
Java Platform, Standard Edition
Java Usage Tracker Guide

Release 1

E50948-10

April 2024

Java Usage Tracker
Java Usage Tracker tracks how Java Runtime Environments (JREs) are being used in
your systems. The output of Java Usage Tracker is a plain text, comma-separated
record that contains the JRE version, the application being run, and other details. This
record is appended to a file or sent over the network in a User Datagram Protocol
(UDP) packet.

Java Usage Tracker System Requirements
Java Usage Tracker is supported in all current versions of the JDK.

Note:

Java Usage Tracker was included in JDK 7, JDK 6u25 and later, JDK 5u38
and later, and JDK 1.4.2_35 and later. These versions of the JDK are no
longer supported.

Java Usage Tracker Output
The following is an example of output from Java Usage Tracker; it is a record of one
invocation of a Java application. Line breaks were added for clarity; each record
appears as one line of text:

"javaws application",
"Mon Sep 26 13:10:14 EDT 2022",
"MY-COMPUTER/192.0.2.0",
"https://docs.oracle.com/javase/tutorialJWS/samples/uiswing/
TreeDemoProject/:
 sourceURL=https://docs.oracle.com/javase/tutorialJWS/samples/uiswing/
TreeDemoProject/TreeDemo.jnlp
 app_model=<Base64 encoded data>",
"C:\Java\jre1.8.0_351",
"1.8.0_351",
"25.351-b10",

1

"Oracle Corporation",
"Oracle Corporation",
"Windows 10",
"amd64",
"10.0",
"-Xbootclasspath/
a:C:\Java\jre1.8.0_351\lib\deploy.jar;C:\Java\jre1.8.0_351\lib\javaws.j
ar;
 C:\Java\jre1.8.0_351\lib\plugin.jar -Xverify:remote -
Djava.security.manager
 -
Djava.security.policy=file:C:\Java\jre1.8.0_351\lib\security\javaws.pol
icy
 -DtrustProxy=true -Djnlpx.home=C:\Java\jre1.8.0_351\bin
 -Djnlpx.origFilenameArg=TreeDemo.jnlp -Djnlpx.remove=false -
Djnlpx.splashport=60867
 -Djnlpx.jvm=C:\Java\jre1.8.0_351\bin\javaw.exe ",
"C:\Java\jre1.8.0_351\lib\deploy.jar",
"user.home=C:\Users\MYUSER my.custom.property=null "

The following table describes each value of this comma-separated line:

Example Description

javaws application Type of start; it has one of the following
values:

• VM start: JVM start-up (either Java
application or JNI invocation)

• plugin2: Applet

• javaws application or javaws
applet: Java Web Start

The value about the type of start is followed by
one of the following values if there is a
Deployment Rule Set (DRS) that specifically
allows the application to run or block the app.

• permitted
• denied
• denied [required version

ruleVersion not available], where
ruleVersion is the minimum required
version of the Deployment Rule Set
specification

The value about the type of start is followed by
one of the following values if there is no DRS
run or block rule:

• denied [by user]
• denied [by security settings]
• No value (empty string): The application is

allowed to run

Mon Sep 26 13:10:14 EDT 2022 Date and time

2

Example Description

MY-COMPUTER/192.0.2.0 Host name and IP address in the form
<hostname>/<literalIPaddress>

https://docs.oracle.com/javase/
tutorialJWS/
 samples/uiswing/
TreeDemoProject/:
 sourceURL=https://
docs.oracle.com/javase/
 tutorialJWS/samples/uiswing/
 TreeDemoProject/TreeDemo.jnlp
 app_model=<Base64 encoded data>

Java command (name of main class or jar file)
and list of arguments, if any (space-separated
list)

Java Web Start applications have the following
form:

<Document base>:
 <main class> <arguments>
 app_model=<serialized classes
for use by AMC>
 app_customer=<contents of the
<customer> block in a rule>

Applet invocations have the following form:

<Document base>:
 <parameters>
 app_model=<serialized classes
for use by AMC>
 app_customer=<contents of the
<customer> block>

The values for app_model and
app_customer are encoded in Base64.

The value of app_model contains basic
information about the application, including
location, codebase, and main class. Its value
is the same regardless of whether the
application is permitted or denied to run.

The parameter app_customer appears only if
the application is governed by a specific DRS
rule that DRS run rule contains a <customer>
block.

C:\Java\jre1.8.0_351 Directory that contains the JRE (java.home
system property value)

1.8.0_351 Java version (java.version system property
value)

25.351-b10 JVM version (java.vm.version system
property value)

Oracle Corporation Java vendor (java.vendor system property
value)

Oracle Corporation JVM vendor (java.vm.vendor system
property value)

3

Example Description

Windows 10 Operating system name (os.name system
property value)

amd64 Operating system architecture (os.arch
system property value)

10.0 Operating system version (os.version
system property value)

-Xbootclasspath/
a:C:\Java\jre1.8.0_351\lib\deploy.
jar;

C:\Java\jre1.8.0_351\lib\javaws.ja
r;

C:\Java\jre1.8.0_351\lib\plugin.ja
r -Xverify:remote -
Djava.security.manager
 -
Djava.security.policy=file:C:\Java
\jre1.8.0_351\lib\security\javaws.
policy
 -DtrustProxy=true -
Djnlpx.home=C:\Java\jre1.8.0_351\b
in
 -
Djnlpx.origFilenameArg=TreeDemo.jn
lp -Djnlpx.remove=false
 -Djnlpx.splashport=60867
 -
Djnlpx.jvm=C:\Java\jre1.8.0_351\bi
n\javaw.exe

JVM arguments (space-separated list); empty
if there are no JVM arguments; n/a if this
information is not available (for example, in
Java SE 1.4.2, this information is not available)

C:\Java\jre1.8.0_351\lib\deploy.jar Class path (java.class.path system
property value)

user.home=C:\Users\CURRENT-USER
my.custom.property=null

Name=value pairs of any additional system
properties specified in the Java Usage Tracker
properties file. Multiple pairs are space-
separated; empty if no additional property
names are specified (default).

Items that Contain Spaces in Java Usage Tracker Output

4

In the fields that are space-separated lists, a different quote character (by default, the
single quotation mark, ') is used to quote an item that contains a space. Any existing
quote characters are printed twice.

For example, consider the following command:

/jdk1.8.0_20/bin/java
 -Dfoo1="a b"
 -Dfoo=\"
 -jar c:\\Program\ Files\\Java/jdk1.6.0_25/demo/jfc/Java2D/
Java2Demo.jar

Java Usage Tracker prints these system properties as follows (line breaks were added
for clarity):

"'-Dfoo1=a b' -Dfoo="" ",
"-jar c:\Program Files\Java/jdk1.6.0_25/demo/jfc/Java2D/Java2Demo.jar",
""

For JRE versions prior to 8u20, Java Usage Tracker does not surround fields with
quotation marks.

Enabling and Configuring Java Usage Tracker
Java Usage Tracker is disabled by default. Enable and configure it by creating a
properties file named usagetracker.properties. See Example Java Usage
Tracker properties File.

For JRE 8u152 and later, if you want Java Usage Tracker to track all JREs on your
system, then put the usagetracker.properties file in the central file system
location, which differs depending on your operating system:

• Windows: %ProgramFiles%\Java\conf\ (Windows x64) or
%ProgramFiles(x86)%\java\conf\ (Windows x86)

• Linux and Solaris: /etc/oracle/java/
• macOS: /Library/Application Support/Oracle/Java/
If you want Java Usage Tracker to track a specific JRE, then ensure that the
usagetracker.properties file doesn’t exist in the central file system location, and
put the usagetracker.properties file in the directory <JRE directory>/
conf/management/ (<JRE directory>/lib/management/ for JRE releases
prior to 9). Note that the path name is different, depending on whether you are
configuring Java Usage Tracker for a JDK or for a JRE.

For additional flexibility, if you want to use a different properties file, then you can
specify it with the system property -Dcom.oracle.usagetracker.config.file on the

5

command line. In the following example, Java Usage Tracker uses the properties file /
path/usagetracker.properties:

java -Dcom.oracle.usagetracker.config.file=/path/
usagetracker.properties MyApplication

The JVM searches the following locations, in order, for a
usagetracker.properties file. It uses the first one it finds to enable and configure
Java Usage Tracker.

1. Path specified by the system property -Dcom.oracle.usagetracker.config.file
2. Central file system location (for JRE 8u152 and later)

3. <JRE directory>/conf/management/ (<JRE directory>/lib/
management/ for JRE releases prior to 9)

Note:

To enable Java Usage Tracker, the usagetracker.properties file that
you create must have a valid value for at least one of the following
properties:

• com.oracle.usagetracker.logToFile
• com.oracle.usagetracker.logToUDP

Java Usage Tracker Properties
This section describes the properties you can specify in the Java Usage Tracker
properties file.

These properties are set only in the Java Usage Tracker properties file; they are not
set at the command line. This is intended so that Java Usage Tracker has no impact
on or interaction with the JRE user or existing applications.

Note:

The backslash (\) is an escape character in a properties file. Consequently,
when specifying file paths that include directories or drive letters, use a
forward slash (/) or an escaped backslash (\\) as a directory separator.

6

Property Description

com.oracle.usagetracker.additionalPr
operties

Use this property to record values of additional
Java properties and their values.

The value of this property is a comma-
separated list of properties. For example
(ignore line break):

com.oracle.usagetracker.additional
Properties =
user.home,my.custom.property

com.oracle.usagetracker.innerQuote The character or string used to quote items
that contain a space in the JVM argument field
list and the additional properties field. The
default value is the single quotation mark (').

This property is available in JRE 8u20 and
later.

com.oracle.usagetracker.logFileMaxSi
ze

The log file size limit, in bytes. If the file size
equals or exceeds the given value when
logging is attempted, that attempt will be
canceled.

If this property is not set, then there is no log
file limit.

com.oracle.usagetracker.logToFile If this property is specified, the fully qualified
path name of the file to which Usage Tracker
writes records.

You can specify ${user.home} in the path
name. The property will expand to the user's
home directory. For example (ignore line
break):

com.oracle.usagetracker.logToFile
= ${user.home}/.java_usagetracker

com.oracle.usagetracker.logToUDP If this property is specified, Java Usage
Tracker logs to the specified remote host in a
UDP packet. For example (ignore line break):

com.oracle.usagetracker.logToUDP =
loggingmachine.domainname:32139

Specifying an IP address may be faster in
some cases; although, this resolution does not
delay the startup of the JVM or the application.

See Java Usage Tracker Sample: Receiver for
UDP Packets for an example application that
can receive UDP packets.

7

Property Description

com.oracle.usagetracker.maxFieldSize Any single field limit, in bytes. The default is no
limit. Java Usage Tracker truncates a field to
this limit, without breaking the record format, if
the
com.oracle.usagetracker.sendTruncate
dRecords property is true.

This property is available in JRE 8u152 and
later.

com.oracle.usagetracker.maxSize Overall record limit, in bytes. The default is no
limit. Java Usage Tracker truncates records to
this limit if the
com.oracle.usagetracker.sendTruncate
dRecords property is true.

This property is available in JRE 8u152 and
later.

com.oracle.usagetracker.quote The character or string used to quote fields.
The default value is the double quotation mark
(").

This property is available in JRE 8u20 and
later.

com.oracle.usagetracker.sendTruncate
dRecords

Truncates records and individual fields if they
exceed the sizes specified by the
com.oracle.usagetracker.maxSize and
com.oracle.usagetracker.maxFieldSize
properties, respectively. The default value is
true.

This property is available in JRE 8u152 and
later.

com.oracle.usagetracker.separator The character or string that separates entries
in the log file. The default is the comma (,).

com.oracle.usagetracker.verbose If this property is set to true, error information
may be reported to the standard error stream;
this is only recommended for diagnostic
purposes.

Example Java Usage Tracker properties File
To create a Java Usage Tracker properties file, you can use the following example as
a template. Lines that begin with the pound sign (#) are comments.

UsageTracker template properties file.
Copy to <JRE directory>/conf/management/usagetracker.properties
(or <JRE directory>/lib/management/usagetracker.properties for
JRE releases prior to 9) and edit, uncommenting required settings,
to enable.

Settings for logging to a file:

8

Use forward slashes (/) because backslash is an escape character in a
properties file.
com.oracle.usagetracker.logToFile = ${user.home}/.java_usagetracker

Settings for logging to a UDP socket:
com.oracle.usagetracker.logToUDP = hostname.domain:32139

(Optional) Specify a file size limit in bytes:
com.oracle.usagetracker.logFileMaxSize = 10000000

If the record should include additional Java properties,
this can be a comma-separated list:
com.oracle.usagetracker.additionalProperties =

Additional options:
com.oracle.usagetracker.verbose = true
com.oracle.usagetracker.separator = ,
com.oracle.usagetracker.quote = "
com.oracle.usagetracker.innerquote = '

Java Usage Tracker Sample: Receiver for UDP Packets
The following sample, UsageServerTracker.java, is a simple application that
listens for Java Usage Tracker data:

/*
 * Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights
reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
are met:
 *
 * -Redistribution of source code must retain the above copyright
notice, this
 * list of conditions and the following disclaimer.
 *
 * -Redistribution in binary form must reproduce the above copyright
notice,
 * this list of conditions and the following disclaimer in the
documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of Oracle or the names of contributors may
 * be used to endorse or promote products derived from this software
without
 * specific prior written permission.
 *
 * This software is provided "AS IS," without a warranty of any kind.
ALL

9

 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING
 * ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE
 * OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MICROSYSTEMS, INC.
("SUN")
 * AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
LICENSEE
 * AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS
 * DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
ANY LOST
 * REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL,
 * INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY
 * OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS
SOFTWARE,
 * EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 *
 * You acknowledge that this software is not designed, licensed or
intended
 * for use in the design, construction, operation or maintenance of any
 * nuclear facility.
 */

import java.net.InetAddress;
import java.net.DatagramSocket;
import java.net.DatagramPacket;
import java.io.IOException;
import java.net.SocketException;

import java.io.File;
import java.io.OutputStream;
import java.io.FileOutputStream;
import java.io.OutputStreamWriter;

/**
 * A daemon that listens for and logs UsageTracker information.
 */
public class UsageTrackerServer {

 static boolean verbose = false;
 boolean initialized = false;
 String logFileName = null;
 File logFile;
 OutputStreamWriter writer;
 int port = 32139;
 InetAddress address = null;
 DatagramSocket socket;
 private static final int BUFFERSIZE = 65536;
 long received = 0;
 boolean running = true;

10

 /**
 * Main entry point for starting this daemon.
 */
 public static void main(String [] args) {
 try {
 UsageTrackerServer uts = new UsageTrackerServer(args);
 uts.run();
 } catch (Exception e) {
 System.out.println("UsageTrackerServer: " +
e.getMessage());
 if (verbose) {
 e.printStackTrace();
 }
 System.exit(1);
 }
 }

 public static void usage() {
 System.out.println("UsageTrackerServer [-v] [-o filename]
[host]:port\n" +
 "e.g. UsageTrackerServer -o usagetracker.out :32139\n");
 }

 /**
 * Initialize a UsageTrackerServer given some arguments.
 */
 UsageTrackerServer(String [] args) throws Exception {

 boolean usage = false;
 for (int i=0; i<args.length; i++) {

 if (args[i].equals("-?") || args[i].equals("--h")) {
 usage = true;
 break;
 } else if (args[i].equals("-v")) {
 verbose = true;
 } else if (args[i].equals("-o")) {
 logFileName = args[i+1];
 i++;
 } else if (args[i].contains(":")) {
 // parse [address]:port
 int colon = args[i].indexOf(':');
 if (colon > 0) {
 try {
 address = InetAddress.getByName(
 args[i].substring(0, colon));
 } catch (Exception ae) {
 System.out.println("UsageTrackerServer: " +
 "problem setting listen address: " + ae);
 usage = true;
 }

11

 }
 try {
 port =
Integer.parseInt(args[i].substring(colon+1));
 } catch (NumberFormatException nfe) {
 System.out.println("UsageTrackerServer: cannot set
port: " +
 args[i].substring(colon+1));
 usage = true;
 }
 } else {
 usage = true;
 }
 }
 // Argument failure or request for usage gets the usage
message only:
 if (usage) {
 usage();
 return;
 }
 // Otherwise, continue to proper initialization:
 socket = null;
 try {
 if (address != null) {
 socket = new DatagramSocket(port, address);
 } else {
 socket = new DatagramSocket(port);
 }
 } catch (SocketException se) {
 throw new Exception("problem creating socket: " + se);
 }
 if (logFileName != null) {
 try {
 File logFile = new File(logFileName);
 if (verbose) {
 System.out.println("Using logfile: " +
logFileName);
 if (logFile.exists()) {
 System.out.println("File exists, will
append.");
 }
 }
 FileOutputStream fos = new FileOutputStream(logFile,
true);
 writer = new OutputStreamWriter(fos, "UTF-8");
 } catch (IOException ioe) {
 throw new Exception("problem using file " +
logFileName + ": " +
 ioe);
 }
 }
 initialized = true;

12

 }

 public void run() throws Exception {
 if (!initialized) {
 return;
 }
 Runnable r = null;
 if (writer == null) {
 r = new UsageTrackerServerRunnable(socket);
 } else {
 r = new UsageTrackerServerRunnable(socket, writer);
 }
 Thread t = new Thread(r, "UsageTrackerServerRunnable");
 t.start();
 t.join();
 }

 /**
 * Runnable that listens and logs.
 */
 private class UsageTrackerServerRunnable implements Runnable {
 DatagramSocket listenSocket;
 OutputStreamWriter writer = null;

 UsageTrackerServerRunnable(DatagramSocket socket) {
 listenSocket = socket;
 }
 UsageTrackerServerRunnable(DatagramSocket socket,
 OutputStreamWriter writer) {
 this(socket);
 this.writer = writer;
 }

 public void run() {
 byte [] buf = new byte[BUFFERSIZE];
 DatagramPacket packet = new DatagramPacket(buf,
buf.length);

 // Ready to receive data
 if (verbose) {
 String addr =
listenSocket.getLocalAddress().getHostAddress();
 if (addr.equals("0.0.0.0")) {
 addr = "localhost";
 }
 System.out.println("UsageTrackerServer: ready to
receive on " +
 addr + ":" + listenSocket.getLocalPort());
 }
 while (running) {
 try {
 listenSocket.receive(packet);

13

 String dataReceived = new String(packet.getData(),
0,
 packet.getLength());

 // The format of a UsageTracker record contains a
newline at
 // the end; if that is missing, we have a
truncated/corrupt
 // packet.
 if (!dataReceived.endsWith("\n")) {
 System.out.println("Incomplete message
received: " +
 "size = " + packet.getLength() + ", data =
" +
 dataReceived);
 dataReceived = dataReceived + "\n";
 }
 received++;
 if (verbose) {
 System.out.println("Received message size: " +
 dataReceived.length());
 }
 if (writer != null) {
 writer.write(dataReceived, 0,
dataReceived.length());
 writer.flush();
 } else {
 System.out.print(dataReceived);
 }
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }
 }
 }
}

The following is an example of running this sample:

java UsageTrackerServer -v -o usagetracker.out :32139

• The -v option is verbose; if you specify this option, the sample displays additional
information.

• The -o option enables you to specify the name of a log file; if you do not specify
this option, the sample prints messages to standard output.

• In this example, the UDP receiver listens on the localhost address on port 32139.
When a JRE (with an enabled and configured Java Usage Tracker) sends data,
the receiver will send the data to the file usagetracker.out. The port number is
arbitrary but must be available and must match the one configured in the JRE. If

14

multiple interfaces exist, it may be necessary to specify the port using the form
hostname:port or ipaddress:port.

Java Usage Tracker Errors and Exceptions
If Java Usage Tracker encounters an error or exception during the logging of a record,
it does not interrupt the application currently running.

Java Usage Tracker does not report errors unless the property
oracle.usagetracker.verbose is specified in the properties file.

Managing Disk Space Used by Java Usage Tracker Log
File
Although the size of the Java Usage Tracker log file is small, consider periodically
truncate, compress, archive, or delete the log file. When Java Usage Tracker
incrementally adds records to the log file, it does not check for available disk space or
perform administrative tasks such as truncating, deleting, or compressing the log file in
order to be minimally intrusive.

In addition, you can specify the maximum size of the log file, in bytes, with the
oracle.usagetracker.logFileMaxSize property in the properties file.

Java Usage Tracker Limitations
Java Usage Tracker cannot log Java command line options that are processed by the
Java launcher before the JVM is started. For example, Java Usage Tracker does not
record the command line options -client and -server that select the Java HotSpot
client and server VM, respectively. In addition, Java Usage Tracker may not log an
application if it terminates immediately because it will not stop a process from exiting.

Java Usage Tracker Frequently Asked Questions
Here are answers to some frequently asked questions:

Does Java Usage Tracker affect the private JRE within a
JDK, or does it only affect the standalone JRE?
If you have a JDK installed in a computer, there is a JRE in the jre subdirectory; this is
the private JRE referred to in the question. Yes, Java Usage Tracker logs the usage of
both the private JRE and the standalone JRE, but note that they are configured
separately through their own individual conf/management/
usagetracker.properties files.

Can Java Usage Tracker log the usage of JDK tools?

15

If Java Usage Tracker is enabled, it logs the usage of tools that come with the JDK
such as jmap and jstack.

Does Java Usage Tracker log the usage of JVMs created
by native Java applications?
Yes. When a native application creates a JVM with the Java Native Interface (JNI),
Java Usage Tracker logs this invocation with a blank Java command.

Will an invocation similar to java -jar file.jar be tracked by
Java Usage Tracker?
Yes.

Does Oracle capture any of the data logged by Java
Usage Tracker?
No. As the administrator of the JRE installation, usage data obtained from Java Usage
Tracker is stored in the file of your choice or sent to the UDP host and port that you
specify. There is no facility for this data to leave your own network. (Theoretically, if
your firewall permits it, the port your UDP host listens on could be configured as
remote, but this is not expected or recommended usage.)

What does the log record look like for native applications,
applets, and denied applications?
The following is an example of a log record for a native application (line breaks were
added for clarity):

"VM start",
"Mon Sep 26 13:08:33 EDT 2022",
"MY-COMPUTER/192.0.2.0",
"Main",
"C:\Java\jre1.8.0_351",
"1.8.0_351",
"25.351-b10",
"Oracle Corporation",
"Oracle Corporation",
"Windows 10",
"amd64",
"10.0",
"-Dmy.custom.property=myvalue ",
".",
"user.home=C:\Users\RGALLARD my.custom.property=myvalue "

16

The following is an example of a log record for an applet:

"plugin2",
"Mon Sep 26 14:00:48 EDT 2022",
"MY-COMPUTER/192.0.2.0",
"https://docs.oracle.com/javase/tutorial/deployment/applet/
deployingApplet.html:
 jnlp_href=examples/dist/applet_ComponentArch_DynamicTreeDemo/
dynamictree_applet.jnlp
 launchjnlp= codebase_lookup=false
code=appletComponentArch.DynamicTreeApplet.class
 codebase=https://docs.oracle.com/javase/tutorial/deployment/applet/
width=375
 archive=examples/dist/applet_ComponentArch_DynamicTreeDemo/
DynamicTreeDemo.jar height=375
 app_model=<Base 64 encoded data>",
"C:\Java\jre1.8.0_341",
"1.8.0_341",
"25.341-b10",
"Oracle Corporation",
"Oracle Corporation",
"Windows 10",
"x86",
"10.0",
"-Xbootclasspath/
a:C:\Java\jre1.8.0_341\lib\deploy.jar;C:\Java\jre1.8.0_341\lib\javaws.j
ar;
 C:\Java\jre1.8.0_341\lib\plugin.jar -Djava.security.manager -
D__jvm_launched=16873846471
 -D__applet_launched=16873824704 ",
"C:\Java\jre1.8.0_341\lib\deploy.jar",
"user.home=C:\Users\CURRENT-USER my.custom.property=null "

The following is an example of a log record of a Java Web Start application that was
denied by security settings:

"javaws application denied [by user]",
"Mon Sep 26 13:42:49 EDT 2022",
"MY-COMPUTER/192.0.2.0",
"https://docs.oracle.com/javase/tutorialJWS/samples/uiswing/
TreeDemoProject/:
 sourceURL=https://docs.oracle.com/javase/tutorialJWS/samples/uiswing/
TreeDemoProject/TreeDemo.jnlp
 app_model=<Base 64 encoded data>",
"C:\Java\jre1.8.0_351","1.8.0_351",
"25.351-b10",
"Oracle Corporation",
"Oracle Corporation",
"Windows 10",
"amd64",
"10.0",

17

"-Xbootclasspath/
a:C:\Java\jre1.8.0_351\lib\deploy.jar;C:\Java\jre1.8.0_351\lib\javaws.j
ar;
 C:\Java\jre1.8.0_351\lib\plugin.jar -Xverify:remote -
Djava.security.manager
 -
Djava.security.policy=file:C:\Java\jre1.8.0_351\lib\security\javaws.pol
icy
 -DtrustProxy=true -Djnlpx.home=C:\Java\jre1.8.0_351\bin
 -Djnlpx.origFilenameArg=TreeDemo.jnlp -Djnlpx.remove=false -
Djnlpx.splashport=61230
 -Djnlpx.jvm=C:\Java\jre1.8.0_351\bin\javaw.exe ",
"C:\Java\jre1.8.0_351\lib\deploy.jar",
"user.home=C:\Users\CURRENT-USER my.custom.property=null "

How can I remove the quoting behavior of JRE 8u20 and
later for records with the previous formatting?
In the Java Usage Tracker properties file, set blank quote characters with the following
two lines:

com.oracle.usagetracker.quote=
com.oracle.usagetracker.innerQuote=

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Java Platform, Standard Edition Java Usage Tracker Guide, Release 1
E50948-10

Copyright © 2014, 2024, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws.
Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

18

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are
"commercial computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i)
Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take
all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable
agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-
party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customer access to and use of Oracle support services will be pursuant to the terms and
conditions specified in their Oracle order for the applicable services.

19

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

