
Oracle Utilities Analytics Warehouse
Developer’s Guide
Release 2.8.0.0
F50045-02

February 2022
(Revised May 2022)

Oracle Utilities Analytics Warehouse Developer’s Guide, Release 2.8.0.0

F50045-02

Copyright © 2017, 2022 Oracle and/or its affiliates.

https://docs.oracle.com/cd/E23003_01/html/en/cpyr.htm

Contents - i
Oracle Utilities Analytics Warehouse Developer’s Guide

Contents
Preface... i

Prerequisite Knowledge... ii
Related Documents .. ii
Conventions.. iii
Abbreviations ... iii
Documentation Accessibility ... iv
Documentation Roadmap .. iv

Chapter 1
Getting Started ... 1-1

Creating a Project .. 1-2
Creating a Model Folder ... 1-2
Using CM Metadata User Procedure.. 1-2

Chapter 2
User Extension Methods ... 2-1

Extending Dimensions ... 2-3
Fact Patterns... 2-3
Extending Facts ... 2-5
Using Custom User-Defined Dimensions (UDD)... 2-5
Custom Dimensions.. 2-6
Custom Facts.. 2-7

Chapter 3
Extending Replication ... 3-1

Adding Custom Tables for OUAF-Based Source Applications... 3-2
Adding Custom Tables for Oracle Utilities Network Management System .. 3-5
Enabling Replication ... 3-7
Creating Replicated Tables... 3-8
Executing Initial Sync ... 3-11
Verifying Model Setup .. 3-12

Chapter 4
Extending Star Schema.. 4-1

UDX Processing .. 4-2
Populating User-Defined Columns... 4-3

Creating CM Mappings .. 4-4
Creating CM Packages.. 4-6
Resetting Dimensions... 4-8
Configuring CM Scenarios... 4-9
Monitoring Job Execution ... 4-10
Validating Data Load.. 4-10

Populating User Defined Foreign Keys ... 4-11
Creating CM Views ... 4-11
Creating CM Mappings .. 4-12
Creating CM Packages.. 4-13
Configuring CM Scenarios... 4-13

Contents - ii
Oracle Utilities Analytics Warehouse Developer’s Guide

Star Schema .. 4-14
Custom Dimensions.. 4-15

Creating Dimension Table... 4-16
Importing Dimension into Model .. 4-18
Importing Replicated Table into Replication Model ... 4-20
Creating Replication Key View in Dimension Model ... 4-21
Creating Mapping for Key Views in Dimension Model ... 4-22
Creating Loading Views in Dimension Model ... 4-24
Creating Mapping for Loading Views.. 4-25
Creating Package for Loading Views ... 4-29
Creating Staging Table in the Dimension Model ... 4-29
Creating Mapping in Dimension Model .. 4-31
Creating Package in Dimension Model.. 4-34
Configuring Entities in Dimension Model.. 4-35
Configuring Jobs in Dimension Model.. 4-35
Monitoring Job Execution ... 4-36
Validating the Data Loaded... 4-36

Custom Facts.. 4-37
Creating Fact Tables ... 4-38
Importing Fact Tables into Model ... 4-38
Importing Replicated Tables into Fact Model.. 4-39
Creating Key Tables in Fact Model .. 4-41
Creating Mapping for Key Tables in Fact Model... 4-42
Creating Loading Views in Fact Model ... 4-46
Creating Mapping to Loading Views for Fact Model.. 4-47
Creating Aggregate Tables in Fact Model ... 4-50
Creating Mapping to Load Aggregate Tables in Fact Model ... 4-52
Creating Staging Tables in Fact Model .. 4-55
Creating Error Tables in Fact Model ... 4-56
Creating Mapping to Load Facts .. 4-58
Creating Packages in Fact Model.. 4-63
Configuring Entities in Fact Model.. 4-64
Specifying Dependencies in Fact Model.. 4-64
Configuring Jobs in Fact Model.. 4-66
Monitoring Job Executions ... 4-67

Custom Materialized Views.. 4-67
Creating Mapping for Materialized View... 4-67
Creating Packages for Materialized View .. 4-68
Configuring Entities for Materialized View .. 4-68
Specifying Dependencies for Materialized View .. 4-69
Configuring Jobs for Materialized View .. 4-69
Monitoring Job Execution ... 4-70

Chapter 5
Extending Analytics... 5-1

Modifying the RPD File ... 5-2
Customizing Answers ... 5-2
Customizing the Report Labels... 5-3

Creating New Analytics .. 5-3
Creating New Answers... 5-3
Adding New Labels .. 5-4
Customizing Hierarchy Levels .. 5-4

Chapter 6
Migrating Environments ... 6-1

Presentation Catalog ... 6-2
Repository .. 6-2

Contents - iii
Oracle Utilities Analytics Warehouse Developer’s Guide

Migrating ODI Components ... 6-3
CM Project ... 6-3
CM Models... 6-4
CM Metadata.. 6-4

Preface - i
Oracle Utilities Analytics Warehouse Developer’s Guide

Preface

Welcome to the Oracle Utilities Analytics Warehouse Developer’s Guide.

This guide focuses on how you can get started with configuring and administering Oracle
Utilities Analytics Warehouse (OUAW). It provides instructions to extend the product,
replication, and star schemas, so you can carry out an out-of-the-box implementation.

In the preface:

• Audience

• Prerequisite Knowledge

• Related Documents

• Conventions

• Abbreviations

• Documentation Accessibility

• Documentation Roadmap

Audience

Preface - ii
Oracle Utilities Analytics Warehouse Developer’s Guide

Audience
This guide is primarily for the developers extending the functionality of the product for
implementations based on their custom requirements. It does not teach Oracle Data
Integrator (ODI) or Oracle Analytics Server (OAS) fundamentals but expects the users to
be familiar with development using ODI and OAS.

The developers are expected to be proficient in the following technologies:

• Oracle Data Integrator

• Oracle Analytics Server

• Oracle GoldenGate

• Oracle Database

• Oracle WebLogic

Note: It is assumed that the developer is using a Unix environment for
executing the scripts and commands. A Windows machine can also be
used for these actions; however, “sh” scripts have to be replaced with
the corresponding “cmd” scripts.

Prerequisite Knowledge
Oracle Utilities Analytics Warehouse uses several technologies. It is assumed that you
have a working knowledge of the following to install and configure Oracle Utilities
Analytics Warehouse.

• Oracle Data Warehouse

• Oracle GoldenGate

• Oracle Data Integrator

• Oracle GoldenGate Monitor

• Oracle WebLogic Server

• Oracle Analytics Server

Related Documents
Refer to the Oracle Utilities Analytics Warehouse Installation and Configuration
Checklist for high-level steps to install and configure the Oracle Utilities Analytics
Warehouse product. Note that this checklist includes information for 2.7.0.2 and is
applicable for 2.8.0.0 also.

The following documentation is included in this release.

Installation, Administration, and Release Notes

• Oracle Utilities Analytics Warehouse Release Notes

• Oracle Utilities Analytics Warehouse Getting Started Guide

• Oracle Utilities Analytics Warehouse License Information User Manual

https://docs.oracle.com/en/database/oracle/oracle-database/18/dwhsg/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/18/dwhsg/index.html
http://docs.oracle.com/cd/E11882_01/server.112/e25554/toc.htm
https://docs.oracle.com/en/middleware/goldengate/core/19.1/index.html
https://docs.oracle.com/en/middleware/goldengate/core/19.1/index.html
https://docs.oracle.com/en/middleware/fusion-middleware/data-integrator/12.2.1.4/index.html
https://docs.oracle.com/en/middleware/fusion-middleware/data-integrator/12.2.1.4/index.html
https://docs.oracle.com/en/industries/utilities/analytics-visualization/oaw-install-config-checklist/Content/OAW_Install_and_Config_Checklist/Oracle_Utilities_Analytics_Warehouse_Home.htm
https://docs.oracle.com/en/industries/utilities/analytics-visualization/oaw-install-config-checklist/Content/OAW_Install_and_Config_Checklist/Oracle_Utilities_Analytics_Warehouse_Home.htm
http://docs.oracle.com/goldengate/1212/gg-winux/index.html
https://docs.oracle.com/goldengate/m12212/gg-monitor/index.html
https://docs.oracle.com/goldengate/m12212/gg-monitor/index.html
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/index.html
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/index.html
http://docs.oracle.com/middleware/1221/wls/index.html
http://docs.oracle.com/middleware/1221/wls/index.html
https://docs.oracle.com/middleware/12213/wls/index.html
https://www.oracle.com/in/business-analytics/analytics-server.html
https://www.oracle.com/in/business-analytics/analytics-server.html

Conventions

Preface - iii
Oracle Utilities Analytics Warehouse Developer’s Guide

• Oracle Utilities Analytics Warehouse Installation and Configuration Guide

• Oracle Utilities Analytics Warehouse Quick Install Guide

• Oracle Utilities Analytics Warehouse Developer’s Guide

Metric Reference Guides

Refer to the Oracle Utilities Analytics Warehouse documentation on Oracle Help Center
for details about the metric reference guides included in this release.

Data Mapping Guides

Refer to the Oracle Utilities Analytics Warehouse documentation on Oracle Help Center
for details about the data mapping guides included in this release.

Conventions
The following text conventions are used in this document:

Abbreviations
The following table lists the commonly used abbreviations used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms defined in
text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply particular
values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that appears
on the screen, or text that you enter.

Abbreviation Expanded Form

OUAW Oracle Utilities Analytics Warehouse

APEX Oracle Application Express

CC&B Oracle Utilities Customer Care and Billing

CDC Changed Data Capture

ELT Extraction, Loading and Transformation

ETL Extraction, Transformation and Loading

MDM Oracle Utilities Meter Data Management

MWM Oracle Utilities Mobile Workforce Management

NMS Oracle Utilities Network Management System

https://docs.oracle.com/en/industries/utilities/analytics/
https://docs.oracle.com/en/industries/utilities/analytics/

Documentation Accessibility

Preface - iv
Oracle Utilities Analytics Warehouse Developer’s Guide

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
more information, visit My Oracle Support or Oracle Accessibility Learning and Support
if you are hearing impaired.

Documentation Roadmap
This guide is organized based on the typical flow you need to follow during the Oracle
Utilities Analytics Warehouse implementation. Use the following documentation
roadmap to find the information that you need to implement Oracle Utilities Analytics
Warehouse.

• Getting Started: Find out what you need to begin customizing the product.

• Chapter 2: User Extension Methods: Gain a high-level understanding of the
characteristics and extensible attributes needed to customize and extend the
product.

• Chapter 3: Extending Replication: Understand the replication capabilities of the
product. This chapter discusses the replication of tables required for processing
and loading data into the data warehouse.

• Chapter 4: Extending Star Schema: Find out how a schema can be extended
using user-defined constructs, such as User Defined Fields (UDFs), User
Defined Measures (UDMs), User Defined Degenerate Dimensions
(UDDGENs), User Defined Foreign Keys (UDDFKs), and User Defined
Dimensions (UDDs).

• Chapter 5: Extending Analytics: Explains how to use Oracle Analytics Server to
extend the analytics in Oracle Utilities Analytics Warehouse.

• Chapter 6: Migrating Environments: Discusses about the environments needed
to carry out the implementation.

OAS Oracle Analytics Server

ODI Oracle Data Integrator

ODM Oracle Utilities Operational Device Management

OGG Oracle GoldenGate

OWB Oracle Warehouse Builder

WAM Oracle Utilities Work and Asset Management

OUAF Oracle Utilities Application Framework

Abbreviation Expanded Form

http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Getting Started 1 - 1
Oracle Utilities Analytics Warehouse Developer’s Guide

Chapter 1
Getting Started

Before beginning any product customization, create a custom project so that all the
customizations are isolated from the product components. Then, create the custom
objects under the custom project.

This chapter includes the following to proceed with customization:

• Object Naming Convention

• Creating a Project

• Creating a Model Folder

• Using CM Metadata User Procedure

Object Naming Convention

Getting Started 1 - 2
Oracle Utilities Analytics Warehouse Developer’s Guide

Object Naming Convention
All out-of-the-box objects are prefixed with ‘B1’ and should not be modified. It is
recommended to choose a two-character code to prefix the custom objects to avoid any
naming conflicts between the product components and the custom components.

Use ‘CM’ as a prefix for all objects that you create (CM references to Customer
Modification).

Creating a Project
Login to Oracle Data Integrator Studio to create a new project to maintain all custom
mappings, procedures, and packages.

The project should include the following folder structure to organize objects:

• Facts: To organize all fact mappings.

• Dimensions: To organize all dimension mappings.

• Replication: To organize all replication view mappings.

• Materialized Views: To organize all materialized view mappings.

Create these folders for each product. Avoid cross referencing across different folders.

For example: A mapping under the Dimensions folder should not refer to a mapping in
the Replication folder.

Creating a Model Folder
All custom model objects reside in a custom model folder. The structure of the model
folder is similar to that of a custom project. For more details, refer to Creating a Project.

Using CM Metadata User Procedure
Use the CM metadata user procedure to create new entries in the metadata tables. It helps
in migrating the same metadata to different environments. This procedure is used to
populate custom labels for the dashboards.

To execute the CM metadata procedure:

1. Create a CM_<PROD_FLG>_CREATE_METADATA procedure.

Replace <PROD_FLG> with the appropriate source application code. For example:
CCB, NMS, MDM, or MWM.

2. Add the appropriate data population scripts.

These should be written as merge statements, so the existing rows are skipped and
only new rows are added. In case the metadata requires corrections, use the update
clause of the merge statement.

Using CM Metadata User Procedure

Getting Started 1 - 3
Oracle Utilities Analytics Warehouse Developer’s Guide

All tasks within the procedure should have the logical schema set to “Metadata”. The
schema names should not be hard coded.

3. Create a CM_<PROD_FLG>_CREATE_METADATA package.

4. Add the procedure created in step 1 and then add the B1_CFG_METADATA
scenario.

B1_CFG_METADATA pulls additional metadata from the source based on the list
of tables to extend the replication.

5. After migrating the CM Project to a new environment, add the product instance.

6. Execute the CM_<PROD_FLG>_CREATE_METADATA custom procedure.

This job should be executed in the context of the product.

User Extension Methods 2 - 1
Oracle Utilities Analytics Warehouse Developer’s Guide

Chapter 2
User Extension Methods

Amongst other extensibility options, Oracle Utilities Analytics Warehouse supports
extending schemas. Some of the source systems are highly customizable and customers
can extend the edge applications to utilize additional attributes or functionalities that are
not in the out-of-the-box solution. This necessitates Oracle Utilities Analytics Warehouse
to be flexible and capable of handling additional attributes or other extensibility options.

To make sure this is possible, the star schemas have been created with the following
extensible attributes in the facts and dimensions.

• Dimension Patterns

• Extending Dimensions

• Fact Patterns

• Extending Facts

• Using Custom User-Defined Dimensions (UDD)

• Custom Dimensions

• Custom Facts

Dimension Patterns

User Extension Methods 2 - 2
Oracle Utilities Analytics Warehouse Developer’s Guide

Dimension Patterns
The following figure illustrates the stages of processing in a dimension and the
components utilized in developing a dimension load process.

The data load processes comprise of a package and one or more mapping. The package
uses B1_JOB_ID mandatory variable as an input. It is used to pass the current job
identifier.

The first mapping is usually a view where filters are applied based on the variables to
exclude data that does not fall into the specified range. It reduces the data processed in
one execution. The data from the view is first inserted into a staging table. The staging
table includes the following:

• Source natural key columns.

• Columns mapped to target or used for filters.

• Columns marked for user extension (for dimensions these are UDF codes and
description columns).

• Job identifier to segregate the data from multiple parallel executions of a data
load process.

The UDX table (refer to the UDX Processing section for more details about UDX
tables) is created only if the CM procedure has been configured for the entity. It includes
the following:

• Source natural key columns.

• Columns marked for user extension (for dimensions these are UDF codes and
description columns).

• Job identifier to segregate the data from multiple parallel executions of a data
load process.

The data is finally loaded into the target dimension.

Extending Dimensions

User Extension Methods 2 - 3
Oracle Utilities Analytics Warehouse Developer’s Guide

Extending Dimensions
The following figure illustrates the steps required to extend a dimension.

To extend a dimension create an Oracle Data Integrator mapping using the UDX table as
source and target along with other source tables. The CM mapping updates the user
defined fields (UDF?_CD and UDF?_DESCR) columns based on the input parameters
and natural key of the UDX table.

After writing the package using the CM mapping, configure it and enable the jobs (Refer
to the UDX Processing section in Chapter 4: Extending Star Schema). If data has already
been loaded, the user-defined fields are populated for incremental changes. To load the
data for all rows, reset the dimension using the reset scenario. Note that resetting a
dimension resets the dependent facts also.

Fact Patterns
The following figure illustrates the stages of processing in a fact and the components
utilized in developing a fact load process.

The data load processes comprise of a package and one or more mappings. The package
uses the following mandatory variables as input:

• B1_JOB_ID: Passes the current job identifier.

Fact Patterns

User Extension Methods 2 - 4
Oracle Utilities Analytics Warehouse Developer’s Guide

• B1_DEF_MISSING_KEY: Passes the -99th key value for late arriving
dimension.

• B1_DEF_NULL_KEY: Passes the 0th key value for non-existing dimension
value.

The first mapping is usually a view where filters are applied based on the variables to
exclude data that does not fall into the specified range. This reduces the data processed in
one execution.

The data from the view is first inserted into a staging table. The staging table includes the
following:

• Source natural key columns.

• Columns mapped to target or used for filters.

• Columns marked for user extension (these are UDDGEN, UDM and
UDD_KEY columns).

• Columns required for looking up the foreign keys to dimensions.

• Job identifier to segregate data from multiple parallel executions of a data load
process.

The UDX table (refer to the UDX Processing section for more details about UDX
tables) is created only if the CM procedure has been configured for the entity. This table
includes the following:

• Source natural key columns.

• Columns marked for user extension (these are UDDGEN, UDM and
UDD_KEY columns)

• Columns required for looking up the foreign keys to dimensions.

• Job identifier to segregate data from multiple parallel executions of a data load
process.

An additional step in the fact processing is the foreign key lookup for dimensions. There
are three types of dimensions:

• Base dimensions are populated out of the box.

• User-Defined Dimensions (UDDs) are additional dimensions for which a template
table is provided in the out-of-the-box product. Refer to the Using Custom User-
Defined Dimensions (UDD) section for information about user-defined
dimensions.

• Unknown dimensions are the objects where tables are not provided and custom
dimensions have to be created. There is a built-in lookup so that custom UDD
lookups do not require any code change.

The data is finally loaded into the target dimension.

Extending Facts

User Extension Methods 2 - 5
Oracle Utilities Analytics Warehouse Developer’s Guide

Extending Facts
The following figure illustrates the steps required to extend a fact.

The procedure to extend a fact is similar to that of extending a dimension, but includes
custom dimension lookup as well. Refer to the Extending Dimensions section for more
details.

Using Custom User-Defined Dimensions (UDD)
For a custom dimension lookup, customize the UDDX views first to refer to a custom
dimension as illustrated below.

SCD1
If a custom dimension lookup is required, the UDDX views have to be customized to
refer to a custom dimension.

Assuming that the custom dimension is of type 1, create the mapping as shown below to
override the UDDX view. In the given example, the custom SCD1 dimension is used to
link to the CF_FT fact’s UDD1_KEY column.

Custom Dimensions

User Extension Methods 2 - 6
Oracle Utilities Analytics Warehouse Developer’s Guide

SCD2
Assuming that the custom dimension is of type 2, create the mapping as shown below to
override the UDDX view. In the given example, the custom SCD2 dimension is used to
link to CF_FT fact’s UDD1_KEY column.

The lookup functions as designed and the out-of-the-box fact refers to a custom
dimension. Then, create an Oracle Data Integrator package with the ODI CM mapping.
The CM mapping updates the user-defined field columns based on the input parameters
and natural key of the UDX table.

Note: The dimensions consist of a minimum of ten UDF columns.
These columns are used to store additional information from the source
systems. For example: UDF1_CD, UDF2_CD, UDF1_DESCR,
UDF2_DESCR, etc.

After writing the CM package, configure it and enable the jobs (Refer to the UDX
Processing section in Chapter 4: Extending Star Schema). If data has already been loaded,
user-defined fields are populated for incremental changes. To load the data for all rows,
reset the fact using the reset scenario.

Custom Dimensions
The following diagram shows the pattern to be used while developing the Oracle Data
Integrator components for a custom dimension. It is similar to the out-of-the-box
pattern with the user extension component excluded.

Custom Facts

User Extension Methods 2 - 7
Oracle Utilities Analytics Warehouse Developer’s Guide

Create the table and a sequence in the database. The dimension table should have a
surrogate primary key and a unique key which includes the data source indicator and a
column from the source.

Custom Facts
The following diagram shows the pattern to be used while developing the ODI
components for a custom dimension. It is similar to the out of the box pattern with the
user extension component excluded.

Extending Replication 3 - 1
Oracle Utilities Analytics Warehouse Developer’s Guide

Chapter 3
Extending Replication

Oracle Utilities Analytics Warehouse allows to extend the capabilities of the product. The
out-of-the-box solution enables replication of several tables required for processing and
loading data into the data warehouse.

However, the implementer's requirements may vary and additional information might be
needed in facts and dimensions that are not included in the out-of-the-box solution.
Some of these extension requirements may be met by using the tables that are already
being replicated out of the box. For others, additional tables may need to be included in
the replication process.

This chapter covers the following:

• Including Tables

• Adding Custom Tables for OUAF-Based Source Applications

• Adding Custom Tables for Oracle Utilities Network Management System

• Enabling Replication

• Creating Replicated Tables

• Executing Initial Sync

• Verifying Model Setup

Including Tables

Extending Replication 3 - 2
Oracle Utilities Analytics Warehouse Developer’s Guide

Including Tables
The figure below illustrates the steps required to include a table for replication that is
currently not set up for replication.

To configure the replication:

1. Login to the Administration user interface.

2. Navigate to Source Table configuration and identify the table to be replicated.

3. Set the CM Replication flag to “Yes”.

4. Set up Oracle GoldenGate and complete the initial synchronization.

Adding Custom Tables for OUAF-Based Source
Applications

Most of the tables related to tables used for populating the out-of-the-box star schemas
are listed in the metadata configuration “Source Tables”. It is possible that the table
required to be extended is not listed.

To include the table to be extended in the source tables list:

1. Create a procedure CM_<PROD_FLG>_CREATE_METADATA. Replace
<PROD_FLG> with the appropriate edge product code.

For example: CCB/NMS/MDM/MWM/WAM

2. Create a new task for each metadata entry into B1_OBJECT_MAP. The tasks
within the procedure should have the logical schema set to “Metadata”.

B1_OBJECT_MAP requires two entries - one entry mapping the MO to a custom
view and the second entry mapping the custom view to the target custom fact or
dimension.

Step 3 creates the first entry and step 4 creates the second entry.

3. Add an entry in B1_OBJECT_MAP setting SOURCE_OBJECT_NAME as the
MO name and TARGET_OBJECT_NAME as the target fact or dimension, which
has attributes loaded from this table.

These should be written as merge statements so that the existing rows are skipped
and only new rows are added. If metadata requires corrections, use the update clause
of the merge statement. The schema names should not be hardcoded.

Adding Custom Tables for OUAF-Based Source Applications

Extending Replication 3 - 3
Oracle Utilities Analytics Warehouse Developer’s Guide

For example: The following merge statement sets the tables under a maintenance
object in Oracle Utilities Customer Care and Billing for inclusion in the replication
process.

• Source Product Flag is the product flag of the source. In this example, it is
'CCB' for Oracle Utilities Customer Care and Billing.

• Source Object Name is the source maintenance object. In this example, the
tables are included under the Budget Review maintenance object. It is specified
as 'BUD REVIEW' which is the maintenance object code for Budget Review in
Oracle Utilities Customer Care and Billing.

• Target Object Name is the ETL view that uses the tables of this maintenance
object. In this example, CM_TEST_VW is specified as dummy value.

• Object Type Flag is the type of object to be replicated. In this example,
replicating the entire Budget Review MO is specified; hence 'MO' has been
specified.

merge
 into b1_object_map tgt
using (select 'CCB' prod_flg
 , 'BUD REVIEW' source_object_name
 , 'CM_TEST_VW' target_object_name
 , 1 seq
 , 'MO' object_type_flg
 from dual) tgt_val
 on (tgt.prod_flg = tgt_val.prod_flg
 and tgt.source_object_name = tgt_val.source_object_name
 and tgt.target_object_name = tgt_val.target_object_name
 and tgt.seq = tgt_val.seq)
when not matched
then insert
 (
 tgt.object_map_id
 , tgt.prod_flg
 , tgt.source_object_name
 , tgt.target_object_name
 , tgt.seq
 , tgt.object_type_flg
 , tgt.char_entity_flg
 , tgt.upd_dttm
 , tgt.upd_user
 , tgt.owner_flg
)
 values
 (
 b1_object_map_seq.nextval
 , tgt_val.prod_flg
 , tgt_val.source_object_name
 , tgt_val.target_object_name
 , tgt_val.seq
 , tgt_val.object_type_flg
 , null
 , sysdate
 , sys_context('userenv', 'os_user')
 ,'B1');

4. Run the following Insert statement to specify that CM_TEST_VW ETL view
populates the target CM_F_FT.

Adding Custom Tables for OUAF-Based Source Applications

Extending Replication 3 - 4
Oracle Utilities Analytics Warehouse Developer’s Guide

merge
 into b1_object_map tgt
using (select 'CCB' prod_flg
 , 'CM_TEST_VW' source_object_name
 , 'CM_F_FT' target_object_name
 , 1 seq
 , 'PRVW' object_type_flg
 from dual) tgt_val
 on (tgt.prod_flg = tgt_val.prod_flg
 and tgt.source_object_name = tgt_val.source_object_name
 and tgt.target_object_name = tgt_val.target_object_name
 and tgt.seq = tgt_val.seq)
when not matched
then insert
 (
 tgt.object_map_id
 , tgt.prod_flg
 , tgt.source_object_name
 , tgt.target_object_name
 , tgt.seq
 , tgt.object_type_flg
 , tgt.char_entity_flg
 , tgt.upd_dttm
 , tgt.upd_user
 , tgt.owner_flg
)
 values
 (
 b1_object_map_seq.nextval
 , tgt_val.prod_flg
 , tgt_val.source_object_name
 , tgt_val.target_object_name
 , tgt_val.seq
 , tgt_val.object_type_flg
 , null
 , sysdate
 , sys_context('userenv', 'os_user')
 ,'B1');

5. Create the CM_<PROD_FLG>_CREATE_METADATA package.

a. Add the procedure created in step 1.

b. Add the B1_CFG_METADATA scenario and then add the
B1_CFG_INSTANCE_JOBS scenario.

c. After migrating the CM Project to a new environment, execute the custom
procedure CM_<PROD_FLG>_CREATE_METADATA after adding the
product instance.

This job should be executed in the context for the product.

Executing this package in the appropriate context ensures that the required tables are
present in the metadata configuration tables. For instructions, refer to the Enabling
Replication section.

These instructions are applicable to all source applications except Oracle Utilities
Network Management System, which does not use Oracle Utilities Application
Framework (OUAF).

Note: For more details, refer to the Mapped Objects section in Oracle
Utilities Analytics Warehouse Installation and Configuration Guide.

Adding Custom Tables for Oracle Utilities Network Management System

Extending Replication 3 - 5
Oracle Utilities Analytics Warehouse Developer’s Guide

Adding Custom Tables for Oracle Utilities Network
Management System

Most of the tables related to tables used for populating the out-of-the-box star schemas
are listed in the metadata configuration “Source Tables”. It is possible that the table
required to be extended is not listed.

To include the table to be extended in the source tables list:

1. Create the CM_NMS_CREATE_METADATA procedure.

2. Create a new task for each metadata entry into B1_OBJECT_MAP. The tasks
within the procedure should have the logical schema set to “Metadata”.

3. Add an entry in B1_OBJECT_MAP setting SOURCE_OBJECT_NAME as the
table name and TARGET_OBJECT_NAME as the target fact or dimension,
which has attributes loaded from this table.

These should be written as merge statements so that existing rows are skipped and
only new rows are added. If the metadata requires corrections, use the update clause
of the merge statement. The schema names should not be hardcoded.

For example: The following merge statement sets the tables under a maintenance
object in Oracle Utilities Customer Care and Billing for inclusion in the replication
process.

• Source Product Flag is the product flag of the source. In this example, it is 'NMS'
for Oracle Utilities Network Management System.

• Source Object Name is the source table. In this example, the table ‘CM_XYZ’ is
included.

• Target Object Name is the ETL view that uses the tables of this maintenance
object. In this example, CM_TEST_VW is specified as dummy value.

• Object Type Flag is the type of object that is being replicated. In this example,
the replication table is specified as 'TBL'.

merge
 into b1_object_map tgt
using (select 'NMS' prod_flg
 , 'CM_XYZ' source_object_name
 , 'CM_TEST_VW' target_object_name
 , 1 seq
 , 'TBL' object_type_flg
 from dual) tgt_val
 on (tgt.prod_flg = tgt_val.prod_flg
 and tgt.source_object_name = tgt_val.source_object_name
 and tgt.target_object_name = tgt_val.target_object_name
 and tgt.seq = tgt_val.seq)
when not matched
then insert
 (
 tgt.object_map_id
 , tgt.prod_flg
 , tgt.source_object_name
 , tgt.target_object_name
 , tgt.seq
 , tgt.object_type_flg
 , tgt.char_entity_flg
 , tgt.upd_dttm

Adding Custom Tables for Oracle Utilities Network Management System

Extending Replication 3 - 6
Oracle Utilities Analytics Warehouse Developer’s Guide

 , tgt.upd_user
 , tgt.owner_flg
)
 values
 (
 b1_object_map_seq.nextval
 , tgt_val.prod_flg
 , tgt_val.source_object_name
 , tgt_val.target_object_name
 , tgt_val.seq
 , tgt_val.object_type_flg
 , null
 , sysdate
 , sys_context('userenv', 'os_user')
 ,'B1');

4. Execute the following Insert statement to specify that the ETL view
CM_TEST_VW populates the target CM_F_ZZZ. The Source Product Flag is
‘NMS’.
merge
 into b1_object_map tgt
using (select 'NMS' prod_flg
 , 'CM_TEST_VW' source_object_name
 , 'CM_F_ZZZ' target_object_name
 , 1 seq
 , 'PRVW' object_type_flg
 from dual) tgt_val
 on (tgt.prod_flg = tgt_val.prod_flg
 and tgt.source_object_name = tgt_val.source_object_name
 and tgt.target_object_name = tgt_val.target_object_name
 and tgt.seq = tgt_val.seq)
when not matched
then insert
 (
 tgt.object_map_id
 , tgt.prod_flg
 , tgt.source_object_name
 , tgt.target_object_name
 , tgt.seq
 , tgt.object_type_flg
 , tgt.char_entity_flg
 , tgt.upd_dttm
 , tgt.upd_user
 , tgt.owner_flg
)
 values
 (
 b1_object_map_seq.nextval
 , tgt_val.prod_flg
 , tgt_val.source_object_name
 , tgt_val.target_object_name
 , tgt_val.seq
 , tgt_val.object_type_flg
 , null
 , sysdate
 , sys_context('userenv', 'os_user')
 ,'B1');

5. Create the CM_NMS_CREATE_METADATA package.

a. Add the procedure created in the steps mentioned above.

Enabling Replication

Extending Replication 3 - 7
Oracle Utilities Analytics Warehouse Developer’s Guide

b. Add the B1_CFG_METADATA scenario.

c. Add the B1_CFG_INSTANCE_JOBS scenario.

d. After migrating the CM Project to new environment, execute the package after
adding the product instance.

This job should be executed in the context for the product.

Executing the created package in the appropriate context ensures that the required tables
are present in the metadata configuration tables. For instructions, refer to the Enabling
Replication section.

Enabling Replication
This section describes an example that guides you through the steps to extend the
replication.

Important! The screens used in this section are taken from Oracle
Utilities Customer Care and Billing and the CI_ACCT_CHAR table is
used for illustration only. The application and tables to be configured
differ in the implementation. Ensure that the values are appropriately
modified before performing this exercise.

The following conventions are used in the procedure:

• >> “{Product}” - Used to denote the product code.

For example: Oracle Utilities Customer Care and Billing, Oracle Utilities
Network Management System, Oracle Utilities Work and Asset Management,
Oracle Utilities Meter Data Management, or Oracle Utilities Mobile Workforce
Management

• >> “{Table}” - Specify the table name.

• >> “{Context}” - Specify the context.

To enable CM replication:

1. Open the Oracle Utilities Administration user interface in a browser.

2. Navigate to ETL Configuration > Source Tables. Filter by CI_ACCT_CHAR
and click Go.

3. On the Source Table page, click the edit icon and edit the record.

Creating Replicated Tables

Extending Replication 3 - 8
Oracle Utilities Analytics Warehouse Developer’s Guide

4. On the Maintain Source Table page, select Yes from the Custom Replication
drop-down list.

5. Click Save to save the changes.

Creating Replicated Tables
With the configuration changes complete, the next step is to replicate the table by
creating it in the replication schema.

To create a replica table in the replication schema:

1. On the Configuration Type page, select Upgrade Source and click Next.

The Source Product page shows all the registered source contexts.

2. Select the required source product from the Source Product list and click Next.

The Source Details page shows the previously configured values for the selected
source.

3. Modify the values s required and click Next.

The table below provides a brief description of the fields on this page:

Field Name Description Value

DB Host Source database host name

DB Port Source database port Default port is 1521

DB Service Name Source database service name

Creating Replicated Tables

Extending Replication 3 - 9
Oracle Utilities Analytics Warehouse Developer’s Guide

Important! While upgrading a source registered using Oracle Utilities
Analytics versions prior to 2.7.0, values for the database schema name
and drillback URL do not appear by default. These parameters must be
entered to proceed with the upgrade of the source.

The GoldenGate Details page shows values for the selected source that were configured
previously.

4. Modify the values where required and click Next.

The table below provides a brief description of the fields on this page.

DB Home Path Source database home installed location.

If Oracle GoldenGate for source is not
installed on the source database server,
provide the Oracle client home location on
the server on which Oracle GoldenGate is
installed.

Drill Back URL Drill back URL for the source database

DB Schema Name Source schema name

Extract Start Date
(YYYYMMDD)

Date from which data should be extracted
from the source

Socks Proxy Socks proxy host and port separated by a ‘:’ Provide the value only if
a socks proxy has been
setup. Else, leave the
field blank.

Field Name Description Value

Host Source GoldenGate server host

Home Path Oracle GoldenGate installed location on
the source database server

Example:
opt/local/ggs_home

Source Database
Home

Source database home installed location

Manager Port Port number on which Oracle GoldenGate
Manager is running on the Oracle
GoldenGate host.

Default dynamic min
port is 7830.

Default dynamic max
port is 7880.

Encryption
Algorithm

Algorithm configured in Oracle
GoldenGate on the source server

AES128

Field Name Description Value

Creating Replicated Tables

Extending Replication 3 - 10
Oracle Utilities Analytics Warehouse Developer’s Guide

Important: While upgrading a source registered using Oracle Utilities
Analytics versions prior to 2.7.0, parameter values for Oracle
GoldenGate Owner User and Oracle GoldenGate Owner Password are
not populated by default. These parameters must be re-entered to
proceed with upgrade of the source.

5. On the Source JAgent Details page, enter the following details in the respective
fields. Click Next.

Encrypt Key Encrypt Key configured in Oracle
GoldenGate on the source server

Provide encryptkey
created while setting up
GoldenGate on source
database server.

For details, refer to the
Setting up Oracle
GoldenGate on the
Source Database
Server section in the
Oracle Utilities Analytics
Warehouse Installation
and Configuration Guide.

Shared Secret Shared secret key configured in Oracle
GoldenGate on the source server

For instructions to get
this value, refer to the
Generating the Shared
Secret Password
section in the Oracle
Utilities Analytics
Warehouse Installation
and Configuration Guide.

GoldenGate
Owner User

User name of GoldenGate Owner user

GoldenGate
Owner Password

Password of GoldenGate Owner user

Field Name Description Value

JAgent Host Host of Oracle GoldenGate JAgent

JAgent
GoldenGate

Oracle GoldenGate installed location
where GoldenGate JAgent is running

Example:
/opt/local/ggs_12.1.2.1.0

JAgent Port Port number on which Oracle GoldenGate
JAgent is running on the GoldenGate host

JAgent User JAgent user name

JAgent Wallet
Password

JAgent Wallet password

Confirm JAgent
Wallet Password

Re-enter JAgent Wallet password to
confirm

Field Name Description Value

Executing Initial Sync

Extending Replication 3 - 11
Oracle Utilities Analytics Warehouse Developer’s Guide

6. On the Configuration Summary page, the log file location details are displayed.
Click Configure.

The Configuration Progress page shows the status of the configuration.

7. Click Next.

The Completion Summary page shows the log file location details.

8. Click Finish.

Upon completion, the status of source registration is shown in a prompt. The
detailed logs of the operation are available in the logs/system/deployodi.log file on
the Oracle Utilities Analytics Home page.

9. Login to SQL Developer and run the following query to verify that the table has
been replicated, but there is no data in the table.
select *
 from ccb1rep.ci_acct_char;

Executing Initial Sync
After the source is configured, the replication schema needs to be loaded with the current
data from the source. This is done in the initial sync process. It is triggered by executing
the B1_SYNC_CONTEXT ODI scenario.

The B1_SYNC_CONTEXT scenario can be triggered in the following ways:

• Using ODI Studio

• Using ODI Console Web Application

Using ODI Studio
To execute B1_SYNC_CONETXT using the ODI Studio:

1. Login to the ODI Studio.

2. On the Designer tab navigate to the Load plans and Scenario folder.

3. Expand the Framework folder.

4. Right-click B1_SYNC_CONTEXT Version 001 and click Run.

5. In the Run window, select appropriate values for Context and Logical Agent
respectively. Example: Select ‘CCB7’ as the Context and ‘WLS Agent’ as the Logical
Agent.

Verifying Model Setup

Extending Replication 3 - 12
Oracle Utilities Analytics Warehouse Developer’s Guide

6. Click OK to save the values.

Using ODI Console Web Application
To run B1_SYNC_CONTEXT using the ODI console web application:

1. Login to ODI console.

The ODI console is deployed when the WebLogic agent for ODI is created. The
URL format is as below:

http://<Weblogic Host>:<Managed Server port>/odiconsole

2. Login to the Work repository using the ‘SUPERVISOR’ credential.

3. In the browser, navigate to Runtime > Scenario/Load Plan > Folders > Framework.

4. Right-click B1_SYNC_CONTEXT - 001 and click Execute.

The B1_SYNC_CONTEXT scenario is executed.

Verifying Model Setup
After the initial sync process is complete:

1. Verify that the model is set up.

select *
 from mdadm.b1_checkpoint
 where group_name = 'CCB1AE';

If the record does not exist, it indicates that the Oracle GoldenGate scripts for
CCB1AE model were not deployed.

2. Verify that the table data is in sync.
select *
 from mdadm.b1_table_sync
 where model_cd = 'CCB1AE';

select *
 from ccb1rep.ci_acct_char;

If there is no entry it indicates that the B1_SYNC_CONTEXT scenario was not
executed. Or, if it was executed, the Oracle GoldenGate scripts were not deployed at
that time.

Important:

• Enable all the replication tables required for customization and follow the steps
mentioned in the sections Creating Replicated Tables and Executing Initial Sync.

• Ensure that each model does not include more than 100 tables.

Extending Star Schema 4 - 1
Oracle Utilities Analytics Warehouse Developer’s Guide

Chapter 4
Extending Star Schema

The data warehouse schema in Oracle Utilities Analytics Warehouse covers a wide range
of reporting requirements. Often additional data elements are required to meet site-
specific requirements. Oracle Utilities Analytics Warehouse allows such extensions to the
schema through the user-defined constructs, such as User Defined Fields, User Defined
Measures, User Defined Degenerate Dimensions, User Defined Foreign Keys, and User
Defined Dimensions. Using these constructs, the star schemas delivered along with the
product can be extended.

This chapter includes the following:

• User Extensible Columns

• UDX Processing

• Populating User-Defined Columns

• Populating User Defined Foreign Keys

• Star Schema

• Custom Dimensions

• Custom Facts

• Custom Materialized Views

User Extensible Columns

Extending Star Schema 4 - 2
Oracle Utilities Analytics Warehouse Developer’s Guide

User Extensible Columns
Predefined facts and dimensions are provided with a set of user extensible columns that
are used to extend the existing entities. These columns include the following:

• User Defined Field: Resides on the dimension tables in the star schemas. In
general, all the dimensions consist of a minimum of ten UDF columns. These
columns can be utilized to store additional information from the source systems.

• User Defined Measure: Supports the storage of implementation-specific
measures that are not provided in the out-of-the-box facts.

• User Defined Degenerate Dimension: Reside directly on the fact. They store
the dimension attributes that do not fit into a particular dimension, but are
required for analytical purposes.

• User Defined Foreign Key Dimensions: Empty foreign key attributes not
associated with the out-of-the-box dimensions. They allow you to reuse an
existing dimension or to create a custom dimension and build a reference in the
fact.

• User Defined Dimension: Empty dimensions that are delivered along with the
star schemas in Oracle Utilities Analytics Warehouse.

In addition to utilizing these extensible columns, you can create custom facts and
dimensions to achieve their additional analytic requirements.

UDX Processing
In Oracle Utilities Analytics Warehouse, extending the out-of-the-box dimensions and
facts relies on a configurable package with a predefined signature. All entities are set up
with a functionality that executes the custom package, if configured.

The following figure illustrates the processing logic when the user exit procedure is
executed.

Populating User-Defined Columns

Extending Star Schema 4 - 3
Oracle Utilities Analytics Warehouse Developer’s Guide

All mappings process data using staging tables. The steps in the process are listed as
below:

1. The staging table is loaded using a source view.

2. After the staging table is loaded, configurations are looked up.

If the CM package scenario is configured for the job, a UDX table is created. The
UDX table contains a natural key and all user extensible columns. The table acts as a
template. Update the UDX columns based on the natural key columns and the input
parameters.

3. After the CM package scenario is executed successfully, the data is copied back into
the staging table.

If the entity being extended is a fact, then user-defined foreign keys are referenced
again.

4. The final data is loaded into the target entity.

Note that the process is simplified and reduced to only creating a CM package scenario
and configuring it.

Populating User-Defined Columns
The functionality of the dimensions and facts can be extended using user defined
columns. ODI-based mapping and package are created to extend the columns, where
ODI is used to define the custom package.

Use ODI to create the package for the following reasons:

• Schema names need not be hardcoded.

• Easier to deploy (execute in the appropriate context).

• Easy to deploy for multiple instances of the same source system.

Creating CM Mappings

Extending Star Schema 4 - 4
Oracle Utilities Analytics Warehouse Developer’s Guide

This section includes the following:

• Creating CM Mappings

• Creating CM Packages

• Resetting Dimensions

• Configuring CM Scenarios

• Monitoring Job Execution

• Validating Data Load

Creating CM Mappings
This section describes the process of extending the CD_ACCT dimension using sample
data.

Note: For this example, assume ‘CCB1’ to be the context defined for
Oracle Utilities Customer Care and Billing source attached to Oracle
Utilities Analytics Warehouse.

To create a CM procedure:

1. Login to the Oracle Data Integrator client.

2. On the Designer tab, navigate to Projects > User Customizations >
<product_name> > Dimensions > Mapping.

In this example, ‘CCB’ is the product.

3. Right-click Mapping and select New Mapping from the menu.

4. In the New Mapping window, enter the name of UDX in the Name field.

For example: CM_CD_ACCT_UDX

Creating CM Mappings

Extending Star Schema 4 - 5
Oracle Utilities Analytics Warehouse Developer’s Guide

5. Unselect the Create Empty Dataset checkbox.

A new mapping “CM_CD_ACCT_UDX” is created.

6. Click the Logical tab to view the table structure.

7. From the Models section, drag and drop the UDX and replication tables in the
designer pane.

8. Join the UDX and replication table.

Creating CM Packages

Extending Star Schema 4 - 6
Oracle Utilities Analytics Warehouse Developer’s Guide

9. Drag and drop the UDX_CD_ACCT target data store.

Select UDX as the target table, and then select the appropriate key on the UDX table
as defined in the CD_ACCT dimension. The logic to populate UDX should be taken
care in the mapping accordingly.

10. On the Physical tab, select the optimization context.

11. Select the target table (UDX_CD_ACCT) and select IKM BI Direct Load from the
Integration Knowledge Module drop-down list.

12. On the Options tab, set DML_OPERATION to UPDATE instead of MERGE.

13. Unselect the CREATE_TARG_TABLE option since the UDX table is already
created.

The custom mapping is successfully created. A custom package can be created using this
mapping.

Creating CM Packages
To create a custom package for the existing custom mapping:

1. Login to the Oracle Data Integrator client.

2. Navigate to Designer > User Customizations > <product_name> > Dimension >
Packages.

Creating CM Packages

Extending Star Schema 4 - 7
Oracle Utilities Analytics Warehouse Developer’s Guide

In this example, ‘CCB’ is the product name.

3. Right-click Packages and select New Package from the menu.

4. In the Package Editor window, enter the name of UDX in the Name field

For example: B1_PKG_CM_CD_ACCT_UDX

Important! Note that “B1” in the UDX name is taken as an example. Ensure the
package name does not start with “B1”.

5. Click the Diagram tab at the bottom of the editor.

6. From the Global Objects section, drag and drop the ‘B1_JOB_ID’ variable into the
editor.

7. Change ‘B1_JOB_ID’ to declare the variable.

8. Drag and drop the CM mapping (existing mapping) into the editor and connect them
in sequence.

9. Click Save and close the package editor window.

10. Navigate to the Packages folder and expand it.

The new package is shown.

11. Right-click the package and select Generate Scenario.

12. Enter the scenario name and click OK.

Resetting Dimensions

Extending Star Schema 4 - 8
Oracle Utilities Analytics Warehouse Developer’s Guide

13. Select the startup variables and click OK.

14. In the Projects section, navigate to User Customizations > CCB > Dimensions
> Packages.

15. Expand the package created.

The scenario object created is shown.

Resetting Dimensions
Since the dimension is already loaded, reset it to the empty state before reloading it with
customization in place.

To reset the dimensions:

1. Login to the Oracle Data Integrator client.

2. On the Designer tab, navigate to Load Plans and Scenarios > Framework >
B1_RESET_ENTITY.

3. Right-click B1_RESET_ENTITY and select Execute.

4. On the Execution window, select CCB4 as the Context and then click OK.

Configuring CM Scenarios

Extending Star Schema 4 - 9
Oracle Utilities Analytics Warehouse Developer’s Guide

5. On the Variable values window, enter ‘CD_ACCT’ as the entity name. Click OK.

6. Navigate to Oracle Utilities Analytics Warehouse Administration to verify that the
entity has been disabled.

7. Connect to SQL Developer and query the dimension to verify that all rows except
the default 0 and -99 records have been deleted.

8. Click Save to save the configuration changes.

Configuring CM Scenarios
After resetting the dimension, configure the user extension procedure. Below are the
steps to configure Account (CD_ACCT) dimension.

To configure the user extension procedure for the account dimension:

1. Login to Oracle Utilities Analytics Warehouse Administration.

2. On the ETL Configuration tab, click Job Configuration.

3. Enter CD_ACCT and click Go to filter the data.

4. Click the edit icon to edit the details for the product instance for which the UDX has
to be populated. There are different jobs for the same entity for different product
instances.

5. On the Maintain Job Configuration page, enter the Custom Package Name
(example: B1_PKG_CM_CD_ACCT_UDX) in the User Exit Procedure field.

6. Ensure Active Flag is set to 'Yes'.

7. Click Save to save the configuration changes.

Monitoring Job Execution

Extending Star Schema 4 - 10
Oracle Utilities Analytics Warehouse Developer’s Guide

Monitoring Job Execution
Now that the job is configured for customization and activated, monitor the job
execution using the Administration user interface or using SQL Developer.

To monitor the job execution from the Administration user interface:

1. Login to Oracle Utilities Analytics Warehouse Administration.

2. On the ETL Job Execution tab, enter “CD_ACCT” and click Go to filter the data.

To see the latest execution, sort by the session end date.

Alternatively, use SQL Developer to monitor the job execution:

1. Connect to the target database using SQL Developer.

2. Monitor the job executions for the account dimension using the below query:
select *
 from mdadm.b1_jobs_vw
 where entity_name = 'CD_ACCT';

Validating Data Load
To validate the data load into customized columns:

Note: The queries below are based on the illustrated example. They
need to be modified as per the logic used in the UDX

1. Identify the rows in which ‘udf10_cd’ and ‘udf10_descr’ columns are populated. Run
the below query:

select src_acct_id
 , udf10_cd
 , udf10_descr
 from dwadm.CD_ACCT
 where acct_key not in (0,-99)
 and udf10_cd is not null;

2. Compare the data in the dimension with the data in the base table ‘ci_acct_char’. Run
the below query:
select acct_id
 , char_val
 , srch_char_val
 from ccb1rep.ci_acct_char
 where char_type_cd = 'CI_VATCA' ;

Populating User Defined Foreign Keys

Extending Star Schema 4 - 11
Oracle Utilities Analytics Warehouse Developer’s Guide

Populating User Defined Foreign Keys
This section describes the steps to extend out-of-the-box facts with custom dimension.
Create the custom dimension and load it. Customize the fact load to use the custom
dimension and populate the custom dimension key.

Important! Before performing these tasks, complete the steps
mentioned in the Custom Dimensions section.

The section includes the following:

• Creating CM Views

• Creating CM Mappings

• Creating CM Packages

• Configuring CM Scenarios

Creating CM Views
To create a mapping used to wrap the existing custom dimension:

1. In the Oracle Data Integrator client, navigate to the Customization project.

2. Right-click Mappings and click New Mapping.

3. Enter “CM_D_ARREARS_UDDX1_VW” in the Name field.

“CM_D_ARREARS_UDDX1_VW” is taken as example. Replace it with the custom
name.

4. Enter “Override out of the box UDDX1 view for arrears fact” in Description.

5. Click the Mapping tab at the bottom of the page to go to the Edit Mapping page.

6. On the left pane, navigate to Models > Customizations > UDX Dimension.

7. Select and drag the CM_D_ARREARS_UDDX1 custom dimension into the
Logical Tab section.

8. In Property Inspector window, modify the Name to ‘UDDX1’.

9. On the left pane, navigate to Models > Oracle Utilities BI > {Product Flag} >
Dimensions.

The naming convention of the UDDX view is B1_D_<FACT
NAME>_UDDX1_VW to populate the UDD1_KEY of the fact.

10. Select the View, Drag, and Drop in the Logical tab section.

For example: If the fact name is CF_ARREARS, to populate UDD1_KEY, the view
name would be B1_D_ARREARS_UDDX1_VW. To populate UDD2_KEY, the
view name would be B1_D_ARREARS_UDDX2_VW.

11. Map the Target columns with Custom dimension.

Note for Type I dimensions! Use 01-Jan-1900 as EFF_START_DTTM and 01-
Jan-4000 as EFF_END_DTTM.

12. Navigate to Physical tab.

13. Click the target table.

Creating CM Mappings

Extending Star Schema 4 - 12
Oracle Utilities Analytics Warehouse Developer’s Guide

14. In Properties Inspector in Integration Knowledge Module, select “IKM BI View
Generation” from the IKM Selector drop-down list. Do not modify the remaining
fields.

15. Click Save to save the changes.

16. Execute the mapping and go to the Operator to view the status.

The job executes successfully and the view is created.

17. Verify the view data by executing the following query in SQL Developer. The data
from the view and the custom dimension should match.
select *
 from {Target}.uddx view

Creating CM Mappings
This section describes the process of extending CF_ARREARS for User Defined
Foreign Key.

Note: In this example, assume ‘CCB1’ to be the context defined for
Oracle Utilities Customer Care and Billing source attached to Oracle
Utilities Analytics Warehouse.

To create a CM mapping:

1. Login to the Oracle Data Integrator client.

2. On the Designer tab, navigate to Projects > User Customizations >
<product_name> > Facts > Mapping.

In this example, 'CCB' is the product.

3. Right-click Mapping and select New Mapping from the menu.

4. In the New Mapping window, enter the name of UDX in the Name field. For
example: CM_CF_ARREARS_UDX

5. Unselect the Create Empty Dataset checkbox.

6. Click the Logical tab to view the table structure.

7. From the Models section, drag and drop the UDX and replication tables in the
designer pane.

8. Join the UDX and replication table.

9. Drag and drop the UDX_CF_ARREARS target data store.

10. Select UDX as the target table and select the appropriate key on the UDX table as
defined in the CF_ARREARS fact. The logic to populate UDX should be taken care
in the mapping accordingly.

11. On the Physical tab, select the optimization context.

12. Select the target table (UDX_CF_ARREARS) and select IKM BI Direct Load from
the Integration Knowledge Module drop-down list.

13. On the Options tab, set DML_OPERATION to UPDATE instead of MERGE.

Creating CM Packages

Extending Star Schema 4 - 13
Oracle Utilities Analytics Warehouse Developer’s Guide

14. Unselect the CREATE_TARG_TABLE option since the UDX table is already
created.

The custom mapping is successfully created. A custom package can be created using this
mapping. For instructions, refer to the Creating CM Packages section.

Creating CM Packages
To create a custom package for the existing custom mapping:

1. Login to the Oracle Data Integrator client.

2. Navigate to Designer > User Customizations > <product_name> > Fact >
Packages.

In this example, 'CCB' is the product name.

3. Right-click Packages and select New Package from the menu.

4. In the Package Editor window, enter the name of UDX in the Name field.

Example: CM_PKG_CM_CF_ARREARS

5. Click the Diagram tab at the bottom of the editor.

6. From the Global Objects section, drag and drop the 'B1_JOB_ID' variable into the
editor.

7. Change 'B1_JOB_ID' to declare the variable.

8. Drag and drop the CM mapping (existing mapping) into the editor and connect them
in sequence.

9. Click Save and close the package editor window.

10. Navigate to the Packages folder and expand it. The new package is shown.

11. Right-click the package and select Generate Scenario.

12. Enter the scenario name and click OK.

13. Select the startup variables and click OK.

14. In the Projects section, navigate to User Customizations > CCB > Fact >
Packages.

15. Expand the package created.

The scenario object created is shown.

Configuring CM Scenarios
To configure the user extension procedure for a fact:

1. Login to the Oracle Utilities Analytics Administration user interface.

2. Click the ETL Configuration tab and click Job Configuration.

3. Enter the procedure name in the User Exit Procedure field and click Go to filter
the data.

Star Schema

Extending Star Schema 4 - 14
Oracle Utilities Analytics Warehouse Developer’s Guide

For example: CM_CF_ARREARS_UDX

4. Click the edit icon to edit the details.

5. Set the User Exit Procedure (for example: CM_CF_ARREARS_UDX) and click
Save.

6. Set the Entity Active Flag to Yes to enable the job.

7. Monitor the job execution and verify the data is in the final fact.

Star Schema
The star schema is perhaps the simplest data warehouse schema. It is called a star schema
as the entity-relationship diagram of this schema resembles a star with points radiating
from a central table. The center of the star consists of a large fact table. The end points of
the star are the dimension tables.

A star query is a join between a fact table and a number of dimension tables. Each
dimension is joined to a fact using a primary key to foreign key join. However, the
dimensions are not joined to each other. The optimizer recognizes star queries and
generates efficient execution plans. It is not mandatory to have any foreign keys on the
fact for star transformation to take effect.

Custom Dimensions

Extending Star Schema 4 - 15
Oracle Utilities Analytics Warehouse Developer’s Guide

A typical fact table contains keys and measures. A star join is a primary key to foreign key
join of the dimension tables to a fact table.

The main advantages of a star schema are as follows:

• Provides a direct and intuitive mapping between the business entities analyzed by
the end users and schema design.

• Provides highly-optimized performance for the typical star queries.

• Widely supported by a large number of business intelligence tools, which may
anticipate or even require that the data warehouse schema contain dimension
tables.

The star schemas are used for both simple data marts, as well as very large data
warehouses. After the model is designed, Oracle Data Integrator can used to create the
mappings and package to load the data into the star schema.

Note: For details about data modeling, refer to Chapter 19: Schema
Modeling Techniques in the Oracle® Database Data Warehousing Guide
11g Release 2.

Custom Dimensions
A custom dimension is created in the database and populated using the pattern illustrated
in the figure below.

This section provides the steps required to create a custom dimension and load data into
it.

Note: The following steps are explained using the Arrears table
(CM_D_ARREARS) from Customer Care and Billing as an example.

1. Creating Dimension Table

2. Importing Dimension into Model

3. Importing Replicated Table into Replication Model

4. Creating Replication Key View in Dimension Model

5. Creating Mapping for Key Views in Dimension Model

6. Creating Loading Views in Dimension Model

7. Creating Mapping for Loading Views

8. Creating Package for Loading Views

9. Creating Staging Table in the Dimension Model

Creating Dimension Table

Extending Star Schema 4 - 16
Oracle Utilities Analytics Warehouse Developer’s Guide

10. Creating Mapping in Dimension Model

11. Creating Package in Dimension Model

12. Configuring Entities in Dimension Model

13. Configuring Jobs in Dimension Model

14. Monitoring Job Execution

15. Validating the Data Loaded

Creating Dimension Table
This section describes the procedure to create a Type-II slowly changing dimension. The
dimension should have a primary key. In this example, it is the surrogate key column and
a sequence is used to generate the values for this key. A Type II dimension should have a
unique key comprising a column from source, the data source indicator, effective start
timestamp, and effective end timestamp.

To create a dimension table:

1. Connect to the database using SQL Developer.

2. Run the script below to create the dimension table in the target schema:
create table dwadm.cm_d_arrears_uddx1
(
 arrears_uddx1_key number(10)
 ,uddx1_cd varchar2(30)
 ,attribute1 varchar2(60)
 ,attribute2 varchar2(60)
 ,attribute3 varchar2(60)
 ,attribute4 varchar2(60)
 ,attribute5 varchar2(60)
 ,data_source_ind number(6)
 ,eff_start_dttm date
 ,eff_end_dttm date
 ,job_nbr numeric (15)
 ,update_dttm date
 ,primary key (arrears_uddx1_key)
);

3. Run the script below to create the unique composite key for the Type II dimension:
create unique index dwadm.cm_d_arrears_uddx1_uk
 on dwadm.cm_d_arrears_uddx1(uddx1_cd
 ,eff_start_dttm
 ,eff_end_dttm
 ,data_source_ind);

4. Create the sequence used to generate the surrogate key values.

create sequence dwadm.cm_d_arrears_uddx1_seq
 start with 1
 increment by 1;

5. Insert a row for the default 0 key record to handle nulls in the dimension foreign
keys.

insert into dwadm.cm_d_arrears_uddx1
(
 arrears_uddx1_key
 ,uddx1_cd

Creating Dimension Table

Extending Star Schema 4 - 17
Oracle Utilities Analytics Warehouse Developer’s Guide

 ,attribute1
 ,attribute2
 ,attribute3
 ,attribute4
 ,attribute5
 ,data_source_ind
 ,eff_start_dttm
 ,eff_end_dttm
 ,job_nbr
 ,update_dttm
)
values
(0
,'***'
,'***'
,'***'
,'***'
,'***'
,'***'
,0
,to_date('01/01/2000','mm/dd/yyyy')
,to_date('01/01/4000','mm/dd/yyyy')
,0
,sysdate);

commit;

6. Insert a row for the default -99 key record for automatic reprocessing of Late
Arriving Dimensions:

insert into dwadm.cm_d_arrears_uddx1
(
 arrears_uddx1_key
 ,uddx1_cd
 ,attribute1
 ,attribute2
 ,attribute3
 ,attribute4
 ,attribute5
 ,data_source_ind
 ,eff_start_dttm
 ,eff_end_dttm
 ,job_nbr
 ,update_dttm
)
values
(-99
,'N/A'
,'N/A'
,'N/A'
,'N/A'
,'N/A'
,'N/A'
,-99
,to_date('01/01/2000','mm/dd/yyyy')
,to_date('01/01/4000','mm/dd/yyyy')
,-99
,sysdate);
commit;

Importing Dimension into Model

Extending Star Schema 4 - 18
Oracle Utilities Analytics Warehouse Developer’s Guide

Importing Dimension into Model
After the custom dimension is created in the database, import the dimension in the
custom model folder created for customization.

1. Login to the Oracle Data Integrator client.

2. On the Designer tab, navigate to the Models section in ODI.

3. Navigate to the User Customization folder, and then to the folder with the product
name for which the customization is done.

In this example, it is ‘CCB’.

4. Right-click on the product folder and select New Model.

The New Model window opens.

5. In the Name field, enter Dimension.

6. Specify the code.

7. Select the Technology as “Oracle” and Logical Schema as “Target”.

8. Click Save to save the model.

9. Right-click and open the dimension model.

10. Navigate to the Reverse Engineer tab.

11. In the Types of objects to reverse-engineer section, select Table.

12. Enter CM_D_ARREARS_UDDX1 in the Mask field.

Importing Dimension into Model

Extending Star Schema 4 - 19
Oracle Utilities Analytics Warehouse Developer’s Guide

13. Clear the Characters to Remove from Table Alias field.

14. Click Reverse Engineer. The dimension table is reversed in the model.

Once the dimension has been imported into the model, set its properties.

15. Expand the Dimension model and double-click it to open the editor window.

16. In the Definition tab, from the OLAP Type drop-down list, select Slowly
Changing Dimension.

17. Save the changes and navigate to the Attributes section of the data store.

Change the SCD behavior for all columns.

18. For each of the attributes, set the SCD Behavior as shown below:

Attribute SCD Behavior

ARREARS_UDDX1_KEY Surrogate Key

UDDX1_CD Natural Key

DATA_SOURCE_IND Natural Key

EFF_START_DTTM Starting Timestamp

Importing Replicated Table into Replication Model

Extending Star Schema 4 - 20
Oracle Utilities Analytics Warehouse Developer’s Guide

The figure below illustrates the Attributes section.

Importing Replicated Table into Replication Model
To import the replicated table into model:

1. Login to Oracle Data Integrator client.

2. On the Designer tab, navigate to the Models section in ODI.

3. Navigate to the User Customization folder, and then to the folder with the product
name which is customized.

4. Right-click the product folder and select New Model.
The New Model window opens.

5. In the Name field, enter “Replication”.

6. Click the Reverse Engineer tab and select “CCB7” in the Context field. Enter
“%CI_ACCT_CHAR” in the Mask field.

EFF_END_DTTM Ending Timestamp

ATTRIBUTE1 Add Row on Change

ATTRIBUTE2 Add Row on Change

ATTRIBUTE3 Add Row on Change

ATTRIBUTE4 Add Row on Change

ATTRIBUTE5 Add Row on Change

JOB_NBR Overwrite On Change

UPDATE_DTTM Overwrite On Change

Attribute SCD Behavior

Creating Replication Key View in Dimension Model

Extending Star Schema 4 - 21
Oracle Utilities Analytics Warehouse Developer’s Guide

7. Save the model and click Reverse Engineer.

The reverse engineering action is executed.

Creating Replication Key View in Dimension Model
A key view is created for the dimension so that the incremental data for the fact can be
filtered based on the key view. The key view should comprise the natural key of the
dimension and the JRN_SLICING_TS column that stores the JRN_SLICING_TS
column values from the driving tables that are used to create the view.

To create a replication key view in model for the dimension:

1. Login to the Oracle Data Integrator client.

2. Navigate to Models > User Customizations, and then navigate to the relevant
product folder.

For example: CCB

3. Right-click the Replication model and select New Datastore.

4. On the Definition tab, enter the name of the key view as
CM_D_ARREARS_UDDX1_KVW.

The naming convention of the view is “CM_” prefixed to entity name and suffixed
by “_KVW”.

5. In the Resource Name field, enter the same name of the key view as in step 4.

6. Navigate to the Attributes tab.

7. Click on ‘+’ on the right-hand corner and add the columns in the datastore.

Creating Mapping for Key Views in Dimension Model

Extending Star Schema 4 - 22
Oracle Utilities Analytics Warehouse Developer’s Guide

The natural key of the dimension has to be present in the view. In addition to this,
the JRN_SLICING_TS column has to be added.

8. Save and close the datastore.

Creating Mapping for Key Views in Dimension Model
The key view for the dimension has to be generated in the Replication schema.

To create a mapping to generate a view for the key columns:

1. On the Oracle Data Integrator client, navigate to User Customizations, and then to
the relevant product folder.

For example: CCB

2. Create a new folder named Replication and expand it.

3. Right-click on the mapping and select New Mapping.

4. In the New Mapping window, enter “CM_D_ARREARS_UDDX1_KVW” as the
name and uncheck the Create Empty Dataset option.

Creating Mapping for Key Views in Dimension Model

Extending Star Schema 4 - 23
Oracle Utilities Analytics Warehouse Developer’s Guide

5. Navigate to the Logical tab of the mapping editor.

6. On the Logical tab, navigate to Models > User Customizations > Replication.

7. Drag the CM_D_ARREARS_UDDX1_KVW target replication key view and
CI_ACCT_CHAR from the model and drop in the Logical Design pane.

8. Click the target view datastore.

9. Map the target view columns from the dragged source table.

10. If there are multiple driving tables, add new data flows in the mapping for every
driving table using the SET component.

A primary driving table should be identified and should always be the first dataset.
For subsequent data sets include the filter JRN_UPDATE_DTTM >
to_date(#B1_EXTRACT_START_DTTM,’YYYYMMDD’).

11. Map the relevant column in the datasets for all the driving tables to target view.

12. Navigate to the Physical Design tab and set the Context in the Properties window.

13. Click the target datastore in the Physical Design pane.

14. In the Integrated Knowledge Module section, select IKM as “IKM BI View
Generation”.

Creating Loading Views in Dimension Model

Extending Star Schema 4 - 24
Oracle Utilities Analytics Warehouse Developer’s Guide

15. Click Save to save the mapping.

16. Generate a scenario for the mapping and execute the scenario in the context.

Creating Loading Views in Dimension Model
The loading view is created on top of the source replication tables. The view comprises
all columns that are used to populate the dimension table and IND_UPDATE and
UPDATE_DTTM columns.

To create a loading view in the dimension table:

1. On the Oracle Data Integrator client, navigate to Models > User Customizations,
and then navigate to the relevant product folder.

For example: CCB

2. Right-click the replication model and select New Datastore.

3. On the Definition tab, enter ‘CM_D_ARREARS_UDDX1_VW’ as the name of the
loading view.

The naming convention of the view is “CM_” prefixed to the entity name and
suffixed by “_VW”.

4. Specify the same view name again in the Resource Name field.

5. Navigate to Attributes tab.

6. Click ‘+’ on the right corner and add columns in the datastore.

Add all columns that are required to populate the dimension table.

7. In addition to the above columns, add “IND_UPDATE” column with “CHAR(1)”
as the data type.

Add “UPDATE_DTTM” with “DATE” as the data type.

Creating Mapping for Loading Views

Extending Star Schema 4 - 25
Oracle Utilities Analytics Warehouse Developer’s Guide

.

8. Save and close the datastore.

Creating Mapping for Loading Views
To create a mapping to generate the view used as source for the new dimension:

1. On the Oracle Data Integrator client, navigate to User Customization > <product
name> > Replication.

CCB is used as an example in this procedure.

2. Right-click the mapping and select New Mapping.

3. In the New Mapping window, enter “CM_D_ARREARS_UDDX1_VW” in the
Name field and provide a description.

4. Navigate to Model > User Customization > CCB > Replication.

5. Drag the CI_ACCT_CHAR table into the Logical Design pane.

6. In the Property Inspector, change the alias name to PRIM.

7. Similarly, drag the CI_ACCT_CHAR table again into the Logical Design pane. In
the property inspector, change the alias name to ACDP.

Creating Mapping for Loading Views

Extending Star Schema 4 - 26
Oracle Utilities Analytics Warehouse Developer’s Guide

8. From the Component palette, drag the Join component and place it in the Logical
Design pane.

9. Join the two source tables to the Join component.

10. Edit the Join Condition in the Properties window to add the join condition.

11. Select the Left Outer Join and Use Ordered Join Syntax check boxes.

12. Navigate to Models > Framework> Metadata and expand the model to reveal the
tables.

13. Select and drag B1_PROD_INSTANCE into the source section of the mapping
editor.

14. In the Property Inspector, change the alias to “INST”.

15. Drag another Join component from the Component palette and join the output of
JOIN1 and B1_INST in this new join component.

Creating Mapping for Loading Views

Extending Star Schema 4 - 27
Oracle Utilities Analytics Warehouse Developer’s Guide

16. Click the join created. In the Property Inspector, enter the following condition:
INST.CONTEXT_CD = '<%=odiRef.getContext("CTX_CODE")%>'

17. Select the columns ACCT_ID from table with alias “PRIM” and map it to the
UDDX1_CD column of the target view.

18. Map the IND_UPDATE to the JRN_FLAG column from the PRIM alias.

19. Map the DATA_SOURCE_IND from the Global Variable
B1_DATA_SOURCE_IND.

20. Map the other columns as shown.

21. Select the CHAR_TYPE_CD column from the table with alias “PRIM” and drag it
out of the table. A new filter is created.

22. In the Property Inspector, enter the condition = 'CI_VATCA'.

Creating Mapping for Loading Views

Extending Star Schema 4 - 28
Oracle Utilities Analytics Warehouse Developer’s Guide

23. Click EFF_START_DTTM and enter the following expression into the property
inspector.

GREATEST(PRIM.EFFDT,NVL(ACDP.EFFDT,PRIM.EFFDT))

24. Click EFF_END_DTTM and replace the expression with the below:
LEAST(PRIM.EFF_END_DTTM,NVL(ACDP.EFF_END_DTTM,PRIM.EFF_END_DTTM
))

25. Select and drag the CONTEXT_CD column from INST alias to create a filter on it.

26. In the Property Inspector, enter the following condition:
INST.CONTEXT_CD = '<%=odiRef.getContext("CTX_CODE")%>'

27. Navigate to Physical Design tab and set the Context in the Properties window.

28. Select the target view. In the Integration Knowledge Module section, select “IKM
BI View Generator” from the drop-down menu.

For the VW_JOIN_MODE option, enter “RECURSIVE_JOINS”.

29. Save the changes and click Execution.

30. Select CCB7 for Context and click OK.

31. On the Operator tab and expand Date > Today to view the status of the execution.

A mapping to generate the view used as source for the new dimension is created.

Creating Package for Loading Views

Extending Star Schema 4 - 29
Oracle Utilities Analytics Warehouse Developer’s Guide

Creating Package for Loading Views
To create a package for the new dimension:

1. On the Oracle Data Integrator client, navigate to Designer > User Customization
> <product_name> > Replication > Package.

In this example, ‘CCB’ is used as the product.

2. Right-click and select New Package.

3. In the New Package window, enter ‘CM_PKG_D_ARREARS_UDDX1_VW’.

4. Click the Diagram tab at the bottom of the editor.

From the Global Objects section, drag B1_DATA_SOURCE_IND into the editor.
Drag and drop the CM_D_ARREARS_UDDX1_VW mapping into the editor and
connect them.

5. Click Save to save the changes and close the package editor.

6. Navigate to the packages folder and expand it. The new package is displayed.

7. Right-click the package and select Generate Scenario.

8. Enter the scenario name and then click OK.

A package for the new dimension is created.

Creating Staging Table in the Dimension Model
The definition of the staging table structure is under the Staging folder. The staging table
structure is similar to the target table structure with the addition of a few columns. It
should include IND_UPDATE in addition to the columns used in the mapping.

To create a staging table in the dimension model:

1. On the Oracle Data Integrator client, navigate to Models > User Customization.

2. Right-click and click New DataStore to create a new model.

3. Enter “Staging” in the Name field and then specify the code.

4. Select “Oracle” from the Technology and “Target” from the Logical Schema
drop-down lists.

5. Click Save to save the model.

Creating Staging Table in the Dimension Model

Extending Star Schema 4 - 30
Oracle Utilities Analytics Warehouse Developer’s Guide

6. Navigate to User Customization > <product name> > Staging.

CCB is used as an example.

7. Right-click Staging and select New Datastore.

8. On the Definition tab, enter “STG_CM_D_ARREARS_UDDX1” as the name of
the staging table.

The naming convention of the staging table is “STG_” prefixed to the entity name.

9. Enter “STG_#GLOBAL.B1_JOB_ID” in the Resource Name field.

The resource name should include the job ID variable so that the staging table is
created with job execution number during run time so that there are no performance
issues.

10. Navigate to the Attributes tab.

11. Click ‘+’ to add columns to the datastore.

The columns in the dimensions should be present in the staging table. In addition to
the above columns, add IND_UPDATE. The data type for IND_UPDATE should
be “CHAR(1)”.

Creating Mapping in Dimension Model

Extending Star Schema 4 - 31
Oracle Utilities Analytics Warehouse Developer’s Guide

12. Click Save to save the datastore.

13. On the Flexfields tab, unselect the Default check box.

14. Enter “STG” in the Value column for the B1 Object Type record.

15. Enter the entity name (dimension name: CM_D_ARREARS_UDDX1) in the Value
column for the B1 Target Entity Name record.

16. Click Save to save the datastore.

A staging table in the dimension model is created.

Creating Mapping in Dimension Model
To create a mapping to load data from the source view into the new dimension:

1. Create the following metadata entry.

Note: Create the metadata entry before creating the mapping.
INSERT INTO MDADM.B1_OBJECT_MAP
 (OBJECT_MAP_ID
 , PROD_FLG
 , SOURCE_OBJECT_NAME
 , TARGET_OBJECT_NAME
 , SEQ
 , UPD_DTTM
 , UPD_USER
 , OWNER_FLG
 , OBJECT_TYPE_FLG)
VALUES (mdadm.b1_object_map_seq.nextval
 , 'CCB'
 , 'CM_D_ARREARS_UDDX1_VW'
 , 'CM_D_ARREARS_UDDX1'
 , '1'
 , sysdate
 , 'CM'
 , 'CM'
 , 'PRVW')
Commit;

2. On the Oracle Data Integrator client, navigate to User Customization > <product
name> > Dimension.

For example: CCB

Creating Mapping in Dimension Model

Extending Star Schema 4 - 32
Oracle Utilities Analytics Warehouse Developer’s Guide

3. Right-click and select New Mapping.

4. In the New Mapping window, enter “CM_D_ARREARS_UDDX1” as Name and
provide an appropriate description.

5. Unselect the Create Empty Dataset check box.

6. Navigate to Models > User Customization > <product name>> Dimension.

7. Expand the model and drag the dimension into the Logical Design pane.

8. Navigate to Models > User Customization > <product name> >Replication.

9. Expand the model and drag CM_D_ARREARS_UDDX1_VW (the loading view)
and CM_D_ARREARS_UDDX1_KVW (the key view) into the Logical Design
pane.

10. Navigate to Model > Framework > Metadata.

11. Drag the B1_JOB_EXEC table to the Logical Design pane.

12. Drag the FILTER operator from the Component palette and map the output of
B1_JOB_EXEC to the filter component.

13. Add the filter condition mentioned below:
B1_JOB_EXEC.JOB_EXEC_ID = :GLOBAL.B1_JOB_ID

14. Drag the Join component from the Component palette and join B1_JOB_EXEC
with the CM_D_ARREARS_UDDX1_KVW key view.

This join filters the incremental records only for that slicing period. Name the join as
JOIN1.

Creating Mapping in Dimension Model

Extending Star Schema 4 - 33
Oracle Utilities Analytics Warehouse Developer’s Guide

15. Drag another Join component from the Component palette. Join
CM_D_ARREARS_UDDX1_VW (the loading view) with the output join JOIN1
(from step 14) on the ACCT_ID column.

16. Navigate to Models > User Customization > CCB > Dimension. Drag and drop
the CM_D_ARREARS_UDDX1 target table on the Logical Design pane.

17. Click the ARREARS_UDDX1_KEY column in the target datastore. In the Property
Inspector, enter the following code:

<%=odiRef.getInfo("DEST_SCHEMA")%>.CM_D_ARREARS_UDDX1_SEQ.NEXTV
AL

18. Select the JOB_NBR column. In the Property Inspector, enter
“#GLOBAL.B1_JOB_ID”.

19. Select the UPDATE_DTTM column. In the Property Inspector, enter “SYSDATE”.

20. Map the other columns from the loading view as appropriate.

21. On the Physical Design tab, click the target dimension table.

22. In the Properties window set the context.

23. Navigate to the Integration Knowledge Module section and select IKM BI
Dimension Load (SCD – II).GLOBAL as the KM for mapping.

Creating Package in Dimension Model

Extending Star Schema 4 - 34
Oracle Utilities Analytics Warehouse Developer’s Guide

24. Click Save to save the changes.

A mapping to load data from the source view into the new dimension is created.

Creating Package in Dimension Model
To create a package for the new dimension:

1. On the Oracle Data Integration client, navigate to Designer > User
Customizations > <product name> > Dimension > Packages.

For example: CCB

2. Right-click Packages and select New Package.

3. In the New Package window, enter “CM_PKG_CD_ARREARS_UDDX1” as the
package name.

4. Click the Diagram tab at the bottom of the editor.

5. From the Global Objects section, drag the B1_JOB_ID and B1_HIGH_DATE
variables into the editor.

Change the data type for B1_JOB_ID to Declare Variable and that for
B1_HIGH_DATE to Refresh Variable.

Configuring Entities in Dimension Model

Extending Star Schema 4 - 35
Oracle Utilities Analytics Warehouse Developer’s Guide

6. Drag and drop the CM_D_ARREARS_UDDX1 mapping into the editor and
connect them

7. Click Save to save the changes and close the package editor window.

8. Navigate to the packages folder and expand it. The new package is displayed.

9. Right-click and select Generate scenario.

10. Enter the scenario name and click OK.

11. In the Scenario Variables window, select the startup variables. Unselect the Startup
Parameter checkbox for B1_HIGH_DATE (it is a refresh variable) and click OK.

12. Expand the package. Under Scenarios, the new scenario generated is displayed.

Configuring Entities in Dimension Model
To configure a new entity for a custom dimension:

1. Login to the Oracle Utilities Analytics Warehouse Administration user mapping.

2. On the ETL Configuration tab, click Target Entity.

3. Click Add. The Maintain Target Entity page is displayed where you can set up the
job details.

4. Enter the appropriate values for the dimension.

Configuring Jobs in Dimension Model
To configure a job for the custom dimension:

1. Login to Oracle Utilities Analytics Warehouse Administration user mapping.

2. On the ETL Configuration tab, click Job Configuration.

Monitoring Job Execution

Extending Star Schema 4 - 36
Oracle Utilities Analytics Warehouse Developer’s Guide

3. Click Add. The Maintain Job Configuration page is displayed where you can set up
the job details.

4. Select “Customer Care and Billing” from the Source Product drop-down list.

5. Select ‘1’ from the Instance Number drop-down list.

6. Click the Search icon for the Target Entity field.

In the search window, enter “CM_D_ARREARS_UDDX1” and click Go.

7. Click the Target Entity ID value.

The ID is populated on the Maintain Job Configuration page.

8. Set the Slice Start Date/Time as ‘01-Jan-2000’ or the extract date to which the
source instance is configured.

9. Click Add to create the job configuration entry. The job can be enabled while saving
the new entry.

Monitoring Job Execution
After the job is configured for customization and activated, use the Oracle Utilities
Analytics Warehouse Administration or SQL Developer to monitor the job execution.

To monitor the job execution from Oracle Utilities Analytics Warehouse Administration:

1. Login to Oracle Utilities Analytics Warehouse Administration.

2. On the ETL Job Execution tab, enter “CM_D_ARREARS_UDDX1”.

3. Click Go to filter the data. The execution details are displayed.

Sort by the session end date to view the latest execution details.

Validating the Data Loaded
To validate that data is loaded into the custom dimension:

1. Connect to the database using SQL Developer.

2. Use the query below to view the data in the dimension:
select *
from dwadm. CM_D_ARREARS_UDDX1;

3. Compare the data in the dimension with the data in the base view using the below
query:
select *
from ccb1rep.cm_d_arrears_uddx1_vw;

Custom Facts

Extending Star Schema 4 - 37
Oracle Utilities Analytics Warehouse Developer’s Guide

Custom Facts
A custom fact is created in the database and populated using the pattern illustrated in the
figure below:

The steps required to create a custom fact and load data into it are as follows:

1. Creating Fact Tables

2. Importing Fact Tables into Model

3. Importing Replicated Tables into Fact Model

4. Creating Key Tables in Fact Model

5. Creating Mapping for Key Tables in Fact Model

6. Creating Loading Views in Fact Model

7. Creating Mapping to Loading Views for Fact Model

8. Creating Aggregate Tables in Fact Model

9. Creating Mapping to Load Aggregate Tables in Fact Model

10. Creating Staging Tables in Fact Model

11. Creating Error Tables in Fact Model

12. Creating Mapping to Load Facts

13. Creating Packages in Fact Model

14. Configuring Entities in Fact Model

15. Specifying Dependencies in Fact Model

16. Configuring Jobs in Fact Model

17. Monitoring Job Executions

These steps use an example from Oracle Utilities Customer Care and Billing. The Bill
segment Calculation (CM_CF_BSEG_CALC) custom fact is populated with the bill
segments line calculation amount.

Each bill generated in Oracle Utilities Customer Care and Billing has multiple bill
segments, and each bill segment has multiple calculations with different billing. The
CM_CF_BSEG_CALC fact has three dimensions - Service Agreement, Premise, and
Service Agreement Status.

Creating Fact Tables

Extending Star Schema 4 - 38
Oracle Utilities Analytics Warehouse Developer’s Guide

The other details are:

• Measure = Calculated Amount for each bill segment’s line

• Natural Key = Bill Segment, Bill Segment Header Sequence

• Source Table = Bill Segment (CI_BSEG), Bill Segment Calculation
(CI_BSEG_CALC), Bill Segment Calculation Line (CI_BSEG_CALC_LN)

Creating Fact Tables
This section describes the procedure to create a fact table using an example.

The fact has a primary key, which is the surrogate key column. Use a sequence to
generate the values for this key. The fact has a unique key comprising a column from
source, the data source indicator. It includes the bill segment details calculation amount
for each header in the bill generated in Oracle Utilities Customer Care and Billing.

To create a fact table:

1. Connect to the Oracle Utilities Analytics Warehouse database using SQL Developer.

2. Run the script below to create a fact table in the target schema:
create table dwadm.cm_cf_bseg_calc
(
 bseg_calc_key number(15)
,bseg_id number(19)
,bseg_hdr_seqnumber(5)
,data_source_ind number(6)
,bill_nbrnumber(30)
,bseg_cre_dttmdate
,sa_keynumber(15)
,prem_keynumber(15)
,bseg_stat_keynumber(15)
,currency_cdvarchar2(10)
,distribution_cd varchar2(60)
,bseg_calc_amtnumber(15,2)
,job_nbrnumber(19)
,update_dttmdate
,primary key (bseg_calc_key)
);

3. Run the script below to create a unique composite key for the fact:
create unique index dwadm.cm_f_bseg_calc_uk
on dwadm. cm_cf_bseg_calc(bseg_id,bseg_hdr_seq data_source_ind);

4. Create the sequence used to generate the surrogate key values.

create sequence dwadm.cm_cf_bseg_calc_seq
start with 1
increment by 1;

Importing Fact Tables into Model
After the custom fact is created, import it into the custom model folder (created
previously for customization).

To import a fact into a model folder:

1. Login to the Oracle Data Integrator client.

Importing Replicated Tables into Fact Model

Extending Star Schema 4 - 39
Oracle Utilities Analytics Warehouse Developer’s Guide

2. On the Designer tab, navigate to the Models > User Customization >
<product_name>.

In this example, the product name is ‘CCB’.

3. Right-click the product folder and select Open Fact Model. The Open Fact Model
window is displayed.

4. On the left pane, click Reverse Engineer.

5. On the right pane, select the Table check box in the Types of objects to reverse-
engineer section.

6. Enter “CM_CF_BSEG_CALC” in the Mask field.

7. Click Reverse Engineer at the top-left corner.

The fact table is reversed in the model.

8. Click Save to save the changes.

Importing Replicated Tables into Fact Model
To import replicated tables into the fact model:

1. Login to the Oracle Data Integrator client.

2. On the Designer tab, navigate to Models > User Customization > <product
name> which has to be customized.

In this example, the product is ‘CCB’.

Importing Replicated Tables into Fact Model

Extending Star Schema 4 - 40
Oracle Utilities Analytics Warehouse Developer’s Guide

3. Right-click and select Open Replication Model. The Open Replication Model
window is displayed.

4. On the left pane, click Reverse Engineer.

5. On the right pane, do the following:

a. Select the Table check box in the Types of objects to reverse-engineer
section.

b. Enter “CM_CF_BSEG_CALC” in the Mask field.

c. Click Save.

6. On the left pane, click Selective Reverse-Engineering.

7. On the right pane, select the following tables required to load the fact:

• CI_BSEG

• CI_BSEG_CALC

• CI_BSEG_CALC_LN

8. Click Reverse Engineer on the top-left corner.

9. Click Save to save the changes.

The replication tables are reversed in the fact model.

Creating Key Tables in Fact Model

Extending Star Schema 4 - 41
Oracle Utilities Analytics Warehouse Developer’s Guide

Creating Key Tables in Fact Model
A key table is created to identify the natural key of the entity for incremental loading. It
helps to identify specific records for processing instead of scanning the entire replication
table.

Ensure the following are taken care while creating a key table in a fact model:

• The resource name of the table is changed to “KEY_#GLOBAl.B1_JOB_ID”.

• The table name can be “KEY_<FACT_NAME>”, but the resource name
should be prefixed with the table type followed by the job number.

• Since the table is created at run time, the table name should be suffixed with the
job number. It helps in parallel load of the data.

• The key table is created in the model and the flex field is set appropriately.

To create a key table in the fact model:

1. Login to the Oracle Data Integrator client.

2. On the Designer tab, navigate to Models > User Customization >
<product_name> > Staging.

3. Right-click Staging, and then select New Datastore from the menu.

4. In the datastore editor, enter “KEY_CM_CF_BSEG_CALC” and
“KEY_#GLOBAL.B1_JOB_ID” in the Name and Resource Name fields
respectively.

5. Click Flexfields on the left pane.

Creating Mapping for Key Tables in Fact Model

Extending Star Schema 4 - 42
Oracle Utilities Analytics Warehouse Developer’s Guide

6. Unselect the Default check boxes for B1 Object Type and B1 Target Entity
Name fields respectively.

Enter “TMP” and “CM_CF_BSEG_CALC” in the B1 Object Type and B1 Target
Entity Name fields respectively.

7. Click the Attributes tab on the left pane.

8. Click + to add columns to the datastore.

Add the columns that are part of the natural key of the fact. Add JOB_NBR in
addition to the natural key.

Note: The data type and length of the columns should match to that of
the fact table.

9. Click Save to save the datastore.

Creating Mapping for Key Tables in Fact Model
The key table is created for a fact so that the incremental data for the fact can be filtered
based on the key table. The driving tables from the replication schema are included, and
columns are created as part of the natural key of the fact. The fact is generated in the
Staging schema.

If there are multiple driving tables, the key table data is populated from all the driving
tables. Using the “Union” option, distinct data is populated in the key table.

To create a mapping for loading the key table for the fact:

1. Login to the Oracle Data Integrator client.

Creating Mapping for Key Tables in Fact Model

Extending Star Schema 4 - 43
Oracle Utilities Analytics Warehouse Developer’s Guide

2. On the Designer tab, navigate to Models > User Customization >
<product_name> > Fact > Mapping.

In this example, ‘CCB’ is the product.

3. Right-click Mapping and select New Mapping from the menu.

4. In the mapping editor, do the following:

a. Enter “CM_F_BSEG_CALC_KEY” in the Name field.

b. Unselect the Create Empty Dataset check box.

c. Click OK.

5. On the Designer tab, navigate to Models > User Customization > CCB >
Replication.

6. Expand the model and drag the tables to the mapping editor.

7. Drag the CI_BSEG_CALC_LN and CI_BSEG driving tables to the mapping editor.

8. Drag the CI_BSEG_CALC_LN table again to the mapping editor.

Since the CI_BSEG driving table does not include the combination of natural key,
the table should be joined with CI_BSEG_CALC_LN to get the natural key in the
key table.

9. In the Component window, select the JOIN component and enter the name as
“JOIN”.

10. Map the CI_BSEG and CI_BSEG_CALC_LN tables as input to the join and specify
the join condition in the expression.

11. Drag the CI_BSEG_CALC table to the mapping editor.

12. Drag the CI_BSEG_CALCL_LN table again to the mapping editor.

Since CI_BSEG_CALC table does not have the combination of natural key of the
fact, it should be joined with CI_BSEG_CALC_LN to get the natural key in the key
table.

13. In the Component window, select the JOIN component and enter the name as
“JOIN1”.

14. Map the CI_BSEG_CALC and CI_BSEG_CALC_LN table as input to the
“JOIN1” and specify the join condition in the expression.

Creating Mapping for Key Tables in Fact Model

Extending Star Schema 4 - 44
Oracle Utilities Analytics Warehouse Developer’s Guide

15. Select the components and the SET operator. Drag them to the mapping editor and
name the set as “SET_”.

16. Click the SET component on the mapping editor. The Properties window is
displayed.

17. Add one more input connections to the SET operator and map them to one of the
sources.

For example: INPUT1 > CI_BSEG_CACL_LN, INPUT2 > JOIN, INPUT3 >
JOIN1

18. On the left pane, click Attributes. Click + to add columns to the SET operator.

19. Add the natural key of the fact and “JRN_SLICING_TS” column to the SET
operator.

The column names are displayed. For each INPUT connection, there is an
EXPRESSION, and the columns are mapped appropriately.

20. On the Designer, navigate to Models > Framework > Metadata.

21. Drag the B1_JOB_EXEC table to the mapping editor.

22. Drag the FILTER operator from the Component window and map the input of
Filter to the output of B1_JOB_EXEC.

23. Add the filter condition as below:
B1_JOB_EXEC.JOB_EXEC_ID = :GLOBAL.B1_JOB_ID

24. Join B1_JOB_EXEC with the output of the SET operator.

This join filters the incremental records only for that slicing period.

Creating Mapping for Key Tables in Fact Model

Extending Star Schema 4 - 45
Oracle Utilities Analytics Warehouse Developer’s Guide

The output of JOIN2 is redirected to distinct only on the natural key of the fact, so
that the duplicate keys are loaded into the KEY table.

25. Drag the KEY table from the model and map the natural key from DISTINCT
operator to the Target table.

26. Select the key columns from the KEY table in the Properties window.

27. In the Attributes section, select the respective KEY check box for all the columns
that are part of the natural key.

The figure below shows the logical mapping of the tables.

28. On the Physical tab, select the context and save the mapping so that the physical
mapping diagram is visible.

In this example, select “CCB7”.

Creating Loading Views in Fact Model

Extending Star Schema 4 - 46
Oracle Utilities Analytics Warehouse Developer’s Guide

29. Click the target table and open the Properties window. Do the following:

a. Select “IKM BI Direct load” from the Integration Knowledge Module drop-
down list.

b. Modify the “DML_OPERATION” option to “INSERT”.

30. Click Save to save the mapping.

Creating Loading Views in Fact Model
The fact loading view is created in the replication model. Since the table is created at run
time, the table name is suffixed with the job number. It helps in the parallel data load.

To create a loading view in the fact model:

1. Login to the Oracle Data Integration client.

2. On the Designer tab, navigate to Models > User Customization >
<product_name> > Replication.

In this example, ‘CCB’ is the product.

3. Right-click Replication and select New Datastore from the menu.

4. On the datastore editor, enter the view name “CM_CF_BSEG_CALC_VW” for the
name.

5. Navigate to Attributes tab.

6. Click + to add columns to the datastore. Add all columns from the fact table except
the dimension keys.

Creating Mapping to Loading Views for Fact Model

Extending Star Schema 4 - 47
Oracle Utilities Analytics Warehouse Developer’s Guide

7. In the dimension keys, replace “KEY” with “FK”.

The natural key of the dimension in view is needed to lookup the dimension and
populate the dimension key in fact. If the dimension’s natural key has more than one
column, then the view has the dimension’s natural key. The naming convention of the
keys is FK1, FK2, etc.

Note: The data type and length of the columns should match with that
of the fact.

8. In addition to the above columns, add IND_UPDATE and UPDATE_DTTM
columns. The data types of these columns are CHAR(1) and DATE respectively.

9. Click Save to save the datastore.

Creating Mapping to Loading Views for Fact Model
The loading view for a fact is created to load the data into the fact. The loading view is
joined with the KEY table on natural key, so that the data in that slicing period is loaded.
The view is generated in the Replication schema.

To create a mapping to generate the loading view:

1. On the Oracle Data Integrator client, navigate to Models > User Customization >
<product_name>.

In this example, ‘CCB’ is the product.

2. Create a new folder “Replication” and expand it.

3. Right-click Mapping and select New Mapping from the menu.

4. In the mapping editor, do the following:

a. Enter “CM_CF_BSEG_CALC_VW” in the Name field.

b. Unselect the Create Empty Dataset check box.

5. Navigate to Models > User Customization > CCB > Replication.

Creating Mapping to Loading Views for Fact Model

Extending Star Schema 4 - 48
Oracle Utilities Analytics Warehouse Developer’s Guide

6. Drag the tables from the model, and the CI_BSEG_CAL_LN and CI_BSEG
replication tables to the mapping editor.

7. Select the JOIN component from the Component window and name it as “JOIN”.

8. Map the CI_BSEG and CI_BSEG_CALC_LN tables as input to the join and specify
the join condition in the expression.

9. Drag the table CI_BSEG_CALC to the mapping editor.

10. Select the JOIN component from the Component window and name it as “JOIN1”.

11. Map the CI_BSEG_CALC and output of JOIN as input to the join component
“JOIN1” and specify the join condition in the expression.

12. Drag the View datastore from the model and map the columns from the replication
tables as per the logic to populate the columns.

UPDATE_DTTM should be populated as Greatest of JRN_UPDATE_DTTM or
JRN_EFF_START_DTTM from all the replication tables. It is populated so that the
latest Dimension key of the SCD2 dimension is populated.

DATA_SOURCE_IND is populated from the B1_DATA_SOURCE_IND variable
from Global objects.

Creating Mapping to Loading Views for Fact Model

Extending Star Schema 4 - 49
Oracle Utilities Analytics Warehouse Developer’s Guide

13. Map the primary driver table’s JRN_FLAG to IND_UPDATE.

The figure below shows the logical mapping.

14. Navigate to the Physical tab and select Context.

15. Save the mapping so the physical mapping diagram is visible.

In this example, select “CCB7”.

16. Click the target table. On the Properties window select “IKM BI View Generator”
from the Integration Knowledge Module drop-down list.

17. Click Save to save the mapping.

18. Create a package with the same name as that of the view name.

Creating Aggregate Tables in Fact Model

Extending Star Schema 4 - 50
Oracle Utilities Analytics Warehouse Developer’s Guide

19. Drag and drop the global variable “B1_DATA_SOURCE_IND”. Drag the mapping
and join the steps.

20. Click Save to save the package.

21. Regenerate the scenario for the package. During regeneration, unselect the Startup
Variable check box.

22. Run the scenario in Context so that the view is created in the database.

Creating Aggregate Tables in Fact Model
An aggregate table is created by the scheduling process during the execution of a fact job.
It is created to optimize the parallel execution of multiple slices of the same entity load.

The table name starts with ‘AGG’ and is suffixed with the job number. The table
structure should be present in a fact model under the Staging folder. The table name can
vary (such as AGG_<FACT_NAME>), but the resource name should be
“AGG_#GLOBAL.B1_JOB_ID”.

The aggregate table is created based on the flex field. The table structure is similar to the
target table structure, including a few more columns. There should be an
IND_UPDATE column in the table, in addition to the columns used in the mapping.
The table should also include an UPDATE_DTTM column which stores the greatest
effective start date of the record.

To create an aggregate table in the fact model:

1. On the Oracle Data Integrator client, navigate to Models > User Customization >
<product_name> > Staging.

2. Right-click the model and select New Datastore from the menu.

Note: Create a staging model if it does not exist.

3. On the Datastore editor, do the following:

a. Enter “AGG_CM_CF_BSEG_CALC” in the Name field.

b. Enter “AGG_#GLOBAL.B1_JOB_ID” in the Resource Name field.

Creating Aggregate Tables in Fact Model

Extending Star Schema 4 - 51
Oracle Utilities Analytics Warehouse Developer’s Guide

4. Click Flexfields on the left pane.

5. Unselect the Default check box. Enter “TMP” and “CM_CF_BSEG_CALC” in the
B1 Object Type and B1 Target Entity Name fields respectively.

6. Click Attributes on the left pane.

7. Click + to add the required columns to the datastore.

8. Add all columns from the fact table except the dimension keys.

9. In the dimension keys, replace “KEY” with “FK”.

The natural key of the dimension in view is needed to lookup the dimension and
populate the dimension key in fact. If the dimension's natural key has more than one
column, then the view has the dimension's natural key. The naming convention of
the keys is FK1, FK2, etc.

Note: The data type and length of the columns should match with that
of the fact.

10. In addition to the above columns, add IND_UPDATE and UPDATE_DTTM
columns.

The data types of these columns are CHAR(1) and DATE respectively.

11. Click Save to save the datastore.

Creating Mapping to Load Aggregate Tables in Fact Model

Extending Star Schema 4 - 52
Oracle Utilities Analytics Warehouse Developer’s Guide

Creating Mapping to Load Aggregate Tables in Fact Model
After creating an aggregate table, the data is loaded using the KEY table and loading the
view created for the fact.

To create a mapping to load an aggregate table in the fact model:

1. Login to the Oracle Data Integrator client.

2. Navigate to Projects > User Customization > <product name> > Mapping.

In this example, ‘CCB’ is the product.

3. Right-click Mapping and select New Mapping from the menu.

4. On the mapping editor, enter the mapping name in the Name field. Unselect the
Create Empty Dataset check box.

5. On the designer, navigate to Models > User Customization > CCB > Staging.

6. Drag the KEY_CM_CF_BSEG_CALC table from the model to the mapping editor.

7. On the designer, navigate to Models > User Customization > CCB >
Replication.

8. Drag the CM_CF_BSEG_CALC_VW view from the model to the mapping editor.

9. Select the JOIN component from the Component window. Enter “JOIN” in the
Name field.

10. Map the KEY table and loading view as input to the join and specify the join
condition in the expression.

11. Drag the AGGREGATE component in the Components window and drop it onto
the mapping editor.

12. Map the output of the join to the AGGREGATE component.

13. In the AGGREGATE component Properties window, click + in the Attributes
section to add columns.

Note: Ensure that the column names should match with those of the
AGGREGATE table.

Creating Mapping to Load Aggregate Tables in Fact Model

Extending Star Schema 4 - 53
Oracle Utilities Analytics Warehouse Developer’s Guide

14. Map all columns from the Loading view and KEY table as applicable.

15. On the designer, navigate to Models > User Customization > CCB > Staging.

16. Drag the AGG_CM_CF_BSEG_CALC aggregate table from the model.

17. Map the output of the AGGREGATE component to the input of the AGG table.

18. Map all columns of the AGGREGTE table.

19. Select the KEY columns in the table. Select the respective KEY check box for those
columns that are part of the natural key.

Creating Mapping to Load Aggregate Tables in Fact Model

Extending Star Schema 4 - 54
Oracle Utilities Analytics Warehouse Developer’s Guide

20. The logical mapping is complete as shown in the figure below.

21. On the designer, navigate to the Physical tab. Select the Context and Save the
mapping so that the physical mapping diagram is visible. In this example, select
“CCB7”.

22. Click the target table. The Properties window is displayed.

23. Select “IKM BI Direct Load” from the Integrated Knowledge Module list.

24. Click Save to save the mapping.

Creating Staging Tables in Fact Model

Extending Star Schema 4 - 55
Oracle Utilities Analytics Warehouse Developer’s Guide

Creating Staging Tables in Fact Model
A staging table is created by the scheduling process prior to the interface execution. It
optimizes the parallel execution of multiple slices of the same entity load.

The definition of the staging table structure is under the Staging folder. The staging table
structure is similar to the target table structure, including a few additional columns. It
should include IND_UPDATE in addition to the columns used in the mapping.

To create a staging table in the dimension model:

1. On the Oracle Data Integrator client, navigate to Models > User Customization >
<product_name> > Staging.

In this example, ‘CCB’ is the product.

2. Right-click the model and select New Datastore from the menu.

3. In the Datastore editor, enter the aggregate table name
(STG_CM_CF_BSEG_CALC) in the Name field. Enter
“STG_#GLOBAL.B1_JOB_ID” in the Resource Name field.

4. Click the Flexfields tab.

5. On the editor, unselect the Default check box for all columns. Enter “STG” and
“CM_CF_BSEG_CALC” in the B1 Object Type and B1 Target Entity Name
fields respectively.

6. Navigate to Attributes tab.

7. Click + on right-hand corner to add columns to the datastore.

Add all columns that are in the fact table. In addition, add the dimension’s natural key
column. The dimension natural keys (as specified in the aggregate table) should be
included in the staging table.

The data type and length of the columns should match with that of the fact table.

Creating Error Tables in Fact Model

Extending Star Schema 4 - 56
Oracle Utilities Analytics Warehouse Developer’s Guide

8. In addition to the above columns add the following:

• IND_UPDATE column with CHAR(1) as the data type.

• UPDATE_DTTM with DATE as the data type.

• JOB_NBR with NUMBER(19) as the data type.

9. Click Save to save the datastore.

Creating Error Tables in Fact Model
An error table is created during the fact job execution, with its table structure similar to
that of a staging table.

The error table is populated for late arriving dimensions. If a dimension record is not
present in the dimension during the fact load, then the dimension key is populated as -99
and the record is populated in the error table. During the next fact load, data in the error
table is looked up in the dimension table to find the records and correct the data in the
fact table for the corrected dimension key.

After reprocessing all dimension keys for the fact record, it is deleted from the error
table. To do this, ensure that the staging table structure definition is included in a model
under the Staging folder. Set the flex fields appropriately.

To create an error table in the fact model:

1. Login to the Oracle Data Integrator client.

2. Navigate to Models > User Customization > <product name> > Staging.

In this example, ‘CCB’ is the product.

3. Right-click the model and select New Datastore from the menu.

4. On the Datastore editor, enter “ERR_CM_CF_BSEG_CALC” in the Name field.
Ensure the Resource Name is same as that of the error table name.

Creating Error Tables in Fact Model

Extending Star Schema 4 - 57
Oracle Utilities Analytics Warehouse Developer’s Guide

5. Navigate to the Flexfields tab.

6. Unselect the Default check box for the respective columns. Enter “ERR” and
“CM_CF_BSEG_CALC” in the in B1 Object Type and B1 Target Entity Name
columns respectively.

7. Navigate to the Attributes tab.

8. Click + on the right-hand corner to add columns to the datastore.

9. Add all columns from the fact table, and also add the dimension’s natural key
column.

The dimension’s natural keys (as specified in the aggregate table) should be included
in the staging table.

The data type and length of the columns should match with that of the fact table.

10. In addition to the above columns, add the following:

• IND_UPDATE column with CHAR(1) as the data type.

• UPDATE_DTTM with DATE as the data type.

• JOB_NBR with NUMBER(19) as the data type.

Creating Mapping to Load Facts

Extending Star Schema 4 - 58
Oracle Utilities Analytics Warehouse Developer’s Guide

11. Click Save to save the datastore.

Creating Mapping to Load Facts
The data is loaded into Staging table from the Aggregate table. The Staging table is
updated for dimension key by looking up the dimension tables. After the dimension keys
are updated, the fact table is loaded with data.

To load data from an Aggregate table to a Staging table, and then to the fact table, follow
these instructions:

1. Login to the Oracle Data Integrator client.

2. On the Designer, navigate to the Models > User Customization >
<product_name> > Fact.

In this example, ‘CCB’ is the product.

3. Right-click Mapping and select New Mapping from the menu.

4. On the mapping editor, enter “CM_CF_BSEG_CALC” in the Name field. Un-check
the Create Empty Dataset check box.

5. Navigate to Models > User Customization > CCB > Staging.

6. Drag the Aggregate (AGG_CM_CF_BSEG_CALC) and staging
(STG_CM_CF_BSEG_CALC) tables and drop them onto the mapping editor.

Provide an alias name (for example: “SRC”).

7. Map the columns from the Aggregate table to those from the Staging table.

Creating Mapping to Load Facts

Extending Star Schema 4 - 59
Oracle Utilities Analytics Warehouse Developer’s Guide

8. Drag and drop the Staging table again.

All joins from the Staging table (SRC) to the dimension should be an outer join
including all rows from staging and any rows that are available from dimension.

9. Drag and drop the dimension and join the staging table with the dimension tables.

The join condition with type 2 dimension is as follows:
SRC.DIM_FK = DIM1.SRC_DIM_NK
and SRC.DATA_SOURCE_IND = DIM1.DATA_SOURCE_IND
and SRC.UPDATE_DTTM >= DIM1.EFF_START_DTTM
and SRC.UPDATE_DTTM < DIM1.EFF_END_DTTM

The join condition with type 1 dimension is as follows:

 SRC.DIM_FK = DIM2.SRC_DIM_NK
and SRC.DATA_SOURCE_IND = DIM2.DATA_SOURCE_IND

10. Map the natural key columns of the target table (staging table) with that of the
staging table. Select the KEY check box in the Properties window.

Creating Mapping to Load Facts

Extending Star Schema 4 - 60
Oracle Utilities Analytics Warehouse Developer’s Guide

11. Select a dimension key and provide the transformation for that key in the properties
inspector.

Replace the actual dimension name and dimension column names as follows:
CASE WHEN SRC.DIM_FK IS NULL THEN #GLOBAL.B1_NULL_KEY
 WHEN DIM.DIM_KEY IS NULL THEN #GLOBAL.B1_MISSING_KEY
 ELSE DIM.DIM_KEY
END

12. Repeat step 11 for all dimension keys in the table.

13. Drag and drop the fact table from the model.

14. Map all columns in the fact table with those in the staging table (the target for the
dimension lookup). Select the Key check box to mark the key columns.

15. Map the surrogate key to the sequence. Then, unselect the Update check box.

Creating Mapping to Load Facts

Extending Star Schema 4 - 61
Oracle Utilities Analytics Warehouse Developer’s Guide

16. Save the mapping.

17. Click the mapping editor to open the Properties window for the mapping.

18. Specify the target load order as SRC, staging table, and fact table.

In this example: SRC,STG_CM_CF_BSEG_CALC,CM_CF_BSEG_CALC

The logical mapping is complete. The figure below shows the mapping.

19. Navigate to the Physical tab and select the Context.

20. Click Save to save the mapping so that the physical mapping diagram is visible.

In this example, select “CCB7”.

Creating Mapping to Load Facts

Extending Star Schema 4 - 62
Oracle Utilities Analytics Warehouse Developer’s Guide

21. On the mapping diagram, click SRC. The respective Properties window is displayed.

22. Select “IKM BI Direct Load” from the Integration Knowledge Module drop-
down list.

23. Click STG_CM_CF_BSEG_CALC staging table. The respective Properties
window is displayed.

24. Select “IKM BI Fact Key Lookup” from the Integration Knowledge Module
drop-down list.

Creating Packages in Fact Model

Extending Star Schema 4 - 63
Oracle Utilities Analytics Warehouse Developer’s Guide

Enter “Staging.ERR_CM_CF_BSEG_CALC” in the Value field for the
ERR_TABLE_NAME option. (This option is set to get the error table name).

25. Click the CM_CF_BSEG_CALC fact table. The respective Properties window is
ready.

26. Select “IKM BI Direct Load” from the Integration Knowledge Module drop-
down list.

27. Click Save to save the mapping.

Creating Packages in Fact Model
To create a package in the new fact model:

1. Login to the Oracle Data Integrator client.

2. On the Designer, navigate to Models > User Customization > Facts > Packages.

3. Right-click Package and select New Package from the menu.

4. On the package editor, enter “CM_PKG_CM_CF_BSEG_CALC” in the Name
field.

5. Click the Diagram tab at the bottom of the editor.

Configuring Entities in Fact Model

Extending Star Schema 4 - 64
Oracle Utilities Analytics Warehouse Developer’s Guide

6. In the Global Objects section, do the following:

a. Drag the following variables into the editor:

• B1_JOB_ID

• B1_DEF_MISSING_KEY

• B1_DEF_NULL_KEY

b. Modify the following variables to declare the variable:

• B1_JOB_ID

c. Modify B1_DEF_MISSING_KEY and B1_DEF_NULL_KEY to refresh
variables.

d. Drag and drop the mapping to load the aggregate table, and then mapping to
load the fact table into the editor. Connect them all in a sequence.

e. Click Save to save the changes and close the package editor.

7. Navigate to Packages and expand it. The new package is displayed.

8. Right-click Generate Scenario. Enter the scenario name and then click OK.

9. When prompted, select the startup variables.

10. Unselect B1_DEF_MISSING_KEY and B1_DEF_NULL_KEY (as they are
refresh variables) and click OK.

11. Expand the package. In the list of scenarios, the new scenario object that was
generated is displayed.

Configuring Entities in Fact Model
To configure a new entity in a custom fact:

1. Login to the Oracle Utilities Analytics Warehouse Administration user mapping.

2. On the ETL Configuration tab, click Target Entity.

3. Click Add. The Main Target Entity page is displayed.

4. Enter the appropriate values for the entity.

Specifying Dependencies in Fact Model
The dependency for Type 2 dimension should be specified in the fact. It is mentioned in
the B1_OBJECT_MAP table for the custom fact.

Below is a sample query to insert the dependency. Ensure to add this merge query in the
existing CM procedure to add the metadata in Oracle Utilities Analytics Warehouse.

Note: Refer to the Configuring CM Scenarios section for instructions to
create a CM procedure.

Specifying Dependencies in Fact Model

Extending Star Schema 4 - 65
Oracle Utilities Analytics Warehouse Developer’s Guide

merge
 into b1_object_map tgt
 using (select 'CCB' prod_flg
 , 'CD_SA' source_object_name
 , 'CM_CF_BSEG_CALC'

target_object_name
 , 1 seq
 , 'DMDP' object_type_flg
 from dual) tgt_val
 on (tgt.prod_flg = tgt_val.prod_flg
 and tgt.source_object_name = tgt_val.source_object_name
 and tgt.target_object_name = tgt_val.target_object_name
 and tgt.seq = tgt_val.seq)
when not matched
then insert
 (
 tgt.object_map_id
 , tgt.prod_flg
 , tgt.source_object_name
 , tgt.target_object_name
 , tgt.seq
 , tgt.object_type_flg
 , tgt.char_entity_flg
 , tgt.upd_dttm
 , tgt.upd_user
 , tgt.owner_flg
)
 values
 (
 b1_object_map_seq.nextval
 , tgt_val.prod_flg
 , tgt_val.source_object_name
 , tgt_val.target_object_name
 , tgt_val.seq
 , tgt_val.object_type_flg
 , null
 , sysdate
 , sys_context('userenv', 'os_user')
 ,'B1');
 merge
 into b1_object_map tgt
 using (select 'CCB' prod_flg
 , 'CD_PREM' source_object_name
 , 'CM_CF_BSEG_CALC'

target_object_name
 , 2 seq
 , 'DMDP' object_type_flg
 from dual) tgt_val
 on (tgt.prod_flg = tgt_val.prod_flg
 and tgt.source_object_name = tgt_val.source_object_name
 and tgt.target_object_name = tgt_val.target_object_name
 and tgt.seq = tgt_val.seq)
when not matched
then insert
 (
 tgt.object_map_id
 , tgt.prod_flg
 , tgt.source_object_name
 , tgt.target_object_name
 , tgt.seq
 , tgt.object_type_flg
 , tgt.char_entity_flg

Configuring Jobs in Fact Model

Extending Star Schema 4 - 66
Oracle Utilities Analytics Warehouse Developer’s Guide

 , tgt.upd_dttm
 , tgt.upd_user
 , tgt.owner_flg
)
 values
 (
 b1_object_map_seq.nextval
 , tgt_val.prod_flg
 , tgt_val.source_object_name
 , tgt_val.target_object_name
 , tgt_val.seq
 , tgt_val.object_type_flg
 , null
 , sysdate
 , sys_context('userenv', 'os_user')
 ,'B1');
COMMIT;

Configuring Jobs in Fact Model
To configure a job for the custom fact:

1. Login to the Oracle Data Integrator client.

2. On the designer, navigate to Load Plans and Scenarios > Accelerators > Oracle
Utilities Analytics Warehouse.

3. Right-click the B1_CFG_INSTANCE scenario and run in the context.

A fact job for that context is created. Also, dependency for the context specific
dimensions for this fact job is created.

Alternately, execute the scenario from the Oracle Data Integrator console as follows:

1. Login to the Oracle Data Integrator console.

The Oracle Data Integrator console is deployed when the WebLogic agent for Oracle
Data Integrator is created.

The URL format for the console is:

http://<Weblogic Host>:<Managed Server port>/odiconsole

2. Login to the Work repository using the ‘SUPERVISOR’ credential.

3. In the browser, navigate to Runtime > Scenario/Load Plan > Folders >
Accelerators > OUA.

4. Right-click the B1_CFG_INSTANCE scenario and execute it in the context. The
scenario is executed successfully.

After executing the scenario successfully, enable the fact job in Oracle Utilities Analytics
Warehouse Administration.

1. Login to Oracle Utilities Analytics Warehouse Administration.

2. On the ETL Configuration tab, click Job Configuration.

3. Search for the custom fact and edit it.

4. Select “Yes” from the Entity Active Flag drop-down list. The fact is enabled
successfully.

http://<Weblogic Host>:<Managed Server port>/odiconsole

Monitoring Job Executions

Extending Star Schema 4 - 67
Oracle Utilities Analytics Warehouse Developer’s Guide

Monitoring Job Executions
After the fact job is configured for customization and activated, monitor the job
execution using Oracle Utilities Analytics Warehouse Administration or SQL Developer.

To monitor the fact job execution using Oracle Utilities Analytics Warehouse
Administration:

1. Login to Oracle Utilities Analytics Warehouse Administration.

2. On the ETL Job Execution tab, enter the fact name.

3. Click Go to filter the data.

To view the latest execution, sort by the session end date.

Custom Materialized Views
A materialized view stores the aggregated data, helping the analytics to fetch data from
the materialized view.

Note: OOTB materialized views are not provided for Oracle Utilities
Network Management Systems and Oracle Utilities Work and Asset
Management.

This section provides the steps to create a materialized view on custom facts:

1. Creating Mapping for Materialized View

2. Creating Packages for Materialized View

3. Configuring Entities for Materialized View

4. Specifying Dependencies for Materialized View

5. Configuring Jobs for Materialized View

6. Monitoring Job Execution

Creating Mapping for Materialized View
To create mapping for a materialized view:

1. Login to the Oracle Data Integrator client.

2. On the Designer, navigate to the Models > User Customization >
<product_name>.

In this example, ‘CCB’ is the product.

3. Create a Materialized View folder (if not already existing).

4. Right-click the mapping and select New Mapping from the menu.

5. On the mapping editor, enter the mapping name in the Name field.

6. Navigate to Models > Target.

Expand the model and drag the source table (dimension or fact) into the target area
of the mapping editor.

7. Set up the appropriate join conditions between the source tables.

Creating Packages for Materialized View

Extending Star Schema 4 - 68
Oracle Utilities Analytics Warehouse Developer’s Guide

8. Navigate to Models > User Customization > CCB > Materialized View.

9. Drag and drop the materialized view to the mapping editor.

Note: Ensure the materialized view datastore is created in the Oracle
Data Integrator model before creating the mapping.

10. Map the Target Table (Materialized View) columns with those of the source
tables.

11. On the Flow tab, select “IKM BI Materialized View” from the Integration
Knowledge Modules (IKM) drop-down list.

12. Click Save.

13. Run the mapping so that the materialized view is created in the database.

14. Reverse the materialized view in Oracle Data Integrator so that the data type is same
in both Oracle Data Integrator and database.

Note: If the datastore structure is different in database and Oracle Data
Integrator, then execute the materialized view in Upgrade mode. Then,
modify the materialized view definition instead of refreshing it.

Creating Packages for Materialized View
To create a package for the new fact:

1. Login to the Oracle Data Integrator client.

2. Navigate to Designer > Models > User Customization > Materialized View >
Packages.

3. Right-click Package and select New Package from the menu.

4. On the package editor, enter the package name in the Name field.

5. Click the Diagram tab at the bottom of the editor.

6. From the Global Objects section, drag the B1_JOB_ID variable into the editor.

Modify the B1_JOB_ID variable to declare a variable.

7. Drag and drop the mapping into the editor and connect them in sequence.

8. Click Save to save the changes and close the package editor.

Navigate to Packages and expand it. The new package is displayed.

9. Right-click Generate Scenario. Enter the scenario name and click OK.

10. In the Packages folder, verify if the scenario object generated is listed.

Configuring Entities for Materialized View
To configure a new entity for a custom materialized view:

1. Login to Oracle Utilities Analytics Warehouse Administration.

2. On the ETL Configuration tab, click Target Entity. Click Add.

3. Enter the fact job details.

4. Enter the materialized view name. Click Save to save the details.

Specifying Dependencies for Materialized View

Extending Star Schema 4 - 69
Oracle Utilities Analytics Warehouse Developer’s Guide

Specifying Dependencies for Materialized View
This section provides a sample query to insert the dependency.

merge
 into b1_object_map tgt
 using (select 'CCB' prod_flg
 , 'DIM1' source_object_name
 , 'CM_MV' target_object_name
 , 1 seq
 , 'MVDP' object_type_flg
 from dual) tgt_val
 on (tgt.prod_flg = tgt_val.prod_flg
 and tgt.source_object_name = tgt_val.source_object_name
 and tgt.target_object_name = tgt_val.target_object_name
 and tgt.seq = tgt_val.seq)
when not matched
then insert
 (
 tgt.object_map_id
 , tgt.prod_flg
 , tgt.source_object_name
 , tgt.target_object_name
 , tgt.seq
 , tgt.object_type_flg
 , tgt.char_entity_flg
 , tgt.upd_dttm
 , tgt.upd_user
 , tgt.owner_flg
)
 values
 (
 b1_object_map_seq.nextval
 , tgt_val.prod_flg
 , tgt_val.source_object_name
 , tgt_val.target_object_name
 , tgt_val.seq
 , tgt_val.object_type_flg
 , null
 , sysdate
 , sys_context('userenv', 'os_user')
 ,'B1');

Configuring Jobs for Materialized View
To configure a job for the custom fact:

1. Login to Oracle Utilities Analytics Warehouse Administration.

2. On the ETL Configuration tab, select Job Configuration.

3. Click Add to add the job details.

4. On the Job Addition page, select a product from the Source Product drop-down
list, and then select the Instance Number.

5. Click the Search icon for the Target Entity field. Enter the fact name and click Go.

6. Click ID Value. On the Job Addition page, the target entity ID is populated.

7. Set the Slice Start Date/Time to “01-Jan-2000” or the extract date to which the
source instance is configured. Click Add to create the Job Configuration entry.

8. Enable the job while saving the new entry.

Monitoring Job Execution

Extending Star Schema 4 - 70
Oracle Utilities Analytics Warehouse Developer’s Guide

Monitoring Job Execution
After configuring the job for customization and activating it, monitor the job execution
using Oracle Utilities Analytics Warehouse Administration or SQL Developer.

To monitor the job execution using Oracle Utilities Analytics Warehouse Administration:

1. Login to Oracle Utilities Analytics Warehouse Administration.

2. On the ETL Job Execution tab, enter the fact name and click Go to filter the data.

To view the latest execution, sort by the session end date.

Extending Analytics 5 - 1
Oracle Utilities Analytics Warehouse Developer’s Guide

Chapter 5
Extending Analytics

The Analytics Dashboards in Oracle Utilities Analytics Warehouse cover a wide range of
reporting requirements. You often might need to see some additional data on the reports
to meet site specific requirements. If the data is not available in the star schemas, they can
be extracted using one of the support schema extension methods in Oracle Utilities
Analytics Warehouse.

Refer to the Extending Star Schema chapter for complete details on how this can be
done.

With the data available in the star schemas, the additional report requirements can be met
either by customizing any of the existing analytics or by adding brand new answers. The
sections below describe how to use Oracle Analytics Server to extend the analytics in
Oracle Utilities Analytics Warehouse product:

• Customizing Existing Analytics

• Creating New Analytics

Customizing Existing Analytics

Extending Analytics 5 - 2
Oracle Utilities Analytics Warehouse Developer’s Guide

Customizing Existing Analytics
This section describes how to use Oracle Analytics Server to customize Oracle Utilities
Analytics Warehouse. It includes the following:

• Modifying the RPD File

• Customizing Answers

• Customizing the Report Labels

Modifying the RPD File
All customer modifications must be done in a separate copy of the repository file, which
is separate from the product's out-of-the-box repository file. During upgrades to the
latest Oracle Utilities Analytics Warehouse version, any customization done should be
merged into the upgraded repository file through the Merge utility of Oracle Analytics
Server.

It is recommended that customers use a staging environment for the repository upgrade.
However, as long as the customer modifications are done on top of a copy of the base
repository file, the Oracle Analytics Server upgrade process should be able to handle
most customizations that may be made to the repository file. The simpler the changes,
the less complex is the upgrade procedure; hence, it is best to try to limit the changes
made to the repository file.

Note: For more information about managing, upgrading and merging
repository (.rpd) files, refer to the Managing Metadata Repositories for
Oracle Analytics Server documentation.

Customizing Answers
For the additional report requirements, if the need is to display additional attributes on an
existing report or to include an additional view, then it is recommended to customize the
answers delivered with the base product. Create a copy of the base product report and
make changes directly to the copy (do not modify the base product report). All user
modifications should be saved in a separate custom folder in order to guarantee that any
custom modifications are preserved when upgrading to newer versions of Oracle Utilities
Analytics Warehouse later on. The dashboard should be changed to point or refer to the
new custom report, or a new custom dashboard can be defined to make use of the
customized reports.

Note: The dashboards are overwritten during the upgrade. Any
mappings between dashboards and customized answers are lost and
must be re-mapped manually. Therefore, you should use a staging
environment for upgrade and manually remap dashboards before
moving the upgraded customized content into the production
environment.

For details about managing, upgrading, and merging presentation
catalogs, refer to the Configure and Manage the Presentation
Catalog section in the Administering Oracle Analytics Server
documentation.

For details about how to create or edit answers, refer to the Oracle
Analytics Server documentation.

https://docs.oracle.com/en/middleware/bi/analytics-server/metadata-oas/index.html
https://docs.oracle.com/en/middleware/bi/analytics-server/metadata-oas/index.html
https://docs.oracle.com/en/middleware/bi/analytics-server/administer-oas/configure-and-manage-presentation-catalog.html
https://docs.oracle.com/en/middleware/bi/analytics-server/build-reports-and-dashboards.html
https://docs.oracle.com/en/middleware/bi/analytics-server/build-reports-and-dashboards.html

Customizing the Report Labels

Extending Analytics 5 - 3
Oracle Utilities Analytics Warehouse Developer’s Guide

Customizing the Report Labels
You can customize labels or captions on an existing report or report columns. You can
provide an override description that is used on the reports instead of the base product
description. The override descriptions can be provided via the Base Field Maintenance
page under the Administration Dashboard in the Oracle Analytics Server Dashboards
menu. Once the changes are saved and the cache is cleared, upon the next login, the
override descriptions are seen on the report title or the column title.

Note: For more details, refer to the Administration Dashboards
Maintenance section in the Oracle Utilities Analytics Warehouse Installation
and Configuration Guide available in the Oracle Utilities Analytics
Warehouse documentation.

Creating New Analytics
If the additional report requirements are different from any of the base product reports,
you can choose to build a completely new report from scratch.

This section describes how to use Oracle Analytics Server to add new analytics, including:

• Creating New Answers

• Adding New Labels

• Customizing Hierarchy Levels

Creating New Answers
Note: Before creating new reports, it is recommended to have
knowledge of Oracle Analytics Server and Data Warehouse concepts. It
is also recommended to have some working knowledge in developing
reports using Oracle Analytics Server for a smoother implementation.

Oracle Utilities Analytics Warehouse provides out-of-the-box dashboards with rich and
varied set of analytics for Credit and Collection Analytics, Customer Analytics,
Distribution Analytics, Meter Data Analytics, Mobile Workforce Analytics, Outage
Analytics, Revenue Analytics, Exception Analytics, and Work and Assets Analytics.
However, if required, you can create new answers, or dashboards.

As described in the Customizing Existing Analytics section, the new answers should also
be saved in a separate custom folder so that they are not overwritten when upgrading to
newer versions of Oracle Utilities Analytics Warehouse later on.

You can create field labels for use in their answers, or the labels can be hard coded
directly in the answer if there are no multilingual/localization requirements. If the
product labels are used in an answer, they can get modified during upgrade to a newer
Oracle Utilities Analytics Warehouse release. At the best, Oracle tries to limit the changes
to the existing labels; however, there can be certain situations, when they are updated.
Hence, in rare cases, if you are making use of the base labels, then you can expect to have
an impact, when the label value changes in a newer release.

https://docs.oracle.com/en/industries/utilities/analytics/
https://docs.oracle.com/en/industries/utilities/analytics/

Adding New Labels

Extending Analytics 5 - 4
Oracle Utilities Analytics Warehouse Developer’s Guide

Adding New Labels
To use the label mechanism for new answers, the Custom Field Maintenance
dashboard can be used to add, update, and delete custom labels. These custom labels can
then be used in answers as well as in the presentation objects in the repository or RPD
file.

Note: Only custom field labels, identified by a Customer Modification
(CM) owner flag, can be updated or deleted. The new labels are created
with a Customer Modification (CM) owner flag. A label that already
exists cannot be created, so if a base labels already exists, you can update
the override label as described in the preceding section Creating New
Answers.

For more details, refer to the Administration Dashboards
Maintenance section in the Oracle Utilities Analytics Warehouse Installation
and Configuration Guide available in the Oracle Utilities Analytics
Warehouse documentation.

Customizing Hierarchy Levels
Usually, the Control Zone (CD_CTRL_ZONE) and Control Zone Secondary
(CD_CTRL_ZONE_SEC) dimensions have data in all the 6 levels
(PARENT_NCG_LVL1_NAME to PARENT_NCG_LVL6_NAME columns). If the
data is not available for any level, it will be considered a missing level. Data is displayed
incorrectly or it is missing.

These Control Zone and Control Zone Secondary prompts can be customized. The
dashboards in Oracle Utilities Analytics Warehouse can be adjusted to display the
available zone levels in the desired prompts and reports. This zone level mapping in
configured in OAS RPD.

For detailed configuration steps, refer to the knowledge article “Customizing Hierarchy
Levels in Oracle Utilities Analytics Warehouse (Doc ID 2273874.1)” available on My
Oracle Support (https://support.oracle.com/).

https://support.oracle.com/
https://docs.oracle.com/en/industries/utilities/analytics/
https://docs.oracle.com/en/industries/utilities/analytics/

Migrating Environments 6 - 1
Oracle Utilities Analytics Warehouse Developer’s Guide

Chapter 6
Migrating Environments

Most implementations have multiple environments based on the associated activities.
The exact number of environments and the purpose for each of them can vary from
implementation to implementation. Below are the typical environments expected during
an implementation.

• Development: Used to extend the capabilities of Oracle Utilities Analytics
Warehouse. All custom ELT and answers are developed in this environment.

• Acceptance: Typically used to perform functional validations based on the
source system and custom code. This environment does not involve any product
development.

• Production: Used to connect to Oracle Analytics Server and view the available
dashboards and analytics.

The implementation life cycle starts in the Development environment. The code is
moved to Acceptance environment, and finally into the Production environment. It is
possible to have more than three environments.

This chapter provides information about migrating the OAS and ODI components
across environments:

• Migrating OAS Components

• Migrating ODI Components

Migrating OAS Components

Migrating Environments 6 - 2
Oracle Utilities Analytics Warehouse Developer’s Guide

Migrating OAS Components
Migration of Oracle Analytics Server components from one environment to another
typically involves moving the two main components of the tool - the presentation
catalogs and the repository file.

The following sections focus on how to migrate each of these and whether a migration is
actually needed or not.

• Presentation Catalog

• Repository

Presentation Catalog
You are not expected to modify any of the catalogs delivered with the base product. This
being the case the catalogs from base product package can directly be deployed across
multiple environments. Follow the same steps as mentioned in the Oracle Utilities Analytics
Warehouse Installation and Configuration Guide in the Dashboard Component section.

You can extend the analytics by adding some additional dashboards and reports to cater
to any some additional business requirements. The details have been provided in the
Extending Analytics section. Make sure that the new objects are saved in a separate
folder/catalog other than the base product catalogs. With the extra objects in place, you
need to move these additional catalogs across their environments.

The recommended way from Analytics Server is to archive the catalogs from the source
environment, move the files across and unarchive them in the target environment. Oracle
Analytics Server provides the Catalog Manager utility for this purpose. The utility is
available for both Windows and UNIX machines and is installed along with the Oracle
Analytics Server product.

Follow these steps:

1. Start the Catalog Manager in the source Oracle Analytics Server environment.

2. Login in the Online mode.

3. Pick the custom catalogs created and archive them.

4. Save the archived files (.catalog) on the local server.

5. Move these catalog files to the target server through FTP or other available means.

6. Start the Catalog Manager in the target Oracle Analytics Server environment in the
Online mode.

7. Select Unarchive and select the catalog files that were moved.

Once the custom catalogs have been successfully deployed, the custom dashboards and
reports should start coming up on the target Oracle Analytics Server environment.

Note: For more details on the Catalog Manger, refer to the Oracle
Analytics Server documentation.

Repository
An implementation can create a custom version of the base product repository file for
some additional business requirements. In such cases, the modified repository file needs
to be migrated to the other Oracle Analytics Server environments that customers have.

https://docs.oracle.com/en/middleware/bi/analytics-server/administer.html
https://docs.oracle.com/en/middleware/bi/analytics-server/administer.html

Migrating ODI Components

Migrating Environments 6 - 3
Oracle Utilities Analytics Warehouse Developer’s Guide

The Oracle Analytics Server Administration Tool that comes with the Oracle Analytics
Server product can be used to save a copy of the repository file.

1. Start the Oracle Utilities Analytics Warehouse Administration Tool in the source
Oracle Analytics Server environment.

2. Open the repository in Online mode.

3. Navigate to File > Copy As > Repository.

4. Enter a custom name for the repository (such as CM_UtilitiesBusinessAnalytics) and
save the copy on the local machine.

5. Login to the Oracle Analytics Server Enterprise Manager console of the target
Oracle Analytics Server environment.

6. Navigate to BI Instance > Coreapplication > Deployment.

7. Lock and edit. The Repository text box is enabled.

8. Browse to select the modified RPD file and submit it.

9. Provide the RPD password and click Apply.

10. Activate the changes and restart Oracle Analytics Server services.

Note: If the database connections used by the repository in the target
environment are different, ensure to update the connection pool details
in the repository file before deploying it on the server.

Migrating ODI Components
Migrating Oracle Data Integrator components from one environment to another
typically involves exporting Oracle Data Integrator objects and importing them in the
new environment. The Development environment is the source and all the subsequent
environments are the targets where these objects are imported. The export and import
are limited to the custom code only.

Each environment should be built or upgraded using the provided installers. After
installation or upgrade of individual environments, the custom code can be exported
from the Development and imported into the subsequent environments.

The following sections provide the instructions that cover the custom code migration
from one environment to another.

Note: Before importing the code in an environment, purge the
execution log if any. Use the Smart export and Smart import option
when moving from one environment to other environments.

CM Project
To develop custom code create a custom project and ensure that all custom objects are
within this newly created project.

The primary benefit of doing this is that all custom code is completely isolated from the
out-of-the-box code. Also, the entire CM project can be exported and imported into the
subsequent environment.

CM Models

Migrating Environments 6 - 4
Oracle Utilities Analytics Warehouse Developer’s Guide

CM Models
In addition to a custom project, you may need to create a custom model folder to
organize your custom facts, dimensions, staging or replication objects. These should also
be exported from the Development environment into the subsequent environment.

CM Metadata
All the CM metadata created during the customizations should be applied into the
subsequent environments.

To simplify the process of migrating these:

1. Create a procedure CM_<PROD_FLG>_CREATE_METADATA.

2. Replace the <PROD_FLG> with the appropriate edge product code.

For example: CCB/NMS

3. Add appropriate data population scripts.

These should be written as merge statements so that existing rows are skipped and
only new rows are added. In case the metadata requires corrections, use the update
clause of the merge statement.

All tasks within the procedure should have the logical schema set to “Metadata”. The
schema names should not be hard coded.

In addition, create a package CM_<PROD_FLG>_CREATE_METADATA. Add the
created procedure as the first step and add the scenario B1_CFG_METADATA as a
second step. After migration the CM project to the new environment, execute this step
after the addition of the product instance. This job should be executed in the newly
created context for the product.

	Developer’s Guide
	Contents
	Preface
	Audience
	Prerequisite Knowledge
	Related Documents
	Conventions
	Abbreviations
	Documentation Accessibility
	Documentation Roadmap

	Chapter 1
	Getting Started
	Object Naming Convention
	Creating a Project
	Creating a Model Folder
	Using CM Metadata User Procedure

	Chapter 2
	User Extension Methods
	Dimension Patterns
	Extending Dimensions
	Fact Patterns
	Extending Facts
	Using Custom User-Defined Dimensions (UDD)
	Custom Dimensions
	Custom Facts

	Chapter 3
	Extending Replication
	Including Tables
	Adding Custom Tables for OUAF-Based Source Applications
	Adding Custom Tables for Oracle Utilities Network Management System
	Enabling Replication
	Creating Replicated Tables
	Executing Initial Sync
	Verifying Model Setup

	Chapter 4
	Extending Star Schema
	User Extensible Columns
	UDX Processing
	Populating User-Defined Columns
	Creating CM Mappings
	Creating CM Packages
	Resetting Dimensions
	Configuring CM Scenarios
	Monitoring Job Execution
	Validating Data Load

	Populating User Defined Foreign Keys
	Creating CM Views
	Creating CM Mappings
	Creating CM Packages
	Configuring CM Scenarios

	Star Schema
	Custom Dimensions
	Creating Dimension Table
	Importing Dimension into Model
	Importing Replicated Table into Replication Model
	Creating Replication Key View in Dimension Model
	Creating Mapping for Key Views in Dimension Model
	Creating Loading Views in Dimension Model
	Creating Mapping for Loading Views
	Creating Package for Loading Views
	Creating Staging Table in the Dimension Model
	Creating Mapping in Dimension Model
	Creating Package in Dimension Model
	Configuring Entities in Dimension Model
	Configuring Jobs in Dimension Model
	Monitoring Job Execution
	Validating the Data Loaded

	Custom Facts
	Creating Fact Tables
	Importing Fact Tables into Model
	Importing Replicated Tables into Fact Model
	Creating Key Tables in Fact Model
	Creating Mapping for Key Tables in Fact Model
	Creating Loading Views in Fact Model
	Creating Mapping to Loading Views for Fact Model
	Creating Aggregate Tables in Fact Model
	Creating Mapping to Load Aggregate Tables in Fact Model
	Creating Staging Tables in Fact Model
	Creating Error Tables in Fact Model
	Creating Mapping to Load Facts
	Creating Packages in Fact Model
	Configuring Entities in Fact Model
	Specifying Dependencies in Fact Model
	Configuring Jobs in Fact Model
	Monitoring Job Executions

	Custom Materialized Views
	Creating Mapping for Materialized View
	Creating Packages for Materialized View
	Configuring Entities for Materialized View
	Specifying Dependencies for Materialized View
	Configuring Jobs for Materialized View
	Monitoring Job Execution

	Chapter 5
	Extending Analytics
	Customizing Existing Analytics
	Modifying the RPD File
	Customizing Answers
	Customizing the Report Labels

	Creating New Analytics
	Creating New Answers
	Adding New Labels
	Customizing Hierarchy Levels

	Chapter 6
	Migrating Environments
	Migrating OAS Components
	Presentation Catalog
	Repository

	Migrating ODI Components
	CM Project
	CM Models
	CM Metadata

