
Java Card
Development Kit User Guide

Version 3.1.0u5
E99052-07
March 2021

Java Card Development Kit User Guide, Version 3.1.0u5

E99052-07

Copyright © 1998, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xv

Documentation Accessibility xvi

Related Documents xvi

Documentation and Support xvi

Third-Party Web Sites xvi

Conventions xvii

Part I Setup, Samples and Tools

1 Introduction

Java Card Platform Architecture 1-1

Java Card TCK 1-2

2 Installation

Install and Setup the Java Card Development Kit Simulator 2-1

Before Installing the Java Card Development Kit Simulator 2-2

Installing the Java Card Development Kit Simulator 2-2

Confirming System Variables 2-3

Install and Setup the Java Card Development Kit Tools 2-3

Before Installing the Java Card Development Kit Tools 2-3

Installing the Java Card Development Kit Tools 2-4

Confirming System Variables 2-4

Installed Files and Directories 2-4

Eclipse Java Card Plug-in 2-5

Installing the Eclipse Plug-in 2-5

Configuring Sample_Platform and Sample_Device 2-5

Configuring the Java Card Tools Path 2-6

Uninstalling the Java Card Development Kit Simulator 2-6

iii

Uninstalling the Java Card Development Kit Tools 2-7

3 Developing Java Card Applications

Java Card Applet Development 3-1

Java Card Development Kit Components 3-2

Using Java Card Development Kit Tools 3-3

4 Running the Samples

How to Run the Samples 4-1

Running the Samples in Eclipse 4-1

Running the Samples from the Command Line 4-3

Running the classic_applets Samples 4-3

HelloWorld Sample 4-4

Running the HelloWorld Sample in Eclipse 4-4

Running the HelloWorld Sample from the Command Line 4-5

Channels Sample 4-6

Running the Channels Sample in Eclipse 4-7

Running the Channels Sample from the Command Line 4-7

Service Sample 4-8

Running the Service Sample in Eclipse 4-8

Running the Service Sample from the Command Line 4-9

Utility Sample 4-10

Running the Utility Sample in Eclipse 4-12

Running the Utility Sample from the Command Line 4-12

Wallet Sample 4-13

Running the Wallet Sample in Eclipse 4-13

Running the Wallet Sample from the Command Line 4-14

ObjectDeletion Sample 4-15

Running the ObjectDeletion Sample in Eclipse 4-16

Running the ObjectDeletion Sample from the Command Line 4-17

PhotoCard Sample 4-19

Running the PhotoCard Sample in Eclipse 4-20

Running the PhotoCard Sample from the Command Line 4-21

RMIPurse Sample 4-22

Running the RMIPurse Sample in Eclipse 4-23

Running the RMIPurse Sample from the Command Line 4-25

StringHandlingApp Sample 4-26

Description of StringHandlingApp Applet 4-26

Description of StringUtilApp Applet 4-26

iv

Description of StringHandlingLib and StringHandlingLibLocal Libraries 4-28

Running the StringHandlingApp Sample from Eclipse 4-29

Running the StringHandlingApp Sample from the Command Line 4-31

SecureRMIPurse Sample 4-31

Running the SecureRMIPurse Sample in Eclipse 4-33

Running the SecureRMIPurse Sample from the Command Line 4-33

SignatureMessageRecovery Sample 4-34

Message Recovery Order of Operations for Signing 4-35

Message Recovery Order of Operations for Verifying 4-35

Running the SignatureMessageRecovery Sample in Eclipse 4-35

Running the SignatureMessageRecovery Sample from the Command Line 4-37

ArrayViews Sample 4-38

Running the ArrayViews Sample from the Command Line 4-38

CertHandling Sample 4-39

Running the CertHandling Sample from the Command Line 4-39

Running the reference_apps Samples 4-40

Biometry Sample Application 4-40

SampleBioServer Class 4-41

SamplePasswdBioApplet Class 4-41

How the Biometric API Works 4-41

Implementation Notes 4-42

Running the Biometry Sample in Eclipse 4-43

Running the Biometry Sample from the Command Line 4-44

JavaPurse Sample Application 4-45

Running the JavaPurse Sample in Eclipse 4-45

Running the JavaPurse Sample from the Command Line 4-47

JavaPurseExtCap Sample 4-47

Running the JavaPurseExtCap Sample from the Command Line 4-47

JavaPurseCrypto Sample 4-48

Running the JavaPurseCrypto Sample in Eclipse 4-49

Running the JavaPurseCrypto Sample from the Command Line 4-50

Transit Sample 4-51

Running the Transit Sample in Eclipse 4-51

Running the Transit Sample from the Command Line 4-54

5 Converting and Exporting Java Class Files

Overview of Converting and Exporting Java Class Files 5-1

Using the Converter in the Compact or Extended Format 5-1

Using the Converter for a Target Java Card Version 5-2

Using the Converter to Generate a Mask 5-3

v

Setting Java Compiler Options 5-3

Running the Converter 5-3

Using Delimiters with Command Line Options 5-8

Using a Command Configuration File in Compact Mode 5-8

Using a JSON Configuration File for Converter in the Extended Mode 5-9

Handling Relative Paths 5-11

Converter JSON Configuration File Sample 5-12

Validating a JSON Configuration File 5-13

File Naming for the Converter 5-13

Input File Naming Conventions 5-13

Output File Naming Conventions 5-14

Verification of Input and Output Files 5-14

Creating a debug.msk Output File 5-15

Using Export Files 5-15

Specifying an Export Map 5-16

Viewing an Export File as Text 5-16

6 Working With CAP Files

Compact CAP File and Manifest File Syntax 6-1

Sample Manifest File 6-2

Extended CAP File Manifest File Syntax 6-3

Sample Extended CAP Manifest File 6-4

Generating CAP Files From Java Card Assembly Files 6-4

Running capgen 6-5

Using a JSON Configuration File for capgen in the Extended Mode 6-5

Capgen JSON Configuration File Sample 6-6

Producing a Text Representation of a CAP File 6-7

Running capdump 6-7

7 Debugging Applications

Debugger Architecture 7-1

Running the Debug Proxy from the Command Line 7-1

Debug Proxy Options 7-2

Debugging the HelloWorld Sample from the Command Line 7-3

8 Packaging and Deploying Your Application

Overview of Packaging and Deploying Applications 8-1

Installer Components and Data Flow 8-1

Running scriptgen 8-2

vi

Sending and Receiving APDUs 8-3

Running apdutool 8-3

apdutool Examples 8-4

Directing Output to the Console 8-4

Directing Output to a File 8-4

Using APDU Script Files 8-5

APDUScript Preprocessor Commands 8-6

Setting Default Applets 8-7

On-Card Installer Applet AID 8-7

Downloading CAP Files and Creating Applets 8-7

Downloading the CAP File 8-7

Creating an Applet Instance 8-8

On-card Installer APDU Protocol 8-8

APDU Types 8-9

APDU Responses to Installation Requests 8-11

A Sample APDU Script 8-14

Using the On-card Installer for Deletion 8-15

How to Send a Deletion Request 8-15

APDU Requests to Delete CAP Files and Applets 8-16

Delete CAP File 8-16

Delete CAP File and Applets 8-16

Delete Applets 8-17

APDU Responses to Deletion Requests 8-17

On-Card Installer Limits 8-19

9 Verifying CAP and Export Files

Overview of Verifying CAP and Export Files 9-1

Verifying CAP Files 9-2

Running verifycap 9-2

Verifying Export Files 9-3

Running verifyexp 9-4

Verifying Binary Compatibility 9-4

Running verifyrev 9-5

Command Line Options for Off-Card Verifier Tools 9-5

10

Using Cryptography Extensions

Overview of Using Cryptography Extensions 10-1

Supported Cryptography Classes 10-2

vii

Instantiating the Classes 10-4

Part II Programming With the Development Kit

11

Using Object, CAP File, and Applet Deletion

Object Deletion Mechanism 11-1

Requesting the Object Deletion Mechanism 11-1

Object Deletion Mechanism Usage Guidelines 11-2

CAP File and Applet Deletion 11-2

Developing Removable CAP File 11-2

Writing Removable Applets 11-3

The AppletEvent.uninstall Method 11-3

12

Working with Logical Channels

Dual Interface Cards 12-1

Applets and Logical Channels 12-1

Non-MultiSelectable Applets 12-1

The MultiSelectable Interface 12-2

Selection for MultiSelectable Applets 12-2

Deselection for MultiSelectable Applets 12-3

Writing Applets for Concurrent Logical Channels 12-3

MultiSelectable Applet Example 12-4

Handling Channel Information on APDU Commands 12-6

Interindustry Space 12-7

Proprietary Java Card Technology Space 12-7

Logical Channels 12-8

APDU Command Type Identification 12-8

Writing ISO/IEC 7816-4:2013 Compliant Applets 12-9

ISO/IEC 7816-4:2013 Compliant Applet Example 12-9

Non-MultiSelectable Applets and Shareable Objects 12-10

ISO/IEC 7816-4:2013 Specific APDU Commands for Logical Channel
Management 12-11

MANAGE CHANNEL OPEN 12-11

MANAGE CHANNEL CLOSE 12-12

SELECT FILE 12-13

viii

13

Using Java Card RMI

Developing RMI Applications for the Java Card Platform 13-1

Steps to Develop an RMI Applet for the Java Card Platform 13-1

Generating Stubs 13-1

Running a Java Card RMI Applet 13-2

RMI Program Example 13-2

Main Program 13-2

Sample Applet 13-6

Client Example 13-8

Card Terminal Interaction 13-11

Add Security Support 13-12

Initialize a Security Service 13-14

Use the Service to Check the Current Security Status 13-14

Security Service Example 13-14

More Secure Applet 13-16

Client Changes to Support Security 13-17

CustomCardAccessor Class for Authentication and Signing 13-18

Programming to the Java Card RMI Client-Side API 13-19

Overview of Programming to the Java Card RMI Client Side 13-20

Remote Stub Object 13-20

Java Card RMI Client-Side API 13-21

Package rmiclientlib 13-21

Package clientlib 13-22

14

Using Extended APDU

Extended APDU Nominal Cases 14-1

Extended APDU Format 14-1

Extended APDU Limits 14-2

javacardx.framework.ExtendedLength Interface 14-3

APDU Parsing with the javacard.framework.APDU Class 14-3

Creating an Applet That Can Send and Receive Extended Length APDUs 14-3

15

Working with APDU I/O

The APDU I/O API 15-1

APDU I/O Classes and Interfaces 15-1

Exceptions 15-2

Two-interface Card Simulation 15-2

APDU I/O API Examples 15-3

To Connect To a Simulator 15-3

ix

To Power Up And Power Down the Card 15-3

To Exchange APDUs 15-4

To Print the APDU 15-4

16

Programming for the Large Address Space

Overview of Programming for the Large Address Space 16-1

Programming Large Applications and Libraries 16-1

Handling a Package as a Separate Code Space 16-2

Storing Large Amounts of Data 16-2

Example: The photocard Demo Applet 16-2

17

Programming Large Java Card Applications With Multiple Packages

CAP File Identification 17-1

Package Visibility 17-2

Firewall Context 17-2

Extended CAP Accessibility Example 17-2

Design Rules for a Java Card Application with Large Method Component 17-4

18

Java Card Accessibility Information

Access to Java Card Development Kit Support 18-1

Java Card Development Kit Features that Support Accessibility 18-1

Keyboard Navigation 18-2

Documentation Accessibility Features 18-2

Part III Java Card Eclipse Plug-in

19

Using the Java Card Eclipse Plug-in

Creating a Java Card Project Using the New Java Card Project Wizard 19-1

Changing the Runtime Environment for the Java Card Project 19-2

Creating a Java Card Applet Using the Default Source Template 19-2

Creating a CAP File in a Java Card Project 19-2

Managing CAP File Configurations 19-3

Adding a Java Card Package to a CAP File 19-3

Managing the Java Card Package 19-4

Adding a Java Card Applet to a Java Card Package 19-4

Managing Java Card Applets 19-5

Adding a Java Card Static Resource to a CAP File 19-5

x

Managing Java Card Static Resources 19-6

Debugging a Java Card Applet in Eclipse Plug-in 19-6

Debugging HelloWorld Sample from Eclipse 19-7

Part IV Appendices

A Java Card Assembly Syntax Example

B Additional Optional Ant Tasks

Location and Installation B-1

Installing the Ant Tasks B-1

Setting Up the Optional Ant Tasks B-2

Library Dependencies B-2

Ant Task Descriptions B-2

APDUTool B-3

Errors B-3

Examples B-3

CapDump B-5

Errors B-5

Examples B-5

Capgen B-6

Errors B-6

Examples B-6

Converter B-7

Parameters Specified As Nested Elements B-8

Errors B-8

Examples B-9

DeployCap B-9

Errors and Return Codes B-10

Examples B-10

Exp2Text B-11

Errors B-11

Examples B-11

Scriptgen B-12

Errors B-13

Examples B-13

VerifyCap B-13

Parameters Specified As Nested Elements B-14

Errors B-14

xi

Examples B-14

VerifyExp B-15

Parameters Specified As Nested Elements B-15

Errors B-15

Examples B-15

VerifyRev B-15

Parameters Specified As Nested Elements B-16

Errors B-16

Examples B-16

Custom Types B-16

AppletNameAID B-17

Example B-17

JCAInputFile B-17

Examples B-17

ExportFiles B-18

Examples B-18

Glossary

xii

List of Tables

4-1 Valid Command String Type and Argument Combinations 4-27

4-2 Authenticate User Command 4-32

5-1 Converter Usage 5-2

5-2 Converter Command Line Arguments 5-5

5-3 JSON File Options for Converter 5-9

5-4 exp2text Command Line Options 5-17

6-1 Name:Value Pairs in the MANIFEST.MF File 6-1

6-2 Extended CAP File Manifest File Name Syntax 6-3

6-3 Name:Value Pairs in the extended CAP MANIFEST.MF File 6-4

6-4 capgen Command Line Options 6-5

6-5 JSON File Options for capgen 6-6

8-1 scriptgen Command Line Options 8-2

8-2 apdutool Command Line Options 8-4

8-3 Supported APDU Script File Commands 8-5

8-4 Set Default Applets on Different Logical Channels 8-7

8-5 Select APDU Command 8-9

8-6 Response APDU Command 8-10

8-7 CAP Begin APDU Command 8-10

8-8 CAP End APDU Command 8-10

8-9 Component ## Begin APDU Command 8-10

8-10 Component ## End APDU Command 8-11

8-11 Component ## Data APDU Command 8-11

8-12 Create Applet APDU Command 8-11

8-13 Abort APDU Command 8-11

8-14 APDU Responses to Installation Requests 8-12

8-15 Delete CAP File Command 8-16

8-16 Delete CAP File and Applets Command 8-17

8-17 Delete Applet Command 8-17

8-18 APDU Responses to Deletion Requests 8-17

8-19 APDU Response Format 8-19

9-1 verifycap Command Line Arguments 9-3

9-2 verifyexp Command Line Argument 9-4

9-3 verifycap, verifyexp, verifyrev Command Line Options 9-5

10-1 Algorithms Implemented by the Cryptography Classes 10-3

14-1 Extended APDU Format 14-2

xiii

17-1 Package Level Access 17-3

B-1 Parameters for APDUTool B-3

B-2 Parameters for CapDump B-5

B-3 Parameters for Capgen B-6

B-4 Parameters for Converter B-7

B-5 Parameters for DeployCap B-10

B-6 Parameters for Exp2Text B-11

B-7 Parameters for Scriptgen B-12

B-8 Parameters for VerifyCap B-14

B-9 Parameters for VerifyExp B-15

B-10 Parameters for VerifyRev B-16

B-11 Parameters for AppletNameAID B-17

B-12 Parameters for JCAInputFile B-17

xiv

Preface

This document describes how to use the Java Card Development Kit, Version 3.1.0u5
to develop Java Card applets.

Java Card technology combines a subset of the Java programming language with
a runtime environment optimized for secure elements, such as smart cards and
other tamper-resistant security chips. Java Card technology offers a secure and
interoperable execution platform that can store and update multiple applications
on a single resource-constrained device, while retaining the highest certification
levels and compatibility with standards. Java Card developers can build, test, and
deploy applications and services rapidly and securely. This accelerated process
reduces development costs, increases product differentiation, and enhances value to
customers.

The Java Card API is compatible with international standards for secure elements,
such as ISO 7816 or mobile communication standards issued by ETSI/3GPP.
Major industry-specific standards, such as EMVCo and Global Platform refer to this
standard.

Note:

The Java Card Development Kit, Version 3.1.0u5 is released in both binary
and source bundles. The binary bundles are the Java Card Development
Kit Simulator and the Java Card Development Kit Tools bundles publicly
available on OTN. Access to the source bundles requires the purchase of
a commercial license from Oracle. Besides, some source bundles may not
include cryptography extensions, which are subjected to export restrictions.
A few portions of this document are targeted toward source bundles with or
without cryptography extensions and are identified as such throughout this
book.

Audience
This Development Kit User Guide is written for developers who are creating applets
using the Application Programming Interface, Java Card Platform, Version 3.1 and
also for developers who are considering creating a vendor-specific framework based
on the Java Card specifications.

Before You Read This Document
Before reading this guide, you should be familiar with the Java programming language
and secure element technology.

xv

You should also become familiar with the Java Card specifications, which are located
at Java Card Documentation.

Information on Java Card technology, including access to the latest Java Card
Development Kit downloads, is available at https://www.oracle.com/technetwork/
java/embedded/javacard/overview/index.html.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
References to various documents or products are made in this manual. You might
want to have the following documents available:

• Java Card Platform Application Programming Interface Specification, Classic
Edition, Version 3.1

• Java Card Platform Virtual Machine Specification, Classic Edition, Version 3.1

• Java Card Platform Runtime Environment Specification, Classic Edition, Version
3.1

• Off-Card Verifier for the Java Card Platform White Paper

• Java Card RMI Client Application Programming Interface (see the Javadoc tool
generated API specification at JC_HOME_SIMULATOR\docs\rmiclientlib)

• ISO 7816-4:2013 Specification

Documentation and Support
These web sites provide additional resources:

• Java Card Documentation

• Support https://www.oracle.com/us/support

Third-Party Web Sites
Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Oracle will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Preface

xvi

http://www.oracle.com/pls/topic/lookup?ctx=en/java/javacard/3.1&id=homepage
https://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html
https://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=en/java/javacard/3.1&id=homepage
https://www.oracle.com/us/support/index.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xvii

Part I
Setup, Samples and Tools

This part of the user's guide describes how to install the development kit, use its tools
and run its samples. It contains the following chapters:

• Introduction

• Installation

• Developing Classic Edition Applications

• Running the Samples

• Converting and Exporting Java Class Files

• Working With CAP Files

• Debugging Applications

• Packaging and Deploying Your Application

• Verifying CAP and Export Files

• Using Cryptography Extensions

1
Introduction

The Java Card Platform consists of two editions, the Classic Edition and the
Connected Edition. This document and development kit apply only to the Classic
Edition. Refer to the Java Card Platform Version 3.0.5 documentation for information
on Java Card Connected Edition.

The Java Card Development Kit is a suite of tools for designing implementations
of Java Card technology and developing applets based on the Java Card API
Specification. It is available as two independent downloads:

• The Java Card Development Kit Tools are used to convert and verify Java Card
applications. The Tools can be used with products based on version 3.1 of
the Java Card specifications, and should also be used with products based on
versions 3.0.4 and 3.0.5 of the Java Card Platform specifications, Classic Edition.

• The Java Card Development Kit Simulator offers a testing and debugging
reference for Java Card applications. It includes a Java Card simulation
environment and Eclipse plug-in. It provides support for the latest Java Card 3.1
Specification, and can also run applications written for earlier releases.

Together, these two downloads provide a complete, stand-alone development
environment in which applications written for the Java Card platform can be developed
and tested.

For detailed information on bundles content, refer to the Java Card Development
Kit Tools Release Notes and Java Card Development Kit Simulator Release Notes.
The Java Card Development Kit Simulator is only designed as an example of the
functional behavior of a Java Card runtime. It is not intended to operate in a production
environment (and under the threats typically associated with such an environment).

This chapter contains the following sections:

• Java Card Platform Architecture

• Java Card TCK

Java Card Platform Architecture
Any implementation of a Java Card Runtime Environment (Java Card RE) contains
a Virtual Machine (VM) for the Java Card platform and the Java Card Application
Programming Interface (API) classes.

The Java Card Platform, Classic Edition is targeting resource-constrained devices that
solely support applet-based applications. Applets that run on the Classic Edition are
sometimes referred to as classic applets.

The Java Card Platform, Version 3.1 architecture illustrated below is built on the
Classic Java Card VM. It preserves backward compatibility with Classic Applets written
for earlier versions.

1-1

Figure 1-1 Classic Edition Architecture

Secure Element

ApplicationApplicationApplication

Application
Management

Security Policy

API
Extensions

Java Card
Runtime

Environment

Java Card
API

Hardware Platform

OS/BSP

Java Card
Virtual Machine

Key

Oracle Java Card

Product Specific

This development kit includes a Reference Implementation of the Java Card RE, which
stands for the simulator throughout this book. It is invoked on the command line with
cref.bat. It implements the ISO 7816-4:2013 specification, including support for up to
20 logical channels and the extended APDU extensions as defined in ISO 7816-3.

Java Card TCK
The Java Card Technology Compatibility Kit (Java Card TCK) is a configurable
automated test suite for verifying the compliance of an implementation with the
applicable Java Card specification. To be in compliance, an implementation must pass
the Java Card TCK tests as described in the Java Card Technology Compatibility Kit
User Guide, Version 3.1.0u4.

The Java Card TCK is available to developers who are considering creating a vendor-
specific framework based on the Java Card specifications, under a commercial license
from Oracle.

Chapter 1
Java Card TCK

1-2

2
Installation

This chapter describes the software that you must install on your system before you
can use the development kit, how to install the development kit, how to check system
variables, and how to uninstall the development kit.
This Section only applies to the binary bundles of the Java Card Development Kit
Simulator and the Java Card Development Kit Tools.

The development kit is available as two independent downloads:

• The Java Card Development Kit Tools are used to convert and verify Java Card
applications. The Tools can be used with products based on versions 3.1, 3.0.5,
and 3.0.4 of the Java Card Specifications.

Note:

Using Tools with products based on versions 3.0.5 and 3.0.4 applies to
Classic scope only .

• The Java Card Development Kit Simulator offers a testing and debugging
reference for Java Card applications. It includes a Java Card simulation
environment and Eclipse plug-in. It provides support for the latest Java Card 3.1
Specification, and can also run applications written for earlier releases.

This chapter contains the following sections:

• Install and Setup the Java Card Development Kit Simulator

• Install and Setup the Java Card Development Kit Tools

• Installed Files and Directories

• Setting Up the Eclipse IDE

• Uninstalling the Java Card Development Kit Simulator

• Uninstalling the Java Card Development Kit Tools

Install and Setup the Java Card Development Kit Simulator
The Java Card Development Kit Simulator offers a testing and debugging reference
for Java Card applications. It includes a Java Card simulation environment and Eclipse
plug-in.

It provides support for the latest Java Card 3.1 Specification, and can also run
applications written for earlier releases.

Although the Simulator bundle includes the Java Card Development Kit Tools for
convenience of installation, it is recommended that you download and install the latest
version of the Java Card Development Kit Tools separately to ensure benefits from the
latest security fixes.

2-1

This section describes how to install and set up the Java Card Development Kit
Simulator. It includes procedures for performing the following tasks:

• Before Installing the Development Kit Simulator

• Installing the Development Kit Simulator

• Confirming System Variables

Before Installing the Java Card Development Kit Simulator
Before installing the Java Card Development Kit Simulator, be sure to install the
following software:

• Java Development Kit (JDK) - The tools in this development kit were tested
with Oracle JDK 11 (64 bit version) and OpenJDK 11 (64 bit version). If you
are planning to develop your own applications, you should use JDK 11. You can
download and install the JDK release according to the instructions on the website:

http://www.oracle.com/technetwork/java/javase/downloads

• Eclipse IDE (optional) - Using the Eclipse IDE as your development environment
is recommended, although you can also run the samples and the development kit
tools from the command line.

Download the Windows Eclipse IDE (Eclipse Neon, Oxygen, or Photon) from the
following URL, and install it according to instructions on the website:

http://eclipse.org/downloads

• Apache Ant - Most Eclipse distributions include Apache Ant. If you did not install
Eclipse, you should install Apache Ant, as it is required to run the samples
from command line and to build the cref from source code. Version 1.9.13 was
used to test the release. You can download and install Apache Ant from http://
ant.apache.org.

• GCC compiler (For source package only) - Minimal GNU for Windows (MinGW),
version 6.3.0 is required to build the cref and tools from sources.

You can download MinGW from http://sourceforge.net/projects/mingw. For
MinGW installation information, go to http://www.mingw.org.

Installing the Java Card Development Kit Simulator
Follow these steps to install the Java Card Development Kit Simulator.

The Java Card Development Kit Simulator is available for download at https://
www.oracle.com/technetwork/java/embedded/javacard/overview/index.html.

1. Close Eclipse, if it is running.

2. Download the Java Card Development Kit Simulator .msi file to a directory of your
choice.

• java_card_simulator-3_1_0-ux-win-bin-do|gl-buildID-dd_mmm_yyyy.msi

3. Run the downloaded .msi file from the directory.

a. The Java Card Development Kit Simulator Setup Wizard starts. Follow the
prompts and accept the License Agreement.

Chapter 2
Install and Setup the Java Card Development Kit Simulator

2-2

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://eclipse.org/downloads
http://ant.apache.org
http://ant.apache.org
http://sourceforge.net/projects/mingw
http://www.mingw.org
https://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html
https://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html

b. Enter a directory where the files will be installed and follow the prompts to
complete the process.

Note:

The installation directory is referred to as JC_HOME_SIMULATOR throughout
the documentation.

When the Java Card Development Kit Simulator has been installed, proceed to:

1. Optional, but recommended. Install the Java Card plug-in for Eclipse. See
Installing the Eclipse Plug-In

2. Examine and run the samples. See Running the Samples

Confirming System Variables
Certain system variables are set during the installation process. If you are not able
to build samples from the command line, or if something seems to be wrong with the
Eclipse plug-in operation, verify that the following variables and paths are set correctly:

• JAVA_HOME system variable must be set to the JDK software root directory and
its bin\ in the PATH.

• ANT_HOME system variable must be set to the Ant root directory and its bin\ in
the PATH.

• JC_HOME_SIMULATOR variable must be set to the Java Card Development Kit
Simulator root directory.

• The Java Card Development Kit bin\ directory must be in the PATH .

• The MinGW bin\ directory must be in the PATH. MinGW is only required if the
development kit source bundle is installed.

Install and Setup the Java Card Development Kit Tools
The Java Card Development Kit Tools are used to convert and verify Java Card
applications. The Tools can be used with products based on version 3.1, 3.0.5, and
3.0.4 of the Java Card Specification.

The Java Card Development Kit Tools can be used stand-alone, or in conjunction with
the Java Card Development Kit Simulator.

This section describes how to install and set up the Java Card Development Kit Tools.
It includes procedures for performing the following tasks:

• Before Installing the Java Card Development Kit Tools

• Installing the Java Card Development Kit Tools

• Confirming System Variables

Before Installing the Java Card Development Kit Tools
Before installing the Java Card Development Kit Tools, make sure to install the
following software:

Chapter 2
Install and Setup the Java Card Development Kit Tools

2-3

Java Development Kit (JDK) - The tools in this development kit were tested with
Oracle JDK 11 (64 bit version) and OpenJDK 11 (64 bit version). You can download
and install the JDK release according to the instructions on the website:

http://www.oracle.com/technetwork/java/javase/downloads

Installing the Java Card Development Kit Tools
Follow these steps to install the Java Card Development Kit Tools.

The Java Card Development Kit Tools is available for download at https://
www.oracle.com/technetwork/java/embedded/javacard/overview/index.html.

1. Download the Java Card Development Kit Tools .zip file to a directory of your
choice.

• java_card_tools-<ea>-win-bin-buildID-<dd_mmm_yyyy>.zip

2. Extract the downloaded .zip file to the directory of your choice.

Note:

The installation directory of the Java Card Development Kit Tools is
referred to as JC_HOME_TOOLS throughout this documentation

Confirming System Variables
Certain system variables are set during the installation process. If you are not able
to build samples from the command line, or if something seems to be wrong with the
Eclipse plug-in operation, verify that the following variables and paths are set correctly:

• JAVA_HOME system variable must be set to the JDK software root directory and its
bin\ in the PATH.

• ANT_HOME system variable must be set to the Ant root directory and its bin\ in the
PATH.

• JC_HOME_TOOLS variable must be set to the Java Card Development Kit Tools
root directory.

• The Java Card development kit bin\ directory must be in the PATH .

• The MinGW bin\directory must be in the PATH. MinGW is only required if the
Development Kit source bundle is installed.

Installed Files and Directories
If you have installed only the Java Card Development Kit Tools bundle, the installation
directory is referred to by the environment variable JC_HOME_TOOLS in this guide.
All the files and directories contained in the Tools bundle are installed in this directory.

If you have installed the Java Card Development Kit Simulator and the Java Card
Development Kit Tools, the installation directory of the Simulator is referred to by
the environment variable JC_HOME_SIMULATOR and the installation directory of the
Tools is referred to by the environment variable JC_HOME_TOOLS in this guide.

Chapter 2
Installed Files and Directories

2-4

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html
https://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html

Eclipse Java Card Plug-in
The Java Card development Kit Simulator includes an Eclipse plug-in to assist you
in developing Java Card applications. Almost all of the choices presented by the
plug-in dialogs correspond to command-line options of the tools included in the Java
Card Development Kit Simulator or Java Card Development Kit Tools bundle (cref,
converter, scriptgen, and apdutool) which are described elsewhere in this user
guide. The plug-in runs those tools with the options that you select.

This section includes procedures for performing the following tasks:

• Installing the Eclipse Plug-In

• Setting Up the Java Card Platform

Installing the Eclipse Plug-in
The Eclipse plug-in provides a convenient way to develop Java Card applets. To install
the plug-in:

1. In the Eclipse menu bar, select Help, and then select Install New Software.

2. Click Add.

3. Click Archive.

4. Select the development kit’s Eclipse plug-in repository file:

JC_HOME_SIMULATOR\eclipse-plugin\jcdk-repository_yyyymmddxxxx.zip

5. On the Add Repository dialog, type Java Card SDK in the Name field.

6. Click Add.

7. On the Available Software dialog, select the feature to install:

Java Card 3 Platform Development Kit

Note:

If you don’t see any items and the message, There are no
categorized items appears, then you must uncheck the Group
items by category checkbox.

8. Click Next until the terms of the licenses are displayed.

9. Accept the terms of the licenses and click Finish to complete installation.

10. When the software has been installed, Eclipse will prompt you to restart. Click
Yes.

Continue to Configuring Sample_Platform and Sample_Device

Configuring Sample_Platform and Sample_Device
When you create a Java Card project in Eclipse, you must identify the platform, which
is the location of the development kit, and provide settings for the device that the

Chapter 2
Eclipse Java Card Plug-in

2-5

simulator will create. You may have more than one simulated device associated with a
platform.

When you start Eclipse with the plug-in installed, the plug-in creates

• Sample_Platform, which points to the directory that is set in the
JC_HOME_SIMULATOR environment variable, and

• Sample_Device, which contains the settings for cref (the simulator).

Sample_Platform and Sample_Device are used for running samples, but you can use
them for your own programs too. If they are not created successfully, create them
manually using the instructions below.

To change the directory of the Java Card platform or the device settings for a project:

1. In Eclipse, from the Window menu, select Preferences.

2. In the Preferences dialog, click on the arrow to the left of Java Card Platforms.

3. Now you can select Java Card Platforms to add, delete or update platforms, and
Java Card Devices to add, delete or update the simulated device settings.

Configuring the Java Card Tools Path
To enable the Eclipse plugin to build a Java Card project, you must configure the Java
Card tool path. This is the path where the tools bundle is present. The tools bundle
includes the converter and verifier tools. This is a workspace setting. Therefore, the
tools bundle is used for all Java Card projects that are created in the same workspace.

To change the Java Card tools path for the workspace:

1. In Eclipse, from the Window menu, select Preferences.

2. In the Preferences dialog, click the Java Card Tools Path section.

3. In the Java Card Tools Path dialog, click Browse and select the directory where
the Java Card tools bundle is installed.

Uninstalling the Java Card Development Kit Simulator
To uninstall the Java Card Development Kit Simulator, do the following:

1. Start Eclipse and remove the Java Card plug-in:

a. From the Eclipse Help menu, select About Eclipse.

b. On the Installed Software tab, select Java Card 3 Platform Development
Kit.

c. Click Uninstall... and follow the prompts.

2. Remove Windows registry entries by running the uninstaller. From the Windows
Control Panel:

a. Click Programs and Features.

b. Select Java Card Development Kit Simulator from the list of programs.

c. Click Uninstall and then Finish.

3. Delete the JC_HOME_SIMULATOR directory from your hard drive, if required.

Chapter 2
Uninstalling the Java Card Development Kit Simulator

2-6

Uninstalling the Java Card Development Kit Tools
Perform the following steps, if you have installed the Java Card Development Kit Tool
only:

1. Delete the JC_HOME_TOOLS directory from your hard drive.

2. Delete the JC_HOME_TOOLS environment variable.

If you have installed the Java Card Development Kit Tools with the Java Card
Development Kit Simulator, perform the following step:

1. Delete the JC_HOME_TOOLS environment variable.

Chapter 2
Uninstalling the Java Card Development Kit Tools

2-7

3
Developing Java Card Applications

This chapter provides an introduction to developing Java Card applications. You
should also refer to the Application Programming Interface, Java Card Platform,
Classic Edition, Version 3.1 for additional information.
This chapter contains the following sections:

• Java Card Applet Development

• Java Card Development Kit Components

• Using Java Card Development Kit Tools

Java Card Applet Development
To develop an applet, you should do the following:

• Install and Setup — Install and setup the development environment. Using the
Eclipse IDE and Java Card plug-in is recommended. See Installation.

• Review Samples — Read Running the Samples, run the samples, and examine
the code.

• Develop — Develop your applet and compile the code to create the Java class
files. Then use the Java Card Development Kit Tools to convert the classes and
create a CAP file that can be downloaded to the simulator. See Using the Java
Card Development Kit Tools for more information on how to use the tools. Also,
see the chapters in Part II for more information about various programming issues.

• Deploy — Deploy your application to the Java Card simulator. See Packaging and
Deploying Your Application.

• Debug — Debug the applet. Use the Java Card debug proxy included in the
development kit. See Debugging Applications.

The figure shows the applet development and deployment process.

3-1

Figure 3-1 Process for Applet Development and Deployment

Development Deployment

 Verify Convert Compile

.java

Java
source

files

.class

Java
class
files

Digest file

1 2 3

Java Card
Product
(or simulator)

4 Install

Installer
(product specific)

converter

verifier

Java Card
CAP file

JAR

javac

.exp

Export
files

.exp

Export
files

Java Card Development Kit Components
The development kit is available as two independent downloads.

Java Card Development Kit Simulator - Includes a Java Card simulation
environment, Eclipse plug-in, and the associated testing and debugging tools. It
provides support for the latest Java Card Specification, and can also run applications
written for earlier releases.

• cref - The Java Card simulator. There are three versions of cref to handle various
communication protocols.

• scriptgen - The off-card installer, of which scriptgen is a part, resides on
the desktop and generates script files for apdutool's use. See Packaging and
Deploying Your Application.

• apdutool - A client-side tool, which sends the APDU commands to the RE and
your on-card applet application. During the application deployment process, you
can use it to read the output script file generated by scriptgen to send it to the
Card Manager application. See Packaging and Deploying Your Application.

• Eclipse plug-in - The plug-in provides a way to run the rest of the tools in this list
from inside Eclipse. Running the Samples in Eclipse

Java Card Development Kit Tools - Used to convert and verify Java Card
applications. The Tools can be used with products based on version 3.1, 3.0.5, and
3.0.4 of the Java Card Specifications.

• Converter - Converts Java classes into a CAP file, one or more Java Card
Assembly files, or one or more export files. See Converting and Exporting Java
Class Files.

Chapter 3
Java Card Development Kit Components

3-2

• verifier - Verifies the contents of a smart card using verifycap, verifyexp, and
verifyrev. See Verifying CAP and Export Files.

• capgen - Generates a compact CAP file from a Java Card Assembly file, or an
extended CAP file from one or more Java Card Assembly files. See Working With
CAP Files.

• capdump - Creates an ASCII version of a CAP file. See Working With CAP Files.

• exp2text - Enables you to view any export file in text format. See Converting and
Exporting Java Class Files.

• ant tasks - Set of tasks to use the tools in ant scripts. See Setting Up the Optional
Ant Tasks.

Using Java Card Development Kit Tools
Use the Java Development Kit to compile your applet. Then, use the converter tool
from the Java Card Development Kit Tools to convert the compiled Java file (.class
file) to a Java Card CAP file.

A Java Card CAP file is a JAR file containing the binary representation of a unit of
code, made of one or more Java packages. It can be distributed for deployment on
real devices running Java Card or simulators.

The Deployment process consists of verifying the CAP file and installing the code
on the device. The verifier tool from the Java Card Development Kit Tools does
the verification. The installation depends on the target device and uses the specific
installation tools.

To deploy the CAP files on the Java Card simulator (cref), use the scriptgen
tool, which produces an installation script, made of APDU commands, that can then
be transmitted to the Java Card simulator using the apdutool tool. The following
illustration depicts the Java Card tool chain.

Chapter 3
Using Java Card Development Kit Tools

3-3

Figure 3-2 Java Card Tool Chain

Java
Development
Kit

Java Card
Development
Kit Tools

Java Card
Development
Kit Simulator

 Verify Convert Compile

.java

Java
source

files

.class

Java
class
files

.scr

Script
file

1 2 3

Java Card
Product
(or simulator)

4 Install

converter

verifier

Java Card
CAP file

JAR

javac Digest file

apdutool

Java Card
Simulator

(cref)

.exp

Export
files

.exp

Export
files

scriptgen

Note that you can use the Converter tool to produce Java Card Assembly (JCA) files.
A JCA file is a textual representation of a converted package that you can use to aid
testing and debugging. You can use a JCA file as an input to the capgen tool to create
a CAP file. The following illustration depicts this process.

Figure 3-3 Using Java Card Assembly

Using JCA

.jca
Java Card
CAP file

JAR

Export
files

.exp

.class

Java class
files

2 Convert

converter
capgen

Chapter 3
Using Java Card Development Kit Tools

3-4

4
Running the Samples

A number of example programs are provided with the development kit.
Two directories containing samples are located under
JC_HOME_SIMULATOR\samples:

• classic_applets show basic functionality.

• reference_apps are outlines of applications that demonstrate the interactions
between various applications on the card using features such as SIO and events.

This chapter contains the following sections:

• How to Run the Samples

• Running the classic_applets Samples

• Running the reference_apps Samples

How to Run the Samples
Each sample directory contains an applet folder and, if applicable, client folder. You
can use the Eclipse plug-in or the ant tool, which is invoked from the command line, to
build and run the samples. In either case, the outcome is the same: the development
kit tools are used to convert the class files and generate APDU script files.

The Java Card runtime environment, cref, simulates a Java Card Platform, Version
3.1 on a smart card. Applets are installed in the runtime environment, and it simulates
interaction with a card reader.

Included in each sample directory is an expected output file so that you can see if the
sample is running correctly.

To build and run the samples, go to one of the following:

• Running the Samples in Eclipse

• Running the Samples from the Command Line.

Running the Samples in Eclipse
To run a sample, you import the project, build the project, start the device, run the CAP
script to install the code, and then run the sample-specific script. Detailed instructions
are provided for running each of the samples using Eclipse. Some instructions vary in
how they do a task, so that you can learn about the plug-in as you follow along.

Almost all of the choices presented by the plug-in dialogs correspond to command-line
options of the development kit tools (cref, converter, scriptgen and apdutool) which
are described elsewhere in this guide. The plug-in runs those tools with the options
that you select.

Following are a few notes on running the samples.

4-1

Sample_Platform and Sample_Device

When you start the Eclipse with the plug-in installed, it automatically creates or
re-creates Sample_Platform and Sample_Device. If for some reason they are not
created, refer to the instructions in Configuring Sample_Platform and Sample_Device.

Java Card View

The sample instructions refer to the Java Card view. If you don't see the Java Card
view, go to the Window menu, select Reset Perspective... Click Yes to confirm the
reset.

Importing and Building Projects

Using the File menu, select Import > General > Projects from Folder or Archive to
import a Java Card project. Make sure that you select the directory that has Java Card
source files in it from the project. In most cases, this directory is the applet folder.

After you import a project, the build starts (if Build Automatically under the Project
menu is selected) and generates the following artifacts for each Java package:

• deliverables — cap, jca, and exp files

• cap*.script — for installing the package

• create*.script — for installing the applet

• select*.script — for selecting the applet

The scripts are put in the apdu_scripts directory. The outputs from the converter (cap,
jca, and exp files) are put in the the deliverables directory.

Running Sample_Device

Start cref by right-clicking on Sample_Device in Java Card View and selecting Start.
The console opens with the output from cref and apdutool, and a prompt, CMD> You
can enter an APDU command, which is sent to the card (Sample_Device), and the
response is displayed on the console.

One simple way to test if the console is running is to type the echo command at the
prompt:

echo "test";

You should see the APDU response:

test

To install a built package, right-click the corresponding cap*.script file and select
Java Card and Execute Script.

Sample_Device Settings

Change settings for cref by double-clicking on Sample_Device in Java Card View to
open the Properties for Sample_Device dialog. From the same dialog you can change
the debugger and apdutool settings.

If you do set these parameters, you may need to clear them before running the next
sample.

Chapter 4
How to Run the Samples

4-2

Run Configuration

Run Configuration can be used to automate how scripts are run. You can specify
whether cref shall be started or re-started, and provide a list of scripts to be executed.

Running the Samples from the Command Line
To build and run the samples:

1. In a Command Prompt window, start the Java Card simulator by using the cref
command with the options specified by the sample.

2. In a second Command Prompt window, from the sample directory containing the
appropriate build.xml file, run the ant command with the appropriate target:

ant target

In the command, target represents the run option (such as all or run1-1)
specified in the procedures for running the sample. Each sample might use one or
more targets to run specific APDU scripts or multiple parts of the sample applet.
The required targets are described in the procedures used to run an individual
sample.

With the exception of the Transit, RMIPurse, and SecureRMIPurse samples, a
custom name can be specified for the output file generated by the ant command.
Use the following command syntax to specify a custom name for the output file:

ant -Dredirect.output=outputfile_name target

In this command, outputfile_name represents the name of the output file. This
command redirects the output from the APDUtool execution to the outputfile_name
file.

3. Perform any additional actions required by the individual sample's run procedure.

Additional actions might include restarting the simulator and using ant with an
appropriate target to run additional APDU scripts generated by the build. These
actions are described in the procedures used to run each sample.

Running the classic_applets Samples
The following sections describe the following development kit samples in order of their
complexity and provide procedures for running them:

• HelloWorld Sample - A minimal applet utilizing the simplest source code and meta-
files that demonstrates the base structure of a Java Card applet that developers
can use to develop, deploy, create, execute, delete, and unload a standalone
module.

• Channels Sample - Demonstrates the use of logical channels which allows
selecting multiple applets at the same time.

• Service Sample - Demonstrates the Java Card service framework of classes and
interfaces that enable a Java Card technology-based applet to be designed as an
aggregation of service components.

• Utility Sample - Demonstrates the use of the utility APIs in an applet to simulate
stock trading and portfolio management.

Chapter 4
Running the classic_applets Samples

4-3

• Wallet Sample - Demonstrates a simplified cash card application.

• ObjectDeletion Sample - Contains two samples, odDemo1 and odDemo2, that
demonstrate applet and package deletion and the object deletion mechanism that
removes unreachable objects.

• PhotoCard Sample - Demonstrates how to store images in the large address
space that is available in the 32-bit version of the Java Card simulator.

• RMIPurse Sample - Demonstrates the use of the Java Card platform Remote
Method Invocation (Java Card RMI) API. The basic example used is a program
that manages a counter remotely, and can decrement, increment, and return the
value of an account. See Programming to the Java Card RMI Client-Side API.

• StringHandlingApp Sample - Demonstrates the use of two Java Card Classic
libraries that use string annotations to define string constants and two Java
Card Classic applets that use those annotations to define their own set of string
constants and import string constants from the libraries.

• SecureRMIPurse Sample - Similar to the RMIPurse sample, but demonstrates
additional security at the transport level. This sample is only included in bundles
with cryptography extensions.

• SignatureMessageRecovery Sample - Demonstrates message recovery. This
sample is only included in bundles with cryptography extensions.

• ArrayViews Sample - Demonstrates a client application and a server application
sharing data using array views.

• CertHandling Sample - Demonstrates the use of static resources and certificate
API to parse and verify a certificate.

HelloWorld Sample
The HelloWorld sample demonstrates the base structure of a Java Card applet.

Follow one of these sets of instructions to run this sample:

• Running the HelloWorld Sample in Eclipse

• Running the HelloWorld Sample from the Command Line

Running the HelloWorld Sample in Eclipse
Run the HelloWorld sample using the APDU console.

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Using the File menu, select Import > General > Projects from Folder or
Archive, and select the applet directory from the HelloWorld project, to import
the HelloWorld Java Card project into your workspace. If the build doesn't start
automatically, start it manually.

The build generates the scripts and puts them in the apdu_scripts directory.
It puts the outputs from the converter (cap, jca, and exp files) in the
deliverables directory.

2. If you don’t see the Java Card view, go to the Window menu, select Show View
and Other... In the list, expand Oracle Java Card SDK and select Java Card
view.

Chapter 4
Running the classic_applets Samples

4-4

3. Before you start any script you must change the PowerDown parameters for
generating the script files. To change the PowerDown parameters:

a. In the Package Explorer view, click the HelloWorld Java project .

b. Right-click on the Java Card project and select Java Card and CAP Files
Settings.

c. Select a CAP file from the list that appears in the Java Card CAP Files page.

d. Click HelloWorld and select Edit.

e. In the Edit mode, select Compact CAP File.

f. Click Next>.

g. Select ScriptGen slide and select the Suppress "PowerDown;" APDU
command at the end of CAP script check box.

h. Click Finish and select Apply and Close.

4. In the Java Card View, right-click on Sample_Device and select Start.

The simulator starts and you can see the output in the Console view.

5. In the Sample_Device console toolbar, click on the Select script drop-down and
execute these scripts:

• cap-com.sun.jcclassic.samples.helloworld

• create-com.sun.jcclassic.samples.helloworld.HelloWorld

• helloworld

The scripts are submitted to the simulator and you can see the output.

Compare the output in the Console view with the contents of the
HelloWorld.expected.output file.

Running the HelloWorld Sample from the Command Line
To run the HelloWorld sample:

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by entering the following command at the command
prompt:

cref

Note:

cref command options are not required in this sample.

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\HelloWorld\apple
t directory.

Chapter 4
Running the classic_applets Samples

4-5

c. Enter the ant all command at the command prompt.

In this sample, the ant all command builds the applet, executes the APDU
script, and creates an output file in the applet directory. The ant script
names the output file either default.out or the custom name specified in the
command line. To specify a custom name for the output file, use the following
command:

ant -Dredirect.output=outputfile_name target

In this command, outputfile_name represents the name of the output file and
target represents either the all or run options of the ant command. In this
case, the all target is used. This command redirects the output from the
APDUtool execution to the outputfile_name file.

3. Verify that the contents of the output file in the applet directory are the same as
the contents of the HelloWorld.expected.out file.

Channels Sample
The Channels sample demonstrates the behavior of Java Card technology-based
logical channels by showing how two applets that interact with each other can each be
selected for use at the same time.

The applets may use a contact or contactless interface for communication with the
terminal. The Channels sample demonstrates the selection of an applet on both
interfaces. The sample also demonstrates use of ExtendedLength APDU.

The Channels sample mimics the behavior of a wireless device connected to a
network service. A connection manager tracks whether the device is connected to
the service and whether the connection is local or remote.

While it is connected, the user's account is debited on a unit of time basis. The
debit rate is based on whether the connection is local or remote, and uses either the
contacted or contactless interface.

The sample employs two applets to simulate the behavior of logical channels:

• The ConnectionManager applet manages the connection.

• AccountAccessor applet manages the account.

When the user turns on the device, the ConnectionManager applet is selected. The
ConnectionManager implements the ExtendedLength interface to handle APDUs with
larger data segments such as the ones used for key exchange in the sample. Every
unit of time the terminal sends a message containing the area code to the card.

When the user wants to use the service, the AccountAccessor applet is selected
on another logical channel so that the terminal can query the balance. The
AccountAccessor can return the balance only if the ConnectionManager is active.
The ConnectionManager applet sets the connection and tracks the connection status.
Based on the value of an area code variable, the ConnectionManager determines
whether the connection is local or remote. It also determines whether the connection is
contacted or contactless. AccountAccessor uses this information to debit the account
at the appropriate rate. The connection is disabled when the user completes the call or
when the account is depleted.

Follow one of these sets of instructions to run this sample:

• Running the Channels Sample in Eclipse

Chapter 4
Running the classic_applets Samples

4-6

• Running the Channels Sample from the Command Line

Running the Channels Sample in Eclipse
We will run the Channels sample without the APDU console.

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Import the Channels Java Card project into your workspace. If the build doesn't
start automatically, start it manually.

The build creates apdu_scripts and deliverables directories.

2. In Java Card View, double-click on Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. In the Combined (input and output) file for EEPROM data field, type a
file name to be used for saving EEPROM between simulator sessions, e.g.,
Channels.eeprom. The file will be automatically created in the bin directory.
Later, after the sample run, you can safely delete it.

b. Select Do not open APDU console.

c. Click OK.

3. In the Java Card View, right-click on Sample_Device and select Start.

The simulator starts and you can see the output in the Console view.

4. In the Package Explorer window, expand the apdu_scripts folder, right-click on
cap-com.sun.jcclassic.samples.channels.script, and select Java Card and
Execute Script.

You see the simulator output in the Console view. The simulator is stopped.

5. Right-click on Sample_Device and select Start.

The simulator starts and you can see the output in the Console view. This time
the simulator restores EEPROM data from the Channels.eeprom file saved in the
previous session.

6. In the Package Explorer window, in the apdu_scripts folder, right-click on
channel.scr, and select Java Card and Execute Script.

You see the simulator output in the Console view and the simulator
stopped. Compare the output in the Console view with the contents of the
Channels.expected.output file.

Running the Channels Sample from the Command Line
To run the Channels sample:

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by entering the following command at the command
prompt:

cref

Chapter 4
Running the classic_applets Samples

4-7

Note:

cref command options are not required in this sample.

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\Channels\applet
directory.

c. Enter the ant all command at the command prompt.

In this sample, the ant all command builds the applet, executes the APDU
script, and creates an output file in the applet directory. The ant script
names the output file either default.out or the custom name specified in the
command line. To specify a custom name for the output file, use the following
command:

ant -Dredirect.output=outputfile_name target

In this command, outputfile_name represents the name of the output file and
target represents either the all or run options of the ant command. In this
case, the all target is used. This command redirects the output from the
APDUtool execution to the outputfile_name file.

3. Verify that the contents of the output file in the applet directory are the same as
the contents of the Channels.expected.out file.

Service Sample
Java Card platform provides a service framework of classes and interfaces that allow
a Java Card technology-based applet to be designed as an aggregation of service
components. Service demo essentially demonstrates this. The class Main.java adds a
TestService to process the APDUs dispatched by the client. Based on the contents of
INS command in the APDU sent it does the following:

• If INS is 0x10, it returns status word 6617.

• If INS is 0x20, it returns status word 6618.

• If INS is 0x30, it returns status word 9000.

Follow one of these sets of instructions to run this sample:

• Running the Service Sample in Eclipse

• Running the Service Sample from the Command Line

Running the Service Sample in Eclipse
Run this sample using Run Configuration and the APDU console in Eclipse.

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Import the Service Java Card project into your workspace. If the build doesn't start
automatically, start it manually.

Chapter 4
Running the classic_applets Samples

4-8

The build creates apdu_scripts and deliverables directories.

2. In Java Card View, double-click on Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. Clear the Input file with EEPROM data, the Output file for EEPROM data,
and the Combined (input and output) file for EEPROM data fields.

b. Clear Do not open APDU console.

c. Click OK.

3. Before you configure, run, and start any script, you must change the PowerDown
parameters for generating the script files. Otherwise, the simulator goes into the
PowerDown mode after running the cap-Service.script file and interrupts any
execution of the following script files. To change the PowerDown parameters:

a. In the Package Explorer view, click Service Java project .

b. Right-click on the Java Card project and select Java Card and CAP Files
Settings.

c. Select a CAP file from the list that appears in the Java Card CAP Files page.

d. Click Service and select Edit.

e. In the Edit mode, select Compact CAP File.

f. Click Next>.

g. Select ScriptGen slide and select the Suppress "PowerDown;" APDU
command at the end of CAP script check box.

h. Click Finish and select Apply and Close.

4. In the top menu, select Run and Run Configurations...

5. In the Run Configurations dialog:

a. Right-click on Java Card Project Run and select New.

b. In the Name field, enter Service

c. Click Browse..., select the Service project, and click OK.

d. Select Start simulator.

e. In the Scripts to be executed on simulator list box, add the following scripts:

• Browse to the
JC_HOME_SIMULATOR\samples\classic_applets\Service\applet\apdu-
scripts directory and choose cap-
com.sun.jcclassic.samples.service.script

• From the same directory, select service.scr

f. Click Run

The simulator starts and executes the scripts in the list box, and you can see the
output in the Console view.
Compare the output with the contents of the service.expected.output file.

Running the Service Sample from the Command Line
To run the Service sample:

1. Open a Command Prompt window and perform the following:

Chapter 4
Running the classic_applets Samples

4-9

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by entering the following command at the command
prompt:

cref

Note:

cref command options are not required in this sample.

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\Service\applet
directory.

c. Enter the ant all command at the command prompt.

In this sample, the ant all command builds the applet, executes the APDU
script, and creates an output file in the applet directory. The ant script
names the output file either default.out or the custom name specified in the
command line. To specify a custom name for the output file, use the following
command:

ant -Dredirect.output=outputfile_name target

In this command, outputfile_name represents the name of the output file and
target represents either the all or run options of the ant command. In this
case, the all target is used. This command redirects the output from the
APDUtool execution to the outputfile_name file.

3. Verify that the contents of the output file in the applet directory are the same as
the contents of the service.expected.out file.

Utility Sample
The Utility sample demonstrates how you can use the utility APIs in an application.
This applet is a simple version of a hypothetical broker applet that is used to assist
the user in buying and selling stocks. The applet uses constructed TLVs and primitive
TLVs to manage the portfolio. The communication with the broker is also in the form
of TLVs and uses the math API to determine the value of a trade. It also uses the
integer API to construct an integer from byte array and set integers in byte arrays for
TLV objects.

This applet provides the following features:

• PIN Protection - PIN protected access to the application. Uses the standard PIN
API in the Java Card platform to protect access to the applet.

• Storage of Portfolio - Storage of portfolio information on the card. The applet
uses a portfolio constructed TLV to store the information regarding all the stocks
that the user currently holds. The information is stored in the form of stockInfo
constructed TLV. Each stockInfo TLV contains the following:

– Stock symbol

Chapter 4
Running the classic_applets Samples

4-10

– Number of stocks

– Last Trade Constructed TLV

– Number of stocks

– Stock Price

• Stock Trading - The applet assists the user in buying and selling stocks by
creating a "signed" purchasing or selling request for the broker in the form of a
stock purchase request constructed TLV or sell stock request constructed TLV.
Before the request is generated, the applet checks to see if the user has enough
stocks in case the request is to sell the stock and enough account balance if the
request is to buy new stock. The request is sent back to the terminal where the
terminal application may retrieve the TLV from the response APDU and send it to
the broker.

If the trade is successful, the broker sends back a confirmation message in the
form of a sell confirmation TLV or purchase confirmation TLV. The applet retrieves
the information from the confirmation TLV and updates the portfolio as follows:

– If a new stock is bought, the applet creates a new constructed stockInfo TLV
to store the new stock information.

– If the user already had a stock, the number of stocks the user currently holds,
and the last trade information is updated accordingly.

– If the user, because of the trade, has 0 stocks of a certain company, the
stockInfo TLV for that stock is removed from the portfolio constructed TLV.

• Retrieval of complete portfolio information from the card.

• Get Information On a Stock - Retrieval of information on a particular stock in the
portfolio. User may use this feature to get information regarding a specific stock
rather than retrieving the whole portfolio. If a stock is not found, the appropriate
exception is thrown. The information is returned in the form of a stockInfo TLV
that contains the following:

– Stock symbol

– Number of stocks

– Last trade constructed TLV

– Number of stocks

– Stock price

• Assistance for the user in creating a stock purchase request for the broker.

• Assistance the user in creating a sell stock request for the broker.

• On receiving a trade confirmation, update the portfolio accordingly.

• Get information on current user account balance.

Follow one of these sets of instructions to run this sample:

• Running the Utility Sample in Eclipse

• Running the Utility Sample from the Command Line

Chapter 4
Running the classic_applets Samples

4-11

Running the Utility Sample in Eclipse
We will run this sample using Run Configuration and the APDU console in Eclipse.

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Import the Utility Java Card project into your workspace. If the build doesn't start
automatically, start it manually.

The build creates apdu_scripts and deliverables directories.

2. In Java Card View, double-click on Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. Clear the Input file with EEPROM data, the Output file for EEPROM data,
and the Combined (input and output) file for EEPROM data fields.

b. Clear Do not open APDU console.

c. Click OK.

3. In the top menu, select Run and Run Configurations...

4. In the Run Configurations dialog:

a. Right-click on Java Card Project Run and select New.

b. In the Name field, enter Utility

c. Click Browse..., select the Utility project, and click OK.

d. Select Start simulator.

e. In the Scripts to be executed on simulator list box, add the following scripts:

• Browse to the
JC_HOME_SIMULATOR\samples\classic_applets\Utility\applet\apdu-
scripts directory and choose cap-
com.sun.jcclassic.samples.utility.script

• From the same directory, select UtilityDemoFooter.scr

f. Click Run

The simulator starts and executes the scripts in the list box, and you can see the
output in the Sample_Device Console view.
Compare the output with the contents of the utility.expected.out file.

Running the Utility Sample from the Command Line
To run the Utility sample:

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by entering the following command at the command
prompt:

cref

Chapter 4
Running the classic_applets Samples

4-12

Note:

cref command options are not required in this sample.

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\Utility\applet
directory.

c. Enter the ant all command at the command prompt.

In this sample, the ant all command builds the applet, executes the APDU
script, and creates an output file in the applet directory. The ant script
names the output file either default.out or the custom name specified in the
command line. To specify a custom name for the output file, use the following
command:

ant -Dredirect.output=outputfile_name target

In this command, outputfile_name represents the name of the output file and
target represents either the all or run options of the ant command. In this
case, the all target is used. This command redirects the output from the
APDUtool execution to the outputfile_name file.

3. Verify that the contents of the output file in the applet directory are the same as
the contents of the utility.expected.out file.

Wallet Sample
The Wallet sample demonstrates a simplified cash card application. It keeps a
balance, and exercises some Java Card API features such as the use of a PIN to
control access to the applet.

The script file wallet.scr contains the sequence in which this is done.

Follow one of these sets of instructions to run this sample:

• Running the Wallet Sample in Eclipse

• Running the Wallet Sample from the Command Line

Running the Wallet Sample in Eclipse
These instructions use clipboard operations and the APDU console to run the script.
You could instead run the script in the usual way (right-click the script, select Java
Card and Execute Script).

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Import the Wallet Java Card project into your workspace. If the build doesn't start
automatically, start it manually.

The build creates apdu_scripts and deliverables directories.

Chapter 4
Running the classic_applets Samples

4-13

2. In Java Card View, double-click on Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. Clear the Input file with EEPROM data, the Output file for EEPROM data,
and the Combined (input and output) file for EEPROM data fields.

b. Clear Do not open APDU console.

c. Click OK.

3. Before you start any script, you must change the PowerDown parameters for
generating the script files. Otherwise, the simulator goes into the PowerDown
mode after running the cap-Wallet.script. To change the PowerDown
parameters:

a. In the Package Explorer view, click the Wallet Java project .

b. Right-click on the Java Card project and select Java Card and CAP Files
Settings.

c. Select a CAP file from the list that appears in the Java Card CAP Files page.

d. Click Wallet and select Edit.

e. In the Edit mode, select Compact CAP File.

f. Click Next>.

g. Select ScriptGen slide and select the Suppress "PowerDown;" APDU
command at the end of CAP script check box.

h. Click Finish and select Apply and Close.

4. In Java Card View, right-click on Sample_Device and select Start.

The simulator starts and you can see the output in the Sample_Device console
view. The output ends and the CMD> prompt is displayed.

5. In the console toolbar, click on the Select script drop-down button and select
cap-com.sun.jcclassic.samples.wallet from the list.

The script is submitted to the simulator and you can see the output.

6. In Package Explorer, expand the apdu_scripts folder and double-click on
wallet.scr to open it in the editor view. Select all text in the editor view, copy
it to the clipboard, and paste it into the Sample_Device console.

The script is executed by the simulator, and you see the output in the
Sample_Device console.

Compare the output with the contents of the wallet.expected.out file.

Running the Wallet Sample from the Command Line
To run the Wallet sample:

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by entering the following command at the command
prompt:

cref

Chapter 4
Running the classic_applets Samples

4-14

Note:

cref command options are not required in this sample.

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\Wallet\applet
directory.

c. Enter the ant all command at the command prompt.

In this sample, the ant all command builds the applet, executes the APDU
script, and creates an output file in the applet directory. The ant script
names the output file either default.out or the custom name specified in the
command line. To specify a custom name for the output file, use the following
command:

ant -Dredirect.output=outputfile_name target

In this command, outputfile_name represents the name of the output file and
target represents either the all or run options of the ant command. In this
case, the all target is used. This command redirects the output from the
APDUtool execution to the outputfile_name file.

3. Verify that the contents of the output file in the applet directory are the same as
the contents of the wallet.expected.out file.

ObjectDeletion Sample
The sample generates seven APDU scripts that demonstrate the object deletion
mechanism, applet deletion, and package deletion:

• od1-1.scr - Demonstrates the object deletion mechanism and verifies that
memory for objects referenced from transient memory of type CLEAR_ON_DESELECT
is reclaimed after an applet is deselected.

od1-1.scr does not depend on any other sample. The final state of cref memory
must be saved to a file for od1-2.scr to use.

• od1-2.scr - Demonstrates the object deletion mechanism and verifies that
memory for objects referenced from transient memory of type CLEAR_ON_RESET
is reclaimed after card reset.

The od1-2.scr sample must be run after od1-1.scr because the initial state of
cref must be the same as its final state after running od1-1.scr. After running
od1-2.scr, the final state of cref must be saved to a file so that od1-3.scr can
use it.

• od1-3.scr - Performs applet deletion, package deletion, and employs the
AppletEvent.uninstall method to uninstall an applet. The sample verifies
that all transient memory of type CLEAR_ON_RESET and CLEAR_ON_DESELECT is
returned to the memory manager. The sample also demonstrates the use of the
AppletEvent.uninstall() method.

Chapter 4
Running the classic_applets Samples

4-15

The od1-3.scr sample must be run after od1-2.scr because the initial state of
cref must be the same as its final state after running od1-2.scr.

• od2.scr - Demonstrates package deletion and checks that persistent memory is
returned to the memory manager.

After running od2.scr, the final state of cref must be saved to a file so that
od2-2.scr can use it.

• od2-2.scr - Demonstrates shared reference applet deletion and package deletion
order.

The od2-2.scr sample must be run after od2.scr. This is because the initial state
of cref must be the same as its final state after running od2.scr.

• od3.scr – Implements a scenario to capture initial memory.

After running od3.scr, the final state of cref must be saved to a file so that
od3-2.scr can use it.

• od3-2.scr - Implements a scenario to verify memory after package deletion.

The od3-2.scr sample must be run after od3.scr because the initial state of cref
must be the same as its final state after running od3.scr.

The simulator must be restarted before running each APDU script.

Follow one of these sets of instructions to run this sample:

• Running the ObjectDeletion Sample in Eclipse

• Running the ObjectDeletion Sample from the Command Line

Running the ObjectDeletion Sample in Eclipse
Run the ObjectDeletion sample without the APDU console.

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Import the ObjectDeletion Java Card project into your workspace. If the build
doesn't start automatically, start it manually.

The build creates apdu_scripts and deliverables directories.

2. In Java Card View, double-click on Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. In the Combined (input and output) file for EEPROM data field, type a
file name to be used for saving EEPROM between simulator sessions, e.g.,
ObjectDeletion.eeprom. The file will be automatically created in the bin
directory. Later, after the sample run, you can safely delete it.

b. Select the Do not open APDU console check box.

c. Click OK.

3. At the command line, browse to the
JC_HOME_SIMULATOR\samples\classic_applets\ObjectDeletion\applet folder.

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Build the ObjectDeletion sample and run ant in
the JC_HOME_SIMULATOR\samples\classic_applets\ObjectDeletion\applet
folder.

Chapter 4
Running the classic_applets Samples

4-16

A build folder is created with the applet*.scr files.

c. In Eclipse, right-click on the ObjectDeletion project and click Refresh.

The build folder is added into the project.

4. Execute the following scripts in the same order from the build folder.

• applet1-1.scr

• applet1-2.scr

• applet1-3.scr

• applet2.scr

• applet2-2.scr

• applet3.scr

• applet3-2.scr

a. To run each script, start the simulator, from the Java Card View, right-click on
Sample_Device and select Start.

b. Right-click on the script file and select Java Card and Execute Script.

You see the simulator output in the Console view. The simulator
stops after each script run. Compare the output in the Console
view with the corresponding expected.out file. Compare the output
in the Console view for each run of an applet*.scr file,
with the corresponding od*.expected.out file, located in the
JC_HOME_SIMULATOR\samples\classic_applets\ObjectDeletion
folder.

Running the ObjectDeletion Sample from the Command Line
To run the ObjectDeletion sample:

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by entering the following command at the command
prompt:

cref -o e2p

2. In a different Command Prompt window, perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\ObjectDeletion\a
pplet directory.

c. Enter the ant all command at the command prompt.

In this sample, the ant all command generates the APDU script.

3. In the cref Command Prompt window, stop the simulator by using ctrl + c.

4. In the cref Command Prompt window, restart the simulator by entering the
following command:

Chapter 4
Running the classic_applets Samples

4-17

cref -o e2p -i e2p

5. In the applet Command Prompt window, enter the following command at the
command prompt:

ant run1-1

The ant run1-1 command executes the od1-1.scr APDU script and creates an
output file in the applet directory. The ant script names the output file either
default.out or the custom name specified in the command line. To specify a
custom name for the output file, use the following command:

ant -Dredirect.output=outputfile_name target

In this command, outputfile_name represents the name of the output file and
target represents either the all or run options of the ant command. In this case,
the all target is used. This command redirects the output from the APDUtool
execution to the outputfile_name file.

6. Verify that the contents of the output file in the applet directory are the same as
the contents of the od1-1.expected.out file.

7. In the cref Command Prompt window, restart the simulator by entering the
following command:

cref -o e2p -i e2p

8. In the applet Command Prompt window, enter the following command at the
command prompt:

ant run1-2

The ant run1-2 command executes the od1-2.scr APDU script and creates an
output file (default.out) in the applet directory. See Step 5 for the command line
required to specify a custom output file name.

9. Verify that the contents of the output file in the applet directory are the same as
the contents of the od1-2.expected.out file.

10. In the cref Command Prompt window, restart the simulator by entering the
following command:

cref -o e2p -i e2p

11. In the applet Command Prompt window, enter the following command at the
command prompt:

ant run1-3

The ant run1-3 command executes the od1-3.scr APDU script and creates an
output file (default.out) in the applet directory. See Step 5 for the command line
required to specify a custom output file name.

12. Verify that the contents of the output file in the applet directory are the same as
the contents of the od1-3.expected.out file.

13. In the cref Command Prompt window, restart the simulator by entering the
following command:

cref -o e2p -i e2p

14. In the applet Command Prompt window, enter the following command at the
command prompt:

ant run2

Chapter 4
Running the classic_applets Samples

4-18

The ant run2 command executes the od2.scr APDU script and creates an output
file (default.out) in the applet directory. See Step 5 for the command line
required to specify a custom output file name.

15. Verify that the contents of the output file in the applet directory are the same as
the contents of the od2.expected.out file.

16. In the cref Command Prompt window, restart the simulator by entering the
following command:

cref -o e2p -i e2p

17. In the applet Command Prompt window, enter the following command at the
command prompt:

ant run2-2

The ant run2-2 command executes the od2-2.scr APDU script and creates an
output file (default.out) in the applet directory. See Step 5 for the command line
required to specify a custom output file name.

18. Verify that the contents of the output file in the applet directory are the same as
the contents of the od2-2.expected.out file.

19. In the cref Command Prompt window, restart the simulator by entering the
following command:

cref -o e2p -i e2p

20. In the applet Command Prompt window, enter the following command at the
command prompt:

ant run3

The ant run3 command executes the od3.scr APDU script and creates an output
file (default.out) in the applet directory. See Step 5 for the command line
required to specify a custom output file name.

21. Verify that the contents of the output file in the applet directory are the same as
the contents of the od3.expected.out file.

22. In the cref Command Prompt window, restart the simulator by entering the
following command:

cref -o e2p -i e2p

23. In the applet Command Prompt window, enter the following command at the
command prompt:

ant run3-2

The ant run3-2 command executes the od3-2.scr APDU script and creates an
output file (default.out) in the applet directory. See Step 5 for the command line
required to specify a custom output file name.

24. Verify that the contents of the output file in the applet directory are the same as
the contents of the od3-2.expected.out file.

PhotoCard Sample
The PhotoCard sample illustrates how to use the large address space available in the
32-bit version of the simulator. The sample uses the large address space of the smart

Chapter 4
Running the classic_applets Samples

4-19

card's EEPROM memory to store up to four GIF images. The images are included with
the sample.

The PhotoCard sample consists of two parts: a card applet and a client program that
communicates with it. The photocard applet employs a collection of arrays to store
large amounts of data. The arrays allow the applet to take advantage of the platform's
capabilities by transparently storing data.

The design and coding of applications that use the large address space to access
memory must adhere to the target platform's requirements. Smart cards have limited
resources and code cannot be guaranteed to behave identically on different cards. For
example, if the photocard applet runs on a card with less mutable persistent memory
available for storage, it might run out of memory space when it attempts to store the
images. A set of inputs might not produce the same set of outputs in a simulator with
different characteristics. The applet code must account for this.

Follow one of these sets of instructions to run this sample:

• Running the PhotoCard Sample in Eclipse

• Running the PhotoCard Sample from the Command Line

Running the PhotoCard Sample in Eclipse
The PhotoCard sample consists of two projects: a Java Card project with the Java
Card applet and a Java SE project with the Java application that is designed to
communicate with the applet.

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Import the PhotoCard_Applet Java Card project and the PhotoCard_Client Java
project into your workspace. You can import both projects in the same Import
wizard. If the builds don't start automatically, start them manually.

The PhotoCard_Applet project build creates apdu_scripts and deliverables
directories.

2. In Java Card View, double-click on Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. In the Combined (input and output) file for EEPROM data field, type a
file name to be used for saving EEPROM between simulator sessions, e.g.,
PhotoCard.eeprom. The file will be automatically created in the bin directory.
Later, after the sample run, you can safely delete it.

b. Clear the Input file with EEPROM data and the Combined (input and
output) file for EEPROM data fields.

c. Clear Do not open APDU console.

d. Click OK.

3. In Java Card View, right-click on Sample_Device and select Start.

The simulator starts and you can see that Sample_Device console is created.

4. In Sample_Device console toolbar, click the Select Script drop-down button
and select cap-com.sun.jcclassic.samples.photocard. Wait until the script
execution completes and the CMD> prompt is displayed

Chapter 4
Running the classic_applets Samples

4-20

5. Click the Select Script drop-down button again and select create-
com.sun.jcclassic.samples.photocard.PhotoCardApplet. Verify that the script
finished successfully, i.e., with SW1: 90, SW2: 00

6. In Sample_Device console toolbar, click the Stop the device button.

The simulator stops, and EEPROM data is saved in PhotoCard.eeprom file.

7. In Java Card View, double-click on Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. In the Input file with EEPROM data field, click Browse.. and select
thePhotoCard.eeprom file.

b. Clear the Output file with EEPROM data.

c. Select Do not open APDU console.

d. Click OK.

8. In Java Card View, right-click on Sample_Device and select Start.

The simulator starts and you can see the output in the Console view.

9. In the Package Explorer view, right-click on PhotoCard_Client and select Run As
and Run Configurations...

10. In the Run Configurations dialog:

a. Right-click on Java Application and select New.

b. Select the Arguments tab.

c. Enter the following program arguments: duke_magnify.gif
duke_pencil.gif duke_wave.gif duke_thumbsup.gif and click Run

When the program completes you can compare its output with the photocard-
client.expected.out file.

Running the PhotoCard Sample from the Command Line
To run the PhotoCard sample:

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by using the following command at the command prompt:

cref -o demoee

Starting the simulator with the -o option and filename causes the simulator to save
the EEPROM contents to a file named demoee.

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\PhotoCard\applet
directory.

c. Enter the following command at the command prompt:

ant all

Chapter 4
Running the classic_applets Samples

4-21

In this sample's applet directory, the ant all command executes the
APDU script, installs the photocard application, and creates an output file
(default.out) in the applet directory.

3. Verify that the contents of the output file in the applet directory are the same as
the contents of the photocard-applet.expected.out file.

4. In the cref Command Prompt window, restart the simulator by using the following
command:

cref -z -i demoee

Starting the simulator with the -z and -i options and filename causes the
simulator to use the contents of the demoee file to initialize the EEPROM and to
display the resource consumption statistics.

5. In the applet Command Prompt window, perform the following:

a. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\PhotoCard\client
directory.

b. Enter the following command at the command prompt:

ant all

In this sample's client directory, the ant all command executes the APDU
script and generates an output file (actual_output.txt) in the client
directory.

6. Verify that the contents of the actual_output.txt file are the same as the
contents of the photocard-client.expected.out file.

Note:

Photo verification requires the MessageDigest class and SHA256
algorithm. If these are not available, the actual_output.txt file will not
contain the last line of the photocard-client.expected.out file (Photo
is valid).

Depending on the locale that is used, the presentation of
photo sizes might differ between actual_output.txt and photocard-
client.expected.out. For example, "21,280 bytes" versus "21.280
bytes".

RMIPurse Sample
A Java Card RMI application consists of two parts: a card applet and a client program
communicating with it. In this sample, the RMIPurse applet is installed in EEPROM
image. For further details see Programming to the Java Card RMI Client-Side API.

The RMIPurse sample uses the card applet PurseApplet, the Purse interface
and its implementation PurseImpl. These classes reside in the package
com.sun.javacard.samples.RMIDemo. The client-side program PurseClient resides in
the package com.sun.javacard.clientsamples.purseclient.

The Purse interface describes the supported functionality: methods for obtaining the
account balance, debiting and crediting the account, and obtaining and setting an

Chapter 4
Running the classic_applets Samples

4-22

account number. The interface also defines the constants used for error reporting. The
PurseImpl class implements Purse.

The card applet, PurseApplet, creates and registers instances of the dispatcher and
the Java Card RMI service.

The client-side program, PurseClient, represents a simple Java Card RMI client.
The program opens a connection with a card, creates the Java Card RMI Connect
instance, and selects the Java Card applet (in this case, the PurseApplet). The
program then gets the initial reference from PurseApplet (the reference to an instance
of PurseImpl) and casts it to the Purse interface type. This allows PurseImpl to
be treated as a local object. The program can then exercise the card by debiting
and crediting different amounts, and by setting and getting the account number. The
program demonstrates error handling by intentionally attempting to set an account
number of incorrect size. This causes a UserException to be thrown with the
appropriate error code.

The client part of the RMIDemo can be run without parameters or with the -i parameter:

• If the sample is run without parameters, remote references are identified using the
class name of the remote object.

• If the sample is run with the -i parameter, remote references are identified using
the list of remote interfaces implemented by the remote object.

Follow one of these sets of instructions to run this sample:

• Running the RMIPurse Sample in Eclipse

• Running the RMIPurse Sample from the Command Line

Running the RMIPurse Sample in Eclipse
The RMIPurse sample consists of two projects: a Java Card project with the Java
Card applet, and a Java SE project with a Java application that communicates with the
applet using RMI.

Start Eclipse. Sample_Platform and Sample_Device must already be created.

This sample uses the rmic tool, which is provided with the development kit.

1. Import the RMIPurse_Applet Java Card project and the RMIPurse_Client Java
project into your workspace. You can import both projects in the same Import
wizard. If the builds don't start automatically, start them manually.

The RMIPurse_Applet project build creates apdu_scripts and deliverables
directories.

2. Create a launch configuration to specify launch parameters for the rmic tool:

a. From the workbench menu bar, select Run, External Tools, and External
Tools Configurations...

b. On the External Tools Configurations dialog, select Ant Build in the left hand
list of launch configuration types, and then click New launch configuration in
the toolbar.

3. On the Main configurations dialog, enter the following text for these fields:

• Name: rmic

• Buildfile: ${workspace_loc:/RMIPurse_Applet/build.xml}

Chapter 4
Running the classic_applets Samples

4-23

• Base directory: ${workspace_loc:/RMIPurse_Applet}

a. On the Targets configurations dialog, select only rmic target.

b. On the Environment configurations dialog, add JC_HOME_SIMULATOR and
JC_HOME_TOOLS variables.

c. Click Apply and Close.

4. Import the RMIPurse_Applet Java Card project and the RMIPurse_Client Java
project into your workspace. You can import both projects in the same Import
wizard. If the builds don't start automatically, start them manually.

The RMIPurse_Applet project build creates apdu_scripts and deliverables
directories.

5. In Java Card View, double-click on Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. In the Output file with EEPROM data field, type a file name to be used for
saving EEPROM between simulator sessions, e.g., RMIPurse.eeprom. The file
will be automatically created in the bin directory. Later, after the sample run,
you can safely delete it.

b. Clear the Input file with EEPROM data and the Combined (input and
output) file for EEPROM data fields.

c. Clear Do not open APDU console.

d. Click OK.

6. In Java Card View, right-click on Sample_Device and select Start.

The simulator starts and you can see that Sample_Device console is created.

7. In the Sample_Device console toolbar, click on the Select Script drop-down and
execute:

• cap-com.sun.jcclassic.samples.rmi and

• create-com.sun.jcclassic.samples.rmi.PurseApplet

8. Stop the Sample_Device.

9. In the Package Explorer view, expand
RMIPurse_Applet\src\com.sun.jcclassic.samples.rmi and select
PurseImpl.java. From the Eclipse menu bar, select Run, then External Tools
and rmic. (If this is the first rmic execution, select Run, External Tools , External
Tools Configurations... and click Run).

Click F5 to refresh the view, and you should see PurseImpl_Stub.class in the
RMIPurse_Applet\stubs\com\sun\jcclassic\samples\rmi directory.

10. In Java Card View, double-click on Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. In the Input file with EEPROM data field, click Browse... and select the
RMIPurse.eeprom file.

b. Clear the Output file for EEPROM data field.

c. Select Do not open APDU console.

d. Click OK.

11. In Java Card View, right-click on Sample_Device and select Start.

The simulator starts and you can see the output in the Console view.

Chapter 4
Running the classic_applets Samples

4-24

12. In the Package Explorer view, expand RMIPurse_Client project, navigate to
PurseClient.java, right-click on it, and select Run As and Java Application.

You see the application output in the console. Now you can compare it with the
contents of rmidemo.expected.output file.

Running the RMIPurse Sample from the Command Line
To run the RMIPurse sample:

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by typing the following command at the command prompt:

cref -o demoee

Starting the simulator with the -o option and filename causes the simulator to save
the EEPROM contents to a file named demoee.

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\RMIPurse\applet
directory.

c. Enter the following command at the command prompt:

ant all

In this sample's applet directory, the ant all command executes the APDU script
and installs the RMI application.

3. In the cref Command Prompt window, restart the simulator by using the following
command:

cref -i demoee

Starting the simulator with the -i option and filename causes the simulator to use
the contents of the demoee file to initialize the EEPROM.

4. In the applet Command Prompt window, perform the following:

a. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\RMIPurse\client
directory.

b. Enter the following command at the command prompt:

ant all

In this sample's client directory, the ant all command executes the APDU
script and generates the rmidemo.actual.output file.

5. Verify that the contents of the rmidemo.actual.output file in the client directory
are the same as the contents of the rmidemo.expected.output file in the RMIPurse
directory.

Chapter 4
Running the classic_applets Samples

4-25

StringHandlingApp Sample
The StringHandlingApp sample demonstrates how annotations and string utility
methods for the Java Card platform are used and showcases the use of:

• Annotations in javacardx.annotations.StringDef and
javacardx.annotations.StringPool

• String utility methods defined in javacardx.framework.string.StringUtil

This sample also demonstrates how two applets can have different contexts but both
access the same string constant from a library.

The sample is composed of two applets (StringHandlingApp and StringUtilApp) and
two libraries (StringHandlingLib and StringHandlingLibLocal). The libraries use
string annotations to define string constants. The two applets use annotations to define
their own set of string constants and to import string constants from the libraries.

In this sample, an applet such as StringHandlingApp uses string constants that
it imports from one library, StringHandlingLibLocal, that are in turn imports of
constants from another library, StringHandlingLib.

Follow one of these sets of instructions to run this sample:

• Running the StringHandlingApp Sample from Eclipse

• Running the StringHandlingApp Sample from the Command Line

Description of StringHandlingApp Applet
The StringHandlingApp applet uses javacardx.annotations.StringDef and
javacardx.annotations.StringPool annotations. It defines its own set of
string constants and also imports a string constant from the main library,
StringHandlingLib. The StringHandlingApp applet demonstrates how you can use
two applets in different contexts both importing a single string constant from a common
library. The StringHandlingApp applet imports and uses one of the same string
constants from StringHandlingLib as the StringUtilApp applet.

The StringHandlingApp applet imports a string constant from the StringHandlingLib,
and also defines string constants for itself. When the StringHandlingApp is selected,
the process method uses the test methods defined in the StringHandlingLib library.
If the results from each of the tested methods match the expected string constants
defined in the applet, it creates a response message containing a Hello World!
message with a copy of the incoming message appended to the end. In the case
that the tested methods do not produce the expected outcome, it sends a message
containing the header bytes from the buffer with a copy of the incoming message
appended to the end.

Description of StringUtilApp Applet
StringUtilApp uses javacardx.framework.string.StringUtil class and combines
the use of:

• String annotations

• String constants from the StringHandlingLib and StringHandlingLibLocal
libraries

Chapter 4
Running the classic_applets Samples

4-26

• Methods from the StringUtil class

It imports string constants from one library, StringHandlingLibLocal, that are in turn
imports of constants from another library, StringHandlingLib. In addition, it also helps
demonstrate how two applets can have different contexts but both access the same
string constant from a common library. It imports and uses one of the same string
constants from StringHandlingLib as the StringHandlingApp applet.

The StringUtilApp process method handles APDUs containing a command string
composed of a command type and optional arguments. It sends a response APDU
based on the command string it received. Contained in this applet's string pool
are string constants defining stored items. Command and response strings are
represented as a series of bytes following a utf-8 representation of strings.

Command String Requirements
The following are requirements for a valid command string:

• Command strings must be terminated by a period.

• Command type names must be separated from their arguments by a space.

• Command type names (welcome, contacts, and settings) are case insensitive.

• Arguments for Contacts or Settings command types are 1 or 2. See Table 4-1.

• Optional second argument of 1 or 2 can be used for the Settings command type.
See Table 4-1.

Table 4-1 Valid Command String Type and Argument Combinations

Command Types Command Arguments Optional Arguments

Welcome none none

Contacts 1 or 2 none

Settings 1 or 2 1 or 2

To demonstrate the applet's command string functionality, the following examples are
provided as string versions of the byte sequences of valid command strings:

Note:

Valid command type names used in command strings are case insensitive.

• Welcome.

• Settings 1.

• contacts 2.

• Settings 2 2.

Response String Description
Response strings are automatically formatted by the applet when a command APDU
is received. You must follow the requirements for creating a valid command string (see

Chapter 4
Running the classic_applets Samples

4-27

Command String Requirements) to send to the applet or the applet does not produce
the desired results. While you do not create the response strings, the following
describes the responses you can expect from the applet:

• If the command string is invalid, then a default response string is sent.

• If the command string contains the Welcome command type, then a welcome
response string is sent.

• If the command string contains Contacts or Settings command types with
arguments, then a string is sent that corresponds to the arguments and command
type received. This response string is composed of a comma separated name and
value pair.

To demonstrate the applet's response string functionality, the following examples are
response string versions of byte sequences that correspond to the example command
strings in Command String Requirements:

• Hello California!

• AutoCorrect, Off

• John Adams, John.Adams@123.com

• Wifi, On

Examples of Process Method Handling of APDUs Containing a Command String
The following are examples of process methods StringUtilApp applet uses when
processing the command strings containing default values and settings for Contacts
and Settings:

• Contacts with a name and an e-mail address

When StringUtilApp receives a command for Contacts, it sends a response
message with the contact name corresponding to the number in the command
argument along with the associated e-mail address value for that name.

• Settings with arguments

When a Settings command is received with only one argument, the setting
corresponding to the number in the command argument and its default value are
sent in the response message.

If the Settings command contains two arguments, the second argument signifies
the state in which that setting should be placed. The applet then responds with the
name of the setting and the value that was selected in the command.

Description of StringHandlingLib and StringHandlingLibLocal Libraries
The following libraries, StringHandlingLib and StringHandlingLibLocal, use string
annotations to define string constants:

• StringHandlingLib - The main library is used by both applets and contains the
following:

– String constants for a default location, a hello greeting, and an error message

– Examples of substring, startsWith, and endsWith methods implemented by
using the offsetByCodePoints method from StringUtil

Chapter 4
Running the classic_applets Samples

4-28

– Test methods for the substring, startsWith, endsWith, and
offsetByCodePoints methods

• StringHandlingLibLocal - The local library is an example of a library that
contains location specific string constants.

As used in StringUtilApp, the local library provides an example of how a library:

– Controls the formatting of input and output strings including delimiters for
arguments and command string terminators

– Provides the location used in the welcome message and a default error
message

Note:

The default error message demonstrates how a library can use string
constants from another library and how an applet can use string
constants from either the main or the local library.

Running the StringHandlingApp Sample from Eclipse
The StringHandlingApp sample consists of three Java
Card projects: StringHandlingApp, StringHandlingAppLib, and
StringHandlingAppLibLocal.

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Import the following Java Card projects into your
workspace: StringHandlingApp, StringHandlingAppLib, and
StringHandlingAppLibLocal. If the builds don't start automatically, start them
manually.

About the build order: the StringHandlingApp project depends
on both StringHandlingAppLib and StringHandlingAppLibLocal.
StringHandlingAppLibLocal depends on StringHandlingAppLib.
These dependencies define the order in which the projects
are built by Eclipse: first StringHandlingAppLib, then
StringHandlingAppLibLocal, and finally StringHandlingApp. In the
StringHandlingApp project, the packages are built in order of
their AID values: first com.sun.jcclassic.samples.stringapp, then
com.sun.jcclassic.samples.stringutilapp.

2. Perform the following steps for the StringHandlingApp project:

a. In the Package Explorer view, click the StringHandlingApp project.

b. Right-click on the Java Card project and select Java Card and CAP Files
Settings.

c. Select a CAP file from the list that appears in the Java Card CAP Files page.

d. Click StringHandlingApp1 and select Edit.

e. In the Edit mode, select Compact CAP File.

f. Click Next>.

Chapter 4
Running the classic_applets Samples

4-29

g. Select ScriptGen slide and select the Supress "PowerUp; APDU command
at the beginning of CAP script and Supress "PowerDown; APDU
command at the end of CAP script check boxes.

h. Click Finish.

i. Repeat Steps a to c.

j. Click StringHandlingApp2 and select Edit.

k. Repeat Steps e to g.

l. Click Finish, and select Apply and Close.

3. Perform the following steps for the StringHandlingAppLib project:

a. In the Package Explorer view, click the StringHandlingAppLib project.

b. Right-click on the Java Card project and select Java Card and CAP Files
Settings.

c. Select a CAP file from the list that appears in the Java Card CAP Files page.

d. Click StringHandlingAppLib and select Edit.

e. In the Edit mode, select Compact CAP File.

f. Click Next>.

g. Select ScriptGen slide and select the Supress "PowerDown; APDU
command at the end of CAP script check box.

h. Click Finish, and select Apply and Close.

4. Perform the following steps for the StringHandlingAppLibLocal project:

a. In the Package Explorer view, click the StringHandlingAppLibLocal project.

b. Right-click on the Java Card project and select Java Card and CAP Files
Settings.

c. Select a CAP file from the list that appears in the Java Card CAP Files page.

d. Click StringHandlingAppLibLocal and select Edit.

e. In the Edit mode, select Compact CAP File.

f. Click Next>.

g. Select ScriptGen slide and select the Supress "PowerUp; APDU command
at the beginning of CAP script and Supress "PowerDown; APDU
command at the end of CAP script check boxes.

h. Click Finish, and select Apply and Close.

5. Rebuild the modified projects: select Project and Clean, and from the Clean
dialog, select the three projects that you just modified.

Eclipse builds the projects again.

6. In Java Card View, double-click on Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. Clear the Input file with EEPROM data, the Output file for EEPROM data,
and the Combined (input and output) file for EEPROM data fields.

b. Clear Do not open APDU console.

c. Click OK.

Chapter 4
Running the classic_applets Samples

4-30

7. In Java Card View, right-click on Sample_Device and select Start.

The simulator starts and you can see that Sample_Device console is created.

8. Execute the scripts in the following order:

• cap-StringHandlingApp

• cap-StringHandlingAppLibLocal

• cap-StringHandlingApp1

• cap-StringHandlingApp2

• stringhandlingapp

Now you can compare the console output with the contents of
test.expected.output file.

Running the StringHandlingApp Sample from the Command Line
To run the StringHandlingApp sample:

1. Open a Command Prompt window, navigate to the JC_HOME_SIMULATOR\bin
directory, and start the simulator by entering the following command at the
command prompt:

cref -o stringapp

2. Open a second Command Prompt window, set ANT_HOME, JC_HOME_TOOLS and
JC_HOME_SIMULATOR as environment variables, navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\StringHandlingApp\l
ib directory, and at the command prompt, enter:

ant all

3. In the first Command Prompt window, restart the simulator by typing:

cref -i stringapp -o stringapp

4. In the second Command Prompt window, navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\StringHandlingApp\l
iblocal directory, and at the command prompt, enter:

ant all

5. In the first Command Prompt window, start the simulator by entering the following
command at the command prompt:

cref -i stringapp

6. In the second Command Prompt window, navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\StringHandlingApp\a
pplet directory and, at the command prompt, enter:

ant all

7. Verify that the contents of the output file, default.output, in the applet directory
are the same as the contents of the test.expected.out file.

SecureRMIPurse Sample
This sample is only included in bundles with cryptography extensions.

Chapter 4
Running the classic_applets Samples

4-31

The SecureRMIPurse sample is a version of RMIPurse with an added
security service. SecureRMIPurse uses the card applet SecurePurseApplet,
the Purse interface and its implementation SecurePurseImpl, and a
definition of the security service MySecurityService. These classes reside
in the package com.sun.javacard.samples.SecureRMIDemo. The sample also
uses the client-side program SecurePurseClient and the specialized
card accessor CustomCardAccessor. These classes reside in the package
com.sun.javacard.clientsamples.SecurePurseClient.

The Purse interface is similar to the interface used in the non-secure case, however,
there is an extra constant: REQUEST_DENIED. This constant is used to report situations
where the client tries to invoke a method that it is not allowed to access.

The MySecurityService class is a security service that is responsible for ensuring
data integrity by verifying checksums on incoming commands and attaching
checksums to outgoing commands. The program also requires the client to
authenticate itself as the principal application provider or principal cardholder by
sending a two-byte PIN.

The implementation of Purse, SecurePurseImpl, is similar to the non-secure case,
however, at the beginning of each method call, a call is made to the security service
that ensures that the business rules are satisfied and that the data is not corrupted.

The applet, SecurePurseApplet, is similar to the non-secure case, except that it
creates and registers an instance of MySecurityService.

The client-side program, SecurePurseClient, is similar to the non-secure case,
except that instead of a generic card accessor, it uses its own implementation,
CustomCardAccessor, to perform additional preprocessing and postprocessing of data
and to support the additional command, authenticateUser.

SecurePurseClient also requires verification of the user. After the applet is inserted,
a PIN must be given to the card-side applet by calling authenticateUser on
CustomCardAccessor.

When authenticateUser is called, CustomCardAccessor prepares and sends the
command described in Table 4-2.

Table 4-2 Authenticate User Command

CLA_AUTH INS_AUTH P1 field P2 field LC field PIN (byte
1)

PIN (byte
2)

0x80 0x39 0 0 2 xx xx

On the card side, MySecurityService processes the command. If the PIN is correct,
then the appropriate flags are set in the security service and a confirmation response
is returned to the client. Once authentication is passed, the client program receives
the balance, credits the account, and again receives the balance. The program
demonstrates error handling when the client attempts to debit a number of units
from the account. This causes the program to throw a UserException with the code
REQUEST_DENIED.

As with RMIDemo, the client part of the SecureRMIDemo can be run without parameters or
with the -i parameter:

Chapter 4
Running the classic_applets Samples

4-32

• If the sample is run without parameters, remote references are identified using the
class name of the remote object.

• If the sample is run with the -i parameter, remote references are identified using
the list of remote interfaces implemented by the remote object.

Follow one of these sets of instructions to run this sample:

• Running the SecureRMIPurse Sample in Eclipse

• Running the SecureRMIPurse Sample from the Command Line

Running the SecureRMIPurse Sample in Eclipse
The SecureRMIPurse sample is the same as RMIPurse , but with an added security
service. It consists of two projects: a Java Card project with the Java Card applet and
a Java SE project with the Java application that is designed to communicate with the
applet.

1. If you haven’t already, create the launch configuration for the rmic tool using the
instructions here: Running the RMIPurse Sample in Eclipse.

2. Follow the rest of the instructions in Running the RMIPurse Sample in Eclipse, but
substitute SecureRMIPurse wherever you see RMIPurse.

When you have completed all the steps, and you see the application output in the
console, compare it with the contents of securermidemo.expected.out.

Running the SecureRMIPurse Sample from the Command Line
To run SecureRMIPurse:

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by using the following command at the command prompt:

cref -o demoee

Starting the simulator with the -o option causes the simulator to save the
EEPROM contents to a file named demoee.

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\SecureRMIPurse\a
pplet directory.

c. Enter the following command at the command prompt:

ant all

In this sample's applet directory, the ant all command executes the APDU
script and installs the secure RMI application.

3. In the cref Command Prompt window, restart the simulator by using the following
command:

cref -i demoee

Chapter 4
Running the classic_applets Samples

4-33

4. In the applet Command Prompt window, perform the following:

a. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\SecureRMIPurse\c
lient directory.

b. Enter the following command at the command prompt:

ant all

In this sample's client directory, the ant all command executes the APDU
script that generates the securermidemo.expected.out file.

5. Verify that the contents of the securermidemo.actual.output file in the client
directory are the same as the contents of the securermidemo.expected.out file in
the SecureRMIPurse directory.

SignatureMessageRecovery Sample

Note:

This sample is only included in bundles with cryptography extensions.

Message recovery refers to the mechanism whereby part of the message used to
create the message digest is also included as padding in the signature block. During
signature verification, the message data padding does not need to be explicitly sent to
the verifying entity, it can automatically be extracted from the signature block.

This sample consists of two scripts representing two scenarios for Signature with
Message Recovery. The first script, sigMsgFullRec.scr, shows the scenario in which
the message to sign is small enough that the entire message itself becomes part of
the signature padding (hence the name "Full Recovery" since you can recover the full
message from the signature itself).

The sequence of events resulting from running the first script, sigMsgFullRec.scr,
are:

1. The script sends to the sample application a small message to sign.

2. The application initializes the signature object with the algorithm
Signature.ALG_RSA_SHA_ISO9796_MR and signs the message. Because the
message is small enough, the application returns the signature data to the script.

3. The script then simulates the verification phase in which it sends the signature
data to the sample application asking it to verify the message.

The application recovers the original message from the signature data and also
verifies the signature, then returns the original data back to the script. If the
signature verification fails, it returns an error code.

The second script, sigMsgPartRec.scr, demonstrates a scenario in which the
message to sign is large enough that only some part of it is included in the signature
padding (hence the name "Partial Recovery"). The sequence of events resulting from
running this script are:

1. The script sends to the sample application a large message to be signed.

Chapter 4
Running the classic_applets Samples

4-34

2. The application initializes the signature object with algorithm
Signature.ALG_RSA_SHA_ISO9796_MR and signs the message. Because the
message is too large to fit in the signature, the application returns back to the
script the number of bytes of original message that is embedded in the signature
data. The application also returns back to the script the signature data.

3. The script then simulates the verification phase in which it sends the signature
data to the sample application.

4. The application recovers the partial message and returns back to the script.

5. The script sends the remainder of the message to the application to verify the
signature.

6. The application verifies the signature against the entire message and returns
success.

Message Recovery Order of Operations for Signing
The order of operations for signing is as follows:

1. The user invokes a combination of the update and sign methods to generate a
signature based on message data provided by the user.

2. The sign method returns an indication to the user of the portion of the message
that was included as padding in the signature.

This is required so that the user knows what remaining data must still be sent
along with the signature block.

Message Recovery Order of Operations for Verifying
The order of operations for verifying is as follows

1. The user initializes the signature object with signature at the very beginning so it
can get the recoverable data at the earliest.

2. The user invokes a combination of the update and verify methods to verify the
signature based on the message data provided by the user.

3. The verify method verifies the signature by comparing the accumulated hash with
the hash in the message representative recovered during initialization.

Running the SignatureMessageRecovery Sample in Eclipse
In this sample we create two run configurations for the same project, to run a different
pair of scripts.

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Import the SignatureMessageRecovery project into your workspace. If the
build doesn't start automatically, start it manually.

2. In Java Card View, double-click on Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. Select Do not open APDU console.

b. Click OK.

3. Before you configure, run, and start any script, you must change the PowerDown
parameters for generating the script files. Otherwise, the simulator goes into the

Chapter 4
Running the classic_applets Samples

4-35

PowerDown mode after running the cap-SignatureMessageRecovery.script, and
interrupts the execution of the following script files. To change the PowerDown
parameters:

a. In the Package Explorer view, click SignatureMessageRecovery project.

b. Right-click on the Java Card project and select Java Card and CAP Files
Settings.

c. Select a CAP file from the list that appears in the Java Card CAP Files page.

d. Click SignatureMessageRecovery and select Edit.

e. In the Edit mode, select Compact CAP File.

f. Click Next>.

g. Select ScriptGen slide and select the Suppress "PowerDown;" APDU
command at the end of CAP script check box.

h. Click Finish and select Apply and Close.

4. Create the first Run Configuration for this project. In the top menu, select Run and
Run Configurations...

5. In the Run Configurations dialog:

a. Right-click on Java Card Project Run and select New.

b. In the Name field, enter SignatureMessageRecovery_PartRec

c. Click Browse..., select the SignatureMessageRecovery project, and click
OK.

d. Select Start simulator.

e. In the Scripts to be executed on simulator list box, add the following scripts:

• cap-
com.sun.jcclassic.samples.signaturemessagerecovery.scri
pt from
JC_HOME_SIMULATOR\samples\classic_applets\SignatureMess
ageRecovery\applet\apdu-scripts

• sigMsgPartRec.scr from the same directory.

f. Click Apply and Close

6. Create the second Run Configuration for this project. In the top menu, select Run
and Run Configurations...

7. In the Run Configurations dialog:

a. Right-click on Java Card Project Run and select New.

b. In the Name field, enter SignatureMessageRecovery_FullRec

c. Click Browse..., select the SignatureMessageRecovery project, and click
OK.

d. Select Start simulator.

e. In the Scripts to be executed on simulator list box, add the following scripts:

• cap-
com.sun.jcclassic.samples.signaturemessagerecovery.scri
pt from

Chapter 4
Running the classic_applets Samples

4-36

JC_HOME_SIMULATOR\samples\classic_applets\SignatureMess
ageRecovery\applet\apdu-scripts

• sigMsgFullRec.scr from the same directory. (Note that this script is
different from the first Run Configuration that you created)

f. Click Apply and Close

8. In the top menu, select Run and Run Configurations..., select
SignatureMessageRecovery_PartRec, click Run.

Compare the output with the contents of the
sigMsgPartRec.expected.output file.

9. In the top menu, select Run and Run Configurations..., select
SignatureMessageRecovery_FullRec, click Run.

Compare the output with the contents of the
sigMsgFullRec.expected.output file.

Running the SignatureMessageRecovery Sample from the Command Line
To run the SignatureMessageRecovery sample:

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by entering the following command at the command
prompt:

cref

Note:

cref command options are not required in this sample.

2. In a different Command Prompt window, perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\SignatureMessage
Recovery\applet directory.

c. Enter the following command at the command prompt:

ant run1

The ant run1 command builds the applet and runs the sigMsgPartRec.scr
script that generates the sigMsgPartRec.actual.output file.

3. Verify the contents of the sigMsgPartRec.actual.output file in the applet
directory are the same as the contents of the sigMsgPartRec.expected.output
file in the SignatureMessageRecovery directory.

4. In the cref Command Prompt window, restart the simulator by using the following
command:

cref

Chapter 4
Running the classic_applets Samples

4-37

5. In the applet Command Prompt window, enter the following command at the
command prompt:

ant run2

The ant run2 command builds the applet and runs the sigMsgFullRec.scr script
that generates the sigMsgfullRec.actual.output file.

6. Verify the contents of the sigMsgfullRec.actual.output file are the same as the
contents of the sigMsgfullRec.expected.output file.

ArrayViews Sample
The ArrayViews sample demonstrates a client application and a server application
sharing data using array views.

To run the sample, see Running the ArrayViews Sample from the Command Line.

Running the ArrayViews Sample from the Command Line
Perform the following steps to run the ArrayViews sample from the command line.

To run the ArrayViews sample:

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by entering the following command at the command
prompt:

cref

Note:

cref command options are not required in this sample.

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\ArrayViews\apple
t directory.

c. Enter the ant all command at the command prompt.

In this sample, the ant all command builds the applet, executes the APDU
script, and creates an output file in the applet directory. The ant script
names the output file either default.out or the custom name specified in the
command line. To specify a custom name for the output file, use the following
command:

ant -Dredirect.output=outputfile_name target

In this command, outputfile_name represents the name of the output file and
target represents either the all or run options of the ant command. In this

Chapter 4
Running the classic_applets Samples

4-38

case, the all target is used. This command redirects the output from the
APDUtool execution to the outputfile_name file.

3. Verify that the contents of the output file in the applet directory are the same as
the contents of the Arrayviews.expected.output file.

CertHandling Sample
The CertHandling Sample demonstrates the use of static resources and certificate API
to parse and verify a certificate.

To run the sample, see Running the CertHandling Sample from the Command Line.

Running the CertHandling Sample from the Command Line
Perform the following steps to run the CertHandling sample from the command line.

To run the CertHandling sample:

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by entering the following command at the command
prompt:

cref

Note:

cref command options are not required in this sample.

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\CertHandling\app
let directory.

c. Enter the ant all command at the command prompt.

In this sample, the ant all command builds the applet, executes the APDU
script, and creates an output file in the applet directory. The ant script
names the output file either default.out or the custom name specified in the
command line. To specify a custom name for the output file, use the following
command:

ant -Dredirect.output=outputfile_name target

In this command, outputfile_name represents the name of the output file and
target represents either the all or run options of the ant command. In this
case, the all target is used. This command redirects the output from the
APDUtool execution to the outputfile_name file.

3. Verify that the contents of the output file in the applet directory are the same as
the contents of the CertHandling.expected.output file.

Chapter 4
Running the classic_applets Samples

4-39

Running the reference_apps Samples
The following sections describe the reference applet demonstrations and how to run
them:

• Biometry Sample Application - Demonstrates the use of the biometric APIs of type
PASSWORD.

See Biometry Sample Application.

• JavaPurseCrypto Sample - Demonstrates the use of a DES MAC algorithm.

This sample is only included in bundles with cryptography extensions. See
JavaPurseCrypto Sample.

• PurseWithLoyalty Sample Application - Demonstrate the use of shareable
interfaces.

See JavaPurse Sample Application.

• Transit Sample - Demonstrates a contactless card-based transit applet and its
interaction with a turnstile transit terminal and with a point of sale terminal.

This sample is only included in bundles with cryptography extensions. See Transit
Sample.

Biometry Sample Application
In this sample, a user password is enrolled on the card and a candidate password
is matched against the enrolled password. The sample demonstrates the basic
functionality of the biometric API. In the sample, everything works well. Non-sample
code should be prepared to handle errors that may occur during the enrollment
process or the matching process, including a card-blocked state, or a non-initialized
state. See How the Biometric API Works.

1. The off-card tool takes a hard coded password and sends it to the card for
enrollment. For this sample, the off-card tool is a simple apdutool script used for
both enrolling and matching.

The applet selected on-card is the SampleBioServer applet. See SampleBioServer
Class.

2. The SampleBioServer applet stores the password as the reference template with
five tries allowed before block.

3. For matching, the APDUscript asks the on-card client (SamplePasswdBioApplet) to
ask the SharedBioTemplate for the public template.

For this sample, the public template only contains the version number of the
implementation and the length of stored password representing the requirement
for password capture. See SamplePasswdBioApplet Class.

4. The script sends the same password that was used for enrollment.

The card has a matching algorithm and calculates the score based on the stored
password and received password.

5. The card returns "verification successful" to the script.

Follow one of these sets of instructions to run this sample:

Chapter 4
Running the reference_apps Samples

4-40

• Running the Biometry Sample in Eclipse

• Run the Biometry Sample from the Command Line

SampleBioServer Class
This class represents the BioServer applet on the card. This class is the interface to
the on-card and off-card clients for the biometric functionality on the card.

It communicates with off-card clients with APDUs, and with on-card client applets
with an implementation of SharedBioTemplate. This class causes the enrolling of the
biometric password while communicating with an off-card tool that sends the password
to the BioServer.

SamplePasswdBioApplet Class
This represents an on-card client applet for the password biometric sample. It
communicates with an off-card tool to get the password and calls the match method on
the ShareableBioTemplate reference it gets from the Java Card runtime environment,
which is given the SamplePasswdBioServer applet AID.

How the Biometric API Works
The biometric API provides three basic functions:

• Match biometric information on-card

• Enroll users off-card and transfer their information on-card

• Verify the user in a sequence of off-card and on-card interactions

On-card Matching
Biometric verification must happen on-card for security reasons. The card cannot send
out a person's biometric information or a PIN for verification to be done off-card; it
would not be secure to do so.

Enrollment Process
During the enrollment process, a person's biometric information is captured off-card
and then transferred on-card for storage and verification purpose. Since Java Card
technology-based cards are generally limited in their resources, the entire data
captured off-card is not sent to the card. What is sent is a digested version of the
biometric data and is very specific to a particular algorithm. For this sample, however,
a password is small enough that the entire password is transferred to the card.

The user-specific data transferred makes up a reference template that is used later
for verification. At the end of the enrollment process, there also exists an associated
public template. The public template consists of information for the off-card tool to
capture the relevant information from the user during verification.

For example, in the Precise Biometrics implementation of the fingerprint biometric
API, the public template contains the coordinates, relative to the reference point
for capturing fingerprint information. The off-card tool looks at these coordinates
and extracts that information from the user. The public template defines the data
requirements for verification. For this sample, the public template does not contain any

Chapter 4
Running the reference_apps Samples

4-41

such specification since the entire password is compared. In the sample, the public
template just contains version information.

Verification Process
During the verification process the user enters biometric information into a sensor or
input device. The information gathered from the user input is defined by the public
template (see Enrollment Process). This information might be pre-processed off-card
and transferred to the card for verification. The on-card biometric application performs
the verification given the reference template with pre-existing user information and the
new information that came in. The following describe the verification sequence:

1. The host issues a verification request to the card.

2. The card returns the public template to the host.

3. The host captures user information and extracts the data defined by the public
template.

The host might perform data-processing specific to the biometric algorithm.

4. The host sends extracted verification data to the card.

5. The card matches the captured data with its own representation stored in the
reference template.

The matching process results in a score of how well the user information matches
the reference template information.

6. The card compares the score with the threshold for acceptable criteria and returns
the verification result to the host.

Implementation Notes
The following restrictions apply for the Oracle implementation of the password
biometric:

• The minimum password length to be enrolled must be 5 bytes.

• The maximum password length to be enrolled must be 50 bytes.

The array containing password data during enrollment or matching must have the
password laid out as a byte array with each character represented by a byte starting
from index offset. There can be no other information in the byte array from index
offset to index offset+length-1. For example, password "tests" must be represented
by the byte array {116, 101, 115, 116, 115} starting at index 0 with length 5.

The public template for the stored password returned during a matching session is a
byte array (dest) with formatting as shown below. The version for this implementation
is 1.0.0, so the dest array would be as follows, where passwd length represents the
length of the enrolled password.

• dest[0]=1

• dest[1]=0

• dest[2]=0

• dest[3]=passwd length

Chapter 4
Running the reference_apps Samples

4-42

Running the Biometry Sample in Eclipse
The Biometry sample consists of two Java Card projects: Biometry_Client and
Biometry_Server. We will run them without the APDU console.

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Import the Biometry_Client and Biometry_Server projects into your
workspace. If the builds don’t start automatically, start them manually.

2. Before you start any script, you must change the PowerDown and PowerUp
parameters for generating the script files. Otherwise, the simulator goes into the
PowerDown mode or interrupt the execution by throwing error messages.

To change the PowerDown parameters in the Biometry_Server project :

a. In the Package Explorer view, click Biometry_Server Java project.

b. Right-click on the Java Card project and select Java Card and CAP Files
Settings.

c. Select a CAP file from the list that appears in the Java Card CAP Files page.

d. Click Biometry_Server and select Edit.

e. In the Edit mode, select Compact CAP File.

f. Click Next>.

g. Select ScriptGen slide and select the Suppress "PowerDown;" APDU
command at the end of CAP script check box.

h. Click Finish and select Apply and Close.

To change the PowerDown parameters in the Biometry_Client project :

a. In the Package Explorer view, click Biometry_Client Java project.

b. Right-click on the Java Card project and select Java Card and CAP Files
Settings.

c. Select a CAP file from the list that appears in the Java Card CAP Files page.

d. Click Biometry_Client and select Edit.

e. In the Edit mode, select Compact CAP File.

f. Click Next>.

g. Select ScriptGen slide and select the Supress "PowerUp; APDU command
at the beginning of CAP script and Suppress "PowerDown;" APDU
command at the end of CAP script check boxes.

h. Click Finish and select Apply and Close.

3. Right-click on Biometry_Client, select Properties, select Run/Debug
Settings, click New.... The Select Configuration Type window opens. Select Java
Card Project Run, click OK.

4. In the Edit Configuration dialog:

a. In the Name field, enter Biometry

b. Select Start simulator.

c. In the Scripts to be executed on simulator list box, add the following scripts:

Chapter 4
Running the reference_apps Samples

4-43

• cap-com.sun.jcclassic.samples.biometryserver.script from
Biometry_Server

• cap-com.sun.jcclassic.samples.biometryclient.script from
Biometry_Client

• biometryEnroll.scr from Biometry_Client

• biometryMatch.scr from Biometry_Client

d. Click Apply and Close

5. In Java Card View, double-click on Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. Select Do not open APDU console.

b. Click OK.

6. In the top menu, select Run and Run Configurations..., select Biometry and
click Run.

Compare the output with the contents of the biometry-client.expected.out
file.

Running the Biometry Sample from the Command Line
1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by using the following command at the command prompt:

cref -o e2p

The simulator saves the EEPROM contents to a file named e2p.

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\reference_apps\Biometry\Server\a
pplet directory.

c. Enter the following command at the command prompt:

ant all

In this sample's applet directory, the ant all command executes the APDU
script and installs the secure RMI application.

3. In the cref Command Prompt window, restart the simulator by using the following
command:

cref -i e2p

The simulator uses the contents of the e2p file to initialize the EEPROM.

4. In the applet Command Prompt window, perform the following:

a. Navigate to the
JC_HOME_SIMULATOR\samples\reference_apps\Biometry\Client\a
pplet directory.

Chapter 4
Running the reference_apps Samples

4-44

b. Enter the following command at the command prompt:

ant all

In this sample's client directory, the ant all command executes the APDU
script.

5. Verify that the output displayed in the Command Prompt window is the same as
the contents of the biometry-client.expected.out file.

JavaPurse Sample Application
The JavaPurse sample application consists of two components, a JavaPurse applet
and a JavaLoyalty applet.

The JavaPurse applet demonstrates a simple electronic cash application. The applet is
selected and initialized with various parameters such as the Purse ID, the expiration
date of the card, the Master and User PINs, maximum balance, and maximum
transaction. Transaction operations perform the actual debits and credits to the
electronic purse. If a configured loyalty applet is assigned for the CAD performing
the transaction, JavaPurse communicates with it to grant loyalty points. In this sample,
JavaLoyalty is the provided loyalty applet.

A number of transaction sessions are simulated where amounts are credited and
debited from the card. In an additional session, transactions with intentional errors are
attempted to demonstrate the security features of the card.

The JavaLoyalty applet is a minimalistic loyalty applet that interacts with
the JavaPurse applet and demonstrates the use of shareable interfaces. The
shareable JavaLoyaltyInterface is defined in a separate library package,
com.sun.javacard.SampleLibrary.

JavaLoyalty applet is registered with JavaPurse when a Parameter Update APDU
command with an appropriate parameter tag is executed, and when the AID part of the
parameter corresponds to the AID of the JavaLoyalty applet. The applet contains a
grantPoints method. This method implements the main interaction with the client. The
grantPoints method implementing the JavaLoyaltyInterface is requested when the
first two bytes of the CAD ID in a request by a JavaPurse transaction correspond to the
two bytes of CAD ID in the corresponding Parameter Update APDU command.

JavaLoyalty maintains the balance of loyalty points. The JavaLoyalty applet contains
methods to credit and debit the account of points and to get and set the balance.

Running the JavaPurse Sample in Eclipse

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Import the JavaPurse project into your workspace.

If the build doesn't start automatically, start it manually.

2. Before you start any script, you must change the PowerDown and PowerUp
parameters for generating the script files. Otherwise, the simulator goes into the
PowerDown mode or interrupt the execution by throwing error messages. To
change the PowerDown parameters:

a. In the Package Explorer view, click the JavaPurseJava project.

Chapter 4
Running the reference_apps Samples

4-45

b. Right-click on the Java Card project and select Java Card and CAP Files
Settings.

c. Select a CAP file from the list that appears in the Java Card CAP Files page.

d. Click SampleLibrary and select Edit.

e. In the Edit mode, select Compact CAP File.

f. Click Next>.

g. Select ScriptGen slide and select the Suppress "PowerDown;" APDU
command at the end of CAP script check box.

h. Click Finish.

i. Click JavaLoyality and select Edit.

j. In the Edit mode, select Compact CAP File.

k. Click Next>.

l. Select ScriptGen slide and select the Supress "PowerUp; APDU command
at the beginning of CAP script and Supress "PowerDown; APDU
command at the end of CAP script check boxes.

m. Click Finish.

n. Click JavaPurse and select Edit.

o. In the Edit mode, select Compact CAP File.

p. Click Next>.

q. Select ScriptGen slide and select the Supress "PowerUp; APDU command
at the beginning of CAP script and Supress "PowerDown; APDU
command at the end of CAP script check boxes.

r. Click Finish and select Apply and Close.

3. In the Package Explorer view, click the JavaPurse project and then right-click on
the Java Card project and build the project manually.

4. Select the JavaPurse project, press Alt+Enter, select Run/Debug Settings, and
click New. In the Select Configuration Type window select Java Card Project Run
and click OK.

5. In the Edit Configuration window do the following:

a. Enter JavaPurse in the Name field

b. Select the Start simulator check box

c. Add the following scripts to the listbox:

• cap-SampleLibrary.script

• cap-JavaLoyalty.script

• cap-JavaPurse.script

• jp.scr

d. Click Apply and OK to close the Edit Configuration window.

e. Click OK to close the Properties window.

6. In Java Card View, double-click Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

Chapter 4
Running the reference_apps Samples

4-46

a. Select Do not open APDU console.

b. Click OK.

7. Select Run and Run Configurations. Select JavaPurse then click Run.

Compare the console output with the content of javapurse.expected.output file.

Running the JavaPurse Sample from the Command Line
1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by using the following command at the command prompt:

cref

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\reference_apps\PurseWithLoyalty\
JavaPurse\applet directory.

c. Enter the following command at the command prompt:

ant all

In this sample's applet directory, the ant all command executes the APDU
script and generates the output file.The ant script names the output file either
default.out or a custom name specified in the command line. To specify a
custom name for the output file, use the following command:

ant -Dredirect.output=outputfile_name target

In this command, outputfile_name represents the name of the output file and
target represents either the all or run options of the ant command. In this
case, the all target is used. This command redirects the output from the
APDUtool execution to the outputfile_name file.

3. Verify that the contents of the output file in the applet directory are the same as
the contents of the javapurse.expected.ouput file.

JavaPurseExtCap Sample
The JavaPurseExtCap Sample starts from the existing JavaPurse sample (which
consists of two applets and a library) and demonstrates the process to bundle them
together and deploy in a single extended CAP file.

To run the sample, see Running the JavaPurseExtCap Sample from the Command
Line.

Running the JavaPurseExtCap Sample from the Command Line

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by using the following command at the command prompt:

Chapter 4
Running the reference_apps Samples

4-47

cref

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\reference_apps\PurseWithLoyalty\JavaPurse
ExtCap\applet directory.

c. Enter the following command at the command prompt:

ant all

In this sample's applet directory, the ant all command executes the APDU
script and generates the output file. The ant script names the output file either
default.out or a custom name specified in the command line. To specify a
custom name for the output file, use the following command:

ant -Dredirect.output=outputfile_name target

In this command, outputfile_name represents the name of the output file and
target represents either the all or run options of the ant command. In this
case, the all target is used. This command redirects the output from the
APDUtool execution to the outputfile_name file.

3. Verify that the contents of the output file in the applet directory are the same as
the contents of the javapurse.expected.ouput file.

JavaPurseCrypto Sample

Note:

This sample is only included in bundles with cryptography extensions.

The JavaPurseCrypto sample application consists of two components, a
JavaPurseCrypto applet and a JavaLoyalty applet. The JavaPurseCrypto applet
employs a version of JavaPurse that uses a DES MAC algorithm. A DES MAC is
a cryptographic signature that uses DES encryption on all or part of a message
(APDU). JavaPurseCrypto uses the DES MAC to verify several of the APDUs. Instead
of zeros in the signature currently in JavaPurse, it contains a real signature that
can be programmatically signed and verified. Other programs that might interact with
JavaPurseCrypto are not affected because all signing and verifying of the signature
occurs only within JavaPurseCrypto.

The JavaPurseCrypto sample uses transient DES keys. The use of transient DES
keys by the sample highlights the fact that the DES cryptography API has been
enhanced to eliminate persistent memory usage when transient DES keys are
provided. Eliminating the use of persistent memory when transient DES keys are used
provides better performance in a contactless applet.

As in the JavaPurse sample, the JavaLoyalty applet is a minimalistic loyalty applet
that interacts with JavaPurseCrypto and demonstrates the use of shareable interfaces.
See JavaPurse Sample Application for additional information about the JavaLoyalty
applet.

Chapter 4
Running the reference_apps Samples

4-48

Running the JavaPurseCrypto Sample in Eclipse

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Import the JavaPurseCrypto project into your workspace.

If the build doesn't start automatically, start it manually.

2. Select the JavaPurseCrypto project, press Alt+Enter, select Run/Debug
Settings, and click New. In the Select Configuration Type window select Java
Card Project Run and click OK.

3. Before you start any script, you must change the PowerDown and PowerUp
parameters for generating the script files. Otherwise, the simulator goes into the
PowerDown mode or interrupt the execution by throwing error messages. To
change the PowerDown parameters:

a. In the Package Explorer view, click JavaPurseCryptoJava project.

b. Right-click on the Java Card project and select Java Card and CAP Files
Settings.

c. Select a CAP file from the list that appears in the Java Card CAP Files page.

d. Click SampleLibrary and select Edit.

e. In the Edit mode, select Compact CAP File.

f. Click Next>.

g. Select ScriptGen slide and select the Suppress "PowerDown;" APDU
command at the end of CAP script check box.

h. Click Finish.

i. Click JavaLoyality and select Edit.

j. In the Edit mode, select Compact CAP File.

k. Click Next>.

l. Select ScriptGen slide and select the Supress "PowerUp; APDU command
at the beginning of CAP script and Supress "PowerDown; APDU
command at the end of CAP script check boxes.

m. Click Finish.

n. Click JavaPurse and select Edit.

o. In the Edit mode, select Compact CAP File.

p. Click Next>.

q. Select ScriptGen slide and select the Supress "PowerUp; APDU command
at the beginning of CAP script and Supress "PowerDown; APDU
command at the end of CAP script check boxes.

r. Click Finish and select Apply and Close.

4. In the Edit Configuration window do the following:

a. Enter JavaPurseCrypto in the Name field

b. Select the Start simulator checkbox

Chapter 4
Running the reference_apps Samples

4-49

c. Add the following scripts to the listbox:

• cap-SampleLibrary.script

• cap-JavaLoyalty.script

• cap-JavaPurse.script

• jpcrypto.scr

d. Click Apply and OK to close the Edit Configuration window.

e. Click OK to close the Properties window.

5. In the Java Card View, double-click Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. Select Do not open APDU console.

b. Click OK.

6. Select Run and Run Configurations. Select JavaPurse then click Run.

Compare the console output with the content of
javapursecrypto.expected.output file.

Running the JavaPurseCrypto Sample from the Command Line
1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by using the following command at the command prompt:

cref

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\reference_apps\PurseWithLoyalty\
JavaPurseCrypto\applet directory.

c. Enter the following command at the command prompt:

ant all
In this sample's applet directory, the ant all command executes the APDU
script and generates the output file.The ant script names the output file either
default.out or a custom name specified in the command line. To specify a
custom name for the output file, use the following command:

ant -Dredirect.output=outputfile_name target

In this command, outputfile_name represents the name of the output file and
target represents either the all or run options of the ant command. In this
case, the all target is used. This command redirects the output from the
APDUtool execution to the outputfile_name file.

3. Verify that the contents of the output file in the applet directory are the same as
the contents of the javapursecrypto.expected.out file.

Chapter 4
Running the reference_apps Samples

4-50

Transit Sample

Note:

This sample is only included in bundles with cryptography extensions.

The Transit sample illustrates a contactless card-based transit applet. This sample
consists of the transit applet and two client applications, the POSTerminal client
application and the TransitTerminal client application.

A typical transit scenario is pre-scripted in the TransitDemo file, including crediting and
checking the balance (a $99 initial balance) on the transit card at the POS terminal,
entering and exiting the transit system through the Turnstile Transit terminal (a $10
fee for the trip), and finally checking the new balance (an $89 balance) on the transit
card at the POS terminal.

Because the terminal uses random number generation for challenge/response and for
generating session key, the contents of the actual output files generated by running
this sample varies from that of the expected output files for the following instructions:

• CLA:80 INS:30

• CLA:80 INS:40

Running the Transit Sample in Eclipse
The Transit sample consists of two projects: a Java Card project with the Java
Card applet and a Java SE project with the Java application that is designed to
communicate with the applet.

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Import the Transit_Applet Java Card project and Transit_Client Java project
into your workspace.

You can import both projects in the same Import wizard. If the builds don't start
automatically, start them manually.

The Transit_Applet project build creates apdu_scripts and deliverables
directories.

2. In Java Card View, double-click Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. In the Combined (input and output) file for EEPROM data field, type a file
name to be used for saving EEPROM between simulator sessions, such as
TransitCard.eeprom. The file will be automatically created in the bin directory.
Later, after the sample run, you can safely delete it.

b. Clear the Input file with EEPROM data, and the Output File for EEPROM
data fields.

c. Select Do not open APDU console.

d. Click OK.

3. In Java Card View, right-click Sample_Device and select Start.

Chapter 4
Running the reference_apps Samples

4-51

The simulator starts and you can see that the Sample_Device console is created.

4. In the Sample_Device console toolbar, click the Select Script drop-down button
and select cap-com.sun.jcclassic.samples.transit.

Wait until the script execution completes and CMD> prompt is displayed.

5. Click the Select Script drop-down button again and select the
TransitDemoFooter_notransitkey script.

The script executes and the simulator stops. Verify that the last script finished
successfully (the last APDU command got response with SW1: 90, SW2: 00).

6. Create run configurations: run1

a. Right-click the Transit_Client project, select Properties, select Run/Debug
Settings, and click New.

b. In the Select Configuration Type window, select Java Application, click OK.

c. Set the Name field to run1.

d. Set the Main class to com.sun.jcclassic.clients.transit.POSTerminal

e. Select the Arguments tab

f. Set the Program arguments to

-k FFFFFFFFFFFFFFFF -- VERIFY 12345 CREDIT 99 GET_BALANCE

g. Click Apply and OK to close the window.

7. Create run configurations: run2

a. In the Select Configuration Type window, select Java Application, click OK.

b. Set the Name field to run2.

c. Set the Main class to
com.com.sun.jcclassic.clients.transit.TransitTerminal

d. Select the Arguments tab

e. Set the Program arguments to

-k FFFFFFFFFFFFFFFF -- PROCESS_ENTRY 999

f. Click Apply and OK to close the window.

8. Create run configurations: run3

a. In the Select Configuration Type window, select Java Application, click OK.

b. Set the Name field to run3.

c. Set the Main class to
com.sun.jcclassic.clients.transit.TransitTerminal

d. Select the Arguments tab

e. Set the Program arguments to

-k FFFFFFFFFFFFFFFF -- PROCESS_EXIT 10

f. Click Apply and OK to close the window.

9. Create run configurations: run4

a. In the Select Configuration Type window, select Java Application, click OK.

Chapter 4
Running the reference_apps Samples

4-52

b. Set the Name field to run4.

c. Set the Main class to com.sun.jcclassic.clients.transit.POSTerminal

d. Select the Arguments tab

e. Set the Program arguments to

-k FFFFFFFFFFFFFFFF -- VERIFY 12345 GET_BALANCE

f. Click Apply and OK to close the window.

10. In the Java Card View, double-click Sample_Device. In the Properties for
Sample_Device dialog, select the CREF tab:

a. Select Do not open APDU console.

b. Click OK.

11. In Java Card View, right-click Sample_Device and select Start.

The simulator starts and you can see the output in the Console view.

12. In the Eclipse top menu, select Run and Run Configurations. Expand the Java
Application entry if necessary, select run1, and then click Run.

13. Verify that the contents of the console are the same as the contents of the
TransitClient_1.expected.output file.

Because the terminal uses random number generation for challenge/response
and for generating session key, the contents of the console varies from the
TransitClient_1.expected.output file for the following instructions:

• CLA:80 INS:30

• CLA:80 INS:40

14. In Java Card View, right-click Sample_Device and select Start.

The simulator starts and you can see the output in the Console view.

15. In the Eclipse top menu, select Run and Run Configurations. Select run2, and
then click Run.

16. Verify that the contents of the console are the same as the contents of the
TransitClient_2.expected.output file.

Because the terminal uses random number generation for challenge/response
and for generating session key, the contents of the console varies from the
TransitClient_2.expected.output file for the following instructions:

• CLA:80 INS:30

• CLA:80 INS:40

17. In Java Card View, right-click Sample_Device and select Start.

The simulator starts and you can see the output in the Console view.

18. In the Eclipse top menu, select Run and Run Configurations. Select run3, and
then click Run.

19. Verify that the contents of the console are the same as the contents of the
TransitClient_3.expected.output file.

Because the terminal uses random number generation for challenge/response
and for generating session key, the contents of the console varies from the
TransitClient_3.expected.output file for the following instructions:

Chapter 4
Running the reference_apps Samples

4-53

• CLA:80 INS:30

• CLA:80 INS:40

20. In Java Card View, right-click Sample_Device and select Start.

The simulator starts and you can see the output in the Console view.

21. In the Eclipse top menu, select Run and Run Configurations. Select run4, and
then click Run.

22. Verify that the contents of the console are the same as the contents of the
TransitClient_4.expected.output file.

Because the terminal uses random number generation for challenge/response
and for generating session key, the contents of the console varies from the
TransitClient_4.expected.output file for the following instructions:

• CLA:80 INS:30

• CLA:80 INS:40

Running the Transit Sample from the Command Line
The TransitDemo or TransitDemo.bat script automatically starts and stops cref when
needed to simulate interaction sessions with the POS terminal and the turnstile transit
terminal.

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by using the following command at the command prompt:

cref -o transitCard

2. Open a second Command Prompt window and perform the following:

a. Set ANT_HOME (path to ant install folder), JC_HOME_TOOLS and
JC_HOME_SIMULATOR (path to JCDK install folder) as environment variables.

b. Navigate to the
JC_HOME_SIMULATOR\samples\reference_apps\Transit\Transit\a
pplet directory.

c. Enter the following command at the command prompt:

ant all
In this sample's applet directory, the ant all command generates the APDU
script and downloads the CAP file.

3. In the cref Command Prompt window, restart the simulator by using the following
command:

cref -i transitCard -o transitCard
Starting the simulator with the -i transitCard -o transitCard options and
filenames causes the simulator to use the contents of the transitCard file
to initialize the EEPROM and to save the EEPROM contents to a file named
transitCard.

4. In the applet Command Prompt window, perform the following:

a. Navigate to the
JC_HOME_SIMULATOR\samples\reference_apps\Transit\Transit\c
lient directory.

Chapter 4
Running the reference_apps Samples

4-54

b. Enter the following command at the command prompt:

ant run1
In this sample's client directory, the ant run1 command compiles and builds
the client.jar and generates the actual_output1.txt file.

5. Verify that the contents of the actual_output1.txt file are the same as the
contents of the TransitClient_1.expected.output file.

Because the terminal uses random number generation for challenge/response and
for generating session key, the contents of the actual_output1.txt file varies
from the TransitClient_1.expected.output file for the following instructions:

• CLA:80 INS:30

• CLA:80 INS:40

6. In the cref Command Prompt window, restart the simulator by using the following
command:

cref -i transitCard -o transitCard

7. In the applet Command Prompt window, enter the following command at the
command prompt:

ant run2
In this sample's client directory, the ant run2 command compiles and builds the
client.jar and generates the actual_output2.txt file.

8. Verify that the contents of the actual_output2.txt file are the same as the
contents of the TransitClient_2.expected.output file.

Because the terminal uses random number generation for challenge/response and
for generating session key, the contents of the actual_output2.txt file varies
from the TransitClient_2.expected.output file for the following instructions:

• CLA:80 INS:30

• CLA:80 INS:40

9. In the cref Command Prompt window, restart the simulator by using the following
command:

cref -i transitCard -o transitCard

10. In the applet Command Prompt window, enter the following command at the
command prompt:

ant run3
In this sample's client directory, the ant run3 command compiles and builds the
client.jar and generates the actual_output3.txt file.

11. Verify that the contents of the actual_output3.txt file are the same as the
contents of the TransitClient_3.expected.output file.

Because the terminal uses random number generation for challenge/response and
for generating session key, the contents of the actual_output3.txt file varies
from the TransitClient_3.expected.output file for the following instructions:

• CLA:80 INS:30

• CLA:80 INS:40

12. In the cref Command Prompt window, restart the simulator by using the following
command:

Chapter 4
Running the reference_apps Samples

4-55

cref -i transitCard -o transitCard

13. In the applet Command Prompt window, enter the following command at the
command prompt:

ant run4
In this sample's client directory, the ant run4 command compiles and builds the
client.jar and generates the actual_output4.txt file

14. Verify that the contents of the actual_output4.txt file are the same as the
contents of the TransitClient_4.expected.output file.

Because the terminal uses random number generation for challenge/response and
for generating session key, the contents of the actual_output4.txt file varies
from the TransitClient_4.expected.output file for the following instructions:

• CLA:80 INS:30

• CLA:80 INS:40

Chapter 4
Running the reference_apps Samples

4-56

5
Converting and Exporting Java Class Files

This chapter describes how to use the Converter tool, including the input files it can
process and the output it produces. How to work with export files is also described.
This chapter contains the following sections:

• Overview of Converting and Exporting Java Class Files

• Setting Java Compiler Options

• Running the Converter

• File Naming for the Converter

• Using Export Files

Overview of Converting and Exporting Java Class Files
The Converter processes all of the Java class files that make up an application (or a
library) and creates a binary file (CAP file) that can be deployed and loaded on a Java
Card platform. It also produces other files (export files and JCA files) that are used in
the development and deployment process. The CAP file contains a manifest file that
provides human-readable information about its content. See Working with CAP Files
and Using Export Files, for more information.

The Java Card Platform Specification, Version 3.1 defines a new version of the CAP
file that supports the following formats:

• Compact CAP file format - A compact CAP file contains a single Java Package,
a method component of maximum 64 K, and may contain static resources. It can
represent an application or a shared library.

• Extended CAP file format - The extended CAP file format can contain multiple
Java packages and a method component larger than 64 K. It gives control over
which package should be exported as a shared library.

The compact CAP file is supported in all Java Card products and offers the binary
backward compatibility with all previous formats. The extended CAP file is optionally
supported in Java Card products, version 3.1 and above.

• See the Java Card Platform Virtual Machine Specification, Classic Edition, Version
3.1 for more information on the CAP file and its format.

• See Chapter Programming for the Large Address Space for more information on
using the Compact CAP file format to take advantage of large memory storage in
secure elements.

• See Chapter Programming Large Java Card Applications With Multiple Packages
for more information on using the Extended CAP file format.

Using the Converter in the Compact or Extended Format
The selection of the format (either compact or extended) depends on the following
factors:

5-1

• Application Design

– The number of Java packages included in the application - If the application
(or library) only includes a single package, it can be converted into a compact
file format.

– The total code size - If the application code creates a method component with
a size larger than 64 K, then the extended format is required.

• Deployment Constraints

– Some libraries must remain private - If an application relies on libraries that
must not be shared, the extended format can be used to support application
made of multiple packages instead of refactoring the code and copying the
library classes into the application package.

– A shared library includes both a public API made of one or more exported
packages and private implementation packages - This could be achieved
using an extended format CAP file that contains both parts, keeping the
implementation packages private, and deploying all packages in one CAP file.

The format (compact or extended) can be set using the Converter command line
parameters. See Running the Converter, for more details about the command line
parameters. See Programming for Multipackage Large CAP Files, for more details
about the Extended CAP file.

Using the Converter for a Target Java Card Version
The Converter can be used to create CAP files for Java Card versions 3.0.4, 3.0.5 and
3.1.0, using the –target [version] command line parameter. If the CAP file needs
to be deployed on multiple Java Card versions, use the oldest version (that is, the
smallest version number) as the target.

Table 5-1 Converter Usage

API Version Converter Usage When to Use? CAP File Format
Generated

3.0.4 -target 3.0.4 Use this mode when
the target platform is
3.0.4.

2.2 (compact)

3.0.5 -target 3.0.5 Use this mode when
the target platform is
3.0.5.

2.2 (compact)

3.1.0 -target 3.1.0
(default)

Use this format when
the target platform is
3.1.0 and the code
size is less than 64 K,
in one package.

2.3 (compact)

3.1.0 -target
3.1.0 -config
<file.json>

Use this format when
the target platform is
3.1.0 and the code
is made of multiple
packages or code size
is greater than 64 K.

2.3 (extended)

Chapter 5
Overview of Converting and Exporting Java Class Files

5-2

Using the Converter to Generate a Mask
You might choose to convert packages that import other packages. If you are creating
Java Card Assembly files to generate a mask file, then the major and minor version
numbers of the imported packages must agree with the version number of the
package that imports them.

Note:

Generating mask file is possible in source bundle only.

See Java Card Assembly Syntax Example, for more information on the Java Card
Assembly file.

Setting Java Compiler Options
To set Java compiler options:

• Compile your class files with the Java Development Kit compiler's -g command
line option.

The -g option causes the compiler to generate the LocalVariableTable attribute in the
class file. The Converter uses this attribute to determine local variable types.

If you do not use the -g option, the Converter attempts to determine the variable types
on its own. This is expensive in terms of processing and might not produce the most
efficient code.You must also compile your class files with the -g option if you want to
generate a debug component in the CAP file by using the Converter's -debug option.

Do not compile with the -O option. The -O option is not recommended on the Java
compiler command line, for these reasons:

• This option is intended to optimize execution speed rather than minimize memory
usage. Minimizing memory usage is much more important in the Java Card
environment than in other environments.

• The LocalVariableTable attribute is not generated.

Running the Converter
To run the Converter:

1. For the compact mode, enter either of the following commands at the command
line to invoke the Converter:

converter.bat [options] package-name package-aid major-version.minor-version

Or

converter.bat -config <filename>

2. For the extended mode, enter the following command at the command line to
invoke the Converter:

Chapter 5
Setting Java Compiler Options

5-3

converter.bat -config <filename.json>

3. For showing the usage, enter either of the following commands at the command
line to invoke the Converter:

converter.bat -help

Or

converter.bat -help JSON

Note:

The converter.bat file used to invoke the Converter is a batch file that you
must run from a working directory of JC_HOME_TOOLS\bin in order for the
code to execute properly.

The Converter command line options described in Table 5-2 allow you to:

• Specify the root directory where the Converter looks for classes.

• Specify the root directories where the Converter looks for export files.

• Use the token mapping from pre-defined export files of the packages being
converted. The Converter looks for the export files in the export path.

• Set the applet AID and the class that defines the install method for the applet.

• Specify the root directories where the Converter outputs files.

• Specify that the Converter outputs one or more of the following files:

– CAP file

– JCA file

– EXP export file

• Identify that a package is used as a mask.

When a package is used as a mask, restrictions on native methods are relaxed.

• Specify support for the 32-bit integer type.

• Enable generation of debugging information.

• Turn off verification (the default of input and output files. Verification is the
default.).

• Specify a list of file paths from where the static resources are loaded by the
Converter, if any.

• Specify the target Java Card platform version on which the CAP file generated
should be loaded, if it is not the newest released version of the Java Card
platform.

When the Converter runs, it performs the conversion process in the following
sequence:

1. Loads the packages - If the exportmap option is set for any of the packages,
the Converter loads that package from the export path (see Specifying an Export
Map). It loads the class files of the Java packages and creates a data structures to
represent these packages.

Chapter 5
Running the Converter

5-4

2. Subset checking - Checks for unsupported Java features in class files.

3. Conversion - Checks for consistency between the applet AIDs, package AIDs,
CAP file AID (if present), and the imported package AIDs.

4. Reference Checking - Checks that all references are valid, internal referenced
items are defined in the packages belonging to the CAP file, and import items are
declared in the export files (see Using Export Files).

The Converter creates the JcImportTokenTable to store tokens for import items
(class, methods, and fields). If the Converter only generates export files, it does
not check private APIs and byte code. Also included is a second round of
subset checking that operations do not exceed the limitations set by the JCVM
specification.

5. Optimization - Optimizes the byte code.

6. Generates output - Builds and outputs one EXP export file for each package and
one JCA file for each package, checks for each package version in the export
file against the version specified in the command line or in the config file. If the -
exportmap option is used for a specific package in the command line or config file,
the export file specified in the command line for that package must represent the
same version as that of the package. The converter does not support upgrading
the export file version.

Before writing the export files and JCA files, the Converter determines the output
file path. The Converter assumes the output files are written into the directory:

root_dir\package_dir\javacard

By default, the root_dir is the class root directory specified by the -classdir
option. You can specify a different root_dir by using the -d option.

The Converter generates only one CAP file. In the compact mode, the CAP
file contains only one package and it is written to the path mentioned into the
preceding example (root_dir\package_dir\javacard). In the extended mode, the
CAP file contains one or more packages and it is written into the following
directory:

output_dir\CAP_name\javacard

By default, the output_dir is the directory where the JSON configuration file, which
used in the extended mode, is located. You can specify a different output_dir by
defining a value for the outputDir field in the JSON configuration file.

Table 5-2 Converter Command Line Arguments

Option Description

-help Prints help message.

-help JSON Prints a JSON definition file (schema), for the JSON
configuration file to be used in extended mode. The JSON
schema contains all of the fields that can be defined, the
hierarchy of fields, field types, field descriptions, optionality,
sample values, default values, and descriptions. The schema
can be used (using various tools) for validating configuration
files used for generating extended CAP files.

package-name Fully-qualified name of the package to convert.

package-aid 5- to 16-decimal, hex or octal numbers separated by colons.
Each of the numbers must be byte-length.

Chapter 5
Running the Converter

5-5

Table 5-2 (Cont.) Converter Command Line Arguments

Option Description

major-version minor-version User-defined version of the package.

-applet AID class_name Sets the default applet AID and the name of the class that
defines the applet. If the package contains multiple applet
classes, this option must be specified for each class.

-classdir root-directory-of-
class hierarchy

Sets the root directory where the Converter looks for classes.
If this option is not specified, the Converter uses the current
user directory as the root.

-d root-directory-for-output Sets the root directory for output.

-debug Generates the optional debug component of a CAP file. If
the -mask option is also specified, the file debug.msk is
generated in the output directory.

Note: To generate the debug component, you must first
compile your class files with the Java compiler's -g option.

-exportmap Uses the token mapping from the pre-defined export file of
the package being converted. The Converter looks for the
export file in the exportpath.

-exportpath list-of-directories Specifies the root directories in which the Converter looks for
export files. The separator character for multiple paths is the
semicolon (;). If this option is not specified, the Converter
sets the export path to the Java classpath.

-i Instructs the Converter to support the 32-bit integer type.

-mask Indicates that the converted code is intended to be used
to create a binary mask, so restrictions on native methods
are relaxed. If you have a source release, you can specify
this option to generate a mask out of this package using
maskgen.

This option can be used in conjunction with -out CAP,
only if -debug is selected, to typically generate a CAP with
debug component and use it to debug platform classes. Such
CAP is not intended to be loaded on a platform and will fail
verification if it contains native methods.

-nobanner Suppresses all banner messages.

-noverify Suppresses the verification of input and output files. For more
information on file verification, see Verification of Input and
Output Files .

-nowarn Instructs the Converter not to report warning messages.

-out [CAP] [EXP] [JCA] Instructs the Converter to output the CAP file, and/or the
export file, and/or the Java Card Assembly file. By default (if
this option is not specified), the Converter outputs a CAP file
and an export file.

-v, -verbose Enables verbose output. Verbose output includes progress
messages, such as "opening file", "closing file", and whether
the package requires integer data type support.

-V, -version Prints the Converter version string.

-sign Specifies to sign the output CAP file

-keystore value Keystore to use in signing

Chapter 5
Running the Converter

5-6

Table 5-2 (Cont.) Converter Command Line Arguments

Option Description

-storepass value Keystore password

-alias value Keystore alias to use in signing

-passkey value Alias password

-useproxyclass Cannot be specified with keepproxysource. Builds CAP
files as usual in the specified output directory using the
existing class files of the application and existing class files
of the associated proxy sub-package. New proxy classes are
not created.

Provides a way for the application developer to build a CAP
file with customized proxy files. This option requests the
converter to take the class files of the application package
and the class files of the co-located proxy sub-package to
build a new CAP file. The classes in the application package
are converted into new.cap components. New descriptors
are created. Dynamically-loaded-classes attributes need to
be recomputed based on the new Proxy class file names.

-usecapcomponents Specifies that the converter retain the specified user supplied
CAP components instead of generating them in the final CAP
bundle. The input format is as follows:

application-classes-dir/application-classes/javacard/
*.cap

-keepproxysource directory Cannot be used with -useproxyclass. Creates the proxy
source files and other stub files in the specified directory.
The converter also builds CAP files as usual in the specified
output directory.

Supports customizing the proxy files generated by the
converter. Requests the converter retain the intermediate
proxy class source code in the specified directory and the
source code of the associated stub classes representing the
dependent external classes using the hierarchical directory
structure of the Java package name(s).

-resourcepath
<id1>:<resource_path1>,<id2>
:<resource_path2>,...

Specifies the list of static resources that can be loaded
into the CAP file that is generated by the Converter (in the
compact mode).

The entries in the list are delimited by the "," character. Each
entry in the list contains two parameters delimited by the ":"
character. The first parameter is an integer representing the
id of the static resource and the second parameter is the path
to the file, which has the actual binary content for the static
resource. The path must be a valid path to a file on the disk
for which the Converter should have read access.

Chapter 5
Running the Converter

5-7

Table 5-2 (Cont.) Converter Command Line Arguments

Option Description

- target <platform version> Specifies the Java Card platform version on which the CAP
file that is generated by the Converter (in the compact mode)
is loaded.

If the target is not specified in the converter, the default value
would be the latest release version, that is, 3.1.0. Other valid
values for the current release are, 3.0.4 and 3.0.5. If you are
not using the target option or if you are using a target greater
than 3.0.5, the 2.3 version CAP files are generated. Else, 2.2
or 2.1 version CAP files are generated, depending on the
features (debugging or RMI). Also, for the current release,
the platform api_export_files directory is not required in the -
exportpath option. The directory for the platform API export
files is chosen based on the -target option as follows:
JC_HOME_TOOLS\api_export_files_<platform version>.

Using Delimiters with Command Line Options
To use delimiters with command line options:

• Add a double quote (") around command line option arguments that contain a
space symbol.

In the following sample command line, the converter checks for export files
in the.\export files, JC_HOME_TOOLS\api_export_files_3.0.5, and current
directories.

converter -target 3.0.5 -exportpath ".\export files";.

MyWallet 0xa0:0x00:0x00:0x00:0x62:0x12:0x34 1.0

Using a Command Configuration File in Compact Mode
Instead of entering all of the command line arguments and options on the command
line, you can include them in a text-format configuration file. This is convenient if you
frequently use the same set of arguments and options.

To use a command configuration file:

1. Enter the command line arguments and options in a text-format configuration file.

2. Use double quote (") delimiters for the command line options that require
arguments in the configuration file.

You must use double quote (") delimiters for the command line options that require
arguments in the configuration file. For example, if the options from the command
line example used in Using Delimiters with Command Line Options were placed in
a configuration file, the result would look like this:

converter -target 3.0.5 -exportpath ".\export files";.

MyWallet 0xa0:0x00:0x00:0x00:0x62:0x12:0x34 1.0

3. Specify the configuration file in the command line when you run the Converter.

Chapter 5
Running the Converter

5-8

The syntax to specify a configuration file is:

converter –config configurationfile name

The configurationfile name argument contains the file path and file name of the
configuration file.

If the name of the configuration file has the .json extension, the extended mode is
activated, else the compact mode is used.

Using a JSON Configuration File for Converter in the Extended Mode
In the extended mode, the Converter tool generates extended CAP files from one or
multiple Java packages.

To run the Converter in the extended mode, use a JSON configuration file with the
-config option. The JSON file includes fields and options that are used in the compact
mode, however most of these fields and options are associated with each package
contained in the CAP file.

The configuration in the JSON file is a JSON object with a single field, inputConfig.
All other fields are defined inside this field at different levels of hierarchy. The
description of levels follow:

• CAP file - Includes options for the entire CAP file.

• Package - Includes options specific to each package in the CAP file.

• Applet - Includes options specific to each applet in a package.

• Static resource - Includes options specific to each static resource in the CAP file.

• Sign - Includes options specific to the signing feature of the CAP file.

Table 5-3 JSON File Options for Converter

Option Level Description

CAP_AID CAP file The AID of the CAP file available as an executable load
module.

CAP_name CAP file The name of the CAP file generated by the Converter.
On the disk, the name of the CAP file would look like
<CAP_name>.cap and all the components inside the
CAP file will be located in the <CAP_name>/javacard
directory.

CAP_version CAP file The user-defined version of the CAP file as an
executable load module.

debug CAP file Generates the optional debug component of a CAP file.
The same rules apply to the compact mode.

noverify CAP file Suppresses the verification of input and output files. The
same rules apply to the compact mode.

verbose CAP file Enables verbose output.

outputDir CAP file Sets the root directory for output of the CAP file.

nowarn CAP file Instructs the Converter not to report warning messages.

nobanner CAP file Suppresses all banner messages.

Chapter 5
Running the Converter

5-9

Table 5-3 (Cont.) JSON File Options for Converter

Option Level Description

useCapCompone
nts

CAP file Instructs the Converter to retain the user-defined CAP
components instead of generating them in the final CAP
bundle. The input format is as follows:
<CAP_name>/javacard/*.cap

CAP CAP file Instructs the Converter to write or not to write the CAP
file to the disk.

integer CAP file Instructs the Converter to support the 32-bit integer
type.

exportPath CAP file Specifies the root directories in which the Converter
looks for the export files. The same rules apply for the
compact mode. Note that the Java Card API framework
export files directory is not required and -traget
3.1.0 option is used automatically in the extended
mode.

inputPackages CAP file An array of JSON objects, each representing the
configuration for the Java package to be converted and
added to the CAP file.

staticResourc
es

CAP file An array of JSON objects. Each representing the
configuration for a static resource to be loaded on the
CAP file.

sign CAP file A JSON object representing the configuration for signing
the CAP file, which is generated by the Converter.

PackageAID Package The AID of the package as defined in the compact
mode.

PackageName Package The fully-qualified name of the package as defined in
the compact mode.

baseDir Package Sets the root directory from where the Converter
looks for the classes in the package. If this option is
not specified, the Converter uses the location of the
configuration file as the root directory.

outputDir Package Sets the root directory for output of the JCA and EXP
files generated for this package. The same rules apply
for the compact mode. If this option is not set, the
baseDir value is taken.

public Package Specifies if a package is exported or not. The values
and its description follow:
• If the value is set to true, and the package is a

library, then all the public classes and interfaces are
exported.

• If the value is set to true, and the package is an
applet package, then only shareable interfaces are
exported.

• If the value is set to false, nothing from the
package is exported. Also, the AID field of the
package will not appear in the header component of
the CAP file and the AID field is ignored. Because
of this, in the generated JCA files, the AID of a
private package will have a random value. For a
private package, the EXP file is not generated and
the value of the EXP file is ignored.

Chapter 5
Running the Converter

5-10

Table 5-3 (Cont.) JSON File Options for Converter

Option Level Description

version Package The user-defined version of the package as defined in
the compact mode. If the package is private and the
exportmap field is set to false, the version field is
ignored.

JCA Package Instructs the Converter to write or not to write the JCA
file to the disk for the package.

EXP Package Instructs the Converter to write or not to write the EXP
file to the disk for the package.
If the package doesn't have an export component (if
the package is private or an applet package with no
shareable interfaces), the EXP file is not generated.
Therefore, the EXP field is ignored.

exportmap Package Uses the token mapping from the predefined export file
of the package. The Converter looks for the export file in
the given exportpath at the CAP file level. If this field
is set to false and the package is private, the version
field is ignored.

applets Package An array of JSON objects. Each representing the
configuration for a Java Card applet contained in this
package.

ClassAID Applet Specifies the AID of the applet.

ClassName Applet Specifies the fully-qualified Java class name for this
applet.

id Static Resource An integer representing the identification number for the
static resource. The static resource IDs must be unique
across the CAP file.

file Static Resource A valid system path to an existent and accessible file
on the disk. The contents of this file is loaded as binary
data in the CAP file for the static resource.

keystore Sign The keystore used in signing.

storepass Sign The keystore password.

alias Sign The keystore alias used in signing.

passkey Sign The alias password.

Handling Relative Paths
In the JSON configuration file, all the fields that have values for the paths to directories
or files on disk, support relative paths.

These fields include: outputDir, baseDir, exportPath, and file. All the relative paths
are defined relative to the directory in which the JSON configuration file is located.

For example, the static resources are defined as follows:

"staticResources":[{
 "id" : 1,
 "file" : "staticres\\static1.res"
 }, {
 "id" : 2,

Chapter 5
Running the Converter

5-11

 "file" : "staticres\\static2.res"
 }]

If the JSON configuration file is in the following location:

C:\Users\Test

Then the Converter finds the data for the static resources in the following locations:

C:\Users\Test\staticres\static1.res

C:\Users\Test\staticres\static2.res

This applies for any input or output relative path directory. In case of a list of paths, like
the exportPath field, the preceding statements apply for each path in the list.

Converter JSON Configuration File Sample
The Converter JSON configuration file sample follows:

{
 "inputConfig": {
 "CAP_AID": "01:02:03:04:05:10",
 "CAP_name": "hellosample",
 "CAP_version": "1.0",
 "debug": true,
 "noverify": false,
 "verbose": true,
 "outputDir": "thecapfile",
 "exportPath": ".;.\\package1",
 "inputPackages": [{
 "baseDir": "package1",
 "PackageName": "com.lib",
 "PackageAID": "01:02:03:04:05:06",
 "public": true,
 "JCA": true,
 "EXP": true,
 "exportmap": true,
 "version": "1.1"
 }, {
 "PackageName": "com.mine",
 "baseDir": "package2",
 "public": false,
 "JCA": true,
 "EXP": false,
 "exportmap": false,
 }, {
 "PackageName": "com.sample",
 "PackageAID": "01:02:03:04:05:07",
 "baseDir": "package3",
 "public": true,
 "version": "1.0",
 "JCA": true,
 "EXP": true,
 "exportmap": false,
 "applets": [{
 "ClassAID": "01:02:03:04:05:07:01",
 "ClassName": "com.sample.MyApplet"
 }]
 }],
 "staticResources":[{

Chapter 5
Running the Converter

5-12

 "id" : 1,
 "file" : "staticres\\static1.res"
 }, {
 "id" : 2,
 "file" : "staticres\\static2.res"
 }]
 }
}

Validating a JSON Configuration File
To validate a JSON configuration file, a JSON schema file must be generated using
the -help JSON option.

To save the schema file, use the following command for the Microsoft Windows
operating system:

converter.bat -help JSON > converter_schema.json

The saved schema file can be used as an input to the validation tools for validating
the actual JSON configuration files that are passed to the Converter. See https://
json-schema.org, for more information on JSON schema and validation.

File Naming for the Converter
This section describes the names of input and output files for the Converter, and gives
the correct location for these files. With some exceptions, the Converter follows the
Java programming language naming conventions for default directories for input and
output files. These naming conventions comply with the definitions in the Java Card
Virtual Machine specification.

This section includes the following:

• Input File Naming Conventions

• Output File Naming Conventions

• Verification of Input and Output Files

• Creating a debug.msk Output File

Input File Naming Conventions
The files input to the Converter are Java class files named with the.class suffix.
Generally, there are several class files making up a package. All the class files for
a package must be located in the same directory under the root directory, following
the Java programming language naming conventions. In the compact mode, the root
directory can be set from the command line using the -classdir option. If this option
is not specified, the root directory defaults to the directory from which the user invoked
the Converter. In the extended mode, the root directory can be set from the JSON
configuration file using the baseDir field. This is set for each package contained in the
extended CAP file. If the field is not specified for a specific package, the root directory
for that package defaults to the directory in which the JSON configuration file resides.

Suppose, for example, you want to convert the package java.lang. If you use the
-classdir flag to specify the root directory as C:\mywork, the command line is:

converter -classdir C:\mywork java.lang package_aid package_version

Chapter 5
File Naming for the Converter

5-13

https://json-schema.org
https://json-schema.org

where package_aid is the application ID of the package and package_version is the
user-defined version of the package.

If you use the baseDir field to specify the root directory as C:\mywork, the JSON field
looks like this: "baseDir":"C:\\mywork"

The Converter looks for all class files in the java.lang package in the directory
C:\mywork\java\lang.

Output File Naming Conventions
In the compact mode, the name of the CAP file, export file, and the Java Card
Assembly file must be the last portion of the package name followed by the
extensions.cap,.exp, and.jca, respectively. In the extended mode, the name of the
CAP file is the value of the CAP_name field defined in the JSON configuration file
followed by the .cap extension. For the export files and Java Card Assembly files
generated in this mode, the same rules as in the compact mode apply.

By default, the files output from the Converter are written to a directory called
javacard. This is a subdirectory of the input package's directory for the compact
mode, or a subdirectory of the CAP name directory for the extended mode.

In the above -classdir example, by default, the output files are written to the directory
C:\mywork\java\lang\javacard.

In the above baseDir example, assume that if the CAP_name field has the
"hellosample" value, by default, the output files are written to the directory
C:\mywork\hellosample\javacard.

The -d flag or the outputDir field enable you to specify a different root directory for the
output.

In the above example, if you use the -d flag or the outputDir field to specify the root
directory for the output to beC:\myoutput, the Converter writes the output files to the
directory C:\myoutput\java\lang\javacard or C:\myoutput\hellosample\javacard,
respectively.

When generating a CAP file, the Converter creates one or more Java Card Assembly
files in the output directory as an intermediate result. If you don't want a Java Card
Assembly file to be produced, omit the option -out JCA in the compact mode or set
the JCA field to false for the respective package in the JSON configuration file in the
extended mode. The Converter deletes the Java Card Assembly files at the end of the
conversion.

Verification of Input and Output Files
By default, the Converter invokes the Java Card technology-based off-card verifier
("Java Card off-card verifier") for every input EXP file and on the output CAP and EXP
files.

• If any of the input EXP files do not pass verification, then no output files are
created.

• If the output CAP or EXP files do not pass verification, then the output EXP and
CAP files are deleted.

Chapter 5
File Naming for the Converter

5-14

If you want to bypass verification of your input and output files, use the -noverify
command line option or set the noverify field in the JSON configuration file to true.
Note that if the Converter finds any errors, output files are not produced.

Note:

When using the Java Card off-card verifier to verify an extended CAP file,
all EXP files that are required by the packages and are present inside the
extended CAP file, must pass the verification.

Creating a debug.msk Output File
To create a debug.msk output file:

1. Set the -mask and -debug options described in Table 5-2 when you run the
Converter.

2. Verify that the file debug.msk is created in the same directory as the other output
files.

Using Export Files
A Java Card technology-based export file contains the public API linking information
of classes in an entire package. The Unicode string names of classes, methods and
fields are assigned unique numeric tokens.

Export files are not used directly on a device that implements a Java Card virtual
machine. However, the information in an export file is critical to the operation of the
virtual machine on a device. An export file is produced by the Converter when a
package is converted. You can use this package's export file later to convert another
package that imports classes from the first package. Information in the export file is
included in the CAP file of the second package, then is used on the device to link the
contents of the second package to items imported from the first package.

During the conversion, when the code in the currently-converted package references
a different package, the Converter loads the export file of the different package. The
Converter also tries to load the shareable interface class files being imported from that
package.

For more information on export files, see Verifying CAP and Export Files.

Figure 5-1 illustrates how an applet package is linked with the java.lang, the
javacard.framework and javacard.security packages through their export files.

You can use the -exportpath command option and the exportPath JSON field to
specify the locations of export files and the shareable interface class files. The path
consists of a list of root directories in which the Converter looks for export files
and shareable interface class files. Export files must be named as the last portion
of the package name followed by the extension.exp. Export files are located in a
subdirectory called javacard, following the relative directory path that matches the
package name. The shareable interface class files are located in the relative directory
path that matches the package name.

Chapter 5
Using Export Files

5-15

For example, to load the export file of the package java.lang, if you have
specified -exportpath as c:\myexportfiles, the Converter searches the directory
c:\myexportfiles\java\lang\javacard for the export file lang.exp.

Figure 5-1 Calls Between Packages Go Through The Export Files

Specifying an Export Map
By specifying an export map, you can request the Converter to convert a package by
using the tokens in the pre-defined export file of the package that is being converted.
There are two distinct cases when using the -exportmap flag:

• When the minor version of the package is the same as the version given in the
export file (this case is called package reimplementation).

During package reimplementation, the API of the package (exportable classes,
interfaces, fields and methods) must remain the same.

• When the minor version increases (package upgrading).

During a package upgrade, changes that do not break binary compatibility with
preexisting packages are allowed (see "Binary Compatibility" in the Java Card
Platform Virtual Machine Specification, Classic Edition, Version 3.1).

For example, if you have developed a package and would like to reimplement a
method (package reimplementation) or upgrade the package by adding new API
elements (new exportable classes or new public or protected methods or fields to
already existing exportable classes), you must use the -exportmap option to preserve
binary compatibility with already existing packages that use your package.

To specify an export map:

1. Set the -exportmap command option described in Table 5-2 when you run the
Converter in the compact mode..

The Converter loads the pre-defined export file in the same way that it loads other
export files.

2. Set the exportmap JSON field to true for each package from an extended CAP
file, for which you want to preserve binary compatibility, in the extended mode.

Viewing an Export File as Text
The exp2text tool is provided to allow you to view any export file in text format. The
file to invoke exp2text is a batch file (exp2text.bat) that must be run from a working
directory of JC_HOME_TOOLS\bin in order for the code to execute properly.

Chapter 5
Using Export Files

5-16

To view an export file as text:

• Enter the following command (see Table 5-4 for a description of the options):

exp2text.bat [options] package-name

Table 5-4 exp2text Command Line Options

Option Description

-classdir input-root-directory Specifies the root directory where the program
looks for the export file.

-d output-root-directory Specifies the root directory for output.

-help Prints help message.

Chapter 5
Using Export Files

5-17

6
Working With CAP Files

This chapter describes how you can generate a CAP file from a given Java
Card Assembly file using the capgen tool, and how you can produce an ASCII
representation of a CAP file using the capdump tool.
One of the files generated by the Converter is the CAP file. The CAP file utilizes
the JAR file format and contains a set of components that describe a Java language
package. In addition to the components, the CAP file also contains the manifest file
META-INF/MANIFEST.MF, which you can use to improve distribution.

This chapter contains the following sections:

• Compact CAP File and Manifest File Syntax

• Extended CAP File Manifest File Syntax

• Generating a CAP File From a Java Card Assembly File

• Producing a Text Representation of a CAP File

Compact CAP File and Manifest File Syntax
A CAP file utilizes the JAR file format, and contains a set of components that describe
a Java language package. In addition to the components, the CAP file also contains
the manifest file META-INF/MANIFEST.MF. The manifest file provides additional human-
readable information regarding the contents of the CAP file and the package that it
represents. You can use this information to facilitate the distribution and processing of
the CAP file.

The following information applies to the version 2.3 compact CAP files generated
with the version 3.1.0 Converter and version 2.2 or 2.1 CAP files generated with the
version 3.1.0 or later Converter.

The information in the manifest file is presented in name:value pairs. These
name:value pairs are described in Table 6-1.

Table 6-1 Name:Value Pairs in the MANIFEST.MF File

Name Value

Java-Card-CAP-Creation-Time
Creation time of CAP file. For example:

Tue Jan 15 11:07:55 PST 2006

The format of the time stamp is operating
system-dependent.

Java-Card-Converter-Version
The version of the converter tool. Default:
3.1.0.

Java-Card-Converter-Provider
Provider of the converter tool. For
example:

Oracle Corporation

6-1

Table 6-1 (Cont.) Name:Value Pairs in the MANIFEST.MF File

Name Value

Java-Card-CAP-File-Version
CAP file major.minor version. Possible
values are: 2.1, 2.2, or 2.3.

Java-Card-Package-Version
The major.minor version of package. For
example: 1.0

Java-Card-Package-AID
AID for the package. For example:

0xa0:0x00:0x00:0x00:0x62:
0x03:0x01:0x0c:0x07

Java-Card-Package-Name
The fully-qualified package name
in dot (.) format. For example:
javacard.framework

Java-Card-Applet-<n>-AID
The AID for applet n. For
example: 0xa0:0x00:0x00:0x00:0x62:
0x03:0x01:0x0c:0x07:0x05

Java-Card-Applet-<n>-Name
Simple class name for applet n. For
example: MyApplet

Java-Card-Import-Package-<n>-AID
The AID for imported package n. For
example: 0xa0:0x00:0x00:0x00:0x62:
0x00:0x01

Java-Card-Import-Package-<n>-Version
The major.minor version of imported
package n. For example: 1.0

Java-Card-Integer-Support-Required Can be TRUE or FALSE. The value is TRUE
if the package requires integer support.

The properties in the manifest file include:

• The names Java-Card-Applet-<n>-AID and Java-Card-Applet-<n>-Name refer to
the same applet.

• The converter assigns numbers for the Java-Card-Applet-<n>-NAME and Java-
Card-Applet-<n>-AID names in sequential order, beginning with 1.

• The names Java-Card-Imported-Package-<n>-AID and Java-Card-Imported-
Package-<n>-Version refer to the same package.

• The converter assigns numbers for the Java-Card-Imported-Package-<n>-AID
and Java-Card-Imported-Package-<n>-AID names in sequential order, beginning
with 1.

Sample Manifest File
The following code sample illustrates the manifest file that the Converter generates
when it converts package jcard.applications. This package contains two applets,
MyClass1 and MyClass2.

Manifest-Version: 1.0
Created-By: 1.3.1 (Oracle Corporation)
Java-Card-CAP-Creation-Time: Tue Jan 15 11:07:55 PST 2010
Java-Card-Converter-Version: 1.3
Java-Card-Converter-Provider: Oracle Corporation

Chapter 6
Compact CAP File and Manifest File Syntax

6-2

Java-Card-CAP-File-Version: 2.1
Java-Card-Package-Version: 1.0
Java-Card-Package-Name: jcard.applications
Java-Card-Package-AID: 0xa0:0x00:0x00:0x00:0x62:0x03:0x01:0x0c:0x07
Java-Card-Applet-1-Name: MyClass1
Java-Card-Applet-1-AID: 0xa0:0x00:0x00:0x00:0x62:0x03:0x01:0x0c:0x07:0x05
Java-Card-Applet-2-Name: MyClass2
Java-Card-Applet-2-AID: 0xa0:0x00:0x00:0x00:0x62:0x03:0x01:0x0c:0x07:0x06
Java-Card-Imported-Package-1-AID: 0xa0:0x00:0x00:0x00:0x62:0x00:0x01
Java-Card-Imported-Package-1-Version: 1.0
Java-Card-Imported-Package-2-AID: 0xa0:0x00:0x00:0x00:0x62:0x01:0x01
Java-Card-Imported-Package-2-Version: 1.1
Java-Card-Integer-Support-Required: TRUE

Extended CAP File Manifest File Syntax
An extended CAP file utilizes the JAR file format, and has the same properties as a
compact CAP file. However, there are some differences in the way the information that
is specific to the extended CAP file is represented in the META-INF/MANIFEST.MF file.

The following table lists the names in the manifest file that are specific to the Java
Card packages and Java Card Applets. These fields are changed to consider the
extended CAP file context:

The information in the manifest file is presented in name:value pairs. These
name:value pairs are described in Sample Extended CAP Manifest File.

Table 6-2 Extended CAP File Manifest File Name Syntax

Name Changed To: Change Description

Java-Card-Package-
AID

Java-Card-Package-
<n>-AID

An extended CAP file can have multiple
packages. Therefore, an index is added for
each package name.

Java-Card-Package-
Version

Java-Card-Package-
<n>-Version

An extended CAP file can have multiple
packages. Therefore, an index is added for
each package version.

If the package is not exported (private or
applet package with no shareable interfaces),
the value of this field is set to private.

Java-Card-Applet-
<n>-AID

Java-Card-Package-
<m>-Java-Card-
Applet-<n>-AID

An extended CAP file can have multiple
packages. Therefore, the package that
contains the applet is added for each applet
AID.

Java-Card-Applet-
<n>-Name

Java-Card-Package-
<m>-Java-Card-
Applet-<n>-Name

An extended CAP file can have multiple
packages. Therefore, the package that
contains the applet is added for each applet
name.

Some new name:value pairs are added in the extended CAP manifest file. These
name value pairs have extended CAP file-specific information. The following table lists
and describes the new name value pairs.

Chapter 6
Extended CAP File Manifest File Syntax

6-3

Table 6-3 Name:Value Pairs in the extended CAP MANIFEST.MF File

Name Value

Java-Card-CAP-Name
The extended CAP file name as defined in
the CAP_name field from the JSON input
configuration file.

Java-Card-CAP-AID
The extended CAP file AID as present in the
header component of the CAP file.

Java-Card-CAP-Version
The extended CAP file version as present in
the header component of the CAP file.

Sample Extended CAP Manifest File
The following code sample illustrates the sample extended CAP MANIFEST.MF file.

Manifest-Version: 1.0
Created-By: 1.7.0_60 (Oracle Corporation)
Name: BigApplet007
Java-Card-Integer-Support-Required: FALSE
Java-Card-Imported-Package-1-AID: 0xa0:0x00:0x00:0x00:0x62:0x00:0x01
Java-Card-Package-1-Name: com.oracle.lib
Java-Card-CAP-Version: 1.0
Java-Card-Package-3-Java-Card-Applet-1-AID: 0x01:0x02:0x03:0x04:0x05:0x06:0x01
Java-Card-Imported-Package-1-Version: 1.0
Java-Card-Package-3-Java-Card-Applet-1-Name: BigApplet001
Java-Card-Package-4-AID: private
Java-Card-CAP-Creation-Time: Thu Dec 06 18:47:17 FET 2018
Java-Card-Converter-Provider: Oracle Corporation
Java-Card-Package-4-Version: private
Java-Card-Package-2-Name: com.oracle.ext
Java-Card-Package-1-AID: 0x01:0x02:0x03:0x04:0x05:0x09
Java-Card-Package-4-Java-Card-Applet-2-Name: BigApplet001
Java-Card-Package-3-Name: com.oracle.bigapp
Java-Card-Package-3-Version: private
Java-Card-CAP-Name: BigApplet007
Java-Card-Package-2-Version: 1.0
Java-Card-Converter-Version: [v3.1.0]
Java-Card-Package-4-Java-Card-Applet-1-Name: BigApplet002
Java-Card-Imported-Package-2-AID: 0xa0:0x00:0x00:0x00:0x62:0x01:0x01
Java-Card-Package-2-AID: 0x01:0x02:0x03:0x04:0x05:0x0b
Java-Card-Package-4-Java-Card-Applet-1-AID: 0x01:0x02:0x03:0x04:0x05:0x07:0x01
Java-Card-Package-4-Java-Card-Applet-2-AID: 0x01:0x02:0x03:0x04:0x05:0x08:0x01
Java-Card-CAP-AID: 0x01:0x02:0x03:0x04:0x05:0x06:0x0a
Java-Card-Package-4-Name: com.oracle.bigapp02
Java-Card-CAP-File-Version: 2.3
Java-Card-Package-3-AID: private
Java-Card-Imported-Package-2-Version: 1.7
Java-Card-Package-1-Version: 1.0

Generating CAP Files From Java Card Assembly Files
Use the capgen tool to generate a compact CAP file from a given Java Card Assembly
file or an extended CAP file from one or more Java Card Assembly files. The CAP file

Chapter 6
Generating CAP Files From Java Card Assembly Files

6-4

that is generated has the same contents as a CAP file produced by the Converter. The
capgen tool is a backend to the Converter.

Running capgen
To run capgen:

• Enter the following on the command line (see Table 6-4 for a description of the
options):

capgen.bat [options] filename

Note:

The file to invoke capgen is a batch file (capgen.bat) that must be run from a
working directory of JC_HOME_TOOLS\bin in order for the code to execute
properly.

Table 6-4 capgen Command Line Options

Option Description

-help Prints a help message.

-nobanner Suppresses all banner messages.

filename Specifies the Java Card Assembly file in case of the compact CAP
file generation or a capgen JSON configuration file in case of the
extended CAP file generation.

-o filename Enables you to specify an output file. If the output file is not specified
with the -o flag, output defaults to the file a.jar in the current
directory.

-version Outputs the version information.

-config Enables capgen to run in the extended mode. In this case, the
filename parameter is a JSON configuration file, similar to the one
given for the Converter in the extended mode. The JCA input files are
defined in the configuration file.

Using a JSON Configuration File for capgen in the Extended Mode
In the extended mode, the capgen tool generates extended CAP files, from one or
multiple Java Card Assembly files.

For using the capgen tool in the extended mode, a JSON configuration file must
be used with the -config option. This JSON file is similar to the one used by the
Converter tool (see Using a JSON Configuration File for Converter in the Extended
Mode). The only difference is, some of the general conversion parameters that are
used by the Converter tool, including the export paths, are not used by the capgen
tool. This is because, this information is already present in the JCA files. For each
of the package, only the path to the JCA files is provided. The information that is
not present in the JCA files remain in the JSON file, similar to the extended CAP file
information and static resources information.

Chapter 6
Generating CAP Files From Java Card Assembly Files

6-5

The configuration in the JSON file is a JSON object with a single field, inputConfig.
All other fields are defined inside this field at different levels of hierarchy. The
description of levels follows:

Table 6-5 JSON File Options for capgen

Option Level Description

CAP_AID CAP file The AID of the CAP file available as an executable load
module.

CAP_name CAP file The name of the CAP file generated by the Converter.
On the disk, the name of the CAP file would look like
<CAP_name>.cap and all the components inside the
CAP file will be located in the <CAP_name>/javacard
directory.

CAP_version CAP file The user-defined version of the CAP file as an
executable load module.

debug CAP file Generates the optional debug component of a CAP file.
The same rules apply to the compact mode.

outputDir CAP file Sets the root directory for output of the CAP file.

inputPackages CAP file An array of JSON objects, each representing the
configuration for the Java package to be converted and
added to the CAP file.

staticResourc
es

CAP file An array of JSON objects. Each representing the
configuration for a static resource to be loaded on the
CAP file.

jcainputfile Package A valid path to an existent and accessible Java Card
Assembly file converted for this package.

This path can be given as a relative path. Relative
paths conform to the same rules as the Converter JSON
configuration files. These are relative to the location of
the JSON configuration file.

outputDir Package Sets the root directory for output of the JCA and EXP
files generated for this package. The same rules apply
for the compact mode. If this option is not set, the
baseDir value is taken.

id Static Resource An integer representing the identification number for the
static resource. The static resource IDs must be unique
across the CAP file.

file Static Resource A valid system path to an existent and accessible file
on the disk. The contents of this file is loaded as binary
data in the CAP file for the static resource.

Capgen JSON Configuration File Sample
The capgen JSON configuration file sample follows:

{
 "inputConfig": {
 "CAP_AID": "01:02:03:04:05:10",
 "CAP_name": "hellosample",
 "CAP_version": "1.0",
 "debug": true,
 "outputDir": "thecapfile",
 "inputPackages": [{

Chapter 6
Generating CAP Files From Java Card Assembly Files

6-6

 "jcainputfile": "package1\\com\\lib\\javacard\\lib.jca"
 }, {
 "jcainputfile": "package2\\com\\mine\\javacard\\mine.jca"
 }, {
 "jcainputfile": "package3\\com\\sample\\javacard\\sample.jca",
 }],
 "staticResources":[{
 "id" : 1,
 "file" : "staticres\\static1.res"
 }, {
 "id" : 2,
 "file" : "staticres\\static2.res"
 }]
 }
}

Producing a Text Representation of a CAP File
Use the capdump tool to produce an ASCII representation of a CAP file.

Running capdump
To run capdump:

• Enter the following on the command line:

capdump.bat filename

There are no command line options, filename is the CAP file, and output from the
command is always written to standard output.

Note:

The file to invoke capdump is a batch file (capdump.bat) that must be run
from a working directory of JC_HOME_TOOLS\bin in order for the code to
execute properly.

Chapter 6
Producing a Text Representation of a CAP File

6-7

7
Debugging Applications

This chapter describes the debug proxy tool that is included in the development kit.
You can use it either within the Eclipse IDE or as a separate tool with any Java IDE.
This chapter contains the following sections:

• Debugger Architecture

• Running the Debug Proxy From the Command Line

Debugger Architecture
You can use cref, jc-debug-proxy, and an IDE to debug your project.

The prebuilt executable runtime environment, cref is run from inside Eclipse or on
the command line, and has the ability to simulate persistent memory (EEPROM) and
to save and restore the contents of EEPROM to and from disk files. It performs I/O
through a socket interface, simulating the interaction between a card reader and a host
computer.

Figure 7-1 Debugger Architecture

The Java Debug Wire Protocol (JDWP) used by the IDE is heavy for a small VM such
as that provided by the simulator. Instead, the simulator uses a lightweight proprietary
protocol to provide a minimum set of debugging capabilities. The debugger tool, jc-
debug-proxy, translates commands and responses between cref and the IDE into the
appropriate protocol.

Because cref, jc-debug-proxy, and the IDE communicate through sockets, you may
debug using a remote host. For example, cref could run on host1, jc-debug-proxy
could run on host2, and the IDE could run on host3.

Ports used between the IDE and jc-debug-proxy, and jc-debug-proxy and cref, are
distinguished by the names "listen port" and "remote port".

Running the Debug Proxy from the Command Line
If you are not using Eclipse for development, you can run the debug proxy and attach
another Java technology-enabled debugger to it from the command line.

To run the debugger:

7-1

1. Compile the application's class files using the -g option. If the -g option is not
used, it is not possible to set breakpoints in the source code

2. Generate APDU scripts for applet installation, instance creation and selection by
using the script generator tool (scriptgen.bat).

3. Start cref in debug mode.

You must set the -debugPort option so that cref opens the specified port to
communication with debug proxy. Without this option, the debugging functionality
in cref is disabled.

For example:

JC_HOME_SIMULATOR\bin\cref_tdual.exe -debugPort 9090[options]

4. Run the APDU scripts.

APDU scripts can be executed using apdutool.bat. At a minimum, the installation
script must be executed before the debug proxy connects to the VM. Other scripts
can be executed later to debug the applet's install() and process() methods

5. Start jc-debug-proxy as described in Starting the Debugger.

For example:

 java.exe -jar lib\jc-debug-proxy.jar -capPath
C:\workspace\HelloWorld\deliverables\hello\javacard\hello.cap -vmPort
9090 -port 8000

6. Attach the debugger to the debug proxy.

NetBeans or any other Java-compatible debugger can be used to connect to the
debug proxy using the JDWP protocol. The debugger needs to be configured to
connect to the remote Java application running on a specific host and port.

For an example, see:

Debugging the HelloWorld Sample from the Command Line

Debug Proxy Options
To run the debug proxy from the command line, use the following command syntax:

java.exe –jar lib\jc-debug-proxy.jar <debug proxy arguments>

The command line arguments for the debug proxy are:

Command Line
Argument

Description

-debug-info The source debug-info file that contains debug information for system
classes

-gen-debug-
info

Starts debug proxy in generate debug-info mode to generate the system
classes debug information file using .exp files found on the provided path

-port The port that the Java debugger connects to

-vmPort The port that the VM listens on.

-vmHost The hostname of the system the VM is running on

-capPath Required. Path to the cap file(s) being debugged.

-help Short description of help

Chapter 7
Running the Debug Proxy from the Command Line

7-2

For example:

java.exe -jar lib\jc-debug-proxy.jar -capPath
C:\workspace\HelloWorld\deliverables\hello\javacard\hello.cap -vmPort 9090
-port 8000

Debugging the HelloWorld Sample from the Command Line

To debug the HelloWorld sample from the command line:

1. Open a Command Prompt window and perform the following:

a. Navigate to the JC_HOME_SIMULATOR\bin directory.

b. Start the simulator by entering the following command at the command
prompt:

cref –o hello.eeprom

Note:

The -o command line option instructs cref to save the EEPROM
data to the hello.eeprom file before terminating.

2. Open a second Command Prompt window and perform the following:

a. Navigate to the
JC_HOME_SIMULATOR\samples\classic_applets\HelloWorld\apple
t directory.

b. Open the applet.opt file in a text editor and add a new line with -debug
option. This option will be passed to the converter to generate debug
information.

c. At the command prompt, invoke ant with a target set to all. The output file
is default.out or, optionally, you can specify a different output file with the -D
parameter:

ant -Dredirect.output=outputfile_name all

This builds the applet, executes the APDU script, and creates an output file in
the applet directory.

3. cref terminates. Restart it in the first window by entering this command:

cref –debugPort 9090 –i hello.eeprom

4. In the second command prompt, navigate to the JC_HOME_SIMULATOR\lib
directory and start the debug proxy:

java.exe -jar jc-debug-proxy.jar -capPath
JC_HOME_SIMULATOR\samples\classic_applets\HelloWorld\applet\build\clas
ses\com\sun\jcclassic\samples\helloworld\javacard\helloworld.cap

5. Start the Java debugger of your choice and attach it to the 8000 port of the local
host.

6. Now you can set a break point and see it hit after a proper APDU is issued using
the apdutool.

Chapter 7
Running the Debug Proxy from the Command Line

7-3

8
Packaging and Deploying Your Application

This chapter describes how to prepare your applet application to be put into module
JAR files and then deployed to a secure element. The off-card installer, the scriptgen
tool, resides on your desktop and operates as a packager.
This chapter contains the following sections:

• Overview of Packaging and deploying Applications

• Installer Components and Data Flow

• Running scriptgen

• Sending and Receiving APDUs

• Downloading CAP Files and Creating Applets

• Using the On-card Installer for Deletion

Overview of Packaging and Deploying Applications
You can use the development kit installer to:

• Download a Java Card technology CAP file to a Java Card technology-compliant
smart card, or during development, to the Java Card RE.

• Perform necessary on-card linking.

• Delete applets and packages from a Java Card technology-compliant smart card.
Once the installer is selected, requests for deletion can be sent from the terminal
to the smart card in the form of APDU commands. See Using the On-card Installer
for Deletion for more information.

• Set default applets on different logical channels.

The output from scriptgen goes to apdutool, which resides on your desktop and acts
as a deployment tool. The on-card installer resides in the RE on the card and receives
Application Protocol Data Unit commands (APDUs) from apdutool.

The on-card installer is not a multi selectable application. On startup, the on-card
installer is the default applet on logical channel 0. The default applet on the other
logical channels is set to No applet selected.

Installer Components and Data Flow
The following illustration shows the components of the installer and how they interact
with the other parts of Java Card technology.

The off-card installer is the scriptgen. The on-card installer resides on the smart
card. The apdutool is not considered an installer, but processes the output from the
scriptgen and sends it to the on-card installer.

For more information about the installer, see the Java Card Platform Runtime
Environment Specification, Classic Edition, Version 3.1.

8-1

Figure 8-1 Installer components

Installer Front-end

.scr

Script file

Java Card
Simulator (cref)

Installer Program

InstallerJava Card
CAP file

JAR

Digest file

apdutoolscriptgen

The data flow of the installation process is as follows:

1. The scriptgen takes the CAP file produced by the Converter and generates a
script file that contains a sequence of APDU commands.

2. This set of APDUs is read by apdutool tool and sent to the on-card installer.

3. The on-card installer processes the CAP file contents contained in the APDU
commands, and sends a response APDU containing a status and, optionally, the
response data.

Running scriptgen
The scriptgen tool converts a package contained in a CAP file into a script file. The
script file contains a sequence of APDUs in ASCII format suitable for another tool,
such as apdutool, to send to the CAD. The CAP file component order in the APDU
script is identical to the order recommended by the Java Card Platform Virtual Machine
Specification, Classic Edition, Version 3.1. If you have a source release, you can
localize data associated with the scriptgen tool.

• Enter the following command to run the scriptgen tool :

scriptgen.bat [options] -hashfile hash-file-path cap-file-path

The scriptgen.bat file is used to invoke scriptgen and must be run from a
working directory of JC_HOME_SIMULATOR\bin in order for the code to execute
properly. Table 8-1 describes the options that can be used to invoke scriptgen.

Table 8-1 scriptgen Command Line Options

Option Description

-help Prints a help message and exits.

cap-file-path CAP file name including the full absolute path.

-hashfile hash-file-path Fully qualified path and name of the verifier-generated file that
contains the hashes for all of the components in the input CAP
file.

-nobanner Suppresses printing of the banner.

-nobeginend Suppresses the output of the CAP Begin and CAP End APDU
commands.

-o filename Output filename (default is stdout).

Chapter 8
Running scriptgen

8-2

Table 8-1 (Cont.) scriptgen Command Line Options

Option Description

-package package-name The name of the package contained in the CAP file. If the CAP
file contains components of multiple packages, you must use
this option to specify which package to process.

-version Prints the version number and exits.

Note:

The apdutool commands of powerup; and powerdown; are not included in
the output from scriptgen.

Sending and Receiving APDUs
The apdutool reads a script file containing APDUs and sends them to the simulator
or another Java Card RE. Each APDU is processed and returned to apdutool,
which displays both the command and response APDUs on the console. Optionally,
apdutool can write this information to a log file.

This section includes the following topics:

• Running apdutool

• apdutool Examples

• Using APDU Script Files

• Setting Default Applets

• On-Card Installer Applet AID

Running apdutool
The file to invoke apdutool is a batch file (apdutool.bat) that must be run from a
working directory of JC_HOME_SIMULATOR\bin in order for the code to execute
properly.

To run the apdutool:

• Enter the following command (see Table 8-2 for a description of the options):

apdutool.bat [-t0] [-verbose] [-nobanner] [-noatr] \
 [-d | --descriptiveoutput] [-k] [-o output-file] [-h host-name] [-p port-
number] \
 [-version] [-mi] [input-file-name]

The apdutool starts listening to APDUs in T=1 as the default format, unless otherwise
specified, on the TCP/IP port specified by the –p portNumber parameter for contacted
and portNumber+1 for contactless. The default port is 9025.

Chapter 8
Sending and Receiving APDUs

8-3

Table 8-2 apdutool Command Line Options

Option Description

-help Displays online help for the command.

-h host-name Specifies the host name on which the TCP/IP socket port is found.
(See the flag -p.)

-d

or

-descriptiveoutput

Formats the output in more user-readable form.

-k When using preprocessor directives in an APDU script, this option
generates a related preprocessed APDU script file in the same
directory as the APDU script.

-noatr Suppresses outputting an ATR (answer to reset).

-nobanner Suppresses all banner messages.

-o output-file Specifies an output file. If an output file is not specified with the -o
flag, output defaults to standard output.

-p port-number Specifies a TCP/IP socket port other than the default port (which is
9025).

-t0 Runs T=0 single interface.

-verbose If enabled, enables verbose apdutool output.

-version Outputs the version information.

-mi Required if the APDU script is using contacted and contactless
commands multiple times in the same script file and the script
switches between contacted and contactless interfaces many times.

input-file-name Specifies an input script file.

apdutool Examples
The following examples show how to use apdutool in:

• Directing Output to the Console

• Directing Output to a File

Directing Output to the Console
This command example runs the apdutool with the file example.scr as input. Output
in this example is sent to the console. The default TCP port (9025) is used.

To direct output to the console:

• Enter the following command:

apdutool example.scr

Directing Output to a File
This command example runs the apdutool with the file example.scr as input. Output
in this examples is written to the file example.scr.out.

Chapter 8
Sending and Receiving APDUs

8-4

To direct output to a file:

• Enter the following command:

apdutool –o example.scr.out example.scr

Using APDU Script Files
An APDU script file is a protocol-independent APDU format containing comments,
script file commands, and C-APDUs. Script file commands and C-APDUs are
terminated with a semicolon (;). Comments can be of any of the three Java
programming language style comment formats (//, /*, or /**).

APDUs are represented by decimal, hex or octal digits, UTF-8 quoted literals or UTF-8
quoted strings. C-APDUs may extend across multiple lines.

C-APDU syntax for apdutool is as follows:

<CLA> <INS> <P1> <P2> <LC> [<byte 0> <byte 1> ... <byte LC-1>] <LE> ;

where:

<CLA> :: ISO 7816-4 class byte. <INS> :: ISO 7816-4 instruction byte.<P1> ::
ISO 7816-4 P1 parameter byte.<P2> :: ISO 7816-4 P2 parameter byte.<LC> ::
ISO 7816-4 input byte count. 1 byte in non-extended mode, 2 bytes in extended
mode.<byte 0> ... <byte LC-1> :: input data bytes.<LE> :: ISO 7816- 4
expected output length. 1 byte in non-extended mode, 2 bytes in extended mode.

Table 8-3 describes each supported script file command in detail noting that they are
not case sensitive.

Note:

All APDU script file commands are not case-sensitive.

Table 8-3 Supported APDU Script File Commands

Command Description

contacted; Redirects APDU activity to the contacted or primary interface.

contactless; Redirects output to the contactless or secondary interface.

delay integer; Pauses execution of the script for the number of milliseconds
specified by <Integer>.

echo "string"; Echoes the quoted string to the output file. The leading and
trailing quote characters are removed.

extended on; Turns extended APDU input mode on.

extended off; Turns extended APDU input mode off.

output off; Suppresses printing of the output.

output on; Restores printing of the output.

powerdown; Sends a powerdown command to the reader in the active
interface.

Chapter 8
Sending and Receiving APDUs

8-5

Table 8-3 (Cont.) Supported APDU Script File Commands

Command Description

powerup; Sends a powerup command to the reader in the active interface.
A powerup command must be sent to the reader prior to
executing any APDU on the selected interface.

select AID; Selects the applet with the specified AID, where AID
identifies the applet to be selected in the form of //aid/
A005453412/151146712. For example: select //aid/
A000000062/03010C0101;

open channel [channel-no]
[on origin-channel];

Opens the channel with the channel number specified by
channel-no on the origin channel specified by origin-channel,
where channel-no is an integer. The default value for the
origin channel is basic channel number 0. channel-no and origin-
channel are both optional. origin-channel must be an integer
from 0-19.

close channel channel-no
[on origin-channel];

Closes the channel having the channel number specified by
channel-no on origin channel origin-channel, where channel-no
is an integer. on origin-channel is optional and the default value
for origin-channel is basic channel number 0. origin-channel
must be an integer from 0-19.

send APDU [to AID] [on
origin-channel];

Sends the APDU specified by APDU after selecting the applet
specified by AID on the specified origin channel, where the
APDU format uses the C-APDU syntax of the apdutool. on
origin-channel is optional and specifies the origin channel to
select an applet and send the specified APDU on. The default
origin channel is 0 and possible values are 0 - 19. to AID is
also optional, and when specified it builds and sends the select
command before sending the APDU.

APDUScript Preprocessor Commands
APDUScript supports preprocessor directives as depicted in the following script file
example, test.scr.

#define walletApplet //aid/A000000062/03010C0101
#define purseApplet //aid/A000000062/03010C0102
#define walletCommand 0x80 0xCA 0x00 0x00 0x02 0xAB 0x080 0x7F
powerup;
SELECT purseApplet;
Send walletCommand to walletApplet on 19;
powerdown;

To check what the preprocessor has done, run the APDUTool with the -k flag to
create a file named test.scr.preprocessed in the same directory as test.scr. The
test.scr.preprocessed content then looks like this:

powerup;
SELECT //aid/A000000062/03010C0102;
Send 0x80 0xCA 0x00 0x00 0x02 0xAB 0x08 0x7F to //aid/A000000062/03010C0101 on
19;
powerdown;

Chapter 8
Sending and Receiving APDUs

8-6

Setting Default Applets
The simulator supports setting distinct default applets on distinct logical channels and
distinct interfaces. You can use this request to set the default applet for a particular
logical channel in the specified interface. The applet being set as default must be
properly registered with the simulator prior to issuing this command.

Table 8-4 Set Default Applets on Different Logical Channels

Applet AID Lc Field Data Le Field

0x8x 0xc6 0xXX 0xYY Lc: AID length Data: Default applet
AID

Le: ignored

NOTATION:

• XX is the channel number where the specified applet is configured as default.

• YY is the interface ID where the applet is configured as the default. 0 is primary
contacted or only interface. 1 is secondary contactless on dual interface.

• AID is the AID of the applet being set as the default.

On-Card Installer Applet AID
The on-card installer applet AID is:
0xa0,0x00,0x00,0x00,0x62,0x03,0x01,0x08,0x01.

Downloading CAP Files and Creating Applets
The procedures for CAP file download and applet instance creation are described in
the following sections, as are the on-card installer APDU protocol events and APDU
types.

Downloading the CAP File
In this procedure, the CAP file is downloaded but applet creation (instantiation) is
postponed until a later time. Follow these steps to perform this installation:

1. Use scriptgen to convert a CAP file to an APDU script file.

2. Prepend these commands to the APDU script file:

 powerup;
 // Select the installer applet
 0x00 0xA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x08
 0x01 0x7F;

3. Append this command to the APDU script file:

powerdown;

4. Invoke apdutool with this APDU script file path as the argument.

Chapter 8
Downloading CAP Files and Creating Applets

8-7

Creating an Applet Instance
In this procedure, the applet from a previously downloaded CAP file or an applet
compiled in the mask is created. For example, follow these steps to create the
JavaPurse applet:

1. Determine the applet AID.

2. Create an APDU script similar to this:

 powerup;
 // Select the installer applet
 0x00 0xA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x08
 0x01 0x7F;
 // create JavaPurse
 0x80 0xB8 0x00 0x00 0x0b 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01
 0x04 0x01 0x00
 0x7F;
 powerdown;

3. Invoke apdutool with this APDU script file path as the argument.

On-card Installer APDU Protocol
The on-card installer APDU protocol follows a specific time sequence of events in the
transmission of Applet Protocol Data Units as shown in Figure 8-2.

Figure 8-2 On-card Installer APDU Transmission Sequence

Receiver (Card)

Response

Response

Response

Response

Response

Response

Response

Terminal

CAP Begin

Component ## Begin

Component ## Data

Component ## End

CAP End

Create Applet

Selectti
m

e

Repeat this
sequence of APDUs
once for each
component in the
CAP file. Each
component has its
own number
designated by ##.

Chapter 8
Downloading CAP Files and Creating Applets

8-8

APDU Types
There are many different APDU types, which are distinguished by their fields and field
values. The following sections describe these APDU types in more detail, including
their bit frame formats, field names and field values.

• Select APDU Command

• Response APDU Command

• CAP Begin

• CAP End

• Component ## Begin

• Component ## End

• Component ## Data

• Create Applet

• Abort

Note:

In the following APDU commands, the x in the second nibble of the class
byte indicates that the installer can be invoked on channels 0, 1, or 2.
For example, 0x8x.

Select APDU Command
Table 8-5 specifies the field sequence in the Select APDU, which is used to invoke the
on-card installer.

Table 8-5 Select APDU Command

Command Lc Installer Le

0x0x, 0xa4, 0x04, 0x00 Lc field Installer AID Le field

Response APDU Command
Table 8-6 specifies the field sequence in the Response APDU. A Response APDU
is sent as a response by the on-card installer after each APDU that it receives.
The Response APDU can be either an Acknowledgment (called an ACK), which
indicates that the most recent APDU was received successfully, or it can be a Negative
Acknowledgement (called a NAK), which indicates that the most recent APDU was
not received successfully and must be either resent or the entire installer transmission
must be restarted. The first ACK indicates that the on-card installer is ready to receive.
The value for an ACK frame SW1SW2 is 9000, and the value for a NAK frame
SW1SW2 is 6XXX.

Chapter 8
Downloading CAP Files and Creating Applets

8-9

Table 8-6 Response APDU Command

Data Response

[optional response data] SW1SW2

CAP Begin
Table 8-7 specifies the field sequence in the CAP Begin APDU. The CAP Begin APDU
is sent to the on-card installer, and indicates that the CAP file components are going to
be sent next, in sequentially numbered APDUs.

Table 8-7 CAP Begin APDU Command

Command Lc data Le

0x8x, 0xb0, 0x00, 0x00 [Lc field] [optional data] Le field

CAP End
Table 8-8 specifies the field sequence in the CAP End APDU. The CAP End APDU
is sent to the on-card installer, and indicates that all of the CAP file components have
been sent.

Table 8-8 CAP End APDU Command

Command Lc data Le

0x8x, 0xba, 0x00, 0x00 [Lc field] [optional data] Le field

Component ## Begin
Table 8-9 specifies the field sequence in the Component ## Begin APDU. The double
pound sign indicates the component token of the component being sent. The CAP file
is divided into many components, based on class, method, and so on. The Component
Begin APDU is sent to the on-card installer, and indicates that component ## of the
CAP file is going to be sent next.

Table 8-9 Component ## Begin APDU Command

Command Lc data Le

0x8x, 0xb2, 0x##, 0x00 [Lc field] [optional data] Le field

Component ## End
Table 8-10 specifies the field sequence in the Component ## End APDU. The
Component ## End APDU is sent to the on-card installer, and indicates that
component ## of the CAP file has been sent.

Chapter 8
Downloading CAP Files and Creating Applets

8-10

Table 8-10 Component ## End APDU Command

Command Lc data Le

0x8x, 0xbc, 0x##, 0x00 [Lc field] [optional data] Le field

Component ## Data
Table 8-11 specifies the field sequence in the Component ## Data APDU. The
Component ## Data APDU is sent to the on-card installer, and contains the data for
component ## of the CAP file.

Table 8-11 Component ## Data APDU Command

Command Lc data Le

0x8x, 0xb4, 0x##, 0x00 Lc field Data field Le field

Create Applet
Table 8-12 specifies the field sequence in the Create Applet APDU. The
Create Applet APDU is sent to the on-card installer, and tells the on-card installer
to create an applet instance from each of the already sequentially transmitted
components of the CAP file.

Table 8-12 Create Applet APDU Command

Command Lc AID
length

AID Parameter
length

Parameter Le

0x8x, 0xb8, 0x00, 0x00 Lc
field

AID
length
field

AID
field

parameter
length field

[parameters] Le
field

Abort
Table 8-13 specifies the data sequence in the Abort APDU. The Abort APDU indicates
that the transmission of the CAP file is terminated, and that the transmission is not
complete and must be redone from the beginning in order to be successful.

Table 8-13 Abort APDU Command

Command Lc data Le

0x8x, 0xbe, 0x00, 0x00 Lc field [optional data] Le field

APDU Responses to Installation Requests
If a command completes successfully, the installer sends a response code of 0x9000.
A number of codes can be sent in response to unsuccessful installation requests, as
shown in Table 8-14.

Chapter 8
Downloading CAP Files and Creating Applets

8-11

Table 8-14 APDU Responses to Installation Requests

Response Code Description

0x6402 Invalid CAP file magic number.

• Cause: An incorrect magic number was specified in the CAP file.
• Solution: Refer to the Java Virtual Machine Specification for the

correct magic number. Ensure that the CAP file is built correctly, run it
through scriptgen, and download the resulting script file to the card.

0x6403 Invalid CAP file minor number.

• Cause: An invalid CAP file minor number was specified in the CAP
file.

• Solution: Refer to the Java Virtual Machine Specification for the
correct minor number. Ensure that the CAP file is built correctly, run it
through scriptgen, and download the resulting script file to the card.

0x6404 Invalid CAP file major number.

• Cause: An invalid CAP file major number was specified in the CAP
file.

• Solution: Refer to the Java Virtual Machine Specification for the
correct major number. Ensure that the CAP file is built correctly, run it
through scriptgen, and download the resulting script file to the card.

0x640b Integer not supported.

• Cause: An attempt was made to download a CAP file that requires
integer support into a CREF that does not support integers.

• Solution: Either change the CAP file so that it does not require
integer support or build the version of CREF that supports integers.

0x640c Duplicate package AID found.

• Cause: A duplicate package AID was detected in CREF.
• Solution: Choose a new AID for the package to be installed.

0x640d Duplicate Applet AID found.

• Cause: A duplicate Applet AID was detected in CREF.
• Solution: Choose a new AID for the applet to be installed.

0x640f Installation aborted.

• Cause: Installation was aborted by an outside command.
• Solution: Restart the CAP installation from the beginning and check

the INS bytes in the installation script for the offending command.

0x6421 Installer in error state.

• Cause: A non-recoverable error previously occurred.
• Solution: Scan the apdutool output for previous APDU responses

indicating an error. Restart the CAP installation.

0x6422 CAP file component out of order.

• Cause: Installer unable to proceed because it did not receive a
component that is a prerequisite to process the current component.

• Solution: Check the script file contents for the correct component
ordering.

0x6424 Exception occurred.

• Cause: General purpose error in the installer or applet code.
• Solution: Check your applet code for errors.

Chapter 8
Downloading CAP Files and Creating Applets

8-12

Table 8-14 (Cont.) APDU Responses to Installation Requests

Response Code Description

0x6425 Install APDU command out of order.

• Cause: Installer APDU commands were received out of order.
• Solution: Check the script file for the order of APDU commands. See

Sending and Receiving APDUs for more information on the ordering of
APDU commands.

0x6428 Invalid component tag number.

• Cause: An incorrect component tag number was detected during
download.

• Solution: Refer to Chapter 6 in the Java Virtual Machine Specification
for the correct tag number.

0x6436 Invalid install instruction.

• Cause: An invalid Installer APDU command was received.
• Solution: Check the script file for the offending command. See

Sending and Receiving APDUs for more information on APDU
commands.

0x6437 On-card package max exceeded.

• Cause: Package installation failed because the number of packages
that can be stored on the card has been exceeded.

• Solution: Remove some packages from the CREF.

0x6438 Imported package not found.

• Cause: A package that is required by the current package was not
found.

• Solution: Download the required package first.

0x643a On-card applet package max exceeded.

• Cause: Installation of an applet package failed because the number of
applet packages that can be stored on the card has been exceeded.

• Solution: Remove some applet packages from the CREF.

0x6442 Maximum allowable package methods exceeded.

• Cause: The limit of 128 package methods on the card has been
exceeded.

• Solution: Modify the package to support fewer methods.

0x6443 Applet not found for installation.

• Cause: An attempt was made to create an applet instance, but the
applet code was not installed on the card.

• Solution: Verify that the applet package has been downloaded to the
card.

0x6444 Applet creation failed.

• Cause: A general purpose error to indicate that an unsuccessful
attempt was made to create the applet.

• Solution: Verify availability of resources on the card, check the
applet's install method, and so on.

0x644f Package name is too long.

• Cause: The package name exceeds the length specified in the Java
Virtual Machine Specification.

• Solution: Replace the name and rebuild.

Chapter 8
Downloading CAP Files and Creating Applets

8-13

Table 8-14 (Cont.) APDU Responses to Installation Requests

Response Code Description

0x6445 Maximum allowable applet instances exceeded.

• Cause: Creation of the applet instance failed because the number of
applet instances that can be stored on the card has been exceeded.

• Solution: Remove some applet instances from the CREF.

0x6446 Memory allocation failed.

• Cause: The amount of memory available on the card has been
exceeded.

• Solution: Verify the amount of memory that is available on the card.
Remove packages, applets, and so on, to create enough space.
Check the memory requirements of the applet or package being
installed or downloaded.

0x6447 Imported class not found.

• Cause: A class that is required by the current class was not found.
• Solution: Download the required class first.

A Sample APDU Script
The following is a sample APDU script to download, create, and select the HelloWorld
applet.

powerup;
// Select the on-card installer applet
0x00 0xA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x08 0x01 0x7F;
// CAP Begin
0x80 0xB0 0x00 0x00 0x00 0x7F;
// com/sun/javacard/samples/HelloWorld/javacard/Header.cap
// component begin
0x80 0xB2 0x01 0x00 0x00 0x7F;
// component data
0x80 0xB4 0x01 0x00 0x16 0x01 0x00 0x13 0xDE 0xCA 0xFF 0xED 0x01 0x02 0x04 0x00
0x01 0x09 0xA0 0x00 0x00 0x00 0x62 0x03 0x01 0x0C 0x01 0x7F;
// component end
0x80 0xBC 0x01 0x00 0x00 0x7F;
// com/sun/javacard/samples/HelloWorld/javacard/Directory.cap
0x80 0xB2 0x02 0x00 0x00 0x7F;
0x80 0xB4 0x02 0x00 0x20 0x02 0x00 0x1F 0x00 0x13 0x00 0x1F 0x00 0x0E 0x00 0x0B
0x00 0x36 0x00 0x0C 0x00 0x65 0x00 0x0A 0x00 0x13 0x00 0x00 0x00 0x6C 0x00 0x00
0x00 0x00 0x00 0x00 0x01 0x7F;
0x80 0xB4 0x02 0x00 0x02 0x01 0x00 0x7F;
0x80 0xBC 0x02 0x00 0x00 0x7F;
// com/sun/javacard/samples/HelloWorld/javacard/Import.cap
0x80 0xB2 0x04 0x00 0x00 0x7F;
0x80 0xB4 0x04 0x00 0x0E 0x04 0x00 0x0B 0x01 0x00 0x01 0x07 0xA0 0x00 0x00 0x00
0x62 0x01 0x01 0x7F;
0x80 0xBC 0x04 0x00 0x00 0x7F;
// com/sun/javacard/samples/HelloWorld/javacard/Applet.cap
0x80 0xB2 0x03 0x00 0x00 0x7F;
0x80 0xB4 0x03 0x00 0x11 0x03 0x00 0x0E 0x01 0x0A 0xA0 0x00 0x00 0x00 0x62 0x03
0x01 0x0C 0x01 0x01 0x00 0x14 0x7F;
0x80 0xBC 0x03 0x00 0x00 0x7F;
// com/sun/javacard/samples/HelloWorld/javacard/Class.cap
0x80 0xB2 0x06 0x00 0x00 0x7F;
0x80 0xB4 0x06 0x00 0x0F 0x06 0x00 0x0C 0x00 0x80 0x03 0x01 0x00 0x01 0x07 0x01

Chapter 8
Downloading CAP Files and Creating Applets

8-14

0x00 0x00 0x00 0x1D 0x7F;
0x80 0xBC 0x06 0x00 0x00 0x7F;
// com/sun/javacard/samples/HelloWorld/javacard/Method.cap
0x80 0xB2 0x07 0x00 0x00 0x7F;
0x80 0xB4 0x07 0x00 0x20 0x07 0x00 0x65 0x00 0x02 0x10 0x18 0x8C 0x00 0x01 0x18
0x11 0x01 0x00 0x90 0x0B 0x87 0x00 0x18 0x8B 0x00 0x02 0x7A 0x01 0x30 0x8F 0x00
0x03 0x8C 0x00 0x04 0x7A 0x7F;
0x80 0xB4 0x07 0x00 0x20 0x05 0x23 0x19 0x8B 0x00 0x05 0x2D 0x19 0x8B 0x00 0x06
0x32 0x03 0x29 0x04 0x70 0x19 0x1A 0x08 0xAD 0x00 0x16 0x04 0x1F 0x8D 0x00 0x0B
0x3B 0x16 0x04 0x1F 0x41 0x7F;
0x80 0xB4 0x07 0x00 0x20 0x29 0x04 0x19 0x08 0x8B 0x00 0x0C 0x32 0x1F 0x64 0xE8
0x19 0x8B 0x00 0x07 0x3B 0x19 0x16 0x04 0x08 0x41 0x8B 0x00 0x08 0x19 0x03 0x08
0x8B 0x00 0x09 0x19 0xAD 0x7F;
0x80 0xB4 0x07 0x00 0x08 0x00 0x03 0x16 0x04 0x8B 0x00 0x0A 0x7A 0x7F;
0x80 0xBC 0x07 0x00 0x00 0x7F;
// com/sun/javacard/samples/HelloWorld/javacard/StaticField.cap
0x80 0xB2 0x08 0x00 0x00 0x7F;
0x80 0xB4 0x08 0x00 0x0D 0x08 0x00 0x0A 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x7F;
0x80 0xBC 0x08 0x00 0x00 0x7F;
// com/sun/javacard/samples/HelloWorld/javacard/ConstantPool.cap
0x80 0xB2 0x05 0x00 0x00 0x7F;
0x80 0xB4 0x05 0x00 0x20 0x05 0x00 0x36 0x00 0x0D 0x02 0x00 0x00 0x00 0x06 0x80
0x03 0x00 0x03 0x80 0x03 0x01 0x01 0x00 0x00 0x00 0x06 0x00 0x00 0x01 0x03 0x80
0x0A 0x01 0x03 0x80 0x0A 0x7F;
0x80 0xB4 0x05 0x00 0x19 0x06 0x03 0x80 0x0A 0x07 0x03 0x80 0x0A 0x09 0x03 0x80
0x0A 0x04 0x03 0x80 0x0A 0x05 0x06 0x80 0x10 0x02 0x03 0x80 0x0A 0x03 0x7F;
0x80 0xBC 0x05 0x00 0x00 0x7F;
// com/sun/javacard/samples/HelloWorld/javacard/RefLocation.cap
0x80 0xB2 0x09 0x00 0x00 0x7F;
0x80 0xB4 0x09 0x00 0x16 0x09 0x00 0x13 0x00 0x03 0x0E 0x23 0x2C 0x00 0x0C 0x05
0x0C 0x06 0x03 0x07 0x05 0x10 0x0C 0x08 0x09 0x06 0x09 0x7F;
0x80 0xBC 0x09 0x00 0x00 0x7F;
// CAP End
0x80 0xBA 0x00 0x00 0x00 0x7F;
// create HelloWorld
0x80 0xB8 0x00 0x00 0x0b 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x03;
0x01 0x00 0x7F;
// Select HelloWorld
0x00 0xA4 0x04 0x00 9 0xA0 0x00 0x00 0x00 0x62 0x03 0x01 0x03 0x01 0x7F;
powerdown;

Using the On-card Installer for Deletion
The on-card installer in the simulator provides the ability to delete CAP file and applet
instances from the card's memory. Once the on-card installer is selected, it can receive
deletion requests from the terminal in the form of ADPU commands. Requests to
delete an applet or CAP file cannot be sent from an applet on the card. For more
information on CAP file and applet deletion, see the Java Card Platform Runtime
Environment Specification, Classic Edition, Version 3.1.

How to Send a Deletion Request
1. Select the on-card installer applet on the card.

2. Send the ADPU for the appropriate deletion request to the installer. The requests
that you can send are described in the following sections:

a. Delete CAP File

Chapter 8
Using the On-card Installer for Deletion

8-15

b. Delete CAP File and Applets

c. Delete Applets

For information on the responses that the ADPU requests can return, see APDU
Responses to Deletion Requests.

APDU Requests to Delete CAP Files and Applets
You can send requests to delete a CAP file, a CAP file and its applets, and individual
applets.

Note:

In the following APDU commands, the x in the second nibble of the class
byte indicates that the installer can be invoked on channels 0, 1, or 2. For
example, 0x8x.

Delete CAP File
In this request, the Data field contains the size of the CAP file AID and the AID of the
CAP file to be deleted. Table 8-15 shows the format of the Delete CAP File request
and the expected response.

Table 8-15 Delete CAP File Command

Command Lc data Le

0x8x, 0xc0, 0x,
0xXXXX

Lc field Data field Le field

The value of 0xXX can be any value for the P1 and P2 parameters. The installer
ignores the 0xXX values. An example of a delete package request on channel 1 would
be:

//Delete CAP File Request:
 0x81 0xC0 0x00 0x00 0x08 0x07 0xa0 0x00 0x00 0x00 0x62 0x12 0x34 0x7F;

In this example, 0x07 is the AID length and 0xa0 0x00 0x00 0x00 0x62 0x12 0x34 is
the CAP file AID.

Delete CAP File and Applets
This request is similar to the Delete CAP file command. In this case the CAP file and
applets are removed simultaneously. The data field contains the size of the CAP file
AID and the AID of the CAP file to be deleted. Table 8-16 shows the format of the
Delete CAP File and Applets request and the expected response.

Chapter 8
Using the On-card Installer for Deletion

8-16

Table 8-16 Delete CAP File and Applets Command

Command Lc data Le

0x8x, 0xc2, 0xXX,
0xXX

Lc field Data field Le field

The value of 0xXX can be any value for the P1 and P2 parameters. The installer
ignores the 0xXX values. An example of a CAP file and applets deletion request on
channel 1 would be:

//Delete CAP file And Applets request
0x81 0xC2 0x00 0x00 0x08 0x07 0xa0 0x00 0x00 0x00 0x62 0x12 0x34 0x7F;

In this example, 0x07 is the AID length and 0xa0 0x00 0x00 0x00 0x62 0x12 0x34 is
the CAP file AID.

Delete Applets
In this request, the "#" symbol in the P1 byte indicates the number of applets to be
deleted, which can have a maximum value of eight. The Lc field contains the size of
the data field. Data field contains a list of AID size and AID pairs. Table 8-17 shows the
format of the Delete Applet request and the expected response.

Table 8-17 Delete Applet Command

Command Lc data Le

0x8x, 0xc4, 0x0#,
0xXX

Lc field Data field Le field

The value of 0xXX can be any value for the P2 parameter. The installer ignores the
0xXX values. An example of a applet deletion request on channel 1 would be:

//Delete the applet's request for two applets
0x81 0xC4 0x02 0x00 0x12 0x08 0xa0 0x00 0x00 0x00 0x62 0x12 0x34 0x12 0x08 0xa0
0x00 0x00 0x00 0x62 0x12 0x34 0x13 0x7F;

In this example, the "#" symbol is replaced with "2" (0x02) indicating that there are two
applets to be deleted. The first applet is 0xa0 0x00 0x00 0x00 0x62 0x12 0x34 0x12
and the second applet is 0xa0 0x00 0x00 0x00 0x62 0x12 0x34 0x13.

APDU Responses to Deletion Requests
When the on-card installer receives the request from the terminal, it can return any of
the responses shown in Table 8-18.

Table 8-18 APDU Responses to Deletion Requests

Response Code Description

0x6a86 Invalid value for P1 or P2 parameter.

• Cause: Value for P1 is less than 1 or greater than 8.
• Solution: Ensure that the value for P1 is between 1 and 8.

Chapter 8
Using the On-card Installer for Deletion

8-17

Table 8-18 (Cont.) APDU Responses to Deletion Requests

Response Code Description

0x6443 Applet not found for deletion.

• Cause: The applet with the specified AID does not exist.
• Solution: Check and correct the AID.

0x644b Package not found.

• Cause: The package with the specified AID does not exist.
• Solution: Check and correct the AID.

0x644c Dependencies on package.

• Cause: Package has other packages dependent on it, or there
are some object instances of classes belonging to this package
residing in memory.

• Solution: Determine which packages are dependent and remove
them. If there are object instances of classes belonging to this
package residing in memory, try the package and applet deletion
combination command to remove the package from card memory.

0x644d One or more applet instances of this package are present.

• Cause: One or more applet instances of this package are present
• Solution: Remove the applets first and then try package deletion,

or try the package and applet deletion combination command.

0x644e Package is ROM package.

• Cause: An attempt was made to delete a package in ROM.
• Solution: There is no solution to this problem since packages in

ROM cannot be deleted.

0x6448 Dependencies on applet.

• Cause: Other applets are using objects owned by this applet.
• Solution: Remove references from other applets to this applet's

objects, or try to delete the dependent applets along with this
applet.

0x6449 Internal memory constraints.

• Cause: There is not enough memory available for the
intermediate structures required by applet deletion.

• Solution: It may not be possible to recover from this error. One
possible thing that can be tried in case of multiple applet deletion
is to try to delete applets individually.

0x6451 Cannot delete applet; the applet is currently active on one of the logical
channels.

• Cause: An attempt was made to delete an applet which is
currently active on one of the logical channels.

• Solution: Make sure that the applet is not selected on any of the
logical channels. Then, re-attempt to delete the applet.

0x6700 Invalid value for Lc parameter.

• Cause: In case of package deletion, the value for Lc is less than
6 or greater than 17. In case of applet deletion, the value for Lc is
less than 7 or greater than 136.

• Solution: Value of Lc in both of these cases depends on the AIDs
being passed in the APDU. Make sure the AIDs are correct and
value for Lc is between 6 and 16 in case of package deletion and
between 7 and 135 in case of applet deletion.

Chapter 8
Using the On-card Installer for Deletion

8-18

The response has the format shown in Table 8-19.

Table 8-19 APDU Response Format

data Response

[optional response
data]

SW1SW2

On-Card Installer Limits
The limits for the on-card installer are as follows.

• The maximum length of the parameter in the applet creation APDU command is
110.

• The maximum number of CAP files to be downloaded is 32, including up to 16
CAP files with applets.

• The maximum number of applet instances to be created is 16.

• The maximum length of data in the installer APDU commands is 128.

• No on-card CAP file verification is supported.

• All subsequent APDU commands enclosed in a CAP Begin, CAP End APDU pair
continue to fail after an error occurs.

• The maximum number of applets that can be deleted using one command is eight.

Chapter 8
Using the On-card Installer for Deletion

8-19

9
Verifying CAP and Export Files

This chapter describes off-card verification as a means for evaluating CAP and export
files in a desktop environment. When applied to the set of CAP files that reside on
a Java Card technology compliant secure element and the set of export files used to
construct those CAP files, the Java Card technology-enabled off-card verifier provides
the means to assert that the content of the secure element has been verified.
Oracle’s Off-Card Verifier supports incremental verification and resolution of the set of
CAP files that are installed on a Java Card technology-compliant device in a desktop
environment. The unit of verification is a single CAP file. The context in which a CAP
file can be executed is provided through the Application Programming Interface (API)
of referenced packages as defined in their export files. Resolution is validated off-card
by examining the export files of referenced packages.

Oracle’s Off-Card Verifier uses a bottom-up approach to verify the CAP files. In a
nutshell, once a CAP file and its corresponding export file, if any, have been verified,
it is not examined the succeeding times it is referenced. This is analogous to the
process performed by an optimized Java virtual machine where, once the java.lang
package has been loaded, verified, resolved, and initialized, it is not examined the
succeeding times it is referenced. The same is true for a Java Card technology-
compliant device.

A Java Card technology-enabled device is a secure environment. Additional security
measures, such as the firewall, prevent a library from being corrupted. Once a verified
CAP file has been installed on a Java Card technology-compliant device its state
cannot be changed. This includes both its internal state and its context.

Off-Card verification provides a complete solution for Java Card technology-based
applications when additional security constructs are applied. For more information on
security measures and other details on working of the Off-Card Verifier, refer to the
Off-card Verifier White paper.

This chapter contains the following sections:

• Overview of Verifying CAP and Export Files

• Verifying CAP Files

• Verifying Export Files

• Verifying Binary Compatibility

• Command Line Options for Off-Card Verifier Tools

Overview of Verifying CAP and Export Files
The off-card verifier is a combination of three tools, verifycap, verifyexp, and
verifyrev. The following sections describe how to use each tool.

• verifycap - Verifying CAP Files

• verifyexp - Verifying Export Files

9-1

• verifyrev - Verifying Binary Compatibility

Verifying CAP Files
The verifycap tool is used to verify a CAP file within the context of packages' export
files (if any) and the export files of imported packages. This verification confirms
whether a CAP file is internally consistent, as defined in the Java Card Platform Virtual
Machine Specification, Classic Edition, Version 3.1, and consistent with a context in
which it can reside in a Java Card technology-enabled device.

To ensure the integrity of the CAP file to be downloaded on a card, the verifier
computes and outputs hash values for each of the required CAP file components.
To output the hash values in a text file, specify the command line parameter -outfile
hash-file-path. If the -outfile parameter is not specified, the verifier outputs the
hash values on the console output. A CAP file loader should compute the hash
values for each of the required CAP components and verify them against the hash
values produced by the verifier to assert the integrity of the CAP file being loaded on
the card. The scriptgen tool in the Java Card Development kit performs the hash
computation and comparison before generating the download script for a CAP file. For
more information about the scriptgen tool, see Running scriptgen.

Each individual export file is verified as a single unit. The scenario is shown in
Figure 9-1. In the figure, the package p2 CAP file is being verified. Package p2 has
a dependency on package p1, so the export file from package p1 is also input. The
p2.exp file is only required if p2.cap exports any of its elements.

Figure 9-1 Verifying a CAP file

verifycap in
Off-Card Verifier

Results

Hash values for verified
 CAP components

p1.exp
version 1.0

p2.cap
version 1.1

p2.exp
version 1.1

Running verifycap
The file to invoke verifycap is a batch file (verifycap.bat) that you must run from a
working directory of JC_HOME_TOOLS\bin in order for the code to execute properly.

To run verifycap:

Chapter 9
Verifying CAP Files

9-2

• Enter the following command (Table 9-1 describes the available options):

verifycap.bat [options] export-files CAP-file

Table 9-1 verifycap Command Line Arguments

Argument Description

export-files A list of export files of the packages that this CAP file uses could be
either one of the following:

• Export files corresponding to the package version available on the
target platform.

• Export files corresponding to the version of imported packages.
In this case, you also need to check that these export files are
binary compatible with export files corresponding to the packages
available on the target platform.

Note that, when using this option in conjunction with the -target
command line argument, any export file in this list corresponding to
a Java Card platform package will automatically be overridden by the
verifier to use an internal copy of the export file matching the
specified target version.

For more information, see the -target command line argument in
Table 9-3.

CAP-files Name of the CAP file to be verified.

-digest digest-
algorithm-name

Specifies the digest algorithm to use for computing hash values for
required CAP components. If this option is not specified or an invalid
algorithm name is specified, the verifier uses SHA-256 as the default
algorithm.

-outfile hash-
output-file-path

Specifies the path to the text file that the verifier uses to output the
computed hash values for the required CAP components. If this option
is not specified, hash values are output to the system console.

Command Line Options for Off-Card Verifier Tools describes additional verifycap
options.

Verifying Export Files
The verifyexp tool is used to verify an export file as a single unit. This verification is
"shallow," examining only the content of a single export file, not including export files
of packages referenced by the package of the export file. The verification determines
whether an export file is internally consistent and viable as defined in the Java Card
Platform Virtual Machine Specification, Classic Edition, Version 3.1. This scenario is
illustrated in Figure 9-2.

Chapter 9
Verifying Export Files

9-3

Figure 9-2 Verifying An Export File

verifyexp in
Off-Card Verifier

Results

p1.exp
version 1.0

p2.exp
version 1.1

p3.exp
version 1.1

Running verifyexp
The file that invokes verifyexp is a batch file (verifyexp.bat) that you must run from
a working directory of JC_HOME_TOOLS\bin for the code to execute properly.

To run verifyexp:

• Enter the following command (Table 9-2 describes the available options):

verifyexp [options] export-file

Table 9-2 verifyexp Command Line Argument

Argument Description

<export file> Fully qualified path and name of the export file.

Command Line Options for Off-Card Verifier Tools. describes additional verifyexp
options.

Verifying Binary Compatibility
The verifyrev tool checks for binary compatibility between revisions of a package
by comparing the respective export files. This scenario is illustrated in Figure 9-3.
The export files from version 1.0 and 1.1 of package p1 are input to verifyrev. The
verification examines whether the Java Card platform version rules, including those
imposed for binary compatibility as defined in the Java Card Platform Virtual Machine
Specification, Classic Edition, Version 3.1, have been followed.

Chapter 9
Verifying Binary Compatibility

9-4

Figure 9-3 Verifying Binary Compatibility Of Export Files

verifyrev in
Off-Card Verifier

Results

p1.exp
version 1.0

p1.exp
version 1.1

Running verifyrev
The file to invoke verifyrev is a batch file (verifyrev.bat) that must be run from a
working directory of JC_HOME_TOOLS\bin in order for the code to execute properly.

To run verifyrev:

• Enter the following command:

verifyrev.bat [options] export-file export-file

The first export-file argument on the command line represents the fully qualified
path of the export files to be compared, while the second export file name must be
the same as the first one with a different path, for example:

verifyrev d:\testing\old\crypto.exp d:\testing\new\crypto.exp

Command Line Options for Off-Card Verifier Tools describes additional command-line
options for the off-card verifier tools.

Command Line Options for Off-Card Verifier Tools
The verifycap, verifyexp, and verifyrev, off-card verifier tools share many of
the same command line options. The only exceptions are the -package, -outfile,
-digest, and -target options that are available for verifycap only.

These options exhibit the same behavior regardless of the tool that calls them.

Table 9-3 verifycap, verifyexp, verifyrev Command Line Options

Option Description

-help Prints help message.

-nobanner Suppresses banner message.

-nowarn Suppresses warning messages.

-package <package name> (Available for verifycap only) Sets the name of the
package to be verified.

-outfile (Available for verifycap only) Specifies the name of
the output file to store the digest (default: no output file
created).

Chapter 9
Command Line Options for Off-Card Verifier Tools

9-5

Table 9-3 (Cont.) verifycap, verifyexp, verifyrev Command Line Options

Option Description

-digest (Available for verifycap only) Specifies the digest to use
(default: SHA-256)

-target (Available for verifycap only) Specifies the target
platform (3.0.4, 3.0.5 or 3.1.0).

When a target is specified, the verifier automatically
uses an internal copy of the export files corresponding
to the specified version and ignores the export files for
platform packages provided on the command line. This
ensures that the correct version of export files is used and
allows the verifier to detect some binary incompatibility
issues when extending some of the platform classes or
interfaces on versions 3.0.4 and 3.0.5 of the platform.

Note that using this option to specify the target still requires
that you provide the export files for all other packages used
by the CAP file. If no target is specified, the export files for
all the packages used by the CAP file must be provided on
the command line.

-verbose Enables verbose mode.

-version Prints version number and exit.

-C command-options-file

or

--commandoptionsfile
command-options-file

Optional. Specifies a file containing command-line options.

Chapter 9
Command Line Options for Off-Card Verifier Tools

9-6

10
Using Cryptography Extensions

This chapter describes how to use the basic security and cryptography classes.

Note:

Some security and cryptography classes may not be available in all source
bundles.

This chapter contains the following sections:

• Overview of Using Cryptography Extensions

• Supported Cryptography Classes

• Instantiating the Classes

Overview of Using Cryptography Extensions
A selection of Security and Cryptography classes are supported by the simulator
(cref). The support for security and cryptography enables you to:

• Generate message digests using the SHA1 and SHA256 algorithms.

• Generate cryptographic keys on Java Card technology-compliant smart cards for
use in the ECC and RSA algorithms

• Set cryptographic keys on Java Card technology-compliant smart cards for use in
the AES, DES, 3DES, HMAC, ECC, and RSA algorithms

• Encrypt and decrypt data with the keys using the AES, DES, 3DES, and RSA
algorithms.

• Generate and verify signatures using MAC, CMAC, HMAC,DSA, ECDSA, and RSA
algorithms.

• Generate sequences of random bytes

• Generate checksums

• Use part of a message as padding in a signature block

• Generate derived data using KDF in Counter mode and PRF for TLSv1.2 algorithms

Note:

DES is also known as single-key DES. 3DES is also known as triple-DES.

Refer to the following publications, for more information on the cryptographic
algorithms and schemes:

10-1

• For SHA1 — "Secure Hash Standard", FIPS Publication 180-1: http://
www.itl.nist.gov

• For DES — "Data Encryption Standard (DES)", FIPS Publication 46-2 and "DES
Modes of Operation", FIPS Publication 81: http://www.itl.nist.gov

• For RSA — "RSAES-OAEP (Optimal Asymmetric Encryption Padding) Encryption
Scheme": http://www.emc.com

• For AES — "Advanced Encryption Standard (AES)" FIPs Publication 197: http://
www.itl.nist.gov

• For ECC — "Public Key Cryptography for the Financial Industry: The Elliptic Curve
Digital Signature Algorithm" (ECDSA) X9.62-1998: http://www.x9.org

• For Checksum — "Information technology—Telecommunications and information
exchange between systems—High-level data link control (HDLC) procedures"
ISO/IEC-13239:2002 (replaces ISO-3309): http://www.iso.org

• For SHA256 — "Secure Hash Standard", FIPS Publication 180-2: http://
www.itl.nist.gov

• For HMAC — "Keyed-Hashing for Message Authentication", RFC-2104

• For KDF in Counter mode — "Key Derivation Function in Counter Mode", NIST SP
800-108

• For PRF of TLS—"Pseudo Random Function", TLS version 1.2 defined in IETF
RFC 5246

• For DSA — "Digital Signature Algorithm", Standard, NIST FIPS 186.

Supported Cryptography Classes
The implementation of security and cryptography in the simulator supports the use of
the following classes:

• javacardx.crypto.AEADCipher

• javacardx.crypto.Cipher

• javacard.security.Checksum

• javacardx.security.derivation.DerivationFunction

• javacardx.security.cert.CertificateParser

• javacard.security.InitializedMessageDigest

• javacard.security.KeyAgreement

• javacard.security.KeyBuilder

• javacard.security.KeyPair

• javacard.security.MessageDigest

• javacard.security.RandomData

• javacard.security.Signature

• javacard.security.SignatureMessageRecovery

Table 10-1 lists the cryptography algorithms that are implemented for the simulator.

Chapter 10
Supported Cryptography Classes

10-2

http://www.itl.nist.gov
http://www.itl.nist.gov
http://www.itl.nist.gov
http://www.emc.com/
http://www.itl.nist.gov
http://www.itl.nist.gov
http://www.x9.org
http://www.iso.org
http://www.itl.nist.gov
http://www.itl.nist.gov

Table 10-1 Algorithms Implemented by the Cryptography Classes

Class Algorithm

AEADCipher Supports ALG_AES_CCM and ALG_AES_GCM (supports only the 12 byte IV
length, which is the value recommended by NIST)

Checksum • ALG_ISO3309_CRC16—ISO/IEC 3309-compliant 16-bit CRC
algorithm. This algorithm uses the generator polynomial:
x^16+x^12+x^5+1. The default initial checksum value used by this
algorithm is 0. This algorithm is also compliant with the frame-
checking sequence as specified in section 4.2.5.2 of the ISO/IEC
13239 specification.

• ALG_ISO3309_CRC32—ISO/IEC 3309-compliant 32-bit CRC
algorithm. This algorithm uses the generator
polynomial: X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8
+X^7+X^5+X^4+X^2+X+1. The default initial checksum value used
by this algorithm is 0. This algorithm is also compliant with the frame-
checking sequence as specified in section 4.2.5.3 of the ISO/IEC
13239 specification.

Cipher • ALG_DES_CBC_ISO9797_M2—provides a cipher using DES in CBC
mode. This algorithm uses CBC for DES and 3DES. Input data is
padded according to the ISO 9797 method 2 (ISO 7816-4, EMV'96)
scheme.

• ALG_RSA_PKCS1—provides a cipher using RSA. Input data is padded
according to the PKCS#1 (v1.5) scheme.

• ALG_AES_BLOCK_128_CBC_NOPAD—provides a cipher using AES with
block size 128 in CBC mode and does not pad input data.

• ALG_AES_XTS—provides a cipher using AES in XEX Tweakable Block
Cipher with Ciphertext Stealing (XTS) mode as defined in IEEE
Std 1619. Only the variant with two AES keys of 128-bit length is
supported.

• ALG_AES_CFB—provides a cipher using AES in Cipher Feedback
(CFB) mode.

• AEADCipher—Supports ALG_AES_CCM and ALG_AES_GCM (supports
only the 12 byte IV length, which is the value recommended by NIST)

InitializedMes
sageDigest

Provides the functionality of MessageDigest, with the additional ability
to allow for initialization with a starting hash value corresponding to a
previously hashed part of the message. Provides for SHA1 and SHA256.

KeyAgreement • ALG_EC_SVDP_DH—elliptic curve secret value derivation primitive,
Diffie-Hellman version, per [IEEE P1363].

• ALG_EC_SVDP_DHC—elliptic curve secret value derivation primitive,
Diffie-Hellman version, with cofactor multiplication, per [IEEE P1363].

KeyBuilder The algorithms define the key lengths for:

• 128-bit AES
• 64-bit DES
• 112-, 128-, 160-, 192-bit ECC
• 128-bit DES3
• 512-bit RSA
• Up to 512-bit HMAC

KeyPair The algorithms define the key lengths for:

• 112-, 128-, 160-, 192-bit ECC
• 512-bit RSA

MessageDigest Message digest algorithm SHA1 and SHA256

Chapter 10
Supported Cryptography Classes

10-3

Table 10-1 (Cont.) Algorithms Implemented by the Cryptography Classes

Class Algorithm

RandomData Pseudo-random number generator with a 48-bit seed, which is modified
using a linear congruential formula.

Signature • ALG_DES_MAC8_ISO9797_M2—generates an 8-byte MAC (most
significant 8 bytes of encrypted block) using DES or 3DES in CBC
mode. This algorithm uses CBC for DES and 3DES. Input data is
padded according to the ISO 9797 method 2 (ISO 7816-4, EMV'96)
scheme.

• ALG_RSA_SHA_PKCS1—encrypts the 20 byte SHA1 digest using RSA.
The digest is padded according to the PKCS#1 (v1.5) scheme.

• ALG_AES_MAC_128_NOPAD—generates a 16-byte MAC using AES with
blocksize 128 in CBC mode and does not pad input data.

• ALG_ECDSA_SHA—signs/verifies the 20-byte SHA digest using
ECDSA.

• ALG_AES_CMAC_128
• ALG_HMAC_SHA1 and ALG_HMAC_SHA_256 — generates an HMAC

using the steps found in RFC 2104 using the SHA1 and SHA-256
standards, respectively as the hashing algorithm.

SignatureMessa
geRecovery

• ALG_RSA_SHA_ISO9796_MR—uses the first part of the input message
as padding bytes during signing. During verification, these message
bytes (recoverable message) can be recovered to reconstruct the
message.

DerivationFunc
tion

• ALG_KDF_COUNTER_MODE—implements KDF in Counter Mode defined
in NIST SP 800-108 (recommendation for Key Derivation Using
Pseudorandom Functions) with HMAC-SHA-1 or HMAC-SHA-256 as
PRF and with HMAC key up to 512 bits size.

• ALG_PRF_TLS12—implments the TLS version 1.2 Pseudo
Random Function defined in IETF RFC 5246) with HMAC Key up to
512 bits size

CertificatePar
ser

• TYPE_X509_DER—parser for X.509 v1, v2, and v3 DER-encoded
certificates (see RFC 5280).

• ALG_RSA_SHA_PKCS1—is the supported signature algorithm.

Instantiating the Classes
Implementations of the cryptography classes extend the corresponding base class
with implementations of their abstract methods. All data allocation associated with
the implementation instance is performed when the instance is constructed. This is
done to ensure that any lack of required resources can be flagged when the applet is
installed.

Each cryptography class, except KeyPair, has a getInstance method which takes
the desired algorithm as one of its parameters. The method returns an instance of
the class in the context of the calling applet. Instead of using a getInstance method,
KeyPair takes the desired algorithm as a parameter in its constructor.

If you request an algorithm that is not listed in Table 10-1 or that is not
implemented in this release, getInstance throws a CryptoException with reason code
NO_SUCH_ALGORITHM.

Chapter 10
Instantiating the Classes

10-4

Part II
Programming With the Development Kit

This part of the user guide provides solutions for various programming issues. It
contains the following chapters:

• Using Object, CAP File, and Applet Deletion

• Working with Logical Channels

• Using Java Card RMI

• Using Extended APDU

• Working with APDU I/O

• Programming for the Large Address Space

• Programming for Multi-package Large CAP Files

11
Using Object, CAP File, and Applet
Deletion

This chapter describes how to use the object deletion mechanism and the CAP file,
and applet deletion features of the Java Card Platform, Version 3.1.
This chapter includes the following topics:

• Object Deletion Mechanism

• CAP File and Applet Deletion

Object Deletion Mechanism
The object deletion mechanism on the Java Card Platform, Version 3.1 reclaims
memory that is being used by "unreachable" objects. Objects become unreachable for
a number of reasons such as static or instance fields having missing pointers, missing
variable references (not only fields), or when the object is orphaned in an island of
isolation. An applet object is reachable until it is successfully deleted.

The object deletion mechanism is not like garbage collection in standard Java
technology applications due to space and time constraints. The amount of available
RAM on the card is limited. In addition, because the object deletion mechanism is
applied to objects stored in persistent memory, it must be used sparingly. EEPROM
writes are very time-consuming operations and only a limited number of writes can be
performed on a card.

Due to these limitations, the object deletion mechanism in Java Card technology is
not automatic: it is performed only when an applet requests it. Use the object deletion
mechanism sparingly and only when other Java Card technology-based facilities are
cumbersome or inadequate.

Requesting the Object Deletion Mechanism
Although any applet on the card can request it, only the Java Card
Runtime Environment (Java Card RE) can start the object deletion mechanism.
The applet requests the object deletion mechanism with a call to the
JCSystem.requestObjectDeletion() method.

In the following code example, the method updates the buffer capacity to the given
value. If it is not empty, the method creates a new buffer and removes the old one by
requesting the object deletion mechanism.

/**
* The following method updates the buffer size by removing
* the old buffer object from the memory by requesting
* object deletion and creates a new one with the
* required size.
*/

11-1

 void updateBuffer(byte requiredSize){
 try{
 if(buffer != null && buffer.length == requiredSize){
 //we already have a buffer of required size
 return;
 }
 JCSystem.beginTransaction();
 byte[] oldBuffer = buffer;
 buffer = new byte[requiredSize];
 if (oldBuffer != null)
 JCSystem.requestObjectDeletion();
 JCSystem.commitTransaction();
 }catch(Exception e){
 JCSystem.abortTransaction();
 }
 }

Object Deletion Mechanism Usage Guidelines
The following guidelines describe possible scenarios when the object deletion
mechanism might or might not be used:

• When throwing exceptions, avoid creating new exception objects and relying on
the object deletion mechanism to perform cleanup. Try to use existing exception
objects.

• Try not to create objects in method or block scope. This is acceptable in standard
Java technology applications, but is an incorrect use of the object deletion
mechanism in Java Card technology-based applications.

• Use the object deletion mechanism when a large object, such as a certificate
or key, must be replaced with a new one. In this case, instead of updating the
old object in a transaction, create a new object and update its pointer within the
transaction. Then, use the object deletion mechanism to remove the old object.

• Use the object deletion mechanism when object resizing is required, as shown in
the example in Requesting the Object Deletion Mechanism.

CAP File and Applet Deletion
In the Java Card Platform, Version 3.1, the installer deletes CAP files and applets from
the card's memory. Once the installer is selected, it can receive requests from the
terminal, in the form of an APDU, to delete CAP files and applets. Requests to delete
an applet or CAP file cannot be sent from an applet on the card.

The following sections describe programming guidelines that will help you create CAP
files and applets that are more easily removed:

• Developing Removable CAP files

• Writing Removable Applets

Developing Removable CAP File
When a CAP file is deleted, all of its code is removed from the card's memory. A CAP
file is eligible for deletion only if there are no dependencies on it, including:

Chapter 11
CAP File and Applet Deletion

11-2

• CAP files that are dependent on the CAP file to be deleted

• Applet instances or objects that either belong to the CAP file, or that belong to a
CAP file that depends on the CAP file to be deleted

CAP file deletion will not succeed if any of the following conditions exist:

• A reachable instance of a class belonging to the CAP file exists on the card.

• Another CAP file on the card depends on the CAP file.

• A reset or power failure occurs after the deletion process begins, but before it
completes.

To ensure that a CAP file can be easily removed from the card, avoid writing and
downloading other CAP files that might be dependent on it. If other CAP files on the
card depend on it, you must remove all dependent CAP files before you can remove
this CAP file from the card memory.

Writing Removable Applets
Deleting an applet means that the applet and all of its child objects are deleted. Applet
deletion fails if any of the following conditions exist:

• Any object owned by the applet instance is referenced by an object owned by
another applet instance on the card.

• Any object owned by the applet instance is referenced from a static field in any
package on the card.

• The applet is active on the card.

If you are writing an applet that is deemed to be short lived and is to be removed from
the card after performing some operation, follow these guidelines to ensure that the
applet can be easily removed:

• Write cooperating applets if shareable objects are required. To reduce coupling
between applets, try to obtain shareable objects on a per-use basis.

• If interdependent applets are required, make sure that these applets can be
deleted simultaneously.

• Follow one of the following guidelines when static reference type fields exist:

– Ensure there is a mechanism available in the applet to disassociate itself from
these fields before applet deletion is attempted.

– Ensure that the applet instance and code can be removed from the card
simultaneously (that is, by using applet and package deletion).

The AppletEvent.uninstall Method
When an applet needs to perform some important actions prior to deletion, it might
implement the uninstall method of the AppletEvent interface. An applet might find
it useful to implement this method for the following types of functions:

• Release resources such as shared keys and static objects

• Backup data into another applet's space

• Notify other dependent applets

Chapter 11
CAP File and Applet Deletion

11-3

Calling uninstall does not guarantee that the applet will be deleted. The applet might
not be deleted after the completion of the uninstall method in some of these cases:

• Other applets or packages are still dependent on this applet.

• Another applet that needs to be deleted simultaneously cannot currently be
deleted.

• The package that needs to be deleted simultaneously cannot currently be deleted.

• A tear occurs before the deletion elements are processed.

To ensure that the applets are deleted, implement the uninstall method defensively.
Write your applet with these guidelines in mind:

• The applet continues to function consistently and securely if deletion fails.

• The applet can withstand a possible tear during the execution.

• The uninstall method can be called again if deletion is reattempted.

The following example shows such an implementation:

public class TestApp1 extends Applet implements AppletEvent{
 // field set to true after uninstall
 private boolean disableApp = false;
 ...
 public void uninstall(){
 if (!disableApp){
 JCSystem.beginTransaction(); //to protect against tear
 disableApp = true; //mark as uninstalled
 TestApp2SIO.removeDependency();
 JCSystem.commitTransaction();
 }
 }
 public boolean select(boolean appInstAlreadyActive) {
 // refuse selection if in uninstalled state
 if (disableApp) return false;
 return true;
 }
 ...
}

Chapter 11
CAP File and Applet Deletion

11-4

12
Working with Logical Channels

The Java Card Platform, Version 3.1 can support up to twenty logical channels
per active interface. Logical channels allow the concurrent execution of multiple
applications on the card, allowing a terminal to handle different tasks at the same
time.
This chapter includes the following topics:

• Dual Interface Cards

• Applets and Logical Channels

• The MultiSelectable Interface

• Writing Applets For Concurrent Logical Channels

Dual Interface Cards
On dual interface cards, each interface can handle up to twenty independent logical
channels. Channel management commands only affect the logical channels in the
interface where the commands are issued.

See the Java Card Platform Runtime Environment Specification, Classic Edition,
Version 3.1 for more information on logical channels, their implementation, and logical
channel terminology.

Applets and Logical Channels
If you design your applets to take advantage of multi-session functionality, they can
interoperate from different channels and can be selected multiple times in different
channels. For example, the card might handle security information on one channel,
while data is accessed on a second channel, while the third channel takes care of data
encoding operations.

By following this design, it is possible to access information owned by a different
applet without having to deselect the currently selected applet that is handling session
information. Thus, you avoid losing your session-specific security data, which is
usually stored in CLEAR_ON_DESELECT RAM memory.

Non-MultiSelectable Applets
An error is returned to the terminal when an applet that is not designed to be aware
of multiple channels is either selected more than once on different channels or is
selected concurrently with other applets in the same package.

You can have several non-multiselectable applets operating simultaneously on
different channels, as long as they do not interfere with each other's data while they
are active. For example, you can open up to 4 channels and run a distinct applet
on each as long as they do not interoperate. You can control their operation by
multiplexing commands into the APDU communications channel. If the applets are

12-1

independent of each other, then the results will be the same as if each of these applets
were running one at a time, each in a separate session.

The MultiSelectable Interface
For an applet to be selectable on multiple channels at the same time, or to have
another applet belonging to the same package selected simultaneously, it must
implement the javacard.framework.MultiSelectable interface. Implementing this
interface allows the applet to be informed when it has been selected more than once
or when applets in the same package are already selected during applet activation.

Note:

If an applet in any package implements the MultiSelectable interface,
then all applets in the package must also implement the MultiSelectable
interface. It is not possible to have multiselectable and non-multiselectable
applets in the same package.

The MultiSelectable interface contains a select and a deselect method to
manage multiselectable applets. These methods are described in the following topics:

• Selection for MultiSelectable Applets

• Deselection for MultiSelectable Applets

Selection for MultiSelectable Applets
The MultiSelectable interface defines one method to be invoked instead of
Applet.select() when the applet being selected, or any other applet in its package, is
already selected on another logical channel:

public boolean MultiSelectable.select(boolean appInstAlreadySelected)

The MultiSelectable.select(boolean) method informs the applet instance if it
is selected more than once on different channels, or if another applet in the
same package is selected on another channel on any interface. The parameter
appInstAlreadySelected is true if the applet is selected on a different channel. It
is false if it is not selected. The method can return either true or false to accept or
reject applet selection.

This method can be called as a result of issuing a SELECT FILE or a MANAGE
CHANNEL OPEN APDU command used to select an applet. If the applet is not
selected, then the appInstAlreadySelected parameter is passed as false to signal
an applet activation event. If the applet is subsequently selected on another
channel, MultiSelectable.select(boolean) is called again, but this time, the
appInstAlreadySelected parameter is passed as true, to indicate that the applet is
already active.

Chapter 12
The MultiSelectable Interface

12-2

Deselection for MultiSelectable Applets
The MultiSelectable interface defines one method to be invoked instead of
Applet.deselect() when the applet being deselected, or any other applet in its
package, is already selected on another logical channel:

public void MultiSelectable.deselect(boolean appInstStillSelected)

The MultiSelectable.deselect(boolean) method informs the applet instance if it is
being deselected on the logical channel while the same applet instance or another
applet in the same package is still active on another channel on any interface. The
parameter appInstStillSelected is true if the applet remains active on a different
channel. It is false if it is not active on another channel, indicating that this is the last
remaining active instance of the applet.

This method can be called as the result of a MANAGE CHANNEL CLOSE or a SELECT
FILE APDU command. If the applet remains active on a different channel, the
appInstStillSelected parameter is passed as true.

If the MultiSelectable.deselect(boolean) method is called, it means that either an
instance of this applet or another applet from the same package remains active on
another channel, so CLEAR_ON_DESELECT transients are not cleared.

Only when the last applet instance from the entire package is deselected does a call to
Applet.deselect() occur, resulting in the erasure of CLEAR_ON_DESELECT transients.

Writing Applets for Concurrent Logical Channels
This section describes how to write a multiselectable applet that will perform various
tasks based on whether it is selected. The code samples in this section show how
to extend the applet to implement the MultiSelectable interface and how to
implement the MultiSelectable.select(boolean) and deselect(boolean) methods.
The code samples also show how to use the Applet.select() and deselect()
methods to work with multiselectable applets.

To take advantage of multiple channel operation, an applet must implement the
javacard.framework.MultiSelectable interface. For example:

public class SampleApplet extends Applet
 implements MultiSelectable {
 ...
 }

The new applet needs to provide implementation for the
MultiSelectable.select(boolean) and MultiSelectable.deselect(boolean)
methods. These methods are responsible for encoding the behavior that the applet
needs during a selection event if either of the following situations occurs:

• The applet is already selected on a different channel.

• One or more applets from the same package are also selected on different
channels.

Chapter 12
Writing Applets for Concurrent Logical Channels

12-3

The behavior to be encoded might include initializing applet state, accepting or
rejecting the selection request, or clearing data structures in case of deselection:

public boolean select(boolean appInstAlreadySelected) {
 // Implement the logic to control applet selection
 // during a multiselection situation
 ...
}
public void deselect(boolean appInstStillSelected) {
 // Implement the logic to control applet deselection
 // during a multiselection situation
 ...
}

Note:

The applet is still required to implement the Applet.select() and
the Applet.deselect() methods in addition to the MultiSelectable
interface. These methods handle applet selection and deselection behavior
when a multiselection situation does not happen.

Related Topics

• MultiSelectable Applet Example

• Handling Channel Information on APDU Commands

• Writing ISO 7816-4:2005 Compliant Applets

• Non-MultiSelectable Applets and Shareable Objects

• ISO 7816-4:2005 Specific APDU Commands for Logical Channel Management

MultiSelectable Applet Example
In this example, the multiselectable applet, SampleApplet, must initialize the following
two arrays of data when it is selected:

• An array of package data to be initialized when the first applet in the package
becomes active

• An array of private applet data to be initialized upon applet instance activation

You can make these distinctions in your code because the MultiSelectable
interface allows the applet to recognize the circumstances under which it is selected.

Also, the applet has the following requirements:

• Clear the package data once no applet in the package is active

• Clear the applet private data when the applet instance is deselected

Chapter 12
Writing Applets for Concurrent Logical Channels

12-4

The following methods are responsible for clearing and setting the data:

//dataType parameter as above
final static byte DATA_PRIVATE = (byte)01;
final static byte DATA_PACKAGE = (byte)02;
...
public void initData(byte[] dataArray, byte dataType) {
 ...
}
public void clearData(byte[] dataArray) {
 ...
}

To achieve the behavior specified above, you must modify the selection and
deselection methods in your sample applet.

The code for Applet.select(), which is invoked when this applet is the first to
become active in the package, can be implemented like this:

public boolean select() {

 // First applet to be selected in package, so
 // initialize package data and applet data
 initData(packageData, DATA_PACKAGE);
 initData(privateData, DATA_PRIVATE);
 return true;
}

Likewise, the implementation of the method MultiSelectable.select(boolean)
must determine whether the applet is already active. According to its
definition, this method is called when another applet within this package
is active. MultiSelectable.select(boolean) can be implemented so that if
appInstAlreadySelected is false, the applet private data can be initialized. For
example:

public boolean select(boolean appInstAlreadySelected) {
 // If boolean parameter is false,
 // then we have applet activation
 // Otherwise, no applet activation occurs.
 if (appInstAlreadySelected == false) {
 // Initialize applet private data, upon activation
 initData(privateData, DATA_PRIVATE);
 }
 return true;
}

Chapter 12
Writing Applets for Concurrent Logical Channels

12-5

In the case of deselection, the applet data must be cleared. The method
MultiSelectable.deselect(boolean) can be implemented so that it clears applet
data only if the applet is no longer active. For example:

public void deselect(boolean appInstStillSelected) {

 // If boolean parameter is false, then applet is no longer
 // active. It is O.K. to clear applet private data.
 if (appInstStillSelected == false) {
 clearData(privateData);
 }
}

If this applet is the last one to be deactivated from the package, it also must clear
package data. This situation results in a call to Applet.deselect(). This method can
be implemented like this:

public void deselect() {
 // This call means that the applet is no longer active and
 // that no other applet in the package is. Data for both
 // applet and package must be cleared.
 clearData(packageData);
 clearData(privateData);
}

Handling Channel Information on APDU Commands
APDU commands follow the ISO/IEC 7816-4:2013 specifications to encode logical
channel information in the CLA byte. The CLA byte encoding is divided into two
spaces:

• Interindustry —Used by all ISO/IEC 7816-4:2013- defined commands

• Proprietary — Used by Java Card technology to encode application- specific
commands

The CLA byte encoding is divided into two classes:

• Type 4 commands — Encode legacy ISO/IEC 7816-4 logical channel information

• Type 16 commands — Defined by the ISO/IEC 7816-4:2013 specification to
encode information for additional 16 logical channels in the card.

Type 4 logical channels occupy the range of [0...3], while Type 16 logical channels go
in the range of [4...19], that is, the value encoded in the CLA byte plus four, as it is
used in SELECT, MANAGE CHANNEL and other proprietary or ISO commands.

However, a note of caution: while the MANAGE CHANNEL command CLA byte follows
the encoding as described below, its P2 parameter does not. The logical channel
numbers in its P2 parameter are correctly encoded in the range of [0...19].

The CLA byte encoding follows the following rules:

• Interindustry Space

Chapter 12
Writing Applets for Concurrent Logical Channels

12-6

• Proprietary Java Card Technology Space

• Logical Channels

• APDU Command Type Identification

Interindustry Space
CLA Remarks

0x0X Type 4, last or only command in chain

0x1X Type 4, not last command in chain (paired with 0x0X)

0x2X Reserved for Future Use

0x3X Reserved for Future Use

0x4X Type 16, no SM, last or only command in chain

0x5X Type 16, no SM, not last command in chain (paired with 0x4X)

0x6X Type 16, SM, last or only command in chain

0x7X Type 16, SM, not last command in chain (paired with 0x06X)

The encoding details are as follows.

Type 4:

b8 b7 b6 b5 b4 b3 b2 b1
0 0 0 x y y z z

Type 16:

b8 b7 b6 b5 b4 b3 b2 b1
0 1 y x z z z z

Notation:

x = Command Chaining bit

• 0 = last or only command

• 1 = command chaining

y = Secure Messaging indicator, see ISO7816-4:2003 section 6 for further information.

z = Logical channel indicator

Type 4 supports logical channels [0..3]

Type 16 supports logical channels [0..15], which are mapped to logical channels
[4..19]

Proprietary Java Card Technology Space
CLA Remarks

0x8X Type 4, last or only command in chain

0x9X Type 4, not last command in chain (paired with 0x8X)

Chapter 12
Writing Applets for Concurrent Logical Channels

12-7

0xAX Type 4, last or only command in chain

0xBX Type 4, not last command in chain (paired with 0xAX)

0xCX Type 16, no SM, last or only command in chain

0xDX Type 16, no SM, not last command in chain (paired with 0xCX)

0xEX Type 16, SM, last or only command in chain

0xFX Type 16, SM, not last command in chain (paired with 0xEX)

The encoding details are as follows.

Type 4:

b8 b7 b6 b5 b4 b3 b2 b1
1 0 N/A x y y z z

Type 16:

b8 b7 b6 b5 b4 b3 b2 b1
1 1 y x z z z z

Logical Channels
When an APDU command is received, the card processes it and determines whether
the command has logical channel information encoding. If logical channel information
is encoded, then the card sends the APDU command to the respective channel. All
other APDU commands are forwarded to the card's basic channel (0).

The X nibble is responsible for logical channels and secure message encoding. Only
the two least significant bits of the nibble are used for channel encoding, which ranges
from 0 to 3. For example, the command 0x21 forwards the command to the card's
basic channel (0), because the CLA byte with the nibble 0x2X does not contain logical
channel information.

Just as the deselection and selection mechanisms must be written to take
into consideration a multiple-channel environment, it is important to write the
Applet.process() method so that it handles channel information correctly. Due to the
fact that some APDUs can be digitally signed, the APDU command is passed to the
applet's process method as it is sent by the terminal. That means any logical channel
information is not cleared and is passed intact to the applet. The applet must deal with
this situation.

APDU Command Type Identification
To identify proprietary and interindustry commands, use the isISOInterindustryCLA
method. This call returns true if the CLA byte encoding corresponds to the
interindustry space, or false if it corresponds to the proprietary space.

...
//Applet's process method
public void process(APDU apdu) {
 byte[] buffer = apdu.getBuffer();

 // check SELECT APDU command

Chapter 12
Writing Applets for Concurrent Logical Channels

12-8

 if (apdu.isISOInterindustryCLA()) {
 if (Applet.selectingApplet()) {
 return;
 } else {
 ISOException.throwIt (ISO7816.SW_CLA_NOT_SUPPORTED);
 }
 }
 ...

Writing ISO/IEC 7816-4:2013 Compliant Applets
If your applets must be compliant with the ISO/IEC 7816-4:2013 specification,
then you must track the applet security state on each channel where it is active.
Additionally, in the case of multiselectable applets, you must copy the state (including
its security configuration) when you perform MANAGE CHANNEL commands from a
channel other than the basic channel.

For example, applets might need to perform some sort of initialization upon
activation, as well as cleanup procedures during deactivation. To do these tasks, a
multiselectable applet might need to keep track of the channels on which it is being
selected during a card session.

To track this information, you need to know the channel on which the task is being
performed. Tracking is done by two methods in the Java Card API:

• APDU class: public static byte getCLAChannel();

This method returns the origin channel where the command was issued. In case of
MANAGE CHANNEL or SELECT FILE commands, if this method is called within
the Applet.select(), MultiSelectable.select(boolean), Applet.deselect(),
or MultiSelectable.deselect(boolean) methods, it returns the APDU command
logical channel specified in the CLA byte.

• JCSystem class: public static byte getAssignedChannel();

This method returns the channel of the currently selected applet. In case
of a MANAGE CHANNEL command, if this method is invoked inside the
Applet.select(), MultiSelectable.select(boolean), Applet.deselect(), or
MultiSelectable.deselect(boolean) methods, it returns the channel where the
applet to be selected or deselected is assigned to run.

ISO/IEC 7816-4:2013 Compliant Applet Example
This example demonstrates how to copy the security state from the applet selected in
the origin channel into the new channel.

In this example, the state information is stored in the array appState inside the applet:

StateObj appState[MAX_CHANNELS]; // Holds the security state
 // for each logical channel

You can use the APDU.getCLAChannel() and the JCSystem.getAssignedChannel()
methods to identify if the applet selection case corresponds to an ISO/IEC 7816-4
case where the security state needs to be copied.

Chapter 12
Writing Applets for Concurrent Logical Channels

12-9

Note:

If such an event occurs, it will also be a multiselection situation, where the
applet is also selected on the newly opened channel.

In this example, the code to identify the applet selection case is included in the
implementation of the MultiSelectable.select(boolean) method:

 public boolean select(boolean appInstAlreadySelected) {
 ...
 // Obtain logical channels information
 // This call returns the channel where
 // the command was issued
 byte origChannel = APDU.getCLAChannel();
 // This call returns the channel where the applet is being
 // selected
 byte targetChannel = JCSystem.getAssignedChannel();
 if (origChannel == targetChannel) {
 // This is a SELECT FILE command.
 // Do processing here.
 ...
 }
 if (origChannel == 0) {
 // This is a MANAGE CHANNEL command from channel 0.
 // ISO 7816-4 state sharing case does not
 // apply here.
 // Do processing here.
 ...
 } else {
 // Since origChannel != 0, the special
 // ISO 7816-4 case applies.
 // Copy security state from origin channel
 // to assigned logical channel.
 appState[targetChannel] = appState[origChannel];
 // Do further processing here
 ...
 }
 ...
 }

Refer to the API documentation in the in JC_HOME_SIMULATOR\docs for more
information about the APIs.

Non-MultiSelectable Applets and Shareable Objects
Applets that implement MultiSelectable are designed to handle calls to Shareable
objects across packages when several applets are active on different logical channels.
In contrast, an applet that does not implement MultiSelectable assumes that it is
uniquely selected and its owned objects will not be modified via Shareable interface
objects while it is selected. Only when the non-multiselectable applet is in a deselected
state can other applets modify its internal data structures.

Chapter 12
Writing Applets for Concurrent Logical Channels

12-10

When you interact with applets that do not implement MultiSelectable:

• It is not possible to select more than one applet simultaneously from a package
if any of the applets you want to select does not implement the MultiSelectable
interface.

• It is not possible to invoke methods of a Shareable object belonging to a non-
multiselectable applet when an applet, belonging to the same group context, is
active.

ISO/IEC 7816-4:2013 Specific APDU Commands for Logical Channel
Management

There are two ISO-specific APDU commands that you can use to work with logical
channels in a smart card:

• SELECT FILE — This command selects the specified applet on the specified
channel number. The channel number can be from 0 to 3 and is specified in
the lower two bits of the CLA byte. If the channel is closed, it is opened and
the specified applet is selected on the channel. SELECT FILE commands are
forwarded to the newly selected applet.

• MANAGE CHANNEL — This command can be used to open a new channel from
another channel or close it. It allows you to specify the channel to be used or to
allow the smart card to select the channel. Like SELECT FILE, this command
uses the lower two bits of the CLA byte to specify the channel number. MANAGE
CHANNEL commands are not forwarded to the applet.

When you work with these commands, keep the following guidelines in mind:

• Origin logical channel values are encoded in the two least significant bits of the
CLA byte.

• Logical channel values have a valid range of [0..19] only.

• Logical channel 0 is known as the basic channel, and it cannot be closed.

• At card reset, the basic channel (channel 0) is open. All other channels (1, 2, ...19)
are closed.

The MANAGE CHANNEL and SELECT FILE commands are read by the Java Card
RE dispatcher, which performs the functions specified by the commands, including the
following:

• Managing logical channels

• Deselecting applets

• Selecting applets

MANAGE CHANNEL OPEN
In response to the MANAGE CHANNEL OPEN command, the dispatcher follows this
procedure:

1. If the origin channel is not open, an error is returned.

2. Determines whether the channel is open or closed. If the channel is open, an error
is returned.

Chapter 12
Writing Applets for Concurrent Logical Channels

12-11

3. Opens the channel.

4. If the origin channel is 0, the default applet (if there is one) is selected in the new
channel.

5. If the origin channel is not 0, the selected applet on the origin channel becomes
the selected applet in new channel.

This MANAGE CHANNEL OPEN command opens a new channel from channel encoded
in Q:

CLA INS P1 P2 Lc Data Le Data SW1 SW2

0xQ 0x70 00 00 0 - 1 0x0R 0x90 00

:

CLA INS P1 P2 Lc Data Le SW1 SW2 SW2

0xQ 0x70 00 0xR 0 - 0 0x90 00 00

This command produces the following results:

• If channel encoded in Q is the basic channel (channel 0), the card's default applet
is selected on channel encoded in R. No applet is selected if no default applet is
defined.

• If channel encoded in Q is other than the basic channel (channels 1, 2, ...19), the
selected applet on channel encoded in Q becomes the current applet selected on
channel R.

• The applet on channel encoded in R can either accept or reject selection.

This command returns an error under the following circumstances:

• The applet does not implement the javacard.framework.MultiSelectable
interface, when an attempt to select the applet in more than one channel takes
place.

• The applet rejects selection or throws exception.

• No channel is available.

• Channel encoded in Q is not open.

MANAGE CHANNEL CLOSE
In response to the MANAGE CHANNEL CLOSE command, the dispatcher follows this
procedure:

1. If the origin channel is not open, an error is returned.

2. If the channel to be closed is 0, an error is returned.

3. If the channel to be closed is not open or not available, a warning is thrown.

4. Deselects the applet in the channel to be closed.

5. Closes the logical channel.

This MANAGE CHANNEL CLOSE command closes channel R from channel Q:

Chapter 12
Writing Applets for Concurrent Logical Channels

12-12

CLA INS P1 P2 Lc Data Le SW1 SW2 SW2

0xQ 0x70 0x80 0xR 0 - 0 0x90 00 00

This command closes channel R. Channel R must not be the basic channel (it can be
channel 1, 2, ...19 only).

This command returns an error in the following circumstances:

• Channel encoded in R is the basic channel.

• Channel encoded in Q is not open.

It returns a warning if channel R is not open.

SELECT FILE
In response to the SELECT FILE command, the dispatcher follows this procedure:

1. If the specified channel is closed, open the channel.

2. Deselect currently selected applet in channel if needed.

3. Select specified applet in the channel.

This SELECT FILE command selects an applet on channel R:

CLA INS P1 P2 Lc Data Le SW1 SW2

0x0R 0xA4 0x04 0x00 (AID len) (AID) 0 0x90 00

This command produces the following results:

• Channel encoded in R can be any channel (opened or unopened), including the
basic channel.

• The applet identified in the Data section becomes the selected applet on channel
R.

• If channel encoded in R is not open, this command opens channel R.

• If channel encoded in R is open, this command changes the selected applet in the
channel to the one specified.

This command returns an error in the following circumstances:

• The applet cannot be found or is not available. The current applet is left selected
and an error is returned.

• An active applet belonging to the same package does not implement the
javacard.framework.MultiSelectable interface, or if the applet to be selected
does not implement this interface.

• Channel encoded in R is not available.

Chapter 12
Writing Applets for Concurrent Logical Channels

12-13

13
Using Java Card RMI

This chapter describes how to write remote method invocation (RMI) applications and
how to use the RMI client-side API for the Java Card Platform, Version 3.1.

Topics:

• Developing RMI Applications for the Java Card Platform

• Programming to the Java Card RMI ClientSide API

Developing RMI Applications for the Java Card Platform
This section describes how to write remote method invocation (RMI) applications for
the Java Card Platform, Version 3.1. Because the Java Card specifications state that
Java Card RMI is optional, verify that your targeted card supports Java Card RMI
before using these APIs.
This section includes the following topics:

• Steps to Develop an RMI Applet for the Java Card Platform

• RMI Program Example

• Add Security Support

Steps to Develop an RMI Applet for the Java Card Platform
There are three main steps to develop an RMI applet:

1. Define remote interfaces.

2. Develop classes implementing the remote interfaces.

3. Develop the main class for the applet. For a simple applet, the main class of the
applet can also be the class implementing the remote interface.

This section includes the following topics:

• Generating Stubs

• Running a Java Card RMI Applet

Generating Stubs
The Java Card RMI Client framework requires stubs only when the
remote_ref_with_class format is used for passing remote references. These stubs
of remote classes of applets must be pre-generated and available on the client. When
the remote_ref_with_interfaces format is used, stubs are not necessary.

In this example, the Java RMI Compiler (rmic) is used to generate these stubs.

Following is the command to run the rmic:

rmic -v1.2 -classpath path -d output_dir class_name

13-1

In the command:

• path includes the path to the remote class of your sample applet and to the file,
JC_HOME_TOOLS\tools.jar

• output_dir is the directory in which to place the resulting stubs

• class_name is the name of the remote class

• The -v1.2 flag is required by the RMI client framework for the Java Card Platform,
Version 3.1

The rmic must be called for each remote class in your applet.

Note:

You need to generate stubs only for remote classes that list a remote
interface in their implements clause.

The file tools.jar, provided in the Java Card Development Kit contains
compiled implementations of packages javacard.framework, javacard.security,
javacardx.biometry, javacardx.external and javacardx.framework.tlv. Classes
in these packages might be referenced by Java Card RMI applets and thus might be
needed by the rmic to generate stubs.

Running a Java Card RMI Applet
The server part (the Java Card RMI-enabled applet) can be run on the C-language
Java Card RE, for which the following standard procedures apply:

• The applet must be installed first by using the installer applet.

• After the applet is installed, the EEPROM state can be saved and used to run the
Java Card RE against the Java Card RMI client.

RMI Program Example
The RMI program example is the Java Card platform equivalent of "Hello World." It is
a program that manages a counter remotely, and is able to decrement, increment, and
return the value of the counter.

This section includes the following topics:

• Main Program

• Sample Applet

• Client Example

• Card Terminal Interaction

Main Program
As for any Java Card RMI program, the first step is to define the interface to be used
as contract between the server (the Java Card technology-based application) and its
clients (the terminal applications):

Chapter 13
Developing RMI Applications for the Java Card Platform

13-2

package examples.purse;
import java.rmi.*;
import javacard.framework.*;
public interface Purse extends Remote {
 public static final short MAX_AMOUNT = 400;
 public static final short REQUEST_FAILED = 0x0102;
 public short debit(short amount) throws RemoteException,
UserException;
 public short credit(short amount) throws RemoteException,
 UserException;
 public short getBalance() throws RemoteException, UserException;
}

This is a typical Java Card RMI interface in the following ways:

• The interface type extends the java.rmi.Remote interface. This interface is a
tagging interface that identifies the interface as defining a remotely accessible
object.

• Every method in the interface must be declared as throwing a RemoteException
or one of its superclasses (IOException or Exception). This exception is required
to encapsulate all the communication problems that might occur during a remote
invocation of the method. In addition, the credit, debit, and getBalance methods
also throw the UserException to indicate application-specific errors.

• The interface can also define values for constants that might be used in
communication between the client and the server. The Purse interface defines
a constant MAX_AMOUNT that represents the maximum allowed value for the
transaction amount parameter. It also defines a reason code REQUEST_FAILED for
the UserException qualifier.

Related Topics

• Implement a Remote Interface

• Define the Constructor for the Remote Object

• Provide an Implementation for Each Remote Method

Implement a Remote Interface
This code sample provides an implementation for the remote interface. The
implementation runs on a Java Card Platform, so it can use only features that are
supported by a Java Card Platform, Version 3.1.

package examples.purse;

import javacard.framework.*;
import javacard.framework.service.*;
import java.rmi.*;

public class PurseImpl extends CardRemoteObject implements Purse {
 private short balance;

 PurseImpl() {
 super();
 balance = 0;

Chapter 13
Developing RMI Applications for the Java Card Platform

13-3

 }

 public short debit(short amount) throws RemoteException,
UserException {
 if ((amount < 0) || (amount > MAX_AMOUNT))
 UserException.throwIt(REQUEST_FAILED);
 balance -= amount;
 return balance;
 }

 public short credit(short amount) throws RemoteException,
UserException {
 if ((amount < 0) || (balance < amount))
 UserException.throwIt(REQUEST_FAILED);
 balance += amount;
 return balance;
 }

 public short getBalance() throws RemoteException, UserException {
 return balance;
 }
}

Here, the remote interface is the Purse interface, which declares the remotely
accessible methods. By implementing this interface, the class establishes a contract
between itself and the compiler, by which the class promises that it will provide method
bodies for all the methods declared in the interface:

public class PurseImpl extends CardRemoteObject implements Purse

The class also extends the javacard.framework.service.CardRemoteObject class.
This class provides basic support for remote objects, and in particular the ability to
export or unexport an object.

Define the Constructor for the Remote Object
The constructor for a remote class provides the same functionality as the constructor
of a non-remote class; it initializes the variables of each newly created instance of the
class.

In addition, the remote object instance needs to be exported to make it available to
accept incoming remote method requests. By extending CardRemoteObject, a class
guarantees that its instances are exported automatically upon creation on the card.

If a remote object does not extend CardRemoteObject (directly or indirectly), you must
explicitly export the remote object by calling the CardRemoteObject.export method in
the constructor of your class (or in any appropriate initialization method). Of course,
this class must still implement a remote interface.

To review, the implementation class for a remote object needs to do the following:

• Implement a remote interface

• Export the object so that it can accept incoming remote method calls

Chapter 13
Developing RMI Applications for the Java Card Platform

13-4

Provide an Implementation for Each Remote Method
The implementation class for a remote object contains the code that implements each
of the remote methods specified in the remote interface. For example, the following
code is the implementation of the method that debits the purse:

 public short debit(short amount) throws RemoteException, UserException
 if ((amount < 0)||(balance < amount)
 UserException.throwIt(REQUEST_FAILED);
 balance -= amount;
 return balance;
 }

An operation is only allowed if the value of its parameter is compatible with the current
state of the purse object. In this particular case, the application only checks that
the amounts handled are positive and that the balance of the purse always remains
positive.

In Java Card RMI, the arguments to and return values from remote methods are
restricted. The main reason for this limitation is that the Java Card Platform, Version
3.1 does not support object serialization. The following are the rules for the Java Card
Platform, Version 3.1:

• The arguments to remote methods can be of any supported integral type (such
as boolean, byte, short and int), or any single-dimensional arrays of these
integral types.

Note:

The int type is optionally supported on the Java Card Platform, Version
3.1, so applications that use this type might not run on all platforms.

• The return value from a remote method can be any type supported as arguments,
as well as any remote interface type. The method can also return void.

On the other hand, object passing in Java Card RMI follows the normal RMI rules:

• By default, non-remote objects are passed by copy, which means that all data
members of an object are copied, except those marked static or transient.
In the case of the Java Card Platform, Version 3.1, this rule is trivial to apply,
because the only objects concerned are arrays of integral types.

• Remote objects are passed by reference. In the case of the Java Card
Platform, Version 3.1, remote objects can only be passed as return values.
A reference to a remote object is actually a reference to a stub, which is a
client-side proxy for the remote objects. Stubs are needed only when the format
remote_ref_with_class is used for passing remote references. When another
format, such as remote_ref_with_interfaces, is used, stubs are not necessary.
Stubs are described in Generate the Stubs.

Chapter 13
Developing RMI Applications for the Java Card Platform

13-5

Note:

Even though the semantics of the Java Card Platform, Version 3.1
transient arrays are somewhat similar to transient fields in the Java
programming language, different rules apply. The Java Card Platform,
Version 3.1 contents are copied in Java Card RMI and passed by value
when they are returned from a remote method.

A class can define methods not specified in a remote interface, but they can only be
invoked on-card within the Java Card VM and cannot be invoked remotely.

Sample Applet
In the Java Card Platform, Version 3.1, all applications must include a class that
inherits from javacard.framework.Applet, which will provide an interface with the
outside world.

This also applies to applications that are based on remote objects, for two main
reasons:

• The remote objects must be instantiated and initialized, which can be done in an
applet's install method.

• The remote objects must communicate with the outside world, which can be done
in an applet's process method.

For conversion, an applet should be assigned with an AID known on the client side,
0x00;0x01:0x02:0x03:0x04:0x05:0x06:0x07:0x08, since this AID is used in the client
program.

The following is the basic code for such an applet:

package examples.purse;

import javacard.framework.*;
import javacard.framework.service.*;
import java.rmi.*;

public class PurseApplet extends Applet {
 private Dispatcher dispatcher;

 private PurseApplet() {
 // Allocates an RMI service and sets for the Java Card platform
 // the initial reference
 RemoteService rmi = new RMIService(new PurseImpl());
 // Allocates a dispatcher for the remote service
 dispatcher = new Dispatcher((short) 1);
 dispatcher.addService(rmi, Dispatcher.PROCESS_COMMAND);
 }

 public static void install(byte[] buffer, short offset, byte length) {
 // Allocates and registers the applet
 (new PurseApplet()).register();
 }

Chapter 13
Developing RMI Applications for the Java Card Platform

13-6

 public void process(APDU apdu) {
 dispatcher.process(apdu);
 }
}

Related Topics

• Preparing and Registering the Remote Object

• Processing the Incoming Commands

Preparing and Registering the Remote Object
The PurseApplet constructor contains the initialization code for the remote object.

First, a javacard.framework.service.RMIService object must be allocated. This
service is an object that knows how to handle all the incoming APDU commands
related to the Java Card RMI protocol. The service must be initialized to allow
remote methods on an instance of the PurseImpl class. A new instance of PurseImpl
is created, and is specified as the initial reference parameter to the RMIService
constructor as shown in the following code snippet. The initial reference is the
reference that is made public by an applet to all its clients. It is used as a bootstrap for
a client session, and is similar to that registered by a Java RMI server to the Java Card
RMI registry.

RemoteService rmi = new RMIService(new PurseImpl());

Then, a dispatcher is created and initialized. A dispatcher is the glue among several
services. In this example, the initialization is quite simple, because there is a single
service to initialize:

dispatcher = new Dispatcher((short)1);
dispatcher.addService(rmi, Dispatcher.PROCESS_COMMAND);

Finally, the applet must register itself to the Java Card RE to be made selectable.
This is done in the install method, where the applet constructor is invoked and
immediately registered:

(new PurseApplet()).register();

Processing the Incoming Commands
Processing incoming commands is entirely delegated to the Java Card RMI service,
which knows how to handle all the incoming requests. The service also implements
a default behavior for the handling of any request that it does not recognize. In Java
Card RMI, the following kinds of requests can be handled:

• Selection request — The service responds by sending its initial remote reference

• Method invocation request — The service responds by performing the actual
method invocation and returning the result

To perform these actions, the service needs privileged access to some resources that
are owned by the Java Card RE (in particular, privileged access is needed to perform
the method invocation). The applet delegates processing to the Java Card RMI service
from its process method as follows:

dispatcher.process(apdu);

Chapter 13
Developing RMI Applications for the Java Card Platform

13-7

Client Example
Client applications run on a terminal supporting a Java Virtual Machine environment
such as Java Platform, Standard Edition or Java Platform, Micro Edition (Java ME).

The PurseClient application interacts with the remote stub classes generated
by a stub generation tool and the Java Card platform-specific information
managed by the Java Card platform client-side framework located in packages
com.sun.javacard.clientlib and com.sun.javacard.rmiclientlib.

The client example below uses standard Java RMIC compiler-generated client-side
stubs. The client application as well as the Java Card client-side framework rely on the
APDU I/O library for managing and communicating with the card reader and the card
on which the Java Card applet PurseApplet resides. This makes the client application
very portable on Java SE platforms. See the Working with APDU I/O section for more
information on the APDU I/O library.

The following example shows a very simple PurseClient application that is the client
application of the Java Card technology-based program PurseApplet:

import examples.purse.*;
import javacard.framework.UserException;

public class PurseClient extends java.lang.Object {
 public static void main(java.lang.String[] argv) {
 // arg[0] contains the debit amount
 short debitAmount = (short) Integer.parseInt(argv[0]);
 CardAccessor ca = null;
 try {
 // open and powerup the card
 ca = new ApduIOCardAccessor();
 // create an RMI connector instance for the Java Card platform
 JCRMIConnect jcRMI = new JCRMIConnect(ca);
 byte[] appAID = new byte[]
{0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08};
 // select the Java Card applet
 jcRMI.selectApplet(RMI_DEMO_AID,
JCRMIConnect.REF_WITH_CLASS_NAME);
 or
 jcRMI.selectApplet(RMI_DEMO_AID,
JCRMIConnect.REF_WITH_INTERFACE_NAMES);
 // obtain the initial reference to the Purse interface
 Purse myPurse = (Purse) jcRMI.getInitialReference();
 // debit the requested amount
 try {
 short balance = myPurse.debit (debitAmount);
 }catch (UserException jce) {
 short reasonCode = jce.getReason();

 // process UserException reason information
 }
 // display the balance to user
 }catch (Exception e) {
 e.printStackTrace();

Chapter 13
Developing RMI Applications for the Java Card Platform

13-8

 }finally {
 try {
 if(ca!=null){
 ca.closeCard();
 }
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

Related Topics

• Initializing and Shutting Down the Card Connection

• Creating and Using a CardAccessor Object

• Selecting the Java Card Applet and Obtaining the Initial Reference

• Using Remote Objects in Remote Method Invocations

• Generate the Stubs

Initializing and Shutting Down the Card Connection
The client application must open the connection to the card and close it at the end.

Note:

ApduIOCardAccessor takes its settings from the file
jcclient.properties. For example. when the RMIPurse sample
demo client application runs, the JC_HOME_SIMULATOR/samples/
classic_applets/RMIPurse/client directory containing the properties
file is included in the CLASSPATH. The directory in which you installed the
developer's kit is indicated as JC_HOME_SIMULATOR.

On Microsoft Windows platforms, use backslashes in directory paths, instead
of forward slashes.

The following code shows opening and closing the connection using the RMI client
framework:

 CardAccessor ca = null;
 // The following line initializes card connection according to
 // parameters listed in the jcclient.properties file:
 ca = new ApduIOCardAccessor();
 ...
 // The following line powers down the card and closes the
connection:
 ca.closeCard();

Chapter 13
Developing RMI Applications for the Java Card Platform

13-9

Creating and Using a CardAccessor Object
To access the Java Card applet using remote methods, the client application must
obtain an instance of the CardAccessor interface. The ApduIO class implements the
CardAccessor interface and is included in the framework.

The CardAccessor interface is a platform-independent and framework-independent
interface used by the RMI framework for the Java Card platform to communicate with
the card. The CardAccessor object is then provided as a parameter during construction
of the JavaCardRMIConnect class to initiate an RMI dialog for the Java Card platform
as shown in the following code:

 // create an RMI connection object for the Java Card platform
 JavaCardRMIConnect jcRMI = new JavaCardRMIConnect(myCS);

Selecting the Java Card Applet and Obtaining the Initial Reference
To invoke methods on the remote objects of PurseApplet on the card, it must first be
selected by using the AID as shown in the following code:

 // select the Java Card applet
 byte[] appAID = new byte[] {0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08};
 jcRMI.selectApplet(appAID);

Then, the client must obtain the initial reference remote object for PurseApplet.
JavaCardRMIConnect returns an instance of a stub class corresponding to the
PurseImpl class on the card, which implements the Purse interface. The client
application knows beforehand that the PurseApplet's initial remote reference
implements the Purse interface and therefore casts it appropriately as shown in the
following code:

// obtain the initial reference to the Purse interface
Purse myPurse = (Purse) jcRMI.getInitialReference();

Using Remote Objects in Remote Method Invocations
The client can now invoke remote methods on the initial reference object. The remote
methods are declared in the Purse interface. The following code shows the client
invoking the debit method.

Note:

A UserException exception thrown by the remote method is caught by the
client code in normal Java programming language style.

 // debit the requested amount
 try {
 short balance = myPurse.debit (debitAmount);
 }catch (UserException jce) {

Chapter 13
Developing RMI Applications for the Java Card Platform

13-10

 short reasonCode = jce.getReason();
 // process on card exception reason information
 }

Generate the Stubs
The client-side scenario uses rmic generated stubs for the remote classes. For the
client application PurseClient to execute correctly on the terminal, it needs these
remote stub classes and the remote interface class files it uses to be accessible in its
classpath.

The stub class PurseImpl_Stub.class for the PurseImpl class is produced by running
the standard JDK compiler. The directory where you installed the developer's kit is
indicated by JC_HOME_SIMULATOR. For example, from the examples/purse directory,
enter the following command:

rmic -classpath ../..;%JC_HOME_TOOLS%/lib/tools.jar -d ../..
-v1.2 examples.purse.PurseImpl

This produces a stub class called examples.purse.PurseImpl_Stub.

For PurseClient to run correctly on the terminal, the following files must be present
in the examples/purse directory and accessible either from its classpath or from class
loaders:

• PurseImpl_Stub.class

• Purse.class

Card Terminal Interaction
When a Java Card technology-enabled smart card is powered up, the card sends an
ATR (Answer to Reset) to the terminal. The Card Accessor returns the value of the
ATR to the client program (shown in Figure 13-1).

Figure 13-1 Smart Card Sends an ATR to the Terminal

When the PurseClient application calls the selectApplet method of
JavaCardRMIConnect, it sends a SELECT APDU command to the card via the
CardAccessor object. This results in a File Control Information (FCI) APDU response
from the RMIService instance of PurseApplet on the card in a TLV (Tag Length
Value) format that includes the initial reference remote object information (shown in
Figure 13-2).

Chapter 13
Developing RMI Applications for the Java Card Platform

13-11

Figure 13-2 Terminal Sends a SELECT Command to the Smart Card, Which
Returns FCI

Later, when the PurseClient application calls the debit method of the remote
interface Purse, the PurseImpl_Stub object sends an INVOKE command to the
card via the CardAccessor object, identifying the remote object reference, interface,
method, and parameter data for method invocation. The RMIService instance of
PurseApplet unmarshalls this information and invokes the debit method of the
PurseImpl instance, and returns the return value in the response RETURN APDU
(shown in Figure 13-3).

Figure 13-3 Terminal Sends an INVOKE Command to the Smart Card, Which
Returns a Value

Add Security Support
The previous Sample Applet example is extremely simple and is not realistic. In
particular, it does not include any form of security. Users are not authenticated and
no transport security is provided. Of course, every smart card that implements the
Java Card platform includes such security mechanisms, because they are central to
Java Card technology.

The following section describes how to add security support to the Purse example.

The Purse interface in the package examples.securepurse is similar to the Purse
interface used in the Sample Applet example. In addition, it might include reason
codes for exceptions to report security violations to the terminal. This example
replaces the Purse interface used in theSample Applet example with the following
examples.securepurse code. ThePurse interface in the examples.securepurse does
not include an implementation, which means that, in particular, it does not include any
support for security.

The applet keeps its original organization but it also includes additional code that is
dedicated to the management of security.

package examples.securepurse;

import javacard.framework.*;
import javacard.framework.service.*;
import java.rmi.*;

Chapter 13
Developing RMI Applications for the Java Card Platform

13-12

public class SecurePurseImpl implements Purse {
 private short balance;
 private SecurityService security;

 SecurePurseImpl(SecurityService security) {
 this.security = security;
 }

 public short debit(short amount) throws RemoteException,
UserException {
 if ((!security
 .isCommandSecure(SecurityService.PROPERTY_INPUT_INTEGRITY)
)
 || (!security
 .isAuthenticated(SecurityService.PRINCIPAL_CARDHO
LDER)))
 UserException.throwIt(REQUEST_FAILED);
 if ((amount < 0)|| (balance < amount))
 UserException.throwIt(REQUEST_FAILED);
 balance -= amount;
 return balance;
 }

 public short credit(short amount) throws RemoteException,
UserException {
 if ((!security
 .isCommandSecure(SecurityService.PROPERTY_INPUT_INTEGRITY)
)
 || (!security
 .isAuthenticated(SecurityService.PRINCIPAL_APP_PRO
VIDER)))
 UserException.throwIt(REQUEST_FAILED);
 if ((amount < 0)||(amount > MAX_AMOUNT))
 UserException.throwIt(REQUEST_FAILED);
 balance += amount;
 return balance;
 }

 public short getBalance() throws RemoteException, UserException {
 if ((!
security.isAuthenticated(SecurityService.PRINCIPAL_CARDHOLDER))
 && (!security
 .isAuthenticated(SecurityService.PRINCIPAL_APP_PRO
VIDER)))
 UserException.throwIt(REQUEST_FAILED);
 return balance;
 }
}

Related Topics

• Initialize a Security Service

• Use the Service to Check the Current Security Status

• Security Service Example

Chapter 13
Developing RMI Applications for the Java Card Platform

13-13

• More Secure Applet

• Client Changes to Support Security

• CustomCardAccessor Class for Authentication and Signing

Initialize a Security Service
In this example, basic security services (principal identification and authentication,
secure communication channel) are provided by an object that implements the
SecurityService interface. Because a generic remote object must not be dependent
on a particular kind of security service, it must take a reference to this object as a
parameter to its constructor. This is exactly what happens here, where the reference to
the object is stored in a dedicated private field:

private SecurityService security ;

The SecurityService interface is part of the extended application development
framework and offers an API that can then be used to check on the current security
status.

Use the Service to Check the Current Security Status
In the example, the following are required security behaviors for the applet:

• The debit method is authorized only if it is sent through a secure channel that
ensures at least the integrity of input data, and if the cardholder is successfully
authenticated.

• The credit method is authorized only if it is sent through a secure channel
that ensures at least the integrity of input data, and if the application issuer is
successfully authenticated.

• The getBalance method is authorized only if the cardholder or the application
issuer is successfully authenticated.

The SecurityService provides methods and constants that allow the implementation
to perform such checks. For instance, following is the code for the checks on the debit
method:

 if ((!security
 .isCommandSecure(SecurityService.PROPERTY_INPUT_INTEGRITY)
)
 || (!security
 .isAuthenticated(SecurityService.ID_CARDHOLDER)))
 UserException.throwIt(REQUEST_FAILED);

If one of the two conditions is not satisfied, the remote object throws an exception.
This exception is caught by the dispatcher and forwarded to the client.

Security Service Example
The following example demonstrates how to implement a security service.

package com.sun.javacard.samples.SecureRMIDemo;

Chapter 13
Developing RMI Applications for the Java Card Platform

13-14

import javacard.framework.*;
import javacard.framework.service.*;

public class MySecurityService extends BasicService implements
SecurityService {
 // list IDs of known parties...
 private static final byte[] PRINCIPAL_APP_PROVIDER_ID = {0x12, 0x34};
 private static final byte[] PRINCIPAL_CARDHOLDER_ID = {0x43, 0x21};
 private OwnerPIN provider_pin, cardholder_pin = null;
 // and the security-related session flags
 ...
 public MySecurityService() {
 // initialize the PINs
 ...
 }
 public boolean processDataIn(APDU apdu) {
 if(selectingApplet()) {
 // reset all flags
 ...
 }
 else {
 return preprocessCommandAPDU(apdu);
 }
 }
 public boolean isCommandSecure(byte properties) throws
ServiceException {
 // return the value of appropriate flag

 }
 public boolean isAuthenticated(short principal) throws
ServiceException {
 // return the value of appropriate flag

 }
 private byte authenticated;
 private boolean preprocessCommandAPDU(APDU apdu) {
 receiveInData(apdu);
 if(checkAndRemoveChecksum(apdu)) {

 // set DATA_INTEGRITY flag
 }
 else {
 // reset DATA_INTEGRITY flag
 }
 return false; // other services may also preprocess the data
 }
 private boolean checkAndRemoveChecksum(APDU apdu) {
 // remove the checksum
 // return true if checksum OK, false otherwise
 }
 public boolean processCommand(APDU apdu) {
 if(isAuthenticate(apdu)) {
 receiveInData(apdu);
 // check PIN

Chapter 13
Developing RMI Applications for the Java Card Platform

13-15

 // set AUTHENTICATED flags
 return true; // processing of the command is finished
 }
 else {
 return false; // this command was addressed to another
 // service - no processing is done
 }
 }
 public boolean processDataOut(APDU apdu) {
 // add checksum to outgoing data
 return false; // other services may also postprocess outgoing
data
 }
 private boolean isAuthenticate(APDU command) {
 // check values of CLA and INS bytes
 }
}

More Secure Applet
The supporting applet also must undergo some significant changes, in particular
regarding the initialization of the remote object:

package examples.securepurse;

import javacard.framework.*;
import javacard.framework.service.*;
import java.rmi.*;
import com.sun.javacard.samples.SecureRMIDemo.MySecurityService;

public class SecurePurseApplet extends Applet {
 Dispatcher dispatcher;

 private SecurePurseApplet() {
 SecurityService sec;
 // First get a security service
 sec = new MySecurityService();
 // Allocates an RMI service for the Java Card platform and
 // sets the initial reference
 RemoteService rmi = new RMIService(new SecurePurseImpl(sec));
 // Allocates and initializes a dispatcher for the remote object
 dispatcher = new Dispatcher((short) 2);
 dispatcher.addService(rmi, Dispatcher.PROCESS_COMMAND);
 dispatcher.addService(sec, Dispatcher.PROCESS_INPUT_DATA);
 }

 public static void install(byte[] buffer, short offset, byte length) {
 // Allocates and registers the applet
 (new SecurePurseApplet()).register();
 }

 public void process(APDU apdu) {
 dispatcher.process(apdu);
 }

Chapter 13
Developing RMI Applications for the Java Card Platform

13-16

}

The security service that is used by the remote object must be initialized at some
point. Here, this is done in the constructor for the SecurePurseApplet:

sec = new MySecurityService();

The initialization then goes on with the initialization of the Java Card RMI service. The
only new thing here is that the remote object being allocated and set as the initial
reference is now a SecurePurseImpl:

RemoteService rmi = new RMIService(new SecurePurseImpl(sec));

Next, the dispatcher must be initialized. Here, it must dispatch simple Java Card RMI
requests and security-related requests (such as EXTERNAL AUTHENTICATE). In fact, the
security service handles these requests directly. First, allocate a dispatcher and inform
it that it will delegate commands to two different services:

dispatcher = new Dispatcher((short)2);

Then, register services with the dispatcher. The security service is registered as a
service that performs preprocessing operations on incoming commands, and the Java
Card RMI service is registered as a service that processes the command requested:

dispatcher.addService(rmi, Dispatcher.PROCESS_COMMAND);
dispatcher.addService(sec, Dispatcher.PROCESS_INPUT_DATA);

The rest of the class (install and process methods) remain unchanged.

Client Changes to Support Security
The driver client application itself only changes minimally to account for the
authentication and integrity needs of SecurePurseApplet. It must also interact with the
user for identification. Hence, a subclass of ApduIO_Card_Accessor must be developed
to provide these additional interactions and the transport filtering required.

The following code is the new SecurePurseClient application:

import examples.purse.*;
import javacard.framework.UserException;

public class PurseClient extends java.lang.Object {
 public static void main(java.lang.String[] argv) {
 // arg[0] contains the debit amount
 short debitAmount = (short) Integer.parseInt(argv[0]);
 CustomCardAccessor cca = null;
 try {
 // open and powerup the card - using CustomCardAccessor
 cca = new CustomCardAccessor();
 // create an RMI connector instance for the Java Card platform
 JCRMIConnect jcRMI = new JCRMIConnect(cca);
 byte[] appAID = new byte[]
{0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08};
 // select the Java Card applet
 jcRMI.selectApplet(RMI_DEMO_AID,
JCRMIConnect.REF_WITH_CLASS_NAME);

Chapter 13
Developing RMI Applications for the Java Card Platform

13-17

 or
 jcRMI.selectApplet(RMI_DEMO_AID,
JCRMIConnect.REF_WITH_INTERFACE_NAMES);

 // give your PIN
 if (! cca.authenticateUser(PRINCIPAL_CARDHOLDER_ID)){
 throw new RemoteException(msg.getString("msg04"));
 }
 // obtain the initial reference to the Purse interface
 Purse myPurse = (Purse) jcRMI.getInitialReference();
 // debit the requested amount
 try {
 short balance = myPurse.debit (debitAmount);
 }catch (UserException jce) {
 short reasonCode = jce.getReason();
 // process UserException reason information
 }
 // display the balance to user
 }catch (Exception e) {
 e.printStackTrace();
 }finally {
 try {
 if(cca!=null){
 cca.closeCard();
 }
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

Note that the CustomCardAccessor instance is now obtained instead of
ApduIOCardAccessor:

 cca = new CustomCardAccessor(new ApduIOCardAccessor());

An extra step to authenticate with the SecurePurseApplet after selectApplet is
added. This invokes a new method in CustomCardAccessor to interact with the card
using the user's credentials:

 if (! cca.authenticateUser(PRINCIPAL_CARDHOLDER_ID)) {
 // handle error
 }

The rest of SecurePurseClient is the same as PurseClient.

CustomCardAccessor Class for Authentication and Signing
The SecurePurseClient application uses a subclass of CardAccessor called
CustomCardAccessor to perform user authentication functions and to sign every
message sent thereafter for integrity purposes:

Chapter 13
Developing RMI Applications for the Java Card Platform

13-18

package examples.securepurseclient;

public class CustomCardAccessor extends ApduIOCardAccessor {
 /** Creates new CustomCardAccessor */
 public CustomCardAccessor() {
 }

 public byte[] exchangeAPDU(byte[] sendData) throws
java.io.IOException {

 byte[] macSignature = null;
 byte[] dataWithMAC = new byte[sendData.length + 4];

 // sign the sendData data using session key
 // sign the data in commandBuffer using the user's session key
 // add generated MAC signature to data in buffer before sending

 return super.exchangeAPDU(dataWithMAC);
 }

 boolean authenticateUser(short userKey) {
 byte[] externalAuthCommand = null;

 // build and send the appropriate commands to the
 // applet to authenticate the user using the user Key
 // and additional info provided
 try {
 byte[] response = super.exchangeAPDU(externalAuthCommand);
 // ...
 } catch (Exception e) {
 // analyze
 return false;
 }
 // Then compute the session key for later use
 return true; // successful authentication
 }
}

The CustomCardAccessor class introduces the authenticateUser method to send
APDU commands to the SecurePurseApplet on the card to authenticate the user
described by the userKey parameter and other parameters and to compute a
transport key. It invokes super.sendCommandAPDU method to send the command
without modification.

This CustomCardAccessor class also reimplements the exchangeAPDU method declared
in a superclass CardAccessor to sign each message before it is sent out by
super.exchangeAPDU.

Programming to the Java Card RMI Client-Side API
This section describes how to use the Java Card RMI client-side API. A Java Card
RMI client application runs on a Card Acceptance Device (CAD) terminal that supports
a Java SE or Java ME platform.
This section contains the following sections:

Chapter 13
Programming to the Java Card RMI Client-Side API

13-19

• Overview of Programming to the Java card RMI Client Side

• Remote Stub Object

• Java Card RMI Client-Side API

Overview of Programming to the Java Card RMI Client Side
The client application requires a portable and platform-independent mechanism to
access the Java Card RMI server applet executing on the smart card. For an example,
see RMIPurse Sample.

For best results use the Java Card RMI client-side API for Java Card RMI client
programs. The simulator for the classic platform supports the optional Java Card RMI
functionality.

The basic client-side framework is implemented in the package
com.sun.javacard.rmiclientlib and com.sun.javacard.clientlib.

The library is located in the file JC_HOME_TOOLS\lib\tools.jar.

The simulator of the Java Card RMI client-side API is based on APDU I/O for its card
access mechanisms. See Working with APDU I/O for more information on APDU I/O.

Remote Stub Object
The Java Card RMI API supports two formats for passing remote references. The
format for remote references containing the class name requires stubs for remote
objects available to the client application.

You can use the standard Java RMIC compiler tool as the stub compilation tool
to produce stub classes required for the client application. To produce these stub
classes, the RMIC compiler tool must have access to all the non-abstract classes
defined in the applet package which directly or indirectly implement remote interfaces.
In addition, it needs to access the .class files of all the remote interfaces implemented
by them.

If you want the stub class to be Java Card RMI-specific when it is instantiated on the
client, it must be customized with a Java Card platform-specific implementation of the
CardObjectFactory interface.

The standard Java RMIC compiler is used to generate the remote stub
objects. JCRemoteRefImpl, a Java Card platform-specific implementation of the
java.rmi.server.RemoteRef interface, allows these stub objects to work with the Java
Card RMI API. The stub object delegates all method invocations to its configured
RemoteRef instance.

The com.sun.javacard.rmiclientlib.JCRemoteRefImpl class is an example of a
RemoteRef object customized for the Java Card platform.

For examples of how to use these interfaces and classes, see Java Card Platform
Application Programming Interface Specification, Classic Edition, Version 3.1.

Chapter 13
Programming to the Java Card RMI Client-Side API

13-20

Note:

Since the remote object is configured as a Java Card platform-specific object
with a local connection to the smart card through the CardAccessor object,
the object is inherently not portable. A bridge class must be used if it is to be
accessed from outside of this client application.

Note:

Some versions of the RMIC do not treat Throwable as a superclass of
RemoteException. The workaround is to declare remote methods to throw
Exception instead.

Java Card RMI Client-Side API
The two packages in the Java Card RMI client-side simulator demonstrate remote stub
customization using the RMIC compiler generated stubs and card access for Java
Card applets.

The package com.sun.javacard.rmiclientlib implements Java Card RMI-specific
functionality.

The package com.sun.javacard.clientlib implements basic functionality to
exchange APDUs with a smart card or a smart card simulator. This implementation
of clientlib requires that the ApduIO library is included in the CLASSPATH.

Package rmiclientlib
This package includes several classes.

• class JCRMIConnect—The main class of the RMI framework that provides
methods to select a card applet and to get an initial reference.

• class JCCardObjectFactory—An implementation of the CardObjectFactory that
processes the data returned from the card in the format defined in the Java Card
Platform Runtime Environment Specification, Classic Edition, Version 3.1. Any
object references must contain class names.

• class JCCardProxyFactory—The JCCardProxyFactory class is similar to
JCCardObjectFactory, but processes references containing lists of names.
JCCardProxyFactory uses the JDK 1.4.+ proxy mechanism to generate proxies
dynamically.

• class JCRemoteRefImpl—An implementation of interface
java.rmi.server.RemoteRef. These remote references can work with stubs
generated by the RMIC compiler with the -v1.2 option.

The main method is: public Object invoke(Remote remote, Method method,
Object[] params, long unused) throws IOException, RemoteException,
Exception

Chapter 13
Programming to the Java Card RMI Client-Side API

13-21

This method prepares the outgoing APDU, passes it to CardAccessor, and then
uses CardObjectFactory to parse the returned APDU and instantiate the returned
object or throw an exception.

Package clientlib
This package includes an interface and a class.

• interface CardAccessor—An interface defining methods to exchange APDUs with
a card and to close connection to a card.

• class ApduIOCardAccessor—A simple implementation of the CardAccessor
interface that passes the APDUs to a card or a card simulator using the
ApduIO library. This class takes parameters to start the ApduIO from the file
jcclient.properties, which must be included in CLASSPATH.

Chapter 13
Programming to the Java Card RMI Client-Side API

13-22

14
Using Extended APDU

This chapter describes the Extended APDU and how it can be used to allow large
amounts of data to be sent to the card, processed appropriately, and sent back to the
terminal.
The Extended APDU feature is especially beneficial to applications that deal with
large amounts of information, such as signature verification, biometrics verification and
image storage and retrieval. These are more easily implemented if the underlying
transport protocol is T=1. Applets developed for T=0 cards need special logic and care
to work correctly.

This chapter includes the following topics:

• Extended APDU Nominal Cases

• Extended APDU Format

• Extended APDU Limits

• Creating an Applet That Can Send and Receive Extended Length APDUs

Extended APDU Nominal Cases
The ISO/IEC 7816-4:2013 specification defines an extended APDU as any APDU
whose payload data, response data or expected data length exceeds the 256 byte
limit. Therefore, the four traditional cases are redefined as follows:

• Case 1. As in short length, this case is not affected.

• Case 2S. The legacy Case 2 from previous Java Card technology releases. LE
has a value of 1 to 255.

• Case 2E. The extended version of Case 2S, where LE is greater than 255.

• Case 3S. The legacy Case 3. LC is less than 256 bytes of data, and LE is zero.

• Case 3E. The extended version of Case 3, where LC is greater than 255, and LE
is zero.

• Case 4S. The legacy Case 4. LC and LE are less than 256 bytes of data.

• Case 4E. The extended version of Case 4. LC or LE are greater than 256 bytes of
data.

Extended APDU Format
Any APDU classified as extended must follow the format defined by ISO/IEC
7816-4:2013 for extended length APDU and summarized in Table 14-1.

14-1

Table 14-1 Extended APDU Format

Field Description Number of Bytes

Command Header Class byte CLA 1

Command Header Instruction byte INS 1

Command Header Parameter bytes P1- P2 2

LC Field Absent for Nc = 0. Present for Nc > 0 0, 1, or 3

Data Field Absent if Nc = 0, present if Nc >0 Nc

LE Field Absent for Ne = 0, present for Ne > 0 0, 1, 2 or 3

Response Data Absent if Nr = 0, present if Nr >0 Nr (max. Ne)

Response Status Status bytes SW1 SW2 2

Notation

Nc = command data length

Ne = expected response data length

Nr = actual response data length

The encoding rules are defined as:

For LC:

• If LC field is absent, Nc = 0.

• If LC is present as one byte with values between 01 and FF, then Nc = 1..255
accordingly, and it will be a short field.

• If LC is present as an extended field, then it will be three bytes in length: byte one
will be 00, bytes two and three will contain a 16-bit value representing the length of
the data Nc with values between 1 and 65535.

For LE:

• If LE is absent, Ne = 0.

• If LE is one byte:

– A value between 01 and FF will indicate Ne = 1..255.

– A value of 00 will indicate Ne = 256.

If LE is an extended field:

• LC and LE must be in the same format.

• An LE field value between 0001 and FFFF will indicate Ne = 1..65535.

• An LE field value of 0000 will indicate Ne= 65536.

Extended APDU Limits
The Java Card Platform, Version 3.1 supports extended APDUs with some limitations.
Because the platform defines all of its mandatory API in terms of short data length, the
values of LC and LE are limited to short positive values. That is, LC and LE have a

Chapter 14
Extended APDU Limits

14-2

range of 0..32,767. Lengths of 32,768 and beyond are not supported by the Java Card
Platform, Version 3.1 at this time.

This section includes the following topics:

• javacardx.framework.ExtendedLength Interface

• APDU Parsing with the javacard.framework.APDU Class

javacardx.framework.ExtendedLength Interface
By implementing the javacardx.apdu.ExtendedLength interface, applets indicate that
they are capable of processing, receiving, and replying to extended APDU commands.
The Java Card RE does not deliver extended APDU commands to applets that
do not implement this interface (it would throw an ISOException with reason code
ISO7816.SW_WRONG_LENGTH). In addition, the Java Card RE does not allow applets to
send reply data lengths greater than 256, if the interface is not implemented by the
applet.

The APDU buffer in Java Card applications reflects the structure of the extended
APDU as defined in the ISO/IEC 7816-3 specification. In T=1, this representation is
straightforward and precise; however, in T=0, adaptations are needed for some cases.

Specifically, a case 2E APDU sent over T=0 transport will not show its extended LE
value in the APDU buffer. Instead, a P3 value of '00' will always be transmitted and
interpreted as 32,767 if the applet implements ExtendedLength, or interpreted as 256 if
it does not.

The Java Card RE analyzes the APDU type coming into the card and determines its
type based on the rules defined in the ISO/IEC 7816-3 specification. Because case
2E commands look like case 2S commands in T=0, the Java Card RE is not able to
distinguish this particular case.

APDU Parsing with the javacard.framework.APDU Class
Because LC in cases 3E and 4E can take a large value, the parameter is sent
to the card as a three-byte quantity, in the format of 00 LCh LCl starting at
ISO7816.OFFSET_LC.

To get the value of LC and the data offset inside the APDU buffer use these two APIs
in javacard.framework.APDU:

• public short getIncomingLength()

This API call returns the value of LC as expressed in the APDU, whether it is
extended or not.

• public short getOffsetCdata()

This API call returns the offset where the first byte of the APDU data segment is
found.

Creating an Applet That Can Send and Receive Extended
Length APDUs

To create an applet that can send and receive extended length APDUs:

Chapter 14
Creating an Applet That Can Send and Receive Extended Length APDUs

14-3

1. Implement the javacardx.apdu.ExtendedLength interface in your applet:

...
import javacard.framework.*;
import javacardx.apdu.ExtendedLength;
...
public MyApplet extends Applet implements
ExtendedLength {
...
}

2. Write your applet and Applet.process(..) method as you would with any other
applets. For consistency, it is advisable that your process(..) code begin like the
one below:

public void process(APDU apdu) {
 byte[] buffer = apdu.getBuffer();

 if (apdu.isISOInterindustryCLA()) {
 if (this.selectingApplet()) {
 return;
 } else {
 ISOException.throwIt (ISO7816.SW_CLA_NOT_SUPPORTED);
 }
 }

 switch (buffer[ISO7816.OFFSET_INS]) {
 case CHOICE_1:
 ...
 return;
 case CHOICE_2:
 ...
 ...
 default:
 ISOException.throwIt (ISO7816.SW_INS_NOT_SUPPORTED);
 }
}

3. For cases 3S, 4S, 3E and 4E, write the method to handle incoming data. Use
the API so that your applet properly handles extended, as well as non-extended,
cases.

void receiveData(APDU apdu) {
 byte[] buffer = apdu.getBuffer();
 short LC = apdu.getIncomingLength();

 short recvLen = apdu.setIncomingAndreceive();
 short dataOffset = apdu.getOffsetCdata();

 while (recvLen > 0) {
 ...
 [process data in buffer[dataOffset]...]
 ...

Chapter 14
Creating an Applet That Can Send and Receive Extended Length APDUs

14-4

 recvLen = apdu.receiveBytes(dataOffset);
 }
 // Done
}

4. For case 2S, 2E, write the method handling data output. A method could look
something like this:

void sendData(APDU apdu) {
 byte[] buffer = apdu.getBuffer();

 short LE = apdu.setOutgoing();
 short toSend = ...

 if (LE != toSend) {
 apdu.setOutgoingLength(toSend);
 }

 while (toSend > 0) {
 ...
 [prepare data to send in APDU buffer]
 ...
 apdu.sendBytes(dataOffset, sentLen);
 toSend -= sentLen;
 }
 // Done
}

Chapter 14
Creating an Applet That Can Send and Receive Extended Length APDUs

14-5

15
Working with APDU I/O

This chapter describes the APDU I/O API, which is a library used by many Java Card
development kit components, such as apdutool, and the RMI client framework.

This chapter contains the following sections:

• The APDU I/O API

• Two-interface Card Simulation

• Examples of Use

The APDU I/O API
The APDU I/O library is used to develop Java Card client applications and Java Card
platform simulators. It provides the means to exchange APDUs by using the T=0 or
T=1 protocols.

The library is located in the file JC_HOME_TOOLS\lib\tools.jar.

All publicly available APDU I/O client classes are located in the package
com.sun.javacard.apduio.

APDU I/O Classes and Interfaces
The APDU I/O classes and interfaces are described in this section.

• class Apdu

Represents a pair of APDUs (both C-APDU and R-APDU). Contains various
helper methods to access APDU contents and constants providing standard
offsets within the APDU.

• interface CadClientInterface

Represents an interface from the client to the card reader or a simulator. Includes
methods for powering up, powering down and exchanging APDUs.

– void exchangeApdu(Apdu apdu)

Exchanges a single APDU with the card. Note that the APDU object contains
both incoming and outgoing APDUs.

– public byte[] powerUp()

Powers up the card and returns ATR (Answer-To-Reset) bytes.

– void powerDown(boolean disconnect)

Powers down the card. The parameter, applicable only to communications
with a simulator, means "close the socket". Normally, it is true for contacted
connection, false for contactless. See Two-interface Card Simulation for more
details.

– void powerDown()

15-1

Equivalent to powerDown(true).

• abstract class CadDevice

Factory and a base class for all CadClientInterface implementations included
with the APDU I/O library. Includes constants for the T=0 and T=1 clients.

The factory method static CadClientInterface getCadClientInstance(byte
protocolType, InputStream in, OutputStream out) returns a new instance of
CadClientInterface. The in and out streams correspond to a socket connection
to a simulator. Protocol type can be one of:

– CadDevice.PROTOCOL_T0

– CadDevice.PROTOCOL_T1

Exceptions
The following exceptions may be thrown in case of system malfunction or protocol
violations:

• CadTransportException extends Exception

• T1Exception extends CadTransportException

• TLP224Exception extends CadTransportException

In all cases, their toString() method returns the cause of failure. In addition,
java.io.IOException may be thrown at any time if the underlying socket connection
is terminated or could not be established.

Two-interface Card Simulation
To simulate dual-interface cards with the simulator the following model is used:

• The simulator (cref) listens for communication on two TCP sockets: (n) and (n+1),
where n is the default (9025) or the socket number given in the command line.

• The client creates two instances of the CadClientInterface, with protocols T=1
on both. One of these instances communicates on the port (n), while the other
communicates on the port (n+1).

• Each of these client interfaces needs to issue the powerUp command before being
able to exchange APDUs.

• Issuing the powerDown command on the contactless interface closes all contactless
logical channels. After this, the contacted interface is still available to exchange
APDUs. The client also may issue powerUp on a contactless interface again and
continue exchanging APDUs on the contactless interface too.

• Issuing the powerDown command on the contacted interface closes all channels
and causes the simulator (cref) to exit. That is, any activity after powering
down the contacted interface requires restarting the simulator and reestablishing
connections between the client and the simulator.

• At most, one socket can be processing an APDU at any time. The client may
send the next APDU only after the response of the previous APDU is received.
This means, behavior of the client+simulator still remains deterministic and
reproducible.

Chapter 15
Two-interface Card Simulation

15-2

• If you have a source release of the Java Card development kit, you can
see a sample implementation of such a dual-interface client in the file
ReaderWriter.java inside the apdutool source tree.

APDU I/O API Examples
The following are examples of how to use the APDU I/O API:

• To Connect To a Simulator

• To Power Up And Power Down the Card

• To Exchange APDUs

• To Print the APDU

To Connect To a Simulator
To establish a connection to a simulator such as cref:

1. Use the following code snippet:

CadClientInterface cad;
Socket sock;
sock = new Socket("localhost", 9025);
InputStream is = sock.getInputStream();
OutputStream os = sock.getOutputStream();
cad=CadDevice.getCadClientInstance(CadDevice.PROTOCOL_T0, is, os);

2. The code establishes a T=0 connection to a simulator listening to port 9025 on
localhost.

To open a T=1 connection instead, replace PROTOCOL_T0 in the last line with
PROTOCOL_T1.

For dual-interface simulation, open two T=1 connections on ports (n) and (n+1), as
described in Two-interface Card Simulation.

To Power Up And Power Down the Card
The dual-interface simulator is implemented in such a way that once the client
establishes connection to a port, the next command must be powerUp on that port.
For example, the following sequence is valid:

1. Connect on "contacted" port.

2. Send powerUp to it.

3. Exchange some APDUs.

4. Connect on "contactless" port.

5. Send powerUp to it.

6. Exchange more APDUs

However, the following sequence is not valid:

1. Connect on "contacted" port.

2. Connect on "contactless" port.

Chapter 15
APDU I/O API Examples

15-3

3. Send powerUp to any port.

To power up and power down the card:

1. Use the following code:

cad.powerUp();

2. To power down the card and close the socket connection (for simulators only), use
either of the following code lines:

cad.powerDown(true);

or

cad.powerDown();

3. To power down, but leave the socket open, use the following code.

cad.powerDown(false);

If the simulator continues to run (which is true if this is contactless interface of the
simulator) you can issue powerUp() on this card again and continue exchanging
APDUs.

To Exchange APDUs
To exchange APDUs:

1. Create a new APDU object using the following code:

Apdu apdu = new Apdu();

2. Copy the header (CLA, INS, P1, P2) of the APDU to be sent into the
apdu.command field.

3. Set the data to be sent and the Lc using the following code:

apdu.setDataIn(dataIn, Lc);

where the array dataIn contains the C-APDU data, and the Lc contains the data
length.

4. Set the number of bytes expected into the apdu.Le field.

5. Exchange the APDU with a card or simulator using the following code:

cad.exchangeApdu(apdu);

After the exchange, apdu.Le contains the number of bytes received from the card
or simulator, apdu.dataOut contains the data received, and apdu.sw1sw2 contains
the SW1 and SW2 status bytes.

These fields can be accessed through the corresponding get methods.

To Print the APDU
To print the APDU:

• The following code prints both C-APDU and R-APDU in the apdutool output
format.

System.out.println(apdu)

Chapter 15
APDU I/O API Examples

15-4

16
Programming for the Large Address Space

This chapter describes two ways in which you can take advantage of large memory
storage in smart cards: by using library packages properly and by separating your data
properly. This chapter also includes a sample.
While the extended CAP files allow multiple packages in a single CAP file and method
component of size greater than 64 K, the compact CAP files are still limited to a single
package and have a 64 K limit on the method component. Therefore, you must take
special considerations when using the compact CAP files to take advantage of the
large memory storage in smart cards.

This chapter contains the following sections:

• Overview of Programming for the Large Address Space

• Programming Large Applications and Libraries

• Storing Large Amounts of Data

• Example: The photocard Demo Applet

Overview of Programming for the Large Address Space
The default address space automatically built in the simulator is the large address
space. Allowing your applications to take advantage of the large address capabilities
of the Classic Edition simulator using compact CAP files requires careful planning
and programming. Some size limitations still exist within the simulator. The way that
you structure large applications and applications that manage large amounts of data
determines how the large address space can be exploited.

Programming Large Applications and Libraries
The introduction of Extended CAP files (see Programming Large Java Card
Applications With Multiple Packages) in Java Card version 3.1 facilitates the
development of large applications for the Java Card platform.

However, there might be scenarios where developers want to continue using the
Compact CAP file format. For example, to target Java Card products that do not
support Extended CAP files. When using the compact CAP file format, the most
important limitation on a package is the 64 KB limitation on the maximum component
size. This is especially true for the Method component. If the size of an application's
Method component exceeds 64 KB, then the Java Card Converter doesn't process the
package and returns an error.

You can overcome the component size limitation by dividing the application into
separate application and library components. The Java Card platform has the ability
to support library packages. Library packages contain code, which can be linked and
reused by several applications. By dividing the functionality of a given application into
application and library packages, you can increase the size of the components. It is
important to note that there are important differences between library packages and
applet packages:

16-1

• In a library package, all public fields are available to other packages for linking.

• In an applet package, only interactions through a shareable interface are allowed
by the firewall.

Therefore, you must not place sensitive or exclusive-use code in a library package. It
must be placed in an applet package, instead.

Handling a Package as a Separate Code Space
Several applications and API functionality can be installed in the smart card
simultaneously by handling each package as a separate code space. This technique
lets you exceed the 64KB limit, and provide full Java Card API functionality and
support for complex applications requiring larger amounts of code.

Storing Large Amounts of Data
The most efficient way to take advantage of the large memory space is to use it to
store data. Today's applications are required to securely store ever-growing amounts
of information about the cardholder or network identity. This information includes
certificates, images, security keys, and biometric and biographical information.

This information sometimes requires large amounts of storage. Before version 2.2.2,
versions of the Java Card platform simulator had to save downloaded applications or
user data in valuable persistent memory space. Sometimes, the amount of memory
space required was insufficient for some applications. However, the memory access
schemes introduced with version 2.2.2 allow applications to store large amounts of
information, while still conforming to the Java Card specification.

The Java Card specification does not impose any requirements on object location or
total object heap space used on the card. It specifies only that each object must be
accessible by using a 16-bit reference. It also imposes some limitations on the amount
of information an individual object is capable of storing, by using the number of fields
or the count of array elements. Because of this loose association, it is possible for any
given implementation to control how an object's information is stored, and how much
data these objects can collectively hold.

The Java Card Platform simulator, enables you to use all of the available persistent
memory space to store object information. By allowing you to separate data storage
into distinct array and object types, this simulator enables you to store the large
amounts of data demanded by today's applications.

Example: The photocard Demo Applet
The photocard demo applet, included at samples/classic_applets/PhotoCard, is
an example of an application that takes advantage of the large address space
capabilities.

The photocard applet performs a very simple task: it stores pictures inside the smart
card and retrieves them by using a Java Card RMI interface, see Programming to the
Java Card RMI Client-Side API. For more information on the photocard demo applet
and how to run it, see PhotoCard Sample. The source code is located in the source
code bundle at:

JC_HOME_SIMULATOR\samples\classic_applets\PhotoCard\applet\src\c
om\sun\jcclassic\samples\photocard

Chapter 16
Storing Large Amounts of Data

16-2

The collection of arrays (more than two arrays would be required in this case) can
easily hold far more than 64KB of data. Storing this amount of information should not
be a problem, provided that enough mutable persistent memory is configured in the
RE.

Chapter 16
Example: The photocard Demo Applet

16-3

17
Programming Large Java Card
Applications With Multiple Packages

The Java Card version 3.1 allows you to bundle multiple Java packages into one Java
Card CAP file using an extended CAP file format.

This feature enables you to:

• Keep a modular design by having applications or libraries made of multiple
packages.

• Distribute an application with the libraries it relies on.

• Control the visibility of each of the packages deployed in a CAP file.

• Overcome the size limitation of 64 K in compact CAP files.

The converter uses the extended CAP file format when multiple packages are used in
a single CAP file or when the converted code for the whole CAP file exceeds the size
of 64 KB.

The Java Card products optionally supports the extended CAP file. Before using this
extended CAP file format, it is important to check if the target Java Card product
supports this feature or not.

Refer to Java Card Platform Virtual Machine Specification, Classic Edition, Version
3.1, for more information on the CAP file and its format.

Topics:

• CAP File Identification

• Package Visibility

• Firewall Context

• Extended CAP Accessibility Example

• Design Rules for a Java Card Application with Large Method Component

CAP File Identification
Each CAP file has an AID and a version. The AID and version values are dependent
on the format of the CAP file (compact and extended) as follows:

• When the CAP file contains a unique package and it is in the compact format, its
AID and version are same as the AID and version of the package it contains.

• When the CAP file contains multiple packages and it is in the extended format,
it has its own AID and version, independent of the AIDs and versions of the
packages it contains.

17-1

Package Visibility
The extended CAP file format offers more flexibility for the package visibility as follows:

• Each public package inside a CAP file has an AID and version. This AID and
version uniquely identify this package when a package in another CAP file is
importing it.

• Private packages inside a CAP file or packages that have no exported information
(like an applet package with no Shareable interfaces) have no AID and version. In
addition, because nothing is exported, the Converter does not generate an export
file. Packages in other CAP files imports nothing from such packages.

• Unlike in an applet compact CAP file, if an extended CAP file is an applet CAP file,
then the public library packages that are contained in the CAP file are exported as
if they were present in a compact CAP file. In addition, the public applet packages
contained in an extended CAP file are exported individually based on the same
rules as for the compact CAP files (only public Shareable interfaces).

• Packages inside a bundle are visible to each other and the standard Java access
rules (public, protected, package, or private) apply, irrespective of whether the
packages are public or private.

Firewall Context
If a CAP file contains at least one package with one or more non-abstract classes
that extend the javacard.framework.Applet class, then it is associated with a firewall
context.

Refer to the Java Card Platform Runtime Environment Specification, Classic Edition,
Version 3.1, for more details.

Extended CAP Accessibility Example
To understand the extended CAP file accessibility, let’s consider a scenario as shown
in the following figure:

The following table describes the package level access under different access
conditions (1, 2, and 3):

Chapter 17
Package Visibility

17-2

Figure 17-1 Extended CAP Accessibility Example

CAP file 2: compact, appletCAP file 1: extended, applet

<public>

package com.oracle.package1

public class Class1 {...}

<public>

package com.oracle.package3

public class Class3 extends Applet {...}

<private>

package com.oracle.package2

public class Class2 {...}

<public>

package com.oracle.package4

public class Class4 extends Applet {...}

public class Class5 implements Shareable {...}

package com.oracle.package5

public class Class6 extends Applet {...}

public class Class5 implements Shareable {...}

Key

Private Package

Package containing Applet

Public Package

Table 17-1 Package Level Access

Accessibility package1 package2 package3 package4 package5

package1 has
access to:

Yes (1) and (2) Yes (1) Yes (1) Yes (1), (2),
and (3)

package2 has
access to:

Yes (1) and (2) Yes (1) Yes (1) Yes (1), (2),
and (3)

package3 has
access to:

Yes (1) and (2) Yes (1) and (2) Yes (1) Yes (1), (2),
and (3)

package4 has
access to:

Yes (1) and (2) Yes (1) and (2) Yes (1) Yes (1), (2),
and (3)

package5 has
access to:

Yes (1) and (2) No (1) No (1) and (3) Yes (1) and (3)

The following are the access conditions (1, 2, and 3) that are listed in the table:

1. Exported packages in an extended CAP file - Packages in an extended CAP file
can be marked as public or private. Only the public packages are accessible
from packages in another CAP file. However, all packages are accessible within
the same CAP file.

2. Java access rules - Code access conforms to Java accessibility rules (private,
public, package, protected, and so on.). For example, inside the Class1 or
Class2 methods, a Class3()or a Class4() constructor can be called (only if the
constructors are public) or other public methods from Class3 and Class4, even if
Class3 and Class4 are Java Card applets.

3. Java Card access rules for package containing an Applet - A public package
containing a class extending the javacard.framework.Applet class does not
export all its public classes and interfaces. Only the interfaces extending the
javacard.framework.Shareable interface or the classes implementing it are
exported and visible from other packages. For example, code from package5
can access only the Class5 in package4 and cannot access content of package3
because nothing is exported.

Chapter 17
Extended CAP Accessibility Example

17-3

Design Rules for a Java Card Application with Large Method
Component

In compact CAP files, the Method Component is limited to a 64 KB size. This can be a
constraint if an application has many features, if a library has a large API, or if it is too
large to fit into that size after conversion.

The extended CAP file offers a solution to this by creating a Method Component that
has a maximum size of eight megabytes. For large applications, the extended mode is
preferable.

The Converter splits the large Method Component into blocks, each with a maximum
size of 64 KB. It is important to note that methods cannot be divided between two
blocks and all exception handlers for a method must be contained in the same block of
the method code. Because of this, when programming large Java Card applications for
extended CAPs, the method code size must not be too large and specialization pattern
must be used whenever possible.

Chapter 17
Design Rules for a Java Card Application with Large Method Component

17-4

18
Java Card Accessibility Information

Java Card Development Kit provides a wide range of features that support
accessibility. Oracle is committed to creating products, services, and supporting
documentation that is accessible to the disabled community. Java Card Runtime
Environment is executed through command line interface.

This topic details the Java Card Development Kit features that support accessibility.

Topics:

• Access to Java Card Development Kit Support

• Java Card Development Kit Features that Support Accessibility

• Keyboard Navigation

• Documentation Accessibility Features

Access to Java Card Development Kit Support
The Java Card Development Kit customers have access to electronic support through
email with their assigned support engineer provided by the Java Card Licensee
Engineering (JLE) organization.

Hearing impaired customers in the U.S. who wish to speak to their assigned support
engineer can use the telecommunications relay service (TRS). Information about
the TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html and a list of
telephone numbers is available at https://www.fcc.gov/general/telecommunications-
relay-services-directory International hearing-impaired customers must use the TRS
at +1.605.224.1837.

Java Card Development Kit Features that Support
Accessibility

Oracle's goal is to ensure that disabled users of our products can perform the same
tasks, and access the same functionality as other users.

Java Card Development Kit supports the following accessibility features:

• Can be operated using only the keyboard

• Communicates all information independent of color

• Time Based Media is not used

• Images of text are not used

• Moving, blinking, or scrolling content is not used

• Doesn’t disrupt platform accessibility features such as Sticky Keys, High Contrast,
and Large Fonts

18-1

http://www.fcc.gov/cgb/consumerfacts/trs.html
https://www.fcc.gov/general/telecommunications-relay-services-directory
https://www.fcc.gov/general/telecommunications-relay-services-directory

• Provides online documentation in an accessible format

Keyboard Navigation
Java Card Development Kit uses standard navigation keys.

Documentation Accessibility Features
Java Card Development Kit documentation supports the following accessibility
features:

• The documents are available in the HTML format to give maximum opportunity for
the users to apply screen-reader software technology.

• The images in the documents are provided with alternative text so that users with
vision impairments can understand the contents of the images.

Chapter 18
Keyboard Navigation

18-2

Part III
Java Card Eclipse Plug-in

This part of the user guide describes how to use the Java Card Eclipse plug-in to
create a Java Card project, Java Card applet, and to debug an applet. It contains the
following chapter:

• Using the Java Card Eclipse Plug-in

19
Using the Java Card Eclipse Plug-in

This chapter contains the following topics:

Topics:

• Creating a Java Card Project Using the New Java Card Project Wizard

• Creating a Java Card Applet Using the Default Source Template

• Creating a CAP File in a Java Card Project

• Adding a Java Card Package to a CAP File

• Adding a Java Card Applet to a Java Card Package

• Adding a Java Card Static Resource to a CAP File

• Debugging a Java Card Applet in Eclipse Plug-in

Creating a Java Card Project Using the New Java Card
Project Wizard

To create a new Java Card Project, based on a default template, use the New Java
Card Project wizard:

1. Click the File menu, and then select New and Other….

2. In the Other… dialog, under Oracle Java Card SDK, select Java Card Project.

3. In the first page of the wizard, configure the following Java Card specific sections:

• Runtime Environment - Select the Java Card Platform that you want to
use in the project. The platform and devices are selected from the existing
configuration. If you have not configured the platform and devices, you can
use a link that opens the platform and devices settings page. If you are using
the Oracle Java Card Simulator source bundle, an option to add the Java Card
API source files to the project for API debugging is available.

• Java Card Tools - Configure the Java Card tools bundle path, if not
configured already.

• Application - Configure a Java Card package and/or applet with names
and AIDs. When an applet is configured, a default Applet source template
is created.

4. Click Finish.

A new Java Card project is created in the workspace containing the default CAP
file configuration. However, this is valid only if the application is configured in Step
3. The API source files are added as linked sources in the build path if this option
is selected in Step 3.

19-1

Changing the Runtime Environment for the Java Card Project

To change the runtime environment:

1. Right-click on the Java Card project and select Java Card and Runtime Setting.

2. Select a platform from the Platform section. If a platform is not configured, click
the link that opens the Java Card platforms and device global settings pages.

3. In the Device section, select a configured device for the selected platform. If a
device is not configured, click the link that opens the Java Card platforms and
device global settings page.

Creating a Java Card Applet Using the Default Source
Template

To create Java Card Applets use the default source template of the Eclipse plug-in:

1. Select a Java Card Project, click the File menu, and select New and Other….

2. In the Other… dialog, expand Oracle Java Card SDK and select Java Card
Applet.

3. In the Package section, click Browse and select the Java package where you
want to add the Applet source template.

4. In the Applet name field, enter a Java class compliant name.

5. Click Finish.

The Java Card applet is added to the package.

Creating a CAP File in a Java Card Project
To create deliverables in a Java Card project, you must create and configure CAP
files.

To create a CAP file:

1. Select a Java Card Project, click the File menu, and select New and Other….

2. In the Other… dialog, expand Oracle Java Card SDK and select the Java Card
CAP File.

3. In the Select CAP file type page, select either Compact CAP file or Extended
CAP file. Each type of the CAP file has a specific function in the Java Card
specification. It is important to note the following:

• A compact CAP file can have only one Java Card package configured.

• An extended CAP file can be used only with the 3.1.0 or greater Java Card
platform versions.

4. In the Select CAP file settings page, configure the converter and scriptgen tools
options for the build:

a. In the CAP File AID section, enter a unique CAP file name and CAP file AID.
If the CAP file is a compact CAP file, then the AID field is disabled. This is

Chapter 19
Creating a Java Card Applet Using the Default Source Template

19-2

because, the CAP file AID is inherited from the Java Card package that is
configured.

b. In the Converter section, configure the converter tool:

• In the Options section, enter values for the CAP file version, target
platform, and all the flags. If a CAP file is a compact CAP file, then the
version is inherited from the Java Card package that is configured. If a
CAP file is an extended CAP file, then the target platform must be 3.1.0
only and the mask flag option is disabled.

• In the Export Path section, add the directories in which the converter
tool searches for the export files. The verifier tool uses the paths added
in this step during the build process. If the paths are added from the
project, relative paths are generated.

• In the CAP Signing section, configure the CAP sign feature of the
converter tool.

c. In the ScriptGen section, specify the options for the scriptgen tool. For
example, specify how to modify the default script templates for the CAP file
loading and how to suppress power up and power down commands in the
order in which you want to run the scripts.

5. Click Finish.

A dialog appears prompting you to confirm if the Java Card package needs to
be configured for the CAP file you just created. If you click Yes, the Package
Configuration dialog appears. Else, if you click No, the wizard closes and a new
configuration file to be included in the build is created.

Managing CAP File Configurations
To manage the CAP file configurations list and to edit a CAP file configurations, use
the CAP file project settings:

1. Right-click on the Java Card project and select the Java Card and CAP Files
Settings.

2. In the Java Card CAP Files page, to manage the CAP files used in the build, use
the following options:

a. Click Add to create a new CAP file using the wizard.

b. Click Edit to edit a CAP file configuration using the wizard with all fields set to
the previous values.

c. Click Delete to delete a CAP file configuration from the build.

Adding a Java Card Package to a CAP File
To include a CAP file in the build, it must be in the configured state. A Configured CAP
file is a CAP file that has at least one Java Card package added to it.

To add a Java Card package to a CAP file:

1. Right-click on the Java Card project and select Java Card and CAP Files
Settings.

2. In the Java Card CAP Files page, select a CAP file from the list.

Chapter 19
Adding a Java Card Package to a CAP File

19-3

3. Click Add new package.

Note:

If the CAP file is a compact CAP file and it is already configured,
then Add new package is disabled. A compact CAP file can contain
a maximum of one package only.

4. In the Configure Java Card package dialog, configure the following converter tool
specific parameters:

a. Next to the Package Name field, click Browse… and select a Java package
from the project

b. Enter values for the Java Card package AID and version fields.

c. Verify the converter tool flags. The Private flag is available only if the CAP
files are extended CAP files.

5. Click OK.

A dialog appears prompting you to confirm if a Java Card Applet needs to be
configured for the package that you just created. If you click Yes, the Java Card
Applet configuration dialog appears. Else, if you click No, the dialog closes, the
CAP file configuration is updated, and the project is rebuilt.

Managing the Java Card Package
To manage the Java Card package added to a CAP file and to edit the Java Card
package, use the CAP file project settings:

1. Right-click on the Java Card project and select Java Card and CAP Files Setting.

2. In the CAP Files Settings page, click the arrow to the left of the Java Card CAP
Files.

3. Select Java Card Packages.

A list with package names appears.

4. Select a CAP file from the combo list.

The list is populated with the Java Card packages configured for the selected CAP
file.

5. To manage the Java Card packages configured for the selected CAP file, perform
the following tasks:

a. Click Add to add a new Java Card package to the selected CAP file. If the
CAP file is a configured compact file, this button is disabled.

b. Click Edit to edit an already configured Java Card package.

c. Click Delete to delete a Java Card package from the selected CAP file.

Adding a Java Card Applet to a Java Card Package
If a CAP file is an applet CAP file, then you need to configure the applets that are
contained in it. A Java Card Applet is a class contained in a Java Card package.

To add a Java Card Applet to a Java Card package:

Chapter 19
Adding a Java Card Applet to a Java Card Package

19-4

1. Right-click on the Java Card project and select the Java Card and CAP Files
Settings.

2. In the CAP Files Settings page, click the arrow to the left of the Java Card CAP
Files.

3. Select Java Card Packages and the CAP file in which you want to add the Applet.

4. Select the package that contains the Applet you want to add.

5. Click Add new applet.

6. In the Configure Java Card Applet window, set the converter tool parameters for
the applets:

a. In the Applet section, click Browse… and select the applet class from the list.

b. In the Applet AID section, enter a value for the PIX part of the AID of the Java
Card Applet. The RID part of the AID is automatically populated based on the
Java Card package configuration.

7. Click OK.

The window closes, the CAP file configuration is updated, and the project is
rebuilt.

Managing Java Card Applets
To manage Java Card Applets and to edit them, use the CAP file project settings:

1. Right-click on the Java Card project and select the Java Card and CAP Files
Settings.

2. In the CAP Files Settings page, click the arrow to the left of the Java Card CAP
Files.

3. Click the arrow to the left of the Java Card Packages.

4. Select Java Card Applets.

A list with Applets appears.

5. Select a CAP file and Java Card package combination from the combo list.

The list is populated with the Java Card Applets configured for the selected
combination.

6. To manage the Java Card Applets configured for the selected combination,
perform the following tasks:

a. Click Add to add a new Java Card Applet to the selected CAP file or package
combination.

b. Click Edit to edit an already configured Java Card Applet.

c. Click Delete to delete a Java Card Applet from the selected CAP file or
package combination.

Adding a Java Card Static Resource to a CAP File
Since the Java Card version 3.1.0 and later, you can add static resources to a CAP file
while loading.

To add a Java Card static resource to a CAP file:

Chapter 19
Adding a Java Card Static Resource to a CAP File

19-5

1. Right-click on the Java Card project and select Java Card and CAP Files
Settings.

2. In the Java Card CAP Files page, select a CAP file from the list.

3. Click Add new static resource.

4. In the Configure Java Card static resource dialog, configure the converter tool
static resource-specific parameters:

a. In the Static Resource ID field, enter a unique integer number.

b. In the Static Resource file path section, click Browse… and select the file
that you want to add as a static resource to a CAP file. If the path is inside the
project, a relative path is generated.

5. Click OK.

The Configure Java Card static resource dialog closes, the CAP file
configuration is updated, and the project is rebuilt.

Managing Java Card Static Resources
To manage Java Card static resources list added to a CAP file, and to edit the Java
Card static resource, use the CAP file project settings:

1. Right-click on the Java Card project and select Java Card and CAP Files Setting.

2. In the CAP Files Settings page, click the arrow to the left of the Java Card CAP
Files.

3. Select Java Card Static Resources.

A list with static resources appears.

4. Select a CAP file from the combo list.

The list is populated with Java Card static resources configured for the selected
CAP file.

5. To manage the Java Card static resources configured for the selected CAP file,
perform the following tasks:

a. Click Add to add a new Java Card static resource to the selected CAP file.

b. Click Edit to edit an already configured Java Card static resource.

c. Click Delete to delete a Java Card static resource from the selected CAP file.

Debugging a Java Card Applet in Eclipse Plug-in
From Eclipse, you can run the debug proxy to set breakpoints, get or set variable
values, and debug a library.

These steps are an overview of how to debug an application from Eclipse.

The Java Card plug-in for Eclipse must already be installed.

1. Create (or import) your Java Card project. Make sure that debugging information is
generated when the project is built.

Chapter 19
Debugging a Java Card Applet in Eclipse Plug-in

19-6

Note:

The debugging information is generated only if you select the Enable
generation of debugging information check box in the CAP file
settings.

2. Create a new Java Card Project Debug configuration and select the Java Card
tab. Perform the following tasks:

a. Specify scripts to be executed when the simulator starts. This not only
includes the scripts generated in the apdu_scripts directory, but also other
custom scripts. The scripts run in an order. The powerup command is sent
only once at the beginning and the powerDown command is not sent. It is
important to note that the cap-* scripts for libraries must be executed before
the cap-* scripts for the applet if the EEPROM of cref is empty at the start of
the debug session.

b. Add cap files for the applet and imported libraries, which include the code
that you want to debug. These not only include CAP files generated in the
deliverables directory, but also the CAP files that you generated.

3. Once the debug session starts, cref starts in debug mode, the script(s) are
executed, the debug proxy is started, and the Eclipse debugger connects to the
debug proxy.

You can experiment with the debug perspective and look at the debug console for
debug proxy output.

4. Set breakpoints, and execute scripts.

Debugging HelloWorld Sample from Eclipse
These steps show you how to debug the HelloWorld sample. The Java Card plug-in
for Eclipse must already be installed.

Start Eclipse. Sample_Platform and Sample_Device must already be created.

1. Click the File menu, select Import >General > Projects from Folder or Archive,
and select the applet directory from the HelloWorld project to import the
HelloWorld Java Card project into your workspace. If the build doesn't start
automatically, start it manually.

2. Make sure debugging information generation is enabled for the HelloWorld
package:

a. Right-click on the imported project and select Java Card and CAP Files
Settings.

b. Select the HelloWorld CAP file and click Edit.

c. In the new wizard, click Next on the first page.

d. In the second page, select the Enable generation of debugging information
check box.

e. Click Finish and Apply, and close the wizard.

3. Create a new debug configuration:

a. Right-click on the HelloWorld project in the Package Explorer and select
Debug As and Debug Configurations.

Chapter 19
Debugging a Java Card Applet in Eclipse Plug-in

19-7

b. In the Debug Configurations dialog, double-click Java Card Project Debug (in
the list). This will a create new debug configuration named HelloWorld.

c. Select the Java Card tab.

d. Select the Start simulator in debug mode… and Start debug proxy…
check boxes.

e. Click Add script.... Browse to the HelloWorld project directory and select the
applet\apdu_scripts\cap-HelloWorld.script file. This script will install the
applet without creating an applet instance.

f. Click Add cap file.... Browse to the HelloWorld project directory and select
the
applet\deliverables\HelloWorld\com\oracle\jcclassic\samples\hellowo
rld\javacard\helloworld.cap file.

g. Click Debug.

The debug configuration starts. First, cref is started in debug mode, then the
script is executed, the debug proxy is started, and finally the Eclipse debugger
connects to the debug proxy.

4. The Confirm Perspective Switch dialog appears, asking if you want to open the
Debug perspective. You may choose to open it, depending on your preference.

The Debug console shows output from the debug proxy.

5. In the Package Explorer, locate HelloWorld.java and open it. Set two
breakpoints: one in the install() method of the applet, the other in the beginning
of the process() method.

There are several ways to set a breakpoint in Eclipse. In the source code editor,
position the cursor on the desired line and do one of the following:

a. Double-click the left most space on the source code line (the line number will
be to the right).

b. Press Ctrl + Shift + B to toggle the breakpoint (the type of breakpoint will be
selected automatically depending on the source code).

c. Select a specific breakpoint to toggle from the Run menu.

6. Execute the two remaining scripts in order they appear in the Package Explorer:
create-*, then select-* (Right-click on the script and select Java Card and
Execute Script).

After each script runs, execution will suspend on the corresponding breakpoint.
Step* and resume debugger commands can be used to resume applet code
execution.

Chapter 19
Debugging a Java Card Applet in Eclipse Plug-in

19-8

Part IV
Appendices

The following appendices contain a Java Card assembly syntax example and a
description of additional, optional Ant tasks:

• Java Card Assembly Syntax Example

• Additional Optional Ant Tasks

A
Java Card Assembly Syntax Example

This appendix contains two examples of annotated Java Card platform assembly
(Java Card Assembly) files that are generated with the Converter. The first example
contains the output of 3.0.5 Converter. The second example highlights the changes in
Java Card Assembly (JCA) files generated with the 3.1 Converter. A notable change is
that the publicMethodTable format has changed due to the Virtual Method Tokens
feature (see Section 6.9.2.7 in Java Card Platform Virtual Machine Specification,
Classic Edition, Version 3.1, for more details). The comments in these files are
intended to help you understand the syntax of the Java Card Assembly language,
and to act as a guide for debugging the Converter output.

Note:

If you are using a source release, you can get an HTML file with the BNF
grammar for the Java Card Assembly syntax by using the Java jjdoc tool
with:

JC_HOME_TOOLS\src\tools\converter\com\sun\javacard\jcasm\Parser.jj

/*

 * Java Card Assembly annotated example. The code
 * contained within this example is not an executable
 * program. The intention of this program is to illustrate the
 * syntax and use of the Java Card Assembly directives and commands.

*

 * A Java Card Assembly file is textual representation of the
 * contents of a CAP file.
 * The contents of a Java Card Assembly file are hierarchically
 * structured. The format of this structure is:

*

 * package
 * package
directives
 * imports
block
 * applet
declarations
 * constant
pool
 *
class
 * field
declarations

A-1

 * virtual method tables
 * interface table
 * [remote interface table] - only for remote classes
 *
methods
 * method
directives
 * method
statements

*

 * Java Card Assembly files support both the Java single line
 * comments and Java block
 * comments. Anything contained within a comment is ignored.
 *
 * Numbers may be specified using the standard Java notation.
 * Numbers prefixed
 * with a 0x are interpreted as
 * base-16, numbers prefixed with a 0 are base-8, otherwise
 * numbers are interpreted
 * as base-10.
 *
*/

/*
 * A package is declared with the .package directive. Only one
 * package is allowed
 * inside a Java Card Assembly
 * file. All directives (.package, .class, et.al) are case
 * insensitive. Package,
 * class, field and
 * method names are case sensitive. For example, the .package
 * directive may be written
 * as .PACKAGE,
 * however the package names example and ExAmPle are different.
 */
.package example {
 /*
 * There are only two package directives. The .aid and .version
 * directives declare
 * the aid and version that appear in the Header Component of
 * the CAP file.
 * These directives are required.
 .aid 0:1:2:3:4:5:6:7:8:9:0xa:0xb:0xc:0xd:0xe:0xf;
 // the AIDs length must be
 // between 5 and 16 bytes inclusive
 .version 0.1; // major version <DOT> minor version
 /*
 * The imports block declares all of packages that this
 * package imports. The data
 * that is declared
 * in this section appears in the Import Component of the
 * CAP file. The ordering
 * of the entries
 * within this block define the package tokens which must be
 * used within this
 * package. The imports
 * block is optional, but all packages except for java/lang
 * import at least
 * java/lang. There should

Appendix A

A-2

 * be only one imports block within a package.
 */
 .imports {
 0xa0:0x00:0x00:0x00:0x62:0x00:0x01 1.0;
 // java/lang aid <SPACE>
 // java/lang major version <DOT> java/lang minor version
 0:1:2:3:4:5 0.1; // package test2
 1:1:2:3:4:5 0.1; // package test3
 2:1:2:3:4:5 0.1; // package test4
 }
 /*
 * The applet block declares all of the applets within
 * this package. The data
 * declared within this block appears
 * in the Applet Component of the CAP file. This section may
 * be omitted if this
 * package declares no applets. There
 * should be only one applet block within a package.
 */
 .applet {
 6:4:3:2:1:0 test1; // the class name of a class within this
 // package which
 7:4:3:2:1:0 test2; // contains the method install([BSB)V
 8:4:3:2:1:0 test3;
 }
 /*
 * The constant pool block declares all of the constant
 * pool's entries in the
 * Constant Pool Component. The positional
 * ordering of the entries within the constant pool block
 * define the constant pool
 * indices used within this package.
 * There should be only one constant pool block within a package.
 *
 * There are six types of constant pool entries. Each of these
 * entries directly
 * corresponds to the constant pool
 * entries as defined in the Constant Pool Component.
 *
 * The commented numbers which follow each line are the constant
 * pool indexes
 * which will be used within this package.
 */
 .constantPool {
 /*
 * The first six entries declare constant pool entries that
 * are contained in
 * other packages.
 * Note that superMethodRef are always declared internal
 * entry.
 */
 classRef 0.0; // 0 package token 0, class token 0
 instanceFieldRef 1.0.2;// 1 package token 1, class token 0,
 // instance field token 2
 virtualMethodRef 2.0.2; // 2 package token 2, class token 0,
 // instance field token 2
 classRef 0.3; // 3 package token 0, class token 3
 staticFieldRef 1.0.4; // 4 package token 1, class token 0,
 // field token 4
 staticMethodRef 2.0.5; // 5 package token 2, class token 0,
 // method token 5

Appendix A

A-3

 /*
 * The next five entries declare constant pool entries
 * relative to this class.
 *
 classRef test0; // 6
 instanceFieldRef test1/field1; // 7
 virtualMethodRef test1/method1()V; // 8
 superMethodRef test9/equals(Ljava/lang/Object;)Z; // 9
 staticFieldRef test1/field0; // 10
 staticMethodRef test1/method3()V; // 11
 }
 /*
 * The class directive declares a class within the Class Component
 * of a CAP file.
 * All classes except java/lang/Object should extend an internal
 * or external
 * class. There can be
 * zero or more class entries defined within a package.
 *
 * for classes which extend a external class, the grammar is:
 * .class modifiers* class_name class_token extends
 * packageToken.ClassToken
 *
 * for classes which extend a class within this package,
 * the grammar is:
 * .class modifiers* class_name class_token extends className
 *
 * The modifiers which are allowed are defined by the Java Card
 * language subset.
 * The class token is required for public and protected classes,
 * and should not be
 * present for other classes.
 */
 .class final public test1 0 extends 0.0 {
 /*
 * The fields directive declares the fields within this class.
 * There should
 * be only one fields
 * block per class.
 */
 .fields {
 public static int field0 0;
 public int field1 0;
 }
 /*
 * The public method table declares the virtual methods within
 * this classes
 * public virtual method
 * table. The number following the directive is the method
 * table base (See the
 * Class Component specification).
 *
 * Method names declared in this table are relative to
 * this class. This
 * directive is required even if there
 * are not virtual methods in this class. This is necessary
 * to establish the
 * method table base.
 */
 .publicmethodtable 1 {
 equals(Ljava/lang/Object;)Z;

Appendix A

A-4

 method1()V;
 method2()V;
 }
 /*
 * The package method table declares the virtual methods
 * within this classes
 * package virtual method
 * table. The format of this table is identical to the public
 * method table.
 */
 .packagemethodtable 0 {}
 .method public method1()V 1 { return; }
 .method public method2()V 2 { return; }
 .method protected static native method3()V 0 { }
 .method public static install([BSB)V 1 { return; }
 }
 .class final public test9 9 extends test1 {
 .publicmethodtable 0 {
 equals(Ljava/lang/Object;)Z;
 method1()V;
 method2()V;
 }
 .packagemethodtable 0 {}
 .method public equals(Ljava/lang/Object;)Z 0 {
 invokespecial 9;
 return;
 }
 }
 .class final public test0 1 extends 0.0 {
 .Fields {
 // access_flag, type, name [token [static Initializer]] ;
 public static byte field0 4 = 10;
 public static byte[] field1 0;
 public static boolean field2 1;
 public short field4 2;
 public int field3 0;
 }
 .PublicMethodTable 1 {
 equals(Ljava/lang/Object;)Z;
 abc()V; // method must be in this class
 def()V;
 labelTest()V;
 instructions()V;
 }
 .PackageMethodTable 0 {
 ghi()V; // method must be in this class
 jkl()V;
 }
 // if the class implements more than one interface, multiple
 // interfaceInfoTables will be present.
 .implementedInterfaceInfoTable
 .interface 1.0 { // java/rmi/Remote
 }
 .interface RemoteAccount { // The table contains method tokens
 10; // getBalance()S
 9; // debit(S)V
 8; // credit(S)V
 11; // setAccountNumber([B)V
 12; // getAccountNumber()[B
 }
 }

Appendix A

A-5

 .implementedRemoteInterfaceInfoTable { // The table contains
 // method tokens
 // excluding java.rmi.Remote
 .interface RemoteAccount { // Contains method tokens
 getBalance()S 10; // getBalance()S
 debit(S)V 9; // debit(S)V
 credit(S)V 8; // credit(S)V
 setAccountNumber([B)V 11; // setAccountNumber([B)V
 getAccountNumber()[B 12; // getAccountNumber()[B
 }
 }
 /*
 * Declaration of 2 public visible virtual methods and two
 * package visible
 * virtual methods..
 */
 .method public abc()V 1 {
 return;
 }
 .method public def()V 2 {
 return;
 }
 .method ghi()V 0x80 { // per the CAP file
 //specification, method tokens
 // for package visible methods
 return; // must have the most significant bit set to 1.
 }
 .method jkl()V 0x81 {
 return;
 }
 /*
 * This method illustrates local labels and exception table
 * entries. Labels
 * are local to each
 * method. No restrictions are placed on label names except
 * that they must
 * begin with an alphabetic
 * character. Label names are case insensitive.
 *
 * Two method directives are supported, .stack and .locals.
 * These
 * directives are used to
 * create the method header for each method. If a method
 * directive is omitted,
 * the value 0 will be used.
 *
 */
 .method public static install([BSB)V 0 {
 .stack 0;
 .locals 0;
l0:
l1:
l2:
l3:
l4:
l5:
 return;
 /*
 * Each method may optionally declare an
 * exception table. The start offset,
 * end offset and handler offset

Appendix A

A-6

 * may be specified numerically, or with a
 * label. The format of this table
 * is different from the exception
 * tables contained within a CAP file. In a
 * CAP file, there is no end
 * offset, instead the length from the
 * starting offset is specified. In the Java Card Assembly
 * file an end offset is specified
 * to allow editing of the
 * instruction stream without having to recalculate
 * the exception table
 * lengths manually.
 */
 .exceptionTable {
 // start_offset end_offset handler_offset
 // catch_type_index;
 l0 l4 l5 3;
 l1 l3 l5 3;
 }
 }
 /*
 * Labels can be used to specify the target of a
 * branch as well.
 * Here, forward and backward branches are
 * illustrated.
 */
 .method public labelTest()V 3 {
L1: goto L2;

L2: goto L1;

 goto_w L1;

 goto_w L3;

L3: return;
 }
 /*
 * This method illustrates the use of each Java Card platform
 * instruction for version 3.0.5.
 * Mnemonics are case insensitive.
 *
 * See the Java Card virtual machine specification for
 * the specification of
 * each instruction.
 */
 .method public instructions()V 4 {
 aaload;
 aastore;
 aconst_null;
 aload 0;
 aload_0;
 aload_1;
 aload_2;
 aload_3;
 anewarray 0;

Appendix A

A-7

 areturn;
 arraylength;
 astore 0;
 astore_0;
 astore_1;
 astore_2;
 astore_3;
 athrow;
 baload;
 bastore;
 bipush 0;
 bspush 0;
 checkcast 10 0;
 checkcast 11 0;
 checkcast 12 0;
 checkcast 13 0;
 checkcast 14 0;
 dup2;
 dup;
 dup_x 0x11;
 getfield_a 1;
 getfield_a_this 1;
 getfield_a_w 1;
 getfield_b 1;
 getfield_b_this 1;
 getfield_b_w 1;
 getfield_i 1;
 getfield_i_this 1;
 getfield_i_w 1;
 getfield_s 1;
 getfield_s_this 1;
 getfield_s_w 1;
 getstatic_a 4;
 getstatic_b 4;
 getstatic_i 4;
 getstatic_s 4;
 goto 0;
 goto_w 0;
 i2b;
 i2s;
 iadd;
 iaload;
 iand;
 iastore;
 icmp;
 iconst_0;
 iconst_1;
 iconst_2;
 iconst_3;
 iconst_4;
 iconst_5;
 iconst_m1;
 idiv;
 if_acmpeq 0;
 if_acmpeq_w 0;
 if_acmpne 0;
 if_acmpne_w 0;
 if_scmpeq 0;
 if_scmpeq_w 0;
 if_scmpge 0;
 if_scmpge_w 0;

Appendix A

A-8

 if_scmpgt 0;
 if_scmpgt_w 0;
 if_scmple 0;
 if_scmple_w 0;
 if_scmplt 0;
 if_scmplt_w 0;
 if_scmpne 0;
 if_scmpne_w 0;
 ifeq 0;
 ifeq_w 0;
 ifge 0;
 ifge_w 0;
 ifgt 0;
 ifgt_w 0;
 ifle 0;
 ifle_w 0;
 iflt 0;
 iflt_w 0;
 ifne 0;
 ifne_w 0;
 ifnonnull 0;
 ifnonnull_w 0;
 ifnull 0;
 ifnull_w 0;
 iinc 0 0;
 iinc_w 0 0;
 iipush 0;
 iload 0;
 iload_0;
 iload_1;
 iload_2;
 iload_3;
 ilookupswitch 0 1 0 0;
 impdep1;
 impdep2;
 imul;
 ineg;
 instanceof 10 0;
 instanceof 11 0;
 instanceof 12 0;
 instanceof 13 0;
 instanceof 14 0;
 invokeinterface 0 0 0;
 invokespecial 3; // superMethodRef
 invokespecial 5; // staticMethodRef
 invokestatic 5;
 invokevirtual 2;
 ior;
 irem;
 ireturn;
 ishl;
 ishr;
 istore 0;
 istore_0;
 istore_1;
 istore_2;
 istore_3;
 isub;
 itableswitch 0 0 1 0 0;
 iushr;
 ixor;

Appendix A

A-9

 jsr 0;
 new 0;
 newarray 10;
 newarray 11;
 newarray 12;
 newarray 13;
 newarray boolean[]; // array types may be declared numerically or
 newarray byte[]; // symbolically.
 newarray short[];
 newarray int[];
 nop;
 pop2;
 pop;
 putfield_a 1;
 putfield_a_this 1;
 putfield_a_w 1;
 putfield_b 1;
 putfield_b_this 1;
 putfield_b_w 1;
 putfield_i 1;
 putfield_i_this 1;
 putfield_i_w 1;
 putfield_s 1;
 putfield_s_this 1;
 putfield_s_w 1;
 putstatic_a 4;
 putstatic_b 4;
 putstatic_i 4;
 putstatic_s 4;
 ret 0;
 return;
 s2b;
 s2i;
 sadd;
 saload;
 sand;
 sastore;
 sconst_0;
 sconst_1;
 sconst_2;
 sconst_3;
 sconst_4;
 sconst_5;
 sconst_m1;
 sdiv;
 sinc 0 0;
 sinc_w 0 0;
 sipush 0;
 sload 0;
 sload_0;
 sload_1;
 sload_2;
 sload_3;
 slookupswitch 0 1 0 0;
 smul;
 sneg;
 sor;
 srem;
 sreturn;
 sshl;
 sshr;

Appendix A

A-10

 sspush 0;
 sstore 0;
 sstore_0;
 sstore_1;
 sstore_2;
 sstore_3;
 ssub;
 stableswitch 0 0 1 0 0;
 sushr;
 swap_x 0x11;
 sxor;
 }
 }
 .class public test2 2 extends 0.0 {
 .publicMethodTable 0 {}
 equals(Ljava/lang/Object;)Z;
 .packageMethodTable 0 {}
 .method public static install([BSB)V 0 {
 .stack 0;
 .locals 0;
}
 return;
 }
 }
 .class public test3 3 extends test2 {
 /*
 * Declaration of static array initialization is done the same way
 * as in Java
 * Only one dimensional arrays are allowed in the
 * Java Card platform
 * Array of zero elements, 1 element, n elements
 */
 .fields {
 public static final int[] array0 0 = {}; // [I
 public static final byte[] array1 1 = {17}; // [B
 public static short[] arrayn 2 = {1,2,3,...,n}; // [S
 }
 .publicMethodTable 0 {}
 equals(Ljava/lang/Object;)Z;
 .packageMethodTable 0 {}
 .method public static install([BSB)V 0 {
 .stack 0;
 .locals 0;
 return;
 }
 }
 .interface public test4 4 extends 0.0 {
 }
}

// converted by version [v3.1.0]
.package package1 {
 .aid 0x1:0x2:0x3:0x4:0x5:0x1;
 .version 1.1;

 .imports {
 0xA0:0x0:0x0:0x0:0x62:0x0:0x1 1.0; //java/lang
 }

 .constantPool {
 // 0

Appendix A

A-11

 staticMethodRef 0.0.0()V; // java/lang/Object.<init>()V
 }

 .class public Class1 0 extends 0.0 { // extends java/lang/Object

 .publicMethodTable 1 3 { // 3 is
CAP22_inheritable_public_method_token_count, see 3.1 JCVMSpec 6.9.2.7
 equals(Ljava/lang/Object;)Z 0;
 m1()S 255; //m1 defined in Class1 1.0 and 1.1
 m2()S 255; //m2 defined in Class1 1.0 and 1.1
 m4()S 255; //m4 defined in Class1 1.1
 }

 .packageMethodTable 0 {
 }

 .method public <init>()V 0 {
 .stack 1;
 .locals 0;

 L0: aload_0;
 invokespecial 0; // java/lang/Object.<init>()V
 return;
 }

 .method public m1()S 1 {
 .stack 1;
 .locals 0;

 L0: sspush 170;
 sreturn;
 }

 .method public m2()S 2 {
 .stack 1;
 .locals 0;

 L0: bspush 55;
 sreturn;
 }

 .method public m4()S 3 {
 .stack 1;
 .locals 0;

 L0: sspush 221;
 sreturn;
 }

 }

}

// converted by version [v3.1.0]
.package package2 {
 .aid 0x1:0x2:0x3:0x4:0x5:0x2;
 .version 1.1;

 .imports {
 0x1:0x2:0x3:0x4:0x5:0x1 1.1; //package1
 0xA0:0x0:0x0:0x0:0x62:0x0:0x1 1.0; //java/lang

Appendix A

A-12

 }

 .constantPool {
 // 0
 staticMethodRef 0.0.0()V; // package1/Class1.<init>()V
 }

 .class public Class2 0 extends 0.0 { // extends package1/Class1

 .publicMethodTable 2 4 { // 4 is
CAP22_inheritable_public_method_token_count, see 3.1 JCVMSpec 6.9.2.7
 equals(Ljava/lang/Object;)Z 0;
 m1()S 1; //inherited from Class1 1.0
 m2()S 2; //method overridden in Class2 1.1
 m3()S 255; //defined in Class2 1.0
 m4()S 3; //inherited from Class1 1.1
 m5()S 255; //defined in Class2 1.1
 }

 .packageMethodTable 0 {
 }

 .method public <init>()V 0 {
 .stack 1;
 .locals 0;

 L0: aload_0;
 invokespecial 0; // package1/Class1.<init>()V
 return;
 }

 .method public m2()S 2 {
 .stack 1;
 .locals 0;

 L0: sspush 187;
 sreturn;
 }

 .method public m3()S 3 {
 .stack 1;
 .locals 0;

 L0: sspush 204;
 sreturn;
 }

 .method public m5()S 5 {
 .stack 1;
 .locals 0;

 L0: sspush 238;
 sreturn;
 }

 }

}

Appendix A

A-13

B
Additional Optional Ant Tasks

This appendix contains a description of the optional Ant tasks supported by this
development kit. The command line tools in this development kit execute Apache Ant
transparently, so you are not required to use Ant directly to use the command line tools
themselves. Those Ant tasks are required to install and run the development kit.
This development kit also includes additional, optional Apache Ant tasks for skilled
Ant users to streamline using the development kit. These optional Ant tasks grouping
several command line tools into a single Ant task. This chapter describes how to use
these additional, optional, and unsupported Apache Ant tasks.

This chapter includes the following sections:

• Location and Installation

• Setting Up the Optional Ant Tasks

• Ant Task Descriptions

• Custom Types

Location and Installation
The optional Ant tasks are included at:

• JC_HOME_TOOLS\lib\jctasks_tools.jar

• JC_HOME_SIMULATOR\lib\jctasks_simulator.jar

Note:

Use of the additional Ant tasks described in this section is strictly optional
and is not formally supported, nor has it been fully tested.

Installing the Ant Tasks
1. Be sure Ant is configured as described in Downloading the Development Kit.

2. Copy the file JC_HOME_TOOLS\lib\jctasks_tools.jar or
JC_HOME_SIMULATOR\lib\jctasks_simulator.jar to a directory that serves
as your Ant tasks home directory.

3. Add the jctasks_tools.jar or jctasks_simulator.jar file to your classpath or
put it into the Ant-Home-Path\lib directory to be automatically be picked up when
Ant is run.

Where:

a. Ant-Home-Path is the path to the Ant installation.

B-1

b. The value of the ANT_HOME environment variable is properly configured to run
Ant (see Downloading the Development Kit).

Setting Up the Optional Ant Tasks
The following XML must be added to your build.xml file to use the optional Ant tasks
in your build.

<!-- Definitions for tasks for Java Card tools -->
<taskdef name="apdutool"
 classname="com.sun.javacard.ant.tasks.APDUToolTask" />
<taskdef name="capdump"
 classname="com.sun.javacard.ant.tasks.CapdumpTask" />
<taskdef name="capgen"
 classname="com.sun.javacard.ant.tasks.CapgenTask" />
<taskdef name="deploycap"
 classname="com.sun.javacard.ant.tasks.DeployCapTask" />
<taskdef name="exp2text"
 classname="com.sun.javacard.ant.tasks.Exp2TextTask" />
<taskdef name="convert"
 classname="com.sun.javacard.ant.tasks.ConverterTask" />
<taskdef name="verifyexport"
 classname="com.sun.javacard.ant.tasks.VerifyExpTask" />
<taskdef name="verifycap"
 classname="com.sun.javacard.ant.tasks.VerifyCapTask" />
<taskdef name="verifyrevision"
 classname="com.sun.javacard.ant.tasks.VerifyRevTask" />
<taskdef name="scriptgen"
 classname="com.sun.javacard.ant.tasks.ScriptgenTask" />
<typedef name="appletnameaid"
 classname="com.sun.javacard.ant.types.AppletNameAID" />
<typedef name="jcainputfile"
 classname="com.sun.javacard.ant.types.JCAInputFile" />
<typedef name="exportfiles"
 classname="org.apache.tools.ant.types.FileSet" />

Library Dependencies
The JAR files located in JC_HOME_SIMULATOR\lib\tools_simulator.jar and
JC_HOME_TOOLS\lib\tools.jar contain the libraries required to execute the
optional ant tasks. These JAR files must be in the classpath during build execution.

Ant Task Descriptions
The Ant tasks provided in the Ant tasks bundle are provided to simplify the use of the
development kit for Ant users. This section describes each of these Ant tasks and how
to use them. Note that the JAR files for the tasks are expected to be in the system
classpath, unless otherwise noted.

• APDUTool

• CapDump

• Capgen

• Converter

• DeployCap

Appendix B
Setting Up the Optional Ant Tasks

B-2

• Exp2Text

• Scriptgen

• VerifyCap

• VerifyExp

• VerifyRev

APDUTool
Runs APDUTool to send the APDU script file to cref and check if all APDUs were sent
correctly. You can set CheckDownloadFailure=true to stop the build if any response
status is not 9000.

APDUTool is invoked in a different instance of the Java Virtual Machine1 software
(JVM software) than the one being used by Ant.

Table B-1 Parameters for APDUTool

Attribute Description Required

ScriptFile Fully qualified path and name of the APDU script file. Yes

CrefExe Fully qualified path and name of cref executable. Yes

OutEEFile Output EEPROM file that contains the EEPROM image
after cref finishes execution.

Yes

CheckDownload
Failure

Stops the build if any response status coming back from
cref is not 9000.

No

classpath Classpath to use for this task. If required JAR files are
not already in the system classpath, you can specify this
attribute to put them in the classpath when this task is
executed.

No

dir The directory in which to invoke the JVM software. No

InEEFile Input EEPROM file for cref. If specified cref initiates
using the EEPROM image stored in this file.

No

nobanner Set this element to true if you do not want the APDUTool
banner showing.

No

version Prints the version number of APDUTool. No

Errors
Execution of this task fails if the required attributes
are not provided, JC_HOME_SIMULATOR\lib\tools_simulator.jar and
JC_HOME_TOOLS\lib\tools.jar are not in the classpath, or APDUTool returns an
error code.

Examples
To use these examples:

1 The terms "Java Virtual Machine" and "JVM" mean a Virtual Machine for the Java(TM) platform.

Appendix B
Ant Task Descriptions

B-3

1. Enter the following example code to run APDUTool to send APDUs in APDU script
file test.scr to cref and to check if all APDUs were sent correctly.

Also checks that the response returned from the card was 9000.

<target name="APDUToolTarget" >
 <apdutool
 scriptFile="${samples.helloworld.script}"
 outEEFile="${samples.eeprom}/outEEFile"
 CrefExe="${jcardkit_home}/bin/cref.exe">
 </apdutool>
</target>

2. Enter the following example code to run the APDUTool to install the APDU script
in test.scr file to cref and check if the APDU commands were processed
successfully:

Note:

Classpath in this example is referenced by the classpath refid.

<target name="APDUToolTarget" >
 <apdutool
 scriptFile="${samples.helloworld.script}"
 outEEFile="${samples.eeprom}/outEEFile"
 CheckDownloadFailure="true"
 CrefExe="${jcardkit_home}/bin/cref.exe">
 <classpath refid="classpath"/>
 </apdutool>
</target>

3. Enter the following example code to run APDUTool to install the APDU script in
test.scr file to cref, which is initialized using a stored EEPROM image from the
file inEEFile:

Note:

Also check if the APDU commands were sent correctly. Classpath used
in this example is referenced by the classpath refid.

<target name="APDUToolTarget" >
 <apdutool
 scriptFile="${samples.helloworld.script}"
 outEEFile="${samples.eeprom}/outEEFile"
 inEEFile="${samples.eeprom}/inEEFile"
 CheckDownloadFailure="true"
 CrefExe="${jcardkit_home}/bin/cref.exe">
 <classpath refid="classpath"/>
 </apdutool>
</target>

Appendix B
Ant Task Descriptions

B-4

CapDump
Run the CapDump tool to dump the contents of a CAP file.

Table B-2 Parameters for CapDump

Attribut
e

Description Required

CapFile Fully qualified name of CAP file. Yes

classpat
h

Classpath to use for this task. If required JAR files are not already in
the system classpath, you can specify this attribute to put them in the
classpath when this task is executed.

No

dir The directory in which to invoke the JVM software. No

Errors
Execution of this task fails if CapFile attribute is not supplied,
JC_HOME_TOOLS\lib\tools.jar is not in the classpath, or CapDump returns an
error code.

Examples
To use these examples:

1. Enter the following example code to run CapDump to dump the contents of the
test.cap file:

<target name="CapDumpTarget" >
 <capdump>
 CapFile="${samples.output}/test.cap"
 </capdump>
</target>

2. Enter the following example code to run CapDump to dump the contents of the
test.cap file:

Note:

Classpath used in this example code is referenced by the classpath
refid

<target name="CapDumpTarget" >
 <capdump
 CapFile="${samples.output}/test.cap"
 <classpath refid="classpath"/>
 </capdump>
</target>

Appendix B
Ant Task Descriptions

B-5

Capgen
Runs Capgen to generate a CAP file from a JCA file.

Table B-3 Parameters for Capgen

Attribut
e

Description Required

JCAFile Fully qualified path and name of the input JCA file. Yes

OutFile Fully qualified path and name of the output CAP file. No

classpat
h

Classpath to use for this task. If required JAR files are not
already in the system classpath, you can specify this attribute
to put them in the classpath when this task is executed.

No

dir The directory in which to invoke the JVM software. No

nobanne
r

Set this element to true if you do not want the Capgen banner
showing.

No

version Prints Capgen version number. No

Errors
Execution of this task fails if the required attributes are not provided,
JC_HOME_TOOLS\lib\tools.jar is not in the classpath, or Capgen returns an error
code.

Examples
To use these examples:

1. Enter the following example code to run Capgen to generate the helloworld.cap
file from the helloworld.jca file.

<target name="CapgenTarget" >
 <capgen
 JCAFile="${sample.output}/helloworld.jca"
 outfile="${sample.output}/helloworld.cap">
 </capgen>
</target>

2. Enter the following example code to run Capgen to generate a helloworld.cap file
from the helloworld.jca file.

Note:

Classpath used in this example is referenced by the classpath refid.

<target name="CapgenTarget" >
 <capgen
 JCAFile="${sample.output}/helloworld.jca"

Appendix B
Ant Task Descriptions

B-6

 outfile="${sample.output}/helloworld.cap">
 <classpath refid="classpath"/>
 </capgen>
</target>

3. Enter the following example code to run Capgen as in the previous example,
except no output file is specified.

Note:

Capgen generates out.cap in the directory in which the JVM software
was invoked.

<target name="CapgenTarget" >
 <capgen
 JCAFile="${sample.output}/helloworld.jca"/>
 <classpath refid="classpath"/>
 </capgen>
</target>

Converter
Runs Converter to generate CAP, EXP and JCA files from a Java technology-based
package. By default the Java Card platform converter creates CAP and EXP files for
the input package. However, if any one of the CAP, JCA or EXP flags are enabled,
only the output files enabled are generated.

Table B-4 Parameters for Converter

Attribute Description Required

PackageName Fully qualified name of the package being
converted.

Yes, if the configuration
file is not provided.

PackageAID AID of the package being converted. Yes, if the configuration
file is not provided.

MajorMinorVersion Major and Minor version numbers of the
package, for example, 1.2 (where 1 is major
version number and 2 is minor version number).

Yes, if the configuration
file is not provided.

CAP If enabled, tells the converter to create a CAP
file.

No

EXP If enabled, tells the converter to create a EXP
file.

No

JCA If enabled, tells the converter to create a JCA
file.

No

ClassDir The root directory of the class hierarchy.
Specifies the directory where the converter
looks for class files.

No

Int If enabled, turns on support for the 32-bit
integer type.

No

Debug If enabled, enables generation of debugging
information.

No

Appendix B
Ant Task Descriptions

B-7

Table B-4 (Cont.) Parameters for Converter

Attribute Description Required

ExportPath Root directories where the Converter looks for
export files.

No

ExportMap If enabled, tells the converter to use the token
mapping from the pre-defined export file of the
package being converted. The converter looks
for the export file in the exportpath.

No

Outputdirectory Sets the output directory where the output files
are placed.

No

Verbose If enabled, enables verbose converter output. No

noWarn If enabled, instructs the Converter to not report
warning messages.

No

Mask If enabled, tells the Converter that this package
is for mask, so restrictions on native methods
are relaxed.

No

NoVerify If enabled, tells the Converter to turn off
verification. Verification is turned on by default.

No

classpath Classpath to use for this task. If required JAR
files are not already in the system classpath,
you can specify this attribute to put them in the
classpath when this task is executed.

No

dir The directory to invoke the Java VM in. No

nobanner Set this element to true if you do not want the
Capgen banner showing.

No

version Prints Converter version number. No

ConfigFile Configuration file containing all the configuration
parameters for the converter.

No

In addition to the parameters specified in the preceding table, the target Java
Card platform can be specified for the converter through the environment variable
JC_TARGET_PLATFORM. If this environment variable is set, then the converter creates the
CAP files for the specified target platform.

Parameters Specified As Nested Elements
The AppletNameID parameters are specified as nested elements and use nested
element AppletNameAID to specify names and AIDs of applets belonging to
the package being converted. For details regarding AppletNameAID type, see
AppletNameAID .

Errors
Execution of this task fails if the required attributes are not provided,
JC_HOME_TOOLS\lib\tools.jar is not in the classpath, or the Converter returns
an error code.

Appendix B
Ant Task Descriptions

B-8

Examples
To use these examples:

1. Enter the following example code to run the Converter and generate
helloworld.cap, helloworld.JCA and helloworld.EXP files:

<target name="convert_HelloWorld.cap" >
 <convert
 JCA="true"
 EXP="true"
 CAP="true"
 packagename="com.sun.javacard.samples.HelloWorld"
 packageaid="0xa0:0x0:0x0:0x0:0x62:0x3:0x1:0xc:0x1"
 majorminorversion="1.0"
 classdir="${classroot}"
 outputdirectory="${classroot}">
 <AppletNameAID
 appletname="com.sun.javacard.samples.HelloWorld.HelloWorld"
 aid="0xa0:0x0:0x0:0x0:0x62:0x3:0x1:0xc:0x1:0x1"/>
 <exportpath refid="export"/>
 <classpath refid="classpath"/>
 </convert>
</target>

2. Enter the following example code to run the Converter with the converter options
specified in the helloworld.cfg file instead of being specified in the target itself.

Note:

This example also shows how a classpath can be specified for a target
and how a directory can be set in which the Java VM is invoked for the
converter task.

<target name="convert_HelloWorld" >
 <convert
 dir="${samples}"
 Configfile="${samples.configDir}/helloworld.cfg">
 <classpath>
 <pathelement path="${samples}"/>
 <fileset dir="${lib}">
 <include name="**/converter.jar"/>
 <include name="**/offcardverifier.jar"/>
 </fileset>
 </classpath>
 </convert>
</target>

DeployCap
This task sends a CAP file to cref and hides the complexities of creating a script file,
running cref and then running APDUTool to send the script to cref. The resulting

Appendix B
Ant Task Descriptions

B-9

EEPROM image is saved in the specified output file. This task automatically checks if
installation was successful or not by checking status words returned by cref.

Table B-5 Parameters for DeployCap

Attribute Description Required

CapFile Fully qualified path and name of the CAP file which is to be sent to
cref.

Yes

CrefExe Fully qualified path and name of cref executable. Yes

OutEEFile Output EEPROM file that contains the EEPROM image after cref
finishes execution.

Yes

InEEFile Input EEPROM file for cref. If specified cref initiates using the
EEPROM image stored in this file.

No

classpath Classpath to use for this task. If required JAR files are not already
in the system classpath, you can specify this attribute to put them in
the classpath when this task is executed.

No

dir The directory to invoke the Java VM in. No

nobanner Set this element to true if you do not want the tool banner showing. No

Errors and Return Codes
Execution of this task fails if the required attributes
are not provided, JC_HOME_SIMULATOR\lib\tools_simulator.jar and
JC_HOME_TOOLS\lib\tools.jar are not in the classpath, APDUTool, scriptgen,
or cref fail to execute.

Examples
To use these examples:

1. Enter the following example code to install helloworld.cap file in cref:

Note:

By default it is checked if the APDU commands were sent correctly.
Classpath used in the above example is referenced by the classpath
refid.

<target name="Deploy_Hello_world_CAP" >
 <deploycap
 CAPFile="${samples.output}/helloworld.cap"
 outEEFile="${samples.eeprom}/outEEFile"
 CrefExe="{JAVACARD_HOME}/bin/cref">
 <classpath refid="classpath"/>
 </deploycap>
</target>

2. Enter the following example code to install helloworld.cap file in cref, which in
this case is initialized with EEFile:

Appendix B
Ant Task Descriptions

B-10

Note:

The cref output EEPROM image is also saved in the same EEFile. By
default it is checked if the APDU commands were sent correctly. This
example shows that the resulting EEPROM image can be stored in the
same EEPROM image file that was used to initialize cref.

<target name="Deploy_Hello_world_CAP" >
 <deploycap
 CAPFile="${samples.output}/helloworld.cap"
 outEEFile="${samples.eeprom}/EEFile"
 inEEFile="${samples.eeprom}/EEFile"
 CrefExe="{JAVACARD_HOME}/bin/cref">
 <classpath refid="classpath"/>
 </deploycap>
</target>

Exp2Text
Run Exp2Text tool to convert the export file of a package to a text file.

Table B-6 Parameters for Exp2Text

Attribute Description Required

PackageName Fully qualified name of the package. Yes

ClassDir Root directory where the exp2text tool looks for the export file.
If no ClassDir is specified, the directory in which the Java VM
is invoked is taken as base dir.

No

OutputDir The root directory for output. No

classpath Classpath to use for this task. If required JAR files are not
already in the system classpath, you can specify this attribute
to put them in the classpath when this task is executed.

No

dir The directory to invoke the Java VM in. No

nobanner Set this element to true if you do not want the Exp2Text
banner showing.

No

version Prints Exp2Text version number. No

Errors
Execution of this task fails if the required attributes are not provided,
JC_HOME_TOOLS\lib\tools.jar is not in the classpath, or Exp2Text returns an
error code.

Examples
To use these examples:

1. Enter the following example code to run Exp2Text and generate text file from the
export file of package HelloWorld:

Appendix B
Ant Task Descriptions

B-11

Note:

This example assumes that converter.jar is already in classpath.

<target name="Exp2TextTarget" >
 <exp2text
 packagename="com.oracle.jcclassic.samples.helloworld"
 classdir="${classroot}"
 outputdir="${classroot}">
 </exp2text>
</target>

2. Enter the following example code to run Exp2Text and generate text file from the
export file of package HelloWorld:

Note:

Classdir and the root outputdir are both assumed to be the directory
where the Java VM was invoked. Classpath used in this example is
referenced by the classpath refid.

<target name="Exp2TextTarget" >
 <exp2text
 packagename="com.oracle.jcclassic.samples.helloworld">
 <classpath refid="classpath"/>
 </exp2text>
</target>

Scriptgen
Runs Scriptgen to generate an APDU script file from a CAP file.

Table B-7 Parameters for Scriptgen

Attribute Description Required

CapFile Fully qualified path and name of the input CAP file. Yes

HashFile Fully qualified path and name of the verifier-generated file
that contains the hashes for all the components in the input
CAP file.

Yes

OutFile Fully qualified path and name of the output script file. If no
output file name is specified, generated script is output on
the console.

No

PkgName Fully qualified name of the package inside the CAP file. No

NoBeginEnd If enabled, instructs Scriptgen to suppress "CAP_BEGIN",
"CAP_END" APDU commands.

No

Appendix B
Ant Task Descriptions

B-12

Table B-7 (Cont.) Parameters for Scriptgen

Attribute Description Required

classpath Classpath to use for this task. If required JAR files are
not already in the system classpath, you can specify this
attribute to put them in the classpath when this task is
executed.

No

dir The directory to invoke the Java VM in. No

nobanner Set this element to true if you do not want the Scriptgen
banner showing.

No

version Prints Scriptgen version number. No

Errors
Execution of this task fails if the required attributes
are not provided, JC_HOME_SIMULATOR\lib\tools_simulator.jar and
JC_HOME_TOOLS\lib\tools.jar are not in the classpath, or Scriptgen returns an
error code.

Examples
To use these examples:

• Enter the following example code to run Scriptgen and generate script file
helloWorld.scr from helloWorld.cap file.

Note:

Classpath used in this example is referenced by the classpath refid.

<target name="ScriptgenTarget" >
 <scriptgen
 noBeginEnd="true"
 noBanner="true"
 HashFile="${samples.helloworld.output}/HelloWorld.hash"
 CapFile="${samples.helloworld.output}/helloworld.cap"
 outFile="${samples.helloworld.script}/helloworld.scr" >
 <classpath refid="classpath" />
 </scriptgen >
</target >

VerifyCap
Runs off-card Java Card platform CAP file verifier to verify a CAP file. The Java Card
platform off-card verifier is invoked in a separate instance of Java VM.

Appendix B
Ant Task Descriptions

B-13

Table B-8 Parameters for VerifyCap

Attribute Description Required

CapFile Fully qualified path and name of CAP file that is to be verified. Yes

PkgName Fully qualified Name of the package inside the CAP file for which
the CAP file was generated.

No

noWarn If enabled, tells the verifier not to output any warning messages. No

Verbose If enabled, enables verbose verifier output. No

classpath Classpath to use for this task. If required JAR files are not already
in the system classpath, you can specify this attribute to put them in
the classpath when this task is executed.

No

dir The directory to invoke the Java VM in. No

outFile Fully qualified output path of the digest file, which contains the
digests generated using the default algorithm (SHA-256) for all CAP
file components.

nobanner Set this element to true if you want to suppress Verifier banner. No

version Prints the version number of the off-card verifier. No

Parameters Specified As Nested Elements
The ExportFiles are parameters specified as nested elements that use nested element
ExportFiles to specify group of export files for packages imported by the package
whose CAP file is being verified and the export file corresponding to the CAP being
verified. For details regarding ExportFiles type see ExportFiles.

Errors
Execution of this task fails if the required attributes are not provided,
JC_HOME_TOOLS\lib\tools.jar is not in the classpath, or Verifier returns an error
code.

Examples
To use these examples:

• Enter the following example code to run the Java Card platform off-card verifier
and verify the helloworld.cap file.

<target name="VerifyCapTarget" >
 <verifycap
 CapFile="${samples.helloworld.output}/helloworld.cap" >
 <exportfiles file="${samples.helloworld.output}/HelloWorld.exp" />
 <exportfiles file="${api_exports}/javacard/framework/javacard/
framework.exp" />
 <exportfiles file="${api_exports}/java/lang/javacard/lang.exp" />
 <classpath refid="classpath"/>
 </verifycap>
</target>

Appendix B
Ant Task Descriptions

B-14

VerifyExp
Runs off-card Java Card platform EXP file verifier to verify an EXP file. Java Card
platform off-card verifier is invoked in a separate instance of Java VM.

Table B-9 Parameters for VerifyExp

Attribute Description Require
d

noWarn If enabled, tells the verifier not to output any warning messages. No

Verbose If enabled, enables verbose verifier output. No

classpath Classpath to use for this task. If required JAR files are not already in
the system classpath, you can specify this attribute to put them in the
classpath when this task is executed.

No

dir The directory to invoke the Java VM in. No

nobanner Set this element to true if you want to suppress Verifier banner. No

version Prints the version number of off-card verifier. No

Parameters Specified As Nested Elements
The ExportFiles are parameters specified as nested elements that use nested element
ExportFiles to specify the EXP file being verified. For details regarding ExportFiles
type see ExportFiles. VerifiyExp requires that only one input EXP file be specified. This
tasks throws an error if more than one EXP files are specified.

Errors
Execution of this task fails if none or more than one EXP file are specified,
JC_HOME_TOOLS\lib\tools.jar is not in the classpath, or Verifier returns an error
code.

Examples
To use these examples:

• Enter the following example code to run the Java Card platform off-card verifier to
verify HelloWorld.exp file:

<target name="VerifyExpTarget" >
 <verifyexport>
 <exportfiles file="${samples.helloworld.output}/HelloWorld.exp" />
 <classpath refid="classpath"/>
 </verifyexport>
</target>

VerifyRev
Runs off-card Java Card platform verifier to verify binary compatibility between two
versions of an EXP file. Java Card platform off-card verifier is invoked in a separate
instance of Java VM.

Appendix B
Ant Task Descriptions

B-15

Table B-10 Parameters for VerifyRev

Attribute Description Require
d

noWarn If enabled, tells the verifier not to output any warning messages. No

Verbose If enabled, enables verbose verifier output. No

classpath Classpath to use for this task. If required jar files are not already in
the system classpath, you can specify this attribute to put them in the
classpath when this task is executed.

No

dir The directory to invoke the Java VM in. No

nobanner Set this element to true if you want to suppress Verifier banner. No

version Prints the version number of off-card verifier. No

Parameters Specified As Nested Elements
The ExportFiles are parameters specified as nested elements that use nested element
ExportFiles to specify the EXP files being verified. For details regarding ExportFiles
type see ExportFiles. VerifyExp requires that exactly two input EXP files are specified:
it throws an error if that is not the case.

Errors
Execution of this task fails if no EXP file is specified. It also fails if exactly two EXP
files are not specified, JC_HOME_TOOLS\lib\tools.jar is not in the classpath, or
Verifier returns an error code.

Examples
To use these examples:

• Enter the following example code to run the Java Card platform off-card verifier to
verify binary compatibility between two versions of HelloWorld.exp file.

<target name="VerifyExpTarget" >
 <verifyrevision>
 <exportfiles file="${samples.helloworld.output}/HelloWorld.exp" />
 <exportfiles file="${samples.helloworld.output.new}/HelloWorld.exp" />
 <classpath refid="classpath"/>
 </verifyrevision>
</target>

Custom Types
This section includes the following information and description about available custom
types:

• AppletNameAID

• JCAInputFile

• ExportFiles

Appendix B
Custom Types

B-16

AppletNameAID
AppletNameAID groups together name and AID for a Java Card applet.

Table B-11 Parameters for AppletNameAID

Attribute Description Required

appletname Fully qualified name of the Java Card applet. Yes

aid AID (Application Identifier) of the Java Card applet. Yes

Example
To use these examples:

• Enter the following example code to set the fully qualified name and AID for the
HelloWorld applet:

<AppletNameAID
appletname="com.sun.javacard.samples.HelloWorld.HelloWorld"
aid="0xa0:0x0:0x0:0x0:0x62:0x3:0x1:0xc:0x1:0x1"/>

JCAInputFile
This type is a simple wrapper for a fully qualified JCA file name or a name of an input
file that contains a list of input JCA files. In case the input file contains a list of input
JCA files, the name of the file should be prepended with "@".

Table B-12 Parameters for JCAInputFile

Attribute Description Required

inputfile Fully qualified name of the input file Yes

Examples
To use these examples:

1. Enter the following example code to set the fully qualified name of an input JCA
file.

<jcainputfile
 inputfile="C:\jcas\common\com\sun\javacard\installer
\javacard\installer.jca" />

2. Enter the following example code to set the fully qualified name of an input file that
contains a list of JCA files.

<jcainputfile inputfile="@C:\jc\jcaDemo.in" />

Appendix B
Custom Types

B-17

ExportFiles
This type is actually the Ant FileSet type. It is used to specify a group of export files for
the off-card verifier. For details, see Apache Ant documentation for FileSet type.

Examples
To use these examples:

1. Enter the following example code to set the fully qualified name of an input EXP
file:

<exportfiles
 file="C:\samples\classes\com\sun\javacard\samples
\HelloWorld\javacard\HelloWorld.exp" />

2. Enter the following example code to group all the files in the directory $
{server.src} that are EXP files and do not have the text Test in their names:

<exportfiles dir="${server.src}">
 <include name="**/*.exp"/>
 <exclude name="**/*Test*"/>
</exportfiles>

Appendix B
Custom Types

B-18

Glossary

active applet instance
an applet instance that is selected on at least one of the logical channels.

AID (application identifier)

defined by ISO 7816, a string used to uniquely identify card applications and certain
types of files in card file systems. An AID consists of two distinct pieces. A 5 byte RID
(resource identifier) and a 0 to 11byte PIX (proprietary identifier extension). The RID is
a resource identifier assigned to companies by ISO. The PIX identifiers are assigned
by companies.

A unique AID is assigned to each CAP file and public packages in a CAP file. In
addition, a unique AID is assigned to each applet in the CAP file. The AID for the CAP
file, the package AID of every public package in a CAP file, and the default AID for
each applet defined in the CAP file are specified. They are supplied to the converter
when the CAP file is generated.

APDU
an acronym for Application Protocol Data Unit as defined in ISO 7816-4.

API
an acronym for Application Programming Interface. The API defines calling
conventions by which an application program accesses the operating system and
other services.

applet
within the context of this document, a Java Card applet is the basic unit of selection,
context, functionality, and security in the Java Card technology.

applet application
an application that consists of one or more applets.

Glossary-1

applet framework
an API that enables applet applications to be built.

applet developer
a person creating an applet using Java Card technology.

applet execution context
currently active applet owner identifier.

applet firewall
the mechanism that prevents unauthorized accesses to objects in contexts other than
currently active context.

applet CAP file
a CAP file that contains one or more applet packages. See applet package.

applet package
a Java programming language package that contains one or more non-abstract
classes that extend the javacard.framework.Applet class. See also library package.

assigned logical channel
the logical channel on which the applet instance is either the active applet instance or
will become the active applet instance.

atomic operation
an operation that either completes in its entirety or no part of the operation completes
at all.

atomicity
state in which a particular operation is atomic. Atomicity of data updates guarantee
that data are not corrupted in case of power loss or card removal.

ATR
an acronym for Answer to Reset. An ATR is a string of bytes sent by the Java Card
platform after a reset condition.

Glossary

Glossary-2

authentication
the process of establishing or confirming an application or a user as authentic using
some sort of credentials.

basic logical channel
logical channel 0, the only channel that is active at card reset in the APDU application
environment. This channel is permanent and can never be closed.

big-endian
a technique of storing multibyte data where the high-order bytes come first. For
example, given an 8-bit data item stored in big-endian order, the first bit read is
considered the high bit.

binary compatibility
in a Java Card system, a change in a Java programming language package in a Java
Card CAP file results in a new CAP file. A new CAP file is binary compatible with
(equivalently, does not break compatibility with) a preexisting CAP file if another CAP
file converted using the export files of the packages included in the preexisting CAP
file can link with the new CAP file without errors.

bytecode
machine-independent code generated by the compiler and executed by the Java
virtual machine.

CAD
an acronym for Card Acceptance Device. The CAD is the device in which the card is
inserted.

CAP file
Standard file format containing a binary representation of a shared library (library CAP
file) or an application with its libraries that might be exported or not (applet CAP file).

A CAP file represents a module, which is a unit of code, made of one or more Java
packages, with dependencies and list of exported packages and an assigned name
(AID) for lifecycle management. Its structure is made of multiple CAP components
deployed within a JAR file

When a CAP file containing application(s) is deployed on a Java Card platform, it is
assigned a new unique group context that must be associated with any application
instance created from code within this application module.

Glossary

Glossary-3

CAP file component
A Java Card platform CAP file consists of a set of components, which represent a set
of one or more Java programming language packages. Each component describes a
set of elements or an aspect of the CAP file. A complete CAP file must contain all
of the required components: Header, Directory, Import, Constant Pool, Method, Static
Field, and Reference Location.

The following components are conditionally included or optional: the Applet, Export,
Static Resources and Debug. The Applet component is included only if one or more
Applets are defined in one or more packages in the CAP file. The Export component
is included only if one or more packages are public and exported allowing classes in
other packages to import elements from them. The Static Resources component is
included only if static resources are embedded in the CAP file. The Debug component
is optional. It contains all of the data necessary for debugging.

cast
the explicit conversion from one data type to another.

card session
a card session begins when it is powered up or reset. The card is then able to
exchange messages with external clients. The card session ends when the card loses
power or is reset.

client application
an on-card application that uses services provided by other applications (server
applications).

constant pool
the constant pool contains variable-length structures representing various string
constants, class names, field names, and other constants referred to within the CAP
file and the Export File structure. Each of the constant pool entries, including entry
zero, is a variable-length structure whose format is indicated by its first tag byte.
There are no ordering constraints on entries in the constant pool. One constant pool is
associated with each package.

There are differences between the Java platform constant pool and the Java Card
technology-based constant pool. For example, in the Java platform constant pool
there is one constant type for method references, while in the Java Card constant
pool, there are three constant types for method references. The additional information
provided by a constant type in Java Card technologies simplifies resolution of
references.

Glossary

Glossary-4

context
protected object space associated with each applet CAP file and Java Card RE. All
objects owned by an applet belong to the context associated with the applet's CAP file.

context switch
a change from one currently active context to another. For example, a context switch
is caused by an attempt to access an object that belongs to an application instance
that resides in a different application group. The result of a context switch is a new
currently active context.

converter
a piece of software that preprocesses all of the Java programming language class files
contained in a set of packages and converts them into a CAP file. The Converter also
produces export files for exported packages.

currently active context
when an object instance method is invoked, an owning context of the object becomes
the currently active context.

currently selected applet
the Java Card RE keeps track of the currently selected Java Card applet. Upon
receiving a SELECT FILE command with this applet's AID, the Java Card RE
makes this applet the currently selected applet. The Java Card RE sends all APDU
commands to the currently selected applet.

custom CAP file component
a new component added to the CAP file. The new component must conform to the
general component format. It is silently ignored by a Java Card virtual machine that
does not recognize the component. The identifiers associated with the new component
are recorded in the custom_component item of the CAP file's Directory component.

default applet
an applet that is selected by default on a logical channel in the APDU application
environment when it is opened. If an applet is designated the default applet on a
particular logical channel in the APDU application environment on the Java Card
platform, it becomes the active applet by default when that logical channel is opened
using the basic channel.

Glossary

Glossary-5

EEPROM
an acronym for Electrically Erasable, Programmable Read Only Memory.

entry point method
well-defined method of an object owned by an application (respectively the Java
Card RE) that can be "legally" invoked by another application or the Java Card
RE (respectively an application). SIO methods and other container-managed objects'
lifecycle methods are application entry point methods. Java Card RE entry point
objects' methods are Java Card RE entry point methods.

entry point objects
see Java Card RE entry point object.

export file
a file produced by the Converter tool used during classic applet application
development that represents the fields and methods of a package that can be
imported by classes in other classic applet applications and classic libraries.

externally visible
in the Java Card platform, any classes, interfaces, their constructors, methods, and
fields of an application that can be accessed from another application according
to the Java programming language semantics, as defined by the Java Language
Specification.

Externally visible items are represented in an export file. For a library package,
externally visible items are represented in an export file. For an applet package, only
those externally visible items that are part of a shareable interface are represented in
an export file.

A Java Card CAP file may restrict the visibility of a package it contains. In this case,
these packages are only visible to the other packages inside the CAP file and are
not be accessible by packages in other CAP files. No export file is generated for the
packages that have their visibility restricted to packages inside the same CAP file.

finalization
the process by which a Java virtual machine (JVM) allows an unreferenced object
instance to release non-memory resources (for example, close and open files) prior
to reclaiming the object's memory. Finalization is only performed on an object when
that object is ready to be garbage collected (meaning, there are no references to the
object).

Glossary

Glossary-6

Finalization is not supported by the Java Card virtual machine. The method
finalize() is not called automatically by the Java Card virtual machine.

firewall
the mechanism that prevents unauthorized accesses to objects in one application
group context from another application group context.

flash memory
a type of persistent mutable memory. It is more efficient in space and power than
EPROM. Flash memory can be read bit by bit but can be updated only as a block.
Thus, flash memory is typically used for storing additional programs or large chunks of
data that are updated as a whole.

framework
the set of classes that implement the API. This includes core and extension packages.
Responsibilities include applet selection, sending APDU bytes, and managing
atomicity.

garbage collection
the process by which dynamically allocated storage is automatically reclaimed during
the execution of a program.

global array
an array objects accessible from any context.

group context
protected object space associated with each CAP file and Java Card RE defining the
boundaries of the firewall.

heap
a common pool of free memory in volatile and persistent spaces usable by a program
for dynamic memory allocation, in which blocks of memory are used in an arbitrary
order. The Java Card virtual machine's heap is not required to be garbage collected
and objects allocated from the heap are not necessarily reclaimed.

installer
the on-card mechanism to download and install CAP files. The installer receives
executable binary from the off-card installation program, writes the binary into the

Glossary

Glossary-7

smart card memory, links it with the other classes on the card, and creates and
initializes any data structures used internally by the Java Card Runtime Environment.

installation program
the off-card mechanism that employs a card acceptance device (CAD) to transmit the
executable binary in a CAP file to the installer running on the card.

instance variables
also known as non-static fields.

instantiation
in object-oriented programming, to produce a particular object from its class template.
This involves allocation of a data structure with the types specified by the template,
and initialization of instance variables with either default values or those provided by
the class's constructor function.

instruction
a statement that indicates an operation for the computer to perform and any data to
be used in performing the operation. An instruction can be in machine language or a
programming language.

internally visible
code items that are not externally visible. These items are not described in a
package's export file and use private tokens to represent internal references. See
externally visible

JAR file
an acronym for Java Archive file, which is a file format used for aggregating and
compressing many files into one.

Java Card Platform Remote Method Invocation
a subset of the Java Platform Remote Method Invocation (RMI) system optionally
supported by the Java Card RE. It provides a mechanism for a client application to
invoke a method on a remote object of an applet on the card.

Java Card Runtime Environment (Java Card RE)
consists of the Java Card virtual machine, the application framework, and the
associated native methods.

Glossary

Glossary-8

Java Card Virtual Machine (Java Card VM)
a subset of the Java virtual machine, which is designed to be run on smart cards and
other resource-constrained devices. The Java Card VM acts an engine that loads Java
class files and executes them with a particular set of semantics.

Java Card RE context
the context of the Java Card RE has special system privileges so that it can perform
operations that are denied to contexts of applications.

Java Card RE entry point object
an object owned by the Java Card RE context that contains entry point methods.
These methods can be invoked from any context and allows applications to request
Java Card RE system services. A Java Card RE entry point object can be either
temporary or permanent:

temporary - references to temporary Java Card RE entry point objects cannot be
stored in class variables, instance variables or array components. The Java Card
RE detects and restricts attempts to store references to these objects as part of the
firewall functionality to prevent unauthorized reuse. Examples of these objects are
APDU objects and the APDU byte array.

permanent - references to permanent Java Card RE entry point objects can be stored
and freely reused. Examples of these objects are Java Card RE-owned AID instances.

JDK software
an acronym for Java Development Kit. The JDK software provides the environment
required for software development in the Java programming language. The JDK
software is available for a variety of operating systems.

library CAP file
a CAP file that contains only library packages. See library package.

library package
a Java programming language package that does not contain any non-abstract
classes that extend the class javacard.framework.Applet. See also applet package.

local variable
a data item known within a block, but inaccessible to code outside the block. For
example, any variable defined within a method is a local variable and cannot be used
outside the method.

Glossary

Glossary-9

logical channel
as seen at the card edge, works as a logical link to an applet application on the card.
A logical channel establishes a communications session between a card applet and
the terminal. Commands issued on a specific logical channel are forwarded to the
active applet on that logical channel. For more information, see the ISO/IEC 7816
Specification, Part 4. (http://www.iso.org).

MAC
an acronym for Message Authentication Code. MAC is an encryption of data for
security purposes.

mask production (masking)
refers to embedding the Java Card virtual machine, runtime environment, and
applications in the read-only memory of a smart card during manufacture.

method
a procedure or routine associated with one or more classes in object-oriented
languages.

multiselectable applets
implements the javacard.framework.MultiSelectable interface. Multiselectable
applets can be selected on multiple logical channels in the APDU application
environment at the same time. They can also accept other applets belonging to the
same applet application being selected simultaneously.

multiselected applet
an applet instance that is selected and, therefore, active on more than one logical
channel in the APDU application environment simultaneously.

namespace
a set of names in which all names are unique.

native method

a method that is not implemented in the Java programming language, but in another
language. The CAP file format does not support native methods to prevent from loading
untrusted code.

Glossary

Glossary-10

http://www.iso.org

nibble
four bits.

non-volatile memory
memory that is expected to retain its contents between card tear and power up events
or across a reset event on the smart card device.

object-oriented
a programming methodology based on the concept of an object, which is a data
structure encapsulated with a set of routines, called methods, which operate on the
data.

object
in object-oriented programming, unique instance of a data structure defined according
to the template provided by its class. Each object has its own values for the variables
belonging to its class and can respond to the messages (methods) defined by its
class.

origin logical channel
the logical channel in the APDU application environment on which an APDU command
is issued.

owning context
the application or Java Card RE context in which an object is instantiated or created.

owner context
see owning context.

package
a namespace within the Java programming language that can have classes and
interfaces.

PCD
an acronym for Proximity Coupling Device. The PCD is a contactless card reader
device.

persistent object
persistent objects and their values persist from one card session to the next,
indefinitely. Objects are persistent when referred from another persistent object.

Glossary

Glossary-11

Persistent object values are typically updated atomically using transactions. The term
persistent does not mean there is an object-oriented database on the card or that
objects are serialized and deserialized, just that the objects are not lost when the card
loses power.

PIX
see AID (application identifier).

RAM (random access memory)
temporary working space for storing and modifying data. RAM is non-persistent
memory; that is, the information content is not preserved when power is removed
from the memory cell. RAM can be accessed an unlimited number of times and none
of the restrictions of EEPROM apply.

reference implementation
functional and fully compatible implementation of a given technology. It enables
developers to build prototypes of applications based on the technology.

remote interface
an interface of an applet application, which extends, directly or indirectly, the interface
java.rmi.Remote.

Each method declaration in the remote interface or its super-interfaces includes the
exception java.rmi.RemoteException (or one of its superclasses) in its throws clause.

In a remote method declaration, if a remote object is declared as a return type, it is
declared as the remote interface, not the implementation class of that interface.

In addition, Java Card RMI imposes additional constraints on the definition of remote
methods of an applet application. See Java Card Platform Runtime Environment
Specification, Classic Edition, Version 3.1.

remote methods
the methods of a remote interface of an applet application.

remote object
an object of an applet application whose remote methods can be invoked remotely
from the off-card client. A remote object is described by one or more remote interfaces
of an applet application.

Glossary

Glossary-12

RFU
acronym for Reserved for Future Use.

RID
see AID (application identifier).

RMI
an acronym for Remote Method Invocation. RMI is a mechanism for invoking instance
methods on objects located on remote virtual machines (meaning, a virtual machine
other than that of the invoker).

ROM (read-only memory)
memory used for storing the fixed program of the card. A smart card's ROM contains
operating system routines as well as permanent data and user applications. No power
is needed to hold data in this kind of memory. ROM cannot be written to after the
card is manufactured. Writing a binary image to the ROM is called masking and occurs
during the chip manufacturing process.

runtime environment
see Java Card Runtime Environment (Java Card RE).

service
a shareable interface object that a server application uses to provide a set of well-
defined functionalities to its clients.

shareable interface
an interface that defines a set of shared methods. These interface methods can be
invoked from an application in one context when the object implementing them is
owned by an applet in another context.

shareable interface object (SIO)
an object that implements the shareable interface.

smart card
a card that stores and processes information through the electronic circuits embedded
in silicon in the substrate of its body. Unlike magnetic stripe cards, smart cards
carry both processing power and information. They do not require access to remote
databases at the time of a transaction.

Glossary

Glossary-13

SPI
an acronym for Service Provider Interface or sometimes for System Programming
Interface. The SPI defines calling conventions by which a platform implementer may
implement system services.

terminal
is typically a computer in its own right with an interface which connects with a smart
card to exchange and process data.

thread
the basic unit of program execution. A process can have several threads running
concurrently each performing a different job, such as waiting for events or performing a
time consuming job that the program doesn't need to complete before going on. When
a thread has finished its job, it is suspended or destroyed.

The Java Card virtual machine can support only a single thread of execution. Java
Card technology programs cannot use class Thread or any of the thread-related
keywords in the Java programming language.

transaction
an atomic operation in which the developer defines the extent of the operation by
indicating in the program code the beginning and end of the transaction.

transient object
the state of transient objects do not persist from one card session to the next, and are
reset to a default state at specified intervals. Updates to the values of transient objects
are not atomic and are not affected by transactions.

uniform resource identifier (URI)
a compact string of characters used to identify or name an abstract or physical
resource. A URI can be further classified as a uniform resource locator (URL), a
uniform resource name (URN), or both. See RFC 3986 for more information.

uniform resource locator (URL)
a compact string representation used to locate resources available via network
protocols or other protocols. Once the resource represented by a URL has been
accessed, various operations may be performed on that resource. See RFC 1738 for
more information. A URL is a type of uniform resource identifier (URI).

Glossary

Glossary-14

verification
a process performed on an application or library executable that checks that the binary
representation of the application or library is structurally correct and type safe.

volatile memory
memory that is not expected to retain its contents between card tear and power up
events or across a reset event on the smart card device.

volatile object
an object that is ideally suited to be stored in volatile memory. This type of object
is intended for a short-lived object or an object which requires frequent updates. A
volatile object is garbage collected on card tear (or reset).

word
an abstract storage unit. A word is large enough to hold a value of type byte, short,
reference or returnAddress. Two words are large enough to hold a value of integer
type.

Glossary

Glossary-15

	Contents
	List of Tables
	Preface
	Audience
	Before You Read This Document

	Documentation Accessibility
	Related Documents
	Documentation and Support
	Third-Party Web Sites
	Conventions

	Part I Setup, Samples and Tools
	1 Introduction
	Java Card Platform Architecture
	Java Card TCK

	2 Installation
	Install and Setup the Java Card Development Kit Simulator
	Before Installing the Java Card Development Kit Simulator
	Installing the Java Card Development Kit Simulator
	Confirming System Variables

	Install and Setup the Java Card Development Kit Tools
	Before Installing the Java Card Development Kit Tools
	Installing the Java Card Development Kit Tools
	Confirming System Variables

	Installed Files and Directories
	Eclipse Java Card Plug-in
	Installing the Eclipse Plug-in
	Configuring Sample_Platform and Sample_Device
	Configuring the Java Card Tools Path

	Uninstalling the Java Card Development Kit Simulator
	Uninstalling the Java Card Development Kit Tools

	3 Developing Java Card Applications
	Java Card Applet Development
	Java Card Development Kit Components
	Using Java Card Development Kit Tools

	4 Running the Samples
	How to Run the Samples
	Running the Samples in Eclipse
	Running the Samples from the Command Line

	Running the classic_applets Samples
	HelloWorld Sample
	Running the HelloWorld Sample in Eclipse
	Running the HelloWorld Sample from the Command Line

	Channels Sample
	Running the Channels Sample in Eclipse
	Running the Channels Sample from the Command Line

	Service Sample
	Running the Service Sample in Eclipse
	Running the Service Sample from the Command Line

	Utility Sample
	Running the Utility Sample in Eclipse
	Running the Utility Sample from the Command Line

	Wallet Sample
	Running the Wallet Sample in Eclipse
	Running the Wallet Sample from the Command Line

	ObjectDeletion Sample
	Running the ObjectDeletion Sample in Eclipse
	Running the ObjectDeletion Sample from the Command Line

	PhotoCard Sample
	Running the PhotoCard Sample in Eclipse
	Running the PhotoCard Sample from the Command Line

	RMIPurse Sample
	Running the RMIPurse Sample in Eclipse
	Running the RMIPurse Sample from the Command Line

	StringHandlingApp Sample
	Description of StringHandlingApp Applet
	Description of StringUtilApp Applet
	Command String Requirements
	Response String Description
	Examples of Process Method Handling of APDUs Containing a Command String

	Description of StringHandlingLib and StringHandlingLibLocal Libraries
	Running the StringHandlingApp Sample from Eclipse
	Running the StringHandlingApp Sample from the Command Line

	SecureRMIPurse Sample
	Running the SecureRMIPurse Sample in Eclipse
	Running the SecureRMIPurse Sample from the Command Line

	SignatureMessageRecovery Sample
	Message Recovery Order of Operations for Signing
	Message Recovery Order of Operations for Verifying
	Running the SignatureMessageRecovery Sample in Eclipse
	Running the SignatureMessageRecovery Sample from the Command Line

	ArrayViews Sample
	Running the ArrayViews Sample from the Command Line

	CertHandling Sample
	Running the CertHandling Sample from the Command Line

	Running the reference_apps Samples
	Biometry Sample Application
	SampleBioServer Class
	SamplePasswdBioApplet Class
	How the Biometric API Works
	On-card Matching
	Enrollment Process
	Verification Process

	Implementation Notes
	Running the Biometry Sample in Eclipse
	Running the Biometry Sample from the Command Line

	JavaPurse Sample Application
	Running the JavaPurse Sample in Eclipse
	Running the JavaPurse Sample from the Command Line

	JavaPurseExtCap Sample
	Running the JavaPurseExtCap Sample from the Command Line

	JavaPurseCrypto Sample
	Running the JavaPurseCrypto Sample in Eclipse
	Running the JavaPurseCrypto Sample from the Command Line

	Transit Sample
	Running the Transit Sample in Eclipse
	Running the Transit Sample from the Command Line

	5 Converting and Exporting Java Class Files
	Overview of Converting and Exporting Java Class Files
	Using the Converter in the Compact or Extended Format
	Using the Converter for a Target Java Card Version
	Using the Converter to Generate a Mask

	Setting Java Compiler Options
	Running the Converter
	Using Delimiters with Command Line Options
	Using a Command Configuration File in Compact Mode
	Using a JSON Configuration File for Converter in the Extended Mode
	Handling Relative Paths
	Converter JSON Configuration File Sample
	Validating a JSON Configuration File

	File Naming for the Converter
	Input File Naming Conventions
	Output File Naming Conventions
	Verification of Input and Output Files
	Creating a debug.msk Output File

	Using Export Files
	Specifying an Export Map
	Viewing an Export File as Text

	6 Working With CAP Files
	Compact CAP File and Manifest File Syntax
	Sample Manifest File

	Extended CAP File Manifest File Syntax
	Sample Extended CAP Manifest File

	Generating CAP Files From Java Card Assembly Files
	Running capgen
	Using a JSON Configuration File for capgen in the Extended Mode
	Capgen JSON Configuration File Sample

	Producing a Text Representation of a CAP File
	Running capdump

	7 Debugging Applications
	Debugger Architecture
	Running the Debug Proxy from the Command Line
	Debug Proxy Options
	Debugging the HelloWorld Sample from the Command Line

	8 Packaging and Deploying Your Application
	Overview of Packaging and Deploying Applications
	Installer Components and Data Flow
	Running scriptgen
	Sending and Receiving APDUs
	Running apdutool
	apdutool Examples
	Directing Output to the Console
	Directing Output to a File

	Using APDU Script Files
	APDUScript Preprocessor Commands

	Setting Default Applets
	On-Card Installer Applet AID

	Downloading CAP Files and Creating Applets
	Downloading the CAP File
	Creating an Applet Instance
	On-card Installer APDU Protocol
	APDU Types
	Select APDU Command
	Response APDU Command
	CAP Begin
	CAP End
	Component ## Begin
	Component ## End
	Component ## Data
	Create Applet
	Abort

	APDU Responses to Installation Requests
	A Sample APDU Script

	Using the On-card Installer for Deletion
	How to Send a Deletion Request
	APDU Requests to Delete CAP Files and Applets
	Delete CAP File
	Delete CAP File and Applets
	Delete Applets

	APDU Responses to Deletion Requests
	On-Card Installer Limits

	9 Verifying CAP and Export Files
	Overview of Verifying CAP and Export Files
	Verifying CAP Files
	Running verifycap

	Verifying Export Files
	Running verifyexp

	Verifying Binary Compatibility
	Running verifyrev

	Command Line Options for Off-Card Verifier Tools

	10 Using Cryptography Extensions
	Overview of Using Cryptography Extensions
	Supported Cryptography Classes
	Instantiating the Classes

	Part II Programming With the Development Kit
	11 Using Object, CAP File, and Applet Deletion
	Object Deletion Mechanism
	Requesting the Object Deletion Mechanism
	Object Deletion Mechanism Usage Guidelines

	CAP File and Applet Deletion
	Developing Removable CAP File
	Writing Removable Applets
	The AppletEvent.uninstall Method

	12 Working with Logical Channels
	Dual Interface Cards
	Applets and Logical Channels
	Non-MultiSelectable Applets

	The MultiSelectable Interface
	Selection for MultiSelectable Applets
	Deselection for MultiSelectable Applets

	Writing Applets for Concurrent Logical Channels
	MultiSelectable Applet Example
	Handling Channel Information on APDU Commands
	Interindustry Space
	Proprietary Java Card Technology Space
	Logical Channels
	APDU Command Type Identification

	Writing ISO/IEC 7816-4:2013 Compliant Applets
	ISO/IEC 7816-4:2013 Compliant Applet Example

	Non-MultiSelectable Applets and Shareable Objects
	ISO/IEC 7816-4:2013 Specific APDU Commands for Logical Channel Management
	MANAGE CHANNEL OPEN
	MANAGE CHANNEL CLOSE
	SELECT FILE

	13 Using Java Card RMI
	Developing RMI Applications for the Java Card Platform
	Steps to Develop an RMI Applet for the Java Card Platform
	Generating Stubs
	Running a Java Card RMI Applet

	RMI Program Example
	Main Program
	Implement a Remote Interface
	Define the Constructor for the Remote Object
	Provide an Implementation for Each Remote Method

	Sample Applet
	Preparing and Registering the Remote Object
	Processing the Incoming Commands

	Client Example
	Initializing and Shutting Down the Card Connection
	Creating and Using a CardAccessor Object
	Selecting the Java Card Applet and Obtaining the Initial Reference
	Using Remote Objects in Remote Method Invocations
	Generate the Stubs

	Card Terminal Interaction

	Add Security Support
	Initialize a Security Service
	Use the Service to Check the Current Security Status
	Security Service Example
	More Secure Applet
	Client Changes to Support Security
	CustomCardAccessor Class for Authentication and Signing

	Programming to the Java Card RMI Client-Side API
	Overview of Programming to the Java Card RMI Client Side
	Remote Stub Object
	Java Card RMI Client-Side API
	Package rmiclientlib
	Package clientlib

	14 Using Extended APDU
	Extended APDU Nominal Cases
	Extended APDU Format
	Extended APDU Limits
	javacardx.framework.ExtendedLength Interface
	APDU Parsing with the javacard.framework.APDU Class

	Creating an Applet That Can Send and Receive Extended Length APDUs

	15 Working with APDU I/O
	The APDU I/O API
	APDU I/O Classes and Interfaces
	Exceptions

	Two-interface Card Simulation
	APDU I/O API Examples
	To Connect To a Simulator
	To Power Up And Power Down the Card
	To Exchange APDUs
	To Print the APDU

	16 Programming for the Large Address Space
	Overview of Programming for the Large Address Space
	Programming Large Applications and Libraries
	Handling a Package as a Separate Code Space

	Storing Large Amounts of Data
	Example: The photocard Demo Applet

	17 Programming Large Java Card Applications With Multiple Packages
	CAP File Identification
	Package Visibility
	Firewall Context
	Extended CAP Accessibility Example
	Design Rules for a Java Card Application with Large Method Component

	18 Java Card Accessibility Information
	Access to Java Card Development Kit Support
	Java Card Development Kit Features that Support Accessibility
	Keyboard Navigation
	Documentation Accessibility Features

	Part III Java Card Eclipse Plug-in
	19 Using the Java Card Eclipse Plug-in
	Creating a Java Card Project Using the New Java Card Project Wizard
	Changing the Runtime Environment for the Java Card Project

	Creating a Java Card Applet Using the Default Source Template
	Creating a CAP File in a Java Card Project
	Managing CAP File Configurations

	Adding a Java Card Package to a CAP File
	Managing the Java Card Package

	Adding a Java Card Applet to a Java Card Package
	Managing Java Card Applets

	Adding a Java Card Static Resource to a CAP File
	Managing Java Card Static Resources

	Debugging a Java Card Applet in Eclipse Plug-in
	Debugging HelloWorld Sample from Eclipse

	Part IV Appendices
	A Java Card Assembly Syntax Example
	B Additional Optional Ant Tasks
	Location and Installation
	Installing the Ant Tasks

	Setting Up the Optional Ant Tasks
	Library Dependencies

	Ant Task Descriptions
	APDUTool
	Errors
	Examples

	CapDump
	Errors
	Examples

	Capgen
	Errors
	Examples

	Converter
	Parameters Specified As Nested Elements
	Errors
	Examples

	DeployCap
	Errors and Return Codes
	Examples

	Exp2Text
	Errors
	Examples

	Scriptgen
	Errors
	Examples

	VerifyCap
	Parameters Specified As Nested Elements
	Errors
	Examples

	VerifyExp
	Parameters Specified As Nested Elements
	Errors
	Examples

	VerifyRev
	Parameters Specified As Nested Elements
	Errors
	Examples

	Custom Types
	AppletNameAID
	Example

	JCAInputFile
	Examples

	ExportFiles
	Examples

	Glossary
	active applet instance
	AID (application identifier)
	APDU
	API
	applet
	applet application
	applet framework
	applet developer
	applet execution context
	applet firewall
	applet CAP file
	applet package
	assigned logical channel
	atomic operation
	atomicity
	ATR
	authentication
	basic logical channel
	big-endian
	binary compatibility
	bytecode
	CAD
	CAP file
	CAP file component
	cast
	card session
	client application
	constant pool
	context
	context switch
	converter
	currently active context
	currently selected applet
	custom CAP file component
	default applet
	EEPROM
	entry point method
	entry point objects
	export file
	externally visible
	finalization
	firewall
	flash memory
	framework
	garbage collection
	global array
	group context
	heap
	installer
	installation program
	instance variables
	instantiation
	instruction
	internally visible
	JAR file
	Java Card Platform Remote Method Invocation
	Java Card Runtime Environment (Java Card RE)
	Java Card Virtual Machine (Java Card VM)
	Java Card RE context
	Java Card RE entry point object
	JDK software
	library CAP file
	library package
	local variable
	logical channel
	MAC
	mask production (masking)
	method
	multiselectable applets
	multiselected applet
	namespace
	native method
	nibble
	non-volatile memory
	object-oriented
	object
	origin logical channel
	owning context
	owner context
	package
	PCD
	persistent object
	PIX
	RAM (random access memory)
	reference implementation
	remote interface
	remote methods
	remote object
	RFU
	RID
	RMI
	ROM (read-only memory)
	runtime environment
	service
	shareable interface
	shareable interface object (SIO)
	smart card
	SPI
	terminal
	thread
	transaction
	transient object
	uniform resource identifier (URI)
	uniform resource locator (URL)
	verification
	volatile memory
	volatile object
	word

