
Oracle® Retail Predictive Application
Server Cloud Service
Implementation Guide

Release 23.2.401.0
F88059–02
November 2023

Oracle Retail Predictive Application Server Cloud Service Implementation Guide, Release 23.2.401.0

F88059–02

Copyright © 2023, Oracle and/or its affiliates.

Primary Author: Judith Meskill

Contributing Authors: Scott Coulter

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Send Us Your Comments

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Customer Support ix

Improved Process for Oracle Retail Documentation Corrections x

Oracle Retail Documentation on the Oracle Technology Network x

Conventions x

1 Implementation

Required Skills 1-1

Batch Framework 1-1

Batch Processes Under the Control of the Implementer 1-2

Batch Processes Not Under the Control of the Implementer 1-2

POM Jobs and Batch Exec Service 1-2

Batch Framework Service Catalog 1-3

Batch Exec Service 1-3

Load Measure (Fact) Data: measload 1-4

Export Measure (Fact) Data: measexport 1-5

Mace Calculation Service: calc 1-7

Export Hierarchy: hierexport 1-7

Load PDS Dimension: loaddimdata 1-8

Load Alternate Rollup Date: altdimload 1-9

Batch Control Entries Required to Execute Interfaces 1-9

Wait for Trigger File: waittrigger 1-9

Send a Trigger File: sendtrigger 1-10

Extract Input Files from Archive: unpack 1-10

Transform File Service 1-11

Custom Function: ap_set_datr 1-15

iii

Convert Informal Positions to Formal: formalize 1-15

Rename Positions in a Hierarchy: renamepositions 1-16

Workspace Refresh by Template Name: refresh 1-16

Workspace Rebuild by Template Name: rebuild 1-16

Workspace Delete by Template Name: delete 1-17

Run Segment Build Queue: autobuild 1-17

Initialize Testing Environment: initrpac 1-17

Execute Automated Tests: runrpac 1-18

Configuration of interface.cfg 1-18

Interface Mappings 1-21

Syntax for Interface Mappings 1-22

Example for Data Importer Interface 1-23

Example for Data Exporter Interface 1-23

Example for Hierarchy/Dimension Importer Interface 1-24

Process for Uploading New interface.cfg File 1-25

Automated Testing with RPAC 1-26

Application Deploy 1-27

Object Storage Upload Location 1-27

config 1-27

batch_control 1-28

Bootstrap Environment 1-28

OAT Parameters 1-28

Config Name 1-28

Partition Dim 1-28

Batch Group 1-29

Overwrite 1-29

Application Build 1-29

2 In-Context Help

Navigating to Help Topics on RPASCE 2-1

Creating the Contextual Help Configuration File 2-3

Using JSON in the Contextual Help Configuration File 2-3

Structure of Contextual Help Configuration File 2-3

Help Topic Building Block 2-4

Key Naming Convention 2-5

JSON Structure of Contextual Help Configuration File 2-6

Editing the Contextual Help Configuration File 2-7

Retrieve/Update InContext help JSON file: 2-7

iv

3 Uploading and Downloading Files

Object Storage 3-1

Accessing Endpoints to Manage Files in Object Storage 3-1

A Appendix: Exit Codes

v

List of Figures

1-1 Interface.cfg 1-19

2-1 Dashboard Window 2-1

2-2 Dashboard Help Topics 2-2

2-3 MFPRCS Workspace 2-2

2-4 MFPRCS Workspace with Help 2-3

2-5 List of Task Groups 2-8

2-6 List of Tasks Under Patch Application Task Group 2-8

2-7 Options to Fetch or Update the JSON Files 2-9

2-8 Location to Allow List of the URLs 2-10

vi

List of Tables

1-1 Transform Parameters 1-12

1-2 List of Pre-Defined Interfaces 1-20

1-3 Interface Mappings 1-21

2-1 Configuration File Levels 2-4

2-2 Help Topic Properties 2-4

2-3 MFPRCS Key Naming Example 2-5

3-1 API Endpoints 3-2

A-1 Common Exit Codes A-1

A-2 Additional Exit Codes A-1

vii

Send Us Your Comments

Oracle Retail Cloud Edition Implementation Guide, Release 23.1.201.0

Oracle welcomes customers' comments and suggestions on the quality and
usefulness of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

• Are the implementation steps correct and complete?

• Did you understand the context of the procedures?

• Did you find any errors in the information?

• Does the structure of the information help you with your tasks?

• Do you need different information or graphics? If so, where, and in what format?

• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note:

Before sending us your comments, you might like to check that you have the
latest version of the document and if any concerns are already addressed. To
do this, access the Online Documentation available on the Oracle
Technology Network Web site. It contains the most current Documentation
Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: retail-
doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at http://www.oracle.com.

Send Us Your Comments

viii

http://www.oracle.com

Preface

Oracle Retail Implementation Guides provide detailed information useful for implementing
and configuring the application. It helps you to understand the behind-the-scenes processing
of the application.

Audience
This document is intended for administrators and system implementers of RPASCE.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Retail Predictive Application
Server Cloud Edition documentation set:

• Oracle Retail Predictive Application Server Cloud Edition Configuration Tools User Guide

• Oracle Retail Predictive Application Server Cloud Edition Release Notes

• Oracle Retail Predictive Application Server Cloud Edition Security Guide

• Oracle Retail Predictive Application Server Cloud Edition User Guide

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com

• Exact error message received

• Screen shots of each step you take

Improved Process for Oracle Retail Documentation
Corrections

To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in
the case of Data Models, to the applicable My Oracle Support Documentation
container where they reside.

Oracle Retail documentation is available on the Oracle Technology Network at the
following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation on the Oracle Technology
Network

Oracle Retail product documentation is available on the following web site:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
(Data Model documents are not available through Oracle Technology Network. You
can obtain them through My Oracle Support.)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

x

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

1
Implementation

RPASCE acts as a platform to create tailored solutions or migrate existing on-premise
solutions into the cloud. This guide addresses the process of preparing a custom solution for
use in either of these Cloud Service environments.

Because Oracle Retail Cloud Service applications do not support any back-end server
access, implementation is different from an RPAS on-premise implementation. The
applications provide online tools to cover all the necessary facets of an RPASCE application
roll-out and administration. These include:

• Deploying and patching applications from your custom configuration

• Defining nightly, weekly, or ad hoc batch process sequences

• Scheduling recurring batch processes

Required Skills
Since implementations are based on a retailer- or implementer-provided configuration,
working knowledge of the RPASCE configuration tools is essential. The RPASCE
configuration tools are supported for offline use on a Windows 10 system. They are available
in the applicable Starter Kits, and their use is detailed in the Oracle Retail Predictive
Application Server Cloud Edition Configuration Tools User Guide.

In addition to supplying an RPASCE configuration, the implementer must also prepare the
retailer to provide RPASCE Hierarchy (dimension) and Measure (fact) data load files, as well
as to take RPASCE exported Measure (fact) data files for any downstream integration needs.
While the implementer does not call the RPASCE command-line utilities directly, knowledge
of their usage gained from the Oracle Retail Predictive Application Server Cloud Edition
Administration Guide is helpful.

Data files for loading into the applications and exported files for integration with other systems
are sent and received from the RPASCE cloud environment via Oracle Object Storage.
Knowledge of the use of Object Storage File Transfer Service APIs, including an ability to
automate such uploads and downloads, is a necessary prerequisite for routine nightly or
weekly batch processing jobs.

Batch Framework
RPASCE operations require that the administrative user, who will not have command-line
server access, must be able to select, initiate, and schedule RPASCE batch activities.

The RPASCE platform includes an Online Administration Tool (OAT) capability, which allows
simple parameterization and scheduling of pre-configured batch tasks. The RPASCE
provides an enhancement to the OAT framework that allows a sequence of several batch
tasks to be defined. This sequence is built from a list of available batch services, such as
Measure (fact) data loading, calculation, segment workspace refresh, and so on. These
service tasks run in a defined order, so that you can know, for example, that your daily data
updates have been loaded before your workspace refresh tasks are run. The batch tasks are

1-1

configured to run under the existing OAT framework, so that scheduling them to run
once, or on a repeating basis, is the same as for other OAT tasks.

The batch task sequences are defined in a small set of text files, which are specified
below, with some examples.

Batch Processes Under the Control of the Implementer
Using the RPASCE batch execution framework, the following are under implementer
control:

• List of batch operations to be run, with available parameterization

• Order in which batch operations are to be run

• Scheduling of one or more recurring batch tasks, which can be modified by the
administrator, as needed

Batch Processes Not Under the Control of the Implementer
Due to the operational and security constraints of the Cloud Service environment, the
following are not under implementer control:

• Parallelization: The applications automatically parallelize any applicable batch
tasks with a number of processes set to match the provisioned server
environment.

• Script file names, file and directory locations: Custom scripting is not supported for
this environment, and no knowledge of file system names or locations is
necessary in defining and parameterizing the batch task files.

• Incoming and outgoing file locations: These details are fixed within the RPASCE
Cloud Service environment.

POM Jobs and Batch Exec Service
Process Orchestration and Monitoring (POM) is the enterprise batch-scheduling
solution for retail applications migrating to the cloud. In POM, the RPASCE schedule
contains multiple static jobs for each RPASCE application, namely, three daily jobs
(jos_daily_pre, jos_daily, and jos_daily_post) and three weekly jobs (jos_weekly_pre,
jos_weekly, and jos_weekly_post).

These jobs must exist in batch_exec_list and can map to other batch control sets for
the Batch Exec Service.

For example, the following section in the batch_exec_list defines the mappings for the
POM jobs.

Entries for scheduling in JOS/POM
jos_daily_pre | exec | *hook_jos_daily_pre
jos_daily | exec | batch_daily
jos_daily_post | exec | *hook_jos_daily_post
jos_weekly_pre | exec | *hook_jos_weekly_pre
jos_weekly_pre | exec | batch_weekly_pre
jos_weekly | exec | batch_weekly
jos_weekly_post | exec | *hook_jos_weekly_post

In this example, the job_weekly is configured to execute the batch_weekly control set,
which is a set of tasks within the batch_exec_list that can be configured in the same

Chapter 1
Batch Framework

1-2

way as you would if not using POM. The "*" before the control set name indicates that this
control set is optional, that is, if it does not exist, the batch execution of the POM job just
ignores it without reporting any errors.

For more details about the RPASCE Schedule for POM, refer to the Oracle Retail Predictive
Application Server Cloud Edition Administration Guide.

Batch Framework Service Catalog
This section describes the batch services that are available to be configured.

Batch Exec Service
The Batch Exec service is the controller for all the other services, specifying groups of tasks
to be run, their sequences, and top-level parameters.

The Batch Exec service groups are specified in a text file batch_exec_list.txt. In this file, each
active line takes this form:

batch_type | service | service parameter

The first column is an identifier, which may be repeated on several lines to define a grouping
of tasks to be run together. The second column indicates which task from the catalogue is
being requested. The third column gives parameter details for that task (as necessary).
Comments may be placed in the batch_exec_list.txt file by starting a comment line with the
hash sign (#).

Here is a sample batch_exec_list.txt file for reference:

Daily Batch Cyle
daily | waittrigger | daily_upd.txt~3600
daily | unpack | daily_upd.zip
daily | calc | exp_set
daily | measexport | daily_exp_set
daily | measload | load_oo_list
daily | sendtrigger | batch_load_complete.txt~ftp
daily | calc | batch_oo
daily | rebuild | rebuild_daily_group

Batch Cycle to Load OO
load_oo | measload | load_oo_list
load_oo | calc | batch_oo

Weekly Batch Cyle
weekly | calc | exp_calc_set
weekly | measexport | weekly_exp_set
weekly | hierload | clnd~14~N
weekly | hierload | prod~14~N
weekly | hierload | loc~14~N
weekly | measload | load_act_list
weekly | measload | load_oo_list
weekly | calc | batch_week
weekly | calc | batch_fcst
weekly | refresh | refresh_weekly
weekly | rebuild | rebuild_weekly
weekly | autobuild |

Chapter 1
Batch Framework Service Catalog

1-3

In this sample file, three batch task groups are specified: daily, load_oo, and weekly.
Note that these names are implementer-defined identifiers; there is nothing special
about the names "daily" or "weekly". Each identifier is thus associated with a sequence
of tasks, which will run in the order they are listed in the file.

Note also that no information is provided about times or schedules on which these task
groups should be run. Scheduling information must be specified in the RPASCE Online
Administration Tool.

The services listed for each batch task group are run in the order specified when that
type of batch run is requested through the OAT interface. Details on the individual
batch services and what their service parameters mean are described in the following
sections.

Load Measure (Fact) Data: measload
The Load Measures service allows the loading of one or several measures, the data
for which may be found in one or several files. The measload service will check for the
required data files in the Object Storage incoming files area. The service will optionally
either validate the presence of all data files and treat this as an error condition, or treat
the presence of files as optional and continue with no error if the files are not present.

Groups of measures to be loaded are specified in a control file,
batch_loadmeas_list.txt, with the columns as follows:

• Load set name

• Parameter type, which must be one of the following:

– H - Fact data file name

– V - Validate option, if present, indicates missing data files are to be treated as
an error condition. No third-column parameter required.

– R - Rejected record threshold (optional). Requires third column parameter; it
must be a positive integer. When this parameter is presented, the process will
be stopped (error code 37) with a failure trigger when the number of rejected
records exceeds the number specified. If this option is not specified, a warning
trigger will be created if there are any rejected records in the measure load;
however, the process will continue.

– C - RPASCE v19 parameter, which is no longer supported.

– M - RPASCE v19 parameter, which is no longer supported.

– S - RPASCE v19 parameter, which is no longer supported.

• Parameter value. Relative to the parameter type specified above.

Fact Data files may contain the data for one or several facts in a comma-separated
value format (CSV) with a header line.

Here is an example control file for the Load Measure service:

Load Forecast Measures
load_fcst|R|200
load_fcst|V|
load_fcst|H|mp_fcst.csv.ovr
load_fcst|H|mt_fcst.csv.ovr
load_fcst|H|lp_fcst.csv.ovr
load_fcst|H|lt_fcst.csv.ovr

Chapter 1
Batch Framework Service Catalog

1-4

In this example, if any files for the listed measures are absent, an error condition will be
reported.

The Validate option checks for required data files in the internal input file directory, as well as
files that have been placed in Object Storage. This allows the measload task's Validate option
to correctly detect files that were previously placed in the internal input location by an unpack
batch task.

When fact data files are loaded, some lines in the file may be rejected (possibly due to an
incorrectly formatted input file or a position that does not exist in the dimension). The
RPASCE measure load process does not, by default, treat these rejected lines as errors and
will continue loading any valid lines from the rest of the file. In order to detect when rejected
lines were encountered, since the batch framework does not report this as an error, the
loadmeas batch task writes the rejected records count into its own log file and also creates a
rejected records warning file in the outgoing area of Object Storage.

The warning file has no content, providing all relevant information in the file name itself. The
file name indicates the name of the measure, the count of rejected records, and a timestamp
to indicate when the task was run.

In the following example, the measure apcpfcstslsu had four rejected records when it was
loaded on 26-April-2018 at 7:52am:

warning.eebatch_loadmeas.apcpfcstslsu.rejected.4.20180426075212

If the optional |R| parameter is given in the control file, the numerical value indicates a limit to
the number of rejected lines, above which the rejections will be reported as an error rather
than a warning. For example, in the load_fcst config shown above, the limit is given as 200.
If, while loading any particular measure in this load group, more than 200 rejected record
lines are detected, then the task will halt, reporting an error, and the batch sequence that
includes this task will also halt. In this way, if a badly formatted or corrupted data file was
uploaded, then later batch steps such as calculations or workbook refreshes will be
performed.

Export Measure (Fact) Data: measexport
The Export Measures service allows the flat-file export of one or more measures, using a
control file, batch_export_list.txt, to group (and parameterize) the measure lists for particular
export operations. The control file allows multiple parameters to specify the details of each
export group.

Here are the columns in the export control file:

• Export Set Name

• Parameter type, which must be one of the following:

– M - Measure name, format name (optional), and output file name (optional).
Separated by |. The format name is the name of the format directive specified in the
measure_format_list.txt file. The output file name option is only supported when the
control set is using the I parameter. If the I parameter is not specified, the output file
name will be determined by the O parameter.

– F - Filter mask measure.

– X - Base intersection. F or X is required.

– O - Output file name (optional). One single output file for all exported measures. This
parameter is ignored if the I parameter is specified. If multiple O parameters are
provided, only the first one will be used.

Chapter 1
Batch Framework Service Catalog

1-5

– I - Flag to use an individual output file for each measure (optional). The default
file name is measure_name.csv.ovr unless it is overridden by the output file
name option of the parameter of M.

– S - File share destination. Keywords: ftp, temp, cloud:<app>, where <app> is
one of: ri, mfp, rdf, ap, rms. (For the rare case where multiple instances of a
single RPASCE application are to be deployed, the second instance may be
integrated by using the values mfp2, rdf2, or ap2.) The cloud:<app> keyword
sends the output file to the indicated Oracle RGBU Cloud Service application,
if configured for your environment. The temp keyword sends the output to an
internal temporary location, where it will not be accessible externally but can
be used by other configured batch tasks such as the transform file service (by
specifying temp as the input value for the subsequent task).

– C - Compress output. Optional; file (or files) will be compressed into .zip
format.

– D - Delimiter. Optional character to use in place of a comma; to select the |
character as the delimiter, specify the keyword PIPE.

Note:

D simply replaces all commas with the delimiter. It does not work
well with string measure values that include commas.

– U - Uppercase position name (optional). Does not have a third column option.
If it is specified, the position name in the output file will be converted to an
uppercase name.

P - useDate parameter (optional). Requires either the value start or end for the
third column. It is used for a measure that has a high level on the CLND
hierarchy (for example, Mnth). When specified, it will replace the measure
CLND level position of each data record with the lowest CLND level (for
example, Day) position corresponding to that higher level position. The values
start or end are used to determine whether the starting day position or the
ending day position of the corresponding mnth period will be output.

– N - Specifies when to skip NA values in export (optional). Valid options for the
third column are never, allna, and anyna.

* never - Export the corresponded data point even though the measure's
values are all NA values. This option essentially exports all data points in
the logical space.

* allna - Do not output the corresponded data point if all measure values are
NA values (default mode).

* anyna - Do not output the corresponded data point if any one measure
value is an NA value.

– T - Appends a unique identifier as suffix to the file name (optional). This
generates a unique name to ensure that the parallel export can proceed. This
flag can only be used with default file naming, without using the |O| flag. This
flag is specifically designed to work with the intradayexport() expression.

• Parameter value. Relative to the parameter type selected above.

Here is an example control file for the Export Measure service:

Chapter 1
Batch Framework Service Catalog

1-6

Export PoC Plan CP
lpcp|F|lpcpexportb
lpcp|S|ftp
lpcp|M|lpcpbopc
lpcp|M|lpcpbopr
lpcp|M|lpcpbopu
lpcp|M|lpcpeopc
lpcp|M|lpcpeopr

For the lpcp export group, the implementer has provided a Filter Mask measure, has
indicated that the file will be published to the Object Storage outgoing file location (the ftp
parameter naming is for compatibility with previous RPASCE versions), and has provided a
list of several measures to be included in the output.

Mace Calculation Service: calc
The Calc service, which indicates that the RPASCE utility mace is to be run, uses a control
file called batch_calc_list.txt. The format of this file is as follows:

calc_list | [group or expression] | <group name or expr text>

The first column provides an identifier for each group of calc instructions. These identifiers
are used to select calculations to be run either directly, or as part of a Batch Exec run.

The second column must contain the keyword group or expression to indicate whether the
calculation to be run is a rule group registered in the application configuration or an individual
expression given in the control file itself.

The final column provides either the name of the rule group to be executed or the text of the
expression to be run.

As with the other control files, any line starting with # is ignored and can be used to comment
or document the file, as needed.

Here is an example file for the calculation service:

Calc Set for Batch Aggregation Weekly
batch_week | group | Batch_GB
batch_week | group | Batch_AggW
batch_week | group | Batch_InvRoll
batch_week | expression | LTWPNSlsR = DRTYNSls1R+DRTYNSls2R
batch_week | expression | LTWPNSlsU = DRTYSls1U+DRTYSls2U-DRTYRtn1U-DRTYRtn2U

Calc Set for Generating Forecast
batch_fcst | group | Batch_Fcst_G
batch_fcst | group | Batch_Fcst_L

Export Hierarchy: hierexport
The Export Hierarchy service allows the flat-file export of one hierarchy (dimension/levels)
using a control file, batch_exporthier_list.txt, to specify available options. The format of the
control file is similar to the Export Measure control file, with the exception that only one
hierarchy may be specified at a time.

The three columns in the control file are:

• Export Set Name

• Parameter Type, which must be one of these options:

Chapter 1
Batch Framework Service Catalog

1-7

– H - Hierarchy name (required)

– T - Export type. F - only formal positions, I - only informal positions, A (or omit)
- all positions

– L - Header line export. Output file includes header line for dimension and label
columns.

– U - Export positions of user defined dimensions. This implies Header Line
export mode; cannot be used with the only formal export type.

– O - Output file name. This is optional; defaults to <hier>.dat).

– C - Compress result file to .zip (optional)

– S - File export destination. Keywords: ftp, cloud:<app>, where <app> is one of:
ri, mfp, rdf, ap, or rms. (For the rare case where multiple instances of a single
RPASCE application are to be deployed, the second instance may be
integrated by using the values mfp2, rdf2, or ap2.) This sends the output file to
the indicated Oracle RGBU Cloud Service application, if configured for your
environment.

• Parameter value. If required, by parameter type.

Here is an example control file for the Export Hier service:

Export PROD hierarchy, compressed
prod_export|H|prod
prod_export|T|F
prod_export|O|prod_exp.dat
prod_export|C|
prod_export|S|ftp

In this example, the prod_export grouping indicates that only the formal positions in
the PROD hierarchy will be written to a compressed file prod_exp.dat.zip and placed in
the Object Storage outgoing file location (the ftp parameter naming is for compatibility
with previous RPASCE versions).

Load PDS Dimension: loaddimdata
This service supports the option of loading dimension (hierarchy) data into your
application from flat files. This task does not require a separate control file, but can be
fully specified inside the Batch Exec (batch_exec_list.txt) control file itself.

The parameter column provided in the Batch Exec file contains two values, separated
by the ~ character. The values are: hierarchy to be loaded and purgeAge value.

Here is an example:

weekly | loaddimdata | prod~28weekly | loaddimdata | loc~28

This task, when run, looks for <hier>.csv.dat or <hier>.hdr.csv.dat files in Object
Storage in the path planning/incoming/input. The task also checks for planning/
incoming/input/dimdata.zip, and if found, will unpack the zip file and use any
relevant .dat files located in it. If no incoming data files are found, a log message will
indicate this, and then the Batch process will continue without error.

Chapter 1
Batch Framework Service Catalog

1-8

Load Alternate Rollup Date: altdimload
This service supports the option of loading alternate rollup data for the dimension (hierarchy)
into your application from flat files. This task does not require a separate control file, but can
be fully specified inside the Batch Exec (batch_exec_list.txt) control file itself.The parameter
column provided in the Batch Exec file contains one value that is the input file name. This file
must have been uploaded into Object Storage in the path planning/<subnamespace>/
incoming/input.Here is an example:

weekly | altdimload | scl1.csv.dat

This task, when run, looks for <name>.csv.dat in Object Storage in the path planning/
<subnamespace>incoming/input. If no incoming data files are found, a log message will
indicate this, and then the batch process will continue without error.

Batch Control Entries Required to Execute Interfaces
The batch control framework facilitates the calling of new interfaces using the new service
interface in the batch_exec_list.txt control file. Customers can update their batch control files
to call the new interfaces. The interface service takes the interface name to execute as the
main parameter. In addition to the interface name, it also provides two optional parameters,
INTF_PROC_PARM and INTF_EXEC_PARM, using a tilde (~) as the separator.
INTF_PROC_PARM can be the same <PARAM> if the customer wants to call the same
interface for a subset of the parameter. If not passed, it will execute that interface for all
configured parameters (PARAM) in a single call. INTF_EXEC_PARM can currently take an
optional value as L to re-run the last executed interface using the same dataset. By default,
each interface execution internally uses a unique RUN_ID for the dataset in the interface, and
it will be marked as processed after the successful completion of the interface execution. If
the interface is re-run, it will not fetch any new data unless the source system sends new
data, but L as an optional parameter can be used to re-run the interface using the same
RUN_ID last used.

Typical control file entries for calling multiple interfaces (both exporters and importers) within
a weekly batch are shown in the following example batch_exec_list.txt file.

Example

batch_weekly | interface | MFP_PLAN1_EXPbatch_weekly | interface |
W_PDS_CALENDAR_Dbatch_weekly | interface | W_PDS_SLS_IT_LC_WK_A

Wait for Trigger File: waittrigger
For a recurring batch task (such as a nightly or weekly batch), you can schedule the batch to
run at a particular time, but you must also ensure that it will not start processing until the
required input files are available. This requirement is supported by the waittrigger task. The
trigger file is a temporary file that is uploaded to Object Storage under the planning/incoming
path. Note that this file must be uploaded to the Object Storage last, after all the other
required files are present. Note also that this trigger file will be deleted once the waittrigger
task sees it, so you must not specify an actual data file as your trigger. For example, if the
batch must wait for prod.dat to be present, you must specify a second file name, such as
prod_dat_trigger.txt, and the external integration process that sends the latest prod.dat into
the Cloud environment must also create prod_dat_trigger.txt after the prod.dat file is
available.

Chapter 1
Batch Framework Service Catalog

1-9

By default, the waittrigger task waits for 23 hours for the trigger file to appear before
timing out and reporting an error. A shorter timeout may optionally be specified, given
in the number of seconds to wait.

The waittrigger task requires only an entry in the batch_exec_list.txt control file; no
separate control file is required. Here is an example configuration for a waittrigger
task:

daily | waittrigger | daily_upd.txt~3600

This example daily batch task waits up to one hour for the file daily_upd.txt to be
present in the Object Storage location. The third column uses the tilde (~) character as
a separator and gives two parameters values:

• the trigger file name. Simple file names only, no paths.

• (optional) number of seconds to wait before timing out

Send a Trigger File: sendtrigger
In order to notify other processes, either internal or external to the Oracle RGBU Cloud
environment, of the progress of a batch task sequence, the sendtrigger task may be
configured. This task takes a two parameter values, separated by the tilde (~)
character. The first parameter specifies the trigger file name.

The second portion specifies the destination in which the trigger file will be created:

• ftp - writes to the Object Storage outgoing location for this application (ftp
designation is for legacy compatibility with earlier RPASCE versions).

• cloud:<app> - sends the file to the Oracle RGBU Cloud Service indicated by
<app>, with valid values ri, mfp, rdf, ap, or rms. (For the rare case where multiple
instances of a single RPASCE application are to be deployed, the second instance
may be integrated by using the values mfp2, rdf2, or ap2.)

• input - writes the file into the input directory of the current application.

The sendtrigger task requires only an entry in the batch_exec_list.txt control file; no
separate control file is required. Here is an example entry for a sendtrigger task:

daily | sendtrigger | batch_load_complete.txt~ftp

This control line indicates that the file batch_load_complete.txt will be created in the
Object Storage outgoing file area once batch execution successfully reaches this point
in the daily batch sequence.

Note that no automatic clean-up of the trigger file is performed, so other processes
that look for the presence of this trigger file must remove it. If a trigger file from the
previous batch run is still in place during a subsequent batch run, the file will remain in
place and the file's timestamp will be updated.

Extract Input Files from Archive: unpack
Batch tasks such as dimdataload or measload expect to find their individual .dat or .ovr
files in the incoming file areas. For some integration needs, it may be preferable to
send these files together in a compressed archive for faster upload and to ensure that
all matching files arrive together. This integration scenario is supported by the unpack
task. The unpack task may specify files with the .zip extension to be found in the
incoming file area and unpacked into the application input directory. The archive must

Chapter 1
Batch Framework Service Catalog

1-10

contain only simple file names and not any subdirectory structure, as this structure would
then prevent the files from being found in the <application>/input directory, where later batch
tasks expect them.

The daily batch example above contains this usage for the unpack task:

daily | unpack | daily_upd.zip

The task specifies that the archive file daily_upd.zip is expected to be in the incoming file
area, and it will be unpacked into the application's input directory before any subsequent
batch tasks are performed.

The default behavior for this task when no file is found matching the archive specification is to
exit without error (batch continues). The default behavior when an archive file is found, but
there is an error from unpacking the file (for example, if a malformed archive file got
uploaded) is exit with an error code (batch halts).

An optional parameter is available to modify these default behaviors. If the archive file is
absolutely required, and the batch must halt with an error when no archive file is found, then
the required parameter value can be given:

daily | unpack | daily_upd.zip~required

If the batch must continue without errors, even when the uploaded archive file is unable to be
unpacked, then the continue parameter can be given:

daily | unpack | daily_upd.zip~continue

Transform File Service
The Transform file service is used for simple integration capabilities for file transformations
before hierarchy or measure file loads such as splitting a file, renaming file, swapping
columns in the files, and so on. It also provides an option to filter file records based on
particular data values. It does not call any RPASCE utilities, but instead uses some pre-
defined functions that can be called and controlled by control file setting changes. It provides
some powerful integration capabilities in which the user does not need to create any external
process to format the files so it can readily fit into the regular batch framework. For example,
a source system might send multiple measure data in a single file but the configured
RPASCE solution expects individual measures per file. In such cases, users can call this
service to split those files. This process can also be used to transform the exported output
files into required formats that can be copied to other locations.

The parameters for this service are provided in a control file batch_xform_list.txt. This service
can be invoked from batch_exec_list.txt (Batch Exec Control file) as follows:

<batch_set_name> | transform | <transform_set_name>

Here are the columns in the batch transform control file separated by the PIPE symbol ("|")
for the different functions that can be used.

• Transform Set Name

• Parameter Type, which must be one of the following:

Chapter 1
Batch Framework Service Catalog

1-11

Table 1-1 Transform Parameters

Parameter
Type

Value

I Input file path and valid parameter values are cloud for cloud share
location (files coming in from other Oracle RGBU Cloud Services), ftp_in
for SFTP input, ftp_out for SFTP output, dom_in for Dapplication input
(default), dom_out (application output), temp for internal temporary
ftp_dim_in for <SFTP> /rdm_input/dimdata, ftp_fact_in for <SFTP>/
rdm_input/factdatadirectory, rdm_dim_in for <RDM_ROOT>/dimdata,
rdm_fact_in for <RDM_ROOT>/factdata to transform interim export files.

O Output file path, valid parameter values are: dom_in (application input
directory; this is the default), dom_out (application output directory),
ftp_in (SFTP input directory, ftp_out (SFTP output directory),
rdm_dim_in (PDS dimension data directory), rdm_fact_in (PDS fact data
directory), cloud:<app> (sends file to another Oracle RGBU Cloud
Service's SFTP input directory; valid values for <app> are: ri, mfp, rdf,
ap, rms; for the rare case where multiple instances of a single RPASCE
application are deployed, the second instance may be integrated by
using the values mfp2, rdf2, or ap2.

D Field delimiter (default: comma), for pipe use PIPE.

E Output file delimiter (default: comma), for pipe use PIPE.

F Input file name (required). Can have multiple F entries, in order to merge
multiple files, but at least one F entry is required.

X Transformed file name and field numbers (in order) as parameter value.
It can also use Linux Cut command format. One entry for each separate
file must be created. It can also take one additional argument. If
provided, used as headers for the transformed files.

V Validate for files to be present.

Q To add quotes; required if data can contain commas and the input delim
is not a comma.

L Filter file based on where filter column and filter value as parameters. By
default, it equates the value; however, to use filter value as not equal to,
use additional parameter as N after filter value.

U Create unique record output files.

C Copy a column to the end of file (copy column number).

W Swap column from input file (column numbers to swap).

S Sort file columns based on key columns.

A Add a constant value at end of file.

J Join two columns using a separator and add to the end of the file.

G To create a complete trigger output file, if needed at the end.

Z To compress output files of a particular pattern as a zip file. It requires
the following four parameters delimited by |

– <output_compressed_filename>
– <input_files_prefix>
– <input_files_extn>
– <delete_compressed_files_flag (Y/N)>

Chapter 1
Batch Framework Service Catalog

1-12

Table 1-1 (Cont.) Transform Parameters

Parameter
Type

Value

M Move or copy files of a particular pattern of files from input to output
location. If M is used, only files will be moved or copied. It will not do any
further processing to those files. It requires two parameters delimited by
|

– <move_file_pattern>
– delete_file_flag (Y/N)
If the delete_file_flag is Y, the source is removed and the operation is a
true move. If the delete_file_flag is N, it is a copy instead of a move and
the source is not removed.

N Do not push output files to cloud:<app> location at the end and still hold
the files in a temporary location for further processing to compress the
files before pushing the file to cloud:<app> location.

H Add headers to transformed output file if option X is not used to
transform the output file. Parameter must be the complete header for
that file and is added as the first record for the output file.

Y To delete the input files from the input directory after the transform; if
not, the used input file will not be detected.

B Do not merge input files by file name pattern. By default, this task takes
all input files with same pattern and merges them. For example, if the
input file name is given as sls.csv.ovr, it will merge all files matching
sls.csv.ovr*. This option indicates that only the single input file by the
exact name must be used.

• Parameter Values - Relative to the parameter type selected above.

Example 1: To split a single file into multiple files based on column IDs.

rms_oo|F|rms_oo.csv.ovr
rms_oo|I|cloud
rms_oo|V|
rms_oo|X|drtyoou.csv.rpl|1,2,3,6
rms_oo|X|drtyooc.csv.rpl|1,2,3,7
rms_oo|X|drtyoor.csv.rpl|1,2,3,8

This example shows an input file split into multiple files using the multiple X option based on
column numbers. In the above example, the output files are created in the application input
directory.

Example 2: To split a single file into multiple files based on column IDs and also to filter
records based on a column value.

rms_inv1|F|rms_inv.csv.ovr
rms_inv1|I|cloud
rms_inv1|V| rms_inv1|L|5|N
rms_inv1|X|drtyeop1u.csv.ovr|1,2,3,6
rms_inv1|X|drtyeop1c.csv.ovr|1,2,3,7
rms_inv1|X|drtyeop1r.csv.ovr|1,2,3,8

In this example, the first only records with fifth column value as N in the csv file and then
those will split into multiple files.

Example 3: To copy columns and swap columns before writing the output file.

Chapter 1
Batch Framework Service Catalog

1-13

rms_curh|F|rms_curr.csv.ovr
rms_curh|I|cloud
rms_curh|C|3
rms_curh|W|2|6
rms_curh|U|
rms_curh|X|curh.csv.dat|2,3

In this example, the original file only contains five columns. The third column is copied
to the end of the file as the sixth column due to the use of option C. Then, columns 2
and 6 are swapped due to the use of option W. Then it writes out column 2,3 after
removing duplicates due to use of option U.

Example 4: To add a constant value to a file and to join two columns based on a
separator.

rms_patt3|F|rms_prod.csv.dat
rms_patt3|I|cloud
rms_patt3|L|22|NA|N
rms_patt3|A|BRAND
rms_patt3|J|34|22|_
rms_patt3|X|drdvprdattt.csv.ovr.3|1,34,35

It is necessary to add a constant value BRAND and also concatenate it with another
column and export both the columns.

In this example, the original file only contains 33 columns. It is first filtered for records
not equal to NA in column 22. Then it adds a constant value BRAND in column 34.
Then, columns 34 and 22 are joined, using the separator _ (underscore) that is added
as column 35. Finally, the newly added columns 34 and 35 are extracted into an output
file.

Example 5: The following sample shows the use of E to create different delimited
output file and Z option to compress the output file.

mfp_exp_ri|F|ri_mpop_plan.dat
mfp_exp_ri|F|ri_mpcp_plan.dat
mfp_exp_ri|I|temp mfp_exp_ri|V|
mfp_exp_ri|X|W_RTL_PLAN1_PROD1_LC1_T1_FS.dat|4-
mfp_exp_ri|O|cloud:ri mfp_exp_ri|E|PIPE
mfp_exp_ri|Z|RI_MFP_DATA|W_RTL_PLAN|dat|Y

In this example, use of multiple F options merges two output files and creates one
output file with only from column 4 delimited by comma. However, the final output file
is created with delimiter as PIPE due to use of option E.

In addition, the use of the Z option compresses the output files of pattern
W_RTL_PLAN*.dat created at cloud:ri location into a compressed file as
RI_MFP_DATA.zip and deletes the generated file after compressing.

Example 6: The following option shows the use of the M option to copy a set of files
from one location to another location.

copy_dom_in|I|dom_in
copy_dom_in|O|ftp_out
copy_dom_in|M|*.dat|N

This example copies all files of the pattern *.dat from the application.input location to
the Object Storage outgoing file area. Due to use of option N to not delete the input
files, it only copies the file. To move the files, option Y should be used.

Chapter 1
Batch Framework Service Catalog

1-14

Custom Function: ap_set_datr
This feature allows product attributes to be assigned during item creation if the product
attributes are defined as dimension attributes. For this functionality, th product attribute
hierarchy (for example, PATR) must be defined with two dimensions (product attribute value
and product attribute). The mapping of the product attribute values to items must be defined
in the measure at the item/product attribute intersection level (for example, addvprdattt). This
custom function can be called in a customer's batch control framework to register the loaded
product attributes as dimension attributes.

This application-level function registers all the loaded product attributes as dimension
attributes that can take two parameters, product attribute measure and product attribute
hierarchy name. It must be called each time a new set of product attributes is loaded.

The following example illustrates calling this custom function to register dimension attributes.
The product attribute measure name is addvprdattt and the product attribute hierarchy used
by customer is patr. The ra_custom is the service name to be used to call the custom
functions in batch_exec_list.txt and the custom function name is ap_set_datr. The two
parameters for the function must be separated with ~.

Example:

batch_datr | ra_custom | ap_set_datr~addvprdattt~patr

Convert Informal Positions to Formal: formalize
The formalize service allows the modifying of current informal positions (which were created
on a given hierarchy and dimension having Dynamic Position Maintenance, or DPM,
enabled) to make them formal positions. One or more files matching the pattern
<hier>.formalize[.extension] must be uploaded via Object Storage to the planning/incoming/
input location. This file (or files) specifies which informal positions to formalize. An option is
also available to allow the formalization of all current informal positions on a dimension.
Parameters are specified via the batch_formalizepositions_list.txt batch control file.

The batch_formalizepositions_list.txt control file contains multiple lines to specify each
formalize task, each with three required columns, as follows:

• Formalization Set Name.

• Parameter Type, from these values.

– C - Column index (starting from 1) of the dimension position name in the hierarchy
file (as generated by exportHier) [required].

– D - Dimension to formalize [required].

– H - Hierarchy of the dimension [required].

– A - Formalize all informal positions on Dim (no value needed) [optional; omit if
sending a <hier>.formalize.dat file].

• Parameter Value (varies by parameter type).

If the (A)ll option is not provided, then at least one <hier>.formalize[.extension] file is
expected to be available in Object Storage. If no formalize files are present, the batch task
will report an error. File format details are available in the Oracle Retail Predictive Application
Server Cloud Edition Administration Guide.

Chapter 1
Batch Framework Service Catalog

1-15

Here is an example specifying a formalization task called prod_sku, which operates on
positions of the SKU dimension in the PROD hierarchy:

prod_sku|H|prod|
prod_sku|D|sku|
prod_sku|C|1|

Rename Positions in a Hierarchy: renamepositions
The Rename Positions service enables the renaming of existing positions in a
hierarchy. The task is configured by specifying the hierarchy on which positions are to
be renamed and looks for a file with the name [hier].rn.dat in Object Storage. If the
rename data file is not present, the rename task will exit without error so that the
following batch sequence steps may continue.

The format of the rename data file is as specified in the Oracle Retail Predictive
Application Server Cloud Edition Administration Guide.

The rename positions batch task does not require a separate control file, but may be
specified as an entry in the batch_exec_list.txt file, for example:

weekly | renamepositions | prod

This control line indicates that the weekly batch task will look for a rename positions
data file for the PROD hierarchy, prod.rn.dat, and will carry out the renamings
specified.

Workspace Refresh by Template Name: refresh
The Workspace Refresh service enables the refresh of particular workspaces with
current application data. This allows the selection of all workspaces built from a
particular template, including the ability to match on partial template names.

The batch_refresh_list.txt contains only two columns: a refresh group identifier and a
template name pattern to match. Here is an example of this file:

refresh_weekly | mt_wb
refresh_weekly | mp_wb
refresh_weekly | lt_wb
refresh_weekly | lp_wb

The example contains one refresh group, with four template pattern names to match.
All workspaces that are built from templates matching those patterns will be refreshed.

Workspace Rebuild by Template Name: rebuild
The Workspace Rebuild service is similar to Workspace Refresh task; however, it
allows for the workspaces to be completely rebuilt rather than just having their data
refreshed. This covers the case where new positions have been added and must be
reflected in the workspaces.

The batch_rebuild_list.txt contains only two columns: a rebuild group identifier and a
template name pattern to match. Here is an example of this file:

rebuild_weekly | mt_wb
rebuild_weekly | mp_wb

Chapter 1
Batch Framework Service Catalog

1-16

The example contains one rebuild group, with two template pattern names to match. All
workspaces that are built from templates matching those patterns will be rebuilt.

Workspace Delete by Template Name: delete
The Workspace Delete service enables the bulk deletion of all workspaces built from a
particular template. This service does not require a separate control file but can be fully
specified within the batch_exec_list.txt file. All workspaces built from the given template will
be removed. To remove workspaces from several template types, specify one delete task for
each template.

Here is an example of an entry in the batch_exec_list.txt file for this task:

weekly | delete | AD_POC

Run Segment Build Queue: autobuild
The autobuild service is the simplest to configure in the RPASCE batch framework, as it
requires no parameters to be specified. When the autobuild service is included in a batch
task group, the wbbatch utility is run to invoke the -startQueue build option. Any segments
that have been previously queued for automatic build will be created by this call. Since no
further parameters are needed, there is no third column for the autobuild service line.

Here is an example of an entry in the batch_exec_list.txt file for this task:

batch_weekly | autobuild |

Note that nothing is required after the second pipe (|) character.

Initialize Testing Environment: initrpac
This is the first of two batch tasks that work together to provide automated test capabilities.
See the full explanation of RPAC test automation capabilities in Automated Testing with
RPAC; the specific activities carried out by the batch tasks are described briefly here.

The initrpac task serves two purposes related to setting up the environment to be ready to
run your automated test cases. First, it checks for new or updated test collateral files in
Object Storage. Note that there are three archives of test collateral files that can be sent:
tests.zip, input.zip, and compare.zip. If any of these collateral file archives are present in
Object Storage under the planning/incoming/rpac subdirectory, then they will be moved into
the internal holding area, ready to be used by the next step in the process; if no new files are
present, then the previously sent files will continue to be used.

Note:

Incrementally adding test collateral files are not supported; previous file sets of each
type are removed before unpacking the new archive, so any updated archive must
contain all collateral files of that type. This prevents stale test scripts or data files
from being left in the testing environment, which could otherwise cause unexpected
test failures.

The second task carried out by initrpac is to stage the contents of the input.zip into the
internal input directory. This will be used to place any hierarchy load (.dat) or measure load

Chapter 1
Batch Framework Service Catalog

1-17

(.ovr, .clr, .rpl) files into position so that subsequent batch tasks may set the application
into a known state, ready for automated tests to run and verify the expected result
values.

The initrpac task entry in the batch_exec_list.txt control file does not require any
parameters. It would normally be placed as the first entry in a test-enabled alternate
version of a daily or weekly batch execution sequence. See full example in Automated
Testing with RPAC.

rpac_validate | initrpac |

Execute Automated Tests: runrpac
This is the second of the two batch tasks that work together to support automated
testing capabilities. The runrpac task executes all automated tests in a single
test .XML file. (See further information about the RPAC automation testing framework
in Automated Testing with RPAC.) While the preceding initrpac task must only be run
once, you may specify as many runrpac tasks as needed to execute all configured
automation tests, possibly at several different points in an overall batch execution
sequence.

The runrpac task entry in the batch_exec_list.txt control file takes one parameter that
combines an identifier for the test, along with the filename of the test .XML file to be
executed (separated by ~ character):

rpac_validate | runrpac | MFPCS_Sample_Test_1~RT01_MT_WB.xml

In this case, the test file RT01_MT_WB.xml will be executed under an identifying title
"MFPCS_Sample_Test1". See Automated Testing with RPAC for a full example of a
test-enabled batch execution sequence.

Summary test results will be visible in the output log for the batch execution (visible in
the Online Administration dashboard), and full test result details will be available in the
log file archive that is sent to Object Storage under planning/outgoing after the batch
execution completes.

By default, the runrpac batch task will report overall success status, and further batch
steps will continue, even if any of the test cases executed within RPAC report test
failures. (However, runrpac will report an error and the overall batch sequence will halt
if, for example, the RPAC test script is missing or invalid.)

To specify that the runrpac batch step must report error status and prevent any
subsequent batch steps from continuing when any test case does not pass, add the
optional third parameter halt to the batch config file, such as:

rpac_validate | runrpac | MFPCS_Sample_Test_1~RT01_MT_WB.xml~halt

For completeness/clarity, the third parameter can be also specified as "continue":

rpac_validate | runrpac | MFPCS_Sample_Test_1~RT01_MT_WB.xml~continue

However, this continue specification is not strictly necessary, as this is the default
behavior when no third parameter is specified.

Configuration of interface.cfg
In RAP Integration, data from all pre-defined planning interfaces to external systems
such as RMF CS or internal systems such as RI/Science must be pulled via importers

Chapter 1
Configuration of interface.cfg

1-18

from the RDX schema. Any data that is going from Planning to external systems can also be
exported via exporters to the RDX schema. Although interface tables in the RDX schema are
fixed or do not change very frequently, as defined by the interface contracts between
respective applications, the planning/forecast application that is implemented on PDS
supports extensibility and EE configuration. Because of this, it should have configurable/
flexible importers and exporters to configure for all available metrics from the RDX schema
tables since dimensions/fact names can be different for an EE customer. This is handled
through the use of the interface.cfg file (interface configuration file). It is a free-form text file
similar to the batch control file, and contains the mapping of dimension/facts in PDS to
columns mapped to external tables for each interface.

Figure 1-1 Interface.cfg

Both importers/exporters can be commonly referred as interfaces within PDS, with an unique
interface ID for each interface. Interfaces are classified as follows: dimension importers (H),
data importers (I), and data exporters (E). Table 1-2 shows the pre-defined list of interfaces
that are available for the customers in a RAP integration; there may be more application-
specific interfaces. Customers can create or modify entries only for the available list of
interfaces. They can configure the interface to match and import the required dimension/fact
data based on the dimension/fact names configured within their application when those
interfaces are executed in batch. For GA applications, a pre-configured interface.cfg file is
available and the customer can customize it for any further extensibility changes, similar to an
EE customer.

Chapter 1
Configuration of interface.cfg

1-19

For most of the interfaces, the external interface table name is the same as the
interface name; however, for few interfaces that require derived data from other
interface tables, pre-defined views are created and columns from those views are
used to obtain the data. Interfaces can be defined to only import/export to one external
interface table/view. In Table 1-3, the External View Name column is populated only for
interfaces that use internal views. Source tables used to define the view are specified
within brackets if it is different than the interface name. The incremental flag Y
indicates that the interface is incremental in nature; that is, for each interface run it
obtains only the changed data, compared to the previous run of the interface.
However, if the incremental flag is N, the interface always obtains a full set of data for
each run. All hierarchy interfaces are complete-extract interfaces in order to obtain the
latest data available in other applications and so keep all integrating applications
synchronized. Refer to the application-specific Implementation Guides for more details
about the list of columns available and used for the import or export for each interface.

Table 1-2 List of Pre-Defined Interfaces

Interface Name Interface
Description

Importer
Type

Interface
Source/
Destinatio
n

External
View
Name

Increment
al

RSE_FCST_DMD_EXP Forecast
Interface from
Science

I RSP Y

W_PDS_SLS_IT_LC_WK_
A

Sales
Interface

I RI Y

W_PDS_INV_IT_LC_WK_
A

Inventory
Interface

I RI Y

W_PDS_MKDN_IT_LC_W
K_A

Markdown
Interface

I RI Y

W_PDS_PO_ONORD_IT_
LC_WK_A

On Order
Interface

I RI Y

W_PDS_INVRC_IT_LC_W
K_A

Receipts
Interface

I RI Y

W_PDS_INVADJ_IT_LC_
WK_A

Inventory
Adjustments

I RI Y

W_PDS_INVTSF_IT_LC_
WK_A

Inventory
Transfers

I RI Y

W_PDS_DEALINC_IT_LC
_WK_A

Deal Incomes I RI Y

W_PDS_SLSWF_IT_LC_
WK_A

Wholesale/
Franchise

I RI Y

W_PDS_EXCH_RATE_D Currency
Conversion
Rates

I RI VW_CURR
_RATE

N

VW_LOC_DATA Location Data I RI VW_LOC_
DATA

N

W_PDS_PRODUCT_D Product
Hierarchy

H RI N

W_PDS_ORGANIZATION
_D

Location
Hierarchy

H RI N

Chapter 1
Configuration of interface.cfg

1-20

Table 1-2 (Cont.) List of Pre-Defined Interfaces

Interface Name Interface
Description

Importer
Type

Interface
Source/
Destinatio
n

External
View
Name

Increment
al

W_PDS_CALENDAR_D Calendar
Hierarchy

H RI VW_CLND
_HIER

N

VW_CURR_HIER Currency
Hierarchy

H VW_CURR
HIER(W
PDS_EXC
H_RATE_D
)

N

MFP_PLAN1_EXP Merch Plan
Export from
MFP to RI

E N

MFP_PLAN2_EXP Merch Target
Plan Export
from MFP to
RI

E N

MFP_PLAN3_EXP Location Plan
Export to from
MFP to RI

E N

MFP_PLAN4_EXP Location
Target Plan
Export from
MFP to RI

E N

Interface Mappings
Each interface can have a configuration specification defined as the interface mapping that
provides details about the mapping of the source table columns and the destination. It can be
provided by the customer as the configuration file interface.cfg, which is loaded into an
internal interface mapping table. It can be used by generic importer/exporter packages to
transfer data when those interfaces are executed in the batch. Table 1-3 provides a list of
entries in the interface mapping table (RP_G_INTF_MAPPING_MD).

Table 1-3 Interface Mappings

Column Description Purpose Example

INTF_MAP_NAME<INT
ERFACE_NAME>

Interface name Actual interface name
for which the mapping is
defined

W_PDS_SLS_IT_LC_W
K_A

INTF_MAP_PARAM<PA
RAM>

Interface parameter
name

Grouping within that
interface. Can be App
Name or, within an
application, a different
set of data to process
for that interface, based
on this parameter.

MFP

Chapter 1
Configuration of interface.cfg

1-21

Table 1-3 (Cont.) Interface Mappings

Column Description Purpose Example

INTF_MAP_TYPE<TYP
E>

Interface parameter type Type of mapping. Can
be dimension mapping
or data mapping or filter
criteria for the mapping.
Valid Interface Mapping
types vary, based on the
type of interface.

DIM01 / DATA

INTF_MAP_RPAS<INT
ERNAL_NAME>

Interface mapping
column from PDS
(RPASCE)

Dimension or fact name
from PDS, based on the
mapping type.

WEEK /
DRTYSLSREGU

INTF_MAP_EXTERNAL
<EXTERNAL_NAME>

Interface mapping
column from external
table (source or
destination table)

Column name from
external interface table.

NET_SALES_REG_UNI
TS

INTF_MAP_VALUE<VA
LUE>

Interface mapping value
or constant

Can be a hard-coded
constant value to use if
mapping is not provided.
It can be used for
FILTER Type entries. It
can also be a scalar
measure specified with
prefix @.

Syntax for Interface Mappings
This section provides the syntax for interface mappings in the interface.cfg file.

<INTERFACE_NAME> : <PARAM> : <TYPE> : <INTERNAL_NAME> :
<EXTERNAL_NAME> : <VALUE>

Here are the details for the entries.

<INTERFACE_NAME> - The name of interface

<PARAM> - Parameter grouping can be App Name or any internal grouping name. It
must have a different value only if the same interface is used to import/export different
levels of data, based on different criteria.

<TYPE> - For data importers/exporters, DIMxx (xx 01,02,03) for dimension mapping.
DIM01 is reserved for the Calendar dimension. DATA for data mapping. FILTER for
optional filter criteria. FILTER or FILTER_EQ used for equal (=) operator. It also allows
FILTER_NE (<>) ,FILTER_GT (>), FILTER_GE (>=), FILTER_LT (<), FILTER_LE (<=)
(<=),FILTER_LK (Like), FILTER_NL (Not Like) as different filter types. More than one
filter entries can be used, but they all use the AND operation of the filter.

<TYPE> - For hierarchy/dimension importers, HDMxx (xx 01,02,03) for dimension
mapping for all dimensions from a single hierarchy, HDLxx for dimension label
mappings, FILTER* for optional filter criteria.

<INTERNAL_NAME> - For data importers/exporters, internal dimension/fact name. It
must be dimension name for DIMxx type and fact name for DATA type entries.

Chapter 1
Configuration of interface.cfg

1-22

<INTERNAL_NAME> - For hierarchy/dimension importers, hierarchy dimension column from
a single hierarchy,it is required only for HDMxx type entries.

<EXTERNAL_NAME> - Mapping column from external interface table for dimension, data, or
filter types.

<VALUE> - Constant value to use for mapping if column mapping not present. Also constant
value to use for FILTER criteria. It can also be a scalar measure specified with prefix @. If
this value is provided for hierarchy importer types, it will be used as the prefix for dimension
or labels

Multiple entries for same interface are required to completely define all the required mappings
for an interface.

Example for Data Importer Interface
Entries for data importer interfaces are displayed as follows:

<INTERFACE_NAME : <PARAM> : DIMxx : <DIM_NAME> : <EXTERNAL_COLUMN> :

<INTERFACE_NAME> : <PARAM> : DATA : <FACT_NAME> : <EXTERNAL_COLUMN> :

<INTEFACE_NAME> : <PARAM> : FILTER : : <EXTERNAL_COLUMN> : <FILTER_VALUE>

Example:

W_PDS_SLS_IT_LC_WK_A: MFP: DIM01 : WEEK : EOW_DATE

W_PDS_SLS_IT_LC_WK_A: MFP: DIM02 : SKU : ITEM_ID

W_PDS_SLS_IT_LC_WK_A: MFP: DIM03 : STOR : LOCATION_ID

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYNSLSREGU : NET_SALES_REG_UNITS

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYNSLSREGC : NET_SALES_REG_COST

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYNSLSREGR : NET_SALES_REG_RETAIL

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYRTNREGU : RETURNS_REG_UNITS

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYRTNREGC : RETURNS_REG_COST

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYRTNREGR : RETURNS_REG_RETAIL

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYNSLSCLRU : NET_SALES_CLEAR_UNITS

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYNSLSCLRC : NET_SALES_CLEAR_COST

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYNSLSCLRR :
NET_SALES_CLEAR_RETAIL

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYRTNCLRU : RETURNS_CLEAR_UNITS

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYRTNCLRC : RETURNS_CLEAR_COST

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYRTNCLRR : RETURNS_CLEAR_RETAIL

Example for Data Exporter Interface
Entries for data exporter interfaces are displayed as follows:<INTERFACE_NAME> :
<PARAM> : DIMxx : <DIM_NAME> : <EXTERNAL_COLUMN> :

Chapter 1
Configuration of interface.cfg

1-23

<INTERFACE_NAME> : <PARAM> : DATA : <FACT_NAME> :
<EXTERNAL_COLUMN> :

<INTEFACE_NAME> : <PARAM> : FILTER : <FACT_NAME> : :<FILTER_VALUE>

The following example shows a sample generic exporter that obtains data from
different facts of same base intersection and imports data into same table for different
versions (MPCP and MPOP) of the plan. This is controlled by using a different PARAM
for each different version of the data.

MFP_PLAN1_EXP:MPOP:DIM01:WEEK:CLND_KEY:

MFP_PLAN1_EXP:MPOP:DIM02:SCLS:PROD_KEY:

MFP_PLAN1_EXP:MPOP:DIM03:CHNL:LOC_KEY:

MFP_PLAN1_EXP:MPOP:DATA::PROD_DH_ATTR:@MFP_DRDVDPOST

MFP_PLAN1_EXP:MPOP:DATA::SUPPLIER_NUM:@MFP_DRDVDPOST

MFP_PLAN1_EXP:MPOP:DATA::VERSION_NUM:0

MFP_PLAN1_EXP:MPOP:DATA:MPOPLDOWD:CAL_DATE:

MFP_PLAN1_EXP:MPOP:DATA:MPOPSLSU:SLS_QTY:

MFP_PLAN1_EXP:MPOP:DATA:MPOPSLSR:SLS_RTL_AMT:

MFP_PLAN1_EXP:MPOP:FILTER:MPOPEXPORTB::TMFP_PLAN1_EXP:MPCP:DIM
01:WEEK:CLND_KEY:MFP_PLAN1_EXP:MPCP:DIM02:SCLS:PROD_KEY:MFP_PLA
N1_EXP:MPCP:DIM03:CHNL:LOC_KEY:MFP_PLAN1_EXP:MPCP:DATA::PROD_DH
_ATTR:@MFP_DRDVDPOSTMFP_PLAN1_EXP:MPCP:DATA::SUPPLIER_NUM:@M
FP_DRDVDPOSTMFP_PLAN1_EXP:MPCP:DATA::VERSION_NUM:1MFP_PLAN1_E
XP:MPCP:DATA:MPCPLDOWD:CAL_DATE:MFP_PLAN1_EXP:MPCP:DATA:MPCPS
LSU:SLS_QTY:MFP_PLAN1_EXP:MPCP:DATA:MPCPSLSR:SLS_RTL_AMT:MFP_P
LAN1_EXP:MPCP:FILTER:MPCPEXPORTB::T

Example for Hierarchy/Dimension Importer Interface
Hierarchy importers are similar to importers. However, the dimension mapped belong
to the same hierarchy. Each hierarchy dimension can also contain the corresponding
mapping for labels. The new mapping type entries differentiate an interface as a
hierarchy importer interface.

Note:

If the mapping is for an alternate level that is loaded via flat file and there is
no mapping available inthe External Interface table for the alternate level,
then default value can provided as NA or na. In this scenario, the current
position name, if it already exists, is not overwritten. However, for a new
value, the position name will be added as <level>_<number>, where <level>
is the level name that is the alternate level here and <number> is an integer
starting with 0. If the default value provided is not NA or na, then the position
name will be saved as the default value provided.

The following two mappings are used instead of DIMxx and DATA type mappings.

Chapter 1
Configuration of interface.cfg

1-24

<INTERFACE_NAME> : <PARAM> : HDMxx : <DIM_NAME> :
<EXTERNAL_DIM_COLUMN> : <OPTIONAL_PREFIX_VALUE>

<INTERFACE_NAME> : <PARAM> : HDLxx : : <EXTERNAL_LABEL_COLUMN> :
<OPTIONAL_PREFIX_VALUE>

<INTEFACE_NAME> : <PARAM> : FILTER : : <FILTER_SOURCE_COLUMN> :
<FILTER_VALUE>

The following is an example entry for hierarchy importers.

W_PDS_CALENDAR_D:PDS:HDM01:DAY:DAY:

W_PDS_CALENDAR_D:PDS:HDM02:WEEK:WEEK:

W_PDS_CALENDAR_D:PDS:HDM03:MNTH:MNTH:

W_PDS_CALENDAR_D:PDS:HDM04:QRTR:QRTR:

W_PDS_CALENDAR_D:PDS:HDM05:HALF:HALF:

W_PDS_CALENDAR_D:PDS:HDM06:YEAR:YEAR:

W_PDS_CALENDAR_D:PDS:HDM07:WOYR:WOYR:

W_PDS_CALENDAR_D:PDS:HDM08:HLDY::NA

W_PDS_CALENDAR_D:PDS:HDM09:EVNT::NA

W_PDS_CALENDAR_D:PDS:HDM10:STDB:STDB:

W_PDS_CALENDAR_D:PDS:HDL01::DAY_LABEL:

W_PDS_CALENDAR_D:PDS:HDL02::WEEK_LABEL:

W_PDS_CALENDAR_D:PDS:HDL03::MNTH_LABEL:

W_PDS_CALENDAR_D:PDS:HDL04::QRTR_LABEL:

W_PDS_CALENDAR_D:PDS:HDL05::HALF_LABEL:

W_PDS_CALENDAR_D:PDS:HDL06::YEAR_LABEL:

W_PDS_CALENDAR_D:PDS:HDL07::WOYR_LABEL:

W_PDS_CALENDAR_D:PDS:HDL08:::Unassigned

W_PDS_CALENDAR_D:PDS:HDL09:::Unassigned

W_PDS_CALENDAR_D:PDS:HDL10::STDB_LABEL:

Process for Uploading New interface.cfg File
A customer can upload a new interface.cfg file using the OAT task Load Interface Mappings.
Before executing this task, the customer must upload the interface.cfg file to the object store
using the naming convention incoming/config/interface.cfg and then execute that task.

The upload process does basic validation for entries in interface.cfg, verifying that the correct
parameters are used and the interface column mappings are valid both in the application and
in the external table sources. If the validation fails, it will provide details about the errors in the
log and restore the previous interface.cfg file. If the validation is successful, it will upload the
new interface.cfg configuration file and subsequent interface execution calls will use the new
interface.cfg file.

Chapter 1
Configuration of interface.cfg

1-25

Automated Testing with RPAC
The RPASCE Pluggable Automation Component (RPAC) utility is supported for use
with RPASCE cloud application deployments. RPAC tests are specified in XML-format
text files and cover a range of RPASCE application and segment activities. Note that
RPAC does not support the testing of GUI functions and is not a performance testing
tool. In order to support the validation of a newly installed or patched environment, in
the context of configured daily or weekly batch operations, RPAC for Cloud
deployments is supported through new entries in the RPASCE Batch task catalog.
These tasks allow a pre-production application to be set to a known state through a
combination of hierarchy load and measure load files, and then can compare both
application and segment workspace measures to known values represented either
directly in the test xml files or in data comparison files. This is similar to a measure
data load file, but used only for comparison rather than for loading.

Three types of collateral files are involved in the RPAC testing process:

• Input data file set: a group of hierarchy (.dat) and measure (.ovr, .clr, or .rpl) data
files that must be loaded into the application before any RPAC tests are run.
Uploaded to Object Storage in the planning/incoming/rpac directory as input.zip.

• Test file set: one or more .xml files where tests and test suites are defined using
the available set of RPAC tags and attributes. Uploaded to Object Storage in the
planning/incoming/rpac directory as tests.zip.

• Comparison data file set: an optional way to efficiently validate that one or more
measures currently contain an expected set of values. Uploaded to the Object
Storage planning/incoming/rpac directory as compare.zip.

Each of these collateral file archives, once sent through the Object Storage interface,
will be kept internally to be used every time an RPAC-enabled batch execution
sequence is run. Updates to the collateral files can be sent to the Object Storage site
before the next call of the initrpac batch task and will be brought into the active
environment at that time. Note that when any of the collateral file archives is updated,
the previous contents are entirely removed from the internal storage area, so the
replacement archive file must be a complete set of files of that type. This prevents
stale test scripts or data files from being left in the environment.

The two RPASCE Batch tasks, initrpac and runrpac, are detailed in the batch task
catalog in "Initialize Testing Environment: initrpac" and "Execute Automated Tests:
runrpac". The initrpac task is expected to be run once, at the start of the RPAC-
enabled batch exec sequence; the runrpac task can be called multiple times, including
at separate points during the batch exec sequence, if needed. Here is an example
batch execution sequence that shows how an existing weekly batch specification
might be augmented with RPAC tests:

Standard Weekly Batch Cycle
weekly | unpack | weekly_sales.zip~ftp
weekly | hierload | prod~14~N
weekly | hierload | loc~14~N
weekly | measload | load_oo_list
weekly | calc | batch_fcst
weekly | autobuild |

RPAC-enhanced Batch Cyle
validate | initrpac |
validate | hierload | prod~14~N

Chapter 1
Automated Testing with RPAC

1-26

validate | hierload | loc~14~N
validate | measload | load_oo_list
validate | runrpac | RPAC_Domain_Tests~DomainTests.xml
validate | calc | batch_fcst
validate | runrpac | RPAC_Segment_Tests~SegmentTests.xml

The first section, labeled "weekly", represents a weekly batch sequence that might run at
midnight every Saturday. Note that updated hierarchy and measure data files for the week
are sent through Object Storage in an archive file named "weekly_sales.zip" using the
unpack task.

The second section shows how the weekly batch sequence has been augmented with RPAC
tests and named "validate". Note that the unpack task from the weekly sequence has been
left out, and in its place initrpac is called to place the test data input files into the application.
If new or updated RPAC test collateral files have been placed on the Object Storage server,
they will be brought in at this point and used.

There are two sets of RPAC tests in this sequence, specified by the runrpac task entries. The
first runs immediately after the hierarchy and measure files are loaded, and validates
expected values in the application. The second test set is executed after some further
calculations have been run, and builds one or more segments, then validates values within
them as well.

When RPAC-enabled batch sequences are run, the primary log file, which is available
through the Online Administration dashboard as well as through the Object Storage log
archive package, will show a brief summary of test results. Full test details and log files are
available in the complete log archive package from the batch exec run, available in the Object
Storage area once the execution has completed.

For full details on the contents of an RPAC test .xml file, and all the tags and attributes that
are available for specifying RPAC tests, see "RPASCE Test Automation" in Oracle Retail
Predictive Application Server Cloud Edition Administration Guide. Note that the latest version
of this guide specifies which RPAC features are available for Cloud deployments. Due to
Cloud security constraints, some RPAC features, primarily the <SHELL> tag, have been
disabled; however, inclusion of RPAC tests as a step in existing batch execution sequences
should fully compensate for this restriction.

Application Deploy
This section describes the process for deploying an application in an RPASCE Cloud Service
environment.

Object Storage Upload Location
Oracle RGBU cloud services include an Object Storage site for incoming and outgoing file
transfers. See "Uploading and Downloading Files" for details on the Object Storage interface.

For the purposes of building the application, four paths within the Object Storage site are
used:

config
For uploading the application configuration into the cloud environment, create a .zip archive
containing the contents of the config directory (without the top level config folder). This
archive file must be named as <config_name>config.zip. This archive file must be placed in

Chapter 1
Application Deploy

1-27

the planning/incoming/config path on the Object Storage service. It may be updated as
often as necessary in support of application build or patch activities.

Example

The ascs_config.zip may contain the following contents:

• ascs folder - this is the folder with configuration for an application called ASCS
(required).

• ascsDashboardSettings.json - custom settings for the ASCS dashboard (optional).

• ascsHelpConfig.json - custom settings for ASCS Online Help (optional).

batch_control
The set of batch process control files, as detailed in the previous section, must be
uploaded as planning/incoming/batch_control.zip (or alternatively as individual files in
the planning/incoming/batch_control path) within the Object Storage service. These
files are loaded into the application's data store during deployment, and can be
updated later as part of the Patch Application task or by running the Manage Batch
Control task.

Bootstrap Environment
A newly provisioned RPASCE cloud environment is set up with a bootstrap
configuration that allows the implementer to log into the RPASCE Client and access
the Online Administration Tool (OAT) interface before an application has been
deployed. The bootstrap OAT configuration allows only tasks required to deploy your
application. Once the application has been deployed, both the application-specific
tasks and activities as well as the deploy activities will be available. This allows the
application to be re-deployed from scratch multiple times, should this be required
during the implementation phase. (Note that this would trigger a complete loss of any
data, so would only be applicable in early phases of implementation testing.)

OAT Parameters
A few parameters must be specified when initiating an Application Deploy process
through OAT. The implementer must supply these values:

Config Name
The name under which the configuration has been saved. For those familiar with the
RPASCE application construction process, this is the name that is internally passed as
the -cn parameter to rpasInstall. A drop-down list offers choices based on the available
application config archive files in the incoming FTP area.

Partition Dim
The dimension on which the application will be partitioned. The application is
constructed with one sub-application for each position in the given dimension. This
must be a level of separation that fits with the intended workflow for individual users so
that, when possible, most users' daily tasks relate to only one sub-application. This
lessens contention when many users are active in the system.

Chapter 1
Application Deploy

1-28

Batch Group
Once a application has been built successfully, a named group of batch operations may be
specified (typically including measure data loads and mace calculations). This operation
sequence must be one batch_type entry in the Batch Exec control file, batch_exec_list.txt
(described in "Batch Exec Service").

Overwrite
In the case where the application has already been built once, and the implementer must
rebuild the application from scratch, which might occur because a non-patchable change has
been made to the configuration, this option must be selected. If it is left in the default
unselected state, then the application build process will halt and report an error, rather than
overwrite the existing application.

Application Build
The application build process automatically carries out the following steps:

1. Basic validation of the given config name and partition dimension.

2. Ensure that a configuration with the given config name has been uploaded.

3. If the overwrite flag is false, ensure that there is no existing application. It reports an error
if the application exists.

4. If the overwrite flag is true, remove the existing application.

5. Build the application using the config name and the partition dimension as specified in the
OAT parameter screen.

6. Copy any users and user groups from the bootstrap application environment into the
application environment.

7. Copy the uploaded batch control text files into the application from the SFTP location.

8. Run post-application-build batch group.

9. Add the application details into the provisioned RPASCE Client configuration.

Once the Bootstrap Application task has completed, you only need to log out of the RPASCE
Client and then log back in again to see the tasks and menus associated with your newly built
application. (It is no longer required to restart the RPASCE Client, and this option has been
removed from the OAT menus.)

Chapter 1
Application Deploy

1-29

2
In-Context Help

This chapter describes how to configure In-Context Help for solutions based on RPASCE.

In-Context Help is a resource to access relevant help topics, in the format of HTML and
video, within the application. At present, it focuses on help topics related to the dashboard
and the workspace. The naming convention is <app-name>HelpConfig.json.

Navigating to Help Topics on RPASCE
You can navigate to the help topics in the following ways:

Dashboard

The help topics for the dashboard are added to the following two levels:

• All: The generic topics related to MFP or A&IP are added to this level.

• Report: This consists of topics related to dashboards such as the effective usage, how to
analyze the metrics, and so on.

Figure 2-1 shows the view of a dashboard.

Figure 2-1 Dashboard Window

The help topics for the dashboard are visible on the right side panel, as shown in Figure 2-2.

2-1

Figure 2-2 Dashboard Help Topics

Workspace

The workspace contains the actual content related to MFP or A&IP. Here the topics are
aligned with respect to the different levels of the Taskflow.

Figure 2-3 illustrates the workspace for the product MFPRCS.

Figure 2-3 MFPRCS Workspace

Here the Step, Tabs, and View are visible.

Chapter 2
Navigating to Help Topics on RPASCE

2-2

Figure 2-4 MFPRCS Workspace with Help

Creating the Contextual Help Configuration File
The specifications related to Contextual Help for the RPASCE dashboard and workspace are
implemented by creating a configuration file. This file is created outside of the RPASCE
Configuration Tools and is deployed in the RPASCE Client application. The contents of this
configuration file are used by the RPASCE Client to determine how to organize and display
the help topics in the dashboard and the workspace.

Although a Contextual help configuration file can be created from scratch, in most cases, it is
simpler to modify an existing version of the file to incorporate any desired changes.

Using JSON in the Contextual Help Configuration File
The contents of the Contextual Help Configuration file are formatted as a JSON (JavaScript
Object Notation) object. JSON is a common flexible information encoding notation used
frequently in cloud applications; it is more compact and, when properly formatted, more
readable than the XML format. (Importantly, it is also not subject to some security concerns
that are present when using XML for information encoding.)

JSON is a simple and straightforward format; information about the specifics of the format is
readily available online.

Structure of Contextual Help Configuration File
The configuration file is divided into three levels: ALL, REPORTS, and WORKBOOKS. All
three levels are of type JSON Object. The ALL level is the generic level. REPORTS and
WORKBOOKS are children of level ALL.

Chapter 2
Creating the Contextual Help Configuration File

2-3

Table 2-1 Configuration File Levels

Level Description

ALL Describes the generic help topics related to the RPASCE
solution in use.

REPORTS Contains the help topics related to the dashboard.

WORKBOOKS Contains the help topics for the workbook and its sub-categories,
such as Task, Step, Tab, and View.

The generic JSON structure for any solution is as follows:

 "helpTopics" : [] "reports" : {"helpTopics" : [] } "workbooks" :
{"helpTopics" : [] }

Help Topic Building Block
The help topics object as a whole is a JSON array of collection of attributes. This help
topics object is the building block for all the different levels.

The following JSON snippet explains the generic helpTopics object structure:

"helpTopics" : [{
"name" : "Help Topic 1",
 "description" : "Description 1",
 "url" : "URL 1",
 "type" : "Type 1",
 "imageSrc" : "Image 1",
 "color" : "Color 1"
},{
 "name" : "Help Topic 2",
 "description" : "Description 2",
 "url" : "URL 2",
 "type" : "Type 2",
 "imageSrc" : "Image 2",
 "color" : "Color 2"
}]

Table 2-2 list the help topic properties.

Table 2-2 Help Topic Properties

Property Value Type Description

Name JSON String The name of the topic.

Description JSON String A short description of the topic.

URL JSON String The URL link to the help topic.

Type JSON String The type of the resource. Values are: document,
image. or video.

ImageSrc JSON String The path to the image file to be displayed in the Help
topic card, for example, an icon representing a video
or an illustrative screenshot.

Chapter 2
Creating the Contextual Help Configuration File

2-4

Table 2-2 (Cont.) Help Topic Properties

Property Value Type Description

Color JSON String The color in which the help topic tile should be
visible.

Color is displayed at the top of the Help topic card. It
is typically used to visually distinguish between help
formats (document or video), but may be used for a
variety of purposes.

Values are: lightblue, red, lightgreen, purple, blue,
grey, orange, turquoise, green.

Key Naming Convention
The naming convention of the key depends upon the level or sub-level of each element. Here
is an example of the naming conventions at different levels.

Consider the solution in use is mfprcs.

Table 2-3 MFPRCS Key Naming Example

Level/Sub-Level Key Example Description

All NA No need of the key as help topics
are added to the root of the
JSON.

Reports reports

Reports > Dashboard reports.dashboard.id The key must match the name
provided for reports in the
Taskflow_MultiSolution.xml file.

Workbooks workbooks

Activity > Task mfprcs.Activity1.Task1 The task name must match the
entry provided in
Taskflow_MultiSolution.xml file
for the specific task.

Activity > Task > Step mfprcs.Activity1.Task1.Step1 The step name must match the
entry provided in
Taskflow_MultiSolution.xml file
for the specific step.

Activity > Task > Step > Tab mfprcs.Activity1.Task1.Step1.Tab
1

The tab name must match the
entry provided in
Taskflow_MultiSolution.xml file
for the specific tab.

Activity > Task > Step > Tab >
View

MT_TB01_WS01 The view name must match the
entry provided in
Taskflow_MultiSolution.xml file
for the specific view. The view
key name is unique, as it can be
added anywhere under Task,
Step, or Tab from the solution.

Chapter 2
Creating the Contextual Help Configuration File

2-5

JSON Structure of Contextual Help Configuration File
Here is an example of JSON object containing all the three levels and the help topics
related to each of them. The maxTopics in the following snippet defines how many
topics can be visible on RPASCE. This value must be increased if you want to show
more help topics at a given level than the value of maxTopics. If, for a specific level,
there are fewer than maxTopics topics, it fetches the remaining topics from its parent.
In the following snippet the maxTopics for workbooks is set to 2 and overrides the
maxTopics for the root, which is set to 3 for the workbooks level. Also, since no
maxTopics is set for reports, the maximum topics for this level is capped to 3, which is
fetched from the root level.

{
 "maxTopics" : "3.0",
 "helpTopics" : [{
 "name" : "MFP Cloud Service Introduction",
 "description" : "Learn the steps for defining the strategic financial
targets and creating plans that reconcile to the stated targets.",
 "url" : "http://docs.oracle.com/cd/E75764_01/merchfinplan/pdf/cloud/161/html/
retail_implementer_guide/output/introduction.htm#introduction",
 "type" : "document",
 "imageSrc" : "",
 "color" : "turquoise"
 }],
 "reports" : {
 "helpTopics" : [],
 "reports.dashboards.id" : {
 "helpTopics" : [{
 "name" : "Using the dashboard",
 "description" : "Manipulate the dashboard in order to effectively
analyze plan matrics",
 "url" : "http://docs.oracle.com/cd/E75764_01/merchfinplan/pdf/cloud/161/
html/retail_implementer_guide/output/dashboard.htm#dashboard",
 "type" : "document",
 "imageSrc" : "",
 "color" : "turquoise"
 }]
 }
 },
 "workbooks" : {
 "maxTopics" : "2.0",
 "helpTopics" : [],
 "mfprcs.Activity1.Task1" : {
 "helpTopics" : [{
 "name" : "Overview of Merch Plan Targets",
 "description" : "Learn about the steps associated with creating and
monitoring targets",
 "url" : "http://docs.oracle.com/cd/E75764_01/merchfinplan/pdf/cloud/161/
html/retail_implementer_guide/output/
CreateMerchPlanTargets.htm#create_merch_plan_targets_task",
 "type" : "document",
 "imageSrc" : "",
 "color" : "turquoise"
 }]
 }
}

Chapter 2
Creating the Contextual Help Configuration File

2-6

Editing the Contextual Help Configuration File
Help topics can be edited or added directly under the levels ALL and REPORTS. For level
WORKBOOKS, the implementer can add or edit under Task or can add or edit under a
specific sub-level (Step, Tab, or View).

The following examples indicate where the implementer can add help topics at different
levels.

• Adding or editing the help topic for level ALL.

The implementer can add the help topic object directly under the root of the JSON under
the property helpTopics. For editing, the implementer must search the name of the help
topic in JSON and edit any of the required properties.

• Adding or editing the help topic for level REPORTS.

Here the implementer must add the help topic under the reports object of the JSON. The
implementer must search for the key reports and then add the help topic under the
attribute helpTopics. Similarly, any particular help topic can be edited by searching the
name of the help topic.

• Adding or editing the help topic for sub-level Step under level WORKBOOKS.

To add a topic under sub-level Step, the implementer must search for the Step key and
add the help topic. For editing, the implementer must search for a particular help topic
and edit any of the properties as required.

• Adding or editing the help topic for sub-level View under level WORKBOOKS.

To add a topic under sub-level View, the implementer must search for the View key and
add the help topic. For editing, the implementer must search for a particular help topic
and edit any of the properties as required.

Retrieve/Update InContext help JSON file:
The user can update or retrieve the help JSON file through an OAT (Online Admin Tools) task
and can easily update the existing JSON file or retrieve it. This provides the flexibility to view
the list of available help resources and modify them according to the requirement.

Following are the steps to submit the OAT task.

1. Open Submit a New Admin Task under Online Admin Tools.

2. Select Patch Application Task under task group and click Next, as shown in Figure 2-5.

Chapter 2
Retrieve/Update InContext help JSON file:

2-7

Figure 2-5 List of Task Groups

3. Select Manage JSON files from the list of available tasks and click Next, as
shown in Figure 2-6.

Figure 2-6 List of Tasks Under Patch Application Task Group

4. Now the user can provide a task label and select the type of operation to be
performed.

Chapter 2
Retrieve/Update InContext help JSON file:

2-8

• Retrieve JSON files to Object Storage: This operation performs the task of fetching
the help JSON file from the RPASCE application. When this task is run, the help
JSON file (with other JSON files) is bundled as a zip with label as
<app_name>_json.zip and is placed in object storage under <SubNamespace>/
planning/outgoing. The help JSON file is also prefixed with the app name as
<app_name>HelpConfig.json

Example: mfprcsHelpConfig.json

Refer to Uploading and Downloading Files for more details about downloading and
uploading files to Object Storage.

• Update JSON files from Object Storage: The user can update the help JSON file
as per their requirements. Once updated, the file name must be prefixed with the app
name as <app_name>HelpConfig.json. Then, this JSON file must be bundled as
<app_name>_json.zip and placed in the <SubNamespace>/planning/incoming/config
directory.

When the Update JSON files from Object Storage operation is performed on the
RPASCE UI, it fetches the zip bundle from the Object Storage location
<SubNamespace>/planning/incoming/config and updates the application with the
new changes from the help JSON file. The user must re-login to the application to
see the changes.

Refer to Uploading and Downloading Files for more details about downloading and
uploading files to Object Storage.

Figure 2-7 Options to Fetch or Update the JSON Files

Chapter 2
Retrieve/Update InContext help JSON file:

2-9

Note:

If the user updates the URLs for the help topics in the help JSON file, these
URLs must be allowed so that the links are accessible from the RPASCE UI.
To allow the URLs, the user must navigate to System Configuration > Config
Properties > Images and append the URL host in Valid Image URL Hosts
text box.

Figure 2-8 Location to Allow List of the URLs

Chapter 2
Retrieve/Update InContext help JSON file:

2-10

3
Uploading and Downloading Files

The Oracle Cloud Infrastructure Object Storage service is used to upload and download the
files used in batch processing.

Object Storage
The Oracle Cloud Infrastructure Object Storage service is an internet-scale, high-
performance storage platform that offers reliable and cost-efficient data durability. The Object
Storage service can store an unlimited amount of unstructured data of any content type.

More information on Object Storage can be found here.

https://docs.oracle.com/en-us/iaas/Content/Object/Concepts/
objectstorageoverview.htm

Accessing Endpoints to Manage Files in Object Storage
A Public Wrapper API over the Object Storage that has a built-in virus scanning ability is been
available to perform various actions on Object Storage.

The following terms are used in Table 3-1:

• PAR: a pre-authenticated request used to upload or download files. This is valid only for
a limited duration and is set to five minutes.

• Storage Prefix: Object Storage is a flat storage area and does not include the concept of
directories. Storage prefix is a prefix for a file that imitates a directory structure.

For example, planning/incoming is prefixed to a filename to provide a more readable and
distinguishable name.

Before accessing the APIs, an OCI IAM token must be generated. This token is passed in the
request header for authentication.

curl -i -u "<IDCS-client-id>":"<IDCS-client-secret>" \
https://<idcs-tenant-id>.<IDCS_URL> \
-H 'Content-Type: application/x-www-form-urlencoded' \
-H 'Host: <idcs-tenant-id>.<IDCS_URL>' \
-d 'grant_type=client_credentials' -d 'scope=urn:opc:idm:__myscopes__'

3-1

https://docs.oracle.com/en-us/iaas/Content/Object/Concepts/objectstorageoverview.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Concepts/objectstorageoverview.htm

Table 3-1 API Endpoints

Action Endpoint Payload Respons
e

Details

Get PAR
(pre-
authentica
ted
requests)
for upload
of files

/
uploadFile
s

[{

"storagePrefix":
"string",
 "fileName":
"string"
},
...]

PAR URI This endpoint is used to generate
PARs, which are then used to
upload files.

Data:

{
 "listOfFiles": [{
 "storagePrefix":
"<subnamespace>/planning/
incoming/input",
 "fileName":
"prod.csv.dat"
 },
 {
 "storagePrefix":
"<subnamespace>/planning/
incoming/config",
 "fileName":
"RetailHomeConfig.json"
 }]
}

Command:

curl -X POST "<url>/
<BucketName>/uploadFiles" \

-H "accept: application/json"
-H "Accept-Language: en" -H
"Authorization: Bearer
<AccessToken>" -H "Content-
Type: application/json" \

-d "{\"listOfFiles\":
[{\"storagePrefix\":\"<subname
space>/planning/incoming/
input\",\"fileName\":\"prod.cs
v.dat\"},
{\"storagePrefix\":\"
\<subnamespace>/planning/
incoming/config/
\",\"fileName\":\"RetailHomeCo
nfig.json\"}]}"

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-2

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Respons
e

Details

Response 200:

{
 "parList": [{
 "id":
"WhmJ1Jn6v1GufaHDVISg2sUyiOLEo
DAG3rWGUp1J/
yj7NgvpJtf77q6Qehsz9h9R:<subna
mespace>/planning/incoming/
input/prod.csv.dat",
 "name":
"prod.csv.dat",
 "accessUri": "https://
objectstorage.us-
phoenix-1.oraclecloud.com/p/
oKDbsdO0T3LsfEWgys5WMD85DOyB7W
4AvNK_lYXGtVMkGobebU6NIdvuz5Aq
rtO4/n/oraclegbudevcorp/b/
<BucketName>/o/<subnamespace>/
planning/incoming/input/
prod.csv.dat",
 "objectName":
"<subnamespace>/planning/
incoming/input/prod.csv.dat",
 "accessType":
"ObjectWrite",
 "timeExpires":
1629914865691,
 "timeCreated":
1629914565988
 },
 {
 "id":
"I0zDNVNqpQG8KEgGoJokViRIZ6yAQ
NX7haWIvBfDME+UabAShOhVu7zNvmE
RkZLm:<subnamespace>/planning/
incoming/config/
RetailHomeConfig.json",
 "name":
"RetailHomeConfig.json",
 "accessUri": "https://
objectstorage.us-
phoenix-1.oraclecloud.com/p/
Oja49u66xQqkzgOC6i5GA1PooED1XQ
V2bsnDwurqKbwetAnqX1RzVb4-
e1mPiWWs/n/oraclegbudevcorp/b/
<BucketName>/o/<subnamespace>/
planning/incoming/config/
RetailHomeConfig.json",
 "objectName":
"<subnamespace>/planning/
incoming/config/
RetailHomeConfig.json",
 "accessType":

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-3

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Respons
e

Details

"ObjectWrite",
 "timeExpires":
1629914866213,
 "timeCreated":
1629914566301
 }]
}

Files can then be uploaded using
the generated PARs (accessURI in
the response).

curl --request PUT --data-
binary <File> <PAR>

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-4

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Respons
e

Details

Get PAR
for
download
of files

/
download
Files

[{

"storagePrefix":
"string",
 "fileName":
"string"
},
...]

PAR URI This endpoint is used to generate
PARs, which are then used to
download files.

Data:

{
 "listOfFiles": [{
 "storagePrefix":
"<subnamespace>/planning/
incoming/input",
 "fileName":
"prod.csv.dat"
 },
 {
 "storagePrefix":
"<subnamespace>/planning/
incoming/config/",
 "fileName":
"RetailHomeConfig.json"
 }]
}

Command:

curl -X POST "<url>/
<BucketName>/downloadFiles" \
-H "accept: application/json"
-H "Accept-Language: en" -H
"Authorization: Bearer
<AccessToken>" -H "Content-
Type: application/json" \
-d "{\"listOfFiles\":
[{\"storagePrefix\":\"<subname
space>/planning/incoming/
input\",\"fileName\":\"prod.cs
v.dat\"},
{\"storagePrefix\":\"
\<subnamespace>/planning/
incoming/config/
\",\"fileName\":\"RetailHomeCo
nfig.json\"}]}"

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-5

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Respons
e

Details

Response 200:

{
 "parList": [{
 "id":
"SMINYf9O09IQmfkIxb8gHb0oRN2Vr
gAD88knbvo3pcNvvrNEhG8btWlPOdn
fcLRG:<subnamespace>/planning/
incoming/input/prod.csv.dat",
 "name":
"prod.csv.dat",
 "accessUri": "https://
objectstorage.us-
phoenix-1.oraclecloud.com/p/
M7JSr6Jp4up_XnVgib6xXqCuc17YHo
WZDVzwGmt1x76_sqIRTQGHS3X_5aMa
r2HV/n/oraclegbudevcorp/b/
<BucketName>/o/<subnamespace>/
planning/incoming/input/
prod.csv.dat",
 "objectName":
"<subnamespace>/planning/
incoming/input/prod.csv.dat",
 "accessType":
"ObjectRead",
 "timeExpires":
1629916720360,
 "timeCreated":
1629916420483
 },
 {
 "id":
"8Jtqp6T2g3k+1KY9RhO9D7Kftmm5O
Bn6PIhCzxIQAH9jbvyQmi54SNoXuEz
x0eqM:<subnamespace>/planning/
incoming/config/
RetailHomeConfig.json",
 "name":
"RetailHomeConfig.json",
 "accessUri": "https://
objectstorage.us-
phoenix-1.oraclecloud.com/p/
5wvRsj2D00nRkjX7-
IMZoo9xOSRkMJUM37yyy4wKL1PKwTp
dgQ8BWQKlg_jHXnrh/n/
oraclegbudevcorp/b/
<BucketName>/o/<subnamespace>/
planning/incoming/config/
RetailHomeConfig.json",
 "objectName":
"<subnamespace>/planning/
incoming/config/
RetailHomeConfig.json",
 "accessType":

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-6

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Respons
e

Details

"ObjectRead",
 "timeExpires":
1629916720632,
 "timeCreated":
1629916420742
 }]
}

Files can then be downloaded using
the generated PARs (accessURI in
the response).

curl --request GET <PAR> --
output <file>

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-7

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Respons
e

Details

Delete
Files

/
deleteFile
s

[{

"storagePrefix":
"string",
 "fileName":
"string"
},
...]

Status:
ok/error
per file

This endpoint is used to delete files
from Object Storage.

Data:

{
 "listOfFiles": [{
 "storagePrefix":
"<subnamespace>/planning/
incoming/input",
 "fileName":
"prod.csv.dat"
 },
 {
 "storagePrefix":
"<subnamespace>/planning/
incoming/config/",
 "fileName":
"RetailHomeConfig.json"
 }]
}

Command:

curl -X DELETE "<url>/
<BucketName>/deleteFiles" \
-H "accept: */*" -H "Accept-
Language: en" -H
"Authorization: Bearer
<AccessToken>" -H "Content-
Type: application/json" \
-d "{\"listOfFiles\":
[{\"storagePrefix\":\"<subname
space>/planning/incoming/
input\",\"fileName\":\"prod.cs
v.dat\"},
{\"storagePrefix\":\"<subnames
pace>/planning/incoming/
config/
\",\"fileName\":\"RetailHomeCo
nfig.json\"}]}"

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-8

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Respons
e

Details

Response 200:

{
 "filesDeleted": [{
 "filePath": {
 "storagePrefix":
"<subnamespace>/planning/
incoming/input",
 "fileName":
"prod.csv.dat"
 },
 "responseMessage":
"File successfully deleted
<subnamespace>/planning/
incoming/input/prod.csv.dat"
 },
 {
 "filePath": {
 "storagePrefix":
"<subnamespace>/planning/
incoming/config/",
 "fileName":
"RetailHomeConfig.json"
 },
 "responseMessage":
"File successfully deleted
<subnamespace>/planning/
incoming/config/
RetailHomeConfig.json"
 }],
 "filesFailedDeletion": []
}

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-9

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Respons
e

Details

Move/
Rename
Files

/
moveFiles

[{

currentPath: {

"storagePrefix":
"string",

"fileName":
"string"
 },
 newPath: {

"storagePrefix":
"string",

"fileName":
"string"
 }
},
...]

Status:
ok/error
per file

This endpoint is used to move files
within Object Storage.

Data:

{
 "listOfFiles": [{
 "currentPath": {
 "storagePrefix":
"<subnamespace>/planning/
incoming/input2",
 "fileName":
"prod.csv.dat"
 },
 "newPath": {
 "storagePrefix":
"<subnamespace>/planning/
incoming/config1/",
 "fileName":
"prod.csv.dat"
 }
 }]
}

Command:

curl -X POST "<url>/
<BucketName>/movefiles" \
-H "accept: */*" -H "Accept-
Language: en" -H
"Authorization: Bearer
<AccessToken>" -H "Content-
Type: application/json" \
-d "{\"listOfFiles\":
[{\"currentPath\":
{\"storagePrefix\":\"<subnames
pace>/planning/incoming/
input2\",\"fileName\":\"prod.c
sv.dat\"},\"newPath\":
{\"storagePrefix\":\"<subnames
pace>/planning/incoming/
config1/\",\"fileName\":\"prod
.csv.dat\"}}]}"

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-10

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Respons
e

Details

Response:

{
 "failedMove": [],
 "successfulMove": [{
 "moveFile": {
 "currentPath": {

"storagePrefix":
"<subnamespace>/planning/
incoming/input2",
 "fileName":
"prod.csv.dat"
 },
 "newPath": {

"storagePrefix":
"<subnamespace>/planning/
incoming/config1/",
 "fileName":
"prod.csv.dat"
 }
 },
 "responseMessage":
"Successfully moved."
 }]
}

List
storage
prefixes

/
listStorag
ePrefixes

{

"storagePrefix":
"string",

"fileNameStartsWit
h":
"optional_string"
}

Storage
prefix
name,
Size,
Number
of files

This endpoint is used to list Storage
Prefixes in Object Storage.

Allows customer to discover
consumption and storage prefix
names.

curl -X GET "<url>/
<BucketName>/listprefixes" -H
"accept: application/json" -H
"Accept-Language: en" -H
"Authorization: Bearer
<AccessToken>"

Response: 200

[
"<subnamespace>/planning/
incoming/config/",
"<subnamespace>/planning/
incoming/input"
]

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-11

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Respons
e

Details

List files
within a
storage
prefix

/listFiles {

"storagePrefix":
"optional_string"
}

storage
prefix
name, file
name,
size, md5
checksu
m,
created
date,
modified
date,
scan
date,
scan
status

This endpoint is used to find and list
files from Object Storage.

curl -X GET "<url>/
<BucketName>/listfiles?
prefix=<subnamespace>/
planning/
incoming&contains=prod&sort=si
ze:asc" \
-H "accept: application/json"
-H "Accept-Language: en" -H
"Authorization: Bearer
<AccessToken>"

Response:

{
 "resultSet": [{
 "name":
"<subnamespace>/planning/
incoming/config1/
prod.csv.dat",
 "size": 177023,
 "md5": "vlN/
r8gbNyQ1EdsC++Hv1w==",
 "version": "ca60582d-
bacb-4309-bbbf-89d4a1aa2843",
 "etag":
"7d6dde3b-5b5b-430d-8494-78e09
0418946",
 "createdDate":
"2021-08-25T20:36:40Z",
 "modifiedDate":
"2021-08-25T20:36:40Z",
 "scanStatus": "Passed"
 }],
 "totalResults": 1,
 "limit": 0,
 "count": 1,
 "offset": 0,
 "hasMore": false
}

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-12

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Respons
e

Details

Find file /
findFileBy
Name

{

"stringContains":
"string"
}

storage
prefix
name, file
name,
size, md5
checksu
m,
created
date,
modified
date,
scan
date,
scan
status

This endpoint is used to find and list
files from Object Storage.

curl -X GET "<url>/
<BucketName>/findFileByName?
prefix=<subnamespace>/
planning/
incoming&contains=prod&sort=si
ze:asc" \
-H "accept: application/json"
-H "Accept-Language: en" -H
"Authorization: Bearer
<AccessToken>"

Response:

{
 "resultSet": [{
 "name":
"<subnamespace>/planning/
incoming/config1/
prod.csv.dat",
 "size": 177023,
 "md5": "vlN/
r8gbNyQ1EdsC++Hv1w==",
 "version": "ca60582d-
bacb-4309-bbbf-89d4a1aa2843",
 "etag":
"7d6dde3b-5b5b-430d-8494-78e09
0418946",
 "createdDate":
"2021-08-25T20:36:40Z",
 "modifiedDate":
"2021-08-25T20:36:40Z",
 "scanStatus": "Passed"
 }],
 "totalResults": 1,
 "limit": 0,
 "count": 1,
 "offset": 0,
 "hasMore": false
}

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-13

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Respons
e

Details

Liveness
test

/ping This endpoint allows customer to
check for service liveness.

curl -X GET "<url>/ping" -H
"accept: */*" -H "Accept-
Language: en" -H
"Authorization: Bearer
<AccessToken>"

Response:

{
"appStatus": 200
}

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-14

A
Appendix: Exit Codes

This appendix describes all non-success exit codes from the Batch Framework services and
batch administration tasks.

All EE batch scripts have consistent exit codes. Codes from 1 to 22 come from the BSA
framework (although only 6 and 13 are commonly used by EE batch and so are included in
the table below). Codes of 30 and above are from EE batch scripts themselves and are also
listed in Table A-1.

Table A-1 lists the common (non-success) exit codes from the EE batch scripts and the BSA
framework.

Table A-1 Common Exit Codes

Code Reason

6 too few args / missing arg

13 invalid application path

30 required environment variable is not set

31 batch config file is not found

32 selected batch config entry is not found in file

33 invalid or missing info in batch config file

34 unknown error detected in RPASCE utility log output

35 file/directory not found when moving or copying files

36 file/directory permission error when moving or copying files

37 measure load exceeded reject record limit.

Note that in a live OCI-provisioned environment, it is not expected that customers will see any
of these error codes except 31 through 33. These codes indicate issues in the customer-
provided batch config files.

Table A-2 lists additional exit codes from eebatch_exporthier.ksh, eebatch_exportmeas.ksh,
eebatch_loadhier.ksh, and eebatch_loadmeas.ksh, that result from the exit codes of the
underlying RPASCE binary utilities (exportHier, exportMeasure, loadHier and loadMeasure).
The exit codes from the binary utilities are reported by the EE Batch Framework as being 100
more than the raw utility results. This prevents overlap between the BSA/EE script result
codes and the RPASCE binary utility result codes. If loadHier itself returns an error code of 5,
then the EE batch framework will report the error as code 105.

Table A-2 Additional Exit Codes

Script Code Reason

Generic codes applied to all
scripts

103 Invalid application. Version mismatch.

104 Generic argument error of the underlying utility.

105 Generic exception occurred during main operation.

A-1

Table A-2 (Cont.) Additional Exit Codes

Script Code Reason

106 Lock exception or parallel sub-process error.

eebatch_calc.ksh 107 Expression parsing error.

eebatch_exportmeas.ksh 108 Error during export preparation.

109 Error during main execution.

110 Error during post operation. Possible during the
merging of local application files.

eebatch_loadhier.ksh 108 loadHier cannot add a new position to a partition
dimension. For example, no store has been defined
for the new position.

109 Calendar prepending error.

110 Input data contains conflicting information.

111 Metadata error. Corrupted internal data.

112 Unable to update the ITT table for the hierarchy that is
shared by PDS.

113 Data mover staging error.

114 Data mover merging error. Hierarchy update was
applied but measure data was not moved completely.
The user must fix the underlying issue and re-run the
operation to complete the hierarchy update.

115 NA handler error. Hierarchy update was applied but
measure data was not moved completely. The user
must fix the underlying issue and re-run the operation
to complete the hierarchy update.

116 Purge all failed.

117 Reindex is in progress. No operation was performed.

120 PDS repartitioning is in progress.

eebatch_loadmeas.ksh 98 Internal aggregation error

99 Internal aggregation error. Cannot load in CLR mode
because the measure does not have a clear
intersection. Unknown internal error.

It is not expected that customers will encounter any of the RPASCE exceptions,
internal errors, or C++ exceptions, which indicate corrupted data or a programming
error.

Appendix A

A-2

	Contents
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Customer Support
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Implementation
	Required Skills
	Batch Framework
	Batch Processes Under the Control of the Implementer
	Batch Processes Not Under the Control of the Implementer
	POM Jobs and Batch Exec Service

	Batch Framework Service Catalog
	Batch Exec Service
	Load Measure (Fact) Data: measload
	Export Measure (Fact) Data: measexport
	Mace Calculation Service: calc
	Export Hierarchy: hierexport
	Load PDS Dimension: loaddimdata
	Load Alternate Rollup Date: altdimload
	Batch Control Entries Required to Execute Interfaces
	Wait for Trigger File: waittrigger
	Send a Trigger File: sendtrigger
	Extract Input Files from Archive: unpack
	Transform File Service
	Custom Function: ap_set_datr
	Convert Informal Positions to Formal: formalize
	Rename Positions in a Hierarchy: renamepositions
	Workspace Refresh by Template Name: refresh
	Workspace Rebuild by Template Name: rebuild
	Workspace Delete by Template Name: delete
	Run Segment Build Queue: autobuild
	Initialize Testing Environment: initrpac
	Execute Automated Tests: runrpac

	Configuration of interface.cfg
	Interface Mappings
	Syntax for Interface Mappings
	Example for Data Importer Interface
	Example for Data Exporter Interface
	Example for Hierarchy/Dimension Importer Interface
	Process for Uploading New interface.cfg File

	Automated Testing with RPAC
	Application Deploy
	Object Storage Upload Location
	config
	batch_control

	Bootstrap Environment
	OAT Parameters
	Config Name
	Partition Dim
	Batch Group
	Overwrite

	Application Build

	2 In-Context Help
	Navigating to Help Topics on RPASCE
	Creating the Contextual Help Configuration File
	Using JSON in the Contextual Help Configuration File
	Structure of Contextual Help Configuration File
	Help Topic Building Block
	Key Naming Convention
	JSON Structure of Contextual Help Configuration File
	Editing the Contextual Help Configuration File

	Retrieve/Update InContext help JSON file:

	3 Uploading and Downloading Files
	Object Storage
	Accessing Endpoints to Manage Files in Object Storage

	A Appendix: Exit Codes

