
Oracle® Jipher
User's Guide

Release 10
G18237-03
January 2015

Oracle Jipher User's Guide, Release 10

G18237-03

Copyright © 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

1 What is Oracle Jipher?

The Java Cryptographic Architecture (JCA), Engine Classes, and Providers 1-2

FIPS 140 1-3

Jipher Artifacts 1-3

Independence from and Coexistence with Other Instances of OpenSSL 1-3

2 Downloading and Deploying Jipher

Downloading Jipher 2-1

Jipher Deployment 2-1

Check the Version of Your Jipher Deployment 2-1

3 Configuring an Application to Achieve FIPS 140 Compliance with Jipher

Provider Registration 3-2

Registering Jipher as the Most Preferred Provider 3-2

Registering the SUN and SunRsaSign Providers for JAR File Signature Verification 3-4

Registering Other Security Providers 3-5

Delayed Provider Selection 3-7

Configure the SunJSSE Provider to Select Jipher to Provide Cryptography 3-7

Permit Access to Internal JDK API Classes 3-8

Limit Protocol Versions, Cipher Suites, Key Material, and Named Groups 3-8

Ensure That Clients and Servers Only Use TLS 1.2 and TLS 1.3 3-8

Ensure TLS Cipher Suites Use FIPS 140 Algorithms from Jipher 3-9

Configure SSLContext with Key Material That Provides at Least 112-Bits of Security 3-10

Configure the Size of Ephemeral Diffie-Hellman Keys 3-10

Ensure the JSSE Only Uses FIPS 140 Approved Named Groups 3-10

Explicitly Selecting Jipher to Provide Cryptography 3-10

iii

Implicitly Selecting Jipher to Provide Cryptography 3-11

Configuring Jipher Through System Properties 3-11

FIPS 140 Enforcement Policy 3-14

4 Applying NIST Guidelines for TLS

Configure Minimum Key Sizes for Certificate Path Validation 4-1

Enable Revocation Checking 4-1

5 Jipher Performance Optimizations

KeyManager Selection 5-1

Elliptic Curve Key Pair Generation 5-1

6 Secure Coding Guidance

Avoiding Unnecessary In-Memory Buffering of Plaintext 6-1

7 Jipher Diagnostics

Confirming That a Java Application Is Using Jipher 7-1

Keeping Track of Security Provider Usage with the jdk.SecurityProviderService Java Flight
Recorder (JFR) Event 7-2

Reporting the Enforcement of FIPS 140 Restrictions 7-2

Reporting Misconfiguration 7-3

Reporting Abnormal Operation in OpenSSL Native Code 7-3

8 Jipher Reference Information

Supported Algorithm Strings 8-1

Supported Non-FIPS 140 Allowed Algorithms 8-11

Keysize Restrictions 8-12

KeyGenerator 8-12

KeyPairGenerator 8-12

AlgorithmParameterGenerator 8-13

Supported Elliptic Curve Names 8-14

Default Diffie-Hellman Parameters 8-14

Default Digital Signature Algorithm Parameters 8-14

iv

Preface

This guide shows you how to install, deploy, and configure Oracle Jipher, a Java cryptography
service provider that provides FIPS 140 validated cryptography. This guide also provides
technical information about available cryptographic engine class algorithms and default
parameter values.

Audience
Jipher is intended for administrators who need to deploy their organization's Java applications
in FIPS 140 regulated environments.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

1
What is Oracle Jipher?

Oracle Jipher is a Java Cryptographic Service Provider (CSP) that packages a Federal
Information Processing Standards (FIPS) 140 validated OpenSSL cryptographic module. It
enables deployment of Java applications in FIPS regulated environments. Jipher makes its
cryptographic services available to Java developers using the Java Cryptography Architecture
(JCA).

Jipher 10.35 supports the following runtimes:

• Oracle JDK 17

• GraalVM for JDK 17

• Oracle JDK 21

• GraalVM for JDK 21

Jipher 10.35 supports the following platforms:

• Oracle Linux 9 and 8 on x86-64 and aarch64

• Red Hat Linux 9 and 8 on x86-64 and aarch64

For TLS, Jipher supports the JDK JSSE provider, in particular, the SunJSSE provider for
TLSv1.2 and TLSv1.3.

Jipher, also known as JipherJCE, provides FIPS 140 cryptographic services by using the Java
Native Interface (JNI) to make calls into an embedded copy of an OpenSSL FIPS module. It
essentially maps Java cryptography API calls to OpenSSL API calls, which call into the
OpenSSL FIPS module. See FIPS-140 in the OpenSSL documentation for more information.

Jipher is distributed as a JAR file. This JAR file embeds two copies of the OpenSSL FIPS
module for each supported platform:

• A version of the OpenSSL FIPS module built from source code that has been tested by an
accredited Cryptographic and Security Testing Laboratory (CSTL), validated by the
Cryptographic Module Validation Program (CMVP), and issued a FIPS 140 validation
certificate

• A version of the OpenSSL FIPS module built from the FIPS 140 compliant baseline source
code with additional security patches applied, which is used by default

Note:

By default, Jipher prioritizes security over compliance by using the OpenSSL FIPS
module with the additional security patches. However, you can configure Jipher so
that a certified OpenSSL FIPS module would be used in compliance with the Federal
Information Security Modernization Act (FISMA). See Configuring Jipher Through
System Properties.

1-1

https://docs.openssl.org/3.0/fips/

The Java Cryptographic Architecture (JCA), Engine Classes, and
Providers

The JCA is a framework for working with cryptographic services, such as digital signature
algorithms, message digest algorithms, and key conversion services.

The JCA defines classes that provide the functionality of these cryptographic services. These
classes are called engine classes. An engine class provides the interface to a specific type of
cryptographic service, independent of a particular algorithm or provider.

The JCA includes both cryptographic engine classes, which support cryptographic algorithms
and non-cryptographic engine classes, which support non-cryptographic algorithms.

Cryptographic engine classes that support cryptographic algorithms provide one of the
following:

• Cryptographic operations, for example, encryption, digital signatures, and message
digests; these engine classes include Cipher, Mac, KEM, KeyAgreement,
MessageDigest, and Signature

• Generators or converters of cryptographic material such as keys and algorithm
parameters; these engine classes include KeyGenerator, KeyFactory,
SecretKeyFactory, SecureRandom, AlgorithmParameters, and
AlgorithmParameterGenerator

Non-cryptographic engine classes that support non-cryptographic algorithms provide one of
the following:

• Objects, such as keystores and certificates, that encapsulate cryptographic data and can
be used at higher layers of abstraction; these engine classes include KeyStore,
CertificateFactory, CertPathBuilder, CertPathValidator, and CertStore

• Protocols, such as TLS, and other higher level functionality that employ cryptographic
operations and the objects that encapsulate cryptographic data; these engine classes
include SSLContext, KeyManagerFactory, and TrustManagerFactory

A CSP, which is used interchangeably with the term "provider," is a package or set of packages
that implement one or more cryptographic services. To use the JCA, an application requests a
particular type of object, such as a MessageDigest, and a particular algorithm or service,
such as the SHA-256 algorithm, and gets an implementation from one of the installed
providers. For example, the following statement requests a SHA-256 message digest from an
installed provider:

md = MessageDigest.getInstance("SHA-256");

Alternatively, the program can request objects from a specific provider. For example, the
following statement requests a SHA-256 message digest from Jipher:

md = MessageDigest.getInstance("SHA-256", "JipherJCE");

See Java Cryptography Architecture (JCA) Reference Guide in Java Platform, Standard
Edition Security Developer's Guide for more information.

Chapter 1
The Java Cryptographic Architecture (JCA), Engine Classes, and Providers

1-2

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/Cipher.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/Mac.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/KEM.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/KeyAgreement.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/MessageDigest.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/Signature.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/KeyGenerator.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyFactory.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/SecretKeyFactory.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/SecureRandom.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/AlgorithmParameters.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/AlgorithmParameterGenerator.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyStore.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/cert/CertificateFactory.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/cert/CertPathBuilder.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/cert/CertPathValidator.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/cert/CertStore.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/net/ssl/SSLContext.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/net/ssl/KeyManagerFactory.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/net/ssl/TrustManagerFactory.html
https://docs.oracle.com/en/java/javase/21/security/java-cryptography-architecture-jca-reference-guide.html

FIPS 140
The Federal Information Processing Standards (FIPS) of the United States are a set of publicly
announced standards published by the National Institute of Standards and Technology (NIST).
The FIPS 140 standards detail security requirements for cryptographic modules. Accredited
Cryptographic and Security Testing Laboratories (CSTLs) test that cryptographic modules meet
FIPS 140 security requirements. Modules that meet these security requirements are issued a
Cryptographic Module Validation Program (CMVP) certificate.

Organizations that must comply with the Federal Information Security Modernization Act
(FISMA) include state agencies and private sector companies with government contracts.
FISMA mandates the use of FIPS 140 approved or allowed cryptography provided by
cryptographic modules with CMVP certificates.

You don't have to submit Jipher for testing to a CSTL nor do you need to acquire a CMVP
certificate.

Jipher Artifacts
Jipher is packaged in a .tar.gz file named jipher-10.35.tar.gz. It contains the Jipher
JAR file, which is named jipher-jce-10.35-se.jar.

This JAR file includes the following:

• A single instance of the Jipher provider classes

• For each supported platform:

– The Jipher native library, which provides access to OpenSSL functionality through the
JNI

– Two OpenSSL FIPS modules:

* A version of the OpenSSL FIPS module built from source code that has been
tested by a CSTL, validated by the CMVP, and issued a FIPS 140 validation
certificate

* A version of the OpenSSL FIPS module built from the FIPS 140 compliant
baseline source code with additional security patches applied, which is used by
default

– An OpenSSL configuration file

Independence from and Coexistence with Other Instances of
OpenSSL

Jipher explicitly loads the OpenSSL native code libraries embedded in the jipher-
jce-10.35-se.jar JAR file. Jipher is therefore independent of any other instance of
OpenSSL present on the system, including any instance that is part of the operating system
distribution. The embedded libraries do not export any symbols from the OpenSSL library, so
there will be no symbol clashes in a process that uses Jipher and also loads another instance
of OpenSSL.

Chapter 1
FIPS 140

1-3

2
Downloading and Deploying Jipher

Downloading Jipher
Download Jipher from Java Tools and Resources.

Jipher Deployment
Extract the Jipher JAR file from jipher-10.35.tar.gz. Add the Jipher JAR file, jipher-
jce-10.35-se.jar, to your class path or your module path. When placed on the module
path, it will be observable as the module com.oracle.jipher.

Note:

The JCA authenticates a security provider by verifying the JAR file's signature at
runtime. See Registering the SUN and SunRsaSign Providers for JAR File Signature
Verification. Consequently, you cannot extract the contents of the Jipher JAR file and
incorporate them into a JAR with dependencies (a JAR file that contains not only a
Java application but includes its dependencies) to simplify deployment.

At runtime, the native libraries appropriate for the platform on which Jipher is deployed are
automatically extracted from the Jipher JAR file to a temporary directory. By default, the value
of the java.io.tmpdir system property is used as a parent directory of this temporary
directory. Alternatively, you can specify this parent directory by setting the value of the
jipher.user.dir system property. See Configuring Jipher Through System Properties.

Check the Version of Your Jipher Deployment
The Jipher provider class is com.oracle.jipher.provider.JipherJCE. It contains a
main method that prints version information to standard output.

If you run this method and it prints version information without any errors, then the Jipher
native libraries have been successfully loaded:

$ java -cp jipher-jce-10.35-se.jar com.oracle.jipher.provider.JipherJCE
JipherJCE Provider 10.35[OpenSSL 3.4.1 11 Feb 2025] (implements AES,
DESede, Diffie-Hellman, DSA, ECDSA, ECDH, HMAC, PBKDF2, RSA, SHA-1,
SHA-2, SHA-3)

2-1

https://www.oracle.com/java/technologies/downloads/tools/#Jipher

3
Configuring an Application to Achieve FIPS
140 Compliance with Jipher

To achieve FIPS 140 compliance, your applications must use only FIPS-approved or NIST-
recommended cryptography provided by CMVP-certified cryptographic modules. However,
none of the providers included in the JDK are CMVP-certified.

Configure your application to achieve FIPS 140 compliance with Jipher by following these
following these steps:

Note:

If you haven't already done so, download and deploy Jipher as described in
Downloading and Deploying Jipher.

1. Register Jipher and other security providers required by the JCA and your application as
described in Provider Registration:

a. Registering Jipher as the Most Preferred Provider: It's recommended that you register
Jipher as the most preferred provider, in position 1 in the list of security providers.

b. Registering the SUN and SunRsaSign Providers for JAR File Signature Verification:
The JCA requires the SUN and SunRsaSign providers for JAR file signature
verification. The JDK requires this when a provider is first used to perform an
encryption operation.

Note:

The JCA requires a non-FIPS 140 allowed algorithm, the MD5withRSA
Signature algorithm, as a prerequisite for JAR file signature verification.
The SunRsaSign provider provides it.
With regards to FIPS 140 compliance, the MD5withRSA Signature
algorithm is used internally for a non-security-relevant purpose and is
acceptable in this instance.

c. Registering Other Security Providers: This section lists non-cryptographic and
cryptographic engine class algorithms not supported by Jipher, which your application
might require, and some guidance about registering the security providers that provide
these algorithms.

You can register a provider included in the JDK as long as it's not used to provide a
cryptographic engine class algorithm. (See The Java Cryptographic Architecture (JCA),
Engine Classes, and Providers.) However, it can be difficult to ensure that registering one
will not cause it to be used to provide a cryptographic engine class algorithm. For instance,
third-party dependencies and providers themselves can use other registered providers to
provide cryptographic engine class algorithms. It's therefore good practice to only register
providers required by your application. One option is to register a provider and then

3-1

unregister it once your application no longer needs it. See Registering the SUN and
SunRsaSign Providers for JAR File Signature Verification for an example.

2. If you're using the SunJSSE provider, which enables secure Internet communications by
providing implementations of the SSL, TLS, and DTLS protocols, then follow the steps
described in Configure the SunJSSE Provider to Select Jipher to Provide Cryptography.
The SunJSSE provider doesn’t provide its own cryptographic engine class algorithms for
these protocols. Instead, it uses the JCA to request implementations of cryptographic
engine class algorithms from other providers. These steps ensure that the SunJSSE
provider uses cryptographic engine class algorithms provided by Jipher and no other
provider.

3. In your application code, ensure that Jipher is the only security provider used to provide
cryptography. Follow the guidance in these sections:

• Explicitly Selecting Jipher to Provide Cryptography

• Implicitly Selecting Jipher to Provide Cryptography

Note:

If your application, as opposed to the JCA as described in the previous note,
requires a non-FIPS 140 allowed algorithm, then to achieve FIPS 140
compliance, you must change your application to no longer use that non-FIPS
140 allowed algorithm.

4. If required, configure some of Jipher's features through system properties. See Configuring
Jipher Through System Properties.

Provider Registration
To use a security provider that's not included in the JDK, such as Jipher, you must register it so
that the JCA can access its security services. You can register a provider statically or
dynamically.

Registering Jipher as the Most Preferred Provider
It's recommended that you register Jipher as the most preferred provider, in position 1 in the
list of security providers.

When an application requests an instance of an algorithm, without specifying which provider
should provide the implementation, the JCA searches the list of registered providers in
preference order. The JCA returns the implementation from the first provider supplying the
algorithm. Registering Jipher as the most preferred provider ensures that the JCA will select it
to provide certified implementations of algorithms allowed by FIPS 140 standards.

Chapter 3
Provider Registration

3-2

Note:

Registering Jipher as the most preferred provider does not guarantee that it will be
selected to provide an implementation of an algorithm. The following are some
reasons why Jipher might not be selected:

• The algorithm is not approved or allowed by FIPS 140 standards.

• The application wants to initialize the algorithm with a parameter not allowed by
FIPS 140 standards because, for example, the key size is too weak or the
algorithm parameters are not approved.

• The application wants to use the algorithm for an operation not allowed by FIPS
140 standards, for example, using SHA-1 to digest data to be signed or using
RSA (with PKCS #1 padding) for key transport.

• The algorithm is approved or allowed by FIPS 140 standards but Jipher doesn't
provide an implementation of it.

For example, the SUN provider provides implementations of algorithms that are
approved or allowed by FIPS 140 standards that Jipher doesn't provide. These
include:

– Truncated digests such as SHA-512/224, SHA-512/256,
SHA512/224withDSA, and SHA512/256withDSA

– Signature algorithms that use SHA3, which include SHA3-224withDSA,
SHA3-256withDSA, SHA3-384withDSA, and SHA3-512withDSA

As a result, the SUN provider (or another registered provider that doesn't provide
FIPS 140 validated cryptography) should be selected to provide an
implementation of an algorithm that is approved or allowed by FIPS 140
standards even though Jipher is registered as the most preferred provider.

See Registering Other Security Providers for a list of algorithms that the SUN
provider supports that aren't supported by Jipher.

You register a provider like Jipher in the following ways:

• Statically by specifying it in the list of registered providers in the java.security file

• Dynamically by calling either the addProvider or insertProviderAt method in the
java.security.Security class in your application code

See Step 8.1: Configure the Provider in How to Implement a Provider in the Java Cryptography
Architecture in Java Platform, Standard Edition Security Developer's Guide for steps on how to
do this.

Chapter 3
Provider Registration

3-3

https://docs.oracle.com/en/java/javase/21/security/howtoimplaprovider.html#GUID-831AA25F-F702-442D-A2E4-8DA6DEA16F33
https://docs.oracle.com/en/java/javase/21/security/howtoimplaprovider.html#GUID-C485394F-08C9-4D35-A245-1B82CDDBC031
https://docs.oracle.com/en/java/javase/21/security/howtoimplaprovider.html#GUID-C485394F-08C9-4D35-A245-1B82CDDBC031

Note:

It might be more fragile to register Jipher statically than dynamically. The following
describes how Jipher could be configured incorrectly and result in Jipher not being
used as expected. Of greatest concern is that this consequence might not be readily
apparent. Your application still works and doesn't report any errors, but it's not using
Jipher or FIPS 140 certified cryptography.

• Suppose the Jipher provider classes are not available to a JVM instance
because, for example, the jipher-jce-10.35-se.jar JAR file is not in the
class path. As a result, the JVM instance will silently fail to register Jipher when
configured to statically register it. The JVM instance will behave as though it
wasn't configured to statically register Jipher. This will in turn impact your
application's FIPS 140 compliance.

• If the JDK's java.security file has been edited to statically register Jipher,
then it might need to be re-edited if the JDK was reinstalled.

The following example is an excerpt from the java.security file. It registers Jipher in
position 1 by specifying its provider class, com.oracle.jipher.provider.JipherJCE. It
also registers the SUN provider in position 2, SunRsaSign in position 3, and SunJSSE in
position 4:

security.provider.1=JipherJCE
security.provider.2=SUN
security.provider.3=SunRsaSign
security.provider.4=SunJSSE
Other registered providers follow...

Note:

The list of statically registered providers is often longer. A more complete list better
ensures that a requested algorithm that is not supported by Jipher will be provided by
another provider.

In this example, because Jipher is registered at position 1, the JCA will retrieve cryptographic
engine class algorithm implementations from it first. If the JCA can't retrieve an implementation
of a requested algorithm from Jipher, it will attempt to retrieve an implementation from one of
the other registered providers. For example a request for the MD5 message digest algorithm,
which is not a FIPS 140 allowed algorithm, would result in the JCA retrieving the
implementation provided by the SUN provider.

Registering the SUN and SunRsaSign Providers for JAR File Signature
Verification

You must register the SUN and SunRsaSign providers because they provide algorithms, which
Jipher doesn't provide, that are required for JAR file signature verification.

Security providers, like Jipher, that provide algorithms for engine classes from the
javax.crypto package must be in a signed JAR file. The verification of a JAR file's signature

Chapter 3
Provider Registration

3-4

occurs when getting an algorithm instance from a class in the javax.crypto package. If JAR
file signature verification fails, then the provider is not selected to provide the implementation.

JAR file signature verification requires two algorithms that Jipher doesn't provide:

• The X.509 CertificateFactory algorithm provided by the SUN provider

• The MD5withRSA Signature algorithm provided by the SunRsaSign provider

These algorithms must be provided by a registered provider prior to verifying Jipher's JAR file
signature. Do this by registering the SUN and SunRsaSign providers.

If you want to minimize the number of registered providers in your application, you can
statically register the providers that are required for JAR file signature verification, then
dynamically unregister them once Jipher's JAR file signature is verified. The following example
demonstrates this:

static {
 // Dynamically register the "JipherJCE" provider if it has not already
been statically registered.
 if (Security.getProvider("JipherJCE") == null)
Security.insertProviderAt(new JipherJCE(), 1);

 // Trigger the javax.crypto.JarVerifier's certificate verification self-
test.
 // This assumes that the "SUN" and "SunRsaSign" providers have been
statically registered.
 Cipher.getInstance("AES", "JipherJCE");

 // Dynamically unregister the "SUN" and "SunRsaSign" providers
 Security.removeProvider("SUN");
 Security.removeProvider("SunRsaSign");
}

Registering Other Security Providers

As described in The Java Cryptographic Architecture (JCA), Engine Classes, and Providers,
some providers included in the JDK provide both cryptographic engine class algorithms and
non-cryptographic engine class algorithms. However, Jipher doesn't provide any non-
cryptographic engine class algorithms.

In addition, the SUN and SunRsaSign providers are needed for provider JAR file signature
verification. The JDK requires this when a provider is first used to perform an encryption
operation. See Registering the SUN and SunRsaSign Providers for JAR File Signature
Verification.

However, the fewer security providers that are registered, the lower the chance that a provider
other than Jipher will be selected to provide a cryptographic engine class algorithm that Jipher
doesn't support (due to FIPS 140 restrictions) or, in the case of delayed provider selection (see
Delayed Provider Selection), a cryptographic engine class algorithm that Jipher does support
initialized with a Key it does not support (due to FIPS 140 restrictions).

The SUN provider is optionally required to provide support for the following non-cryptographic
engine class algorithms:

• Loading certificates and building/validating certificate paths:

– X.509 CertificateFactory algorithm

Chapter 3
Provider Registration

3-5

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/cert/CertificateFactory.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/Signature.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/cert/CertificateFactory.html

– PKIX CertPathBuilder and CertPathValidator algorithms

– Collection CertStore algorithm

• Loading keystores and truststores:

– PKCS12 KeyStore algorithm

The SunJSSE provider is optionally required to provide TLS support through these non-
cryptographic engine class algorithms:

• PKIX KeyManagerFactory and TrustManagerFactory algorithms

• All the SSLContext algorithms

Note that the SUN and SunRsaSun providers support cryptographic engine class algorithms
that are supported by Jipher. Consequently, if you register these providers, it's important that
Jipher is registered with a higher preference than them as described in Registering Jipher as
the Most Preferred Provider.

The SUN provider supports the following cryptographic engine class algorithms that are not
supported by Jipher:

• KeyFactory:

– HSS/LMS

• MessageDigest:

– MD2

– MD5

– SHA-512/224

– SHA-512/256

• Signature:

– HSS/LMS

– NONEwithDSAinP1363Format

– SHA1withDSAinP1363Format

– SHA224withDSAinP1363Format

– SHA256withDSAinP1363Format

– SHA384withDSAinP1363Format

– SHA512withDSAinP1363Format

– SHA3-224withDSA

– SHA3-256withDSA

– SHA3-384withDSA

– SHA3-512withDSA

– SHA3-224withDSAinP1363Format

– SHA3-256withDSAinP1363Format

– SHA3-384withDSAinP1363Format

– SHA3-512withDSAinP1363Format

The SunRsaSign provider supports the following Signature engine class algorithms that are
not supported by Jipher:

Chapter 3
Provider Registration

3-6

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/cert/CertPathBuilder.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/cert/CertPathValidator.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/cert/CertStore.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyStore.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/net/ssl/KeyManagerFactory.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/net/ssl/TrustManagerFactory.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/net/ssl/SSLContext.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyFactory.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/MessageDigest.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/Signature.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/Signature.html

• MD2withRSA

• MD5withRSA

• SHA512/224withRSA

• SHA512/256withRSA

• SHA3-224withRSA

• SHA3-256withRSA

• SHA3-384withRSA

• SHA3-512withRSA

The SunJSSE provider does not support any cryptographic engine class algorithms not
supported by Jipher.

Delayed Provider Selection
Java cryptographic API classes that generate, import, or can be initialized with a key
(KeyGenerator, KeyPairGenerator, KeyFactory, SecretKeyFactory, Cipher,
KeyAgreement, Mac, and Signature) support delayed provider selection. A
getInstance(String algorithm) method call compiles a preference ordered list of
providers that support the algorithm. Later, when the init method is called, the first provider
in the compiled preference ordered list of providers that also supports the key (with regards to
size and format) is selected.

Configure the SunJSSE Provider to Select Jipher to Provide
Cryptography

The SunJSSE provider enables secure Internet communications by providing implementations
of the SSL, TLS, and DTLS protocols. It doesn’t provide its own cryptographic engine class
algorithms for these protocols. Instead, it uses the JCA to request implementations of
cryptographic engine class algorithms from other providers. Follow these configuration steps to
ensure that the SunJSSE provider uses cryptographic engine class algorithms provided by
Jipher and no other provider:

1. Permit Access to Internal JDK API Classes: This ensures that Jipher is allowed to provide
cryptography requested by the SunJSSE provider.

2. Registering Jipher as the Most Preferred Provider: This ensures that Jipher will be chosen
ahead of any other providers to provide an implementation of any algorithm it supports.
Also, register the SUN and SunRsaSign providers as described in Registering the SUN
and SunRsaSign Providers for JAR File Signature Verification.

3. Limit Protocol Versions, Cipher Suites, Key Material, and Named Groups: This ensures
that the SunJSSE provider never requests cryptography that Jipher does not support.

These steps combined ensure that the SunJSSE provider never uses any cryptography
provided by a non-FIPS 140 certified registered provider.

Chapter 3
Configure the SunJSSE Provider to Select Jipher to Provide Cryptography

3-7

Note:

If the following is true about your environment, then you only have to follow the steps
Permit Access to Internal JDK API Classes and Configure SSLContext with Key
Material That Provides at Least 112-Bits of Security:

• You're using JDK 21.

• It uses a standard JDK security property configuration where:

– The jdk.certpath.disabledAlgorithms security property specifies MD2 and
MD5.

– The jdk.tls.disabledAlgorithms security property specifies SSLv3, TLSv1,
TLSv1.1, and MD5withRSA.

• Jipher is registered as the most preferred provider and the only other registered
providers are SUN, SunRsaSign, and SunJSSE. See Registering Jipher as the
Most Preferred Provider.

Permit Access to Internal JDK API Classes
When a security provider provides the cryptography required by the SunJSSE to provide
TLSv1.2, it must access internal JDK API classes.

If Jipher attempts to access them, an IllegalAccessException is thrown. To prevent this
from happening, add one of the following command-line options when you run your Java
application depending on where you specified the Jipher JAR file

• On the class path:

--add-exports=java.base/sun.security.internal.spec=ALL-UNNAMED
• On the module path:

--add-exports=java.base/sun.security.internal.spec=com.oracle.jipher

Limit Protocol Versions, Cipher Suites, Key Material, and Named Groups

This section describes which SunJSSE parameters and properties to limit to the same levels
and values as Jipher. This ensures that the SunJSSE provider never requests cryptography
that Jipher does not support.

Ensure That Clients and Servers Only Use TLS 1.2 and TLS 1.3

Ensure that the security property jdk.tls.disabledAlgorithms includes the values SSLv3,
TLSv1, and TLSv1.1.

In addition, ensure that the system properties jdk.tls.server.protocols and
jdk.tls.client.protocols contain the values TLSv1.2 and TLSv1.3. See Customizing JSSE
in Java Platform, Standard Edition Security Developer's Guide for more information about
these system properties and other properties you can specify to customize JSSE.

In your code, call SSLContext.getInstance("TLS") instead of supplying specific TLS protocol
versions.

Chapter 3
Configure the SunJSSE Provider to Select Jipher to Provide Cryptography

3-8

https://docs.oracle.com/en/java/javase/21/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-A41282C3-19A3-400A-A40F-86F4DA22ABA9

Note:

Calling SSLContext.getInstance("TLS1.3") sets the ceiling for protocol versions. As
a result, this statement returns a context that allows TLS 1.0 and TLS 1.1 protocol
versions.

Ensure TLS Cipher Suites Use FIPS 140 Algorithms from Jipher

Depending on which TLS protocol version you want to support (TLS 1.2 or TLS 1.3), specify
the cipher suites that only require FIPS 140 allowed cryptography provided by Jipher as a
comma-separated list for the system properties jdk.tls.client.cipherSuites and
jdk.tls.server.cipherSuites. See Specifying Default Enabled Cipher Suites in Java
Platform, Standard Edition Security Developer's Guide for more information about these
system properties.

See The SunJSSE Provider in Java Platform, Standard Edition Security Developer's Guide for
a complete list of supported cipher suites.

TLS 1.2 cipher suites are expressed as follows:

TLS_<key exchange algorithm>_<authentication algorithm>_WITH_<cipher
algorithm>_<cipher strength>_<cipher mode>_<HASH or MAC>
TLS 1.3 cipher suites are expressed as follows:

TLS_<cipher algorithm>_<cipher strength>_<cipher mode>_<HASH or MAC>
The following table lists the values within a cipher suite's name that are supported by Jipher:

Table 3-1 Values Within a Cipher Suite's Name Supported by Jipher

Component Supported Supported but Not
Recommended

Key exchange algorithm ECDHE, DHE DH
Authentication algorithm ECDSA, RSA DSS
Cipher algorithm AES —

Cipher strength 256, 128 —

Cipher mode GCM CBC
HASH or MAC SHA384, SHA256 SHA

Cipher suites that use RSA for key exchange and authentication are expressed as follows:

TLS_RSA_WITH_<cipher algorithm>_<cipher strength>_<cipher mode>_<HASH or MAC>
These cipher suites are not supported.

See "Appendix D—RSA Key Transport" in NIST SP 800-52 Rev. 2: Guidelines for the
Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations for the
reasons why these cipher suites are not supported. In short, it is because RSA key transport
as used in TLS versions 1.0 through 1.2 is implemented using the PKCS #1 v1.5 padding
scheme.

Chapter 3
Configure the SunJSSE Provider to Select Jipher to Provide Cryptography

3-9

https://docs.oracle.com/en/java/javase/21/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-D61663E8-2405-4B2D-A1F1-B8C7EA2688DB
https://docs.oracle.com/en/java/javase/21/security/oracle-providers.html#GUID-7093246A-31A3-4304-AC5F-5FB6400405E2
https://csrc.nist.gov/pubs/sp/800/52/r2/final
https://csrc.nist.gov/pubs/sp/800/52/r2/final

Configure SSLContext with Key Material That Provides at Least 112-Bits of Security
Key managers are responsible for managing the key material which is used to authenticate the
local TLS endpoint to its peer. Configure your key manager with key material with the following
parameters so that the key material provides at least 112-bits of security:

• RSA: Modulus >= 2048

• DSA: (L, N) = (2048, 224), (2048, 256) or (3072, 256)

• EC: secp224r1, secp256r1, secp384r1, or secp521r1

See the section KeyManagerFactory Class in Java Platform, Standard Edition Security
Developer's Guide.

Note:

The system property jdk.tls.disabledAlgorithms has no impact on key size used
by the local TLS endpoint to generate a digital signature to authenticate itself to its
peer.
While jdk.tls.disabledAlgorithms=DSA, disables DSA (disables DSS cipher
suites), jdk.tls.disabledAlgorithms=DSA keySize < 2048 neither disables DSS
cipher suites nor does it prevent the local TLS endpoint from using a DSA private key
of less than 2048 bits when generating a signature to authenticate itself to its peer.

Configure the Size of Ephemeral Diffie-Hellman Keys
Set the system property jdk.tls.ephemeralDHKeySize to 2048.

Ensure the JSSE Only Uses FIPS 140 Approved Named Groups

FIPS 140 compliance requires the use of approved elliptic curves and safe-prime groups for
key establishment as documented in "Appendix D: Approved ECC Curves and FFC Safe-prime
Groups" in NIST SP 800-56A Rev. 3: Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography.

Set the system property jdk.tls.namedGroups to only allow the following:

• FIPS 140 approved named curves:

– secp256r1
– secp384r1
– secp521r1

• FIPS 140 approved FFC safe-prime Groups:

– ffdhe2048
– ffdhe3072
– ffdhe4096

Explicitly Selecting Jipher to Provide Cryptography

Chapter 3
Explicitly Selecting Jipher to Provide Cryptography

3-10

https://docs.oracle.com/en/java/javase/21/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-616A7E77-587C-44E0-9F69-92BEDF631D5F
https://csrc.nist.gov/publications/detail/sp/800-56a/rev-3/final
https://csrc.nist.gov/publications/detail/sp/800-56a/rev-3/final

When an application calls getInstance from an engine class such as MessageDigest,
Signature, KeyFactory, KeyPairGenerator, or Cipher to acquire an instance of a
cryptographic engine class algorithm, it can explicitly specify which provider should provide the
algorithm by calling one of the following:

• getInstance(String algorithm, String provider)
• getInstance(String algorithm, Provider provider)
One way to ensure that Jipher is the only security provider used to provide cryptography is to
explicitly specify that Jipher provide the instance of the algorithm in all getInstance method
calls used to acquire an instance of a cryptographic engine class algorithm, for example:

Cipher.getInstance("AES", "JipherJCE");

In practice, this is often infeasible because of the following:

• Applications often need to use other security providers to provide higher level functionality,
and these providers will internally make getInstance(String algorithm) calls to acquire
the cryptographic engine class algorithms they need to deliver the higher level functionality
they provide. For example the PKCS12 KeyStore algorithm provided by the SUN provider
internally uses other security providers to provide the cryptographic engine class
algorithms it uses to secure the key store.

• Applications often use third-party libraries that internally make getInstance(String
algorithm) calls to acquire cryptographic engine class algorithms they need to deliver the
functionality they provide.

Consequently, if your application, or one of its dependencies, calls getInstance(String
algorithm) from an engine class, then configure the JVM so that Jipher is implicitly selected
to provide the algorithm. See Implicitly Selecting Jipher to Provide Cryptography.

Implicitly Selecting Jipher to Provide Cryptography
To implicitly select Jipher whenever an application or one of its dependencies calls an engine
class's getInstance(String) method, follow these steps:

1. Register Jipher as the most preferred provider. See Provider Registration.

2. Configure your application and its dependencies to only request cryptographic engine
class algorithms that Jipher supports. For example, if you're using the SunJSSE provider
to provide secure Internet communications, then follow the steps described in Configure
the SunJSSE Provider to Select Jipher to Provide Cryptography. If your application
requires a non-FIPS 140 allowed algorithm, then to achieve FIPS 140 compliance, you
must change your application to no longer use that non-FIPS 140 allowed algorithm.

Configuring Jipher Through System Properties
You can configure some of the features of Jipher through the following system properties:

Chapter 3
Implicitly Selecting Jipher to Provide Cryptography

3-11

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/MessageDigest.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/Signature.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyFactory.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyPairGenerator.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/Cipher.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyStore.html
https://docs.oracle.com/en/java/javase/21/security/oracle-providers.html#GUID-3A80CC46-91E1-4E47-AC51-CB7B782CEA7D

Table 3-2 Jipher System Properties

System
Property

Description Default Value

java.securi
ty.debug

Standard Java system property.

If the value includes jipher or all, then debug logging through
System.err is enabled within Jipher. This prints debugging information,
including the library loading steps that are performed when Jipher is first
used.

None

java.io.tmp
dir

Standard Java system property.

This system property specifies the location of temporary files.

Jipher uses this value as the default location in which to create
temporary directories for storing native libraries. See
jipher.user.dir.

Typically /tm
p on Linux
operating
systems

jipher.user
.dir

Specifies the path location that Jipher uses to create temporary
directories to store library files. The user running the JVM process must
have write access to this directory when using Jipher. In addition, this
directory cannot be on a file system mounted with the noexec option.

Note:

Sometimes the /tmp directory is mounted
with the noexec option. If this is the case,
then set the jipher.user.dir system
property to another directory that has write
access and is on a file system that has not
been mounted with the noexec option.

The value of
java.io.tmp
dir,
typically /tmp
on Linux
operating
systems

jipher.fips
.enforcemen
t

Specifies the FIPS 140 enforcement policy to be applied at the Java
security provider layer. It can have one of the following values:

• FIPS: Approved algorithms and key lengths are permitted in
accordance with how they are used. Legacy use is permitted.

• FIPS_STRICT: Only algorithms and key lengths with Acceptable
approval status are permitted.

• NONE: No additional enforcement is performed; any enforcement
implemented in OpenSSL is still applied. This policy is intended to
be used during preproduction debugging. You may encounter
behavior that differs from the other policies such as:
– A different exception being thrown
– A delay in an exception being thrown; for example, an

exception may be thrown when a signature object is used
instead of when it is created or initialized

Acceptable is used by NIST to mean that the algorithm and key length is
safe to use.

Legacy use means that the algorithm or key length may be used only to
process already protected information, for example, to decrypt ciphertext
data or to verify a digital signature. See NIST SP 800-131A Rev. 2:
Transitioning the Use of Cryptographic Algorithms and Key Lengths and
FIPS 140 Enforcement Policy for more information.

FIPS

Chapter 3
Configuring Jipher Through System Properties

3-12

https://csrc.nist.gov/pubs/sp/800/131/a/r2/final
https://csrc.nist.gov/pubs/sp/800/131/a/r2/final

Table 3-2 (Cont.) Jipher System Properties

System
Property

Description Default Value

jipher.fips
.deactivate
SecurityPat
ches

Specifies whether Jipher prioritizes security (false) or compliance
(true).
The Jipher JAR file embeds two copies of the OpenSSL FIPS module
for each supported platform:

• A version of the OpenSSL FIPS module built from source code that
has been tested by a CSTL, validated by the CMVP, and issued a
FIPS 140 validation certificate

• A version of the OpenSSL FIPS module built from the FIPS 140
compliant baseline source code with additional security patches
applied, which is used by default

The system property jipher.fips.deactivateSecurityPatches
can have one of the following values:

• false: Jipher prioritizes security over compliance. It uses the
OpenSSL FIPS module with the additional security patches to
implement all the cryptography it provides.

• true: Jipher prioritizes compliance over security. It uses the
OpenSSL FIPS module without the additional security patches.

Caution:

Setting
jipher.fips.deactivate.security.p
atches to true incurs the serious risk
that security vulnerabilities, published as
Common Vulnerabilities and Exposures
(CVE) in the public domain, will become
exploitable in your deployment.

However, any change to the OpenSSL
FIPS module following FIPS 140 validation
renders it non-compliant, so Jipher's
default operation, setting
jipher.fips.deactivate.security.p
atches to false, is not strictly FIPS 140
compliant with FISMA. Some users prefer
to be strictly FIPS 140 compliant and use
the CSTL-tested and CMVP-validated
OpenSSL FIPS module that has been
issued a FIPS 140 validation certificate.
Others, like Oracle, use a recent baseline
of the OpenSSL FIPS module that is FIPS
140 compliant, add security patches, and
disclose this choice to customers and
auditors. Regardless of whether you
choose to be strictly FIPS 140 compliant
or use the OpenSSL FIPS module with the
additional security patches, Oracle
recommends disclosing this choice to
customers and auditors.

false

Chapter 3
Configuring Jipher Through System Properties

3-13

FIPS 140 Enforcement Policy
Jipher can perform enforcement of FIPS 140 algorithm usage and key sizes according to how
the algorithm and key is being used.

You can specify a FIPS 140 enforcement policy with the jipher.fips.enforcement system
property. See Configuring Jipher Through System Properties. The default policy, FIPS, permits
legacy use. This means that an algorithm or key length with "legacy use" status may be used,
but only to process already protected information, for example, to decrypt ciphertext data or to
verify a digital signature. The FIPS_STRICT policy only permits algorithms and key lengths with
Acceptable approval status. This is more restrictive though likely to be more stable over time.
See NIST SP 800-131A Rev. 2: Transitioning the Use of Cryptographic Algorithms and Key
Lengths for more information..

In general, the default FIPS policy is similar to the FIPS_STRICT policy except that the
FIPS_STRICT policy requires longer key lengths for digital signature verification and MACs for
various algorithms. The following table highlights these differences in bold.

Table 3-3 Minimum Key Lengths of the Default FIPS Policy and the FIPS_STRICT
Policy

Rule FIPS Policy FIPS_STRICT Policy

AES key bits >= 128 for symmetric encryption
and decryption

>= 128 for symmetric encryption
and decryption

DESede key bits Not supported for symmetric
encryption

= 192 for symmetric decryption

Not supported for symmetric
encryption and decryption

DH key bits >= 2048 for key generation and
key agreement

>= 2048 for key generation and
key agreement

DSA parameter bits (prime size, sub-prime size) is
one of (2048, 224), (2048, 256)
or (3072, 256) for key generation
and signature generation

(prime size, sub-prime size) is
one of (2048, 224), (2048, 256)
or (3072, 256) for key generation
and signature generation and
verification

DSA parameter bits prime size > 512 bits for
signature verification

See the previous table cell in this
column

EC curve bits >= 224 for key generation,
signature generation and key
agreement

>= 224 for key generation,
signature generation,
verification, and key agreement

EC curve bits >= 160 for signature verification See the previous table cell in this
column

HMAC key bits >= 0 for MAC >= 112 for MAC

Message digest algorithm != SHA-1 for signature generation != SHA-1 for signature generation
and verification

RSA key bits >= 2048 for asymmetric
encryption and decryption key
generation and signature
generation

>= 2048 for asymmetric
encryption and decryption key
generation and signature
generation and verification

RSA key bits >= 1024 for signature verification. See the previous table cell in this
column

Chapter 3
Configuring Jipher Through System Properties

3-14

https://csrc.nist.gov/pubs/sp/800/131/a/r2/final
https://csrc.nist.gov/pubs/sp/800/131/a/r2/final

Table 3-3 (Cont.) Minimum Key Lengths of the Default FIPS Policy and the
FIPS_STRICT Policy

Rule FIPS Policy FIPS_STRICT Policy

RSA padding != PKCS1 for asymmetric
encryption

!= PKCS1 for asymmetric
encryption

Chapter 3
Configuring Jipher Through System Properties

3-15

4
Applying NIST Guidelines for TLS

NIST SP 800-52 Rev. 2: Guidelines for the Selection, Configuration, and Use of Transport
Layer Security (TLS) Implementations specify that TLS servers should use minimum key sizes
when using certain algorithms and must perform revocation checking of the client certificate
when client authentication is used.

Configure Minimum Key Sizes for Certificate Path Validation
Update the security property jdk.certpath.disabledAlgorithms to add the following
restrictions:

• RSA keySize < 2048
• EC keySize < 256
See Disabled and Restricted Cryptographic Algorithms in Java Platform, Standard Edition
Security Developer's Guide.

Enable Revocation Checking
A certificate is a digitally signed statement, typically issued by a Certificate Authority (CA),
vouching for the identity and public key of an entity. Certificates used in TLS can be revoked by
the issuing CA if there is reason to believe that a certificate is compromised. NIST guidelines
specify that servers must perform revocation checking of the client certificate when client
authentication is used. In addition, the server must retrieve revocation information though the
Online Certificate Status Protocol (OCSP) or Certificate Revocation Lists (CRLs).

See PKIX TrustManager Support and Client-Driven OCSP and OCSP Stapling in Java
Platform, Standard Edition Security Developer's Guide for more information.

Follow these steps to enable revocation checking and client-driven OCSP.

1. Set the system property com.sun.net.ssl.checkRevocation to true.

2. Set the system property ocsp.enable to true.

3. Set the system property com.sun.security.enableCRLDP to true.

4-1

https://csrc.nist.gov/pubs/sp/800/52/r2/final
https://csrc.nist.gov/pubs/sp/800/52/r2/final
https://docs.oracle.com/en/java/javase/21/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-0A438179-32A7-4900-A81C-29E3073E1E90
https://docs.oracle.com/en/java/javase/21/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-ED23411A-B4AA-4E46-A5E9-619A0CF30151
https://docs.oracle.com/en/java/javase/21/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-E1A3A7C3-309A-4415-903B-B31C96F68C86

5
Jipher Performance Optimizations

KeyManager Selection
Only select NewSunX509, an X509KeyManager implementation in the SunJSSE provider, if
your application explicitly requires support for multiple and dynamic keystores, for example, a
server that provides Server Name Indication (SNI) support. See Multiple and Dynamic
Keystores in Java Platform, Standard Edition Security Developer's Guide for more information.

Elliptic Curve Key Pair Generation
The performance of the elliptic curve key pair generation algorithm provided by Jipher varies
depending on the elliptic curve.

Among the curves supported by Jipher, the National Security Agency (NSA) recommends the
use of the secp384r1 curve; refer to the Commercial National Security Algorithm (CSNA) Suite
1.0. However, the secp256r1 curve also supported by Jipher provides better performance. See
Supported Elliptic Curve Names.

5-1

https://docs.oracle.com/en/java/javase/21/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-C236C41B-54CA-4095-986B-7C62BBC419FB
https://docs.oracle.com/en/java/javase/21/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-C236C41B-54CA-4095-986B-7C62BBC419FB

6
Secure Coding Guidance

Avoiding Unnecessary In-Memory Buffering of Plaintext
The Cipher methods update and doFinal support data streaming. However, cipher
transformations that use an AES KeyWrap algorithm (defined in RFC 3394: Advanced
Encryption Standard (AES) Key Wrap Algorithm) such as AESWrap, AESWrapPad, AES/KW/
NoPadding, and AES/KWP/NoPadding don't lend themselves to data streaming because all
input data must be available before any of the input data can be fully processed. Consequently,
if an AESWrap transform Cipher object is initialized with the ENCRYPT_MODE operation, any
plaintext passed to an update method is copied into an internal buffer so that it may be later
processed during a subsequent doFinal method call. The Cipher object's internal plaintext
buffer is zeroed and freed when doFinal is invoked or when the Cipher object is garbage
collected. Applications that want to avoid plaintext being buffered by an AESWrap transform
Cipher object should avoid calling update. For example, consider the following code:

Cipher wrapper = Cipher.getInstance("AESWrap");
wrapper.init(Cipher.ENCRYPT_MODE, secretKey);
wrapper.update(plaintext);
byte[] cipherText = wrapper.doFinal();

You can replace it with the following:

Cipher wrapper = Cipher.getInstance("AESWrap");
wrapper.init(Cipher.ENCRYPT_MODE, secretKey);
byte[] cipherText = wrapper.doFinal(plaintext);

6-1

https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3394

7
Jipher Diagnostics

Confirming That a Java Application Is Using Jipher
If you set the system property java.security.debug to provider, the JVM will print trace
messages (typically to stderr) while your application is running that indicate which provider is
being used to provide each service and algorithm. The output is similar to the following:

Provider: MessageDigest.SHA-256 algorithm from: JipherJCE
Provider: Signature.SHA256withRSA verification algorithm from: JipherJCE
Provider: KeyGenerator.SunTls12Prf algorithm from: JipherJCE

If you set the system property java.security.debug to jipher, Jipher will print some
additional debugging information, including logging of library loading steps on first usage. The
output is similar to the following:

jipher: Libraries found in classpath JAR, loading from jar.
jipher: Attempting to locate libraries in classpath JAR file
jipher: Found jar:file:/usr/local/lib/jipher-jce-10.35-se.jar!/libs/linux_x64/
libjipher.so
jipher: Found jar:file:/usr/local/lib/jipher-jce-10.35-se.jar!/libs/linux_x64/
patched-fips.so
jipher: Found jar:file:/usr/local/lib/jipher-jce-10.35-se.jar!/libs/linux_x64/
patched-openssl.cnf
jipher: Creating temporary directory to store libraries: /tmp/
jiphertmp-10.35-1510124983029925122
jipher: Copying jar:file:/usr/local/lib/jipher-jce-10.35-se.jar!/libs/
linux_x64/libjipher.so contents to file /tmp/
jiphertmp-10.35-1510124983029925122/libjipher.so
jipher: Copying jar:file:/usr/local/lib/jipher-jce-10.35-se.jar!/libs/
linux_x64/patched-fips.so contents to file /tmp/
jiphertmp-10.35-1510124983029925122/fips.so
jipher: Copying jar:file:/usr/local/lib/jipher-jce-10.35-se.jar!/libs/
linux_x64/patched-openssl.cnf contents to file /tmp/
jiphertmp-10.35-1510124983029925122/openssl.cnf
jipher: Loading /tmp/jiphertmp-10.35-1510124983029925122/libjipher.so...
jipher: ...Done
jipher: Configuring openssl to load FIPS module from dir: /tmp/
jiphertmp-10.35-1510124983029925122
jipher: Configuring openssl using configuration in file: /tmp/
jiphertmp-10.35-1510124983029925122/openssl.cnf
jipher: FIPS ctx: fips available = 1, default available = 1; NULL ctx: fips
available = 0, default available = 0
jipher: Setting FIPS enforcement policy = FIPS

See The java.security.debug System Property in Java Platform, Standard Edition Security
Developer's Guide for more information.

7-1

https://docs.oracle.com/en/java/javase/21/security/troubleshooting-security.html#GUID-05F3E865-20FF-46EB-AC35-84D4B552CA48

Keeping Track of Security Provider Usage with the
jdk.SecurityProviderService Java Flight Recorder (JFR) Event

In JDK 20 and later, the Java Flight Recorder (JFR) event jdk.SecurityProviderService
records the details of java.security.Provider.getService(String type, String
algorithm) calls. This event contains the following fields:

Table 7-1 JFR Event jdk.SecurityProviderService Fields

Field Name Description

type Type of service

algorithm Algorithm name

provider Security provider

You can use the JFR event jdk.SecurityProviderService to confirm that a Java application
is using Jipher. This JFR event is disabled by default. You can enable it through JFR
configuration files or standard JFR options.

Reporting the Enforcement of FIPS 140 Restrictions
When enforcing FIPS 140 restrictions, Jipher throws an InvalidParameterException if
directed to generate the following:

• A SecretKey or KeyPair with a security strength of less than 112 bits

• A DSA AlgorithmParameters or a DSA KeyPair using domain parameters with sizes
other that those allowed by FIPS 140, which are (P=2048,Q=224), (P=2048,Q=256), and
(P=3072,Q=256)

• A Diffie-Hellman KeyPair using domain parameters that are not a FIPS 140 approved
safe prime group (see "Appendix D: Approved ECC Curves and FFC Safe-prime Groups"
in NIST SP 800-56A Rev. 3: Recommendation for Pair-Wise Key-Establishment Schemes
Using Discrete Logarithm Cryptography)

• An elliptic curve KeyPair using a curve that is not a FIPS 140 approved secp curve (see
again "Appendix D: Approved ECC Curves and FFC Safe-prime Groups").

Similarly, Jipher throws a ProviderException if directed to use the following:

• A KeyPair with a security strength of less than 80 bits to process secured data, for
example, to verify a signature or decrypt cipher text

• A SecretKey or KeyPair with a security strength of less than 112 bits to secure data, for
example, to generate a digital signature or encrypt plaintext

• SHA-1 to generate a signature

• A DSA KeyPair that does not use domain parameters allowed by FIPS 140 (listed
previously)

See "Table 2: Comparable security strengths of symmetric block cipher and asymmetric-key
algorithms" in NIST SP 800-57 Part 1 Rev. 5: Recommendation for Key Management: Part 1 –
General for the estimated security strengths of specific algorithms and key lengths.

Chapter 7
Keeping Track of Security Provider Usage with the jdk.SecurityProviderService Java Flight Recorder (JFR) Event

7-2

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/InvalidParameterException.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/SecretKey.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyPair.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/AlgorithmParameters.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyPair.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyPair.html
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyPair.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/ProviderException.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyPair.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/SecretKey.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyPair.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyPair.html
https://csrc.nist.gov/pubs/sp/800/57/pt1/r5/final
https://csrc.nist.gov/pubs/sp/800/57/pt1/r5/final

Reporting Misconfiguration
If Jipher can't extract the embedded native libraries to a temporary directory in the file system
and load them from there into the JVM process, then it throws a ProviderException. This
can happen if the user running the JVM process does not have permission to create the
temporary directory or to execute binaries stored in the encompassing file system.

If Jipher is statically registered and a ProviderException is thrown when loading the native
libraries, then the provider will not be registered. Other statically registered providers will still
be registered.

Reporting Abnormal Operation in OpenSSL Native Code
An error condition that arises in OpenSSL native code is reported to the application through the
following:

• A java.lang.Error, such as java.lang.OutOfMemoryError
• A java.lang.RuntimeException, either

java.lang.ArrayIndexOutOfBoundsException or
java.lang.IllegalArgumentException, indicating a programming error

• A ProviderException whose chained cause is an internal OpenSslException whose
detail message describes the OpenSSL error stack for use in debugging and
troubleshooting

Chapter 7
Reporting Misconfiguration

7-3

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/ProviderException.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/ProviderException.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Error.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/OutOfMemoryError.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/RuntimeException.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/ArrayIndexOutOfBoundsException.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/IllegalArgumentException.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/ProviderException.html

8
Jipher Reference Information

Supported Algorithm Strings
The following table lists the algorithm strings and their aliases supported by Jipher. These
strings are grouped by their associated engine class.

Table 8-1 Algorithm Strings Supported by Jipher

Engine Supported Algorithm Strings and Their
Aliases

Notes

SecureRandom DRBG (SHA1PRNG, CTRDRBG, CTRDRBG128,
NativePRNG, NativePRNGNonBlocking)

All aliases use the same underlying DRBG
algorithm from OpenSSL

MessageDigest SHA-1 (SHA, SHA1, 1.3.14.3.2.26,
OID.1.3.14.3.2.26)

—

SHA-224 (SHA224,
2.16.840.1.101.3.4.2.4,
OID.2.16.840.1.101.3.4.2.4)

SHA-256 (SHA256,
2.16.840.1.101.3.4.2.1,
OID.2.16.840.1.101.3.4.2.1)

SHA-384 (SHA384,
2.16.840.1.101.3.4.2.2,
OID.2.16.840.1.101.3.4.2.2)

SHA-512 (SHA512,
2.16.840.1.101.3.4.2.3,
OID.2.16.840.1.101.3.4.2.3)

—

SHA3-224 (2.16.840.1.101.3.4.2.7,
OID.2.16.840.1.101.3.4.2.7)

SHA3-256 (2.16.840.1.101.3.4.2.8,
OID.2.16.840.1.101.3.4.2.8)

SHA3-384 (2.16.840.1.101.3.4.2.9,
OID.2.16.840.1.101.3.4.2.9)

SHA3-512 (2.16.840.1.101.3.4.2.10,
OID.2.16.840.1.101.3.4.2.10)

—

Cipher AES (Rijndael, 2.16.840.1.101.3.4.1,
OID.2.16.840.1.101.3.4.1)

AES/CTR/NoPadding

—

8-1

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/SecureRandom.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/MessageDigest.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/Cipher.html

Table 8-1 (Cont.) Algorithm Strings Supported by Jipher

Engine Supported Algorithm Strings and Their
Aliases

Notes

AES_128/ECB/NoPadding
(2.16.840.1.101.3.4.1.1,
OID.2.16.840.1.101.3.4.1.1)

AES_192/ECB/NoPadding
(2.16.840.1.101.3.4.1.21,
OID.2.16.840.1.101.3.4.1.21)

AES_256/ECB/NoPadding
(2.16.840.1.101.3.4.1.41,
OID.2.16.840.1.101.3.4.1.41)

AES_128/CBC/PKCS5Padding (AES_128/CBC/
PKCS7Padding, 2.16.840.1.101.3.4.1.2,
OID.2.16.840.1.101.3.4.1.2)

AES_192/CBC/PKCS5Padding (AES_192/CBC/
PKCS7Padding, 2.16.840.1.101.3.4.1.22,
OID.2.16.840.1.101.3.4.1.22)

AES_256/CBC/PKCS5Padding (AES_256/CBC/
PKCS7Padding, 2.16.840.1.101.3.4.1.42,
OID.2.16.840.1.101.3.4.1.42)

AES_128/OFB/NoPadding
(2.16.840.1.101.3.4.1.3,
OID.2.16.840.1.101.3.4.1.3)

AES_192/OFB/NoPadding
(2.16.840.1.101.3.4.1.23,
OID.2.16.840.1.101.3.4.1.23)

AES_256/OFB/NoPadding
(2.16.840.1.101.3.4.1.43,
OID.2.16.840.1.101.3.4.1.43)

AES_128/CFB/NoPadding
(2.16.840.1.101.3.4.1.4,
OID.2.16.840.1.101.3.4.1.4)

AES_192/CFB/NoPadding
(2.16.840.1.101.3.4.1.24,
OID.2.16.840.1.101.3.4.1.24)

AES_256/CFB/NoPadding
(2.16.840.1.101.3.4.1.44,
OID.2.16.840.1.101.3.4.1.44)

AES/GCM/NoPadding
AES_128/GCM/NoPadding
(2.16.840.1.101.3.4.1.6,
OID.2.16.840.1.101.3.4.1.6)

AES_192/GCM/NoPadding
(2.16.840.1.101.3.4.1.26,
OID.2.16.840.1.101.3.4.1.26)

AES_256/GCM/NoPadding
(2.16.840.1.101.3.4.1.46,
OID.2.16.840.1.101.3.4.1.46)

—

Chapter 8
Supported Algorithm Strings

8-2

Table 8-1 (Cont.) Algorithm Strings Supported by Jipher

Engine Supported Algorithm Strings and Their
Aliases

Notes

DESede (TripleDES)

DESede/CBC/PKCS5Padding (DESede/CBC/
PKCS7Padding, OID.1.2.840.113549.3.7,
1.2.840.113549.3.7)

—

AES/KW/NoPadding (AESWrap, AES-KW)

AES_128/KW/NoPadding (AESWrap_128,
2.16.840.1.101.3.4.1.5,
OID.2.16.840.1.101.3.4.1.5)

AES_192/KW/NoPadding (AESWrap_192,
2.16.840.1.101.3.4.1.25, OID.
2.16.840.1.101.3.4.1.25)

AES_256/KW/NoPadding (AESWrap_256,
2.16.840.1.101.3.4.1.45,
OID.2.16.840.1.101.3.4.1.45)

RFC 3394

AES/KWP/NoPadding (AESWrapPad, AES-KWP)

AES_128/KWP/NoPadding (AESWrapPad_128,
2.16.840.1.101.3.4.1.8,
OID.2.16.840.1.101.3.4.1.8)

AES_192/KWP/NoPadding, (AESWrapPad_192,
2.16.840.1.101.3.4.1.28,
OID.2.16.840.1.101.3.4.1.28)

AES_256/KWP/NoPadding (AESWrapPad_256,
2.16.840.1.101.3.4.1.48,
OID.2.16.840.1.101.3.4.1.48)

RFC 5649

PBEWithHmacSHA1AndAES_128
PBEWithHmacSHA224AndAES_128
PBEWithHmacSHA256AndAES_128
PBEWithHmacSHA384AndAES_128
PBEWithHmacSHA512AndAES_128
PBEWithHmacSHA1AndAES_256
PBEWithHmacSHA224AndAES_256
PBEWithHmacSHA256AndAES_256
PBEWithHmacSHA384AndAES_256
PBEWithHmacSHA512AndAES_256

PBES2 password-based cipher

PBEWithSHA1AndDESede
(1.2.840.113549.1.12.1.3,
OID.1.2.840.113549.1.12.1.3)

PKCS #12 password-based encryption.
The key derivation function used for this
algorithm is a not a FIPS 140 allowed algorithm.
This algorithm will be removed in a future
release of Jipher. See Supported Non-FIPS 140
Allowed Algorithms.

RSA/ECB/PKCS1Padding (RSA)

RSA/ECB/NoPadding
—

Chapter 8
Supported Algorithm Strings

8-3

Table 8-1 (Cont.) Algorithm Strings Supported by Jipher

Engine Supported Algorithm Strings and Their
Aliases

Notes

RSA/ECB/OAEPPadding
RSA/ECB/OAEPWithSHA-1andMGF1Padding
(RSA/ECB/OAEPWithSHA1andMGF1Padding)

RSA/ECB/OAEPWithSHA-224andMGF1Padding
(RSA/ECB/OAEPWithSHA224andMGF1Padding)

RSA/ECB/OAEPWithSHA-256andMGF1Padding
(RSA/ECB/OAEPWithSHA256andMGF1Padding)

RSA/ECB/OAEPWithSHA-384andMGF1Padding
(RSA/ECB/OAEPWithSHA384andMGF1Padding)

RSA/ECB/OAEPWithSHA-512andMGF1Padding
(RSA/ECB/OAEPWithSHA512andMGF1Padding)

—

KeyFactory RSA (1.2.840.113549.1.1,
OID.1.2.840.113549.1.1,
1.2.840.113549.1.1.1,
OID.1.2.840.113549.1.1.1)

RSASSA-PSS (PSS, 1.2.840.113549.1.1.10,
OID.1.2.840.113549.1.1.10)

EC (EllipticCurve, 1.2.840.10045.2.1,
OID.1.2.840.10045.2.1)

DSA (1.2.840.10040.4.1,
OID.1.2.840.10040.4.1, 1.3.14.3.2.12)

DH (DiffieHellman,
1.2.840.113549.1.3.1,
OID.1.2.840.113549.1.3.1)

—

Signature SHA1withRSA (1.2.840.113549.1.1.5,
OID.1.2.840.113549.1.1.5,
1.3.14.3.2.29, OID.1.3.14.3.2.29)

SHA224withRSA (1.2.840.113549.1.1.14,
OID.1.2.840.113549.1.1.14)

SHA256withRSA (1.2.840.113549.1.1.11,
OID.1.2.840.113549.1.1.11)

SHA384withRSA (1.2.840.113549.1.1.12,
OID.1.2.840.113549.1.1.12)

SHA512withRSA (1.2.840.113549.1.1.13,
OID.1.2.840.113549.1.1.13)

NONEwithRSA

RSA with PKCS1

RSASSA-PSS (1.2.840.113549.1.1.10,
OID.1.2.840.113549.1.1.10)

—

Chapter 8
Supported Algorithm Strings

8-4

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyFactory.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/Signature.html

Table 8-1 (Cont.) Algorithm Strings Supported by Jipher

Engine Supported Algorithm Strings and Their
Aliases

Notes

SHA1withECDSA (1.2.840.10045.4.1,
OID.1.2.840.10045.4.1)

SHA224withECDSA (1.2.840.10045.4.3.1,
OID.1.2.840.10045.4.3.1)

SHA256withECDSA (1.2.840.10045.4.3.2,
OID.1.2.840.10045.4.3.2)

SHA384withECDSA (1.2.840.10045.4.3.3,
OID.1.2.840.10045.4.3.3)

SHA512withECDSA (1.2.840.10045.4.3.4,
OID.1.2.840.10045.4.4.4)

NONEwithECDSA

—

SHA1withDSA (DSA, DSS, SHA/DSA, SHA-1/DSA,
SHA1/DSA, SHAwithDSA, DSAWithSHA1,
1.2.840.10040.4.3,
OID.1.2.840.10040.4.3, 1.3.14.3.2.13,
OID.1.3.14.3.2.13, 1.3.14.3.2.27,
OID.1.3.14.3.2.27)

SHA224withDSA (2.16.840.1.101.3.4.3.1,
OID.2.16.840.1.101.3.4.3.1)

SHA256withDSA (2.16.840.1.101.3.4.3.2,
OID.2.16.840.1.101.3.4.3.2)

SHA384withDSA (2.16.840.1.101.3.4.3.3,
OID.2.16.840.1.101.3.4.3.3)

SHA512withDSA (2.16.840.1.101.3.4.3.4,
OID.2.16.840.1.101.3.4.3.4)

NONEwithDSA (RawDSA)

—

Mac HmacSHA1 (1.2.840.113549.2.7,
OID.1.2.840.113549.2.7)

HmacSHA224 (1.2.840.113549.2.8,
OID.1.2.840.113549.2.8)

HmacSHA256 (1.2.840.113549.2.9,
OID.1.2.840.113549.2.9)

HmacSHA384 (1.2.840.113549.2.10,
OID.1.2.840.113549.2.10)

HmacSHA512 (1.2.840.113549.2.11,
OID.1.2.840.113549.2.11)

—

HmacPBESHA1
HmacPBESHA224
HmacPBESHA256
HmacPBESHA384
HmacPBESHA512

PKCS #12 password-based encryption HMAC
algorithms
The key derivation function used for these
algorithms is not a FIPS 140 allowed algorithm.
These algorithms will be removed in a future
release of Jipher. See Supported Non-FIPS 140
Allowed Algorithms.

Chapter 8
Supported Algorithm Strings

8-5

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/Mac.html

Table 8-1 (Cont.) Algorithm Strings Supported by Jipher

Engine Supported Algorithm Strings and Their
Aliases

Notes

KeyGenerator HmacSHA1 (1.2.840.113549.2.7,
OID.1.2.840.113549.2.7)

HmacSHA224 (1.2.840.113549.2.8,
OID.1.2.840.113549.2.8)

HmacSHA256 (1.2.840.113549.2.9,
OID.1.2.840.113549.2.9)

HmacSHA384 (1.2.840.113549.2.10,
OID.1.2.840.113549.2.10)

HmacSHA512 (1.2.840.113549.2.11,
OID.1.2.840.113549.2.11)

—

Chapter 8
Supported Algorithm Strings

8-6

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/KeyGenerator.html

Table 8-1 (Cont.) Algorithm Strings Supported by Jipher

Engine Supported Algorithm Strings and Their
Aliases

Notes

AES (Rijndael, 2.16.840.1.101.3.4.1,
OID.2.16.840.1.101.3.4.1)

AES_128/ECB/NoPadding
(OID.2.16.840.1.101.3.4.1.1,
2.16.840.1.101.3.4.1.1)

AES_192/ECB/NoPadding
(OID.2.16.840.1.101.3.4.1.21,
2.16.840.1.101.3.4.1.21)

AES_256/ECB/NoPadding
(OID.2.16.840.1.101.3.4.1.41,
2.16.840.1.101.3.4.1.41)

AES_128/CBC/PKCS5Padding (AES_128/CBC/
PKCS7Padding,
OID.2.16.840.1.101.3.4.1.2,
2.16.840.1.101.3.4.1.2)

AES_192/CBC/PKCS5Padding (AES_192/CBC/
PKCS7Padding,
OID.2.16.840.1.101.3.4.1.22,
2.16.840.1.101.3.4.1.22)

AES_256/CBC/PKCS5Padding (AES_256/CBC/
PKCS7Padding,
OID.2.16.840.1.101.3.4.1.42,
2.16.840.1.101.3.4.1.42)

AES_128/OFB/NoPadding
(OID.2.16.840.1.101.3.4.1.3,
2.16.840.1.101.3.4.1.3)

AES_192/OFB/NoPadding
(OID.2.16.840.1.101.3.4.1.23,
2.16.840.1.101.3.4.1.23)

AES_256/OFB/NoPadding
(OID.2.16.840.1.101.3.4.1.43,
2.16.840.1.101.3.4.1.43)

AES_128/CFB/NoPadding
(OID.2.16.840.1.101.3.4.1.4,
2.16.840.1.101.3.4.1.4)

AES_192/CFB/NoPadding
(OID.2.16.840.1.101.3.4.1.24,
2.16.840.1.101.3.4.1.24)

AES_256/CFB/NoPadding
(OID.2.16.840.1.101.3.4.1.44,
2.16.840.1.101.3.4.1.44)

AES_128/GCM/NoPadding
(OID.2.16.840.1.101.3.4.1.6,
2.16.840.1.101.3.4.1.6)

AES_192/GCM/NoPadding
(OID.2.16.840.1.101.3.4.1.26,
2.16.840.1.101.3.4.1.26)

—

Chapter 8
Supported Algorithm Strings

8-7

Table 8-1 (Cont.) Algorithm Strings Supported by Jipher

Engine Supported Algorithm Strings and Their
Aliases

Notes

AES_256/GCM/NoPadding
(OID.2.16.840.1.101.3.4.1.46,
2.16.840.1.101.3.4.1.46)

DESede (TripleDES,
OID.1.2.840.113549.3.7,
1.2.840.113549.3.7)

SunTls12Prf
SunTlsMasterSecret
(SunTls12MasterSecret,
SunTlsExtendedMasterSecret)

SunTlsKeyMaterial
(SunTls12KeyMaterial)

SunTlsRsaPremasterSecret
(SunTls12RsaPremasterSecret)

These non-standard KeyGenerator
algorithms are needed to provide the
cryptography required by the SunJSSE provider
to support TLSv1.2.

AlgorithmParameters EC (1.2.840.10045.2.1,
OID.1.2.840.10045.2.1)

DSA (1.2.840.10040.4.1,
OID.1.2.840.10040.4.1, 1.3.14.3.2.12,
OID.1.3.14.3.2.12)

DH (DiffieHellman,
1.2.840.113549.1.3.1,
OID.1.2.840.113549.1.3.1)

RSASSA-PSS (1.2.840.113549.1.1.10,
OID.1.2.840.113549.1.1.10)

—

Chapter 8
Supported Algorithm Strings

8-8

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/AlgorithmParameters.html

Table 8-1 (Cont.) Algorithm Strings Supported by Jipher

Engine Supported Algorithm Strings and Their
Aliases

Notes

AES (2.16.840.1.101.3.4.1,
OID.2.16.840.1.101.3.4.1,
2.16.840.1.101.3.4.1.2,
OID.2.16.840.1.101.3.4.1.2,
2.16.840.1.101.3.4.1.3,
OID.2.16.840.1.101.3.4.1.3,
2.16.840.1.101.3.4.1.4,
OID.2.16.840.1.101.3.4.1.4,
2.16.840.1.101.3.4.1.6,
OID.2.16.840.1.101.3.4.1.6,
2.16.840.1.101.3.4.1.22,
OID.2.16.840.1.101.3.4.1.22,
2.16.840.1.101.3.4.1.23,
OID.2.16.840.1.101.3.4.1.23,
2.16.840.1.101.3.4.1.24,
OID.2.16.840.1.101.3.4.1.24,
2.16.840.1.101.3.4.1.26,
OID.2.16.840.1.101.3.4.1.26,
2.16.840.1.101.3.4.1.42,
OID.2.16.840.1.101.3.4.1.42,
2.16.840.1.101.3.4.1.43,
OID.2.16.840.1.101.3.4.1.43,
2.16.840.1.101.3.4.1.44,
OID.2.16.840.1.101.3.4.1.44,
2.16.840.1.101.3.4.1.46
OID.2.16.840.1.101.3.4.1.46)

DESede (OID.1.2.840.113549.3.7,
1.2.840.113549.3.7)

GCM
OAEP (1.2.840.113549.1.1.7,
OID.1.2.840.113549.1.1.7)

—

PBES2 (1.2.840.113549.1.5.13,
OID.1.2.840.113549.1.5.13)

PBE
PBEWithSHA1AndDESede
(OID.1.2.840.113549.1.12.1.3,
1.2.840.113549.1.12.1.3)

The key derivation function used for the
PBEWithSHA1AndDESede algorithm is a not a
FIPS 140 allowed algorithm. The
PBEWithSHA1AndDESede algorithm will be
removed in a future release of Jipher. See
Supported Non-FIPS 140 Allowed Algorithms.

PBEWithHmacSHA1AndAES_128
PBEWithHmacSHA224AndAES_128
PBEWithHmacSHA256AndAES_128
PBEWithHmacSHA384AndAES_128
PBEWithHmacSHA512AndAES_128
PBEWithHmacSHA1AndAES_256
PBEWithHmacSHA224AndAES_256
PBEWithHmacSHA256AndAES_256
PBEWithHmacSHA384AndAES_256
PBEWithHmacSHA512AndAES_256

—

Chapter 8
Supported Algorithm Strings

8-9

Table 8-1 (Cont.) Algorithm Strings Supported by Jipher

Engine Supported Algorithm Strings and Their
Aliases

Notes

KeyPairGenerator RSA (1.2.840.113549.1.1,
OID.1.2.840.113549.1.1,
1.2.840.113549.1.1.1,
OID.1.2.840.113549.1.1.1)

RSASSA-PSS (PSS, 1.2.840.113549.1.1.10,
OID.1.2.840.113549.1.1.10)

EC (EllipticCurve, 1.2.840.10045.2.1,
OID.1.2.840.10045.2.1)

DSA (1.2.840.10040.4.1,
OID.1.2.840.10040.4.1, 1.3.14.3.2.12,
OID.1.3.14.3.2.12)

DH (DiffieHellman,
1.2.840.113549.1.3.1,
OID.1.2.840.113549.1.3.1)

—

AlgorithmParameterGen
erator

DSA (1.2.840.10040.4.1,
OID.1.2.840.10040.4.1, 1.3.14.3.2.12,
OID.1.3.14.3.2.12)

—

SecretKeyFactory AES
DESede (TripleDES)

—

PBEWithHmacSHA1AndAES_128
PBEWithHmacSHA224AndAES_128
PBEWithHmacSHA256AndAES_128
PBEWithHmacSHA384AndAES_128
PBEWithHmacSHA512AndAES_128
PBEWithHmacSHA1AndAES_256
PBEWithHmacSHA224AndAES_256
PBEWithHmacSHA256AndAES_256
PBEWithHmacSHA384AndAES_256
PBEWithHmacSHA512AndAES_256

—

PBKDF2WithHmacSHA1 (PBKDF2WithSHA1,
1.2.840.113549.1.5.12,
OID.1.2.840.113549.1.5.12)

PBKDF2WithHmacSHA224
(PBKDF2WithSHA224)

PBKDF2WithHmacSHA256
(PBKDF2WithSHA256)

PBKDF2WithHmacSHA384
(PBKDF2WithSHA384)

PBKDF2WithHmacSHA512
(PBKDF2WithSHA512)

—

PBEWithSHA1AndDESede
(OID.1.2.840.113549.1.12.1.3,
1.2.840.113549.1.12.1.3)

The key derivation function used for this
algorithm is a not a FIPS 140 allowed algorithm.
This algorithm will be removed in a future
release of Jipher. See Supported Non-FIPS 140
Allowed Algorithms.

Chapter 8
Supported Algorithm Strings

8-10

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/KeyPairGenerator.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/AlgorithmParameterGenerator.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/security/AlgorithmParameterGenerator.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/SecretKeyFactory.html

Table 8-1 (Cont.) Algorithm Strings Supported by Jipher

Engine Supported Algorithm Strings and Their
Aliases

Notes

KeyAgreement ECDH
DH (DiffieHellman,
1.2.840.113549.1.3.1,
OID.1.2.840.113549.1.3.1)

—

Supported Non-FIPS 140 Allowed Algorithms

Note:

Support for the PKCS #12 KDF algorithm will be removed in a future Jipher release.
Once Jipher no longer supports the PKCS #12 KDF algorithm, it will no longer
support the following algorithms (and aliases):

• AlgorithmParameters
– PBEWithSHA1AndDESede (OID.1.2.840.113549.1.12.1.3,

1.2.840.113549.1.12.1.3)

• Cipher
– PBEWithSHA1AndDESede (OID.1.2.840.113549.1.12.1.3,

1.2.840.113549.1.12.1.3)

• SecretKeyFactory
– PBEWithSHA1AndDESede (OID.1.2.840.113549.1.12.1.3,

1.2.840.113549.1.12.1.3)

• Mac
– HmacPBESHA1

– HmacPBESHA224

– HmacPBESHA256

– HmacPBESHA384

– HmacPBESHA512

Jipher supports the PKCS #12 Key Derivation Function (KDF) algorithm as described in
Appendix B. Deriving Keys and IVs from Passwords and Salt in RFC 7292 - PKCS #12:
Personal Information Exchange Syntax v1.1. This algorithm is not allowed by FIPS 140. This
algorithm is supported for interoperability reasons, specifically to support the following:

• Password integrity mode: Integrity is guaranteed through a Message Authentication Code
(MAC) derived from a secret integrity password. The PKCS #12 KDF algorithm is used to
derive a MAC key for this mode in the Mac algorithms HmacPBESHA1, HmacPBESHA224,
HmacPBESHA256, HmacPBESHA384, and HmacPBESHA512.

• Password privacy mode: Personal information is encrypted with a symmetric key derived
from a user name and a privacy password. The PKCS #12 KDF algorithm is used to derive

Chapter 8
Supported Non-FIPS 140 Allowed Algorithms

8-11

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/javax/crypto/KeyAgreement.html
https://datatracker.ietf.org/doc/html/rfc7292#appendix-B

a decryption key for this mode in the Cipher algorithm PBEWithSHA1AndDESede. Note
that this use of the PKCS #12 KDF algorithm is deprecated.

Keysize Restrictions
Jipher uses the following default key sizes (in bits) and enforces the following restrictions for
KeyGenerator, KeyPairGenerator, and AlgorithmParameterGenerator.

KeyGenerator
Jipher honors the system property jdk.security.defaultKeySize, which enables users to
configure the default key size used by KeyGenerator. The value of this property is a list of
comma-separated entries. Each entry consists of a case-insensitive algorithm name and the
corresponding default key size (in decimal) separated by a colon.

Table 8-2 KeyGenerator Algorithms and Default Key Sizes

Algorithm Name Default Key Size Restrictions and Comments

AES 256 if permitted by the
cryptographic policy (see
Import Limits on
Cryptographic Algorithms),
128 otherwise.

Key size must be equal to 128, 192, or 256.

AES_128/<mode>/<padding> 128 Key size must be equal to 128.

AES_192/<mode>/<padding> 192 Key size must be equal to 192.

AES_256/<mode>/<padding> 256 Key size must be equal to 256.

DESede (Triple DES) 192 Key size must be equal to 168 or 192.

HmacSHA1 160 Key size must be at least 40 bits.

Key sizes that are not a multiple of 8 are increased to the
next multiple of 8.

HmacSHA224 224 Key size must be at least 40 bits.

Key sizes that are not a multiple of 8 are increased to the
next multiple of 8.

HmacSHA256 256 Key size must be at least 40 bits.

Key sizes that are not a multiple of 8 are increased to the
next multiple of 8.

HmacSHA384 384 Key size must be at least 40 bits.

Key sizes that are not a multiple of 8 are increased to the
next multiple of 8.

HmacSHA512 512 Key size must be at least 40 bits.

Key sizes that are not a multiple of 8 are increased to the
next multiple of 8.

KeyPairGenerator
Jipher honors the system property jdk.security.defaultKeySize, which enables users to
configure the default key size used by KeyPairGenerator. The value of this property is a list
of comma-separated entries. Each entry consists of a case-insensitive algorithm name and the
corresponding default key size (in decimal) separated by a colon.

Chapter 8
Keysize Restrictions

8-12

https://docs.oracle.com/en/java/javase/21/security/oracle-providers.html#GUID-9224B90B-7B2F-41F9-BB96-C0A1B6A0FEAA
https://docs.oracle.com/en/java/javase/21/security/oracle-providers.html#GUID-9224B90B-7B2F-41F9-BB96-C0A1B6A0FEAA

Table 8-3 KeyPairGenerator Algorithms and Default Key Sizes

Algorithm Name Default Key Size Restrictions and Comments

DiffieHellman 3072 Key size must be equal to 2048, 3072 or 4096.

Algorithm parameter specification must specify
an approved FFC Safe-prime group defined in
SP 800-56A Rev. 3, "Appendix D: Approved
ECC Curves and FFC Safe-prime Groups."

DSA 2048 Key size must be equal to 2048 or 3072.

Algorithm parameter specification must specify
one of the following (prime size, sub-prime size)
domain parameter size pairings (2048, 224),
(2048, 256) or (3072, 256).

EC 256 Key size must be equal to 224, 256, 384, 521.

Algorithm parameter specification must specify
one the four approved ECC named curves listed
in Approved ECC Named Curves and SP
800-56A Rev. 3, "Appendix D: Approved ECC
Curves and FFC Safe-prime Groups" defined in
RFC 8422: Elliptic Curve Cryptography (ECC)
Cipher Suites for Transport Layer Security (TLS)
Versions 1.2 and Earlier.

RSA and RSASSA-PSS 3072 Key size must be between 2,048 and 15,360
bits.

The public exponent length must exceed 16 bits
and cannot exceed 256 bits.

If the key size exceeds 3072, then the public
exponent length cannot exceed 64 bits.

Approved ECC Named Curves

Standard for Efficient
Cryptography Group (SECG)
Name

NIST OID

secp224r1 P-224 1.3.132.0.33

secp256r1 P-256 1.2.840.10045.3.1.7

secp384r1 P-384 1.3.132.0.34

secp521r1 P-521 1.3.132.0.35

AlgorithmParameterGenerator

Table 8-4 AlgorithmParameterGenerator Algorithms and Default Key Sizes

Algorithm Name Default Key Size Restrictions and Comments

DSA 2048 Key size must be equal to 2048 or 3072.

Algorithm parameter specification must
specify one of the following (prime size,
sub-prime size) domain parameter size
pairings (2048, 224), (2048, 256), or
(3072, 256).

Chapter 8
Keysize Restrictions

8-13

https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://tools.ietf.org/html/rfc8422
https://tools.ietf.org/html/rfc8422
https://tools.ietf.org/html/rfc8422

Supported Elliptic Curve Names
Jipher supports only a fixed set of named (published) elliptic curves. These are NIST-
recommended curves based on prime fields.

The following table lists the elliptic curves that are provided by Jipher.

Table 8-5 Supported Elliptic Curve Names

Elliptic Curve Object Identifier and Aliases Aliases

secp224r1 1.3.132.0.33 P-224, P224
secp256r1 1.2.840.10045.3.1.7 P-256, P256, prime256v1
secp384r1 1.3.132.0.34 P-384, P384
secp521r1 1.3.132.0.35 P-521, P521

Default Diffie-Hellman Parameters
When generating Diffie-Hellman (DH) key pairs, default DH parameters are selected based on
key size. Supported key sizes are 2048, 3072, and 4096.

The default parameters are from RFC 7919: Negotiated Finite Field Diffie-Hellman Ephemeral
Parameters for Transport Layer Security.

Table 8-6 Default DH Parameters

Key Size Default Parameter

2048 ffdhe2048
3072 ffdhe3072
4096 ffdhe4096

Default Digital Signature Algorithm Parameters
When generating Default Digital Signature Algorithm (DSA) key pairs, default DSA parameters
are selected based on key size. Supported key sizes are 2048 and 3072.

The default parameters are verifiably generated using the FIPS 186-4 algorithm. Line breaks
have been added for the values of P and G for clarity.

Table 8-7 Default DSA Parameters for the Key Size 2048

Parameter Name Default Parameter Value

Qlen
224

Digest
SHA224

Chapter 8
Supported Elliptic Curve Names

8-14

https://datatracker.ietf.org/doc/html/rfc7919
https://datatracker.ietf.org/doc/html/rfc7919

Table 8-7 (Cont.) Default DSA Parameters for the Key Size 2048

Parameter Name Default Parameter Value

P
00F82CD0B121DF91E2F9D1A84A9A89402A40B9544184E1FDBD27B045D122D719
BF1CB7188330EA0E866D3DD2E779C81146316D7280DA9E09FFEA58F4219484B8
E7C606F8C6C15F5BD87C21730CC83484495EF991980DCE1D704C6FFB7330B691
CCEE948F39935BDF4A1E6CEDAAA6EF37C83868EA0FFA529537384E3595D14F50
FF044F9BA38CED5AB1B291D29C8DD2DA43C711E662666FE0C241835E2100C082
10FBF0E180F7941CD12C8D98BE70CD68FCC7F57D40EB447D68BA269F6A36E667
2D232B59077AD48933C95924E81C524775C7EB5E4D2996C21D7714DA89CF76C9
1C6E48E3678B80C75CE90437B3C8608886BB9595876C200CA77E554E6E0F724B
39

Q
00879D04B33B22C098583DE711AF3C6CEAB0BEBB0AAC1B5B5203154EEB

G
25895D1722207B2E06032D0269587DFDA581800D5510A5605888A7E9868BCFE6
25CFB6CFF9641AE18BDF0595CC3A7668F014D7E9A818006F7A6E63B1919A25E4
1389249F0880A968CB5E63714CA3B7CACFFB1C27BE121F7E4122FB711FCEA26F
7FE2645799A9AF6007D00F846B04242A1A9664F084BD06762C66BF2BB1E42CFD
F5CAE58BD4796272150A304115ACF499FACF41F57225CA6EEDFCB909F0331B97
19E5B80F18399A677D0574BED3FDEA92BD05524B0FBCED902B73A203E26A864C
99994B19B7C93959E58D5623480349B4468B47975C0F8676F05A429DFE31D7FB
9A100F73C8B17C151391C63E814F93F7F249B7E861C7958DF56D021063DEA150

seed
767E82C5AB98153654160E06634B2B4DBE865E837C57FFD8DF03C16B

j
02

counter
112

Table 8-8 Default DSA Parameters for the Key Size 3072

Parameter Name Default Parameter Value

Qlen
256

Digest
SHA25

Chapter 8
Default Digital Signature Algorithm Parameters

8-15

Table 8-8 (Cont.) Default DSA Parameters for the Key Size 3072

Parameter Name Default Parameter Value

P
00B4E9351B2591E98FD2AA7A1CA493E8BD6E2DD66D1BBA15871CE860EFEE68B8
AE7656E8C4D2C31F448C9F9E669D5675DC6891797F3027A1CD4F8B1E4B1B5E58
2D18CDFAED592A1C16E313CD9040A90926191D8EEA85A07A36F5D38518C90E60
1312289A755AD50ACDD302C834CC15BAA0583B8AADEE7FF1CABB28D4E7A48654
60E04A0F04DD682A35D16B56B667EF8C0C83F9E734AC1BE4041C435BA032B29A
BB2B1B0D4A814AD7A8D79DA3D53CEE7CF384A7E411FC8FD88E885F7AFBA91BC0
70483971A6DBA3E66A15D789285A788AA0EFDC0CCBC75B379A5F328353D27455
41521B8E8030B0AE395B586A88AA2D591C3C303D509978E05292D0CF47298B14
C42372C394B85208B6E3D80EBAB2B53D966523F645F1F0156FEC921C049758F8
373AF0C400D761E5971C29A5720AE7419C785E7BC6BAFD00BA9A7DC75908CD42
3BBF323A092FE7BB71C77C10BA97FE1755D00D98FDFC49C86671202292D3E4AE
C66E7544DAF07196C17AF4F40452B54B2E1494B9E3FD871F67B9ACCBFFA14C8C
5D

Q
0095527504A11CDD911A915EE8123BC1FE7B77EA7F9B694736907670D823AEA19D

G
00A5062CD5370449DE0274E7E9610D1F1212ADB33B78DBA9507DD62DD0BBE6CB
1C00619192388F5FD705C2C25A2D90937BB294EA3D675651A8700575058DBC00
2C62BCD9781830AAE9DCA5ACE8E563B4B4A8752B5E9EAACE284233276B5EAA25
3F2529136B9B46B2FBA732BD9EBDCAA5581910A5DA161D12EFDCDBA15B5E3A60
AE362F475C0666238B15EB1C3CFCA0D2BE85B75B47A4F790E58F977AA4FC4858
0EBBC16A0F83E9843568C886401B68025A078793F5114890D3FD0AAC5B2F5567
0013A460C052A3BBDFB72FE1E102F0B9B535DB93FAA281B9315BF5043269B1E6
C29C10A31EDBD914E3014E25347790DC71212A1313EEE4DA9AA6F933E3AEFE81
38DD0CAF20F87A75869082ED9AB8BD6E983E37F3DBFDE5E1C6DC4EC3331F649D
3E72EB5005327C7D7C604CD751D5E579A8857515F810DDD01DD8B55BC3DFB57E
79E2E2E2D1431D1DD3032598FBBBEFD7E354CFC854D3CBC37F5343B3BC6A2028
374AE3B82746A7EB7BD7D4BD933F22B85DE33B6AC3B012C3205876C28EC07215
3B

seed
DF43673D7428A318F885D40BF7B2BF6C0B977BB7E521C6CE83E347F31B28B0E5

j
02

counter
1543

Chapter 8
Default Digital Signature Algorithm Parameters

8-16

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 What is Oracle Jipher?
	The Java Cryptographic Architecture (JCA), Engine Classes, and Providers
	FIPS 140
	Jipher Artifacts
	Independence from and Coexistence with Other Instances of OpenSSL

	2 Downloading and Deploying Jipher
	Downloading Jipher
	Jipher Deployment
	Check the Version of Your Jipher Deployment

	3 Configuring an Application to Achieve FIPS 140 Compliance with Jipher
	Provider Registration
	Registering Jipher as the Most Preferred Provider
	Registering the SUN and SunRsaSign Providers for JAR File Signature Verification
	Registering Other Security Providers
	Delayed Provider Selection

	Configure the SunJSSE Provider to Select Jipher to Provide Cryptography
	Permit Access to Internal JDK API Classes
	Limit Protocol Versions, Cipher Suites, Key Material, and Named Groups
	Ensure That Clients and Servers Only Use TLS 1.2 and TLS 1.3
	Ensure TLS Cipher Suites Use FIPS 140 Algorithms from Jipher
	Configure SSLContext with Key Material That Provides at Least 112-Bits of Security
	Configure the Size of Ephemeral Diffie-Hellman Keys
	Ensure the JSSE Only Uses FIPS 140 Approved Named Groups

	Explicitly Selecting Jipher to Provide Cryptography
	Implicitly Selecting Jipher to Provide Cryptography
	Configuring Jipher Through System Properties
	FIPS 140 Enforcement Policy

	4 Applying NIST Guidelines for TLS
	Configure Minimum Key Sizes for Certificate Path Validation
	Enable Revocation Checking

	5 Jipher Performance Optimizations
	KeyManager Selection
	Elliptic Curve Key Pair Generation

	6 Secure Coding Guidance
	Avoiding Unnecessary In-Memory Buffering of Plaintext

	7 Jipher Diagnostics
	Confirming That a Java Application Is Using Jipher
	Keeping Track of Security Provider Usage with the jdk.SecurityProviderService Java Flight Recorder (JFR) Event
	Reporting the Enforcement of FIPS 140 Restrictions
	Reporting Misconfiguration
	Reporting Abnormal Operation in OpenSSL Native Code

	8 Jipher Reference Information
	Supported Algorithm Strings
	Supported Non-FIPS 140 Allowed Algorithms
	Keysize Restrictions
	KeyGenerator
	KeyPairGenerator
	AlgorithmParameterGenerator

	Supported Elliptic Curve Names
	Default Diffie-Hellman Parameters
	Default Digital Signature Algorithm Parameters

