Java Card™ Platform

Virtual Machine Specification, Classic Edition

Version 3.2

January 2023

Java Card Platform Virtual Machine Specification, Classic Edition Version 3.2
Copyright © 1998, 2023, Oracle and/or its affiliates. All rights reserved.

The Specification provided herein is provided to you only under the Oracle Technology Network Developer License
included herein as Annex A - Oracle Technology Network Developer License Terms.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications that may create
a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD
logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Java Card Platform Virtual Machine Specification, v3.2 Page 2

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except
as set forth in an applicable agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Java Card Platform Virtual Machine Specification, v3.2 Page 3

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Java Card Platform Virtual Machine Specification, v3.2 Page 4

Contents

0= 1ol T T T TP PO PRTOVSRTORP 19
Who Should Use This SPeCifiCation.......cccuuiiiiiiiiiiciieee ettt e et e e e e e e enreeas 19
Before You Read This SPeCifiCation.........ccocuiiiiiiciiie ettt e et e vt e e s ebae e e s ereaeeeeanes 19
Y o1 LI e 50T £ PSSR 19
B oL =1t o] a1 Toll @] o 1VZ=T o d o] o F- 3PP 20
Related DOCUMENTAtIONiiiiiiiii ettt st s e st e e bt e e sb e e e sabe e sabeeeaneeesaneeesnnes 20
TRIF-Party WED SIS ...eeii ettt et e st e e e st te e e e sbt e e e e sbteeessbteeeesbeeeeessraeeesnnes 20
DocumeNntation ACCESSIDIITY....ccccuiiee it e e e e et e e e e bt e e e e e bte e e e enraeeeenraeeeeanes 21
Yool =T (ol O] =T [T U o o Yo o USSR 21
Oracle Welcomes YOUr COMMENTScouuiiiiriieieenteerite et et et e st e steesaee st s bt ebeesbeesbeesaeesaeeeteesbeesbeesanenas 21

T INEFOTUCTION Lottt et ettt et e s bt e s bt e e bt e e s bee e abeesabeesabeeesabeesabeeennbeesaraeesareenn 22
00 Y T 1= L o PO PRSPPSO PRSTOPPRPPRE 22
1.2 The Java Card Virtual Machine........c.ueoviiiiiiiiieeete ettt sttt et et e bt e sbeeesaes 23
IR N R I [oV (UE T INY=To U o | Y PPNt 25
1.4 Java Card Runtime ENVIrONMENt SECUIITYuuiiiiii ittt s et e e e e e e e esverre e e e e e e e eannnnes 25

2 ASubset of the Java Virtual Machingcooiooiiiiiiiee et 27
2.1 Why @ SUDSEL IS NEEAEMeeiiiiiieeeieee ettt et e e e e et e e e s atb e e s esataeeessnsaeeeesnneeeean 27
2.2 Java Card Platform Language SUDSELoo ittt saae e 27

D UL T U o] o Yo ot =Te I L =T o oL 27
2.2.1. 1 UNSUPPOIEEA FEATUIES ...vvviiieeieeecciiieeee e e e e ettt e e e s s e ettt e e e e e e e e snbttae e e e e s s eennseanneeeeesensnsenns 27
2.2.1.1.1 DYNamic Class LOAGINGceeeeuiiieieiiieeceitieeeecttee e e ettt e e e ette e e e e etteeeeeetteeeeebaeeeeenseeaeennes 27
2.2.1.1.2 SECUNILY IMAN@EET . ueeiiiiieeeeeeeeeiiiteee e e e e e sttt e e e e s s s saibtreeeeesssssasbaaaeeessssssssnseaeeesssssnnnsnnns 28
2.2.1. 1.3 FINALIZATION .ottt et sttt et re e s s 28

B O R 1 o1 =T [« £SO P PSPPSR 28
B I R 1 o T o 12 V=PSRRI 28
2.2.1.1.6 Access Control in Java PaCKagesccceeecciiiiieie et esetteee e e ecarre e e e e e e e anaees 28
2.2.0.0.7 TYPESATE ENUMS ..eiieiiiiei ettt ettt ettt e et e e e et e e e e e bt e e e e ebteeeeebeeeasesranaesnnes 28
200 20 W01 < 31 =1 o o = [Tol Yo I oY gl o Yo o IR PSPPIt 29

Java Card Platform Virtual Machine Specification, v3.2 Page 5

W R e V- T - | -SSR 29

2.2.1.1.10 Runtime Visible Metadata (ANNOTAtiONS)c.eeeveeereiieiiieeciee et eeee e rre e ee e 29
2.2.0.0.10 ASSEIEIONS..cciiuiiiiiiitiet ittt s e s e e 29
2 2 W A U L T W o o Yo g Yo [YAV] o PP 29
A e N U 1 T U o o Yo o =T B Y/ o1 PP 29
2.2.1.4 UNSUPPOTTEA CIaSSES....uviiiiiiuiieieiiiiteieiiteeeeiiteeesssteesssseeeesssteeesssseeessssseeesssssenesssssenesssssenns 29
2.2, 08,0 SYS OIM e aaaaaaaaaaaaaens 30
2 A U] o] o Jo T g €=Yo N 1 =Y o F PPN 30
B A V[o] o Yo Y {=To [ST | (U] o LR 30
A W N - T - Y=L PRt 30
2.2.2.1.2 DYNamic ObjJECt CreatioNcccccuiieeiciiiee ettt e ettt e et e e e e ctte e e e e rte e e e ebaeeeeebeeeaeennes 30
2.2.2.1.3 Virtual METNOAScooeiieiieeee ettt st et sare s 30
2.2.2. 04 INEEITACES uveeereieiie ettt ettt et sttt e st e s bt e e b e s bt e e s bee s bbe e areesraeenareens 30
2.2, 2.0 5 EXCEPEIONS e e e e e e e 30
2.2.2.0.6 GENEIICS cuuveieiiiiiee ittt ettt ettt sttt e e st e s e e s et e s e et e e s senae e e s s enre e e s snee 31
2.2.2.0.7 STAtiC IMPOIt e 31
2.2.2.1.8 Runtime Invisible Metadata (ANNOTAtioNS).......ccccveeecieiiiieeciie et 31
2.2.2.2 SUPPOIEA KEYWOITS.uiiiiiiiiieieiiiieeeitee e ettt e s ettt e e s stae e e s stteeeesabeeeessbaeeesnbaeeeassaeesssnsenas 31
2.2.2.3 SUPPOILEA TYPES .evvveeieurieeeeiireeeeiiteeeeitteeeessaeessssaeeeesssaaeesassasessssaeesssssasesssssesesasseeessssenes 32
2.2.2.4 SUPPOITEA ClaSSES ..eeiiiuriiieeiiieeeeiiteeeeitteeeestteeeestaeeeestaeeeessteeesasbaeasassaeaeaassaseeannseneeennsenns 32
2.2.2.8. 0 ODBJECE ettt h ettt e b e bt bt she e sateete e beesaeenaeenas 32
2.2.2. 4.2 TRFOWADIE 1.ttt sttt b e bt s ae e et e e sbe e saeesaeeeas 32
2.2.3 Optionally SUPPOItEd IEEMSviiiiciiiee ettt e e e ebee e e s e bte e e s sbaeeeesbeneeesanes 32
2.2.3. L 1NN Data Ty P e saaaeasasaaaaasananns 33
2.2.3.2 Object Deletion MEChaniSMc.uuiiiiiiiic et e s bae e e e e e e areeas 33
2.2.4 Limitations of the Java Card Virtual Machingcocoeiieiiiiiiiieeeeete e 33
2.2.4.1 Limitations Of PACKaZES.....cccuiiieeiiie ettt ettt ettt e et e e e aree e e e aba e e e eateee e e eareeas 33
2.2.4.1.1 Packagesin a Java Card CAP fil@cuueieiiiiee ettt 33
2.2.4.1.2 PACKAZE REFEIENCES ...ueiiiiiiieiciiiee ettt ettt ettt e e ette e e e e stta e e s s bte e e s sbaeeessbteeeesanes 33
2.2.4.1.3 PACKAZE NAME...oiiiiiiiiieeciieee et ettt et e e e ette e e e st e e e e sbte e e e e btaeessbteeessnbeeeassssaeassnnes 33
2.2.4.2 Limitations OF ClasssSeiruuiriiriieiieieertee ettt sttt s e e esreesane e 34
2.2.4.2.1 ClasseS iN @ PACKAEEuuuieeieieciiiieie e e e e ettt e e e e e eectteee e e e e e e s anbee e e e e e e s ssnnntreeeeeeeeennnnnnes 34

Java Card Platform Virtual Machine Specification, v3.2 Page 6

A N A | oY (=Y & - (o= TR 34

2.2.4.2.3 STAIC FIEIAS oottt s s e ree e saree s 34
2.2.4.2.4 STAtic METNOMS ..ottt sttt s 34
2.2.4.3 Limitations OFf ODJECESuviiiiiiii ettt e e e ree e e e abe e e s e nte e e e enreeas 34
2.2.4.3. 1 IMBENOAS ...ttt ettt st sttt b e et e st e saeesane e 34
2.2.4.3.2 Class INSTANCES ..c.uueiiiuiieriieeiiee st ettt ettt ettt e st e e bt e e sabeessbeeesabeesbeeesabeesabeeesneeesneeesaneens 34
2.2.8.3.3 AlTAYS e aaaaaaaaaaaaaaaaaaaaans 34
2.2.4.4 Limitations Of Methods.......cooiiiiiiiiieeee e e e 34
2.2.4.5 Limitations of SWitch Statementscccoriiiiiriiiiie e 35
2.2.4.6 Limitations of Class INitialization.........cccereeriiriiiiiinee e 35
2.2.5 Multiselectable Applets RESTIICTIONScc.uiie ittt et e e e e tre e e e e sare e e e eneaeeeeanes 35
2.2.6 Java Card Platform Remote Method Invocation (RMI) Restrictions........cccceevcveeeciveecveeccveeenne. 35
2.2.6.1 Remote Classes and Remote INTerfaces..........coeviiiriienieeiniieiie et 36
2.2.6.2 Access Control of ReEmMOte INterfaces.......c.cueiueriiiiieiienie et 36
2.2.6.3 Parameters and REtUIN VAlUEScocueoiiiiiiiiieiiieeriee ettt 36
2.3JaVA Card VIM SUDSETottt st ettt et e s be e st st s b e b e b as 36
2.3.1 Class File SUBSELcooueiiiiiieiie ettt ettt ettt e st st e sbee e sabee e bt e e sareesabeeesanes 37
2.3.1.1 Not SUPPOIrted iN Class FilS......cccuuiiiiiiiiiiciiee et ree e e ree e s aree e e s areeas 37
2.3.1.0.1 Class ACCESS FIAES....uuuiiiiiiiiieiciiiie ettt e st e e e bta e e s s bte e e s ebaeeesebeaeassanes 37
2.3.1.0.2 Field DESCIIPTOIS ..eeectieeeeeiieeeeeiteeeeectte e e eette e e e etteeeeebaeeeeebteeeeestaeesessseeeeseseasassenaeannes 37
2.3.1.1.3 CONSLANT POO....utiitieiieeieeee ettt st et ettt b e bt st et e e b e saeesaee e 37
2.3 L L A FIEIAS ettt st st et e b e bt she e st e et e e beeeheenaeeeas 37
2.3, 1. 1.5 MEENOAS ...ttt r e s 37
2.3.1.2 SUPPOIted iN Class FIlES ..cciicuuiiiiiciiie ettt e ree e e bee e s abae e e e abae e e sareeas 37

R A N O - 11 o =P P PRSP UPRURRRPO 37
2.3.1.2.2 Field DESCIIPLOIS . .ueeiiiiieeeeeeecciiiiee e e e e e eectree e e e e e e e s sasbeeeeeeeeeessnssasseeeesesaanssseneeeaessannssnes 37
2.3.1.2.3 MethOd DESCIIPLOIS ...uviiiieeeeiccciiieee e e e e ettt e e e e e e e et ree e e e e e e e s nnbeeeeeeeeessassseeeeeaeeesansnnns 38
2.3.1.2.4 CONSTANT POOL ..ottt st ree e sane s 38
2.3. 1. 2.5 FIEIAS et enneesnne e 38
2.3.1.2.6 MEENOAS ...ttt ettt r e e sane e 38
2.3.1.2.7 ATEIDULES .o st 38

B 21 Yol o Yo LI U 1Y =1 SR 38

Java Card Platform Virtual Machine Specification, v3.2 Page 7

3

2.3.2.1 UNSupported BYLECOUESceieeeeiciiiiiiee e e ettt e e e e eettrte e e e e e e e st ra e e e e e e e e e anbraaeeeaeeeesannnnnns 38

2.3.2.2 SUPPOItEA BYLECOUESvviiieiiiiieciieeecitee ettt e st e e s e e e sabe e e s s sbee e e ssbaeessnbeeesenarenas 40
2.3.2.3 Static Restrictions 0N BYLECOUESccccuiiiieiiiie ettt et e e rae e e e ee e e e eareeas 42
0 T e T A U Fofi o [ol YU RUR PSRNt 42
2.3.2.3.2 lOOKUPSWITCN ...ttt et e e et e e e et te e e s ebae e e e ebaeeeeentaeeesanes 42
2.3.2.3.3 tablESWITCN e et sare s 42

B T VY T TP PPPTPPPPN 42

P e B = (ol=Y o 4 (0] F-3 OO PP PP P PP UPPPPOPPN 43
2.3.3.1 Uncaught and Uncatchable EXCEPLIONSc.vveiiiciiiieeciee ettt 43
2.3.3.2 ChecKed EXCEPTIONSuviiiecciiieeeecieee e ettt e ectte e e e stte e e e tee e e e e aat e e e eeasbaeeeensaaeesenbaeesennssneeennrenns 43
2.3.3.3 RUNEIME EXCEPLIONS oot e e e e e e e e e e e e e e e e e 44
S TS B o o] PP PP PPPTOPON 44
Structure of the Java Card Virtual Maching...........cooiiiiiiiiiiieeeee ettt 46
3.1 Data TYPES @NA VAIUES ...ttt et e et e e et e e e e ab e e e e enataeeeenbeeesenseeeeennsenas 46
B2 W OIS ettt ettt sttt b e bt s h et s h et e a et et e e bt e ehe e e he e et e e bt e be e beeaheeeaeeeateebeesbeesheesanena 46
3.3 RUNTIME DAtA AFCAS ...eeiiiiieiie ettt et e s e e s bt e e s s e e e s s e e e s e snreees 47
S 00T o) (=4 &3PS PP PP PPTPPTPTRN 47
IR T =11 1= ORI 47
3.6 Representation Of ODJECESciiiiiiiiiiiie e e st e e e s abe e e e e re e e e nareeas 48
3.7 Special Initialization METROAScccciiiiecee e et e e e e s e tbe e e e e areeas 48
= 3 = (el=T o] o] o - USROS 48
3.9 BiNAry Fil@ FOIMALSuviiiiiiiii ettt e e e e ee e e et e e e et e e e e abaeeeeasbaeeeenasaeeeenbeeesensseeesessenas 48
3,10 INSErUCTION SEE SUMMIAIY...uuiiiiiiiiiiiiiiiieee ettt e e e e s st e e e e s s s ssbbaeeeeeessssasbtsaaeeesssnsasssnneeeesssnnes 48
3.10.1 Types and the Java Card Virtual Maching.........coccviiiiiciiii e 49
BiNary REPIrESENTATION c.iiiiieiiiiieiiie ettt e e e e s e s et e e s s s s ssbbabeeeeeessssasrsnaaeeesssnns 51
4.1 Java Card Platform File FOrMAatsccc.oiiiiiiiiieeie ettt ettt sttt s 51
g I o Yo ol a1 1T oo T o 4 - SR ERPROE 51
4.1.2 CAP File FOIMATt..cciiieiiieeiiee ettt ettt et e st e sit e e s e e st e e sabeeeneeesabeeesaneesareesnenesaneeenne 52
4. 1.3 JAR File CONTAINET vttt ettt st sttt e b e s be e sme e san e et e e beesbeesreesanenas 52
B N 10 R o - 1 =Te I A\ F= T oY o= PSP 53
4.2.1THE AID FOIMAT ceeuiiiiiiiiiiitteie ettt ettt ettt s ettt sttt e b e b e s be e smeesane et e e bt e sbeesmeesanenas 53
A A AN 1D I © EY V- Nt 53

Java Card Platform Virtual Machine Specification, v3.2 Page 8

4.2.2.1 CAP File AID NAMESPACE ...uvrreeeeeeeeiiiirieeeeeeeeeiiittrteeeseesesasrsseeesaessasassrssssessssssssssssssesesseesssssnns 53

4.2.2.2 APPIEt AID NAMESPACE . utiiiierieee ettt e eettee e setteeessteeeeesbeeeessbeeeessbeeeesssbeeesessseeesssseeessssens 53
4.2.2.3 Package AID NAMESPACE ...ccccvireeieiieeeeiiieeeeeiteeeeetteeeestteeeeebeeeesabaeeeesasaeseeansaeesesseeesesnsens 54
4.2.2.3 Custom Component AID NamMESPACEccciiiiiiiiiiiiieiiieieeeeeeeeeeeeeeee e e e e e e e e e e e e e e eeeeeeeeseseseseseeees 54

e B o] =T o = Te BT 0] 1 V=SSR 54
4.3.1 EXtErnally Visible IEEMS .ottt e e et e e e e abae e s ssbaeeessnnreeeean 54
4.3.2 Private TOKENSoiiieetie ettt ettt ettt et e s e sttt e s bt e sbe e e sabeesabeeeneeesabeeesnseesaseesaseeesareesane 55
4.3.3 The EXPOrt File and CONVEISION ...ciiicuiiiiiiciieeeeciiiee ettt e sttt e sttt e e st e e e ssatae e e ssabaeeesnsaeeessnneeeesan 55
4.3.4 References — External and INternal.........couooieiiiiieiieie et 55
4.3.5 InStallation @nd LINKINGoeeeiiiiicccieee ettt e et e e e et e e e e e saaa e e e e asaeeesasaeeesannseeenan 56
4.3.6 TOKEN ASSIZNMENT......iiiiiiiiiee ettt e e et e e et e e e et e e e e e ataeeeesataeeesassaseeeassaeeeeansaneesannseeenan 56
4.3.7 TOKEN DELAIIS....eeeetieetie ettt ettt et sttt e sar e st e e s bt e sbeeebte e sabeeesabeesabeesbeeesabeenane 56
e B A N - ol TP PPR 56
4.3.7.2 Classes and INTerfaCeScoiueiruieiienteite ettt sttt ee e b e b e sane e 56
4.3.7.3 SEALIC FIIAS .ttt st e be e e s 57
4.3.7.4 Static Methods and CONSTIUCTONSc...iiiieiiieiieiierte ettt st 57
4.3.7.5 INSEANCE FIEIAS.....eiieiiieeiee ettt ettt sat e st e e sab e s b e e sabe e sabeeesanes 57
4.3.7.6 VIrtUal MEETNOMSooueiiieiieieees ettt et s st e 58
4.3.7.7 Interface MEthOdScocviiiiieee e e 58

4.4 Binary ComPatibility.......cooicuiiei e e et e e e e ba e e e e rre e e eenreeas 59
4.5 CAP and PACKage VEISIONSccocuiieeiciiie e ecitee ettt e e ettt e e e tee e e e e ttee e e e s baeeeesabaeeeesateeeeeenbaeeeeanseeeeennsenas 60
T N1 =4 1o V= Nt 60
B.5.2 LINKING .ttt ettt st ettt s e st sttt b e e sae e sae e e et e r e e r e e nreesane e 60

I I o V=N oo Yo ol o1 (=T oo o 4 - RSP 62
Lo A o o Yo Tl 1 L= =T =PSRRI 62
5.2 Containment iN @ JAR FIl ...eoe ittt sttt s et e s e eane 62
LT O 1Y V=Y o 1T SRR 62
5.4 Hierarchies REPIESENTEM........ueiiii i e e e e e e e e et e e e e e e e s e s anbeaaeeeeeeeesannssaneeeaeeannns 63
LT 3 o o Yo Y Al 1 L= PRSP 63
5.6 CONSTANT POOL......iiiiiiiiiieet ettt ettt set e sttt et e bt esbe e smeesateene e beesneesnnenas 65
5.6.1 CONSTANT _PACKAEE .. .veeiteeiieriiieieeteet ettt sttt et ettt e s it sttt e e bt e b e ssee st e eneenbeesneesanenas 65
5.6.2 CONSTANT _ClasSIef ...ciiiiieeeeiiiiee ettt ettt e ettt e e e et te e e e ettt e e e e e bteeeeeabteeeeebtseasesseeaeessseaesassanaesnses 67

Java Card Platform Virtual Machine Specification, v3.2 Page 9

SR SR R 00NNy AN AV I 1) (=Y =] 67

5.6.4 CONSTANT _ULEB ...ttt ettt e e st e e s s bt e e e s sabaeeessbteeessnteeeesneaeeesnnes 68
5.7 Class@s aNd INTEITACESeeitiiiieiieee ettt ettt st et b e b e e sbeesaee st e enteesbeesaeesanenas 68
BB FIEIAS ..ttt et e h e h e s h e sttt e b e e b e e sbe e s he e et e et e e nbeesheesare e 71
5.9 IMBENOAS ...ttt et b e h e s h e sttt b e s bt s he e et e e b e e beesheesare e 73
510 ALETIDULES ...ttt ettt ettt e e bt e e sttt e s ht e e s a b e e s bt e e s be e e be e e abte e e beeeanbeesareeereeesreeenns 75

5.10.1 ConstantValue AtTribULEoouiiiieee e s 75

6 The CAP File FOMMAT....eiiiiiieiiie ettt ettt ettt ettt e et e st e e it e e st e e sbeeesabeesabeeesnreesareeesaneenn 77
5.1 CAP File OVEIVIEW ...ttt ettt sttt et e b e sbe e sae e st st e b e beesbeesaeesaeeeateenbeesbeesneenas 77
6.2 COMPONENT IMOELoiiiiiiiee et e et e e et e e et e e e e etbaeeeearaeeeenbeeesennraeesensenas 78

6.2.1 ContainmeNnt iN @ JAR FIle .eouuiiiii ettt st sttt 79

6.2.2 Defining NEW COMPONENTESviiiiiiiiieeiciieeeesiteee et e e et e e st e e e ssbee e e s sbeeeessbeeeessbeeeessseneassnes 80
6.3 INSTAIIATION ..ttt ettt e s e e e s e s be e e ab e e s be e e s ab e e s beeebeeesbeeenns 81
(o T To [T o @eTa Y e o] o= | PSP 81
SRR D1 ¢=Toi o] 4 VA @e] 041 o To] =11 | AU T PR TP 85
6.6 APPIET COMPONENT.....uviiiiiiiiie ettt ee et e e et e e e e ae e e et e e e s e tbeeeeesbaeeeassaeesanssaeeeasteeeeassaeesennsenas 90
6.7 IMPOIT COMPONENT .. e s esesesassassasasasassssnasansanannns 92
6.8 CoNStant POOI COMPONENT....ciiiiiiieieiiie ettt et e e et e e e st e e e e s abaeessnbaeesesseeeeennsenas 93

6.8.1 CONSTANT _CIaSSIET ..c.neeiiieiieeeeete ettt sttt e s st e n e re e sreesane e 95

6.8.2 CONSTANT _InstanceFieldref, CONSTANT _VirtualMethodref, CONSTANT_SuperMethodref...96

6.8.3 CONSTANT _StaticFieldref and CONSTANT _StaticMethodref...........ccooeciiiieciiiiicciee e 98
(SR @ T @o] 1] o To] 0 =1) PSSP 100
Lo IR A Ao Yo 1Yol 1o o] USRI 102
6.9.2 interface_info, class_info_compact and class_info_extended..........cccoecuveveiiieiiiiciieeciineenn, 104
6.9.2.1 interface_info, class_info_compact and class_info_extended Shared Items................... 105
6.9.2.2 interface _INFO ILEMS.......oii et e et e e e be e e e e eaba e e e e eareeas 106
6.9.2.3 class_info_compact and class_info_extended Itemscccceeeeiieeieciiee e, 107
6.9.2.4method BloCk 1IN0 111
6.9.2.5 implemented_interface iNfO......coccoociiiii i 112
6.9.2.6 remote_iNterface iNfO.......cciii i et 113
6.9.2.7 public_virtual_method_token _mMappingccccceeiiecciiiiiee e 115
(SR (O Y/ = o ToTe I @eT 1 0] o To] o [=1 | AP 116

Java Card Platform Virtual Machine Specification, v3.2 Page 10

6.10.1 method _component_BIOCKuuviiiiiiee e e e e e e e nnraeeeeeas 117

6.10.2 Exception Handler EXamMPIEcoouiiii ittt et e e s ae e s saaaeeeeas 118
6.10.3 exception_handler_INTO.......cuiii i e e e aaeaeean 119
L3 O I s g T<1 d o To Yo JE L0 o TN 121
(o Y = Y (ol = o I @ oo Yo V=T o | SRS 123
6.12 Reference Location COMPONENTuuiiiiiiieie it ccitee ettt e s sree e s et e e s s sabee e s s snbeeeesnreeas 127
6.12.1 reference_location_component_blockcccoiiviiiiiiiiiiiiiiec e 128
6.13 EXPOIt COMPONENT ... eeeeaseasaaeaasasasasesanasenenenns 130
6.14 DesCriptor COMPONENT....ccceiiieeeeeeeeeeeeeeeeeeeee eeeeeeeseeasasaeanaens 133
6.14.1 package descriptor INTOccueii i e aaaae e 135
6.14.2 class_descriptor_info_compact and class_descriptor_info_extendedccccccvvvveecnnenn. 135
6.14.3 field_desCriptor_iNfO.. i e e e areeeeas 137
6.14.4 method_descriptor_info_compact and method_descriptor_info_extended....................... 139

Lo R AV oY= Je (Yol o) o T 1 (o JP U 142
6.15 DEDUZ COMPONENT ...uiiiiiiiiieeeciee e ccteee ettt e et e e e et e e e eeta e e e e ebeeeeesabeeeesentaaeeesnbaeeeesnsesaeeanseneeennsenas 143
6.15.1 package debug_info_compact and package_debug_info_extended Structures 145
6.15.2 The class_debug_info_compact and class_debug_info_extended Structures...................... 145
6.15.2.1 The field_debug_info StrUCLUIecuviii i 148

6.15.2.2 The method_debug_info_compact and method_debug_info_extended Structures150

6.16 Static ReSOUICE COMPONENT....cccii eeeeeeeeas 154
7 Java Card Virtual Maching INStruCtion SET........coouiiiiiiiiiiiiiiere et 157
7.1 Assumptions: The Meaning Of “IMUST”coo it etee e e et e e eabee e e eareeas 157
A A (=1 =T oV =Te I 0 o Yoo To [T PSP 157
7.3 Virtual Maching EFTOIScoviiiiiiieeiieeeee ettt st ettt s st et sr e e s emne e s 157
7.4 SECUNITY EXCEPTIONS coiiiiiiiiiiieieee ettt e e s e et e e e e s s sttt e e e e e e s s ssbtbeeeeeessssssbeneaeeessnnas 158
7.5 The Java Card Virtual Machine InStruction Set..........cooeiiiiiiiiienieeee e 159
S0 - T-1 o X Lo B PO U PP PPPOPPRRRNt 160
T AR 1= 1 o = TSP PPPTOTRITN 161
T T (oo 0 1y Al 11] U 163
7.5.4 Ql0AM. ...t ettt ettt s b e st b e b e esne e e e et s 163
7.5.5 @l0A0_ N> 1ttt st e bt e st e e s be e e s abeesbaesbaeesbaeene 164
VR X: L L) - 1 - TR 165

Java Card Platform Virtual Machine Specification, v3.2 Page 11

S T A 1 (=3 A0 [o I 165

TR I 1 =1V LT =41 o PPN 166
7.5.9 @STOME ittt st a e srae e 166
T L0 I 1 o] £ 1 D T T U TP TP TP 167
7.5. 10 AENIOW .ttt e b e bt st sttt b e b e beesreeeaeeeareen 168
7.5.12 DAI0AM ..ttt et e e e st e e he e e a bt e s beeesareesabeeeneeesareeanns 169
T T o T 15 o - TSV P PP PR PPPRTOPPPRRNt 169
T8 o 1T o TU T o PSP 170
R T8 AT o1 1U) o I 171
7.5.16 ChECKCASTeeuteeiie ittt et ettt ettt sttt e b e b e b e sae e st e earean 171
8 T8 7 A o 0 o TR 173
7518 AUD_ X v eeeeeeeeee e et ee s s e ee e s es e ees e e s s et e e en e e e ee et eeeeeeee e et e eneee s eneeeeneen e eenen 174
8T8 K X o 0] o 32U 175
T A2 u =] Uo [P 175
T A N 2= u =1 Co JEE > o o1 LU 176
T A 1< u =] Lo [> 178
7.5.23 BT atiC Kt i 179
7.5.24 OT0 e ittt e h e st e bt bt e r e reesreesaeeereen 180
7.5.25 BOTO_W .ottt ettt st n e r e b re e sreesaeeeare s 181
75,26 02D ettt e b e e h e h e st e st et bt e beenbeesheeeateetean 181
7527 128 ettt h e bt h ettt et e e bt e bt e he e eateeabe e bt e bt e beeabeesheeeteentean 182
7.5.28 0800 ...ttt et e b e e h e e bt sat e e bttt e beenbeenbeesaeeeateetean 182
7.5.290810a0. ..ottt saeeere s 183
7.5.300H8N0 ..o e e ettt n e bt e b re e e s aeeere s 184
7.5.3LHASTOME 1oiiiiiiiic it sbe e 184
T 7 2N (ol o | o TSR 185
T 1 ol0] o 1) A SRR 186
753 IVttt ettt e bt e bt e e he e bt e bt e bt e bt e abeenheesaeeeateentean 186
7.5.35 if_@CMIPKCONG> ..ttt sttt e st e e e bt e e sab e e sbe e e sabee s baesnateesbaeenes 187
7.5.36 if_aCMIPKCONS>_ Wittt ettt ettt et esbe e st e sabe e sbaeesabeesabaesnaseesabaeenes 188
7.5.37 i _SCMIPKCONA> ..ttt ettt st e e sabe e s sbbeesat e e sabaeesabeesabaesnateesabaeenes 189
7.5.38 if SCMPKCONAD W eeiiiiiiiiieccieee ettt ettt e ettt e e et e e e e e ata e e e e abaeeaeeasaeeeenabaeeeeansseeesansrneanan 189

Java Card Platform Virtual Machine Specification, v3.2 Page 12

T 1 I | oo Y s T bR 190

T L0y oo o Vo b VS UEPR S 191
7540 HNONNUIL.cceeiiee ettt sttt ettt et a e st sttt b e b e b e sneesaeeeare s 192
7.5.42 HNONNUILW .eoiiiieee et e e e et e e e s ata e e e s eataeeeeataeeeennsaeeeensaeeesnnsaneanas 193
TS5 ABENUID ottt ettt e b et st st e b e b e b e sneesae e e s 193
TR o T | PPN 194
R T S T 11 Lol PP PPPT PP 194
T 5046 HINC_W eeiiiiiiieeeeee ettt e e e e ettt e e e e e e s bbbttt e e e e e e st b te e e e e e e e an b et e e e eeeeeananraaaeeeas 195
T.5.47 TIPUSI .ttt sttt et e b e s bt e s h e s et sttt e b e b e beesreeeaeeenreen 195
7548 H1080. ...ttt ettt et e b e h e bt s a et et e et e bt e beenbeesaee et e entean 196
N e I (o - T IR 2 >SN 197
7.5.50 Il0OKUPSWILCR 1.eiiieiiiie ettt e e e st e e et e e e s rata e e e entaeeesntaeeesnsaeaenas 197
8 T8 T 1 PSP 198
R T VA | U= - S T T TP P PP P PR TPP 199
7.5.53 INSTANCEOT . ..ccuteiiiiiie ittt b e st sttt et e b e bt be e sae e st e eare s 200
7.5.54 INVOKEINTEITACE ..ottt ettt st st sttt e b e b e s be e st e eaeeeneeen 202

7.5.54.1 Interface Method ReSOIULIONcccuiiiiiiiiie ettt e 203
7.5.55 INVOKESPECIAL..ceiiieiiiie ittt e e e e et e e e st b e e e e enta e e e enntaeeeentaeeeennaaeaeaas 204
7.5.56 INVOKESTATIC ..veeveiiiiiieeeete ettt ettt et ettt et r e r e r e sme e saeeeane s 205

7.5.56.1 Super Method ReSOIUTIONcccuiiiieiiee ettt e e e vee e e e eabee e e e nreeas 206
7.5.57 INVOKEVIFTUAL ..cnviiiiiitieieeee ettt ettt sttt b e bt e s be e saeesaeeeaeeas 206

7.5.57.1 Virtual Method ReSOIULION........ooiiiiiiieeee et 207
7 5. 58 0T ettt ettt r e e h et s e st e bbb e re e s e e et enreen 208
T.5.59 I@IM ittt a e s 208
7560 ITELUMN Lttt sra e sre e 209
T.5.8T HSNL ettt et b e bttt e sttt bt e bt e heesaeeeateentean 210
75082 TSI e e e s e e s b et e e e e s be e e naree s ree e reeesreeaane 210
T ST N 153 (o] ST PPPTOTTITN 211
N ST N o] £ =R 1 D T T T T U T P TSP P PP 211
75 85 HSUD ettt sttt b e b esre e et e s 212
7.5.66 ItaDIESWITCN e e e e 213
75067 TUSII ettt s e e st s n e e s e e e b et e n e e e s be e e s n e e e s r e e ereeesreeanne 214

Java Card Platform Virtual Machine Specification, v3.2 Page 13

RS T Y22 Do 214

75189 Sttt et b e bt bt e he e et et e e bt e bt e e heeeateeabe e be e be e bt e nbeesateeateentean 215
T.5.70 NEBW ittt e a e s a e e s et e e srae e 216
7. 5.7 L NBWAITAY e e e e e e e e e e e s e e e e e s e e e e e e e s e e e e e e e e e e e e e eeeaeeeaseaasaaeaseaeeeesaseesasassesaseseneanaennns 216
T 72 1 (o] J T T T T PP 217
T A N < Jo] o J T T T T T U TP U PRSP P TP 218
7574 POP2 ettt h e h ettt e te e bt e bt e e he e e ht e sateebe e bt e be e bt e nbeesaeeeaeeentean 218
A A3 e 1014 1151 [o TR O OO ST PRURRPR 219
T A o 10k 111 Co B o o o1 LU 220
T A7 A o1k 1] Uo HEE 222
7. 5. 78 PULSEATIC > i e e e e e e e e e e e e e eaeas 223
T 4 I = ORI 224
T.5.80 FEEUIN ettt e et e et e e et e e e s 225
7580 82Dttt sttt et e he e bt e he e eae e e bt et e bt e beenbeesheeeaeeentean 225
7.5.82 82 ettt b e bttt sttt e e bt e bt e he e eat e e bt e bt e bt e beeabeesreeeeeenrean 226
7.5.83 SAAA. ...ttt sttt et b e e bt e bt s ae e et e e bt e bt e bt e nbeesaeeeaeeentean 226
7.5.84 SAl0A ...ttt et e st e e hbe e st e e s be e e s abeesteeeneeesbeeenns 227
7.5.85 SANG....iiiiiieeiee e e e e ettt st st n e bt b esre e s aeeere s 228
7.5.86 SASTOME...uiiiiiiiiiiiiiiiii i 228
75,87 SCONSE K> iiiiiiiiiii e aaaeaaaaaaaans 229
7.5.88 SAIV ..ttt ettt sttt bt bt h ettt et e e bt e bt e e he e eat e st e e bt e bt e bt e nbeesheeeateentean 229
7.5.89 SINC ettt s e s e e s e e e e s a e e e s arreeenas 230
7.5.90 SINC_W ceiiiiiiiiiiiiieee ettt e ettt e e e s s sttt et e e e s e e sttt e e e e e e e e et b teeeeesen it baaaeeeeeeenntaraaaeeeas 231
TR B Y 1o U £ o [PPSR 231
7.5.92 51080 ...ttt et e r e s e re s 232
T 1 T Lo - 1o R 1 PSP 232
T L (oY o] U] o 13T/ el o SR 233
7.5.95 SIMUL.. .ottt ettt e st sh e e s b e e e b e e e s b e e e b et e ae e e s beeeenree s ree e reeesreeaane 234
75,08 SN e e e e e e e e s eeaaaeeaeaeaaaaeeaeaaaaaaeaaaeaeenns 234
7.5.97 SOK ittt a e a e e 235
7.5.98 SIBIM ittt bbb a e 235
TR LS] = {0 o o ST PP PRSPPI 236

Java Card Platform Virtual Machine Specification, v3.2 Page 14

ST 00 I o1 AR RTURRRRR 236

78 701 0 1 1 o USRI 237
8 T8 L0 Y o T T o PO 238
7.5.103 SSTOT@...uiiiiiiiiii ittt sra e e e 238
75,004 SSTOME N> eaaaeaaaaaaeaaaaaaaaaens 239
8 T8 0T] « T USRI 239
7.5.106 StabIESWITCN .eceeiiiieee e e s sbe e e sreeeaee 240
8 T8 L0 7 YU T o | OSSPSR 241
7.5.108 SWAP X tereeeieeieiiiiiiiisiiiissisissseeseseeseeseesseessessesssesssssesssssesessssssessssssssssessssssesssseseessssssssesessseseeeses 241
7.5.109 SXOK .iuitiiiiiitiee ittt e e e e a e e s e e e e s et e e s nraeeesas 242

8 Tables Of INSTIUCTIONSeiiiieiietieee ettt ettt et e b e e s bt e saeesatesabe e b e e nbeens 244
8.1 InStructions BY OPCOAE VAlUEeeiieiiiieciie ettt e e s s sabe e e e e snrae e e e nareeas 244
8.2 Instructions by Opcode MNEMONIC......uiiiiciiiiiiciiee e ccieee et e e e e ebee e e e e e s ssabee e e esnbeeeeenreeas 248
(€] Lo TY= 1 o PSR 254
Annex A - Oracle Technology Network Developer LICENSE TEIMS........ueeecciieeeeiieeeeecreeeeectee e ecvee e e aveeas 269

Java Card Platform Virtual Machine Specification, v3.2 Page 15

Figures

Figure 1-1: Java Card Application or Library CONVEISIONeiieiiiiiiiiiiiee ettt et e et e e svee e s e e 23
Figure 1-2: Java Card Application or Library Installationcccccviiieiiiiii et 24
Figure 4-1: Mapping Package [dentifiers 10 AIDS.......cccueiieiiiiieeiiiee et ceiee e estee e e et e e e savee e e naee s e eareeas 54
Figure 4-2: Binary Compatibility EXamPle.......ciiiciiiiieiiiie ettt e s e s s s e e s e e s sareeas 59

Java Card Platform Virtual Machine Specification, v3.2 Page 16

Tables

Table 2-1:
Table 2-2:
Table 2-3:

Unsupported Java Constant POOI Tags.......cccuiiiiriiiiiiiiiieecsiies e ceitee s ssieee e ssree e s e s e svee e s s 37
Supported Java Constant POOI TaS.....ccccciiiiiiiiiie ettt srae e e e eare e e e saaae e e s easaeeeens 38
Support of Java Checked EXCEPLIONSccccviiiiieiiie ettt ettt e e aae e e e sare e e s seaeeeeas 43

Table 2-4: Support of Java RUNtIME EXCEPLIONS ..veveiiiieiiieeee ettt e e e ee e 44
Table 2-5: SUPPOIt OF JAVA EFTOIS....ciiiiiiieciiee ettt ettt et eete e e et e e e et e e e s et e e e e eabeeeeensraeesennbeeeeennsenas 44
Table 3-1: Type Support in the Java Card Virtual Machine Instruction Setccccceiviviiiiieeeec e, 49
Table 3-2: Storage Types and Computational TYPESeeeviuiiiiiiiiiiiiriie et sree e sree e sbee e s 50
B Lo LR e AN | I o T 1 - | PRSP 53
Table 4-2: Token RANge, TYPE ANT SCOPEuviiiiiiiiieeeitie e eiite e et e e e st e e e saee e s sabeeeessbeeeessbaeessssbeeessnnsenas 56
Table 4-3: Tokens FOr INStANCE FIEIAScocuiiiiieiiiie et e e e e e e e s s nbee e e eareeas 57
Table 5-1: Export File CoNstant POOI TagS.......uciiciiiieeiiieeeeiiieeeecitee e e cree e eeivee e s eare e e e eabeeeeeataeesennbaeesenrenas 65
Table 5-2: EXport File PAckage FIagsuuuiiiuiiiiiiiiiie ettt erree et e s s svee e e sabe e e s naae e s s nbaeeesnaneeas 66
Table 5-3: Export File Class Access and Modifier FIags.......ccuueiiviiiiiiiiiiiiciiec et 69
Table 5-4: Export File Field Access and Modifier FIagsccueeiiiuiiiieciiee e 72
Table 5-5: Export File Method Access and Modifier FIags.......cccccuviiiiiiieiiiiiiiee e 74
Table 6-1: CAP File COMPONENT TAES ..uuvveeeiiiiieiiiiieeeeiiieeeeiireeeestteeesssreeeesseeeessssseeessssseseessssesesssssesessssseees 79
Table 6-2: CAP File ComPonent File NaMES......cccuviiieiiiieecciiee e et et e e ree e e etree e e e ate e e e e abae e s enbaeesenreeas 79

Table 6-3:
Table 6-4:
Table 6-5:
Table 6-6:
Table 6-7:

07 Y N S LI - = £ USPUPUPPRNt 83
CAP File CoNStant POOI TagS....uuuiiiiiiiieiiiiiie it e e ssttee e e sttt e e sttt e e s sbte e e s sbteeessbaeeessbeeeessseeeassnnes 94
TYPE DESCHIPLOr VAIUEBS ...ttt ettt eetee e e et e e e e abae e e eabae e e e abaee e e aneeas 102
Encoded Reference TYPE PL.CL.....uviii ittt e et e e e bte e e e sbea e e s sbaeeeesanes 103
ENCOAEA BYtE AITay TYPE .ooieiiiieieiiiee ettt ettt ettt e e e e tte e e e stae e e e sbeeeeesbteeeesbtaeeesnseaeessseanessnes 103

Table 6-8: Encoded Reference Array TYPE PL.Cl. .ottt ettt etee e e e erae e e ebe e e e earaeas 103
Table 6-9: Encoded Method SigNature (JV ... ittt s ae e et e e sare e s teeeraeeereeenes 104
Table 6-10: Encoded Method Signature (LPL.Ci;)S....cciiiiiieeieiecieecite ettt sve e et e e sere e sveeesaaeesrne e 104
Table 6-11: CAP File Interface and Class FIagscciiciieiiciiie ettt tee e e et e e et e et 106
Table 6-12: CAP File Method FIAgScciiiiiiiiiiiiie sttt sttt re e et e e e sabee e s e e e e e saraeas 122
Table 6-13: Segments of a Static Field IMageooiiiiii it 124
Table 6-14: StAtiC FIEIA SiZES ...eiiveieciiieiieecee et eee ettt etee st e et e e sate e e be e e bae e ssteesbeeesnseesnseesnneeesnseeane 124
TADIE B-15: ArTAY TYPES weeeicuieieeeiieeeeeciteeeeetteeeeetteeesebeeeeseataeeeeassaeeeeaseeeeesasaaeeaasseeeeaanseeeesnssenessnnseeeeenssens 126
Table 6-16: One-byte Reference Location EXampPle........ccocuiiiieciii ettt e 129
Table 6-17: CAP File Class DeSCriptor FIAgS.......uuuiiiieiiiiiiiiiiiee ettt ettt e e e e e e e enare e e e e e s e e nnraeeeee s 136
Table 6-18: CAP File Field DeSCriptor FIAgScccuiiiiiiiie et cetee ettt e e sre e e e evae e e eabae e e e araeas 138
Table 6-19: Primitive Type Descriptor VAIUES.......cuuii ittt ettt e e snaree e e e e e e e nnraeeee s 139
Table 6-20: CAP File Method Descriptor FIagS... .ttt e et e e e e e e anraeee e 140
Table 6-21: Class Access and Modifier FIags......ccuiiiiiiiiiiiciie ettt e e see e e 146
Table 6-22: Field Access and Modifier FIQZSuuiiiiiiiieieiee ettt e e et e e 149
Table 6-23: Method Modifier FIAgS........cooocuiiiiiiee ettt e et e e e e ebae e e e eare e e e e araeas 151

Java Card Platform Virtual Machine Specification, v3.2 Page 17

Table 7-1: EXample INStrUCtioN ENTIY.....coi ittt e e e satre e e e eatae e e e eatae e e e earaeas 159

TADIE 7-2: ATaY VAlUBS ..ottt ettt et e e e et e e e e bee e s s sabee e s e snbeeeeenabeeesennbeeesenrenas 172
LI o] TSI H AN - 1 AV | LU= RSP 200
B Lo TR A N N AV - LU TP 217
Table 8-1: Instructions by OPCOde ValUEoiiiiiiiiiiiie ettt e e e s e e s s sbee e s e areeas 244
Table 8-2: Instructions by Opcode MNEMONIC......uuiiiiiiieiieiiee e ertee et e e sre e e sree e s e sbee e s e sebeeessnareeas 248

Java Card Platform Virtual Machine Specification, v3.2 Page 18

Preface

Java Card technology combines a subset of the Java programming language with a runtime environment
optimized for secure elements, such as smart cards and other tamper-resistant security chips. Java Card
technology offers a secure and interoperable execution platform that can store and update multiple
applications on a single resource-constrained device, while retaining the highest certification levels and
compatibility with standards. Java Card developers can build, test, and deploy applications and services
rapidly and securely. This accelerated process reduces development costs, increases product
differentiation, and enhances value to customers.

The Classic Edition of the Java Card Platform is defined by three specifications:

e Virtual Machine Specification, Java Card Platform, Version 3.2, Classic Edition,
e Runtime Environment Specification, Java Card Platform, Version 3.2, Classic Edition,
e Application Programming Interface, Java Card Platform, Version 3.2, Classic Edition.

This document is a specification of the Classic Edition of the Java Card Platform, Version 3.2, Virtual
Machine (Java Card VM).

In this book, Java Card Platform refers to version 3.2 to distinguish it from all earlier versions. A vendor
of a Java Card technology-enabled device provides an implementation of the Java Card RE. An
implementation within the context of this specification refers to a vendor's implementation of the Java
Card Virtual Machine (or Java Card VM), the Java Card Application Programming Interface (API), or other
component, based on the Java Card technology specifications. A "reference implementation" is an
implementation produced by Oracle. Application software written for the Java Card platform is referred
to as a Java Card technology-based applet (Java Card applet or card applet).

Who Should Use This Specification

This specification is intended to assist implementers of the Java Card RE in creating an implementation,
developing a specification to extend the Java Card technology specifications, or in creating an extension
to the runtime environment for the Java Card platform. This specification is also intended for Java Card
applet developers who want a greater understanding of the Java Card technology specifications.

Before You Read This Specification

Before reading this guide, you should be familiar with the Java programming language, the other Java
Card technology specifications, and smart card technology. A good resource for becoming familiar with
Java technology and Java Card technology located at:
http://www.oracle.com/technetwork/java/javacard/overview/

Shell Prompts
Shell Prompt
C shell machine-name$%
C shell superuser machine-name#
Bourne shell and Korn shell 3
Bourne shell and Korn shell superuser #

Java Card Platform Virtual Machine Specification, v3.2 Page 19

http://www.oracle.com/technetwork/java/javacard/overview/

Typographic Conventions

The settings on your browser might differ from these settings.

Typeface Meaning Examples
AaBbCcl23 The names of commands, Edityour .login file.
files, and directories; on- Use 1s -a to list all files.
screen computer output % You have mail.
AaBbCcl23 What you type, when %su
contrasted with on- Password:
screen computer output
AaBbCc123 Book titles, new words or Read Chapter 6 in the User's Guide.

terms, words to be
emphasized. Replace
command-line variables
with real names or
values.

Related Documentation

These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

References to various documents or products are made in this guide, so you might want to have them

available:

e Application Programming Interface, Java Card Platform, Version 3.2, Classic Edition

e Runtime Environment Specification, Java Card Platform, Version 3.2, Classic Edition
e The Java Language Specification (https.//docs.oracle.com/javase/specs/)

e /SO 7816 Specification Parts 1-6. (https.//www.iso.orq)

Third-Party Web Sites

Oracle is not responsible for the availability of third-party web sites mentioned in this document. Oracle

does not endorse and is not responsible or liable for any content, advertising, products, or other
materials that are available on or through such sites or resources. Oracle will not be responsible or liable
for any actual or alleged damage or loss caused by or in connection with the use of or reliance on any

such content, goods, or services that are available on or through such sites or resources.

Java Card Platform Virtual Machine Specification, v3.2

Page 20

https://docs.oracle.com/javase/specs/
https://www.iso.org/

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at:

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit:

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info

Or, if you are hearing impaired, visit:

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Oracle Welcomes Your Comments
Oracle is interested in improving its documentation and welcomes your comments and suggestions.

Please include the title of your document with your feedback:

Virtual Machine Specification, Java Card Platform, v3.2, Classic Edition

Java Card Platform Virtual Machine Specification, v3.2 Page 21

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introduction

This document specifies the Java Card Virtual Machine features required by the Classic Edition of
Java Card technology.

o |t defines the subset of the Java Virtual Machine used for the Java Card Virtual Machine and list
the supported and unsupported features.

e |t defines the binary representation of the application code, the role and structure of the Export
and CAP file formats and their use in the verification and linking process.

e |t specifies the Java Card Virtual Machine byte-code set and its detailed behavior.

1.1 Motivation

Java Card technology enables programs written in the Java programming language to be run on secure
elements such as smart cards and other tamper-resistant security chips. Developers can build and test
programs using standard software development tools and environments, then convert them into a form
that can be installed onto a Java Card technology-enabled device. Application software for the Java Card
platform is called an applet, or more specifically, a Java Card applet (to distinguish it from browser
applets).

While Java Card technology enables programs written in the Java programming language to run on small
devices such as smart cards, those are far too under-powered to support the full functionality of the
Java platform. Therefore, the Java Card platform supports only a carefully chosen, customized subset of
the features of the Java platform. This subset provides features that are well-suited for writing programs
for small devices and preserves the object-oriented capabilities of the Java programming language.

A simple approach to specifying a Java Card virtual machine would be to describe the subset of the
features of the Java virtual machine that must be supported to allow for portability of source code
across all Java Card technology enabled devices. Combining that subset specification and the
information in Java Virtual Machine Specification, smart card and secure elements manufacturers could
construct their own Java Card technology-based implementations (“Java Card implementations”). While
that approach is feasible, it has a serious drawback. The resultant platform would be missing the
important feature of binary portability of Java Card applets.

The standards that define the Java platform allow for binary portability of Java programs across all Java
platform implementations. This “write once, run anywhere” quality of Java programs is perhaps the
most significant feature of the platform. Part of the motivation for the creation of the Java Card

Java Card Platform Virtual Machine Specification, v3.2 Page 22

platform was to bring just this kind of binary portability to the embedded security and smart card
industry. In a world with billions of secure elements with varying processors and configurations, the
costs of supporting multiple binary formats for software distribution could be overwhelming.

This Virtual Machine Specification, Java Card Platform, v3.2, Classic Edition is the key to providing binary
portability. One way of understanding what this specification does is to compare it to its counterpart in
the Java platform. The Java virtual machine specification defines a Java virtual machine as an engine that
loads Java class files and executes them with a particular set of semantics. The class file is a central piece
of the Java architecture, and it is the standard for the binary compatibility of the Java platform. The
Virtual Machine Specification, Java Card Platform, v3.2, Classic Edition also defines a file format that is
the standard for binary compatibility for the Java Card platform: the CAP file format is the form in which
software is deployed to be loaded onto devices which implement a Java Card virtual machine.

1.2 The Java Card Virtual Machine

The role of the Java Card virtual machine is best understood in the context of the process for production
and deployment of software for the Java Card platform. There are several components that make up a
Java Card system, including the Java Card virtual machine, the Converter for the Java Card platform
(“Java Card Converter”), a terminal installation tool, and an installation program that runs on the device,
as shown in Figure 1-1 and Figure 1-2.

Figure 1-1: Java Card Application or Library Conversion

:J’ _

class files

export files
CAP file

Java Card Platform Virtual Machine Specification, v3.2 Page 23

Figure 1-2: Java Card Application or Library Installation

Terminal Device

Java Card

Installer components

Installation
.................. > ||
tool

CAP file

Development of a Java Card applet begins as with any other Java program: a developer writes one or
more Java classes, and compiles the source code with a Java compiler, producing one or more class files.
The applet is run, tested and debugged on a workstation using simulation tools to emulate the device
environment. Then, when an applet is ready to be downloaded to a device, the class files comprising the
applet are converted to a CAP (converted applet) file using a Java Card Converter.

The Java Card Converter takes as input all of the class files in one or more Java packages which make up
a Java Card CAP file. A Java package that contains one or more non-abstract subclasses, direct or
indirect, of the javacard.framework.Applet classis referred to as an applet package.
Otherwise the package is referred to as a library package. A Java Card CAP file may contain only applet
packages, only library packages or a combination of applet and library packages. Additionally, both
applet and library packages in a Java Card CAP file can be public or private.

A private library package in a Java Card CAP file is not listed in the Export Component (6.13 Export
Component) of the CAP file and is therefore not visible outside the Java Card CAP file. Similarly, a private
applet package in a Java Card CAP file is not listed in the Export Component (6.13 Export Component) of
the CAP file, however, non-abstract direct or indirect subclasses of the

javacard. framework.Applet class are listed in the Applet Component (6.6 Applet Component)
of the CAP file. For a public applet package in a Java Card CAP file, only public interfaces extending
javacard. framework.Shareable are listed in the Export Component (6.13 Export Component)
of the CAP file and are therefore visible outside the Java Card CAP file. For further details see The CAP
File Format.

The Java Card Converter also takes as input one or more export files. An export file contains name and
link information for the contents of other packages that are imported by the classes being converted.
The converter can also produce export files for the public applet and library packages in a CAP file.

After conversion, the CAP file is copied to a terminal, such as a desktop computer with a card reader
peripheral. Then an installation tool on the terminal loads the CAP file and transmits it to the Java Card
technology-enabled device. An installation program on the device receives the contents of the CAP file

Java Card Platform Virtual Machine Specification, v3.2 Page 24

and prepares the applet to be run by the Java Card virtual machine. The virtual machine itself needs not
load or manipulate CAP files; it only needs to execute the applet code found in the CAP file that was
loaded onto the device by the installation program.

The division of functionality between the Java Card virtual machine and the installation program keeps
both the virtual machine and the installation program small. The installation program may be
implemented as a Java program and executed on top of the Java Card virtual machine. Since instructions
for the Java Card platform (“Java Card instructions”) are denser than typical machine code, this may
reduce the size of the installer. The modularity may enable different installers to be used with a single
Java Card virtual machine implementation.

1.3 Java Language Security
One of the fundamental features of the Java virtual machine is the strong security provided in part by
the class file verifier.

The Java Card virtual machine specification mandates CAP file verification. The data needed for
verification is packaged separately from the data needed for the actual execution of the code (see 6.14
Descriptor Component). This enables the following two options for the implementation of the
verification, depending on device capabilities, resources and deployment model:

e Perform CAP file verification inside the device (on-device verification),

e Perform CAP file verification outside the device (off-device verification).

The CAP file verification must be performed at least once, before loading, before installation or before
execution of the code, in order to ensure that each bytecode is valid at execution time. Off-device
verification can also be systematically used to detect any issue before initiating deployment.

When off-device verification option is used, the deployment process must also ensure that:

e Verification uses export files that are binary compatible with API packages installed on the
device (see 5 The Export File Format).

o After verification, the CAP file to be executed on the device is not altered in a way that does not
satisfy the constraints checked by this verification.

1.4 Java Card Runtime Environment Security

The standard runtime environment for the Java Card platform is the Java Card Runtime Environment
(Java Card RE). The Java Card RE consists of an implementation of the Java Card virtual machine along
with the Java Card API classes. While the Java Card virtual machine has responsibility for ensuring Java
language-level security, the Java Card RE imposes additional runtime security requirements on devices
that implement the Java Card RE, which results in a need for additional features on the Java Card virtual
machine. Throughout this document, these additional features are designated as Java Card RE-specific.

Java Card Platform Virtual Machine Specification, v3.2 Page 25

The basic runtime security feature imposed by the Java Card RE enforces isolation of applets using what
is called an applet firewall. The applet firewall prevents the objects that were created by one applet
from being used by another applet. This prevents unauthorized access to both the fields and methods of
class instances, as well as the length and contents of arrays.

Isolation of applets is an important security feature, but it requires a mechanism to allow applets to
share objects in situations where there is a need to interoperate. The Java Card RE allows such sharing
using the concept of shareable interface objects. These objects provide the only way an applet can make
its objects available for use by other applets. For more information about using shareable interface
objects, see the description of the interface javacard. framework.Shareable in the Application
Programming Interface, Java Card Platform, v3.2, Classic Edition. Some descriptions of firewall-related
features make reference to the Shareable interface.

The applet firewall also protects from unauthorized use the objects owned by the Java Card RE itself.
The Java Card RE can use mechanisms not reflected in the Java Card APl to make its objects available for
use by applets. A full description of the Java Card RE-related isolation and sharing features can be found
in the Runtime Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 26

A Subset of the Java Virtual Machine

This chapter describes the subset of the Java virtual machine and language that is supported in the
Java Card platform.

2.1 Why a Subset is Needed

It would be ideal if programs for secure elements such as smart cards could be written using all of the
Java programming language, but a full implementation of the Java virtual machine is far too large to fit
on even the most advanced resource-constrained devices available today.

A typical resource-constrained device has on the order of 1.2K of RAM, 16K of non-volatile memory
(EEPROM or flash) and 32K-48K of ROM. The code for implementing string manipulation, single and
double-precision floating point arithmetic, and thread management would be larger than the ROM
space on such a device. Even if it could be made to fit, there would be no space left over for class
libraries or application code. RAM resources are also very limited. The only workable option is to
implement Java Card technology as a subset of the Java platform.

2.2 Java Card Platform Language Subset

Applets written for the Java Card platform are written in the Java programming language. They are
compiled using Java compilers. Java Card technology uses a subset of the Java language, and familiarity
with the Java platform is required to understand the Java Card platform.

The items discussed in this section are not described to the level of a language specification. For
complete documentation on the Java programming language, see The Java Language Specification.

2.2.1 Unsupported Items
The items listed in this section are elements of the Java programming language and platform that are
not supported by the Java Card platform.

2.2.1.1 Unsupported Features
The following features are not supported.

2.2.1.1.1 Dynamic Class Loading

Dynamic class loading is not supported in the Java Card platform. An implementation of the Java Card
platform is not able to load classes dynamically. Classes are either masked into the device during
manufacturing or downloaded through an installation process after it has been issued. Programs

Java Card Platform Virtual Machine Specification, v3.2 Page 27

executing on the device may only refer to classes that already exist on the device, since there is no way
to download classes during the normal execution of application code.

2.2.1.1.2 Security Manager

Security management in the Java Card platform differs significantly from that of the Java platform. In the
Java platform, there is a Security Manager class (java.lang.SecurityManager) responsible for
implementing security features. In the Java Card platform, language security policies are implemented
by the virtual machine. There is no Security Manager class that makes policy decisions on whether to
allow operations.

2.2.1.1.3 Finalization
Finalization is also not supported. finalize () will not be called automatically by the Java Card virtual
machine.

2.2.1.1.4 Threads

The Java Card virtual machine does not support multiple threads of control. Programs for the Java Card
platform (“Java Card programs”) cannot use class Thread or any of the thread-related keywords in the
Java programming language.

2.2.1.1.5 Cloning
The Java Card platform does not support cloning of objects. Java Card API class Object does not
implement a clone method, and there is no Cloneable interface provided.

2.2.1.1.6 Access Control in Java Packages
The Java Card platform language subset supports the package access control defined in the Java
language. However, the cases that are not supported are as follows.

e If aclass implements a method with package access visibility, a subclass cannot override the
method and change the access visibility of the method to protected or public.

e A public class cannot contain a public or protected field of type reference to a package-visible
class.

e A public class cannot contain a public or protected method with a return type of type reference
to a package-visible class.

o A public or protected method in a public class cannot contain a formal parameter of type
reference to a package-visible class.

o A package-visible class that is extended by a public class cannot define any public or protected
methods or fields.

e A package-visible interface that is implemented by a public class cannot define any fields.

e A package-visible interface cannot be extended by an interface with public access visibility.

2.2.1.1.7 Typesafe Enums
The Java Card platform language subset does not support the enumerated type facility and the keyword

enum.

Java Card Platform Virtual Machine Specification, v3.2 Page 28

2.2.1.1.8 Enhanced for Loop

The Java Card platform language subset does not support the enhanced for loop language construct.
Support for the enhanced for loop construct requires support for array indexing using the integer data
type. The Java Card platform only supports array indexing using the short data type.

2.2.1.1.9 Varargs

The Java Card platform language subset does not support variable-length argument lists. The variable-
length argument construct requires the compiler to generate code that creates a new array object each
time a variable-length argument array method is invoked, thereby causing implicit memory allocations
in Java Card runtime memory heap.

2.2.1.1.10 Runtime Visible Metadata (Annotations)

The Java Card platform does not support this language feature which lets you introduce meta-data
information into the runtime environment to be accessed reflectively. The Java Card platform does not
support reflection.

2.2.1.1.11 Assertions
The Java Card runtime does not provide runtime support for statements in the Java programming
language called assertions that are used to test assumptions about program functionality.

2.2.1.2 Unsupported Keywords
The following keywords indicate unsupported options related to native methods, threads, floating point,
memory management, and debugging:

e native

e strictfp

e synchronized
e enum

e transient

® assert

e volatile

2.2.1.3 Unsupported Types
The Java Card platform does not support types:

e char

e double
e float
e long

e arrays of more than one dimension.

2.2.1.4 Unsupported Classes
In general, none of the Java programming language core API classes are supported in the Java Card
platform. Some classes from the java . lang package are supported (see Section 2.2.2.4 Supported

Java Card Platform Virtual Machine Specification, v3.2 Page 29

Classes), but none of the rest are. For example, classes that are not supported are String, Thread
(and all thread-related classes), wrapper classes such as Boolean and Integer, and class Class.

2.2.1.4.1 System
Class java.lang.System s not supported. Java Card technology supplies a class
javacard. framework.JCSystem, which provides an interface to system behavior.

2.2.2 Supported Items
If a language feature is not explicitly described as unsupported, it is part of the supported subset.
Notable supported features are described in this section.

2.2.2.1 Supported Features
The following features are the more important supported features.

2.2.2.1.1 Packages

Software written for the Java Card platform follows the standard rules for the Java platform packages.
Java Card API classes are written as Java source files, which include package designations. Package
mechanisms are used to identify and control access to classes, static fields and static methods. Except as
noted in “Access Control in Java Packages” (2.2.1.1 Unsupported Features), packages in the Java Card
platform are used exactly the way they are in the Java platform.

2.2.2.1.2 Dynamic Object Creation
The Java Card platform programs supports dynamically created objects, both class instances and arrays.
This is done, as usual, by using the new operator. Objects are allocated out of the heap.

A Java Card virtual machine will not necessarily garbage collect objects. Any object allocated by a virtual
machine may continue to exist and consume resources even after it becomes unreachable. See 2.2.3.2
Object Deletion Mechanism for more information regarding support for an optional object deletion
mechanism.

2.2.2.1.3 Virtual Methods

Since Java Card technology-based objects (“Java Card objects”) are Java programming language objects,
invoking virtual methods on objects in a program written for the Java Card platform is exactly the same
as in a program written for the Java platform. Inheritance is supported, including the use of the super
keyword.

2.2.2.1.4 Interfaces

Java Card API classes may define or implement interfaces as in the Java programming language. Invoking
methods on interface types works as expected. Type checking and the instanceof operator also
work correctly with interfaces.

2.2.2.1.5 Exceptions
Java Card programs may define, throw and catch exceptions, as in Java programs. Class Throwable
and its relevant subclasses are supported. Some Exception and Error subclasses are omitted, since

Java Card Platform Virtual Machine Specification, v3.2 Page 30

those exceptions cannot occur in the Java Card platform. See 2.3.3 Exceptions for specification of errors
and exceptions.

2.2.2.1.6 Generics
This Java language facility allows a type or method to operate on objects of various types while
providing compile-time type safety. It adds compile-time type safety and eliminates the need for casting.

2.2.2.1.7 Static Import
This Java language facility lets you avoid importing an entire class simply to access its static members or
qualifying static members with class names each time it is used.

2.2.2.1.8 Runtime Invisible Metadata (Annotations)

This language feature lets you avoid writing boilerplate code under many circumstances by enabling
tools to generate it from annotations in the source code. The Java Card platform language subset
supports the use of annotations which are not visible at runtime. These annotations do not themselves
use the runtime visible meta-data annotation @Retention (RetentionPolicy.RUNTIME).

2.2.2.2 Supported Keywords
The following keywords are supported. Their use is the same as in the Java programming language.

e abstract
e Dboolean

e break
e Dbyte
® case
e catch
e class

e continue

e default
e do
e else

e extends

e final

e finally
e for

e goto

o if

e implements
e import

e instanceof
e int

e interface
® new

e package

e private

Java Card Platform Virtual Machine Specification, v3.2 Page 31

e protected
e public

e return

e short

e static

e super
e switch
e this

e throw

e throws

e try
e void
e while
2.2.2.3 Supported Types

Java programming language types supported:

e Dboolean

e Dbyte
e short
e int

e Obijects (class instances and single-dimensional arrays)
e Arrays can contain the supported primitive data types, objects, and other arrays.

Some Java Card implementations might not support use of the int data type. (Refer to 2.2.3.1 Integer
Data Type).

2.2.2.4 Supported Classes
Most of the classes in the Java.lang package are not supported on the Java Card platform. The
following classes from java. lang are supported on the card in a limited form.

2.2.2.4.1 Object

Java Card API classes descend from java.lang.Object, just as in the Java programming language.
Most of the methods of Object are not available in the Java Card API, but the class itself exists to
provide a root for the class hierarchy.

2.2.2.4.2 Throwable
Class Throwable and its subclasses are supported. Most of the methods of Throwable are not
available in the Java Card API, but the class itself exists to provide a common ancestor for all exceptions.

2.2.3 Optionally Supported Items

This section describes the optional features of the Java Card platform. An optional feature is not
required to be supported in a Java Card platform-compatible implementation. However, if an
implementation does include support for an optional feature, it must be supported fully, and exactly as
specified in this document.

Java Card Platform Virtual Machine Specification, v3.2 Page 32

2.2.3.1 Integer Data Type

The int keyword and 32-bit integer data type need not be supported in a Java Card implementation. A
Java Card virtual machine that does not support the int data type will reject programs which use the
int data type or 32-bit intermediate values.

The result of an arithmetic expression produced by a Java Card virtual machine must be equal to the
result produced by a Java virtual machine, regardless of the input values. A Java Card virtual machine
that does not support the int data type must reject expressions that could produce a different result.

2.2.3.2 Object Deletion Mechanism

The Java Card platform offers an optional, object deletion mechanism. Applications designed to run on
these implementations can use the facility by invoking the appropriate API. See Application
Programming Interface, Java Card Platform, v3.2, Classic Edition. But, the facility is best suited for
updating large objects such as certificates and keys atomically. Therefore, application programmers
should conserve on the allocation of objects.

2.2.4 Limitations of the Java Card Virtual Machine

The limitations of resource-constrained hardware prevent Java Card virtual machines from supporting

the full range of functionality of certain Java platform features. The features in question are supported,
but a particular virtual machine may limit the range of operation to less than that of the Java platform.

To ensure a level of portability for application code, this section establishes a minimum required level
for partial support of these language features.

The limitations here are listed as maximums from the application programmer’s perspective. Java
packages included in a Java Card CAP file that do not violate these maximum values can be converted
into Java Card technology-based CAP files (“Java Card CAP files”) and will be portable across all Java Card
implementations. From the Java Card virtual machine implementer’s perspective, each maximum listed
indicates a minimum level of support that will allow portability of applets.

2.2.4.1 Limitations of Packages
The following are limitations of packages.

2.2.4.1.1 Packages in a Java Card CAP file
A Java Card CAP file can contain at most 255 packages.

2.2.4.1.2 Package References
A package can reference at most 128 other packages external to the Java Card CAP file containing the
package.

2.2.4.1.3 Package Name

The fully qualified name of a package may contain a maximum of 255 characters. The package name
size is further limited if it contains one or more characters which, when represented in UTF-8 format,
requires multiple bytes.

Java Card Platform Virtual Machine Specification, v3.2 Page 33

2.2.4.2 Limitations of Classes
The following are limitations of classes.

2.2.4.2.1 Classes in a Package
A package can contain at most 255 classes and interfaces.

2.2.4.2.2 Interfaces
A class can implement at most 15 interfaces, including interfaces implemented by super classes.

An interface can inherit from at most 14 super interfaces.

2.2.4.2.3 Static Fields

A class in an applet package can have at most 256 public or protected static non-final fields. A classin a
library package can have at most 255 public or protected static non-final fields. There is no limit on the
number of static final fields (constants) declared in a class.

2.2.4.2.4 Static Methods
A class in an applet package can have at most 256 public or protected static methods. A class in a library
package can have at most 255 public or protected static methods.

2.2.4.3 Limitations of Objects
The following are limitations of objects.

2.2.4.3.1 Methods
A class can implement a maximum of 128 public or protected instance methods, and a maximum of 128
instance methods with package visibility. These limits include inherited methods.

2.2.4.3.2 Class Instances
Class instances can contain a maximum of 255 fields, where an int data type is counted as occupying
two fields. These limits include inherited fields.

2.2.4.3.3 Arrays
Arrays can hold a maximum of 32767 components.

2.2.4.4 Limitations of Methods

The maximum number of variables that can be used in a method is 255. This limit includes local
variables, method parameters, and, in the case of an instance method invocation, a reference to the
object on which the instance method is being invoked (meaning, this). An int data type is counted as
occupying two local variables.

A method can have at most 32767 Java Card virtual machine bytecodes. The number of Java Card
technology-based bytecodes (“Java Card bytecodes”) may differ from the number of Java bytecodes in
the Java virtual machine implementation of that method.

The maximum depth of an operand stack associated with a method is 255 16-bit cells.

Java Card Platform Virtual Machine Specification, v3.2 Page 34

2.2.4.5 Limitations of Switch Statements

The format of the Java Card virtual machine switch instructions limits switch statements to a maximum
of 65536 cases. This limit is far greater than the limit imposed by the maximum size of methods (2.2.4.4
Limitations of Methods).

2.2.4.6 Limitations of Class Initialization

The Java Card virtual machine contains limited support for class initialization because there is no general
mechanism for executing <c1init> methods. Support for <clinit> methods is limited to the
initialization of static field values with the following constraints:

e Static fields of applet CAP files may only be initialized to primitive compile-time constant values,
or arrays of primitive compile-time constants.

e Static fields in interfaces must only be initialized to primitive compile-time constant.

e Static fields of CAP files containing only user libraries may only be initialized to primitive
compile-time constant values.

e Only static fields declared in the current class may be initialized in the <clinit> method.

Primitive constant data types include boolean, byte, short,and int.

Given Java technology source files that adhere to these language-level constraints on static field
initialization, it is expected that reasonable Java compilers will:

e Inline constants in the bytecodes that reference static final primitive fields that are initialized in
the declaration statement.
e Produce only the following bytecodes:

o load avalue on the stack: iconst [ml1,0-5], [b|s]ipush, 1ldc, 1ldc w,
aconst null a B
create an array: newarray ([byte|short |boolean|int])
duplicate items on the stack: dup
store values in arrays or static fields: [b|i|s]astore, putstatic

o O O O

return from method: return

2.2.5 Multiselectable Applets Restrictions

Applets that implement the javacard. framework.Multiselectable interface are called
multiselectable applets. For more details on multiselection, please see the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

All applets within a CAP file shall be multiselectable, or none shall be.

2.2.6 Java Card Platform Remote Method Invocation (RMI) Restrictions
This section defines the subset of the RMI system that is supported by Java Card platform RMI (“Java

Card RMI”).

Java Card Platform Virtual Machine Specification, v3.2 Page 35

2.2.6.1 Remote Classes and Remote Interfaces
A class is remote if it or any of its superclasses implements a remote interface. A remote interface is an
interface which satisfies the following requirements:

e Theinterface nameis java.rmi.Remote or the interface extends, directly or indirectly, the
interface java.rmi.Remote.

e Each method declaration in the remote interface or its super-interfaces includes the exception
java.rmi.RemoteException (or one of its superclasses) in its throws clause.

e Inaremote method declaration, if a remote object is declared as a return type, it is declared as
the remote interface, not the implementation class of that interface.

In addition, Java Card RMI imposes additional constraints on the definition of remote methods. These
constraints are as a result of the Java Card platform language subset and other feature limitations. For
more information, see 2.2.6.2 Access Control of Remote Interfaces and 2.2.6.3 Parameters and Return
Values.

2.2.6.2 Access Control of Remote Interfaces
The Java RMI system supports the package access control defined in the Java language. However, Java
Card RMI does not support package-visible remote interfaces.

2.2.6.3 Parameters and Return Values
The parameters of a remote method must only include parameters of the following types:

e Any primitive type supported by Java Card technology (boolean, byte, short, int)
e Any single-dimension array type of a primitive type supported by Java Card technology
(boolean[], byte[], short[], int[])

The return type of a remote method must only be one of the following types:

e Any primitive type supported by Java Card technology (boolean, byte, short, int)

e Any single-dimension array type of a primitive type supported by Java Card technology
(boolean[], byte[], short[], int[])

e Anyremote interface type

e Typevoid

2.3 Java Card VM Subset
Java Card technology uses a subset of the Java virtual machine, and familiarity with the Java platform is
required to understand the Java Card virtual machine.

The items discussed in this section are not described to the level of a virtual machine specification. For
complete documentation on the Java virtual machine, refer to The Java Virtual Machine Specification.

Java Card Platform Virtual Machine Specification, v3.2 Page 36

2.3.1 Class File Subset

The operation of the Java Card virtual machine can be defined in terms of standard Java platform class
files. Since the Java Card virtual machine supports only a subset of the behavior of the Java virtual
machine, it also supports only a subset of the standard class file format.

2.3.1.1 Not Supported in Class Files
The following items are not supported in class files.

2.3.1.1.1 Class Access Flags
Inclass _infoand interface info structures, the access flag ACC_ENUM is not supported.

2.3.1.1.2 Field Descriptors
Field descriptors may not contain BaseType characters C, D, F or J. ArrayType descriptors for
arrays of more than one dimension may not be used.

2.3.1.1.3 Constant Pool
Constant pool table entries with the following tag values are not supported.

Table 2-1: Unsupported Java Constant Pool Tags

Constant Type Value ‘
CONSTANT String 8
CONSTANT Float 4
CONSTANT Long 5
CONSTANT Double 6

2.3.1.1.4 Fields
In field info structures, the access flags ACC_VOLATILE, ACC TRANSIENT and ACC_ENUM
are not supported.

2.3.1.1.5 Methods
Inmethod info structures, the access flags ACC_SYNCHRONIZED, ACC STRICT,
ACC_NATIVE, and ACC_VARARGS are not supported.

2.3.1.2 Supported in Class Files
The following items are supported in class files.

2.3.1.2.1 ClassFile
All items in the ClassFile structure are supported.

2.3.1.2.2 Field Descriptors
Field descriptors may contain BaseType characters B, I, S and Z, as well as any ObjectType.
ArrayType descriptors for arrays of a single dimension may also be used.

Java Card Platform Virtual Machine Specification, v3.2 Page 37

2.3.1.2.3 Method Descriptors
All forms of method descriptors are supported.

2.3.1.2.4 Constant Pool
Constant pool table entry with the following tag values are supported.

Table 2-2: Supported Java Constant Pool Tags

Constant Type Value \
CONSTANT Class 7

CONSTANT Fieldref 9

CONSTANT Methodref 10

CONSTANT InterfaceMethodref 11

CONSTANT Integer 3

CONSTANT NameAndType 12

CONSTANT Utf8 1

2.3.1.2.5 Fields
In field info structures, the supported access flags are ACC_PUBLIC, ACC_PRIVATE,
ACC_PROTECTED,ACC_STATICandACC_FINAL.

The remaining components of field info structures are fully supported.

2.3.1.2.6 Methods
Inmethod info structures, the supported access flags are ACC_PUBLIC, ACC PRIVATE,
ACC_PROTECTED, ACC_STATIC, ACC FINALandACC ABSTRACT

The remaining components of method info structures are fully supported.

2.3.1.2.7 Attributes

The attribute info structure is supported. The Code, ConstantValue, Exceptions,
LocalVariableTable, Synthetic, InnerClasses, RuntimeInvisibleAnnotations,
RuntimeInvisibleParameterAnnotations and Deprecated attributes are supported.

2.3.2 Bytecode Subset
The following sections detail the bytecodes that are either supported or unsupported in the Java Card
platform. For more details, refer to Chapter 7, Java Card Virtual Machine Instruction Set.

2.3.2.1 Unsupported Bytecodes
The unsupported bytecodes are:

e caload
® castore
e d2f

e d2i

Java Card Platform Virtual Machine Specification, v3.2 Page 38

e d21

e dadd

e daload

e dastore

e dcmpg

e dcmpl

e dconst <d>
e ddiv

e dload

e dload <n>
e dmul

e dneg

e drem

e dreturn
e dstore

e dstore <n>

e dsub

e f2d

o f2i

e fadd

e faload

e fastore

e fcmpg

e fcmpl

e fconst <f>
o fdiv

e fload

e fload <n>
e fmul

e fneg

e frem

e freturn

e fstore

e fstore <n>
e fsub

® goto w

e i2c
e i2d
o i2f
e i21
® Jjsr w

Java Card Platform Virtual Machine Specification, v3.2 Page 39

2.3.2.2 Supported Bytecodes
The supported bytecodes are:

12d
12f

121
ladd

laload
land
lastore
lcmp
lconst <1>
1dc2 w2
ldiv
1load

lload <n>
Imul

lneg
lor
lrem

lreturn

1shl
lshr
lstore

lstore <n>

1lsub
lushr

lxor

monitorenter

monitorexit

multianewarray

aaload
aastore
aconst null
aload
aload <n>
anewarray
areturn

arraylength

astore
astore <n>

Java Card Platform Virtual Machine Specification, v3.2

Page 40

e athrow
e baload
e bastore

e bipush

e checkcast
e dup

e dup x1

e dup x2

e dup?2

e dup2 x1

e dup2 x2

e getfield
e getstatic

e goto
e 1i2b
e i2s
e iadd

e iaload

e iand

e iastore

e iconst <i>

o idiv

e if<cond>

e ifacmp <cond>
e ificmp <cond>
e ifnonnull

e ifnull

e 1iinc

e iload

e iload <n>
e imul

e 1ineg

e instanceof

e invokeinterface
e invokespecial
e invokestatic
e invokevirtual
e ior

e irem

e ireturn

e ishl

e ishr

e istore

e istore <n>

e isub

Java Card Platform Virtual Machine Specification, v3.2 Page 41

e iJjushr

e ixor
e IJsr

e 1ldc

e ldc w

e Jlookupswitch
® new
® newarray

® nop
¢ pop
e pop2

e putfield
e putstatic
e ret

e return

e saload

® sastore

e sipush

® swap
e tableswitch
e wide

2.3.2.3 Static Restrictions on Bytecodes
A class file must conform to the following restrictions on the static form of bytecodes.

2.3.2.3.11dc, ldc_w

The 1dc and 1dc_ w bytecodes can only be used to load integer constants. The constant pool entry at
index must be a CONSTANT Integer entry. If a program contains an 1dc or 1dc w instruction that
is used to load an integer value less than -32768 or greater than 32767, that program will require the
optional int instructions (2.2.3.1 Integer Data Type).

2.3.2.3.2 lookupswitch

The value of the npairs operand must be less than 65536. This limit is far greater than the limit
imposed by the maximum size of methods (2.2.4.4 Limitations of Methods). If a program contains a
lookupswitch instruction that uses keys of type int, that program will require the optional int
instructions (2.2.3.1 Integer Data Type). Otherwise, key values must be in the range -32768 to 32767.

2.3.2.3.3 tableswitch

The bytecode can contain at most 65536 cases. This limit is far greater than the limit imposed by the
maximum size of methods (2.2.4.4 Limitations of Methods). If a program does not use the optional int
instruction (2.2.3.1 Integer Data Type), the values of the high and 1ow operands must both be at least
-32768 and at most 32767.

2.3.2.3.4 wide
The wide bytecode can only be used with an i inc instruction.

Java Card Platform Virtual Machine Specification, v3.2 Page 42

2.3.3 Exceptions

The Java Card platform provides full support for the Java platform’s exception mechanism. Users can
define, throw and catch exceptions just as in the Java platform. The Java Card platform also makes use
of the exceptions and errors defined in The Java Language Specification. An updated list of the Java
platform’s exceptions is provided in the JDK software documentation.

Not all of the Java platform’s exceptions are supported in the Java Card platform. Exceptions related to
unsupported features are naturally not supported. Class loader exceptions (the bulk of the checked
exceptions) are not supported.

Note that some exceptions may be supported to the extent that their error conditions are detected
correctly, but classes for those exceptions will not necessarily be present in the API.

The supported subset is described in the tables below.

2.3.3.1 Uncaught and Uncatchable Exceptions

In the Java platform, uncaught exceptions and errors will cause the virtual machine’s current thread to
exit. As the Java Card virtual machine is single-threaded, uncaught exceptions or errors will cause the
virtual machine to halt. Further response to uncaught exceptions or errors after halting the virtual
machine is an implementation-specific policy, and is not mandated in this document.

Some error conditions are known to be unrecoverable at the time they are thrown. Throwing a runtime
exception or error that cannot be caught will also cause the virtual machine to halt. As with uncaught
exceptions, implementations may take further responses after halting the virtual machine. Uncatchable
exceptions and errors which are supported by the Java Card platform may not be reflected in the Java
Card API, though the Java Card platform will correctly detect the error condition.

2.3.3.2 Checked Exceptions
Support of Java checked exceptions:

Table 2-3: Support of Java Checked Exceptions

Exception Supported or Not Supported
ClassNotFoundException Not Supported
CloneNotSupportedException Not Supported
IllegalAccessException Not Supported
InstantiationException Not Supported
InterruptedException Not Supported
NoSuchFieldException Not Supported
NoSuchMethodException Not Supported

Java Card Platform Virtual Machine Specification, v3.2 Page 43

2.3.3.3 Runtime Exceptions
Support of Java Runtime Exceptions:

Table 2-4: Support of Java Runtime Exceptions

Runtime Exception \ Supported or Not Supported

ArithmeticException Supported
ArrayStoreException Supported
ClassCastException Supported
IllegalArgumentException Not Supported
IllegalThreadStateException Not Supported
NumberFormatException Not Supported
IllegalMonitorStateException Not Supported
IllegalStateException Not Supported
IndexOutOfBoundsException Supported
ArrayIndexOutOfBoundsException Supported
StringIndexOutOfBoundsException Not Supported
NegativeArraySizeException Supported
NullPointerException Supported
SecurityException Supported

2.3.3.4 Errors
Support of Java errors:

Table 2-5: Support of Java Errors

Error Supported or Not Supported

AssertionError Not Supported
LinkageError Supported
ClassCircularityError Supported
ClassFormatError Supported
ExceptionInInitializerError Supported
IncompatibleClassChangeError Supported
AbstractMethodError Supported
IllegalAccessError Supported
InstantiationError Supported
NoSuchFieldError Supported
NoSuchMethodError Supported
NoClassDefFoundError Supported
UnsatisfiedLinkError Supported
VerifyError Supported
ThreadDeath Not Supported
VirtualMachineError Supported
InternalError Supported
OutOfMemoryError Supported

Java Card Platform Virtual Machine Specification, v3.2

Page 44

Error Supported or Not Supported

StackOverflowError Supported
UnknownError Supported
UnsupportedClassVersionError Supported

Java Card Platform Virtual Machine Specification, v3.2

Page 45

Structure of the Java Card Virtual Machine

The specification of the Java Card virtual machine is in many ways quite similar to that of the Java virtual
machine. This similarity is of course intentional, as the design of the Java Card virtual machine was based
on that of the Java virtual machine. Rather than reiterate all the details of this specification which are
shared with that of the Java virtual machine, this chapter will mainly refer to its counterpart in The Java
Virtual Machine Specification, Second Edition, providing new information only where the Java Card
virtual machine differs.

3.1 Data Types and Values

The Java Card virtual machine supports the same two kinds of data types as the Java virtual machine:
primitive types and reference types. Likewise, the same two kinds of values are used: primitive values
and reference values.

The primitive data types supported by the Java Card virtual machine are the numeric types, the boolean
type, and the returnAddress type. The numeric types consist only of these types:

e Dbyte, whose values are 8-bit signed two’s complement integers

e short, whose values are 16-bit sighed two’s complement integers
Some Java Card virtual machine implementations may also support an additional integral type:
e int, whose values are 32-bit signed two’s complement integers

Support for the boolean type is identical to that in the Java virtual machine. The value 1 is used to
represent true and the value of 0 is used to represent false.

Support for reference types is identical to that in the Java virtual machine.

3.2 Words

The Java Card virtual machine is defined in terms of an abstract storage unit called a word. This
specification does not mandate the actual size in bits of a word on a specific platform. A word is large
enough to hold a value of type byte, short, reference or returnAddress. Two words are
large enough to hold a value of type int.

The actual storage used for values in an implementation is platform-specific. There is enough
information present in the descriptor component of a CAP file to allow an implementation to optimize
the storage used for values in variables and on the stack.

Java Card Platform Virtual Machine Specification, v3.2 Page 46

3.3 Runtime Data Areas

The Java Card virtual machine can support only a single thread of execution. Any runtime data area in
the Java virtual machine which is duplicated on a per-thread basis will have only one global copy in the
Java Card virtual machine.

The Java Card virtual machine's heap is not required to be garbage collected. Objects allocated from the
heap will not necessarily be reclaimed.

This specification does not include support for native methods, so there are no native method stacks.

Otherwise, the runtime data areas are as documented for the Java virtual machine.

3.4 Contexts

Each applet running on a Java Card virtual machine is associated with an execution context. The Java
Card virtual machine uses the context of the current frame to enforce security policies for inter-applet
operations.

There is a one-to-one mapping between contexts and CAP files in which applets are defined. An easy
way to think of a context is as the runtime equivalent of a CAP file. As a consequence, all applet
instances from the same CAP file will share the same context.

The Java Card Runtime Environment also has its own context. Framework objects execute in this Java
Card RE context.

The context of the currently executing method is known as the current context. Every object in a Java
Card virtual machine is owned by a particular context. The owning context is the context that was
current when the object was created.

When a method in one context successfully invokes a method on an object in another context, the Java
Card virtual machine performs a context switch. Afterwards the invoked method's context becomes the
current context. When the invoked method returns, the current context is switched back to the previous
context.

Context isolation is described in detail in the Runtime Environment Specification, Java Card Platform,
v3.2, Classic Edition.

3.5 Frames

Java Card virtual machine frames are very similar to those defined for the Java virtual machine. Each
frame has a set of local variables and an operand stack. Frames also contain a reference to a constant
pool, but since all constant pools for all classes in a package are merged, the reference is to the constant
pool for the current class’ package.

Each frame also includes a reference to the context in which the current method is executing.

Java Card Platform Virtual Machine Specification, v3.2 Page 47

3.6 Representation of Objects

The Java Card virtual machine does not mandate a particular internal structure for objects or a particular
layout of their contents. However, the core components in a CAP file are defined assuming a default
structure for certain runtime structures (such as descriptions of classes), and a default layout for the
contents of dynamically allocated objects. Information from the descriptor component of the CAP file
can be used to format objects in whatever way an implementation requires.

3.7 Special Initialization Methods
The Java Card virtual machine supports instance initialization methods exactly as does the Java virtual
machine.

The Java Card virtual machine includes only limited support for class or interface
initialization methods. There is no general mechanism for executing <clinit> methods ona
Java Card virtual machine. Instead, a CAP file includes information for initializing class data as defined in
2.2.4.6 Limitations of Class Initialization.

3.8 Exceptions
Exception support in the Java Card virtual machine is identical to support for exceptions in the Java
virtual machine.

3.9 Binary File Formats
This specification defines two binary file formats which enable platform-independent development,
distribution and execution of Java Card programs.

The CAP file format describes files that contain executable code and can be downloaded and installed
onto a Java Card technology-enabled device. A CAP file is produced by a Java Card Platform Converter
tool, and contains a converted form of one or more entire packages of Java classes. This file format's
relationship to the Java Card virtual machine is analogous to the relationship of the class file format
to the Java virtual machine.

The export file format describes files that contain the public linking information of Java Card API
packages. A package’s export file is used when converting client packages of that package.

3.10 Instruction Set Summary

The Java Card virtual machine instruction set is quite similar to the Java virtual machine instruction set.
Individual instructions consist of a one-byte opcode and zero or more operands. The pseudo-code for
the Java Card virtual machine's instruction fetch-decode-execute loop is the same. Multi-byte operand
data is also encoded in big-endian order.

There are a number of ways in which the Java Card virtual machine instruction set diverges from that of
the Java virtual machine. Most of the differences are due to the Java Card virtual machine's more limited
support for data types. Another source of divergence is that the Java Card virtual machine is intended to
run on 8-bit and 16-bit architectures, whereas the Java virtual machine was designed for a 32-bit
architecture. The rest of the differences are all oriented in one way or another toward optimizing the

Java Card Platform Virtual Machine Specification, v3.2 Page 48

size or performance of either the Java Card virtual machine or Java Card programs. These changes
include inlining constant pool data directly in instruction opcodes or operands, adding multiple versions
of a particular instruction to deal with different datatypes, and creating composite instructions for
operations on the current object.

3.10.1 Types and the Java Card Virtual Machine

The Java Card virtual machine supports only a subset of the types supported by the Java virtual machine.
This subset is described in Chapter 2. Type support is reflected in the instruction set, as instructions
encode the data types on which they operate.

Given that the Java Card virtual machine supports fewer types than the Java virtual machine, there is an
opportunity for better support for smaller data types. Lack of support for large numeric data types frees
up space in the instruction set. This extra instruction space has been used to directly support arithmetic
operations on the short data type.

Some of the extra instruction space has also been used to optimize common operations. Type
information is directly encoded in field access instructions, rather than being obtained from an entry in
the constant pool.

Table 3-1 summarizes the type support in the instruction set of the Java Card virtual machine. Only
instructions that exist for multiple types are listed. Wide and composite forms of instructions are not
listed either. A specific instruction, with type information, is built by replacing the T in the instruction
template in the opcode column by the letter representing the type in the type column. If the type
column for some instruction is NONE, then no instruction exists supporting that operation on that type.
For instance, there is a load instruction for type short, sload, but there is no load instruction for type
byte.

Table 3-1: Type Support in the Java Card Virtual Machine Instruction Set

opcode byte short int \ reference \
Tspush bspush sspush NONE NONE
Tipush bipush sipush iipush NONE
Tconst NONE sconst iconst aconst
Tload NONE sload iload aload
Tstore NONE sstore istore astore
Tinc NONE sinc iinc NONE
Taload baload saload iaload aaload
Tastore bastore sastore iastore aastore
Tadd NONE sadd iadd NONE
Tsub NONE ssub isub NONE
Tmul NONE smul imul NONE
Tdiv NONE sdiv idiv NONE
Trem NONE srem irem NONE
Tneg NONE sneg ineg NONE
Tshl NONE sshl ishl NONE
Tshr NONE sshr ishr NONE
Tushr NONE sushr iushr NONE

Java Card Platform Virtual Machine Specification, v3.2

Page 49

opcode byte short int reference
Tand NONE sand iand NONE

Tor NONE sor ior NONE

Txor NONE SXOTr ixor NONE

s2T s2b NONE s2i NONE

i2T i2b i2s NONE NONE

Tcmp NONE NONE icmp NONE

if TcmpOP NONE if scmpOP NONE if acmpOP
Tlookupswitch | NONE slookupswitch | ilookupswitch | NONE
Ttableswitch NONE stableswitch itableswitch NONE
Treturn NONE sreturn ireturn areturn
getstatic T getstatic b | getstatic s getstatic 1 getstatic a
putstatic T putstatic b | putstatic s putstatic 1 putstatic a
getfield T getfield b getfield s getfield i getfield a
putfield T putfield b putfield s putfield i putfield a

The mapping between Java storage types and Java Card virtual machine computational types is

summarized in Table 3-2.

Table 3-2: Storage Types and Computational Types

Java (Storage) Type Size in Bits Computational Type
byte 8 short

short 16 short

int 32 int

Chapter 7 describes the Java Card virtual machine instruction set in detail.

Java Card Platform Virtual Machine Specification, v3.2

Page 50

Binary Representation

This chapter presents information about the binary representation of Java Card programs. Java Card
technology-based binaries (“Java Card binaries”) are usually contained in files, therefore this chapter
addresses binary representation in terms of this common case. Several topics relating to binary
representation are covered. The first section describes the basic organization of program representation
in export and CAP files, as well as the use of the Java Archive (JAR) file containers. The second section
covers how Java Card applets and packages are named using unique identifiers. The third section
presents the scheme used for naming and linking items within Java Card API packages. The fourth and
fifth sections describe the constraints for upward compatibility between different versions of a Java
Card technology-based binary (“Java Card binary”) program file, and versions assigned based upon that
compatibility.

4.1 Java Card Platform File Formats

Java programs are represented in compiled, binary form as class files. Java class files are used not only to
execute programs on a Java virtual machine, but also to provide type and name information to a Java
compiler. In the latter role, a class file is essentially used to document the API of its class to client code.
That client code is compiled into its own class file, including symbolic references used to dynamically link
to the API class at runtime.

Java Card technology uses a different strategy for binary representation of programs. Executable
binaries and interface binaries are represented in two separate files. These files are respectively called
CAP files (for converted applet) and export files.

4.1.1 Export File Format

Export files are not used directly on a device that implements a Java Card virtual machine. However, the
information in an export file is critical to the operation of the virtual machine on a device. An export file
can be produced by a Java Card converter when a package is converted. This package’s export file can be
used later to convert another package that imports classes from the first package. Information in the
export file is included in the CAP file of the second package, then is used on the device to link the
contents of the second package to items imported from the first package.

A Java Card technology-based export file (“Java Card export file”) contains the public interface
information for an entire package of classes. This means that an export file only contains information
about the public API of a package, and does not include information used to link classes within a
package.

Java Card Platform Virtual Machine Specification, v3.2 Page 51

The name of an export file is the last portion of the package specification followed by the extension
‘.exp’. For example, the name of the export file of the javacard. framework package must be
framework.exp. Operating systems that impose limitations on file name lengths may transform an
export file’s name according to their own conventions.

For a complete description of the Java Card export file format, see Chapter 5, The Export File Format.

4.1.2 CAP File Format

A Java Card CAP file contains a binary representation of a Java Card application or library or both,
consisting of one or more packages of classes that can be installed on a device and used to execute the
Java Card application or library’s classes on a Java Card virtual machine.

A CAP file is produced by a Java Card converter when a Java Card application or library is converted. A
CAP file consists of a set of components, each of which describes a different aspect of the contents. The
set of components in a CAP file can vary, depending on whether the file contains a library or applet
definition(s). A CAP file can be in Compact or Extended format where a CAP file in Compact format can
only contain a single Java package and a CAP file in Extended format may contain one or more packages.

For a complete description of the Java Card CAP file format, see Chapter 6, The CAP File Format.

4.1.3 JAR File Container
The JAR file format is used as the container format for CAP files. What this specification calls a “CAP file”
is just a JAR file that contains the required set of CAP components (see Chapter 6, The CAP File Format).

CAP file components are stored as files in a JAR file. Each CAP file component is located in a directory
called javacard. In CAP files in Compact format javacard subdirectory is in a directory
representing the package. For example, the CAP file components of the package

com.oracle. framework are located in the directory com/oracle/framework/javacard.In
CAP files in Extended format, javacard subdirectory is in a directory representing the CAP file. For
example, for a CAP file called com.oracle.helloworld that may contain multiple packages, the
CAP file components of the CAP file are located in directory
com/oracle/helloworld/javacard.

Export files may also be contained in a JAR file, whether that JAR file contains CAP file components or
not. If an export component is included in the CAP file in Compact format, it must be located in the same
directory as the components for that package would be. If export files are included in the CAP file in
Extended format, they must be located in the directory javacard which is a subdirectory representing
each package which is represented by each export file. For example, the export file for package
com.oracle.framework islocated in directory com/oracle/framework/javacard.

The name of a JAR file containing CAP file components is not defined as part of this specification. Other
files, including CAP file components for another package, may also reside in a JAR file that contains CAP
file components.

Java Card Platform Virtual Machine Specification, v3.2 Page 52

4.2 AID-based Naming

This section describes the mechanism used for naming applets and packages in Java Card CAP files and
export files, and custom components in Java Card CAP files. Java class files use Unicode strings to name
Java packages. As the Java Card platform does not include support for strings, an alternative mechanism
for naming is provided.

ISO 7816 is a multipart standard that describes a broad range of technology for building smart card
systems. I1SO 7816-5 defines the AID (application identifier) data format to be used for unique
identification of card applications (and certain kinds of files in card file systems). The Java Card platform
uses the AID data format to identify applets, packages and CAP files. AIDs are administered by the
International Standards Organization (ISO), so they can be used as unique identifiers.

4.2.1 The AID Format
This section presents a minimal description of the AID data format used in Java Card technology. For
complete details, refer to ISO 7816-5, AID Registration Category ‘D’ format.

The AID format used by the Java Card platform is an array of bytes that can be interpreted as two
distinct pieces, as shown in Table 4-1. The first piece is a 5-byte value known as a RID (resource
identifier). The second piece is a variable length value known as a PIX (proprietary identifier extension).
A PIX can be from 0 to 11 bytes in length. Thus, an AID can be from 5 to 16 bytes in total length.

Table 4-1: AID Format

Resource Identifier Proprietary Identifier Extension

RID (5 bytes) PIX (0-11 bytes)

ISO controls the assignment of RIDs to companies, with each company obtaining its own unique RID
from the I1SO. Companies manage assignment of PIXs for AIDs using their own RIDs.

4.2.2 AID Usage

In the Java platform, packages are uniquely identified using Unicode strings and a naming scheme based
on internet domain names. In the Java Card platform, CAP files, packages and applets are identified
using AlDs.

4.2.2.1 CAP File AID namespace
All CAP files must be assigned an AID such that no two CAP files have the same AID. The AID for a CAP
file is constructed from the concatenation of the company’s RID and a PIX for that CAP file.

4.2.2.2 Applet AID namespace

Each applet loaded on a Java Card technology enabled device must have an AID. This AID is constructed
similarly to a CAP file AID. It is a concatenation of the applet provider’s RID and PIX for that applet. An
applet AID must not have the same value as the AID of any other applet of the same CAP file. The RID of
each applet in a CAP file must be the same as the RID of the CAP file AID.

Java Card Platform Virtual Machine Specification, v3.2 Page 53

4.2.2.3 Package AID namespace

Any package that is represented in an export file must be assigned an AID such that no two packages
have the same AID. The AID for a package is constructed from the concatenation of the company’s RID
and a PIX for that package. This AID corresponds to the string name for the package, as shown in Figure
4-1.

Figure 4-1: Mapping Package Identifiers to AIDs

Oracle’s RID com.oracle.javacard.sample PIX

v
F 3
v

5 bytes up to 11 bytes

4.2.2.3 Custom Component AID namespace
Custom components defined in a CAP file are also identified using AlDs. Like AIDs for applets, packages
and CAP files, custom component AIDs are formed by concatenating the RID and a PIX.

4.3 Token-based Linking

This section describes a scheme that allows downloaded software to be linked against APIs on a Java
Card technology enabled device. The scheme represents referenced items as opaque tokens, instead of
Unicode strings as are used in Java class files. The two basic requirements of this linking scheme are that
it allows linking on the device, and that it does not require internal implementation details of APIs to be
revealed to clients of those APIs. Secondary requirements are that the scheme be efficient in terms of
resource use on the device, and have acceptable performance for linking. And of course, it must
preserve the semantics of the Java language.

4.3.1 Externally Visible Items

Classes (including Interfaces) in Java packages may be declared with public or package visibility. A class’s
methods and fields may be declared with public, protected, package or private visibility. For purposes of
this document, we define public classes, public or protected fields, and public or protected methods to
be externally visible from the package.

Each externally visible item must have a token associated with it to enable references from other
packages to the item to be resolved on a device. There are six kinds of items in a package that require
external identification.

e (Classes (including Interfaces)
e Static Fields

e Static Methods

e Instance Fields

Java Card Platform Virtual Machine Specification, v3.2 Page 54

e Virtual Methods
e |nterface Methods

4.3.2 Private Tokens

Items that are not externally visible are internally visible. Internally visible items are not described in a
package’s export file, but some such items use private tokens to represent internal references. External
references are represented by public tokens. There are three kinds of items that can be assigned private
tokens.

e Instance Fields
e Virtual Methods
e Packages

4.3.3 The Export File and Conversion

An export file contains entries for externally visible items in the package. Each entry holds the item’s
name and its token. Some entries may include additional information as well. For detailed information
on the export file format, see Chapter 5, The Export File Format.

The export file is used to map names for imported items to tokens during package conversion. The Java
Card converter uses these tokens to represent references to items in an imported package.

For example, during the conversion of the class files of applet A, the export file of

javacard. framework is used to find tokens for items in the API that are used by the applet.
Applet A creates a new instance of framework class OwnerPIN. The framework export file contains an
entry for Javacard. framework.OwnerPIN that holds the token for this class. The converter
places this token in the CAP file’s constant pool to represent an unresolved reference to the class. The
token value is later used to resolve the reference on a device.

4.3.4 References - External and Internal

In the context of a CAP file, references to items are made indirectly through a CAP’s constant pool.
References to items in other CAP files are called external, and are represented in terms of tokens.
References to items in the same CAP file are called internal, and are represented either in terms of
tokens, or in a different internal format.

An external reference to a class is composed of a package token and a class token. Together those
tokens specify a certain class in a certain package. An internal reference to a class is a 15-bit value that is
a pointer to the class structure’s location within the CAP file.

An external reference to a static class member, either a field or method, consists of a package token, a
class token, and a token for the static field or static method. An internal reference to a static class
member is a 16-bit value that is a pointer to the item’s location in the CAP file.

References to instance fields, virtual methods and interface methods consist of a class reference and a
token of the appropriate type. The class reference determines whether the reference is external or
internal.

Java Card Platform Virtual Machine Specification, v3.2 Page 55

4.3.5 Installation and Linking
External references in a CAP file can be resolved on a device from token form into the internal
representation used by the virtual machine.

A token can only be resolved in the context of the package that defines it. Just as the export file maps
from a package’s externally visible names to tokens, there is a set of link information for each package
on the device that maps from tokens to resolved references.

4.3.6 Token Assignment

Tokens for an APl are assigned by the API’s owner and published in the package export file(s) for that
API. Since the name-to-token mappings are published, an APl owner may choose any order for tokens
(subject to the constraints listed below).

A particular device platform can resolve tokens into whatever internal representation is most useful for
that implementation of a Java Card virtual machine. Some tokens may be resolved to indices. For
example, an instance field token may be resolved to an index into a class instance’s fields. In such cases,
the token value is distinct from and unrelated to the value of the resolved index.

4.3.7 Token Details
Each kind of item in a package has its own independent scope for tokens of that kind. The token range
and assignment rules for each kind are listed in Table 4-2.

Table 4-2: Token Range, Type and Scope

Token Type Range \ Type Scope \
Package 0-127 Private Package

Class 0-254 Public Package

Static Field 0 - 255 Public Class

Static Method 0 - 255 Public Class

Instance Field 0 - 255 Public or Private Class

Virtual Method 0-127 Public or Private Class Hierarchy

Interface Method 0-127 Public Class

4.3.7.1 Package

All package references from within a CAP file are assigned private package tokens. Package token values
must be in the range from 0 to 127, inclusive. The tokens for all the packages referenced from classes in
a CAP file are numbered consecutively starting at zero. The ordering of package tokens is not specified.

4.3.7.2 Classes and Interfaces

All externally visible classes and interfaces in a package are assigned public class tokens. Class token
values must be in the range from 0 to 254, inclusive. The tokens for all the public classes and interfaces
in a package are numbered consecutively starting at zero. The ordering of class tokens is not specified.

Package-visible classes and interfaces are not assigned tokens.

Java Card Platform Virtual Machine Specification, v3.2 Page 56

4.3.7.3 Static Fields

All externally visible static fields in a package are assigned public static field tokens. The tokens for all
externally visible static fields in a class are numbered consecutively starting at zero. Static fields token
values must be in the range from 0 to 255, inclusive. The ordering of static field tokens is not specified.

Package-visible and private static fields are not assigned tokens. In addition, no tokens are assigned for
final static fields that are initialized to primitive, compile-time constants, as these fields are never
represented as fields in CAP files.

4.3.7.4 Static Methods and Constructors

All externally visible static methods and constructors in a package are assigned public static method
tokens. Constructors are included in this category because they are statically bound. Static method
token values must be in the range from 0 to 255, inclusive. The tokens for all the externally visible static
methods and constructors in a class are numbered consecutively starting at zero. The ordering of static
method tokens is not specified.

Package-visible and private static methods as well as package-visible and private constructors are not
assigned tokens.

4.3.7.5 Instance Fields

All instance fields defined in a package are assigned either public or private instance field tokens. The
scope of a set of instance field tokens is limited to the class that declares the instance fields, not
including the fields declared by superclasses of that class.

Instance field token values must be in the range from 0 to 255, inclusive. Public and private tokens for
instance fields are assigned from the same namespace. The tokens for all the instance fields in a class
are numbered consecutively starting at zero, except that the token after an int field is skipped and the
token for the following field is numbered two greater than the token of the int field.

Within a class, tokens for externally visible fields must be numbered less than the tokens for package
and private fields. For public tokens, the tokens for reference type fields must be numbered greater
than the tokens for primitive type fields. For private tokens, the tokens for reference type fields must be
numbered less than the tokens for primitive type fields. Beyond that, the ordering of instance field
tokens in a class is not specified.

Table 4-3: Tokens For Instance Fields

Visibility Category Type Token Value

public and protected fields (public tokens) primitive | poolean

public and protected fields (public tokens) primitive | byte 1
public and protected fields (public tokens) primitive | short 2
public and protected fields (public tokens) reference | bytel] 3
public and protected fields (public tokens) reference | Applet 4
package and private fields (private tokens) reference | short([] |
package and private fields (private tokens) reference | Object 6

Java Card Platform Virtual Machine Specification, v3.2 Page 57

Visibility \ Category Type Token Value
package and private fields (private tokens) primitive | jnt 7

package and private fields (private tokens) primitive | short 9

4.3.7.6 Virtual Methods

Virtual methods are instance methods that are resolved dynamically. The set includes all public,
protected and package-visible instance methods. Private instance methods and all constructors are not
virtual methods, but instead are resolved statically during compilation.

All virtual methods defined in a package are assigned either public or private virtual method tokens.
Virtual method token values must be in the range from 0 to 127, inclusive. Public and private tokens for
virtual methods are assigned from different namespaces. The high bit of the byte containing a virtual
method token is set to one if the token is a private token.

If a method overrides an externally visible (public or protected) method implemented in the class’s
superclass, that method is assigned the same token number as the method in the superclass. The high
bit of the byte containing a public virtual method token is always set to zero, to indicate it is a public
token. The ordering of public virtual method tokens in a class is not specified.

Private virtual method tokens are assigned to package-visible virtual methods. They are assigned
differently from public virtual method tokens. If a class and its superclass are defined in the same
package, the tokens for the package-visible introduced virtual methods in that class are numbered
consecutively starting at one greater than the highest numbered private virtual method token of the
class’s superclass. If the class and its superclass are defined in different packages, the tokens for the
package-visible introduced virtual methods in that class are numbered consecutively starting at zero. If a
method overrides a method implemented in the class’s superclass, that method uses the same token
number as the method in the superclass. The definition of the Java programming language specifies that
overriding a package-visible virtual method is only possible if both the class and its superclass are
defined in the same package. The high bit of the byte containing a virtual method token is always set to
one, to indicate it is a private token. The ordering of private virtual method tokens in a class is not
specified.

4.3.7.7 Interface Methods

All interface methods defined in a package are assigned public interface method tokens, as interface
methods are always public. Interface method token values must be in the range from 0 to 127, inclusive.
The tokens for all the interface methods defined in or inherited by an interface are numbered
consecutively starting at zero. The token value for an interface method in a given interface is unrelated
to the token values of that same method in any of the interface’s superinterfaces. Each interface
includes its own token values for all the methods inherited from super-interfaces as well as its defined
methods. The high bit of the byte containing an interface method token is always set to zero, to indicate
it is a public token. The ordering of interface method tokens is not specified.

Java Card Platform Virtual Machine Specification, v3.2 Page 58

4.4 Binary Compatibility

In the Java programming language, the granularity of binary compatibility can be between classes since
binaries are stored in individual class files. In Java Card systems, Java classes are grouped by package
into a CAP file, therefore the granularity of binary compatibility is between packages. The binary
representation of classes is represented by the components in a CAP file, and the API of every single
package is represented in an export file.

In a Java Card system, a change to a type in a Java package in a Java Card CAP file results in a new CAP
file. A new CAP file is binary compatible with (equivalently, does not break compatibility with) a
preexisting CAP file if another CAP file converted using the export files of packages included in the
preexisting CAP file can link with the new CAP file without errors.

Figure 4-2 shows an example of binary compatible CAP files, p1 and p1’. The preconditions for the
example are: the package p1 is converted to create the p1 CAP file and p1 export file, and package p1 is
modified and converted to create the p1’ CAP file. Package p2 imports package p1, and therefore when
the p2 CAP file is created the export file of p1 is used. In the example, p2 is converted using the original
pl export file. Because p1’ is binary compatible with p1, p2 may be linked with either the p1 CAP file or
the p1’ CAP file.

Figure 4-2: Binary Compatibility Example

. binary
export file Sl
link with (either)
P2
convert with CAP file
—]
]
]

Any modification that causes binary incompatibility in the Java programming language also causes
binary incompatibility in Java Card systems. These modifications are described as causing a potential
error in The Java Language Specification. Any modification that does not cause binary incompatibility in
the Java programming language does not cause binary incompatibility in a Java Card system, except
under the following conditions:

e The value of a token assigned to an element in the API of a package is changed.
e The value of an externally visible final static field (compile-time constant) is changed.

Java Card Platform Virtual Machine Specification, v3.2 Page 59

Tokens are used to resolve references to imported elements of a package. Tokens assigned to public and
protected virtual methods are scoped to a class. If a token value is modified, a linker on a device is
unable to associate the new token value with the previous token value of the element, and therefore is
unable to resolve the reference correctly.

Compile-time constants are not stored as fields in CAP files. Instead their values are recorded in export
files and placed inline in the bytecodes in CAP files. These values are said to be pre-linked in a CAP file of
a package that imports those constants. During execution, information is not available to determine
whether the value of an inlined constant is the same as the value defined by the binary of the imported
package.

4.5 CAP and Package Versions

Each CAP file in the Java Card system is assigned a unique CAP file version number. Furthermore, each
implementation of a package in a Java Card system is assigned a pair of major and minor version
numbers. Version numbers for a package are used to indicate binary compatibility or incompatibility
between successive implementations of a package.

4.5.1 Assigning

The major and minor versions of a CAP file and contained packages are assigned by the CAP file and
package provider. It is recommended that the initial implementation of a CAP file and a package be
assigned a major version of 1 and a minor version of 0. However, any values may be chosen. It is also
recommended that when either a major or a minor version is incremented, it is incremented exactly by
1.

For a package, major version must be changed when a new implementation is not binary compatible
with the previous implementation. The value of the new major version must be greater than the major
version of the previous implementation. When a major version is changed, the associated minor version
must be assigned the value of 0.

When a new implementation of a package is binary compatible with the previous implementation, it
must be assigned a major version equal to the major version of the previous implementation. The minor
version assigned to the new implementation must be greater than the minor version of the previous
implementation.

Rules for specifying the version numbers for the CAP file in Extended Format (The CAP File Format) are
beyond the scope of this specification. For the CAP file in Compact Format (The CAP File Format) the CAP
file version number must be the same as the version number of the single package that it contains.

4.5.2 Linking

Both an export file and a CAP file contain the major and minor version numbers of the packages
described. When a CAP file is installed on a Java Card technology-enabled device, resident images of the
packages it contains are created and the major and minor version numbers are recorded as part of that

Java Card Platform Virtual Machine Specification, v3.2 Page 60

images. When an export file is used during preparation of a CAP file, the version numbers indicated in

the export file are recorded in the CAP file.

During installation, references from the packages of the CAP file being installed to an imported package
can be resolved only when the version numbers indicated in the export file used during preparation of
the CAP file are compatible with the version numbers of the resident image. They are compatible when
the major version numbers are equal, and the minor version of the export file is less than or equal to the

minor version of the resident image.

Java Card Platform Virtual Machine Specification, v3.2 Page 61

The Export File Format

This chapter describes the export file format. Compliant Java Card Converters must be capable of
producing and consuming all export files that conform to the specification provided in this chapter.

An export file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are constructed by
reading in two and four consecutive 8-bit bytes, respectively. Multibyte data items are always stored in
big-endian order, where the high-order bytes come first.

This chapter defines its own set of data types representing Java Card export file data: the types ul, u2,
and u4 represent an unsigned one-, two-, and four-byte quantities, respectively.

The Java Card export file format is presented using pseudo structures written in a C-like structure
notation. To avoid confusion with the fields of Java Card virtual machine classes and class instances, the
contents of the structures describing the Java Card export file format are referred to as items. Unlike the
fields of a C structure, successive items are stored in the Java Card platform file sequentially, without
padding or alignment.

Variable-sized tables, consisting of variable-sized items, are used in several export file structures.
Although we will use C-like array syntax to refer to table items, the fact that tables are streams of
varying-sized structures means that it is not possible to directly translate a table index into a byte offset
into the table.

In a data structure that is referred to as an array, the elements are equal in size.

5.1 Export File Name

As described in 4.1.1 Export File Format, the name of an export file must be the last portion of the
package specification followed by the extension ‘. exp’. For example, the name of the export file of the
Jjavacard. framework package must be framework.exp. Operating systems that impose
limitations on file name lengths may transform an export file’s name according to its conventions.

5.2 Containment in a JAR File

As described in 4.1.3 JAR File Container, Java Card CAP files are contained in a JAR file. If an export file is
also stored in a JAR file, it must also be located in a directory called javacard that is a subdirectory of
the corresponding package’s directory. For example, the framework . exp file would be located in the

subdirectory javacard/framework/javacard.

5.3 Ownership
An export file is owned by the entity that owns the package it represents. The owner of a package
defines the API of that package and may or may not provide all implementations of that package. All

Java Card Platform Virtual Machine Specification, v3.2 Page 62

implementations, however, must conform to the definition provided in the export file provided by the
owner.

A particular example of export file ownership is the Java Card API packages. Oracle defines these
packages. Oracle also provides the export files for these packages. All implementations of the Java Card
API packages must conform to the definitions provided by Oracle and comply with the token
assignments provided in these export files.

5.4 Hierarchies Represented

Classes and interfaces represented in an export file include public elements defined within their
respective hierarchies. For example, instead of indicating the immediate superclass or superinterface, all
public superclasses or superinterfaces are listed. This design concept is applied not only to superclasses
or superinterfaces, but also to virtual methods and implemented interfaces.

5.5 Export File
An export file is defined by the following structure:

ExportFile {
u4 magic
ul minor version
ul major version
uZ2 constant pool count
cp_info constant pool[constant pool count]
uZ2 this package
ul referenced package count (since Export File format 2.3)
u2 referenced packages[referenced package count] (since Export
File format 2.3)
ul export class count
class info classes[export class count]

}
The items in the ExportFile structure are as follows:
magic

The magic item contains the magic number identifying the ExportFile format; it has the value
O0x00FACADE.

minor version, major version

Theminor versionandmajor version itemsare the minor and major version numbers of this
export file. Together, a major and a minor version number determine the version of the export file
format. If an export file has the major version number of M and minor version number of m, the version
of the export file’s format is M.m.

Java Card Platform Virtual Machine Specification, v3.2 Page 63

A change in the major version number indicates a major incompatibility change, one that requires a
fundamentally different Java Card virtual machine. A Java Card virtual machine is not required to
support export files with different major version numbers. A Java Card virtual machine is required to
support export files having a given major version number and all valid minor version numbers in the
range 0 through some particular minor version where avalid minor version number is a minor
version number that has been defined in a version of the Java Card virtual machine specification.

In this specification, the major version of the export file format has the value 2 and the minor version
has the value 3. Only Oracle may define the meaning and values of new export file format versions.

constant pool count

The constant pool count itemisa non-zero, positive value that indicates the number of
constants in the constant pool.

constant pool[]

The constant pool is a table of variable-length structures representing various string constants,
class names, field names and other constants referred to within the ExportFile structure.

Each of the constant pool table entries, including entry zero, is a variable-length structure whose
format is indicated by its first “tag” byte.

There are no ordering constrains on entries in the constant pool table.
this package

The value of this package must be a valid index into the constant pool table. The
constant pool entry at that index must be a CONSTANT Package info (5.6.1
CONSTANT_Package) structure representing the package defined by this ExportFile.

referenced package count

The referenced package count itemis avalue that indicates the number of entries in the
referenced packages array.

referenced packages|[]

The referenced packages array is a table representing all packages referenced in this export file.
Each entry in the the referenced packages array is an index into the constant pool table.
The corresponding entry in the constant pool array must be CONSTANT_Package (5.6.1
CONSTANT_Package) structure representing a referenced package. A package is a referenced package if:

e any of its classes are subclassed in this export file,
e any of its interfaces are implemented or extended in this export file,
e any of its classes or interfaces are used in field or method descriptors in this export file.

Java Card Platform Virtual Machine Specification, v3.2 Page 64

export class count
The value of the export class count item gives the number of elements in the classes table.
classes|[]

Each value of the classes table is a variable-length class info structure (5.7 Classes and
Interfaces) giving the description of a publicly accessible class or interface declared in this package. If the
ACC_LIBRARY flagiteminthe CONSTANT Package info (5.6.1 CONSTANT_Package) structure
indicated by the this package itemis set, the classes table has an entry for each public class and
interface declared in this package. If the ACC_LIBRARY flagitem is not set, the classes table has an
entry for each public shareable interface declared in this package.!

5.6 Constant Pool
All constant pool table entries have the following general format:

cp_info {
ul tag
ul infol[]

}

Each item in the constant pool must begin with a 1-byte tag indicating the kind of cp_info entry.
The content of the info array varies with the value of tag. The valid tags and their values are listed in
Table 5-1. Each tag byte must be followed by two or more bytes giving information about the specific
constant. The format of the additional information varies with the tag value.

Table 5-1: Export File Constant Pool Tags

Constant Type Value \
CONSTANT Package 13
CONSTANT Classref 7
CONSTANT Integer 3
CONSTANT Utf8 1

5.6.1 CONSTANT_Package
The CONSTANT Package info structure is used to represent a package:

CONSTANT Package info {
ul tag
ul flags
u2 name index
ul minor version
ul major version

1 This restriction of exporting only shareable interfaces in non-library packages is imposed by the firewall defined in
the Runtime Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 65

ul aid length
ul aidlaid length]

The items of the CONSTANT Package info structure are the following:
tag

The tag item has the value of CONSTANT Package(13).

flags

The flags item is a mask of modifiers that apply to this package. The £1ags modifiers are shown in
the following table.

Table 5-2: Export File Package Flags

Flags Value

ACC LIBRARY 0x01

The ACC_LIBRARY flag has the value of one if this package does not define and declare any applets. In
this case it is called a library package. Otherwise ACC_LIBRARY has the value of zero.

If the package is not a library package, this export file can only contain shareable interfaces.? A shareable
interface is either the javacard. framework.Shareable interface or an interface that extends
the Javacard. framework.Shareable interface.

All other £1ag values are reserved. Their values must be zero.
name index

The value of the name index item must be a valid index into the constant pool table. The
constant pool entry at that index must be a CONSTANT Utf8 info (5.6.1 CONSTANT_Package)
structure representing a valid Java package name.

As in Java class files, ASCII periods (*.") that normally separate the identifiers in a package name are
replaced by ASCII forward slashes (‘/’). For example, the package name javacard. framework is
represented ina CONSTANT Utf8 info structureas javacard/framework.

minor version, major version

Theminor versionandmajor version items are the minor and major version numbers of this
package. These values uniquely identify the particular implementation of this package and indicate the

2 This restriction is imposed by the firewall defined in the Runtime Environment Specification, Java Card Platform,
v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 66

binary compatibility between packages. See 4.5 CAP and Package Versions for a description of assigning
and using package version numbers.

aid length

The value of the aid length item gives the number of bytes in the aid array. Valid values are
between 5 and 16, inclusive.

aidl]
The aid array contains the I1SO AID of this package (4.2 AlD-based Naming).

5.6.2 CONSTANT_Classref
The CONSTANT Classref info structureis used to represent a class or interface:

CONSTANT Classref info {
ul tag
u2 name index

}

The items of the CONSTANT Classref info structure are the following:
tag

The tag item has the value of CONSTANT Classref(7).

name index

The value of the name index item must be a valid index into the constant pool table. The
constant pool entry at that index must be a CONSTANT Utf8 info (5.6.4 CONSTANT_Utf8)
structure representing a valid fully qualified Java class or interface name. This name is fully qualified
since it may represent a class or interface defined in a package other than the one described in the
export file.

As in Java class files, ASCII periods (“.’) that normally separate the identifiers in a class or interface name
are replaced by ASCIl forward slashes (‘/’). For example, the interface name
javacard. framework.Shareable isrepresented ina CONSTANT Utf8 info structure as

javacard/framework/Shareable.

5.6.3 CONSTANT _Integer
The CONSTANT Integer info structureis used to represent four-byte numeric (int) constants:

CONSTANT Integer info {
ul tag
u4 bytes

}

The items of the CONSTANT Integer info structure are the following:

Java Card Platform Virtual Machine Specification, v3.2 Page 67

tag
The tag item has the value of CONSTANT Integer (3).
bytes

The bytes item of the CONSTANT Integer info structure contains the value of the int
constant. The bytes of the value are stored in big-endian (high byte first) order. The value of a boolean
type is 1 to represent true and O to represent false.

5.6.4 CONSTANT_Utf8
The CONSTANT Utf8 info structure is used to represent constant string values. UTF-8 strings are
encoded in the same way as described in The Java Virtual Machine Specification (§ 4.4.7).

The CONSTANT Utf8 info structureis:

CONSTANT Utf8 info {
ul tag
u2 length
ul bytes[length]

}

The items of the CONSTANT Utf8 info structure are the following:
tag

The tag item has the value of CONSTANT Utf8(1).

length

The value of the 1ength item gives the number of bytes in the bytes array (not the length of the
resulting string). The strings in the CONSTANT Ut£f8 info structure are not null-terminated.

bytes|[]

The bytes array contains the bytes of the string. No byte may have the value (byte) 0 or
(byte) OxFO- (byte) OXFF.

5.7 Classes and Interfaces
Each class and interface is described by a variable-length class info structure. The format of this
structure is:

class_info {
ul token
uZ2 access flags
u2 name_ index
u2 export supers count
uZ supers[export supers count]

Java Card Platform Virtual Machine Specification, v3.2 Page 68

ul export interfaces count

u2 interfaces[export interfaces count]

u2 export fields count

field info fields[export fields count]

u2 export methods count

method info methods[export methods count]

ul CAP22 inheritable public method token count (since Export File
format 2.3)

}
The items of the class_info structure are as follows:

token

The value of the token item is the class token (4.3.7.2 Classes and Interfaces) assigned to this class or
interface.

access_flags

The value of the access flags item is a mask of modifiers used with class and interface declarations.
The access_flags modifiers are shown in the following table.

Table 5-3: Export File Class Access and Modifier Flags

Name ‘ Value Meaning Used By ‘
ACC_PUBLIC 0x0001 | Is public; may be accessed from outside its package | Class,
interface
ACC FINAL 0x0010 | Isfinal; no subclasses allowed. Class
ACC_INTERFACE | 0x0200 | Is an interface Interface
ACC_ABSTRACT | 0x0400 | Is abstract; may not be instantiated Class,
interface
ACC_SHAREABLE | 0x0800 | Is shareable; may be shared between Java Card Class,
applets. interface
ACC_REMOTE 0x1000 | Is remote; may be accessed by Java Card RMI Class,
interface

The ACC SHAREABLE flag indicates whether this class or interface is shareable.? A class is shareable if
it implements (directly or indirectly) the javacard. framework.Shareable interface. An interface
is shareable if it is or extends (directly or indirectly) the javacard. framework.Shareable
interface.

3 The ACC_SHAREABLE flag is defined to enable Java Card virtual machines to implement the firewall
restrictions defined by the Runtime Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 69

The ACC_REMOTE flag indicates whether this class or interface is remote. The value of this flag must be
one if and only if the class or interface satisfies the requirements defined in 2.2.6.1 Remote Classes and
Remote Interfaces.

All other class access and modifier flags are defined in the same way and with the same restrictions as
described in The Java Virtual Machine Specification.

Since all classes and interfaces represented in an export file are public, the ACC_ PUBLIC flag must
always be set.

All other flag values are reserved. Their values must be zero.
name index

The value of the name index item must be a valid index into the constant pool table. The
constant pool entry at that index must be a CONSTANT Classref info (5.6.2
CONSTANT _Classref) structure representing a valid, fully qualified Java class or interface name.

export supers count
The value of the export supers count item indicates the number of entries in the supers array.
supers|]

The supers array contains an entry for each public superclass of this class or interface. It does not
include package visible superclasses.

For a class, each value in the supers array must be a valid index into the constant pool table. The
constant pool entry at each value must be a CONSTANT Classref info structure (5.6.2
CONSTANT _Classref) representing a valid, fully-qualified Java class name. Entries in the supers array
can occur in any order.

For an interface, the supers array contains a single value representing a valid index into the
constant pool table. The constant pool entry must bea CONSTANT Classref info
structure (5.6.2 CONSTANT_Classref) representing the fully-qualified name of the
java.lang.Object class.

export interfaces count

The value of the export interfaces count item indicates the number of entries in the

interfaces array.

interfaces]|]

If this class info structure describes a class, the interfaces array contains an entry for each
public interface implemented by this class. It does not include package-visible interfaces. It does include
all public superinterfaces in the hierarchies of public interfaces implemented by this class.

Java Card Platform Virtual Machine Specification, v3.2 Page 70

If this class info structure describes an interface, the interfaces array contains an entry for
each public interface extended by this interface. It does not include package visible interfaces. It does
include all public superinterfaces in the hierarchies of public interfaces extended by this interface.

Each value in the interfaces array must be a valid index into the constant pool table. The
constant pool entry at each value must be a CONSTANT Classref infostructure (5.6.2
CONSTANT _Classref) representing a valid, fully-qualified Java interface name. Entries in the interfaces
array can occur in any order.

export fields count
The value of the export fields count item gives the number of entries in the fields table.
fields[]

Each value in the fields table is a variable-length field info (5.8 Fields) structure. The
field info contains an entry for each publicly accessible field, both class variables and instance
variables, declared by this class or interface. It does not include items representing fields that are
inherited from superclasses or superinterfaces.

export methods count
The value of the export methods count item gives the number of entries in the methods table.
methods []

Each value in the methods table isamethod info (5.9 Methods) structure. The method info
structure contains an entry for each publicly accessible class (static or constructor) method defined by
this class, and each publicly accessible instance method defined by this class or its superclasses, or
defined by this interface or its super-interfaces.

CAP22 inheritable public method token count

The CAP22 inheritable public method token count item representsthe number of
public or protected virtual methods inheritable by a subclass defined in a CAP file of format version 2.2
or earlier.

5.8 Fields

Each field is described by a variable-length field info structure. The format of this structure is:

field info {
ul token
u2 access_flags
u2 name index
u2 descriptor index
u2 attributes count
attribute info attributes[attributes count]

Java Card Platform Virtual Machine Specification, v3.2 Page 71

}
The items of the field info structure are as follows:
token

The token item is the token assigned to this field. There are three scopes for field tokens: final
static fields of primitive types (compile-time constants), all other static fields, and instance
fields.

If this field is a compile-time constant, the value of the token item is OxFF. Compile-time constants are
represented in export files, but are not assigned token values suitable for late binding. Instead Java
Card Converters must replace bytecodes that reference final static fields with bytecodes that load the
constant value of the field.?

If this field is static, butis not a compile-time constant, the token item represents a static field
token (4.3.7.3 Static Fields).

If this field is an instance field, the token item represents an instance field token (4.3.7.5 Instance
Fields).

access_flags

The value of the access flags item is a mask of modifiers used with fields. The access_flags
modifiers are shown in the following table.

Table 5-4: Export File Field Access and Modifier Flags

Name ‘ Value Meaning ‘ Used By ‘
ACC_PUBLIC 0x0001 | Is public; may be accessed from outside its package. | Any field
ACC_PROTECTED | 0x0004 | Is protected; may be accessed within subclasses. Class field
Instance
field
ACC _STATIC 0x0008 | Is static. Class field
Interface
field
ACC_FINAL 0x0010 | Isfinal; no further overriding or assignment after Any field
initialization.

Field access and modifier flags are defined in the same way and with the same restrictions as described
in The Java Virtual Machine Specification.

4 Although Java compilers ordinarily replace references to final static fields of primitive types with primitive
constants, this functionality is not required.

Java Card Platform Virtual Machine Specification, v3.2 Page 72

Since all fields represented in an export file are either public or protected, exactly one of the
ACC_ PUBLIC or ACC_PROTECTED flag must be set.

The Java Card virtual machine reserves all other flag values. Their values must be zero.
name index

The value of the name index item must be a valid index into the constant pool table. The
constant pool entry at that index must be a CONSTANT Utf8 info (5.6.4 CONSTANT_Utf8)
structure representing a valid Java field name stored as a simple (not fully qualified) name, that s, as a
Java identifier.

descriptor index

The value of the descriptor index item must be avalid index into the constant pool table.
The constant pool entry at that index must be a CONSTANT Utf8 info (5.6.4 CONSTANT_Utf8)
structure representing a valid Java field descriptor.

Representation of a field descriptor in an export file is the same as in a Java class file. See the
specification described in The Java Virtual Machine Specification (§4.3.2).

If this field is a reference-type, the class referenced must be a public class.
attributes count

The value of the attributes count item indicates the number of additional attributes of this field.
Theonly field info attribute currently defined is the ConstantValue attribute (5.10.1
ConstantValue Attribute). For static final fields of primitive types, the value must be 1; that is, when
both the ACC_STATIC and ACC_FINAL bits in the £1ags item are set an attribute must be present.
For all other fields the value of the attributes count item must be 0.

attributes|[]

The only attribute defined for the attributes table ofa field info structure by this specification
is the ConstantValue attribute (5.10.1 ConstantValue Attribute). This must be defined for static final
fields of primitive types (boolean, byte, short,and int).

5.9 Methods

Each method is described by a variable-length method_info structure. The format of this structure is:

method info {
ul token
uZ2 access flags
u2 name_ index
u2 descriptor index

Java Card Platform Virtual Machine Specification, v3.2 Page 73

The items of the method info structure are as follows:
token

The token item is the token assigned to this method. If this method is a static method or
constructor, the token item represents a static method token (4.3.7.4 Static Methods and
Constructors). If this method is a virtual method, the token item represents a virtual method token
(4.3.7.6 Virtual Methods). If this method is an interface method, the token item represents an
interface method token (4.3.7.7 Interface Methods).

access_flags

The value of the access flags item is a mask of modifiers used with methods. The
access_flags modifiers are shown in the following table.

Table 5-5: Export File Method Access and Modifier Flags

Name ‘ Value Meaning Used By ‘
ACC_PUBLIC 0x0001 | Is public; may be accessed from outside its Any method
package.
ACC_ PROTECTED | 0x0004 | Is protected; may be accessed within Class/instance
subclasses. method
ACC_STATIC 0x0008 | Is static. Class/instance
method
ACC_FINAL 0x0010 | Is final; no further overriding or assignment Class/instance
after initialization. method
ACC ABSTRACT | 0x0400 | Is abstract; no implementation is provided Any method

Method access and modifier flags are defined in the same way and with the same restrictions as
described in The Java Virtual Machine Specification.

Since all methods represented in an export file are either public or protected, exactly one of the
ACC_PUBLIC or ACC_PROTECTED flag must be set.

Unlike in Java class files, the ACC_NATIVE flag is not supported in export files. Whether a method is
native is an implementation detail that is not relevant to importing packages. The Java Card virtual
machine reserves all other flag values. Their values must be zero.

name index

The value of the name index item must be a valid index into the constant pool table. The
constant pool entry at that index must be a CONSTANT Utf8 info (5.6.4 CONSTANT_Utf8)
structure representing either the special internal method name for constructors, <init>, or avalid
Java method name stored as a simple (not fully qualified) name.

Java Card Platform Virtual Machine Specification, v3.2 Page 74

descriptor index

The value of the descriptor index item must be avalid index into the constant pool table.
The constant pool entry at that index must be a CONSTANT Utf8 info (5.6.4 CONSTANT_Utf8)
structure representing a valid Java method descriptor.

Representation of a method descriptor in an export file is the same as in a Java class file. See the
specification described in The Java Virtual Machine Specification (4.3.3 The Export File and Conversion).

All classes referenced in a descriptor must be public classes.

5.10 Attributes
Attributes are used inthe field info (5.8 Fields) structure of the export file format. All attributes
have the following general format:

attribute info {
uZ2 attribute name index
u4 attribute length
ul info[attribute length]

}

5.10.1 ConstantValue Attribute

The ConstantValue attribute is a fixed-length attribute used in the attributes table of the

field info structures. A ConstantValue attribute represents the value of a final static field
(compile-time constant); that is, both the ACC_STATIC and ACC_FINAL bits in the f1ags item of
the field info structure must be set. There can be no more than one ConstantValue attribute
in the attributes table of a given field info structure.

The ConstantValue attribute hasthe format:

ConstantValue attribute {
u2 attribute name index
u4 attribute length
u2 constantvalue index

}
The items of the ConstantValue attribute structure are as follows:
attribute name index

The value of the attribute name index item must be avalid index into the constant pool
table. The constant pool entry at that index must be a CONSTANT Utf8 info (5.6.4
CONSTANT_Utf8) structure representing the string “Constantvalue.”

attribute length

Java Card Platform Virtual Machine Specification, v3.2 Page 75

The value of the attribute lengthitemofaConstantValue attribute structure must be
2.

constantvalue index

The value of the constantvalue index item must be avalid index into the constant pool

table. The constant pool entry at that index must give the constant value represented by this
attribute.

The constant pool entry must be of a type CONSTANT Integer (5.6.3 CONSTANT_Integer).

Java Card Platform Virtual Machine Specification, v3.2 Page 76

The CAP File Format

This chapter describes the Java Card converted applet (CAP) file format. A CAP file represents a Java
Card application or a library comprising one or more Java packages. A Java Card CAP file may contain
only applet packages, only library packages or a combination of applet and library packages.
Additionally, both applet and library packages in a Java Card CAP file can be public or private. Each CAP
file contains all of the classes and interfaces defined in a Java Card application or library. Java Card
Converters must be capable of producing CAP files that conform to the specification provided in this
chapter.

6.1 CAP File Overview

A CAP file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are constructed by reading
in two and four consecutive 8-bit bytes, respectively. Multibyte data items are always stored in big-
endian order, where the high-order bytes come first. The first bit read of an 8-bit quantity is considered
the high bit.

This chapter defines its own set of data types representing Java Card CAP file data: the types ul, u2
and u4 represent an unsigned one-, two and four-byte quantities, respectively. Some ul types are
represented as bitfield structures, consisting of arrays of bits. The zeroth bit in each bit array represents
the most significant bit, or high bit.

The Java Card CAP file format is presented using pseudo structures written in a C-like structure notation.
To avoid confusion with the fields of Java Card virtual machine classes and class instances, the contents
of the structures describing the Java Card CAP file format are referred to as items. Unlike the fields of a C
structure, successive items are stored in the Java Card platform file sequentially, without padding or
alignment.

Variable-sized tables, consisting of variable-sized items, are used in several CAP file data structures.
Although we will use C-like array syntax to refer to table items, the fact that tables are streams of
variable-sized structures means that it is not possible to directly translate a table index into a byte offset
into the table.

A data structure referred to as an array consists of items equal in size.

Some items in the structures of the CAP file format are described using a C-like union notation. The
bytes contained in a union structure have one of the two formats. Selection of the two formats is based
on the value of the high bit of the structure.

A CAP file may be in Compact or Extended Format where the Compact Format CAP file must not contain
information for more than one application or library package. A CAP file in Compact format may only

Java Card Platform Virtual Machine Specification, v3.2 Page 77

contain 64KB of bytecode information. A CAP file in Extended format may contain 128 blocks containing
bytecode information where each block may be of 64KB. See 6.10 Method Component.

Java Card virtual machine implementations must support Compact Format CAP files. Support for
Extended Format CAP files is optional.

6.2 Component Model

A Java Card CAP file consists of a set of components. Each component describes a set of elements in the
application or library defined, or an aspect of the CAP file. A complete CAP file must contain all of the
required components specified in this chapter. Four components are optional: the Applet Component
(6.6 Applet Component), Export Component (6.13 Export Component), Debug Component (6.15 Debug
Component) and Static Resources Component (6.16 Static Resource Component). The Applet
Component is included only if one or more applets are defined in one or more of the packages in the
CAP file. The Export Component is included only if classes in other packages, which are not part of the
CAP file, may import elements in any of the packages defined. The Debug Component contains all of the
data necessary for debugging packages in the CAP file. The Static Resources Component contains all the
static resources for the CAP file and must be included if a Java Card application or library contains static
resources. A Java Card CAP file may not have a Static Resources Component if the application or library
it represents does not have any static resources.

The content of each component defined in a CAP file must conform to the corresponding format
specified in this chapter. Components have one of the following general formats (Compact and
Extended) as specified in the Header Component (6.4 Header Component). A CAP file in Compact format
must only contain components in Compact format except Debug component and Static Resources
Component. The Header Component is always in Compact format.

component compact {
ul tag
u2 size
ul infol]

}

component extended { (since CAP format 2.3)
ul tag
ud size

ul infol]

}

Each component begins with a 1-byte tag indicating the kind of component. Valid tags and their values
are listed in Table 6-1. The s1ize item indicates the number of bytes in the info array of the component,
not including the tag and size items.

The content and format of the info array varies with the type of component.

Java Card Platform Virtual Machine Specification, v3.2 Page 78

Table 6-1: CAP File Component Tags

Component Type Value

COMPONENT Header 1
COMPONENT Directory 2
COMPONENT Applet 3
COMPONENT Import 4
COMPONENT ConstantPool 5
COMPONENT Class 6
COMPONENT Method 7
COMPONENT StaticField 8
COMPONENT ReferencelLocation 9
COMPONENT Export 10
COMPONENT Descriptor 11
COMPONENT Debug (since CAP format 2.2) 12
COMPONENT Static Resources (since CAP format 2.3) 13

Oracle may define additional components in future versions of this Java Card virtual machine
specification. It is guaranteed that additional components will have tag values between 14 and 127,
inclusive.

6.2.1 Containment in a JAR File

Each CAP file component is represented as a single file. The component file names are enumerated in
Table 6-2. These names are not case sensitive. Note that components with extended length have
extension “.capx”. Note that Method Component, RefLocation component and Descriptor component
with extended length may only be present in the CAP file in Extended format. In Compact format all
components, except Debug component, Static Resources component and custom components, must
have compact length and must have extension “.cap”.

Table 6-2: CAP File Component File Names

Component Type \ File Name

COMPONENT Header Header.cap
COMPONENT Directory
COMPONENT Applet
COMPONENT Import
COMPONENT ConstantPool
COMPONENT Class
COMPONENT Method
COMPONENT StaticField

Directory.cap

Applet.cap

Import.cap

ConstantPool.cap

Class.cap
Method.cap[x]
StaticField.cap

COMPONENT ReferencelLocation

RefLocation.cap[x]

COMPONENT Export

Export.cap

COMPONENT Descriptor

Descriptor.cap[x]

COMPONENT Debug (since CAP

format 2.2)

Debug.cap[x]

COMPONENT Static Resources

(since CAP format 2.3)

StaticResources.capx

Java Card Platform Virtual Machine Specification, v3.2

Page 79

All CAP file components are stored in a JAR file. As described in 4.1.3 JAR File Container, the path to the
CAP file component files in a JAR file consists of a directory called javacard.

Name of the Debug Component in Compact format must have extension “.cap” if the size of info item is
less than 65535 bytes. Size item of Debug Component in Compact format shall always be of type u2. The
Debug Component in Compact format may also contain 65535 or more bytes in which case the size item
shall have value of OXFFFF and the name of the Debug component in the jar file must have extension
“.capx”. Name of the Debug component in Extended format must always have extension “.capx”.

For JAR files in Compact format, the directory “javacard” is in a subdirectory representing the package’s
directory. For example, the CAP file component files of the package javacard.framework are located in
the subdirectory javacard/framework/javacard.

For JAR files in Extended Format, the directory “javacard” is in a subdirectory representing the
application or library’s directory. For example, the CAP file component files of the application
HelloWorld are located in the subdirectory com/oracle/HelloWorld/javacard.

Other files, including other CAP files, may also reside in a JAR file that contains CAP file component files.

The JAR file format provides a vehicle suitable for the distribution of CAP file components. It is not
intended or required that the JAR file format be used as the load file format for loading CAP file
components onto a Java Card technology-enabled device. See 6.3 Installation for more information.

The name of a JAR file containing CAP file components is not defined as part of this specification. The
naming convention used by the Oracle Java Card Converter Tool is to append . cap to the application or
library name. For example, the CAP file produced for the library JavalLoyalty would be named
JavalLoyalty.cap.

6.2.2 Defining New Components

Java Card CAP files are permitted to contain new, or custom, components. All new components not
defined as part of this specification must not affect the semantics of the specified components, and Java
Card virtual machines must be able to accept CAP files that do not contain new components. Java Card
virtual machine implementations are required to silently ignore components they do not recognize.

New components are identified in two ways: they are assigned both an ISO 7816-5 AID (4.2 AID-based
Naming) and a tag value. Valid tag values are between 128 and 255, inclusive. Both of these
identifiers are recorded in the custom component item of the Directory Component (6.5 Directory
Component).

The new component must conform to one of the general component formats defined in this chapter,
either compact or extended as defined in the Header Component, with a tag value, a size value
indicating the number of bytes in the component (excluding the tag and size items), and an info
item containing the content of the new component.

Java Card Platform Virtual Machine Specification, v3.2 Page 80

A new component file is stored in a JAR file, following the same restrictions as those specified in 4.1.3
JAR File Container. That is, the file containing the new component must be located in the
<application or library directory>/javacard or

<package directory>/javacard subdirectory of the JAR file and must have the extension
.capxor .cap based on Extended or Compact format of the CAP file respectively.

6.3 Installation

Installing CAP file components onto a Java Card technology-enabled device entails communication
between a Java Card technology-enabled terminal and that device. While it is beyond the scope of this
specification to define a load file format or installation protocol between a terminal and a device, the
CAP file component order shown below is a reference load order suitable for an implementation with a
simple memory management model on a limited memory device.®

Reference Component Install Order:

e COMPONENT Header

e COMPONENT Directory

e COMPONENT Import

e COMPONENT Applet

e COMPONENT Class

e COMPONENT Method

e COMPONENT StaticField

e COMPONENT Export

e COMPONENT ConstantPool

e COMPONENT ReferencelLocation
e COMPONENT Static Resources
e COMPONENT Descriptor (optional)

The component type COMPONENT Debug is not intended for download to the device. It is intended to
be used off-card in conjunction with a suitably instrumented Java Card virtual machine.

6.4 Header Component
The Header Component contains general information about this CAP file and the public packages it
defines. It is described by one of the following variable-length structures:

header component compact {
ul tag
u2 size
u4 magic
ul CAP Format minor version

5 Both the Java Card Forum and Global Platform specification have adopted this component load order as a
standard to enhance interoperability. In both cases, loading the Descriptor Component is optional. Furthermore,
the Global Platform specification defines the format of packets (APDUs) used during installation.

Java Card Platform Virtual Machine Specification, v3.2 Page 81

ul CAP Format major version

ul flags

package info package

package name info package name (since CAP format 2.2)

}

header component extended { (since CAP format 2.3)
ul tag
u2 size
ud magic
ul CAP Format minor version
ul CAP Format major version
ul flags
ul CAP minor version
ul CAP major version
ul CAP AID length
ul CAP _AID[CAP AID length]
ul package count
package info packages/(]
package name info package names/|]

}

The items in the header component structure are as follows:
tag

The tag item has the value COMPONENT Header (1).

size

The size item indicates the number of bytes in the header component structure, excluding the
tag and size items. The value of the size item must be greater than zero.

magic

The magic item supplies the magic number identifying the Java Card CAP file format; it has the value
OxDECAFFED.

CAP Format minor version, CAP Format major version

The CAP Format minor versionand CAP Format major version items are the minor
and major version numbers of the format used for this CAP file. If a CAP file has the major version
number of M and minor version number of m, the version of the CAP file’s format is M.m.

A change in the major version number indicates a major incompatibility change, one that requires a
fundamentally different Java Card virtual machine. A Java Card virtual machine is not required to
support CAP files with different major version numbers. A Java Card virtual machine is required to

Java Card Platform Virtual Machine Specification, v3.2 Page 82

support CAP files having a given major version number and all valid minor version numbers in the range
0 through some particularminor version where avalid minor version number is a minor version
number that has been defined in a version of the Java Card virtual machine specification.

In this specification, the major version of the CAP file format has the value 2 and the minor version has
the value 3. A Java Card Virtual Machine must support minor version values between 1 and 3. Only
Oracle Corp. may define the meaning and values of new CAP file format versions.

flags

The flags item is a mask of modifiers that apply to this CAP file. The f1ags modifiers are shown in
the following table.

Table 6-3: CAP File Flags

Flags Value

ACC INT 0x01
ACC EXPORT 0x02
ACC APPLET 0x04
ACC EXTENDED 0x08

The ACC_INT flag has the value of one if the Java int type is used by at least one of the packages in
this CAP file. The int type is used if one or more of the following is present:

e A parameter to a method of type int

e A parameter to a method of type int array
e Alocal variable of type int

e Alocal variable of type int array

o Afield of type int

o Afield of type int array

e Aninstruction of type int, or

e Aninstruction of type int array

Otherwise the ACC _INT flag has the value of 0.

The ACC_EXPORT flag has the value of one if an Export Component (6.13 Export Component) is
included in this CAP file. Otherwise it has the value of 0.

The ACC_APPLET flag has the value of one if an Applet Component (6.6 Applet Component) is included
in this CAP file. Otherwise it has the value of 0.

All other bits in the f1ags item not defined in Table 6-3 are reserved for future use. Their values must

be zero.

Java Card Platform Virtual Machine Specification, v3.2 Page 83

The ACC_EXTENDED flag has the value of one if the CAP file is in Extended format. In this case the
Method Component (6.10 Method Component), Reference Location component (6.12 Reference
Location Component), Descriptor Component (6.14 Descriptor Component), Debug Component (6.15
Debug Component) and all custom components in the CAP file must be in the Extended Format.
Otherwise it has the value of 0.

package

The package itemin header component compact describes the package defined in this CAP file.
It is represented as a package info structure:

package info {
ul minor version
ul major version
ul AID length
ul AID[AID length]
}

The items in the package info structure are as follows:
minor version, major version

Theminor versionandmajor version itemsare the minor and major version numbers of this

package. These values uniquely identify the particular implementation of this package and indicate the

binary compatibility between packages. See 4.5 CAP and Package Versions for a description of assigning
and using package version numbers.

AID length

The AID length item represents the number of bytes in the AID item. Valid values are between 5
and 16, inclusive.

AID[]

The AID item represents the Java Card platform name of the package. See ISO 7816-5 for the definition
of an AID (also see 4.2 AID-based Naming).

package name

The package nameitemin header component compact, describesthe name of the package
defined in this CAP file. It is represented as a package name info[] structure:

package name info { (since CAP format 2.2)
ul name length
ul name[name length]

Java Card Platform Virtual Machine Specification, v3.2 Page 84

The items in the package name info[] structure are as follows:

name length

The name length item is the number of bytes used in the name item to represent the name of this
package in UTF-8 format. The value of this item may be zero if and only if the package does not define
any remote interfaces or remote classes.

name []

The name [] item is a variable length representation of the fully qualified name of this package in UTF-8
format. The fully qualified name is represented in internal form as described in the Java Virtual Machine
Specification.

CAP minor version, CAP major version

The CAP_minor versionand CAP_major versionitemsinheader component extended
are the minor and major version numbers of this CAP file. These values uniquely identify this CAP file.
See 4.5 CAP and Package Versions for a description of assigning and using version numbers.

CAP AID length

The CAP_AID lengthiteminheader component extended, representsthe number of bytes
in the CAP_ATID item. Valid values are between 5 and 16, inclusive.

CAP AIDI[]

The CAP_AIDitemin header component extended, representsthe Java Card platform name of
the CAP file. See ISO 7816-5 for the definition of an AID (also see 4.2 AlD-based Naming).

package count

The package_count item in the header component extended structure represents the number of
entries in the packages table. The value of the package count item must be greater than 0.

packages

The packages itemin header component extended, isan array representing all public
packages in this CAP file. Each entry in the array is represented as a package info structure.

package names

The package names itemin header component extended, describesthe names ofall the
packages defined in this CAP file. Each name is represented as a package name info[] structure.

6.5 Directory Component
The Directory Component lists the size of each of the components defined in this CAP file. When an
optional component is not included, such as the Applet Component (6.6 Applet Component), Export

Java Card Platform Virtual Machine Specification, v3.2 Page 85

Component (6.13 Export Component) , Debug Component (6.15 Debug Component), or for Extended
format, the Static Resource Component (Static Resource Component) it is represented in the Directory
Component with size equal to zero. The Directory Component also includes entries for new (or
custom) components.

The Directory Component for CAP file in Compact and Extended format is described by the following
variable-length structures:

directory component compact {
ul tag
uz size
component size info compact component sizes (since CAP format 2.3)
static field size info static field size
ul import count
ul applet count
ul custom count
custom component info compact custom components[custom count]

}

diectory component extended { (since CAP format 2.3)
ul tag
u2 size
component size info extended component sizes
static field size info static field size
ul import count
ul applet count
ul method component block count
ul custom count
custom component info extended custom components|[custom count]

}

The items in these structures are as follows:

tag

The tag item has the value COMPONENT Directory (2).
size

The size item indicates the number of bytes in the directory component structure, excluding
the tag and size items. The value of the size item must be greater than zero.

component sizes

The component sizes itemis a structure of type component size info compact or
component size info extended based onthe Compact or Extended format of the CAP file. It
represents the number of bytes in each of the components in this CAP file.

Java Card Platform Virtual Machine Specification, v3.2 Page 86

component size info compact {
u2 Header Component Size
u2 Directory Component Size
u2 Applet Component Size
u2 Import Component Size
u2 Constant Pool Component Size
u2 Class Comonent Size
u2 Method Component Size
u2 Static Field Component Size
u2 Reference Location Component Size
u2 Export Component Size
u2 Descriptor Component Size
u2 Debug Component Size (since CAP format 2.2)
u4 Static Resource Component Size (since CAP format 2.3)

}

component size info extended { (since CAP format 2.3)
u2 Header Component Size
u2 Directory Component Size
uZ2 Applet Component Size
u2 Import Component Size
u2 Constant Pool Component Size
u2 Class Component Size
u4 Method Component Size
u2 Static Field Component Size
u4 Reference Location Component Size
u2 Export Component Size
u4 Descriptor Component Size
u4 Debug Component Size
u4 Static Resource Component Size

}

The value of an entry in the component size info compactor

component size info extended structuresis zero for components not included in this CAP file.
Components that may not be included are the Applet Component (6.6 Applet Component), the Export

Component (6.13 Export Component), the Debug Component (6.15 Debug Component), and the Static

Resource Component (6.15 Static Resource Component). For all other components the value is greater

than zero.

Value for Debug Component Sizein component size info compact must be OxFFFF if
size of the info item of the Debug Component (6.15 Debug Component) is greater than or equal to
65535.

static_ field size

Java Card Platform Virtual Machine Specification, v3.2 Page 87

The static field sizeitemisastatic field size info structure. The structureis
defined as:

static field size info ({
u2 image size
u2 array init count
u2 array init size

}
Theitemsinthe static field size info structure are the following:
image size

The image size item has the same value as the image size item in the Static Field Component
(6.11 Static Field Component). It represents the total number of bytes in the static fields defined in all
packages in this CAP file, excluding final static fields of primitive types.

array init count

The array init count item hasthe samevalue asthe array init count item in the Static
Field Component (6.11 Static Field Component). It represents the number of arrays initialized in all of
the <clinit> methods in all the packages in this CAP file.

array init size

The array init size item represents the sum of the countitemsinthe array init tableitem
of the Static Field Component (6.11 Static Field Component). It is the total number of bytes in all of the
arrays initialized in all of the <c1init> methods in all the packages in this CAP file.

import count

The import count item indicates the number of packages imported by classes and interfaces in this
CAP file. This item has the same value as the count item in the Import Component (6.7 Import
Component).

applet count

The applet count item indicates the number of applets defined in packages in this CAP file. If an
Applet Component (6.6 Applet Component) is not included in this CAP file, the value of the

applet count itemis zero. Otherwise the value of the applet count itemis the same as the
value of the count item in the Applet Component (6.6 Applet Component).

method component block count

Themethod component block count item indicates the number of method component blocks
in the Extended Method Component (6.10 Method Component). The value of the

Java Card Platform Virtual Machine Specification, v3.2 Page 88

method component block count item isthe same as the value of the
method component block count iteminthe Method Component (6.10 Method Component).

custom count

The custom count item indicates the number of entries in the custom components table. Valid
values are between 0 and 127, inclusive.

custom components|]

The custom components item is a table of variable-length

custom component info compact orcustom component info extended structures
based on Compact or Extended length format of the CAP file. Each new component defined in this CAP
file must be represented in the table. These components are not defined in this standard.

The custom component info compact and custom component info extended
structures are defined as:

custom component info compact {
ul component tag
u2 size
ul AID length
ul AID[AID length]

custom component info extended { (since CAP format 2.3)
ul component tag
ud size
ul AID length
ul AID[AID length]

The items in entries of these structures are:
component tag

The component tag item represents the tag of the component. Valid values are between 128 and
255, inclusive.

size
The size item represents the number of bytes in the component, excluding the tag and size items.

AID length

Java Card Platform Virtual Machine Specification, v3.2 Page 89

The AID length item represents the number of bytes in the AID item. Valid values are between 5
and 16, inclusive.

AID[]

The AID item represents the Java Card platform name of the component. See ISO 7816-5 for the
definition of an AID (4.1 Java Card Platform File Formats).

Each component is assigned an AID conforming to the ISO 7816-5 standard. Beyond that, there are no
constraints on the value of an AID of a custom component.

6.6 Applet Component

The Applet Component contains an entry for each of the applets defined in this CAP file. Applets are
defined by implementing a non-abstract subclass, direct or indirect, of the

javacard. framework.Applet class®. If no applets are defined by any of the packages in this CAP
file, this component must not be present in this CAP file.

The Applet Component is described by one of the following variable-length structures based on
Compact or Extended format of CAP file:

applet component compact {

ul tag

u2 size

ul count
{ul AID length
ul AID[AID length]
u2 install method offset
} applets[count]

}

applet component extended { (since CAP format 2.3)
ul tag
u2 size
ul count

{ul AID length
ul AID[AID length]
ul install method component block index
u2 install method offset
} applets[count]
}

The items in the applet component structure are as follows:

6 Restrictions placed on an applet definition are imposed by the Runtime Environment Specification, Java Card
Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 90

tag
The tag item has the value COMPONENT Applet (3).
size

The size item indicates the number of bytes in the applet component structure, excluding the
tag and size items. The value of the size item must be greater than zero.

count

The count item indicates the number of applets defined by all the packages in this CAP file. The value
of the count item must be greater than zero.

applets|[]

The applets item represents a table of variable-length structures each describing an applet defined in
this CAP file.

The items in each entry of the applets table are defined as follows:
AID length

The AID length item represents the number of bytes in the AID item. Valid values are between 5
and 16, inclusive.

AID[]
The AID item represents the Java Card platform name of the applet.

Each applet is assigned an AID conforming to the ISO 7816-5 standard (4.2 AlD-based Naming). The RID
(first 5 bytes) of all of the applet AIDs must have the same value. In addition, the RID of each applet AIDs
must have the same value as the RID of the package defined in this CAP file.

install method component block index

The install method component block indexiteminapplet component extended
structure represents the index into the blocks array of Method Component (6.10 Method Component).
The method_component_block at that index contains the install method for this applet.

install method offset

The value of the install method offsetiteminapplet component compact structure,
must be a 16-bit offset into the info item of the Method Component (6.10 Method Component).

The value of the install method offsetiteminapplet component extended structure
must be a 16-bit offset into the method_component_block in the blocks array of Method Component

Java Card Platform Virtual Machine Specification, v3.2 Page 91

(6.10 Method Component) at index represented by

install method component block index.

The item at that offset must be amethod info structure that represents the static
install (byte[], short,byte) method of the applet.” The

install (byte[], short,byte) method must be defined in a class that extends the
javacard. framework.Applet class, directly or indirectly. The

install (byte[], short,byte) method is called to initialize the applet.

6.7 Import Component

The Import Component lists the set of packages imported by the classes in this CAP file. It does not
include entries for packages defined in this CAP file. The Import Component is represented by the
following structure:

import component ({
ul tag
u2 size
ul count
package info packages[count]

}

The items in the import component structure are as follows:
tag

The tag item has the value COMPONENT Import (4).

size

The size item indicates the number of bytes in the import component structure, excluding the
tag and size items. The value of the size item must be greater than zero.

count

The count item indicates the number of items in the packages table. The value of the count item
must be between 0 and 128, inclusive.

packages|[]

The packages item represents a table of variable-length package info structures as defined for
package under 6.4 Header Component. The table contains an entry for each of the packages referenced
in the CAP file, not including the packages defined in this CAP file.

7 Restrictions placed on the install(byte[],short,byte) method of an applet are imposed by the Runtime
Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 92

The major and minor version numbers specified in the package info structure are equal to the
major and minor versions specified in the imported package’s export file. See 4.5 CAP and Package
Versions for a description of assigning and using package version numbers.

Components of this CAP file refer to an imported package by using an index in this packages table.
The index is called a package token (4.3.7.1 Package).

6.8 Constant Pool Component

The Constant Pool Component contains an entry for each of the classes, methods, and fields referenced
by elements in the Method Component (6.10 Method Component) of this CAP file. The referencing
elements in the Method Component may be instructions in the methods or exception handler catch
types in the exception handler table.

Entries in the Constant Pool Component reference elements in the Class Component (6.9 Class
Component), Method Component (6.10 Method Component), and Static Field Component (6.11 Static
Field Component). The Import Component (6.7 Import Component) is also accessed using a package
token (4.3.7.1 Package) to describe references to classes, methods and fields defined in imported
packages. Entries in the Constant Pool Component do not reference other entries internal to itself.

The Constant Pool Component is described by the following structure:

constant pool component {
ul tag
u2 size
u2 count
cp_info constant pool[count]

}

The items in the constant pool component structure are as follows:
tag

The tag item has the value COMPONENT ConstantPool (5).

size

The size item indicates the number of bytes in the constant pool component structure,
excluding the tag and size items. The value of the size item must be greater than zero.

count

The count item represents the number entries in the constant pool[] array. Valid values are
between 0 and 65535, inclusive.

constant pool[]

The constant pool[] item represents an array of cp _info structures:

Java Card Platform Virtual Machine Specification, v3.2 Page 93

cp_info {

ul tag

ul info[3]
}

Each item in the constant pool[] array is a 4-byte structure. Each structure must begin with a 1-
byte tag indicating the kind of cp_info entry. The content and format of the 3-byte info array varies
with the value of the tag. The valid tags and their values are listed in the following table.

Table 6-4: CAP File Constant Pool Tags

Constant Type Tag \
CONSTANT Classref
CONSTANT InstanceFieldref
CONSTANT VirtualMethodref
CONSTANT SuperMethodref
CONSTANT StaticFieldref
CONSTANT StaticMethodref

oUW (N[

Java Card platform constant types (“Java Card constant types”) are more specific than those in Java class
files. The categories indicate not only the type of the item referenced, but also the manner in which it is
referenced.

For example, in the Java constant pool there is one constant type for method references, while in the
Java Card platform constant pool (“Java Card constant pool”) there are three constant types for method
references: one for virtual method invocations using the invokevirtual bytecode, one for super
method invocations using the invokespecial bytecode, and one for static method invocations using
either the invokestatic or invokespecial bytecode. The additional information provided by a
constant type in Java Card technologies simplifies resolution of references.

There are no ordering constraints on constant pool entries. It is recommended, however, that
CONSTANT InstanceFieldref (6.8.2 CONSTANT InstanceFieldref, CONSTANT_VirtualMethodref,
CONSTANT_SuperMethodref) constants occur early in the array to permit using getfield T and
putfield T bytecodesinstead of getfield T wandputfield T w bytecodes. The former
have 1-byte constant pool index parameters while the latter have 2-byte constant pool index
parameters.

The first entry in the constant pool cannot be an exception handler class that is referenced by a
catch type indexofanexception handler info structure.Insuch a case the value of the

8 The constant pool index parameter of an invokespecial bytecode is to a CONSTANT _ StaticMethodref when the
method referenced is a constructor or a private instance method. In these cases the method invoked is fully known
when the CAP file is created. In the cases of virtual method and super method references, the method invoked is
dependent upon an instance of a class and its hierarchy, both of which may be partially unknown when the CAP
file is created.

Java Card Platform Virtual Machine Specification, v3.2 Page 94

catch type index would be equalto0, but thevalueofOinacatch type indexisreserved
to indicate an exception handler info structure that describesa finally block.

6.8.1 CONSTANT _Classref
The CONSTANT Classref info structureis used to represent a reference to a class or an interface.
The class or interface may be defined in this package or in an imported package.

CONSTANT Classref info {
ul tag
union {
u2 internal class_ref
{ ul package token
ul class_ token
} external class ref
} class ref
ul padding
}

The items in the CONSTANT Classref info structure are the following:
tag

The tag item has the value CONSTANT Classref (1).

class ref

The class_ref item represents a reference to a class or interface. If the class or interface is defined in
this CAP file, the structure represents an internal class_ref and the high bit of the structure is
zero. If the class or interface is defined in imported package the structure represents an

external class_ ref and the high bit of the structure is one.

internal class ref

The internal class_ ref structure represents a 16-bit offset into the info item of the Class
Component (6.9 Class Component) to an interface infoorclass info structure. The

interface infoorclass_ info structure must represent the referenced class or interface.

The value of the internal class ref item must be between 0 and 32767, inclusive, making the
high bit equal to zero.

external class ref

The external class ref structure represents a reference to a class or interface defined in an
imported package. The high bit of this structure is one.

package token

Java Card Platform Virtual Machine Specification, v3.2 Page 95

The package token item represents a package token (4.3.7.1 Package) defined in the Import
Component (6.7 Import Component) of this CAP file. The value of this token must be a valid index into
the packages table item of the import component structure. The package represented at that
index must be the imported package.

The value of the package token must be between 0 and 127, inclusive.
The high bit of the package token itemis equal to one.
class_ token

The class_ token item represents the token of the class or interface (4.3.7.2 Classes and Interfaces)
of the referenced class or interface. It has the value of the class token of the class as defined in the
Exportfile of the imported package.

padding

The padding item has the value zero. It is present to make the size of a CONSTANT
Classref info structure the same as all other constants in the constant pool[] array.

6.8.2 CONSTANT _InstanceFieldref, CONSTANT _VirtualMethodref,
CONSTANT _SuperMethodref
References to instance fields, and virtual methods are represented by similar structures:

CONSTANT InstanceFieldref info {
ul tag
class ref class
ul token

}

CONSTANT VirtualMethodref info {
ul tag
class ref class
ul token

}

CONSTANT SuperMethodref info {
ul tag
class ref class
ul token

}
The items in these structures are as follows:

tag

Java Card Platform Virtual Machine Specification, v3.2 Page 96

The tagitem of a CONSTANT InstanceFieldref info structure hasthe value
CONSTANT InstanceFieldref (2).

The tagitem ofa CONSTANT VirtualMethodref info structure has the value
CONSTANT VirtualMethodref (3).

The tagitem of a CONSTANT SuperMethodref info structure hasthe value
CONSTANT SuperMethodref (4).

class

The class item represents the class associated with the referenced instance field, virtual method, or
super method invocation. Itisa class_ ref structure (6.8.1 CONSTANT_Classref). If the referenced
class is defined in this CAP file, the high bit is equal to zero. If the reference class is defined in an
imported package the high bit of this structure is equal to one.

The class referenced in the CONSTANT InstanceField info structure must be the class that
contains the declaration of the instance field.

The class referenced in the CONSTANT VirtualMethodref info structure mustbe a class that
contains a declaration or definition of the virtual method.

The class referenced in the CONSTANT SuperMethodref info structure must be the class that
defines the method that contains the Java language-level super invocation.

token

The token itemin the CONSTANT InstanceFieldref info structure representsan instance
field token (4.3.7.5 Instance Fields) of the referenced field. The value of the instance field token is
defined within the scope of the class indicated by the class item.

The token item of the CONSTANT VirtualMethodref info structure represents the virtual
method token (4.3.7.6 Virtual Methods) of the referenced method. The virtual method token is defined
within the scope of the hierarchy of the class indicated by the class item. If the referenced method is
public or protected the high bit of the token item is zero. If the referenced method is package-visible the
high bit of the token item is one. In this case the c1ass item must represent a reference to a class
defined in this package.

The token item of the CONSTANT SuperMethodref info structure represents the virtual
method token (4.3.7.6 Virtual Methods) of the referenced method. Unlike in the

CONSTANT VirtualMethodref info structure, the virtual method token is defined within the
scope of the hierarchy of the superclass of the class indicated by the c1ass item. If the referenced
method is public or protected the high bit of the token item is zero. If the referenced method is
package-visible the high bit of the token item is one. In the latter case the class item must represent a

Java Card Platform Virtual Machine Specification, v3.2 Page 97

reference to a class defined in this package and at least one superclass of the class that contains a
definition of the virtual method must also be defined in this package.

6.8.3 CONSTANT _StaticFieldref and CONSTANT_StaticMethodref
References to static fields and methods are represented by similar structures:

CONSTANT StaticFieldref info {
ul tag
union {
{ ul padding
u2 offset
} internal ref
{ ul package token
ul class_ token
ul token
} external ref
} static field ref

}

CONSTANT StaticMethodref info {
ul tag
union {
{ ul method info block index (since CAP format 2.3)
u2 offset
} internal ref
{ ul package token
ul class token
ul token
} external ref
} static method ref

}

The items in these structures are as follows:
tag

The tagitem of a CONSTANT StaticFieldref info structure has the value
CONSTANT StaticFieldref (5).

The tagitem of a CONSTANT StaticMethodref info structure hasthe value
CONSTANT StaticMethodref (6).

static field ref

The static field ref item represent areference to a static field.

Java Card Platform Virtual Machine Specification, v3.2 Page 98

If the referenced item is defined in this CAP file the structure represents an internal ref andthe
high bit of the structure is zero. If the referenced item is defined in another CAP file the structure
represents an external ref and the high bit of the structure is one.

internal ref

The internal ref item represents a reference toa static field defined in this CAP file. The items
in the structure are:

padding
The padding item of a CONSTANT StaticFieldref info structureis equalto 0.
method info block index

Themethod info block indexitemofa CONSTANT StaticMethodref info structure
represents the index in the blocks array of Method Component (6.10 Method Component) containing
the referenced method.

The value of themethod info block index token must be between 0and 127, inclusive.
offset

The offset item ofa CONSTANT StaticFieldref info structure representsa 16-bit offset into
the Static Field Image defined by the Static Field component (6.11 Static Field Component) to this static
field.

The of fset item of a CONSTANT StaticMethodref info structure representsa 16-bit offset
into the method component block inthe blocks array of Method Component (6.10 Method
Component) at index represented by method info block index. Themethod info structure
at of fset must represent the referenced method.

external ref

The external ref item represents a reference to a static field or method defined in an imported
package. The items in the structure are:

package token

The package token item represents a package token (4.3.7.1 Package) defined in the Import
Component (6.7 Import Component) of this CAP file. The value of this token must be a valid index into
the packages table item of the import component structure. The package represented at that
index must be the imported package.

The value of the package token must be between 0 and 127, inclusive.

The high bit of the package token item is equal to one.

Java Card Platform Virtual Machine Specification, v3.2 Page 99

class token

The class_ token item represents the token (4.3.7.2 Classes and Interfaces) of the class of the
referenced class. It has the value of the c1ass token of the class as defined in the Export file of the
imported package.

The class indicated by the class token item must define the referenced field or method.
token

The token item of a CONSTANT StaticFieldref info structure represents a static field token
(4.3.7.3 Static Fields) as defined in the Export file of the imported package. It has the value of the token
of the referenced field.

The token item of a CONSTANT StaticMethodref info structure represents a static method
token (4.3.7.4 Static Methods and Constructors) as defined in the Export file of the imported package. It
has the value of the token of the referenced method.

6.9 Class Component

The Class Component describes each of the classes and interfaces defined in this CAP file. It does not
contain complete access information and content details for each class and interface. Instead, the
information included is limited to that required to execute operations associated with a particular class
or interface, without performing verification. Complete details regarding the classes and interfaces
defined in this CAP file are included in the Descriptor Component (6.14 Descriptor Component).

The information included in the Class Component for each interface is sufficient to uniquely identify the
interface and to test whether or not a cast to that interface is valid.

The information included in the Class Component for each class is sufficient to resolve operations
associated with instances of a class. The operations include creating an instance, testing whether or not
a cast of the instance is valid, dispatching virtual method invocations, and dispatching interface method
invocations. Also included is sufficient information to locate instance fields of type reference,
including arrays.

The classes represented in the Class Component reference other entries in the Class Component in the
form of superclass, superinterface and implemented interface references. When a superclass,
superinterface or implemented interface is defined in an imported package the Import Component is
used in the representation of the reference.

The classes represented in the Class Component also contain references to virtual methods defined in
the Method Component (6.10 Method Component) of this CAP file. References to virtual methods
defined in imported packages are not explicitly described. Instead such methods are located through a
superclass within the hierarchy of the class, where the superclass is defined in the same imported
package as the virtual method.

Java Card Platform Virtual Machine Specification, v3.2 Page 100

The Constant Pool Component (6.8 Constant Pool Component), Export Component (6.13 Export
Component), Descriptor Component (6.14 Descriptor Component) and Debug Component (6.15 Debug
Component) reference classes and interfaces defined in the Class Component. No other CAP file
components reference the Class Component.

The Class Component is represented by the following structures based on Compact or Extended format
of the CAP file:

class component compact {
ul tag
uz2 size
u2 signature pool length (since CAP format 2.2)
type descriptor signature pool[] (since CAP format 2.2)
interface info interfaces|[]
class info compact classes]|]

}

class component extended { (since CAP format 2.3)
ul tag
u2 size
u2 signature pool length
type descriptor signature pool/[]
interface info interfaces/(]
class info extended classes]|]

Theitemsinthe class component compact and class component extended structures
are as follows:

tag
The tag item has the value COMPONENT Class (6).
size

The size item indicates the number of bytes in the class component structure, excluding the tag
and size items. The value of the size item must be greater than zero.

signature pool length

The signature pool length item indicates the number of bytesin the signature pool[]
item. The value of the signature pool length item must be zero if none of the packages in this
CAP file define any remote interfaces or remote classes.

signature pool[]

Java Card Platform Virtual Machine Specification, v3.2 Page 101

The signature pool[] item represents a list of variable-length type descriptor structures.
These descriptors represent the signatures of the remote methods.

interfaces|]

The interfaces item represents an array of interface info structures. Each interface defined
in this CAP file is represented in the array. The entries are ordered based on hierarchy such that a
superinterface has a lower index than any of its subinterfaces.

classes|[]

The classes item represents a table of variable-length class info compact or

class_info extended structures based on Compact or Extended format of CAP file. Each class
defined in this CAP file is represented in the array. The entries are ordered based on hierarchy such that
a superclass has a lower index than any of its subclasses.

6.9.1 type_descriptor
The type descriptor structure represents the type of a field or the signature of a method.

type descriptor { (since CAP format 2.2)
ul nibble count;
ul typel[(nibble count+l) / 21;

}

The type descriptor structure contains the following elements:
nibble count

The nibble count value represents the number of nibbles required to describe the type encoded in
the type array.

typel]

The type array contains an encoded description of the type, composed of individual nibbles. If the
nibble count itemisan odd number, the last nibble in the type array must be 0x0. The values of
the type descriptor nibbles are defined in the following table.

Table 6-5: Type Descriptor Values

Type Value \
Void Ox1
Boolean 0x2
Byte 0x3
Short Ox4
Int 0x5
Reference 0x6
arrayof boolean 0xA

Java Card Platform Virtual Machine Specification, v3.2 Page 102

Type Value
arrayof byte 0xB
arrayof short 0xC
arrayof int 0xD
arrayof reference OxE

Class reference types are described using the reference nibble 0x6, followed by a 2-byte (4-nibble)

class_ref structure. The class ref structure is defined as part of the

CONSTANT Classref info structure (6.8.1 CONSTANT_Classref). For example, a field of type
reference to pl.cl in a CAP file defining package pO is described as:

Table 6-6: Encoded Reference Type pl.cl

Nibble Value Description

0

0x6 Reference
1 <pl> package token (high bit on)
2 N/A N/A
3 <cl> class token
4 N/A N/A
5 0x0 Padding

The following are examples of the array types:

Table 6-7: Encoded Byte Array Type

Nibble \ Value Description
0 0xB array of byte
1 0x0 Padding

Table 6-8: Encoded Reference Array Type p1l.cl

Nibble \ Value \ Description

0 0xE array of reference

1 <pl> package token (high bit on)
2 N/A N/A

3 <cl> class token

4 N/A N/A

5 0x0 Padding

Method signatures are encoded in the same way, with the return type of the method encoded at the
end of the sequence of nibbles. The return type is encoded in as many nibbles as required to represent

it. For example:

Java Card Platform Virtual Machine Specification, v3.2

Page 103

Table 6-9: Encoded Method Signature ()V

Nibble Value Description

0 0x1 Void
1 0x0 Padding

Table 6-10: Encoded Method Signature (Lp1.ci;)S

Nibble \ Value \ Description

0 0x6 Reference

1 <pl> package token (high bit on)
2 N/A N/A

3 <cl> class token

4 N/A N/A

5 0x4 Short

6.9.2 interface_info, class_info_compact and class_info_extended
The interface infoandclass info structures represent interfaces and classes, respectively.
The two are differentiated by the value of the high bit in the structures. They are defined as follows:

Note: Below, for interface name info interface namethe interface name[]
item is required if the value of ACC_REMOTE is one. This item must be omitted otherwise. See
the description of this field for more information. For remote interface info remote
interfacesthe remote interfaces itemisrequired if the value of ACC_ REMOTE is
one. This item must be omitted otherwise. See the description of this field for more information.

interface info {
ul bitfield {
bit[4] flags
bit[4] interface count
}
class ref superinterfaces|[interface count]
interface name info interface name

}

class_info compact {

ul bitfield {

bit[4] flags

bit[4] interface count
}
class ref super class ref
ul declared instance size
ul first reference token
ul reference count

Java Card Platform Virtual Machine Specification, v3.2 Page 104

ul public method table base
ul public method table count
ul package method table base
ul package method table count
u2 public virtual method table[public method table count]
u2 package virtual method table[package method table count]
implemented interface info interfaces[interface count]
remote interface info remote interfaces (since CAP format 2.2)
ul public virtual method token mapping[public method count]
(since CAP format 2.3)
ul CAP22 inheritable public method token count
(since CAP format 2.3)
}

class info extended { (since CAP format 2.3)
ul bitfield {
bit[4] flags
bit[4] interface count
}
class ref super class ref
ul declared instance size
ul first reference token
ul reference count
ul public method table base
ul public method table count
ul package method table base
ul package method table count
method block info
public virtual method table[public method table count]
method block info
package virtual method table[package method table count]
implemented interface info interfaces[interface count]
remote interface info remote interfaces
ul public virtual method token mapping[public method count]
ul CAP22 inheritable public method token count

}

6.9.2.1 interface_info, class_info_compact and class_info_extended Shared Items

flags

The flags item is a mask of modifiers used to describe this interface or class. Valid values are shown in
the following table:

Java Card Platform Virtual Machine Specification, v3.2 Page 105

Table 6-11: CAP File Interface and Class Flags

Name Value

ACC_INTERFACE 0x8
ACC SHAREABLE 0x4
ACC_REMOTE 0x2

The ACC_INTERFACE flag indicates whether this structure represents an interface or a class. The value
must be one if it represents an interface info structure and zero if it represents a

class_info compact orclass_info extended structure.

The ACC_SHAREABLE flaginan interface info structure indicates whether this interface is
shareable. The value of this flag must be one if and only if the interface is
javacard. framework.Shareable interface or extends that interface directly or indirectly.

The ACC_SHAREABLE flaginaclass _info compactorclass info extended structure
indicates whether this class is shareable.® The value of this flag must be one if and only if this class or
any of its superclasses implements an interface that is shareable.

The ACC_REMOTE flag indicates whether this class or interface is remote. The value of this flag must be
one if and only if the class or interface satisfies the requirements defined in 2.2.6.1 Remote Classes and
Remote Interfaces.

All other flag values are reserved. Their values must be zero.
interface count

The interface count itemofthe interface info structure indicates the number of entries in
the superinterfaces|[] table item. The value represents the number of direct and indirect
superinterfaces of this interface. Indirect superinterfaces are the set of superinterfaces of the direct
superinterfaces. Valid values are between 0 and 14, inclusive.

The interface countitemofthe class info compactandclass info extended
structures indicates the number of entries in the interfaces table item. The value represents the number
of interfaces implemented by this class, including superinterfaces of those interfaces and potentially
interfaces implemented by superclasses of this class. Valid values are between 0 and 15, inclusive.

6.9.2.2 interface_info Items

superinterfaces]|]

9 A Java Card virtual machine uses the ACC_SHAREABLE flag to implement the firewall restrictions defined by the
Runtime Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 106

The superinterfaces|[] itemofthe interface info structureis an array of class_ref
structures representing the superinterfaces of this interface. The class_ref structure is defined as
part of the CONSTANT Classref info structure (6.8.1 CONSTANT_Classref). This array is empty if
this interface has no superinterfaces. Both direct and indirect superinterfaces are represented in the
array. Class Object is not included.

interface name/[]

The interface name [] item represents interface name information required if the interface is
remote. The interface name [] item is defined by a table of variable-length
interface name info structures. If the value of the ACC_REMOTE flag is zero, the structure is
defined as:

interface name info {

}
If the value of the ACC REMOTE flag is one, the structure is defined as:

interface name info {
ul interface name length
ul interface name[interface name length]

}
The valuesinthe interface name info structure are defined as follows:
interface name length
The interface name length itemisthe number of bytesin interface name[] item.
interface name
The item is a variable length representation of the name of this interface in UTF-8 format.

6.9.2.3 class_info_compact and class_info_extended Items

super class ref

The super class ref itemoftheclass info compactandclass info extended
structuresis a class_ref structure representing the superclass of this class. The class ref
structure is defined as part of the CONSTANT Classref info structure (6.8.1 CONSTANT_Classref).

The super class_ ref item has the value of OxFFFF only if this class does not have a superclass.
Otherwise the value of the super class ref itemis limited only by the constraints of the
class_ref structure.

declared instance size

Java Card Platform Virtual Machine Specification, v3.2 Page 107

The declared instance sizeitemoftheclass info compact and

class_info_ extended structures represents the number of 16-bit cells required to represent the
instance fields declared by this class. It does not include instance fields declared by superclasses of this
class.

Instance fields of type int are represented in two 16-bit cells, while all other field types are
represented in one 16-bit cell.

first reference token

The first reference tokenitemoftheclass info compact and

class_info_ extended structures represents the instance field token (4.3.7.5 Instance Fields) value
of the first reference type instance field defined by this class. It does not include instance fields defined
by superclasses of this class.

If this class does not define any reference type instance fields, the value of the
first reference tokenis OxFF. Otherwise the value of the first reference token item
must be within the range of the set of instance field tokens of this class.

reference count

The reference countitemofthe class info compactandclass info extended
structures represents the number of reference type instance field defined by this class. It does not
include reference type instance fields defined by superclasses of this class.

Valid values of the reference count item are between 0 and the maximum number of instance
fields defined by this class.

public method table base

Thepublic method table baseitemoftheclass info compact and

class_info_ extended structures is equal to the virtual method token value (4.3.7.6 Virtual
Methods) of the first method in the public virtual method table[] array. If the
public virtual method table[] arrayis empty, the value of the

public method table baseitemisequaltothe public method table base item of the
class _info compactandclass info_ extended structures of this class’ superclass plus the
public method table count itemofthe class info structure of this class’ superclass. If this
class has no superclass and the public virtual method table[] arrayis empty, the value of
thepublic method table base item is zero.

public method table count

Thepublic method table countitemoftheclass info compact and
class_info extended structures indicates the number of entries in the
public virtual method table[] array.

Java Card Platform Virtual Machine Specification, v3.2 Page 108

If this class does not define any public or protected override methods, the minimum valid value of
public method table count item isthe number of public and protected virtual methods
declared by this class. If this class defines one or more public or protected override methods, the
minimum valid value of public method table count itemisthe value of the largest public or
protected virtual method token, minus the value of the smallest public or protected virtual override
method token, plus one.

The maximum valid value of the public method table count item is the value of the largest
public or protected virtual method token, plus one.

Any value for the public method table count item between the minimum and maximum
specified here is valid. However, the value must correspond to the number of entries in the
public virtual method table[] array.

package method table base

The package method table baseitemoftheclass info compact and

class_info_ extended structures is equal to the virtual method token value (4.3.7.6 Virtual
Methods) of the first entry in the package virtual method table[] array. If the

package virtual method table[] arrayis empty, the value of the
package method table base itemisequal tothe package method table base item of
the class info structure of this class’ superclass, plus the package method table count
item of the class info structure of this class’ superclass. If this class has no superclass or inherits
from a class defined in another package and the package virtual method table[] arrayis
empty, the value of the package method table baseitemis zero.

package method table count

The package method table count itemofthe class info compact and
class_info_extended structures indicates the number of entries in the
package virtual method table[] array.

If this class does not define any override methods, the minimum valid value of
package method table count item isthe number of package visible virtual methods declared
by this class. If this class defines one or more package visible override methods, the minimum valid value
of package method table count item isthe value of the largest package visible virtual method
token, minus the value of the smallest package visible virtual override method token, plus one.

The maximum valid value of the package method table count itemis the value of the largest
package visible method token, plus one.

Any value for the package method table count item between the minimum and maximum
specified here are valid. However, the value must correspond to the number of entries in the
package virtual method table[].

Java Card Platform Virtual Machine Specification, v3.2 Page 109

public virtual method tablel]

Thepublic virtual method table[] itemoftheclass info compact and
class_info_ extended structures represents an array of public and protected virtual methods.
These methods can be invoked on an instance of this class. The

public virtual method table[] arrayincludes methods declared or defined by this class. It
may also include methods declared or defined by any or all of its superclasses. The value of an index into
this table must be equal to the value of the virtual method token of the indicated method, minus the
value of the public method table base item.

Inclass info_ compact structure, the entries inthe public virtual method table[]
array that represent methods defined or declared in this package contain offsets into the info item of
the Method Component (6.10 Method Component) to the method info structure representing the
method. Entries that represent methods defined or declared in an imported package contain the value
OxXFFFF.

Inclass info_ extended structure, the entriesinthe public virtual method table[]
array are of typemethod block info structure that represent methods defined or declared in the
package containing this class. Entries that represent methods defined or declared in an imported
package contain the value OxFFFF for the method offset itemof method block info
structure and the value OxFF for method component block index item of

method block info structure.

Entries for methods that are declared abstract are represented in the
public virtual method table[] arrayinthe same way as non-abstract methods.

package virtual method tablel[]

The package virtual method table[] itemofthe class info structure representsan
array of package-visible virtual methods. These methods can be invoked on an instance of this class. The
package virtual method table[] arrayincludes methods declared or defined by this class. It
may also include methods declared or defined by any or all of its superclasses that are defined in the
package containing this class. The value of an index into this table must be equal to the value of the
virtual method token of the indicated method & 0x7F, minus the value of the
package method table baseitem.

All entries in the package virtual method table[] array represent methods defined or
declared in this package.

Inclass _info compact structure, the entries in package virtual method table[]array
contain offsets into the info item of the Method Component (6.10 Method Component) to the
method info structure representing the method.

Java Card Platform Virtual Machine Specification, v3.2 Page 110

Inclass_info_extendedsﬂudum,ﬂmenvmsh1package_virtual_method_table[]
array are of typemethod block info structure that represent methods defined or declared in the
package containing this class.

Entries for methods that are declared abstract, not including those defined by interfaces, are
represented in the package virtual method table[] arrayinthe same way as non-abstract
methods.

6.9.2.4 method block_info
This structure is defined as:

method block info { (since CAP format 2.3)
ul method component block index
uZ2 method offset

}

Themethod block info structureis defined as:

method component block index

Themethod component block index item representsthe indexinto the blocks array of Method
Component (6.10 Method Component). The method component block at that index contains the
referenced method.

method offset

The value of themethod offset item must be a 16-bit offset into the

method component block inthe blocks array of Method Component (6.10 Method Component)
atindex represented by method component block index.Themethod info structure at
of fset must represent the referenced method.

interfaces]|]

The interfacesitemofthe class info compactandclass info extended structures
represents a table of variable-length implemented interface info structures. The table must
contain an entry for each of the directly implemented interfaces indicated in the declaration of this class
and each of the interfaces in the hierarchies of those interfaces. Interfaces that occur more than once
are represented by a single entry.

Given the declarations below, the number of entries for class cO is 1 and the entry in the interfaces array
is 10. The number of entries for class c1 is 3 and the entries in the interfaces array are 11, 12, and 1 3.
The entries for class c1 must not include interface 10, which is implemented only by the superclass of
cl.

interface 10 {}
interface il {}
interface 12 extends i1 {}

Java Card Platform Virtual Machine Specification, v3.2 Page 111

interface i3 {}
class cO0 implements i0 {}
class cl extends c0 implements i2, i3 {}

remote interfaces

The remote interfaces item represents information required if this class or any of its super
classes implements a remote interface. This item must be omitted if the ACC_REMOTE flag has a value
of zero. The remote interfaces itemis defined by a remote interface info structure.

6.9.2.5 implemented_interface_info
The implemented interface info structureis defined as follows:

implemented interface info {
class ref interface
ul count
ul index[count]

}
The items in the implemented interface info structure are defined as follows:
interface

The interface item has the form of a class ref structure. The class ref structure is defined
as part of the CONSTANT Classref info structure (6.8.1 CONSTANT_Classref). The

interface info structure referenced by the interface item represents an interface implemented by
this class.

count
The count item indicates the number of entries in the index [] array.
index|[]

The index [] item is an array that maps declarations of interface methods to implementations of those
methods in this class. It is a representation of the set of methods declared by the interface and its
superinterfaces.

Entries in the index array must be ordered such that the interface method token value (4.3.7.7 Interface
Methods) of the interface method is equal to the index into the array. The interface method token value
is assigned to the method within the scope of the interface definition, not within the scope of this class.

The values in the index [] array represent the virtual method tokens (4.3.7.6 Virtual Methods) of the
implementations of the interface methods. The virtual method token values are defined within the
scope of the hierarchy of this class.

For information on runtime resolution of an interface method see 7.5.54.1 Interface Method Resolution.

Java Card Platform Virtual Machine Specification, v3.2 Page 112

6.9.2.6 remote_interface_info
If the value of the ACC_REMOTE flag is zero, this structure is defined as:

remote interface info { (since CAP format 2.2)

}
If the value of the ACC_REMOTE flag is one, this structure is defined as:

remote interface info { (since CAP format 2.2)
ul remote methods count
remote method info remote methods[remote methods count]
ul hash modifier length
ul hash modifier[hash modifier length]
ul class name length
ul class name[class name length]
ul remote interfaces count
class ref remote interfaces[remote interfaces count]

}

The remote interface info structure is defined as:

remote methods count

The remote methods count item indicates the number of entries in the remote methods
array.

remote methods[]

The remote methods item of the class info structureis an array of remote method info
structures that maps each remote method available in the class to its hash code and its type definition in
the signature pool[]. The methods are listed in numerically ascending order of hash values.

The remote method info structure is defined as follows:

remote method info { (since CAP format 2.2)
u2 remote method hash
u2 signature offset
ul virtual method token

}
The items in the remote method info structure are defined as follows:

remote method hash

The remote method hash item contains a two-byte hash value for the method. The hash value is
computed from the simple (not fully qualified) name of the method concatenated with its method

Java Card Platform Virtual Machine Specification, v3.2 Page 113

descriptor. The representation of the method descriptor is the same as in a Java class file. See the
specification described in The Java Virtual Machine Specification (§4.3.3).

The hash value uniquely identifies the method within the class.

The hash code is defined as the first two bytes of the SHA-1 message digest function performed on the
hash modifier[] item described below followed by the name of the method followed by the
method descriptor representation in UTF-8 format. Rare hash collisions are averted automatically during
package conversion by adjusting the anti-collision string.

signature offset

The signature offset item contains an offset from the signature poolitemofthe info
item of the Class Component to the variable-length type descriptor structure inside the
signature pool[] item. This structure represents the signature of the remote method.

virtual method token
The virtual method token item isthe virtual method token of the remote method in this class.
hash modifier length

The hash modifier length item isthe number of bytesin the following hash modifier item.
The value of this item must be zero if an anti-collision string is not required.

hash modifier[]

The hash modifier[] itemisa variable length representation of the anti-collision string in UTF-8
format.

class name length

The class name length itemis the number of bytes used inthe class name[] item.

class name[]

The class name[] itemis a variable length representation of the name of this class in UTF-8 format.
remote interfaces count

The remote interfaces count item is the number of interfaces listed in the following

remote interfaces]|] item.
remote interfaces](]

The remote interfaces|[] itemisavariable length array of class ref items. It represents the
remote interfaces implemented by this class. The remote interfaces listed in this array, together with

Java Card Platform Virtual Machine Specification, v3.2 Page 114

their superinterfaces must be the complete set of remote interfaces implemented by this class and all its
superclasses.

Each entry has the form of a class_ref structure. Each class ref structure must reference an
interface_ info structure representing a remote interface implemented by this class.

The entries in the remote interfaces[] array must be ordered such that all remote interfaces
from the same package are listed consecutively.

6.9.2.7 public_virtual method_token_mapping

Thepublic virtual method token mapping[] itemofthe class info structure
represents an array mapping public and protected virtual method tokens of methods overridden or
declared in this class to the corresponding token value in the super class. The value of an index into this
table must be equal to the value of the virtual method token of the indicated method in this class. The
number of entries in this array is public method count where public method count equals
public method table basepluspublic method table count.

The entries inthe public virtual method token mapping[] array that represent methods
declared by this class must contain the value 0xFF. The entries in the

public virtual method token mapping[] array that represent methods declared by any
one of the super classes of this class must contain the value of the token in the direct super class at the
time of conversion of this class.

The same virtual method can have different tokens in different classes. Given a class C2 and its direct
super-class C1, the token T2 in class C2 denotes the same method as token T1 in class C1 when
T1=C2.public virtual method token mapping[T2] and Tl is not OxFF. This relation can
be extended by reflexivity, symmetry, and transitivity to any classes C1 and C2.

The content of the table public virtual method token mapping fora class C2 definedina
CAP file of format 2.2 or earlier is implicitly defined as:

e For T < inherited public method count,

public virtual method token mapping[T] T

e For inherited public method count <= T < public method count,

public virtual method token mapping[T] = OxFF

where inherited public method count is defined by using the immediate super-class C1 of C2
and depends on the format of the CAP file defining C1:

e If CAP file defining C1 has format 2.2 or earlier,
inherited public method count = Cl.public method count

o If CAP file defining C1 has format 2.3,
inherited public method count =
Cl.CAP22 inheritable public method token count

Java Card Platform Virtual Machine Specification, v3.2 Page 115

For information on runtime resolution of a virtual method see 7.5.57.1 Virtual Method Resolution.
CAP22 inheritable public method token count

The CAP22 inheritable public method token count item represents the number of
public or protected virtual methods inheritable by a subclass defined in a CAP file of format version 2.2
or earlier.

6.10 Method Component

The Method Component describes each of the methods declared in this CAP file, excluding <clinit>
methods and interface method declarations. Abstract methods defined by classes (not interfaces) are
included. The exception handlers associated with each method are also described.

The Method Component does not contain complete access information and descriptive details for each
method. Instead, the information is optimized for size and therefore limited to that required to execute
each method without performing verification. Complete details regarding the methods defined in this
package are included in the Descriptor Component (6.14 Descriptor Component). Among other
information, the Descriptor Component contains the location and number of bytecodes for each
method in the Method Component. This information can be used to parse the methods in the Method
Component.

Instructions and exception handler catch types in the Method Component reference entries in the
Constant Pool Component (6.8 Constant Pool Component). No other CAP file components, including the
Method Component, are referenced by the elements in the Method Component.

The Applet Component (6.6 Applet Component), Constant Pool Component (6.8 Constant Pool
Component), Class Component (6.9 Class Component), Export Component (6.13 Export Component),
Descriptor Component (6.14 Descriptor Component), and Debug Component (6.15 Debug Component)
reference methods defined in the Method Component. The Reference Location Component (6.12
Reference Location Component) references all constant pool indices contained in the Method
Component. No other CAP file components reference the Method Component.

The Method Component is represented by one of the following structures based on Compact or
Extended format of the CAP file:

method component compact {
ul tag
u2 size
ul handler count
exception handler info exception handlers[handler count]
method info methods[]

}

method component extended { (since CAP format 2.3)

Java Card Platform Virtual Machine Specification, v3.2 Page 116

ul tag

ud size

ul method component block count

u4 method component block offsets[method component block count]
method component block blocks[method component block count]

}

The items in these structures are as follows:

tag

The tag item has the value COMPONENT Method (7).
size

The size item indicates the number of bytes in the method component structure, excluding the
tag and size items. The value of the size item must be greater than zero.

method component block count

Themethod component block count iteminmethod component extended structure
indicates the number of method component block entriesin the blocks array. The value of
method component block count item mustbe between0and 127, inclusive.

method component block offsets

Themethod component block offsets[] itemofthemethod component extended
structure represents an array of offsets into the info item of the method component for each

method component block. The number of entries in this array must be the same as the value of
method component block count.

blocks|[]

Theblocks[] item of the method component extended structure represents an array of
method component block items. The number of entries in this array must be the same as the

value of method component block count.

6.10.1 method_component_block

Amethod component extended may contain between1and 127 method component block
items. Each block can have a maximum size of 65535 bytes. A block must contain all the information
needed to execute any method contained in that block. This means that every single method info
structure and all its corresponding exception handlers must be contained in one

method component block. If adding a method to amethod component block would exceed
the maximum size for the block, the CAP file Converter tool must create a new

method component block and add this method and all its corresponding exception handlers to
that new block.

Java Card Platform Virtual Machine Specification, v3.2 Page 117

Themethod component block structure is defined as follows:

method component block { (since CAP format 2.3)
ul handler count
exception handler info exception handlers[handler count]
method info methods[]

}

handler count

The handler count item represents the number of entries in the exception handlers array.
Valid values are between 0 and 255, inclusive.

exception handlers[]

The exception handlers item represents an array of 8-byte exception handler info
structures. Each exception handler info structure represents a catch or finally block defined in
a method of this CAP file.

Entries inthe exception handlers array are sorted in ascending order by the offset to the handler
of the exception handler. Smaller offset values occur first in the array. This ordering constraint ensures
that the first match found when searching for an exception handler is the correct match.

There are two consequences of this ordering constraint. First, a handler that is nested with the active
range (try block) of another handler occurs first in the array. Second, when multiple handlers are
associated with the same active range, they are ordered as they occur in a method. This is consistent
with the ordering constraints defined for Java class files. An example is shown in 6.10.2 Exception
Handler Example.

6.10.2 Exception Handler Example

The methods item represents a table of variable-length method info structures. Each entry
represents a method declared in a class of this package. <c1init> methods and interface method
declaration are not included; all other methods, including non-interface abstract methods, are.

try {

try

].»-c.:atch (NullPointerException e) { // first
} catc'h. (Exception e) { // second
} fin;iiy { // third

Java Card Platform Virtual Machine Specification, v3.2 Page 118

}
try
} catch (SecurityException e) { // fourth

}
methods []

6.10.3 exception_handler_info
The exception handler info structureis defined as follows:

exception handler info {
uZ2 start offset
u2 bitfield ({
bit[1l] stop bit
bit[15] active length

}
u2 handler offset
uZ2 catch type index

}
The items in the exception handler info structure are as follows:
start offset, active length

The start offsetandactive length pairindicate the active range (try block) in an exception
handler. The start offset item indicates the beginning of the active range while the
active length item indicates the number of bytes contained in the active range.

end offsetisdefinedas start offset plusactive length.

Inmethod component compact structure, the start offsetitemandend offset are byte
offsets into the info item of the Method Component

Inmethod component extended structure, the start offsetitemandend offset are
byte offsets into the method component block containing this exception handler info
structure in the Method Component.

The value of the start offset must be avalid offset into a bytecodes array ofamethod info
structure to an opcode of an instruction. The value of the end offset either must be a valid offset
into a bytecodes array of the same method info structure to an opcode of an instruction, or must
be equal to the method’s bytecode count, the length of the bytecodes array of the method info
structure. The value of the start offset must be less than the value of the end offset.

Java Card Platform Virtual Machine Specification, v3.2 Page 119

The start offsetisinclusive and the end offset is exclusive; that is, the exception handler must
be active while the execution address is within the interval (start offset, end offset).

stop_bit

The stop bit item indicates whether the active range (try block) of this exception handler is
contained within or is equal to the active range of any succeeding exception handler info
structures in this exception handlers array. At the Java source level, this indicates whether an
active range is nested within another, or has at least one succeeding exception handler associated with
the same range. The latter occurs when there is at least one succeeding catch block or a finally block.

The stop bit itemis equal to 1 if the active range does not intersect with a succeeding exception
handler’s active range, and this exception handler is the last handler applicable to the active range. It is
equal to 0 if the active range is contained within the active range of another exception handler, or there
is at least one succeeding handler applicable to the same active range.

The stop bit provides an optimization to be used during the interpretation of the athrow bytecode.
As the interpreter searches for an appropriate exception handler, it may terminate the search of the
exception handlers in this Method Component under the following conditions:

e the location of the current program counter is less than the end offset of this exception
handler, and

e the stop bit of this exception handleris equal to 1.

When these conditions are satisfied it is guaranteed that none of the succeeding exception handlers in
this Method Component will contain an active range appropriate for the current exception.

In 6.10.2 Exception Handler Example6.10.2 , the stop bit item is set for both the third and fourth
handlers.

handler offset
The handler offset indicates the start of the exception handler.

Inmethod component compact,thehandler offset item represents a byte offset into the
info item of the Method Component.

Inmethod component extended, thehandler offset item represents a byte offset into
themethod component block containing thisexception handler info structurein the
Method Component.

At the Java source level, this is equivalent to the beginning of a catch or finally block. The value of the
item must be a valid offset into a bytecodes array of amethod info structure to an opcode of an
instruction, and must be less than the value of the method’s bytecode count.

catch type index

Java Card Platform Virtual Machine Specification, v3.2 Page 120

If the value of the catch type index item is non-zero, it must be a valid index into the
constant pool[] array of the Constant Pool Component (6.8 Constant Pool Component). The
constant pool[] entry atthatindex must bea CONSTANT Classref info structure,
representing the class of the exception caught by this exception handlers array entry.

If the exception handlers table entry represents a finally block, the value of the
catch type indexitemis zero. In this case the exception handler is called for all exceptions that
are thrown within the start offset and end offset range.

The order of constants in the constant pool is constrained such that all entries referenced by
catch type index items that represent catch block (not finally blocks) are located at non-zero
entries.

6.10.4 method_info
Themethod info structure is defined as follows:

method info {
method header info method header
ul bytecodes]|]

}
The items in themethod info structure are as follows:
method header

Themethod header item represents eitheramethod header info oran

extended method header info structure:

method header info {

ul bitfield {
bit[4] flags
bit[4] max stack

}

ul bitfield {
bit[4] nargs
bit[4] max locals

}

extended method header info {

ul bitfield {
bit[4] flags
bit[4] padding

}

ul max stack

ul nargs

ul max locals

Java Card Platform Virtual Machine Specification, v3.2 Page 121

}

The items of the method header infoand extended method header info structuresare
as follows:

flags

The flags item is a mask of modifiers defined for this method. Valid flag values are shown in the
following table.

Table 6-12: CAP File Method Flags

Flags Values

ACC EXTENDED 0x8
ACC ABSTRACT Ox4

The value of the ACC_EXTENDED flag must be one if the method header is represented by an
extended method header info structure. Otherwise the value must be zero.

The value of the ACC_ABSTRACT flag must be one if this method is defined as abstract. In this case the
bytecodes array must be empty. If this method is not abstract the value of the ACC_ABSTRACT flag
must be zero.

All other flag values are reserved. Their values must be zero.
padding

The padding item has the value of zero. This item is only defined for the
extended method header info structure.

max stack

Themax stack item indicates the maximum number of words required on the operand stack during
execution of this method.

Stack entries of type int are represented in two words, while all others are represented in one word.
See 3.2 Words

nargs

The nargs item indicates the number of words required to represent the parameters passed to this
method, including the this pointer if this method is a virtual method.

Parameters of type int are represented in two words, while all others are represented in one word.
See 3.2 Words.

max locals

Java Card Platform Virtual Machine Specification, v3.2 Page 122

Themax locals item indicates the number of words required to represent the local variables
declared by this method, not including the parameters passed to this method on invocation.®

Local variables of type int are represented in two words, while all others are represented in one word
(3.2 Words). If an entry in the local variables array of the stack frame is reused to store more than one
local variable (for example, local variables from separate scopes), the number of words required for
storage is two if one or more of the local variables is of type int.

bytecodes]

The bytecodes item represents an array of Java Card bytecodes that implement this method. Valid
instructions are defined in Chapter 7, Java Card Virtual Machine Instruction Set. The impdep1 and
impdep?2 bytecodes cannot be present in the bytecodes array item.

If this method is abstract the bytecodes item must contain zero elements.

6.11 Static Field Component

The Static Field Component contains all of the information required to create and initialize an image of
all of the static fields defined in this CAP file, referred to as the static field image. Offsets to particular
static fields are offsets into the static field image, not the Static Field Component.

Final static fields of primitive types are not represented in the static field image. Instead these compile-
time constants must be placed in line in Java Card technology-based instructions (“Java Card
instructions”).

The Static Field Component includes all information required to initialize classes. In the Java virtual
machine a class is initialized by executing its <c1init> method. In the Java Card virtual machine the
functionality of <c1linit> methods is represented in the Static Field Component as array initialization
data and non-default values of primitive types data. 2.2.4.6 Limitations of Class Initialization contains a
description of the subset of <c1init> functionality supported in the Java Card virtual machine.

The Static Field Component does not reference any other component in this CAP file. The Constant Pool
Component (6.8 Constant Pool Component), Export Component (6.13 Export Component), Descriptor
Component (6.14 Descriptor Component), and Debug Component (6.15 Debug Component) reference
fields in the static field image defined by the Static Field Component.

The ordering constraints, or segments, associated with a static field image are shown in Table 6-13.
Reference types occur first in the image. Arrays initialized through Java <c1init> methods occur first
within the set of reference types. Primitive types occur last in the image, and primitive types initialized
to non-default values occur last within the set of primitive types.

10 Unlike in Java Card CAP files, in Java class files the max_locals item includes both the local variables declared by
the method and the parameters passed to the method.

Java Card Platform Virtual Machine Specification, v3.2 Page 123

Table 6-13: Segments of a Static Field Image

Category Segment | Content

reference types |1 arrays of primitive types initialized by <c1init> methods
reference types | 2 reference types initialized to nu11, including arrays
primitive types | 3 primitive types initialized to default values

primitive types |4 primitive types initialized to non-default values

The number of bytes used to represent each field type in the static field image is shown in the following
table.

Table 6-14: Static Field Sizes

 Type Bytes
Boolean 1
Byte 1
Short 2

Int 4
reference, including arrays 2

The static field component structure is defined as:

static field component {
ul tag
u2 size
u2 image size
u2 reference count
u2 array init count
array init info array init[array init count]
u2 default value count
u2 non _default value count
ul non default values[non default values count]

}

Theitemsinthe static field component structure are as follows:
tag

The tag item has the value COMPONENT StaticField (8).

size

The size item indicates the number of bytesinthe static field component structure,
excluding the tag and size items. The value of the size item must be greater than zero.

image size

Java Card Platform Virtual Machine Specification, v3.2 Page 124

The image size item indicates the number of bytes required to represent the static fields defined in
this CAP file, excluding final static fields of primitive types. This value is the number of bytes in the static
field image. The number of bytes required to represent each field type is shown in Table 6-14.

The value of the image size item does not include the number of bytes required to represent the
initial values of array instances enumerated in the Static Field Component.

The value of the image size is defined as:

image size =

reference count * 2 +
default value count +
non default value count.

reference count

The reference count item indicates the number of reference type static fields defined in this CAP
file. This is the number of fields represented in segments 1 and 2 of the static field image as described in
Table 6-13.

The value of the reference count item may be 0 if no reference type fields are defined in this CAP
file. Otherwise it must be equal to the number of reference type fields defined.

array init count

The array init count item indicates the number of elementsinthe array init array. Thisis
the number of fields represented in segment 1 of the static field image as described in Table 6-13. It
represents the number of arrays initialized in all of the <c1init> methods in this CAP file.

If this CAP file defines a library package the value of array init count must be zero.
array init[]

The array init itemrepresentsanarrayof array init info structures that specify the initial
array values of static fields of arrays of primitive types. These initial values are indicated in Java
<clinit> methods. The array init info structure is defined as:

array init info {
ul type
u2 count
ul values[count]

}
Theitemsinthe array init info structure are defined as follows:
type

The type item indicates the type of the primitive array. Valid values are shown in the following table.

Java Card Platform Virtual Machine Specification, v3.2 Page 125

Table 6-15: Array Types

Type Value

Boolean 2
Byte 3
short 4
int 5
count

The count item indicates the number of bytes in the values array. It does not represent the number of
elements in the static field array (referred to as length in the Java programming language), since the
values array is an array of bytes and the static field array may be a non-byte type. The Java programming
language length of the static field array is equal to the count item divided by the number of bytes
required to represent the static field type (Table 6-14) indicated by the type item.

values

The values item represents a byte array containing the initial values of the static field array. The
number of entries in the values array is equal to the size in bytes of the type indicated by the type item.
The size in bytes of each type is shown in Table 6-14.

default value count

The default value count item indicates the number of bytes required to initialize the set of static
fields represented in segment 3 of the static field image as described in Table 6-13. These static fields
are primitive types initialized to default values. The number of bytes required to initialize each static
field type is equal to the size in bytes of the type as shown in Table 6-14.

non default value count

Thenon default value count item represents the number bytesin the

non default values array. This value is equal to the number of bytes in segment 4 of the static
field image as described in Table 6-13. These static fields are primitive types initialized to non-default
values.

non _default values[]

Thenon default values item represents an array of bytes of non-default initial values. This is the
exact image of segment 4 of the static field image as described in Table 6-13. The number of entries in
thenon default values array for each static field type is equal to the size in bytes of the type as
shown in Table 6-14.

The value of a boolean type is 1 to represent true and 0 to represent false.

Java Card Platform Virtual Machine Specification, v3.2 Page 126

6.12 Reference Location Component

The Reference Location Component represents lists of offsets into the info item of the Method
Component (6.10 Method Component) to items that contain indices into the constant pool[]
array of the Constant Pool Component (6.8 Constant Pool Component). This includes all constant pool
index operands of instructions, and all non-zero catch type index items of the

exception handlers array. The catch type index items that have the value of 0 are not
included since they represent finally blocks instead of particular exception classes.

Some of the constant pool indices are represented in one-byte values while others are represented in
two-byte values. Operands of get field Tandputfield T instructions are one-byte constant pool
indices. All other indices in a Method Component are two-byte values.

The Reference Location Component is not referenced by any other component in this CAP file.

The Reference Location Component structure is defined as one of the following structures based on
Compact or Extended format of the CAP file:

reference location component compact ({
ul tag
u2 size
u2 byte index count
ul offsets to byte indices[byte index count]
uZ2 byte2 index count
ul offsets to byte2 indices[byteZ index count]

reference location component extended { (since CAP format 2.3)
ul tag
ud size
ul reference location component block count
reference location component block blocks[]

The items of the reference location component structure are as follows:

tag
The tag item has the value COMPONENT ReferenceLocation (9).

size

Java Card Platform Virtual Machine Specification, v3.2 Page 127

The size item indicates the number of bytes in the reference location component structure,

excluding the tag and size items. The value of the size item must be greater than zero.
reference location component block count

The reference location component block count itemin

reference location component extended structure indicates the number of
reference location component block entriesinthe blocks array. The value of
reference location component block count item must be equalto the
method component block count itemin Method Component.

blocks|[]

Theblocks[] item ofthe reference location component extended structure represents
anarray of reference location component block items. The number of entries in this
array must be the same as the value of reference location component block count.

6.12.1 reference_location_component_block

Areference location component extended may contain between 1and 127
reference location component block items. Each block can have a maximum size of 65535
bytes. Each block corresponds to method component block itemsinthe blocks array in the
Method Component i.e. offsetsina reference location component block atindex i inthe
blocks array in the Reference Location Component must be for the method component block
item in the blocks array at the same index i in the Method Component.

The reference_location_component_block structure is defined as follows:

reference location component block {
uZ2 byte index count
ul offsets to byte indices[byte index count]
u2 byte2 index count
ul offsets to byte2 indices[byte2 index count]
}

byte index count

Thebyte index count item represents the number of elements in the
offsets to byte indices array.

offsets to byte indices](]

Inreference location component compact structure, the offsets to byte indices
item represents an array of 1-byte jump offsets into the info item of the Method Component to each
1-byte constant pool[] array index.

Java Card Platform Virtual Machine Specification, v3.2 Page 128

Inreference location component blockin

reference location component compact structure, the offsets to byte indices
item represents an array of 1-byte jump offsets into the corresponding method component block
in the Method Component’s blocks array to each 1-byte constant pool[] array index.

Each entry represents the number of bytes (or distance) between the current index to the next. If the
distance is greater than or equal to 255 then there are n entries equal to 255 in the array, where n is
equal to the distance divided by 255. The nth entry of 255 is followed by an entry containing the value of
the distance modulo 255.

An example of the jump offsetsinan of fsets to byte indices array is shown in the following
table.

Table 6-16: One-byte Reference Location Example

Instruction \ Offset to Operand Jump Offset \
getfield a 0 10 10

putfield b 2 65 55

getfield s 1 580 255, 255, 5
putfield a 0 835 255, 0

getfield i 3 843 8

All 1-byte constant pool[] array indices in the Method Component must be represented in
offsets to byte indices array.

byte2 index count

Thebyte2 index count item represents the number of elements in the
offsets to byte2 indices array.

offsets to byte2 indices[]

Inreference location component compact structure,the
offsets to byte2 indices item represents an array of 1-byte jump offsets into the info item
of the Method Component to each 2-byte constant pool[] array index.

Inreference location component blockin

reference location component compact structure,the offsets to byte2 indices
item represents an array of 1-byte jump offsets into the corresponding method component block
in the Method Component’s blocks array to each 2-byte constant pool[] array index.

Each entry represents the number of bytes (or distance) between the current index to the next. If the
distance is greater than or equal to 255 then there are n entries equal to 255 in the array, where n is
equal to the distance divided by 255. The nth entry of 255 is followed by an entry containing the value of
the distance modulo 255.

Java Card Platform Virtual Machine Specification, v3.2 Page 129

An example of the jump offsetsinan of fsets to byte indices arrayis shown in Table 6-16. The
same example applies to the of fsets to byte2 indices array if the instructions are changed to
those with 2-byte constant pool[] array indices.

All 2-byte constant pool[] array indices in the Method Component must be represented in
offsets to byte2 indices array, including those represented in catch type indexitems

of the exception handler info array.

6.13 Export Component

The Export Component lists all static elements in this CAP file that may be imported by classes in other
packages. Instance fields and virtual methods are not represented in the Export Component. For
Extended format of CAP files, a CAP file may contain private packages. Export component must not
contain any information from these packages. Packages in the Extended format CAP files must be in the
same order as they are in the Header Component (6.4 Header Component).

For package represented by Compact format CAP, if the CAP file contains the export component, the
package is considered a public package.

For public packages that include applets, the Export Component includes entries only for all public
interfaces that are shareable.! For public packages that do not include any applets, the Export
Component contains an entry for each public class and public interface. Furthermore, for each public
class there is an entry for each public or protected static field defined in that class, for each public or
protected static method defined in that class, and for each public or protected constructor defined in
that class. Final static fields of primitive types (compile-time constants) are not included.

An interface is shareable if and only if it is the javacard. framework.Shareable interface or
implements (directly or indirectly) that interface.

Elements in the Export Component reference elements in the Class Component (6.9 Class Component),
Method Component (6.10 Method Component), and Static Field Component (6.11 Static Field
Component). No other component in this CAP file references the Export Component.

The Export Component is represented by one of the following structures based on Compact or Extended
format of the CAP file:

export component compact {
ul tag
u2 size
ul class count
class export info {
uZ2 class offset

11 The restriction on shareable functionality is imposed by the firewall as defined in the Runtime
Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 130

ul static field count

ul static method count

u2 static field offsets[static field count]

u2 static method offsets[static method count]
} class_exports[class count]

export component extended { (since CAP format 2.3)
ul tag
uz2 size
ul package count
package export info{
ul class count
class export info {
u2 class offset
ul static field count
ul static method count
u2 static field offsets[static field count]
method block info static methods[static method count]
} class exports[class count]
}package exports[package count]

}

The items of these structures are as follows:

tag

The tag item has the value COMPONENT Export (10).
size

The size item indicates the number of bytes in the export component structure, excluding the
tag and size items. The value of the size item must be greater than zero.

package count

The package countiteminexport component extended structure representsthe number of
entries in the package exports table. The value of the package count item must be greater
than 0.

package exports(]

The package exportsiteminexport component extended structure represents a variable-
length table of package export info structures for all public packages in this CAP file.

Java Card Platform Virtual Machine Specification, v3.2 Page 131

The items in package export info structure are:

class_count

The class count itemin package export info structure andin
export component compact structure represents the number of entries in the
class_exports table. The value of the class count item must be greater than zero.

class exports[]

The class exports item represents a variable-length table of class export info structures.
For library CAP files, the table contains an entry for each of the public classes and public interfaces
defined in this CAP file. For application CAP files, the table contains an entry for each of the public
shareable interfaces defined in this CAP file.

An index into the table to a particular class or interface is equal to the token value of that class or
interface (4.3.7.2 Classes and Interfaces). The token value is published in the Export file (5.7 Classes and
Interfaces) of the package containing the class.

The items inthe class export info structure are:

class offset

The class offset item represents a byte offset into the info item of the Class Component (6.9 Class
Component). For library CAP files, the item at that offset must be either an interface infoora
class_info structure. The interface infoorclass info structure at that offset must
represent the exported class or interface.

For application CAP files, the item at the class offset inthe info item of the Class Component
must be an interface info structure. The interface info structure at that offset must
represent the exported, shareable interface. In particular, the ACC SHAREABLE flag of the
interface info structure must be equal to 1.

static field count

The static field count item represents the number of elements in the
static field offsets array. This value indicates the number of public and protected static fields
defined in this class, excluding final static fields of primitive types.

Ifthe class offset itemrepresents an offset to an interface info structure, the value of the
static field count item must be zero.

static_method count

Java Card Platform Virtual Machine Specification, v3.2 Page 132

The static method count item represents the number of elements in the
static_method offsets array. This value indicates the number of public and protected static
methods and constructors defined in this class.

Ifthe class offset item represents an offsetto an interface info structure, the value of the

static _method count item must be zero.
static field offsets][]

The static field offsets item represents an array of 2-byte offsets into the static field image
defined by the Static Field Component (6.11 Static Field Component). Each offset must be to the
beginning of the representation of the exported static field.

Anindexintothe static field offsets array must be equal to the token value of the field
represented by that entry. The token value is published in the Export file (5.9 Methods) of this
package.

static method offsets/(]

The static method offsets item represents atable of 2-byte offsets into the info item of the
Method Component (6.10 Method Component). Each offset must be to the beginning of a

method info structure. The method info structure must represent the exported static method or
constructor.

Anindex into the static method offsets array must be equal to the token value of the method
represented by that entry.

static methods []

The static methods itemisanarray of method block info(6.9.2.4method block info)
structures. Themethod info structure pointed to by the method block info structure must
represent the exported static method or constructor.

Anindex into the static methods array must be equal to the token value of the method
represented by that entry.

6.14 Descriptor Component

The Descriptor Component provides sufficient information to parse and verify all elements of the CAP
file. It references, and therefore describes, elements in the Constant Pool Component (6.8 Constant Pool
Component), Class Component (6.9 Class Component), Method Component (6.10 Method Component),
and Static Field Component (6.11 Static Field Component). No components in the CAP file reference the
Descriptor Component.

Descriptor component in the Extended format contains information about all public and private
packages contained in the CAP. Public packages in the CAP file must be described first and must be in

Java Card Platform Virtual Machine Specification, v3.2 Page 133

the same order as they are in the Header Component (6.4 Header Component) followed by private
packages.

The Descriptor Component is represented by one of the following structures based on Compact or
Extended format of the CAP file:

descriptor component compact {
ul tag
uz2 size
ul class count
class descriptor info compact classes[class count] (since CAP
format 2.3)
type descriptor info types
}

descriptor component extended { (since CAP format 2.3)
ul tag
ud size
ul package count
package descriptor info packages|[package count]
type descriptor info types

The items of these structures are as follows:

The items of the descriptor component structure are as follows:
tag

The tag item has the value COMPONENT Descriptor (11).

size

The size item indicates the number of bytes in the descriptor component structure, excluding
the tag and size items. The value of the size item must be greater than zero.

package count

The package countitemindescriptor component extended structure representsthe
number of entries in the packages table.

packages|[]

The packages item represents a table of variable-length package descriptor info
structures. Each package defined in this CAP file is represented in the table.

Java Card Platform Virtual Machine Specification, v3.2 Page 134

6.14.1 package_descriptor_info
The package descriptor info structure describes a package defined in this CAP file.

package descriptor info { (since CAP format 2.3)
ul class count
class descriptor info extended classes[class count]

}
The items of these structures are as follows:
class count

The class_count item represents the number of entries in the classes table in

descriptor component compact and package descriptor info structures.
classes|[]

The classes item represents a table of variable-length class descriptor info compact
table in descriptor component compact structures or

class _descriptor info extended inpackage descriptor info structure. Each class
and interface defined in this package is represented in the table.

types

The types item represents a type descriptor info structure. This structure lists the set of field
types and method signatures of the fields and methods defined or referenced in this CAP file. Those
referenced are enumerated in the Constant Pool Component.

6.14.2 class_descriptor_info_compact and class_descriptor_info_extended
The class descriptor info compactandclass descriptor info extended
structures are used to describe a class or interface defined in this package:

class descriptor info compact { (since CAP format 2.3)
ul token
ul access flags
class ref this class ref
ul interface count
u2 field count
u2 method count
class ref interfaces [interface count]
field descriptor info fields[field count]
method descriptor info compact methods[method count]

}

class descriptor info extended { (since CAP format 2.3)
ul token
ul access flags

Java Card Platform Virtual Machine Specification, v3.2 Page 135

class ref this class ref

ul interface count

u2 field count

u2 method count

class ref interfaces [interface count]

field descriptor info fields[field count]

method descriptor info extended methods[method count]

The items of these structures are as follows:
token

The token item represents the class token (4.3.7.2 Classes and Interfaces) of this class or interface. If
this class or interface is package-visible it does not have a token assigned. In this case the value of the
token item must be 0xFF.

access_flags

The access_ flags item is a mask of modifiers used to describe the access permission to and
properties of this class or interface. The access flags modifiers for classes and interfaces are shown
in the following table.

Table 6-17: CAP File Class Descriptor Flags

Name Value \
ACC PUBLIC 0x01
ACC FINAL 0x10
ACC INTERFACE 0x40
ACC ABSTRACT 0x80

The class access and modifier flags defined in the table above are a subset of those defined for classes
and interfaces in a Java class file. They have the same meaning, and are set under the same conditions,
as the corresponding flags in a Java class file.

All other flag values are reserved. Their values must be zero.
this class ref

The this class refitemisaclass_ref structure indicating the location of the class info
structure in the Class Component (6.9 Class Component). The class_ref structure is defined as
part of the CONSTANT Classref info structure (6.8.1 CONSTANT_Classref).

interface count

Java Card Platform Virtual Machine Specification, v3.2 Page 136

The interface count item represents the number of entries in the interfaces array. For an
interface, interface count is always set to zero.

field count

The field count item represents the number of entries in the fields array. If this
class descriptor info structure represents an interface, the value of the field count item
is equal to zero.

Static final fields of primitive types are not represented as fields in a CAP file, but instead these compile-
time constants are placed inline in bytecode sequences. The field count item does not include
static final field of primitive types defined by this class.

method count

The method count item represents the number of entries in the methods array.

interfaces]

The interfaces item represents an array of interfaces implemented by this class. The elements in
the array are class ref structures indicating the location of the interface info structurein the
Class Component (6.9 Class Component). The class_ref structure is defined as part of the
CONSTANT Classref info structure (6.8.1 CONSTANT_Classref).

fields/[]

The fields item represents an array of field descriptor info structures. Each field declared
by this class is represented in the array, except static final fields of primitive types. Inherited fields are
not included in the array.

methods []

The methods item represents an array of method descriptor info structures. Each method
declared or defined by this class or interface is represented in the array. For a class, inherited methods
are not included in the array. For an interface, inherited methods are included in the array.

6.14.3 field_descriptor_info
The field descriptor info structure is used to describe a field defined in this package:

field descriptor info {
ul token
ul access flags
union {
static field ref static field
{
class ref class
ul token

Java Card Platform Virtual Machine Specification, v3.2 Page 137

} instance field
} field ref
union {
u2 primitive type
u2 reference type
} type
}

The items of the field descriptor info structure are as follows:

token

The token item represents the token of this field. If this field is private or package-visible static field it
does not have a token assigned. In this case the value of the token item must be 0xFF.

access_flags

The access_ flags item is a mask of modifiers used to describe the access permission to and
properties of this field. The access flags modifiers for fields are shown in the following table.

Table 6-18: CAP File Field Descriptor Flags

Name Value

ACC PUBLIC 0x01
ACC PRIVATE 0x02
ACC PROTECTED 0x04
ACC STATIC 0x08
ACC FINAL 0x10

The field access and modifier flags defined in the table above are a subset of those defined for fields in a
Java class file. They have the same meaning, and are set under the same conditions, as the
corresponding flags in a Java class file.

All other flag values are reserved. Their values must be zero.

field ref

The field ref item represents a reference to this field. If the ACC_STATIC flag is equal to 1, this
item representsa static field ref asdefinedinthe CONSTANT StaticFieldref structure
(6.8.3 CONSTANT _StaticFieldref and CONSTANT _StaticMethodref).

If the ACC_STATIC flagis equal to 0, this item represents a reference to an instance field. It contains a
class_ ref item and an instance field token item. These items are defined in the same manner as in
the CONSTANT InstanceFieldref structure (6.8.2 CONSTANT InstanceFieldref,

CONSTANT _VirtualMethodref, CONSTANT_SuperMethodref).

Java Card Platform Virtual Machine Specification, v3.2 Page 138

type

The type item indicates the type of this field, directly or indirectly. If this field is a primitive type
(boolean, byte, short, or int) the high bit of this item is equal to 1, otherwise the high bit of
this item is equal to 0.

primitive type

Theprimitive type item represents the type of this field using the values in the table below. As
noted above, the high bit of the primitive typeitemisequalto 1.

Table 6-19: Primitive Type Descriptor Values

Data Type Value \
Boolean 0x0002
Byte 0x0003
Short 0x0004
Int 0x0005

reference type

The reference type item represents a 15-bit offset into the type descriptor info
structure. The item at the offset must represent the reference type of this field. As noted above, the
high bit of the reference type itemisequal to 0.

6.14.4 method_descriptor_info_compact and method_descriptor_info_extended

Themethod descriptor info compactandmethod descriptor info extended
structures are used to describe a method defined in this CAP file. This structure contains sufficient
information to locate and parse the methods in the Method Component, while the Method Component
does not.

method descriptor info compact {
ul token
ul access flags
u2 method offset
u2 type offset
u2 bytecode count
u2 exception handler count
u2 exception handler index

Java Card Platform Virtual Machine Specification, v3.2 Page 139

method descriptor info extended { (since CAP format 2.3)
ul token
ul access flags
ul method component block index
u2 method offset
uZ2 type offset
uZ2 bytecode count
u2 exception handler count
u2 exception handler index

}

The items of these structure are as follows:

The items of the method descriptor info structure are as follows:
token

The token item represents the static method token (4.3.7.4 Static Methods and Constructors) or virtual
method token (4.3.7.6 Virtual Methods) or interface method token (4.3.7.7 Interface Methods) of this
method. If this method is a private or package-visible static method, a private or package-visible
constructor, or a private virtual method it does not have a token assigned. In this case the value of the
token item must be OxFF.

access_flags

The access flags item is a mask of modifiers used to describe the access permission to and
properties of this method. The access flags modifiers for methods are shown in the following
table.

Table 6-20: CAP File Method Descriptor Flags

Name Value
ACC PUBLIC 0x01
ACC PRIVATE 0x02
ACC PROTECTED 0x04
ACC STATIC 0x08
ACC FINAL 0x10
ACC ABSTRACT 0x40
ACC INIT 0x80

The method access and modifier flags defined in the table above, except the ACC_INIT flag, are a
subset of those defined for methods in a Java classfile. They have the same meaning, and are set under
the same conditions, as the corresponding flags in a Java class file.

The ACC_INIT flag is set if the method descriptor identifies a constructor method. In Java a
constructor method is recognized by its name, <init>, but in Java Card systems, the name is replaced

Java Card Platform Virtual Machine Specification, v3.2 Page 140

by a token. As in the Java verifier, these methods require special checks by the verifier for the Java Card
platform (“Java Card verifier”).

All other flag values are reserved. Their values must be zero.
method component block index

Themethod component block indexiteminmethod descriptor info extended,
represents the index into the blocks array of Method Component (6.10 Method Component). The
method component block at thatindex contains the referenced method. If the

class descriptor info structure that contains thismethod component block index
structure represents an interface, the value of the method component block index item must
be zero.

method offset

For descriptor component compact,iftheclass descriptor info structure that
contains thismethod descriptor info structure represents a class, themethod offset item
represents a byte offset into the info item of the Method Component (6.10 Method Component). The
element at that offset must be the beginning ofa method info structure. Themethod info
structure must represent this method.

Fordescriptor component extended, Iftheclass descriptor info structure that
contains thismethod descriptor info structure represents a classthe method offset item
represents a byte offset into the method component block inthe blocks array of Method
Component (6.10 Method Component) at index represented by

method component block index.The element at that offset must be the beginning of a
method info structure. The method info structure must represent this method.

Ifthe class descriptor info compact or class descriptor info extended
structure that contains thismethod descriptor info compact or

method descriptor info extended structure represents an interface, the value of the
method offset item must be zero.

type offset

The type offset item must be a valid offset into the type descriptor info structure. The
type described at that offset represents the signature of this method.

bytecode count

Thebytecode count item represents the number of bytecodes in this method. The value is equal to
the length of the bytecodes array item in the method info structure in the method component (6.10
Method Component) of this method.

exception handler count

Java Card Platform Virtual Machine Specification, v3.2 Page 141

The exception handler count item represents the number of exception handlers implemented
by this method.

exception handler index

Fordescriptor component compact,the exception handler index item representsthe
index to the first exception handlers table entry in the method component (6.10 Method
Component) implemented by this method. Succeeding exception handlers table entries, up to
the value of the exception handler count item, are also exception handlers implemented by
this method.

Fordescriptor component extended,the exception handler index item represents
the index to the first exception handlers table entry inthe method component block at
indexmethod component block indexintheblocks arrayin method component (6.10
Method Component) implemented by this method. Succeeding exception handlers table
entries, up to the value of the exception handler count item, are also exception handlers
implemented by this method.

The value of the exception handler index itemis 0 if the value of the

exception handler count itemisO.

6.14.5 type_descriptor_info
The type descriptor info structure represents the types of fields and signatures of methods
defined in this package:

type descriptor info {
u2 constant pool count
u2 constant pool types[constant pool count]
type descriptor type desc[]

}

The type descriptor info structure contains the following elements:
constant pool count

The constant pool count item represents the number of entries in the
constant pool types array. This value is equal to the number of entries in the constant pool
array of the Constant Pool Component (6.8 Constant Pool Component).

constant pool types|[]

The constant pool types itemisan array that describes the types of the fields and methods
referenced in the Constant Pool Component. This item has the same number of entries as the
constant pool[] array of the Constant Pool Component, and each entry describes the type of the
corresponding entry in the constant pool[] array.

Java Card Platform Virtual Machine Specification, v3.2 Page 142

If the corresponding constant pool [] array entry represents a class or interface reference, it does
not have an associated type. In this case the value of the entry in the constant pool types array
item is OXFFFF.

If the corresponding constant pool [] array entry represents a field or method, the value of the
entry inthe constant pool types array is an offset into the type descriptor info
structure. The element at that offset must describe the type of the field or the signature of the method.

type descl]

The type desc item represents a table of variable-length t ype descriptor structures. These
descriptors represent the types of fields and signatures of methods. For a description of the
type descriptor structure, see 6.9.1 type_descriptor.

6.15 Debug Component

This section specifies the format for the Debug Component. The Debug Component contains all the
metadata necessary for debugging packages contained in a CAP file on a suitably instrumented Java Card
virtual machine. It is not required for executing Java Card programs in a non-debug environment.

The Debug Component references the Class Component (6.9 Class Component), Method Component
(6.10 Method Component), and Static Field Component (6.11 Static Field Component). No components
reference the Debug Component.

Debug component in the Extended format contains debug information about all public and private
packages contained in the CAP. The order in which the packages are listed in the Debug Component
must be the same as the order in the extended Descriptor Component (6.14 Descriptor Component).

The Debug Component is represented by one of the following structures based on Extended or Compact
format of the CAP file:

debug component compact { (since CAP format 2.2)
ul tag
u2 size
u2 string count
utf8 info strings table[string count]
package debug info compact package

Java Card Platform Virtual Machine Specification, v3.2 Page 143

debug component extended { (since CAP format 2.3)
ul tag
ud size
u2 string count
utf8 info strings table[string count]
ul package count
package debug info extended packages[package count]

The items in these structures are defined as follows:
tag

The tag item has the value COMPONENT Debug (12).
size

The number of bytes in the component, excluding the tag and size items. The value of size must be
greater than zero.

string count
The number of stringsinthe strings table[] table.
strings table[]

A table of all the strings used in this component. Various items that occur through this component
represent unsigned two-byte indices into this table.

Each entry in the tableisa ut£8 info structure. Aut£8 info structureis represented by the
following structure:

utf8 info {

u2 length

ul bytes[length]
}

The items in the ut £8 info structure are defined as follows:
length

The number of bytes in the string.

bytes

The bytes of the string in UTF-8 format.

Java Card Platform Virtual Machine Specification, v3.2 Page 144

package count

The package count itemin debug component extended structure represents the number of
entries in the packages array. The value of the package count item must be greater than 0.

6.15.1 package_debug_info_compact and package_debug_info_extended Structures
The package_debug_info_compact and package_debug_info_extended structures contains debug
information for a single package. These structures are represented in the following formats:

package debug info compact{
u2 package name index
u2 class count
class _debug info compact classes[class_ count]

}

package debug info extended{ (since CAP format 2.3)
uZ2 package name index
uZ2 class count
class debug info extended classes[class count]

}

package name index

Contains an index into the strings table[] item.The strings table[] item entry referenced
by this index must contain the fully-qualified name of the package in this CAP file represented by this
package debug info compact orpackage debug info extended structure.

class count
The number of classes in the classes table.
classes|[]

Contains asingle class debug info compactorclass debug info extended structure
inpackage debug info compact or package debug info extended structures
respectively, for each class in this package.

6.15.2 The class_debug_info_compact and class_debug_info_extended Structures

The class debug info compactandclass debug info extended structures are for CAP
files in Compact and Extended formats respectively and contain all of the debugging information for a
class or interface. They also contain tables of debugging information for all the classes’ fields and
methods.

Java Card Platform Virtual Machine Specification, v3.2 Page 145

class _debug info compact {
u2 name index
uZ2 access flags
u2 location
u2 superclass name index
u2 source file index
ul interface count
u2 field count
uZ2 method count
u2 interface names indexes[interface count]
field debug info fields[field count]
method debug info compact methods[method count]

class debug info extended { (since CAP format 2.3)
u2 name index
uZ2 access flags
u2 location
u2 superclass name index
u2 source file index
ul interface count
u2 field count
u2 method count
u2 interface names indexes[interface count]
field debug info fields[field count]
method debug info extended methods[method count]

The items in these structures are defined as follows:
name index

Contains an index into the strings table[] item of the debug component structure. The
strings table[] entry atthe indexed location must be the fully-qualified name of this class.

access_flags

A two-byte mask of modifiers that apply to this class. The modifiers are:

Table 6-21: Class Access and Modifier Flags

Modifier Value \
ACC PUBLIC 0x0001
ACC FINAL 0x0010

Java Card Platform Virtual Machine Specification, v3.2 Page 146

Modifier Value |

ACC REMOTE 0x0020
ACC INTERFACE 0x0200
ACC ABSTRACT 0x0400
ACC SHAREABLE 0x0800

The ACC SHAREABLE flag indicates whether this class or interface is shareable.’? A class is shareable if
it implements (directly or indirectly) the javacard. framework.Shareable interface. An interface
is shareable if it is or extends (directly or indirectly) the javacard. framework.Shareable
interface.

The ACC_REMOTE flag indicates whether this class or interface is remote. The value of this flag must be
one if and only if the class or interface satisfies the requirements defined in 2.2.6.1 Remote Classes and
Remote Interfaces.

All other class access and modifier flags are defined in the same way and with the same restrictions as
described in The Java Virtual Machine Specification.

location

The byte offset of the class info orinterface info record for this class or interface into the
info item of the Class Component (6.9 Class Component).

superclass name index

Contains an index into the strings table[] item of the debug component structure. The
strings table[] entry at the indexed location must be the fully-qualified name of the superclass
of this class or the string “null” if the class has no superclass.

source file index

Contains the index into the strings table[] item of the debug component structure. The
strings table[] entry at the indexed location must be the name of the source file in which this
class is defined.

interface count
The number of indexes in the interface names indexes|[] table.
field count

The number of field debug info structuresinthe fields[] table.

12 The ACC_SHAREABLE flag is defined to enable Java Card virtual machines to implement the firewall restrictions
defined by the Runtime Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 147

method count
The number of method debug info structuresinthe methods [] table.
interface names indexes|[]

Contains the indexes into the strings table[] item of the debug_component structure. The
strings table[] entryateach indexed location must be the name of an interface implemented by
this class. There must be an index value present for every interface implemented by this class, including
interfaces implemented by superclasses of this class and superinterfaces of the implemented interfaces.

If ACC_INTERFACE isset,the strings table[] entry at each indexed location must be the name
of a super interface directly or indirectly extended by this interface. There must be an index value
present for every super interface directly or indirectly extended by this interface.

fields/[]

Contains field debug info structures for all the fields declared by this class, including static final
fields of primitive types. Inherited fields are not included in this array.

methods []

Containsmethod debug info compact ormethod debug info extended structuresin
class debug info compactorclass debug info extended structures respectively, for
all the methods declared or defined in this class. Inherited methods are not included in this array.

6.15.2.1 The field_debug_info Structure

The field debug info structure describes a field in a class. It can describe either an instance field,
a static field, or a constant (primitive final static) field. The contents union will have the form of a
token var if the field is an instance field, a location var ifitisa static field, ora const value
if it is a constant.

The field debug info structure is defined as follows:

field debug info {
uZ2 name_ index
u2 descriptor index
uZ2 access flags
union {
{
ul padl
ul pad2
ul pad3
ul token
} token var

Java Card Platform Virtual Machine Specification, v3.2 Page 148

u2 pad
u2 location
} location var
u4 const value
} contents

}
The itemsinthe field debug info structure are defined as follows:
name index

Contains an index into the strings table[] item of the debug component structure. The
strings table[] entry at the indexed location must be the simple (meaning, not fully-qualified)
name of the field (for example, “applets”).

descriptor index

Contains an index into the strings table[] item of the debug component structure. The
strings table[] entry at the indexed location must be the type of the field. Class types are fully-
qualified (for example, “[Ljavacard/framework/Applet;”).

access_flags

A two-byte mask of modifiers that apply to this field.

Table 6-22: Field Access and Modifier Flags

Modifier Value \
ACC PUBLIC 0x0001
ACC PRIVATE 0x0002
ACC PROTECTED 0x0004
ACC STATIC 0x0008
ACC FINAL 0x0010

The above field access and modifier flags are defined in the same way and with the same restrictions as
described in The Java Virtual Machine Specification.

contents

A field debug info structure can describe an instance field, a static field, or a static final field (a

constant). Constants can be either primitive data or arrays of primitive data. Depending on the kind of

field described, the contents item is interpreted in different ways. The kind and type of the field can be
determined by examining the field’s descriptor and access flags.

token var

Java Card Platform Virtual Machine Specification, v3.2 Page 149

If the field is an instance field, this value is the instance field token of the field. The padl, pad2, and
pad3 items are padding only; their values should be ignored.

location var

If the field is a non-final static field or a final static field with an array type (a constant array), this value is
the byte offset of the location for this field in the static field image defined by the Static Field
Component (6.11 Static Field Component). The pad item is padding only; its value should be ignored.

const value

If the field is a final static field of type byte, boolean, short, or int, this value is interpreted as a
signed 32-bit constant.

6.15.2.2 The method_debug_info_compact and method_debug_info_extended Structures
Themethod debug info compact and method debug info extended structures
describe a method of a class. They can describe methods that are either virtual or non-virtual (static or
initialization methods). The structures are defined as follows:

method debug info compact {
u2 name index
u2 descriptor index
u2 access flags
u2 location
ul header size
u2 body size
u2 variable count
u2 line count
variable info variable table[variable count]
line info line table[line count]

method debug info extended { (since CAP format 2.3)
u2 name index
u2 descriptor index
u2 access flags
ul method component block index
u2 location
ul header size
u2 body size
u2 variable count
u2 line count
variable info variable table[variable count]
line info line table[line count]

Java Card Platform Virtual Machine Specification, v3.2 Page 150

The items in these structures are defined as follows:
name index

Contains an index into the strings _table[] item of the debug component structure. The
strings table[] entry at the indexed location must be the simple (meaning, not fully-qualified)
name of the method (for example, “1ookupAID”).

descriptor index

Contains an index into the strings table[] item of the debug component structure. The
strings table[] entry at the indexed location must be the argument and return types of the
method (meaning, the signature without the method name). Class types are fully-qualified (for example,
“([BSB) Ljavacard/framework/AID;”)

access_flags

A two-byte mask of modifiers that apply to this method.

Table 6-23: Method Modifier Flags

Modifier Value

ACC PUBLIC 0x0001
ACC PRIVATE 0x0002
ACC PROTECTED 0x0004
ACC STATIC 0x0008
ACC FINAL 0x0010
ACC NATIVE 0x0100
ACC ABSTRACT 0x0400

The ACC_NATIVE flag is only valid for methods of a package located in the card mask. It cannot be
used for methods contained in a CAP file.

All other method access and modifier flags are defined in the same way and with the same restrictions
as described in The Java Virtual Machine Specification.

method component block index

Themethod component block indexiteminmethod debug info extended represents
the index into the blocks array of Method Component (6.10 Method Component). The

method component block at thatindex contains the referenced method. Abstract methods may
have value zero formethod component block index or have value representing the index into
the blocks array of the Method Component (6.10 Method Component) that has the corresponding
method info strucutre with ACC ABSTRACT flag set.

Java Card Platform Virtual Machine Specification, v3.2 Page 151

Abstract methods may have zero as value for method_component_block_index or have a value
corresponding to the method component block containing the method info structure with
ACC_ABSTRACT flag set.

location

Inmethod debug info compact, location is a byte offset of the method info structure for
this method into the info item of the Method Component (6.10 Method Component).

Inmethod debug info extended, locationis a byte offset into the

method component block inthe blocks array of Method Component (6.10 Method Component)
at index represented by method component block index.Themethod info structure at
of fset must represent the referenced method.

Abstract methods may have a location of zero or have a valid offset to the corresponding
method info strucutre with ACC_ABSTRACT flag set.

header size
The size in bytes of the header of the method. Abstract methods have a header size of zero.
body size

The size in bytes of the body of the method, not including the method header. Abstract methods have a
body size of zero.

variable count

The number of variable info entriesinthe variable table[] item. Abstract methods have a

variable count of zero.
line count

The number of 1ine info entriesinthe 1ine table[] item. Abstract methods have a

line count of zero.
variable tablel[]
Contains the variable info structures for all variables in this method.

The variable info structure describes asingle local variable of a method. It indicates the index into
the local variables of the current frame at which the local variable can be found, as well as the name and
type of the variable. It also indicates the range of bytecodes within which the variable has a value.

variable info {
ul index
u2 name index
u2 descriptor index

Java Card Platform Virtual Machine Specification, v3.2 Page 152

u2 start pc
u2 length
}

The itemsinthe variable info structure are defined as follows:
index

The index of the variable in the local stack frame, as used in load and store bytecodes. If the variable at
index is of type int, it occupies both index and index + 1.

name index

Contains an index into the strings table[] item of the debug component structure. The
strings table[] entry at the indexed location must be the name of the local variable, (for
example, “applets”).

descriptor index

Contains an index into the strings table[] item of the debug component structure. The
strings table[] entry at the indexed location must be the type of the local variable. Class types
are fully-qualified (for example, “[Ljavacard/framework/Applet;”).

start pc
The index of the first bytecode in which the variable is in-scope and valid.
length

Number of bytecodes in which the variable is in-scope and valid. The value of start pc + length will
be either the index of the next bytecode after the valid range, or the first index beyond the end of the
bytecode array.

line tablel[]

Contains the 1ine info structures that map bytecode instructions of this method to lines in the
class’s source file.

Each 1ine info item represents a mapping of a range of bytecode instructions to a particular line in
the source file that contains the method. The range of instructions is from start pctoend pc,
inclusive. start pc and end pc represent a zero-based byte offset within the method. The
source_ line isthe one-based line number in the source file. The structure is defined as follows:

line info {
uZ start pc
u2 end pc
u2 source line

}

Java Card Platform Virtual Machine Specification, v3.2 Page 153

The items inthe 1ine info structure are defined as follows:

start pc

The byte offset of the first bytecode in the range of instructions.

end pc

The byte offset of the last operand of the last bytecode in the range of instructions.
source line

Line number in the source file.

6.16 Static Resource Component

This section specifies the format for the Static Resource Component. Static Resource Component must
be present if any package in this CAP file has any static resources. If none of the packages in this CAP file
has any static resources, this component must not be present in this CAP file.

The Static Resource Component may contain any static resource that can be represented in a byte
format. Size of each static resource must be between 0 and 32767 bytes.

The Static Resource Component does not reference any other component.

Static Resource Component must always be represented in the Extended Format as specified in these
specifications regardless of compact or Extended format of the CAP file. The Static Resource Component
is represented by the following structure:

static resource component {
ul tag
ud size
u2 resource count
resource directory info resource directoryl[resource count]
static resource info static resources|[resource count]

The items in this structure are defined as follows:

tag

The tag item has the value COMPONENT Static resource (13).
size

The number of bytes in the component, excluding the tag and size items. The value of size must be
greater than zero.

Java Card Platform Virtual Machine Specification, v3.2 Page 154

resource_ count

The number of resources represented in this component. Value for resource count cannot be 0.
This number represents the number of entries in the directory and static resources arrays.

resource directory []

Contains the resource directory info structures for all static resources represented in this
component. The number of entries in this table must be equal to resource count.

The resource directory info structure describes a single directory entry in the directory table.
It indicates the id and the size of each resource represented in this component.

resource directory info {
u2 resource id
u4 resource size

The items in the resource directory info structure are described below.
resource id

This item represents the id of a resource in this component. The value for resource id must be
unique in a CAP file.

resource size

The resource size item represents the size in bytes of the resource represented by
resource_id. Value of this item must be between 0 and 32767 bytes.

static resources/[]

Containsthe static resource info structures for all static resources represented in this
component. The number of entries in this table must be equal to resource count.

The static resource info structure describes a single entry inthe static resources table.

This structure is represented as follows.

static_resource info {
ul static resource[resource size]

The static resourceiteminthe static resource info structure is described below.

Java Card Platform Virtual Machine Specification, v3.2 Page 155

static resource

This item is an array of bytes representing a static resource. The size of the array must be equal to
resource_ size entryinthe corresponding resource directory info entryinthe

resource directory.

Java Card Platform Virtual Machine Specification, v3.2 Page 156

Java Card Virtual Machine Instruction Set

A Java Card virtual machine instruction consists of an opcode specifying the operation to be performed,
followed by zero or more operands embodying values to be operated upon. This chapter gives details
about the format of each Java Card virtual machine instruction and the operation it performs.

7.1 Assumptions: The Meaning of “Must”
The description of each instruction is always given in the context of Java Card virtual machine code that
satisfies the static and structural constraints of Chapter 6, The CAP File Format.

In the description of individual Java Card virtual machine instructions, we frequently state that some
situation “must” or “must not” be the case: “The value2 must be of type int.” The constraints of
Chapter 6, The CAP File Format guarantee that all such expectations will in fact be met. If some
constraint (a “must” or “must not”) in an instruction description is not satisfied at run time, the behavior
of the Java Card virtual machine is undefined.

7.2 Reserved Opcodes

In addition to the opcodes of the instructions specified later this chapter, which are used in Java Card
CAP files (see Chapter 6, The CAP File Format), two opcodes are reserved for internal use by a Java Card
virtual machine implementation. If Oracle extends the instruction set of the Java Card virtual machine in
the future, these reserved opcodes are guaranteed not to be used.

The two reserved opcodes, numbers 254 (Oxfe) and 255 (0xff), have the mnemonics impdepl and
impdep?2, respectively. These instructions are intended to provide “back doors” or traps to
implementation-specific functionality implemented in software and hardware, respectively.

Although these opcodes have been reserved, they may only be used inside a Java Card virtual machine
implementation. They cannot appear in valid CAP files.

7.3 Virtual Machine Errors

A Java Card virtual machine may encounter internal errors or resource limitations that prevent it from
executing correctly written Java programs. While The Java Virtual Machine Specification allows reporting
and handling of virtual machine errors, it also states that they cannot ordinarily be handled by
application code. This Virtual Machine Specification, Classic Edition is more restrictive in that it does not
allow for any reporting or handling of unrecoverable virtual machine errors at the application code level.
A virtual machine error is considered unrecoverable if further execution could compromise the security
or correct operation of the virtual machine or underlying system software. When an unrecoverable error
occurs, the virtual machine will halt bytecode execution. Responses beyond halting the virtual machine
are implementation-specific policies and are not mandated in this specification.

Java Card Platform Virtual Machine Specification, v3.2 Page 157

In the case where the virtual machine encounters a recoverable error, such as insufficient memory to
allocate a new object, it will throw a SystemException with an error code describing the error
condition. The Virtual Machine Specification, Classic Edition cannot predict where resource limitations or
internal errors may be encountered and does not mandate precisely when they can be reported. Thus, a
SystemException may be thrown at any time during the operation of the Java Card virtual machine.

7.4 Security Exceptions

Instructions of the Java Card virtual machine throw an instance of the class SecurityException
when a security violation has been detected. The Java Card virtual machine does not mandate the
complete set of security violations that can or will result in an exception being thrown. However, there is
a minimum set that must be supported.

In the general case, any instruction that de-references an object reference must throw a
SecurityException if the context (3.4 Contexts) in which the instruction is executing is different
than the owning context (3.4 Contexts) of the referenced object. The list of instructions includes the
instance field get and put instructions, the array 1oad and store instructions, as well as the
arraylength, invokeinterface, invokespecial, invokevirtual, checkcast,
instanceof and athrow instructions.

There are several exceptions to this general rule that allow cross-context use of objects or arrays. These
exceptions are detailed in Chapter 6 of the Runtime Environment Specification, Java Card Platform, v3.2,
Classic Edition. An important detail to note is that any cross-context method invocation will result in a
context switch (3.4 Contexts).

The Java Card virtual machine may also throw a SecurityException if an instruction violates any of
the static constraints of Chapter 6, The CAP File Format. The Virtual Machine Specification, Java Card
Platform, v3.2, Classic Edition does not mandate which instructions must implement these additional
security checks, or to what level. Therefore, a SecurityException may be thrown at any time
during the operation of the Java Card virtual machine.

Java Card Platform Virtual Machine Specification, v3.2 Page 158

7.5 The Java Card Virtual Machine Instruction Set
Java virtual machine instructions are represented in this chapter in alphabetical order by entries of the
form shown in Table 7-1, an example instruction entry.

Table 7-1: Example Instruction Entry

Example Instruction Entry
mnemonic

Short description of the instruction.
Format

mnemonic

operandl

operand2

Forms

mnemonic = opcode
Stack

..., valuel, value2 ->
.../ value3
Description

A longer description detailing constraints on operand stack contents or constant pool entries, the
operation performed, the type of the results, and so on.

Runtime Exception

If any runtime exceptions can be thrown by the execution of an instruction, that instruction must
not throw any runtime exceptions except for instances of SystemException.

Notes

Comments not strictly part of the specification of an instruction are set aside as notes at the end
of the description.

Java Card Platform Virtual Machine Specification, v3.2 Page 159

Each cell in the instruction format diagram represents a single 8-bit byte. The instruction’s mnemonic is
its name. Its opcode is its numeric representation and is given in both decimal and hexadecimal forms.
Only the numeric representation is actually present in the Java Card virtual machine code in a CAP file.

Keep in mind that there are “operands” generated at compile time and embedded within Java Card
virtual machine instructions, as well as “operands” calculated at run time and supplied on the operand
stack. Although they are supplied from several different areas, all these operands represent the same
thing: values to be operated upon by the Java Card virtual machine instruction being executed. By
implicitly taking many of its operands from its operand stack, rather than representing them explicitly in
its compiled code as additional operand bytes, register numbers, etc., the Java Card virtual machine’s
code stays compact.

Some instructions are presented as members of a family of related instructions sharing a single
description, format, and operand stack diagram. As such, a family of instructions includes several
opcodes and opcode mnemonics; only the family mnemonic appears in the instruction format diagram,
and a separate forms line lists all member mnemonics and opcodes. For example, the forms line for the
sconst <s> family of instructions, giving mnemonic and opcode information for the two instructions
in that family (sconst 0 and sconst_1),is

Forms sconst_0 = 3 (0x3), sconst_1 = 4 (0x4)

In the description of the Java Card virtual machine instructions, the effect of an instruction’s execution
on the operand stack (3.5 Frames) of the current frame (3.5 Frames) is represented textually, with the
stack growing from left to right and each word represented separately. Thus,

Stack..., valuel, value2 -> ..., result

shows an operation that begins by having a one-word value2 on top of the operand stack with a one-
word valuel just beneath it. As a result of the execution of the instruction, valuel and value2 are
popped from the operand stack and replaced by a one-word result, which has been calculated by the
instruction. The remainder of the operand stack, represented by an ellipsis (...), is unaffected by the
instruction’s execution.

The type int takes two words on the operand stack. In the operand stack representation, each word is
represented separately using a dot notation:

Stack..., valuel.word1, valuel.word2, value2.word1, value2.word2 -> ..., result.word1, result.word2

The Virtual Machine Specification, Java Card Platform, v3.2, Classic Edition does not mandate how the
two words are used to represent the 32-bit int value; it only requires that a particular implementation
be internally consistent.

7.5.1 aaload
Load reference from array

Java Card Platform Virtual Machine Specification, v3.2 Page 160

Format

aaload

Forms

aaload = 36 (0x24)

Stack

..., arrayref, index -> ..., value
Description

The arrayref must be of type reference and must refer to an array whose components are of type
reference. The index must be of type short. Both arrayref and index are popped from the operand stack.
The reference value in the component of the array at index is retrieved and pushed onto the top of the
operand stack.

Runtime Exceptions
If arrayref is null, aaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the aaload instruction
throws an ArraylndexOutOfBoundsException.

Otherwise if the arrayref references a write-only array view, the aaload instruction throws a
SecurityException.

Notes

In some circumstances, the aaload instruction may throw a SecurityException if the current context (3.4
Contexts) is not the owning context (3.4 Contexts) of the array or array view referenced by arrayref. The
exact circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime
Environment Specification, Java Card Platform, v3.2, Classic Edition.

7.5.2 aastore
Store into reference array or reference array view

Format

aastore

Forms

aastore = 55 (0x37)

Stack

Java Card Platform Virtual Machine Specification, v3.2 Page 161

..., arrayref, index, value -> ...
Description

The arrayref must be of type reference and must refer to an array or an array view, whose components
are of type reference. The index must be of type short and the value must be of type reference. The
arrayref, index and value are popped from the operand stack. The reference value is stored as the
component of the array at index.

If the array referenced by arrayref is integrity-sensitive, its integrity is checked before the value is
stored. The integrity control element is updated when the value is stored. The whole operation (value
storage and the integrity control element update) is performed atomically.

At runtime the type of value must be confirmed to be assignment compatible with the type of the
components of the array referenced by arrayref. Assignment of a value of reference type S (source) to a
variable of reference type T (target) is allowed only when the type S supports all of the operations
defined on type T. The detailed rules follow:

e [fSisaclass type, then:
o If Tisaclasstype, then S must be the same class as T, or S must be a subclass of T;
o If Tis aninterface type, then S must implement interface T.
e [fSisaninterface type®3, then:
o IfTisaclass type, then T must be Object (2.2.1.4 Unsupported Classes);
o If Tis aninterface type, T must be the same interface as S or a superinterface of S.
e If Sis an array type, namely the type SC[], that is, an array of components of type SC, then:
o If Tisaclasstype, then T must be Object.
o If Tisan array type, namely the type TC[], an array of components of type TC, then one
of the following must be true:
= TCand SC are the same primitive type (3.1 Data Types and Values).
= TCand SC are reference types!* (3.1 Data Types and Values) with type SC
assignable to TC, by these rules.
o If Tis aninterface type, T must be one of the interfaces implemented by arrays.

Runtime Exceptions

If arrayref is null, aastore throws a NullPointerException.

13 When both S and T are arrays of reference types, this algorithm is applied recursively using the types of the
arrays, namely SC and TC. In the recursive call, S, which was SC in the original call, may be an interface type. This
rule can only be reached in this manner. Similarly, in the recursive call, T, which was TC in the original call, may be
an interface type.

14 This version of the Java Card virtual machine does not support multi-dimensional arrays. Therefore, neither SC or
TC can be an array type.

Java Card Platform Virtual Machine Specification, v3.2 Page 162

Otherwise, if index is not within the bounds of the array referenced by arrayref, the aastore instruction
throws an ArraylndexOutOfBoundsException.

Otherwise, if arrayref is not null and the actual type of value is not assighment compatible with the
actual type of the component of the array, aastore throws an ArrayStoreException.

Otherwise if the array referenced by arrayref is integrity-sensitive and an inconsistency is detected
during the array integrity check, the aastore instruction throws a SecurityException.

Otherwise if the arrayref references a read-only array view, the aastore instruction throws a
SecurityException.

Notes

In some circumstances, the aastore instruction may throw a SecurityException if the current context (3.4
Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

7.5.3 aconst_null
Push null

Format

aconst_null

Forms

aconst_null =1 (0x1)

Stack

.. => ..., null

Description

Push the null object reference onto the operand stack.

7.5.4 aload
Load reference from local variable

Format

aload
index

Java Card Platform Virtual Machine Specification, v3.2 Page 163

Forms

aload = 21 (0x15)
Stack

... => ..., objectref
Description

The index is an unsigned byte that must be a valid index into the local variables of the current frame (3.5
Frames). The local variable at index must contain a reference. The objectref in the local variable at index
is pushed onto the operand stack.

Notes

The aload instruction cannot be used to load a value of type returnAddress from a local variable onto
the operand stack. This asymmetry with the astore instruction is intentional.

7.5.5 aload_<n>
Load reference from local variable

Format
aload _<n>
Forms

aload_0 =24 (0x18)
aload_1 =25 (0x19)
aload_2 =26 (0Ox1a)
aload_3 =27 (0x1b)

Stack
... -> ..., objectref
Description

The <n> must be a valid index into the local variables of the current frame (3.5 Frames). The local
variable at <n> must contain a reference. The objectref in the local variable at <n> is pushed onto the
operand stack.

Notes

An aload_<n> instruction cannot be used to load a value of type returnAddress from a local variable
onto the operand stack. This asymmetry with the corresponding astore_<n> instruction is intentional.

Java Card Platform Virtual Machine Specification, v3.2 Page 164

Each of the aload_<n> instructions is the same as aload with an index of <n>, except that the operand
<n> is implicit.

7.5.6 anewarray
Create new array of reference

Format

anewarray
indexbytel
indexbyte2

Forms

anewarray = 145 (0x91)
Stack

..., count -> ..., arrayref
Description

The count must be of type short. It is popped off the operand stack. The count represents the number of
components of the array to be created. The unsigned indexbytel and indexbyte2 are used to construct
an index into the constant pool of the current package (3.5 Frames), where the value of the index is
(indexbytel << 8) | indexbyte2. The item at that index in the constant pool must be of type

CONSTANT _Classref (6.8.1 CONSTANT _Classref), a reference to a class or interface type. The reference is
resolved. A new array with components of that type, of length count, is allocated from the heap, and a
reference arrayref to this new array object is pushed onto the operand stack. All components of the new
array are initialized to null, the default value for reference types.

Runtime Exception
If count is less than zero, the anewarray instruction throws a NegativeArraySizeException.

7.5.7 areturn
Return reference from method

Format

areturn

Forms

areturn = 119 (0x77)

Stack

Java Card Platform Virtual Machine Specification, v3.2 Page 165

..., objectref -> [empty]
Description

The objectref must be of type reference. The objectref is popped from the operand stack of the current
frame (3.5 Frames) and pushed onto the operand stack of the frame of the invoker. Any other values on
the operand stack of the current method are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to the invoker.

7.5.8 arraylength
Get length of array

Format

arraylength

Forms

arraylength = 146 (0x92)
Stack

..., arrayref -> ..., length
Description

The arrayref must be of type reference and must refer to an array. It is popped from the operand stack.
The length of the array it references is determined. That length is pushed onto the top of the operand
stack as a short.

Runtime Exception
If arrayref is null, the arraylength instruction throws a NullPointerException.
Notes

In some circumstances, the arraylength instruction may throw a SecurityException if the current context
(3.4 Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

7.5.9 astore
Store reference into local variable

Format

Java Card Platform Virtual Machine Specification, v3.2 Page 166

astore
index

Forms

astore = 40 (0x28)
Stack

..., objectref -> ...
Description

The index is an unsigned byte that must be a valid index into the local variables of the current frame (3.5
Frames). The objectref on the top of the operand stack must be of type returnAddress or of type
reference. The objectref is popped from the operand stack, and the value of the local variable at index is
set to objectref.

Notes

The astore instruction is used with an objectref of type returnAddress when implementing Java’s finally
keyword. The aload instruction cannot be used to load a value of type returnAddress from a local
variable onto the operand stack. This asymmetry with the astore instruction is intentional.

7.5.10 astore_<n>
Store reference into local variable

Format
astore_<n>
Forms

astore_0 =43 (0x2b)
astore_1 =44 (0x2c)
astore_2 =45 (0x2d)
astore_3 =46 (0x2e)

Stack
..., objectref -> ...
Description

The <n> must be a valid index into the local variables of the current frame (3.5 Frames). The objectref on
the top of the operand stack must be of type returnAddress or of type reference. It is popped from the
operand stack, and the value of the local variable at <n> is set to objectref.

Java Card Platform Virtual Machine Specification, v3.2 Page 167

Notes

An astore_<n> instruction is used with an objectref of type returnAddress when implementing Java’s
finally keyword. An aload_<n> instruction cannot be used to load a value of type returnAddress from a
local variable onto the operand stack. This asymmetry with the corresponding astore_<n> instruction is
intentional.

Each of the astore_<n> instructions is the same as astore with an index of <n>, except that the operand
<n> is implicit.

7.5.11 athrow
Throw exception or error

Format

athrow

Forms

athrow = 147 (0x93)
Stack

..., objectref -> objectref
Description

The objectref must be of type reference and must refer to an object that is an instance of class
Throwable or of a subclass of Throwable. It is popped from the operand stack. The objectref is then
thrown by searching the current frame (3.5 Frames) for the most recent catch clause that catches the
class of objectref or one of its superclasses.

If a catch clause is found, it contains the location of the code intended to handle this exception. The pc
register is reset to that location, the operand stack of the current frame is cleared, objectref is pushed
back onto the operand stack, and execution continues. If no appropriate clause is found in the current
frame, that frame is popped, the frame of its invoker is reinstated, and the objectref is rethrown.

If no catch clause is found that handles this exception, the virtual machine exits.
Runtime Exception

If objectref is null, athrow throws a NullPointerException instead of objectref.
Notes

In some circumstances, the athrow instruction may throw a SecurityException if the current context (3.4
Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref. The exact

Java Card Platform Virtual Machine Specification, v3.2 Page 168

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

7.5.12 baload
Load byte or boolean from array

Format

baload

Forms

baload = 37 (0x25)

Stack

..., arrayref, index -> ..., value
Description

The arrayref must be of type reference and must refer to an array whose components are of type byte
or of type boolean. The index must be of type short. Both arrayref and index are popped from the
operand stack. The byte value in the component of the array at index is retrieved, sign-extended to a
short value, and pushed onto the top of the operand stack.

Runtime Exceptions
If arrayref is null, baload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the baload instruction
throws an ArraylndexOutOfBoundsException.

Otherwise if the arrayref references a write-only array view, the baload instruction throws a
SecurityException.

Notes

In some circumstances, the baload instruction may throw a SecurityException if the current context (3.4
Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

7.5.13 bastore
Store into byte or boolean array

Format

bastore

Java Card Platform Virtual Machine Specification, v3.2 Page 169

Forms

bastore = 56 (0x38)

Stack

..., arrayref, index, value -> ...
Description

The arrayref must be of type reference and must refer to an array whose components are of type byte
or of type boolean. The index and value must both be of type short. The arrayref, index and value are
popped from the operand stack. The short value is truncated to a byte and stored as the component of
the array indexed by index.

If the array referenced by arrayref is integrity-sensitive, its integrity is checked before the value is
stored. The integrity control element is updated when the value is stored. The whole operation (value
storage and the integrity control element update) is performed atomically.

Runtime Exceptions
If arrayref is null, bastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the bastore instruction
throws an ArraylndexOutOfBoundsException.

Otherwise if the array referenced by arrayref is integrity-sensitive and an inconsistency is detected
during the array integrity check, the bastore instruction throws a SecurityException.

Otherwise if the arrayref references a read-only array view, the bastore instruction throws a
SecurityException.

Notes

In some circumstances, the bastore instruction may throw a SecurityException if the current context (3.4
Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

7.5.14 bipush
Push byte

Format

bipush
byte

Java Card Platform Virtual Machine Specification, v3.2 Page 170

Forms

bipush = 18 (0x12)

Stack

... > ..., value.word1, value.word2

Description

The immediate byte is sign-extended to an int, and the resulting value is pushed onto the operand stack.
Note: If a virtual machine does not support the int data type, the bipush instruction will not be available.

7.5.15 bspush
Push byte

Format

bspush
byte

Forms

bspush = 16 (0x10)
Stack

...=> ..., value
Description

The immediate byte is sign-extended to a short, and the resulting value is pushed onto the operand
stack.

7.5.16 checkcast
Check whether object is of given type

Format

checkcast

atype
indexbytel
indexbyte2

Forms

checkcast = 148 (0x94)

Java Card Platform Virtual Machine Specification, v3.2 Page 171

Stack
..., Objectref -> ..., objectref
Description

The unsigned byte atype is a code that indicates if the type against which the object is being checked is
an array type or a class type. It must take one of the following values or zero:

Table 7-2: Array Values

Array Type ‘ atype ‘
T_BOOLEAN 10
T_BYTE 11
T_SHORT 12
T_INT 13
T_REFERENCE 14

If the value of atype is 10, 11, 12, or 13, the values of the indexbytel and indexbyte2 must be zero, and
the value of atype indicates the array type against which to check the object. Otherwise the unsigned
indexbytel and indexbyte2 are used to construct an index into the constant pool of the current package
(3.5 Frames), where the value of the index is (indexbytel << 8) | indexbyte2. The item at that index in
the constant pool must be of type CONSTANT _Classref (6.8.1 CONSTANT _Classref), a reference to a class
or interface type. The reference is resolved. If the value of atype is 14, the object is checked against an
array type that is an array of object references of the type of the resolved class. If the value of atype is
zero, the object is checked against a class or interface type that is the resolved class.

The objectref must be of type reference. If objectref is null or can be cast to the specified array type or
the resolved class or interface type, the operand stack is unchanged; otherwise the checkcast instruction
throws a ClassCastException.

The following rules are used to determine whether an objectref that is not null can be cast to the
resolved type: if S is the class of the object referred to by objectref and T is the resolved class, array or
interface type, checkcast determines whether objectref can be cast to type T as follows:

e IfSisaclass type, then:
o [IfTisaclasstype, then S must be the same class as T, or S must be a subclass of T;
o If Tisan interface type, then S must implement interface T.

e [fSisan interface type®, then:
o IfTisaclass type, then T must be Object (2.2.1.4 Unsupported Classes);

15 When both S and T are arrays of reference types, this algorithm is applied recursively using the types of the
arrays, namely SC and TC. In the recursive call, S, which was SC in the original call, may be an interface type. This
rule can only be reached in this manner. Similarly, in the recursive call, T, which was TC in the original call, may be
an interface type.

Java Card Platform Virtual Machine Specification, v3.2 Page 172

o If Tis aninterface type, T must be the same interface as S or a superinterface of S.
e If Sis an array type, namely the type SC[], that is, an array of components of type SC, then:
o IfTisaclass type, then T must be Object.
o If Tis an array type, namely the type TC[], an array of components of type TC, then one
of the following must be true:
= TCand SC are the same primitive type (3.1 Data Types and Values).
*= TCand SC are reference types®® (3.1 Data Types and Values) with type SC
assignable to TC, by these rules.
o If Tis aninterface type, T must be one of the interfaces implemented by arrays.

Runtime Exception

If objectref cannot be cast to the resolved class, array, or interface type, the checkcast instruction
throws a ClassCastException.

Notes

The checkcast instruction is fundamentally very similar to the instanceof instruction. It differs in its
treatment of null, its behavior when its test fails (checkcast throws an exception, instanceof pushes a
result code), and its effect on the operand stack.

In some circumstances, the checkcast instruction may throw a SecurityException if the current context
(3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the value of atype may not be 13 (array type =
T_INT).

7.5.17 dup
Duplicate top operand stack word

Format

dup

Forms

dup = 61 (0x3d)
Stack

..., word -> ..., word, word

16 This version of the Java Card virtual machine specification does not support multi-dimensional arrays. Therefore,
neither SC or TC can be an array type.

Java Card Platform Virtual Machine Specification, v3.2 Page 173

Description

The top word on the operand stack is duplicated and pushed onto the operand stack. The dup
instruction must not be used unless word contains a 16-bit data type.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup instruction operates on an
untyped word, ignoring the type of data it contains.

7.5.18 dup_x
Duplicate top operand stack words and insert below

Format

dup_x
mn

Forms

dup_x =63 (0x3f)

Stack

..., wordN, ..., wordM, ..., word1 -> ..., wordM, ..., word1l, wordN, ..., wordM, ..., word1l
Description

The unsigned byte mn is used to construct two parameter values. The high nibble, (mn & 0xf0) >> 4, is
used as the value m. The low nibble, (mn & 0xf), is used as the value n. Permissible values for m are 1
through 4. Permissible values for n are 0 and m through m+4.

For positive values of n, the top m words on the operand stack are duplicated and the copied words are
inserted n words down in the operand stack. When n equals 0, the top m words are copied and placed
on top of the stack.

The dup_x instruction must not be used unless the ranges of words 1 through m and words m+1 through
n each contain either a 16-bit data type, two 16-bit data types, a 32-bit data type, a 16-bit data type and
a 32-bit data type (in either order), or two 32-bit data types.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup_x instruction operates on
untyped words, ignoring the types of data they contain.

If a virtual machine does not support the int data type, the permissible values for m are 1 or 2, and
permissible values for n are 0 and m through m+2.

Java Card Platform Virtual Machine Specification, v3.2 Page 174

7.5.19 dup2
Duplicate top two operand stack words

Format

dup2

Forms

dup2 =62 (0x3e)

Stack

..., word2, word1 -> ..., word2, word1, word2, word1
Description

The top two words on the operand stack are duplicated and pushed onto the operand stack, in the
original order.

The dup?2 instruction must not be used unless each of wordl and word2 is a word that contains a 16-bit
data type or both together are the two words of a single 32-bit datum.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup2 instruction operates on
untyped words, ignoring the types of data they contain.

7.5.20 getfield_<t>
Fetch field from object

Format

getfield_<t>
index

Forms

getfield_a =131 (0x83)
getfield_b =132 (0x84)
getfield_s =133 (0x85)
getfield i =134 (0x86)

Stack
..., objectref -> ..., value

OR

Java Card Platform Virtual Machine Specification, v3.2 Page 175

..., objectref -> ..., value.word1, value.word?2
Description

The objectref, which must be of type reference, is popped from the operand stack. The unsigned index is
used as an index into the constant pool of the current package (3.5 Frames). The constant pool item at
the index must be of type CONSTANT _InstanceFieldref (6.8.2 CONSTANT _InstanceFieldref,

CONSTANT _VirtualMethodref, CONSTANT_SuperMethodref), a reference to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a member of a superclass of
the current class, and the field is not declared in the same package as the current class, then the class of
objectref must be either the current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:

e afield must be of type reference

e b field must be of type byte or type boolean
e s field must be of type short

e i field must be of type int

The width of a field in a class instance is determined by the field type specified in the instruction. The
item is resolved, determining the field offset'’. The value at that offset into the class instance referenced
by objectref is fetched. If the value is of type byte or type boolean, it is sign-extended to a short. The
value is pushed onto the operand stack.

Runtime Exception
If objectref is null, the getfield_<t> instruction throws a NullPointerException.
Notes

In some circumstances, the getfield_<t> instruction may throw a SecurityException if the current context
(3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the getfield_i instruction will not be available.

7.5.21 getfield_<t>_this
Fetch field from current object

17 The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may define any
mapping from token value to offset into an instance.

Java Card Platform Virtual Machine Specification, v3.2 Page 176

Format

getfield _<t>_this
index

Forms

getfield_a_this = 173 (Oxad)
getfield_b_this = 174 (Oxae)
getfield_s_this = 175 (Oxaf)
getfield_i_this = 176 (0xb0)

Stack

.. => ..., value

OR

... > ..., value.word1l, value.word2
Description

The currently executing method must be an instance method. The local variable at index 0 must contain
a reference objectref to the currently executing method’s this parameter. The unsigned index is used as
an index into the constant pool of the current package (3.5 Frames). The constant pool item at the index
must be of type CONSTANT _InstanceFieldref (6.8.2 CONSTANT _InstanceFieldref,

CONSTANT _VirtualMethodref, CONSTANT_SuperMethodref), a reference to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a member of a superclass of
the current class, and the field is not declared in the same package as the current class, then the class of
objectref must be either the current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:

o afield must be of type reference

o b field must be of type byte or type boolean
e s field must be of type short

e jfield must be of type int

The width of a field in a class instance is determined by the field type specified in the instruction. The
item is resolved, determining the field offset!®. The value at that offset into the class instance referenced

18 The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may define any
mapping from token value to offset into an instance.

Java Card Platform Virtual Machine Specification, v3.2 Page 177

by objectref is fetched. If the value is of type byte or type boolean, it is sign-extended to a short. The
value is pushed onto the operand stack.

Runtime Exception
If objectref is null, the getfield_<t>_this instruction throws a NullPointerException.
Notes

In some circumstances, the getfield_<t>_this instruction may throw a SecurityException if the current
context (3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref.
The exact circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime
Environment Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the getfield _i_this instruction will not be
available.

7.5.22 getfield_<t>_w
Fetch field from object (wide index)

Format

getfield <t> w
indexbytel
indexbyte2

Forms

getfield_a_w = 169 (0xa9)
getfield_b_w =170 (Oxaa)
getfield s w =171 (Oxab)
getfield_i_w =172 (Oxac)

Stack

..., objectref -> ..., value

OR

..., objectref -> ..., value.word1, value.word?2
Description

The objectref, which must be of type reference, is popped from the operand stack. The unsigned
indexbytel and indexbyte2 are used to construct an index into the constant pool of the current package
(3.5 Frames), where the value of the index is (indexbytel << 8) | indexbyte2. The constant pool item at
the index must be of type CONSTANT _InstanceFieldref (6.8.2 CONSTANT _InstanceFieldref,

Java Card Platform Virtual Machine Specification, v3.2 Page 178

CONSTANT_VirtualMethodref, CONSTANT_SuperMethodref), a reference to a class and a field token.
The item must resolve to a field of type reference.

The class of objectref must not be an array. If the field is protected, and it is a member of a superclass of
the current class, and the field is not declared in the same package as the current class, then the class of
objectref must be either the current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:

e afield must be of type reference

e Db field must be of type byte or type boolean
e sfield must be of type short

e ifield must be of type int

The width of a field in a class instance is determined by the field type specified in the instruction. The
item is resolved, determining the field offset!®. The value at that offset into the class instance referenced
by objectref is fetched. If the value is of type byte or type boolean, it is sign-extended to a short. The
value is pushed onto the operand stack.

Runtime Exception
If objectref is null, the getfield_<t>_ w instruction throws a NullPointerException.
Notes

In some circumstances, the getfield_<t>_ w instruction may throw a SecurityException if the current
context (3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref.
The exact circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime
Environment Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the getfield_i_w instruction will not be available.

7.5.23 getstatic_<t>
Get static field from class

Format

getstatic_<t>
indexbytel
indexbyte2

Forms

19 The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may define any
mapping from token value to offset into an instance.

Java Card Platform Virtual Machine Specification, v3.2 Page 179

getstatic_a = 123 (0x7b)
getstatic_b = 124 (0x7c)
getstatic_s = 125 (0x7d)
getstatic_i = 126 (0x7e)

Stack

.. => ..., value

OR

... > ..., value.word1l, value.word2
Description

The unsigned indexbytel and indexbyte2 are used to construct an index into the constant pool of the
current package (3.5 Frames), where the value of the index is (indexbytel << 8) | indexbyte2. The
constant pool item at the index must be of type CONSTANT _StaticFieldref (6.8.3

CONSTANT _StaticFieldref and CONSTANT _StaticMethodref), a reference to a static field.

The item must resolve to a field with a type that matches t, as follows:

e afield must be of type reference

e b field must be of type byte or type boolean
e s field must be of type short

e field must be of type int

The width of a class field is determined by the field type specified in the instruction. The item is
resolved, determining the field offset. The item is resolved, determining the class field. The value of the
class field is fetched. If the value is of type byte or boolean, it is sign-extended to a short. The value is
pushed onto the operand stack.

Notes
If a virtual machine does not support the int data type, the getstatic_i instruction will not be available.

7.5.24 goto
Branch always

Format

goto
branch

Forms

goto = 112 (0x70)

Java Card Platform Virtual Machine Specification, v3.2 Page 180

Stack
No change
Description

The value branch is used as a signed 8-bit offset. Execution proceeds at that offset from the address of
the opcode of this goto instruction. The target address must be that of an opcode of an instruction
within the method that contains this goto instruction.

7.5.25 goto_w
Branch always (wide index)

Format

goto_w
branchbytel
branchbyte2

Forms

goto_w = 168 (0xa8)
Stack

No change
Description

The unsigned bytes branchbytel and branchbyte2 are used to construct a signed 16-bit branchoffset,
where branchoffset is (branchbytel << 8) | branchbyte2. Execution proceeds at that offset from the
address of the opcode of this goto instruction. The target address must be that of an opcode of an
instruction within the method that contains this goto instruction.

7.5.26i2b
Convert int to byte

Format

i2b

Forms

i2b =93 (0x5d)
Stack

..., value.word1, value.word?2 -> ..., result

Java Card Platform Virtual Machine Specification, v3.2 Page 181

Description

The value on top of the operand stack must be of type int. It is popped from the operand stack and
converted to a byte result by taking the low-order 16 bits of the int value, and discarding the high-order
16 bits. The low-order word is truncated to a byte, then sign-extended to a short result. The result is
pushed onto the operand stack.

Notes

The i2b instruction performs a narrowing primitive conversion. It may lose information about the overall
magnitude of value. The result may also not have the same sign as value.

If a virtual machine does not support the int data type, the i2b instruction will not be available.

7.5.27 i2s
Convert int to short

Format

i2s

Forms

i2s =94 (0x5e)

Stack

..., value.word1l, value.word2 -> ..., result
Description

The value on top of the operand stack must be of type int. It is popped from the operand stack and
converted to a short result by taking the low-order 16 bits of the int value and discarding the high-order
16 bits. The result is pushed onto the operand stack.

Notes

The i2s instruction performs a narrowing primitive conversion. It may lose information about the overall
magnitude of value. The result may also not have the same sign as value.

If a virtual machine does not support the int data type, the i2s instruction will not be available.

7.5.28 iadd
Add int

Format

iadd

Java Card Platform Virtual Machine Specification, v3.2 Page 182

Forms

iadd = 66 (0x42)

Stack

..., valuel.wordl, valuel.word2, value2.word1, value2.word2 -> ..., result.word1, result.word2
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. The int
result is valuel + value2. The result is pushed onto the operand stack.

If an iadd instruction overflows, then the result is the low-order bits of the true mathematical result in a
sufficiently wide two’s-complement format. If overflow occurs, then the sign of the result may not be
the same as the sign of the mathematical sum of the two values.

Notes
If a virtual machine does not support the int data type, the iadd instruction will not be available.

7.5.29 iaload
Load int from array

Format

iaload

Forms

iaload = 39 (0x27)

Stack

..., arrayref, index -> ..., value.word1, value.word2
Description

The arrayref must be of type reference and must refer to an array whose components are of type int.
The index must be of type short. Both arrayref and index are popped from the operand stack. The int
value in the component of the array at index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions
If arrayref is null, iaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the iaload instruction
throws an ArraylndexOutOfBoundsException.

Java Card Platform Virtual Machine Specification, v3.2 Page 183

Otherwise if the arrayref references a write-only array view, the iaload instruction throws a
SecurityException.

Notes

In some circumstances, the iaload instruction may throw a SecurityException if the current context (3.4
Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the iaload instruction will not be available.

7.5.30 iand
Boolean AND int

Format

iand

Forms

iand = 84 (0x54)

Stack

..., valuel.wordl, valuel.word2, value2.word1, value2.word2 -> ..., result.word1, result.word2
Description

Both valuel and value2 must be of type int. They are popped from the operand stack. An int result is
calculated by taking the bitwise AND (conjunction) of valuel and value2. The result is pushed onto the
operand stack.

Notes
If a virtual machine does not support the int data type, the iand instruction will not be available.

7.5.31 iastore
Store into int array

Format

iastore

Forms

iastore = 58 (0x3a)

Stack

Java Card Platform Virtual Machine Specification, v3.2 Page 184

..., arrayref, index, value.word1, value.word2 -> ...
Description

The arrayref must be of type reference and must refer to an array whose components are of type int.
The index must be of type short and value must be of type int. The arrayref, index and value are popped
from the operand stack. The int value is stored as the component of the array indexed by index.

If the array referenced by arrayref is integrity-sensitive, its integrity is checked before the value is
stored. The integrity control element is updated when the value is stored. The whole operation (value
storage and the integrity control element update) is performed atomically.

Runtime Exception
If arrayref is null, iastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the iastore instruction
throws an ArraylndexOutOfBoundsException.

Otherwise if the array referenced by arrayref is integrity-sensitive and an inconsistency is detected
during the array integrity check, the iastore instruction throws a SecurityException.

Otherwise if the arrayref references a read-only array view, the iastore instruction throws a
SecurityException.

Notes

In some circumstances, the iastore instruction may throw a SecurityException if the current context (3.4
Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the iastore instruction will not be available.

7.5.32 icmp
Compare int

Format

icmp

Forms

icmp = 95 (0x5f)

Stack

Java Card Platform Virtual Machine Specification, v3.2 Page 185

..., valuel.word1, valuel.word2, value2.word1, value2.word2 -> ..., result
Description

Both valuel and value2 must be of type int. They are both popped from the operand stack, and a signed
integer comparison is performed. If valuel is greater than value2, the short value 1 is pushed onto the
operand stack. If valuel is equal to value2, the short value 0 is pushed onto the operand stack. If valuel
is less than value2, the short value —1 is pushed onto the operand stack.

Notes
If a virtual machine does not support the int data type, the icmp instruction will not be available.

7.5.33 iconst_<i>
Push int constant

Format
iconst_<i>
Forms

iconst_m1 =10 (0x09)
iconst_0=11 (0Oxa)
iconst_1 =12 (Oxb)
iconst_2 =13 (0xc)
iconst_3 =14 (Oxd)
iconst_4 =15 (Oxe)
iconst_5 = 16 (0xf)

Stack

.. => ..., <i>.wordl, <i>.word2

Description

Push the int constant <i> (-1, 0, 1, 2, 3, 4, or 5) onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iconst_<i> instruction will not be available.

7.5.34 idiv
Divide int

Format

idiv

Java Card Platform Virtual Machine Specification, v3.2 Page 186

Forms

idiv = 72 (0x48)

Stack

..., valuel.wordl, valuel.word2, value2.word1, value2.word2 -> ..., result.word1, result.word2
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. The int
result is the value of the Java expression valuel / value2. The result is pushed onto the operand stack.

An int division rounds towards 0; that is, the quotient produced for int values in n/d is an int value g
whose magnitude is as large as possible while satisfying | d- q | <= | n |. Moreover, q is a positive when
| n| >=| d | andnandd have the same sign, but g is negative when | n | >=| d | and n and d have
opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative integer of the
largest possible magnitude for the int type, and the divisor is —1, then overflow occurs, and the result is
equal to the dividend. Despite the overflow, no exception is thrown in this case.

Runtime Exception

If the value of the divisor in an int division is 0, idiv throws an ArithmeticException.

Notes

If a virtual machine does not support the int data type, the idiv instruction will not be available.

7.5.35 if acmp<cond>
Branch if reference comparison succeeds.

Format

if_ acmp<cond>
branch

Forms

if acmpeq = 104 (0x68)
if _acmpne = 105 (0x69)

Stack
..., valuel, value2 -> ...

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 187

Both valuel and value2 must be of type reference. They are both popped from the operand stack and
compared. The results of the comparisons are as follows:

e eqsucceeds if and only if valuel = value2
e ne succeeds if and only if valuel !=value2

If the comparison succeeds, branch is used as signed 8-bit offset, and execution proceeds at that offset
from the address of the opcode of this if acmp<cond> instruction. The target address must be that of an
opcode of an instruction within the method that contains this if_acmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this if acmp<cond>
instruction.

7.5.36 if_ acmp<cond>_w
Branch if reference comparison succeeds (wide index)

Format

if_acmp<cond>_w
branchbytel
branchbyte2

Forms

if acmpeq_w = 160 (0xa0)
if_acmpne_w =161 (0Oxal)

Stack
..., valuel, value2 -> ...
Description

Both valuel and value2 must be of type reference. They are both popped from the operand stack and
compared. The results of the comparisons are as follows:

e eq succeeds if and only if valuel = value2
e ne succeeds if and only if valuel !=value2

If the comparison succeeds, the unsigned bytes branchbytel and branchbyte2 are used to construct a
signed 16-bit branchoffset, where branchoffset is (branchbytel << 8) | branchbyte2. Execution proceeds
at that offset from the address of the opcode of this if acmp<cond>_w instruction. The target address
must be that of an opcode of an instruction within the method that contains this if_acmp<cond>_ w
instruction.

Otherwise, execution proceeds at the address of the instruction following this if _acmp<cond>_w
instruction.

Java Card Platform Virtual Machine Specification, v3.2 Page 188

7.5.37 if_scmp<cond>
Branch if short comparison succeeds

Format

if_scmp<cond>
branch

Forms

if scmpeq =106 (0Ox6a)
if_scmpne = 107 (0Ox6b)
if scmplt = 108 (0x6c¢)
if scmpge =109 (0x6d)
if_scmpgt =110 (Ox6e)
if scmple =111 (0x6f)

Stack
..., valuel, value2 -> ...
Description

Both valuel and value2 must be of type short. They are both popped from the operand stack and
compared. All comparisons are signed. The results of the comparisons are as follows:

e eq succeeds if and only if valuel = value2
e ne succeeds if and only if valuel != value2
e |t succeeds if and only if valuel < value2

e e succeeds if and only if valuel <= value2
e gt succeeds if and only if valuel > value2
e ge succeeds if and only if valuel >= value2

If the comparison succeeds, branch is used as signed 8-bit offset, and execution proceeds at that offset
from the address of the opcode of this if scmp<cond> instruction. The target address must be that of an
opcode of an instruction within the method that contains this if_scmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this if _ scmp<cond>
instruction.

7.5.38 if_scmp<cond>_w
Branch if short comparison succeeds (wide index)

Format

Java Card Platform Virtual Machine Specification, v3.2 Page 189

if_scmp<cond>_w
branchbytel
branchbyte?2

Forms

if_scmpeq_w =162 (0xa2)
if scmpne_w =163 (0xa3)
if_scmplt_w = 164 (0xa4)

if_scmpge_w = 165 (0Oxa5)
if scmpgt_w =166 (0xab)
if_scmple_w =167 (0xa7)

Stack
..., valuel, value2 -> ...
Description

Both valuel and value2 must be of type short. They are both popped from the operand stack and
compared. All comparisons are signed. The results of the comparisons are as follows:

e eqsucceeds if and only if valuel = value2
e ne succeeds if and only if valuel != value2
e |t succeeds if and only if valuel < value2

e |e succeeds if and only if valuel <= value2
e gt succeeds if and only if valuel > value2
e ge succeeds if and only if valuel >= value2

If the comparison succeeds, the unsigned bytes branchbytel and branchbyte2 are used to construct a
signed 16-bit branchoffset, where branchoffset is (branchbytel << 8) | branchbyte2. Execution proceeds
at that offset from the address of the opcode of this if scmp<cond>_w instruction. The target address
must be that of an opcode of an instruction within the method that contains this if scmp<cond>_w
instruction.

Otherwise, execution proceeds at the address of the instruction following this if _ scmp<cond>_w
instruction.

7.5.39 if<cond>
Branch if short comparison with zero succeeds

Format

if<cond>
branch

Java Card Platform Virtual Machine Specification, v3.2 Page 190

Forms

ifeq = 96 (0x60)
ifne =97 (0x61)
iflt = 98 (0x62)
ifge = 99 (0x63)
ifgt = 100 (0x64)
ifle = 101 (0Ox65)

Stack
..., value -> ...
Description

The value must be of type short. It is popped from the operand stack and compared against zero. All
comparisons are signed. The results of the comparisons are as follows:

e eqsucceeds if and only if value =0
e ne succeeds if and only if value !=0
e |t succeeds if and only if value <0

e e succeeds if and only if value <=0
e gt succeeds if and only if value >0
e ge succeeds if and only if value >=0

If the comparison succeeds, branch is used as signed 8-bit offset, and execution proceeds at that offset
from the address of the opcode of this if<cond> instruction. The target address must be that of an
opcode of an instruction within the method that contains this if<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this if<cond> instruction.

7.5.40 if<cond>_w
Branch if short comparison with zero succeeds (wide index)

Format

if<cond>_w
branchbytel
branchbyte2

Forms

ifeq_w = 152 (0x98)
ifne_w = 153 (0x99)
iflt_w = 154 (0x9a)

ifge_w = 155 (0x9b)

Java Card Platform Virtual Machine Specification, v3.2 Page 191

ifgt_w =156 (0x9c)
ifle_w =157 (0x9d)

Stack
..., value -> ...
Description

The value must be of type short. It is popped from the operand stack and compared against zero. All
comparisons are signed. The results of the comparisons are as follows:

e eqsucceeds if and only if value =0
e ne succeeds if and only if value I=0
e |t succeeds if and only if value <0

e |e succeeds if and only if value <=0
e gt succeeds if and only if value >0
e ge succeeds if and only if value >=0

If the comparison succeeds, the unsigned bytes branchbytel and branchbyte2 are used to construct a
signed 16-bit branchoffset, where branchoffset is (branchbytel << 8) | branchbyte2. Execution proceeds
at that offset from the address of the opcode of this if<cond>_w instruction. The target address must be
that of an opcode of an instruction within the method that contains this if<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this if<cond>_w instruction.

7.5.41 ifnonnull
Branch if reference not null

Format

ifnonnull
branch

Forms

ifnonnull = 103 (0x67)
Stack

..., value -> ...
Description

The value must be of type reference. It is popped from the operand stack. If the value is not null, branch
is used as signed 8-bit offset, and execution proceeds at that offset from the address of the opcode of

Java Card Platform Virtual Machine Specification, v3.2 Page 192

this ifnonnull instruction. The target address must be that of an opcode of an instruction within the
method that contains this ifnonnull instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnonnull instruction.

7.5.42 ifnonnull_w
Branch if reference not null (wide index)

Format

ifnonnull_w
branchbytel
branchbyte2

Forms

ifnonnull_w = 159 (0x9f)
Stack

..., value -> ...
Description

The value must be of type reference. It is popped from the operand stack. If the value is not null, the
unsigned bytes branchbytel and branchbyte2 are used to construct a signed 16-bit branchoffset, where
branchoffset is (branchbytel << 8) | branchbyte2. Execution proceeds at that offset from the address of
the opcode of this ifnonnull_w instruction. The target address must be that of an opcode of an
instruction within the method that contains this ifnonnull_w instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnonnull_w instruction.

7.5.43 ifnull
Branch if reference is null

Format

ifnull
branch

Forms
ifnull = 102 (0x66)
Stack

..., value -> ...

Java Card Platform Virtual Machine Specification, v3.2 Page 193

Description

The value must be of type reference. It is popped from the operand stack. If the value is null, branch is
used as signed 8-bit offset, and execution proceeds at that offset from the address of the opcode of this
ifnull instruction. The target address must be that of an opcode of an instruction within the method that
contains this ifnull instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnull instruction.

7.5.44 ifnull_w
Branch if reference is null (wide index)

Format

ifnull_w
branchbytel
branchbyte2

Forms

ifnull_w = 158 (0x9e)
Stack

..., value -> ...
Description

The value must be of type reference. It is popped from the operand stack. If the value is null, the
unsigned bytes branchbytel and branchbyte2 are used to construct a signed 16-bit branchoffset, where
branchoffset is (branchbytel << 8) | branchbyte2. Execution proceeds at that offset from the address of
the opcode of this ifnull_w instruction. The target address must be that of an opcode of an instruction
within the method that contains this ifnull_w instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnull_w instruction.

7.5.45 iinc
Increment local int variable by constant

Format
iinc
index
const

Forms

iinc =90 (Ox5a)

Java Card Platform Virtual Machine Specification, v3.2 Page 194

Stack
No change
Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the local variables of
the current frame (3.5 Frames). The local variables at index and index + 1 together must contain an int.
The const is an immediate signed byte. The value const is first sign-extended to an int, then the int
contained in the local variables at index and index + 1 is incremented by that amount.

Notes
If a virtual machine does not support the int data type, the iinc instruction will not be available.

7.5.46 iinc_w
Increment local int variable by constant

Format
iinc_w
index

bytel
byte2

Forms

iinc_w =151 (0x97)
Stack

No change
Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the local variables of
the current frame (3.5 Frames). The local variables at index and index + 1 together must contain an int.
The immediate unsigned bytel and byte2 values are assembled into an intermediate short where the
value of the short is (bytel << 8) | byte2. The intermediate value is then sign-extended to an int const.
The int contained in the local variables at index and index + 1 is incremented by const.

Notes
If a virtual machine does not support the int data type, the iinc_w instruction will not be available.

7.5.47 iipush
Push int

Java Card Platform Virtual Machine Specification, v3.2 Page 195

Format
iipush
bytel
byte2

byte3
byte4

Forms

iipush = 20 (0x14)

Stack

... > ..., valuel.wordl, valuel.word2
Description

The immediate unsigned bytel, byte2, byte3, and byte4 values are assembled into a signed int where
the value of the int is (bytel << 24) | (byte2 << 16) | (byte3 << 8) | byte4. The resulting value is pushed
onto the operand stack.

Notes
If a virtual machine does not support the int data type, the iipush instruction will not be available.

7.5.48 iload
Load int from local variable

Format

iload
index

Forms

iload = 23 (0x17)

Stack

... > ..., valuel.wordl, valuel.word2
Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the local variables of
the current frame (3.5 Frames). The local variables at index and index + 1 together must contain an int.
The value of the local variables at index and index + 1 is pushed onto the operand stack.

Java Card Platform Virtual Machine Specification, v3.2 Page 196

Notes
If a virtual machine does not support the int data type, the iload instruction will not be available.

7.5.49 iload_<n>
Load int from local variable

Format
iload_<n>
Forms

iload_0 =32 (0x20)
iload_1 =33 (0x21)
iload_2 = 34 (0x22)
iload_3 =35 (0x23)

Stack
... > ..., valuel.wordl, valuel.word2
Description

Both <n>and <n> + 1 must be a valid indices into the local variables of the current frame (3.5 Frames).
The local variables at <n> and <n> + 1 together must contain an int. The value of the local variables at
<n>and <n> + 1 is pushed onto the operand stack.

Notes

Each of the iload_<n> instructions is the same as iload with an index of <n>, except that the operand <n>
is implicit.

If a virtual machine does not support the int data type, the iload_<n> instruction will not be available.

7.5.50 ilookupswitch
Access jump table by key match and jump

Format

ilookupswitch
defaultbytel
defaultbyte2
npairs1

npairs2
match-offset pairs...

Pair Format

Java Card Platform Virtual Machine Specification, v3.2 Page 197

matchbytel
matchbyte2
matchbyte3
matchbyte4
offsetbytel
offsetbyte2

Forms

ilookupswitch = 118 (0x76)
Stack

..., key.word1, key.word2 -> ...
Description

An ilookupswitch instruction is a variable-length instruction. Immediately after the ilookupswitch
opcode follow a signed 16-bit value default, an unsigned 16-bit value npairs, and then npairs pairs. Each
pair consists of an int match and a signed 16-bit offset. Each match is constructed from four unsigned
bytes as (matchbytel << 24) | (matchbyte2 << 16) | (matchbyte3 << 8) | matchbyte4. Each offset is
constructed from two unsigned bytes as (offsetbytel << 8) | offsetbyte2.

The table match-offset pairs of the ilookupswitch instruction must be sorted in increasing numerical
order by match.

The key must be of type int and is popped from the operand stack and compared against the match
values. If it is equal to one of them, then a target address is calculated by adding the corresponding
offset to the address of the opcode of this ilookupswitch instruction. If the key does not match any of
the match values, the target address is calculated by adding default to the address of the opcode of this
ilookupswitch instruction. Execution then continues at the target address.

The target address that can be calculated from the offset of each match-offset pair, as well as the one
calculated from default, must be the address of an opcode of an instruction within the method that
contains this ilookupswitch instruction.

Notes
The match-offset pairs are sorted to support lookup routines that are quicker than linear search.

If a virtual machine does not support the int data type, the ilookupswitch instruction will not be
available.

7.5.51 imul
Multiply int

Format

Java Card Platform Virtual Machine Specification, v3.2 Page 198

imul

Forms

imul = 70 (0x46)

Stack

..., valuel.wordl, valuel.word2, value2.word1, value2.word2 -> ..., result.word1, result.word2
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. The int
result is valuel * value2. The result is pushed onto the operand stack.

If an imul instruction overflows, then the result is the low-order bits of the mathematical product as an
int. If overflow occurs, then the sign of the result may not be the same as the sign of the mathematical
product of the two values.

Notes
If a virtual machine does not support the int data type, the imul instruction will not be available.

7.5.52 ineg
Negate int

Format

ineg

Forms

ineg = 76 (0x4c)

Stack

..., value.word1, value.word2 -> ..., result.word1, result.word2
Description

The value must be of type int. It is popped from the operand stack. The int result is the arithmetic
negation of value, -value. The result is pushed onto the operand stack.

For int values, negation is the same as subtraction from zero. Because the Java Card virtual machine
uses two’s-complement representation for integers and the range of two’s-complement values is not
symmetric, the negation of the maximum negative int results in that same maximum negative number.
Despite the fact that overflow has occurred, no exception is thrown.

For all int values x, -x equals (~x) + 1.

Java Card Platform Virtual Machine Specification, v3.2 Page 199

Notes
If a virtual machine does not support the int data type, the ineg instruction will not be available.

7.5.53 instanceof
Determine if object is of given type

Format

instanceof

atype
indexbytel
indexbyte2

Forms

instanceof = 149 (0x95)
Stack

..., objectref -> .., result
Description

The unsigned byte atype is a code that indicates if the type against which the object is being checked is
an array type or a class type. It must take one of the following values or zero:

Table 7-3: Array Values

Array Type atype ‘
T_BOOLEAN 10
T_BYTE 11
T_SHORT 12
T_INT 13
T_REFERENCE 14

If the value of atype is 10, 11, 12, or 13, the values of the indexbytel and indexbyte2 must be zero, and
the value of atype indicates the array type against which to check the object. Otherwise the unsigned
indexbytel and indexbyte2 are used to construct an index into the constant pool of the current package
(3.5 Frames), where the value of the index is (indexbytel << 8) | indexbyte2. The item at that index in
the constant pool must be of type CONSTANT _Classref (6.8.1 CONSTANT _Classref), a reference to a class
or interface type. The reference is resolved. If the value of atype is 14, the object is checked against an
array type that is an array of object references of the type of the resolved class. If the value of atype is
zero, the object is checked against a class or interface type that is the resolved class.

Java Card Platform Virtual Machine Specification, v3.2 Page 200

The objectref must be of type reference. It is popped from the operand stack. If objectref is not null and
is an instance of the resolved class, array or interface, the instanceof instruction pushes a short result of
1 on the operand stack. Otherwise it pushes a short result of 0.

The following rules are used to determine whether an objectref that is not null is an instance of the
resolved type: if S is the class of the object referred to by objectref and T is the resolved class, array or
interface type, instanceof determines whether objectref is an instance of T as follows:

e IfSisaclass type, then:
o If Tisaclass type, then S must be the same class as T, or S must be a subclass of T;
o If Tis aninterface type, then S must implement interface T.
e If Sisaninterface type®, then:
o IfTisaclasstype, then T must be Object (2.2.1.4 Unsupported Classes);
o If Tis aninterface type, T must be the same interface as S or a superinterface of S.
e If Sis an array type, namely the type SC[], that is, an array of components of type SC, then:
o IfTisaclass type, then T must be Object.
o IfTis an array type, namely the type TC[], an array of components of type TC, then one
of the following must be true:
= TCand SC are the same primitive type (3.1 Data Types and Values).
= TCand SC are reference types?! (3.1 Data Types and Values) with type SC
assignable to TC, by these rules.
o If Tis aninterface type, T must be one of the interfaces implemented by arrays.

Notes

The instanceof instruction is fundamentally very similar to the checkcast instruction. It differs in its
treatment of null, its behavior when its test fails (checkcast throws an exception, instanceof pushes a
result code), and its effect on the operand stack.

In some circumstances, the instanceof instruction may throw a SecurityException if the current context
(3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the value of atype may not be 13 (array type =
T_INT).

20 When both S and T are arrays of reference types, this algorithm is applied recursively using the types of the
arrays, namely SC and TC. In the recursive call, S, which was SC in the original call, may be an interface type. This
rule can only be reached in this manner. Similarly, in the recursive call, T, which was TC in the original call, may be
an interface type.

21 This version of the Java Card virtual machine specification does not support multi-dimensional arrays. Therefore,
neither SC or TC can be an array type.

Java Card Platform Virtual Machine Specification, v3.2 Page 201

7.5.54 invokeinterface
Invoke interface method

Format

invokeinterface
nargs
indexbytel
indexbyte2
method

Forms

invokeinterface = 142 (0x8e)
Stack

..., objectref, [argl, [arg2 ...]] -> ...
Description

The unsigned indexbytel and indexbyte2 are used to construct an index into the constant pool of the
current package (3.5 Frames), where the value of the index is (indexbytel << 8) | indexbyte2. The
constant pool item at that index must be of type CONSTANT_Classref (6.8.1 CONSTANT _Classref), a
reference to an interface class. The specified interface is resolved.

The nargs operand is an unsigned byte that must not be zero.

The method operand is an unsigned byte that is the interface method token for the method to be
invoked. The interface method must not be <init> or an instance initialization method.

The object-ref must be of type reference and must be followed on the operand stack by nargs — 1 words
of arguments. The number of words of arguments and the type and order of the values they represent
must be consistent with those of the selected interface method.

The interface table of the class of the type of objectref is determined. If objectref is an array type, then
the interface table of class Object (2.2.1.4 Unsupported Classes) is used. The interface table is searched
for the resolved interface. The result of the search is a table that is used to map the method token to an
index.

The index is an unsigned byte that is used as an index into the method table of the class of the type of
objectref. If the objectref is an array type, then the method table of class Object is used. The table entry
at that index includes a direct reference to the method’s code and modifier information.

The nargs — 1 words of arguments and objectref are popped from the operand stack. A new stack frame
is created for the method being invoked, and objectref and the arguments are made the values of its
first nargs words of local variables, with objectref in local variable 0, argl in local variable 1, and so on.

Java Card Platform Virtual Machine Specification, v3.2 Page 202

The new stack frame is then made current, and the Java Card virtual machine pc is set to the opcode of
the first instruction of the method to be invoked. Execution continues with the first instruction of the
method.

Runtime Exception
If objectref is null, the invokeinterface instruction throws a NullPointerException.
Notes

In some circumstances, the invokeinterface instruction may throw a SecurityException if the current
context (3.4 Contexts) is not the context (3.4 Contexts) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition. If the current context is not the object’s context
and the Java Card RE permits invocation of the method, the invokeinterface instruction will cause a
context switch (3.4 Contexts) to the object’s context before invoking the method, and will cause a return
context switch to the previous context when the invoked method returns.

7.5.54.1 Interface Method Resolution
The resolution of the interface method is defined by the following algorithm. The virtual machine is not
required to exactly perform the following steps provided the result is the same.

Verify access permission from current context to object O on the stack
Extract the interface | from the constant pool entry CONSTANT _Classref
Determine the dynamic type (class) C for object O on the stack

il

Search in the classes in the hierarchy of C for an implemented interface info structure
for the interface |, i.e., starting with C1=C:
a. Searchthetable interfaces of Cl. If | is not found, then set C1 to the immediate
super-class of C1 and recursively continue at step a
5. Extract the virtual token T1 of the method M in class C1 as T1=index[method] in the
implemented interface info structure
6. Lookup the implementation of the method M in the hierarchy of C, i.e.:
a. Determine a token T in class C that denotes the same method M as token T1 in class C1
b. If the token T does not exist or if T is less than C.public_virtual_method_table_base or if
C.public_virtual_method_table[T-C.public_virtual_method_table_base] is OxFFFF, then
recursively continue the lookup at step a, with C being now set to the super-class of C
c. Otherwise, C.public_virtual_method_table[T-C.public_virtual_method_table_base] is
the location in class C of the method M to be invoked
7. Ifnoimplemented interface info structureis found at step 4.a or if no method
implementation has been found in the hierarchy or if a method is found but has the
ACC_ABSTRACT flag, then the virtual machine must exit the interface method resolution and
handle this as an error. See section 2.3.3.2.

Java Card Platform Virtual Machine Specification, v3.2 Page 203

7.5.55 invokespecial
Invoke instance method; special handling for superclass, private, and instance initialization method
invocations

Format

invokespecial
indexbytel
indexbyte2

Forms

invokespecial = 140 (0x8c)

Stack

..., objectref, [argl, [arg2 ...]] -> ...
Description

The unsigned indexbytel and indexbyte2 are used to construct an index into the constant pool of the
current package (3.5 Frames), where the value of the index is (indexbytel << 8) | indexbyte2. If the
invoked method is a private instance method or an instance initialization method, the constant pool
item at index must be of type CONSTANT _StaticMethodref (6.8.3 CONSTANT _StaticFieldref and
CONSTANT _StaticMethodref), a reference to a statically linked instance method. If the invoked method
is a superclass method, the constant pool item at index must be of type CONSTANT_SuperMethodref
(6.8.2 CONSTANT _InstanceFieldref, CONSTANT _VirtualMethodref, CONSTANT_SuperMethodref), a
reference to an instance method of a specified class. The reference is resolved. The resolved method
must not be <clinit>, a class or interface initialization method. If the method is <init>, an instance
initialization method, then the method must only be invoked once on an uninitialized object, and before
the first backward branch following the execution of the new instruction that allocated the object.
Finally, if the resolved method is protected, and it is a member of a superclass of the current class, and
the method is not declared in the same package as the current class, then the class of objectref must be
either the current class or a subclass of the current class.

The resolved method includes the code for the method, an unsigned byte nargs that must not be zero,
and the method’s modifier information.

The objectref must be of type reference, and must be followed on the operand stack by nargs — 1 words
of arguments, where the number of words of arguments and the type and order of the values they
represent must be consistent with those of the selected instance method.

The nargs — 1 words of arguments and objectref are popped from the operand stack. A new stack frame
is created for the method being invoked, and objectref and the arguments are made the values of its
first nargs words of local variables, with objectref in local variable 0, argl in local variable 1, and so on.
The new stack frame is then made current, and the Java Card virtual machine pc is set to the opcode of

Java Card Platform Virtual Machine Specification, v3.2 Page 204

the first instruction of the method to be invoked. Execution continues with the first instruction of the
method.

Runtime Exception
If objectref is null, the invokespecial instruction throws a NullPointerException.

7.5.56 invokestatic
Invoke a class (static) method

Format

invokestatic
indexbytel
indexbyte2

Forms

invokestatic = 141 (0x8d)
Stack

..., [argl, [arg2 ..]] > ...
Description

The unsigned indexbytel and indexbyte2 are used to construct an index into the constant pool of the
current package (3.5 Frames), where the value of the index is (indexbytel << 8) | indexbyte2. The
constant pool item at that index must be of type CONSTANT_StaticMethodref (6.8.3

CONSTANT _StaticFieldref and CONSTANT _StaticMethodref), a reference to a static method. The method
must not be <init>, an instance initialization method, or <clinit>, a class or interface initialization
method. It must be static, and therefore cannot be abstract.

The resolved method includes the code for the method, an unsigned byte nargs that may be zero, and
the method’s modifier information.

The operand stack must contain nargs words of arguments, where the number of words of arguments
and the type and order of the values they represent must be consistent with those of the resolved
method.

The nargs words of arguments are popped from the operand stack. A new stack frame is created for the
method being invoked, and the words of arguments are made the values of its first nargs words of local
variables, with argl in local variable 0, arg2 in local variable 1, and so on. The new stack frame is then
made current, and the Java Card virtual machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction of the method.

Java Card Platform Virtual Machine Specification, v3.2 Page 205

7.5.56.1 Super Method Resolution
The resolution of the super method is defined by the following algorithm. The virtual machine is not
required to exactly perform the following steps provided the result is the same.

Verify access permission from current context to object O on the stack
Extract the class C1 and token T1 from the constant pool entry
CONSTANT SuperMethodref
3. Lookup the method in the hierarchy starting with C being the direct super-class of C1:
a. Determine a token T in class C that denotes the same method as token T1 in class C1
b. IfTislessthanC.public virtual method table baseorif
C.public virtual method table[T-
C.public virtual method table base] is OXFFFF, then recursively
continue the lookup at step a, with C being now set to the super-class of C
c. Otherwise, C.public virtual method table[T-
C.public virtual method table base] isthe location in class C of the
method to be invoked
4. if no method implementation has been found in the hierarchy, i.e., no token T exists or there are
no more super-classes during the lookup, or if a method implementation has been found but
has the ACC_ABSTRACT flag, then the virtual machine must exit the super method resolution
and handle this as an error. See section 2.3.3.1.

7.5.57 invokevirtual
Invoke instance method; dispatch based on class

Format

invokevirtual
indexbytel
indexbyte2

Forms

invokevirtual = 139 (0x8b)

Stack

..., objectref, [argl, [arg2 ...]] -> ...
Description

The unsigned indexbytel and indexbyte2 are used to construct an index into the constant pool of the
current package (3.5 Frames), where the value of the index is (indexbytel << 8) | indexbyte2. The
constant pool item at that index must be of type CONSTANT_VirtualMethodref (6.8.2

CONSTANT _InstanceFieldref, CONSTANT_VirtualMethodref, CONSTANT_SuperMethodref), a reference

Java Card Platform Virtual Machine Specification, v3.2 Page 206

to a class and a virtual method token. The specified method is resolved. The method must not be <init>,
an instance initialization method, or <clinit>, a class or interface initialization method. Finally, if the
resolved method is protected, and it is a member of a superclass of the current class, and the method is
not declared in the same package as the current class, then the class of objectref must be either the
current class or a subclass of the current class.

The resolved method reference includes an unsigned index into the method table of the resolved class
and an unsigned byte nargs that must not be zero.

The objectref must be of type reference. The index is an unsigned byte that is used as an index into the
method table of the class of the type of objectref. If the objectref is an array type, then the method
table of class Object (2.2.1.4 Unsupported Classes) is used. The table entry at that index includes a direct
reference to the method’s code and modifier information.

The objectref must be followed on the operand stack by nargs — 1 words of arguments, where the
number of words of arguments and the type and order of the values they represent must be consistent
with those of the selected instance method.

The nargs — 1 words of arguments and objectref are popped from the operand stack. A new stack frame
is created for the method being invoked, and objectref and the arguments are made the values of its
first nargs words of local variables, with objectref in local variable 0, argl in local variable 1, and so on.
The new stack frame is then made current, and the Java Card virtual machine pcis set to the opcode of
the first instruction of the method to be invoked. Execution continues with the first instruction of the
method.

Runtime Exception
If objectref is null, the invokevirtual instruction throws a NullPointerException.

In some circumstances, the invokevirtual instruction may throw a SecurityException if the current
context (3.4 Contexts) is not the context (3.4 Contexts) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition. If the current context is not the object’s context
and the Java Card RE permits invocation of the method, the invokevirtual instruction will cause a context
switch (3.4 Contexts) to the object’s context before invoking the method, and will cause a return context
switch to the previous context when the invoked method returns.

7.5.57.1 Virtual Method Resolution
The resolution of the virtual method is defined by the following algorithm. The virtual machine is not
required to exactly perform the following steps provided the result is the same.

Verify access permission from current context to object O on the stack
Extract the class C1 and token T1 from the constant pool entry
CONSTANT_VirtualMethodref

3. Get the dynamic type C of the object O and lookup the method in the hierarchy of the class, i.e.:

Java Card Platform Virtual Machine Specification, v3.2 Page 207

Determine a token T in class C that denotes the same method as token T1 in class C1
If the token T does not exist or if T is less than
C.public virtual method table baseorif
C.public virtual method table[T -
C.public virtual method table base] is OXFFFF, then recursively
continue the lookup at step a, with C being now set to the super-class of C
c. Otherwise,
C.public virtual method table[T -
C.public virtual method table base] is the location in class C of the method M
to be invoked
4. If no method implementation has been found in the hierarchy or if a method implementation
has been found but has the ACC_ ABSTRACT flag, then the virtual machine must exit the virtual
method resolution and handle this as an error. See section 2.3.3.1.

7.5.58 ior
Boolean OR int

Format

ior

Forms

ior = 86 (0x56)

Stack

..., valuel.word1, valuel.word2, value2.word1, value2.word2 -> ..., result.word1, result.word?2
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. An int result
is calculated by taking the bitwise inclusive OR of valuel and value2. The result is pushed onto the
operand stack.

Notes
If a virtual machine does not support the int data type, the ior instruction will not be available.

7.5.59 irem
Remainder int

Format
irem

Forms

Java Card Platform Virtual Machine Specification, v3.2 Page 208

irem = 74 (0x4a)

Stack

..., valuel.wordl, valuel.word2, value2.word1, value2.word2 -> ..., result.word1, result.word2
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. The int
result is the value of the Java expression valuel — (valuel / value2) * value2. The result is pushed onto
the operand stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is equal to a. This identity holds even in
the special case that the dividend is the negative int of largest possible magnitude for its type and the
divisor is =1 (the remainder is 0). It follows from this rule that the result of the remainder operation can
be negative only if the dividend is negative and can be positive only if the dividend is positive. Moreover,
the magnitude of the result is always less than the magnitude of the divisor.

Runtime Exception

If the value of the divisor for a short remainder operator is 0, irem throws an ArithmeticException.
Notes

If a virtual machine does not support the int data type, the irem instruction will not be available.

7.5.60 ireturn
Return int from method

Format

ireturn

Forms

ireturn = 121 (0x79)

Stack

..., value.word1, value.word2 -> [empty]
Description

The value must be of type int. It is popped from the operand stack of the current frame (3.5 Frames) and
pushed onto the operand stack of the frame of the invoker. Any other values on the operand stack of
the current method are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to the invoker.

Java Card Platform Virtual Machine Specification, v3.2 Page 209

Notes
If a virtual machine does not support the int data type, the ireturn instruction will not be available.

7.5.61 ishl
Shift left int

Format

ishl

Forms

ishl = 78 (Ox4e)

Stack

..., valuel.wordl, valuel.word2, value2.word1, value2.word2 -> ..., result.word1, result.word2
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. An int result
is calculated by shifting valuel left by s bit positions, where s is the value of the low five bits of value2.
The result is pushed onto the operand stack.

Notes

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s. The shift distance
actually used is always in the range 0 to 31, inclusive, as if value2 were subjected to a bitwise logical
AND with the mask value 0x1f.

If a virtual machine does not support the int data type, the ishl instruction will not be available.

7.5.62 ishr
Arithmetic shift right int

Format

ishr

Forms

ishr = 80 (0x50)

Stack

..., valuel.word1l, valuel.word2, value2.word1, value2.word2 -> ..., result.word1, result.word2

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 210

Both valuel and value2 must be of type int. The values are popped from the operand stack. An int result
is calculated by shifting valuel right by s bit positions, with sign extension, where s is the value of the
low five bits of value2. The result is pushed onto the operand stack.

Notes

The resulting value is | (valuel) / 2s], where s is value2 & Ox1f. For nonnegative valuel, this is equivalent
(even if overflow occurs) to truncating int division by 2 to the power s. The shift distance actually used is
always in the range 0 to 31, inclusive, as if value2 were subjected to a bitwise logical AND with the mask
value Ox1f.

If a virtual machine does not support the int data type, the ishr instruction will not be available.

7.5.63 istore
Store int into local variable

Format

Istore
index

Forms

istore = 42 (0x2a)

Stack

..., value.word1, value.word2 -> ...
Description

The index is an unsigned byte. Both index and index + 1 must be a valid index into the local variables of
the current frame (3.5 Frames). The value on top of the operand stack must be of type int. It is popped
from the operand stack, and the local variables at index and index + 1 are set to value.

Notes
If a virtual machine does not support the int data type, the istore instruction will not be available.

7.5.64 istore_<n>
Store int into local variable

Format
istore_<n>

Forms

Java Card Platform Virtual Machine Specification, v3.2 Page 211

istore_0 =51 (0x33)
istore_1 =52 (0x34)
istore_2 =53 (0x35)
istore_3 =54 (0x36)

Stack
..., value.word1, value.word2 -> ...
Description

Both <n>and <n> + 1 must be a valid indices into the local variables of the current frame (3.5 Frames).
The value on top of the operand stack must be of type int. It is popped from the operand stack, and the
local variables at index and index + 1 are set to value.

Notes
If a virtual machine does not support the int data type, the istore_<n> instruction will not be available.

7.5.65 isub
Subtract int

Format

isub

Forms

isub = 68 (0x44)

Stack

..., valuel.word1, valuel.word2, value2.word1, value2.word2 -> ..., result.word1, result.word?2
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. The int
result is valuel - value2. The result is pushed onto the operand stack.

For int subtraction, a — b produces the same result as a + (=b). For int values, subtraction from zeros is
the same as negation.

Despite the fact that overflow or underflow may occur, in which case the result may have a different
sign than the true mathematical result, execution of an isub instruction never throws a runtime
exception.

Notes

Java Card Platform Virtual Machine Specification, v3.2 Page 212

If a virtual machine does not support the int data type, the isub instruction will not be available.

7.5.66 itableswitch
Access jump table by int index and jump

Format

itableswitch
defaultbytel
defaultbyte2
lowbytel
lowbyte2
lowbyte3
lowbyted
highbytel
highbyte2
highbyte3
highbyte4
jump offsets...

Offset Format

offsetbytel
offsetbyte2

Forms

itableswitch = 116 (0x74)
Stack

.., index -> ...
Description

An itableswitch instruction is a variable-length instruction. Immediately after the itableswitch opcode
follow a signed 16-bit value default, a signed 32-bit value low, a signed 32-bit value high, and then high —
low + 1 further signed 16-bit offsets. The value low must be less than or equal to high. The high —low + 1
signed 16-bit offsets are treated as a 0-based jump table. Each of the signed 16-bit values is constructed
from two unsigned bytes as (bytel << 8) | byte2. Each of the signed 32-bit values is constructed from
four unsigned bytes as (bytel << 24) | (byte2 << 16) | (byte3 << 8) | byte4.

The index must be of type int and is popped from the stack. If index is less than low or index is greater
than high, then a target address is calculated by adding default to the address of the opcode of this
itableswitch instruction. Otherwise, the offset at position index — low of the jump table is extracted. The

Java Card Platform Virtual Machine Specification, v3.2 Page 213

target address is calculated by adding that offset to the address of the opcode of this itableswitch
instruction. Execution then continues at the target address.

The target addresses that can be calculated from each jump table offset, as well as the one calculated
from default, must be the address of an opcode of an instruction within the method that contains this
itableswitch instruction.

Notes
If a virtual machine does not support the int data type, the itableswitch instruction will not be available.

7.5.67 iushr
Logical shift right int

Format

iushr

Forms

iushr = 82 (0x52)

Stack

..., valuel.wordl, valuel.word2, value2.word1, value2.word2 -> ..., result.word1, result.word2
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. An int result
is calculated by shifting the result right by s bit positions, with zero extension, where s is the value of the
low five bits of value2. The result is pushed onto the operand stack.

Notes

If valuel is positive and s is value2 & 0x1f, the result is the same as that of valuel >>s; if valuel is
negative, the result is equal to the value of the expression (valuel >> s) + (2 << ~s). The addition of the
(2 << ~s) term cancels out the propagated sign bit. The shift distance actually used is always in the range
0 to 31, inclusive, as if value2 were subjected to a bitwise logical AND with the mask value Ox1f.

If a virtual machine does not support the int data type, the iushr instruction will not be available.

7.5.68 ixor
Boolean XOR int

Format

ixor

Java Card Platform Virtual Machine Specification, v3.2 Page 214

Forms

ixor = 88 (0x58)

Stack

..., valuel.wordl, valuel.word2, value2.word1, value2.word2 -> ..., result.word1, result.word2
Description

Both valuel and value2 must be of type int. The values are popped from the operand stack. An int result
is calculated by taking the bitwise exclusive OR of valuel and value2. The result is pushed onto the
operand stack.

Notes
If a virtual machine does not support the int data type, the ixor instruction will not be available.

7.5.69 jsr
Jump subroutine

Format

jsr

branchbytel
branchbyte2
Forms

jsr =113 (0x71)
Stack

... => ..., address
Description

The address of the opcode of the instruction immediately following this jsr instruction is pushed onto
the operand stack as a value of type returnAddress. The unsigned branchbytel and branchbyte2 are
used to construct a signed 16-bit offset, where the offset is (branchbytel << 8) | branchbyte2. Execution
proceeds at that offset from the address of this jsr instruction. The target address must be that of an
opcode of an instruction within the method that contains this jsr instruction.

Notes

The jsr instruction is used with the ret instruction in the implementation of the finally clause of the Java
language. Note that jsr pushes the address onto the stack and ret gets it out of a local variable. This
asymmetry is intentional.

Java Card Platform Virtual Machine Specification, v3.2 Page 215

7.5.70 new
Create new object

Format

new
indexbytel
indexbyte2

Forms

new = 143 (0x8f)
Stack

..=> ..., objectref
Description

The unsigned indexbytel and indexbyte2 are used to construct an index into the constant pool of the
current package (3.5 Frames), where the value of the index is (indexbytel << 8) | indexbyte2. The item
at that index in the constant pool must be of type CONSTANT _Classref (6.8.1 CONSTANT_Classref), a
reference to a class or interface type. The reference is resolved and must result in a class type (it must
not result in an interface type). Memory for a new instance of that class is allocated from the heap, and
the instance variables of the new object are initialized to their default initial values. The objectref, a
reference to the instance, is pushed onto the operand stack.

Notes

The new instruction does not completely create a new instance; instance creation is not completed until
an instance initialization method has been invoked on the uninitialized instance.

7.5.71 newarray
Create new array

Format

newarray
atype

Forms
newarray = 144 (0x90)
Stack

..., count -> ..., arrayref

Java Card Platform Virtual Machine Specification, v3.2 Page 216

Description

The count must be of type short. It is popped off the operand stack. The count represents the number of
elements in the array to be created.

The unsigned byte atype is a code that indicates the type of array to create. It must take one of the
following values:

Table 7-4: Array Values

Array Type atype

T_BOOLEAN 10
T_BYTE 11
T_SHORT 12
T_INT 13

A new array whose components are of type atype, of length count, is allocated from the heap. A
reference arrayref to this new array object is pushed onto the operand stack. All of the elements of the
new array are initialized to the default initial value for its type.

Runtime Exception
If count is less than zero, the newarray instruction throws a NegativeArraySizeException.
Notes

If a virtual machine does not support the int data type, the value of atype may not be 13 (array type =
T_INT).

7.5.72 nop
Do nothing

Format

nop

Forms

nop = 0 (0x0)
Stack

No change

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 217

Do nothing.

7.5.73 pop
Pop top operand stack word

Format

pop

Forms

pop = 59 (0x3b)
Stack

..., word -> ...
Description

The top word is popped from the operand stack. The pop instruction must not be used unless the word
contains a 16-bit data type.

Notes
The pop instruction operates on an untyped word, ignoring the type of data it contains.

7.5.74 pop2
Pop top two operand stack words

Format

pop2

Forms

pop2 = 60 (0x3c)

Stack

..., word2, word1 -> ...

Description

The top two words are popped from the operand stack.

The pop?2 instruction must not be used unless each of word1 and word2 is a word that contains a 16-bit
data type or both together are the two words of a single 32-bit datum.

Notes

Java Card Platform Virtual Machine Specification, v3.2 Page 218

Except for restrictions preserving the integrity of 32-bit data types, the pop2 instruction operates on an
untyped word, ignoring the type of data it contains.

7.5.75 putfield_<t>
Set field in object

Format

putfield_<t>
index

Forms

putfield_a = 135 (0x87)
putfield b =136 (0x88)
putfield_s =137 (0x89)
putfield i =138 (0x8a)

Stack

..., objectref, value -> ...

OR

..., objectref, value.word1, value.word2 -> ...
Description

The unsigned index is used as an index into the constant pool of the current package (3.5 Frames). The
constant pool item at the index must be of type CONSTANT _InstanceFieldref (6.8.2

CONSTANT _InstanceFieldref, CONSTANT_VirtualMethodref, CONSTANT_SuperMethodref), a reference
to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a member of a superclass of
the current class, and the field is not declared in the same package as the current class, then the class of
objectref must be either the current class or a subclass of the current class. If the field is final, it must be
declared in the current class.

The item must resolve to a field with a type that matches t, as follows:

e afield must be of type reference

e b field must be of type byte or type boolean
o s field must be of type short

o jfield must be of type int

value must be of a type that is assighment compatible with the field descriptor (t) type.

Java Card Platform Virtual Machine Specification, v3.2 Page 219

The width of a field in a class instance is determined by the field type specified in the instruction. The
item is resolved, determining the field offset??. The objectref, which must be of type reference, and the
value are popped from the operand stack. If the field is of type byte or type boolean, the value is
truncated to a byte. The field at the offset from the start of the object referenced by objectref is set to
the value.

Runtime Exception
If objectref is null, the putfield_<t> instruction throws a NullPointerException.
Notes

In some circumstances, the putfield_<t> instruction may throw a SecurityException if the current
context (3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref.
The exact circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime
Environment Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the putfield i instruction will not be available.

7.5.76 putfield_<t>_this
Set field in current object

Format

putfield_<t>_this
index

Forms

putfield_a_this = 181 (0xb5)
putfield_b_this = 182 (0xb6)
putfield_s_this = 183 (0xb7)
putfield_i_this = 184 (0xb8)

Stack

..., value -> ...

OR

..., value.word1, value.word2 -> ...

Description

22 The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may define any
mapping from token value to offset into an instance.

Java Card Platform Virtual Machine Specification, v3.2 Page 220

The currently executing method must be an instance method that was invoked using the invokevirtual,
invokeinterface or invokespecial instruction. The local variable at index 0 must contain a reference
objectref to the currently executing method’s this parameter. The unsigned index is used as an index
into the constant pool of the current package (3.5 Frames). The constant pool item at the index must be
of type CONSTANT _InstanceFieldref (6.8.2 CONSTANT _InstanceFieldref, CONSTANT_VirtualMethodref,
CONSTANT _SuperMethodref), a reference to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a member of a superclass of
the current class, and the field is not declared in the same package as the current class, then the class of
objectref must be either the current class or a subclass of the current class. If the field is final, it must be
declared in the current class.

The item must resolve to a field with a type that matches t, as follows:

e afield must be of type reference

e b field must be of type byte or type boolean
e s field must be of type short

e i field must be of type int

value must be of a type that is assignment compatible with the field descriptor (t) type.

The width of a field in a class instance is determined by the field type specified in the instruction. The
item is resolved, determining the field offset?. The value is popped from the operand stack. If the field is
of type byte or type boolean, the value is truncated to a byte. The field at the offset from the start of the
object referenced by objectref is set to the value.

Runtime Exception
If objectref is null, the putfield_<t>_this instruction throws a NullPointerException.
Notes

In some circumstances, the putfield_<t>_this instruction may throw a SecurityException if the current
context (3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref.
The exact circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime
Environment Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the putfield_i_this instruction will not be
available.

23 The offset may be computed by adding the field token value to the size of an instance of theimmediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may define any
mapping from token value to offset into an instance.

Java Card Platform Virtual Machine Specification, v3.2 Page 221

7.5.77 putfield_<t>_w
Set field in object (wide index)

Format

putfield<t>_w
indexbytel
indexbyte2

Forms

putfield a_w =177 (Oxb1)
putfield_b_w =178 (0xb2)
putfield s w =179 (0xb3)
putfield_i_w = 180 (0Oxb4)

Stack

..., objectref, value -> ...

OR

..., objectref, value.word1, value.word2 -> ...
Description

The unsigned indexbytel and indexbyte2 are used to construct an index into the constant pool of the
current package (3.4 Contexts), where the value of the index is (indexbytel << 8) | indexbyte2. The
constant pool item at the index must be of type CONSTANT _InstanceFieldref (6.8.2

CONSTANT _InstanceFieldref, CONSTANT_VirtualMethodref, CONSTANT_SuperMethodref), a reference
to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a member of a superclass of
the current class, and the field is not declared in the same package as the current class, then the class of
objectref must be either the current class or a subclass of the current class. If the field is final, it must be
declared in the current class.

The item must resolve to a field with a type that matches t, as follows:

e afield must be of type reference

o b field must be of type byte or type boolean
e s field must be of type short

e jfield must be of type int

value must be of a type that is assighnment compatible with the field descriptor (t) type.

Java Card Platform Virtual Machine Specification, v3.2 Page 222

The width of a field in a class instance is determined by the field type specified in the instruction. The
item is resolved, determining the field offset?®. The objectref, which must be of type reference, and the
value are popped from the operand stack. If the field is of type byte or type boolean, the value is
truncated to a byte. The field at the offset from the start of the object referenced by objectref is set to
the value.

Runtime Exception
If objectref is null, the putfield_<t> w instruction throws a NullPointerException.
Notes

In some circumstances, the putfield_<t>_w instruction may throw a SecurityException if the current
context (3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref.
The exact circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime
Environment Specification, Java Card Platform, v3.2, Classic Edition.

7.5.78 putstatic_<t>
Set static field in class

Format

putstatic_<t>
indexbytel
indexbyte2

Forms

putstatic_a =127 (0x7f)
putstatic_b = 128 (0x80)
putstatic_s = 129 (0x81)
putstatic_i =130 (0x82)

Stack
..., value -> ...

OR

24 The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may define any
mapping from token value to offset into an instance. If a virtual machine does not support the int data type, the
putfield_i_w instruction will not be available.

Java Card Platform Virtual Machine Specification, v3.2 Page 223

..., value.word1, value.word2 -> ...
Description

The unsigned indexbytel and indexbyte2 are used to construct an index into the constant pool of the
current package (3.5 Frames), where the value of the index is (indexbytel << 8) | indexbyte2. The
constant pool item at the index must be of type CONSTANT_StaticFieldref (6.8.3

CONSTANT _StaticFieldref and CONSTANT_StaticMethodref), a reference to a static field. If the field is
final, it must be declared in the current class.

The item must resolve to a field with a type that matches t, as follows:

e afield must be of type reference

e b field must be of type byte or type boolean
e s field must be of type short

e jfield must be of type int

value must be of a type that is assighnment compatible with the field descriptor (t) type.

The width of a class field is determined by the field type specified in the instruction. The item is
resolved, determining the class field. The value is popped from the operand stack. If the field is of type
byte or type boolean, the value is truncated to a byte. The field is set to the value.

Notes

In some circumstances, the putstatic_a instruction may throw a SecurityException if the current context
(3.4 Contexts) is not the owning context (3.4 Contexts) of the object being stored in the field. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the putstatic_i instruction will not be available.

7.5.79 ret
Return from subroutine

Format

ret
index

Forms
ret = 114 (0x72)
Stack

No change

Java Card Platform Virtual Machine Specification, v3.2 Page 224

Description

The index is an unsigned byte that must be a valid index into the local variables of the current frame (3.5
Frames). The local variable at index must contain a value of type returnAddress. The contents of the
local variable are written into the Java Card virtual machine’s pc register, and execution continues there.

Notes

The ret instruction is used with the jsr instruction in the implementation of the finally keyword of the
Java language. Note that jsr pushes the address onto the stack and ret gets it out of a local variable. This
asymmetry is intentional.

The ret instruction should not be confused with the return instruction. A return instruction returns
control from a Java method to its invoker, without passing any value back to the invoker.

7.5.80 return
Return void from method

Format

return

Forms

return = 122 (0x7a)
Stack

... > [empty]
Description

Any values on the operand stack of the current method are discarded. The virtual machine then
reinstates the frame of the invoker and returns control to the invoker.

7.5.81 s2b
Convert short to byte

Format

s2b

Forms

s2b =91 (0x5b)
Stack

..., value -> ..., result

Java Card Platform Virtual Machine Specification, v3.2 Page 225

Description

The value on top of the operand stack must be of type short. It is popped from the top of the operand
stack, truncated to a byte result, then sign-extended to a short result. The result is pushed onto the
operand stack.

Notes

The s2b instruction performs a narrowing primitive conversion. It may lose information about the overall
magnitude of value. The result may also not have the same sign as value.

7.5.82 s2i
Convert short to int

Format

s2i

Forms

s2i =92 (0x5c)

Stack

..., value -> ..., result.word1, result.word2
Description

The value on top of the operand stack must be of type short. It is popped from the operand stack and
sign-extended to an int result. The result is pushed onto the operand stack.

Notes

The s2i instruction performs a widening primitive conversion. Because all values of type short are exactly
representable by type int, the conversion is exact.

If a virtual machine does not support the int data type, the s2i instruction will not be available.

7.5.83 sadd
Add short

Format
sadd
Forms

sadd = 65 (0x41)

Java Card Platform Virtual Machine Specification, v3.2 Page 226

Stack
..., valuel, value2 -> ..., result
Description

Both valuel and value2 must be of type short. The values are popped from the operand stack. The short
result is valuel + value2. The result is pushed onto the operand stack.

If a sadd instruction overflows, then the result is the low-order bits of the true mathematical result in a
sufficiently wide two’s-complement format. If overflow occurs, then the sign of the result may not be
the same as the sign of the mathematical sum of the two values.

7.5.84 saload
Load short from array

Format

saload

Forms

saload = 38 (0x26)

Stack

..., arrayref, index -> ..., value
Description

The arrayref must be of type reference and must refer to an array whose components are of type short.
The index must be of type short. Both arrayref and index are popped from the operand stack. The short
value in the component of the array at index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions
If arrayref is null, saload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the saload instruction
throws an ArraylndexOutOfBoundsException.

Otherwise if the arrayref references a write-only array view, the saload instruction throws a
SecurityException.

Notes

In some circumstances, the saload instruction may throw a SecurityException if the current context (3.4
Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact

Java Card Platform Virtual Machine Specification, v3.2 Page 227

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

7.5.85 sand
Boolean AND short

Format

sand

Forms

sand = 83 (0x53)

Stack

..., valuel, value2 -> ..., result
Description

Both valuel and value2 are popped from the operand stack. A short result is calculated by taking the
bitwise AND (conjunction) of valuel and value2. The result is pushed onto the operand stack.

7.5.86 sastore
Store into short array

Format

sastore

Forms

sastore = 57 (0x39)

Stack

..., arrayref, index, value -> ...
Description

The arrayref must be of type reference and must refer to an array whose components are of type short.
The index and value must both be of type short. The arrayref, index and value are popped from the
operand stack. The short value is stored as the component of the array indexed by index.

If the array referenced by arrayref is integrity-sensitive, its integrity is checked before the value is
stored. The integrity control element is updated when the value is stored. The whole operation (value
storage and the integrity control element update) is performed atomically.

Runtime Exception

Java Card Platform Virtual Machine Specification, v3.2 Page 228

If arrayref is null, sastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the sastore instruction
throws an ArraylndexOutOfBoundsException.

Otherwise if the array referenced by arrayref is integrity-sensitive and an inconsistency is detected
during the array integrity check, the sastore instruction throws a SecurityException.

Otherwise if the arrayref references a read-only array view, the sastore instruction throws a
SecurityException.

Notes

In some circumstances, the sastore instruction may throw a SecurityException if the current context (3.4
Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment
Specification, Java Card Platform, v3.2, Classic Edition.

7.5.87 sconst_<s>
Push short constant

Format
sconst_<s>
Forms

sconst_m1 =2 (0x2)
sconst_0 =3 (0x3)
sconst_1 =4 (0x4)
sconst_2 =5 (0x5)
sconst_3 =6 (0x6)
sconst_4= 7 (0x7)
sconst_5 = 8 (0x8)

Stack

>, <S>

Description

Push the short constant <s> (-1, 0, 1, 2, 3, 4, or 5) onto the operand stack.

7.5.88 sdiv
Divide short

Format

Java Card Platform Virtual Machine Specification, v3.2 Page 229

sdiv

Forms

sdiv =71 (0x47)

Stack

..., valuel, value2 -> ..., result
Description

Both valuel and value2 must be of type short. The values are popped from the operand stack. The short
result is the value of the Java expression valuel / value2. The result is pushed onto the operand stack.

A short division rounds towards 0; that is, the quotient produced for short values in n/d is a short value
g whose magnitude is as large as possible while satisfying | d - q | <= | n |. Moreover, q is a positive
when | n | >=| d | and n and d have the same sign, but q is negative when | n | >=| d | andnand d
have opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative integer of the
largest possible magnitude for the short type, and the divisor is —1, then overflow occurs, and the result
is equal to the dividend. Despite the overflow, no exception is thrown in this case.

Runtime Exception
If the value of the divisor in a short division is 0, sdiv throws an ArithmeticException.

7.5.89 sinc
Increment local short variable by constant

Format

sinc
index
const

Forms

sinc = 89 (0x59)
Stack

No change

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 230

The index is an unsigned byte that must be a valid index into the local variable of the current frame (3.5
Frames). The const is an immediate signed byte. The local variable at index must contain a short. The
value const is first sign-extended to a short, then the local variable at index is incremented by that
amount.

7.5.90 sinc_w
Increment local short variable by constant

Format

sinc_w
index
bytel
byte2

Forms

sinc_w = 150 (0x96)
Stack

No change
Description

The index is an unsigned byte that must be a valid index into the local variable of the current frame (3.5
Frames). The immediate unsigned bytel and byte2 values are assembled into a short const where the
value of const is (bytel << 8) | byte2. The local variable at index, which must contain a short, is
incremented by const.

7.5.91 sipush
Push short

Format

sipush
bytel
byte2

Forms

sipush = 19 (0x13)

Stack

... > ..., valuel.wordl, valuel.word2

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 231

The immediate unsigned bytel and byte2 values are assembled into a signed short where the value of
the short is (bytel << 8) | byte2. The intermediate value is then sign-extended to an int, and the
resulting value is pushed onto the operand stack.

Notes
If a virtual machine does not support the int data type, the sipush instruction will not be available.

7.5.92 sload
Load short from local variable

Format

sload
index

Forms

sload = 22 (0x16)
Stack

.. => ..., value
Description

The index is an unsigned byte that must be a valid index into the local variables of the current frame (3.5
Frames). The local variable at index must contain a short. The value in the local variable at index is
pushed onto the operand stack.

7.5.93 sload_<n>
Load short from local variable

Format
sload_<n>
Forms

sload_0 =28 (0x1c)
sload_1 =29 (0x1d)
sload_2 =30 (0Ox1e)
sload_3 =31 (0x1f)

Stack

.. => ..., value

Java Card Platform Virtual Machine Specification, v3.2 Page 232

Description

The <n> must be a valid index into the local variables of the current frame (3.5 Frames). The local
variable at <n> must contain a short. The value in the local variable at <n> is pushed onto the operand
stack.

Notes

Each of the sload_<n> instructions is the same as sload with an index of <n>, except that the operand
<n> is implicit.

7.5.94 slookupswitch
Access jump table by key match and jump

Format

slookupswitch
defaultbytel
defaultbyte2
npairs1

npairs2
match-offset pairs...

Pair Format

matchbytel
matchbyte2
offsetbytel
offsetbyte2

Forms

slookupswitch = 117 (0x75)
Stack

..., key-> ...

Description

A slookupswitch instruction is a variable-length instruction. Immediately after the slookupswitch opcode
follow a signed 16-bit value default, an unsigned 16-bit value npairs, and then npairs pairs. Each pair
consists of a short match and a signed 16-bit offset. Each of the signed 16-bit values is constructed from
two unsigned bytes as (bytel << 8) | byte2.

The table match-offset pairs of the slookupswitch instruction must be sorted in increasing numerical
order by match.

Java Card Platform Virtual Machine Specification, v3.2 Page 233

The key must be of type short and is popped from the operand stack and compared against the match
values. If it is equal to one of them, then a target address is calculated by adding the corresponding
offset to the address of the opcode of this slookupswitch instruction. If the key does not match any of
the match values, the target address is calculated by adding default to the address of the opcode of this
slookupswitch instruction. Execution then continues at the target address.

The target address that can be calculated from the offset of each match-offset pair, as well as the one
calculated from default, must be the address of an opcode of an instruction within the method that
contains this slookupswitch instruction.

Notes
The match-offset pairs are sorted to support lookup routines that are quicker than linear search.

7.5.95 smul
Multiply short

Format

smul

Forms

smul = 69 (0x45)

Stack

..., valuel, value2 -> ..., result
Description

Both valuel and value2 must be of type short. The values are popped from the operand stack. The short
result is valuel * value2. The result is pushed onto the operand stack.

If a smul instruction overflows, then the result is the low-order bits of the mathematical product as a
short. If overflow occurs, then the sign of the result may not be the same as the sign of the
mathematical product of the two values.

7.5.96 sneg
Negate short

Format
sneg
Forms

sneg = 72 (0x4b)

Java Card Platform Virtual Machine Specification, v3.2 Page 234

Stack
..., value -> ..., result
Description

The value must be of type short. It is popped from the operand stack. The short result is the arithmetic
negation of value, -value. The result is pushed onto the operand stack.

For short values, negation is the same as subtraction from zero. Because the Java Card virtual machine
uses two’s-complement representation for integers and the range of two’s-complement values is not
symmetric, the negation of the maximum negative short results in that same maximum negative
number. Despite the fact that overflow has occurred, no exception is thrown.

For all short values x, -x equals (~x) + 1.

7.5.97 sor
Boolean OR short

Format

sor

Forms

sor = 85 (0x55)

Stack

..., valuel, value2 -> ..., result
Description

Both valuel and value2 must be of type short. The values are popped from the operand stack. A short
result is calculated by taking the bitwise inclusive OR of valuel and value2. The result is pushed onto the
operand stack.

7.5.98 srem
Remainder short

Format

srem

Forms

srem = 73 (0x49)

Stack

Java Card Platform Virtual Machine Specification, v3.2 Page 235

..., valuel, value2 -> ..., result
Description

Both valuel and value2 must be of type short. The values are popped from the operand stack. The short
result is the value of the Java expression valuel — (valuel / value2) * value2. The result is pushed onto
the operand stack.

The result of the srem instruction is such that (a/b)*b + (a%b) is equal to a. This identity holds even in
the special case that the dividend is the negative short of largest possible magnitude for its type and the
divisor is =1 (the remainder is 0). It follows from this rule that the result of the remainder operation can
be negative only if the dividend is negative and can be positive only if the dividend is positive. Moreover,
the magnitude of the result is always less than the magnitude of the divisor.

Runtime Exception
If the value of the divisor for a short remainder operator is 0, srem throws an ArithmeticException.

7.5.99 sreturn
Return short from method

Format

sreturn

Forms

sreturn = 120 (0x78)
Stack

..., value -> [empty]
Description

The value must be of type short. It is popped from the operand stack of the current frame (3.5 Frames)
and pushed onto the operand stack of the frame of the invoker. Any other values on the operand stack
of the current method are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to the invoker.

7.5.100 sshl
Shift left short

Format

sshl

Java Card Platform Virtual Machine Specification, v3.2 Page 236

Forms

sshl =77 (0x4d)

Stack

..., valuel, value2 -> ..., result
Description

Both valuel and value2 must be of type short. The values are popped from the operand stack. A short
result is calculated by shifting valuel left by s bit positions, where s is the value of the low five bits of
value2. The result is pushed onto the operand stack.

Notes

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s. The shift distance
actually used is always in the range 0 to 31, inclusive, as if value2 were subjected to a bitwise logical
AND with the mask value 0x1f.

The mask value of 0x1f allows shifting beyond the range of a 16-bit short value. It is used by this
instruction, however, to ensure results equal to those generated by the Java instruction ishl.

7.5.101 sshr
Arithmetic shift right short

Format

sshr

Forms

sshr = 79 (0x4f)

Stack

..., valuel, value2 -> ..., result
Description

Both valuel and value2 must be of type short. The values are popped from the operand stack. A short
result is calculated by shifting valuel right by s bit positions, with sign extension, where s is the value of
the low five bits of value2. The result is pushed onto the operand stack.

Notes

The resulting value is | (valuel) / 2s], where s is value2 & Ox1f. For nonnegative valuel, this is equivalent
(even if overflow occurs) to truncating short division by 2 to the power s. The shift distance actually used

Java Card Platform Virtual Machine Specification, v3.2 Page 237

is always in the range 0 to 31, inclusive, as if value2 were subjected to a bitwise logical AND with the
mask value Ox1f.

The mask value of 0x1f allows shifting beyond the range of a 16-bit short value. It is used by this
instruction, however, to ensure results equal to those generated by the Java instruction ishr.

7.5.102 sspush
Push short

Format

sspush
bytel
byte2

Forms

sspush = 17 (0x11)
Stack

...=> ..., value
Description

The immediate unsigned bytel and byte2 values are assembled into a signed short where the value of
the short is (bytel << 8) | byte2. The resulting value is pushed onto the operand stack.

7.5.103 sstore
Store short into local variable

Format

sstore
index

Forms

sstore = 41 (0x29)
Stack

..., value -> ...

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 238

The index is an unsigned byte that must be a valid index into the local variables of the current frame (3.5
Frames). The value on top of the operand stack must be of type short. It is popped from the operand
stack, and the value of the local variable at index is set to value.

7.5.104 sstore_<n>
Store short into local variable

Format
sstore_<n>
Forms

sstore_0 = 47 (0x2f)
sstore_1 =48 (0x30)
sstore_2 =49 (0x31)
sstore_3 =50 (0x32)

Stack
..., value -> ...
Description

The <n> must be a valid index into the local variables of the current frame (3.5 Frames). The value on
top of the operand stack must be of type short. It is popped from the operand stack, and the value of
the local variable at <n> is set to value.

7.5.105 ssub
Subtract short

Format

ssub

Forms

ssub = 67 (0x43)

Stack

..., valuel, value2 -> ..., result
Description

Both valuel and value2 must be of type short. The values are popped from the operand stack. The short
result is valuel - value2. The result is pushed onto the operand stack.

Java Card Platform Virtual Machine Specification, v3.2 Page 239

For short subtraction, a — b produces the same result as a + (—b). For short values, subtraction from
zeros is the same as negation.

Despite the fact that overflow or underflow may occur, in which case the result may have a different
sign than the true mathematical result, execution of a ssub instruction never throws a runtime
exception.

7.5.106 stableswitch
Access jump table by short index and jump

Format

stableswitch
defaultbytel
defaultbyte2
lowbytel
lowbyte2
highbytel
highbyte2
jump offsets...

Offset Format

offsetbytel
offsetbyte2

Forms

stableswitch = 115 (0x73)
Stack

.., index -> ...

Description

A stableswitch instruction is a variable-length instruction. Immediately after the stableswitch opcode
follow a signed 16-bit value default, a signed 16-bit value low, a signed 16-bit value high, and then high —
low + 1 further signed 16-bit offsets. The value low must be less than or equal to high. The high —low + 1
signed 16-bit offsets are treated as a 0-based jump table. Each of the signed 16-bit values is constructed
from two unsigned bytes as (bytel << 8) | byte2.

The index must be of type short and is popped from the stack. If index is less than low or index is greater
than high, than a target address is calculated by adding default to the address of the opcode of this
stableswitch instruction. Otherwise, the offset at position index — low of the jump table is extracted. The

Java Card Platform Virtual Machine Specification, v3.2 Page 240

target address is calculated by adding that offset to the address of the opcode of this stableswitch
instruction. Execution then continues at the target address.

The target addresses that can be calculated from each jump table offset, as well as the one calculated
from default, must be the address of an opcode of an instruction within the method that contains this
stableswitch instruction.

7.5.107 sushr
Logical shift right short

Format

sushr

Forms

sushr = 81 (0x51)

Stack

..., valuel, value2 -> ..., result
Description

Both valuel and value2 must be of type short. The values are popped from the operand stack. A short
result is calculated by sign-extending valuel to 32 bits®® and shifting the result right by s bit positions,
with zero extension, where s is the value of the low five bits of value2. The resulting value is then
truncated to a 16-bit result. The result is pushed onto the operand stack.

Notes

If valuel is positive and s is value2 & 0x1f, the result is the same as that of valuel >> s; if valuel is
negative, the result is equal to the value of the expression (valuel >> s) + (2 << ~s). The addition of the
(2 << ~s) term cancels out the propagated sign bit. The shift distance actually used is always in the range
0 to 31, inclusive, as if value2 were subjected to a bitwise logical AND with the mask value 0Ox1f.

The mask value of 0x1f allows shifting beyond the range of a 16-bit short value. It is used by this
instruction, however, to ensure results equal to those generated by the Java instruction iushr.

7.5.108 swap_x
Swap top two operand stack words

25 Sign extension to 32 bits ensures that the result computed by this instruction will be exactlyequal to that
computed by the Java iushr instruction, regardless of the input values. In a JavaCard virtual machine the expression
“Oxffff >>> 0x01” yields Oxffff, where “>>>" is performed by the sushr instruction. The same result is rendered by a
Java virtual machine.

Java Card Platform Virtual Machine Specification, v3.2 Page 241

Format

swap_x
mn

Forms

swap_x = 64 (0x40)

Stack

..., WordM+N, ..., wordM+1, wordM, ..., word1 -> ..., wordM, ..., word1, wordM+N, ..., wordM+1
Description

The unsigned byte mn is used to construct two parameter values. The high nibble, (mn & 0xf0) >> 4, is
used as the value m. The low nibble, (mn & 0xf), is used as the value n. Permissible values for both m
and nare1and 2.

The top m words on the operand stack are swapped with the n words immediately below.

The swap_x instruction must not be used unless the ranges of words 1 through m and words m+1
through m+n each contain either a 16-bit data type or a 32-bit data type.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the swap_x instruction operates on
untyped words, ignoring the types of data they contain.

If a virtual machine does not support the int data type, the only permissible value for both m and n is 1.

7.5.109 sxor
Boolean XOR short

Format

sxor

Forms

sxor = 87 (0x57)

Stack

..., valuel, value2 -> ..., result

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 242

Both valuel and value2 must be of type short. The values are popped from the operand stack. A short
result is calculated by taking the bitwise exclusive OR of valuel and value2. The result is pushed onto the
operand stack.

Java Card Platform Virtual Machine Specification, v3.2 Page 243

Tables of Instructions

The following pages contain lists of the virtual machine instructions recognized by the Java Card
platform, organized by opcode value (Table 8-1) and by opcode mnemonic (Table 8-2).

8.1 Instructions by Opcode Value
The following table shows the opcode values for the instructions recognized by the Java Card Platform.

Table 8-1: Instructions by Opcode Value

dec \ hex \ mnemonic
0 00 nop

1 01 aconst null
2 02 sconst ml
3 03 sconst 0
4 04 sconst 1
5 05 sconst 2
6 06 sconst 3
7 07 sconst 4
8 08 sconst 5
9 09 iconst ml
10 0A iconst 0O
11 OB iconst 1
12 0C iconst 2
13 0D iconst 3
14 OE iconst 4
15 OF iconst 5
16 10 bspush

17 11 sspush

18 12 bipush

19 13 sipush

20 14 iipush

21 15 aload

22 16 sload

23 17 iload

24 18 aload O
25 19 aload 1
26 1A aload 2
27 1B aload 3
28 1C sload O
29 1D sload 1
30 1E sload 2
31 1F sload 3

Java Card Platform Virtual Machine Specification, v3.2 Page 244

\ hex

\ mnemonic

dec

32 20 iload O
33 21 iload 1
34 22 iload 2
35 23 iload 3
36 24 aaload
37 25 baload
38 26 saload
39 27 iaload
40 28 astore
41 29 sstore
42 2A istore
43 2B astore 0
44 2C astore 1
45 2D astore 2
46 2E astore 3
47 2F sstore 0
48 30 sstore 1
49 31 sstore 2
50 32 sstore 3
51 33 istore 0
52 34 istore 1
53 35 istore 2
54 36 istore 3
55 37 aastore
56 38 bastore
57 39 sastore
58 3A iastore
59 3B pop

60 3C pop2

61 3D dup

62 3E dup?2

63 3F dup x

64 40 swap_ X
65 41 sadd

66 42 iadd

67 43 ssub

68 44 isub

69 45 smul

70 46 imul

71 47 sdiv

72 48 idiv

73 49 srem

74 4A irem

75 4B sneg

76 4C ineg

Java Card Platform Virtual Machine Specification, v3.2

Page 245

dec \ hex \ mnemonic

77 4D sshl

78 4F ishl

79 4F sshr

80 50 ishr

81 51 sushr

82 52 iushr

83 53 sand

84 54 iand

85 55 sor

86 56 ior

87 57 SXOTr

88 58 ixor

89 59 sinc

90 5A iinc

91 5B s2b

92 5C s21

93 5D i2b

94 5E i2s

95 S5F icmp

96 60 ifeq

97 61 ifne

98 62 iflt

99 63 ifge

100 64 ifgt

101 65 ifle

102 66 ifnull
103 67 ifnonnull
104 68 if acmpeqg
105 69 if acmpne
106 6A if scmpeq
107 6B if scmpne
108 6C if scmplt
109 6D if scmpge
110 6E if scmpgt
111 oF if scmple
112 70 goto

113 71 jsr

114 72 ret

115 73 stableswitch
116 74 itableswitch
117 75 slookupswitch
118 76 ilookupswitch
119 77 areturn
120 78 sreturn
121 79 ireturn

Java Card Platform Virtual Machine Specification, v3.2

Page 246

dec \ hex \ mnemonic

122 TA return

123 7B getstatic a
124 7C getstatic b
125 7D getstatic s
126 TE getstatic 1
127 TF putstatic a
128 80 putstatic b
129 81 putstatic s
130 82 putstatic 1
131 83 getfield a
132 84 getfield b
133 85 getfield s
134 86 getfield 1
135 87 putfield a
136 88 putfield b
137 89 putfield s
138 8A putfield i
139 8B invokevirtual
140 8C invokespecial
141 8D invokestatic
142 8E invokeinterface
143 8F new

144 90 newarray
145 91 anewarray
146 92 arraylength
147 93 athrow

148 94 checkcast
149 95 instanceof
150 96 sinc w

151 97 iinc w

152 98 ifeg w

153 99 ifne w

154 9A iflt w

155 9B ifge w

156 9C ifgt w

157 9D ifle w

158 9E ifnull w
159 9F ifnonnull w
160 A0 if acmpeq w
161 Al if acmpne w
162 A2 if scmpeg w
163 A3 if scmpne w
164 A4 if scmplt w
165 A5 if scmpge w
166 Ab if scmpgt w

Java Card Platform Virtual Machine Specification, v3.2

Page 247

dec \ hex \ mnemonic

167 A7 if scmple w

168 A8 goto w

169 A9 getfield a w
170 AA getfield b w
171 AB getfield s w
172 AC getfield i w
173 AD getfield a this
174 AE getfield b this
175 AF getfield s this
176 BO getfield 1 this
177 Bl putfield a w
178 B2 putfield b w
179 B3 putfield s w
180 B4 putfield i w
181 B5 putfield a this
182 B6 putfield b this
183 B7 putfield s this
184 B8 putfield i this
254 FE impdepl

255 FF impdep?2

8.2 Instructions by Opcode Mnemonic
The following table shows the opcode mnemonics for the instructions recognized by the Java Card
Platform.

Table 8-2: Instructions by Opcode Mnemonic

mnemonic dec hex
aaload 36 24
aastore 55 37
aconst null 1 01
aload 21 15
aload O 24 18
aload 1 25 19
aload 2 26 1A
aload 3 27 1B
anewarray 145 91
areturn 119 77
arraylength 146 92
astore 40 28
astore O 43 2B
astore 1 44 2C
astore 2 45 2D
astore 3 46 2E

Java Card Platform Virtual Machine Specification, v3.2 Page 248

mnemonic dec hex
athrow 147 93
baload 37 25
bastore 56 38
bipush 18 12
bspush 16 10
checkcast 148 94
dup 61 3D
dup x 63 3F
dup?2 62 3E
getfield a 131 83
getfield a this 173 AD
getfield a w 169 A9
getfield b 132 84
getfield b this 174 AE
getfield b w 170 AA
getfield 1 134 86
getfield i this 176 BO
getfield i w 172 AC
getfield s 133 85
getfield s this 175 AF
getfield s w 171 AB
getstatic a 123 7B
getstatic b 124 7C
getstatic 1 126 TE
getstatic s 125 7D
goto 112 70
goto w 168 A8
i2b 93 5D
i2s 94 5E
iadd 66 42
iaload 39 27
iand 84 54
iastore 58 3A
icmp 95 5F
iconst O 10 0A
iconst 1 11 0B
iconst 2 12 0ocC
iconst 3 13 0D
iconst 4 14 0E
iconst 5 15 OF
iconst ml 9 09
idiv 72 48
if acmpeq 104 68
if acmpeqg w 160 A0
if acmpne 105 69

Java Card Platform Virtual Machine Specification, v3.2

Page 249

mnemonic dec hex
if acmpne w 161 Al
if scmpeg 106 6A
if scmpeqg w 162 A2
if scmpge 109 6D
if scmpge w 165 A5
if scmpgt 110 6E
if scmpgt w 166 A6
if scmple 111 6F
if scmple w 167 A7
if scmplt 108 6C
if scmplt w 164 A4
if scmpne 107 6B
if scmpne w 163 A3
ifeqg 96 60
ifeqg w 152 98
ifge 99 63
ifge w 155 9B
ifgt 100 64
ifgt w 156 9C
ifle 101 65
ifle w 157 9D
iflt 98 62
iflt w 154 9A
ifne 97 61
ifne w 153 99
ifnonnull 103 67
ifnonnull w 159 9F
ifnull 102 66
ifnull w 158 9E
iinc 90 5A
iinc w 151 97
iipush 20 14
iload 23 17
iload O 32 20
iload 1 33 21
iload 2 34 22
iload 3 35 23
ilookupswitch 118 76
imul 70 46
ineg 76 4C
instanceof 149 95
invokeinterface 142 8E
invokespecial 140 8C
invokestatic 141 8D
invokevirtual 139 8B

Java Card Platform Virtual Machine Specification, v3.2

Page 250

mnemonic dec hex

ior 86 56
irem 74 4A
ireturn 121 79
ishl 78 45
ishr 80 50
istore 42 2A
istore 0 51 33
istore 1 52 34
istore 2 53 35
istore 3 54 36
isub 68 44
itableswitch 116 74
iushr 82 52
ixor 88 58
jsr 113 71
new 143 8F
newarray 144 90
nop 0 00
pop 59 3B
pop?2 60 3C
putfield a 135 87
putfield a this 181 B5
putfield a w 177 Bl
putfield b 136 88
putfield b this 182 B6
putfield b w 178 B2
putfield i 138 8A
putfield i1 this 184 B8
putfield 1 w 180 B4
putfield s 137 89
putfield s this 183 B7
putfield s w 179 B3
putstatic a 127 7F
putstatic b 128 80
putstatic i 130 82
putstatic s 129 81
ret 114 72
return 122 TA
s2b 91 5B
s21i 92 5C
sadd 65 41
saload 38 26
sand 83 53
sastore 57 39
sconst 0 3 03

Java Card Platform Virtual Machine Specification, v3.2

Page 251

mnemonic dec hex
sconst 1 4 04
sconst 2 5 05
sconst 3 6 06
sconst 4 7 07
sconst 5 8 08
sconst ml 2 02
sdiv 71 47
sinc 89 59
sinc w 150 96
sipush 19 13
sload 22 16
sload 0 28 1C
sload 1 29 1D
sload 2 30 1E
sload 3 31 1F
slookupswitch 117 75
smul 69 45
sneg 75 4B
sor 85 55
srem 73 49
sreturn 120 78
sshl 77 4D
sshr 79 4F
sspush 17 11
sstore 41 29
sstore 0 47 2F
sstore 1 48 30
sstore 2 49 31
sstore 3 50 32
ssub 67 43
stableswitch 115 73
sushr 81 51
swap_ x 64 40
SXOr 87 57

Java Card Platform Virtual Machine Specification, v3.2

Page 252

Java Card Platform Virtual Machine Specification, v3.2 Page 253

Glossary

A

active applet instance

an applet instance that is selected on at least one of the logical channels.

AID (application identifier)

defined by ISO 7816, a string used to uniquely identify card applications and certain types of files in card
file systems. An AID consists of two distinct pieces: a 5-byte RID (resource identifier) and a 0 to 11-byte
PIX (proprietary identifier extension). The RID is a resource identifier assigned to companies by ISO. The
PIX identifiers are assigned by companies.

A unique AID is assigned to each CAP file and public packages in a CAP file. In addition, a unique AID is
assigned to each applet in the CAP file. The AID for the CAP file, the package AID of every public package
in a CAP file and the default AID for each applet defined in the CAP file are specified in the CAP file. They
are supplied to the converter when the CAP file is generated.

APDU

an acronym for Application Protocol Data Unit as defined in ISO 7816-4.

API

an acronym for Application Programming Interface. The API defines calling conventions by which an
application program accesses the operating system and other services.

applet

within the context of this document, a Java Card applet, which is the basic unit of selection, context,
functionality, and security in Java Card technology.

applet application

an application that consists of one or more applets.

applet framework

an APl that enables applet applications to be built.

applet developer

a person creating an applet using Java Card technology.

Java Card Platform Virtual Machine Specification, v3.2 Page 254

applet execution context

currently active applet owner identifier.

applet firewall

the mechanism that prevents unauthorized accesses to objects in contexts other than currently active
context.

applet CAP file

a CAP file that contains one or more applet packages. See applet package.

applet package

a Java programming language package that contains one or more non-abstract classes that extend the
javacard. framework.Applet class. See also library package.

assigned logical channel

the logical channel on which the applet instance is either the active applet instance or will become the
active applet instance.

atomic operation

an operation that either completes in its entirety or no part of the operation completes at all.

atomicity

state in which a particular operation is atomic. Atomicity of data updates guarantee that data are not
corrupted in case of power loss or card removal.

ATR

an acronym for Answer to Reset. An ATR is a string of bytes sent by the Java Card platform after a reset
condition.

authentication

the process of establishing or confirming an application or a user as authentic using some sort of
credentials

Java Card Platform Virtual Machine Specification, v3.2 Page 255

B

basic logical channel

logical channel O, the only channel that is active at card reset in the APDU application environment. This
channel is permanent and can never be closed.

big-endian

a technique of storing multibyte data where the high-order bytes come first. For example, given an 8-bit
data item stored in big-endian order, the first bit read is considered the high bit.

binary compatibility

in a Java Card system, a change in a Java programming language package in a Java Card CAP file results
in a new CAP file. A new CAP file is binary compatible with (equivalently, does not break compatibility
with) a preexisting CAP file if another CAP file converted using the export files of packages included in
the preexisting CAP file can link with the new CAP file without errors.

bytecode

machine-independent code generated by the compiler and executed by the Java virtual machine.

C

CAD

an acronym for Card Acceptance Device. The CAD is the device in which the card is inserted.

CAP file

Standard file format containing a binary representation of a shared library (library CAP file) or an
application with its libraries that might be exported or not (applet CAP file).

A CAP file represents a module, which is a unit of code, made of one or more Java packages, with
dependencies and list of exported packages and an assigned name (AID) for lifecycle management. Its
structure is made of multiple CAP components deployed within a JAR file

When a CAP file containing application(s) is deployed on a Java Card platform, it is assigned a new
unique group context that must be associated with any application instance created from code within
this application module.

CAP file component

A Java Card platform CAP file consists of a set of components, which represent a set of one or more Java
programming language packages. Each component describes a set of elements or an aspect of the CAP

Java Card Platform Virtual Machine Specification, v3.2 Page 256

file. A complete CAP file must contain all of the required components: Header, Directory, Import,
Constant Pool, Method, Static Field, and Reference Location.

The following components are conditionally included or optional: the Applet, Export, Static Resources
and Debug. The Applet component is included only if one or more applets are defined in one or more
packages in the CAP file. The Export component is included only if one or more packages are public and
exported allowing classes in other packages to import elements from them. The Static Resources
component is included only if static resources are embedded in the CAP file. The Debug component is
optional. It contains all of the data necessary for debugging.

card session

a card session begins with the insertion of the card into the CAD. The card is then able to exchange
streams of APDUs with the CAD. The card session ends when the card is removed from the CAD.
cast

the explicit conversion from one data type to another.

card session

a card session begins when it is powered up or reset. The card is then able to exchange messages with
external clients. The card session ends when the card loses power or is reset.

client application

an on-card application that uses services provided by other applications (server applications).

constant pool

the constant pool contains variable-length structures representing various string constants, class names,
field names, and other constants referred to within the CAP file and the Export File structure. Each of
the constant pool entries, including entry zero, is a variable-length structure whose format is indicated
by its first tag byte. There are no ordering constraints on entries in the constant pool entries. One
constant pool is associated with each CAP file.

There are differences between the Java platform constant pool and the Java Card technology-based
constant pool. For example, in the Java platform constant pool there is one constant type for method
references, while in the Java Card constant pool, there are three constant types for method references.
The additional information provided by a constant type in Java Card technologies simplifies resolution of
references.

context

protected object space associated with each applet CAP file and Java Card RE. All objects owned by an
applet belong to the context associated with the applet's CAP file.

Java Card Platform Virtual Machine Specification, v3.2 Page 257

context switch

a change from one currently active context to another. For example, a context switch is caused by an
attempt to access an object that belongs to an applet instance that resides in a different context. The
result of a context switch is a new currently active context.

converter

a piece of software that preprocesses all of the Java programming language class files contained in a set
of packages and converts them into a CAP file. The Converter also produces export files for exported
packages.

currently active context

when an object instance method is invoked, an owning context of this object becomes the currently
active context.

currently selected applet

the Java Card RE keeps track of the currently selected Java Card applet. Upon receiving a SELECT FILE
command with this applet's AID, the Java Card RE makes this applet the currently selected applet. The
Java Card RE sends all APDU commands to the currently selected applet.

custom CAP file component

a new component added to the CAP file. The new component must conform to the general component
format. It is silently ignored by a Java Card virtual machine that does not recognize the component. The
identifiers associated with the new component are recorded in the custom component item of the
CAP file's Directory component.

D

default applet

an applet that is selected by default on a logical channel in the APDU application environment when it is
opened. If an applet is designated the default applet on a particular logical channel in the APDU
application environment on the Java Card platform, it becomes the active applet by default when that
logical channel is opened using the basic channel.

E

EEPROM

an acronym for Electrically Erasable, Programmable Read Only Memory.

Java Card Platform Virtual Machine Specification, v3.2 Page 258

entry point method

well-defined method of an object owned by an application (respectively the Java Card RE) that can be
"legally" invoked by another application or the Java Card RE (respectively an application). SIO methods
and other container-managed objects' lifecycle methods are application entry point methods. Java Card
RE entry point objects' methods are Java Card RE entry point methods.

entry point objects

see Java Card RE entry point objects.

export file

a file produced by the Converter tool that represents the fields and methods of a package that can be
imported by classes in other classic applet applications and classic libraries.

externally visible

in the Java Card platform, any classes, interfaces, their constructors, methods and fields that can be
accessed from package according to the Java programming language semantics, as defined by the Java
Language Specification.

Externally visible items are represented in an export file. For a library package, externally visible items
are represented in an export file. For an applet package, only those externally visible items that are part
of a shareable interface are represented in an export file.

A Java Card CAP file may restrict the visibility of a package it contains. In this case, these packages are
only visible to the other packages inside the CAP file and are not be accessible by packages in other CAP
files. No export file is generated for the packages that have their visibility restricted to packages inside
the same CAP file.

F

finalization

the process by which a Java virtual machine (VM) allows an unreferenced object instance to release non-
memory resources (for example, close and open files) prior to reclaiming the object's memory.
Finalization is only performed on an object when that object is ready to be garbage collected (meaning,
there are no references to the object).

Finalization is not supported by the Java Card virtual machine. The method finalize () is not called
automatically by the Java Card virtual machine.
firewall

the mechanism that prevents unauthorized accesses to objects in one application group context from
another application group context.

Java Card Platform Virtual Machine Specification, v3.2 Page 259

flash memory

a type of persistent mutable memory. It is more efficient in space and power than EPROM. Flash
memory can be read bit by bit but can be updated only as a block. Thus, flash memory is typically used
for storing additional programs or large chunks of data that are updated as a whole.

framework

the set of classes that implement the API. This includes core and extension packages. Responsibilities
include applet selection, sending APDU bytes, and managing atomicity.

G

garbage collection

the process by which dynamically allocated storage is automatically reclaimed during the execution of a
program.

global array

an array objects accessible from any context.

group context

protected object space associated with each CAP file and Java Card RE defining the boundaries of the
firewall.

H

heap

a common pool of free memory in volatile and persistent spaces usable by a program for dynamic
memory allocation, in which blocks of memory are used in an arbitrary order. The Java Card virtual
machine's heap is not required to be garbage collected and objects allocated from the heap are not
necessarily reclaimed.

I

installer

the on-card mechanism to download and install CAP files. The installer receives executable binary from
the off-card installation program, writes the binary into the smart card memory, links it with the other
classes on the card, and creates and initializes any data structures used internally by the Java Card
Runtime Environment.

Java Card Platform Virtual Machine Specification, v3.2 Page 260

installation program

the off-card mechanism that employs a card acceptance device (CAD) to transmit the executable binary
in a CAP file to the installer running on the card.

instance variables

also known as non-static fields.

instantiation

in object-oriented programming, to produce a particular object from its class template. This involves
allocation of a data structure with the types specified by the template, and initialization of instance
variables with either default values or those provided by the class's constructor function.
instruction

a statement that indicates an operation for the computer to perform and any data to be used in
performing the operation. An instruction can be in machine language or a programming language.
internally visible

code items that are not externally visible. These items are not described in a package's export file and
use private tokens to represent internal references. See externally visible.

J

JAR file

an acronym for Java Archive file, which is a file format used for aggregating and compressing many files
into one.

Java Card Platform Remote Method Invocation

a subset of the Java Platform Remote Method Invocation (RMI) system optionally supported by the Java
Card RE. It provides a mechanism for a client application to invoke a method on a remote object of an
applet on the card.

Java Card Runtime Environment (Java Card RE)
consists of the Java Card virtual machine, the application framework, and the associated native
methods.

Java Card Virtual Machine (Java Card VM)

a subset of the Java virtual machine, which is designed to be run on smart cards and other resource-
constrained devices. The Java Card VM acts an engine that loads Java class files and executes them with
a particular set of semantics.

Java Card Platform Virtual Machine Specification, v3.2 Page 261

Java Card RE context

the context of the Java Card RE has special system privileges so that it can perform operations that are
denied to contexts of applications.

Java Card RE entry point object

an object owned by the Java Card RE context that contains entry point methods. These methods can be
invoked from any context and allows applications to request Java Card RE system services. A Java Card
RE entry point object can be either temporary or permanent:

e temporary - references to temporary Java Card RE entry point objects cannot be stored in class
variables, instance variables or array components. The Java Card RE detects and restricts
attempts to store references to these objects as part of the firewall functionality to prevent
unauthorized reuse. Examples of these objects are APDU objects and the APDU byte array.

e permanent - references to permanent Java Card RE entry point objects can be stored and freely
reused. Examples of these objects are Java Card RE-owned AID instances.
JDK software

an acronym for Java Development Kit. The JDK software provides the environment required for software
development in the Java programming language. The JDK software is available for a variety of operating
systems.

L

library CAP file

a CAP file that contains only library packages. See library package.

library package

a Java programming language package that does not contain any non-abstract classes that extend the
class javacard.framework.Applet. See also applet package.

local variable

a data item known within a block, but inaccessible to code outside the block. For example, any variable
defined within a method is a local variable and cannot be used outside the method.

logical channel

as seen at the card edge, works as a logical link to an applet application on the card. A logical channel
establishes a communications session between a card applet and the terminal. Commands issued on a
specific logical channel are forwarded to the active applet on that logical channel. For more information,
see the ISO/IEC 7816 Specification, Part 4. (http://wuw.iso.org).

Java Card Platform Virtual Machine Specification, v3.2 Page 262

http://www.iso.org/
http://www.iso.org/

M

MAC

an acronym for Message Authentication Code. MAC is an encryption of data for security purposes.

mask production (masking)

refers to embedding the Java Card virtual machine, runtime environment, and applications in the read-
only memory of a smart card during manufacture.

method

a procedure or routine associated with one or more classes in object-oriented languages.

multiselectable applets

implements the javacard. framework.MultiSelectable interface. Multiselectable applets can
be selected on multiple logical channels in the APDU application environment at the same time. They
can also accept other applets belonging to the same applet application being selected simultaneously.

multiselected applet

an applet instance that is selected and, therefore, active on more than one logical channel in the APDU
application environment simultaneously.

N

namespace

a set of names in which all names are unique.

native method

a method that is not implemented in the Java programming language, but in another language. The CAP
file format does not support native methods to prevent from loading untrusted code.

nibble

four bits.

non-volatile memory

memory that is expected to retain its contents between card tear and power up events or across a reset
event on the smart card device.

Java Card Platform Virtual Machine Specification, v3.2 Page 263

O

object-oriented

a programming methodology based on the concept of an object, which is a data structure encapsulated
with a set of routines, called methods, which operate on the data.

object owner (Classic)

the applet instance within the currently active context when the object is instantiated. An object can be
owned by an applet instance, or by the Java Card RE.

object

in object-oriented programming, unique instance of a data structure defined according to the template
provided by its class. Each object has its own values for the variables belonging to its class and can
respond to the messages (methods) defined by its class.

origin logical channel

the logical channel in the APDU application environment on which an APDU command is issued.

ownhning context

the application or Java Card RE context in which an object is instantiated or created.

owner context

see owning context.

P

package

a namespace within the Java programming language that can have classes and interfaces.

PCD

an acronym for Proximity Coupling Device. The PCD is a contactless card reader device.

persistent object

persistent objects and their values persist from one card session to the next, indefinitely. Objects are
persistent when referred from another persistent object. Persistent object values are typically updated
atomically using transactions. The term persistent does not mean there is an object-oriented database
on the card or that objects are serialized and deserialized, just that the objects are not lost when the
card loses power.

Java Card Platform Virtual Machine Specification, v3.2 Page 264

PIX

see AID (application identifier).

R

RAM (random access memory)

temporary working space for storing and modifying data. RAM is non-persistent memory; that is, the
information content is not preserved when power is removed from the memory cell. RAM can be
accessed an unlimited number of times and none of the restrictions of EEPROM apply.

reference implementation (RI)

functional and fully compatible implementation of a given technology. It enables developers to build
prototypes of applications based on the technology.

remote interface

an interface of an applet application, which extends, directly or indirectly, the
java.rmi.Remote interface.

Each method declaration in the remote interface or its super-interfaces includes the exception
java.rmi.RemoteException (Or one of its super classes) in its throws clause.

In a remote method declaration, if a remote object is declared as a return type, it is declared as the
remote interface, not the implementation class of that interface.

In addition, Java Card RMI imposes additional constraints on the definition of remote methods of an
applet application. See Runtime Environment Specification, Java Card Platform, v3.2, Classic Edition.

remote methods

the methods of a remote interface of an applet application.

remote object

an object of an applet application whose remote methods can be invoked remotely from the off-card
client. A remote object is described by one or more remote interfaces of an applet application.

RFU

acronym for Reserved for Future Use.

RID

see AID (application identifier).

Java Card Platform Virtual Machine Specification, v3.2 Page 265

RMI

an acronym for Remote Method Invocation. RMI is a mechanism for invoking instance methods on
objects located on remote virtual machines (meaning, a virtual machine other than that of the invoker).
ROM (read-only memory)

memory used for storing the fixed program of the card. A smart card's ROM contains operating system
routines as well as permanent data and user applications. No power is needed to hold data in this kind
of memory. ROM cannot be written to after the card is manufactured. Writing a binary image to the
ROM is called masking and occurs during the chip manufacturing process.

runtime environment

see Java Card Runtime Environment (Java Card RE).

S

service

a shareable interface object that a server application uses to provide a set of well-defined functionalities
to its clients.

shareable interface

an interface that defines a set of shared methods. These interface methods can be invoked from an
application in one context when the object implementing them is owned by an applet in another
context.

shareable interface object (SIO0)

an object that implements the shareable interface.

smart card

a card that stores and processes information through the electronic circuits embedded in silicon in the
substrate of its body. Unlike magnetic stripe cards, smart cards carry both processing power and
information. They do not require access to remote databases at the time of a transaction.

SPI

an acronym for Service Provider Interface or sometimes for System Programming Interface. The SPI
defines calling conventions by which a platform implementer may implement system services.

Java Card Platform Virtual Machine Specification, v3.2 Page 266

T

terminal

is typically a computer in its own right with an interface which connects with a smart card to exchange
and process data.

thread

the basic unit of program execution. A process can have several threads running concurrently each
performing a different job, such as waiting for events or performing a time-consuming job that the
program doesn't need to complete before going on. When a thread has finished its job, it is suspended
or destroyed.

The Java Card virtual machine can support only a single thread of execution. Java Card technology
programs cannot use class Thread or any of the thread-related keywords in the Java programming
language.

transaction
an atomic operation in which the developer defines the extent of the operation by indicating in the
program code the beginning and end of the transaction.

transient object

the state of transient objects does not persist from one card session to the next and is reset to a default
state at specified intervals. Updates to the values of transient objects are not atomic and are not
affected by transactions.

U

uniform resource identifier (URI)

a compact string of characters used to identify or name an abstract or physical resource. A URI can be
further classified as a uniform resource locator (URL), a uniform resource name (URN), or both. See RFC
3986 for more information.

uniform resource locator (URL)

a compact string representation used to locate resources available via network protocols or other
protocols. Once the resource represented by a URL has been accessed, various operations may be
performed on that resource. See RFC 1738 for more information. A URL is a type of uniform resource
identifier (URI).

Java Card Platform Virtual Machine Specification, v3.2 Page 267

\Y%

verification

a process performed on an application or library executable that checks that the binary representation
of the application or library is structurally correct and type safe.

volatile memory

memory that is not expected to retain its contents between card tear and power up events or across a
reset event on the smart card device.

volatile object

an object that is ideally suited to be stored in volatile memory. This type of object is intended for a
short-lived object or an object, which requires frequent updates. A volatile object is garbage collected
on card tear (or reset).

\W

word

an abstract storage unit. A word is large enough to hold a value of type byte, short, reference or
returnAddress. Two words are large enough to hold a value of integer type.

Java Card Platform Virtual Machine Specification, v3.2 Page 268

Annex A - Oracle Technology Network Developer License Terms

Specifications

Export Controls

Export laws and regulations of the United States and any other relevant local export laws and
regulations apply to the specifications. You agree that such export control laws govern your use
of the specifications (including technical data), and you agree to comply with all such export
laws and regulations (including "deemed export" and "deemed re- export" regulations). You
agree that no data, information, program and/or materials resulting from services (or direct
product thereof) will be exported, directly or indirectly, in violation of these laws, or will be
used for any purpose prohibited by these laws including, without limitation, nuclear, chemical,

or biological weapons proliferation, or development of missile technology.
Accordingly, you confirm:

- You will not download, provide, make available or otherwise export or re-export the
specifications, directly or indirectly, to countries prohibited by applicable laws and regulations

nor to citizens, nationals or residents of those countries.

- You are not listed on the United States Department of Treasury lists of Specially Designated
Nationals and Blocked Persons, Specially Designated Terrorists, and Specially Designated
Narcotic Traffickers, nor are you listed on the United States Department of Commerce Table of

Denial Orders.

- You will not download or otherwise export or re-export the specifications, directly or

indirectly, to persons on the above mentioned lists.

- You will not use the specifications for, and will not allow the specifications to be used for, any
purposes prohibited by applicable law, including, without limitation, for the development,
design, manufacture or production of nuclear, chemical or biological weapons of mass

destruction.

Oracle Employees: Under no circumstances are Oracle Employees authorized to download the
specifications for the purpose of distributing it to customers. Oracle products are available to

employees for internal use or demonstration purposes only. In keeping with Oracle's trade

Java Card Platform Virtual Machine Specification, v3.2 Page 269

compliance obligations under U.S. and applicable multilateral law, failure to comply with this

policy could result in disciplinary action up to and including termination.

PLEASE READ THE FOLLOWING LICENSE AGREEMENT TERMS AND CONDITIONS CAREFULLY
BEFORE INSTALLING OR USING THE SPECIFICATIONS. THESE TERMS AND CONDITIONS
CONSTITUTE A LEGAL AGREEMENT BETWEEN YOU AND ORACLE.

ORACLE TECHNOLOGY NETWORK LICENSE AGREEMENT

"We," "us," and "our" refers to Oracle America, Inc., for and on behalf of itself and its
subsidiaries and affiliates under common control. "You" and "your" refers to the individual or
entity that wishes to use the specification from Oracle. "Specifications" refers to the Java Card
Classic Edition specification document and/or Java Card Connected Edition specification
document that you selected for download or use from Oracle and any other Oracle product or
technology documentation provided to you by Oracle under this agreement. "License" refers to
your right to use the specifications under the terms of this agreement. “Applications” means
Java technology applications intended to run on the Java Card Classic and/or Java Card
Connected platforms. This agreement is governed by the substantive and procedural laws of
California. You and Oracle agree to submit to the exclusive jurisdiction of, and venue in, the
courts of San Francisco or Santa Clara counties in California in any dispute arising out of or

relating to this agreement.

We are willing to license the specifications to you only upon the condition that you accept all of
the terms contained in this agreement. Read the terms carefully and select the "Accept License
Agreement" button to confirm your acceptance. If you are not willing to be bound by these
terms, select the "Decline License Agreement" button and the registration process will not

continue.
LICENSE RIGHTS

Except for any included software package or file that is licensed to you by Oracle under
different license terms, we grant you a perpetual (unless terminated as provided in this
agreement), nonexclusive, nontransferable, limited License to use (without the right to
sublicense) the specifications internally solely for the purposes of designing and developing
your implementation of the specifications and designing and developing your applets and
applications intended to run on the Java Card platform. Other than this limited license, you
acquire no right, title or interest in or to the specifications or any other Oracle intellectual

property. You acknowledge that any commercial or productive use of an implementation of the

Java Card Platform Virtual Machine Specification, v3.2 Page 270

specifications requires separate and appropriate licensing agreements.

All rights not expressly granted above are hereby reserved. If you want to use the specifications
for any purpose other than as permitted under this agreement, including but not limited to
distribution of the specifications or any use of the specifications for your internal business
purposes (other than developing, testing, prototyping and demonstrating your applications) or
for any commercial production purposes, you must obtain a valid license permitting such use.

We may audit your use of the specifications.
Third-Party Technology

The specifications may contain or be distributed with certain third-party technology. Oracle

may provide certain notices related to such third-party technology in the specifications.

Third party technology will be licensed to you either under the terms of this agreement, or, if
specified in the specifications, under separate license terms ("Separate Terms") and not under
the terms of this agreement ("Separately Licensed Third Party Technology"). Licensee's rights to
use such Separately Licensed Third Party Technology under the Separate Terms are not

restricted or modified in any way by this Agreement.
Ownership and Restrictions

We retain all ownership and intellectual property rights in the specifications. Unless
enforcement is prohibited by applicable law, you may not modify the specifications. You may
make a sufficient number of copies of the specifications for the licensed use and one copy of

the specifications for backup purposes.

You may not:
- use the specifications for your own internal business purposes (other than developing, testing,
prototyping and demonstrating your applications) or for any commercial or production

purposes;

- remove or modify any program markings or any notice of our proprietary rights;
- make the specifications available in any manner to any third party;

- use the specifications to provide third party training;

- assign this agreement or give or transfer the specifications or an interest in them to another

Java Card Platform Virtual Machine Specification, v3.2 Page 271

individual or entity;
- cause or permit modification of the specifications;

- disclose results of any benchmark test results related to the specifications without our prior
consent.

- create, modify, or change the behavior of classes, interfaces, or subpackages that are in any

way identified as "java", "javax", "javafx", “javaee”,"sun", “oracle” or similar convention as
specified by Oracle in any naming convention designation;

Export

You agree that U.S. export control laws and other applicable export and import laws govern
your use of the specifications, including technical data; additional information can be found on
Oracle's Global Trade Compliance web site located at

https://www.oracle.com/products/export-regulations.html. You agree that neither the

specifications nor any direct product thereof will be exported, directly, or indirectly, in violation
of these laws, or will be used for any purpose prohibited by these laws including, without

limitation, nuclear, chemical, or biological weapons proliferation.
Disclaimer of Warranty and Exclusive Remedies

THE SPECIFICATIONS IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. WE FURTHER
DISCLAIM ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION, ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NONINFRINGEMENT.

IN NO EVENT SHALL WE BE LIABLE FOR ANY INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE OR
CONSEQUENTIAL DAMAGES, OR DAMAGES FOR LOSS OF PROFITS, REVENUE, DATA OR DATA
USE, INCURRED BY YOU OR ANY THIRD PARTY, WHETHER IN AN ACTION IN CONTRACT OR
TORT, EVEN IF WE HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. OUR ENTIRE
LIABILITY FOR DAMAGES HEREUNDER SHALL IN NO EVENT EXCEED ONE THOUSAND DOLLARS
(U.S. $1,000).

Java Card Platform Virtual Machine Specification, v3.2 Page 272

https://www.oracle.com/products/export-regulations.html

No Technical Support

Our technical support organization will not provide technical support, phone support, or

updates to you for the specifications licensed under this agreement.
End of Agreement

You may terminate this agreement by destroying all copies of the specifications. We have the
right to terminate your right to use the specifications if you fail to comply with any of the terms

of this agreement, in which case you shall destroy all copies of the specifications.
Relationship Between the Parties

The relationship between you and us is that of licensee/licensor. Neither party will represent
that it has any authority to assume or create any obligation, express or implied, on behalf of the
other party, nor to represent the other party as agent, employee, franchisee, or in any other
capacity. Nothing in this agreement shall be construed to limit either party's right to
independently develop or distribute software that is functionally similar to the other party's

products, so long as proprietary information of the other party is not included in such software.
Open Source Software

"Open Source" software - software available without charge for use, modification and
distribution - is often licensed under terms that require the user to make the user's
modifications to the Open Source software or any software that the user 'combines' with the
Open Source software freely available in source code form. If you use Open Source software in
conjunction with the specifications, you must ensure that your use does not: (i) create, or
purport to create, obligations of us with respect to the Oracle specifications; or (ii) grant, or
purport to grant, to any third party any rights to or immunities under our intellectual property
or proprietary rights in the Oracle specifications. For example, you may not develop a software
program using an Oracle program/specification and an Open Source program where such use
results in a program file(s) that contains code from both the Oracle program/specification and
the Open Source program (including without limitation libraries) if the Open Source program is
licensed under a license that requires any "modifications" be made freely available. You also
may not combine the Oracle specifications with a program licensed under the GNU General
Public License ("GPL") in any manner that could cause, or could be interpreted or asserted to
cause, the Oracle specifications or any modifications thereto to become subject to the terms of
the GPL.

Java Card Platform Virtual Machine Specification, v3.2 Page 273

Entire Agreement

You agree that this agreement is the complete agreement for the specifications and licenses,
and this agreement supersedes all prior or contemporaneous agreements or representations. If
any term of this agreement is found to be invalid or unenforceable, the remaining provisions

will remain effective.
Last updated: 3 April 2012

Should you have any questions concerning this License Agreement, or if you desire to contact

Oracle for any reason, please write:

Oracle America, Inc.
500 Oracle Parkway, Redwood City, CA 94065

Java Card Platform Virtual Machine Specification, v3.2 Page 274

