
Oracle® Retail Predictive Application
Server Cloud Service
Implementation Guide

Release 25.1.101.0
G24384–02
March 2025

Oracle Retail Predictive Application Server Cloud Service Implementation Guide, Release 25.1.101.0

G24384–02

Copyright © 2025, Oracle and/or its affiliates.

Primary Author: Judith Meskill

Contributing Authors: Scott Coulter

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Send Us Your Comments

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Customer Support ix

Improved Process for Oracle Retail Documentation Corrections x

Oracle Retail Documentation on the Oracle Technology Network x

Conventions x

1 Implementation

Required Skills 1-1

Batch Framework 1-1

Batch Processes Under the Control of the Implementer 1-2

Batch Processes Not Under the Control of the Implementer 1-2

POM Jobs and Batch Exec Service 1-2

Batch Framework Service Catalog 1-3

Batch Exec Service 1-3

Load Measure (Fact) Data: measload 1-4

Export Measure (Fact) Data: measexport 1-5

Mace Calculation Service: calc 1-7

Export Hierarchy: hierexport 1-7

Load PDS Dimension: loaddimdata 1-8

Load Alternate Rollup Date: altdimload 1-9

Batch Control Entries Required to Execute Interfaces 1-9

Wait for Trigger File: waittrigger 1-10

Send a Trigger File: sendtrigger 1-10

Extract Input Files from Archive: unpack 1-11

Transform File Service 1-11

Custom Function: ap_set_datr 1-15

Convert Informal Positions to Formal: formalize 1-15

iii

Rename Positions in a Hierarchy: renamepositions 1-16

Workspace Refresh by Template Name: refresh 1-16

Workspace Rebuild by Template Name: rebuild 1-17

Workspace Delete by Template Name: delete 1-17

Run Segment Build Queue: autobuild 1-17

Initialize Testing Environment: initrpac 1-17

Execute Automated Tests: runrpac 1-18

Sync Users From IDCS: idcssync 1-19

Shared Build (optional) 1-19

Configuration of interface.cfg 1-20

Interface Mappings 1-23

Syntax for Interface Mappings 1-24

Example for Data Importer Interface 1-24

Example for Data Exporter Interface 1-25

Example for Hierarchy/Dimension (Level) Importer Interface 1-26

Process for Uploading New interface.cfg File 1-27

Automated Testing with RPAC 1-27

Application Deploy 1-28

Object Storage Upload Location 1-29

config 1-29

interface.cfg (optional) 1-29

batch_control 1-29

Bootstrap Environment 1-29

OAT Parameters 1-29

Config Name 1-30

Partition Dim 1-30

Batch Group 1-30

Overwrite 1-30

Application Build 1-30

File Transfer Service Required Parameters 1-31

2 In-Context Help

Navigating to Help Topics on RPASCE 2-1

Creating the Contextual Help Configuration File 2-3

Using JSON in the Contextual Help Configuration File 2-3

Structure of Contextual Help Configuration File 2-3

Help Topic Building Block 2-4

Key Naming Convention 2-5

JSON Structure of Contextual Help Configuration File 2-6

Editing the Contextual Help Configuration File 2-7

iv

Retrieve/Update InContext help JSON file: 2-7

3 Uploading and Downloading Files

Object Storage 3-1

Accessing Endpoints to Manage Files in Object Storage 3-1

A Appendix: Exit Codes

v

List of Figures

1-1 Interface.cfg 1-21

2-1 Dashboard Window 2-1

2-2 Dashboard Help Topics 2-2

2-3 MFPRCS Workspace 2-2

2-4 MFPRCS Workspace with Help 2-3

2-5 List of Task Groups 2-8

2-6 List of Tasks Under Patch Application Task Group 2-8

2-7 Options to Fetch or Update the JSON Files 2-9

2-8 Location to Allow List of the URLs 2-10

vi

List of Tables

1-1 Transform Parameters 1-12

1-2 List of Pre-Defined Interfaces 1-22

1-3 Interface Mappings 1-23

2-1 Configuration File Levels 2-4

2-2 Help Topic Properties 2-4

2-3 MFPRCS Key Naming Example 2-5

3-1 API Endpoints 3-2

A-1 Common Exit Codes A-1

A-2 Additional Exit Codes A-1

vii

Send Us Your Comments

Oracle Retail Cloud Edition Implementation Guide, Release 25.1.101.0

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this
document.

Your feedback is important, and helps us to best meet your needs as a user of our products.
For example:

• Are the implementation steps correct and complete?

• Did you understand the context of the procedures?

• Did you find any errors in the information?

• Does the structure of the information help you with your tasks?

• Do you need different information or graphics? If so, where, and in what format?

• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your
name, the name of the company who has licensed our products, the title and part number of
the documentation and the chapter, section, and page number (if available).

Note:

Before sending us your comments, you might like to check that you have the latest
version of the document and if any concerns are already addressed. To do this,
access the Online Documentation available on the Oracle Technology Network Web
site. It contains the most current Documentation Library plus all documents revised or
released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative
or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle
local office and inquire about our Oracle University offerings. A list of Oracle offices is available
on our Web site at http://www.oracle.com.

Send Us Your Comments

viii

http://www.oracle.com

Preface

Oracle Retail Implementation Guides provide detailed information useful for implementing and
configuring the application. It helps you to understand the behind-the-scenes processing of the
application.

Audience
This document is intended for administrators and system implementers of RPASCE.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Retail Predictive Application
Server Cloud Edition documentation set:

• Oracle Retail Predictive Application Server Cloud Edition Configuration Tools User Guide

• Oracle Retail Predictive Application Server Cloud Edition Release Notes

• Oracle Retail Predictive Application Server Cloud Edition Security Guide

• Oracle Retail Predictive Application Server Cloud Edition User Guide

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

• Product version and program/module name

• Functional and technical description of the problem (include business impact)

• Detailed step-by-step instructions to re-create

• Exact error message received

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com

• Screen shots of each step you take

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content, Oracle
Retail documentation may be republished whenever a critical correction is needed. For critical
corrections, the republication of an Oracle Retail document may at times not be attached to a
numbered software release; instead, the Oracle Retail document will simply be replaced on the
Oracle Technology Network Web site, or, in the case of Data Models, to the applicable My
Oracle Support Documentation container where they reside.

Oracle Retail documentation is available on the Oracle Technology Network at the following
URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
An updated version of the applicable Oracle Retail document is indicated by Oracle part
number, as well as print date (month and year). An updated version uses the same part
number, with a higher-numbered suffix. For example, part number E123456-02 is an updated
version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all previous
versions.

Oracle Retail Documentation on the Oracle Technology Network
Oracle Retail product documentation is available on the following web site:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
(Data Model documents are not available through Oracle Technology Network. You can obtain
them through My Oracle Support.)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

x

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

1
Implementation

RPASCE acts as a platform to create tailored solutions or migrate existing on-premise
solutions into the cloud. This guide addresses the process of preparing a custom solution for
use in either of these Cloud Service environments.

Because Oracle Retail Cloud Service applications do not support any back-end server access,
implementation is different from an RPAS on-premise implementation. The applications provide
online tools to cover all the necessary facets of an RPASCE application roll-out and
administration. These include:

• Deploying and patching applications from your custom configuration

• Defining nightly, weekly, or ad hoc batch process sequences

• Scheduling recurring batch processes

Required Skills
Since implementations are based on a retailer- or implementer-provided configuration, working
knowledge of the RPASCE configuration tools is essential. The RPASCE configuration tools
are supported for offline use on a Windows 10 system. They are available in the applicable
Starter Kits, and their use is detailed in the Oracle Retail Predictive Application Server Cloud
Edition Configuration Tools User Guide.

In addition to supplying an RPASCE configuration, the implementer must also prepare the
retailer to provide RPASCE Hierarchy (dimension) and Measure (fact) data load files, as well
as to take RPASCE exported Measure (fact) data files for any downstream integration needs.
While the implementer does not call the RPASCE command-line utilities directly, knowledge of
their usage gained from the Oracle Retail Predictive Application Server Cloud Edition
Administration Guide is helpful.

Data files for loading into the applications and exported files for integration with other systems
are sent and received from the RPASCE cloud environment via Oracle Object Storage.
Knowledge of the use of Object Storage File Transfer Service APIs, including an ability to
automate such uploads and downloads, is a necessary prerequisite for routine nightly or
weekly batch processing jobs.

Batch Framework
RPASCE operations require that the administrative user, who will not have command-line
server access, must be able to select, initiate, and schedule RPASCE batch activities.

The RPASCE platform includes an Online Administration Tool (OAT) capability, which allows
simple parameterization and scheduling of pre-configured batch tasks. The RPASCE provides
an enhancement to the OAT framework that allows a sequence of several batch tasks to be
defined. This sequence is built from a list of available batch services, such as Measure (fact)
data loading, calculation, segment workspace refresh, and so on. These service tasks run in a
defined order, so that you can know, for example, that your daily data updates have been
loaded before your workspace refresh tasks are run. The batch tasks are configured to run
under the existing OAT framework, so that scheduling them to run once, or on a repeating
basis, is the same as for other OAT tasks.

1-1

The batch task sequences are defined in a small set of text files, which are specified below,
with some examples.

Batch Processes Under the Control of the Implementer
Using the RPASCE batch execution framework, the following are under implementer control:

• List of batch operations to be run, with available parameterization

• Order in which batch operations are to be run

• Scheduling of one or more recurring batch tasks, which can be modified by the
administrator, as needed

Batch Processes Not Under the Control of the Implementer
Due to the operational and security constraints of the Cloud Service environment, the following
are not under implementer control:

• Parallelization: The applications automatically parallelize any applicable batch tasks with a
number of processes set to match the provisioned server environment.

• Script file names, file and directory locations: Custom scripting is not supported for this
environment, and no knowledge of file system names or locations is necessary in defining
and parameterizing the batch task files.

• Incoming and outgoing file locations: These details are fixed within the RPASCE Cloud
Service environment.

POM Jobs and Batch Exec Service
Process Orchestration and Monitoring (POM) is the enterprise batch-scheduling solution for
retail applications migrating to the cloud. In POM, the RPASCE schedule contains multiple
static jobs for each RPASCE application, namely, three daily jobs (jos_daily_pre, jos_daily, and
jos_daily_post) and three weekly jobs (jos_weekly_pre, jos_weekly, and jos_weekly_post).

These jobs must exist in batch_exec_list and can map to other batch control sets for the Batch
Exec Service.

For example, the following section in the batch_exec_list defines the mappings for the POM
jobs.

Entries for scheduling in JOS/POM
jos_daily_pre | exec | *hook_jos_daily_pre
jos_daily | exec | batch_daily
jos_daily_post | exec | *hook_jos_daily_post
jos_weekly_pre | exec | *hook_jos_weekly_pre
jos_weekly_pre | exec | batch_weekly_pre
jos_weekly | exec | batch_weekly
jos_weekly_post | exec | *hook_jos_weekly_post

In this example, the job_weekly is configured to execute the batch_weekly control set, which is
a set of tasks within the batch_exec_list that can be configured in the same way as you would
if not using POM. The "*" before the control set name indicates that this control set is optional,
that is, if it does not exist, the batch execution of the POM job just ignores it without reporting
any errors.

For more details about the RPASCE Schedule for POM, refer to the Oracle Retail Predictive
Application Server Cloud Edition Administration Guide.

Chapter 1
Batch Framework

1-2

Batch Framework Service Catalog
This section describes the batch services that are available to be configured.

Batch Exec Service
The Batch Exec service is the controller for all the other services, specifying groups of tasks to
be run, their sequences, and top-level parameters.

The Batch Exec service groups are specified in a text file batch_exec_list.txt. In this file, each
active line takes this form:

batch_type | service | service parameter

The first column is an identifier, which may be repeated on several lines to define a grouping of
tasks to be run together. The second column indicates which task from the catalogue is being
requested. The third column gives parameter details for that task (as necessary). Comments
may be placed in the batch_exec_list.txt file by starting a comment line with the hash sign (#).

Here is a sample batch_exec_list.txt file for reference:

Daily Batch Cycle
daily | waittrigger | daily_upd.txt~3600
daily | unpack | daily_upd.zip
daily | calc | exp_set
daily | measexport | daily_exp_set
daily | measload | load_oo_list
daily | sendtrigger | batch_load_complete.txt~ftp
daily | calc | batch_oo
daily | rebuild | rebuild_daily_group

Batch Cycle to Load OO
load_oo | measload | load_oo_list
load_oo | calc | batch_oo

Weekly Batch Cycle

weekly | calc | exp_calc_set
weekly | measexport | weekly_exp_set
weekly | loaddimdata | clnd~14
weekly | loaddimdata | prod~14
weekly | loaddimdata | loc~14
weekly | measload | load_act_list
weekly | measload | load_oo_list
weekly | calc | batch_week
weekly | calc | batch_fcst
weekly | refresh | refresh_weekly
weekly | rebuild | rebuild_weekly
weekly | autobuild |

In this sample file, three batch task groups are specified: daily, load_oo, and weekly. Note that
these names are implementer-defined identifiers; there is nothing special about the names
"daily" or "weekly". Each identifier is thus associated with a sequence of tasks, which will run in
the order they are listed in the file.

Note also that no information is provided about times or schedules on which these task groups
should be run. Scheduling information must be specified in the RPASCE Online Administration
Tool.

Chapter 1
Batch Framework Service Catalog

1-3

The services listed for each batch task group are run in the order specified when that type of
batch run is requested through the OAT interface. Details on the individual batch services and
what their service parameters mean are described in the following sections.

Load Measure (Fact) Data: measload
The Load Measures service allows the loading of one or several measures, the data for which
may be found in one or several files. The measload service will check for the required data files
in the Object Storage incoming files area. The service will optionally either validate the
presence of all data files and treat this as an error condition, or treat the presence of files as
optional and continue with no error if the files are not present.

Groups of measures to be loaded are specified in a control file, batch_loadmeas_list.txt, with
the columns as follows:

• Load set name

• Parameter type, which must be one of the following:

– H - Fact data file name

– V - Validate option, if present, indicates missing data files are to be treated as an error
condition. No third-column parameter required.

– R - Rejected record threshold (optional). Requires third column parameter; it must be a
positive integer. When this parameter is presented, the process will be stopped (error
code 37) with a failure trigger when the number of rejected records exceeds the
number specified. If this option is not specified, a warning trigger will be created if
there are any rejected records in the measure load; however, the process will continue.

– C - RPASCE v19 parameter, which is no longer supported.

– M - RPASCE v19 parameter, which is no longer supported.

– S - RPASCE v19 parameter, which is no longer supported.

• Parameter value. Relative to the parameter type specified above.

Fact Data files may contain the data for one or several facts in a comma-separated value
format (CSV) with a header line.

Here is an example control file for the Load Measure service:

Load Forecast Measures
load_fcst|R|200
load_fcst|V|
load_fcst|H|mp_fcst.csv.ovr
load_fcst|H|mt_fcst.csv.ovr
load_fcst|H|lp_fcst.csv.ovr
load_fcst|H|lt_fcst.csv.ovr

In this example, if any files for the listed measures are absent, an error condition will be
reported.

The Validate option checks for required data files in the internal input file directory, as well as
files that have been placed in Object Storage. This allows the measload task's Validate option
to correctly detect files that were previously placed in the internal input location by an unpack
batch task.

When fact data files are loaded, some lines in the file may be rejected (possibly due to an
incorrectly formatted input file or a position that does not exist in the dimension (level)). The
RPASCE measure load process does not, by default, treat these rejected lines as errors and
will continue loading any valid lines from the rest of the file. In order to detect when rejected

Chapter 1
Batch Framework Service Catalog

1-4

lines were encountered, since the batch framework does not report this as an error, the
loadmeas batch task writes the rejected records count into its own log file and also creates a
rejected records warning file in the outgoing area of Object Storage.

The warning file has no content, providing all relevant information in the file name itself. The
file name indicates the name of the measure, the count of rejected records, and a timestamp to
indicate when the task was run.

In the following example, the measure apcpfcstslsu had four rejected records when it was
loaded on 26-April-2018 at 7:52am:

warning.eebatch_loadmeas.apcpfcstslsu.rejected.4.20180426075212

If the optional |R| parameter is given in the control file, the numerical value indicates a limit to
the number of rejected lines, above which the rejections will be reported as an error rather than
a warning. For example, in the load_fcst config shown above, the limit is given as 200. If, while
loading any particular measure in this load group, more than 200 rejected record lines are
detected, then the task will halt, reporting an error, and the batch sequence that includes this
task will also halt. In this way, if a badly formatted or corrupted data file was uploaded, then
later batch steps such as calculations or workbook refreshes will be performed.

Export Measure (Fact) Data: measexport
The Export Measures service allows the flat-file export of one or more measures, using a
control file, batch_exportmeas_list.txt, to group (and parameterize) the measure lists for
particular export operations. The control file allows multiple parameters to specify the details of
each export group.

Here are the columns in the export control file:

• Export Set Name

• Parameter type, which must be one of the following:

– M - Measure name, format name (optional), and output file name (optional). Separated
by |. The format name is the name of the format directive specified in the
measure_format_list.txt file. The output file name option is only supported when the
control set is using the I parameter. If the I parameter is not specified, the output file
name will be determined by the O parameter.

– F - Filter mask measure.

– X - Base intersection. F or X is required.

– O - Output file name (optional). One single output file for all exported measures. This
parameter is ignored if the I parameter is specified. If multiple O parameters are
provided, only the first one will be used.

– I - Flag to use an individual output file for each measure (optional). The default file
name is measure_name.csv.ovr unless it is overridden by the output file name option
of the parameter of M.

– S - File share destination. Keywords: ftp, temp, cloud:<app>, where <app> is one of: ri,
mfp, rdf, ap, rms. (For the rare case where multiple instances of a single RPASCE
application are to be deployed, the second instance may be integrated by using the
values mfp2, rdf2, or ap2.) The cloud:<app> keyword sends the output file to the
indicated Oracle RGBU Cloud Service application, if configured for your environment.
The temp keyword sends the output to an internal temporary location, where it will not
be accessible externally but can be used by other configured batch tasks such as the
transform file service (by specifying temp as the input value for the subsequent task).

– C - Compress output. Optional; file (or files) will be compressed into .zip format.

Chapter 1
Batch Framework Service Catalog

1-5

– D - Delimiter. Optional character to use in place of a comma; to select the | character
as the delimiter, specify the keyword PIPE.

Note:

D simply replaces all commas with the delimiter. It does not work well with
string measure values that include commas.

– U - Uppercase position name (optional). Does not have a third column option. If it is
specified, the position name in the output file will be converted to an uppercase name.

P - useDate parameter (optional). Requires either the value start or end for the third
column. It is used for a measure that has a high level on the CLND hierarchy (for
example, Mnth). When specified, it will replace the measure CLND level position of
each data record with the lowest CLND level (for example, Day) position
corresponding to that higher level position. The values start or end are used to
determine whether the starting day position or the ending day position of the
corresponding mnth period will be output.

– N - Specifies when to skip NA values in export (optional). Valid options for the third
column are never, allna, and anyna.

* never - Export the corresponded data point even though the measure's values are
all NA values. This option essentially exports all data points in the logical space.

* allna - Do not output the corresponded data point if all measure values are NA
values (default mode).

* anyna - Do not output the corresponded data point if any one measure value is an
NA value.

– T - Appends a unique identifier as suffix to the file name (optional). This generates a
unique name to ensure that the parallel export can proceed. This flag can only be used
with default file naming, without using the |O| flag. This flag is specifically designed to
work with the intradayexport() expression.

– H - Include header line in the output file(s). Recommended if the exported data will be
re-loaded into RPASCE applications at any point. By default, measure names are used
in the header line. The use of the optional parameter "fact" (specified as "H | fact")
causes the fact names to be used in the header line instead of the measure names.

• Parameter value. Relative to the parameter type selected above.

Here is an example control file for the Export Measure service:

Export PoC Plan CP
lpcp|F|lpcpexportb
lpcp|S|ftp
lpcp|H|fact
lpcp|M|lpcpbopc
lpcp|M|lpcpbopr
lpcp|M|lpcpbopu
lpcp|M|lpcpeopc
lpcp|M|lpcpeopr

For the lpcp export group, the implementer has provided a Filter Mask measure, has indicated
that the file will be published to the Object Storage outgoing file location (the ftp parameter
naming is for compatibility with previous RPASCE versions), and has provided a list of several
measures to be included in the output.

Chapter 1
Batch Framework Service Catalog

1-6

For reasons of added efficiency, the EEBatch exec specification can run a list of measexport
tasks in parallel rather than consecutively. An update to the batch_exec_list.txt config file is
required to make use of this capability. (No change is required in the batch_exportmeas_list.txt
file.)

Instead of multiple consecutive measexport commands in the batch_exec_list.txt file, such as
this:

daily_batch | measexport | export_sales
daily_batch | measexport | export_orders
daily_batch | measexport | export_history

you should specify them together on one line as a comma-separated list:

daily_batch | measexport | export_sales,export_orders,export_history

The specifications of each of those measexport tasks in the batch_exportmeas_list.txt config
file stays the same; they are just all, in this case, requested to run in parallel at the batch_exec
level. (This example assumes that export_sales, export_orders, and export_history are
specified in the batch_exportmeas_list.txt file as described above.)

Mace Calculation Service: calc
The Calc service, which indicates that the RPASCE utility mace is to be run, uses a control file
called batch_calc_list.txt. The format of this file is as follows:

calc_list | [group or expression] | <group name or expr text>

The first column provides an identifier for each group of calc instructions. These identifiers are
used to select calculations to be run either directly, or as part of a Batch Exec run.

The second column must contain the keyword group or expression to indicate whether the
calculation to be run is a rule group registered in the application configuration or an individual
expression given in the control file itself.

The final column provides either the name of the rule group to be executed or the text of the
expression to be run.

As with the other control files, any line starting with # is ignored and can be used to comment
or document the file, as needed.

Here is an example file for the calculation service:

Calc Set for Batch Aggregation Weekly
batch_week | group | Batch_GB
batch_week | group | Batch_AggW
batch_week | group | Batch_InvRoll
batch_week | expression | LTWPNSlsR = DRTYNSls1R+DRTYNSls2R
batch_week | expression | LTWPNSlsU = DRTYSls1U+DRTYSls2U-DRTYRtn1U-DRTYRtn2U

Calc Set for Generating Forecast
batch_fcst | group | Batch_Fcst_G
batch_fcst | group | Batch_Fcst_L

Export Hierarchy: hierexport
The Export Hierarchy service allows the flat-file export of one hierarchy (dimension/levels)
using a control file, batch_exporthier_list.txt, to specify available options. The format of the
control file is similar to the Export Measure control file, with the exception that only one
hierarchy may be specified at a time.

Chapter 1
Batch Framework Service Catalog

1-7

The three columns in the control file are:

• Export Set Name

• Parameter Type, which must be one of these options:

– H - Hierarchy name (required)

– T - Export type. F - only formal positions, I - only informal positions, A (or omit) - all
positions

– L - Header line export. Output file includes header line for dimension and label
columns.

– U - Export positions of user defined dimensions. This implies Header Line export
mode; cannot be used with the only formal export type.

– O - Output file name. This is optional; defaults to <hier>.dat).

– C - Compress result file to .zip (optional)

– S - File export destination. Keywords: ftp, cloud:<app>, where <app> is one of: ri, mfp,
rdf, ap, or rms. (For the rare case where multiple instances of a single RPASCE
application are to be deployed, the second instance may be integrated by using the
values mfp2, rdf2, or ap2.) This sends the output file to the indicated Oracle RGBU
Cloud Service application, if configured for your environment.

• Parameter value. If required, by parameter type.

Here is an example control file for the Export Hier service:

Export PROD hierarchy, compressed
prod_export|H|prod
prod_export|T|F
prod_export|O|prod_exp.dat
prod_export|C|
prod_export|S|ftp

In this example, the prod_export grouping indicates that only the formal positions in the PROD
hierarchy will be written to a compressed file prod_exp.dat.zip and placed in the Object
Storage outgoing file location (the ftp parameter naming is for compatibility with previous
RPASCE versions).

Load PDS Dimension: loaddimdata
This service supports the option for loading dimension (hierarchy) data into your application
from flat files. This task does not require a separate control file, but can be fully specified inside
the Batch Exec (batch_exec_list.txt) control file itself.

Note that the RPAS v19 batch task hierload is now superseded by this task, and while hierload
is treated as synonymous with loaddimdata in order to preserve compatibility in batch config
files brought forward from v19 deployments, note that the parameters have changed slightly
from v19. The UDD option no longer exists, and must be removed from any v19 batch config
files before being used in newer RPASCE versions.

The parameter column provided in the Batch Exec file contains two required values with an
optional third value, separated by the ~ character. The values ar: the dimension (hierarchy) to
be loaded, the purgeAge value, and optionally a rejected records limit value. The rejected
records limit, when specified, may be expressed as either a decimal value, indicating a
percentage of records rejected, or an integer value, indicating the total number of rejected
records. If this limit is exceeded, the batch task will halt with a failure condition.

Chapter 1
Batch Framework Service Catalog

1-8

This task, when run, looks for <hier>.csv.dat or <hier>.hdr.dat files in Object Storage in the
path planning/incoming/input. The task also checks for planning/incoming/input/dimdata.zip,
and if found, will unpack the zip file and use any relevant .dat files located in it. If no incoming
data files are found, a log message will indicate this, and then the Batch process will continue
without error.

Here is an example:

weekly | loaddimdata | prod~28~0.2
weekly | loaddimdata | loc~28~15

This indicates that in the weekly batch execution, the PROD hierarchy is loaded with a 28-day
day purge age, and the operation will fail if more than 20% (0.2) of incoming data file records
are rejected. Als,o the LOC hierarchy will be loaded, with the same 28-day purge age, and in
this case the operation will be failed if more than 15 records are rejected in the incoming data
file.

Load Alternate Rollup Date: altdimload
This service supports the option of loading alternate rollup data for the dimension (hierarchy)
into your application from flat files. This task does not require a separate control file, but can be
fully specified inside the Batch Exec (batch_exec_list.txt) control file itself.The parameter
column provided in the Batch Exec file contains one value that is the input file name. This file
must have been uploaded into Object Storage in the path planning/<subnamespace>/
incoming/input.Here is an example:

weekly | altdimload | scl1.csv.dat

This task, when run, looks for <name>.csv.dat in Object Storage in the path planning/
<subnamespace>incoming/input. If no incoming data files are found, a log message will
indicate this, and then the batch process will continue without error.

Batch Control Entries Required to Execute Interfaces
The batch control framework facilitates the calling of new interfaces using the new service
interface in the batch_exec_list.txt control file. Customers can update their batch control files to
call the new interfaces. The interface service takes the interface name to execute as the main
parameter. In addition to the interface name, it also provides two optional parameters,
INTF_PROC_PARM and INTF_EXEC_PARM, using a tilde (~) as the separator.
INTF_PROC_PARM can be the same <PARAM> if the customer wants to call the same
interface for a subset of the parameter. If not passed, it will execute that interface for all
configured parameters (PARAM) in a single call. INTF_EXEC_PARM can currently take an
optional value as L to re-run the last executed interface using the same dataset. By default,
each interface execution internally uses a unique RUN_ID for the dataset in the interface, and
it will be marked as processed after the successful completion of the interface execution. If the
interface is re-run, it will not fetch any new data unless the source system sends new data, but
L as an optional parameter can be used to re-run the interface using the same RUN_ID last
used.

Typical control file entries for calling multiple interfaces (both exporters and importers) within a
weekly batch are shown in the following example batch_exec_list.txt file.

Example

batch_weekly | interface | MFP_PLAN1_EXPbatch_weekly | interface |
W_PDS_CALENDAR_Dbatch_weekly | interface | W_PDS_SLS_IT_LC_WK_A

Chapter 1
Batch Framework Service Catalog

1-9

Wait for Trigger File: waittrigger
For a recurring batch task (such as a nightly or weekly batch), you can schedule the batch to
run at a particular time, but you must also ensure that it will not start processing until the
required input files are available. This requirement is supported by the waittrigger task. The
trigger file is a temporary file that is uploaded to Object Storage under the planning/incoming
path. Note that this file must be uploaded to the Object Storage last, after all the other required
files are present. Note also that this trigger file will be deleted once the waittrigger task sees it,
so you must not specify an actual data file as your trigger. For example, if the batch must wait
for prod.dat to be present, you must specify a second file name, such as prod_dat_trigger.txt,
and the external integration process that sends the latest prod.dat into the Cloud environment
must also create prod_dat_trigger.txt after the prod.dat file is available.

By default, the waittrigger task waits for 23 hours for the trigger file to appear before timing out
and reporting an error. A shorter timeout may optionally be specified, given in the number of
seconds to wait.

The waittrigger task requires only an entry in the batch_exec_list.txt control file; no separate
control file is required. Here is an example configuration for a waittrigger task:

daily | waittrigger | daily_upd.txt~3600

This example daily batch task waits up to one hour for the file daily_upd.txt to be present in the
Object Storage location. The third column uses the tilde (~) character as a separator and gives
two parameters values:

• the trigger file name. Simple file names only, no paths.

• (optional) number of seconds to wait before timing out

Send a Trigger File: sendtrigger
In order to notify other processes, either internal or external to the Oracle RGBU Cloud
environment, of the progress of a batch task sequence, the sendtrigger task may be
configured. This task takes a two parameter values, separated by the tilde (~) character. The
first parameter specifies the trigger file name.

The second portion specifies the destination in which the trigger file will be created:

• ftp - writes to the Object Storage outgoing location for this application (ftp designation is for
legacy compatibility with earlier RPASCE versions).

• cloud:<app> - sends the file to the Oracle RGBU Cloud Service indicated by <app>, with
valid values ri, mfp, rdf, ap, or rms. (For the rare case where multiple instances of a single
RPASCE application are to be deployed, the second instance may be integrated by using
the values mfp2, rdf2, or ap2.)

• input - writes the file into the input directory of the current application.

The sendtrigger task requires only an entry in the batch_exec_list.txt control file; no separate
control file is required. Here is an example entry for a sendtrigger task:

daily | sendtrigger | batch_load_complete.txt~ftp

This control line indicates that the file batch_load_complete.txt will be created in the Object
Storage outgoing file area once batch execution successfully reaches this point in the daily
batch sequence.

Chapter 1
Batch Framework Service Catalog

1-10

Note that no automatic clean-up of the trigger file is performed, so other processes that look for
the presence of this trigger file must remove it. If a trigger file from the previous batch run is still
in place during a subsequent batch run, the file will remain in place and the file's timestamp will
be updated.

Extract Input Files from Archive: unpack
Batch tasks such as dimdataload or measload expect to find their individual .dat or .ovr files in
the incoming file areas. For some integration needs, it may be preferable to send these files
together in a compressed archive for faster upload and to ensure that all matching files arrive
together. This integration scenario is supported by the unpack task. The unpack task may
specify files with the .zip extension to be found in the incoming file area and unpacked into the
application input directory. The archive must contain only simple file names and not any
subdirectory structure, as this structure would then prevent the files from being found in the
<application>/input directory, where later batch tasks expect them.

The daily batch example above contains this usage for the unpack task:

daily | unpack | daily_upd.zip

The task specifies that the archive file daily_upd.zip is expected to be in the incoming file area,
and it will be unpacked into the application's input directory before any subsequent batch tasks
are performed.

The default behavior for this task when no file is found matching the archive specification is to
exit without error (batch continues). The default behavior when an archive file is found, but
there is an error from unpacking the file (for example, if a malformed archive file got uploaded)
is exit with an error code (batch halts).

An optional parameter is available to modify these default behaviors. If the archive file is
absolutely required, and the batch must halt with an error when no archive file is found, then
the required parameter value can be given:

daily | unpack | daily_upd.zip~required

If the batch must continue without errors, even when the uploaded archive file is unable to be
unpacked, then the continue parameter can be given:

daily | unpack | daily_upd.zip~continue

Transform File Service
The Transform file service is used for simple integration capabilities for file transformations
before hierarchy or measure file loads such as splitting a file, renaming file, swapping columns
in the files, and so on. It also provides an option to filter file records based on particular data
values. It does not call any RPASCE utilities, but instead uses some pre-defined functions that
can be called and controlled by control file setting changes. It provides some powerful
integration capabilities in which the user does not need to create any external process to
format the files so it can readily fit into the regular batch framework. For example, a source
system might send multiple measure data in a single file but the configured RPASCE solution
expects individual measures per file. In such cases, users can call this service to split those
files. This process can also be used to transform the exported output files into required formats
that can be copied to other locations.

The parameters for this service are provided in a control file batch_xform_list.txt. This service
can be invoked from batch_exec_list.txt (Batch Exec Control file) as follows:

<batch_set_name> | transform | <transform_set_name>

Chapter 1
Batch Framework Service Catalog

1-11

Here are the columns in the batch transform control file separated by the PIPE symbol ("|") for
the different functions that can be used.

• Transform Set Name

• Parameter Type, which must be one of the following:

Table 1-1 Transform Parameters

Parameter Type Value

I Input file path and valid parameter values are cloud for cloud share location
(files coming in from other Oracle RGBU Cloud Services), ftp_in for SFTP input,
ftp_out for SFTP output, dom_in for Dapplication input (default), dom_out
(application output), temp for internal temporary ftp_dim_in for <SFTP> /
rdm_input/dimdata, ftp_fact_in for <SFTP>/rdm_input/factdatadirectory,
rdm_dim_in for <RDM_ROOT>/dimdata, rdm_fact_in for <RDM_ROOT>/
factdata to transform interim export files.

O Output file path, valid parameter values are: dom_in (application input directory;
this is the default), dom_out (application output directory), ftp_in (SFTP input
directory, ftp_out (SFTP output directory), rdm_dim_in (PDS dimension data
directory), rdm_fact_in (PDS fact data directory), cloud:<app> (sends file to
another Oracle RGBU Cloud Service's SFTP input directory; valid values for
<app> are: ri, mfp, rdf, ap, rms; for the rare case where multiple instances of a
single RPASCE application are deployed, the second instance may be
integrated by using the values mfp2, rdf2, or ap2.

D Field delimiter (default: comma), for pipe use PIPE.

E Output file delimiter (default: comma), for pipe use PIPE.

F Input file name (required). Can have multiple F entries, in order to merge
multiple files, but at least one F entry is required.

X Command selects only specified columns from input file and places into output
file. The two required parameters (separated by | "pipe" character) are: output
file name and selected field numbers (a comma-separated list of columns from
input file to include in the output file, but can also use Linux "cut" command
format, such as 3- for third column and following, or 3-5 for third through fifth
columns). Third optional argument (also separated by | character) specifies a
new header row for the transformed file as a comma-separated list (such as
new_header1,new_header2,...). Note that if the original (input) file has a header
line, the existing headers for the selected columns will be preserved, so the
additional header optional argument is only required when the input file does
not have a header line and one is required in the output. Multiple |X| specifiers
can be given in a single transform task set, which will generate multiple
separate output files.

V Validate for files to be present.

Q To add quotes; required if data can contain commas and the input delim is not a
comma.

L Filter file based on where filter column and filter value as parameters. By
default, it equates the value; however, to use filter value as not equal to, use
additional parameter as N after filter value.

U Create unique record output files.

C Copy a column to the end of file (copy column number).

W Swap column from input file (column numbers to swap).

S Sort file columns based on key columns.

A Add a constant value at end of file.

J Join two columns using a separator and add to the end of the file.

Chapter 1
Batch Framework Service Catalog

1-12

Table 1-1 (Cont.) Transform Parameters

Parameter Type Value

G To create a complete trigger output file, if needed at the end.

Z To compress output files of a particular pattern as a zip file. It requires the
following four parameters delimited by |

– <output_compressed_filename>
– <input_files_prefix>
– <input_files_extn>
– <delete_compressed_files_flag (Y/N)>

M Move or copy files of a particular pattern of files from input to output location. If
M is used, only files will be moved or copied. It will not do any further
processing to those files. It requires two parameters delimited by |

– <move_file_pattern>
– delete_file_flag (Y/N)
If the delete_file_flag is Y, the source is removed and the operation is a true
move. If the delete_file_flag is N, it is a copy instead of a move and the source
is not removed.

N Do not push output files to cloud:<app> location at the end and still hold the files
in a temporary location for further processing to compress the files before
pushing the file to cloud:<app> location.

H Add headers to transformed output file if option X is not used to transform the
output file. Parameter must be the complete header for that file and is added as
the first record for the output file.

Y To delete the input files from the input directory after the transform; if not, the
used input file will not be detected.

B Do not merge input files by file name pattern. By default, this task takes all input
files with same pattern and merges them. For example, if the input file name is
given as sls.csv.ovr, it will merge all files matching sls.csv.ovr*. This option
indicates that only the single input file by the exact name must be used.

P Add a timestamp to output file(s). When specified, output file names will be
appended with _YYYYMMDDHHMMSS timestamp. If multiple files are
produced by the same Transform task, the timestamp values will all be the same
(other parts of the file names being different).

• Parameter Values - Relative to the parameter type selected above.

Example 1: To split a single file into multiple files based on column IDs.

rms_oo|F|rms_oo.csv.ovr
rms_oo|I|cloud
rms_oo|V|
rms_oo|X|drtyoou.csv.rpl|1,2,3,6
rms_oo|X|drtyooc.csv.rpl|1,2,3,7
rms_oo|X|drtyoor.csv.rpl|1,2,3,8

This example shows an input file split into multiple files using the multiple X option based on
column numbers. In the above example, the output files are created in the application input
directory.

Example 2: To split a single file into multiple files based on column IDs and also to filter
records based on a column value.

rms_inv1|F|rms_inv.csv.ovr
rms_inv1|I|cloud
rms_inv1|V| rms_inv1|L|5|N
rms_inv1|X|drtyeop1u.csv.ovr|1,2,3,6

Chapter 1
Batch Framework Service Catalog

1-13

rms_inv1|X|drtyeop1c.csv.ovr|1,2,3,7
rms_inv1|X|drtyeop1r.csv.ovr|1,2,3,8

In this example, the first only records with fifth column value as N in the csv file and then those
will split into multiple files.

Example 3: To copy columns and swap columns before writing the output file.

rms_curh|F|rms_curr.csv.ovr
rms_curh|I|cloud
rms_curh|C|3
rms_curh|W|2|6
rms_curh|U|
rms_curh|X|curh.csv.dat|2,3

In this example, the original file only contains five columns. The third column is copied to the
end of the file as the sixth column due to the use of option C. Then, columns 2 and 6 are
swapped due to the use of option W. Then it writes out column 2,3 after removing duplicates
due to use of option U.

Example 4: To add a constant value to a file and to join two columns based on a separator.

rms_patt3|F|rms_prod.csv.dat
rms_patt3|I|cloud
rms_patt3|L|22|NA|N
rms_patt3|A|BRAND
rms_patt3|J|34|22|_
rms_patt3|X|drdvprdattt.csv.ovr.3|1,34,35

It is necessary to add a constant value BRAND and also concatenate it with another column
and export both the columns.

In this example, the original file only contains 33 columns. It is first filtered for records not equal
to NA in column 22. Then it adds a constant value BRAND in column 34. Then, columns 34
and 22 are joined, using the separator _ (underscore) that is added as column 35. Finally, the
newly added columns 34 and 35 are extracted into an output file.

Example 5: The following sample shows the use of E to create different delimited output file
and Z option to compress the output file.

mfp_exp_ri|F|ri_mpop_plan.dat
mfp_exp_ri|F|ri_mpcp_plan.dat
mfp_exp_ri|I|temp mfp_exp_ri|V|
mfp_exp_ri|X|W_RTL_PLAN1_PROD1_LC1_T1_FS.dat|4-
mfp_exp_ri|O|cloud:ri mfp_exp_ri|E|PIPE
mfp_exp_ri|Z|RI_MFP_DATA|W_RTL_PLAN|dat|Y

In this example, use of multiple F options merges two output files and creates one output file
with only from column 4 delimited by comma. However, the final output file is created with
delimiter as PIPE due to use of option E.

In addition, the use of the Z option compresses the output files of pattern W_RTL_PLAN*.dat
created at cloud:ri location into a compressed file as RI_MFP_DATA.zip and deletes the
generated file after compressing.

Example 6: The following option shows the use of the M option to copy a set of files from one
location to another location.

copy_dom_in|I|dom_in
copy_dom_in|O|ftp_out
copy_dom_in|M|*.dat|N

Chapter 1
Batch Framework Service Catalog

1-14

This example copies all files of the pattern *.dat from the application.input location to the
Object Storage outgoing file area. Due to use of option N to not delete the input files, it only
copies the file. To move the files, option Y should be used.

Example 7: To select columns from input file and place in output file along with specified
header for output file.

xform_ex_header|F|xform_src1.csv
xform_ex_header|I|dom_in
xform_ex_header|O|dom_out
xform_ex_header|X|xform_dst2h.csv|1,3|first_header,second_header

In this example, the first and third columns of input file xform_src1.csv is placed into the output
file xform_dst2h.csv, with the addition of the header line first_header,second_header as the
first line of the output file. Note that this assumes that no header line was present in input file
xform_src1.csv.

Custom Function: ap_set_datr
This feature allows product attributes to be assigned during item creation if the product
attributes are defined as dimension (level) attributes. For this functionality, the product attribute
hierarchy (for example, PATR) must be defined with two dimensions (levels) (product attribute
value and product attribute). The mapping of the product attribute values to items must be
defined in the measure at the item/product attribute intersection level (for example,
addvprdattt). This custom function can be called in a customer's batch control framework to
register the loaded product attributes as dimension (level) attributes.

This application-level function registers all the loaded product attributes as dimension (level)
attributes that can take two parameters, product attribute measure and product attribute
hierarchy name. It must be called each time a new set of product attributes is loaded.

The following example illustrates calling this custom function to register dimension (level)
attributes. The product attribute measure name is addvprdattt and the product attribute
hierarchy used by customer is patr. The ra_custom is the service name to be used to call the
custom functions in batch_exec_list.txt and the custom function name is ap_set_datr. The two
parameters for the function must be separated with ~.

Example:

batch_datr | ra_custom | ap_set_datr~addvprdattt~patr

Convert Informal Positions to Formal: formalize
The formalize service allows the modifying of current informal positions (which were created on
a given hierarchy and dimension (level) having Dynamic Position Maintenance, or DPM,
enabled) to make them formal positions. One or more files matching the pattern
<hier>.formalize[.extension] must be uploaded via Object Storage to the planning/incoming/
input location. This file (or files) specifies which informal positions to formalize. An option is
also available to allow the formalization of all current informal positions on a dimension (level).
Parameters are specified via the batch_formalizepositions_list.txt batch control file.

The batch_formalizepositions_list.txt control file contains multiple lines to specify each
formalize task, each with three required columns, as follows:

• Formalization Set Name.

• Parameter Type, from these values.

Chapter 1
Batch Framework Service Catalog

1-15

– C - Column index (starting from 1) of the dimension (level) position name in the
hierarchy file (as generated by exportHier) [required].

– D - Dimension (level) to formalize [required].

– H - Hierarchy of the dimension (level) [required].

– A - Formalize all informal positions on Dim (no value needed) [optional; omit if sending
a <hier>.formalize.dat file].

• Parameter Value (varies by parameter type).

If the (A)ll option is not provided, then at least one <hier>.formalize[.extension] file is expected
to be available in Object Storage. If no formalize files are present, the batch task will report an
error. File format details are available in the Oracle Retail Predictive Application Server Cloud
Edition Administration Guide.

Here is an example specifying a formalization task called prod_sku, which operates on
positions of the SKU dimension (level) in the PROD hierarchy:

prod_sku|H|prod|
prod_sku|D|sku|
prod_sku|C|1|

Rename Positions in a Hierarchy: renamepositions
The Rename Positions service enables the renaming of existing positions in a hierarchy. The
task is configured by specifying the hierarchy on which positions are to be renamed and looks
for a file with the name [hier].rn.dat in Object Storage. If the rename data file is not present, the
rename task will exit without error so that the following batch sequence steps may continue.

The format of the rename data file is as specified in the Oracle Retail Predictive Application
Server Cloud Edition Administration Guide.

The rename positions batch task does not require a separate control file, but may be specified
as an entry in the batch_exec_list.txt file, for example:

weekly | renamepositions | prod

This control line indicates that the weekly batch task will look for a rename positions data file
for the PROD hierarchy, prod.rn.dat, and will carry out the renamings specified.

Workspace Refresh by Template Name: refresh
The Workspace Refresh service enables the refresh of particular workspaces with current
application data. This allows the selection of all workspaces built from a particular template,
including the ability to match on partial template names.

The batch_refresh_list.txt contains only two columns: a refresh group identifier and a template
name pattern to match. Here is an example of this file:

refresh_weekly | mt_wb
refresh_weekly | mp_wb
refresh_weekly | lt_wb
refresh_weekly | lp_wb

The example contains one refresh group, with four template pattern names to match. All
workspaces that are built from templates matching those patterns will be refreshed.

Chapter 1
Batch Framework Service Catalog

1-16

Workspace Rebuild by Template Name: rebuild
The Workspace Rebuild service is similar to Workspace Refresh task; however, it allows for the
workspaces to be completely rebuilt rather than just having their data refreshed. This covers
the case where new positions have been added and must be reflected in the workspaces.

The batch_rebuild_list.txt contains only two columns: a rebuild group identifier and a template
name pattern to match. Here is an example of this file:

rebuild_weekly | mt_wb
rebuild_weekly | mp_wb

The example contains one rebuild group, with two template pattern names to match. All
workspaces that are built from templates matching those patterns will be rebuilt.

Workspace Delete by Template Name: delete
The Workspace Delete service enables the bulk deletion of all workspaces built from a
particular template. This service does not require a separate control file but can be fully
specified within the batch_exec_list.txt file. All workspaces built from the given template will be
removed. To remove workspaces from several template types, specify one delete task for each
template.

Here is an example of an entry in the batch_exec_list.txt file for this task:

weekly | delete | AD_POC

By default, the associated segment will be removed in addition to the workspace. If the optional
parameter keepsegment is used, workspaces will be deleted without deleting the segments.

Here is an example of an entry in the batch_exec_list.txt file for this task:

weekly | delete | AD_POC~keepsegment

Run Segment Build Queue: autobuild
The autobuild service is the simplest to configure in the RPASCE batch framework, as it
requires no parameters to be specified. When the autobuild service is included in a batch task
group, the wbbatch utility is run to invoke the -startQueue build option. Any segments that have
been previously queued for automatic build will be created by this call. Since no further
parameters are needed, there is no third column for the autobuild service line.

Here is an example of an entry in the batch_exec_list.txt file for this task:

batch_weekly | autobuild |

Note that nothing is required after the second pipe (|) character.

Initialize Testing Environment: initrpac
This is the first of two batch tasks that work together to provide automated test capabilities.
See the full explanation of RPAC test automation capabilities in Automated Testing with RPAC;
the specific activities carried out by the batch tasks are described briefly here.

The initrpac task serves two purposes related to setting up the environment to be ready to run
your automated test cases. First, it checks for new or updated test collateral files in Object

Chapter 1
Batch Framework Service Catalog

1-17

Storage. Note that there are three archives of test collateral files that can be sent: tests.zip,
input.zip, and compare.zip. If any of these collateral file archives are present in Object Storage
under the planning/incoming/rpac subdirectory, then they will be moved into the internal
holding area, ready to be used by the next step in the process; if no new files are present, then
the previously sent files will continue to be used.

Note:

Incrementally adding test collateral files are not supported; previous file sets of each
type are removed before unpacking the new archive, so any updated archive must
contain all collateral files of that type. This prevents stale test scripts or data files from
being left in the testing environment, which could otherwise cause unexpected test
failures.

The second task carried out by initrpac is to stage the contents of the input.zip into the internal
input directory. This will be used to place any hierarchy load (.dat) or measure load
(.ovr, .clr, .rpl) files into position so that subsequent batch tasks may set the application into a
known state, ready for automated tests to run and verify the expected result values.

The initrpac task entry in the batch_exec_list.txt control file does not require any parameters. It
would normally be placed as the first entry in a test-enabled alternate version of a daily or
weekly batch execution sequence. See full example in Automated Testing with RPAC.

rpac_validate | initrpac |

Execute Automated Tests: runrpac
This is the second of the two batch tasks that work together to support automated testing
capabilities. The runrpac task executes all automated tests in a single test .XML file. (See
further information about the RPAC automation testing framework in Automated Testing with
RPAC.) While the preceding initrpac task must only be run once, you may specify as many
runrpac tasks as needed to execute all configured automation tests, possibly at several
different points in an overall batch execution sequence.

The runrpac task entry in the batch_exec_list.txt control file takes one parameter that combines
an identifier for the test, along with the filename of the test .XML file to be executed (separated
by ~ character):

rpac_validate | runrpac | MFPCS_Sample_Test_1~RT01_MT_WB.xml

In this case, the test file RT01_MT_WB.xml will be executed under an identifying title
"MFPCS_Sample_Test1". See Automated Testing with RPAC for a full example of a test-
enabled batch execution sequence.

Summary test results will be visible in the output log for the batch execution (visible in the
Online Administration dashboard), and full test result details will be available in the log file
archive that is sent to Object Storage under planning/outgoing after the batch execution
completes.

By default, the runrpac batch task will report overall success status, and further batch steps will
continue, even if any of the test cases executed within RPAC report test failures. (However,
runrpac will report an error and the overall batch sequence will halt if, for example, the RPAC
test script is missing or invalid.)

Chapter 1
Batch Framework Service Catalog

1-18

To specify that the runrpac batch step must report error status and prevent any subsequent
batch steps from continuing when any test case does not pass, add the optional third
parameter halt to the batch config file, such as:

rpac_validate | runrpac | MFPCS_Sample_Test_1~RT01_MT_WB.xml~halt

For completeness/clarity, the third parameter can be also specified as "continue":

rpac_validate | runrpac | MFPCS_Sample_Test_1~RT01_MT_WB.xml~continue

However, this continue specification is not strictly necessary, as this is the default behavior
when no third parameter is specified.

Sync Users From IDCS: idcssync
This task supports the same functionality as the existing OAT Task Synchronize Users from
OCI IAM to be made part of a scheduled eebatch task. The task does not require any
parameters and may be added to any batch such as:

batch_weekly | idcssync |

For further details about this task, see the section "Synchronize Users from OCI IAM" in the
Oracle Retail Predictive Application Server Cloud Service Administration Guide.

Shared Build (optional)
It is possible to rebuild the workspaces in a shared manner using the shared keyword. Add the
shared keyword after the template name separated by a ~ character. Use this option if the
workspace rebuild step in the batch is taking a long time. It is especially useful for a dashboard
rebuild, where the selections are usually the same across the users. The shared build uses a
workbook copy instead of a workspace rebuild wherever possible. It considers the position
security setup for the users and the selections used in the workspaces to decide whether a
workspace copy can be done instead of a full rebuild. A workspace copy is much faster than a
rebuild.

For example, security admin workbook was committed with product position security is as
follows.

user1: 100

user2: 100

user3: 100

user4: 200

user5: 200

user6: 200

Location security is as follows.

user1: B&M

user2: B&M

user3: CA B&M

user4: B&M

user5: B&M

Chapter 1
Batch Framework Service Catalog

1-19

user6: B&M

Suppose all six users have only one workspace each of the template being rebuilt. User1,
user2 and user3 have the matching selections for their workspaces. User4 and user5 have
matching selections in the wizard, but user6 has a different positions selected.

Using the shared build, user1’s workbook will be rebuilt. User 2 will get a copy of user1’s
workbook. User 3’s workbook will also be rebuilt because user 3 has a different position
security for location (compared to user1 and user2) even though position security is same for
the product. User4 and user5 have matching product and location security so only user4’s
workbook will be rebuilt and user5 will get a copy of that workbook. Although user6 has same
product and location security settings as user4 and user5, user6 made different selections for
the workspace, so user6’s workspace will also be rebuilt.

Example batch_rebuild_list.txt using the shared option.

rebuild_weekly | mt_wb

rebuild_weekly | mp_wb

rebuild_weekly | pl_db~shared

In this example, the workspaces for templates for mt_wb and mp_wb will be rebuilt in the
traditional way, but the workspaces for template pl_db will use the shared mode of rebuild
described above.

Configuration of interface.cfg
In RAP Integration, data from all pre-defined planning interfaces to external systems such as
RMF CS or internal systems such as RI/Science must be pulled via importers from the RDX
schema. Any data that is going from Planning to external systems can also be exported via
exporters to the RDX schema. Although interface tables in the RDX schema are fixed or do not
change very frequently, as defined by the interface contracts between respective applications,
the planning/forecast application that is implemented on PDS supports extensibility and EE
configuration. Because of this, it should have configurable/flexible importers and exporters to
configure for all available metrics from the RDX schema tables since dimensions (levels)/fact
names can be different for an EE customer. This is handled through the use of the interface.cfg
file (interface configuration file). It is a free-form text file similar to the batch control file, and
contains the mapping of dimension (level)/facts in PDS to columns mapped to external tables
for each interface.

Chapter 1
Configuration of interface.cfg

1-20

Figure 1-1 Interface.cfg

Both importers/exporters can be commonly referred as interfaces within PDS, with an unique
interface ID for each interface. Interfaces are classified as follows: dimension (level) importers
(H), data importers (I), and data exporters (E). Table 1-2 shows the pre-defined list of
interfaces that are available for the customers in a RAP integration; there may be more
application-specific interfaces. Customers can create or modify entries only for the available list
of interfaces. They can configure the interface to match and import the required dimension
(level)/fact data based on the dimension (level)/fact names configured within their application
when those interfaces are executed in batch. For GA applications, a pre-configured
interface.cfg file is available and the customer can customize it for any further extensibility
changes, similar to an EE customer.

For most of the interfaces, the external interface table name is the same as the interface name;
however, for few interfaces that require derived data from other interface tables, pre-defined
views are created and columns from those views are used to obtain the data. Interfaces can be
defined to only import/export to one external interface table/view. In Table 1-3, the External
View Name column is populated only for interfaces that use internal views. Source tables used
to define the view are specified within brackets if it is different than the interface name. The
incremental flag Y indicates that the interface is incremental in nature; that is, for each
interface run it obtains only the changed data, compared to the previous run of the interface.
However, if the incremental flag is N, the interface always obtains a full set of data for each
run. All hierarchy interfaces are complete-extract interfaces in order to obtain the latest data
available in other applications and so keep all integrating applications synchronized. Refer to

Chapter 1
Configuration of interface.cfg

1-21

the application-specific Implementation Guides for more details about the list of columns
available and used for the import or export for each interface.

Table 1-2 List of Pre-Defined Interfaces

Interface Name Interface
Description

Importer
Type

Interface
Source/
Destination

External
View Name

Incremental

RSE_FCST_DMD_EXP Forecast
Interface from
Science

I RSP Y

W_PDS_SLS_IT_LC_WK_A Sales Interface I RI Y

W_PDS_INV_IT_LC_WK_A Inventory
Interface

I RI Y

W_PDS_MKDN_IT_LC_WK_
A

Markdown
Interface

I RI Y

W_PDS_PO_ONORD_IT_LC
_WK_A

On Order
Interface

I RI Y

W_PDS_INVRC_IT_LC_WK_
A

Receipts
Interface

I RI Y

W_PDS_INVADJ_IT_LC_WK
_A

Inventory
Adjustments

I RI Y

W_PDS_INVTSF_IT_LC_WK
_A

Inventory
Transfers

I RI Y

W_PDS_DEALINC_IT_LC_W
K_A

Deal Incomes I RI Y

W_PDS_SLSWF_IT_LC_WK
_A

Wholesale/
Franchise

I RI Y

W_PDS_EXCH_RATE_D Currency
Conversion
Rates

I RI VW_CURR_
RATE

N

VW_LOC_DATA Location Data I RI VW_LOC_D
ATA

N

W_PDS_PRODUCT_D Product
Hierarchy

H RI N

W_PDS_ORGANIZATION_D Location
Hierarchy

H RI N

W_PDS_CALENDAR_D Calendar
Hierarchy

H RI VW_CLND_
HIER

N

VW_CURR_HIER Currency
Hierarchy

H VW_CURR_
HIER(W_PD
S_EXCH_R
ATE_D)

N

MFP_PLAN1_EXP Merch Plan
Export from
MFP to RI

E N

MFP_PLAN2_EXP Merch Target
Plan Export
from MFP to RI

E N

MFP_PLAN3_EXP Location Plan
Export to from
MFP to RI

E N

Chapter 1
Configuration of interface.cfg

1-22

Table 1-2 (Cont.) List of Pre-Defined Interfaces

Interface Name Interface
Description

Importer
Type

Interface
Source/
Destination

External
View Name

Incremental

MFP_PLAN4_EXP Location Target
Plan Export
from MFP to RI

E N

Interface Mappings
Each interface can have a configuration specification defined as the interface mapping that
provides details about the mapping of the source table columns and the destination. It can be
provided by the customer as the configuration file interface.cfg, which is loaded into an internal
interface mapping table. It can be used by generic importer/exporter packages to transfer data
when those interfaces are executed in the batch. Table 1-3 provides a list of entries in the
interface mapping table (RP_G_INTF_MAPPING_MD).

Table 1-3 Interface Mappings

Column Description Purpose Example

INTF_MAP_NAME<INT
ERFACE_NAME>

Interface name Actual interface name for
which the mapping is
defined

W_PDS_SLS_IT_LC_W
K_A

INTF_MAP_PARAM<PA
RAM>

Interface parameter
name

Grouping within that
interface. Can be App
Name or, within an
application, a different
set of data to process for
that interface, based on
this parameter.

MFP

INTF_MAP_TYPE<TYP
E>

Interface parameter type Type of mapping. Can be
dimension (level)
mapping or data
mapping or filter criteria
for the mapping. Valid
Interface Mapping types
vary, based on the type
of interface.

DIM01 / DATA

INTF_MAP_RPAS<INTE
RNAL_NAME>

Interface mapping
column from PDS
(RPASCE)

Dimension (level) or fact
name from PDS, based
on the mapping type.

WEEK /
DRTYSLSREGU

INTF_MAP_EXTERNAL
<EXTERNAL_NAME>

Interface mapping
column from external
table (source or
destination table)

Column name from
external interface table.

NET_SALES_REG_UNI
TS

INTF_MAP_VALUE<VAL
UE>

Interface mapping value
or constant

Can be a hard-coded
constant value to use if
mapping is not provided.
It can be used for
FILTER Type entries. It
can also be a scalar
measure specified with
prefix @.

Chapter 1
Configuration of interface.cfg

1-23

Syntax for Interface Mappings
This section provides the syntax for interface mappings in the interface.cfg file.

<INTERFACE_NAME> : <PARAM> : <TYPE> : <INTERNAL_NAME> : <EXTERNAL_NAME> :
<VALUE>

Here are the details for the entries.

<INTERFACE_NAME> - The name of interface

<PARAM> - Parameter grouping can be App Name or any internal grouping name. It must
have a different value only if the same interface is used to import/export different levels of data,
based on different criteria.

<TYPE> - For data importers/exporters, DIMxx (xx 01,02,03) for dimension mapping. DIM01 is
reserved for the Calendar dimension. DATA for data mapping. FILTER for optional filter criteria.
FILTER or FILTER_EQ used for equal (=) operator. It also allows FILTER_NE
(<>) ,FILTER_GT (>), FILTER_GE (>=), FILTER_LT (<), FILTER_LE (<=)(<=),FILTER_LK
(Like), FILTER_NL (Not Like) as different filter types. More than one filter entries can be used,
but they all use the AND operation of the filter.

<TYPE> - For hierarchy/dimension importers, HDMxx (xx 01,02,03) for dimension (level)
mapping for all dimensions (levels) from a single hierarchy, HDLxx for dimension (level) label
mappings, FILTER* for optional filter criteria.

<INTERNAL_NAME> - For data importers/exporters, internal dimension (level)/fact name. It
must be dimension (level) name for DIMxx type and fact name for DATA type entries.

<INTERNAL_NAME> - For hierarchy/dimension (level) importers, hierarchy dimension (level)
column from a single hierarchy, it is required only for HDMxx type entries.

<EXTERNAL_NAME> - Mapping column from external interface table for dimension (level),
data, or filter types.

<VALUE> - Constant value to use for mapping if column mapping not present. Also constant
value to use for FILTER criteria. It can also be a scalar measure specified with prefix @. If this
value is provided for hierarchy importer types, it will be used as the prefix for dimension (level)
or labels

Multiple entries for same interface are required to completely define all the required mappings
for an interface.

Example for Data Importer Interface
Entries for data importer interfaces are displayed as follows:

<INTERFACE_NAME : <PARAM> : DIMxx : <DIM_NAME> : <EXTERNAL_COLUMN> :

<INTERFACE_NAME> : <PARAM> : DATA : <FACT_NAME> : <EXTERNAL_COLUMN> :

<INTEFACE_NAME> : <PARAM> : FILTER : : <EXTERNAL_COLUMN> : <FILTER_VALUE>

Example:

W_PDS_SLS_IT_LC_WK_A: MFP: DIM01 : WEEK : EOW_DATE

W_PDS_SLS_IT_LC_WK_A: MFP: DIM02 : SKU : ITEM_ID

W_PDS_SLS_IT_LC_WK_A: MFP: DIM03 : STOR : LOCATION_ID

Chapter 1
Configuration of interface.cfg

1-24

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYNSLSREGU : NET_SALES_REG_UNITS

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYNSLSREGC : NET_SALES_REG_COST

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYNSLSREGR : NET_SALES_REG_RETAIL

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYRTNREGU : RETURNS_REG_UNITS

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYRTNREGC : RETURNS_REG_COST

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYRTNREGR : RETURNS_REG_RETAIL

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYNSLSCLRU : NET_SALES_CLEAR_UNITS

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYNSLSCLRC : NET_SALES_CLEAR_COST

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYNSLSCLRR : NET_SALES_CLEAR_RETAIL

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYRTNCLRU : RETURNS_CLEAR_UNITS

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYRTNCLRC : RETURNS_CLEAR_COST

W_PDS_SLS_IT_LC_WK_A: MFP: DATA : DRTYRTNCLRR : RETURNS_CLEAR_RETAIL

Example for Data Exporter Interface
Entries for data exporter interfaces are displayed as follows:<INTERFACE_NAME> :
<PARAM> : DIMxx : <DIM_NAME> : <EXTERNAL_COLUMN> :

<INTERFACE_NAME> : <PARAM> : DATA : <FACT_NAME> : <EXTERNAL_COLUMN> :

<INTEFACE_NAME> : <PARAM> : FILTER : <FACT_NAME> : :<FILTER_VALUE>

The following example shows a sample generic exporter that obtains data from different facts
of same base intersection and imports data into same table for different versions (MPCP and
MPOP) of the plan. This is controlled by using a different PARAM for each different version of
the data.

MFP_PLAN1_EXP:MPOP:DIM01:WEEK:CLND_KEY:

MFP_PLAN1_EXP:MPOP:DIM02:SCLS:PROD_KEY:

MFP_PLAN1_EXP:MPOP:DIM03:CHNL:LOC_KEY:

MFP_PLAN1_EXP:MPOP:DATA::PROD_DH_ATTR:@MFP_DRDVDPOST

MFP_PLAN1_EXP:MPOP:DATA::SUPPLIER_NUM:@MFP_DRDVDPOST

MFP_PLAN1_EXP:MPOP:DATA::VERSION_NUM:0

MFP_PLAN1_EXP:MPOP:DATA:MPOPLDOWD:CAL_DATE:

MFP_PLAN1_EXP:MPOP:DATA:MPOPSLSU:SLS_QTY:

MFP_PLAN1_EXP:MPOP:DATA:MPOPSLSR:SLS_RTL_AMT:

MFP_PLAN1_EXP:MPOP:FILTER:MPOPEXPORTB::TMFP_PLAN1_EXP:MPCP:DIM01:WEE
K:CLND_KEY:MFP_PLAN1_EXP:MPCP:DIM02:SCLS:PROD_KEY:MFP_PLAN1_EXP:MPCP:
DIM03:CHNL:LOC_KEY:MFP_PLAN1_EXP:MPCP:DATA::PROD_DH_ATTR:@MFP_DRDVD
POSTMFP_PLAN1_EXP:MPCP:DATA::SUPPLIER_NUM:@MFP_DRDVDPOSTMFP_PLAN1_
EXP:MPCP:DATA::VERSION_NUM:1MFP_PLAN1_EXP:MPCP:DATA:MPCPLDOWD:CAL_D
ATE:MFP_PLAN1_EXP:MPCP:DATA:MPCPSLSU:SLS_QTY:MFP_PLAN1_EXP:MPCP:DATA:
MPCPSLSR:SLS_RTL_AMT:MFP_PLAN1_EXP:MPCP:FILTER:MPCPEXPORTB::T

Chapter 1
Configuration of interface.cfg

1-25

Example for Hierarchy/Dimension (Level) Importer Interface
Hierarchy importers are similar to importers. However, the dimension (level) mapped belong to
the same hierarchy. Each hierarchy dimension (level) can also contain the corresponding
mapping for labels. The new mapping type entries differentiate an interface as a hierarchy
importer interface.

Note:

If the mapping is for an alternate level that is loaded via flat file and there is no
mapping available in the External Interface table for the alternate level, then default
value can provided as NA or na. In this scenario, the current position name, if it
already exists, is not overwritten. However, for a new value, the position name will be
added as <level>_<number>, where <level> is the level name that is the alternate
level here and <number> is an integer starting with 0. If the default value provided is
not NA or na, then the position name will be saved as the default value provided.

The following two mappings are used instead of DIMxx and DATA type mappings.

<INTERFACE_NAME> : <PARAM> : HDMxx : <DIM_NAME> :
<EXTERNAL_DIM_COLUMN> : <OPTIONAL_PREFIX_VALUE>

<INTERFACE_NAME> : <PARAM> : HDLxx : : <EXTERNAL_LABEL_COLUMN> :
<OPTIONAL_PREFIX_VALUE>

<INTEFACE_NAME> : <PARAM> : FILTER : : <FILTER_SOURCE_COLUMN> :
<FILTER_VALUE>

The following is an example entry for hierarchy importers.

W_PDS_CALENDAR_D:PDS:HDM01:DAY:DAY:

W_PDS_CALENDAR_D:PDS:HDM02:WEEK:WEEK:

W_PDS_CALENDAR_D:PDS:HDM03:MNTH:MNTH:

W_PDS_CALENDAR_D:PDS:HDM04:QRTR:QRTR:

W_PDS_CALENDAR_D:PDS:HDM05:HALF:HALF:

W_PDS_CALENDAR_D:PDS:HDM06:YEAR:YEAR:

W_PDS_CALENDAR_D:PDS:HDM07:WOYR:WOYR:

W_PDS_CALENDAR_D:PDS:HDM08:HLDY::NA

W_PDS_CALENDAR_D:PDS:HDM09:EVNT::NA

W_PDS_CALENDAR_D:PDS:HDM10:STDB:STDB:

W_PDS_CALENDAR_D:PDS:HDL01::DAY_LABEL:

W_PDS_CALENDAR_D:PDS:HDL02::WEEK_LABEL:

W_PDS_CALENDAR_D:PDS:HDL03::MNTH_LABEL:

W_PDS_CALENDAR_D:PDS:HDL04::QRTR_LABEL:

Chapter 1
Configuration of interface.cfg

1-26

W_PDS_CALENDAR_D:PDS:HDL05::HALF_LABEL:

W_PDS_CALENDAR_D:PDS:HDL06::YEAR_LABEL:

W_PDS_CALENDAR_D:PDS:HDL07::WOYR_LABEL:

W_PDS_CALENDAR_D:PDS:HDL08:::Unassigned

W_PDS_CALENDAR_D:PDS:HDL09:::Unassigned

W_PDS_CALENDAR_D:PDS:HDL10::STDB_LABEL:

Process for Uploading New interface.cfg File
The customer must upload the interface.cfg file to the object store using the naming convention
planning/incoming/config/interface.cfg that will be used by the Application Deploy Task orthe
Patch Application Task.

The interface.cfg file is validated during the deploy or patch task, verifying that the correct
parameters are used and the interface column mappings are valid both in the application and
in the external table sources. If the validation fails, it will provide details about the errors in the
log.

Automated Testing with RPAC
The RPASCE Pluggable Automation Component (RPAC) utility is supported for use with
RPASCE cloud application deployments. RPAC tests are specified in XML-format text files and
cover a range of RPASCE application and segment activities. Note that RPAC does not
support the testing of GUI functions and is not a performance testing tool. In order to support
the validation of a newly installed or patched environment, in the context of configured daily or
weekly batch operations, RPAC for Cloud deployments is supported through new entries in the
RPASCE Batch task catalog. These tasks allow a pre-production application to be set to a
known state through a combination of hierarchy load and measure load files, and then can
compare both application and segment workspace measures to known values represented
either directly in the test xml files or in data comparison files. This is similar to a measure data
load file, but used only for comparison rather than for loading.

Three types of collateral files are involved in the RPAC testing process:

• Input data file set: a group of hierarchy (.dat) and measure (.ovr, .clr, or .rpl) data files that
must be loaded into the application before any RPAC tests are run. Uploaded to Object
Storage in the planning/incoming/rpac directory as input.zip.

• Test file set: one or more .xml files where tests and test suites are defined using the
available set of RPAC tags and attributes. Uploaded to Object Storage in the planning/
incoming/rpac directory as tests.zip.

• Comparison data file set: an optional way to efficiently validate that one or more
measures currently contain an expected set of values. Uploaded to the Object Storage
planning/incoming/rpac directory as compare.zip.

Each of these collateral file archives, once sent through the Object Storage interface, will be
kept internally to be used every time an RPAC-enabled batch execution sequence is run.
Updates to the collateral files can be sent to the Object Storage site before the next call of the
initrpac batch task and will be brought into the active environment at that time. Note that when
any of the collateral file archives is updated, the previous contents are entirely removed from
the internal storage area, so the replacement archive file must be a complete set of files of that
type. This prevents stale test scripts or data files from being left in the environment.

Chapter 1
Automated Testing with RPAC

1-27

The two RPASCE Batch tasks, initrpac and runrpac, are detailed in the batch task catalog in
"Initialize Testing Environment: initrpac" and "Execute Automated Tests: runrpac". The initrpac
task is expected to be run once, at the start of the RPAC-enabled batch exec sequence; the
runrpac task can be called multiple times, including at separate points during the batch exec
sequence, if needed. Here is an example batch execution sequence that shows how an
existing weekly batch specification might be augmented with RPAC tests:

Standard Weekly Batch Cycle
weekly | unpack | weekly_sales.zip~ftp
weekly | hierload | prod~14~N
weekly | hierload | loc~14~N
weekly | measload | load_oo_list
weekly | calc | batch_fcst
weekly | autobuild |

RPAC-enhanced Batch Cyle
validate | initrpac |
validate | hierload | prod~14~N
validate | hierload | loc~14~N
validate | measload | load_oo_list
validate | runrpac | RPAC_Domain_Tests~DomainTests.xml
validate | calc | batch_fcst
validate | runrpac | RPAC_Segment_Tests~SegmentTests.xml

The first section, labeled "weekly", represents a weekly batch sequence that might run at
midnight every Saturday. Note that updated hierarchy and measure data files for the week are
sent through Object Storage in an archive file named "weekly_sales.zip" using the unpack
task.

The second section shows how the weekly batch sequence has been augmented with RPAC
tests and named "validate". Note that the unpack task from the weekly sequence has been left
out, and in its place initrpac is called to place the test data input files into the application. If new
or updated RPAC test collateral files have been placed on the Object Storage server, they will
be brought in at this point and used.

There are two sets of RPAC tests in this sequence, specified by the runrpac task entries. The
first runs immediately after the hierarchy and measure files are loaded, and validates expected
values in the application. The second test set is executed after some further calculations have
been run, and builds one or more segments, then validates values within them as well.

When RPAC-enabled batch sequences are run, the primary log file, which is available through
the Online Administration dashboard as well as through the Object Storage log archive
package, will show a brief summary of test results. Full test details and log files are available in
the complete log archive package from the batch exec run, available in the Object Storage
area once the execution has completed.

For full details on the contents of an RPAC test .xml file, and all the tags and attributes that are
available for specifying RPAC tests, see "RPASCE Test Automation" in Oracle Retail Predictive
Application Server Cloud Edition Administration Guide. Note that the latest version of this guide
specifies which RPAC features are available for Cloud deployments. Due to Cloud security
constraints, some RPAC features, primarily the <SHELL> tag, have been disabled; however,
inclusion of RPAC tests as a step in existing batch execution sequences should fully
compensate for this restriction.

Application Deploy
This section describes the process for deploying an application in an RPASCE Cloud Service
environment.

Chapter 1
Application Deploy

1-28

Object Storage Upload Location
Oracle RGBU cloud services include an Object Storage site for incoming and outgoing file
transfers. See "Uploading and Downloading Files" for details on the Object Storage interface.

For the purposes of building the application, four paths within the Object Storage site are used:

config
For uploading the application configuration into the cloud environment, create a .zip archive
containing the contents of the config directory (without the top level config folder). This archive
file must be named as <config_name>config.zip. This archive file must be placed in the
planning/incoming/config path on the Object Storage service. It may be updated as often as
necessary in support of application build or patch activities.

Example

The ascs_config.zip may contain the following contents:

• ascs folder - this is the folder with configuration for an application called ASCS (required).

• ascsDashboardSettings.json - custom settings for the ASCS dashboard (optional).

• ascsHelpConfig.json - custom settings for ASCS Online Help (optional).

interface.cfg (optional)
See Configuration of interface.cfgand Process for Uploading New interface.cfg File.

batch_control
The set of batch process control files, as detailed in the previous section, must be uploaded as
planning/incoming/batch_control.zip (or alternatively as individual files in the planning/
incoming/batch_control path) within the Object Storage service. These files are loaded into the
application's data store during deployment and can be updated later as part of the Patch
Application task..

Bootstrap Environment
A newly provisioned RPASCE cloud environment is set up with a bootstrap configuration that
allows the implementer to log into the RPASCE Client and access the Online Administration
Tool (OAT) interface before an application has been deployed. The bootstrap OAT
configuration allows only tasks required to deploy your application. Once the application has
been deployed, both the application-specific tasks and activities as well as the deploy activities
will be available. This allows the application to be re-deployed from scratch multiple times,
should this be required during the implementation phase. (Note that this would trigger a
complete loss of any data, so would only be applicable in early phases of implementation
testing.)

OAT Parameters
A few parameters must be specified when initiating an Application Deploy process through
OAT. The implementer must supply these values:

Chapter 1
Application Deploy

1-29

Config Name
The name under which the configuration has been saved. For those familiar with the RPASCE
application construction process, this is the name that is internally passed as the -cn parameter
to rpasInstall. A drop-down list offers choices based on the available application config archive
files in the incoming FTP area.

Partition Dim
The dimension (level) on which the application will be partitioned. The application is
constructed with one sub-application for each position in the given dimension (level). This must
be a level of separation that fits with the intended workflow for individual users so that, when
possible, most users' daily tasks relate to only one sub-application. This lessens contention
when many users are active in the system.

Batch Group
Once a application has been built successfully, a named group of batch operations may be
specified (typically including measure data loads and mace calculations). This operation
sequence must be one batch_type entry in the Batch Exec control file, batch_exec_list.txt
(described in "Batch Exec Service").

Overwrite
In the case where the application has already been built once, and the implementer must
rebuild the application from scratch, which might occur because a non-patchable change has
been made to the configuration, this option must be selected. If it is left in the default
unselected state, then the application build process will halt and report an error, rather than
overwrite the existing application.

Application Build
The application build process automatically carries out the following steps:

1. Basic validation of the given config name and partition dimension (level).

2. Ensure that a configuration with the given config name has been uploaded.

3. If the overwrite flag is false, ensure that there is no existing application. It reports an error if
the application exists.

4. If the overwrite flag is true, remove the existing application.

5. Build the application using the config name and the partition dimension (level) as specified
in the OAT parameter screen.

6. Copy any users and user groups from the bootstrap application environment into the
application environment.

7. Copy the uploaded batch control text files into the application from the SFTP location.

8. Run post-application-build batch group.

9. Add the application details into the provisioned RPASCE Client configuration.

Once the Bootstrap Application task has completed, you only need to log out of the RPASCE
Client and then log back in again to see the tasks and menus associated with your newly built

Chapter 1
Application Deploy

1-30

application. (It is no longer required to restart the RPASCE Client, and this option has been
removed from the OAT menus.)

File Transfer Service Required Parameters
To determine IDCS_SCOPE, refer to the tenant string portion (for example, rgbu-rap-cust-stg1-
mfpscs) of your cloud service URL (for example, https://rap.retaie.us-
ashburn-1.ocs.oraclecloud.com/rgbu-rap-cust-stg1-mfpscs/rpasceui/).

Planning Cloud Service URL
Pattern

Tenant Scope

https://rap.retail.us-
ashburn-1.ocs.oraclecloud.com/
rgbu-rap-cust-stg1-mfpscs/
rpasceui/

rgbu-rap-cust-stg1-mfpscs rgbu:rpas:psraf-RPASCE-STG1

https://rap.retail.us-
ashburn-1.ocs.oraclecloud.com/
rgbu-rap-cust-stg1-apcs/rpasceui/

rgbu-rap-cust-stg1-apcs rgbu:rpas:psraf-RPASCE-STG1

https://rap.retail.us-
ashburn-1.ocs.oraclecloud.com/
rgbu-rap-cust-stg1-ipocs/
rpasceui/

rgbu-rap-cust-stg1-ipocs rgbu:rpas:psraf-RPASCE-STG1

https://rap.retail.us-
ashburn-1.ocs.oraclecloud.com/
rgbu-rap-cust-stg1-rpasce/
rpasceui/

rgbu-rap-cust-stg1-rpasce rgbu:rpas:psraf-RPASCE-STG1

Based on the tenant string (for example, rgbu-rap-cust-stg1-mfpscs), the environment index is
stg1 and the application is mfpscs. For this tenant string or for other applications such as apcs
or ipocs tenant string, the IDCS scope will look like the configuration below (ensure
environment index is in uppercase characters only):

IDCS_SCOPE = rgbu:rpas:psraf-RPASCE-STG1

Create the OAuth Client in Retail Home with the following parameters:

• App Name: APP_STG1

• Description: FTS for STG1

• Scope 1: rgbu:rpas:psraf-RPASCE-STG1

This generates an OAuth Client with details like this:

• Oauth client:

• App Name: APP_STG1

• Client Id: APP_STG1_APPID

• Client Secret: 6aae7818-309b-4e7a-874e-f26356a675b1

You must capture Client Id and Client Secret. So set the FTS script variables as follows:

Copy

BASE_URL="https://rap.retail.eu-frankfurt-1.ocs.oraclecloud.com"

TENANT="rgbu-rap-cust-stg1-rpasce"

IDCS_URL="https://oci—iam-

Chapter 1
Application Deploy

1-31

a4cbf187f29d4f41bc03fffb657d5513.identity.oraclecloud.com/oauth2/v1/token"

IDCS_CLIENTID="APP_STG1_APPID"

IDCS_CLIENTSECRET="6aae7818-309b-4e7a-874e-f26356a675b1"

IDCS_SCOPE="rgbu:rpas:psraf-RPASCE-STG1"

Chapter 1
Application Deploy

1-32

2
In-Context Help

This chapter describes how to configure In-Context Help for solutions based on RPASCE.

In-Context Help is a resource to access relevant help topics, in the format of HTML and video,
within the application. At present, it focuses on help topics related to the dashboard and the
workspace. The naming convention is <app-name>HelpConfig.json.

Navigating to Help Topics on RPASCE
You can navigate to the help topics in the following ways:

Dashboard

The help topics for the dashboard are added to the following two levels:

• All: The generic topics related to MFP or A&IP are added to this level.

• Report: This consists of topics related to dashboards such as the effective usage, how to
analyze the metrics, and so on.

Figure 2-1 shows the view of a dashboard.

Figure 2-1 Dashboard Window

The help topics for the dashboard are visible on the right side panel, as shown in Figure 2-2.

2-1

Figure 2-2 Dashboard Help Topics

Workspace

The workspace contains the actual content related to MFP or A&IP. Here the topics are aligned
with respect to the different levels of the Taskflow.

Figure 2-3 illustrates the workspace for the product MFPRCS.

Figure 2-3 MFPRCS Workspace

Here the Step, Tabs, and View are visible.

Chapter 2
Navigating to Help Topics on RPASCE

2-2

Figure 2-4 MFPRCS Workspace with Help

Creating the Contextual Help Configuration File
The specifications related to Contextual Help for the RPASCE dashboard and workspace are
implemented by creating a configuration file. This file is created outside of the RPASCE
Configuration Tools and is deployed in the RPASCE Client application. The contents of this
configuration file are used by the RPASCE Client to determine how to organize and display the
help topics in the dashboard and the workspace.

Although a Contextual help configuration file can be created from scratch, in most cases, it is
simpler to modify an existing version of the file to incorporate any desired changes.

Using JSON in the Contextual Help Configuration File
The contents of the Contextual Help Configuration file are formatted as a JSON (JavaScript
Object Notation) object. JSON is a common flexible information encoding notation used
frequently in cloud applications; it is more compact and, when properly formatted, more
readable than the XML format. (Importantly, it is also not subject to some security concerns
that are present when using XML for information encoding.)

JSON is a simple and straightforward format; information about the specifics of the format is
readily available online.

Structure of Contextual Help Configuration File
The configuration file is divided into three levels: ALL, REPORTS, and WORKBOOKS. All
three levels are of type JSON Object. The ALL level is the generic level. REPORTS and
WORKBOOKS are children of level ALL.

Chapter 2
Creating the Contextual Help Configuration File

2-3

Table 2-1 Configuration File Levels

Level Description

ALL Describes the generic help topics related to the RPASCE solution in
use.

REPORTS Contains the help topics related to the dashboard.

WORKBOOKS Contains the help topics for the workbook and its sub-categories, such
as Task, Step, Tab, and View.

The generic JSON structure for any solution is as follows:

 "helpTopics" : [] "reports" : {"helpTopics" : [] } "workbooks" :
{"helpTopics" : [] }

Help Topic Building Block
The help topics object as a whole is a JSON array of collection of attributes. This help topics
object is the building block for all the different levels.

The following JSON snippet explains the generic helpTopics object structure:

"helpTopics" : [{
"name" : "Help Topic 1",
 "description" : "Description 1",
 "url" : "URL 1",
 "type" : "Type 1",
 "imageSrc" : "Image 1",
 "color" : "Color 1"
},{
 "name" : "Help Topic 2",
 "description" : "Description 2",
 "url" : "URL 2",
 "type" : "Type 2",
 "imageSrc" : "Image 2",
 "color" : "Color 2"
}]

Table 2-2 list the help topic properties.

Table 2-2 Help Topic Properties

Property Value Type Description

Name JSON String The name of the topic.

Description JSON String A short description of the topic.

URL JSON String The URL link to the help topic.

Type JSON String The type of the resource. Values are: document, image.
or video.

ImageSrc JSON String The path to the image file to be displayed in the Help topic
card, for example, an icon representing a video or an
illustrative screenshot.

Chapter 2
Creating the Contextual Help Configuration File

2-4

Table 2-2 (Cont.) Help Topic Properties

Property Value Type Description

Color JSON String The color in which the help topic tile should be visible.

Color is displayed at the top of the Help topic card. It is
typically used to visually distinguish between help formats
(document or video), but may be used for a variety of
purposes.

Values are: lightblue, red, lightgreen, purple, blue, grey,
orange, turquoise, green.

Key Naming Convention
The naming convention of the key depends upon the level or sub-level of each element. Here
is an example of the naming conventions at different levels.

Consider the solution in use is mfprcs.

Table 2-3 MFPRCS Key Naming Example

Level/Sub-Level Key Example Description

All NA No need of the key as help topics
are added to the root of the
JSON.

Reports reports

Reports > Dashboard reports.dashboard.id The key must match the name
provided for reports in the
Taskflow_MultiSolution.xml file.

Workbooks workbooks

Activity > Task mfprcs.Activity1.Task1 The task name must match the
entry provided in
Taskflow_MultiSolution.xml file for
the specific task.

Activity > Task > Step mfprcs.Activity1.Task1.Step1 The step name must match the
entry provided in
Taskflow_MultiSolution.xml file for
the specific step.

Activity > Task > Step > Tab mfprcs.Activity1.Task1.Step1.Tab
1

The tab name must match the
entry provided in
Taskflow_MultiSolution.xml file for
the specific tab.

Activity > Task > Step > Tab >
View

MT_TB01_WS01 The view name must match the
entry provided in
Taskflow_MultiSolution.xml file for
the specific view. The view key
name is unique, as it can be
added anywhere under Task,
Step, or Tab from the solution.

Chapter 2
Creating the Contextual Help Configuration File

2-5

JSON Structure of Contextual Help Configuration File
Here is an example of JSON object containing all the three levels and the help topics related to
each of them. The maxTopics in the following snippet defines how many topics can be visible
on RPASCE. This value must be increased if you want to show more help topics at a given
level than the value of maxTopics. If, for a specific level, there are fewer than maxTopics topics,
it fetches the remaining topics from its parent. In the following snippet the maxTopics for
workbooks is set to 2 and overrides the maxTopics for the root, which is set to 3 for the
workbooks level. Also, since no maxTopics is set for reports, the maximum topics for this level
is capped to 3, which is fetched from the root level.

{
 "maxTopics" : "3.0",
 "helpTopics" : [{
 "name" : "MFP Cloud Service Introduction",
 "description" : "Learn the steps for defining the strategic financial targets and
creating plans that reconcile to the stated targets.",
 "url" : "http://docs.oracle.com/cd/E75764_01/merchfinplan/pdf/cloud/161/html/
retail_implementer_guide/output/introduction.htm#introduction",
 "type" : "document",
 "imageSrc" : "",
 "color" : "turquoise"
 }],
 "reports" : {
 "helpTopics" : [],
 "reports.dashboards.id" : {
 "helpTopics" : [{
 "name" : "Using the dashboard",
 "description" : "Manipulate the dashboard in order to effectively analyze plan
matrics",
 "url" : "http://docs.oracle.com/cd/E75764_01/merchfinplan/pdf/cloud/161/html/
retail_implementer_guide/output/dashboard.htm#dashboard",
 "type" : "document",
 "imageSrc" : "",
 "color" : "turquoise"
 }]
 }
 },
 "workbooks" : {
 "maxTopics" : "2.0",
 "helpTopics" : [],
 "mfprcs.Activity1.Task1" : {
 "helpTopics" : [{
 "name" : "Overview of Merch Plan Targets",
 "description" : "Learn about the steps associated with creating and monitoring
targets",
 "url" : "http://docs.oracle.com/cd/E75764_01/merchfinplan/pdf/cloud/161/html/
retail_implementer_guide/output/
CreateMerchPlanTargets.htm#create_merch_plan_targets_task",
 "type" : "document",
 "imageSrc" : "",
 "color" : "turquoise"
 }]
 }
}

Chapter 2
Creating the Contextual Help Configuration File

2-6

Editing the Contextual Help Configuration File
Help topics can be edited or added directly under the levels ALL and REPORTS. For level
WORKBOOKS, the implementer can add or edit under Task or can add or edit under a specific
sub-level (Step, Tab, or View).

The following examples indicate where the implementer can add help topics at different levels.

• Adding or editing the help topic for level ALL.

The implementer can add the help topic object directly under the root of the JSON under
the property helpTopics. For editing, the implementer must search the name of the help
topic in JSON and edit any of the required properties.

• Adding or editing the help topic for level REPORTS.

Here the implementer must add the help topic under the reports object of the JSON. The
implementer must search for the key reports and then add the help topic under the
attribute helpTopics. Similarly, any particular help topic can be edited by searching the
name of the help topic.

• Adding or editing the help topic for sub-level Step under level WORKBOOKS.

To add a topic under sub-level Step, the implementer must search for the Step key and
add the help topic. For editing, the implementer must search for a particular help topic and
edit any of the properties as required.

• Adding or editing the help topic for sub-level View under level WORKBOOKS.

To add a topic under sub-level View, the implementer must search for the View key and
add the help topic. For editing, the implementer must search for a particular help topic and
edit any of the properties as required.

Retrieve/Update InContext help JSON file:
The user can update or retrieve the help JSON file through an OAT (Online Admin Tools) task
and can easily update the existing JSON file or retrieve it. This provides the flexibility to view
the list of available help resources and modify them according to the requirement.

Following are the steps to submit the OAT task.

1. Open Submit a New Admin Task under Online Admin Tools.

2. Select Patch Application Task under task group and click Next, as shown in Figure 2-5.

Chapter 2
Retrieve/Update InContext help JSON file:

2-7

Figure 2-5 List of Task Groups

3. Select Manage JSON files from the list of available tasks and click Next, as shown in
Figure 2-6.

Figure 2-6 List of Tasks Under Patch Application Task Group

Chapter 2
Retrieve/Update InContext help JSON file:

2-8

4. Now the user can provide a task label and select the type of operation to be performed.

• Retrieve JSON files to Object Storage: This operation performs the task of fetching
the help JSON file from the RPASCE application. When this task is run, the help JSON
file (with other JSON files) is bundled as a zip with label as <app_name>_json.zip and
is placed in object storage under <SubNamespace>/planning/outgoing. The help
JSON file is also prefixed with the app name as <app_name>HelpConfig.json

Example: mfprcsHelpConfig.json

Refer to Uploading and Downloading Files for more details about downloading and
uploading files to Object Storage.

• Update JSON files from Object Storage: The user can update the help JSON file as
per their requirements. Once updated, the file name must be prefixed with the app
name as <app_name>HelpConfig.json. Then, this JSON file must be bundled as
<app_name>_json.zip and placed in the <SubNamespace>/planning/incoming/config
directory.

When the Update JSON files from Object Storage operation is performed on the
RPASCE UI, it fetches the zip bundle from the Object Storage location
<SubNamespace>/planning/incoming/config and updates the application with the new
changes from the help JSON file. The user must re-login to the application to see the
changes.

Refer to Uploading and Downloading Files for more details about downloading and
uploading files to Object Storage.

Figure 2-7 Options to Fetch or Update the JSON Files

Chapter 2
Retrieve/Update InContext help JSON file:

2-9

Note:

If the user updates the URLs for the help topics in the help JSON file, these URLs
must be allowed so that the links are accessible from the RPASCE UI. To allow the
URLs, the user must navigate to System Configuration > Config Properties > Images
and append the URL host in Valid Image URL Hosts text box.

Figure 2-8 Location to Allow List of the URLs

Chapter 2
Retrieve/Update InContext help JSON file:

2-10

3
Uploading and Downloading Files

The Oracle Cloud Infrastructure Object Storage service is used to upload and download the
files used in batch processing.

Object Storage
The Oracle Cloud Infrastructure Object Storage service is an internet-scale, high-performance
storage platform that offers reliable and cost-efficient data durability. The Object Storage
service can store an unlimited amount of unstructured data of any content type.

More information on Object Storage can be found here.

https://docs.oracle.com/en-us/iaas/Content/Object/Concepts/
objectstorageoverview.htm

Accessing Endpoints to Manage Files in Object Storage
A Public Wrapper API over the Object Storage that has a built-in virus scanning ability is been
available to perform various actions on Object Storage.

The following terms are used in Table 3-1:

• PAR: a pre-authenticated request used to upload or download files. This is valid only for a
limited duration and is set to five minutes.

• Storage Prefix: Object Storage is a flat storage area and does not include the concept of
directories. Storage prefix is a prefix for a file that imitates a directory structure.

For example, planning/incoming is prefixed to a filename to provide a more readable and
distinguishable name.

Before accessing the APIs, an OCI IAM token must be generated. This token is passed in the
request header for authentication.

curl -i -u "<IDCS-client-id>":"<IDCS-client-secret>" \
https://<idcs-tenant-id>.<IDCS_URL> \
-H 'Content-Type: application/x-www-form-urlencoded' \
-H 'Host: <idcs-tenant-id>.<IDCS_URL>' \
-d 'grant_type=client_credentials' -d 'scope=urn:opc:idm:__myscopes__'

3-1

https://docs.oracle.com/en-us/iaas/Content/Object/Concepts/objectstorageoverview.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Concepts/objectstorageoverview.htm

Table 3-1 API Endpoints

Action Endpoint Payload Response Details

Get PAR
(pre-
authenticat
ed
requests)
for upload
of files

/
uploadFiles

[{

"storagePrefix":
"string",
 "fileName":
"string"
},
...]

PAR URI This endpoint is used to generate PARs,
which are then used to upload files.

Data:

{
 "listOfFiles": [{
 "storagePrefix":
"<subnamespace>/planning/
incoming/input",
 "fileName":
"prod.csv.dat"
 },
 {
 "storagePrefix":
"<subnamespace>/planning/
incoming/config",
 "fileName":
"RetailHomeConfig.json"
 }]
}

Command:

curl -X POST "<url>/<BucketName>/
uploadFiles" \

-H "accept: application/json" -H
"Accept-Language: en" -H
"Authorization: Bearer
<AccessToken>" -H "Content-Type:
application/json" \

-d "{\"listOfFiles\":
[{\"storagePrefix\":\"<subnamespa
ce>/planning/incoming/
input\",\"fileName\":\"prod.csv.d
at\"},{\"storagePrefix\":\"
\<subnamespace>/planning/
incoming/config/
\",\"fileName\":\"RetailHomeConfi
g.json\"}]}"

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-2

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Response Details

Response 200:

{
 "parList": [{
 "id":
"WhmJ1Jn6v1GufaHDVISg2sUyiOLEoDAG
3rWGUp1J/
yj7NgvpJtf77q6Qehsz9h9R:<subnames
pace>/planning/incoming/input/
prod.csv.dat",
 "name": "prod.csv.dat",
 "accessUri": "https://
objectstorage.us-
phoenix-1.oraclecloud.com/p/
oKDbsdO0T3LsfEWgys5WMD85DOyB7W4Av
NK_lYXGtVMkGobebU6NIdvuz5AqrtO4/n
/oraclegbudevcorp/b/
<BucketName>/o/<subnamespace>/
planning/incoming/input/
prod.csv.dat",
 "objectName":
"<subnamespace>/planning/
incoming/input/prod.csv.dat",
 "accessType":
"ObjectWrite",
 "timeExpires":
1629914865691,
 "timeCreated":
1629914565988
 },
 {
 "id":
"I0zDNVNqpQG8KEgGoJokViRIZ6yAQNX7
haWIvBfDME+UabAShOhVu7zNvmERkZLm:
<subnamespace>/planning/incoming/
config/RetailHomeConfig.json",
 "name":
"RetailHomeConfig.json",
 "accessUri": "https://
objectstorage.us-
phoenix-1.oraclecloud.com/p/
Oja49u66xQqkzgOC6i5GA1PooED1XQV2b
snDwurqKbwetAnqX1RzVb4-
e1mPiWWs/n/oraclegbudevcorp/b/
<BucketName>/o/<subnamespace>/
planning/incoming/config/
RetailHomeConfig.json",
 "objectName":
"<subnamespace>/planning/
incoming/config/
RetailHomeConfig.json",
 "accessType":
"ObjectWrite",
 "timeExpires":
1629914866213,
 "timeCreated":

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-3

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Response Details

1629914566301
 }]
}

Files can then be uploaded using the
generated PARs (accessURI in the
response).

curl --request PUT --data-binary
<File> <PAR>

Get PAR
for
download
of files

/
downloadFi
les

[{

"storagePrefix":
"string",
 "fileName":
"string"
},
...]

PAR URI This endpoint is used to generate PARs,
which are then used to download files.

Data:

{
 "listOfFiles": [{
 "storagePrefix":
"<subnamespace>/planning/
incoming/input",
 "fileName":
"prod.csv.dat"
 },
 {
 "storagePrefix":
"<subnamespace>/planning/
incoming/config/",
 "fileName":
"RetailHomeConfig.json"
 }]
}

Command:

curl -X POST "<url>/<BucketName>/
downloadFiles" \
-H "accept: application/json" -H
"Accept-Language: en" -H
"Authorization: Bearer
<AccessToken>" -H "Content-Type:
application/json" \
-d "{\"listOfFiles\":
[{\"storagePrefix\":\"<subnamespa
ce>/planning/incoming/
input\",\"fileName\":\"prod.csv.d
at\"},{\"storagePrefix\":\"
\<subnamespace>/planning/
incoming/config/
\",\"fileName\":\"RetailHomeConfi
g.json\"}]}"

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-4

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Response Details

Response 200:

{
 "parList": [{
 "id":
"SMINYf9O09IQmfkIxb8gHb0oRN2VrgAD
88knbvo3pcNvvrNEhG8btWlPOdnfcLRG:
<subnamespace>/planning/incoming/
input/prod.csv.dat",
 "name": "prod.csv.dat",
 "accessUri": "https://
objectstorage.us-
phoenix-1.oraclecloud.com/p/
M7JSr6Jp4up_XnVgib6xXqCuc17YHoWZD
VzwGmt1x76_sqIRTQGHS3X_5aMar2HV/n
/oraclegbudevcorp/b/
<BucketName>/o/<subnamespace>/
planning/incoming/input/
prod.csv.dat",
 "objectName":
"<subnamespace>/planning/
incoming/input/prod.csv.dat",
 "accessType":
"ObjectRead",
 "timeExpires":
1629916720360,
 "timeCreated":
1629916420483
 },
 {
 "id":
"8Jtqp6T2g3k+1KY9RhO9D7Kftmm5OBn6
PIhCzxIQAH9jbvyQmi54SNoXuEzx0eqM:
<subnamespace>/planning/incoming/
config/RetailHomeConfig.json",
 "name":
"RetailHomeConfig.json",
 "accessUri": "https://
objectstorage.us-
phoenix-1.oraclecloud.com/p/
5wvRsj2D00nRkjX7-
IMZoo9xOSRkMJUM37yyy4wKL1PKwTpdgQ
8BWQKlg_jHXnrh/n/
oraclegbudevcorp/b/
<BucketName>/o/<subnamespace>/
planning/incoming/config/
RetailHomeConfig.json",
 "objectName":
"<subnamespace>/planning/
incoming/config/
RetailHomeConfig.json",
 "accessType":
"ObjectRead",
 "timeExpires":
1629916720632,
 "timeCreated":

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-5

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Response Details

1629916420742
 }]
}

Files can then be downloaded using the
generated PARs (accessURI in the
response).

curl --request GET <PAR> --
output <file>

Delete
Files

/deleteFiles [{

"storagePrefix":
"string",
 "fileName":
"string"
},
...]

Status: ok/
error per
file

This endpoint is used to delete files
from Object Storage.

Data:

{
 "listOfFiles": [{
 "storagePrefix":
"<subnamespace>/planning/
incoming/input",
 "fileName":
"prod.csv.dat"
 },
 {
 "storagePrefix":
"<subnamespace>/planning/
incoming/config/",
 "fileName":
"RetailHomeConfig.json"
 }]
}

Command:

curl -X DELETE "<url>/
<BucketName>/deleteFiles" \
-H "accept: */*" -H "Accept-
Language: en" -H "Authorization:
Bearer <AccessToken>" -H
"Content-Type: application/json"
\
-d "{\"listOfFiles\":
[{\"storagePrefix\":\"<subnamespa
ce>/planning/incoming/
input\",\"fileName\":\"prod.csv.d
at\"},
{\"storagePrefix\":\"<subnamespac
e>/planning/incoming/config/
\",\"fileName\":\"RetailHomeConfi
g.json\"}]}"

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-6

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Response Details

Response 200:

{
 "filesDeleted": [{
 "filePath": {
 "storagePrefix":
"<subnamespace>/planning/
incoming/input",
 "fileName":
"prod.csv.dat"
 },
 "responseMessage": "File
successfully deleted
<subnamespace>/planning/incoming/
input/prod.csv.dat"
 },
 {
 "filePath": {
 "storagePrefix":
"<subnamespace>/planning/
incoming/config/",
 "fileName":
"RetailHomeConfig.json"
 },
 "responseMessage": "File
successfully deleted
<subnamespace>/planning/incoming/
config/RetailHomeConfig.json"
 }],
 "filesFailedDeletion": []
}

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-7

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Response Details

Move/
Rename
Files

/moveFiles [{
 currentPath:
{

"storagePrefix":
"string",
 "fileName":
"string"
 },
 newPath: {

"storagePrefix":
"string",
 "fileName":
"string"
 }
},
...]

Status: ok/
error per
file

This endpoint is used to move files
within Object Storage.

Data:

{
 "listOfFiles": [{
 "currentPath": {
 "storagePrefix":
"<subnamespace>/planning/
incoming/input2",
 "fileName":
"prod.csv.dat"
 },
 "newPath": {
 "storagePrefix":
"<subnamespace>/planning/
incoming/config1/",
 "fileName":
"prod.csv.dat"
 }
 }]
}

Command:

curl -X POST "<url>/<BucketName>/
movefiles" \
-H "accept: */*" -H "Accept-
Language: en" -H "Authorization:
Bearer <AccessToken>" -H
"Content-Type: application/json"
\
-d "{\"listOfFiles\":
[{\"currentPath\":
{\"storagePrefix\":\"<subnamespac
e>/planning/incoming/
input2\",\"fileName\":\"prod.csv.
dat\"},\"newPath\":
{\"storagePrefix\":\"<subnamespac
e>/planning/incoming/
config1/\",\"fileName\":\"prod.cs
v.dat\"}}]}"

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-8

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Response Details

Response:

{
 "failedMove": [],
 "successfulMove": [{
 "moveFile": {
 "currentPath": {
 "storagePrefix":
"<subnamespace>/planning/
incoming/input2",
 "fileName":
"prod.csv.dat"
 },
 "newPath": {
 "storagePrefix":
"<subnamespace>/planning/
incoming/config1/",
 "fileName":
"prod.csv.dat"
 }
 },
 "responseMessage":
"Successfully moved."
 }]
}

List storage
prefixes

/
listStorage
Prefixes

{

"storagePrefix":
"string",

"fileNameStartsWith"
: "optional_string"
}

Storage
prefix
name,
Size,
Number of
files

This endpoint is used to list Storage
Prefixes in Object Storage.

Allows customer to discover
consumption and storage prefix names.

curl -X GET "<url>/<BucketName>/
listprefixes" -H "accept:
application/json" -H "Accept-
Language: en" -H "Authorization:
Bearer <AccessToken>"

Response: 200

[
"<subnamespace>/planning/
incoming/config/",
"<subnamespace>/planning/
incoming/input"
]

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-9

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Response Details

List files
within a
storage
prefix

/listFiles {

"storagePrefix":
"optional_string"
}

storage
prefix
name, file
name,
size, md5
checksum,
created
date,
modified
date, scan
date, scan
status

This endpoint is used to find and list
files from Object Storage.

curl -X GET "<url>/<BucketName>/
listfiles?prefix=<subnamespace>/
planning/
incoming&contains=prod&sort=size:
asc" \
-H "accept: application/json" -H
"Accept-Language: en" -H
"Authorization: Bearer
<AccessToken>"

Response:

{
 "resultSet": [{
 "name": "<subnamespace>/
planning/incoming/config1/
prod.csv.dat",
 "size": 177023,
 "md5": "vlN/r8gbNyQ1EdsC+
+Hv1w==",
 "version": "ca60582d-
bacb-4309-bbbf-89d4a1aa2843",
 "etag":
"7d6dde3b-5b5b-430d-8494-78e09041
8946",
 "createdDate":
"2021-08-25T20:36:40Z",
 "modifiedDate":
"2021-08-25T20:36:40Z",
 "scanStatus": "Passed"
 }],
 "totalResults": 1,
 "limit": 0,
 "count": 1,
 "offset": 0,
 "hasMore": false
}

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-10

Table 3-1 (Cont.) API Endpoints

Action Endpoint Payload Response Details

Find file /
findFileByN
ame

{

"stringContains":
"string"
}

storage
prefix
name, file
name,
size, md5
checksum,
created
date,
modified
date, scan
date, scan
status

This endpoint is used to find and list
files from Object Storage.

curl -X GET "<url>/<BucketName>/
findFileByName?
prefix=<subnamespace>/planning/
incoming&contains=prod&sort=size:
asc" \
-H "accept: application/json" -H
"Accept-Language: en" -H
"Authorization: Bearer
<AccessToken>"

Response:

{
 "resultSet": [{
 "name": "<subnamespace>/
planning/incoming/config1/
prod.csv.dat",
 "size": 177023,
 "md5": "vlN/r8gbNyQ1EdsC+
+Hv1w==",
 "version": "ca60582d-
bacb-4309-bbbf-89d4a1aa2843",
 "etag":
"7d6dde3b-5b5b-430d-8494-78e09041
8946",
 "createdDate":
"2021-08-25T20:36:40Z",
 "modifiedDate":
"2021-08-25T20:36:40Z",
 "scanStatus": "Passed"
 }],
 "totalResults": 1,
 "limit": 0,
 "count": 1,
 "offset": 0,
 "hasMore": false
}

Liveness
test

/ping This endpoint allows customer to check
for service liveness.

curl -X GET "<url>/ping" -H
"accept: */*" -H "Accept-
Language: en" -H "Authorization:
Bearer <AccessToken>"

Response:

{
"appStatus": 200
}

Chapter 3
Accessing Endpoints to Manage Files in Object Storage

3-11

A
Appendix: Exit Codes

This appendix describes all non-success exit codes from the Batch Framework services and
batch administration tasks.

All EE batch scripts have consistent exit codes. Codes from 1 to 22 come from the BSA
framework (although only 6 and 13 are commonly used by EE batch and so are included in the
table below). Codes of 30 and above are from EE batch scripts themselves and are also listed
in Table A-1.

Table A-1 lists the common (non-success) exit codes from the EE batch scripts and the BSA
framework.

Table A-1 Common Exit Codes

Code Reason

6 too few args / missing arg

13 invalid application path

30 required environment variable is not set

31 batch config file is not found

32 selected batch config entry is not found in file

33 invalid or missing info in batch config file

34 unknown error detected in RPASCE utility log output

35 file/directory not found when moving or copying files

36 file/directory permission error when moving or copying files

37 measure load exceeded reject record limit.

Note that in a live OCI-provisioned environment, it is not expected that customers will see any
of these error codes except 31 through 33. These codes indicate issues in the customer-
provided batch config files.

Table A-2 lists additional exit codes from eebatch_exporthier.ksh, eebatch_exportmeas.ksh,
eebatch_loadhier.ksh, and eebatch_loadmeas.ksh, that result from the exit codes of the
underlying RPASCE binary utilities (exportHier, exportMeasure, loadHier and loadMeasure).
The exit codes from the binary utilities are reported by the EE Batch Framework as being 100
more than the raw utility results. This prevents overlap between the BSA/EE script result codes
and the RPASCE binary utility result codes. If loadHier itself returns an error code of 5, then the
EE batch framework will report the error as code 105.

Table A-2 Additional Exit Codes

Script Code Reason

Generic codes applied to all
scripts

103 Invalid application. Version mismatch.

104 Generic argument error of the underlying utility.

105 Generic exception occurred during main operation.

A-1

Table A-2 (Cont.) Additional Exit Codes

Script Code Reason

106 Lock exception or parallel sub-process error.

eebatch_calc.ksh 107 Expression parsing error.

eebatch_exportmeas.ksh 108 Error during export preparation.

109 Error during main execution.

110 Error during post operation. Possible during the
merging of local application files.

eebatch_loadhier.ksh 108 loadHier cannot add a new position to a partition
dimension (level). For example, no store has been
defined for the new position.

109 Calendar prepending error.

110 Input data contains conflicting information.

111 Metadata error. Corrupted internal data.

112 Unable to update the ITT table for the hierarchy that is
shared by PDS.

113 Data mover staging error.

114 Data mover merging error. Hierarchy update was
applied but measure data was not moved completely.
The user must fix the underlying issue and re-run the
operation to complete the hierarchy update.

115 NA handler error. Hierarchy update was applied but
measure data was not moved completely. The user
must fix the underlying issue and re-run the operation
to complete the hierarchy update.

116 Purge all failed.

117 Reindex is in progress. No operation was performed.

120 PDS repartitioning is in progress.

eebatch_loadmeas.ksh 98 Internal aggregation error

99 Internal aggregation error. Cannot load in CLR mode
because the measure does not have a clear
intersection. Unknown internal error.

It is not expected that customers will encounter any of the RPASCE exceptions, internal errors,
or C++ exceptions, which indicate corrupted data or a programming error.

Appendix A

A-2

	Contents
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Customer Support
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Implementation
	Required Skills
	Batch Framework
	Batch Processes Under the Control of the Implementer
	Batch Processes Not Under the Control of the Implementer
	POM Jobs and Batch Exec Service

	Batch Framework Service Catalog
	Batch Exec Service
	Load Measure (Fact) Data: measload
	Export Measure (Fact) Data: measexport
	Mace Calculation Service: calc
	Export Hierarchy: hierexport
	Load PDS Dimension: loaddimdata
	Load Alternate Rollup Date: altdimload
	Batch Control Entries Required to Execute Interfaces
	Wait for Trigger File: waittrigger
	Send a Trigger File: sendtrigger
	Extract Input Files from Archive: unpack
	Transform File Service
	Custom Function: ap_set_datr
	Convert Informal Positions to Formal: formalize
	Rename Positions in a Hierarchy: renamepositions
	Workspace Refresh by Template Name: refresh
	Workspace Rebuild by Template Name: rebuild
	Workspace Delete by Template Name: delete
	Run Segment Build Queue: autobuild
	Initialize Testing Environment: initrpac
	Execute Automated Tests: runrpac
	Sync Users From IDCS: idcssync
	Shared Build (optional)

	Configuration of interface.cfg
	Interface Mappings
	Syntax for Interface Mappings
	Example for Data Importer Interface
	Example for Data Exporter Interface
	Example for Hierarchy/Dimension (Level) Importer Interface
	Process for Uploading New interface.cfg File

	Automated Testing with RPAC
	Application Deploy
	Object Storage Upload Location
	config
	interface.cfg (optional)
	batch_control

	Bootstrap Environment
	OAT Parameters
	Config Name
	Partition Dim
	Batch Group
	Overwrite

	Application Build
	File Transfer Service Required Parameters

	2 In-Context Help
	Navigating to Help Topics on RPASCE
	Creating the Contextual Help Configuration File
	Using JSON in the Contextual Help Configuration File
	Structure of Contextual Help Configuration File
	Help Topic Building Block
	Key Naming Convention
	JSON Structure of Contextual Help Configuration File
	Editing the Contextual Help Configuration File

	Retrieve/Update InContext help JSON file:

	3 Uploading and Downloading Files
	Object Storage
	Accessing Endpoints to Manage Files in Object Storage

	A Appendix: Exit Codes

