Allocations, POs and Store Orders associated with franchise orders are

deleted through purge processes for those functional areas (e.g. tsfprg for Transfers).
Franchise orders will not be allowed to be deleted until these associated records have
been removed via the other processes.

Franchise Return Close (wf_returns_close_job)

Module Name wf_returns_close_job

Description Franchise Return Close

Functional Area Franchise Management

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Chapter 18
Franchise Order Purge (wfordprg)

18-7

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two-step processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from franchise return header
table based on if these conditions are met:

• Franchise Returns is not in Input (I) or Closed (D) status.

• All the transfers associated with the franchise return are in closed/deleted status.

These records are chunked and Thread ID is assigned for each. They will be stored
temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will update the records from franchise return header table to
"D" (Closed) status. It will free up and clean the staging table afterwards. There is a
STOP ON NEXT feature in bulk processing (through a loop) where Administrators can
stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 18-3 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_WF_RETURNS_CLOSE
_STG

Yes Yes No Yes

WF_RETURN_HEAD Yes No Yes No

TSFHEAD Yes No No No

Design Assumptions
N/A

Chapter 18
Franchise Return Close (wf_returns_close_job)

18-8

Franchise Return Close (wfretcls)

Module Name wfretcls.pc

Description Franchise Return Close

Functional Area Franchise Management

Module Type Admin

Module Technology ProC

Catalog ID RMS394

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program is used to close franchise returns that are not in input status where all the
associated transfers for the return are either in closed or deleted status.

Restart/Recovery
The logical unit of work for this module is defined as a unique return order number. The
restart franchise return view is used for threading. This batch program uses table-based
restart/recovery. The commit happens in the database when the maximum commit counter is
reached.

Design Assumptions
N/A

Franchise Return Purge (wf_returns_purge_job)

Module Name wf_returns_purge_job

Description Franchise Return Purge

Functional Area Franchise Management

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 18
Franchise Return Close (wfretcls)

18-9

Design Overview
This background job is composed of two-step processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from franchise returns header
table based on its conditions are met and number of days elapsed as defined by
system parameter setting, Franchise History Months:

• All the billing records associated with the franchise order are not yet extracted or
where not enough time has elapsed since they were extracted as defined by the
system parameter setting.

• All transfers associated with the franchise order were purged through their
respective purge process.

These records are chunked and Thread ID is assigned for each. They will be stored
temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will delete the records from franchise returns header and
other related franchise return tables. It will free up and clean the staging table
afterwards. There is a STOP ON NEXT feature in bulk processing (through a loop)
where Administrators can stop this batch with a flip of this indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 18-4 Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_WF_RETURNS_PURGE
_STG

Yes Yes No Yes

WF_RETURN_HEAD Yes No No Yes

WF_RETURN_DETAIL No No No Yes

WF_BILLING_RETURNS Yes No No Yes

TSFHEAD Yes No No No

Design Assumptions
N/A

Chapter 18
Franchise Return Purge (wf_returns_purge_job)

18-10

Franchise Return Purge (wfrtnprg)

Module Name wfrtnprg.pc

Description Franchise Return Purge

Functional Area Franchise Management

Module Type Admin

Module Technology ProC

Catalog ID RMS396

Wrapper Script rmswrap_multi.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program is used to purge franchise returns from the Merchandising after a set
number of days have elapsed, as defined by the system parameter Franchise History
Months. Additionally, in order to be purged via this process, the franchise returns must have
no associated billing records that have not been extracted or where not enough time has
elapsed since they were extracted, as defined by the Franchise History Months system
parameter.

Restart/Recovery
The logical unit of work for this module is defined as a unique return order no. The restart
franchise return view is used for threading. This batch program uses table-based restart/
recovery. The commit happens in the database when the maximum commit counter is
reached.

Design Assumptions
• Transfers associated with franchise returns are deleted through the Transfer Purge

(tsfprg) process. Franchise returns will not be allowed to be deleted until these
associated records have been removed via that process.

Process Cost Buildup Template Upload (fcosttmplprocess)

Module Name fcosttmplprocess.ksh

Description Process Cost Buildup Template Upload

Functional Area Franchise Management

Module Type Business Processing

Module Technology ksh

Catalog ID RMS224

Wrapper Script batch_fprocess.ksh

Chapter 18
Franchise Return Purge (wfrtnprg)

18-11

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This module processes franchise cost buildup templates and franchise cost
relationships that were uploaded from an external source into staging tables and loads
them from the staging tables into Merchandising base tables. The module is designed
to process inserts, updates and deletes for these data elements.

Restart/Recovery
The restart recovery is different from the conventional Merchandising batch.

During the batch process, you can evaluate the successful processing of data in the
following way:

PL/SQL function will load the data from staging tables into Merchandising tables. For
records that result (insert/update/delete) in constraint error or are not found in the
Merchandising tables (for update/delete) are rejected and the information is updated
back in the corresponding staging table with appropriate error message. Also, records
that do not meet certain business validations (which can only be validated during data
processing) are rejected and the information is updated back in the corresponding
staging table with appropriate error message.

Action Required: When this condition exists, you can fix the data upload file and try
to reload and process the data.

Design Assumptions
N/A

Process Uploaded Franchise Customers and Customer
Groups (fcustomerprocess)

Module Name fcustomerprocess.ksh

Description Process Uploaded Franchise Customers and Customer Groups

Functional Area Franchise Management

Module Type Business Processing

Module Technology ksh

Catalog ID RMS492

Wrapper Script batch_fprocess.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 18
Process Uploaded Franchise Customers and Customer Groups (fcustomerprocess)

18-12

Design Overview
This module processes the franchise customer groups and franchise customers information
from the staging tables and loads it into Merchandising base tables for franchise customer
groups and franchise customer information. It is also designed to process (insert/update or
delete) the validated data that maps to franchise customer groups and franchise customer
information.

Restart/Recovery
The restart recovery is different from the conventional Merchandising batch. During the batch
process, you can evaluate the successful processing of data in the following way:

• PL/SQL function will load the data from staging tables into Merchandising tables. For
records that result (insert/update/delete) in constraint error or are not found in the
Merchandising tables(for update/delete) are rejected and the information is updated back
in the corresponding staging table with appropriate error message.

Also, records that do not meet certain business validations (which can only be validated
during data processing) are rejected and the information is updated back in the
corresponding staging table with appropriate error message.

Action Required: When this condition exists, you can fix the data upload file and try to
reload and process the data.

Commit Points
Commit points are performed per transaction.

Design Assumptions
N/A

Program Flow
This diagram describes the process flow of the fcustomerprocess.ksh module.

Chapter 18
Process Uploaded Franchise Customers and Customer Groups (fcustomerprocess)

18-13

Figure 18-1 Process Flow

Purge Staged Cost Template Data (fcosttmplpurge)

Module Name fcosttmplpurge.ksh

Description Purge Staged Cost Template Data

Functional Area Franchise Management

Module Type Admin

Module Technology ksh

Catalog ID RMS225

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This module purges data from the staging tables used by the Cost Buildup Template
Upload process. The module is designed to purge all the data from the staging tables
that have passed the system parameter Foundation Staging Retention days.

Restart/Recovery
N/A

Chapter 18
Purge Staged Cost Template Data (fcosttmplpurge)

18-14

Design Assumptions
N/A

Purge Staged Cost Template Data
(wf_cost_template_purge_job)

Module Name wf_cost_template_purge_job

Description Purge Staged Cost Template Data

Functional Area Franchise Management

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of one step processing only. It will retain the business logic
processing from original KSH script algorithm.

The Business logic program will remove all old/aged records from the staging tables used by
the Cost Buildup Template Upload process which have passed the purge criteria from the
system parameter setting, Foundation Staging Retention Days.

Restart/Recovery
N/A

Key Tables Affected

Table 18-5 Key Tables Affected

Table Select Insert Update Delete

SVC_WF_COST_TMPL_UPLD_
FHEAD

No No No Yes

SVC_WF_COST_TMPL_UPLD_
THEAD

No No No Yes

SVC_WF_COST_TMPL_UPLD_
TDETL

No No No Yes

SVC_WF_COST_TMPL_UPLD_
TTAIL

No No No Yes

Chapter 18
Purge Staged Cost Template Data (wf_cost_template_purge_job)

18-15

Table 18-5 (Cont.) Key Tables Affected

Table Select Insert Update Delete

SVC_WF_COST_TMPL_UPLD_
FTAIL

No No No Yes

SVC_WF_COST_TMPL_UPLD_
STATUS

No No No Yes

SYSTEM_OPTIONS Yes No No No

Design Assumptions
N/A

Chapter 18
Purge Staged Cost Template Data (wf_cost_template_purge_job)

18-16

19
Sales Audit

The purpose of Sales Audit is to accept transaction data from point-of-sale (POS) and order
management (OMS) solutions and move the data through a series of processes that
culminate in "clean" data. Data that Sales Audit finds to be inaccurate is brought to the
attention of the auditors who can use the features in Sales Audit to correct the exceptions.

Sales Audit uses several batch-processing modules to:

• Import POS/OMS transaction data sent from the store to the Sales Audit database

• Produce totals from user-defined totaling calculation rules that a user can review during
the interactive audit

• Validate transaction and total data with user-defined audit rules that generate errors
whenever data does not meet the criteria

• Create and export files in formats suitable for transfer to other applications

• Update previously exported data with adjustments received from external systems

The term store day is used throughout this chapter. Store day describes all transactions that
occur in one business day at one store or location. Because retailers need the ability to audit
transactions on a store-by-store basis for a defined period of time, store day data is
maintained separately, beginning with the initial import of data from the POS/OMS system.

The following diagram illustrates how data flows within Sales Audit and between Sales Audit
and other applications.

Note:

All integrations are not depicted in this diagram.

19-1

Figure 19-1 Oracle Retail Sales Audit Dataflow Diagram

Import Process
Importing data from the POS to Sales Audit is a multi-step process that involves
several Sales Audit batch processes.

Preparing for Import
• Create Store Day for Expected Transactions (sastdycr) prepares the Sales

Audit tables for data upload.

• Get Reference Data for Sales Audit Import Processing (sagetref) creates a
number of reference files to be used for validation in the POS File Validation/
Upload Process.

Importing Data
See the Merchandising Operations Guide Volume 2 for details on the following import
programs:

• Import of Unaudited Transaction data from POS to Sales Audit (saimptlog/
saimptlogi) validates files and uploads their transactions into the Sales Audit
tables. This includes (as necessary) creating errors for the auditors to address.

• Sales Audit Voucher Upload (savouch) processes voucher sales and
redemptions.

• Import Total Value Adjustments From External Systems to Sales Audit
(saimpadj) imports adjustments to previously imported data.

Chapter 19
Import Process

19-2

• Customer Engagement Promotion Service (CePromoBatch.ksh) calls the ORCE
webservice to retrieve promotion information, if using that solution to create promotions.

Import Processing Programs
• Processing to Allow Re-Upload of Deleted Transactions (saimptlogtdup_upd)

fetches deleted transactions for a store day and modifies the tdup files remove deleted
transactions in order to facilitate the saimptlog/saimptlogi uploads of deleted transactions
again.

• Complete Transaction Import Processing (saimptlogfin) executes a number of import
cleanup processes.

Chapter 19
Import Process

19-3

Figure 19-2 Oracle Retail Sales Import Process

Auditing Processing Programs
In addition to the base validations performed during auditing, there is the ability to
define custom rules and totals. Custom rules allow you to define specific rules that are
important for your business to validate for transaction. Custom totals provide the ability
for you to define specific totals that you want calculated by Sales Audit during the
auditing process. These totals are usually used for integrating to the General Ledger
but can also be used for other integrations as well. Other programs in this section are
helper programs used during the import, export, or auditing processes, or used for
overall data maintenance.

Chapter 19
Auditing Processing Programs

19-4

Sales Audit Processing Programs
• Calculate Totals Based on Client Defined Rules (satotals) totals transactions based

on calculation definitions that you create using the online Totals Calculation Definition.

• Evaluate Transactions and Totals based on Client Defined Rules (sarules) audits
transactions for retailer-defined audit rules.

• Prevent Duplicate Export of Total Values from ReSA (sapreexp) tracks all changed
totals for the store day since the last export by comparing the latest prioritized version of
each total defined for export with the version that was previously sent to each system.

• Generate Next Sequence for Escheatment Processing (saescheat_nextesn) gets the
next free sequence for use in the saescheat process.

• Pre/Post Helper Processes for ReSA Batch Programs (saprepost) facilitates multi-
threading by allowing general system administration functions (such as table deletions or
mass updates) to be completed after all threads of a particular Sales Audit program have
been processed.

• Purge Aged RTLOG Data (sartlogdatapurge) drops the partitions from the history and
reject tables used by the Sales Service to load RTLOG files.

• Purge Aged Store/Day Transaction, Total Value and Error Data from Sales Audit
(sapurge) removes aged data from Sales Audit.

• Purge the Invalid In-progress Sales Bucket (sainprogresspurge) deletes records
from in-progress staging tables for the Store Days that have been closed and for which
all the sales data has been exported to Merchandising.

There are also some background jobs that can be run as an alternative to some of these
audit processing programs. These include:

• Calculate Totals Based on Client Defined Rules (sa_totals_calc_job)

• Evaluate Transactions and Totals based on Client Defined Rules (sa_rules_eval_job)

• Purge Into History Tables (b8d_sa_purge)

Lastly, there are two programs that are used for migrating totals and rules between
environments:

• Extract Totals and Rules (sa_rules_total_extract)

• Migrate Totals and Rules (sa_rules_total_upload)

Export Process
Another key function of Sales Audit is to export audited data to other solutions. This includes
Merchandising, Invoice Matching, within the Merchandising suite of solutions, but also
commonly includes exports to store inventory (SIM/SIOCS), Oracle Retail Insights Cloud
Service (ORI), and external financials institutions.

Depending upon the application, exported data consists of either transaction data or totals, or
both. The process of exporting transaction data varies according to the unit of work selected
in the Sales Audit system options. There are two units of work, transaction or store day. If the
unit of work selection is transaction, Sales Audit exports transactions as soon as they are free
of errors. If the unit of work selection is store day, transactions are not exported until all errors
for that store day are either overridden or corrected.

Chapter 19
Export Process

19-5

Full Disclosure and Post-export Changes
If you modify data during the interactive audit that was previously exported to
Merchandising, Sales Audit export batch modules re-export the modified data in
accordance with a process called full disclosure. Full disclosure means that any
previously exported values are fully backed out before the new value is sent.

Export Programs
See the Merchandising Operations Guide Volume 2 for details on the following export
programs:

• Download from Sales Audit to Account Clearing House (ACH) System (saexpach)

• Download of Escheated Vouchers from Sales Audit for Payment (saescheat)

• Export DSD and Escheatment from Sales Audit to Invoice Matching (saexpim)

• Export from Sales Audit to Oracle Retail Analytics (saexpdw)

• Export Inventory Reservation/Release for In Store Customer Order & Layaway
Transactions from Sales Audit (saordinvexp)

• Export of Revised Sale/Return Transactions from Sales Audit to SIM (saexpsim)

• Export of POS Transactions from Sales Audit to Merchandising (saexprms)

• Export to Universal Account Reconciliation System from Sales Audit (saexpuar)

• Extract of POS Transactions by Store/Date from Sales Audit for Web Search
(ang_saplgen.ksh)

• Post User Defined Totals from Sales Audit to General Ledger (saexpgl)

Calculate Totals Based on Client Defined Rules
(sa_totals_calc_job)

Module Name sa_totals_calc_job

Description Calculate Totals based on Client Defined Rules

Functional Area Sales Audit, Totals

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 19
Calculate Totals Based on Client Defined Rules (sa_totals_calc_job)

19-6

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from the Sales Audit Store/Day table for
all stores wherein auditing status is "Re-Totaling/Auditing Required". Totaling provides the
values against which auditors can compare receipts. These comparisons find data errors that
could be the result of either honest mistakes or fraud. Finding these mistakes during the
sales auditing process prevents these errors from being passed on to merchandising and
data warehouse systems. Totaling also provides quick access to other numeric figures about
the day's sales transactions.

Totaling in Sales Audit is dynamic. Sales Audit automatically totals transactions based on
calculation definitions that the retailer's users create using the online Totals Calculation
Definition Wizard. In addition, the retailer is able to define totals that come from the POS but
that Sales Audit does not calculate. Whenever users create new calculation definitions or edit
existing ones, they become part of the automated totaling process the next time that this
program runs. These records are chunked and Thread ID is assigned for each. They will be
stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will process the records for totals build-up and calculation by calling
SA_BUILD_TOTAL_SQL.PROCESS_CALC_TOTALS for each store day captured. It will free
up and clean the staging table afterwards. There is a STOP ON NEXT feature in bulk
processing (through a loop) where Administrators can stop this batch with a flip of this
indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 19-1 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_SA_TOTALS_CALC_STG Yes Yes No Yes

SA_STORE_DAY Yes No Yes No

SA_TOTAL No Yes No No

SA_TOTAL_HEAD Yes No No No

SA_ERROR No Yes No Yes

SA_ERROR_WKSHT No Yes No Yes

SA_POS_VALUE No Yes No No

SA_POS_VALUE_WKSHT No Yes No No

SA_SYS_VALUE No Yes No No

Chapter 19
Calculate Totals Based on Client Defined Rules (sa_totals_calc_job)

19-7

Table 19-1 (Cont.) Key Tables Affected

Table Select Insert Update Delete

SA_SYS_VALUE_WKSHT No Yes No No

SA_ERROR_REV No Yes No No

SA_EXPORTED_REV No Yes No No

SA_EXPORTED No No No Yes

Design Assumptions
N/A

Calculate Totals Based on Client Defined Rules (satotals)

Module Name satotals.pc

Description Calculate Totals based on Client Defined Rules

Functional Area Sales Audit, Totals

Module Type Business Processing

Module Technology ProC

Catalog ID RSA16

Wrapper Script batch_satotals.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This module produces totals from user-defined total calculation rules. Totaling is
integral to the sales auditing process. Totaling provides the values against which
auditors can compare receipts. These comparisons find data errors that could be the
result of either honest mistakes or fraud. Finding these mistakes during the sales
auditing process prevents these errors from being passed on to merchandising and
data warehouse systems. Totaling also provides quick access to other numeric figures
about the day's sales transactions.

Totaling in Sales Audit is dynamic. Sales Audit automatically totals transactions based
on calculation definitions that the retailer's users create using the online Totals
Calculation Definition Wizard. In addition, the retailer is able to define totals that come
from the POS, but that Sales Audit does not calculate. Whenever you create new
calculation definitions or edit existing ones, they become part of the automated totaling
process the next time that this process runs.

Restart/Recovery
The logical unit of work for this program is a SA_STORE_DAY record. Records are
committed to the database when the commit_max_ctr defined for SATOTALS on the

Chapter 19
Calculate Totals Based on Client Defined Rules (satotals)

19-8

RESTART_CONTROL table is reached. This program achieves inherent restart/recovery due
to the fact that store/day records that are processed will be updated to an audit_status of T
for Totaled and will not be fetched by the driving cursor when the program restarts.

Design Assumptions
N/A

Complete Transaction Import Processing (saimptlogfin)

Module Name saimptlogfin.pc

Description Complete Transaction Import Processing

Functional Area Oracle Retail Sales Audit

Module Type Admin

Module Technology ProC

Catalog ID RSA38

Wrapper Script batch_saimptlogfin.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The saimptlogfin program creates the balances (over or under) by store, register, or cashier
and populates it in the SA_BALANCE_GROUP table. It also cancels post voided transactions
and vouchers and validates missing transactions. It marks the store day record in the Sales
Audit import log as partially or fully loaded. This will unlock the store day records after all
store transactions are imported. This will also close the store day for the previous day for an
online store, if there was no DCLOSE transaction received for it.

Restart/Recovery
N/A

Design Assumptions
N/A

Create Store Day for Expected Transactions (sastdycr)

Module Name sastdycr.pc

Description Create Store Day for Expected Transactions

Functional Area Oracle Retail Sales Audit

Module Type Business Processing

Module Technology ProC

Chapter 19
Complete Transaction Import Processing (saimptlogfin)

19-9

Catalog ID RSA15

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The sastdycr batch program will create store/day, import log, and export log records.
This program should run prior to uploading the sales data from POS/OMS for a given
store/day. Store/days will be created for any open store expecting sales.

This program will also create Store/days a few days prior to the actual business date
for the online stores, based on
SA_SYSTEM_OPTIONS.CREATE_STORE_DAY_PRIOR.

This will be taken into consideration only when the program is executed without any
date input.

Restart/Recovery
The logical unit of work in this program is store. Records are committed to the
database when the commit counter is reached. The commit counter is defined by the
value of INCREMENT_BY on the ALL_SEQUENCE table for the sequence
SA_STORE_DAY_SEQ_NO_SEQUENCE.

Design Assumptions
N/A

Evaluate Transactions and Totals based on Client Defined
Rules (sa_rules_eval_job)

Module Name sa_rules_eval_job

Description Evaluate Transactions and Totals based on Client Defined Rules

Functional Area Oracle Retail Sales Audit

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Chapter 19
Evaluate Transactions and Totals based on Client Defined Rules (sa_rules_eval_job)

19-10

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records from the Sales Audit Store/Day table for
all stores wherein auditing status is "Totaled". Evaluating rules is integral to the sales auditing
process. Rules make the comparisons between data from various sources. These
comparisons find data errors that could be the result of either honest mistakes or fraud.
Finding these mistakes during the sales auditing process prevents these errors from being
passed on to merchandising and data warehouse systems.

Rules in Sales Audit are dynamic. Aside from basic data validations rules are not predefined
in the system. Retailers have the ability to define through the online Rule Definition Wizard.
Errors uncovered by these rules are available for review on-line during the interactive audit
process. After users modify existing rules or create new ones, they become part of the rules
the next time that this program runs. These records are chunked and Thread ID is assigned
for each. They will be stored temporarily in a staging table.

The Business logic program will process all records from the staging table. Using bulk
processing, this program will process the records for auditing evaluation by calling
SA_AUDIT_RULES_SQL.PROCESS_AUDIT_RULES for each store day captured. It will free
up and clean the staging table afterwards. There is a STOP ON NEXT feature in bulk
processing (through a loop) where Administrators can stop this batch with a flip of this
indicator.

Restart/Recovery
N/A

Key Tables Affected

Table 19-2 Key Tables Affected

Table Select Insert Update Delete

RMS_BATCH_STATUS Yes No No No

B8D_PROCESS_CONFIG Yes No No No

JOB_AUDIT_LOGS No Yes No No

B8D_SA_RULES_EVAL_STG Yes No Yes Yes

SA_STORE_DAY Yes No Yes No

SA_RULE_HEAD Yes No No No

SA_RULE_LOC_TRAIT Yes No No No

SA_ERROR_WKSHT No Yes No Yes

SA_ERROR_TEMP No Yes No No

SA_ERROR No Yes Yes Yes

SA_TOTAL No No Yes No

SA_TRAN_HEAD No No Yes No

SA_TRAN_ITEM No No Yes No

Chapter 19
Evaluate Transactions and Totals based on Client Defined Rules (sa_rules_eval_job)

19-11

Table 19-2 (Cont.) Key Tables Affected

Table Select Insert Update Delete

SA_TRAN_DISC No No Yes No

SA_TRAN_TENDER No No Yes No

SA_TRAN_TAX No No Yes No

Design Assumptions
N/A

Evaluate Transactions and Totals based on Client Defined
Rules (sarules)

Module Name sarules.pc

Description Evaluate Transactions and Totals based on Client Defined Rules

Functional Area Oracle Retail Sales Audit

Module Type Business Processing

Module Technology ProC

Catalog ID RSA17

Wrapper Script batch_sarules.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
Evaluating rules is integral to the sales auditing process. Rules make the comparisons
between data from various sources. These comparisons find data errors that could be
the result of either honest mistakes or fraud. Finding these mistakes during the sales
auditing process prevents these errors from being passed on to merchandising and
data warehouse systems.

Rules in Sales Audit are dynamic. Aside from basic data validations, rules are not
predefined in the system. Retailers have the ability to define them through the online
Rule Definition Wizard. Errors uncovered by these rules are available for review online
during the interactive audit process. After you modify existing rules or create new
ones, they become part of the rules the next time that sarules.pc runs.

Restart/Recovery
The logical unit of work for this program is a SA_STORE_DAY record. Records are
committed to the database when the commit_max_ctr defined for SARULES on the
RESTART_CONTROL table is reached. This program achieves inherent restart/
recovery due to the fact that store/day records that are processed will be updated to

Chapter 19
Evaluate Transactions and Totals based on Client Defined Rules (sarules)

19-12

an audit_status of A (audited), H (HQ errors pending), or S (store errors pending) and will not
be fetched by the driving cursor when the program restarts.

Design Assumptions
N/A

Extract Totals and Rules (sa_rules_total_extract)

Module Name sa_rules_total_extract.ksh

Description Extracts totals and rules, along with their related information from a source
environment.

Functional Area Oracle Retail Sales Audit

Module Type Admin - Ad hoc

Module Technology ksh

Catalog ID

Wrapper Script rmswrap_shell_out.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program is one of a set of processes, along with Rules and Totals Upload, that migrates
customer-defined totals and rules from a source environment into the destination
environment. For example, this may be used to extract totals and rules set up in a pre-
production environment to production prior to final cutover. When these programs are run,
existing totals and rules information are extracted from the source environment, and then
uploaded into the destination environment, overlaying the totals and rules previously
configured in the target environment.

This program is the first step in the two-step process: The latest version of all totals and rules
will be extracted from the source environment and written out to flat files.

The following information is extracted from the source environment:

• Parm Type

• Realm Type

• Location Traits

• Parm with the highest sequence number

• Realm with the highest sequence number

• VR Head

• VR Realm

• VR Parms

• VR Links

Chapter 19
Extract Totals and Rules (sa_rules_total_extract)

19-13

• Total Header - latest revision for the total

• Total Header Translation - latest revision for the total

• Total Location Traits - latest revision for the total

• Total Restrictions - latest revision for the total

• Total Usage - latest revision for the total

• Rule Header - latest revision for the rule

• Rule Header Translation - latest revision for the rule

• Rule Location Trait - latest revision for the rule

• Rule Components - latest revision for the rule

• Rule Component Restrictions - latest revision for the rule

• Rule Errors - latest revision for the rule

Restart/Recovery
N/A

Design Assumptions
N/A

Generate Next Sequence for Escheatment Processing
(saescheat_nextesn)

Module Name saescheat_nextesn.pc

Description Generate Next Sequence for Escheatment Processing

Functional Area Oracle Retail Sales Audit

Module Type Admin

Module Technology ProC

Catalog ID RSA25

Wrapper Script N/A

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This batch program gets the next free sequence for use in the saescheat.pc process.
This routine goes and gets a block of numbers when starting, and parcels them out as
needed. Once they are all used up, it gets another block and returns a pointer to the
string containing the next available number or NULL if an error occurs. This process is
executed as part of the saexcheat.pc processing.

Chapter 19
Generate Next Sequence for Escheatment Processing (saescheat_nextesn)

19-14

Restart/Recovery
NA

Design Assumptions
N/A

Get Reference Data for Sales Audit Import Processing
(sagetref)

Module Name sagetref.pc

Description Get Reference Data for Sales Audit Import Processing

Functional Area Oracle Retail Sales Audit

Module Type Integration

Module Technology ProC

Catalog ID RSA00

Wrapper Script batch_sagetref.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program will fetch all reference information needed by SAIMPTLOG.PC for validation
purposes and write this information out to various output files. The following files are
produced:

• Items - contains a listing of all items in the system.

• Wastage - contains information about all items that have wastage associated with them.

• Reference Items - contains reference items, or below transaction-level items.

• Primary Variant - contains primary variant information.

• Variable Weight UPC - contains all variable weight Universal Product Code (UPC)
definitions in the system.

• Store/Days - contains all of the valid store/day combinations in the system.

• Codes and Code Types - contains all code types and codes used in field level validation.

• Error Codes and Descriptions - contains all error codes, error descriptions, and systems
affected by the error.

• Store POS Mappings

• Tender Types

• Merchants

Chapter 19
Get Reference Data for Sales Audit Import Processing (sagetref)

19-15

• Partners

• Suppliers

• Sales Audit Employees

• Banners

• Currency Codes

• Promotions

• Warehouses

• Inventory Statuses

These files will be used by the automated audit to validate information without
repeatedly hitting the database.

When running sagetref.pc, retailers can either create and specify the output files, or
create only the output that they desire. For example, a retailer interested in only
creating a more recent employeefile would simply place a hyphen (-) in place of all the
other parameters, but still specify an employeefile name. This technique can be
applied to as many or as few of the parameters as retailers wish. Note, however, that
the item-related files (itemfile, refitemfile, wastefile, and primvariantfile) contain
significant interdependence. Thus, item files must all be created or not created
together.

In the list of reference data files above, standard UOM is part of the itemfile. To obtain
the value, Sales Audit converts the selling Unit of Measure (UOM) to the standard
UOM during batch processing. This conversion enables Sales Audit to later export the
standard UOM to the systems that require its use.

Restart/Recovery
N/A

I/O Specification

Integration Type Download from Merchandising

File Name Determined by runtime parameter

Chapter 19
Get Reference Data for Sales Audit Import Processing (sagetref)

19-16

Integration Contract IntCon000113 (itemfile)

IntCon000114 (wastefile)

IntCon000115 (refitemfile)

IntCon000116 (primvariantfile)

IntCon000117 (varupcfile)

IntCon000118 (storedayfile)

IntCon000119 (promfile)

IntCon000120 (codesfile)

IntCon000121 (errorfile)

IntCon000122 (storeposfile)

IntCon000123 (tendertypefile)

IntCon000124 (merchcodesfile)

IntCon000125 (partnerfile)

IntCon000126 (supplierfile)

IntCon000127 (employeefile)

IntCon000128 (bannerfile)

IntCon000129 (promfile)

IntCon000130 (whfile)

IntCon000131 (invstatusfile)

File Name: Item File
The ItemFile file name (Itemfile) is not fixed; it is determined by a runtime parameter.

Table 19-3 Itemfile - File Layout

Field Name Field Type Default Value Description

Item Char(25) N/A Item number

Dept Number(4) N/A Department ID

Class Number(4) N/A Class

Subclass Number(4) N/A Subclass ID

Standard UOM Char(4) N/A Standard Unit of Measure

Catchweight Ind Char(1) N/A Catch weight indicator

Class vat Ind Char(1) N/A Class Vat Ind

File Name: Waste Data File
The Waste Data File file name (wastefile) is not fixed; it is determined by a runtime
parameter.

Table 19-4 wastefile - File Layout

Field Name Field Type Default Value Description

Item Char(25) N/A Item number

Waste type Char(6) N/A Waste type

Chapter 19
Get Reference Data for Sales Audit Import Processing (sagetref)

19-17

Table 19-4 (Cont.) wastefile - File Layout

Field Name Field Type Default Value Description

Waste pct Number(12,4) N/A Waste pct

File Name: Reference Item Data
The Reference Item Data file name (ref_itemfile) is not fixed; it is determined by a
runtime parameter.

Table 19-5 Ref_itemfile - File Layout

Field Name Field Type Default Value Description

Ref Item Char(25) N/A Reference Item number

Item Char(25) N/A Item number

File Name: Primary Variant Data File
The Primary Variant Data File file name (prim_variantfile) is not fixed; it is determined
by a runtime parameter.

Table 19-6 prim_variantfile - File Layout

Field Name Field Type Default Value Description

Location Number(10) N/A Location number

Item Char(25) N/A Item number

Prim Variant Char(25) N/A Primary variant

File Name: Variable Weight UPC Definition File
The Variable Weight UPC Definition File file name (varupcfile) is not fixed; it is
determined by a runtime parameter.

Table 19-7 varupcfile - File Layout

Field Name Field Type Default Value Description

Format Id Char(1) N/A Format ID

Format desc Char(20) N/A Format description

Prefix length Number(1) N/A Pefix Length

Begin item digit Number(2) N/A Item digit begin

Begin var digit Number(2) N/A Var digit begin

Check digit Number(2) N/A Check digit

Default prefix Number(1) N/A Default prefix

Prefix Number(1) N/A Prefix

Chapter 19
Get Reference Data for Sales Audit Import Processing (sagetref)

19-18

File Name: Valid Store/Day Combination File
The Valid Store/Day Combination File file name (storedayfile) is not fixed; it is determined by
a runtime parameter.

Table 19-8 storedayfile - File Layout

Field Name Field Type Default Value Description

Store Number(10) N/A Store number

Business date Char(8) N/A Business date in YYYYMMDD format

Store day seq no Number(20) N/A Store day sequence number

Day Number(3) N/A Day

Tran no generated Char(6) N/A Generated transaction number

POS data expected Char(1) N/A If system_code is POS, then Y;
otherwise N

Currency rtl dec Number(1) N/A Currency rtl dec

Currency code Char(3) N/A Currency code

Country id Char(3) N/A Country ID

Vat Include Ind Char(1) N/A Vat Include Indicator

File Name: Codes File
The Codes File file name (codesfile) is not fixed; it is determined by a runtime parameter.

Table 19-9 codefile - File Layout

Field Name Field Type Default Value Description

Code type Char(4) N/A Code type

Code Char(6) N/A Code ID

Code seq Number(4) N/A Code sequence

File Name: Error Information File
The Error Information File file name (errorfile) is not fixed; it is determined by a runtime
parameter.

Table 19-10 errorfile- File Layout

Field Name Field Type Default Value Description

Error code Char(25) N/A Error code

System Code Char(6) N/A System Code

Error desc Char(255) N/A Error description

Rec solution Char(255) N/A Error rectify solution

Chapter 19
Get Reference Data for Sales Audit Import Processing (sagetref)

19-19

File Name: Store POS Mapping File
The Store POS Mapping File file name (storeposfile) is not fixed; it is determined by a
runtime parameter.

Table 19-11 storeposfile- File Layout

Field Name Field Type Default Value Description

Store Number(10) N/A Store

POS Type Char(6) N/A Point Of Sale type

Start Tran No. Number(10) N/A Start transaction number

End Tran No. Number(10) N/A End transaction number

File Name: Tender Type Mapping File
The Tender Type Mapping File file name (tendertypefile) is not fixed; it is determined
by a runtime parameter.

Table 19-12 tendertypefile - File Layout

Field Name Field Type Default Value Description

Group Char(6) N/A Tender type Group

Id Number(6) N/A Tender type ID

Desc Char(120) N/A Tender type description

File Name: Merchant Code Mapping File
The Merchant Code Mapping File file name (merchcodesfile) is not fixed; it is
determined by a runtime parameter.

Table 19-13 merchcodesfile - File Layout

Field Name Field Type Default Value Description

Non Merch Code Char (6) N/A Non-Merchant Code

File Name: Partner Mapping File
The Partner Mapping File file name (partnerfile) is not fixed; it is determined by a
runtime parameter.

Table 19-14 partnerfile - File Layout

Field Name Field Type Default Value Description

Partner Type Char(6) N/A Partner Type

Partner Id Char(10) N/A Partner ID

Chapter 19
Get Reference Data for Sales Audit Import Processing (sagetref)

19-20

File Name: Supplier Mapping File
The Supplier Mapping File file name (supplierfile) is not fixed; it is determined by a runtime
parameter.

Table 19-15 supplierfile - File Layout

Field Name Field Type Default Value Description

Supplier Number(10) N/A Supplier ID

Sup status Char(1) N/A Supplier status

Supplier Parent Number(10) N/A Supplier Parent ID

File Name: Employee Mapping File
The Employee Mapping File file name (employeefile) is not fixed; it is determined by a
runtime parameter.

Table 19-16 employeefile - File Layout

Field Name Field Type Default Value Description

Store Number(10) N/A Store ID

POS Id Char(10) N/A Point Of Sale ID

Emp Id Char(10) N/A Employee ID

File Name: Banner Information File
The Banner Information File file name (bannerfile) is not fixed; it is determined by a runtime
parameter

Table 19-17 bannerfile - File Layout

Field Name Field Type Default Value Description

Store Number(10) N/A Store ID

Banner data Number(4) N/A Banner ID

Stockholding Ind Char(1) N/A Stockholding Indicator

Customer Order
Loc Ind

Char(1) Customer Order Location Indicator

File Name: Currency Information File
The Currency Information File file name (currencyfile) is not fixed; it is determined by a
runtime parameter.

Chapter 19
Get Reference Data for Sales Audit Import Processing (sagetref)

19-21

Table 19-18 currencyfile - File Layout

Field Name Field Type Default Value Description

Currency Code Char(1) N/A Currency Code

File Name: Promotion Information File
The Promotion Information File file name (promfile) is not fixed; it is determined by a
runtime parameter.

Table 19-19 promfile - File Layout

Field Name Field Type Default Value Description

Promotion Number(10) N/A Promotion ID

Component Number(10) N/A This contains the Offer ID value from
Pricing.

File Name: Warehouse Information File
The Warehouse Information File filename (whfile) is not fixed; it is determined by a
runtime parameter.

Table 19-20 whfile - File Layout

Field Name Field Type Default Value Description

Warehouse Number(10) N/A Warehouse ID

Physical
Warehouse

Number(10) N/A Physical Warehouse ID

Customer Order
Loc Ind

Char(1) N/A Customer Order Location Indicator

File Name: Inventory Status Information File
The Inventory Status Information File file name (invstatusfile) is not fixed; it is
determined by a runtime parameter.

Table 19-21 invstatusfile - File Layout

Field Name Field Type Default Value Description

Inventory Status Char(10) N/A Inventory Status

Design Assumptions
N/A

Chapter 19
Get Reference Data for Sales Audit Import Processing (sagetref)

19-22

A Note about Primary Variant Relationships
Depending upon a retailer's system parameters, the retailer designates the primary variant
during item setup (through the front-end) for several reasons. One of the reasons is that, in
some cases, an item may be identified at the POS by the item parent, but the item parent
may have several variants.

The primary variant is established through a form at the item location level. The retailer
designates which variant item is the primary variant for the current transaction level item. For
more information about the new item structure in Merchandising, see the Oracle Retail
Merchandising System User Guide.

In the example shown in the diagram below, the retailer has established their transaction
level as an Item Level 2.

Note:

The level of the primary variant is Item Level 1, and Item Level 3 is the sub-
transaction level (the refitem).

The retailer set up golf shirts in the merchandising system as its Item Level 1 above the
transaction level. The retailer set up two items at level 2 (the transaction level) based on size
(small and medium).

Note:

The retailer assigned the level 2 items to all of the available locations (Minneapolis,
China, and Fargo). The retailer also designated a primary variant for a single
location - a medium golf shirt, in the case of Minneapolis, and a small golf shirt, in
the case of China. The retailer failed to designate a primary variant for Fargo.

The primary variant affects Sales Audit in the following way. Sometimes a POS system does
not provide Sales Audit with item level 2 (transaction item) data. For example, assume that
the POS system in Minneapolis sold 10 medium golf shirts and 10 small golf shirts but only
informed Sales Audit that 20 golf shirts were sold. 20 golf shirts presents a problem for Sales
Audit because it can only interpret items at item level 2 (the transaction level). Thus, because
medium golf shirts was the chosen primary variant for Minneapolis, the SAGETREF.PC
module automatically transforms the 20 golf shirts into 20 medium golf shirts. If the same type
of POS system in China informed Sales Audit of 20 golf shirts (instead of the 10 medium and
10 small that were sold), the sagetref.pc module would transform the 20 golf shirts sold in
China into 20 small golf shirts. As the table shows, small golf shirts was the chosen primary
variant for the China location. Sales Audit then goes on to export the data at the item 2 level
(the transaction level) to, for example, a merchandising system, a data warehouse, and so
on.

Chapter 19
Get Reference Data for Sales Audit Import Processing (sagetref)

19-23

Note:

Depending upon system parameters, if a retailer fails to set up the primary
variant for a location, an invalid item error is generated during batch
processing. In the example below, if the POS system in Fargo sold 10
medium golf shirts and 10 small golf shirts, but only informed Sales Audit that
20 golf shirts were sold, the sagetref.pc module would not have a way to
transform those 20 golf shirts to the transaction level. Because Sales Audit
can only interpret items above the transaction level in conjunction with a
primary variant, the invalid item error would occur during batch processing.

Figure 19-3 Primary Variant Relationships

Migrate Totals and Rules (sa_rules_total_upload)

Module Name saprepost.pc

Description Pre/Post Helper Processes for Sales Audit Batch Programs

Functional Area Oracle Retail Sales Audit

Module Type Admin

Module Technology ProC

Catalog ID RSA26

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program is one of a set of processes, along with Rules and Totals Extract, that
migrates customer-defined totals and rules from a source environment into the
destination environment. For example, this may be used to extract totals and rules set
up in a pre-production environment to production prior to final cutover. When the
processes are run, existing totals and rules information are extracted from the source
environment, and then uploaded into the destination environment, overlaying the totals
and rules previously configured in the target environment.

Chapter 19
Migrate Totals and Rules (sa_rules_total_upload)

19-24

This program is the second step in a two-step process: The latest version of all totals and
rules will be uploaded into the destination environment.

The following information is uploaded into the destination environment:

• Parm Type

• Realm Type

• Location Traits

• Parm

• Realm

• VR Head

• VR Realm

• VR Parms

• VR Links

• Total Header

• Total Header Translation

• Total Location Traits

• Total Restrictions

• Total Usage

• Rule Header

• Rule Header Translations

• Rule Location Trait

• Rule Components

• Rule Component Restrictions

• Rule Errors

The tables that this information will be uploaded into will first be cleared out of any existing
data, and then the statements in the files generated by the extract process will be run to
upload the information from the source environment. After the upload, the sequences for
realms, parms, and VR header will be updated to set the last value on the sequence to the
maximum value of the ID fields.

When the rules and totals are uploaded, they will be rebuilt in the destination environment,
using existing functions.

Restart/Recovery
N/A

Design Assumptions
N/A

Chapter 19
Migrate Totals and Rules (sa_rules_total_upload)

19-25

Pre/Post Helper Processes for ReSA Batch Programs
(saprepost)

Module Name saprepost.pc

Description Pre/Post Helper Processes for Sales Audit Batch Programs

Functional Area Oracle Retail Sales Audit

Module Type Admin

Module Technology ProC

Catalog ID RSA26

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The Sales Audit pre/post module facilitates multi-threading by allowing general system
administration functions (such as table deletions or mass updates) to be completed
after all threads of a particular Sales Audit program have been processed.

This program will take three parameters: username/password to log in to Oracle, a
program before or after which this script must run, and an indicator of whether the
script is a pre or post function. It will act as a shell script for running all pre-program
and post-program updates and purges.

saprepost contains the following helper functions, which are should be individually
scheduled with the related main programs.

Table 19-22 Helper Functions

Catalog ID Saprepost Job Related Main Program

RSA47 saprepost saexprms post saexprms

RSA48 saprepost saexpdw post saexpdw

RSA39 saprepost saordinvexp post saordinvexp

RSA51 saprepost saexpsim post saexpsim

saprepost sapreexp post sapreexp

Restart/Recovery
NA

Design Assumptions
N/A

Chapter 19
Pre/Post Helper Processes for ReSA Batch Programs (saprepost)

19-26

Prevent Duplicate Export of Total Values from ReSA (sapreexp)

Module Name sapreexp.pc

Description Prevent Duplicate Export of Total Values from Sales Audit

Functional Area Oracle Retail Sales Audit

Module Type Admin

Module Technology ProC

Catalog ID RSA20

Wrapper Script rmswrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
When you modify or revise a transaction through the Sales Audit user application, numerous
totals may be affected and require re-totaling. The sales audit pre-export module is designed
to compare the latest prioritized version of each total defined for export with the version that
was previously sent to each system. If they are the same, an SA_EXPORTED entry is
created for the total for that particular system, so that the same value will not be exported
twice. By determining which totals have not changed since the last export date time
(SA_EXPORTED_REV), this module will then create entries on SA_EXPORTED to prohibit
any third-party application from receiving multiple export revisions.

Restart/Recovery
The logical unit of work for this module is defined as a unique store/day combination. Only
two commits will be done. One to establish the store/day lock (this will be done by the
package) and one at the end after a store/day or store/day/total has been completely
processed.

Design Assumptions
N/A

Processing to Allow Re-Upload of Deleted Transactions
(saimptlogtdup_upd)

Module Name saimptlogtdup_upd.pc

Description Processing to Allow Re-Upload of Deleted Transactions

Functional Area Oracle Retail Sales Audit

Module Type Admin

Module Technology ProC

Chapter 19
Prevent Duplicate Export of Total Values from ReSA (sapreexp)

19-27

Catalog ID RSA19

Wrapper Script batch_saimptlogtdup_upd.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this batch module is to fetch all deleted transactions for a store day
and modify the tdup<Store><rtlog originating system>.dat file to remove deleted
transactions, from the tdup range, in order to facilitate the saimptlog/saimptlogi batch
to upload deleted transactions again. The batch will process all the store day with data
status in Partially Loaded and Ready For Import and a business date that lies between
the vdate minus the sa_syatem_options. day_post_sale and the vdate. The batch will
not process a store day, if the tdup<Store><rtlog originating system>.dat file does not
exist. The batch is designed to work only if sa_system_options.check_dup_miss_tran
is set to Y, otherwise, do nothing and come out with successful completion. Also, the
batch will not terminate with an error, if the deleted transaction to be removed from
tdup range does not exist in the tdup<Store><rtlog originating system>.dat file.

Restart/Recovery
N/A

Design Assumptions
N/A

Purge Aged RTLOG Data (sartlogdatapurge)

Module Name sartlogdatapurge.ksh

Description Purge Aged RTLOG Data

Functional Area Oracle Retail Sales Audit

Module Type Admin

Module Technology Ksh

Catalog ID

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this module is to drop the partitions from the history
(SVC_RTLOG_DATA_LOAD_HIST) and reject tables (SVC_RTLOG_DATA_REJECT) populated

Chapter 19
Purge Aged RTLOG Data (sartlogdatapurge)

19-28

by the RTLOG creation process, based on the given retention days. If retention days input is
not provided then a default value of 30 days will be used.

Performance Considerations
The retention period for the archived data should be carefully considered. Disregarding this
would result in the table space size reaching its limit and it would not be able to
accommodate additional archive records.

Design Assumptions
N/A

Restart/Recovery
N/A

Tables Affected

Table Select Insert Update Delete

SVC_RTLOG_DATA_LOAD_HIST Yes No No Yes

SVC_RTLOG_DATA_REJECT Yes No No Yes

Purge Aged Store/Day Transaction, Total Value and Error Data
from Sales Audit (sapurge)

Module Name sapurge.pc

Description Purge Aged Store/Day Transaction, Total Value and Error Data from Sales
Audit

Functional Area Oracle Retail Sales Audit

Module Type Admin

Module Technology ProC

Catalog ID RSA21

Wrapper Script rmswrap_out.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This program will be run daily to control the size of the tables in the sales audit database.
Older information will be deleted to ensure optimal performance of the system as a whole.

Chapter 19
Purge Aged Store/Day Transaction, Total Value and Error Data from Sales Audit (sapurge)

19-29

Different kinds of data need to be kept in the system for different amounts of time.
Transactions, all associated transaction details, and Totals calculated or reported for a
store day will be deleted when they meet the following criteria:

• The Business Date for those transactions and totals is older than or equal to
today's date minus the days_before_purge parameter set up on the sales audit
system parameters.

• No locks exist on the store/day.

• One of the two following statements is true for the store/day:

– Fully loaded, and all errors either corrected or overridden
(sa_store_day.audit_status is A (Audited) and sa_store_day.data_status
equals F (Fully loaded)). In addition, there are no outstanding exports (records
for the store/day in the sa_export_log table where sa_export_log.status equals
R (Ready for export)).

– Never loaded (sa_store_day.audit_status is U (Unaudited) and
sa_store_day.data_status equals R (Ready for import)).

Flash Sales data will be deleted when it meets the following criteria:

• Date is two years before today's date minus the days_before_purge parameter set
up on the sales audit system parameters.

• Company open and close dates will also need to be kept for two years plus
days_before_purge, so that the historical comparisons in flash sales reporting
carry the appropriate weight.

Voucher data will be deleted when it meets the following criteria:

• The redeemed date or the escheat date for the specific voucher type is before
today's date minus the purge_no_days on sales audit voucher options table for the
corresponding voucher type.

The program can also take in a list of store_day_seq_no to delete. For example, the
command line could be: sapurge userid/passwd 1000 1001 1002, where 1000, 1001
and 1003 are store_day_seq_nos that you want to delete. These must also meet the
criteria defined above. If a store_day_seq_no is passed to this program, but does not
meet the criteria, an error will be written out to the error log.

An output file will be created to store a record for each store and business date that
was purged. The file name must be passed in at the command line as a parameter to
sapurge.

This program will also purge the data, which is being used for Sales Audit Auditor
Framwork and purging criteria based on days_before_purge value from
SA_SYSTEM_OPTIONS table.

Restart/Recovery
Restart/recovery is implicit in purge programs. The program only needs to be run
again to restart appropriately.

Design Assumptions
N/A

Chapter 19
Purge Aged Store/Day Transaction, Total Value and Error Data from Sales Audit (sapurge)

19-30

Purge Into History Tables (b8d_sa_purge)

Module Name b8saprgb.pls/ b8saprgs.pls

Description Purge records into History tables

Functional Area Financial data

Module Type Admin - Ad hoc

Module Technology Background Processing

Catalog ID N/A

Wrapper Script b8dwrap.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
This background job is composed of two steps processing. It will have a threading
assignment and a business logic processing.

Thread assignment program will filter eligible records based on the Store/Day, Sales Audit
System Options, and Period tables. These records are chunked and Thread ID is assigned
for each. They will be stored temporarily in a staging table.

The Business logic program will process records from the base tables based on Store Day
Sequence Number, Store, and Business Day. Using bulk processing, this program will filter
the records from the tables and insert the records into the history tables. Then the inserted
records will be deleted from the base tables.

The decision to insert or not to insert the records into the history tables is based on the
Archive Indicator and Archive Job Indicator from the Background Process Configuration
table.

1. If the both the Archive Indicator and Archive Job Indicator values are Y, then the data
from the base tables are inserted into the history tables.

2. If both indicators are set to 'N', then the records are deleted from the base tables without
inserting into the history tables.

Restart/Recovery
N/A

Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

RMS_BATCH_STATUS Yes No No No

Chapter 19
Purge Into History Tables (b8d_sa_purge)

19-31

Table Select Insert Update Delete

B8D_PROCESS_CONFIG Yes No No No

B8D_SA_PURGE_STG No Yes No No

ALL_PART_TABLES Yes No No No

SA_COMMENTS_HIST No Yes No No

SA_CUSTOMER_HIST No Yes No No

SA_CUST_ATTRIB_HIST No Yes No No

SA_ERROR_HIST No Yes No No

SA_ERROR_REV_HIST No Yes No No

SA_EXPORTED_HIST No Yes No No

SA_EXPORTED_REV_HIST No Yes No No

SA_EXPORT_LOG_HIST No Yes No No

SA_FLASH_SALES_HIST No Yes No No

SA_HQ_VALUE_HIST No Yes No No

SA_IMPORT_LOG_HIST No Yes No No

SA_MISSING_TRAN_HIST No Yes No No

SA_POS_VALUE_HIST No Yes No No

SA_STORE_DAY_HIST No Yes No No

SA_STORE_VALUE_HIST No Yes No No

SA_SYS_VALUE_HIST No Yes No No

SA_TOTAL_HIST No Yes No No

SA_TRAN_DISC_HIST No Yes No No

SA_TRAN_DISC_REV_HIST No Yes No No

SA_TRAN_HEAD_HIST No Yes No No

SA_TRAN_HEAD_REV_HIST No Yes No No

SA_TRAN_IGTAX_HIST No Yes No No

SA_TRAN_IGTAX_REV_HIST No Yes No No

SA_TRAN_ITEM_HIST No Yes No No

SA_TRAN_ITEM_REV_HIST No Yes No No

SA_TRAN_PAYMENT_HIST No Yes No No

SA_TRAN_PAYMENT_REV_HIST No Yes No No

SA_TRAN_TAX_HIST No Yes No No

SA_TRAN_TAX_REV_HIST No Yes No No

SA_TRAN_TENDER_HIST No Yes No No

SA_TRAN_TENDER_REV_HIST No Yes No No

SA_COMMENTS Yes No No Yes

SA_CUSTOMER Yes No No Yes

SA_CUST_ATTRIB Yes No No Yes

SA_ERROR Yes No No Yes

SA_ERROR_REV Yes No No Yes

Chapter 19
Purge Into History Tables (b8d_sa_purge)

19-32

Table Select Insert Update Delete

SA_EXPORTED Yes No No Yes

SA_EXPORTED_REV Yes No No Yes

SA_EXPORT_LOG Yes No No Yes

SA_FLASH_SALES Yes No No Yes

SA_HQ_VALUE Yes No No Yes

SA_IMPORT_LOG Yes No No Yes

SA_MISSING_TRAN Yes No No Yes

SA_POS_VALUE Yes No No Yes

SA_STORE_DAY Yes No No Yes

SA_STORE_VALUE Yes No No Yes

SA_SYS_VALUE Yes No No Yes

SA_TOTAL Yes No No Yes

SA_TRAN_DISC Yes No No Yes

SA_TRAN_DISC_REV Yes No No Yes

SA_TRAN_HEAD Yes No No Yes

SA_TRAN_HEAD_REV Yes No No Yes

SA_TRAN_IGTAX Yes No No Yes

SA_TRAN_IGTAX_REV Yes No No Yes

SA_TRAN_ITEM Yes No No Yes

SA_TRAN_ITEM_REV Yes No No Yes

SA_TRAN_PAYMENT Yes No No Yes

SA_TRAN_PAYMENT_REV Yes No No Yes

SA_TRAN_TAX Yes No No Yes

SA_TRAN_TAX_REV Yes No No Yes

SA_TRAN_TENDER Yes No No Yes

SA_TRAN_TENDER_REV Yes No No Yes

SA_CUSTOMER Yes No No Yes

SA_POS_VALUE_WKSHT Yes No No Yes

SA_SYS_VALUE_WKSHT Yes No No Yes

SA_ERROR_WKSHT Yes No No Yes

SA_STORE_ACH Yes No No Yes

SA_ESCHEAT_VOUCHER Yes No No Yes

SA_ESCHEAT_TOTAL Yes No No Yes

KEY_MAP_GL Yes No No Yes

SA_GL_REF_DATA Yes No No Yes

SA_STORE_DAY_WRITE_LOCK Yes No No Yes

Chapter 19
Purge Into History Tables (b8d_sa_purge)

19-33

Purge the Invalid In-progress Sales Bucket
(sainprogresspurge)

Module Name sainprogresspurge.ksh

Description Purge the invalid in-progress sales bucket

Functional Area Oracle Retail Sales Audit

Module Type Admin

Module Technology Ksh

Catalog ID

Wrapper Script rmswrap_shell.ksh

Schedule
Oracle Retail Merchandising Batch Schedule

Design Overview
The purpose of this module is to delete the records from SA_INPROGRESS_SALES and
SVC_INPROGRESS_SALES tables for the Store Days which have been closed and for
which all the sales data has been exported to Merchandising. With that, it will also
adjust the in-progress sales quantity in ITEM_LOC_SOH corresponding to the impacted
item-location combination in SA_INPROGRESS_SALES.

Performance Considerations
N/A

Design Assumptions
N/A

Restart/Recovery
N/A

Tables Affected

Table Select Insert Update Delete

SA_INPROGRESS_SALES Yes No No Yes

SVC_INPROGRESS_SALES No No No Yes

ITEM_LOC_SOH No No Yes No

SA_TRAN_HEAD Yes No No No

SA_TRAN_ITEM Yes No No No

Chapter 19
Purge the Invalid In-progress Sales Bucket (sainprogresspurge)

19-34

Table Select Insert Update Delete

SA_STORE_DAY Yes No No No

SA_EXPORTED Yes No No No

Chapter 19
Purge the Invalid In-progress Sales Bucket (sainprogresspurge)

19-35

Index

Index-1

	Contents
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Customer Support
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Help Center (docs.oracle.com)
	Conventions

	1 Introduction
	Volume 1 - Batch Overviews and Designs
	Volume 2 - Message Publication and Subscription Designs
	Batch Schedule
	Batch Wrapper Overview

	2 Administration Batch
	Program Summary
	Archive and Truncate Purge History Tables (batch_archive_purge_hist.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	I/O Specifications
	Design Assumptions

	Daily Purge of Foundation Data (daily_purge_job)
	Schedule
	Design Overview
	Restart Recovery
	Key Tables Affected
	I/O Specification

	Daily Purge of Foundation Data (dlyprg)
	Schedule
	Design Overview
	Restart Recovery
	I/O Specification
	Design Assumptions

	Increment Virtual Business Date (dtesys)
	Schedule
	Design Overview
	Restart/Recovery
	I/O Specification
	Design Assumptions

	Load Spreadsheet Templates (ld_iindfiles.ksh and loadods.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Merch API Cache Refresh Wrapper Script (merchapirefreshwrap)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Pre/Post Helper Processes for Batch Programs (prepost)
	Schedule
	Design Overview
	Restart/Recovery

	Purge Aged Competitive Pricing Data (cmpprg.pc)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Competitive Pricing Data (comp_pricing_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge and Archive Old Files in Batch Server (archivelogs)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Asynchronous Job Tables (async_job_status_retry_cleanup.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Input/Out Specification

	Purge Dashboard Working Tables (rms_oi_purge.ksh)
	Design Overview
	Scheduling Constraints
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Export Data (data_export_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Integration Contract
	Design Assumptions

	Purge Export Data (export_stg_purge.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Forecast Data (fcstprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Forecast Data (forecast_data_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Job Auditing Logs (job_audit_logs_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Manage Admin Records (admin_api_purge.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	I/O Specifications

	Purge Notifications (raf_notification_purge.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Refresh Materialized Views (refreshmview.ksh)
	Design Overview
	Schedule
	Restart/Recovery
	I/O Specification

	Retail Business Metrics Calculation (rbm_metrics_calc_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Retain Item Forecast History (rms_oi_forecast_history.ksh)
	Design Overview
	Scheduling Constraints
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Subscription Metrics Update (subscription_metrics_update_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Tax Event Purge (tax_event_purge_job)
	Scheduling
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Input/Output Specification

	Tax Event Purge (taxevntprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Truncate Table Script (trunctbl.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Merch API Data Rebuild Request Wrapper Script (merchapidatarebuildrequest)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Merch API Delta Processing Wrapper Script (merchapiwrap)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	3 Foundation Data Maintenance
	Apply Pending Cost Component and ELC Changes to Purchase Orders (batch_ordcostcompupd)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Apply Pending Item Cost Component Updates (batch_itmcostcompupd)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Apply Pending Rate Changes to Expense Profiles (batch_expprofupd)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Apply Pending Up-Charge Cost Component Changes to Departments (batch_depchrgupd)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Build Diff Ratios Based on Sales History (dfrtbld)
	Schedule
	Design Overview
	Restart/Recovery
	I/O Specification
	Output File Layout
	Design Assumptions

	Like Store Batch Processing (likestorebatch)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Process Pending Merchandise Hierarchy Changes from External Systems (cremhierdly)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Cost Component Exceptions (elc_except_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Aged Cost Component Exceptions (elcexcprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Price History Data (prchstprg)
	Schedule
	Design Overview
	Restart/Recovery
	Performance Considerations
	Design Assumptions

	Purge Aged Price History Data (price_hist_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected

	Purge Aged Store Ship Schedule (activity_sched_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Aged Store Ship Schedule (schedprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Inactive Currency Rates (currency_rates_purge_job)
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Manage Admin Records (admin_api_purge)
	Schedule
	Design Overview
	Restart/Recovery
	I/O Specification

	Rebuild Dynamic Item Lists (itmlrbld)
	Design Overview
	Schedule
	Restart/Recovery
	Design Assumptions

	Rebuild Dynamic Location Lists (lclrbld)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Rebuild Dynamic Location Lists (loc_list_rebuild_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Reclassify Items in Merchandise Hierarchy (reclsdly)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Refresh Address Materialized View (refmvlocprimaddr)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Refresh Currency Conversion Materialized View (batch_rfmvcurrconv)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Refresh Localization Materialized View (refmvl10entity)
	Schedule
	Design Overview
	Restart/Recovery
	Locking Strategy
	Security Considerations
	Performance Considerations
	I/O Specification

	Rollup of Supplier Data (supmth)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Store Add Asynchronous Process (CORESVC_STORE_ADD_SQL. ADD_STORE)
	Business Overview
	Key Tables Affected
	Design Assumptions
	Queue Creation

	Design Overview - Process Steps
	Package Impact
	Function Level Description - ADD_STORE
	Function Level Description - ENQUEUE_STORE_ADD
	Function Level Description - ENQUEUE_STORE_ADD_RETRY
	Function Level Description - NOTIFY_STORE_ADD

	Operations and Monitoring
	Running entire Store-Add as Batch in Case of AQ Issues
	Building Schedule Dependencies between Async Process and other Batches
	Monitoring Progress of Store-Add Processes

	Store Add Asynchronous Process (straddbatch.ksh)
	Business Overview
	Key Tables Affected
	Design Assumptions
	Queue Creation

	Design Overview - Process Steps
	Running entire store-add as batch in case of AQ issues
	Building Schedule Dependencies between Async process and other batches
	Monitoring Progress of Store-Add Processes

	Update Allocation and Transfer Based on Changes to Up-Charges (batch_alloctsfupd)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Update ELC Components (batch_compeffupd)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	4 Item Maintenance
	Program Summary
	Daily Purge of Item-Location Data (item_loc_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	I/O Specification

	Global Tax Solution Builder (gtsbuilder)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Mass VAT Updates for Items/Locations (vatdlxpl)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Item Induction Staging Tables (itm_indctn_purge.ksh)
	Design Overview
	Scheduling Constraints
	Restart/Recovery

	Scheduled Item Maintenance (sitmain)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	5 Purchase Order
	Program Summary
	Apply Deal Discounts to Purchase Orders (orddscnt)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Auto Close Purchase Orders (ordautcl)
	Schedule
	Design Overview
	Category 1
	Category 2
	Category 3

	Restart/Recovery
	Design Assumptions

	Auto Close Purchase Orders (order_auto_close_job)
	Schedule
	Design Overview
	Category 1
	Category 2
	Category 3

	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Build Purchase Orders for Vendor Generated Orders (vrplbld)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Generate Pre-Issued Order Numbers (genpreiss)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Open To Buy Data (otb_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Aged Open To Buy Data (otbprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Purchase Orders (order_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Aged Purchase Orders (ordprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge PO Induction Staging Tables (po_indctn_purge.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Scale Purchase Orders Based on Supplier Constraints (supcnstr)
	Schedule
	Design Overview
	Restart/Recovery
	Locking Strategy
	Design Assumptions

	Update Retail Values on Open Purchase Orders (ordupd)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Write Purchase Order Information to Purchase Order History Tables (order_revision_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Write Purchase Order Information to Purchase Order History Tables (ordrev)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	6 Deals
	Program Summary
	Calculate Actual Impact of Billback Deals (dealact)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Calculate Weekly/Monthly Income Based on Turnover (dealinc)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Calculates/Update Forecasted Values for Deals (dealfct)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Close Expired Deals (deal_close_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected

	Close Expired Deals (dealcls)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Daily Posting of Deal Income to Stock Ledger (dealday)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Deal Calculation Queue Insert Multithreading (batch_ditinsrt.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Insert into Deal Calculation Queue (ditinsrt)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Closed Deals (deal_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected

	Purge Closed Deals (dealprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Closed Deals Actuals Item/Location (deal_actuals_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected

	Update OTB After Deal Discounts (discotbapply)
	Schedule
	Design Overview
	Restart/Recovery
	Schedule

	7 Contracts
	Program Summary
	Apply Type A, C and D Contracts to Orders Created by Replenishment (cntrprss)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Contract Maintenance and Purging (cntrmain)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Contract Maintenance and Purging (contract_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Create Replenishment Orders for Item/Locations on Type B Contracts (cntrordb)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	8 Cost Changes
	Program Summary
	Cost Change Purge (ccprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Cost Change Purge (cost_change_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Process Scheduled Ownership Change Data (ownership_change_process)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Processed and Aged Ownership Change Data (ownership_change_purge)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Supplier Cost Change Extract (sccext)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	9 Future Cost
	Future Cost Events
	Future Cost Engine Run Type Configuration
	Synchronous
	Asynchronous
	Batch

	Future Cost Engine Concurrency Control
	Future Cost Engine Error Handling
	Future Cost Engine Threading/Chunking
	Future Cost Process
	Program Summary
	Execute Batch Calculation/Recalculation of Future Cost Values (fcexec)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Future Cost Table Maintenance (future_cost_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Locking Strategy
	Security Considerations
	Performance Considerations
	Key Tables Affected
	I/O Specification

	Prepare Threads for Batch Calculation/Recalculation of Future Cost Values (fcthreadexec)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Pricing Cost Refresh (rms_oi_pricecostrefresh.ksh)
	Design Overview
	Scheduling Constraints
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Aged Cost Events (cost_event_purge_job)
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Aged Cost Events (costeventprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Use Pending Price Changes to Drive Recalculation of Pricing Cost for some Franchise Item/Locations (fc_pricechg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	WAC Refresh (rms_oi_wacvarrefresh.ksh)
	Design Overview
	Scheduling Constraints
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	10 Invoice Matching
	Program Summary
	Close Aged Shipments to Prevent them from Matching Open Invoices (invc_ship_close_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected

	Close Aged Shipments to Prevent them from Matching Open Invoices (invclshp)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Invoices (invoice_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected

	Purge Aged Invoices (invprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	11 Replenishment
	Replenishment Sub Processes
	Manage Replenishment Attributes
	Calculate Recommended Order Quantities
	Build Orders and Transfers
	Cleanup Replenishment Data

	Approve Replenishment Orders (rplapprv)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Build Replenishment Orders (rplbld)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Calculate Net Inventory (replroq.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Calculate ROQ for Profitable Investment Buys (ibcalc)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Determines Eligible Investment Buy Opportunities (ibexpl)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Multithreading Wrapper for reqext (batch_reqext.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Buyer Worksheet Results (buyer_wksht_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Aged Investment Buy Results (investment_buy_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Aged Replenishment Results (replenishment_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Aged Replenishment Results (rplprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Store Orders Results (store_orders_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Replenishment Attribute History (rplathistprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Replenishment Results History by Month (rplprg_month)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Scheduled Replenishment Induction Staging Tables (repl_indctn_purge.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Recalculate Maximum Levels for Floating Point Replenishment (repladj)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	ROQ Calculation and Distribution for Item/Locs Replenished from WH (reqext)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	ROQ Calculation and Distribution for Item/Locs Replenished from Supplier (rplext.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Locking Strategy
	Performance Considerations
	Design Assumptions

	Split Replenishment Orders Among Suppliers (supsplit)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Sync Replenishment Franchise Orders (repl_wf_order_sync.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Truck Splitting Optimization for Replenishment (rplsplit)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Update Replenishment Calculation Attributes (rplatupd)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Update Replenishment Calculation Attributes by Item/Locrilmaint)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Update Replenishment Order Taxes (batch_rplapprvgtax.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Update Replenishment Size Profile (replsizeprofile)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	12 Inventory
	Program Summary
	Adjust Inventory for Wastage Items (wasteadj)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Customer Orders (customer_order_purge.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Customer Orders (customer_orders_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Security Considerations

	Purge Aged Inventory Adjustments (inv_adj_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Aged Inventory Adjustments (invaprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Refresh End of Day Inventory Snapshot (refeodinventory)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	13 Transfers, Allocation, and RTV
	Program Summary
	Close Mass Return Transfers (mrtupd)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Close Overdue Transfers (transfer_close_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Close Overdue Transfers (tsfclose)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Close Transactions with no Expected Appointments, Shipments or Receipts (doc_queue_close_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Close Transactions with no Expected Appointments, Shipments or Receipts (docclose)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Create Book Transfers for Allocations Between Warehouses in the Same Physical Warehouse (allocbt)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Create Return to Vendor for Mass Return Transfer (mrtrtv)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Create Transfers for Mass Return Transfer (mrt)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Detail Receive Damaged or Tampered with Cartons (tamperctn)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Mass Return Transfers and RTV (mrt_purge_job)
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Aged Mass Return Transfers and RTV (mrtprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Returns to Vendors (rtv_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Aged Returns to Vendors (rtvprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Transfers (transfer_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge Aged Transfers (tsfprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Reconcile Received Dummy Carton IDs with Expected Cartons (dummyctn)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Stage Regular Price Changes on Open Allocations and Transfers (distropcpub)
	Schedule
	Design Overview
	Restart/Recovery
	I/O Specification
	Design Assumptions

	14 Sales Posting
	Program Summary
	Archive Successfully Posted Transactions (salesuploadarch.ksh)
	Schedule
	Design Overview
	Performance Considerations
	Design Assumptions

	Main Processing of Staged Sale/Return Transactions (salesprocess.ksh)
	Schedule
	Design Overview
	POSU Chunking
	Restart/Recovery
	Locking Strategy
	Security Considerations
	Performance Considerations
	I/O Specification
	Design Assumptions
	Financial Transactions

	Purge Aged Archived POSU Transactions (salesuploadpurge.ksh)
	Schedule
	Design Overview
	Performance Considerations
	Design Assumptions

	Purge FILE_UPLOAD_STATUS and FILE_UPLOAD_ERRORS Tables (file_upload_errors_purge.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	I/O Specification
	Design Assumptions

	15 Sales History
	Program Summary
	Monthly Sales History Rollup By Department, Class And Subclass (hstbldmth)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Monthly Sales History Rollup By Diffs (hstbldmth_diff)
	Schedule
	Design Overview
	Restart/Recovery
	Locking Strategy
	Design Assumptions

	Monthly Stock on Hand, Retail and Average Cost Values Update (hstmthupd)
	Schedule
	Design Overview
	Restart/Recovery
	I/O Specification

	Purge Aged Sales History (history_purge_job)
	Design Overview
	Restart/Recovery
	Key Tables Affected

	Purge Aged Sales History (hstprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged Sales History by Diff (hist_diff_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected

	Purge Aged Sales History by Diff (hstprg_diff)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Weekly Sales History Rollup by Department, Class, and Subclass (hstbld)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Weekly Sales History Rollup by Diff (hstbld_diff)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions
	Key Tables Affected

	Weekly Stock on Hand and Retail Value Update for Item/Location (hstwkupd)
	Schedule
	Design Overview
	Restart/Recovery
	I/O Specification
	Design Assumptions

	16 Stock Count
	Program Summary
	Calculate Actual Current Shrinkage and Budgeted Shrink to Apply to Stock Ledger (stkdly)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Create Stock Count Requests Based on Schedules (stake_sched_explode_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumption

	Create Stock Count Requests Based on Schedules (stkschedxpld)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumption

	Explode Stock Count Requests to Item Level (stkxpld)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumption

	Process Stock Count Results (stockcountprocess.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumption

	Purge Aged Stock Count (stkprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumption

	Purge Aged Stock Count (stock_count_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumption

	Stock Count Snapshot Update (stkupd)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumption

	Update Stock On Hand Based on Stock Count Results (stkvar)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumption

	17 Stock Ledger
	Program Summary
	Append Stock Ledger Information to History Tables (salapnd)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Daily Rollup of Transaction Data for Stock Ledger (saldly)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumption

	End Of Half Rollup of Data/Calculations for Stock Ledger (saleoh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	End of Year Inventory Position Snapshot (nwpyearend)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	External Transaction Data Process (trandataprocess.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Monthly Rollup of Data/Calculations for Stock Ledger (salmth)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge of Aged End of Year Inventory Positions (nwp_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Purge of Aged End of Year Inventory Positions (nwppurge)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Stock Ledger History (salprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Stock Ledger History (stkledgr_hist_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Stage Stock Ledger Transactions for Additional Processing (salstage)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Stock Ledger Table Maintenance (salmaint)
	Schedule
	Design Overview
	Restart/Recovery
	Locking Strategy
	Security Considerations
	Performance Considerations
	I/O Specification

	Stock Ledger Table Maintenance (stock_ledger_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Locking Strategy
	Security Considerations
	Performance Considerations
	Key Tables Affected
	I/O Specification

	Weekly Rollup of Data/Calculations for Stock Ledger (salweek)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	18 Franchise Management
	Program Summary
	Apply Supplier Cost Change to Franchise Orders (wf_apply_supp_cc.ksh)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Franchise Customer Staging Purge (fcustupldpurge)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Franchise Order Close (wf_orders_close_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Franchise Order Close (wfordcls)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Franchise Order Purge (wf_orders_purge_job)
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Franchise Order Purge (wfordprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Franchise Return Close (wf_returns_close_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Franchise Return Close (wfretcls)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Franchise Return Purge (wf_returns_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Franchise Return Purge (wfrtnprg)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Process Cost Buildup Template Upload (fcosttmplprocess)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Process Uploaded Franchise Customers and Customer Groups (fcustomerprocess)
	Schedule
	Design Overview
	Restart/Recovery
	Commit Points

	Design Assumptions
	Program Flow

	Purge Staged Cost Template Data (fcosttmplpurge)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Staged Cost Template Data (wf_cost_template_purge_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	19 Sales Audit
	Import Process
	Preparing for Import
	Importing Data
	Import Processing Programs

	Auditing Processing Programs
	Sales Audit Processing Programs

	Export Process
	Full Disclosure and Post-export Changes
	Export Programs

	Calculate Totals Based on Client Defined Rules (sa_totals_calc_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Calculate Totals Based on Client Defined Rules (satotals)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Complete Transaction Import Processing (saimptlogfin)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Create Store Day for Expected Transactions (sastdycr)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Evaluate Transactions and Totals based on Client Defined Rules (sa_rules_eval_job)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected
	Design Assumptions

	Evaluate Transactions and Totals based on Client Defined Rules (sarules)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Extract Totals and Rules (sa_rules_total_extract)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Generate Next Sequence for Escheatment Processing (saescheat_nextesn)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Get Reference Data for Sales Audit Import Processing (sagetref)
	Schedule
	Design Overview
	Restart/Recovery
	I/O Specification
	File Name: Item File
	File Name: Waste Data File
	File Name: Reference Item Data
	File Name: Primary Variant Data File
	File Name: Variable Weight UPC Definition File
	File Name: Valid Store/Day Combination File
	File Name: Codes File
	File Name: Error Information File
	File Name: Store POS Mapping File
	File Name: Tender Type Mapping File
	File Name: Merchant Code Mapping File
	File Name: Partner Mapping File
	File Name: Supplier Mapping File
	File Name: Employee Mapping File
	File Name: Banner Information File
	File Name: Currency Information File
	File Name: Promotion Information File
	File Name: Warehouse Information File
	File Name: Inventory Status Information File

	Design Assumptions
	A Note about Primary Variant Relationships

	Migrate Totals and Rules (sa_rules_total_upload)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Pre/Post Helper Processes for ReSA Batch Programs (saprepost)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Prevent Duplicate Export of Total Values from ReSA (sapreexp)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Processing to Allow Re-Upload of Deleted Transactions (saimptlogtdup_upd)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Aged RTLOG Data (sartlogdatapurge)
	Schedule
	Design Overview
	Performance Considerations
	Design Assumptions
	Restart/Recovery
	Tables Affected

	Purge Aged Store/Day Transaction, Total Value and Error Data from Sales Audit (sapurge)
	Schedule
	Design Overview
	Restart/Recovery
	Design Assumptions

	Purge Into History Tables (b8d_sa_purge)
	Schedule
	Design Overview
	Restart/Recovery
	Key Tables Affected

	Purge the Invalid In-progress Sales Bucket (sainprogresspurge)
	Schedule
	Design Overview
	Performance Considerations
	Design Assumptions
	Restart/Recovery
	Tables Affected

	Index

