
Java Card Platform
Specification Release Notes

Version 3.1

F12020-03

March 2021

Table of Contents
• Introduction

• What's New

• Detailed Changes

• Supported Platforms

• Downloading the Specification Documents

• Known Issues

• Product Information

Introduction
This release notes describes the list of changes introduced in the Version 3.1 of the
Java Card specifications.

This document is intended for both the Oracle Java Card licensees who are
implementing the Java Card Platform and for the application developers who want
to understand the changes introduced in this release.

What's New
This section lists the important changes and features in Java Card Platform
Specifications, Version 3.1.

Topics:
• New Features in Java Card Virtual Machine

• New Features in the Java Card API

• Clarifications Added in Java Card Specifications v3.1 - February 2021

New Features in Java Card Virtual Machine

1

The following table outlines the new features in the Java Card Virtual Machine
specification version 3.1.

Table New Features in Java Card Virtual Machine Specifications

New Feature Description

Extended CAP file format Added support for the Extended CAP file format. A CAP
file has an extended format to support applications that are
bigger than 64 KB or that contain multiple Java packages,
which are deployed either as private or public libraries.

Static resources in CAP file Added Support for the COMPONENT_Static_Resources
component. An application can embed static resources
(configuration data or initialization data) in the CAP file and
access these resources from the application code.

Improved API extensibility Removed the CAP file limitation that prevented adding
methods to the non-final classes. Additional information is
added to the CAP file structure for an enhanced virtual
method token assignment, which allows evolution of the
platform API or shared libraries.

Array Views Added a feature to create arrays, which are views on a
subset of the elements of another array. The elements of the
view are mapped to the elements of the actual array to avoid
defensive copies, synchronization protocols, and to allow a
fine-grained access control on the elements.

New Features in the Java Card API
The following table outlines the new features in the Java Card Application
Programming Interface (API) specification version 3.1.

Table New Features in Java Card API Specification

New Feature Description

AES ciphering modes Added support for AES-CFB mode for stream ciphering and
AES-XTS mode for secure storage.

Configurable asymmetric key
generation

Added additional parameters for key generation to configure
the primality test or the random number generator.

Named Elliptic Curves Added support for named curves curves allowing an
application to reuse the predefined curves domain
parameters by specifying the name rather than configuring
the parameters values for each of the individual key.

Support for X25519 and X448
key agreement schemes

Implemented key agreement schemes using Curve25519
and Curve448 as described in RFC 7748

Support for Ed25519 and Ed448
digital signature schemes

Implemented cryptographic signatures using the Edwards-
Curve Digital Signature Algorithm (EdDSA) as described in
RFC 8032.

Support for SM2, SM3 and SM4
Chinese algorithms

Implemented SM2 elliptic curve digital signature, SM2 key
exchange, SM2 public key encryption, SM3 hash algorithm,
and SM4 block cipher algorithm.

2

https://tools.ietf.org/html/rfc7748
https://tools.ietf.org/html/rfc8032

Table (Cont.) New Features in Java Card API Specification

New Feature Description

Pseudo Random Functions and
Key Derivation Functions

Added an API to support common pseudo random functions
and key derivation functions.

Certificate API Added an API to parse, store, and manage X.509 DER
encoded certificates.

Monotonic Counter API Added an API to manage the monotonic counters securely.

System Time API Added an API to manage system uptime and perform
operations on time durations.

Extended I/O framework Included abstractions for the third-party extensions to access
different I/O communication models or peripherals.

Clarifications Added in Java Card Specifications v3.1 -
February 2021
This maintenance release contains the following clarifications and fixes:

• Fixes and clarifications in Java Card Platform Virtual Machine Specification,
Classic Edition, Version 3.1:

– Section 4.4 - Removed the incorrect statement that stated, "Adding method to
an interface is a binary incompatible change"

– Section 7.5.108 - Fixed the description of the swap_x instruction

• Fixes and clarifications in Java Card Platform Runtime Environment Specification,
Classic Edition, Version 3.1:

– Sections 5.3.1, 5.3.2, 6.1.5, 6.2.8.2, and 6.2.8.11 - Clarified Array View
description and its associated firewall checks

– Section 9.4.5 - Clarified handling of malformed APDU

– Section 9.8 - Fixed the incorrect statement that stated "Sub-packages must be
implemented"

– Sections 4.6.1 and 4.7.1 - Clarified the Manage Channel description
preventing from implementing other options from ISO/IEC 7816-4

• Clarifications in Java Card API Specification, Classic Edition, Version 3.1:

– Clarified that biometric template verification may occur at any step
of the enrollment sequence or may only be performed when
fully received, in doFinal() (javacardx.biometry.OwnerBioTemplate,
javacardx.biometry1toN.OwnerBioTemplateData)

– Clarified the definition and usage of
javacard.security.KeyBuilder.LENGTH_HMAC_SHA_*_BLOCK_* constant
values

– Clarified the description of javacard.security.KeyPair.genKeypair() for EC
keys

3

– Clarified the expected key format and length for secret
keys, javacard.security.[HMACKey|AESKey,|DESKey|GenericSecretKey|
KoreanSEEDKey|SM4Key].[setKey()|getKey()]

– Clarified that javacard.framework.APDU.setOutgoing() doesn't throw
ISOexception

Detailed Changes
This topic provides comprehensive information about each change made in the
specifications for this release.

For better understanding, each section include the following elements:

• Component - Identifies the Java Card specification (Java Card Virtual Machine,
Java Card Runtime Environment, and Java Card API), which is modified with the
new feature.

• API - Lists the package or class that supports the new feature.

• Compliance - Describes if a feature is mandatory or optional. A mandatory
feature must be supported by any implementation. An optional feature might not
be necessarily supported. However, when an optional feature is supported, the
proposed API, which is defined based on the industry requirements, must be
used instead of any other proprietary APIs to guarantee interoperability and avoid
fragmentation.

Core – Extended CAP File Format
Support for the Extended CAP file format.

• Component - Java Card Virtual Machine - CAP file format

• Compliance - Optional

The CAP file format, version 2.3 supports the following formats:

• The Compact format, which is compatible with the existing 2.2 format and the Java
Card 3.1 compliant implementation must support this format.

• The Extended format, which is optionally supported by a Java Card compliant
implementation, which includes extensions.

The extended format has the following characteristics:

• The method component can hold more than 64 KB of code. However, this has
implications on the structure of other components.

• An extended CAP file can contain binary representation of multiple packages,
which are either private and accessible only to the code within the CAP file or
exported as shared library and accessible from other CAP files.

• The private packages within an applet CAP file can contain static initialized arrays.

Core - Static Resources in CAP File

4

Support for the COMPONENT_Static_Resources component.

• Component - Java Card Virtual Machine - CAP file format

• API - javacard.framework.Resources class

• Compliance - Mandatory

The CAP file format 2.3 supports an additional component,
COMPONENT_Static_Resources to hold static resources. This component is present
in a CAP file when static resource files are added to the conversion. If no resources
are listed during conversion, this component will be absent from the CAP file.
However, it can be inserted in both the compact and extended formats.

Any Java Card 3.1 compliant implementation must support this new component.

See Section 6.2 and Section 6.16 in the Java Card Platform Virtual Machine
Specification, Classic Edition, Version 3.1 for detailed information.

Core - Improved API Extensibility Using Virtual Method
Mapping Table
Support for Virtual Method Mapping Table (VMMT).

• Component - Java Card Virtual Machine - CAP file format

• Compliance - Mandatory

The CAP file format 2.3 contains an additional VMMT in the class component. The
VMMT resolves the virtual method tokens when new methods are added to a super
class. The integration of this mechanism supports the previous CAP formats also for
backward compatibility.

This component is included in both the compact and extended formats. Any Java Card
3.1 compliant implementation must support this feature.

See Section 6.9 and Section 7.5.57 in the Java Card Platform Virtual Machine
Specification, Classic Edition, Version 3.1 for detailed information.

Core – Array Views
Support for array views object types.

• Component: Java Card Virtual Machine, Java Card Runtime Environment, and
Java Card Application Programming Interface

• API: javacard framework.JCSystem and javacardx.framework.util.intx.JCint

• Compliance: Mandatory

The Java Card Virtual Machine supports array views object types with elements
mapped to the elements of another array. The Java Card Virtual Machine needs to
perform additional checks when accessing the elements of a view to make sure that
the operation matches the view attributes (read/write).

Any Java Card 3.1 compliant implementation must support this feature.

5

The following table lists the APIs for the array views.

Table Array Views APIs

API Description

javacard.framework.JCSystem.makeArrayView() A method to
create an array
view.

javacard.framework.JCSystem.getAttributes() A method to get
the attributes of
the specified
array view.

javacard.framework.JCSystem.isArrayView() A method to
check if the
specified object is
an array view.

javacard.framework.JCSystem.makeBooleanArrayView() A method to
create a view on
a boolean array.

javacard.framework.JCSystem.makeByteArrayView() A method to
create a view on
a byte array.

javacard.framework.JCSystem.makeShortArrayView() A method to
create a view on
a short array.

javacardx.framework.util.intx.JCint.makeIntArrayView() A method to
create a view on
an int array.

See Section 5.3 and Section 6.2.2.1 in Java Card Platform Runtime Environment
Specification, Classic Edition, Version 3.1, for more details.

API –AES-CFB and AES-XTS Modes
Support for additional AES encryption modes.

• Component: Java Card Application Programming Interface

• API: javacardx.crypto and javacard.security

• Compliance: Optional

The APIs for cryptography supports the following AES encryption modes:

• AES-CFB mode: Used for stream ciphering

• AES-XTS mode: Used for securing storage in external memory

The AES-XTS mode needs to handle the AES keys in a specific way because it uses
the AES Key value as two sub keys. Consequently, it is required to provide an AES
Key instance with a double length (256-bit to perform AES-XTS 128-bit and 512-bit to
perform AES-XTS 256-bit). The KeyBuilder class is extended with a 512-bit AES key
length.

6

The new classes, interfaces, methods, and constants for this feature must be
available in any Java Card 3.1 compliant implementation. However, the corresponding
algorithm implementation is optional and might throw an exception with the
CryptoExcpetion.NO_SUCH_ALGORITHM reason code.

The following table lists the new constants in the Cipher class.

Table Cipher Constants for the Modes

Constants Description

javacardx.crypto.Cipher.CIPHER_AES_CFB A constant for the
AES-CFB mode.

javacardx.crypto.Cipher.CIPHER_AES_XTS A constant for the
AES-XTS mode.

javacard.security.KeyBuilder.LENGTH_AES_512 A constant to
instantiate the
AES-XTS 512-bit
keys.

API – Configurable Asymmetric Key Generation
Support for an application to configure some parameters during asymmetric key
generation.

• Component: Java Card Application Programming Interface

• API: javacard.security

• Compliance: Optional

The API for key generation supports an application to control some parameters of the
key generation. The new method generates the keys and supports the configuration
parameter object, which is provided by the application. The new interfaces that an
application object implements perform the following functions:

• Control the parameters for primality test (for example, the type of test or the
number of rounds)

• Control the random number generation algorithm and deterministically generate
the key from a secret

The new classes, interfaces, methods, and constants for this feature must be
available in any Java Card 3.1 compliant implementation. However, the corresponding
algorithm implementation is optional and might throw an exception with the
CryptoExcpetion.NO_SUCH_ALGORITHM reason code.

The following table lists the method and interfaces added to configure parameters.

7

Table Method and Interfaces for Configuring Asymmetric Key Generation

Method/Interface Description

javacard.security.KeyPair.
genKeyPair(AlgorithmParameterSpec)

A method to
generate the
keys.

javacard.security.AlgorithmParameterSpec

javacard.security.PrimalityTestParameterSpec

javacardx.security.derivation.KDFCounterModeSpec

Interfaces to
configure key
generation
algorithm.

API – Named Elliptic Curves
Support for named Elliptic Curve parameters.

• Component: Java Card Application Programming Interface

• API: javacard.security

• Compliance: Optional

The existing API for Elliptic-curve cryptography (ECC) requires an application to
configure every single key object with the curves domain parameters. With this
release, the ECC API extends support to a set of named parameters, which allow an
application to refer to these predefined parameters to create and use keys without the
need to configure the corresponding key parameters. The API supports the following
ECC curves parameters:

• brainpoolp192r1, brainpoolp224r1, brainpoolp256r1, brainpoolp320r1, and
brainpoolp384r1

• brainpoolp192t1, brainpoolp224t1, brainpoolp256t1, brainpoolp320t1,
brainpoolp384t1, and brainpoolp512t1

• secp192r1 , secp224r1, secp256r1, secp384r1, and secp521r1

• fr256v1

• SM2 (see, API – SM2, SM3 and SM4 Algorithms)

• Ed25519, Ed448, X25519, and X448 (see API – X25519 and X448 Key Agreement
and API – EdDSA with Curve25519 and Curve448)

The new classes, interfaces, methods, and constants for this feature must be
available in any Java Card 3.1 compliant implementation. However, the corresponding
algorithm implementation is optional and might throw an exception with the
CryptoExcpetion.NO_SUCH_ALGORITHM reason code.

The following table lists the APIs and interfaces.

8

Table New API and Interfaces for EC Keys

API/Class/Interface Description

javacard.security.KeyBuilder.buildXECKey(…) A method to
create EC Keys
for named curves.

javacard.security.XECKey

javacard.security.XECPublicKey

javacard.security.XECPrivateKey

Interfaces for the
EC keys for
named curves.

javacard.security.NamedParameterSpec A class that
defines the list of
supported named
parameters that
the named curves
use.

API – X25519 and X448 Key Agreement
Support for X25519 and X448 key agreements.

• Component: Java Card Application Programming Interface

• API: javacard.security

• Compliance: Optional

RFC 7748 defines a key agreement scheme that is more efficient and secure than
the existing elliptic curve Diffie-Hellman (ECDH) scheme and is used in TLS1.3.
The Named Curves mechanism (see API – Named Elliptic Curves) is extended with
X25519 and X448 key agreements, which allow creating the corresponding EC keys
to be used with a KeyAgreement object instance. The KeyAgreement class is also
extended to support this key agreement scheme.

The new classes, interfaces, methods, and constants for this feature must be
available in any of the Java Card 3.1 compliant implementation. However, the
corresponding algorithm implementation is optional and might throw an exception with
the CryptoExcpetion.NO_SUCH_ALGORITHM reason code.

The following table lists the named parameters and constants.

Table Named Parameters and Constant for Key Agreements

Named Parameter/Constant Description

javacard.security.NamedParameterSpec.X25519

javacard.security.NamedParameterSpec.X448

Extension of the
named
parameters to
support ECDH.

javacard.security.KeyAgreement.ALG_XDH A constant for key
agreements.

9

API – EdDSA with Curve25519 and Curve448
Support for ED25519 and ED448 curves.

• Component: Java Card Application Programming Interface

• API: javacard.security

• Compliance: Optional

RFC 8032 defines the Edwards-Curve Digital Signature Algorithm (EdDSA). The
Named Curves mechanism (see API – Named Elliptic Curves) is extended with
ED25519 and ED448 curves, which allow creating the corresponding EC keys to
be used with a Signature object instance. The Signature class is also extended to
support EdDSA in pure mode or prehash mode.

The new classes, interfaces, methods, and constants for this feature must be
available in any Java Card 3.1 compliant implementation. However, the corresponding
algorithm implementation is optional and might throw an exception with the
CryptoExcpetion.NO_SUCH_ALGORITHM reason code.

The following table lists the named parameters and constants.

Table Named Parameters and Constants to support EdDSA

Named Parameters/Constants Description

javacard.security.NamedParameterSpec.ED25519

javacard.security.NamedParameterSpec.ED448

Extension of the
named
parameters to
support EdDSA.

javacard.security.Signature.SIG_CIPHER_EDDSA

javacard.security.Signature.SIG_CIPHER_EDDSAPH

Constants in the
Signature
class.

API – SM2, SM3 and SM4 Algorithms
Support for additional Chinese algorithms.

• Component: Java Card Application Programming Interface

• API: javacard.security and javacardx.crypto

• Compliance: Optional

The API supports the following Chinese algorithms:

• SM2 elliptic curve digital signature, key exchange, public key encryption:
Extension of the named parameters (see API – Named Elliptic Curves), Signature
class, Cipher class, and KeyAgreement class.

• SM3 hashing algorithm: Extension of the existing MessageDigest class.

• SM4 block cipher algorithm: Extension of the Cipher class and new SM4 key type
with corresponding interface.

10

The new classes, interfaces, methods, and constants for this feature must be
available in any of the Java Card 3.1 compliant implementation. However, the
corresponding algorithm implementation is optional and might throw an exception with
the CryptoExcpetion.NO_SUCH_ALGORITHM reason code.

The following table lists the named parameters and constants.

Table Named Parameters and Constant for SM2, SM3, and SM4 Algorithms

Named Parameter/Constant Description

javacard.security.NamedParameterSpec.SM2

javacard.security.Signature.SIG_CIPHER_SM2

javacard.security.KeyAgreement.ALG_SM2

javacardx.crypto.Cipher.CIPHER_SM2

Extension of the
named
parameters to
support the SM2
digital signature,
SM2 key
exchange, and
SM2 public key
encryption.

javacard.security.MessageDigest.ALG_SM3 Constant for the
SM3 hashing
algorithm.

javacardx.crypto.CIPHER_SM4_ECB

javacardx.crypto.CIPHER_SM4_CBC

javacard.security.KeyBuilder.ALG_TYPE_SM4

javacard.security.KeyBuilder.LENGTH_SM4

javacard.security.KeyBuilder.TYPE_SM4

javacard.security.SM4Key

Constants for the
SM4 block cipher
algorithm and its
corresponding
symmetric keys.

API – Pseudo Random Functions (PRF) and Key
Derivations Functions (KDF)
Support for derivation functions.

• Component: Java Card Application Programming Interface

• API: javacardx.security.derivation

• Compliance: Optional

An optional package with classes and interfaces is added to support derivation
functions that are either used to generate key material or pseudo random data. The
following algorithms are supported:

• Key Derivation Function in counter mode defined in NIST SP800-108.

• Key Derivation Function in double pipeline iteration mode defined in NIST
SP800-108.

• Key Derivation Function in feedback mode defined in NIST SP800-108.

• Key Derivation Function as defined in ANSI X9.63.

11

• Key Derivation Function as defined in ICAO MRTD Doc 9303.

• Key Derivation Function as defined in IEEE1363-2000.

• Pseudo Random Function used for TLS (1.1 and 1.2).

• HMAC-based Extract-and-Expand Key Derivation Function (HKDF) as defined in
RFC5869.

The following table lists the classes and interfaces.

Table Classes and Interfaces for the Derivation Functions

Class/Interface Description

javacardx.security.derivation.DerivationFunction

javacardx.security.derivation.DerivationFunction.OneShot

Classes to derive
data.

javacardx.security.derivation.KDFAnsiX963Spec

javacardx.security.derivation.KDFCounterModeSpec

javacardx.security.derivation.KDFDoublePipelineIterationMo
deSpec

javacardx.security.derivation.KDFFeedbackModeSpec

javacardx.security.derivation.KDFHMACSpec

javacardx.security.derivation.KDFIcaoMRTDSpec

javacardx.security.derivation.TLSPseudoRandomFunctionSpec

Interfaces to
configure
derivation
functions.

API – Certificate
Support for new certificates.

• Component: Java Card Application Programming Interface

• API: javacardx.security.cert

• Compliance: Optional

An optional package is added with classes and interfaces to support certificates. They
perform the following functions:

• Parse the certificates encoded (X.509 DER) in an array and extract the fields.

• Allocate certificate objects, store the fields selected by the application, and verify
the signature.

The following table lists the classes and interfaces.

Table Classes and Interfaces for the New Certificates

Class/Interface Description

javacardx.security.cert.CertificateParser A class to parse
certificates and
create certificate
instances.

12

Table (Cont.) Classes and Interfaces for the New Certificates

Class/Interface Description

javacardx.security.cert.CertificateException A class that
represents a
certificate-related
exception.

javacardx.security.cert.Certificate

javacardx.security.cert.CertificateParser.ParserHandler

javacardx.security.cert.CertificateParser.KeyHandler

javacardx.security.cert.X509Certificate

javacardx.security.cert.X509Certificate.Extensionhandler

javacardx.security.cert.X509Certificate.FieldHandler

Interfaces to
parse certificates.

API – Monotonic Counter
Support for secure implementation of monotonic counters.

• Component: Java Card Application Programming Interface

• API: javacardx.security.util

• Compliance: Optional

An optional package is added, which provides ability for an application to use secure
implementation of monotonic counters provided by the platform. The APIs perform the
following functions:

• Instantiate and initialize monotonic counters of different size (up to eight bytes).

• Increment, compare, and retrieve the value of a counter, securely.

The following table lists the class for the Monotonic Counter.

Table Class for the Monotonic Counter

Class Description

javacardx.security.util.MonotonicCounter A class for the
Monotonic
Counter
management.

API – System Time
Support to obtain the system uptime, compare two time durations, perform arithmetic
operations on time, and convert time into different units.

• Component: Java Card Application Programming Interface

• API: javacardx.framework.time

13

• Compliance: Optional

The following table lists the classes.

Table Classes for System Time

Class Description

javacard.framework.time.SysTime A class for
handling system
time.

javacardx.framework.time.TimeDuration A class for
performing time
duration
operations.

API – Extended I/O
Support for extended I/O.

• Component: Java Card Application Programming Interface

• API: javacardx.framework.event and javacardx.framework.nio

• Compliance: Optional

The following packages provides extended I/O support:

• javacardx.framework.event: Defines platform central abstractions that is used by
the platform implementers or market specific standardization organizations. These
platform central abstractions can be used to extend the platform with different
protocols to either communicate with applications or implement specialized API to
communicate with peripherals.

• javacardx.framework.nio: Defines optimized means to access data (raw data
or structured data) in different memory location (internal, external, or mapped
memory).

This new feature is defined in optional packages. Therefore, when it is supported, both
packages must be present.

The following table lists the classes, interfaces, and exceptions.

Table Classes, Interfaces, and Exceptions for the Extended I/O Support

Class/Interface/Exception Description

javacardx.framework.event.EventRegistry

javacardx.framework.event.EventListener

javacardx.framework.event.EventSource

Event Framework
interfaces and
classes that
handle different
source of events

14

Table (Cont.) Classes, Interfaces, and Exceptions for the Extended I/O Support

Class/Interface/Exception Description

javacardx.framework.nio.Buffer

javacardx.framework.nio.ByteBuffer

javacardx.framework.nio.ByteOrder

javacardx.framework.nio.BufferOverflowException

javacardx.framework.nio.BufferUnderflowException

javacardx.framework.nio.ReadOnlyBufferException

NIO Framework
buffers, which are
containers for
data.

Supported Platforms
The Java Card specification documents are accessible on any computer system with
an Unzip utility, Adobe Acrobat Reader (version 4.0 or later), and a CSS-compliant
web browser.

View the HTML files using any of the following CSS-compliant browsers:

• Internet Explorer, version 5.0 or later.

• Mozilla Firefox, version 11.0 or later.

View the PDF files in your web browser with an appropriate plugin or in the Adobe®

Acrobat Reader. Most recent browsers include the PDF reader plugin. However, if your
browser doesn’t have one, then download the plugin from the Install Adobe Acrobat
Reader website.

Downloading the Specification Documents
Perform the following steps to download the specifications :

1. Download the specification bundle from the Java Card Technology web site.

2. Unzip the bundle.

3. Browse to the javacard_specifications-3_1-RR/classic folder.

The classic directory has the following sub folders:

• api_classic: Contains the Java Card API specification for the Classic Edition,
version 3.1 in the JavadocTM tool HTML format. Use the available browsers
to view the APIs. However, the APIs might not render well in Mozilla Firefox,
version 3.0.10.

• jcre_classic: Contains the Java Card Runtime Environment specification for
the Classic Edition, version 3.1 in the PDF format (JCREspecCLASSIC-3_1-
RR.pdf).

• jcvm_classic: Contains the Java Card Virtual Machine specification for the
Classic Edition, version 3.1 in the PDF format (JCVMspecCLASSIC_3_1-
RR.pdf).

15

http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html
https://www.oracle.com/technetwork/java/embedded/javacard/downloads/index.html

Known Issues
There are no known issues in this release of Java Card specifications.

Product Information
The Java Card Technology website provides useful information about the Java Card
product.

Visit the Java Card Technology website to access the most up-to-date information on
the following:

• Product news and reviews

• Release notes and product documentation

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Java Card Platform Specification Release Notes, Version 3.1
F12020-03

Copyright © 1998, 2021, Oracle and/or its affiliates. All rights reserved.

Release notes for Java Card Platform Specifications, Version 3.1.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property
laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is
applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are
"commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the
U.S. Government’s use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take

16

https://www.oracle.com/technetwork/java/embedded/javacard/downloads/index.html
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable
agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

17

