

Java Card™ Platform

Virtual Machine Specification, Classic Edition

Version 3.2

January 2023

Java Card Platform Virtual Machine Specification, v3.2 Page 2

Java Card Platform Virtual Machine Specification, Classic Edition Version 3.2

Copyright © 1998, 2023, Oracle and/or its affiliates. All rights reserved.

The Specification provided herein is provided to you only under the Oracle Technology Network Developer License
included herein as Annex A - Oracle Technology Network Developer License Terms.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications that may create
a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD
logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Java Card Platform Virtual Machine Specification, v3.2 Page 3

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except
as set forth in an applicable agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For

information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Java Card Platform Virtual Machine Specification, v3.2 Page 4

Java Card Platform Virtual Machine Specification, v3.2 Page 5

Contents

Preface .. 19

Who Should Use This Specification ... 19

Before You Read This Specification... 19

Shell Prompts .. 19

Typographic Conventions ... 20

Related Documentation .. 20

Third-Party Web Sites ... 20

Documentation Accessibility ... 21

Access to Oracle Support .. 21

Oracle Welcomes Your Comments ... 21

1 Introduction .. 22

1.1 Motivation ... 22

1.2 The Java Card Virtual Machine.. 23

1.3 Java Language Security ... 25

1.4 Java Card Runtime Environment Security ... 25

2 A Subset of the Java Virtual Machine ... 27

2.1 Why a Subset is Needed ... 27

2.2 Java Card Platform Language Subset .. 27

2.2.1 Unsupported Items .. 27

2.2.1.1 Unsupported Features .. 27

2.2.1.1.1 Dynamic Class Loading ... 27

2.2.1.1.2 Security Manager ... 28

2.2.1.1.3 Finalization ... 28

2.2.1.1.4 Threads .. 28

2.2.1.1.5 Cloning ... 28

2.2.1.1.6 Access Control in Java Packages .. 28

2.2.1.1.7 Typesafe Enums ... 28

2.2.1.1.8 Enhanced for Loop ... 29

Java Card Platform Virtual Machine Specification, v3.2 Page 6

2.2.1.1.9 Varargs ... 29

2.2.1.1.10 Runtime Visible Metadata (Annotations) .. 29

2.2.1.1.11 Assertions ... 29

2.2.1.2 Unsupported Keywords .. 29

2.2.1.3 Unsupported Types ... 29

2.2.1.4 Unsupported Classes ... 29

2.2.1.4.1 System .. 30

2.2.2 Supported Items... 30

2.2.2.1 Supported Features .. 30

2.2.2.1.1 Packages ... 30

2.2.2.1.2 Dynamic Object Creation ... 30

2.2.2.1.3 Virtual Methods ... 30

2.2.2.1.4 Interfaces ... 30

2.2.2.1.5 Exceptions .. 30

2.2.2.1.6 Generics ... 31

2.2.2.1.7 Static Import .. 31

2.2.2.1.8 Runtime Invisible Metadata (Annotations) .. 31

2.2.2.2 Supported Keywords ... 31

2.2.2.3 Supported Types ... 32

2.2.2.4 Supported Classes ... 32

2.2.2.4.1 Object ... 32

2.2.2.4.2 Throwable .. 32

2.2.3 Optionally Supported Items ... 32

2.2.3.1 Integer Data Type .. 33

2.2.3.2 Object Deletion Mechanism ... 33

2.2.4 Limitations of the Java Card Virtual Machine .. 33

2.2.4.1 Limitations of Packages ... 33

2.2.4.1.1 Packages in a Java Card CAP file .. 33

2.2.4.1.2 Package References ... 33

2.2.4.1.3 Package Name .. 33

2.2.4.2 Limitations of Classes .. 34

2.2.4.2.1 Classes in a Package ... 34

Java Card Platform Virtual Machine Specification, v3.2 Page 7

2.2.4.2.2 Interfaces ... 34

2.2.4.2.3 Static Fields .. 34

2.2.4.2.4 Static Methods ... 34

2.2.4.3 Limitations of Objects ... 34

2.2.4.3.1 Methods ... 34

2.2.4.3.2 Class Instances ... 34

2.2.4.3.3 Arrays ... 34

2.2.4.4 Limitations of Methods ... 34

2.2.4.5 Limitations of Switch Statements ... 35

2.2.4.6 Limitations of Class Initialization... 35

2.2.5 Multiselectable Applets Restrictions ... 35

2.2.6 Java Card Platform Remote Method Invocation (RMI) Restrictions .. 35

2.2.6.1 Remote Classes and Remote Interfaces.. 36

2.2.6.2 Access Control of Remote Interfaces .. 36

2.2.6.3 Parameters and Return Values ... 36

2.3 Java Card VM Subset ... 36

2.3.1 Class File Subset ... 37

2.3.1.1 Not Supported in Class Files .. 37

2.3.1.1.1 Class Access Flags ... 37

2.3.1.1.2 Field Descriptors .. 37

2.3.1.1.3 Constant Pool ... 37

2.3.1.1.4 Fields .. 37

2.3.1.1.5 Methods ... 37

2.3.1.2 Supported in Class Files .. 37

2.3.1.2.1 ClassFile .. 37

2.3.1.2.2 Field Descriptors .. 37

2.3.1.2.3 Method Descriptors ... 38

2.3.1.2.4 Constant Pool ... 38

2.3.1.2.5 Fields .. 38

2.3.1.2.6 Methods ... 38

2.3.1.2.7 Attributes ... 38

2.3.2 Bytecode Subset ... 38

Java Card Platform Virtual Machine Specification, v3.2 Page 8

2.3.2.1 Unsupported Bytecodes ... 38

2.3.2.2 Supported Bytecodes .. 40

2.3.2.3 Static Restrictions on Bytecodes ... 42

2.3.2.3.1 ldc, ldc_w ... 42

2.3.2.3.2 lookupswitch .. 42

2.3.2.3.3 tableswitch ... 42

2.3.2.3.4 wide .. 42

2.3.3 Exceptions .. 43

2.3.3.1 Uncaught and Uncatchable Exceptions .. 43

2.3.3.2 Checked Exceptions .. 43

2.3.3.3 Runtime Exceptions .. 44

2.3.3.4 Errors ... 44

3 Structure of the Java Card Virtual Machine .. 46

3.1 Data Types and Values .. 46

3.2 Words .. 46

3.3 Runtime Data Areas .. 47

3.4 Contexts .. 47

3.5 Frames ... 47

3.6 Representation of Objects .. 48

3.7 Special Initialization Methods ... 48

3.8 Exceptions ... 48

3.9 Binary File Formats ... 48

3.10 Instruction Set Summary... 48

3.10.1 Types and the Java Card Virtual Machine .. 49

4 Binary Representation .. 51

4.1 Java Card Platform File Formats ... 51

4.1.1 Export File Format .. 51

4.1.2 CAP File Format .. 52

4.1.3 JAR File Container .. 52

4.2 AID-based Naming .. 53

4.2.1 The AID Format .. 53

4.2.2 AID Usage ... 53

Java Card Platform Virtual Machine Specification, v3.2 Page 9

4.2.2.1 CAP File AID namespace ... 53

4.2.2.2 Applet AID namespace .. 53

4.2.2.3 Package AID namespace ... 54

4.2.2.3 Custom Component AID namespace .. 54

4.3 Token-based Linking ... 54

4.3.1 Externally Visible Items .. 54

4.3.2 Private Tokens .. 55

4.3.3 The Export File and Conversion ... 55

4.3.4 References – External and Internal .. 55

4.3.5 Installation and Linking .. 56

4.3.6 Token Assignment .. 56

4.3.7 Token Details .. 56

4.3.7.1 Package ... 56

4.3.7.2 Classes and Interfaces ... 56

4.3.7.3 Static Fields ... 57

4.3.7.4 Static Methods and Constructors ... 57

4.3.7.5 Instance Fields ... 57

4.3.7.6 Virtual Methods .. 58

4.3.7.7 Interface Methods .. 58

4.4 Binary Compatibility .. 59

4.5 CAP and Package Versions .. 60

4.5.1 Assigning .. 60

4.5.2 Linking .. 60

5 The Export File Format .. 62

5.1 Export File Name ... 62

5.2 Containment in a JAR File ... 62

5.3 Ownership ... 62

5.4 Hierarchies Represented ... 63

5.5 Export File ... 63

5.6 Constant Pool .. 65

5.6.1 CONSTANT_Package .. 65

5.6.2 CONSTANT_Classref ... 67

Java Card Platform Virtual Machine Specification, v3.2 Page 10

5.6.3 CONSTANT_Integer .. 67

5.6.4 CONSTANT_Utf8 .. 68

5.7 Classes and Interfaces ... 68

5.8 Fields ... 71

5.9 Methods .. 73

5.10 Attributes .. 75

5.10.1 ConstantValue Attribute .. 75

6 The CAP File Format .. 77

6.1 CAP File Overview ... 77

6.2 Component Model .. 78

6.2.1 Containment in a JAR File .. 79

6.2.2 Defining New Components .. 80

6.3 Installation .. 81

6.4 Header Component ... 81

6.5 Directory Component ... 85

6.6 Applet Component .. 90

6.7 Import Component ... 92

6.8 Constant Pool Component .. 93

6.8.1 CONSTANT_Classref ... 95

6.8.2 CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, CONSTANT_SuperMethodref... 96

6.8.3 CONSTANT_StaticFieldref and CONSTANT_StaticMethodref .. 98

6.9 Class Component .. 100

6.9.1 type_descriptor .. 102

6.9.2 interface_info, class_info_compact and class_info_extended .. 104

6.9.2.1 interface_info, class_info_compact and class_info_extended Shared Items................... 105

6.9.2.2 interface_info Items .. 106

6.9.2.3 class_info_compact and class_info_extended Items ... 107

6.9.2.4 method_block_info .. 111

6.9.2.5 implemented_interface_info .. 112

6.9.2.6 remote_interface_info .. 113

6.9.2.7 public_virtual_method_token_mapping .. 115

6.10 Method Component ... 116

Java Card Platform Virtual Machine Specification, v3.2 Page 11

6.10.1 method_component_block ... 117

6.10.2 Exception Handler Example ... 118

6.10.3 exception_handler_info ... 119

6.10.4 method_info .. 121

6.11 Static Field Component ... 123

6.12 Reference Location Component ... 127

6.12.1 reference_location_component_block ... 128

6.13 Export Component .. 130

6.14 Descriptor Component.. 133

6.14.1 package_descriptor_info ... 135

6.14.2 class_descriptor_info_compact and class_descriptor_info_extended 135

6.14.3 field_descriptor_info.. 137

6.14.4 method_descriptor_info_compact and method_descriptor_info_extended 139

6.14.5 type_descriptor_info ... 142

6.15 Debug Component .. 143

6.15.1 package_debug_info_compact and package_debug_info_extended Structures 145

6.15.2 The class_debug_info_compact and class_debug_info_extended Structures 145

6.15.2.1 The field_debug_info Structure .. 148

6.15.2.2 The method_debug_info_compact and method_debug_info_extended Structures 150

6.16 Static Resource Component .. 154

7 Java Card Virtual Machine Instruction Set .. 157

7.1 Assumptions: The Meaning of “Must” .. 157

7.2 Reserved Opcodes .. 157

7.3 Virtual Machine Errors .. 157

7.4 Security Exceptions ... 158

7.5 The Java Card Virtual Machine Instruction Set ... 159

7.5.1 aaload ... 160

7.5.2 aastore ... 161

7.5.3 aconst_null ... 163

7.5.4 aload ... 163

7.5.5 aload_<n>... 164

7.5.6 anewarray .. 165

Java Card Platform Virtual Machine Specification, v3.2 Page 12

7.5.7 areturn ... 165

7.5.8 arraylength ... 166

7.5.9 astore ... 166

7.5.10 astore_<n> ... 167

7.5.11 athrow .. 168

7.5.12 baload .. 169

7.5.13 bastore ... 169

7.5.14 bipush ... 170

7.5.15 bspush .. 171

7.5.16 checkcast .. 171

7.5.17 dup ... 173

7.5.18 dup_x ... 174

7.5.19 dup2 ... 175

7.5.20 getfield_<t> .. 175

7.5.21 getfield_<t>_this .. 176

7.5.22 getfield_<t>_w ... 178

7.5.23 getstatic_<t> .. 179

7.5.24 goto .. 180

7.5.25 goto_w ... 181

7.5.26 i2b .. 181

7.5.27 i2s ... 182

7.5.28 iadd .. 182

7.5.29 iaload .. 183

7.5.30 iand .. 184

7.5.31 iastore .. 184

7.5.32 icmp .. 185

7.5.33 iconst_<i> ... 186

7.5.34 idiv .. 186

7.5.35 if_acmp<cond> ... 187

7.5.36 if_acmp<cond>_w .. 188

7.5.37 if_scmp<cond> ... 189

7.5.38 if_scmp<cond>_w .. 189

Java Card Platform Virtual Machine Specification, v3.2 Page 13

7.5.39 if<cond> ... 190

7.5.40 if<cond>_w ... 191

7.5.41 ifnonnull ... 192

7.5.42 ifnonnull_w .. 193

7.5.43 ifnull ... 193

7.5.44 ifnull_w... 194

7.5.45 iinc .. 194

7.5.46 iinc_w ... 195

7.5.47 iipush .. 195

7.5.48 iload .. 196

7.5.49 iload_<n>.. 197

7.5.50 ilookupswitch ... 197

7.5.51 imul .. 198

7.5.52 ineg ... 199

7.5.53 instanceof ... 200

7.5.54 invokeinterface .. 202

7.5.54.1 Interface Method Resolution .. 203

7.5.55 invokespecial .. 204

7.5.56 invokestatic .. 205

7.5.56.1 Super Method Resolution ... 206

7.5.57 invokevirtual .. 206

7.5.57.1 Virtual Method Resolution.. 207

7.5.58 ior ... 208

7.5.59 irem .. 208

7.5.60 ireturn .. 209

7.5.61 ishl .. 210

7.5.62 ishr.. 210

7.5.63 istore .. 211

7.5.64 istore_<n> .. 211

7.5.65 isub ... 212

7.5.66 itableswitch .. 213

7.5.67 iushr ... 214

Java Card Platform Virtual Machine Specification, v3.2 Page 14

7.5.68 ixor ... 214

7.5.69 jsr .. 215

7.5.70 new ... 216

7.5.71 newarray .. 216

7.5.72 nop ... 217

7.5.73 pop ... 218

7.5.74 pop2 ... 218

7.5.75 putfield_<t> .. 219

7.5.76 putfield_<t>_this .. 220

7.5.77 putfield_<t>_w ... 222

7.5.78 putstatic_<t> .. 223

7.5.79 ret ... 224

7.5.80 return ... 225

7.5.81 s2b .. 225

7.5.82 s2i ... 226

7.5.83 sadd .. 226

7.5.84 saload ... 227

7.5.85 sand .. 228

7.5.86 sastore .. 228

7.5.87 sconst_<s> .. 229

7.5.88 sdiv ... 229

7.5.89 sinc ... 230

7.5.90 sinc_w .. 231

7.5.91 sipush ... 231

7.5.92 sload ... 232

7.5.93 sload_<n> ... 232

7.5.94 slookupswitch .. 233

7.5.95 smul .. 234

7.5.96 sneg .. 234

7.5.97 sor .. 235

7.5.98 srem ... 235

7.5.99 sreturn .. 236

Java Card Platform Virtual Machine Specification, v3.2 Page 15

7.5.100 sshl ... 236

7.5.101 sshr ... 237

7.5.102 sspush... 238

7.5.103 sstore.. 238

7.5.104 sstore_<n> ... 239

7.5.105 ssub .. 239

7.5.106 stableswitch ... 240

7.5.107 sushr ... 241

7.5.108 swap_x ... 241

7.5.109 sxor ... 242

8 Tables of Instructions .. 244

8.1 Instructions by Opcode Value ... 244

8.2 Instructions by Opcode Mnemonic ... 248

Glossary ... 254

Annex A - Oracle Technology Network Developer License Terms .. 269

Java Card Platform Virtual Machine Specification, v3.2 Page 16

Figures

Figure 1-1: Java Card Application or Library Conversion .. 23

Figure 1-2: Java Card Application or Library Installation .. 24

Figure 4-1: Mapping Package Identifiers to AIDs .. 54

Figure 4-2: Binary Compatibility Example ... 59

Java Card Platform Virtual Machine Specification, v3.2 Page 17

Tables

Table 2-1: Unsupported Java Constant Pool Tags ... 37

Table 2-2: Supported Java Constant Pool Tags ... 38

Table 2-3: Support of Java Checked Exceptions ... 43

Table 2-4: Support of Java Runtime Exceptions ... 44

Table 2-5: Support of Java Errors .. 44

Table 3-1: Type Support in the Java Card Virtual Machine Instruction Set .. 49

Table 3-2: Storage Types and Computational Types .. 50

Table 4-1: AID Format ... 53

Table 4-2: Token Range, Type and Scope ... 56

Table 4-3: Tokens For Instance Fields ... 57

Table 5-1: Export File Constant Pool Tags ... 65

Table 5-2: Export File Package Flags ... 66

Table 5-3: Export File Class Access and Modifier Flags ... 69

Table 5-4: Export File Field Access and Modifier Flags ... 72

Table 5-5: Export File Method Access and Modifier Flags .. 74

Table 6-1: CAP File Component Tags .. 79

Table 6-2: CAP File Component File Names .. 79

Table 6-3: CAP File Flags ... 83

Table 6-4: CAP File Constant Pool Tags ... 94

Table 6-5: Type Descriptor Values .. 102

Table 6-6: Encoded Reference Type p1.c1 .. 103

Table 6-7: Encoded Byte Array Type ... 103

Table 6-8: Encoded Reference Array Type p1.c1 .. 103

Table 6-9: Encoded Method Signature ()V .. 104

Table 6-10: Encoded Method Signature (Lp1.ci;)S .. 104

Table 6-11: CAP File Interface and Class Flags .. 106

Table 6-12: CAP File Method Flags ... 122

Table 6-13: Segments of a Static Field Image ... 124

Table 6-14: Static Field Sizes ... 124

Table 6-15: Array Types .. 126

Table 6-16: One-byte Reference Location Example.. 129

Table 6-17: CAP File Class Descriptor Flags ... 136

Table 6-18: CAP File Field Descriptor Flags ... 138

Table 6-19: Primitive Type Descriptor Values ... 139

Table 6-20: CAP File Method Descriptor Flags .. 140

Table 6-21: Class Access and Modifier Flags ... 146

Table 6-22: Field Access and Modifier Flags ... 149

Table 6-23: Method Modifier Flags... 151

Java Card Platform Virtual Machine Specification, v3.2 Page 18

Table 7-1: Example Instruction Entry .. 159

Table 7-2: Array Values ... 172

Table 7-3: Array Values ... 200

Table 7-4: Array Values ... 217

Table 8-1: Instructions by Opcode Value .. 244

Table 8-2: Instructions by Opcode Mnemonic .. 248

Java Card Platform Virtual Machine Specification, v3.2 Page 19

Preface
Java Card technology combines a subset of the Java programming language with a runtime environment

optimized for secure elements, such as smart cards and other tamper-resistant security chips. Java Card

technology offers a secure and interoperable execution platform that can store and update multiple

applications on a single resource-constrained device, while retaining the highest certification levels and

compatibility with standards. Java Card developers can build, test, and deploy applications and services

rapidly and securely. This accelerated process reduces development costs, increases product

differentiation, and enhances value to customers.

The Classic Edition of the Java Card Platform is defined by three specifications:

 Virtual Machine Specification, Java Card Platform, Version 3.2, Classic Edition,

 Runtime Environment Specification, Java Card Platform, Version 3.2, Classic Edition,

 Application Programming Interface, Java Card Platform, Version 3.2, Classic Edition.

This document is a specification of the Classic Edition of the Java Card Platform, Version 3.2, Virtual

Machine (Java Card VM).

In this book, Java Card Platform refers to version 3.2 to distinguish it from all earlier versions. A vendor

of a Java Card technology-enabled device provides an implementation of the Java Card RE. An

implementation within the context of this specification refers to a vendor's implementation of the Java

Card Virtual Machine (or Java Card VM), the Java Card Application Programming Interface (API), or other

component, based on the Java Card technology specifications. A "reference implementation" is an

implementation produced by Oracle. Application software written for the Java Card platform is referred

to as a Java Card technology-based applet (Java Card applet or card applet).

Who Should Use This Specification
This specification is intended to assist implementers of the Java Card RE in creating an implementation,

developing a specification to extend the Java Card technology specifications, or in creating an extension

to the runtime environment for the Java Card platform. This specification is also intended for Java Card

applet developers who want a greater understanding of the Java Card technology specifications.

Before You Read This Specification
Before reading this guide, you should be familiar with the Java programming language, the other Java

Card technology specifications, and smart card technology. A good resource for becoming familiar with

Java technology and Java Card technology located at:

http://www.oracle.com/technetwork/java/javacard/overview/

Shell Prompts
Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

http://www.oracle.com/technetwork/java/javacard/overview/

Java Card Platform Virtual Machine Specification, v3.2 Page 20

Typographic Conventions
The settings on your browser might differ from these settings.

Typeface Meaning Examples

AaBbCc123 The names of commands,
files, and directories; on-
screen computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-
screen computer output

%su
Password:

AaBbCc123 Book titles, new words or
terms, words to be
emphasized. Replace
command-line variables
with real names or
values.

Read Chapter 6 in the User's Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Related Documentation
References to various documents or products are made in this guide, so you might want to have them

available:

 Application Programming Interface, Java Card Platform, Version 3.2, Classic Edition

 Runtime Environment Specification, Java Card Platform, Version 3.2, Classic Edition

 The Java Language Specification (https://docs.oracle.com/javase/specs/)

 ISO 7816 Specification Parts 1-6. (https://www.iso.org)

Third-Party Web Sites
Oracle is not responsible for the availability of third-party web sites mentioned in this document. Oracle

does not endorse and is not responsible or liable for any content, advertising, products, or other

materials that are available on or through such sites or resources. Oracle will not be responsible or liable

for any actual or alleged damage or loss caused by or in connection with the use of or reliance on any

such content, goods, or services that are available on or through such sites or resources.

https://docs.oracle.com/javase/specs/
https://www.iso.org/

Java Card Platform Virtual Machine Specification, v3.2 Page 21

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at:

 http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle

Support. For information, visit:

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info

Or, if you are hearing impaired, visit:

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Oracle Welcomes Your Comments
Oracle is interested in improving its documentation and welcomes your comments and suggestions.

Please include the title of your document with your feedback:

Virtual Machine Specification, Java Card Platform, v3.2, Classic Edition

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Java Card Platform Virtual Machine Specification, v3.2 Page 22

1 Introduction

This document specifies the Java Card Virtual Machine features required by the Classic Edition of

Java Card technology.

 It defines the subset of the Java Virtual Machine used for the Java Card Virtual Machine and list

the supported and unsupported features.

 It defines the binary representation of the application code, the role and structure of the Export

and CAP file formats and their use in the verification and linking process.

 It specifies the Java Card Virtual Machine byte-code set and its detailed behavior.

1.1 Motivation
Java Card technology enables programs written in the Java programming language to be run on secure

elements such as smart cards and other tamper-resistant security chips. Developers can build and test

programs using standard software development tools and environments, then convert them into a form

that can be installed onto a Java Card technology-enabled device. Application software for the Java Card

platform is called an applet, or more specifically, a Java Card applet (to distinguish it from browser

applets).

While Java Card technology enables programs written in the Java programming language to run on small

devices such as smart cards, those are far too under-powered to support the full functionality of the

Java platform. Therefore, the Java Card platform supports only a carefully chosen, customized subset of

the features of the Java platform. This subset provides features that are well-suited for writing programs

for small devices and preserves the object-oriented capabilities of the Java programming language.

A simple approach to specifying a Java Card virtual machine would be to describe the subset of the

features of the Java virtual machine that must be supported to allow for portability of source code

across all Java Card technology enabled devices. Combining that subset specification and the

information in Java Virtual Machine Specification, smart card and secure elements manufacturers could

construct their own Java Card technology-based implementations (“Java Card implementations”). While

that approach is feasible, it has a serious drawback. The resultant platform would be missing the

important feature of binary portability of Java Card applets.

The standards that define the Java platform allow for binary portability of Java programs across all Java

platform implementations. This “write once, run anywhere” quality of Java programs is perhaps the

most significant feature of the platform. Part of the motivation for the creation of the Java Card

Java Card Platform Virtual Machine Specification, v3.2 Page 23

platform was to bring just this kind of binary portability to the embedded security and smart card

industry. In a world with billions of secure elements with varying processors and configurations, the

costs of supporting multiple binary formats for software distribution could be overwhelming.

This Virtual Machine Specification, Java Card Platform, v3.2, Classic Edition is the key to providing binary

portability. One way of understanding what this specification does is to compare it to its counterpart in

the Java platform. The Java virtual machine specification defines a Java virtual machine as an engine that

loads Java class files and executes them with a particular set of semantics. The class file is a central piece

of the Java architecture, and it is the standard for the binary compatibility of the Java platform. The

Virtual Machine Specification, Java Card Platform, v3.2, Classic Edition also defines a file format that is

the standard for binary compatibility for the Java Card platform: the CAP file format is the form in which

software is deployed to be loaded onto devices which implement a Java Card virtual machine.

1.2 The Java Card Virtual Machine
The role of the Java Card virtual machine is best understood in the context of the process for production

and deployment of software for the Java Card platform. There are several components that make up a

Java Card system, including the Java Card virtual machine, the Converter for the Java Card platform

(“Java Card Converter”), a terminal installation tool, and an installation program that runs on the device,

as shown in Figure 1-1 and Figure 1-2.

Figure 1-1: Java Card Application or Library Conversion

Java Card Platform Virtual Machine Specification, v3.2 Page 24

Figure 1-2: Java Card Application or Library Installation

Development of a Java Card applet begins as with any other Java program: a developer writes one or

more Java classes, and compiles the source code with a Java compiler, producing one or more class files.

The applet is run, tested and debugged on a workstation using simulation tools to emulate the device

environment. Then, when an applet is ready to be downloaded to a device, the class files comprising the

applet are converted to a CAP (converted applet) file using a Java Card Converter.

The Java Card Converter takes as input all of the class files in one or more Java packages which make up

a Java Card CAP file. A Java package that contains one or more non-abstract subclasses, direct or

indirect, of the javacard.framework.Applet class is referred to as an applet package.

Otherwise the package is referred to as a library package. A Java Card CAP file may contain only applet

packages, only library packages or a combination of applet and library packages. Additionally, both

applet and library packages in a Java Card CAP file can be public or private.

A private library package in a Java Card CAP file is not listed in the Export Component (6.13 Export

Component) of the CAP file and is therefore not visible outside the Java Card CAP file. Similarly, a private

applet package in a Java Card CAP file is not listed in the Export Component (6.13 Export Component) of

the CAP file, however, non-abstract direct or indirect subclasses of the

javacard.framework.Applet class are listed in the Applet Component (6.6 Applet Component)

of the CAP file. For a public applet package in a Java Card CAP file, only public interfaces extending

javacard.framework.Shareable are listed in the Export Component (6.13 Export Component)

of the CAP file and are therefore visible outside the Java Card CAP file. For further details see The CAP

File Format.

The Java Card Converter also takes as input one or more export files. An export file contains name and

link information for the contents of other packages that are imported by the classes being converted.

The converter can also produce export files for the public applet and library packages in a CAP file.

After conversion, the CAP file is copied to a terminal, such as a desktop computer with a card reader

peripheral. Then an installation tool on the terminal loads the CAP file and transmits it to the Java Card

technology-enabled device. An installation program on the device receives the contents of the CAP file

Java Card Platform Virtual Machine Specification, v3.2 Page 25

and prepares the applet to be run by the Java Card virtual machine. The virtual machine itself needs not

load or manipulate CAP files; it only needs to execute the applet code found in the CAP file that was

loaded onto the device by the installation program.

The division of functionality between the Java Card virtual machine and the installation program keeps

both the virtual machine and the installation program small. The installation program may be

implemented as a Java program and executed on top of the Java Card virtual machine. Since instructions

for the Java Card platform (“Java Card instructions”) are denser than typical machine code, this may

reduce the size of the installer. The modularity may enable different installers to be used with a single

Java Card virtual machine implementation.

1.3 Java Language Security
One of the fundamental features of the Java virtual machine is the strong security provided in part by

the class file verifier.

The Java Card virtual machine specification mandates CAP file verification. The data needed for

verification is packaged separately from the data needed for the actual execution of the code (see 6.14

Descriptor Component). This enables the following two options for the implementation of the

verification, depending on device capabilities, resources and deployment model:

 Perform CAP file verification inside the device (on-device verification),

 Perform CAP file verification outside the device (off-device verification).

The CAP file verification must be performed at least once, before loading, before installation or before

execution of the code, in order to ensure that each bytecode is valid at execution time. Off-device

verification can also be systematically used to detect any issue before initiating deployment.

When off-device verification option is used, the deployment process must also ensure that:

 Verification uses export files that are binary compatible with API packages installed on the

device (see 5 The Export File Format).

 After verification, the CAP file to be executed on the device is not altered in a way that does not

satisfy the constraints checked by this verification.

1.4 Java Card Runtime Environment Security
The standard runtime environment for the Java Card platform is the Java Card Runtime Environment

(Java Card RE). The Java Card RE consists of an implementation of the Java Card virtual machine along

with the Java Card API classes. While the Java Card virtual machine has responsibility for ensuring Java

language-level security, the Java Card RE imposes additional runtime security requirements on devices

that implement the Java Card RE, which results in a need for additional features on the Java Card virtual

machine. Throughout this document, these additional features are designated as Java Card RE-specific.

Java Card Platform Virtual Machine Specification, v3.2 Page 26

The basic runtime security feature imposed by the Java Card RE enforces isolation of applets using what

is called an applet firewall. The applet firewall prevents the objects that were created by one applet

from being used by another applet. This prevents unauthorized access to both the fields and methods of

class instances, as well as the length and contents of arrays.

Isolation of applets is an important security feature, but it requires a mechanism to allow applets to

share objects in situations where there is a need to interoperate. The Java Card RE allows such sharing

using the concept of shareable interface objects. These objects provide the only way an applet can make

its objects available for use by other applets. For more information about using shareable interface

objects, see the description of the interface javacard.framework.Shareable in the Application

Programming Interface, Java Card Platform, v3.2, Classic Edition. Some descriptions of firewall-related

features make reference to the Shareable interface.

The applet firewall also protects from unauthorized use the objects owned by the Java Card RE itself.

The Java Card RE can use mechanisms not reflected in the Java Card API to make its objects available for

use by applets. A full description of the Java Card RE-related isolation and sharing features can be found

in the Runtime Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 27

2 A Subset of the Java Virtual Machine

This chapter describes the subset of the Java virtual machine and language that is supported in the

Java Card platform.

2.1 Why a Subset is Needed
It would be ideal if programs for secure elements such as smart cards could be written using all of the

Java programming language, but a full implementation of the Java virtual machine is far too large to fit

on even the most advanced resource-constrained devices available today.

A typical resource-constrained device has on the order of 1.2K of RAM, 16K of non-volatile memory

(EEPROM or flash) and 32K-48K of ROM. The code for implementing string manipulation, single and

double-precision floating point arithmetic, and thread management would be larger than the ROM

space on such a device. Even if it could be made to fit, there would be no space left over for class

libraries or application code. RAM resources are also very limited. The only workable option is to

implement Java Card technology as a subset of the Java platform.

2.2 Java Card Platform Language Subset
Applets written for the Java Card platform are written in the Java programming language. They are

compiled using Java compilers. Java Card technology uses a subset of the Java language, and familiarity

with the Java platform is required to understand the Java Card platform.

The items discussed in this section are not described to the level of a language specification. For

complete documentation on the Java programming language, see The Java Language Specification.

2.2.1 Unsupported Items

The items listed in this section are elements of the Java programming language and platform that are

not supported by the Java Card platform.

2.2.1.1 Unsupported Features

The following features are not supported.

2.2.1.1.1 Dynamic Class Loading

Dynamic class loading is not supported in the Java Card platform. An implementation of the Java Card

platform is not able to load classes dynamically. Classes are either masked into the device during

manufacturing or downloaded through an installation process after it has been issued. Programs

Java Card Platform Virtual Machine Specification, v3.2 Page 28

executing on the device may only refer to classes that already exist on the device, since there is no way

to download classes during the normal execution of application code.

2.2.1.1.2 Security Manager

Security management in the Java Card platform differs significantly from that of the Java platform. In the

Java platform, there is a Security Manager class (java.lang.SecurityManager) responsible for

implementing security features. In the Java Card platform, language security policies are implemented

by the virtual machine. There is no Security Manager class that makes policy decisions on whether to

allow operations.

2.2.1.1.3 Finalization

Finalization is also not supported. finalize() will not be called automatically by the Java Card virtual

machine.

2.2.1.1.4 Threads

The Java Card virtual machine does not support multiple threads of control. Programs for the Java Card

platform (“Java Card programs”) cannot use class Thread or any of the thread-related keywords in the

Java programming language.

2.2.1.1.5 Cloning

The Java Card platform does not support cloning of objects. Java Card API class Object does not

implement a clone method, and there is no Cloneable interface provided.

2.2.1.1.6 Access Control in Java Packages

The Java Card platform language subset supports the package access control defined in the Java

language. However, the cases that are not supported are as follows.

 If a class implements a method with package access visibility, a subclass cannot override the

method and change the access visibility of the method to protected or public.

 A public class cannot contain a public or protected field of type reference to a package-visible

class.

 A public class cannot contain a public or protected method with a return type of type reference

to a package-visible class.

 A public or protected method in a public class cannot contain a formal parameter of type

reference to a package-visible class.

 A package-visible class that is extended by a public class cannot define any public or protected

methods or fields.

 A package-visible interface that is implemented by a public class cannot define any fields.

 A package-visible interface cannot be extended by an interface with public access visibility.

2.2.1.1.7 Typesafe Enums

The Java Card platform language subset does not support the enumerated type facility and the keyword

enum.

Java Card Platform Virtual Machine Specification, v3.2 Page 29

2.2.1.1.8 Enhanced for Loop

The Java Card platform language subset does not support the enhanced for loop language construct.

Support for the enhanced for loop construct requires support for array indexing using the integer data

type. The Java Card platform only supports array indexing using the short data type.

2.2.1.1.9 Varargs

The Java Card platform language subset does not support variable-length argument lists. The variable-

length argument construct requires the compiler to generate code that creates a new array object each

time a variable-length argument array method is invoked, thereby causing implicit memory allocations

in Java Card runtime memory heap.

2.2.1.1.10 Runtime Visible Metadata (Annotations)

The Java Card platform does not support this language feature which lets you introduce meta-data

information into the runtime environment to be accessed reflectively. The Java Card platform does not

support reflection.

2.2.1.1.11 Assertions

The Java Card runtime does not provide runtime support for statements in the Java programming

language called assertions that are used to test assumptions about program functionality.

2.2.1.2 Unsupported Keywords

The following keywords indicate unsupported options related to native methods, threads, floating point,

memory management, and debugging:

 native

 strictfp

 synchronized

 enum

 transient

 assert

 volatile

2.2.1.3 Unsupported Types

The Java Card platform does not support types:

 char

 double

 float

 long

 arrays of more than one dimension.

2.2.1.4 Unsupported Classes

In general, none of the Java programming language core API classes are supported in the Java Card

platform. Some classes from the java.lang package are supported (see Section 2.2.2.4 Supported

Java Card Platform Virtual Machine Specification, v3.2 Page 30

Classes), but none of the rest are. For example, classes that are not supported are String, Thread

(and all thread-related classes), wrapper classes such as Boolean and Integer, and class Class.

2.2.1.4.1 System

Class java.lang.System is not supported. Java Card technology supplies a class

javacard.framework.JCSystem, which provides an interface to system behavior.

2.2.2 Supported Items

If a language feature is not explicitly described as unsupported, it is part of the supported subset.

Notable supported features are described in this section.

2.2.2.1 Supported Features

The following features are the more important supported features.

2.2.2.1.1 Packages

Software written for the Java Card platform follows the standard rules for the Java platform packages.

Java Card API classes are written as Java source files, which include package designations. Package

mechanisms are used to identify and control access to classes, static fields and static methods. Except as

noted in “Access Control in Java Packages” (2.2.1.1 Unsupported Features), packages in the Java Card

platform are used exactly the way they are in the Java platform.

2.2.2.1.2 Dynamic Object Creation

The Java Card platform programs supports dynamically created objects, both class instances and arrays.

This is done, as usual, by using the new operator. Objects are allocated out of the heap.

A Java Card virtual machine will not necessarily garbage collect objects. Any object allocated by a virtual

machine may continue to exist and consume resources even after it becomes unreachable. See 2.2.3.2

Object Deletion Mechanism for more information regarding support for an optional object deletion

mechanism.

2.2.2.1.3 Virtual Methods

Since Java Card technology-based objects (“Java Card objects”) are Java programming language objects,

invoking virtual methods on objects in a program written for the Java Card platform is exactly the same

as in a program written for the Java platform. Inheritance is supported, including the use of the super

keyword.

2.2.2.1.4 Interfaces

Java Card API classes may define or implement interfaces as in the Java programming language. Invoking

methods on interface types works as expected. Type checking and the instanceof operator also

work correctly with interfaces.

2.2.2.1.5 Exceptions

Java Card programs may define, throw and catch exceptions, as in Java programs. Class Throwable

and its relevant subclasses are supported. Some Exception and Error subclasses are omitted, since

Java Card Platform Virtual Machine Specification, v3.2 Page 31

those exceptions cannot occur in the Java Card platform. See 2.3.3 Exceptions for specification of errors

and exceptions.

2.2.2.1.6 Generics

This Java language facility allows a type or method to operate on objects of various types while

providing compile-time type safety. It adds compile-time type safety and eliminates the need for casting.

2.2.2.1.7 Static Import

This Java language facility lets you avoid importing an entire class simply to access its static members or

qualifying static members with class names each time it is used.

2.2.2.1.8 Runtime Invisible Metadata (Annotations)

This language feature lets you avoid writing boilerplate code under many circumstances by enabling

tools to generate it from annotations in the source code. The Java Card platform language subset

supports the use of annotations which are not visible at runtime. These annotations do not themselves

use the runtime visible meta-data annotation @Retention(RetentionPolicy.RUNTIME).

2.2.2.2 Supported Keywords

The following keywords are supported. Their use is the same as in the Java programming language.

 abstract

 boolean

 break

 byte

 case

 catch

 class

 continue

 default

 do

 else

 extends

 final

 finally

 for

 goto

 if

 implements

 import

 instanceof

 int

 interface

 new

 package

 private

Java Card Platform Virtual Machine Specification, v3.2 Page 32

 protected

 public

 return

 short

 static

 super

 switch

 this

 throw

 throws

 try

 void

 while

2.2.2.3 Supported Types

Java programming language types supported:

 boolean

 byte

 short

 int

 Objects (class instances and single-dimensional arrays)

 Arrays can contain the supported primitive data types, objects, and other arrays.

Some Java Card implementations might not support use of the int data type. (Refer to 2.2.3.1 Integer

Data Type).

2.2.2.4 Supported Classes

Most of the classes in the java.lang package are not supported on the Java Card platform. The

following classes from java.lang are supported on the card in a limited form.

2.2.2.4.1 Object

Java Card API classes descend from java.lang.Object, just as in the Java programming language.

Most of the methods of Object are not available in the Java Card API, but the class itself exists to

provide a root for the class hierarchy.

2.2.2.4.2 Throwable

Class Throwable and its subclasses are supported. Most of the methods of Throwable are not

available in the Java Card API, but the class itself exists to provide a common ancestor for all exceptions.

2.2.3 Optionally Supported Items

This section describes the optional features of the Java Card platform. An optional feature is not

required to be supported in a Java Card platform-compatible implementation. However, if an

implementation does include support for an optional feature, it must be supported fully, and exactly as

specified in this document.

Java Card Platform Virtual Machine Specification, v3.2 Page 33

2.2.3.1 Integer Data Type

The int keyword and 32-bit integer data type need not be supported in a Java Card implementation. A

Java Card virtual machine that does not support the int data type will reject programs which use the

int data type or 32-bit intermediate values.

The result of an arithmetic expression produced by a Java Card virtual machine must be equal to the

result produced by a Java virtual machine, regardless of the input values. A Java Card virtual machine

that does not support the int data type must reject expressions that could produce a different result.

2.2.3.2 Object Deletion Mechanism

The Java Card platform offers an optional, object deletion mechanism. Applications designed to run on

these implementations can use the facility by invoking the appropriate API. See Application

Programming Interface, Java Card Platform, v3.2, Classic Edition. But, the facility is best suited for

updating large objects such as certificates and keys atomically. Therefore, application programmers

should conserve on the allocation of objects.

2.2.4 Limitations of the Java Card Virtual Machine

The limitations of resource-constrained hardware prevent Java Card virtual machines from supporting

the full range of functionality of certain Java platform features. The features in question are supported,

but a particular virtual machine may limit the range of operation to less than that of the Java platform.

To ensure a level of portability for application code, this section establishes a minimum required level

for partial support of these language features.

The limitations here are listed as maximums from the application programmer’s perspective. Java

packages included in a Java Card CAP file that do not violate these maximum values can be converted

into Java Card technology-based CAP files (“Java Card CAP files”) and will be portable across all Java Card

implementations. From the Java Card virtual machine implementer’s perspective, each maximum listed

indicates a minimum level of support that will allow portability of applets.

2.2.4.1 Limitations of Packages

The following are limitations of packages.

2.2.4.1.1 Packages in a Java Card CAP file

A Java Card CAP file can contain at most 255 packages.

2.2.4.1.2 Package References

A package can reference at most 128 other packages external to the Java Card CAP file containing the

package.

2.2.4.1.3 Package Name

The fully qualified name of a package may contain a maximum of 255 characters. The package name

size is further limited if it contains one or more characters which, when represented in UTF-8 format,

requires multiple bytes.

Java Card Platform Virtual Machine Specification, v3.2 Page 34

2.2.4.2 Limitations of Classes

The following are limitations of classes.

2.2.4.2.1 Classes in a Package

A package can contain at most 255 classes and interfaces.

2.2.4.2.2 Interfaces

A class can implement at most 15 interfaces, including interfaces implemented by super classes.

An interface can inherit from at most 14 super interfaces.

2.2.4.2.3 Static Fields

A class in an applet package can have at most 256 public or protected static non-final fields. A class in a

library package can have at most 255 public or protected static non-final fields. There is no limit on the

number of static final fields (constants) declared in a class.

2.2.4.2.4 Static Methods

A class in an applet package can have at most 256 public or protected static methods. A class in a library

package can have at most 255 public or protected static methods.

2.2.4.3 Limitations of Objects

The following are limitations of objects.

2.2.4.3.1 Methods

A class can implement a maximum of 128 public or protected instance methods, and a maximum of 128

instance methods with package visibility. These limits include inherited methods.

2.2.4.3.2 Class Instances

Class instances can contain a maximum of 255 fields, where an int data type is counted as occupying

two fields. These limits include inherited fields.

2.2.4.3.3 Arrays

Arrays can hold a maximum of 32767 components.

2.2.4.4 Limitations of Methods

The maximum number of variables that can be used in a method is 255. This limit includes local

variables, method parameters, and, in the case of an instance method invocation, a reference to the

object on which the instance method is being invoked (meaning, this). An int data type is counted as

occupying two local variables.

A method can have at most 32767 Java Card virtual machine bytecodes. The number of Java Card

technology-based bytecodes (“Java Card bytecodes”) may differ from the number of Java bytecodes in

the Java virtual machine implementation of that method.

The maximum depth of an operand stack associated with a method is 255 16-bit cells.

Java Card Platform Virtual Machine Specification, v3.2 Page 35

2.2.4.5 Limitations of Switch Statements

The format of the Java Card virtual machine switch instructions limits switch statements to a maximum

of 65536 cases. This limit is far greater than the limit imposed by the maximum size of methods (2.2.4.4

Limitations of Methods).

2.2.4.6 Limitations of Class Initialization

The Java Card virtual machine contains limited support for class initialization because there is no general

mechanism for executing <clinit> methods. Support for <clinit> methods is limited to the

initialization of static field values with the following constraints:

 Static fields of applet CAP files may only be initialized to primitive compile-time constant values,

or arrays of primitive compile-time constants.

 Static fields in interfaces must only be initialized to primitive compile-time constant.

 Static fields of CAP files containing only user libraries may only be initialized to primitive

compile-time constant values.

 Only static fields declared in the current class may be initialized in the <clinit> method.

Primitive constant data types include boolean, byte, short, and int.

Given Java technology source files that adhere to these language-level constraints on static field

initialization, it is expected that reasonable Java compilers will:

 Inline constants in the bytecodes that reference static final primitive fields that are initialized in

the declaration statement.

 Produce only the following bytecodes:

o load a value on the stack: iconst_[m1,0-5], [b|s]ipush, ldc, ldc_w,

aconst_null

o create an array: newarray([byte|short|boolean|int])

o duplicate items on the stack: dup

o store values in arrays or static fields: [b|i|s]astore, putstatic

o return from method: return

2.2.5 Multiselectable Applets Restrictions

Applets that implement the javacard.framework.Multiselectable interface are called

multiselectable applets. For more details on multiselection, please see the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

All applets within a CAP file shall be multiselectable, or none shall be.

2.2.6 Java Card Platform Remote Method Invocation (RMI) Restrictions

This section defines the subset of the RMI system that is supported by Java Card platform RMI (“Java

Card RMI”).

Java Card Platform Virtual Machine Specification, v3.2 Page 36

2.2.6.1 Remote Classes and Remote Interfaces

A class is remote if it or any of its superclasses implements a remote interface. A remote interface is an

interface which satisfies the following requirements:

 The interface name is java.rmi.Remote or the interface extends, directly or indirectly, the

interface java.rmi.Remote.

 Each method declaration in the remote interface or its super-interfaces includes the exception

java.rmi.RemoteException (or one of its superclasses) in its throws clause.

 In a remote method declaration, if a remote object is declared as a return type, it is declared as

the remote interface, not the implementation class of that interface.

In addition, Java Card RMI imposes additional constraints on the definition of remote methods. These

constraints are as a result of the Java Card platform language subset and other feature limitations. For

more information, see 2.2.6.2 Access Control of Remote Interfaces and 2.2.6.3 Parameters and Return

Values.

2.2.6.2 Access Control of Remote Interfaces

The Java RMI system supports the package access control defined in the Java language. However, Java

Card RMI does not support package-visible remote interfaces.

2.2.6.3 Parameters and Return Values

The parameters of a remote method must only include parameters of the following types:

 Any primitive type supported by Java Card technology (boolean, byte, short, int)

 Any single-dimension array type of a primitive type supported by Java Card technology

(boolean[], byte[], short[], int[])

The return type of a remote method must only be one of the following types:

 Any primitive type supported by Java Card technology (boolean, byte, short, int)

 Any single-dimension array type of a primitive type supported by Java Card technology

(boolean[], byte[], short[], int[])

 Any remote interface type

 Type void

2.3 Java Card VM Subset
Java Card technology uses a subset of the Java virtual machine, and familiarity with the Java platform is

required to understand the Java Card virtual machine.

The items discussed in this section are not described to the level of a virtual machine specification. For

complete documentation on the Java virtual machine, refer to The Java Virtual Machine Specification.

Java Card Platform Virtual Machine Specification, v3.2 Page 37

2.3.1 Class File Subset

The operation of the Java Card virtual machine can be defined in terms of standard Java platform class

files. Since the Java Card virtual machine supports only a subset of the behavior of the Java virtual

machine, it also supports only a subset of the standard class file format.

2.3.1.1 Not Supported in Class Files

The following items are not supported in class files.

2.3.1.1.1 Class Access Flags

In class_info and interface_info structures, the access flag ACC_ENUM is not supported.

2.3.1.1.2 Field Descriptors

Field descriptors may not contain BaseType characters C, D, F or J. ArrayType descriptors for

arrays of more than one dimension may not be used.

2.3.1.1.3 Constant Pool

Constant pool table entries with the following tag values are not supported.

Table 2-1: Unsupported Java Constant Pool Tags

Constant Type Value

CONSTANT_String 8

CONSTANT_Float 4

CONSTANT_Long 5

CONSTANT_Double 6

2.3.1.1.4 Fields

In field_info structures, the access flags ACC_VOLATILE, ACC_TRANSIENT and ACC_ENUM

are not supported.

2.3.1.1.5 Methods

In method_info structures, the access flags ACC_SYNCHRONIZED, ACC_STRICT,

ACC_NATIVE, and ACC_VARARGS are not supported.

2.3.1.2 Supported in Class Files

The following items are supported in class files.

2.3.1.2.1 ClassFile

All items in the ClassFile structure are supported.

2.3.1.2.2 Field Descriptors

Field descriptors may contain BaseType characters B, I, S and Z, as well as any ObjectType.

ArrayType descriptors for arrays of a single dimension may also be used.

Java Card Platform Virtual Machine Specification, v3.2 Page 38

2.3.1.2.3 Method Descriptors

All forms of method descriptors are supported.

2.3.1.2.4 Constant Pool

Constant pool table entry with the following tag values are supported.

Table 2-2: Supported Java Constant Pool Tags

Constant Type Value

CONSTANT_Class 7

CONSTANT_Fieldref 9

CONSTANT_Methodref 10

CONSTANT_InterfaceMethodref 11

CONSTANT_Integer 3

CONSTANT_NameAndType 12

CONSTANT_Utf8 1

2.3.1.2.5 Fields

In field_info structures, the supported access flags are ACC_PUBLIC, ACC_PRIVATE,

ACC_PROTECTED, ACC_STATIC and ACC_FINAL.

The remaining components of field_info structures are fully supported.

2.3.1.2.6 Methods

In method_info structures, the supported access flags are ACC_PUBLIC, ACC_PRIVATE,

ACC_PROTECTED, ACC_STATIC, ACC_FINAL and ACC_ABSTRACT.

The remaining components of method_info structures are fully supported.

2.3.1.2.7 Attributes

The attribute_info structure is supported. The Code, ConstantValue, Exceptions,

LocalVariableTable, Synthetic, InnerClasses, RuntimeInvisibleAnnotations,

RuntimeInvisibleParameterAnnotations and Deprecated attributes are supported.

2.3.2 Bytecode Subset

The following sections detail the bytecodes that are either supported or unsupported in the Java Card

platform. For more details, refer to Chapter 7, Java Card Virtual Machine Instruction Set.

2.3.2.1 Unsupported Bytecodes

The unsupported bytecodes are:

 caload

 castore

 d2f

 d2i

Java Card Platform Virtual Machine Specification, v3.2 Page 39

 d2l

 dadd

 daload

 dastore

 dcmpg

 dcmpl

 dconst_<d>

 ddiv

 dload

 dload_<n>

 dmul

 dneg

 drem

 dreturn

 dstore

 dstore_<n>

 dsub

 f2d

 f2i

 fadd

 faload

 fastore

 fcmpg

 fcmpl

 fconst_<f>

 fdiv

 fload

 fload_<n>

 fmul

 fneg

 frem

 freturn

 fstore

 fstore_<n>

 fsub

 goto_w

 i2c

 i2d

 i2f

 i2l

 jsr_w

Java Card Platform Virtual Machine Specification, v3.2 Page 40

 l2d

 l2f

 l2i

 ladd

 laload

 land

 lastore

 lcmp

 lconst_<l>

 ldc2_w2

 ldiv

 lload

 lload_<n>

 lmul

 lneg

 lor

 lrem

 lreturn

 lshl

 lshr

 lstore

 lstore_<n>

 lsub

 lushr

 lxor

 monitorenter

 monitorexit

 multianewarray

2.3.2.2 Supported Bytecodes

The supported bytecodes are:

 aaload

 aastore

 aconst_null

 aload

 aload_<n>

 anewarray

 areturn

 arraylength

 astore

 astore_<n>

Java Card Platform Virtual Machine Specification, v3.2 Page 41

 athrow

 baload

 bastore

 bipush

 checkcast

 dup

 dup_x1

 dup_x2

 dup2

 dup2_x1

 dup2_x2

 getfield

 getstatic

 goto

 i2b

 i2s

 iadd

 iaload

 iand

 iastore

 iconst_<i>

 idiv

 if<cond>

 ifacmp_<cond>

 ificmp_<cond>

 ifnonnull

 ifnull

 iinc

 iload

 iload_<n>

 imul

 ineg

 instanceof

 invokeinterface

 invokespecial

 invokestatic

 invokevirtual

 ior

 irem

 ireturn

 ishl

 ishr

 istore

 istore_<n>

 isub

Java Card Platform Virtual Machine Specification, v3.2 Page 42

 iushr

 ixor

 jsr

 ldc

 ldc_w

 lookupswitch

 new

 newarray

 nop

 pop

 pop2

 putfield

 putstatic

 ret

 return

 saload

 sastore

 sipush

 swap

 tableswitch

 wide

2.3.2.3 Static Restrictions on Bytecodes

A class file must conform to the following restrictions on the static form of bytecodes.

2.3.2.3.1 ldc, ldc_w

The ldc and ldc_w bytecodes can only be used to load integer constants. The constant pool entry at

index must be a CONSTANT_Integer entry. If a program contains an ldc or ldc_w instruction that

is used to load an integer value less than -32768 or greater than 32767, that program will require the

optional int instructions (2.2.3.1 Integer Data Type).

2.3.2.3.2 lookupswitch

The value of the npairs operand must be less than 65536. This limit is far greater than the limit

imposed by the maximum size of methods (2.2.4.4 Limitations of Methods). If a program contains a

lookupswitch instruction that uses keys of type int, that program will require the optional int

instructions (2.2.3.1 Integer Data Type). Otherwise, key values must be in the range -32768 to 32767.

2.3.2.3.3 tableswitch

The bytecode can contain at most 65536 cases. This limit is far greater than the limit imposed by the

maximum size of methods (2.2.4.4 Limitations of Methods). If a program does not use the optional int

instruction (2.2.3.1 Integer Data Type), the values of the high and low operands must both be at least

-32768 and at most 32767.

2.3.2.3.4 wide

The wide bytecode can only be used with an iinc instruction.

Java Card Platform Virtual Machine Specification, v3.2 Page 43

2.3.3 Exceptions

The Java Card platform provides full support for the Java platform’s exception mechanism. Users can

define, throw and catch exceptions just as in the Java platform. The Java Card platform also makes use

of the exceptions and errors defined in The Java Language Specification. An updated list of the Java

platform’s exceptions is provided in the JDK software documentation.

Not all of the Java platform’s exceptions are supported in the Java Card platform. Exceptions related to

unsupported features are naturally not supported. Class loader exceptions (the bulk of the checked

exceptions) are not supported.

Note that some exceptions may be supported to the extent that their error conditions are detected

correctly, but classes for those exceptions will not necessarily be present in the API.

The supported subset is described in the tables below.

2.3.3.1 Uncaught and Uncatchable Exceptions

In the Java platform, uncaught exceptions and errors will cause the virtual machine’s current thread to

exit. As the Java Card virtual machine is single-threaded, uncaught exceptions or errors will cause the

virtual machine to halt. Further response to uncaught exceptions or errors after halting the virtual

machine is an implementation-specific policy, and is not mandated in this document.

Some error conditions are known to be unrecoverable at the time they are thrown. Throwing a runtime

exception or error that cannot be caught will also cause the virtual machine to halt. As with uncaught

exceptions, implementations may take further responses after halting the virtual machine. Uncatchable

exceptions and errors which are supported by the Java Card platform may not be reflected in the Java

Card API, though the Java Card platform will correctly detect the error condition.

2.3.3.2 Checked Exceptions

Support of Java checked exceptions:

Table 2-3: Support of Java Checked Exceptions

Exception Supported or Not Supported

ClassNotFoundException Not Supported

CloneNotSupportedException Not Supported

IllegalAccessException Not Supported

InstantiationException Not Supported

InterruptedException Not Supported

NoSuchFieldException Not Supported

NoSuchMethodException Not Supported

Java Card Platform Virtual Machine Specification, v3.2 Page 44

2.3.3.3 Runtime Exceptions

Support of Java Runtime Exceptions:

Table 2-4: Support of Java Runtime Exceptions

Runtime Exception Supported or Not Supported
ArithmeticException Supported
ArrayStoreException Supported
ClassCastException Supported
IllegalArgumentException Not Supported
IllegalThreadStateException Not Supported
NumberFormatException Not Supported
IllegalMonitorStateException Not Supported
IllegalStateException Not Supported
IndexOutOfBoundsException Supported
ArrayIndexOutOfBoundsException Supported
StringIndexOutOfBoundsException Not Supported
NegativeArraySizeException Supported
NullPointerException Supported
SecurityException Supported

2.3.3.4 Errors

Support of Java errors:

Table 2-5: Support of Java Errors

Error Supported or Not Supported
AssertionError Not Supported
LinkageError Supported
ClassCircularityError Supported
ClassFormatError Supported
ExceptionInInitializerError Supported
IncompatibleClassChangeError Supported
AbstractMethodError Supported
IllegalAccessError Supported
InstantiationError Supported
NoSuchFieldError Supported
NoSuchMethodError Supported
NoClassDefFoundError Supported
UnsatisfiedLinkError Supported
VerifyError Supported
ThreadDeath Not Supported
VirtualMachineError Supported
InternalError Supported
OutOfMemoryError Supported

Java Card Platform Virtual Machine Specification, v3.2 Page 45

Error Supported or Not Supported
StackOverflowError Supported
UnknownError Supported
UnsupportedClassVersionError Supported

Java Card Platform Virtual Machine Specification, v3.2 Page 46

3 Structure of the Java Card Virtual Machine
The specification of the Java Card virtual machine is in many ways quite similar to that of the Java virtual

machine. This similarity is of course intentional, as the design of the Java Card virtual machine was based

on that of the Java virtual machine. Rather than reiterate all the details of this specification which are

shared with that of the Java virtual machine, this chapter will mainly refer to its counterpart in The Java

Virtual Machine Specification, Second Edition, providing new information only where the Java Card

virtual machine differs.

3.1 Data Types and Values
The Java Card virtual machine supports the same two kinds of data types as the Java virtual machine:

primitive types and reference types. Likewise, the same two kinds of values are used: primitive values

and reference values.

The primitive data types supported by the Java Card virtual machine are the numeric types, the boolean

type, and the returnAddress type. The numeric types consist only of these types:

 byte, whose values are 8-bit signed two’s complement integers

 short, whose values are 16-bit signed two’s complement integers

Some Java Card virtual machine implementations may also support an additional integral type:

 int, whose values are 32-bit signed two’s complement integers

Support for the boolean type is identical to that in the Java virtual machine. The value 1 is used to

represent true and the value of 0 is used to represent false.

Support for reference types is identical to that in the Java virtual machine.

3.2 Words
The Java Card virtual machine is defined in terms of an abstract storage unit called a word. This

specification does not mandate the actual size in bits of a word on a specific platform. A word is large

enough to hold a value of type byte, short, reference or returnAddress. Two words are

large enough to hold a value of type int.

The actual storage used for values in an implementation is platform-specific. There is enough

information present in the descriptor component of a CAP file to allow an implementation to optimize

the storage used for values in variables and on the stack.

Java Card Platform Virtual Machine Specification, v3.2 Page 47

3.3 Runtime Data Areas
The Java Card virtual machine can support only a single thread of execution. Any runtime data area in

the Java virtual machine which is duplicated on a per-thread basis will have only one global copy in the

Java Card virtual machine.

The Java Card virtual machine's heap is not required to be garbage collected. Objects allocated from the

heap will not necessarily be reclaimed.

This specification does not include support for native methods, so there are no native method stacks.

Otherwise, the runtime data areas are as documented for the Java virtual machine.

3.4 Contexts
Each applet running on a Java Card virtual machine is associated with an execution context. The Java

Card virtual machine uses the context of the current frame to enforce security policies for inter-applet

operations.

There is a one-to-one mapping between contexts and CAP files in which applets are defined. An easy

way to think of a context is as the runtime equivalent of a CAP file. As a consequence, all applet

instances from the same CAP file will share the same context.

The Java Card Runtime Environment also has its own context. Framework objects execute in this Java

Card RE context.

The context of the currently executing method is known as the current context. Every object in a Java

Card virtual machine is owned by a particular context. The owning context is the context that was

current when the object was created.

When a method in one context successfully invokes a method on an object in another context, the Java

Card virtual machine performs a context switch. Afterwards the invoked method's context becomes the

current context. When the invoked method returns, the current context is switched back to the previous

context.

Context isolation is described in detail in the Runtime Environment Specification, Java Card Platform,

v3.2, Classic Edition.

3.5 Frames
Java Card virtual machine frames are very similar to those defined for the Java virtual machine. Each

frame has a set of local variables and an operand stack. Frames also contain a reference to a constant

pool, but since all constant pools for all classes in a package are merged, the reference is to the constant

pool for the current class’ package.

Each frame also includes a reference to the context in which the current method is executing.

Java Card Platform Virtual Machine Specification, v3.2 Page 48

3.6 Representation of Objects
The Java Card virtual machine does not mandate a particular internal structure for objects or a particular

layout of their contents. However, the core components in a CAP file are defined assuming a default

structure for certain runtime structures (such as descriptions of classes), and a default layout for the

contents of dynamically allocated objects. Information from the descriptor component of the CAP file

can be used to format objects in whatever way an implementation requires.

3.7 Special Initialization Methods
The Java Card virtual machine supports instance initialization methods exactly as does the Java virtual

machine.

The Java Card virtual machine includes only limited support for class or interface

initialization methods. There is no general mechanism for executing <clinit> methods on a

Java Card virtual machine. Instead, a CAP file includes information for initializing class data as defined in

2.2.4.6 Limitations of Class Initialization.

3.8 Exceptions
Exception support in the Java Card virtual machine is identical to support for exceptions in the Java

virtual machine.

3.9 Binary File Formats
This specification defines two binary file formats which enable platform-independent development,

distribution and execution of Java Card programs.

The CAP file format describes files that contain executable code and can be downloaded and installed

onto a Java Card technology-enabled device. A CAP file is produced by a Java Card Platform Converter

tool, and contains a converted form of one or more entire packages of Java classes. This file format's

relationship to the Java Card virtual machine is analogous to the relationship of the class file format

to the Java virtual machine.

The export file format describes files that contain the public linking information of Java Card API

packages. A package’s export file is used when converting client packages of that package.

3.10 Instruction Set Summary
The Java Card virtual machine instruction set is quite similar to the Java virtual machine instruction set.

Individual instructions consist of a one-byte opcode and zero or more operands. The pseudo-code for

the Java Card virtual machine's instruction fetch-decode-execute loop is the same. Multi-byte operand

data is also encoded in big-endian order.

There are a number of ways in which the Java Card virtual machine instruction set diverges from that of

the Java virtual machine. Most of the differences are due to the Java Card virtual machine's more limited

support for data types. Another source of divergence is that the Java Card virtual machine is intended to

run on 8-bit and 16-bit architectures, whereas the Java virtual machine was designed for a 32-bit

architecture. The rest of the differences are all oriented in one way or another toward optimizing the

Java Card Platform Virtual Machine Specification, v3.2 Page 49

size or performance of either the Java Card virtual machine or Java Card programs. These changes

include inlining constant pool data directly in instruction opcodes or operands, adding multiple versions

of a particular instruction to deal with different datatypes, and creating composite instructions for

operations on the current object.

3.10.1 Types and the Java Card Virtual Machine

The Java Card virtual machine supports only a subset of the types supported by the Java virtual machine.

This subset is described in Chapter 2. Type support is reflected in the instruction set, as instructions

encode the data types on which they operate.

Given that the Java Card virtual machine supports fewer types than the Java virtual machine, there is an

opportunity for better support for smaller data types. Lack of support for large numeric data types frees

up space in the instruction set. This extra instruction space has been used to directly support arithmetic

operations on the short data type.

Some of the extra instruction space has also been used to optimize common operations. Type

information is directly encoded in field access instructions, rather than being obtained from an entry in

the constant pool.

Table 3-1 summarizes the type support in the instruction set of the Java Card virtual machine. Only

instructions that exist for multiple types are listed. Wide and composite forms of instructions are not

listed either. A specific instruction, with type information, is built by replacing the T in the instruction

template in the opcode column by the letter representing the type in the type column. If the type

column for some instruction is NONE, then no instruction exists supporting that operation on that type.

For instance, there is a load instruction for type short, sload, but there is no load instruction for type

byte.

Table 3-1: Type Support in the Java Card Virtual Machine Instruction Set

opcode byte short int reference
Tspush bspush sspush NONE NONE

Tipush bipush sipush iipush NONE

Tconst NONE sconst iconst aconst

Tload NONE sload iload aload

Tstore NONE sstore istore astore

Tinc NONE sinc iinc NONE

Taload baload saload iaload aaload

Tastore bastore sastore iastore aastore

Tadd NONE sadd iadd NONE

Tsub NONE ssub isub NONE

Tmul NONE smul imul NONE

Tdiv NONE sdiv idiv NONE

Trem NONE srem irem NONE

Tneg NONE sneg ineg NONE

Tshl NONE sshl ishl NONE

Tshr NONE sshr ishr NONE

Tushr NONE sushr iushr NONE

Java Card Platform Virtual Machine Specification, v3.2 Page 50

opcode byte short int reference
Tand NONE sand iand NONE

Tor NONE sor ior NONE

Txor NONE sxor ixor NONE

s2T s2b NONE s2i NONE

i2T i2b i2s NONE NONE

Tcmp NONE NONE icmp NONE

if_TcmpOP NONE if_scmpOP NONE if_acmpOP

Tlookupswitch NONE slookupswitch ilookupswitch NONE

Ttableswitch NONE stableswitch itableswitch NONE

Treturn NONE sreturn ireturn areturn

getstatic_T getstatic_b getstatic_s getstatic_i getstatic_a

putstatic_T putstatic_b putstatic_s putstatic_i putstatic_a

getfield_T getfield_b getfield_s getfield_i getfield_a

putfield_T putfield_b putfield_s putfield_i putfield_a

The mapping between Java storage types and Java Card virtual machine computational types is

summarized in Table 3-2.

Table 3-2: Storage Types and Computational Types

Java (Storage) Type Size in Bits Computational Type
byte 8 short

short 16 short

int 32 int

Chapter 7 describes the Java Card virtual machine instruction set in detail.

Java Card Platform Virtual Machine Specification, v3.2 Page 51

4 Binary Representation
This chapter presents information about the binary representation of Java Card programs. Java Card

technology-based binaries (“Java Card binaries”) are usually contained in files, therefore this chapter

addresses binary representation in terms of this common case. Several topics relating to binary

representation are covered. The first section describes the basic organization of program representation

in export and CAP files, as well as the use of the Java Archive (JAR) file containers. The second section

covers how Java Card applets and packages are named using unique identifiers. The third section

presents the scheme used for naming and linking items within Java Card API packages. The fourth and

fifth sections describe the constraints for upward compatibility between different versions of a Java

Card technology-based binary (“Java Card binary”) program file, and versions assigned based upon that

compatibility.

4.1 Java Card Platform File Formats
Java programs are represented in compiled, binary form as class files. Java class files are used not only to

execute programs on a Java virtual machine, but also to provide type and name information to a Java

compiler. In the latter role, a class file is essentially used to document the API of its class to client code.

That client code is compiled into its own class file, including symbolic references used to dynamically link

to the API class at runtime.

Java Card technology uses a different strategy for binary representation of programs. Executable

binaries and interface binaries are represented in two separate files. These files are respectively called

CAP files (for converted applet) and export files.

4.1.1 Export File Format

Export files are not used directly on a device that implements a Java Card virtual machine. However, the

information in an export file is critical to the operation of the virtual machine on a device. An export file

can be produced by a Java Card converter when a package is converted. This package’s export file can be

used later to convert another package that imports classes from the first package. Information in the

export file is included in the CAP file of the second package, then is used on the device to link the

contents of the second package to items imported from the first package.

A Java Card technology-based export file (“Java Card export file”) contains the public interface

information for an entire package of classes. This means that an export file only contains information

about the public API of a package, and does not include information used to link classes within a

package.

Java Card Platform Virtual Machine Specification, v3.2 Page 52

The name of an export file is the last portion of the package specification followed by the extension

‘.exp’. For example, the name of the export file of the javacard.framework package must be

framework.exp. Operating systems that impose limitations on file name lengths may transform an

export file’s name according to their own conventions.

For a complete description of the Java Card export file format, see Chapter 5, The Export File Format.

4.1.2 CAP File Format

A Java Card CAP file contains a binary representation of a Java Card application or library or both,

consisting of one or more packages of classes that can be installed on a device and used to execute the

Java Card application or library’s classes on a Java Card virtual machine.

A CAP file is produced by a Java Card converter when a Java Card application or library is converted. A

CAP file consists of a set of components, each of which describes a different aspect of the contents. The

set of components in a CAP file can vary, depending on whether the file contains a library or applet

definition(s). A CAP file can be in Compact or Extended format where a CAP file in Compact format can

only contain a single Java package and a CAP file in Extended format may contain one or more packages.

For a complete description of the Java Card CAP file format, see Chapter 6, The CAP File Format.

4.1.3 JAR File Container

The JAR file format is used as the container format for CAP files. What this specification calls a “CAP file”

is just a JAR file that contains the required set of CAP components (see Chapter 6, The CAP File Format).

CAP file components are stored as files in a JAR file. Each CAP file component is located in a directory

called javacard. In CAP files in Compact format javacard subdirectory is in a directory

representing the package. For example, the CAP file components of the package

com.oracle.framework are located in the directory com/oracle/framework/javacard. In

CAP files in Extended format, javacard subdirectory is in a directory representing the CAP file. For

example, for a CAP file called com.oracle.helloworld that may contain multiple packages, the

CAP file components of the CAP file are located in directory

com/oracle/helloworld/javacard.

Export files may also be contained in a JAR file, whether that JAR file contains CAP file components or

not. If an export component is included in the CAP file in Compact format, it must be located in the same

directory as the components for that package would be. If export files are included in the CAP file in

Extended format, they must be located in the directory javacard which is a subdirectory representing

each package which is represented by each export file. For example, the export file for package

com.oracle.framework is located in directory com/oracle/framework/javacard.

The name of a JAR file containing CAP file components is not defined as part of this specification. Other

files, including CAP file components for another package, may also reside in a JAR file that contains CAP

file components.

Java Card Platform Virtual Machine Specification, v3.2 Page 53

4.2 AID-based Naming
This section describes the mechanism used for naming applets and packages in Java Card CAP files and

export files, and custom components in Java Card CAP files. Java class files use Unicode strings to name

Java packages. As the Java Card platform does not include support for strings, an alternative mechanism

for naming is provided.

ISO 7816 is a multipart standard that describes a broad range of technology for building smart card

systems. ISO 7816-5 defines the AID (application identifier) data format to be used for unique

identification of card applications (and certain kinds of files in card file systems). The Java Card platform

uses the AID data format to identify applets, packages and CAP files. AIDs are administered by the

International Standards Organization (ISO), so they can be used as unique identifiers.

4.2.1 The AID Format

This section presents a minimal description of the AID data format used in Java Card technology. For

complete details, refer to ISO 7816-5, AID Registration Category ‘D’ format.

The AID format used by the Java Card platform is an array of bytes that can be interpreted as two

distinct pieces, as shown in Table 4-1. The first piece is a 5-byte value known as a RID (resource

identifier). The second piece is a variable length value known as a PIX (proprietary identifier extension).

A PIX can be from 0 to 11 bytes in length. Thus, an AID can be from 5 to 16 bytes in total length.

Table 4-1: AID Format

Resource Identifier Proprietary Identifier Extension

RID (5 bytes) PIX (0-11 bytes)

ISO controls the assignment of RIDs to companies, with each company obtaining its own unique RID

from the ISO. Companies manage assignment of PIXs for AIDs using their own RIDs.

4.2.2 AID Usage

In the Java platform, packages are uniquely identified using Unicode strings and a naming scheme based

on internet domain names. In the Java Card platform, CAP files, packages and applets are identified

using AIDs.

4.2.2.1 CAP File AID namespace

All CAP files must be assigned an AID such that no two CAP files have the same AID. The AID for a CAP

file is constructed from the concatenation of the company’s RID and a PIX for that CAP file.

4.2.2.2 Applet AID namespace

Each applet loaded on a Java Card technology enabled device must have an AID. This AID is constructed

similarly to a CAP file AID. It is a concatenation of the applet provider’s RID and PIX for that applet. An

applet AID must not have the same value as the AID of any other applet of the same CAP file. The RID of

each applet in a CAP file must be the same as the RID of the CAP file AID.

Java Card Platform Virtual Machine Specification, v3.2 Page 54

4.2.2.3 Package AID namespace

Any package that is represented in an export file must be assigned an AID such that no two packages

have the same AID. The AID for a package is constructed from the concatenation of the company’s RID

and a PIX for that package. This AID corresponds to the string name for the package, as shown in Figure

4-1.

Figure 4-1: Mapping Package Identifiers to AIDs

4.2.2.3 Custom Component AID namespace

Custom components defined in a CAP file are also identified using AIDs. Like AIDs for applets, packages

and CAP files, custom component AIDs are formed by concatenating the RID and a PIX.

4.3 Token-based Linking
This section describes a scheme that allows downloaded software to be linked against APIs on a Java

Card technology enabled device. The scheme represents referenced items as opaque tokens, instead of

Unicode strings as are used in Java class files. The two basic requirements of this linking scheme are that

it allows linking on the device, and that it does not require internal implementation details of APIs to be

revealed to clients of those APIs. Secondary requirements are that the scheme be efficient in terms of

resource use on the device, and have acceptable performance for linking. And of course, it must

preserve the semantics of the Java language.

4.3.1 Externally Visible Items

Classes (including Interfaces) in Java packages may be declared with public or package visibility. A class’s

methods and fields may be declared with public, protected, package or private visibility. For purposes of

this document, we define public classes, public or protected fields, and public or protected methods to

be externally visible from the package.

Each externally visible item must have a token associated with it to enable references from other

packages to the item to be resolved on a device. There are six kinds of items in a package that require

external identification.

 Classes (including Interfaces)

 Static Fields

 Static Methods

 Instance Fields

Java Card Platform Virtual Machine Specification, v3.2 Page 55

 Virtual Methods

 Interface Methods

4.3.2 Private Tokens

Items that are not externally visible are internally visible. Internally visible items are not described in a

package’s export file, but some such items use private tokens to represent internal references. External

references are represented by public tokens. There are three kinds of items that can be assigned private

tokens.

 Instance Fields

 Virtual Methods

 Packages

4.3.3 The Export File and Conversion

An export file contains entries for externally visible items in the package. Each entry holds the item’s

name and its token. Some entries may include additional information as well. For detailed information

on the export file format, see Chapter 5, The Export File Format.

The export file is used to map names for imported items to tokens during package conversion. The Java

Card converter uses these tokens to represent references to items in an imported package.

For example, during the conversion of the class files of applet A, the export file of

javacard.framework is used to find tokens for items in the API that are used by the applet.

Applet A creates a new instance of framework class OwnerPIN. The framework export file contains an

entry for javacard.framework.OwnerPIN that holds the token for this class. The converter

places this token in the CAP file’s constant pool to represent an unresolved reference to the class. The

token value is later used to resolve the reference on a device.

4.3.4 References – External and Internal

In the context of a CAP file, references to items are made indirectly through a CAP’s constant pool.

References to items in other CAP files are called external, and are represented in terms of tokens.

References to items in the same CAP file are called internal, and are represented either in terms of

tokens, or in a different internal format.

An external reference to a class is composed of a package token and a class token. Together those

tokens specify a certain class in a certain package. An internal reference to a class is a 15-bit value that is

a pointer to the class structure’s location within the CAP file.

An external reference to a static class member, either a field or method, consists of a package token, a

class token, and a token for the static field or static method. An internal reference to a static class

member is a 16-bit value that is a pointer to the item’s location in the CAP file.

References to instance fields, virtual methods and interface methods consist of a class reference and a

token of the appropriate type. The class reference determines whether the reference is external or

internal.

Java Card Platform Virtual Machine Specification, v3.2 Page 56

4.3.5 Installation and Linking

External references in a CAP file can be resolved on a device from token form into the internal

representation used by the virtual machine.

A token can only be resolved in the context of the package that defines it. Just as the export file maps

from a package’s externally visible names to tokens, there is a set of link information for each package

on the device that maps from tokens to resolved references.

4.3.6 Token Assignment

Tokens for an API are assigned by the API’s owner and published in the package export file(s) for that

API. Since the name-to-token mappings are published, an API owner may choose any order for tokens

(subject to the constraints listed below).

A particular device platform can resolve tokens into whatever internal representation is most useful for

that implementation of a Java Card virtual machine. Some tokens may be resolved to indices. For

example, an instance field token may be resolved to an index into a class instance’s fields. In such cases,

the token value is distinct from and unrelated to the value of the resolved index.

4.3.7 Token Details

Each kind of item in a package has its own independent scope for tokens of that kind. The token range

and assignment rules for each kind are listed in Table 4-2.

Table 4-2: Token Range, Type and Scope

Token Type Range Type Scope

Package 0 - 127 Private Package

Class 0 - 254 Public Package

Static Field 0 - 255 Public Class

Static Method 0 - 255 Public Class

Instance Field 0 - 255 Public or Private Class

Virtual Method 0 - 127 Public or Private Class Hierarchy

Interface Method 0 - 127 Public Class

4.3.7.1 Package

All package references from within a CAP file are assigned private package tokens. Package token values

must be in the range from 0 to 127, inclusive. The tokens for all the packages referenced from classes in

a CAP file are numbered consecutively starting at zero. The ordering of package tokens is not specified.

4.3.7.2 Classes and Interfaces

All externally visible classes and interfaces in a package are assigned public class tokens. Class token

values must be in the range from 0 to 254, inclusive. The tokens for all the public classes and interfaces

in a package are numbered consecutively starting at zero. The ordering of class tokens is not specified.

Package-visible classes and interfaces are not assigned tokens.

Java Card Platform Virtual Machine Specification, v3.2 Page 57

4.3.7.3 Static Fields

All externally visible static fields in a package are assigned public static field tokens. The tokens for all

externally visible static fields in a class are numbered consecutively starting at zero. Static fields token

values must be in the range from 0 to 255, inclusive. The ordering of static field tokens is not specified.

Package-visible and private static fields are not assigned tokens. In addition, no tokens are assigned for

final static fields that are initialized to primitive, compile-time constants, as these fields are never

represented as fields in CAP files.

4.3.7.4 Static Methods and Constructors

All externally visible static methods and constructors in a package are assigned public static method

tokens. Constructors are included in this category because they are statically bound. Static method

token values must be in the range from 0 to 255, inclusive. The tokens for all the externally visible static

methods and constructors in a class are numbered consecutively starting at zero. The ordering of static

method tokens is not specified.

Package-visible and private static methods as well as package-visible and private constructors are not

assigned tokens.

4.3.7.5 Instance Fields

All instance fields defined in a package are assigned either public or private instance field tokens. The

scope of a set of instance field tokens is limited to the class that declares the instance fields, not

including the fields declared by superclasses of that class.

Instance field token values must be in the range from 0 to 255, inclusive. Public and private tokens for

instance fields are assigned from the same namespace. The tokens for all the instance fields in a class

are numbered consecutively starting at zero, except that the token after an int field is skipped and the

token for the following field is numbered two greater than the token of the int field.

Within a class, tokens for externally visible fields must be numbered less than the tokens for package

and private fields. For public tokens, the tokens for reference type fields must be numbered greater

than the tokens for primitive type fields. For private tokens, the tokens for reference type fields must be

numbered less than the tokens for primitive type fields. Beyond that, the ordering of instance field

tokens in a class is not specified.

Table 4-3: Tokens For Instance Fields

Visibility Category Type Token Value

public and protected fields (public tokens) primitive boolean 0

public and protected fields (public tokens) primitive byte 1

public and protected fields (public tokens) primitive short 2

public and protected fields (public tokens) reference byte[] 3

public and protected fields (public tokens) reference Applet 4

package and private fields (private tokens) reference short[] 5

package and private fields (private tokens) reference Object 6

Java Card Platform Virtual Machine Specification, v3.2 Page 58

Visibility Category Type Token Value

package and private fields (private tokens) primitive int 7

package and private fields (private tokens) primitive short 9

4.3.7.6 Virtual Methods

Virtual methods are instance methods that are resolved dynamically. The set includes all public,

protected and package-visible instance methods. Private instance methods and all constructors are not

virtual methods, but instead are resolved statically during compilation.

All virtual methods defined in a package are assigned either public or private virtual method tokens.

Virtual method token values must be in the range from 0 to 127, inclusive. Public and private tokens for

virtual methods are assigned from different namespaces. The high bit of the byte containing a virtual

method token is set to one if the token is a private token.

If a method overrides an externally visible (public or protected) method implemented in the class’s

superclass, that method is assigned the same token number as the method in the superclass. The high

bit of the byte containing a public virtual method token is always set to zero, to indicate it is a public

token. The ordering of public virtual method tokens in a class is not specified.

Private virtual method tokens are assigned to package-visible virtual methods. They are assigned

differently from public virtual method tokens. If a class and its superclass are defined in the same

package, the tokens for the package-visible introduced virtual methods in that class are numbered

consecutively starting at one greater than the highest numbered private virtual method token of the

class’s superclass. If the class and its superclass are defined in different packages, the tokens for the

package-visible introduced virtual methods in that class are numbered consecutively starting at zero. If a

method overrides a method implemented in the class’s superclass, that method uses the same token

number as the method in the superclass. The definition of the Java programming language specifies that

overriding a package-visible virtual method is only possible if both the class and its superclass are

defined in the same package. The high bit of the byte containing a virtual method token is always set to

one, to indicate it is a private token. The ordering of private virtual method tokens in a class is not

specified.

4.3.7.7 Interface Methods

All interface methods defined in a package are assigned public interface method tokens, as interface

methods are always public. Interface method token values must be in the range from 0 to 127, inclusive.

The tokens for all the interface methods defined in or inherited by an interface are numbered

consecutively starting at zero. The token value for an interface method in a given interface is unrelated

to the token values of that same method in any of the interface’s superinterfaces. Each interface

includes its own token values for all the methods inherited from super-interfaces as well as its defined

methods. The high bit of the byte containing an interface method token is always set to zero, to indicate

it is a public token. The ordering of interface method tokens is not specified.

Java Card Platform Virtual Machine Specification, v3.2 Page 59

4.4 Binary Compatibility
In the Java programming language, the granularity of binary compatibility can be between classes since

binaries are stored in individual class files. In Java Card systems, Java classes are grouped by package

into a CAP file, therefore the granularity of binary compatibility is between packages. The binary

representation of classes is represented by the components in a CAP file, and the API of every single

package is represented in an export file.

In a Java Card system, a change to a type in a Java package in a Java Card CAP file results in a new CAP

file. A new CAP file is binary compatible with (equivalently, does not break compatibility with) a

preexisting CAP file if another CAP file converted using the export files of packages included in the

preexisting CAP file can link with the new CAP file without errors.

Figure 4-2 shows an example of binary compatible CAP files, p1 and p1’. The preconditions for the

example are: the package p1 is converted to create the p1 CAP file and p1 export file, and package p1 is

modified and converted to create the p1’ CAP file. Package p2 imports package p1, and therefore when

the p2 CAP file is created the export file of p1 is used. In the example, p2 is converted using the original

p1 export file. Because p1’ is binary compatible with p1, p2 may be linked with either the p1 CAP file or

the p1’ CAP file.

Figure 4-2: Binary Compatibility Example

Any modification that causes binary incompatibility in the Java programming language also causes

binary incompatibility in Java Card systems. These modifications are described as causing a potential

error in The Java Language Specification. Any modification that does not cause binary incompatibility in

the Java programming language does not cause binary incompatibility in a Java Card system, except

under the following conditions:

 The value of a token assigned to an element in the API of a package is changed.

 The value of an externally visible final static field (compile-time constant) is changed.

Java Card Platform Virtual Machine Specification, v3.2 Page 60

Tokens are used to resolve references to imported elements of a package. Tokens assigned to public and

protected virtual methods are scoped to a class. If a token value is modified, a linker on a device is

unable to associate the new token value with the previous token value of the element, and therefore is

unable to resolve the reference correctly.

Compile-time constants are not stored as fields in CAP files. Instead their values are recorded in export

files and placed inline in the bytecodes in CAP files. These values are said to be pre-linked in a CAP file of

a package that imports those constants. During execution, information is not available to determine

whether the value of an inlined constant is the same as the value defined by the binary of the imported

package.

4.5 CAP and Package Versions
Each CAP file in the Java Card system is assigned a unique CAP file version number. Furthermore, each

implementation of a package in a Java Card system is assigned a pair of major and minor version

numbers. Version numbers for a package are used to indicate binary compatibility or incompatibility

between successive implementations of a package.

4.5.1 Assigning

The major and minor versions of a CAP file and contained packages are assigned by the CAP file and

package provider. It is recommended that the initial implementation of a CAP file and a package be

assigned a major version of 1 and a minor version of 0. However, any values may be chosen. It is also

recommended that when either a major or a minor version is incremented, it is incremented exactly by

1.

For a package, major version must be changed when a new implementation is not binary compatible

with the previous implementation. The value of the new major version must be greater than the major

version of the previous implementation. When a major version is changed, the associated minor version

must be assigned the value of 0.

When a new implementation of a package is binary compatible with the previous implementation, it

must be assigned a major version equal to the major version of the previous implementation. The minor

version assigned to the new implementation must be greater than the minor version of the previous

implementation.

Rules for specifying the version numbers for the CAP file in Extended Format (The CAP File Format) are

beyond the scope of this specification. For the CAP file in Compact Format (The CAP File Format) the CAP

file version number must be the same as the version number of the single package that it contains.

4.5.2 Linking

Both an export file and a CAP file contain the major and minor version numbers of the packages

described. When a CAP file is installed on a Java Card technology-enabled device, resident images of the

packages it contains are created and the major and minor version numbers are recorded as part of that

Java Card Platform Virtual Machine Specification, v3.2 Page 61

images. When an export file is used during preparation of a CAP file, the version numbers indicated in

the export file are recorded in the CAP file.

During installation, references from the packages of the CAP file being installed to an imported package

can be resolved only when the version numbers indicated in the export file used during preparation of

the CAP file are compatible with the version numbers of the resident image. They are compatible when

the major version numbers are equal, and the minor version of the export file is less than or equal to the

minor version of the resident image.

Java Card Platform Virtual Machine Specification, v3.2 Page 62

5 The Export File Format
This chapter describes the export file format. Compliant Java Card Converters must be capable of

producing and consuming all export files that conform to the specification provided in this chapter.

An export file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are constructed by

reading in two and four consecutive 8-bit bytes, respectively. Multibyte data items are always stored in

big-endian order, where the high-order bytes come first.

This chapter defines its own set of data types representing Java Card export file data: the types u1, u2,

and u4 represent an unsigned one-, two-, and four-byte quantities, respectively.

The Java Card export file format is presented using pseudo structures written in a C-like structure

notation. To avoid confusion with the fields of Java Card virtual machine classes and class instances, the

contents of the structures describing the Java Card export file format are referred to as items. Unlike the

fields of a C structure, successive items are stored in the Java Card platform file sequentially, without

padding or alignment.

Variable-sized tables, consisting of variable-sized items, are used in several export file structures.

Although we will use C-like array syntax to refer to table items, the fact that tables are streams of

varying-sized structures means that it is not possible to directly translate a table index into a byte offset

into the table.

In a data structure that is referred to as an array, the elements are equal in size.

5.1 Export File Name
As described in 4.1.1 Export File Format, the name of an export file must be the last portion of the

package specification followed by the extension ‘.exp’. For example, the name of the export file of the

javacard.framework package must be framework.exp. Operating systems that impose

limitations on file name lengths may transform an export file’s name according to its conventions.

5.2 Containment in a JAR File
As described in 4.1.3 JAR File Container, Java Card CAP files are contained in a JAR file. If an export file is

also stored in a JAR file, it must also be located in a directory called javacard that is a subdirectory of

the corresponding package’s directory. For example, the framework.exp file would be located in the

subdirectory javacard/framework/javacard.

5.3 Ownership
An export file is owned by the entity that owns the package it represents. The owner of a package

defines the API of that package and may or may not provide all implementations of that package. All

Java Card Platform Virtual Machine Specification, v3.2 Page 63

implementations, however, must conform to the definition provided in the export file provided by the

owner.

A particular example of export file ownership is the Java Card API packages. Oracle defines these

packages. Oracle also provides the export files for these packages. All implementations of the Java Card

API packages must conform to the definitions provided by Oracle and comply with the token

assignments provided in these export files.

5.4 Hierarchies Represented
Classes and interfaces represented in an export file include public elements defined within their

respective hierarchies. For example, instead of indicating the immediate superclass or superinterface, all

public superclasses or superinterfaces are listed. This design concept is applied not only to superclasses

or superinterfaces, but also to virtual methods and implemented interfaces.

5.5 Export File
An export file is defined by the following structure:

ExportFile {

u4 magic

u1 minor_version

u1 major_version

u2 constant_pool_count

cp_info constant_pool[constant_pool_count]

u2 this_package

u1 referenced_package_count (since Export File format 2.3)

u2 referenced_packages[referenced_package_count] (since Export

File format 2.3)

u1 export_class_count

class_info classes[export_class_count]

}

The items in the ExportFile structure are as follows:

magic

The magic item contains the magic number identifying the ExportFile format; it has the value

0x00FACADE.

minor_version, major_version

The minor_version and major_version items are the minor and major version numbers of this

export file. Together, a major and a minor version number determine the version of the export file

format. If an export file has the major version number of M and minor version number of m, the version

of the export file’s format is M.m.

Java Card Platform Virtual Machine Specification, v3.2 Page 64

A change in the major version number indicates a major incompatibility change, one that requires a

fundamentally different Java Card virtual machine. A Java Card virtual machine is not required to

support export files with different major version numbers. A Java Card virtual machine is required to

support export files having a given major version number and all valid minor version numbers in the

range 0 through some particular minor_version where a valid minor version number is a minor

version number that has been defined in a version of the Java Card virtual machine specification.

In this specification, the major version of the export file format has the value 2 and the minor version

has the value 3. Only Oracle may define the meaning and values of new export file format versions.

constant_pool_count

The constant_pool_count item is a non-zero, positive value that indicates the number of

constants in the constant pool.

constant_pool[]

The constant_pool is a table of variable-length structures representing various string constants,

class names, field names and other constants referred to within the ExportFile structure.

Each of the constant_pool table entries, including entry zero, is a variable-length structure whose

format is indicated by its first “tag” byte.

There are no ordering constrains on entries in the constant_pool table.

this_package

The value of this_package must be a valid index into the constant_pool table. The

constant_pool entry at that index must be a CONSTANT_Package_info (5.6.1

CONSTANT_Package) structure representing the package defined by this ExportFile.

referenced_package_count

The referenced_package_count item is a value that indicates the number of entries in the

referenced_packages array.

referenced_packages[]

The referenced_packages array is a table representing all packages referenced in this export file.

Each entry in the the referenced_packages array is an index into the constant_pool table.

The corresponding entry in the constant_pool array must be CONSTANT_Package (5.6.1

CONSTANT_Package) structure representing a referenced package. A package is a referenced package if:

 any of its classes are subclassed in this export file,

 any of its interfaces are implemented or extended in this export file,

 any of its classes or interfaces are used in field or method descriptors in this export file.

Java Card Platform Virtual Machine Specification, v3.2 Page 65

export_class_count

The value of the export_class_count item gives the number of elements in the classes table.

classes[]

Each value of the classes table is a variable-length class_info structure (5.7 Classes and

Interfaces) giving the description of a publicly accessible class or interface declared in this package. If the

ACC_LIBRARY flag item in the CONSTANT_Package_info (5.6.1 CONSTANT_Package) structure

indicated by the this_package item is set, the classes table has an entry for each public class and

interface declared in this package. If the ACC_LIBRARY flag item is not set, the classes table has an

entry for each public shareable interface declared in this package.1

5.6 Constant Pool
All constant_pool table entries have the following general format:

cp_info {

u1 tag

u1 info[]

}

Each item in the constant_pool must begin with a 1-byte tag indicating the kind of cp_info entry.

The content of the info array varies with the value of tag. The valid tags and their values are listed in

Table 5-1. Each tag byte must be followed by two or more bytes giving information about the specific

constant. The format of the additional information varies with the tag value.

Table 5-1: Export File Constant Pool Tags

Constant Type Value

CONSTANT_Package 13

CONSTANT_Classref 7

CONSTANT_Integer 3

CONSTANT_Utf8 1

5.6.1 CONSTANT_Package

The CONSTANT_Package_info structure is used to represent a package:

CONSTANT_Package_info {

u1 tag

u1 flags

u2 name_index

u1 minor_version

u1 major_version

1 This restriction of exporting only shareable interfaces in non-library packages is imposed by the firewall defined in
the Runtime Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 66

u1 aid_length

u1 aid[aid_length]

}

The items of the CONSTANT_Package_info structure are the following:

tag

The tag item has the value of CONSTANT_Package(13).

flags

The flags item is a mask of modifiers that apply to this package. The flags modifiers are shown in

the following table.

Table 5-2: Export File Package Flags

Flags Value

ACC_LIBRARY 0x01

The ACC_LIBRARY flag has the value of one if this package does not define and declare any applets. In

this case it is called a library package. Otherwise ACC_LIBRARY has the value of zero.

If the package is not a library package, this export file can only contain shareable interfaces.2 A shareable

interface is either the javacard.framework.Shareable interface or an interface that extends

the javacard.framework.Shareable interface.

All other flag values are reserved. Their values must be zero.

name_index

The value of the name_index item must be a valid index into the constant_pool table. The

constant_pool entry at that index must be a CONSTANT_Utf8_info (5.6.1 CONSTANT_Package)

structure representing a valid Java package name.

As in Java class files, ASCII periods (‘.’) that normally separate the identifiers in a package name are

replaced by ASCII forward slashes (‘/’). For example, the package name javacard.framework is

represented in a CONSTANT_Utf8_info structure as javacard/framework.

minor_version, major_version

The minor_version and major_version items are the minor and major version numbers of this

package. These values uniquely identify the particular implementation of this package and indicate the

2 This restriction is imposed by the firewall defined in the Runtime Environment Specification, Java Card Platform,
v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 67

binary compatibility between packages. See 4.5 CAP and Package Versions for a description of assigning

and using package version numbers.

aid_length

The value of the aid_length item gives the number of bytes in the aid array. Valid values are

between 5 and 16, inclusive.

aid[]

The aid array contains the ISO AID of this package (4.2 AID-based Naming).

5.6.2 CONSTANT_Classref

The CONSTANT_Classref_info structure is used to represent a class or interface:

CONSTANT_Classref_info {

u1 tag

u2 name_index

}

The items of the CONSTANT_Classref_info structure are the following:

tag

The tag item has the value of CONSTANT_Classref(7).

name_index

The value of the name_index item must be a valid index into the constant_pool table. The

constant_pool entry at that index must be a CONSTANT_Utf8_info (5.6.4 CONSTANT_Utf8)

structure representing a valid fully qualified Java class or interface name. This name is fully qualified

since it may represent a class or interface defined in a package other than the one described in the

export file.

As in Java class files, ASCII periods (‘.’) that normally separate the identifiers in a class or interface name

are replaced by ASCII forward slashes (‘/’). For example, the interface name

javacard.framework.Shareable is represented in a CONSTANT_Utf8_info structure as

javacard/framework/Shareable.

5.6.3 CONSTANT_Integer

The CONSTANT_Integer_info structure is used to represent four-byte numeric (int) constants:

CONSTANT_Integer_info {

u1 tag

u4 bytes

}

The items of the CONSTANT_Integer_info structure are the following:

Java Card Platform Virtual Machine Specification, v3.2 Page 68

tag

The tag item has the value of CONSTANT_Integer (3).

bytes

The bytes item of the CONSTANT_Integer_info structure contains the value of the int

constant. The bytes of the value are stored in big-endian (high byte first) order. The value of a boolean

type is 1 to represent true and 0 to represent false.

5.6.4 CONSTANT_Utf8

The CONSTANT_Utf8_info structure is used to represent constant string values. UTF-8 strings are

encoded in the same way as described in The Java Virtual Machine Specification (§ 4.4.7).

The CONSTANT_Utf8_info structure is:

CONSTANT_Utf8_info {

u1 tag

u2 length

u1 bytes[length]

}

The items of the CONSTANT_Utf8_info structure are the following:

tag

The tag item has the value of CONSTANT_Utf8(1).

length

The value of the length item gives the number of bytes in the bytes array (not the length of the

resulting string). The strings in the CONSTANT_Utf8_info structure are not null-terminated.

bytes[]

The bytes array contains the bytes of the string. No byte may have the value (byte)0 or

(byte)0xF0-(byte)0xFF.

5.7 Classes and Interfaces
Each class and interface is described by a variable-length class_info structure. The format of this

structure is:

class_info {

u1 token

u2 access_flags

u2 name_index

u2 export_supers_count

u2 supers[export_supers_count]

Java Card Platform Virtual Machine Specification, v3.2 Page 69

u1 export_interfaces_count

u2 interfaces[export_interfaces_count]

u2 export_fields_count

field_info fields[export_fields_count]

u2 export_methods_count

method_info methods[export_methods_count]

u1 CAP22_inheritable_public_method_token_count (since Export File

format 2.3)

}

The items of the class_info structure are as follows:

token

The value of the token item is the class token (4.3.7.2 Classes and Interfaces) assigned to this class or

interface.

access_flags

The value of the access_flags item is a mask of modifiers used with class and interface declarations.

The access_flags modifiers are shown in the following table.

Table 5-3: Export File Class Access and Modifier Flags

Name Value Meaning Used By

ACC_PUBLIC 0x0001 Is public; may be accessed from outside its package Class,
interface

ACC_FINAL 0x0010 Is final; no subclasses allowed. Class

ACC_INTERFACE 0x0200 Is an interface Interface

ACC_ABSTRACT 0x0400 Is abstract; may not be instantiated Class,
interface

ACC_SHAREABLE 0x0800 Is shareable; may be shared between Java Card
applets.

Class,
interface

ACC_REMOTE 0x1000 Is remote; may be accessed by Java Card RMI Class,
interface

The ACC_SHAREABLE flag indicates whether this class or interface is shareable.3 A class is shareable if

it implements (directly or indirectly) the javacard.framework.Shareable interface. An interface

is shareable if it is or extends (directly or indirectly) the javacard.framework.Shareable

interface.

3 The ACC_SHAREABLE flag is defined to enable Java Card virtual machines to implement the firewall
restrictions defined by the Runtime Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 70

The ACC_REMOTE flag indicates whether this class or interface is remote. The value of this flag must be

one if and only if the class or interface satisfies the requirements defined in 2.2.6.1 Remote Classes and

Remote Interfaces.

All other class access and modifier flags are defined in the same way and with the same restrictions as

described in The Java Virtual Machine Specification.

Since all classes and interfaces represented in an export file are public, the ACC_PUBLIC flag must

always be set.

All other flag values are reserved. Their values must be zero.

name_index

The value of the name_index item must be a valid index into the constant_pool table. The

constant_pool entry at that index must be a CONSTANT_Classref_info (5.6.2

CONSTANT_Classref) structure representing a valid, fully qualified Java class or interface name.

export_supers_count

The value of the export_supers_count item indicates the number of entries in the supers array.

supers[]

The supers array contains an entry for each public superclass of this class or interface. It does not

include package visible superclasses.

For a class, each value in the supers array must be a valid index into the constant_pool table. The

constant_pool entry at each value must be a CONSTANT_Classref_info structure (5.6.2

CONSTANT_Classref) representing a valid, fully-qualified Java class name. Entries in the supers array

can occur in any order.

For an interface, the supers array contains a single value representing a valid index into the

constant_pool table. The constant_pool entry must be a CONSTANT_Classref_info

structure (5.6.2 CONSTANT_Classref) representing the fully-qualified name of the

java.lang.Object class.

export_interfaces_count

The value of the export_interfaces_count item indicates the number of entries in the

interfaces array.

interfaces[]

If this class_info structure describes a class, the interfaces array contains an entry for each

public interface implemented by this class. It does not include package-visible interfaces. It does include

all public superinterfaces in the hierarchies of public interfaces implemented by this class.

Java Card Platform Virtual Machine Specification, v3.2 Page 71

If this class_info structure describes an interface, the interfaces array contains an entry for

each public interface extended by this interface. It does not include package visible interfaces. It does

include all public superinterfaces in the hierarchies of public interfaces extended by this interface.

Each value in the interfaces array must be a valid index into the constant_pool table. The

constant_pool entry at each value must be a CONSTANT_Classref_infostructure (5.6.2

CONSTANT_Classref) representing a valid, fully-qualified Java interface name. Entries in the interfaces

array can occur in any order.

export_fields_count

The value of the export_fields_count item gives the number of entries in the fields table.

fields[]

Each value in the fields table is a variable-length field_info (5.8 Fields) structure. The

field_info contains an entry for each publicly accessible field, both class variables and instance

variables, declared by this class or interface. It does not include items representing fields that are

inherited from superclasses or superinterfaces.

export_methods_count

The value of the export_methods_count item gives the number of entries in the methods table.

methods[]

Each value in the methods table is a method_info (5.9 Methods) structure. The method_info

structure contains an entry for each publicly accessible class (static or constructor) method defined by

this class, and each publicly accessible instance method defined by this class or its superclasses, or

defined by this interface or its super-interfaces.

CAP22_inheritable_public_method_token_count

The CAP22_inheritable_public_method_token_count item represents the number of

public or protected virtual methods inheritable by a subclass defined in a CAP file of format version 2.2

or earlier.

5.8 Fields
Each field is described by a variable-length field_info structure. The format of this structure is:

field_info {

u1 token

u2 access_flags

u2 name_index

u2 descriptor_index

u2 attributes_count

attribute_info attributes[attributes_count]

Java Card Platform Virtual Machine Specification, v3.2 Page 72

}

The items of the field_info structure are as follows:

token

The token item is the token assigned to this field. There are three scopes for field tokens: final

static fields of primitive types (compile-time constants), all other static fields, and instance

fields.

If this field is a compile-time constant, the value of the token item is 0xFF. Compile-time constants are

represented in export files, but are not assigned token values suitable for late binding. Instead Java

Card Converters must replace bytecodes that reference final static fields with bytecodes that load the

constant value of the field.4

If this field is static, but is not a compile-time constant, the token item represents a static field

token (4.3.7.3 Static Fields).

If this field is an instance field, the token item represents an instance field token (4.3.7.5 Instance

Fields).

access_flags

The value of the access_flags item is a mask of modifiers used with fields. The access_flags

modifiers are shown in the following table.

Table 5-4: Export File Field Access and Modifier Flags

Name Value Meaning Used By

ACC_PUBLIC 0x0001 Is public; may be accessed from outside its package. Any field

ACC_PROTECTED 0x0004 Is protected; may be accessed within subclasses. Class field

Instance
field

ACC_STATIC 0x0008 Is static. Class field

Interface
field

ACC_FINAL 0x0010 Is final; no further overriding or assignment after
initialization.

Any field

Field access and modifier flags are defined in the same way and with the same restrictions as described

in The Java Virtual Machine Specification.

4 Although Java compilers ordinarily replace references to final static fields of primitive types with primitive
constants, this functionality is not required.

Java Card Platform Virtual Machine Specification, v3.2 Page 73

Since all fields represented in an export file are either public or protected, exactly one of the

ACC_PUBLIC or ACC_PROTECTED flag must be set.

The Java Card virtual machine reserves all other flag values. Their values must be zero.

name_index

The value of the name_index item must be a valid index into the constant_pool table. The

constant_pool entry at that index must be a CONSTANT_Utf8_info (5.6.4 CONSTANT_Utf8)

structure representing a valid Java field name stored as a simple (not fully qualified) name, that is, as a

Java identifier.

descriptor_index

The value of the descriptor_index item must be a valid index into the constant_pool table.

The constant_pool entry at that index must be a CONSTANT_Utf8_info (5.6.4 CONSTANT_Utf8)

structure representing a valid Java field descriptor.

Representation of a field descriptor in an export file is the same as in a Java class file. See the

specification described in The Java Virtual Machine Specification (§4.3.2).

If this field is a reference-type, the class referenced must be a public class.

attributes_count

The value of the attributes_count item indicates the number of additional attributes of this field.

The only field_info attribute currently defined is the ConstantValue attribute (5.10.1

ConstantValue Attribute). For static final fields of primitive types, the value must be 1; that is, when

both the ACC_STATIC and ACC_FINAL bits in the flags item are set an attribute must be present.

For all other fields the value of the attributes_count item must be 0.

attributes[]

The only attribute defined for the attributes table of a field_info structure by this specification

is the ConstantValue attribute (5.10.1 ConstantValue Attribute). This must be defined for static final

fields of primitive types (boolean, byte, short, and int).

5.9 Methods
Each method is described by a variable-length method_info structure. The format of this structure is:

method_info {

u1 token

u2 access_flags

u2 name_index

u2 descriptor_index

}

Java Card Platform Virtual Machine Specification, v3.2 Page 74

The items of the method_info structure are as follows:

token

The token item is the token assigned to this method. If this method is a static method or

constructor, the token item represents a static method token (4.3.7.4 Static Methods and

Constructors). If this method is a virtual method, the token item represents a virtual method token

(4.3.7.6 Virtual Methods). If this method is an interface method, the token item represents an

interface method token (4.3.7.7 Interface Methods).

access_flags

The value of the access_flags item is a mask of modifiers used with methods. The

access_flags modifiers are shown in the following table.

Table 5-5: Export File Method Access and Modifier Flags

Name Value Meaning Used By

ACC_PUBLIC 0x0001 Is public; may be accessed from outside its
package.

Any method

ACC_PROTECTED 0x0004 Is protected; may be accessed within
subclasses.

Class/instance
method

ACC_STATIC 0x0008 Is static. Class/instance
method

ACC_FINAL 0x0010 Is final; no further overriding or assignment
after initialization.

Class/instance
method

ACC_ABSTRACT 0x0400 Is abstract; no implementation is provided Any method

Method access and modifier flags are defined in the same way and with the same restrictions as

described in The Java Virtual Machine Specification.

Since all methods represented in an export file are either public or protected, exactly one of the

ACC_PUBLIC or ACC_PROTECTED flag must be set.

Unlike in Java class files, the ACC_NATIVE flag is not supported in export files. Whether a method is

native is an implementation detail that is not relevant to importing packages. The Java Card virtual

machine reserves all other flag values. Their values must be zero.

name_index

The value of the name_index item must be a valid index into the constant_pool table. The

constant_pool entry at that index must be a CONSTANT_Utf8_info (5.6.4 CONSTANT_Utf8)

structure representing either the special internal method name for constructors, <init>, or a valid

Java method name stored as a simple (not fully qualified) name.

Java Card Platform Virtual Machine Specification, v3.2 Page 75

descriptor_index

The value of the descriptor_index item must be a valid index into the constant_pool table.

The constant_pool entry at that index must be a CONSTANT_Utf8_info (5.6.4 CONSTANT_Utf8)

structure representing a valid Java method descriptor.

Representation of a method descriptor in an export file is the same as in a Java class file. See the

specification described in The Java Virtual Machine Specification (4.3.3 The Export File and Conversion).

All classes referenced in a descriptor must be public classes.

5.10 Attributes
Attributes are used in the field_info (5.8 Fields) structure of the export file format. All attributes

have the following general format:

attribute_info {

u2 attribute_name_index

u4 attribute_length

u1 info[attribute_length]

}

5.10.1 ConstantValue Attribute

The ConstantValue attribute is a fixed-length attribute used in the attributes table of the

field_info structures. A ConstantValue attribute represents the value of a final static field

(compile-time constant); that is, both the ACC_STATIC and ACC_FINAL bits in the flags item of

the field_info structure must be set. There can be no more than one ConstantValue attribute

in the attributes table of a given field_info structure.

The ConstantValue_attribute has the format:

ConstantValue_attribute {

u2 attribute_name_index

u4 attribute_length

u2 constantvalue_index

}

The items of the ConstantValue_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into the constant_pool

table. The constant_pool entry at that index must be a CONSTANT_Utf8_info (5.6.4

CONSTANT_Utf8) structure representing the string “ConstantValue.”

attribute_length

Java Card Platform Virtual Machine Specification, v3.2 Page 76

The value of the attribute_length item of a ConstantValue_attribute structure must be

2.

constantvalue_index

The value of the constantvalue_index item must be a valid index into the constant_pool

table. The constant_pool entry at that index must give the constant value represented by this

attribute.

The constant_pool entry must be of a type CONSTANT_Integer (5.6.3 CONSTANT_Integer).

Java Card Platform Virtual Machine Specification, v3.2 Page 77

6 The CAP File Format
This chapter describes the Java Card converted applet (CAP) file format. A CAP file represents a Java

Card application or a library comprising one or more Java packages. A Java Card CAP file may contain

only applet packages, only library packages or a combination of applet and library packages.

Additionally, both applet and library packages in a Java Card CAP file can be public or private. Each CAP

file contains all of the classes and interfaces defined in a Java Card application or library. Java Card

Converters must be capable of producing CAP files that conform to the specification provided in this

chapter.

6.1 CAP File Overview
A CAP file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are constructed by reading

in two and four consecutive 8-bit bytes, respectively. Multibyte data items are always stored in big-

endian order, where the high-order bytes come first. The first bit read of an 8-bit quantity is considered

the high bit.

This chapter defines its own set of data types representing Java Card CAP file data: the types u1, u2

and u4 represent an unsigned one-, two and four-byte quantities, respectively. Some u1 types are

represented as bitfield structures, consisting of arrays of bits. The zeroth bit in each bit array represents

the most significant bit, or high bit.

The Java Card CAP file format is presented using pseudo structures written in a C-like structure notation.

To avoid confusion with the fields of Java Card virtual machine classes and class instances, the contents

of the structures describing the Java Card CAP file format are referred to as items. Unlike the fields of a C

structure, successive items are stored in the Java Card platform file sequentially, without padding or

alignment.

Variable-sized tables, consisting of variable-sized items, are used in several CAP file data structures.

Although we will use C-like array syntax to refer to table items, the fact that tables are streams of

variable-sized structures means that it is not possible to directly translate a table index into a byte offset

into the table.

A data structure referred to as an array consists of items equal in size.

Some items in the structures of the CAP file format are described using a C-like union notation. The

bytes contained in a union structure have one of the two formats. Selection of the two formats is based

on the value of the high bit of the structure.

A CAP file may be in Compact or Extended Format where the Compact Format CAP file must not contain

information for more than one application or library package. A CAP file in Compact format may only

Java Card Platform Virtual Machine Specification, v3.2 Page 78

contain 64KB of bytecode information. A CAP file in Extended format may contain 128 blocks containing

bytecode information where each block may be of 64KB. See 6.10 Method Component.

Java Card virtual machine implementations must support Compact Format CAP files. Support for

Extended Format CAP files is optional.

6.2 Component Model
A Java Card CAP file consists of a set of components. Each component describes a set of elements in the

application or library defined, or an aspect of the CAP file. A complete CAP file must contain all of the

required components specified in this chapter. Four components are optional: the Applet Component

(6.6 Applet Component), Export Component (6.13 Export Component), Debug Component (6.15 Debug

Component) and Static Resources Component (6.16 Static Resource Component). The Applet

Component is included only if one or more applets are defined in one or more of the packages in the

CAP file. The Export Component is included only if classes in other packages, which are not part of the

CAP file, may import elements in any of the packages defined. The Debug Component contains all of the

data necessary for debugging packages in the CAP file. The Static Resources Component contains all the

static resources for the CAP file and must be included if a Java Card application or library contains static

resources. A Java Card CAP file may not have a Static Resources Component if the application or library

it represents does not have any static resources.

The content of each component defined in a CAP file must conform to the corresponding format

specified in this chapter. Components have one of the following general formats (Compact and

Extended) as specified in the Header Component (6.4 Header Component). A CAP file in Compact format

must only contain components in Compact format except Debug component and Static Resources

Component. The Header Component is always in Compact format.

component_compact {

u1 tag

u2 size

u1 info[]

}

component_extended { (since CAP format 2.3)

u1 tag

u4 size

u1 info[]

}

 Each component begins with a 1-byte tag indicating the kind of component. Valid tags and their values

are listed in Table 6-1. The size item indicates the number of bytes in the info array of the component,

not including the tag and size items.

The content and format of the info array varies with the type of component.

Java Card Platform Virtual Machine Specification, v3.2 Page 79

Table 6-1: CAP File Component Tags

Component Type Value

COMPONENT_Header 1

COMPONENT_Directory 2

COMPONENT_Applet 3

COMPONENT_Import 4

COMPONENT_ConstantPool 5

COMPONENT_Class 6

COMPONENT_Method 7

COMPONENT_StaticField 8

COMPONENT_ReferenceLocation 9

COMPONENT_Export 10

COMPONENT_Descriptor 11

COMPONENT_Debug (since CAP format 2.2) 12

COMPONENT_Static_Resources (since CAP format 2.3) 13

Oracle may define additional components in future versions of this Java Card virtual machine

specification. It is guaranteed that additional components will have tag values between 14 and 127,

inclusive.

6.2.1 Containment in a JAR File

Each CAP file component is represented as a single file. The component file names are enumerated in

Table 6-2. These names are not case sensitive. Note that components with extended length have

extension “.capx”. Note that Method Component, RefLocation component and Descriptor component

with extended length may only be present in the CAP file in Extended format. In Compact format all

components, except Debug component, Static Resources component and custom components, must

have compact length and must have extension “.cap”.

Table 6-2: CAP File Component File Names

Component Type File Name

COMPONENT_Header Header.cap

COMPONENT_Directory Directory.cap

COMPONENT_Applet Applet.cap

COMPONENT_Import Import.cap

COMPONENT_ConstantPool ConstantPool.cap

COMPONENT_Class Class.cap

COMPONENT_Method Method.cap[x]

COMPONENT_StaticField StaticField.cap

COMPONENT_ReferenceLocation RefLocation.cap[x]

COMPONENT_Export Export.cap

COMPONENT_Descriptor Descriptor.cap[x]

COMPONENT_Debug (since CAP format 2.2) Debug.cap[x]

COMPONENT_Static_Resources (since CAP format 2.3) StaticResources.capx

Java Card Platform Virtual Machine Specification, v3.2 Page 80

All CAP file components are stored in a JAR file. As described in 4.1.3 JAR File Container, the path to the

CAP file component files in a JAR file consists of a directory called javacard.

Name of the Debug Component in Compact format must have extension “.cap” if the size of info item is

less than 65535 bytes. Size item of Debug Component in Compact format shall always be of type u2. The

Debug Component in Compact format may also contain 65535 or more bytes in which case the size item

shall have value of 0xFFFF and the name of the Debug component in the jar file must have extension

“.capx”. Name of the Debug component in Extended format must always have extension “.capx”.

For JAR files in Compact format, the directory “javacard” is in a subdirectory representing the package’s

directory. For example, the CAP file component files of the package javacard.framework are located in

the subdirectory javacard/framework/javacard.

For JAR files in Extended Format, the directory “javacard” is in a subdirectory representing the

application or library’s directory. For example, the CAP file component files of the application

HelloWorld are located in the subdirectory com/oracle/HelloWorld/javacard.

Other files, including other CAP files, may also reside in a JAR file that contains CAP file component files.

The JAR file format provides a vehicle suitable for the distribution of CAP file components. It is not

intended or required that the JAR file format be used as the load file format for loading CAP file

components onto a Java Card technology-enabled device. See 6.3 Installation for more information.

The name of a JAR file containing CAP file components is not defined as part of this specification. The

naming convention used by the Oracle Java Card Converter Tool is to append .cap to the application or

library name. For example, the CAP file produced for the library JavaLoyalty would be named

JavaLoyalty.cap.

6.2.2 Defining New Components

Java Card CAP files are permitted to contain new, or custom, components. All new components not

defined as part of this specification must not affect the semantics of the specified components, and Java

Card virtual machines must be able to accept CAP files that do not contain new components. Java Card

virtual machine implementations are required to silently ignore components they do not recognize.

New components are identified in two ways: they are assigned both an ISO 7816-5 AID (4.2 AID-based

Naming) and a tag value. Valid tag values are between 128 and 255, inclusive. Both of these

identifiers are recorded in the custom_component item of the Directory Component (6.5 Directory

Component).

The new component must conform to one of the general component formats defined in this chapter,

either compact or extended as defined in the Header Component, with a tag value, a size value

indicating the number of bytes in the component (excluding the tag and size items), and an info

item containing the content of the new component.

Java Card Platform Virtual Machine Specification, v3.2 Page 81

A new component file is stored in a JAR file, following the same restrictions as those specified in 4.1.3

JAR File Container. That is, the file containing the new component must be located in the

<application_or_library_directory>/javacard or

<package_directory>/javacard subdirectory of the JAR file and must have the extension

.capx or .cap based on Extended or Compact format of the CAP file respectively.

6.3 Installation
Installing CAP file components onto a Java Card technology-enabled device entails communication

between a Java Card technology-enabled terminal and that device. While it is beyond the scope of this

specification to define a load file format or installation protocol between a terminal and a device, the

CAP file component order shown below is a reference load order suitable for an implementation with a

simple memory management model on a limited memory device.5

Reference Component Install Order:

 COMPONENT_Header

 COMPONENT_Directory

 COMPONENT_Import

 COMPONENT_Applet

 COMPONENT_Class

 COMPONENT_Method

 COMPONENT_StaticField

 COMPONENT_Export

 COMPONENT_ConstantPool

 COMPONENT_ReferenceLocation

 COMPONENT_Static_Resources

 COMPONENT_Descriptor (optional)

The component type COMPONENT_Debug is not intended for download to the device. It is intended to

be used off-card in conjunction with a suitably instrumented Java Card virtual machine.

6.4 Header Component
The Header Component contains general information about this CAP file and the public packages it

defines. It is described by one of the following variable-length structures:

header_component_compact {

u1 tag

u2 size

u4 magic

u1 CAP_Format_minor_version

5 Both the Java Card Forum and Global Platform specification have adopted this component load order as a
standard to enhance interoperability. In both cases, loading the Descriptor Component is optional. Furthermore,
the Global Platform specification defines the format of packets (APDUs) used during installation.

Java Card Platform Virtual Machine Specification, v3.2 Page 82

u1 CAP_Format_major_version

u1 flags

package_info package

package_name_info package_name (since CAP format 2.2)

}

header_component_extended { (since CAP format 2.3)

u1 tag

u2 size

u4 magic

u1 CAP_Format_minor_version

u1 CAP_Format_major_version

u1 flags

u1 CAP_minor_version

u1 CAP_major_version

u1 CAP_AID_length

u1 CAP_AID[CAP_AID_length]

u1 package_count

package_info packages[]

package_name_info package_names[]

}

The items in the header_component structure are as follows:

tag

The tag item has the value COMPONENT_Header (1).

size

The size item indicates the number of bytes in the header_component structure, excluding the

tag and size items. The value of the size item must be greater than zero.

magic

The magic item supplies the magic number identifying the Java Card CAP file format; it has the value

0xDECAFFED.

CAP_Format_minor_version, CAP_Format_major_version

The CAP_Format_minor_version and CAP_Format_major_version items are the minor

and major version numbers of the format used for this CAP file. If a CAP file has the major version

number of M and minor version number of m, the version of the CAP file’s format is M.m.

A change in the major version number indicates a major incompatibility change, one that requires a

fundamentally different Java Card virtual machine. A Java Card virtual machine is not required to

support CAP files with different major version numbers. A Java Card virtual machine is required to

Java Card Platform Virtual Machine Specification, v3.2 Page 83

support CAP files having a given major version number and all valid minor version numbers in the range

0 through some particular minor_version where a valid minor version number is a minor version

number that has been defined in a version of the Java Card virtual machine specification.

In this specification, the major version of the CAP file format has the value 2 and the minor version has

the value 3. A Java Card Virtual Machine must support minor version values between 1 and 3. Only

Oracle Corp. may define the meaning and values of new CAP file format versions.

flags

The flags item is a mask of modifiers that apply to this CAP file. The flags modifiers are shown in

the following table.

Table 6-3: CAP File Flags

Flags Value
ACC_INT 0x01
ACC_EXPORT 0x02
ACC_APPLET 0x04
ACC_EXTENDED 0x08

The ACC_INT flag has the value of one if the Java int type is used by at least one of the packages in

this CAP file. The int type is used if one or more of the following is present:

 A parameter to a method of type int

 A parameter to a method of type int array

 A local variable of type int

 A local variable of type int array

 A field of type int

 A field of type int array

 An instruction of type int, or

 An instruction of type int array

Otherwise the ACC_INT flag has the value of 0.

The ACC_EXPORT flag has the value of one if an Export Component (6.13 Export Component) is

included in this CAP file. Otherwise it has the value of 0.

The ACC_APPLET flag has the value of one if an Applet Component (6.6 Applet Component) is included

in this CAP file. Otherwise it has the value of 0.

All other bits in the flags item not defined in Table 6-3 are reserved for future use. Their values must

be zero.

Java Card Platform Virtual Machine Specification, v3.2 Page 84

The ACC_EXTENDED flag has the value of one if the CAP file is in Extended format. In this case the

Method Component (6.10 Method Component), Reference Location component (6.12 Reference

Location Component), Descriptor Component (6.14 Descriptor Component), Debug Component (6.15

Debug Component) and all custom components in the CAP file must be in the Extended Format.

Otherwise it has the value of 0.

package

The package item in header_component_compact describes the package defined in this CAP file.

It is represented as a package_info structure:

package_info {

u1 minor_version

u1 major_version

u1 AID_length

u1 AID[AID_length]

}

The items in the package_info structure are as follows:

minor_version, major_version

The minor_version and major_version items are the minor and major version numbers of this

package. These values uniquely identify the particular implementation of this package and indicate the

binary compatibility between packages. See 4.5 CAP and Package Versions for a description of assigning

and using package version numbers.

AID_length

The AID_length item represents the number of bytes in the AID item. Valid values are between 5

and 16, inclusive.

AID[]

The AID item represents the Java Card platform name of the package. See ISO 7816-5 for the definition

of an AID (also see 4.2 AID-based Naming).

package_name

The package_name item in header_component_compact, describes the name of the package

defined in this CAP file. It is represented as a package_name_info[] structure:

package_name_info { (since CAP format 2.2)

u1 name_length

u1 name[name_length]

}

Java Card Platform Virtual Machine Specification, v3.2 Page 85

The items in the package_name_info[] structure are as follows:

name_length

The name_length item is the number of bytes used in the name item to represent the name of this

package in UTF-8 format. The value of this item may be zero if and only if the package does not define

any remote interfaces or remote classes.

name[]

The name[] item is a variable length representation of the fully qualified name of this package in UTF-8

format. The fully qualified name is represented in internal form as described in the Java Virtual Machine

Specification.

CAP_minor_version, CAP_major_version

The CAP_minor_version and CAP_major_version items in header_component_extended

are the minor and major version numbers of this CAP file. These values uniquely identify this CAP file.

See 4.5 CAP and Package Versions for a description of assigning and using version numbers.

CAP_AID_length

The CAP_AID_length item in header_component_extended, represents the number of bytes

in the CAP_AID item. Valid values are between 5 and 16, inclusive.

CAP_AID[]

The CAP_AID item in header_component_extended, represents the Java Card platform name of

the CAP file. See ISO 7816-5 for the definition of an AID (also see 4.2 AID-based Naming).

package_count

The package_count item in the header_component_extended structure represents the number of

entries in the packages table. The value of the package_count item must be greater than 0.

packages

The packages item in header_component_extended, is an array representing all public

packages in this CAP file. Each entry in the array is represented as a package_info structure.

package_names

The package_names item in header_component_extended, describes the names of all the

packages defined in this CAP file. Each name is represented as a package_name_info[] structure.

6.5 Directory Component
The Directory Component lists the size of each of the components defined in this CAP file. When an

optional component is not included, such as the Applet Component (6.6 Applet Component), Export

Java Card Platform Virtual Machine Specification, v3.2 Page 86

Component (6.13 Export Component) , Debug Component (6.15 Debug Component), or for Extended

format, the Static Resource Component (Static Resource Component) it is represented in the Directory

Component with size equal to zero. The Directory Component also includes entries for new (or

custom) components.

The Directory Component for CAP file in Compact and Extended format is described by the following

variable-length structures:

directory_component_compact {

u1 tag

u2 size

component_size_info_compact component_sizes (since CAP format 2.3)

static_field_size_info static_field_size

u1 import_count

u1 applet_count

u1 custom_count

custom_component_info_compact custom_components[custom_count]

}

diectory_component_extended { (since CAP format 2.3)

u1 tag

u2 size

component_size_info_extended component_sizes

static_field_size_info static_field_size

u1 import_count

u1 applet_count

u1 method_component_block_count

u1 custom_count

custom_component_info_extended custom_components[custom_count]

}

The items in these structures are as follows:

tag

The tag item has the value COMPONENT_Directory (2).

size

The size item indicates the number of bytes in the directory_component structure, excluding

the tag and size items. The value of the size item must be greater than zero.

component_sizes

The component_sizes item is a structure of type component_size_info_compact or

component_size_info_extended based on the Compact or Extended format of the CAP file. It

represents the number of bytes in each of the components in this CAP file.

Java Card Platform Virtual Machine Specification, v3.2 Page 87

component_size_info_compact {

u2 Header_Component_Size

u2 Directory_Component_Size

u2 Applet_Component_Size

u2 Import_Component_Size

u2 Constant_Pool_Component_Size

u2 Class_Comonent_Size

u2 Method_Component_Size

u2 Static_Field_Component_Size

u2 Reference_Location_Component_Size

u2 Export_Component_Size

u2 Descriptor_Component_Size

u2 Debug_Component_Size (since CAP format 2.2)

u4 Static_Resource_Component_Size (since CAP format 2.3)

}

component_size_info_extended { (since CAP format 2.3)

u2 Header_Component_Size

u2 Directory_Component_Size

u2 Applet_Component_Size

u2 Import_Component_Size

u2 Constant_Pool_Component_Size

u2 Class_Component_Size

u4 Method_Component_Size

u2 Static_Field_Component_Size

u4 Reference_Location_Component_Size

u2 Export_Component_Size

u4 Descriptor_Component_Size

u4 Debug_Component_Size

u4 Static_Resource_Component_Size

}

The value of an entry in the component_size_info_compact or

component_size_info_extended structures is zero for components not included in this CAP file.

Components that may not be included are the Applet Component (6.6 Applet Component), the Export

Component (6.13 Export Component), the Debug Component (6.15 Debug Component), and the Static

Resource Component (6.15 Static Resource Component). For all other components the value is greater

than zero.

Value for Debug_Component_Size in component_size_info_compact must be 0xFFFF if

size of the info item of the Debug Component (6.15 Debug Component) is greater than or equal to

65535.

static_field_size

Java Card Platform Virtual Machine Specification, v3.2 Page 88

The static_field_size item is a static_field_size_info structure. The structure is

defined as:

static_field_size_info {

u2 image_size

u2 array_init_count

u2 array_init_size

 }

The items in the static_field_size_info structure are the following:

image_size

The image_size item has the same value as the image_size item in the Static Field Component

(6.11 Static Field Component). It represents the total number of bytes in the static fields defined in all

packages in this CAP file, excluding final static fields of primitive types.

array_init_count

The array_init_count item has the same value as the array_init_count item in the Static

Field Component (6.11 Static Field Component). It represents the number of arrays initialized in all of

the <clinit> methods in all the packages in this CAP file.

array_init_size

The array_init_size item represents the sum of the count items in the array_init table item

of the Static Field Component (6.11 Static Field Component). It is the total number of bytes in all of the

arrays initialized in all of the <clinit> methods in all the packages in this CAP file.

import_count

The import_count item indicates the number of packages imported by classes and interfaces in this

CAP file. This item has the same value as the count item in the Import Component (6.7 Import

Component).

applet_count

The applet_count item indicates the number of applets defined in packages in this CAP file. If an

Applet Component (6.6 Applet Component) is not included in this CAP file, the value of the

applet_count item is zero. Otherwise the value of the applet_count item is the same as the

value of the count item in the Applet Component (6.6 Applet Component).

method_component_block_count

The method_component_block_count item indicates the number of method component blocks

in the Extended Method Component (6.10 Method Component). The value of the

Java Card Platform Virtual Machine Specification, v3.2 Page 89

method_component_block_count item is the same as the value of the

method_component_block_count item in the Method Component (6.10 Method Component).

custom_count

The custom_count item indicates the number of entries in the custom_components table. Valid

values are between 0 and 127, inclusive.

custom_components[]

The custom_components item is a table of variable-length

custom_component_info_compact or custom_component_info_extended structures

based on Compact or Extended length format of the CAP file. Each new component defined in this CAP

file must be represented in the table. These components are not defined in this standard.

The custom_component_info_compact and custom_component_info_extended

structures are defined as:

custom_component_info_compact {

u1 component_tag

u2 size

u1 AID_length

u1 AID[AID_length]

 }

custom_component_info_extended { (since CAP format 2.3)

u1 component_tag

u4 size

u1 AID_length

u1 AID[AID_length]

 }

The items in entries of these structures are:

component_tag

The component_tag item represents the tag of the component. Valid values are between 128 and

255, inclusive.

size

The size item represents the number of bytes in the component, excluding the tag and size items.

AID_length

Java Card Platform Virtual Machine Specification, v3.2 Page 90

The AID_length item represents the number of bytes in the AID item. Valid values are between 5

and 16, inclusive.

AID[]

The AID item represents the Java Card platform name of the component. See ISO 7816-5 for the

definition of an AID (4.1 Java Card Platform File Formats).

Each component is assigned an AID conforming to the ISO 7816-5 standard. Beyond that, there are no

constraints on the value of an AID of a custom component.

6.6 Applet Component
The Applet Component contains an entry for each of the applets defined in this CAP file. Applets are

defined by implementing a non-abstract subclass, direct or indirect, of the

javacard.framework.Applet class6. If no applets are defined by any of the packages in this CAP

file, this component must not be present in this CAP file.

The Applet Component is described by one of the following variable-length structures based on

Compact or Extended format of CAP file:

applet_component_compact {

u1 tag

u2 size

u1 count

{ u1 AID_length

u1 AID[AID_length]

u2 install_method_offset

} applets[count]

}

applet_component_extended { (since CAP format 2.3)

u1 tag

u2 size

u1 count

{ u1 AID_length

u1 AID[AID_length]

u1 install_method_component_block_index

u2 install_method_offset

} applets[count]

}

The items in the applet_component structure are as follows:

6 Restrictions placed on an applet definition are imposed by the Runtime Environment Specification, Java Card
Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 91

tag

The tag item has the value COMPONENT_Applet (3).

size

The size item indicates the number of bytes in the applet_component structure, excluding the

tag and size items. The value of the size item must be greater than zero.

count

The count item indicates the number of applets defined by all the packages in this CAP file. The value

of the count item must be greater than zero.

applets[]

The applets item represents a table of variable-length structures each describing an applet defined in

this CAP file.

The items in each entry of the applets table are defined as follows:

AID_length

The AID_length item represents the number of bytes in the AID item. Valid values are between 5

and 16, inclusive.

AID[]

The AID item represents the Java Card platform name of the applet.

Each applet is assigned an AID conforming to the ISO 7816-5 standard (4.2 AID-based Naming). The RID

(first 5 bytes) of all of the applet AIDs must have the same value. In addition, the RID of each applet AIDs

must have the same value as the RID of the package defined in this CAP file.

install_method_component_block_index

The install_method_component_block_index item in applet_component_extended

structure represents the index into the blocks array of Method Component (6.10 Method Component).

The method_component_block at that index contains the install method for this applet.

install_method_offset

The value of the install_method_offset item in applet_component_compact structure,

must be a 16-bit offset into the info item of the Method Component (6.10 Method Component).

The value of the install_method_offset item in applet_component_extended structure

must be a 16-bit offset into the method_component_block in the blocks array of Method Component

Java Card Platform Virtual Machine Specification, v3.2 Page 92

(6.10 Method Component) at index represented by

install_method_component_block_index.

The item at that offset must be a method_info structure that represents the static

install(byte[],short,byte) method of the applet.7 The

install(byte[],short,byte) method must be defined in a class that extends the

javacard.framework.Applet class, directly or indirectly. The

install(byte[],short,byte) method is called to initialize the applet.

6.7 Import Component
The Import Component lists the set of packages imported by the classes in this CAP file. It does not

include entries for packages defined in this CAP file. The Import Component is represented by the

following structure:

import_component {

u1 tag

u2 size

u1 count

package_info packages[count]

}

The items in the import_component structure are as follows:

tag

The tag item has the value COMPONENT_Import (4).

size

The size item indicates the number of bytes in the import_component structure, excluding the

tag and size items. The value of the size item must be greater than zero.

count

The count item indicates the number of items in the packages table. The value of the count item

must be between 0 and 128, inclusive.

packages[]

The packages item represents a table of variable-length package_info structures as defined for

package under 6.4 Header Component. The table contains an entry for each of the packages referenced

in the CAP file, not including the packages defined in this CAP file.

7 Restrictions placed on the install(byte[],short,byte) method of an applet are imposed by the Runtime
Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 93

The major and minor version numbers specified in the package_info structure are equal to the

major and minor versions specified in the imported package’s export file. See 4.5 CAP and Package

Versions for a description of assigning and using package version numbers.

Components of this CAP file refer to an imported package by using an index in this packages table.

The index is called a package token (4.3.7.1 Package).

6.8 Constant Pool Component
The Constant Pool Component contains an entry for each of the classes, methods, and fields referenced

by elements in the Method Component (6.10 Method Component) of this CAP file. The referencing

elements in the Method Component may be instructions in the methods or exception handler catch

types in the exception handler table.

Entries in the Constant Pool Component reference elements in the Class Component (6.9 Class

Component), Method Component (6.10 Method Component), and Static Field Component (6.11 Static

Field Component). The Import Component (6.7 Import Component) is also accessed using a package

token (4.3.7.1 Package) to describe references to classes, methods and fields defined in imported

packages. Entries in the Constant Pool Component do not reference other entries internal to itself.

The Constant Pool Component is described by the following structure:

constant_pool_component {

u1 tag

u2 size

u2 count

cp_info constant_pool[count]

}

The items in the constant_pool_component structure are as follows:

tag

The tag item has the value COMPONENT_ConstantPool (5).

size

The size item indicates the number of bytes in the constant_pool_component structure,

excluding the tag and size items. The value of the size item must be greater than zero.

count

The count item represents the number entries in the constant_pool[] array. Valid values are

between 0 and 65535, inclusive.

constant_pool[]

The constant_pool[] item represents an array of cp_info structures:

Java Card Platform Virtual Machine Specification, v3.2 Page 94

cp_info {

u1 tag

u1 info[3]

}

Each item in the constant_pool[] array is a 4-byte structure. Each structure must begin with a 1-

byte tag indicating the kind of cp_info entry. The content and format of the 3-byte info array varies

with the value of the tag. The valid tags and their values are listed in the following table.

Table 6-4: CAP File Constant Pool Tags

Constant Type Tag

CONSTANT_Classref 1

CONSTANT_InstanceFieldref 2

CONSTANT_VirtualMethodref 3

CONSTANT_SuperMethodref 4

CONSTANT_StaticFieldref 5

CONSTANT_StaticMethodref 6

Java Card platform constant types (“Java Card constant types”) are more specific than those in Java class

files. The categories indicate not only the type of the item referenced, but also the manner in which it is

referenced.

For example, in the Java constant pool there is one constant type for method references, while in the

Java Card platform constant pool (“Java Card constant pool”) there are three constant types for method

references: one for virtual method invocations using the invokevirtual bytecode, one for super

method invocations using the invokespecial bytecode, and one for static method invocations using

either the invokestatic or invokespecial bytecode.8 The additional information provided by a

constant type in Java Card technologies simplifies resolution of references.

There are no ordering constraints on constant pool entries. It is recommended, however, that

CONSTANT_InstanceFieldref (6.8.2 CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref,

CONSTANT_SuperMethodref) constants occur early in the array to permit using getfield_T and

putfield_T bytecodes instead of getfield_T_w and putfield_T_w bytecodes. The former

have 1-byte constant pool index parameters while the latter have 2-byte constant pool index

parameters.

The first entry in the constant pool cannot be an exception handler class that is referenced by a

catch_type_index of an exception_handler_info structure. In such a case the value of the

8 The constant pool index parameter of an invokespecial bytecode is to a CONSTANT_ StaticMethodref when the
method referenced is a constructor or a private instance method. In these cases the method invoked is fully known
when the CAP file is created. In the cases of virtual method and super method references, the method invoked is
dependent upon an instance of a class and its hierarchy, both of which may be partially unknown when the CAP
file is created.

Java Card Platform Virtual Machine Specification, v3.2 Page 95

catch_type_index would be equal to 0, but the value of 0 in a catch_type_index is reserved

to indicate an exception_handler_info structure that describes a finally block.

6.8.1 CONSTANT_Classref

The CONSTANT_Classref_info structure is used to represent a reference to a class or an interface.

The class or interface may be defined in this package or in an imported package.

CONSTANT_Classref_info {

u1 tag

union {

u2 internal_class_ref

{ u1 package_token

 u1 class_token

} external_class_ref

} class_ref

u1 padding

}

The items in the CONSTANT_Classref_info structure are the following:

tag

The tag item has the value CONSTANT_Classref (1).

class_ref

The class_ref item represents a reference to a class or interface. If the class or interface is defined in

this CAP file, the structure represents an internal_class_ref and the high bit of the structure is

zero. If the class or interface is defined in imported package the structure represents an

external_class_ref and the high bit of the structure is one.

internal_class_ref

The internal_class_ref structure represents a 16-bit offset into the info item of the Class

Component (6.9 Class Component) to an interface_info or class_info structure. The

interface_info or class_info structure must represent the referenced class or interface.

The value of the internal_class_ref item must be between 0 and 32767, inclusive, making the

high bit equal to zero.

external_class_ref

The external_class_ref structure represents a reference to a class or interface defined in an

imported package. The high bit of this structure is one.

package_token

Java Card Platform Virtual Machine Specification, v3.2 Page 96

The package_token item represents a package token (4.3.7.1 Package) defined in the Import

Component (6.7 Import Component) of this CAP file. The value of this token must be a valid index into

the packages table item of the import_component structure. The package represented at that

index must be the imported package.

The value of the package token must be between 0 and 127, inclusive.

The high bit of the package_token item is equal to one.

class_token

The class_token item represents the token of the class or interface (4.3.7.2 Classes and Interfaces)

of the referenced class or interface. It has the value of the class token of the class as defined in the

Exportfile of the imported package.

padding

The padding item has the value zero. It is present to make the size of a CONSTANT_

Classref_info structure the same as all other constants in the constant_pool[] array.

6.8.2 CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref,

CONSTANT_SuperMethodref

References to instance fields, and virtual methods are represented by similar structures:

CONSTANT_InstanceFieldref_info {

u1 tag

class_ref class

u1 token

}

CONSTANT_VirtualMethodref_info {

u1 tag

class_ref class

u1 token

}

CONSTANT_SuperMethodref_info {

u1 tag

class_ref class

u1 token

}

The items in these structures are as follows:

tag

Java Card Platform Virtual Machine Specification, v3.2 Page 97

The tag item of a CONSTANT_InstanceFieldref_info structure has the value

CONSTANT_InstanceFieldref (2).

The tag item of a CONSTANT_VirtualMethodref_info structure has the value

CONSTANT_VirtualMethodref (3).

The tag item of a CONSTANT_SuperMethodref_info structure has the value

CONSTANT_SuperMethodref (4).

class

The class item represents the class associated with the referenced instance field, virtual method, or

super method invocation. It is a class_ref structure (6.8.1 CONSTANT_Classref). If the referenced

class is defined in this CAP file, the high bit is equal to zero. If the reference class is defined in an

imported package the high bit of this structure is equal to one.

The class referenced in the CONSTANT_InstanceField_info structure must be the class that

contains the declaration of the instance field.

The class referenced in the CONSTANT_VirtualMethodref_info structure must be a class that

contains a declaration or definition of the virtual method.

The class referenced in the CONSTANT_SuperMethodref_info structure must be the class that

defines the method that contains the Java language-level super invocation.

token

The token item in the CONSTANT_InstanceFieldref_info structure represents an instance

field token (4.3.7.5 Instance Fields) of the referenced field. The value of the instance field token is

defined within the scope of the class indicated by the class item.

The token item of the CONSTANT_VirtualMethodref_info structure represents the virtual

method token (4.3.7.6 Virtual Methods) of the referenced method. The virtual method token is defined

within the scope of the hierarchy of the class indicated by the class item. If the referenced method is

public or protected the high bit of the token item is zero. If the referenced method is package-visible the

high bit of the token item is one. In this case the class item must represent a reference to a class

defined in this package.

The token item of the CONSTANT_SuperMethodref_info structure represents the virtual

method token (4.3.7.6 Virtual Methods) of the referenced method. Unlike in the

CONSTANT_VirtualMethodref_info structure, the virtual method token is defined within the

scope of the hierarchy of the superclass of the class indicated by the class item. If the referenced

method is public or protected the high bit of the token item is zero. If the referenced method is

package-visible the high bit of the token item is one. In the latter case the class item must represent a

Java Card Platform Virtual Machine Specification, v3.2 Page 98

reference to a class defined in this package and at least one superclass of the class that contains a

definition of the virtual method must also be defined in this package.

6.8.3 CONSTANT_StaticFieldref and CONSTANT_StaticMethodref

References to static fields and methods are represented by similar structures:

CONSTANT_StaticFieldref_info {

u1 tag

union {

{ u1 padding

 u2 offset

} internal_ref

{ u1 package_token

 u1 class_token

 u1 token

} external_ref

} static_field_ref

}

CONSTANT_StaticMethodref_info {

u1 tag

union {

{ u1 method_info_block_index (since CAP format 2.3)

 u2 offset

} internal_ref

{ u1 package_token

 u1 class_token

 u1 token

} external_ref

} static_method_ref

}

The items in these structures are as follows:

tag

The tag item of a CONSTANT_StaticFieldref_info structure has the value

CONSTANT_StaticFieldref (5).

The tag item of a CONSTANT_StaticMethodref_info structure has the value

CONSTANT_StaticMethodref (6).

static_field_ref

The static_field_ref item represent a reference to a static field.

Java Card Platform Virtual Machine Specification, v3.2 Page 99

If the referenced item is defined in this CAP file the structure represents an internal_ref and the

high bit of the structure is zero. If the referenced item is defined in another CAP file the structure

represents an external_ref and the high bit of the structure is one.

internal_ref

The internal_ref item represents a reference to a static field defined in this CAP file. The items

in the structure are:

padding

The padding item of a CONSTANT_StaticFieldref_info structure is equal to 0.

method_info_block_index

The method_info_block_index item of a CONSTANT_StaticMethodref_info structure

represents the index in the blocks array of Method Component (6.10 Method Component) containing

the referenced method.

The value of the method_info_block_index token must be between 0 and 127, inclusive.

offset

The offset item of a CONSTANT_StaticFieldref_info structure represents a 16-bit offset into

the Static Field Image defined by the Static Field component (6.11 Static Field Component) to this static

field.

The offset item of a CONSTANT_StaticMethodref_info structure represents a 16-bit offset

into the method_component_block in the blocks array of Method Component (6.10 Method

Component) at index represented by method_info_block_index. The method_info structure

at offset must represent the referenced method.

external_ref

The external_ref item represents a reference to a static field or method defined in an imported

package. The items in the structure are:

package_token

The package_token item represents a package token (4.3.7.1 Package) defined in the Import

Component (6.7 Import Component) of this CAP file. The value of this token must be a valid index into

the packages table item of the import_component structure. The package represented at that

index must be the imported package.

The value of the package token must be between 0 and 127, inclusive.

The high bit of the package_token item is equal to one.

Java Card Platform Virtual Machine Specification, v3.2 Page 100

class_token

The class_token item represents the token (4.3.7.2 Classes and Interfaces) of the class of the

referenced class. It has the value of the class token of the class as defined in the Export file of the

imported package.

The class indicated by the class_token item must define the referenced field or method.

token

The token item of a CONSTANT_StaticFieldref_info structure represents a static field token

(4.3.7.3 Static Fields) as defined in the Export file of the imported package. It has the value of the token

of the referenced field.

The token item of a CONSTANT_StaticMethodref_info structure represents a static method

token (4.3.7.4 Static Methods and Constructors) as defined in the Export file of the imported package. It

has the value of the token of the referenced method.

6.9 Class Component
The Class Component describes each of the classes and interfaces defined in this CAP file. It does not

contain complete access information and content details for each class and interface. Instead, the

information included is limited to that required to execute operations associated with a particular class

or interface, without performing verification. Complete details regarding the classes and interfaces

defined in this CAP file are included in the Descriptor Component (6.14 Descriptor Component).

The information included in the Class Component for each interface is sufficient to uniquely identify the

interface and to test whether or not a cast to that interface is valid.

The information included in the Class Component for each class is sufficient to resolve operations

associated with instances of a class. The operations include creating an instance, testing whether or not

a cast of the instance is valid, dispatching virtual method invocations, and dispatching interface method

invocations. Also included is sufficient information to locate instance fields of type reference,

including arrays.

The classes represented in the Class Component reference other entries in the Class Component in the

form of superclass, superinterface and implemented interface references. When a superclass,

superinterface or implemented interface is defined in an imported package the Import Component is

used in the representation of the reference.

The classes represented in the Class Component also contain references to virtual methods defined in

the Method Component (6.10 Method Component) of this CAP file. References to virtual methods

defined in imported packages are not explicitly described. Instead such methods are located through a

superclass within the hierarchy of the class, where the superclass is defined in the same imported

package as the virtual method.

Java Card Platform Virtual Machine Specification, v3.2 Page 101

The Constant Pool Component (6.8 Constant Pool Component), Export Component (6.13 Export

Component), Descriptor Component (6.14 Descriptor Component) and Debug Component (6.15 Debug

Component) reference classes and interfaces defined in the Class Component. No other CAP file

components reference the Class Component.

The Class Component is represented by the following structures based on Compact or Extended format

of the CAP file:

class_component_compact {

u1 tag

u2 size

u2 signature_pool_length (since CAP format 2.2)

type_descriptor signature_pool[](since CAP format 2.2)

interface_info interfaces[]

class_info_compact classes[]

}

class_component_extended { (since CAP format 2.3)

u1 tag

u2 size

u2 signature_pool_length

type_descriptor signature_pool[]

interface_info interfaces[]

class_info_extended classes[]

}

The items in the class_component_compact and class_component_extended structures

are as follows:

tag

The tag item has the value COMPONENT_Class (6).

size

The size item indicates the number of bytes in the class_component structure, excluding the tag

and size items. The value of the size item must be greater than zero.

signature_pool_length

The signature_pool_length item indicates the number of bytes in the signature_pool[]

item. The value of the signature_pool_length item must be zero if none of the packages in this

CAP file define any remote interfaces or remote classes.

signature_pool[]

Java Card Platform Virtual Machine Specification, v3.2 Page 102

The signature_pool[] item represents a list of variable-length type_descriptor structures.

These descriptors represent the signatures of the remote methods.

interfaces[]

The interfaces item represents an array of interface_info structures. Each interface defined

in this CAP file is represented in the array. The entries are ordered based on hierarchy such that a

superinterface has a lower index than any of its subinterfaces.

classes[]

The classes item represents a table of variable-length class_info_compact or

class_info_extended structures based on Compact or Extended format of CAP file. Each class

defined in this CAP file is represented in the array. The entries are ordered based on hierarchy such that

a superclass has a lower index than any of its subclasses.

6.9.1 type_descriptor

The type_descriptor structure represents the type of a field or the signature of a method.

type_descriptor { (since CAP format 2.2)

u1 nibble_count;

u1 type[(nibble_count+1) / 2];

}

The type_descriptor structure contains the following elements:

nibble_count

The nibble_count value represents the number of nibbles required to describe the type encoded in

the type array.

type[]

The type array contains an encoded description of the type, composed of individual nibbles. If the

nibble_count item is an odd number, the last nibble in the type array must be 0x0. The values of

the type descriptor nibbles are defined in the following table.

Table 6-5: Type Descriptor Values

Type Value

Void 0x1

Boolean 0x2

Byte 0x3

Short 0x4

Int 0x5

Reference 0x6

arrayof boolean 0xA

Java Card Platform Virtual Machine Specification, v3.2 Page 103

Type Value

arrayof byte 0xB

arrayof short 0xC

arrayof int 0xD

arrayof reference 0xE

Class reference types are described using the reference nibble 0x6, followed by a 2-byte (4-nibble)

class_ref structure. The class_ref structure is defined as part of the

CONSTANT_Classref_info structure (6.8.1 CONSTANT_Classref). For example, a field of type

reference to p1.c1 in a CAP file defining package p0 is described as:

Table 6-6: Encoded Reference Type p1.c1

Nibble Value Description
0 0x6 Reference
1 <p1> package token (high bit on)
2 N/A N/A
3 <c1> class token
4 N/A N/A
5 0x0 Padding

The following are examples of the array types:

Table 6-7: Encoded Byte Array Type

Nibble Value Description
0 0xB array of byte
1 0x0 Padding

Table 6-8: Encoded Reference Array Type p1.c1

Nibble Value Description
0 0xE array of reference
1 <p1> package token (high bit on)
2 N/A N/A
3 <c1> class token
4 N/A N/A
5 0x0 Padding

Method signatures are encoded in the same way, with the return type of the method encoded at the

end of the sequence of nibbles. The return type is encoded in as many nibbles as required to represent

it. For example:

Java Card Platform Virtual Machine Specification, v3.2 Page 104

Table 6-9: Encoded Method Signature ()V

Nibble Value Description
0 0x1 Void
1 0x0 Padding

Table 6-10: Encoded Method Signature (Lp1.ci;)S

Nibble Value Description
0 0x6 Reference
1 <p1> package token (high bit on)
2 N/A N/A
3 <c1> class token
4 N/A N/A
5 0x4 Short

6.9.2 interface_info, class_info_compact and class_info_extended

The interface_info and class_info structures represent interfaces and classes, respectively.

The two are differentiated by the value of the high bit in the structures. They are defined as follows:

Note: Below, for interface_name_info interface_name the interface_name[]

item is required if the value of ACC_REMOTE is one. This item must be omitted otherwise. See

the description of this field for more information. For remote_interface_info remote_

interfaces the remote_interfaces item is required if the value of ACC_REMOTE is

one. This item must be omitted otherwise. See the description of this field for more information.

interface_info {

u1 bitfield {

bit[4] flags

bit[4] interface_count

}

class_ref superinterfaces[interface_count]

interface_name_info interface_name

}

class_info_compact {

u1 bitfield {

bit[4] flags

bit[4] interface_count

}

class_ref super_class_ref

u1 declared_instance_size

u1 first_reference_token

u1 reference_count

Java Card Platform Virtual Machine Specification, v3.2 Page 105

u1 public_method_table_base

u1 public_method_table_count

u1 package_method_table_base

u1 package_method_table_count

u2 public_virtual_method_table[public_method_table_count]

u2 package_virtual_method_table[package_method_table_count]

implemented_interface_info interfaces[interface_count]

remote_interface_info remote_interfaces (since CAP format 2.2)

u1 public_virtual_method_token_mapping[public_method_count]

(since CAP format 2.3)

u1 CAP22_inheritable_public_method_token_count

(since CAP format 2.3)

}

class_info_extended { (since CAP format 2.3)

u1 bitfield {

bit[4] flags

bit[4] interface_count

}

class_ref super_class_ref

u1 declared_instance_size

u1 first_reference_token

u1 reference_count

u1 public_method_table_base

u1 public_method_table_count

u1 package_method_table_base

u1 package_method_table_count

method_block_info

public_virtual_method_table[public_method_table_count]

method_block_info

package_virtual_method_table[package_method_table_count]

implemented_interface_info interfaces[interface_count]

remote_interface_info remote_interfaces

u1 public_virtual_method_token_mapping[public_method_count]

u1 CAP22_inheritable_public_method_token_count

}

6.9.2.1 interface_info, class_info_compact and class_info_extended Shared Items

flags

The flags item is a mask of modifiers used to describe this interface or class. Valid values are shown in

the following table:

Java Card Platform Virtual Machine Specification, v3.2 Page 106

Table 6-11: CAP File Interface and Class Flags

Name Value

ACC_INTERFACE 0x8

ACC_SHAREABLE 0x4

ACC_REMOTE 0x2

The ACC_INTERFACE flag indicates whether this structure represents an interface or a class. The value

must be one if it represents an interface_info structure and zero if it represents a

class_info_compact or class_info_extended structure.

The ACC_SHAREABLE flag in an interface_info structure indicates whether this interface is

shareable. The value of this flag must be one if and only if the interface is

javacard.framework.Shareable interface or extends that interface directly or indirectly.

The ACC_SHAREABLE flag in a class_info_compact or class_info_extended structure

indicates whether this class is shareable.9 The value of this flag must be one if and only if this class or

any of its superclasses implements an interface that is shareable.

The ACC_REMOTE flag indicates whether this class or interface is remote. The value of this flag must be

one if and only if the class or interface satisfies the requirements defined in 2.2.6.1 Remote Classes and

Remote Interfaces.

All other flag values are reserved. Their values must be zero.

interface_count

The interface_count item of the interface_info structure indicates the number of entries in

the superinterfaces[] table item. The value represents the number of direct and indirect

superinterfaces of this interface. Indirect superinterfaces are the set of superinterfaces of the direct

superinterfaces. Valid values are between 0 and 14, inclusive.

The interface_count item of the class_info_compact and class_info_extended

structures indicates the number of entries in the interfaces table item. The value represents the number

of interfaces implemented by this class, including superinterfaces of those interfaces and potentially

interfaces implemented by superclasses of this class. Valid values are between 0 and 15, inclusive.

6.9.2.2 interface_info Items

superinterfaces[]

9 A Java Card virtual machine uses the ACC_SHAREABLE flag to implement the firewall restrictions defined by the
Runtime Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 107

The superinterfaces[] item of the interface_info structure is an array of class_ref

structures representing the superinterfaces of this interface. The class_ref structure is defined as

part of the CONSTANT_Classref_info structure (6.8.1 CONSTANT_Classref). This array is empty if

this interface has no superinterfaces. Both direct and indirect superinterfaces are represented in the

array. Class Object is not included.

interface_name[]

The interface_name[] item represents interface name information required if the interface is

remote. The interface_name[] item is defined by a table of variable-length

interface_name_info structures. If the value of the ACC_REMOTE flag is zero, the structure is

defined as:

interface_name_info {

}

If the value of the ACC_REMOTE flag is one, the structure is defined as:

interface_name_info {

u1 interface_name_length

u1 interface_name[interface_name_length]

 }

The values in the interface_name_info structure are defined as follows:

interface_name_length

The interface_name_length item is the number of bytes in interface_name[] item.

interface_name

The item is a variable length representation of the name of this interface in UTF-8 format.

6.9.2.3 class_info_compact and class_info_extended Items

super_class_ref

The super_class_ref item of the class_info_compact and class_info_extended

structures is a class_ref structure representing the superclass of this class. The class_ref

structure is defined as part of the CONSTANT_Classref_info structure (6.8.1 CONSTANT_Classref).

The super_class_ref item has the value of 0xFFFF only if this class does not have a superclass.

Otherwise the value of the super_class_ref item is limited only by the constraints of the

class_ref structure.

declared_instance_size

Java Card Platform Virtual Machine Specification, v3.2 Page 108

The declared_instance_size item of the class_info_compact and

class_info_extended structures represents the number of 16-bit cells required to represent the

instance fields declared by this class. It does not include instance fields declared by superclasses of this

class.

Instance fields of type int are represented in two 16-bit cells, while all other field types are

represented in one 16-bit cell.

first_reference_token

The first_reference_token item of the class_info_compact and

class_info_extended structures represents the instance field token (4.3.7.5 Instance Fields) value

of the first reference type instance field defined by this class. It does not include instance fields defined

by superclasses of this class.

If this class does not define any reference type instance fields, the value of the

first_reference_token is 0xFF. Otherwise the value of the first_reference_token item

must be within the range of the set of instance field tokens of this class.

reference_count

The reference_count item of the class_info_compact and class_info_extended

structures represents the number of reference type instance field defined by this class. It does not

include reference type instance fields defined by superclasses of this class.

Valid values of the reference_count item are between 0 and the maximum number of instance

fields defined by this class.

public_method_table_base

The public_method_table_base item of the class_info_compact and

class_info_extended structures is equal to the virtual method token value (4.3.7.6 Virtual

Methods) of the first method in the public_virtual_method_table[] array. If the

public_virtual_method_table[] array is empty, the value of the

public_method_table_base item is equal to the public_method_table_base item of the

class_info_compact and class_info_extended structures of this class’ superclass plus the

public_method_table_count item of the class_info structure of this class’ superclass. If this

class has no superclass and the public_virtual_method_table[] array is empty, the value of

the public_method_table_base item is zero.

public_method_table_count

The public_method_table_count item of the class_info_compact and

class_info_extended structures indicates the number of entries in the

public_virtual_method_table[] array.

Java Card Platform Virtual Machine Specification, v3.2 Page 109

If this class does not define any public or protected override methods, the minimum valid value of

public_method_table_count item is the number of public and protected virtual methods

declared by this class. If this class defines one or more public or protected override methods, the

minimum valid value of public_method_table_count item is the value of the largest public or

protected virtual method token, minus the value of the smallest public or protected virtual override

method token, plus one.

The maximum valid value of the public_method_table_count item is the value of the largest

public or protected virtual method token, plus one.

Any value for the public_method_table_count item between the minimum and maximum

specified here is valid. However, the value must correspond to the number of entries in the

public_virtual_method_table[] array.

package_method_table_base

The package_method_table_base item of the class_info_compact and

class_info_extended structures is equal to the virtual method token value (4.3.7.6 Virtual

Methods) of the first entry in the package_virtual_method_table[] array. If the

package_virtual_method_table[] array is empty, the value of the

package_method_table_base item is equal to the package_method_table_base item of

the class_info structure of this class’ superclass, plus the package_method_table_count

item of the class_info structure of this class’ superclass. If this class has no superclass or inherits

from a class defined in another package and the package_virtual_method_table[] array is

empty, the value of the package_method_table_base item is zero.

package_method_table_count

The package_method_table_count item of the class_info_compact and

class_info_extended structures indicates the number of entries in the

package_virtual_method_table[] array.

If this class does not define any override methods, the minimum valid value of

package_method_table_count item is the number of package visible virtual methods declared

by this class. If this class defines one or more package visible override methods, the minimum valid value

of package_method_table_count item is the value of the largest package visible virtual method

token, minus the value of the smallest package visible virtual override method token, plus one.

The maximum valid value of the package_method_table_count item is the value of the largest

package visible method token, plus one.

Any value for the package_method_table_count item between the minimum and maximum

specified here are valid. However, the value must correspond to the number of entries in the

package_virtual_method_table[].

Java Card Platform Virtual Machine Specification, v3.2 Page 110

public_virtual_method_table[]

The public_virtual_method_table[] item of the class_info_compact and

class_info_extended structures represents an array of public and protected virtual methods.

These methods can be invoked on an instance of this class. The

public_virtual_method_table[] array includes methods declared or defined by this class. It

may also include methods declared or defined by any or all of its superclasses. The value of an index into

this table must be equal to the value of the virtual method token of the indicated method, minus the

value of the public_method_table_base item.

In class_info_compact structure, the entries in the public_virtual_method_table[]

array that represent methods defined or declared in this package contain offsets into the info item of

the Method Component (6.10 Method Component) to the method_info structure representing the

method. Entries that represent methods defined or declared in an imported package contain the value

0xFFFF.

In class_info_extended structure, the entries in the public_virtual_method_table[]

array are of type method_block_info structure that represent methods defined or declared in the

package containing this class. Entries that represent methods defined or declared in an imported

package contain the value 0xFFFF for the method_offset item of method_block_info

structure and the value 0xFF for method_component_block_index item of

method_block_info structure.

Entries for methods that are declared abstract are represented in the

public_virtual_method_table[] array in the same way as non-abstract methods.

package_virtual_method_table[]

The package_virtual_method_table[] item of the class_info structure represents an

array of package-visible virtual methods. These methods can be invoked on an instance of this class. The

package_virtual_method_table[] array includes methods declared or defined by this class. It

may also include methods declared or defined by any or all of its superclasses that are defined in the

package containing this class. The value of an index into this table must be equal to the value of the

virtual method token of the indicated method & 0x7F, minus the value of the

package_method_table_base item.

All entries in the package_virtual_method_table[] array represent methods defined or

declared in this package.

In class_info_compact structure, the entries in package_virtual_method_table[]array

contain offsets into the info item of the Method Component (6.10 Method Component) to the

method_info structure representing the method.

Java Card Platform Virtual Machine Specification, v3.2 Page 111

In class_info_extended structure, the entries in package_virtual_method_table[]

array are of type method_block_info structure that represent methods defined or declared in the

package containing this class.

Entries for methods that are declared abstract, not including those defined by interfaces, are

represented in the package_virtual_method_table[] array in the same way as non-abstract

methods.

6.9.2.4 method_block_info

This structure is defined as:

method_block_info { (since CAP format 2.3)

 u1 method_component_block_index

 u2 method_offset

}

The method_block_info structure is defined as:

method_component_block_index

The method_component_block_index item represents the index into the blocks array of Method

Component (6.10 Method Component). The method_component_block at that index contains the

referenced method.

method_offset

The value of the method_offset item must be a 16-bit offset into the

method_component_block in the blocks array of Method Component (6.10 Method Component)

at index represented by method_component_block_index. The method_info structure at

offset must represent the referenced method.

interfaces[]

The interfaces item of the class_info_compact and class_info_extended structures

represents a table of variable-length implemented_interface_info structures. The table must

contain an entry for each of the directly implemented interfaces indicated in the declaration of this class

and each of the interfaces in the hierarchies of those interfaces. Interfaces that occur more than once

are represented by a single entry.

Given the declarations below, the number of entries for class c0 is 1 and the entry in the interfaces array

is i0. The number of entries for class c1 is 3 and the entries in the interfaces array are i1, i2, and i3.

The entries for class c1 must not include interface i0, which is implemented only by the superclass of

c1.

interface i0 {}

interface i1 {}

interface i2 extends i1 {}

Java Card Platform Virtual Machine Specification, v3.2 Page 112

interface i3 {}

class c0 implements i0 {}

class c1 extends c0 implements i2, i3 {}

remote_interfaces

The remote_interfaces item represents information required if this class or any of its super

classes implements a remote interface. This item must be omitted if the ACC_REMOTE flag has a value

of zero. The remote_interfaces item is defined by a remote_interface_info structure.

6.9.2.5 implemented_interface_info

The implemented_interface_info structure is defined as follows:

implemented_interface_info {

class_ref interface

u1 count

u1 index[count]

}

The items in the implemented_interface_info structure are defined as follows:

interface

The interface item has the form of a class_ref structure. The class_ref structure is defined

as part of the CONSTANT_Classref_info structure (6.8.1 CONSTANT_Classref). The

interface_info structure referenced by the interface item represents an interface implemented by

this class.

count

The count item indicates the number of entries in the index[] array.

index[]

The index[] item is an array that maps declarations of interface methods to implementations of those

methods in this class. It is a representation of the set of methods declared by the interface and its

superinterfaces.

Entries in the index array must be ordered such that the interface method token value (4.3.7.7 Interface

Methods) of the interface method is equal to the index into the array. The interface method token value

is assigned to the method within the scope of the interface definition, not within the scope of this class.

The values in the index[] array represent the virtual method tokens (4.3.7.6 Virtual Methods) of the

implementations of the interface methods. The virtual method token values are defined within the

scope of the hierarchy of this class.

For information on runtime resolution of an interface method see 7.5.54.1 Interface Method Resolution.

Java Card Platform Virtual Machine Specification, v3.2 Page 113

6.9.2.6 remote_interface_info

If the value of the ACC_REMOTE flag is zero, this structure is defined as:

remote_interface_info { (since CAP format 2.2)

}

If the value of the ACC_REMOTE flag is one, this structure is defined as:

remote_interface_info { (since CAP format 2.2)

 u1 remote_methods_count

 remote_method_info remote_methods[remote_methods_count]

 u1 hash_modifier_length

 u1 hash_modifier[hash_modifier_length]

 u1 class_name_length

 u1 class_name[class_name_length]

 u1 remote_interfaces_count

 class_ref remote_interfaces[remote_interfaces_count]

}

The remote_interface_info structure is defined as:

remote_methods_count

The remote_methods_count item indicates the number of entries in the remote_methods

array.

remote_methods[]

The remote_methods item of the class_info structure is an array of remote_method_info

structures that maps each remote method available in the class to its hash code and its type definition in

the signature_pool[]. The methods are listed in numerically ascending order of hash values.

The remote_method_info structure is defined as follows:

remote_method_info { (since CAP format 2.2)

u2 remote_method_hash

u2 signature_offset

u1 virtual_method_token

 }

The items in the remote_method_info structure are defined as follows:

remote_method_hash

The remote_method_hash item contains a two-byte hash value for the method. The hash value is

computed from the simple (not fully qualified) name of the method concatenated with its method

Java Card Platform Virtual Machine Specification, v3.2 Page 114

descriptor. The representation of the method descriptor is the same as in a Java class file. See the

specification described in The Java Virtual Machine Specification (§4.3.3).

The hash value uniquely identifies the method within the class.

The hash code is defined as the first two bytes of the SHA-1 message digest function performed on the

hash_modifier[] item described below followed by the name of the method followed by the

method descriptor representation in UTF-8 format. Rare hash collisions are averted automatically during

package conversion by adjusting the anti-collision string.

signature_offset

The signature_offset item contains an offset from the signature_pool item of the info

item of the Class Component to the variable-length type descriptor structure inside the

signature_pool[] item. This structure represents the signature of the remote method.

virtual_method_token

The virtual_method_token item is the virtual method token of the remote method in this class.

hash_modifier_length

The hash_modifier_length item is the number of bytes in the following hash_modifier item.

The value of this item must be zero if an anti-collision string is not required.

hash_modifier[]

The hash_modifier[] item is a variable length representation of the anti-collision string in UTF-8

format.

class_name_length

The class_name_length item is the number of bytes used in the class_name[] item.

class_name[]

The class_name[] item is a variable length representation of the name of this class in UTF-8 format.

remote_interfaces_count

The remote_interfaces_count item is the number of interfaces listed in the following

remote_interfaces[] item.

remote_interfaces[]

The remote_interfaces[] item is a variable length array of class_ref items. It represents the

remote interfaces implemented by this class. The remote interfaces listed in this array, together with

Java Card Platform Virtual Machine Specification, v3.2 Page 115

their superinterfaces must be the complete set of remote interfaces implemented by this class and all its

superclasses.

Each entry has the form of a class_ref structure. Each class_ref structure must reference an

interface_info structure representing a remote interface implemented by this class.

The entries in the remote_interfaces[] array must be ordered such that all remote interfaces

from the same package are listed consecutively.

6.9.2.7 public_virtual_method_token_mapping

The public_virtual_method_token_mapping[] item of the class_info structure

represents an array mapping public and protected virtual method tokens of methods overridden or

declared in this class to the corresponding token value in the super class. The value of an index into this

table must be equal to the value of the virtual method token of the indicated method in this class. The

number of entries in this array is public_method_count where public_method_count equals

public_method_table_base plus public_method_table_count.

The entries in the public_virtual_method_token_mapping[] array that represent methods

declared by this class must contain the value 0xFF. The entries in the

public_virtual_method_token_mapping[] array that represent methods declared by any

one of the super classes of this class must contain the value of the token in the direct super class at the

time of conversion of this class.

The same virtual method can have different tokens in different classes. Given a class C2 and its direct

super-class C1, the token T2 in class C2 denotes the same method as token T1 in class C1 when

T1=C2.public_virtual_method_token_mapping[T2] and T1 is not 0xFF. This relation can

be extended by reflexivity, symmetry, and transitivity to any classes C1 and C2.

The content of the table public_virtual_method_token_mapping for a class C2 defined in a

CAP file of format 2.2 or earlier is implicitly defined as:

 For T < inherited_public_method_count,

public_virtual_method_token_mapping[T] = T

 For inherited_public_method_count <= T < public_method_count,

public_virtual_method_token_mapping[T] = 0xFF

where inherited_public_method_count is defined by using the immediate super-class C1 of C2

and depends on the format of the CAP file defining C1:

 If CAP file defining C1 has format 2.2 or earlier,

inherited_public_method_count = C1.public_method_count

 If CAP file defining C1 has format 2.3,

inherited_public_method_count =

C1.CAP22_inheritable_public_method_token_count

Java Card Platform Virtual Machine Specification, v3.2 Page 116

For information on runtime resolution of a virtual method see 7.5.57.1 Virtual Method Resolution.

CAP22_inheritable_public_method_token_count

The CAP22_inheritable_public_method_token_count item represents the number of

public or protected virtual methods inheritable by a subclass defined in a CAP file of format version 2.2

or earlier.

6.10 Method Component
The Method Component describes each of the methods declared in this CAP file, excluding <clinit>

methods and interface method declarations. Abstract methods defined by classes (not interfaces) are

included. The exception handlers associated with each method are also described.

The Method Component does not contain complete access information and descriptive details for each

method. Instead, the information is optimized for size and therefore limited to that required to execute

each method without performing verification. Complete details regarding the methods defined in this

package are included in the Descriptor Component (6.14 Descriptor Component). Among other

information, the Descriptor Component contains the location and number of bytecodes for each

method in the Method Component. This information can be used to parse the methods in the Method

Component.

Instructions and exception handler catch types in the Method Component reference entries in the

Constant Pool Component (6.8 Constant Pool Component). No other CAP file components, including the

Method Component, are referenced by the elements in the Method Component.

The Applet Component (6.6 Applet Component), Constant Pool Component (6.8 Constant Pool

Component), Class Component (6.9 Class Component), Export Component (6.13 Export Component),

Descriptor Component (6.14 Descriptor Component), and Debug Component (6.15 Debug Component)

reference methods defined in the Method Component. The Reference Location Component (6.12

Reference Location Component) references all constant pool indices contained in the Method

Component. No other CAP file components reference the Method Component.

The Method Component is represented by one of the following structures based on Compact or

Extended format of the CAP file:

method_component_compact {

 u1 tag

 u2 size

 u1 handler_count

 exception_handler_info exception_handlers[handler_count]

 method_info methods[]

}

method_component_extended { (since CAP format 2.3)

Java Card Platform Virtual Machine Specification, v3.2 Page 117

 u1 tag

 u4 size

 u1 method_component_block_count

 u4 method_component_block_offsets[method_component_block_count]

 method_component_block blocks[method_component_block_count]

}

The items in these structures are as follows:

tag

The tag item has the value COMPONENT_Method (7).

size

The size item indicates the number of bytes in the method_component structure, excluding the

tag and size items. The value of the size item must be greater than zero.

method_component_block_count

The method_component_block_count item in method_component_extended structure

indicates the number of method_component_block entries in the blocks array. The value of

method_component_block_count item must be between 0 and 127, inclusive.

method_component_block_offsets

The method_component_block_offsets[] item of the method_component_extended

structure represents an array of offsets into the info item of the method component for each

method_component_block. The number of entries in this array must be the same as the value of

method_component_block_count.

blocks[]

The blocks[] item of the method_component_extended structure represents an array of

method_component_block items. The number of entries in this array must be the same as the

value of method_component_block_count.

6.10.1 method_component_block

A method_component_extended may contain between 1 and 127 method_component_block

items. Each block can have a maximum size of 65535 bytes. A block must contain all the information

needed to execute any method contained in that block. This means that every single method_info

structure and all its corresponding exception handlers must be contained in one

method_component_block. If adding a method to a method_component_block would exceed

the maximum size for the block, the CAP file Converter tool must create a new

method_component_block and add this method and all its corresponding exception handlers to

that new block.

Java Card Platform Virtual Machine Specification, v3.2 Page 118

The method_component_block structure is defined as follows:

method_component_block { (since CAP format 2.3)

 u1 handler_count

 exception_handler_info exception_handlers[handler_count]

 method_info methods[]

}

handler_count

The handler_count item represents the number of entries in the exception_handlers array.

Valid values are between 0 and 255, inclusive.

exception_handlers[]

The exception_handlers item represents an array of 8-byte exception_handler_info

structures. Each exception_handler_info structure represents a catch or finally block defined in

a method of this CAP file.

Entries in the exception_handlers array are sorted in ascending order by the offset to the handler

of the exception handler. Smaller offset values occur first in the array. This ordering constraint ensures

that the first match found when searching for an exception handler is the correct match.

There are two consequences of this ordering constraint. First, a handler that is nested with the active

range (try block) of another handler occurs first in the array. Second, when multiple handlers are

associated with the same active range, they are ordered as they occur in a method. This is consistent

with the ordering constraints defined for Java class files. An example is shown in 6.10.2 Exception

Handler Example.

6.10.2 Exception Handler Example

The methods item represents a table of variable-length method_info structures. Each entry

represents a method declared in a class of this package. <clinit> methods and interface method

declaration are not included; all other methods, including non-interface abstract methods, are.

try {

...

try {

...

} catch (NullPointerException e) { // first

...

}

...

} catch (Exception e) { // second

...

} finally { // third

...

Java Card Platform Virtual Machine Specification, v3.2 Page 119

}

...

try {

...

} catch (SecurityException e) { // fourth

...

}

methods[]

6.10.3 exception_handler_info

The exception_handler_info structure is defined as follows:

exception_handler_info {

u2 start_offset

u2 bitfield {

bit[1] stop_bit

bit[15] active_length

}

u2 handler_offset

u2 catch_type_index

}

The items in the exception_handler_info structure are as follows:

start_offset, active_length

The start_offset and active_length pair indicate the active range (try block) in an exception

handler. The start_offset item indicates the beginning of the active range while the

active_length item indicates the number of bytes contained in the active range.

end_offset is defined as start_offset plus active_length.

In method_component_compact structure, the start_offset item and end_offset are byte

offsets into the info item of the Method Component

In method_component_extended structure, the start_offset item and end_offset are

byte offsets into the method_component_block containing this exception_handler_info

structure in the Method Component.

The value of the start_offset must be a valid offset into a bytecodes array of a method_info

structure to an opcode of an instruction. The value of the end_offset either must be a valid offset

into a bytecodes array of the same method_info structure to an opcode of an instruction, or must

be equal to the method’s bytecode count, the length of the bytecodes array of the method_info

structure. The value of the start_offset must be less than the value of the end_offset.

Java Card Platform Virtual Machine Specification, v3.2 Page 120

The start_offset is inclusive and the end_offset is exclusive; that is, the exception handler must

be active while the execution address is within the interval (start_offset, end_offset).

stop_bit

The stop_bit item indicates whether the active range (try block) of this exception handler is

contained within or is equal to the active range of any succeeding exception_handler_info

structures in this exception_handlers array. At the Java source level, this indicates whether an

active range is nested within another, or has at least one succeeding exception handler associated with

the same range. The latter occurs when there is at least one succeeding catch block or a finally block.

The stop_bit item is equal to 1 if the active range does not intersect with a succeeding exception

handler’s active range, and this exception handler is the last handler applicable to the active range. It is

equal to 0 if the active range is contained within the active range of another exception handler, or there

is at least one succeeding handler applicable to the same active range.

The stop_bit provides an optimization to be used during the interpretation of the athrow bytecode.

As the interpreter searches for an appropriate exception handler, it may terminate the search of the

exception handlers in this Method Component under the following conditions:

 the location of the current program counter is less than the end_offset of this exception

handler, and

 the stop_bit of this exception handler is equal to 1.

When these conditions are satisfied it is guaranteed that none of the succeeding exception handlers in

this Method Component will contain an active range appropriate for the current exception.

In 6.10.2 Exception Handler Example6.10.2 , the stop_bit item is set for both the third and fourth

handlers.

handler_offset

The handler_offset indicates the start of the exception handler.

In method_component_compact, the handler_offset item represents a byte offset into the

info item of the Method Component.

In method_component_extended, the handler_offset item represents a byte offset into

the method_component_block containing this exception_handler_info structure in the

Method Component.

At the Java source level, this is equivalent to the beginning of a catch or finally block. The value of the

item must be a valid offset into a bytecodes array of a method_info structure to an opcode of an

instruction, and must be less than the value of the method’s bytecode count.

catch_type_index

Java Card Platform Virtual Machine Specification, v3.2 Page 121

If the value of the catch_type_index item is non-zero, it must be a valid index into the

constant_pool[] array of the Constant Pool Component (6.8 Constant Pool Component). The

constant_pool[] entry at that index must be a CONSTANT_Classref_info structure,

representing the class of the exception caught by this exception_handlers array entry.

If the exception_handlers table entry represents a finally block, the value of the

catch_type_index item is zero. In this case the exception handler is called for all exceptions that

are thrown within the start_offset and end_offset range.

The order of constants in the constant pool is constrained such that all entries referenced by

catch_type_index items that represent catch block (not finally blocks) are located at non-zero

entries.

6.10.4 method_info

The method_info structure is defined as follows:

method_info {

method_header_info method_header

u1 bytecodes[]

}

The items in the method_info structure are as follows:

method_header

The method_header item represents either a method_header_info or an

extended_method_header_info structure:

method_header_info {

u1 bitfield {

bit[4] flags

bit[4] max_stack

}

u1 bitfield {

bit[4] nargs

bit[4] max_locals

}

}

extended_method_header_info {

u1 bitfield {

bit[4] flags

bit[4] padding

}

u1 max_stack

u1 nargs

u1 max_locals

Java Card Platform Virtual Machine Specification, v3.2 Page 122

}

The items of the method_header_info and extended_method_header_info structures are

as follows:

flags

The flags item is a mask of modifiers defined for this method. Valid flag values are shown in the

following table.

Table 6-12: CAP File Method Flags

Flags Values

ACC_EXTENDED 0x8

ACC_ABSTRACT 0x4

The value of the ACC_EXTENDED flag must be one if the method_header is represented by an

extended_method_header_info structure. Otherwise the value must be zero.

The value of the ACC_ABSTRACT flag must be one if this method is defined as abstract. In this case the

bytecodes array must be empty. If this method is not abstract the value of the ACC_ABSTRACT flag

must be zero.

All other flag values are reserved. Their values must be zero.

padding

The padding item has the value of zero. This item is only defined for the

extended_method_header_info structure.

max_stack

The max_stack item indicates the maximum number of words required on the operand stack during

execution of this method.

Stack entries of type int are represented in two words, while all others are represented in one word.

See 3.2 Words

nargs

The nargs item indicates the number of words required to represent the parameters passed to this

method, including the this pointer if this method is a virtual method.

Parameters of type int are represented in two words, while all others are represented in one word.

See 3.2 Words.

max_locals

Java Card Platform Virtual Machine Specification, v3.2 Page 123

The max_locals item indicates the number of words required to represent the local variables

declared by this method, not including the parameters passed to this method on invocation.10

Local variables of type int are represented in two words, while all others are represented in one word

(3.2 Words). If an entry in the local variables array of the stack frame is reused to store more than one

local variable (for example, local variables from separate scopes), the number of words required for

storage is two if one or more of the local variables is of type int.

bytecodes[]

The bytecodes item represents an array of Java Card bytecodes that implement this method. Valid

instructions are defined in Chapter 7, Java Card Virtual Machine Instruction Set. The impdep1 and

impdep2 bytecodes cannot be present in the bytecodes array item.

If this method is abstract the bytecodes item must contain zero elements.

6.11 Static Field Component
The Static Field Component contains all of the information required to create and initialize an image of

all of the static fields defined in this CAP file, referred to as the static field image. Offsets to particular

static fields are offsets into the static field image, not the Static Field Component.

Final static fields of primitive types are not represented in the static field image. Instead these compile-

time constants must be placed in line in Java Card technology-based instructions (“Java Card

instructions”).

The Static Field Component includes all information required to initialize classes. In the Java virtual

machine a class is initialized by executing its <clinit> method. In the Java Card virtual machine the

functionality of <clinit> methods is represented in the Static Field Component as array initialization

data and non-default values of primitive types data. 2.2.4.6 Limitations of Class Initialization contains a

description of the subset of <clinit> functionality supported in the Java Card virtual machine.

The Static Field Component does not reference any other component in this CAP file. The Constant Pool

Component (6.8 Constant Pool Component), Export Component (6.13 Export Component), Descriptor

Component (6.14 Descriptor Component), and Debug Component (6.15 Debug Component) reference

fields in the static field image defined by the Static Field Component.

The ordering constraints, or segments, associated with a static field image are shown in Table 6-13.

Reference types occur first in the image. Arrays initialized through Java <clinit> methods occur first

within the set of reference types. Primitive types occur last in the image, and primitive types initialized

to non-default values occur last within the set of primitive types.

10 Unlike in Java Card CAP files, in Java class files the max_locals item includes both the local variables declared by
the method and the parameters passed to the method.

Java Card Platform Virtual Machine Specification, v3.2 Page 124

Table 6-13: Segments of a Static Field Image

Category Segment Content

reference types 1 arrays of primitive types initialized by <clinit> methods

reference types 2 reference types initialized to null, including arrays

primitive types 3 primitive types initialized to default values

primitive types 4 primitive types initialized to non-default values

The number of bytes used to represent each field type in the static field image is shown in the following

table.

Table 6-14: Static Field Sizes

Type Bytes

Boolean 1

Byte 1

Short 2

Int 4

reference, including arrays 2

The static_field_component structure is defined as:

static_field_component {

u1 tag

u2 size

u2 image_size

u2 reference_count

u2 array_init_count

array_init_info array_init[array_init_count]

u2 default_value_count

u2 non_default_value_count

u1 non_default_values[non_default_values_count]

}

The items in the static_field_component structure are as follows:

tag

The tag item has the value COMPONENT_StaticField (8).

size

The size item indicates the number of bytes in the static_field_component structure,

excluding the tag and size items. The value of the size item must be greater than zero.

image_size

Java Card Platform Virtual Machine Specification, v3.2 Page 125

The image_size item indicates the number of bytes required to represent the static fields defined in

this CAP file, excluding final static fields of primitive types. This value is the number of bytes in the static

field image. The number of bytes required to represent each field type is shown in Table 6-14.

The value of the image_size item does not include the number of bytes required to represent the

initial values of array instances enumerated in the Static Field Component.

The value of the image_size is defined as:

image_size =

reference_count * 2 +

default_value_count +

non_default_value_count.

reference_count

The reference_count item indicates the number of reference type static fields defined in this CAP

file. This is the number of fields represented in segments 1 and 2 of the static field image as described in

Table 6-13.

The value of the reference_count item may be 0 if no reference type fields are defined in this CAP

file. Otherwise it must be equal to the number of reference type fields defined.

array_init_count

The array_init_count item indicates the number of elements in the array_init array. This is

the number of fields represented in segment 1 of the static field image as described in Table 6-13. It

represents the number of arrays initialized in all of the <clinit> methods in this CAP file.

If this CAP file defines a library package the value of array_init_count must be zero.

array_init[]

The array_init item represents an array of array_init_info structures that specify the initial

array values of static fields of arrays of primitive types. These initial values are indicated in Java

<clinit> methods. The array_init_info structure is defined as:

array_init_info {

u1 type

u2 count

u1 values[count]

 }

The items in the array_init_info structure are defined as follows:

type

The type item indicates the type of the primitive array. Valid values are shown in the following table.

Java Card Platform Virtual Machine Specification, v3.2 Page 126

Table 6-15: Array Types

Type Value

Boolean 2

Byte 3

short 4

int 5

count

The count item indicates the number of bytes in the values array. It does not represent the number of

elements in the static field array (referred to as length in the Java programming language), since the

values array is an array of bytes and the static field array may be a non-byte type. The Java programming

language length of the static field array is equal to the count item divided by the number of bytes

required to represent the static field type (Table 6-14) indicated by the type item.

values

The values item represents a byte array containing the initial values of the static field array. The

number of entries in the values array is equal to the size in bytes of the type indicated by the type item.

The size in bytes of each type is shown in Table 6-14.

default_value_count

The default_value_count item indicates the number of bytes required to initialize the set of static

fields represented in segment 3 of the static field image as described in Table 6-13. These static fields

are primitive types initialized to default values. The number of bytes required to initialize each static

field type is equal to the size in bytes of the type as shown in Table 6-14.

non_default_value_count

The non_default_value_count item represents the number bytes in the

non_default_values array. This value is equal to the number of bytes in segment 4 of the static

field image as described in Table 6-13. These static fields are primitive types initialized to non-default

values.

non_default_values[]

The non_default_values item represents an array of bytes of non-default initial values. This is the

exact image of segment 4 of the static field image as described in Table 6-13. The number of entries in

the non_default_values array for each static field type is equal to the size in bytes of the type as

shown in Table 6-14.

The value of a boolean type is 1 to represent true and 0 to represent false.

Java Card Platform Virtual Machine Specification, v3.2 Page 127

6.12 Reference Location Component
The Reference Location Component represents lists of offsets into the info item of the Method

Component (6.10 Method Component) to items that contain indices into the constant_pool[]

array of the Constant Pool Component (6.8 Constant Pool Component). This includes all constant pool

index operands of instructions, and all non-zero catch_type_index items of the

exception_handlers array. The catch_type_index items that have the value of 0 are not

included since they represent finally blocks instead of particular exception classes.

Some of the constant pool indices are represented in one-byte values while others are represented in

two-byte values. Operands of getfield_T and putfield_T instructions are one-byte constant pool

indices. All other indices in a Method Component are two-byte values.

The Reference Location Component is not referenced by any other component in this CAP file.

The Reference Location Component structure is defined as one of the following structures based on

Compact or Extended format of the CAP file:

reference_location_component_compact {

u1 tag

u2 size

u2 byte_index_count

u1 offsets_to_byte_indices[byte_index_count]

u2 byte2_index_count

u1 offsets_to_byte2_indices[byte2_index_count]

}

reference_location_component_extended { (since CAP format 2.3)

u1 tag

u4 size

u1 reference_location_component_block_count

reference_location_component_block blocks[]

}

The items of the reference_location_component structure are as follows:

tag

The tag item has the value COMPONENT_ReferenceLocation (9).

size

Java Card Platform Virtual Machine Specification, v3.2 Page 128

The size item indicates the number of bytes in the reference_location_component structure,

excluding the tag and size items. The value of the size item must be greater than zero.

reference_location_component_block_count

The reference_location_component_block_count item in

reference_location_component_extended structure indicates the number of

reference_location_component_block entries in the blocks array. The value of

reference_location_component_block_count item must be equal to the

method_component_block_count item in Method Component.

blocks[]

The blocks[] item of the reference_location_component_extended structure represents

an array of reference_location_component_block items. The number of entries in this

array must be the same as the value of reference_location_component_block_count.

6.12.1 reference_location_component_block

A reference_location_component_extended may contain between 1 and 127

reference_location_component_block items. Each block can have a maximum size of 65535

bytes. Each block corresponds to method_component_block items in the blocks array in the

Method Component i.e. offsets in a reference_location_component_block at index i in the

blocks array in the Reference Location Component must be for the method_component_block

item in the blocks array at the same index i in the Method Component.

The reference_location_component_block structure is defined as follows:

reference_location_component_block {

u2 byte_index_count

u1 offsets_to_byte_indices[byte_index_count]

u2 byte2_index_count

u1 offsets_to_byte2_indices[byte2_index_count]

}

byte_index_count

The byte_index_count item represents the number of elements in the

offsets_to_byte_indices array.

offsets_to_byte_indices[]

In reference_location_component_compact structure, the offsets_to_byte_indices

item represents an array of 1-byte jump offsets into the info item of the Method Component to each

1-byte constant_pool[] array index.

Java Card Platform Virtual Machine Specification, v3.2 Page 129

In reference_location_component_block in

reference_location_component_compact structure, the offsets_to_byte_indices

item represents an array of 1-byte jump offsets into the corresponding method_component_block

in the Method Component’s blocks array to each 1-byte constant_pool[] array index.

Each entry represents the number of bytes (or distance) between the current index to the next. If the

distance is greater than or equal to 255 then there are n entries equal to 255 in the array, where n is

equal to the distance divided by 255. The nth entry of 255 is followed by an entry containing the value of

the distance modulo 255.

An example of the jump offsets in an offsets_to_byte_indices array is shown in the following

table.

Table 6-16: One-byte Reference Location Example

Instruction Offset to Operand Jump Offset

getfield_a 0 10 10

putfield_b 2 65 55

getfield_s 1 580 255, 255, 5

putfield_a 0 835 255, 0

getfield_i 3 843 8

All 1-byte constant_pool[] array indices in the Method Component must be represented in

offsets_to_byte_indices array.

byte2_index_count

The byte2_index_count item represents the number of elements in the

offsets_to_byte2_indices array.

offsets_to_byte2_indices[]

In reference_location_component_compact structure, the

offsets_to_byte2_indices item represents an array of 1-byte jump offsets into the info item

of the Method Component to each 2-byte constant_pool[] array index.

In reference_location_component_block in

reference_location_component_compact structure, the offsets_to_byte2_indices

item represents an array of 1-byte jump offsets into the corresponding method_component_block

in the Method Component’s blocks array to each 2-byte constant_pool[] array index.

Each entry represents the number of bytes (or distance) between the current index to the next. If the

distance is greater than or equal to 255 then there are n entries equal to 255 in the array, where n is

equal to the distance divided by 255. The nth entry of 255 is followed by an entry containing the value of

the distance modulo 255.

Java Card Platform Virtual Machine Specification, v3.2 Page 130

An example of the jump offsets in an offsets_to_byte_indices array is shown in Table 6-16. The

same example applies to the offsets_to_byte2_indices array if the instructions are changed to

those with 2-byte constant_pool[] array indices.

All 2-byte constant_pool[] array indices in the Method Component must be represented in

offsets_to_byte2_indices array, including those represented in catch_type_index items

of the exception_handler_info array.

6.13 Export Component
The Export Component lists all static elements in this CAP file that may be imported by classes in other

packages. Instance fields and virtual methods are not represented in the Export Component. For

Extended format of CAP files, a CAP file may contain private packages. Export component must not

contain any information from these packages. Packages in the Extended format CAP files must be in the

same order as they are in the Header Component (6.4 Header Component).

For package represented by Compact format CAP, if the CAP file contains the export component, the

package is considered a public package.

For public packages that include applets, the Export Component includes entries only for all public

interfaces that are shareable.11 For public packages that do not include any applets, the Export

Component contains an entry for each public class and public interface. Furthermore, for each public

class there is an entry for each public or protected static field defined in that class, for each public or

protected static method defined in that class, and for each public or protected constructor defined in

that class. Final static fields of primitive types (compile-time constants) are not included.

An interface is shareable if and only if it is the javacard.framework.Shareable interface or

implements (directly or indirectly) that interface.

Elements in the Export Component reference elements in the Class Component (6.9 Class Component),

Method Component (6.10 Method Component), and Static Field Component (6.11 Static Field

Component). No other component in this CAP file references the Export Component.

The Export Component is represented by one of the following structures based on Compact or Extended

format of the CAP file:

export_component_compact {

 u1 tag

 u2 size

 u1 class_count

 class_export_info {

 u2 class_offset

11 The restriction on shareable functionality is imposed by the firewall as defined in the Runtime

Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 131

 u1 static_field_count

 u1 static_method_count

 u2 static_field_offsets[static_field_count]

 u2 static_method_offsets[static_method_count]

 } class_exports[class_count]

}

export_component_extended { (since CAP format 2.3)

 u1 tag

 u2 size

 u1 package_count

 package_export_info{

u1 class_count

 class_export_info {

 u2 class_offset

 u1 static_field_count

 u1 static_method_count

 u2 static_field_offsets[static_field_count]

 method_block_info static_methods[static_method_count]

 } class_exports[class_count]

 }package_exports[package_count]

}

The items of these structures are as follows:

tag

The tag item has the value COMPONENT_Export (10).

size

The size item indicates the number of bytes in the export_component structure, excluding the

tag and size items. The value of the size item must be greater than zero.

package_count

The package_count item in export_component_extended structure represents the number of

entries in the package_exports table. The value of the package_count item must be greater

than 0.

package_exports[]

The package_exports item in export_component_extended structure represents a variable-

length table of package_export_info structures for all public packages in this CAP file.

Java Card Platform Virtual Machine Specification, v3.2 Page 132

The items in package_export_info structure are:

class_count

The class_count item in package_export_info structure and in

export_component_compact structure represents the number of entries in the

class_exports table. The value of the class_count item must be greater than zero.

class_exports[]

The class_exports item represents a variable-length table of class_export_info structures.

For library CAP files, the table contains an entry for each of the public classes and public interfaces

defined in this CAP file. For application CAP files, the table contains an entry for each of the public

shareable interfaces defined in this CAP file.

An index into the table to a particular class or interface is equal to the token value of that class or

interface (4.3.7.2 Classes and Interfaces). The token value is published in the Export file (5.7 Classes and

Interfaces) of the package containing the class.

The items in the class_export_info structure are:

class_offset

The class_offset item represents a byte offset into the info item of the Class Component (6.9 Class

Component). For library CAP files, the item at that offset must be either an interface_info or a

class_info structure. The interface_info or class_info structure at that offset must

represent the exported class or interface.

For application CAP files, the item at the class_offset in the info item of the Class Component

must be an interface_info structure. The interface_info structure at that offset must

represent the exported, shareable interface. In particular, the ACC_SHAREABLE flag of the

interface_info structure must be equal to 1.

static_field_count

The static_field_count item represents the number of elements in the

static_field_offsets array. This value indicates the number of public and protected static fields

defined in this class, excluding final static fields of primitive types.

If the class_offset item represents an offset to an interface_info structure, the value of the

static_field_count item must be zero.

static_method_count

Java Card Platform Virtual Machine Specification, v3.2 Page 133

The static_method_count item represents the number of elements in the

static_method_offsets array. This value indicates the number of public and protected static

methods and constructors defined in this class.

If the class_offset item represents an offset to an interface_info structure, the value of the

static_method_count item must be zero.

static_field_offsets[]

The static_field_offsets item represents an array of 2-byte offsets into the static field image

defined by the Static Field Component (6.11 Static Field Component). Each offset must be to the

beginning of the representation of the exported static field.

An index into the static_field_offsets array must be equal to the token value of the field

represented by that entry. The token value is published in the Export file (5.9 Methods) of this

package.

static_method_offsets[]

The static_method_offsets item represents a table of 2-byte offsets into the info item of the

Method Component (6.10 Method Component). Each offset must be to the beginning of a

method_info structure. The method_info structure must represent the exported static method or

constructor.

An index into the static_method_offsets array must be equal to the token value of the method

represented by that entry.

static_methods []

The static_methods item is an array of method_block_info (6.9.2.4 method_block_info)

structures. The method_info structure pointed to by the method_block_info structure must

represent the exported static method or constructor.

An index into the static_methods array must be equal to the token value of the method

represented by that entry.

6.14 Descriptor Component
The Descriptor Component provides sufficient information to parse and verify all elements of the CAP

file. It references, and therefore describes, elements in the Constant Pool Component (6.8 Constant Pool

Component), Class Component (6.9 Class Component), Method Component (6.10 Method Component),

and Static Field Component (6.11 Static Field Component). No components in the CAP file reference the

Descriptor Component.

Descriptor component in the Extended format contains information about all public and private

packages contained in the CAP. Public packages in the CAP file must be described first and must be in

Java Card Platform Virtual Machine Specification, v3.2 Page 134

the same order as they are in the Header Component (6.4 Header Component) followed by private

packages.

The Descriptor Component is represented by one of the following structures based on Compact or

Extended format of the CAP file:

descriptor_component_compact {

u1 tag

u2 size

u1 class_count

class_descriptor_info_compact classes[class_count] (since CAP

format 2.3)

type_descriptor_info types

}

descriptor_component_extended { (since CAP format 2.3)

u1 tag

u4 size

u1 package_count

package_descriptor_info packages[package_count]

type_descriptor_info types

}

The items of these structures are as follows:

The items of the descriptor_component structure are as follows:

tag

The tag item has the value COMPONENT_Descriptor (11).

size

The size item indicates the number of bytes in the descriptor_component structure, excluding

the tag and size items. The value of the size item must be greater than zero.

package_count

The package_count item in descriptor_component_extended structure represents the

number of entries in the packages table.

packages[]

The packages item represents a table of variable-length package_descriptor_info

structures. Each package defined in this CAP file is represented in the table.

Java Card Platform Virtual Machine Specification, v3.2 Page 135

6.14.1 package_descriptor_info

The package_descriptor_info structure describes a package defined in this CAP file.

package_descriptor_info { (since CAP format 2.3)

u1 class_count

class_descriptor_info_extended classes[class_count]

}

The items of these structures are as follows:

class_count

The class_count item represents the number of entries in the classes table in

descriptor_component_compact and package_descriptor_info structures.

classes[]

The classes item represents a table of variable-length class_descriptor_info_compact

table in descriptor_component_compact structures or

class_descriptor_info_extended in package_descriptor_info structure. Each class

and interface defined in this package is represented in the table.

types

The types item represents a type_descriptor_info structure. This structure lists the set of field

types and method signatures of the fields and methods defined or referenced in this CAP file. Those

referenced are enumerated in the Constant Pool Component.

6.14.2 class_descriptor_info_compact and class_descriptor_info_extended

The class_descriptor_info_compact and class_descriptor_info_extended

structures are used to describe a class or interface defined in this package:

class_descriptor_info_compact { (since CAP format 2.3)

u1 token

u1 access_flags

class_ref this_class_ref

u1 interface_count

u2 field_count

u2 method_count

class_ref interfaces [interface_count]

field_descriptor_info fields[field_count]

method_descriptor_info_compact methods[method_count]

}

class_descriptor_info_extended { (since CAP format 2.3)

u1 token

u1 access_flags

Java Card Platform Virtual Machine Specification, v3.2 Page 136

class_ref this_class_ref

u1 interface_count

u2 field_count

u2 method_count

class_ref interfaces [interface_count]

field_descriptor_info fields[field_count]

method_descriptor_info_extended methods[method_count]

}

The items of these structures are as follows:

token

The token item represents the class token (4.3.7.2 Classes and Interfaces) of this class or interface. If

this class or interface is package-visible it does not have a token assigned. In this case the value of the

token item must be 0xFF.

access_flags

The access_flags item is a mask of modifiers used to describe the access permission to and

properties of this class or interface. The access_flags modifiers for classes and interfaces are shown

in the following table.

Table 6-17: CAP File Class Descriptor Flags

Name Value

ACC_PUBLIC 0x01

ACC_FINAL 0x10

ACC_INTERFACE 0x40

ACC_ABSTRACT 0x80

The class access and modifier flags defined in the table above are a subset of those defined for classes

and interfaces in a Java class file. They have the same meaning, and are set under the same conditions,

as the corresponding flags in a Java class file.

All other flag values are reserved. Their values must be zero.

this_class_ref

The this_class_ref item is a class_ref structure indicating the location of the class_info

structure in the Class Component (6.9 Class Component). The class_ref structure is defined as

part of the CONSTANT_Classref_info structure (6.8.1 CONSTANT_Classref).

interface_count

Java Card Platform Virtual Machine Specification, v3.2 Page 137

The interface_count item represents the number of entries in the interfaces array. For an

interface, interface_count is always set to zero.

field_count

The field_count item represents the number of entries in the fields array. If this

class_descriptor_info structure represents an interface, the value of the field_count item

is equal to zero.

Static final fields of primitive types are not represented as fields in a CAP file, but instead these compile-

time constants are placed inline in bytecode sequences. The field_count item does not include

static final field of primitive types defined by this class.

method_count

The method_count item represents the number of entries in the methods array.

interfaces[]

The interfaces item represents an array of interfaces implemented by this class. The elements in

the array are class_ref structures indicating the location of the interface_info structure in the

Class Component (6.9 Class Component). The class_ref structure is defined as part of the

CONSTANT_Classref_info structure (6.8.1 CONSTANT_Classref).

fields[]

The fields item represents an array of field_descriptor_info structures. Each field declared

by this class is represented in the array, except static final fields of primitive types. Inherited fields are

not included in the array.

methods[]

The methods item represents an array of method_descriptor_info structures. Each method

declared or defined by this class or interface is represented in the array. For a class, inherited methods

are not included in the array. For an interface, inherited methods are included in the array.

6.14.3 field_descriptor_info

The field_descriptor_info structure is used to describe a field defined in this package:

field_descriptor_info {

u1 token

u1 access_flags

union {

static_field_ref static_field

{

class_ref class

u1 token

Java Card Platform Virtual Machine Specification, v3.2 Page 138

} instance_field

} field_ref

union {

u2 primitive_type

u2 reference_type

} type

}

The items of the field_descriptor_info structure are as follows:

token

The token item represents the token of this field. If this field is private or package-visible static field it

does not have a token assigned. In this case the value of the token item must be 0xFF.

access_flags

The access_flags item is a mask of modifiers used to describe the access permission to and

properties of this field. The access_flags modifiers for fields are shown in the following table.

Table 6-18: CAP File Field Descriptor Flags

Name Value

ACC_PUBLIC 0x01

ACC_PRIVATE 0x02

ACC_PROTECTED 0x04

ACC_STATIC 0x08

ACC_FINAL 0x10

The field access and modifier flags defined in the table above are a subset of those defined for fields in a

Java class file. They have the same meaning, and are set under the same conditions, as the

corresponding flags in a Java class file.

All other flag values are reserved. Their values must be zero.

field_ref

The field_ref item represents a reference to this field. If the ACC_STATIC flag is equal to 1, this

item represents a static_field_ref as defined in the CONSTANT_StaticFieldref structure

(6.8.3 CONSTANT_StaticFieldref and CONSTANT_StaticMethodref).

If the ACC_STATIC flag is equal to 0, this item represents a reference to an instance field. It contains a

class_ref item and an instance field token item. These items are defined in the same manner as in

the CONSTANT_InstanceFieldref structure (6.8.2 CONSTANT_InstanceFieldref,

CONSTANT_VirtualMethodref, CONSTANT_SuperMethodref).

Java Card Platform Virtual Machine Specification, v3.2 Page 139

type

The type item indicates the type of this field, directly or indirectly. If this field is a primitive type

(boolean, byte, short, or int) the high bit of this item is equal to 1, otherwise the high bit of

this item is equal to 0.

primitive_type

The primitive_type item represents the type of this field using the values in the table below. As

noted above, the high bit of the primitive_type item is equal to 1.

Table 6-19: Primitive Type Descriptor Values

Data Type Value

Boolean 0x0002

Byte 0x0003

Short 0x0004

Int 0x0005

reference_type

The reference_type item represents a 15-bit offset into the type_descriptor_info

structure. The item at the offset must represent the reference type of this field. As noted above, the

high bit of the reference_type item is equal to 0.

6.14.4 method_descriptor_info_compact and method_descriptor_info_extended

The method_descriptor_info_compact and method_descriptor_info_extended

structures are used to describe a method defined in this CAP file. This structure contains sufficient

information to locate and parse the methods in the Method Component, while the Method Component

does not.

method_descriptor_info_compact {

u1 token

u1 access_flags

u2 method_offset

u2 type_offset

u2 bytecode_count

u2 exception_handler_count

u2 exception_handler_index

}

Java Card Platform Virtual Machine Specification, v3.2 Page 140

method_descriptor_info_extended { (since CAP format 2.3)

u1 token

u1 access_flags

u1 method_component_block_index

u2 method_offset

u2 type_offset

u2 bytecode_count

u2 exception_handler_count

u2 exception_handler_index

}

The items of these structure are as follows:

The items of the method_descriptor_info structure are as follows:

token

The token item represents the static method token (4.3.7.4 Static Methods and Constructors) or virtual

method token (4.3.7.6 Virtual Methods) or interface method token (4.3.7.7 Interface Methods) of this

method. If this method is a private or package-visible static method, a private or package-visible

constructor, or a private virtual method it does not have a token assigned. In this case the value of the

token item must be 0xFF.

access_flags

The access_flags item is a mask of modifiers used to describe the access permission to and

properties of this method. The access_flags modifiers for methods are shown in the following

table.

Table 6-20: CAP File Method Descriptor Flags

Name Value

ACC_PUBLIC 0x01

ACC_PRIVATE 0x02

ACC_PROTECTED 0x04

ACC_STATIC 0x08

ACC_FINAL 0x10

ACC_ABSTRACT 0x40

ACC_INIT 0x80

The method access and modifier flags defined in the table above, except the ACC_INIT flag, are a

subset of those defined for methods in a Java classfile. They have the same meaning, and are set under

the same conditions, as the corresponding flags in a Java class file.

The ACC_INIT flag is set if the method descriptor identifies a constructor method. In Java a

constructor method is recognized by its name, <init>, but in Java Card systems, the name is replaced

Java Card Platform Virtual Machine Specification, v3.2 Page 141

by a token. As in the Java verifier, these methods require special checks by the verifier for the Java Card

platform (“Java Card verifier”).

All other flag values are reserved. Their values must be zero.

method_component_block_index

The method_component_block_index item in method_descriptor_info_extended,

represents the index into the blocks array of Method Component (6.10 Method Component). The

method_component_block at that index contains the referenced method. If the

class_descriptor_info structure that contains this method_component_block_index

structure represents an interface, the value of the method_component_block_index item must

be zero.

method_offset

For descriptor_component_compact, if the class_descriptor_info structure that

contains this method_descriptor_info structure represents a class, the method_offset item

represents a byte offset into the info item of the Method Component (6.10 Method Component). The

element at that offset must be the beginning of a method_info structure. The method_info

structure must represent this method.

For descriptor_component_extended, If the class_descriptor_info structure that

contains this method_descriptor_info structure represents a class the method_offset item

represents a byte offset into the method_component_block in the blocks array of Method

Component (6.10 Method Component) at index represented by

method_component_block_index. The element at that offset must be the beginning of a

method_info structure. The method_info structure must represent this method.

If the class_descriptor_info_compact or class_descriptor_info_extended

structure that contains this method_descriptor_info_compact or

method_descriptor_info_extended structure represents an interface, the value of the

method_offset item must be zero.

type_offset

The type_offset item must be a valid offset into the type_descriptor_info structure. The

type described at that offset represents the signature of this method.

bytecode_count

The bytecode_count item represents the number of bytecodes in this method. The value is equal to

the length of the bytecodes array item in the method_info structure in the method component (6.10

Method Component) of this method.

exception_handler_count

Java Card Platform Virtual Machine Specification, v3.2 Page 142

The exception_handler_count item represents the number of exception handlers implemented

by this method.

exception_handler_index

For descriptor_component_compact, the exception_handler_index item represents the

index to the first exception_handlers table entry in the method component (6.10 Method

Component) implemented by this method. Succeeding exception_handlers table entries, up to

the value of the exception_handler_count item, are also exception handlers implemented by

this method.

For descriptor_component_extended, the exception_handler_index item represents

the index to the first exception_handlers table entry in the method_component_block at

index method_component_block_index in the blocks array in method component (6.10

Method Component) implemented by this method. Succeeding exception_handlers table

entries, up to the value of the exception_handler_count item, are also exception handlers

implemented by this method.

The value of the exception_handler_index item is 0 if the value of the

exception_handler_count item is 0.

6.14.5 type_descriptor_info

The type_descriptor_info structure represents the types of fields and signatures of methods

defined in this package:

type_descriptor_info {

u2 constant_pool_count

u2 constant_pool_types[constant_pool_count]

type_descriptor type_desc[]

}

The type_descriptor_info structure contains the following elements:

constant_pool_count

The constant_pool_count item represents the number of entries in the

constant_pool_types array. This value is equal to the number of entries in the constant_pool

array of the Constant Pool Component (6.8 Constant Pool Component).

constant_pool_types[]

The constant_pool_types item is an array that describes the types of the fields and methods

referenced in the Constant Pool Component. This item has the same number of entries as the

constant_pool[] array of the Constant Pool Component, and each entry describes the type of the

corresponding entry in the constant_pool[] array.

Java Card Platform Virtual Machine Specification, v3.2 Page 143

If the corresponding constant_pool[] array entry represents a class or interface reference, it does

not have an associated type. In this case the value of the entry in the constant_pool_types array

item is 0xFFFF.

If the corresponding constant_pool[] array entry represents a field or method, the value of the

entry in the constant_pool_types array is an offset into the type_descriptor_info

structure. The element at that offset must describe the type of the field or the signature of the method.

type_desc[]

The type_desc item represents a table of variable-length type_descriptor structures. These

descriptors represent the types of fields and signatures of methods. For a description of the

type_descriptor structure, see 6.9.1 type_descriptor.

6.15 Debug Component
This section specifies the format for the Debug Component. The Debug Component contains all the

metadata necessary for debugging packages contained in a CAP file on a suitably instrumented Java Card

virtual machine. It is not required for executing Java Card programs in a non-debug environment.

The Debug Component references the Class Component (6.9 Class Component), Method Component

(6.10 Method Component), and Static Field Component (6.11 Static Field Component). No components

reference the Debug Component.

Debug component in the Extended format contains debug information about all public and private

packages contained in the CAP. The order in which the packages are listed in the Debug Component

must be the same as the order in the extended Descriptor Component (6.14 Descriptor Component).

The Debug Component is represented by one of the following structures based on Extended or Compact

format of the CAP file:

debug_component_compact { (since CAP format 2.2)

u1 tag

u2 size

u2 string_count

utf8_info strings_table[string_count]

package_debug_info_compact package

}

Java Card Platform Virtual Machine Specification, v3.2 Page 144

debug_component_extended { (since CAP format 2.3)

u1 tag

u4 size

u2 string_count

utf8_info strings_table[string_count]

u1 package_count

package_debug_info_extended packages[package_count]

}

The items in these structures are defined as follows:

tag

The tag item has the value COMPONENT_Debug (12).

size

The number of bytes in the component, excluding the tag and size items. The value of size must be

greater than zero.

string_count

The number of strings in the strings_table[] table.

strings_table[]

A table of all the strings used in this component. Various items that occur through this component

represent unsigned two-byte indices into this table.

Each entry in the table is a utf8_info structure. A utf8_info structure is represented by the

following structure:

utf8_info {

u2 length

u1 bytes[length]

}

The items in the utf8_info structure are defined as follows:

length

The number of bytes in the string.

bytes

The bytes of the string in UTF-8 format.

Java Card Platform Virtual Machine Specification, v3.2 Page 145

package_count

The package_count item in debug_component_extended structure represents the number of

entries in the packages array. The value of the package_count item must be greater than 0.

6.15.1 package_debug_info_compact and package_debug_info_extended Structures

The package_debug_info_compact and package_debug_info_extended structures contains debug

information for a single package. These structures are represented in the following formats:

package_debug_info_compact{

u2 package_name_index

u2 class_count

class_debug_info_compact classes[class_count]

}

package_debug_info_extended{ (since CAP format 2.3)

u2 package_name_index

u2 class_count

class_debug_info_extended classes[class_count]

}

package_name_index

Contains an index into the strings_table[] item. The strings_table[] item entry referenced

by this index must contain the fully-qualified name of the package in this CAP file represented by this

package_debug_info_compact or package_debug_info_extended structure.

class_count

The number of classes in the classes table.

classes[]

Contains a single class_debug_info_compact or class_debug_info_extended structure

in package_debug_info_compact or package_debug_info_extended structures

respectively, for each class in this package.

6.15.2 The class_debug_info_compact and class_debug_info_extended Structures

The class_debug_info_compact and class_debug_info_extended structures are for CAP

files in Compact and Extended formats respectively and contain all of the debugging information for a

class or interface. They also contain tables of debugging information for all the classes’ fields and

methods.

Java Card Platform Virtual Machine Specification, v3.2 Page 146

class_debug_info_compact {

u2 name_index

u2 access_flags

u2 location

u2 superclass_name_index

u2 source_file_index

u1 interface_count

u2 field_count

u2 method_count

u2 interface_names_indexes[interface_count]

field_debug_info fields[field_count]

method_debug_info_compact methods[method_count]

}

class_debug_info_extended { (since CAP format 2.3)

u2 name_index

u2 access_flags

u2 location

u2 superclass_name_index

u2 source_file_index

u1 interface_count

u2 field_count

u2 method_count

u2 interface_names_indexes[interface_count]

field_debug_info fields[field_count]

method_debug_info_extended methods[method_count]

}

The items in these structures are defined as follows:

name_index

Contains an index into the strings_table[] item of the debug_component structure. The

strings_table[] entry at the indexed location must be the fully-qualified name of this class.

access_flags

A two-byte mask of modifiers that apply to this class. The modifiers are:

Table 6-21: Class Access and Modifier Flags

Modifier Value

ACC_PUBLIC 0x0001

ACC_FINAL 0x0010

Java Card Platform Virtual Machine Specification, v3.2 Page 147

Modifier Value

ACC_REMOTE 0x0020

ACC_INTERFACE 0x0200

ACC_ABSTRACT 0x0400

ACC_SHAREABLE 0x0800

The ACC_SHAREABLE flag indicates whether this class or interface is shareable.12 A class is shareable if

it implements (directly or indirectly) the javacard.framework.Shareable interface. An interface

is shareable if it is or extends (directly or indirectly) the javacard.framework.Shareable

interface.

The ACC_REMOTE flag indicates whether this class or interface is remote. The value of this flag must be

one if and only if the class or interface satisfies the requirements defined in 2.2.6.1 Remote Classes and

Remote Interfaces.

All other class access and modifier flags are defined in the same way and with the same restrictions as

described in The Java Virtual Machine Specification.

location

The byte offset of the class_info or interface_info record for this class or interface into the

info item of the Class Component (6.9 Class Component).

superclass_name_index

Contains an index into the strings_table[] item of the debug_component structure. The

strings_table[] entry at the indexed location must be the fully-qualified name of the superclass

of this class or the string “null” if the class has no superclass.

source_file_index

Contains the index into the strings_table[] item of the debug_component structure. The

strings_table[] entry at the indexed location must be the name of the source file in which this

class is defined.

interface_count

The number of indexes in the interface_names_indexes[] table.

field_count

The number of field_debug_info structures in the fields[] table.

12 The ACC_SHAREABLE flag is defined to enable Java Card virtual machines to implement the firewall restrictions
defined by the Runtime Environment Specification, Java Card Platform, v3.2, Classic Edition.

Java Card Platform Virtual Machine Specification, v3.2 Page 148

method_count

The number of method_debug_info structures in the methods[] table.

interface_names_indexes[]

Contains the indexes into the strings_table[] item of the debug_component structure. The

strings_table[] entry at each indexed location must be the name of an interface implemented by

this class. There must be an index value present for every interface implemented by this class, including

interfaces implemented by superclasses of this class and superinterfaces of the implemented interfaces.

If ACC_INTERFACE is set, the strings_table[] entry at each indexed location must be the name

of a super interface directly or indirectly extended by this interface. There must be an index value

present for every super interface directly or indirectly extended by this interface.

fields[]

Contains field_debug_info structures for all the fields declared by this class, including static final

fields of primitive types. Inherited fields are not included in this array.

methods[]

Contains method_debug_info_compact or method_debug_info_extended structures in

class_debug_info_compact or class_debug_info_extended structures respectively, for

all the methods declared or defined in this class. Inherited methods are not included in this array.

6.15.2.1 The field_debug_info Structure

The field_debug_info structure describes a field in a class. It can describe either an instance field,

a static field, or a constant (primitive final static) field. The contents union will have the form of a

token_var if the field is an instance field, a location_var if it is a static field, or a const_value

if it is a constant.

The field_debug_info structure is defined as follows:

field_debug_info {

u2 name_index

u2 descriptor_index

u2 access_flags

union {

{

u1 pad1

u1 pad2

u1 pad3

u1 token

} token_var

Java Card Platform Virtual Machine Specification, v3.2 Page 149

{

u2 pad

u2 location

} location_var

u4 const_value

} contents

}

The items in the field_debug_info structure are defined as follows:

name_index

Contains an index into the strings_table[] item of the debug_component structure. The

strings_table[] entry at the indexed location must be the simple (meaning, not fully-qualified)

name of the field (for example, “applets”).

descriptor_index

Contains an index into the strings_table[] item of the debug_component structure. The

strings_table[] entry at the indexed location must be the type of the field. Class types are fully-

qualified (for example, “[Ljavacard/framework/Applet;”).

access_flags

A two-byte mask of modifiers that apply to this field.

Table 6-22: Field Access and Modifier Flags

Modifier Value
ACC_PUBLIC 0x0001
ACC_PRIVATE 0x0002

ACC_PROTECTED 0x0004

ACC_STATIC 0x0008

ACC_FINAL 0x0010

The above field access and modifier flags are defined in the same way and with the same restrictions as

described in The Java Virtual Machine Specification.

contents

A field_debug_info structure can describe an instance field, a static field, or a static final field (a

constant). Constants can be either primitive data or arrays of primitive data. Depending on the kind of

field described, the contents item is interpreted in different ways. The kind and type of the field can be

determined by examining the field’s descriptor and access flags.

token_var

Java Card Platform Virtual Machine Specification, v3.2 Page 150

If the field is an instance field, this value is the instance field token of the field. The pad1, pad2, and

pad3 items are padding only; their values should be ignored.

location_var

If the field is a non-final static field or a final static field with an array type (a constant array), this value is

the byte offset of the location for this field in the static field image defined by the Static Field

Component (6.11 Static Field Component). The pad item is padding only; its value should be ignored.

const_value

If the field is a final static field of type byte, boolean, short, or int, this value is interpreted as a

signed 32-bit constant.

6.15.2.2 The method_debug_info_compact and method_debug_info_extended Structures

The method_debug_info_compact and method_debug_info_extended structures

describe a method of a class. They can describe methods that are either virtual or non-virtual (static or

initialization methods). The structures are defined as follows:

method_debug_info_compact {

u2 name_index

u2 descriptor_index

u2 access_flags

u2 location

u1 header_size

u2 body_size

u2 variable_count

u2 line_count

variable_info variable_table[variable_count]

line_info line_table[line_count]

}

method_debug_info_extended { (since CAP format 2.3)

u2 name_index

u2 descriptor_index

u2 access_flags

u1 method_component_block_index

u2 location

u1 header_size

u2 body_size

u2 variable_count

u2 line_count

variable_info variable_table[variable_count]

line_info line_table[line_count]

}

Java Card Platform Virtual Machine Specification, v3.2 Page 151

The items in these structures are defined as follows:

name_index

Contains an index into the strings_table[] item of the debug_component structure. The

strings_table[] entry at the indexed location must be the simple (meaning, not fully-qualified)

name of the method (for example, “lookupAID”).

descriptor_index

Contains an index into the strings_table[] item of the debug_component structure. The

strings_table[] entry at the indexed location must be the argument and return types of the

method (meaning, the signature without the method name). Class types are fully-qualified (for example,

“([BSB)Ljavacard/framework/AID;”)

access_flags

A two-byte mask of modifiers that apply to this method.

Table 6-23: Method Modifier Flags

Modifier Value

ACC_PUBLIC 0x0001

ACC_PRIVATE 0x0002

ACC_PROTECTED 0x0004

ACC_STATIC 0x0008

ACC_FINAL 0x0010

ACC_NATIVE 0x0100

ACC_ABSTRACT 0x0400

The ACC_NATIVE flag is only valid for methods of a package located in the card mask. It cannot be

used for methods contained in a CAP file.

All other method access and modifier flags are defined in the same way and with the same restrictions

as described in The Java Virtual Machine Specification.

method_component_block_index

The method_component_block_index item in method_debug_info_extended represents

the index into the blocks array of Method Component (6.10 Method Component). The

method_component_block at that index contains the referenced method. Abstract methods may

have value zero for method_component_block_index or have value representing the index into

the blocks array of the Method Component (6.10 Method Component) that has the corresponding

method_info strucutre with ACC_ABSTRACT flag set.

Java Card Platform Virtual Machine Specification, v3.2 Page 152

Abstract methods may have zero as value for method_component_block_index or have a value

corresponding to the method component block containing the method_info structure with

ACC_ABSTRACT flag set.

location

In method_debug_info_compact, location is a byte offset of the method_info structure for

this method into the info item of the Method Component (6.10 Method Component).

In method_debug_info_extended, location is a byte offset into the

method_component_block in the blocks array of Method Component (6.10 Method Component)

at index represented by method_component_block_index. The method_info structure at

offset must represent the referenced method.

Abstract methods may have a location of zero or have a valid offset to the corresponding

method_info strucutre with ACC_ABSTRACT flag set.

header_size

The size in bytes of the header of the method. Abstract methods have a header_size of zero.

body_size

The size in bytes of the body of the method, not including the method header. Abstract methods have a

body_size of zero.

variable_count

The number of variable_info entries in the variable_table[] item. Abstract methods have a

variable_count of zero.

line_count

The number of line_info entries in the line_table[] item. Abstract methods have a

line_count of zero.

variable_table[]

Contains the variable_info structures for all variables in this method.

The variable_info structure describes a single local variable of a method. It indicates the index into

the local variables of the current frame at which the local variable can be found, as well as the name and

type of the variable. It also indicates the range of bytecodes within which the variable has a value.

variable_info {

u1 index

u2 name_index

u2 descriptor_index

Java Card Platform Virtual Machine Specification, v3.2 Page 153

u2 start_pc

u2 length

}

The items in the variable_info structure are defined as follows:

index

The index of the variable in the local stack frame, as used in load and store bytecodes. If the variable at

index is of type int, it occupies both index and index + 1.

name_index

Contains an index into the strings_table[] item of the debug_component structure. The

strings_table[] entry at the indexed location must be the name of the local variable, (for

example, “applets”).

descriptor_index

Contains an index into the strings_table[] item of the debug_component structure. The

strings_table[] entry at the indexed location must be the type of the local variable. Class types

are fully-qualified (for example, “[Ljavacard/framework/Applet;”).

start_pc

The index of the first bytecode in which the variable is in-scope and valid.

length

Number of bytecodes in which the variable is in-scope and valid. The value of start_pc + length will

be either the index of the next bytecode after the valid range, or the first index beyond the end of the

bytecode array.

line_table[]

Contains the line_info structures that map bytecode instructions of this method to lines in the

class’s source file.

Each line_info item represents a mapping of a range of bytecode instructions to a particular line in

the source file that contains the method. The range of instructions is from start_pc to end_pc,

inclusive. start_pc and end_pc represent a zero-based byte offset within the method. The

source_line is the one-based line number in the source file. The structure is defined as follows:

line_info {

u2 start_pc

u2 end_pc

u2 source_line

 }

Java Card Platform Virtual Machine Specification, v3.2 Page 154

The items in the line_info structure are defined as follows:

start_pc

The byte offset of the first bytecode in the range of instructions.

end_pc

The byte offset of the last operand of the last bytecode in the range of instructions.

source_line

Line number in the source file.

6.16 Static Resource Component
This section specifies the format for the Static Resource Component. Static Resource Component must

be present if any package in this CAP file has any static resources. If none of the packages in this CAP file

has any static resources, this component must not be present in this CAP file.

The Static Resource Component may contain any static resource that can be represented in a byte

format. Size of each static resource must be between 0 and 32767 bytes.

The Static Resource Component does not reference any other component.

Static Resource Component must always be represented in the Extended Format as specified in these

specifications regardless of compact or Extended format of the CAP file. The Static Resource Component

is represented by the following structure:

static_resource_component {

u1 tag

u4 size

u2 resource_count

resource_directory_info resource_directory[resource_count]

static_resource_info static_resources[resource_count]

}

The items in this structure are defined as follows:

tag

The tag item has the value COMPONENT_Static_resource (13).

size

The number of bytes in the component, excluding the tag and size items. The value of size must be

greater than zero.

Java Card Platform Virtual Machine Specification, v3.2 Page 155

resource_count

The number of resources represented in this component. Value for resource_count cannot be 0.

This number represents the number of entries in the directory and static_resources arrays.

resource_directory []

Contains the resource_directory_info structures for all static resources represented in this

component. The number of entries in this table must be equal to resource_count.

The resource_directory_info structure describes a single directory entry in the directory table.

It indicates the id and the size of each resource represented in this component.

resource_directory_info {

u2 resource_id

u4 resource_size

}

The items in the resource_directory_info structure are described below.

resource_id

This item represents the id of a resource in this component. The value for resource_id must be

unique in a CAP file.

resource_size

The resource_size item represents the size in bytes of the resource represented by

resource_id . Value of this item must be between 0 and 32767 bytes.

static_resources[]

Contains the static_resource_info structures for all static resources represented in this

component. The number of entries in this table must be equal to resource_count.

The static_resource_info structure describes a single entry in the static_resources table.

This structure is represented as follows.

static_resource_info {

u1 static_resource[resource_size]

}

The static_resource item in the static_resource_info structure is described below.

Java Card Platform Virtual Machine Specification, v3.2 Page 156

static_resource

This item is an array of bytes representing a static resource. The size of the array must be equal to

resource_size entry in the corresponding resource_directory_info entry in the

resource_directory.

Java Card Platform Virtual Machine Specification, v3.2 Page 157

7 Java Card Virtual Machine Instruction Set
A Java Card virtual machine instruction consists of an opcode specifying the operation to be performed,

followed by zero or more operands embodying values to be operated upon. This chapter gives details

about the format of each Java Card virtual machine instruction and the operation it performs.

7.1 Assumptions: The Meaning of “Must”
The description of each instruction is always given in the context of Java Card virtual machine code that

satisfies the static and structural constraints of Chapter 6, The CAP File Format.

In the description of individual Java Card virtual machine instructions, we frequently state that some

situation “must” or “must not” be the case: “The value2 must be of type int.” The constraints of

Chapter 6, The CAP File Format guarantee that all such expectations will in fact be met. If some

constraint (a “must” or “must not”) in an instruction description is not satisfied at run time, the behavior

of the Java Card virtual machine is undefined.

7.2 Reserved Opcodes
In addition to the opcodes of the instructions specified later this chapter, which are used in Java Card

CAP files (see Chapter 6, The CAP File Format), two opcodes are reserved for internal use by a Java Card

virtual machine implementation. If Oracle extends the instruction set of the Java Card virtual machine in

the future, these reserved opcodes are guaranteed not to be used.

The two reserved opcodes, numbers 254 (0xfe) and 255 (0xff), have the mnemonics impdep1 and

impdep2, respectively. These instructions are intended to provide “back doors” or traps to

implementation-specific functionality implemented in software and hardware, respectively.

Although these opcodes have been reserved, they may only be used inside a Java Card virtual machine

implementation. They cannot appear in valid CAP files.

7.3 Virtual Machine Errors
A Java Card virtual machine may encounter internal errors or resource limitations that prevent it from

executing correctly written Java programs. While The Java Virtual Machine Specification allows reporting

and handling of virtual machine errors, it also states that they cannot ordinarily be handled by

application code. This Virtual Machine Specification, Classic Edition is more restrictive in that it does not

allow for any reporting or handling of unrecoverable virtual machine errors at the application code level.

A virtual machine error is considered unrecoverable if further execution could compromise the security

or correct operation of the virtual machine or underlying system software. When an unrecoverable error

occurs, the virtual machine will halt bytecode execution. Responses beyond halting the virtual machine

are implementation-specific policies and are not mandated in this specification.

Java Card Platform Virtual Machine Specification, v3.2 Page 158

In the case where the virtual machine encounters a recoverable error, such as insufficient memory to

allocate a new object, it will throw a SystemException with an error code describing the error

condition. The Virtual Machine Specification, Classic Edition cannot predict where resource limitations or

internal errors may be encountered and does not mandate precisely when they can be reported. Thus, a

SystemException may be thrown at any time during the operation of the Java Card virtual machine.

7.4 Security Exceptions
Instructions of the Java Card virtual machine throw an instance of the class SecurityException

when a security violation has been detected. The Java Card virtual machine does not mandate the

complete set of security violations that can or will result in an exception being thrown. However, there is

a minimum set that must be supported.

In the general case, any instruction that de-references an object reference must throw a

SecurityException if the context (3.4 Contexts) in which the instruction is executing is different

than the owning context (3.4 Contexts) of the referenced object. The list of instructions includes the

instance field get and put instructions, the array load and store instructions, as well as the

arraylength, invokeinterface, invokespecial, invokevirtual, checkcast,

instanceof and athrow instructions.

There are several exceptions to this general rule that allow cross-context use of objects or arrays. These

exceptions are detailed in Chapter 6 of the Runtime Environment Specification, Java Card Platform, v3.2,

Classic Edition. An important detail to note is that any cross-context method invocation will result in a

context switch (3.4 Contexts).

The Java Card virtual machine may also throw a SecurityException if an instruction violates any of

the static constraints of Chapter 6, The CAP File Format. The Virtual Machine Specification, Java Card

Platform, v3.2, Classic Edition does not mandate which instructions must implement these additional

security checks, or to what level. Therefore, a SecurityException may be thrown at any time

during the operation of the Java Card virtual machine.

Java Card Platform Virtual Machine Specification, v3.2 Page 159

7.5 The Java Card Virtual Machine Instruction Set
Java virtual machine instructions are represented in this chapter in alphabetical order by entries of the

form shown in Table 7-1, an example instruction entry.

Table 7-1: Example Instruction Entry

Example Instruction Entry

mnemonic

Short description of the instruction.

Format

mnemonic

operand1

operand2

...

Forms

mnemonic = opcode

Stack

..., value1, value2 ->

.../ value3

Description

A longer description detailing constraints on operand stack contents or constant pool entries, the

operation performed, the type of the results, and so on.

Runtime Exception

If any runtime exceptions can be thrown by the execution of an instruction, that instruction must

not throw any runtime exceptions except for instances of SystemException.

Notes

Comments not strictly part of the specification of an instruction are set aside as notes at the end

of the description.

Java Card Platform Virtual Machine Specification, v3.2 Page 160

Each cell in the instruction format diagram represents a single 8-bit byte. The instruction’s mnemonic is

its name. Its opcode is its numeric representation and is given in both decimal and hexadecimal forms.

Only the numeric representation is actually present in the Java Card virtual machine code in a CAP file.

Keep in mind that there are “operands” generated at compile time and embedded within Java Card

virtual machine instructions, as well as “operands” calculated at run time and supplied on the operand

stack. Although they are supplied from several different areas, all these operands represent the same

thing: values to be operated upon by the Java Card virtual machine instruction being executed. By

implicitly taking many of its operands from its operand stack, rather than representing them explicitly in

its compiled code as additional operand bytes, register numbers, etc., the Java Card virtual machine’s

code stays compact.

Some instructions are presented as members of a family of related instructions sharing a single

description, format, and operand stack diagram. As such, a family of instructions includes several

opcodes and opcode mnemonics; only the family mnemonic appears in the instruction format diagram,

and a separate forms line lists all member mnemonics and opcodes. For example, the forms line for the

sconst_<s> family of instructions, giving mnemonic and opcode information for the two instructions

in that family (sconst_0 and sconst_1), is

Forms sconst_0 = 3 (0x3), sconst_1 = 4 (0x4)

In the description of the Java Card virtual machine instructions, the effect of an instruction’s execution

on the operand stack (3.5 Frames) of the current frame (3.5 Frames) is represented textually, with the

stack growing from left to right and each word represented separately. Thus,

Stack…, value1, value2 -> …, result

shows an operation that begins by having a one-word value2 on top of the operand stack with a one-

word value1 just beneath it. As a result of the execution of the instruction, value1 and value2 are

popped from the operand stack and replaced by a one-word result, which has been calculated by the

instruction. The remainder of the operand stack, represented by an ellipsis (…), is unaffected by the

instruction’s execution.

The type int takes two words on the operand stack. In the operand stack representation, each word is

represented separately using a dot notation:

Stack…, value1.word1, value1.word2, value2.word1, value2.word2 -> …, result.word1, result.word2

The Virtual Machine Specification, Java Card Platform, v3.2, Classic Edition does not mandate how the

two words are used to represent the 32-bit int value; it only requires that a particular implementation

be internally consistent.

7.5.1 aaload

Load reference from array

Java Card Platform Virtual Machine Specification, v3.2 Page 161

Format

aaload

Forms

aaload = 36 (0x24)

Stack

…, arrayref, index -> …, value

Description

The arrayref must be of type reference and must refer to an array whose components are of type

reference. The index must be of type short. Both arrayref and index are popped from the operand stack.

The reference value in the component of the array at index is retrieved and pushed onto the top of the

operand stack.

Runtime Exceptions

If arrayref is null, aaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the aaload instruction

throws an ArrayIndexOutOfBoundsException.

Otherwise if the arrayref references a write-only array view, the aaload instruction throws a
SecurityException.

Notes

In some circumstances, the aaload instruction may throw a SecurityException if the current context (3.4

Contexts) is not the owning context (3.4 Contexts) of the array or array view referenced by arrayref. The

exact circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime

Environment Specification, Java Card Platform, v3.2, Classic Edition.

7.5.2 aastore

Store into reference array or reference array view

Format

aastore

Forms

aastore = 55 (0x37)

Stack

Java Card Platform Virtual Machine Specification, v3.2 Page 162

…, arrayref, index, value -> …

Description

The arrayref must be of type reference and must refer to an array or an array view, whose components

are of type reference. The index must be of type short and the value must be of type reference. The

arrayref, index and value are popped from the operand stack. The reference value is stored as the

component of the array at index.

If the array referenced by arrayref is integrity-sensitive, its integrity is checked before the value is

stored. The integrity control element is updated when the value is stored. The whole operation (value

storage and the integrity control element update) is performed atomically.

At runtime the type of value must be confirmed to be assignment compatible with the type of the

components of the array referenced by arrayref. Assignment of a value of reference type S (source) to a

variable of reference type T (target) is allowed only when the type S supports all of the operations

defined on type T. The detailed rules follow:

 If S is a class type, then:

o If T is a class type, then S must be the same class as T, or S must be a subclass of T;

o If T is an interface type, then S must implement interface T.

 If S is an interface type13, then:

o If T is a class type, then T must be Object (2.2.1.4 Unsupported Classes);

o If T is an interface type, T must be the same interface as S or a superinterface of S.

 If S is an array type, namely the type SC[], that is, an array of components of type SC, then:

o If T is a class type, then T must be Object.

o If T is an array type, namely the type TC[], an array of components of type TC, then one

of the following must be true:

 TC and SC are the same primitive type (3.1 Data Types and Values).

 TC and SC are reference types14 (3.1 Data Types and Values) with type SC

assignable to TC, by these rules.

o If T is an interface type, T must be one of the interfaces implemented by arrays.

Runtime Exceptions

If arrayref is null, aastore throws a NullPointerException.

13 When both S and T are arrays of reference types, this algorithm is applied recursively using the types of the

arrays, namely SC and TC. In the recursive call, S, which was SC in the original call, may be an interface type. This

rule can only be reached in this manner. Similarly, in the recursive call, T, which was TC in the original call, may be

an interface type.

14 This version of the Java Card virtual machine does not support multi-dimensional arrays. Therefore, neither SC or
TC can be an array type.

Java Card Platform Virtual Machine Specification, v3.2 Page 163

Otherwise, if index is not within the bounds of the array referenced by arrayref, the aastore instruction

throws an ArrayIndexOutOfBoundsException.

Otherwise, if arrayref is not null and the actual type of value is not assignment compatible with the

actual type of the component of the array, aastore throws an ArrayStoreException.

Otherwise if the array referenced by arrayref is integrity-sensitive and an inconsistency is detected
during the array integrity check, the aastore instruction throws a SecurityException.

Otherwise if the arrayref references a read-only array view, the aastore instruction throws a
SecurityException.

Notes

In some circumstances, the aastore instruction may throw a SecurityException if the current context (3.4

Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

7.5.3 aconst_null

Push null

Format

aconst_null

Forms

aconst_null = 1 (0x1)

Stack

… -> …, null

Description

Push the null object reference onto the operand stack.

7.5.4 aload

Load reference from local variable

Format

aload

index

Java Card Platform Virtual Machine Specification, v3.2 Page 164

Forms

aload = 21 (0x15)

Stack

… -> …, objectref

Description

The index is an unsigned byte that must be a valid index into the local variables of the current frame (3.5

Frames). The local variable at index must contain a reference. The objectref in the local variable at index

is pushed onto the operand stack.

Notes

The aload instruction cannot be used to load a value of type returnAddress from a local variable onto

the operand stack. This asymmetry with the astore instruction is intentional.

7.5.5 aload_<n>

Load reference from local variable

Format

aload_<n>

Forms

aload_0 = 24 (0x18)

aload_1 = 25 (0x19)

aload_2 = 26 (0x1a)

aload_3 = 27 (0x1b)

Stack

… -> …, objectref

Description

The <n> must be a valid index into the local variables of the current frame (3.5 Frames). The local

variable at <n> must contain a reference. The objectref in the local variable at <n> is pushed onto the

operand stack.

Notes

An aload_<n> instruction cannot be used to load a value of type returnAddress from a local variable

onto the operand stack. This asymmetry with the corresponding astore_<n> instruction is intentional.

Java Card Platform Virtual Machine Specification, v3.2 Page 165

Each of the aload_<n> instructions is the same as aload with an index of <n>, except that the operand

<n> is implicit.

7.5.6 anewarray

Create new array of reference

Format

anewarray

 indexbyte1

indexbyte2

Forms

anewarray = 145 (0x91)

Stack

…, count -> …, arrayref

Description

The count must be of type short. It is popped off the operand stack. The count represents the number of

components of the array to be created. The unsigned indexbyte1 and indexbyte2 are used to construct

an index into the constant pool of the current package (3.5 Frames), where the value of the index is

(indexbyte1 << 8) | indexbyte2. The item at that index in the constant pool must be of type

CONSTANT_Classref (6.8.1 CONSTANT_Classref), a reference to a class or interface type. The reference is

resolved. A new array with components of that type, of length count, is allocated from the heap, and a

reference arrayref to this new array object is pushed onto the operand stack. All components of the new

array are initialized to null, the default value for reference types.

Runtime Exception

If count is less than zero, the anewarray instruction throws a NegativeArraySizeException.

7.5.7 areturn

Return reference from method

Format

areturn

Forms

areturn = 119 (0x77)

Stack

Java Card Platform Virtual Machine Specification, v3.2 Page 166

…, objectref -> [empty]

Description

The objectref must be of type reference. The objectref is popped from the operand stack of the current

frame (3.5 Frames) and pushed onto the operand stack of the frame of the invoker. Any other values on

the operand stack of the current method are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to the invoker.

7.5.8 arraylength

Get length of array

Format

arraylength

Forms

arraylength = 146 (0x92)

Stack

…, arrayref -> …, length

Description

The arrayref must be of type reference and must refer to an array. It is popped from the operand stack.

The length of the array it references is determined. That length is pushed onto the top of the operand

stack as a short.

Runtime Exception

If arrayref is null, the arraylength instruction throws a NullPointerException.

Notes

In some circumstances, the arraylength instruction may throw a SecurityException if the current context

(3.4 Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

7.5.9 astore

Store reference into local variable

Format

Java Card Platform Virtual Machine Specification, v3.2 Page 167

astore

 index

Forms

astore = 40 (0x28)

Stack

…, objectref -> …

Description

The index is an unsigned byte that must be a valid index into the local variables of the current frame (3.5

Frames). The objectref on the top of the operand stack must be of type returnAddress or of type

reference. The objectref is popped from the operand stack, and the value of the local variable at index is

set to objectref.

Notes

The astore instruction is used with an objectref of type returnAddress when implementing Java’s finally

keyword. The aload instruction cannot be used to load a value of type returnAddress from a local

variable onto the operand stack. This asymmetry with the astore instruction is intentional.

7.5.10 astore_<n>

Store reference into local variable

Format

astore_<n>

Forms

astore_0 = 43 (0x2b)

astore_1 = 44 (0x2c)

astore_2 = 45 (0x2d)

astore_3 = 46 (0x2e)

Stack

…, objectref -> …

Description

The <n> must be a valid index into the local variables of the current frame (3.5 Frames). The objectref on

the top of the operand stack must be of type returnAddress or of type reference. It is popped from the

operand stack, and the value of the local variable at <n> is set to objectref.

Java Card Platform Virtual Machine Specification, v3.2 Page 168

Notes

An astore_<n> instruction is used with an objectref of type returnAddress when implementing Java’s

finally keyword. An aload_<n> instruction cannot be used to load a value of type returnAddress from a

local variable onto the operand stack. This asymmetry with the corresponding astore_<n> instruction is

intentional.

Each of the astore_<n> instructions is the same as astore with an index of <n>, except that the operand

<n> is implicit.

7.5.11 athrow

Throw exception or error

Format

athrow

Forms

athrow = 147 (0x93)

Stack

…, objectref -> objectref

Description

The objectref must be of type reference and must refer to an object that is an instance of class

Throwable or of a subclass of Throwable. It is popped from the operand stack. The objectref is then

thrown by searching the current frame (3.5 Frames) for the most recent catch clause that catches the

class of objectref or one of its superclasses.

If a catch clause is found, it contains the location of the code intended to handle this exception. The pc

register is reset to that location, the operand stack of the current frame is cleared, objectref is pushed

back onto the operand stack, and execution continues. If no appropriate clause is found in the current

frame, that frame is popped, the frame of its invoker is reinstated, and the objectref is rethrown.

If no catch clause is found that handles this exception, the virtual machine exits.

Runtime Exception

If objectref is null, athrow throws a NullPointerException instead of objectref.

Notes

In some circumstances, the athrow instruction may throw a SecurityException if the current context (3.4

Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref. The exact

Java Card Platform Virtual Machine Specification, v3.2 Page 169

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

7.5.12 baload

Load byte or boolean from array

Format

baload

Forms

baload = 37 (0x25)

Stack

…, arrayref, index -> …, value

Description

The arrayref must be of type reference and must refer to an array whose components are of type byte

or of type boolean. The index must be of type short. Both arrayref and index are popped from the

operand stack. The byte value in the component of the array at index is retrieved, sign-extended to a

short value, and pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, baload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the baload instruction

throws an ArrayIndexOutOfBoundsException.

Otherwise if the arrayref references a write-only array view, the baload instruction throws a

SecurityException.

Notes

In some circumstances, the baload instruction may throw a SecurityException if the current context (3.4

Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

7.5.13 bastore

Store into byte or boolean array

Format

bastore

Java Card Platform Virtual Machine Specification, v3.2 Page 170

Forms

bastore = 56 (0x38)

Stack

…, arrayref, index, value -> …

Description

The arrayref must be of type reference and must refer to an array whose components are of type byte

or of type boolean. The index and value must both be of type short. The arrayref, index and value are

popped from the operand stack. The short value is truncated to a byte and stored as the component of

the array indexed by index.

If the array referenced by arrayref is integrity-sensitive, its integrity is checked before the value is

stored. The integrity control element is updated when the value is stored. The whole operation (value

storage and the integrity control element update) is performed atomically.

Runtime Exceptions

If arrayref is null, bastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the bastore instruction

throws an ArrayIndexOutOfBoundsException.

Otherwise if the array referenced by arrayref is integrity-sensitive and an inconsistency is detected
during the array integrity check, the bastore instruction throws a SecurityException.

Otherwise if the arrayref references a read-only array view, the bastore instruction throws a
SecurityException.

Notes

In some circumstances, the bastore instruction may throw a SecurityException if the current context (3.4

Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

7.5.14 bipush

Push byte

Format

bipush

byte

Java Card Platform Virtual Machine Specification, v3.2 Page 171

Forms

bipush = 18 (0x12)

Stack

… -> …, value.word1, value.word2

Description

The immediate byte is sign-extended to an int, and the resulting value is pushed onto the operand stack.

Note: If a virtual machine does not support the int data type, the bipush instruction will not be available.

7.5.15 bspush

Push byte

Format

bspush

byte

Forms

bspush = 16 (0x10)

Stack

…-> …, value

Description

The immediate byte is sign-extended to a short, and the resulting value is pushed onto the operand

stack.

7.5.16 checkcast

Check whether object is of given type

Format

checkcast

atype

indexbyte1

indexbyte2

Forms

checkcast = 148 (0x94)

Java Card Platform Virtual Machine Specification, v3.2 Page 172

Stack

…, objectref -> …, objectref

Description

The unsigned byte atype is a code that indicates if the type against which the object is being checked is

an array type or a class type. It must take one of the following values or zero:

Table 7-2: Array Values

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

T_REFERENCE 14

If the value of atype is 10, 11, 12, or 13, the values of the indexbyte1 and indexbyte2 must be zero, and

the value of atype indicates the array type against which to check the object. Otherwise the unsigned

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current package

(3.5 Frames), where the value of the index is (indexbyte1 << 8) | indexbyte2. The item at that index in

the constant pool must be of type CONSTANT_Classref (6.8.1 CONSTANT_Classref), a reference to a class

or interface type. The reference is resolved. If the value of atype is 14, the object is checked against an

array type that is an array of object references of the type of the resolved class. If the value of atype is

zero, the object is checked against a class or interface type that is the resolved class.

The objectref must be of type reference. If objectref is null or can be cast to the specified array type or

the resolved class or interface type, the operand stack is unchanged; otherwise the checkcast instruction

throws a ClassCastException.

The following rules are used to determine whether an objectref that is not null can be cast to the

resolved type: if S is the class of the object referred to by objectref and T is the resolved class, array or

interface type, checkcast determines whether objectref can be cast to type T as follows:

 If S is a class type, then:

o If T is a class type, then S must be the same class as T, or S must be a subclass of T;

o If T is an interface type, then S must implement interface T.

 If S is an interface type15, then:

o If T is a class type, then T must be Object (2.2.1.4 Unsupported Classes);

15 When both S and T are arrays of reference types, this algorithm is applied recursively using the types of the
arrays, namely SC and TC. In the recursive call, S, which was SC in the original call, may be an interface type. This
rule can only be reached in this manner. Similarly, in the recursive call, T, which was TC in the original call, may be
an interface type.

Java Card Platform Virtual Machine Specification, v3.2 Page 173

o If T is an interface type, T must be the same interface as S or a superinterface of S.

 If S is an array type, namely the type SC[], that is, an array of components of type SC, then:

o If T is a class type, then T must be Object.

o If T is an array type, namely the type TC[], an array of components of type TC, then one

of the following must be true:

 TC and SC are the same primitive type (3.1 Data Types and Values).

 TC and SC are reference types16 (3.1 Data Types and Values) with type SC

assignable to TC, by these rules.

o If T is an interface type, T must be one of the interfaces implemented by arrays.

Runtime Exception

If objectref cannot be cast to the resolved class, array, or interface type, the checkcast instruction

throws a ClassCastException.

Notes

The checkcast instruction is fundamentally very similar to the instanceof instruction. It differs in its

treatment of null, its behavior when its test fails (checkcast throws an exception, instanceof pushes a

result code), and its effect on the operand stack.

In some circumstances, the checkcast instruction may throw a SecurityException if the current context

(3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref. The exact

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the value of atype may not be 13 (array type =

T_INT).

7.5.17 dup

Duplicate top operand stack word

Format

dup

Forms

dup = 61 (0x3d)

Stack

…, word -> …, word, word

16 This version of the Java Card virtual machine specification does not support multi-dimensional arrays. Therefore,
neither SC or TC can be an array type.

Java Card Platform Virtual Machine Specification, v3.2 Page 174

Description

The top word on the operand stack is duplicated and pushed onto the operand stack. The dup

instruction must not be used unless word contains a 16-bit data type.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup instruction operates on an

untyped word, ignoring the type of data it contains.

7.5.18 dup_x

Duplicate top operand stack words and insert below

Format

dup_x

mn

Forms

dup_x = 63 (0x3f)

Stack

…, wordN, …, wordM, …, word1 -> …, wordM, …, word1, wordN, …, wordM, …, word1

Description

The unsigned byte mn is used to construct two parameter values. The high nibble, (mn & 0xf0) >> 4, is

used as the value m. The low nibble, (mn & 0xf), is used as the value n. Permissible values for m are 1

through 4. Permissible values for n are 0 and m through m+4.

For positive values of n, the top m words on the operand stack are duplicated and the copied words are

inserted n words down in the operand stack. When n equals 0, the top m words are copied and placed

on top of the stack.

The dup_x instruction must not be used unless the ranges of words 1 through m and words m+1 through

n each contain either a 16-bit data type, two 16-bit data types, a 32-bit data type, a 16-bit data type and

a 32-bit data type (in either order), or two 32-bit data types.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup_x instruction operates on

untyped words, ignoring the types of data they contain.

If a virtual machine does not support the int data type, the permissible values for m are 1 or 2, and

permissible values for n are 0 and m through m+2.

Java Card Platform Virtual Machine Specification, v3.2 Page 175

7.5.19 dup2

Duplicate top two operand stack words

Format

dup2

Forms

dup2 = 62 (0x3e)

Stack

…, word2, word1 -> …, word2, word1, word2, word1

Description

The top two words on the operand stack are duplicated and pushed onto the operand stack, in the

original order.

The dup2 instruction must not be used unless each of word1 and word2 is a word that contains a 16-bit

data type or both together are the two words of a single 32-bit datum.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup2 instruction operates on

untyped words, ignoring the types of data they contain.

7.5.20 getfield_<t>

Fetch field from object

Format

getfield_<t>

 index

Forms

getfield_a = 131 (0x83)

getfield_b = 132 (0x84)

getfield_s = 133 (0x85)

getfield_i = 134 (0x86)

Stack

…, objectref -> …, value

OR

Java Card Platform Virtual Machine Specification, v3.2 Page 176

…, objectref -> …, value.word1, value.word2

Description

The objectref, which must be of type reference, is popped from the operand stack. The unsigned index is

used as an index into the constant pool of the current package (3.5 Frames). The constant pool item at

the index must be of type CONSTANT_InstanceFieldref (6.8.2 CONSTANT_InstanceFieldref,

CONSTANT_VirtualMethodref, CONSTANT_SuperMethodref), a reference to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a member of a superclass of

the current class, and the field is not declared in the same package as the current class, then the class of

objectref must be either the current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:

 a field must be of type reference

 b field must be of type byte or type boolean

 s field must be of type short

 i field must be of type int

The width of a field in a class instance is determined by the field type specified in the instruction. The

item is resolved, determining the field offset17. The value at that offset into the class instance referenced

by objectref is fetched. If the value is of type byte or type boolean, it is sign-extended to a short. The

value is pushed onto the operand stack.

Runtime Exception

If objectref is null, the getfield_<t> instruction throws a NullPointerException.

Notes

In some circumstances, the getfield_<t> instruction may throw a SecurityException if the current context

(3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref. The exact

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the getfield_i instruction will not be available.

7.5.21 getfield_<t>_this

Fetch field from current object

17 The offset may be computed by adding the field token value to the size of an instance of the immediate

superclass. However, this method is not required by this specification. A Java Card virtual machine may define any

mapping from token value to offset into an instance.

Java Card Platform Virtual Machine Specification, v3.2 Page 177

Format

getfield_<t>_this

index

Forms

getfield_a_this = 173 (0xad)

getfield_b_this = 174 (0xae)

getfield_s_this = 175 (0xaf)

getfield_i_this = 176 (0xb0)

Stack

… -> …, value

OR

… -> …, value.word1, value.word2

Description

The currently executing method must be an instance method. The local variable at index 0 must contain

a reference objectref to the currently executing method’s this parameter. The unsigned index is used as

an index into the constant pool of the current package (3.5 Frames). The constant pool item at the index

must be of type CONSTANT_InstanceFieldref (6.8.2 CONSTANT_InstanceFieldref,

CONSTANT_VirtualMethodref, CONSTANT_SuperMethodref), a reference to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a member of a superclass of

the current class, and the field is not declared in the same package as the current class, then the class of

objectref must be either the current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:

 a field must be of type reference

 b field must be of type byte or type boolean

 s field must be of type short

 i field must be of type int

The width of a field in a class instance is determined by the field type specified in the instruction. The

item is resolved, determining the field offset18. The value at that offset into the class instance referenced

18 The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may define any
mapping from token value to offset into an instance.

Java Card Platform Virtual Machine Specification, v3.2 Page 178

by objectref is fetched. If the value is of type byte or type boolean, it is sign-extended to a short. The

value is pushed onto the operand stack.

Runtime Exception

If objectref is null, the getfield_<t>_this instruction throws a NullPointerException.

Notes

In some circumstances, the getfield_<t>_this instruction may throw a SecurityException if the current

context (3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref.

The exact circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime

Environment Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the getfield_i_this instruction will not be

available.

7.5.22 getfield_<t>_w

Fetch field from object (wide index)

Format

getfield_<t>_w

indexbyte1

indexbyte2

Forms

getfield_a_w = 169 (0xa9)

getfield_b_w = 170 (0xaa)

getfield_s_w = 171 (0xab)

getfield_i_w = 172 (0xac)

Stack

…, objectref -> …, value

OR

…, objectref -> …, value.word1, value.word2

Description

The objectref, which must be of type reference, is popped from the operand stack. The unsigned

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current package

(3.5 Frames), where the value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at

the index must be of type CONSTANT_InstanceFieldref (6.8.2 CONSTANT_InstanceFieldref,

Java Card Platform Virtual Machine Specification, v3.2 Page 179

CONSTANT_VirtualMethodref, CONSTANT_SuperMethodref), a reference to a class and a field token.

The item must resolve to a field of type reference.

The class of objectref must not be an array. If the field is protected, and it is a member of a superclass of

the current class, and the field is not declared in the same package as the current class, then the class of

objectref must be either the current class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:

 a field must be of type reference

 b field must be of type byte or type boolean

 s field must be of type short

 i field must be of type int

The width of a field in a class instance is determined by the field type specified in the instruction. The

item is resolved, determining the field offset19. The value at that offset into the class instance referenced

by objectref is fetched. If the value is of type byte or type boolean, it is sign-extended to a short. The

value is pushed onto the operand stack.

Runtime Exception

If objectref is null, the getfield_<t>_w instruction throws a NullPointerException.

Notes

In some circumstances, the getfield_<t>_w instruction may throw a SecurityException if the current

context (3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref.

The exact circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime

Environment Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the getfield_i_w instruction will not be available.

7.5.23 getstatic_<t>

Get static field from class

Format

getstatic_<t>

indexbyte1

indexbyte2

Forms

19 The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may define any
mapping from token value to offset into an instance.

Java Card Platform Virtual Machine Specification, v3.2 Page 180

getstatic_a = 123 (0x7b)

getstatic_b = 124 (0x7c)

getstatic_s = 125 (0x7d)

getstatic_i = 126 (0x7e)

Stack

… -> …, value

OR

… -> …, value.word1, value.word2

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the

current package (3.5 Frames), where the value of the index is (indexbyte1 << 8) | indexbyte2. The

constant pool item at the index must be of type CONSTANT_StaticFieldref (6.8.3

CONSTANT_StaticFieldref and CONSTANT_StaticMethodref), a reference to a static field.

The item must resolve to a field with a type that matches t, as follows:

 a field must be of type reference

 b field must be of type byte or type boolean

 s field must be of type short

 i field must be of type int

The width of a class field is determined by the field type specified in the instruction. The item is

resolved, determining the field offset. The item is resolved, determining the class field. The value of the

class field is fetched. If the value is of type byte or boolean, it is sign-extended to a short. The value is

pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the getstatic_i instruction will not be available.

7.5.24 goto

Branch always

Format

goto

branch

Forms

goto = 112 (0x70)

Java Card Platform Virtual Machine Specification, v3.2 Page 181

Stack

No change

Description

The value branch is used as a signed 8-bit offset. Execution proceeds at that offset from the address of

the opcode of this goto instruction. The target address must be that of an opcode of an instruction

within the method that contains this goto instruction.

7.5.25 goto_w

Branch always (wide index)

Format

goto_w

branchbyte1

 branchbyte2

Forms

goto_w = 168 (0xa8)

Stack

No change

Description

The unsigned bytes branchbyte1 and branchbyte2 are used to construct a signed 16-bit branchoffset,

where branchoffset is (branchbyte1 << 8) | branchbyte2. Execution proceeds at that offset from the

address of the opcode of this goto instruction. The target address must be that of an opcode of an

instruction within the method that contains this goto instruction.

7.5.26 i2b

Convert int to byte

Format

i2b

Forms

i2b = 93 (0x5d)

Stack

…, value.word1, value.word2 -> …, result

Java Card Platform Virtual Machine Specification, v3.2 Page 182

Description

The value on top of the operand stack must be of type int. It is popped from the operand stack and

converted to a byte result by taking the low-order 16 bits of the int value, and discarding the high-order

16 bits. The low-order word is truncated to a byte, then sign-extended to a short result. The result is

pushed onto the operand stack.

Notes

The i2b instruction performs a narrowing primitive conversion. It may lose information about the overall

magnitude of value. The result may also not have the same sign as value.

If a virtual machine does not support the int data type, the i2b instruction will not be available.

7.5.27 i2s

Convert int to short

Format

i2s

Forms

i2s = 94 (0x5e)

Stack

…, value.word1, value.word2 -> …, result

Description

The value on top of the operand stack must be of type int. It is popped from the operand stack and

converted to a short result by taking the low-order 16 bits of the int value and discarding the high-order

16 bits. The result is pushed onto the operand stack.

Notes

The i2s instruction performs a narrowing primitive conversion. It may lose information about the overall

magnitude of value. The result may also not have the same sign as value.

If a virtual machine does not support the int data type, the i2s instruction will not be available.

7.5.28 iadd

Add int

Format

iadd

Java Card Platform Virtual Machine Specification, v3.2 Page 183

Forms

iadd = 66 (0x42)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 -> …, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack. The int

result is value1 + value2. The result is pushed onto the operand stack.

If an iadd instruction overflows, then the result is the low-order bits of the true mathematical result in a

sufficiently wide two’s-complement format. If overflow occurs, then the sign of the result may not be

the same as the sign of the mathematical sum of the two values.

Notes

If a virtual machine does not support the int data type, the iadd instruction will not be available.

7.5.29 iaload

Load int from array

Format

iaload

Forms

iaload = 39 (0x27)

Stack

…, arrayref, index -> …, value.word1, value.word2

Description

The arrayref must be of type reference and must refer to an array whose components are of type int.

The index must be of type short. Both arrayref and index are popped from the operand stack. The int

value in the component of the array at index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, iaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the iaload instruction

throws an ArrayIndexOutOfBoundsException.

Java Card Platform Virtual Machine Specification, v3.2 Page 184

Otherwise if the arrayref references a write-only array view, the iaload instruction throws a

SecurityException.

Notes

In some circumstances, the iaload instruction may throw a SecurityException if the current context (3.4

Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the iaload instruction will not be available.

7.5.30 iand

Boolean AND int

Format

iand

Forms

iand = 84 (0x54)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 -> …, result.word1, result.word2

Description

Both value1 and value2 must be of type int. They are popped from the operand stack. An int result is

calculated by taking the bitwise AND (conjunction) of value1 and value2. The result is pushed onto the

operand stack.

Notes

If a virtual machine does not support the int data type, the iand instruction will not be available.

7.5.31 iastore

Store into int array

Format

iastore

Forms

iastore = 58 (0x3a)

Stack

Java Card Platform Virtual Machine Specification, v3.2 Page 185

…, arrayref, index, value.word1, value.word2 -> …

Description

The arrayref must be of type reference and must refer to an array whose components are of type int.

The index must be of type short and value must be of type int. The arrayref, index and value are popped

from the operand stack. The int value is stored as the component of the array indexed by index.

If the array referenced by arrayref is integrity-sensitive, its integrity is checked before the value is

stored. The integrity control element is updated when the value is stored. The whole operation (value

storage and the integrity control element update) is performed atomically.

Runtime Exception

If arrayref is null, iastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the iastore instruction

throws an ArrayIndexOutOfBoundsException.

Otherwise if the array referenced by arrayref is integrity-sensitive and an inconsistency is detected
during the array integrity check, the iastore instruction throws a SecurityException.

Otherwise if the arrayref references a read-only array view, the iastore instruction throws a
SecurityException.

Notes

In some circumstances, the iastore instruction may throw a SecurityException if the current context (3.4

Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the iastore instruction will not be available.

7.5.32 icmp

Compare int

Format

icmp

Forms

icmp = 95 (0x5f)

Stack

Java Card Platform Virtual Machine Specification, v3.2 Page 186

…, value1.word1, value1.word2, value2.word1, value2.word2 -> …, result

Description

Both value1 and value2 must be of type int. They are both popped from the operand stack, and a signed

integer comparison is performed. If value1 is greater than value2, the short value 1 is pushed onto the

operand stack. If value1 is equal to value2, the short value 0 is pushed onto the operand stack. If value1

is less than value2, the short value –1 is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the icmp instruction will not be available.

7.5.33 iconst_<i>

Push int constant

Format

iconst_<i>

Forms

iconst_m1 = 10 (0x09)

iconst_0 = 11 (0xa)

iconst_1 = 12 (0xb)

iconst_2 = 13 (0xc)

iconst_3 = 14 (0xd)

iconst_4 = 15 (0xe)

iconst_5 = 16 (0xf)

Stack

… -> …, <i>.word1, <i>.word2

Description

Push the int constant <i> (-1, 0, 1, 2, 3, 4, or 5) onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iconst_<i> instruction will not be available.

7.5.34 idiv

Divide int

Format

idiv

Java Card Platform Virtual Machine Specification, v3.2 Page 187

Forms

idiv = 72 (0x48)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 -> …, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack. The int

result is the value of the Java expression value1 / value2. The result is pushed onto the operand stack.

An int division rounds towards 0; that is, the quotient produced for int values in n/d is an int value q

whose magnitude is as large as possible while satisfying | d · q | <= | n |. Moreover, q is a positive when

| n | >= | d | and n and d have the same sign, but q is negative when | n | >= | d | and n and d have

opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative integer of the

largest possible magnitude for the int type, and the divisor is –1, then overflow occurs, and the result is

equal to the dividend. Despite the overflow, no exception is thrown in this case.

Runtime Exception

If the value of the divisor in an int division is 0, idiv throws an ArithmeticException.

Notes

If a virtual machine does not support the int data type, the idiv instruction will not be available.

7.5.35 if_acmp<cond>

Branch if reference comparison succeeds.

Format

if_acmp<cond>

branch

Forms

if_acmpeq = 104 (0x68)

if_acmpne = 105 (0x69)

Stack

…, value1, value2 -> …

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 188

Both value1 and value2 must be of type reference. They are both popped from the operand stack and

compared. The results of the comparisons are as follows:

 eq succeeds if and only if value1 = value2

 ne succeeds if and only if value1 != value2

If the comparison succeeds, branch is used as signed 8-bit offset, and execution proceeds at that offset

from the address of the opcode of this if_acmp<cond> instruction. The target address must be that of an

opcode of an instruction within the method that contains this if_acmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this if_ acmp<cond>

instruction.

7.5.36 if_acmp<cond>_w

Branch if reference comparison succeeds (wide index)

Format

if_acmp<cond>_w

branchbyte1

branchbyte2

Forms

if_acmpeq_w = 160 (0xa0)

if_acmpne_w = 161 (0xa1)

Stack

…, value1, value2 -> …

Description

Both value1 and value2 must be of type reference. They are both popped from the operand stack and

compared. The results of the comparisons are as follows:

 eq succeeds if and only if value1 = value2

 ne succeeds if and only if value1 != value2

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are used to construct a

signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) | branchbyte2. Execution proceeds

at that offset from the address of the opcode of this if_acmp<cond>_w instruction. The target address

must be that of an opcode of an instruction within the method that contains this if_acmp<cond>_w

instruction.

Otherwise, execution proceeds at the address of the instruction following this if_ acmp<cond>_w

instruction.

Java Card Platform Virtual Machine Specification, v3.2 Page 189

7.5.37 if_scmp<cond>

Branch if short comparison succeeds

Format

if_scmp<cond>

branch

Forms

if_scmpeq = 106 (0x6a)

if_scmpne = 107 (0x6b)

if_scmplt = 108 (0x6c)

if_scmpge = 109 (0x6d)

if_scmpgt = 110 (0x6e)

if_scmple = 111 (0x6f)

Stack

…, value1, value2 -> …

Description

Both value1 and value2 must be of type short. They are both popped from the operand stack and

compared. All comparisons are signed. The results of the comparisons are as follows:

 eq succeeds if and only if value1 = value2

 ne succeeds if and only if value1 != value2

 lt succeeds if and only if value1 < value2

 le succeeds if and only if value1 <= value2

 gt succeeds if and only if value1 > value2

 ge succeeds if and only if value1 >= value2

If the comparison succeeds, branch is used as signed 8-bit offset, and execution proceeds at that offset

from the address of the opcode of this if_scmp<cond> instruction. The target address must be that of an

opcode of an instruction within the method that contains this if_scmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this if_ scmp<cond>

instruction.

7.5.38 if_scmp<cond>_w

Branch if short comparison succeeds (wide index)

Format

Java Card Platform Virtual Machine Specification, v3.2 Page 190

if_scmp<cond>_w

branchbyte1

branchbyte2

Forms

if_scmpeq_w = 162 (0xa2)

if_scmpne_w = 163 (0xa3)

if_scmplt_w = 164 (0xa4)

if_scmpge_w = 165 (0xa5)

if_scmpgt_w = 166 (0xa6)

if_scmple_w = 167 (0xa7)

Stack

…, value1, value2 -> …

Description

Both value1 and value2 must be of type short. They are both popped from the operand stack and

compared. All comparisons are signed. The results of the comparisons are as follows:

 eq succeeds if and only if value1 = value2

 ne succeeds if and only if value1 != value2

 lt succeeds if and only if value1 < value2

 le succeeds if and only if value1 <= value2

 gt succeeds if and only if value1 > value2

 ge succeeds if and only if value1 >= value2

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are used to construct a

signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) | branchbyte2. Execution proceeds

at that offset from the address of the opcode of this if_scmp<cond>_w instruction. The target address

must be that of an opcode of an instruction within the method that contains this if_scmp<cond>_w

instruction.

Otherwise, execution proceeds at the address of the instruction following this if_ scmp<cond>_w

instruction.

7.5.39 if<cond>

Branch if short comparison with zero succeeds

Format

if<cond>

branch

Java Card Platform Virtual Machine Specification, v3.2 Page 191

Forms

ifeq = 96 (0x60)

ifne = 97 (0x61)

iflt = 98 (0x62)

ifge = 99 (0x63)

ifgt = 100 (0x64)

ifle = 101 (0x65)

Stack

…, value -> …

Description

The value must be of type short. It is popped from the operand stack and compared against zero. All

comparisons are signed. The results of the comparisons are as follows:

 eq succeeds if and only if value = 0

 ne succeeds if and only if value != 0

 lt succeeds if and only if value < 0

 le succeeds if and only if value <= 0

 gt succeeds if and only if value > 0

 ge succeeds if and only if value >= 0

If the comparison succeeds, branch is used as signed 8-bit offset, and execution proceeds at that offset

from the address of the opcode of this if<cond> instruction. The target address must be that of an

opcode of an instruction within the method that contains this if<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this if<cond> instruction.

7.5.40 if<cond>_w

Branch if short comparison with zero succeeds (wide index)

Format

if<cond>_w

branchbyte1

branchbyte2

Forms

ifeq_w = 152 (0x98)

ifne_w = 153 (0x99)

iflt_w = 154 (0x9a)

ifge_w = 155 (0x9b)

Java Card Platform Virtual Machine Specification, v3.2 Page 192

ifgt_w = 156 (0x9c)

ifle_w = 157 (0x9d)

Stack

…, value -> …

Description

The value must be of type short. It is popped from the operand stack and compared against zero. All

comparisons are signed. The results of the comparisons are as follows:

 eq succeeds if and only if value = 0

 ne succeeds if and only if value != 0

 lt succeeds if and only if value < 0

 le succeeds if and only if value <= 0

 gt succeeds if and only if value > 0

 ge succeeds if and only if value >= 0

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are used to construct a

signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) | branchbyte2. Execution proceeds

at that offset from the address of the opcode of this if<cond>_w instruction. The target address must be

that of an opcode of an instruction within the method that contains this if<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this if<cond>_w instruction.

7.5.41 ifnonnull

Branch if reference not null

Format

ifnonnull

branch

Forms

ifnonnull = 103 (0x67)

Stack

…, value -> …

Description

The value must be of type reference. It is popped from the operand stack. If the value is not null, branch

is used as signed 8-bit offset, and execution proceeds at that offset from the address of the opcode of

Java Card Platform Virtual Machine Specification, v3.2 Page 193

this ifnonnull instruction. The target address must be that of an opcode of an instruction within the

method that contains this ifnonnull instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnonnull instruction.

7.5.42 ifnonnull_w

Branch if reference not null (wide index)

Format

ifnonnull_w

branchbyte1

branchbyte2

Forms

ifnonnull_w = 159 (0x9f)

Stack

…, value -> …

Description

The value must be of type reference. It is popped from the operand stack. If the value is not null, the

unsigned bytes branchbyte1 and branchbyte2 are used to construct a signed 16-bit branchoffset, where

branchoffset is (branchbyte1 << 8) | branchbyte2. Execution proceeds at that offset from the address of

the opcode of this ifnonnull_w instruction. The target address must be that of an opcode of an

instruction within the method that contains this ifnonnull_w instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnonnull_w instruction.

7.5.43 ifnull

Branch if reference is null

Format

ifnull

branch

Forms

ifnull = 102 (0x66)

Stack

…, value -> …

Java Card Platform Virtual Machine Specification, v3.2 Page 194

Description

The value must be of type reference. It is popped from the operand stack. If the value is null, branch is

used as signed 8-bit offset, and execution proceeds at that offset from the address of the opcode of this

ifnull instruction. The target address must be that of an opcode of an instruction within the method that

contains this ifnull instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnull instruction.

7.5.44 ifnull_w

Branch if reference is null (wide index)

Format

ifnull_w

branchbyte1

branchbyte2

Forms

ifnull_w = 158 (0x9e)

Stack

…, value -> …

Description

The value must be of type reference. It is popped from the operand stack. If the value is null, the

unsigned bytes branchbyte1 and branchbyte2 are used to construct a signed 16-bit branchoffset, where

branchoffset is (branchbyte1 << 8) | branchbyte2. Execution proceeds at that offset from the address of

the opcode of this ifnull_w instruction. The target address must be that of an opcode of an instruction

within the method that contains this ifnull_w instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnull_w instruction.

7.5.45 iinc

Increment local int variable by constant

Format

iinc

index

const

Forms

iinc = 90 (0x5a)

Java Card Platform Virtual Machine Specification, v3.2 Page 195

Stack

No change

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the local variables of

the current frame (3.5 Frames). The local variables at index and index + 1 together must contain an int.

The const is an immediate signed byte. The value const is first sign-extended to an int, then the int

contained in the local variables at index and index + 1 is incremented by that amount.

Notes

If a virtual machine does not support the int data type, the iinc instruction will not be available.

7.5.46 iinc_w

Increment local int variable by constant

Format

iinc_w

index

byte1

byte2

Forms

iinc_w = 151 (0x97)

Stack

No change

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the local variables of

the current frame (3.5 Frames). The local variables at index and index + 1 together must contain an int.

The immediate unsigned byte1 and byte2 values are assembled into an intermediate short where the

value of the short is (byte1 << 8) | byte2. The intermediate value is then sign-extended to an int const.

The int contained in the local variables at index and index + 1 is incremented by const.

Notes

If a virtual machine does not support the int data type, the iinc_w instruction will not be available.

7.5.47 iipush

Push int

Java Card Platform Virtual Machine Specification, v3.2 Page 196

Format

iipush

byte1

byte2

byte3

byte4

Forms

iipush = 20 (0x14)

Stack

… -> …, value1.word1, value1.word2

Description

The immediate unsigned byte1, byte2, byte3, and byte4 values are assembled into a signed int where

the value of the int is (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4. The resulting value is pushed

onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iipush instruction will not be available.

7.5.48 iload

Load int from local variable

Format

iload

index

Forms

iload = 23 (0x17)

Stack

… -> …, value1.word1, value1.word2

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into the local variables of

the current frame (3.5 Frames). The local variables at index and index + 1 together must contain an int.

The value of the local variables at index and index + 1 is pushed onto the operand stack.

Java Card Platform Virtual Machine Specification, v3.2 Page 197

Notes

If a virtual machine does not support the int data type, the iload instruction will not be available.

7.5.49 iload_<n>

Load int from local variable

Format

iload_<n>

Forms

iload_0 = 32 (0x20)

iload_1 = 33 (0x21)

iload_2 = 34 (0x22)

iload_3 = 35 (0x23)

Stack

… -> …, value1.word1, value1.word2

Description

Both <n> and <n> + 1 must be a valid indices into the local variables of the current frame (3.5 Frames).

The local variables at <n> and <n> + 1 together must contain an int. The value of the local variables at

<n> and <n> + 1 is pushed onto the operand stack.

Notes

Each of the iload_<n> instructions is the same as iload with an index of <n>, except that the operand <n>

is implicit.

If a virtual machine does not support the int data type, the iload_<n> instruction will not be available.

7.5.50 ilookupswitch

Access jump table by key match and jump

Format

ilookupswitch

defaultbyte1

defaultbyte2

npairs1

npairs2

match-offset pairs…

Pair Format

Java Card Platform Virtual Machine Specification, v3.2 Page 198

matchbyte1

matchbyte2

matchbyte3

matchbyte4

offsetbyte1

offsetbyte2

Forms

ilookupswitch = 118 (0x76)

Stack

…, key.word1, key.word2 -> …

Description

An ilookupswitch instruction is a variable-length instruction. Immediately after the ilookupswitch

opcode follow a signed 16-bit value default, an unsigned 16-bit value npairs, and then npairs pairs. Each

pair consists of an int match and a signed 16-bit offset. Each match is constructed from four unsigned

bytes as (matchbyte1 << 24) | (matchbyte2 << 16) | (matchbyte3 << 8) | matchbyte4. Each offset is

constructed from two unsigned bytes as (offsetbyte1 << 8) | offsetbyte2.

The table match-offset pairs of the ilookupswitch instruction must be sorted in increasing numerical

order by match.

The key must be of type int and is popped from the operand stack and compared against the match

values. If it is equal to one of them, then a target address is calculated by adding the corresponding

offset to the address of the opcode of this ilookupswitch instruction. If the key does not match any of

the match values, the target address is calculated by adding default to the address of the opcode of this

ilookupswitch instruction. Execution then continues at the target address.

The target address that can be calculated from the offset of each match-offset pair, as well as the one

calculated from default, must be the address of an opcode of an instruction within the method that

contains this ilookupswitch instruction.

Notes

The match-offset pairs are sorted to support lookup routines that are quicker than linear search.

If a virtual machine does not support the int data type, the ilookupswitch instruction will not be

available.

7.5.51 imul

Multiply int

Format

Java Card Platform Virtual Machine Specification, v3.2 Page 199

imul

Forms

imul = 70 (0x46)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 -> …, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack. The int

result is value1 * value2. The result is pushed onto the operand stack.

If an imul instruction overflows, then the result is the low-order bits of the mathematical product as an

int. If overflow occurs, then the sign of the result may not be the same as the sign of the mathematical

product of the two values.

Notes

If a virtual machine does not support the int data type, the imul instruction will not be available.

7.5.52 ineg

Negate int

Format

ineg

Forms

ineg = 76 (0x4c)

Stack

…, value.word1, value.word2 -> …, result.word1, result.word2

Description

The value must be of type int. It is popped from the operand stack. The int result is the arithmetic

negation of value, -value. The result is pushed onto the operand stack.

For int values, negation is the same as subtraction from zero. Because the Java Card virtual machine

uses two’s-complement representation for integers and the range of two’s-complement values is not

symmetric, the negation of the maximum negative int results in that same maximum negative number.

Despite the fact that overflow has occurred, no exception is thrown.

For all int values x, -x equals (~x) + 1.

Java Card Platform Virtual Machine Specification, v3.2 Page 200

Notes

If a virtual machine does not support the int data type, the ineg instruction will not be available.

7.5.53 instanceof

Determine if object is of given type

Format

instanceof

atype

indexbyte1

indexbyte2

Forms

instanceof = 149 (0x95)

Stack

…, objectref -> …, result

Description

The unsigned byte atype is a code that indicates if the type against which the object is being checked is

an array type or a class type. It must take one of the following values or zero:

Table 7-3: Array Values

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

T_REFERENCE 14

If the value of atype is 10, 11, 12, or 13, the values of the indexbyte1 and indexbyte2 must be zero, and

the value of atype indicates the array type against which to check the object. Otherwise the unsigned

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current package

(3.5 Frames), where the value of the index is (indexbyte1 << 8) | indexbyte2. The item at that index in

the constant pool must be of type CONSTANT_Classref (6.8.1 CONSTANT_Classref), a reference to a class

or interface type. The reference is resolved. If the value of atype is 14, the object is checked against an

array type that is an array of object references of the type of the resolved class. If the value of atype is

zero, the object is checked against a class or interface type that is the resolved class.

Java Card Platform Virtual Machine Specification, v3.2 Page 201

The objectref must be of type reference. It is popped from the operand stack. If objectref is not null and

is an instance of the resolved class, array or interface, the instanceof instruction pushes a short result of

1 on the operand stack. Otherwise it pushes a short result of 0.

The following rules are used to determine whether an objectref that is not null is an instance of the

resolved type: if S is the class of the object referred to by objectref and T is the resolved class, array or

interface type, instanceof determines whether objectref is an instance of T as follows:

 If S is a class type, then:

o If T is a class type, then S must be the same class as T, or S must be a subclass of T;

o If T is an interface type, then S must implement interface T.

 If S is an interface type20, then:

o If T is a class type, then T must be Object (2.2.1.4 Unsupported Classes);

o If T is an interface type, T must be the same interface as S or a superinterface of S.

 If S is an array type, namely the type SC[], that is, an array of components of type SC, then:

o If T is a class type, then T must be Object.

o If T is an array type, namely the type TC[], an array of components of type TC, then one

of the following must be true:

 TC and SC are the same primitive type (3.1 Data Types and Values).

 TC and SC are reference types21 (3.1 Data Types and Values) with type SC

assignable to TC, by these rules.

o If T is an interface type, T must be one of the interfaces implemented by arrays.

Notes

The instanceof instruction is fundamentally very similar to the checkcast instruction. It differs in its

treatment of null, its behavior when its test fails (checkcast throws an exception, instanceof pushes a

result code), and its effect on the operand stack.

In some circumstances, the instanceof instruction may throw a SecurityException if the current context

(3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref. The exact

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the value of atype may not be 13 (array type =

T_INT).

20 When both S and T are arrays of reference types, this algorithm is applied recursively using the types of the

arrays, namely SC and TC. In the recursive call, S, which was SC in the original call, may be an interface type. This

rule can only be reached in this manner. Similarly, in the recursive call, T, which was TC in the original call, may be

an interface type.

21 This version of the Java Card virtual machine specification does not support multi-dimensional arrays. Therefore,
neither SC or TC can be an array type.

Java Card Platform Virtual Machine Specification, v3.2 Page 202

7.5.54 invokeinterface

Invoke interface method

Format

invokeinterface

nargs

indexbyte1

indexbyte2

method

Forms

invokeinterface = 142 (0x8e)

Stack

…, objectref, [arg1, [arg2 …]] -> …

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the

current package (3.5 Frames), where the value of the index is (indexbyte1 << 8) | indexbyte2. The

constant pool item at that index must be of type CONSTANT_Classref (6.8.1 CONSTANT_Classref), a

reference to an interface class. The specified interface is resolved.

The nargs operand is an unsigned byte that must not be zero.

The method operand is an unsigned byte that is the interface method token for the method to be

invoked. The interface method must not be <init> or an instance initialization method.

The object-ref must be of type reference and must be followed on the operand stack by nargs – 1 words

of arguments. The number of words of arguments and the type and order of the values they represent

must be consistent with those of the selected interface method.

The interface table of the class of the type of objectref is determined. If objectref is an array type, then

the interface table of class Object (2.2.1.4 Unsupported Classes) is used. The interface table is searched

for the resolved interface. The result of the search is a table that is used to map the method token to an

index.

The index is an unsigned byte that is used as an index into the method table of the class of the type of

objectref. If the objectref is an array type, then the method table of class Object is used. The table entry

at that index includes a direct reference to the method’s code and modifier information.

The nargs – 1 words of arguments and objectref are popped from the operand stack. A new stack frame

is created for the method being invoked, and objectref and the arguments are made the values of its

first nargs words of local variables, with objectref in local variable 0, arg1 in local variable 1, and so on.

Java Card Platform Virtual Machine Specification, v3.2 Page 203

The new stack frame is then made current, and the Java Card virtual machine pc is set to the opcode of

the first instruction of the method to be invoked. Execution continues with the first instruction of the

method.

Runtime Exception

If objectref is null, the invokeinterface instruction throws a NullPointerException.

Notes

In some circumstances, the invokeinterface instruction may throw a SecurityException if the current

context (3.4 Contexts) is not the context (3.4 Contexts) of the object referenced by objectref. The exact

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition. If the current context is not the object’s context

and the Java Card RE permits invocation of the method, the invokeinterface instruction will cause a

context switch (3.4 Contexts) to the object’s context before invoking the method, and will cause a return

context switch to the previous context when the invoked method returns.

7.5.54.1 Interface Method Resolution

The resolution of the interface method is defined by the following algorithm. The virtual machine is not

required to exactly perform the following steps provided the result is the same.

1. Verify access permission from current context to object O on the stack

2. Extract the interface I from the constant pool entry CONSTANT_Classref

3. Determine the dynamic type (class) C for object O on the stack

4. Search in the classes in the hierarchy of C for an implemented_interface_info structure

for the interface I, i.e., starting with C1=C:

a. Search the table interfaces of C1. If I is not found, then set C1 to the immediate

super-class of C1 and recursively continue at step a

5. Extract the virtual token T1 of the method M in class C1 as T1=index[method] in the

implemented_interface_info structure

6. Lookup the implementation of the method M in the hierarchy of C, i.e.:

a. Determine a token T in class C that denotes the same method M as token T1 in class C1

b. If the token T does not exist or if T is less than C.public_virtual_method_table_base or if

C.public_virtual_method_table[T-C.public_virtual_method_table_base] is 0xFFFF, then

recursively continue the lookup at step a, with C being now set to the super-class of C

c. Otherwise, C.public_virtual_method_table[T-C.public_virtual_method_table_base] is

the location in class C of the method M to be invoked

7. If no implemented_interface_info structure is found at step 4.a or if no method

implementation has been found in the hierarchy or if a method is found but has the

ACC_ABSTRACT flag, then the virtual machine must exit the interface method resolution and

handle this as an error. See section 2.3.3.2.

Java Card Platform Virtual Machine Specification, v3.2 Page 204

7.5.55 invokespecial

Invoke instance method; special handling for superclass, private, and instance initialization method

invocations

Format

invokespecial

indexbyte1

indexbyte2

Forms

invokespecial = 140 (0x8c)

Stack

…, objectref, [arg1, [arg2 …]] -> …

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the

current package (3.5 Frames), where the value of the index is (indexbyte1 << 8) | indexbyte2. If the

invoked method is a private instance method or an instance initialization method, the constant pool

item at index must be of type CONSTANT_StaticMethodref (6.8.3 CONSTANT_StaticFieldref and

CONSTANT_StaticMethodref), a reference to a statically linked instance method. If the invoked method

is a superclass method, the constant pool item at index must be of type CONSTANT_SuperMethodref

(6.8.2 CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, CONSTANT_SuperMethodref), a

reference to an instance method of a specified class. The reference is resolved. The resolved method

must not be <clinit>, a class or interface initialization method. If the method is <init>, an instance

initialization method, then the method must only be invoked once on an uninitialized object, and before

the first backward branch following the execution of the new instruction that allocated the object.

Finally, if the resolved method is protected, and it is a member of a superclass of the current class, and

the method is not declared in the same package as the current class, then the class of objectref must be

either the current class or a subclass of the current class.

The resolved method includes the code for the method, an unsigned byte nargs that must not be zero,

and the method’s modifier information.

The objectref must be of type reference, and must be followed on the operand stack by nargs – 1 words

of arguments, where the number of words of arguments and the type and order of the values they

represent must be consistent with those of the selected instance method.

The nargs – 1 words of arguments and objectref are popped from the operand stack. A new stack frame

is created for the method being invoked, and objectref and the arguments are made the values of its

first nargs words of local variables, with objectref in local variable 0, arg1 in local variable 1, and so on.

The new stack frame is then made current, and the Java Card virtual machine pc is set to the opcode of

Java Card Platform Virtual Machine Specification, v3.2 Page 205

the first instruction of the method to be invoked. Execution continues with the first instruction of the

method.

Runtime Exception

If objectref is null, the invokespecial instruction throws a NullPointerException.

7.5.56 invokestatic

Invoke a class (static) method

Format

invokestatic

indexbyte1

indexbyte2

Forms

invokestatic = 141 (0x8d)

Stack

…, [arg1, [arg2 …]] -> …

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the

current package (3.5 Frames), where the value of the index is (indexbyte1 << 8) | indexbyte2. The

constant pool item at that index must be of type CONSTANT_StaticMethodref (6.8.3

CONSTANT_StaticFieldref and CONSTANT_StaticMethodref), a reference to a static method. The method

must not be <init>, an instance initialization method, or <clinit>, a class or interface initialization

method. It must be static, and therefore cannot be abstract.

The resolved method includes the code for the method, an unsigned byte nargs that may be zero, and

the method’s modifier information.

The operand stack must contain nargs words of arguments, where the number of words of arguments

and the type and order of the values they represent must be consistent with those of the resolved

method.

The nargs words of arguments are popped from the operand stack. A new stack frame is created for the

method being invoked, and the words of arguments are made the values of its first nargs words of local

variables, with arg1 in local variable 0, arg2 in local variable 1, and so on. The new stack frame is then

made current, and the Java Card virtual machine pc is set to the opcode of the first instruction of the

method to be invoked. Execution continues with the first instruction of the method.

Java Card Platform Virtual Machine Specification, v3.2 Page 206

7.5.56.1 Super Method Resolution

The resolution of the super method is defined by the following algorithm. The virtual machine is not

required to exactly perform the following steps provided the result is the same.

1. Verify access permission from current context to object O on the stack

2. Extract the class C1 and token T1 from the constant pool entry

CONSTANT_SuperMethodref

3. Lookup the method in the hierarchy starting with C being the direct super-class of C1:

a. Determine a token T in class C that denotes the same method as token T1 in class C1

b. If T is less than C.public_virtual_method_table_base or if

C.public_virtual_method_table[T-

C.public_virtual_method_table_base] is 0xFFFF, then recursively

continue the lookup at step a, with C being now set to the super-class of C

c. Otherwise, C.public_virtual_method_table[T-

C.public_virtual_method_table_base] is the location in class C of the

method to be invoked

4. if no method implementation has been found in the hierarchy, i.e., no token T exists or there are

no more super-classes during the lookup, or if a method implementation has been found but

has the ACC_ABSTRACT flag, then the virtual machine must exit the super method resolution

and handle this as an error. See section 2.3.3.1.

7.5.57 invokevirtual

Invoke instance method; dispatch based on class

Format

invokevirtual

 indexbyte1

indexbyte2

Forms

invokevirtual = 139 (0x8b)

Stack

…, objectref, [arg1, [arg2 …]] -> …

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the

current package (3.5 Frames), where the value of the index is (indexbyte1 << 8) | indexbyte2. The

constant pool item at that index must be of type CONSTANT_VirtualMethodref (6.8.2

CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, CONSTANT_SuperMethodref), a reference

Java Card Platform Virtual Machine Specification, v3.2 Page 207

to a class and a virtual method token. The specified method is resolved. The method must not be <init>,

an instance initialization method, or <clinit>, a class or interface initialization method. Finally, if the

resolved method is protected, and it is a member of a superclass of the current class, and the method is

not declared in the same package as the current class, then the class of objectref must be either the

current class or a subclass of the current class.

The resolved method reference includes an unsigned index into the method table of the resolved class

and an unsigned byte nargs that must not be zero.

The objectref must be of type reference. The index is an unsigned byte that is used as an index into the

method table of the class of the type of objectref. If the objectref is an array type, then the method

table of class Object (2.2.1.4 Unsupported Classes) is used. The table entry at that index includes a direct

reference to the method’s code and modifier information.

The objectref must be followed on the operand stack by nargs – 1 words of arguments, where the

number of words of arguments and the type and order of the values they represent must be consistent

with those of the selected instance method.

The nargs – 1 words of arguments and objectref are popped from the operand stack. A new stack frame

is created for the method being invoked, and objectref and the arguments are made the values of its

first nargs words of local variables, with objectref in local variable 0, arg1 in local variable 1, and so on.

The new stack frame is then made current, and the Java Card virtual machine pc is set to the opcode of

the first instruction of the method to be invoked. Execution continues with the first instruction of the

method.

Runtime Exception

If objectref is null, the invokevirtual instruction throws a NullPointerException.

In some circumstances, the invokevirtual instruction may throw a SecurityException if the current

context (3.4 Contexts) is not the context (3.4 Contexts) of the object referenced by objectref. The exact

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition. If the current context is not the object’s context

and the Java Card RE permits invocation of the method, the invokevirtual instruction will cause a context

switch (3.4 Contexts) to the object’s context before invoking the method, and will cause a return context

switch to the previous context when the invoked method returns.

7.5.57.1 Virtual Method Resolution

The resolution of the virtual method is defined by the following algorithm. The virtual machine is not

required to exactly perform the following steps provided the result is the same.

1. Verify access permission from current context to object O on the stack

2. Extract the class C1 and token T1 from the constant pool entry

CONSTANT_VirtualMethodref

3. Get the dynamic type C of the object O and lookup the method in the hierarchy of the class, i.e.:

Java Card Platform Virtual Machine Specification, v3.2 Page 208

a. Determine a token T in class C that denotes the same method as token T1 in class C1

b. If the token T does not exist or if T is less than

C.public_virtual_method_table_base or if

C.public_virtual_method_table[T -

C.public_virtual_method_table_base] is 0xFFFF, then recursively

continue the lookup at step a, with C being now set to the super-class of C

c. Otherwise,
C.public_virtual_method_table[T -

C.public_virtual_method_table_base] is the location in class C of the method M

to be invoked

4. If no method implementation has been found in the hierarchy or if a method implementation

has been found but has the ACC_ABSTRACT flag, then the virtual machine must exit the virtual

method resolution and handle this as an error. See section 2.3.3.1.

7.5.58 ior

Boolean OR int

Format

ior

Forms

ior = 86 (0x56)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 -> …, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack. An int result

is calculated by taking the bitwise inclusive OR of value1 and value2. The result is pushed onto the

operand stack.

Notes

If a virtual machine does not support the int data type, the ior instruction will not be available.

7.5.59 irem

Remainder int

Format

irem

Forms

Java Card Platform Virtual Machine Specification, v3.2 Page 209

irem = 74 (0x4a)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 -> …, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack. The int

result is the value of the Java expression value1 – (value1 / value2) * value2. The result is pushed onto

the operand stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is equal to a. This identity holds even in

the special case that the dividend is the negative int of largest possible magnitude for its type and the

divisor is –1 (the remainder is 0). It follows from this rule that the result of the remainder operation can

be negative only if the dividend is negative and can be positive only if the dividend is positive. Moreover,

the magnitude of the result is always less than the magnitude of the divisor.

Runtime Exception

If the value of the divisor for a short remainder operator is 0, irem throws an ArithmeticException.

Notes

If a virtual machine does not support the int data type, the irem instruction will not be available.

7.5.60 ireturn

Return int from method

Format

ireturn

Forms

ireturn = 121 (0x79)

Stack

…, value.word1, value.word2 -> [empty]

Description

The value must be of type int. It is popped from the operand stack of the current frame (3.5 Frames) and

pushed onto the operand stack of the frame of the invoker. Any other values on the operand stack of

the current method are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to the invoker.

Java Card Platform Virtual Machine Specification, v3.2 Page 210

Notes

If a virtual machine does not support the int data type, the ireturn instruction will not be available.

7.5.61 ishl

Shift left int

Format

ishl

Forms

ishl = 78 (0x4e)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 -> …, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack. An int result

is calculated by shifting value1 left by s bit positions, where s is the value of the low five bits of value2.

The result is pushed onto the operand stack.

Notes

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s. The shift distance

actually used is always in the range 0 to 31, inclusive, as if value2 were subjected to a bitwise logical

AND with the mask value 0x1f.

If a virtual machine does not support the int data type, the ishl instruction will not be available.

7.5.62 ishr

Arithmetic shift right int

Format

ishr

Forms

ishr = 80 (0x50)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 -> …, result.word1, result.word2

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 211

Both value1 and value2 must be of type int. The values are popped from the operand stack. An int result

is calculated by shifting value1 right by s bit positions, with sign extension, where s is the value of the

low five bits of value2. The result is pushed onto the operand stack.

Notes

The resulting value is (value1) / 2s , where s is value2 & 0x1f. For nonnegative value1, this is equivalent

(even if overflow occurs) to truncating int division by 2 to the power s. The shift distance actually used is

always in the range 0 to 31, inclusive, as if value2 were subjected to a bitwise logical AND with the mask

value 0x1f.

If a virtual machine does not support the int data type, the ishr instruction will not be available.

7.5.63 istore

Store int into local variable

Format

Istore

 index

Forms

istore = 42 (0x2a)

Stack

…, value.word1, value.word2 -> …

Description

The index is an unsigned byte. Both index and index + 1 must be a valid index into the local variables of

the current frame (3.5 Frames). The value on top of the operand stack must be of type int. It is popped

from the operand stack, and the local variables at index and index + 1 are set to value.

Notes

If a virtual machine does not support the int data type, the istore instruction will not be available.

7.5.64 istore_<n>

Store int into local variable

Format

istore_<n>

Forms

Java Card Platform Virtual Machine Specification, v3.2 Page 212

istore_0 = 51 (0x33)

istore_1 = 52 (0x34)

istore_2 = 53 (0x35)

istore_3 = 54 (0x36)

Stack

…, value.word1, value.word2 -> …

Description

Both <n> and <n> + 1 must be a valid indices into the local variables of the current frame (3.5 Frames).

The value on top of the operand stack must be of type int. It is popped from the operand stack, and the

local variables at index and index + 1 are set to value.

Notes

If a virtual machine does not support the int data type, the istore_<n> instruction will not be available.

7.5.65 isub

Subtract int

Format

isub

Forms

isub = 68 (0x44)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 -> …, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack. The int

result is value1 - value2. The result is pushed onto the operand stack.

For int subtraction, a – b produces the same result as a + (–b). For int values, subtraction from zeros is

the same as negation.

Despite the fact that overflow or underflow may occur, in which case the result may have a different

sign than the true mathematical result, execution of an isub instruction never throws a runtime

exception.

Notes

Java Card Platform Virtual Machine Specification, v3.2 Page 213

If a virtual machine does not support the int data type, the isub instruction will not be available.

7.5.66 itableswitch

Access jump table by int index and jump

Format

itableswitch

defaultbyte1

defaultbyte2

lowbyte1

lowbyte2

lowbyte3

lowbyte4

highbyte1

highbyte2

highbyte3

highbyte4

jump offsets…

Offset Format

offsetbyte1

offsetbyte2

Forms

itableswitch = 116 (0x74)

Stack

…, index -> …

Description

An itableswitch instruction is a variable-length instruction. Immediately after the itableswitch opcode

follow a signed 16-bit value default, a signed 32-bit value low, a signed 32-bit value high, and then high –

low + 1 further signed 16-bit offsets. The value low must be less than or equal to high. The high – low + 1

signed 16-bit offsets are treated as a 0-based jump table. Each of the signed 16-bit values is constructed

from two unsigned bytes as (byte1 << 8) | byte2. Each of the signed 32-bit values is constructed from

four unsigned bytes as (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4.

The index must be of type int and is popped from the stack. If index is less than low or index is greater

than high, then a target address is calculated by adding default to the address of the opcode of this

itableswitch instruction. Otherwise, the offset at position index – low of the jump table is extracted. The

Java Card Platform Virtual Machine Specification, v3.2 Page 214

target address is calculated by adding that offset to the address of the opcode of this itableswitch

instruction. Execution then continues at the target address.

The target addresses that can be calculated from each jump table offset, as well as the one calculated

from default, must be the address of an opcode of an instruction within the method that contains this

itableswitch instruction.

Notes

If a virtual machine does not support the int data type, the itableswitch instruction will not be available.

7.5.67 iushr

Logical shift right int

Format

iushr

Forms

iushr = 82 (0x52)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 -> …, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack. An int result

is calculated by shifting the result right by s bit positions, with zero extension, where s is the value of the

low five bits of value2. The result is pushed onto the operand stack.

Notes

If value1 is positive and s is value2 & 0x1f, the result is the same as that of value1 >> s; if value1 is

negative, the result is equal to the value of the expression (value1 >> s) + (2 << ~s). The addition of the

(2 << ~s) term cancels out the propagated sign bit. The shift distance actually used is always in the range

0 to 31, inclusive, as if value2 were subjected to a bitwise logical AND with the mask value 0x1f.

If a virtual machine does not support the int data type, the iushr instruction will not be available.

7.5.68 ixor

Boolean XOR int

Format

ixor

Java Card Platform Virtual Machine Specification, v3.2 Page 215

Forms

ixor = 88 (0x58)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 -> …, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the operand stack. An int result

is calculated by taking the bitwise exclusive OR of value1 and value2. The result is pushed onto the

operand stack.

Notes

If a virtual machine does not support the int data type, the ixor instruction will not be available.

7.5.69 jsr

Jump subroutine

Format

jsr

branchbyte1

branchbyte2

Forms

jsr = 113 (0x71)

Stack

… -> …, address

Description

The address of the opcode of the instruction immediately following this jsr instruction is pushed onto

the operand stack as a value of type returnAddress. The unsigned branchbyte1 and branchbyte2 are

used to construct a signed 16-bit offset, where the offset is (branchbyte1 << 8) | branchbyte2. Execution

proceeds at that offset from the address of this jsr instruction. The target address must be that of an

opcode of an instruction within the method that contains this jsr instruction.

Notes

The jsr instruction is used with the ret instruction in the implementation of the finally clause of the Java

language. Note that jsr pushes the address onto the stack and ret gets it out of a local variable. This

asymmetry is intentional.

Java Card Platform Virtual Machine Specification, v3.2 Page 216

7.5.70 new

Create new object

Format

new

 indexbyte1

indexbyte2

Forms

new = 143 (0x8f)

Stack

…-> …, objectref

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the

current package (3.5 Frames), where the value of the index is (indexbyte1 << 8) | indexbyte2. The item

at that index in the constant pool must be of type CONSTANT_Classref (6.8.1 CONSTANT_Classref), a

reference to a class or interface type. The reference is resolved and must result in a class type (it must

not result in an interface type). Memory for a new instance of that class is allocated from the heap, and

the instance variables of the new object are initialized to their default initial values. The objectref, a

reference to the instance, is pushed onto the operand stack.

Notes

The new instruction does not completely create a new instance; instance creation is not completed until

an instance initialization method has been invoked on the uninitialized instance.

7.5.71 newarray

Create new array

Format

newarray

atype

Forms

newarray = 144 (0x90)

Stack

…, count -> …, arrayref

Java Card Platform Virtual Machine Specification, v3.2 Page 217

Description

The count must be of type short. It is popped off the operand stack. The count represents the number of

elements in the array to be created.

The unsigned byte atype is a code that indicates the type of array to create. It must take one of the

following values:

Table 7-4: Array Values

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

A new array whose components are of type atype, of length count, is allocated from the heap. A

reference arrayref to this new array object is pushed onto the operand stack. All of the elements of the

new array are initialized to the default initial value for its type.

Runtime Exception

If count is less than zero, the newarray instruction throws a NegativeArraySizeException.

Notes

If a virtual machine does not support the int data type, the value of atype may not be 13 (array type =

T_INT).

7.5.72 nop

Do nothing

Format

nop

Forms

nop = 0 (0x0)

Stack

No change

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 218

Do nothing.

7.5.73 pop

Pop top operand stack word

Format

pop

Forms

pop = 59 (0x3b)

Stack

…, word -> …

Description

The top word is popped from the operand stack. The pop instruction must not be used unless the word

contains a 16-bit data type.

Notes

The pop instruction operates on an untyped word, ignoring the type of data it contains.

7.5.74 pop2

Pop top two operand stack words

Format

pop2

Forms

pop2 = 60 (0x3c)

Stack

…, word2, word1 -> …

Description

The top two words are popped from the operand stack.

The pop2 instruction must not be used unless each of word1 and word2 is a word that contains a 16-bit

data type or both together are the two words of a single 32-bit datum.

Notes

Java Card Platform Virtual Machine Specification, v3.2 Page 219

Except for restrictions preserving the integrity of 32-bit data types, the pop2 instruction operates on an

untyped word, ignoring the type of data it contains.

7.5.75 putfield_<t>

Set field in object

Format

putfield_<t>

 index

Forms

putfield_a = 135 (0x87)

putfield_b = 136 (0x88)

putfield_s = 137 (0x89)

putfield_i = 138 (0x8a)

Stack

…, objectref, value -> …

OR

…, objectref, value.word1, value.word2 -> …

Description

The unsigned index is used as an index into the constant pool of the current package (3.5 Frames). The

constant pool item at the index must be of type CONSTANT_InstanceFieldref (6.8.2

CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, CONSTANT_SuperMethodref), a reference

to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a member of a superclass of

the current class, and the field is not declared in the same package as the current class, then the class of

objectref must be either the current class or a subclass of the current class. If the field is final, it must be

declared in the current class.

The item must resolve to a field with a type that matches t, as follows:

 a field must be of type reference

 b field must be of type byte or type boolean

 s field must be of type short

 i field must be of type int

value must be of a type that is assignment compatible with the field descriptor (t) type.

Java Card Platform Virtual Machine Specification, v3.2 Page 220

The width of a field in a class instance is determined by the field type specified in the instruction. The

item is resolved, determining the field offset22. The objectref, which must be of type reference, and the

value are popped from the operand stack. If the field is of type byte or type boolean, the value is

truncated to a byte. The field at the offset from the start of the object referenced by objectref is set to

the value.

Runtime Exception

If objectref is null, the putfield_<t> instruction throws a NullPointerException.

Notes

In some circumstances, the putfield_<t> instruction may throw a SecurityException if the current

context (3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref.

The exact circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime

Environment Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the putfield_i instruction will not be available.

7.5.76 putfield_<t>_this

Set field in current object

Format

putfield_<t>_this

index

Forms

putfield_a_this = 181 (0xb5)

putfield_b_this = 182 (0xb6)

putfield_s_this = 183 (0xb7)

putfield_i_this = 184 (0xb8)

Stack

…, value -> …

OR

…, value.word1, value.word2 -> …

Description

22 The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may define any
mapping from token value to offset into an instance.

Java Card Platform Virtual Machine Specification, v3.2 Page 221

The currently executing method must be an instance method that was invoked using the invokevirtual,

invokeinterface or invokespecial instruction. The local variable at index 0 must contain a reference

objectref to the currently executing method’s this parameter. The unsigned index is used as an index

into the constant pool of the current package (3.5 Frames). The constant pool item at the index must be

of type CONSTANT_InstanceFieldref (6.8.2 CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref,

CONSTANT_SuperMethodref), a reference to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a member of a superclass of

the current class, and the field is not declared in the same package as the current class, then the class of

objectref must be either the current class or a subclass of the current class. If the field is final, it must be

declared in the current class.

The item must resolve to a field with a type that matches t, as follows:

 a field must be of type reference

 b field must be of type byte or type boolean

 s field must be of type short

 i field must be of type int

value must be of a type that is assignment compatible with the field descriptor (t) type.

The width of a field in a class instance is determined by the field type specified in the instruction. The

item is resolved, determining the field offset23. The value is popped from the operand stack. If the field is

of type byte or type boolean, the value is truncated to a byte. The field at the offset from the start of the

object referenced by objectref is set to the value.

Runtime Exception

If objectref is null, the putfield_<t>_this instruction throws a NullPointerException.

Notes

In some circumstances, the putfield_<t>_this instruction may throw a SecurityException if the current

context (3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref.

The exact circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime

Environment Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the putfield_i_this instruction will not be

available.

23 The offset may be computed by adding the field token value to the size of an instance of theimmediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may define any
mapping from token value to offset into an instance.

Java Card Platform Virtual Machine Specification, v3.2 Page 222

7.5.77 putfield_<t>_w

Set field in object (wide index)

Format

putfield<t>_w

indexbyte1

indexbyte2

Forms

putfield_a_w = 177 (0xb1)

putfield_b_w = 178 (0xb2)

putfield_s_w = 179 (0xb3)

putfield_i_w = 180 (0xb4)

Stack

…, objectref, value -> …

OR

…, objectref, value.word1, value.word2 -> …

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the

current package (3.4 Contexts), where the value of the index is (indexbyte1 << 8) | indexbyte2. The

constant pool item at the index must be of type CONSTANT_InstanceFieldref (6.8.2

CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, CONSTANT_SuperMethodref), a reference

to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a member of a superclass of

the current class, and the field is not declared in the same package as the current class, then the class of

objectref must be either the current class or a subclass of the current class. If the field is final, it must be

declared in the current class.

The item must resolve to a field with a type that matches t, as follows:

 a field must be of type reference

 b field must be of type byte or type boolean

 s field must be of type short

 i field must be of type int

value must be of a type that is assignment compatible with the field descriptor (t) type.

Java Card Platform Virtual Machine Specification, v3.2 Page 223

The width of a field in a class instance is determined by the field type specified in the instruction. The

item is resolved, determining the field offset24. The objectref, which must be of type reference, and the

value are popped from the operand stack. If the field is of type byte or type boolean, the value is

truncated to a byte. The field at the offset from the start of the object referenced by objectref is set to

the value.

Runtime Exception

If objectref is null, the putfield_<t>_w instruction throws a NullPointerException.

Notes

In some circumstances, the putfield_<t>_w instruction may throw a SecurityException if the current

context (3.4 Contexts) is not the owning context (3.4 Contexts) of the object referenced by objectref.

The exact circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime

Environment Specification, Java Card Platform, v3.2, Classic Edition.

7.5.78 putstatic_<t>

Set static field in class

Format

putstatic_<t>

 indexbyte1

indexbyte2

Forms

putstatic_a = 127 (0x7f)

putstatic_b = 128 (0x80)

putstatic_s = 129 (0x81)

putstatic_i = 130 (0x82)

Stack

…, value -> …

OR

24 The offset may be computed by adding the field token value to the size of an instance of the immediate

superclass. However, this method is not required by this specification. A Java Card virtual machine may define any

mapping from token value to offset into an instance. If a virtual machine does not support the int data type, the

putfield_i_w instruction will not be available.

Java Card Platform Virtual Machine Specification, v3.2 Page 224

…, value.word1, value.word2 -> …

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the

current package (3.5 Frames), where the value of the index is (indexbyte1 << 8) | indexbyte2. The

constant pool item at the index must be of type CONSTANT_StaticFieldref (6.8.3

CONSTANT_StaticFieldref and CONSTANT_StaticMethodref), a reference to a static field. If the field is

final, it must be declared in the current class.

The item must resolve to a field with a type that matches t, as follows:

 a field must be of type reference

 b field must be of type byte or type boolean

 s field must be of type short

 i field must be of type int

value must be of a type that is assignment compatible with the field descriptor (t) type.

The width of a class field is determined by the field type specified in the instruction. The item is

resolved, determining the class field. The value is popped from the operand stack. If the field is of type

byte or type boolean, the value is truncated to a byte. The field is set to the value.

Notes

In some circumstances, the putstatic_a instruction may throw a SecurityException if the current context

(3.4 Contexts) is not the owning context (3.4 Contexts) of the object being stored in the field. The exact

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

If a virtual machine does not support the int data type, the putstatic_i instruction will not be available.

7.5.79 ret

Return from subroutine

Format

ret

 index

Forms

ret = 114 (0x72)

Stack

No change

Java Card Platform Virtual Machine Specification, v3.2 Page 225

Description

The index is an unsigned byte that must be a valid index into the local variables of the current frame (3.5

Frames). The local variable at index must contain a value of type returnAddress. The contents of the

local variable are written into the Java Card virtual machine’s pc register, and execution continues there.

Notes

The ret instruction is used with the jsr instruction in the implementation of the finally keyword of the

Java language. Note that jsr pushes the address onto the stack and ret gets it out of a local variable. This

asymmetry is intentional.

The ret instruction should not be confused with the return instruction. A return instruction returns

control from a Java method to its invoker, without passing any value back to the invoker.

7.5.80 return

Return void from method

Format

return

Forms

return = 122 (0x7a)

Stack

… -> [empty]

Description

Any values on the operand stack of the current method are discarded. The virtual machine then

reinstates the frame of the invoker and returns control to the invoker.

7.5.81 s2b

Convert short to byte

Format

s2b

Forms

s2b = 91 (0x5b)

Stack

…, value -> …, result

Java Card Platform Virtual Machine Specification, v3.2 Page 226

Description

The value on top of the operand stack must be of type short. It is popped from the top of the operand

stack, truncated to a byte result, then sign-extended to a short result. The result is pushed onto the

operand stack.

Notes

The s2b instruction performs a narrowing primitive conversion. It may lose information about the overall

magnitude of value. The result may also not have the same sign as value.

7.5.82 s2i

Convert short to int

Format

s2i

Forms

s2i = 92 (0x5c)

Stack

…, value -> …, result.word1, result.word2

Description

The value on top of the operand stack must be of type short. It is popped from the operand stack and

sign-extended to an int result. The result is pushed onto the operand stack.

Notes

The s2i instruction performs a widening primitive conversion. Because all values of type short are exactly

representable by type int, the conversion is exact.

If a virtual machine does not support the int data type, the s2i instruction will not be available.

7.5.83 sadd

Add short

Format

sadd

Forms

sadd = 65 (0x41)

Java Card Platform Virtual Machine Specification, v3.2 Page 227

Stack

…, value1, value2 -> …, result

Description

Both value1 and value2 must be of type short. The values are popped from the operand stack. The short

result is value1 + value2. The result is pushed onto the operand stack.

If a sadd instruction overflows, then the result is the low-order bits of the true mathematical result in a

sufficiently wide two’s-complement format. If overflow occurs, then the sign of the result may not be

the same as the sign of the mathematical sum of the two values.

7.5.84 saload

Load short from array

Format

saload

Forms

saload = 38 (0x26)

Stack

…, arrayref, index -> …, value

Description

The arrayref must be of type reference and must refer to an array whose components are of type short.

The index must be of type short. Both arrayref and index are popped from the operand stack. The short

value in the component of the array at index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, saload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the saload instruction

throws an ArrayIndexOutOfBoundsException.

Otherwise if the arrayref references a write-only array view, the saload instruction throws a

SecurityException.

Notes

In some circumstances, the saload instruction may throw a SecurityException if the current context (3.4

Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact

Java Card Platform Virtual Machine Specification, v3.2 Page 228

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

7.5.85 sand

Boolean AND short

Format

sand

Forms

sand = 83 (0x53)

Stack

…, value1, value2 -> …, result

Description

Both value1 and value2 are popped from the operand stack. A short result is calculated by taking the

bitwise AND (conjunction) of value1 and value2. The result is pushed onto the operand stack.

7.5.86 sastore

Store into short array

Format

sastore

Forms

sastore = 57 (0x39)

Stack

…, arrayref, index, value -> …

Description

The arrayref must be of type reference and must refer to an array whose components are of type short.

The index and value must both be of type short. The arrayref, index and value are popped from the

operand stack. The short value is stored as the component of the array indexed by index.

If the array referenced by arrayref is integrity-sensitive, its integrity is checked before the value is

stored. The integrity control element is updated when the value is stored. The whole operation (value

storage and the integrity control element update) is performed atomically.

Runtime Exception

Java Card Platform Virtual Machine Specification, v3.2 Page 229

If arrayref is null, sastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the sastore instruction

throws an ArrayIndexOutOfBoundsException.

Otherwise if the array referenced by arrayref is integrity-sensitive and an inconsistency is detected
during the array integrity check, the sastore instruction throws a SecurityException.

Otherwise if the arrayref references a read-only array view, the sastore instruction throws a
SecurityException.

Notes

In some circumstances, the sastore instruction may throw a SecurityException if the current context (3.4

Contexts) is not the owning context (3.4 Contexts) of the array referenced by arrayref. The exact

circumstances when the exception will be thrown are specified in Chapter 6 of the Runtime Environment

Specification, Java Card Platform, v3.2, Classic Edition.

7.5.87 sconst_<s>

Push short constant

Format

sconst_<s>

Forms

sconst_m1 = 2 (0x2)

sconst_0 = 3 (0x3)

sconst_1 = 4 (0x4)

sconst_2 = 5 (0x5)

sconst_3 = 6 (0x6)

sconst_4= 7 (0x7)

sconst_5 = 8 (0x8)

Stack

…-> …, <s>

Description

Push the short constant <s> (-1, 0, 1, 2, 3, 4, or 5) onto the operand stack.

7.5.88 sdiv

Divide short

Format

Java Card Platform Virtual Machine Specification, v3.2 Page 230

sdiv

Forms

sdiv = 71 (0x47)

Stack

…, value1, value2 -> …, result

Description

Both value1 and value2 must be of type short. The values are popped from the operand stack. The short

result is the value of the Java expression value1 / value2. The result is pushed onto the operand stack.

A short division rounds towards 0; that is, the quotient produced for short values in n/d is a short value

q whose magnitude is as large as possible while satisfying | d · q | <= | n |. Moreover, q is a positive

when | n | >= | d | and n and d have the same sign, but q is negative when | n | >= | d | and n and d

have opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative integer of the

largest possible magnitude for the short type, and the divisor is –1, then overflow occurs, and the result

is equal to the dividend. Despite the overflow, no exception is thrown in this case.

Runtime Exception

If the value of the divisor in a short division is 0, sdiv throws an ArithmeticException.

7.5.89 sinc

Increment local short variable by constant

Format

sinc

index

const

Forms

sinc = 89 (0x59)

Stack

No change

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 231

The index is an unsigned byte that must be a valid index into the local variable of the current frame (3.5

Frames). The const is an immediate signed byte. The local variable at index must contain a short. The

value const is first sign-extended to a short, then the local variable at index is incremented by that

amount.

7.5.90 sinc_w

Increment local short variable by constant

Format

sinc_w

 index

byte1

byte2

Forms

sinc_w = 150 (0x96)

Stack

No change

Description

The index is an unsigned byte that must be a valid index into the local variable of the current frame (3.5

Frames). The immediate unsigned byte1 and byte2 values are assembled into a short const where the

value of const is (byte1 << 8) | byte2. The local variable at index, which must contain a short, is

incremented by const.

7.5.91 sipush

Push short

Format

sipush

byte1

byte2

Forms

sipush = 19 (0x13)

Stack

… -> …, value1.word1, value1.word2

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 232

The immediate unsigned byte1 and byte2 values are assembled into a signed short where the value of

the short is (byte1 << 8) | byte2. The intermediate value is then sign-extended to an int, and the

resulting value is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the sipush instruction will not be available.

7.5.92 sload

Load short from local variable

Format

sload

 index

Forms

sload = 22 (0x16)

Stack

… -> …, value

Description

The index is an unsigned byte that must be a valid index into the local variables of the current frame (3.5

Frames). The local variable at index must contain a short. The value in the local variable at index is

pushed onto the operand stack.

7.5.93 sload_<n>

Load short from local variable

Format

sload_<n>

Forms

sload_0 = 28 (0x1c)

sload_1 = 29 (0x1d)

sload_2 = 30 (0x1e)

sload_3 = 31 (0x1f)

Stack

… -> …, value

Java Card Platform Virtual Machine Specification, v3.2 Page 233

Description

The <n> must be a valid index into the local variables of the current frame (3.5 Frames). The local

variable at <n> must contain a short. The value in the local variable at <n> is pushed onto the operand

stack.

Notes

Each of the sload_<n> instructions is the same as sload with an index of <n>, except that the operand

<n> is implicit.

7.5.94 slookupswitch

Access jump table by key match and jump

Format

slookupswitch

defaultbyte1

defaultbyte2

npairs1

npairs2

match-offset pairs…

Pair Format

matchbyte1

matchbyte2

offsetbyte1

offsetbyte2

Forms

slookupswitch = 117 (0x75)

Stack

…, key-> …

Description

A slookupswitch instruction is a variable-length instruction. Immediately after the slookupswitch opcode

follow a signed 16-bit value default, an unsigned 16-bit value npairs, and then npairs pairs. Each pair

consists of a short match and a signed 16-bit offset. Each of the signed 16-bit values is constructed from

two unsigned bytes as (byte1 << 8) | byte2.

The table match-offset pairs of the slookupswitch instruction must be sorted in increasing numerical

order by match.

Java Card Platform Virtual Machine Specification, v3.2 Page 234

The key must be of type short and is popped from the operand stack and compared against the match

values. If it is equal to one of them, then a target address is calculated by adding the corresponding

offset to the address of the opcode of this slookupswitch instruction. If the key does not match any of

the match values, the target address is calculated by adding default to the address of the opcode of this

slookupswitch instruction. Execution then continues at the target address.

The target address that can be calculated from the offset of each match-offset pair, as well as the one

calculated from default, must be the address of an opcode of an instruction within the method that

contains this slookupswitch instruction.

Notes

The match-offset pairs are sorted to support lookup routines that are quicker than linear search.

7.5.95 smul

Multiply short

Format

smul

Forms

smul = 69 (0x45)

Stack

…, value1, value2 -> …, result

Description

Both value1 and value2 must be of type short. The values are popped from the operand stack. The short

result is value1 * value2. The result is pushed onto the operand stack.

If a smul instruction overflows, then the result is the low-order bits of the mathematical product as a

short. If overflow occurs, then the sign of the result may not be the same as the sign of the

mathematical product of the two values.

7.5.96 sneg

Negate short

Format

sneg

Forms

sneg = 72 (0x4b)

Java Card Platform Virtual Machine Specification, v3.2 Page 235

Stack

…, value -> …, result

Description

The value must be of type short. It is popped from the operand stack. The short result is the arithmetic

negation of value, -value. The result is pushed onto the operand stack.

For short values, negation is the same as subtraction from zero. Because the Java Card virtual machine

uses two’s-complement representation for integers and the range of two’s-complement values is not

symmetric, the negation of the maximum negative short results in that same maximum negative

number. Despite the fact that overflow has occurred, no exception is thrown.

For all short values x, -x equals (~x) + 1.

7.5.97 sor

Boolean OR short

Format

sor

Forms

sor = 85 (0x55)

Stack

…, value1, value2 -> …, result

Description

Both value1 and value2 must be of type short. The values are popped from the operand stack. A short

result is calculated by taking the bitwise inclusive OR of value1 and value2. The result is pushed onto the

operand stack.

7.5.98 srem

Remainder short

Format

srem

Forms

srem = 73 (0x49)

Stack

Java Card Platform Virtual Machine Specification, v3.2 Page 236

…, value1, value2 -> …, result

Description

Both value1 and value2 must be of type short. The values are popped from the operand stack. The short

result is the value of the Java expression value1 – (value1 / value2) * value2. The result is pushed onto

the operand stack.

The result of the srem instruction is such that (a/b)*b + (a%b) is equal to a. This identity holds even in

the special case that the dividend is the negative short of largest possible magnitude for its type and the

divisor is –1 (the remainder is 0). It follows from this rule that the result of the remainder operation can

be negative only if the dividend is negative and can be positive only if the dividend is positive. Moreover,

the magnitude of the result is always less than the magnitude of the divisor.

Runtime Exception

If the value of the divisor for a short remainder operator is 0, srem throws an ArithmeticException.

7.5.99 sreturn

Return short from method

Format

sreturn

Forms

sreturn = 120 (0x78)

Stack

…, value -> [empty]

Description

The value must be of type short. It is popped from the operand stack of the current frame (3.5 Frames)

and pushed onto the operand stack of the frame of the invoker. Any other values on the operand stack

of the current method are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to the invoker.

7.5.100 sshl

Shift left short

Format

sshl

Java Card Platform Virtual Machine Specification, v3.2 Page 237

Forms

sshl = 77 (0x4d)

Stack

…, value1, value2 -> …, result

Description

Both value1 and value2 must be of type short. The values are popped from the operand stack. A short

result is calculated by shifting value1 left by s bit positions, where s is the value of the low five bits of

value2. The result is pushed onto the operand stack.

Notes

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s. The shift distance

actually used is always in the range 0 to 31, inclusive, as if value2 were subjected to a bitwise logical

AND with the mask value 0x1f.

The mask value of 0x1f allows shifting beyond the range of a 16-bit short value. It is used by this

instruction, however, to ensure results equal to those generated by the Java instruction ishl.

7.5.101 sshr

Arithmetic shift right short

Format

sshr

Forms

sshr = 79 (0x4f)

Stack

…, value1, value2 -> …, result

Description

Both value1 and value2 must be of type short. The values are popped from the operand stack. A short

result is calculated by shifting value1 right by s bit positions, with sign extension, where s is the value of

the low five bits of value2. The result is pushed onto the operand stack.

Notes

The resulting value is (value1) / 2s , where s is value2 & 0x1f. For nonnegative value1, this is equivalent

(even if overflow occurs) to truncating short division by 2 to the power s. The shift distance actually used

Java Card Platform Virtual Machine Specification, v3.2 Page 238

is always in the range 0 to 31, inclusive, as if value2 were subjected to a bitwise logical AND with the

mask value 0x1f.

The mask value of 0x1f allows shifting beyond the range of a 16-bit short value. It is used by this

instruction, however, to ensure results equal to those generated by the Java instruction ishr.

7.5.102 sspush

Push short

Format

sspush

byte1

byte2

Forms

sspush = 17 (0x11)

Stack

…-> …, value

Description

The immediate unsigned byte1 and byte2 values are assembled into a signed short where the value of

the short is (byte1 << 8) | byte2. The resulting value is pushed onto the operand stack.

7.5.103 sstore

Store short into local variable

Format

sstore

index

Forms

sstore = 41 (0x29)

Stack

…, value -> …

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 239

The index is an unsigned byte that must be a valid index into the local variables of the current frame (3.5

Frames). The value on top of the operand stack must be of type short. It is popped from the operand

stack, and the value of the local variable at index is set to value.

7.5.104 sstore_<n>

Store short into local variable

Format

sstore_<n>

Forms

sstore_0 = 47 (0x2f)

sstore_1 = 48 (0x30)

sstore_2 = 49 (0x31)

sstore_3 = 50 (0x32)

Stack

…, value -> …

Description

The <n> must be a valid index into the local variables of the current frame (3.5 Frames). The value on

top of the operand stack must be of type short. It is popped from the operand stack, and the value of

the local variable at <n> is set to value.

7.5.105 ssub

Subtract short

Format

ssub

Forms

ssub = 67 (0x43)

Stack

…, value1, value2 -> …, result

Description

Both value1 and value2 must be of type short. The values are popped from the operand stack. The short

result is value1 - value2. The result is pushed onto the operand stack.

Java Card Platform Virtual Machine Specification, v3.2 Page 240

For short subtraction, a – b produces the same result as a + (–b). For short values, subtraction from

zeros is the same as negation.

Despite the fact that overflow or underflow may occur, in which case the result may have a different

sign than the true mathematical result, execution of a ssub instruction never throws a runtime

exception.

7.5.106 stableswitch

Access jump table by short index and jump

Format

stableswitch

defaultbyte1

defaultbyte2

lowbyte1

lowbyte2

highbyte1

highbyte2

jump offsets…

Offset Format

offsetbyte1

offsetbyte2

Forms

stableswitch = 115 (0x73)

Stack

…, index -> …

Description

A stableswitch instruction is a variable-length instruction. Immediately after the stableswitch opcode

follow a signed 16-bit value default, a signed 16-bit value low, a signed 16-bit value high, and then high –

low + 1 further signed 16-bit offsets. The value low must be less than or equal to high. The high – low + 1

signed 16-bit offsets are treated as a 0-based jump table. Each of the signed 16-bit values is constructed

from two unsigned bytes as (byte1 << 8) | byte2.

The index must be of type short and is popped from the stack. If index is less than low or index is greater

than high, than a target address is calculated by adding default to the address of the opcode of this

stableswitch instruction. Otherwise, the offset at position index – low of the jump table is extracted. The

Java Card Platform Virtual Machine Specification, v3.2 Page 241

target address is calculated by adding that offset to the address of the opcode of this stableswitch

instruction. Execution then continues at the target address.

The target addresses that can be calculated from each jump table offset, as well as the one calculated

from default, must be the address of an opcode of an instruction within the method that contains this

stableswitch instruction.

7.5.107 sushr

Logical shift right short

Format

sushr

Forms

sushr = 81 (0x51)

Stack

…, value1, value2 -> …, result

Description

Both value1 and value2 must be of type short. The values are popped from the operand stack. A short

result is calculated by sign-extending value1 to 32 bits25 and shifting the result right by s bit positions,

with zero extension, where s is the value of the low five bits of value2. The resulting value is then

truncated to a 16-bit result. The result is pushed onto the operand stack.

Notes

If value1 is positive and s is value2 & 0x1f, the result is the same as that of value1 >> s; if value1 is

negative, the result is equal to the value of the expression (value1 >> s) + (2 << ~s). The addition of the

(2 << ~s) term cancels out the propagated sign bit. The shift distance actually used is always in the range

0 to 31, inclusive, as if value2 were subjected to a bitwise logical AND with the mask value 0x1f.

The mask value of 0x1f allows shifting beyond the range of a 16-bit short value. It is used by this

instruction, however, to ensure results equal to those generated by the Java instruction iushr.

7.5.108 swap_x

Swap top two operand stack words

25 Sign extension to 32 bits ensures that the result computed by this instruction will be exactlyequal to that
computed by the Java iushr instruction, regardless of the input values. In a JavaCard virtual machine the expression
“0xffff >>> 0x01” yields 0xffff, where “>>>” is performed by the sushr instruction. The same result is rendered by a
Java virtual machine.

Java Card Platform Virtual Machine Specification, v3.2 Page 242

Format

swap_x

mn

Forms

swap_x = 64 (0x40)

Stack

…, wordM+N, …, wordM+1, wordM, …, word1 -> …, wordM, …, word1, wordM+N, …, wordM+1

Description

The unsigned byte mn is used to construct two parameter values. The high nibble, (mn & 0xf0) >> 4, is

used as the value m. The low nibble, (mn & 0xf), is used as the value n. Permissible values for both m

and n are 1 and 2.

The top m words on the operand stack are swapped with the n words immediately below.

The swap_x instruction must not be used unless the ranges of words 1 through m and words m+1

through m+n each contain either a 16-bit data type or a 32-bit data type.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the swap_x instruction operates on

untyped words, ignoring the types of data they contain.

If a virtual machine does not support the int data type, the only permissible value for both m and n is 1.

7.5.109 sxor

Boolean XOR short

Format

sxor

Forms

sxor = 87 (0x57)

Stack

…, value1, value2 -> …, result

Description

Java Card Platform Virtual Machine Specification, v3.2 Page 243

Both value1 and value2 must be of type short. The values are popped from the operand stack. A short

result is calculated by taking the bitwise exclusive OR of value1 and value2. The result is pushed onto the

operand stack.

Java Card Platform Virtual Machine Specification, v3.2 Page 244

8 Tables of Instructions
The following pages contain lists of the virtual machine instructions recognized by the Java Card

platform, organized by opcode value (Table 8-1) and by opcode mnemonic (Table 8-2).

8.1 Instructions by Opcode Value
The following table shows the opcode values for the instructions recognized by the Java Card Platform.

Table 8-1: Instructions by Opcode Value

dec hex mnemonic

0 00 nop

1 01 aconst_null

2 02 sconst_m1

3 03 sconst_0

4 04 sconst_1

5 05 sconst_2

6 06 sconst_3

7 07 sconst_4

8 08 sconst_5

9 09 iconst_m1

10 0A iconst_0

11 0B iconst_1

12 0C iconst_2

13 0D iconst_3

14 0E iconst_4

15 0F iconst_5

16 10 bspush

17 11 sspush

18 12 bipush

19 13 sipush

20 14 iipush

21 15 aload

22 16 sload

23 17 iload

24 18 aload_0

25 19 aload_1

26 1A aload_2

27 1B aload_3

28 1C sload_0

29 1D sload_1

30 1E sload_2

31 1F sload_3

Java Card Platform Virtual Machine Specification, v3.2 Page 245

dec hex mnemonic

32 20 iload_0

33 21 iload_1

34 22 iload_2

35 23 iload_3

36 24 aaload

37 25 baload

38 26 saload

39 27 iaload

40 28 astore

41 29 sstore

42 2A istore

43 2B astore_0

44 2C astore_1

45 2D astore_2

46 2E astore_3

47 2F sstore_0

48 30 sstore_1

49 31 sstore_2

50 32 sstore_3

51 33 istore_0

52 34 istore_1

53 35 istore_2

54 36 istore_3

55 37 aastore

56 38 bastore

57 39 sastore

58 3A iastore

59 3B pop

60 3C pop2

61 3D dup

62 3E dup2

63 3F dup_x

64 40 swap_x

65 41 sadd

66 42 iadd

67 43 ssub

68 44 isub

69 45 smul

70 46 imul

71 47 sdiv

72 48 idiv

73 49 srem

74 4A irem

75 4B sneg

76 4C ineg

Java Card Platform Virtual Machine Specification, v3.2 Page 246

dec hex mnemonic

77 4D sshl

78 4E ishl

79 4F sshr

80 50 ishr

81 51 sushr

82 52 iushr

83 53 sand

84 54 iand

85 55 sor

86 56 ior

87 57 sxor

88 58 ixor

89 59 sinc

90 5A iinc

91 5B s2b

92 5C s2i

93 5D i2b

94 5E i2s

95 5F icmp

96 60 ifeq

97 61 ifne

98 62 iflt

99 63 ifge

100 64 ifgt

101 65 ifle

102 66 ifnull

103 67 ifnonnull

104 68 if_acmpeq

105 69 if_acmpne

106 6A if_scmpeq

107 6B if_scmpne

108 6C if_scmplt

109 6D if_scmpge

110 6E if_scmpgt

111 6F if_scmple

112 70 goto

113 71 jsr

114 72 ret

115 73 stableswitch

116 74 itableswitch

117 75 slookupswitch

118 76 ilookupswitch

119 77 areturn

120 78 sreturn

121 79 ireturn

Java Card Platform Virtual Machine Specification, v3.2 Page 247

dec hex mnemonic

122 7A return

123 7B getstatic_a

124 7C getstatic_b

125 7D getstatic_s

126 7E getstatic_i

127 7F putstatic_a

128 80 putstatic_b

129 81 putstatic_s

130 82 putstatic_i

131 83 getfield_a

132 84 getfield_b

133 85 getfield_s

134 86 getfield_i

135 87 putfield_a

136 88 putfield_b

137 89 putfield_s

138 8A putfield_i

139 8B invokevirtual

140 8C invokespecial

141 8D invokestatic

142 8E invokeinterface

143 8F new

144 90 newarray

145 91 anewarray

146 92 arraylength

147 93 athrow

148 94 checkcast

149 95 instanceof

150 96 sinc_w

151 97 iinc_w

152 98 ifeq_w

153 99 ifne_w

154 9A iflt_w

155 9B ifge_w

156 9C ifgt_w

157 9D ifle_w

158 9E ifnull_w

159 9F ifnonnull_w

160 A0 if_acmpeq_w

161 A1 if_acmpne_w

162 A2 if_scmpeq_w

163 A3 if_scmpne_w

164 A4 if_scmplt_w

165 A5 if_scmpge_w

166 A6 if_scmpgt_w

Java Card Platform Virtual Machine Specification, v3.2 Page 248

dec hex mnemonic

167 A7 if_scmple_w

168 A8 goto_w

169 A9 getfield_a_w

170 AA getfield_b_w

171 AB getfield_s_w

172 AC getfield_i_w

173 AD getfield_a_this

174 AE getfield_b_this

175 AF getfield_s_this

176 B0 getfield_i_this

177 B1 putfield_a_w

178 B2 putfield_b_w

179 B3 putfield_s_w

180 B4 putfield_i_w

181 B5 putfield_a_this

182 B6 putfield_b_this

183 B7 putfield_s_this

184 B8 putfield_i_this

254 FE impdep1

255 FF impdep2

8.2 Instructions by Opcode Mnemonic
The following table shows the opcode mnemonics for the instructions recognized by the Java Card

Platform.

Table 8-2: Instructions by Opcode Mnemonic

mnemonic dec hex

aaload 36 24

aastore 55 37

aconst_null 1 01

aload 21 15

aload_0 24 18

aload_1 25 19

aload_2 26 1A

aload_3 27 1B

anewarray 145 91

areturn 119 77

arraylength 146 92

astore 40 28

astore_0 43 2B

astore_1 44 2C

astore_2 45 2D

astore_3 46 2E

Java Card Platform Virtual Machine Specification, v3.2 Page 249

mnemonic dec hex

athrow 147 93

baload 37 25

bastore 56 38

bipush 18 12

bspush 16 10

checkcast 148 94

dup 61 3D

dup_x 63 3F

dup2 62 3E

getfield_a 131 83

getfield_a_this 173 AD

getfield_a_w 169 A9

getfield_b 132 84

getfield_b_this 174 AE

getfield_b_w 170 AA

getfield_i 134 86

getfield_i_this 176 B0

getfield_i_w 172 AC

getfield_s 133 85

getfield_s_this 175 AF

getfield_s_w 171 AB

getstatic_a 123 7B

getstatic_b 124 7C

getstatic_i 126 7E

getstatic_s 125 7D

goto 112 70

goto_w 168 A8

i2b 93 5D

i2s 94 5E

iadd 66 42

iaload 39 27

iand 84 54

iastore 58 3A

icmp 95 5F

iconst_0 10 0A

iconst_1 11 0B

iconst_2 12 0C

iconst_3 13 0D

iconst_4 14 0E

iconst_5 15 0F

iconst_m1 9 09

idiv 72 48

if_acmpeq 104 68

if_acmpeq_w 160 A0

if_acmpne 105 69

Java Card Platform Virtual Machine Specification, v3.2 Page 250

mnemonic dec hex

if_acmpne_w 161 A1

if_scmpeq 106 6A

if_scmpeq_w 162 A2

if_scmpge 109 6D

if_scmpge_w 165 A5

if_scmpgt 110 6E

if_scmpgt_w 166 A6

if_scmple 111 6F

if_scmple_w 167 A7

if_scmplt 108 6C

if_scmplt_w 164 A4

if_scmpne 107 6B

if_scmpne_w 163 A3

ifeq 96 60

ifeq_w 152 98

ifge 99 63

ifge_w 155 9B

ifgt 100 64

ifgt_w 156 9C

ifle 101 65

ifle_w 157 9D

iflt 98 62

iflt_w 154 9A

ifne 97 61

ifne_w 153 99

ifnonnull 103 67

ifnonnull_w 159 9F

ifnull 102 66

ifnull_w 158 9E

iinc 90 5A

iinc_w 151 97

iipush 20 14

iload 23 17

iload_0 32 20

iload_1 33 21

iload_2 34 22

iload_3 35 23

ilookupswitch 118 76

imul 70 46

ineg 76 4C

instanceof 149 95

invokeinterface 142 8E

invokespecial 140 8C

invokestatic 141 8D

invokevirtual 139 8B

Java Card Platform Virtual Machine Specification, v3.2 Page 251

mnemonic dec hex

ior 86 56

irem 74 4A

ireturn 121 79

ishl 78 4E

ishr 80 50

istore 42 2A

istore_0 51 33

istore_1 52 34

istore_2 53 35

istore_3 54 36

isub 68 44

itableswitch 116 74

iushr 82 52

ixor 88 58

jsr 113 71

new 143 8F

newarray 144 90

nop 0 00

pop 59 3B

pop2 60 3C

putfield_a 135 87

putfield_a_this 181 B5

putfield_a_w 177 B1

putfield_b 136 88

putfield_b_this 182 B6

putfield_b_w 178 B2

putfield_i 138 8A

putfield_i_this 184 B8

putfield_i_w 180 B4

putfield_s 137 89

putfield_s_this 183 B7

putfield_s_w 179 B3

putstatic_a 127 7F

putstatic_b 128 80

putstatic_i 130 82

putstatic_s 129 81

ret 114 72

return 122 7A

s2b 91 5B

s2i 92 5C

sadd 65 41

saload 38 26

sand 83 53

sastore 57 39

sconst_0 3 03

Java Card Platform Virtual Machine Specification, v3.2 Page 252

mnemonic dec hex

sconst_1 4 04

sconst_2 5 05

sconst_3 6 06

sconst_4 7 07

sconst_5 8 08

sconst_m1 2 02

sdiv 71 47

sinc 89 59

sinc_w 150 96

sipush 19 13

sload 22 16

sload_0 28 1C

sload_1 29 1D

sload_2 30 1E

sload_3 31 1F

slookupswitch 117 75

smul 69 45

sneg 75 4B

sor 85 55

srem 73 49

sreturn 120 78

sshl 77 4D

sshr 79 4F

sspush 17 11

sstore 41 29

sstore_0 47 2F

sstore_1 48 30

sstore_2 49 31

sstore_3 50 32

ssub 67 43

stableswitch 115 73

sushr 81 51

swap_x 64 40

sxor 87 57

Java Card Platform Virtual Machine Specification, v3.2 Page 253

Java Card Platform Virtual Machine Specification, v3.2 Page 254

Glossary

A
active applet instance

an applet instance that is selected on at least one of the logical channels.

AID (application identifier)

defined by ISO 7816, a string used to uniquely identify card applications and certain types of files in card

file systems. An AID consists of two distinct pieces: a 5-byte RID (resource identifier) and a 0 to 11-byte

PIX (proprietary identifier extension). The RID is a resource identifier assigned to companies by ISO. The

PIX identifiers are assigned by companies.

A unique AID is assigned to each CAP file and public packages in a CAP file. In addition, a unique AID is

assigned to each applet in the CAP file. The AID for the CAP file, the package AID of every public package

in a CAP file and the default AID for each applet defined in the CAP file are specified in the CAP file. They

are supplied to the converter when the CAP file is generated.

APDU

an acronym for Application Protocol Data Unit as defined in ISO 7816-4.

API

an acronym for Application Programming Interface. The API defines calling conventions by which an

application program accesses the operating system and other services.

applet

within the context of this document, a Java Card applet, which is the basic unit of selection, context,

functionality, and security in Java Card technology.

applet application

an application that consists of one or more applets.

applet framework

an API that enables applet applications to be built.

applet developer

a person creating an applet using Java Card technology.

Java Card Platform Virtual Machine Specification, v3.2 Page 255

applet execution context

currently active applet owner identifier.

applet firewall

the mechanism that prevents unauthorized accesses to objects in contexts other than currently active

context.

applet CAP file

a CAP file that contains one or more applet packages. See applet package.

applet package

a Java programming language package that contains one or more non-abstract classes that extend the

javacard.framework.Applet class. See also library package.

assigned logical channel

the logical channel on which the applet instance is either the active applet instance or will become the

active applet instance.

atomic operation

an operation that either completes in its entirety or no part of the operation completes at all.

atomicity

state in which a particular operation is atomic. Atomicity of data updates guarantee that data are not

corrupted in case of power loss or card removal.

ATR

an acronym for Answer to Reset. An ATR is a string of bytes sent by the Java Card platform after a reset

condition.

authentication

the process of establishing or confirming an application or a user as authentic using some sort of

credentials

Java Card Platform Virtual Machine Specification, v3.2 Page 256

B
basic logical channel

logical channel 0, the only channel that is active at card reset in the APDU application environment. This

channel is permanent and can never be closed.

big-endian

a technique of storing multibyte data where the high-order bytes come first. For example, given an 8-bit

data item stored in big-endian order, the first bit read is considered the high bit.

binary compatibility

in a Java Card system, a change in a Java programming language package in a Java Card CAP file results

in a new CAP file. A new CAP file is binary compatible with (equivalently, does not break compatibility

with) a preexisting CAP file if another CAP file converted using the export files of packages included in

the preexisting CAP file can link with the new CAP file without errors.

bytecode

machine-independent code generated by the compiler and executed by the Java virtual machine.

C
CAD

an acronym for Card Acceptance Device. The CAD is the device in which the card is inserted.

CAP file

Standard file format containing a binary representation of a shared library (library CAP file) or an

application with its libraries that might be exported or not (applet CAP file).

A CAP file represents a module, which is a unit of code, made of one or more Java packages, with

dependencies and list of exported packages and an assigned name (AID) for lifecycle management. Its

structure is made of multiple CAP components deployed within a JAR file

When a CAP file containing application(s) is deployed on a Java Card platform, it is assigned a new

unique group context that must be associated with any application instance created from code within

this application module.

CAP file component

A Java Card platform CAP file consists of a set of components, which represent a set of one or more Java

programming language packages. Each component describes a set of elements or an aspect of the CAP

Java Card Platform Virtual Machine Specification, v3.2 Page 257

file. A complete CAP file must contain all of the required components: Header, Directory, Import,

Constant Pool, Method, Static Field, and Reference Location.

The following components are conditionally included or optional: the Applet, Export, Static Resources

and Debug. The Applet component is included only if one or more applets are defined in one or more

packages in the CAP file. The Export component is included only if one or more packages are public and

exported allowing classes in other packages to import elements from them. The Static Resources

component is included only if static resources are embedded in the CAP file. The Debug component is

optional. It contains all of the data necessary for debugging.

card session

a card session begins with the insertion of the card into the CAD. The card is then able to exchange

streams of APDUs with the CAD. The card session ends when the card is removed from the CAD.

cast

the explicit conversion from one data type to another.

card session

a card session begins when it is powered up or reset. The card is then able to exchange messages with

external clients. The card session ends when the card loses power or is reset.

client application

an on-card application that uses services provided by other applications (server applications).

constant pool

the constant pool contains variable-length structures representing various string constants, class names,

field names, and other constants referred to within the CAP file and the Export File structure. Each of

the constant pool entries, including entry zero, is a variable-length structure whose format is indicated

by its first tag byte. There are no ordering constraints on entries in the constant pool entries. One

constant pool is associated with each CAP file.

There are differences between the Java platform constant pool and the Java Card technology-based

constant pool. For example, in the Java platform constant pool there is one constant type for method

references, while in the Java Card constant pool, there are three constant types for method references.

The additional information provided by a constant type in Java Card technologies simplifies resolution of

references.

context

protected object space associated with each applet CAP file and Java Card RE. All objects owned by an

applet belong to the context associated with the applet's CAP file.

Java Card Platform Virtual Machine Specification, v3.2 Page 258

context switch

a change from one currently active context to another. For example, a context switch is caused by an

attempt to access an object that belongs to an applet instance that resides in a different context. The

result of a context switch is a new currently active context.

converter

a piece of software that preprocesses all of the Java programming language class files contained in a set

of packages and converts them into a CAP file. The Converter also produces export files for exported

packages.

currently active context

when an object instance method is invoked, an owning context of this object becomes the currently

active context.

currently selected applet

the Java Card RE keeps track of the currently selected Java Card applet. Upon receiving a SELECT FILE

command with this applet's AID, the Java Card RE makes this applet the currently selected applet. The

Java Card RE sends all APDU commands to the currently selected applet.

custom CAP file component

a new component added to the CAP file. The new component must conform to the general component

format. It is silently ignored by a Java Card virtual machine that does not recognize the component. The

identifiers associated with the new component are recorded in the custom_component item of the

CAP file's Directory component.

D
default applet

an applet that is selected by default on a logical channel in the APDU application environment when it is

opened. If an applet is designated the default applet on a particular logical channel in the APDU

application environment on the Java Card platform, it becomes the active applet by default when that

logical channel is opened using the basic channel.

E
EEPROM

an acronym for Electrically Erasable, Programmable Read Only Memory.

Java Card Platform Virtual Machine Specification, v3.2 Page 259

entry point method

 well-defined method of an object owned by an application (respectively the Java Card RE) that can be

"legally" invoked by another application or the Java Card RE (respectively an application). SIO methods

and other container-managed objects' lifecycle methods are application entry point methods. Java Card

RE entry point objects' methods are Java Card RE entry point methods.

entry point objects

see Java Card RE entry point objects.

export file

a file produced by the Converter tool that represents the fields and methods of a package that can be

imported by classes in other classic applet applications and classic libraries.

externally visible

in the Java Card platform, any classes, interfaces, their constructors, methods and fields that can be

accessed from package according to the Java programming language semantics, as defined by the Java

Language Specification.

Externally visible items are represented in an export file. For a library package, externally visible items

are represented in an export file. For an applet package, only those externally visible items that are part

of a shareable interface are represented in an export file.

A Java Card CAP file may restrict the visibility of a package it contains. In this case, these packages are

only visible to the other packages inside the CAP file and are not be accessible by packages in other CAP

files. No export file is generated for the packages that have their visibility restricted to packages inside

the same CAP file.

F
finalization

the process by which a Java virtual machine (VM) allows an unreferenced object instance to release non-

memory resources (for example, close and open files) prior to reclaiming the object's memory.

Finalization is only performed on an object when that object is ready to be garbage collected (meaning,

there are no references to the object).

Finalization is not supported by the Java Card virtual machine. The method finalize() is not called

automatically by the Java Card virtual machine.

firewall

the mechanism that prevents unauthorized accesses to objects in one application group context from

another application group context.

Java Card Platform Virtual Machine Specification, v3.2 Page 260

flash memory

a type of persistent mutable memory. It is more efficient in space and power than EPROM. Flash

memory can be read bit by bit but can be updated only as a block. Thus, flash memory is typically used

for storing additional programs or large chunks of data that are updated as a whole.

framework

the set of classes that implement the API. This includes core and extension packages. Responsibilities

include applet selection, sending APDU bytes, and managing atomicity.

G
garbage collection

the process by which dynamically allocated storage is automatically reclaimed during the execution of a

program.

global array

an array objects accessible from any context.

group context

protected object space associated with each CAP file and Java Card RE defining the boundaries of the

firewall.

H
heap

a common pool of free memory in volatile and persistent spaces usable by a program for dynamic

memory allocation, in which blocks of memory are used in an arbitrary order. The Java Card virtual

machine's heap is not required to be garbage collected and objects allocated from the heap are not

necessarily reclaimed.

I
installer

the on-card mechanism to download and install CAP files. The installer receives executable binary from

the off-card installation program, writes the binary into the smart card memory, links it with the other

classes on the card, and creates and initializes any data structures used internally by the Java Card

Runtime Environment.

Java Card Platform Virtual Machine Specification, v3.2 Page 261

installation program

the off-card mechanism that employs a card acceptance device (CAD) to transmit the executable binary

in a CAP file to the installer running on the card.

instance variables

also known as non-static fields.

instantiation

in object-oriented programming, to produce a particular object from its class template. This involves

allocation of a data structure with the types specified by the template, and initialization of instance

variables with either default values or those provided by the class's constructor function.

instruction

a statement that indicates an operation for the computer to perform and any data to be used in

performing the operation. An instruction can be in machine language or a programming language.

internally visible

code items that are not externally visible. These items are not described in a package's export file and

use private tokens to represent internal references. See externally visible.

J
JAR file

an acronym for Java Archive file, which is a file format used for aggregating and compressing many files

into one.

Java Card Platform Remote Method Invocation

a subset of the Java Platform Remote Method Invocation (RMI) system optionally supported by the Java

Card RE. It provides a mechanism for a client application to invoke a method on a remote object of an

applet on the card.

Java Card Runtime Environment (Java Card RE)

consists of the Java Card virtual machine, the application framework, and the associated native

methods.

Java Card Virtual Machine (Java Card VM)

a subset of the Java virtual machine, which is designed to be run on smart cards and other resource-

constrained devices. The Java Card VM acts an engine that loads Java class files and executes them with

a particular set of semantics.

Java Card Platform Virtual Machine Specification, v3.2 Page 262

Java Card RE context

the context of the Java Card RE has special system privileges so that it can perform operations that are

denied to contexts of applications.

Java Card RE entry point object

an object owned by the Java Card RE context that contains entry point methods. These methods can be

invoked from any context and allows applications to request Java Card RE system services. A Java Card

RE entry point object can be either temporary or permanent:

 temporary - references to temporary Java Card RE entry point objects cannot be stored in class

variables, instance variables or array components. The Java Card RE detects and restricts

attempts to store references to these objects as part of the firewall functionality to prevent

unauthorized reuse. Examples of these objects are APDU objects and the APDU byte array.

 permanent - references to permanent Java Card RE entry point objects can be stored and freely

reused. Examples of these objects are Java Card RE-owned AID instances.

JDK software

an acronym for Java Development Kit. The JDK software provides the environment required for software

development in the Java programming language. The JDK software is available for a variety of operating

systems.

L
library CAP file

a CAP file that contains only library packages. See library package.

library package

a Java programming language package that does not contain any non-abstract classes that extend the

class javacard.framework.Applet. See also applet package.

local variable

a data item known within a block, but inaccessible to code outside the block. For example, any variable

defined within a method is a local variable and cannot be used outside the method.

logical channel

as seen at the card edge, works as a logical link to an applet application on the card. A logical channel

establishes a communications session between a card applet and the terminal. Commands issued on a

specific logical channel are forwarded to the active applet on that logical channel. For more information,

see the ISO/IEC 7816 Specification, Part 4. (http://www.iso.org).

http://www.iso.org/
http://www.iso.org/

Java Card Platform Virtual Machine Specification, v3.2 Page 263

M
MAC

an acronym for Message Authentication Code. MAC is an encryption of data for security purposes.

mask production (masking)

refers to embedding the Java Card virtual machine, runtime environment, and applications in the read-

only memory of a smart card during manufacture.

method

a procedure or routine associated with one or more classes in object-oriented languages.

multiselectable applets

implements the javacard.framework.MultiSelectable interface. Multiselectable applets can

be selected on multiple logical channels in the APDU application environment at the same time. They

can also accept other applets belonging to the same applet application being selected simultaneously.

multiselected applet

an applet instance that is selected and, therefore, active on more than one logical channel in the APDU

application environment simultaneously.

N
namespace

a set of names in which all names are unique.

native method

a method that is not implemented in the Java programming language, but in another language. The CAP

file format does not support native methods to prevent from loading untrusted code.

nibble

four bits.

non-volatile memory

memory that is expected to retain its contents between card tear and power up events or across a reset

event on the smart card device.

Java Card Platform Virtual Machine Specification, v3.2 Page 264

O
object-oriented

a programming methodology based on the concept of an object, which is a data structure encapsulated

with a set of routines, called methods, which operate on the data.

object owner (Classic)

the applet instance within the currently active context when the object is instantiated. An object can be

owned by an applet instance, or by the Java Card RE.

object

in object-oriented programming, unique instance of a data structure defined according to the template

provided by its class. Each object has its own values for the variables belonging to its class and can

respond to the messages (methods) defined by its class.

origin logical channel

the logical channel in the APDU application environment on which an APDU command is issued.

owning context

the application or Java Card RE context in which an object is instantiated or created.

owner context

see owning context.

P
package

a namespace within the Java programming language that can have classes and interfaces.

PCD

an acronym for Proximity Coupling Device. The PCD is a contactless card reader device.

persistent object

persistent objects and their values persist from one card session to the next, indefinitely. Objects are

persistent when referred from another persistent object. Persistent object values are typically updated

atomically using transactions. The term persistent does not mean there is an object-oriented database

on the card or that objects are serialized and deserialized, just that the objects are not lost when the

card loses power.

Java Card Platform Virtual Machine Specification, v3.2 Page 265

PIX

see AID (application identifier).

R
RAM (random access memory)

temporary working space for storing and modifying data. RAM is non-persistent memory; that is, the

information content is not preserved when power is removed from the memory cell. RAM can be

accessed an unlimited number of times and none of the restrictions of EEPROM apply.

reference implementation (RI)

functional and fully compatible implementation of a given technology. It enables developers to build

prototypes of applications based on the technology.

remote interface

an interface of an applet application, which extends, directly or indirectly, the

java.rmi.Remote interface.

Each method declaration in the remote interface or its super-interfaces includes the exception

java.rmi.RemoteException (or one of its super classes) in its throws clause.

In a remote method declaration, if a remote object is declared as a return type, it is declared as the

remote interface, not the implementation class of that interface.

In addition, Java Card RMI imposes additional constraints on the definition of remote methods of an

applet application. See Runtime Environment Specification, Java Card Platform, v3.2, Classic Edition.

remote methods

the methods of a remote interface of an applet application.

remote object

an object of an applet application whose remote methods can be invoked remotely from the off-card

client. A remote object is described by one or more remote interfaces of an applet application.

RFU

acronym for Reserved for Future Use.

RID

see AID (application identifier).

Java Card Platform Virtual Machine Specification, v3.2 Page 266

RMI

an acronym for Remote Method Invocation. RMI is a mechanism for invoking instance methods on

objects located on remote virtual machines (meaning, a virtual machine other than that of the invoker).

ROM (read-only memory)

memory used for storing the fixed program of the card. A smart card's ROM contains operating system

routines as well as permanent data and user applications. No power is needed to hold data in this kind

of memory. ROM cannot be written to after the card is manufactured. Writing a binary image to the

ROM is called masking and occurs during the chip manufacturing process.

runtime environment

see Java Card Runtime Environment (Java Card RE).

S
service

a shareable interface object that a server application uses to provide a set of well-defined functionalities

to its clients.

shareable interface

an interface that defines a set of shared methods. These interface methods can be invoked from an

application in one context when the object implementing them is owned by an applet in another

context.

shareable interface object (SIO)

an object that implements the shareable interface.

smart card

a card that stores and processes information through the electronic circuits embedded in silicon in the

substrate of its body. Unlike magnetic stripe cards, smart cards carry both processing power and

information. They do not require access to remote databases at the time of a transaction.

SPI

an acronym for Service Provider Interface or sometimes for System Programming Interface. The SPI

defines calling conventions by which a platform implementer may implement system services.

Java Card Platform Virtual Machine Specification, v3.2 Page 267

T
terminal

is typically a computer in its own right with an interface which connects with a smart card to exchange

and process data.

thread

the basic unit of program execution. A process can have several threads running concurrently each

performing a different job, such as waiting for events or performing a time-consuming job that the

program doesn't need to complete before going on. When a thread has finished its job, it is suspended

or destroyed.

The Java Card virtual machine can support only a single thread of execution. Java Card technology

programs cannot use class Thread or any of the thread-related keywords in the Java programming

language.

transaction

an atomic operation in which the developer defines the extent of the operation by indicating in the

program code the beginning and end of the transaction.

transient object

the state of transient objects does not persist from one card session to the next and is reset to a default

state at specified intervals. Updates to the values of transient objects are not atomic and are not

affected by transactions.

U
uniform resource identifier (URI)

a compact string of characters used to identify or name an abstract or physical resource. A URI can be

further classified as a uniform resource locator (URL), a uniform resource name (URN), or both. See RFC

3986 for more information.

uniform resource locator (URL)

a compact string representation used to locate resources available via network protocols or other

protocols. Once the resource represented by a URL has been accessed, various operations may be

performed on that resource. See RFC 1738 for more information. A URL is a type of uniform resource

identifier (URI).

Java Card Platform Virtual Machine Specification, v3.2 Page 268

V
verification

a process performed on an application or library executable that checks that the binary representation

of the application or library is structurally correct and type safe.

volatile memory

memory that is not expected to retain its contents between card tear and power up events or across a

reset event on the smart card device.

volatile object

an object that is ideally suited to be stored in volatile memory. This type of object is intended for a

short-lived object or an object, which requires frequent updates. A volatile object is garbage collected

on card tear (or reset).

W
word

an abstract storage unit. A word is large enough to hold a value of type byte, short, reference or

returnAddress. Two words are large enough to hold a value of integer type.

Java Card Platform Virtual Machine Specification, v3.2 Page 269

Annex A - Oracle Technology Network Developer License Terms

Specifications

Export Controls

Export laws and regulations of the United States and any other relevant local export laws and

regulations apply to the specifications. You agree that such export control laws govern your use

of the specifications (including technical data), and you agree to comply with all such export

laws and regulations (including "deemed export" and "deemed re- export" regulations). You

agree that no data, information, program and/or materials resulting from services (or direct

product thereof) will be exported, directly or indirectly, in violation of these laws, or will be

used for any purpose prohibited by these laws including, without limitation, nuclear, chemical,

or biological weapons proliferation, or development of missile technology.

Accordingly, you confirm:

- You will not download, provide, make available or otherwise export or re-export the

specifications, directly or indirectly, to countries prohibited by applicable laws and regulations

nor to citizens, nationals or residents of those countries.

- You are not listed on the United States Department of Treasury lists of Specially Designated

Nationals and Blocked Persons, Specially Designated Terrorists, and Specially Designated

Narcotic Traffickers, nor are you listed on the United States Department of Commerce Table of

Denial Orders.

- You will not download or otherwise export or re-export the specifications, directly or

indirectly, to persons on the above mentioned lists.

- You will not use the specifications for, and will not allow the specifications to be used for, any

purposes prohibited by applicable law, including, without limitation, for the development,

design, manufacture or production of nuclear, chemical or biological weapons of mass

destruction.

Oracle Employees: Under no circumstances are Oracle Employees authorized to download the

specifications for the purpose of distributing it to customers. Oracle products are available to

employees for internal use or demonstration purposes only. In keeping with Oracle's trade

Java Card Platform Virtual Machine Specification, v3.2 Page 270

compliance obligations under U.S. and applicable multilateral law, failure to comply with this

policy could result in disciplinary action up to and including termination.

PLEASE READ THE FOLLOWING LICENSE AGREEMENT TERMS AND CONDITIONS CAREFULLY

BEFORE INSTALLING OR USING THE SPECIFICATIONS. THESE TERMS AND CONDITIONS

CONSTITUTE A LEGAL AGREEMENT BETWEEN YOU AND ORACLE.

ORACLE TECHNOLOGY NETWORK LICENSE AGREEMENT

"We," "us," and "our" refers to Oracle America, Inc., for and on behalf of itself and its

subsidiaries and affiliates under common control. "You" and "your" refers to the individual or

entity that wishes to use the specification from Oracle. "Specifications" refers to the Java Card

Classic Edition specification document and/or Java Card Connected Edition specification

document that you selected for download or use from Oracle and any other Oracle product or

technology documentation provided to you by Oracle under this agreement. "License" refers to

your right to use the specifications under the terms of this agreement. “Applications” means

Java technology applications intended to run on the Java Card Classic and/or Java Card

Connected platforms. This agreement is governed by the substantive and procedural laws of

California. You and Oracle agree to submit to the exclusive jurisdiction of, and venue in, the

courts of San Francisco or Santa Clara counties in California in any dispute arising out of or

relating to this agreement.

We are willing to license the specifications to you only upon the condition that you accept all of

the terms contained in this agreement. Read the terms carefully and select the "Accept License

Agreement" button to confirm your acceptance. If you are not willing to be bound by these

terms, select the "Decline License Agreement" button and the registration process will not

continue.

LICENSE RIGHTS

Except for any included software package or file that is licensed to you by Oracle under

different license terms, we grant you a perpetual (unless terminated as provided in this

agreement), nonexclusive, nontransferable, limited License to use (without the right to

sublicense) the specifications internally solely for the purposes of designing and developing

your implementation of the specifications and designing and developing your applets and

applications intended to run on the Java Card platform. Other than this limited license, you

acquire no right, title or interest in or to the specifications or any other Oracle intellectual

property. You acknowledge that any commercial or productive use of an implementation of the

Java Card Platform Virtual Machine Specification, v3.2 Page 271

specifications requires separate and appropriate licensing agreements.

All rights not expressly granted above are hereby reserved. If you want to use the specifications

for any purpose other than as permitted under this agreement, including but not limited to

distribution of the specifications or any use of the specifications for your internal business

purposes (other than developing, testing, prototyping and demonstrating your applications) or

for any commercial production purposes, you must obtain a valid license permitting such use.

We may audit your use of the specifications.

Third-Party Technology

The specifications may contain or be distributed with certain third-party technology. Oracle

may provide certain notices related to such third-party technology in the specifications.

Third party technology will be licensed to you either under the terms of this agreement, or, if

specified in the specifications, under separate license terms ("Separate Terms") and not under

the terms of this agreement ("Separately Licensed Third Party Technology"). Licensee's rights to

use such Separately Licensed Third Party Technology under the Separate Terms are not

restricted or modified in any way by this Agreement.

Ownership and Restrictions

We retain all ownership and intellectual property rights in the specifications. Unless

enforcement is prohibited by applicable law, you may not modify the specifications. You may

make a sufficient number of copies of the specifications for the licensed use and one copy of

the specifications for backup purposes.

You may not:

- use the specifications for your own internal business purposes (other than developing, testing,

prototyping and demonstrating your applications) or for any commercial or production

purposes;

- remove or modify any program markings or any notice of our proprietary rights;

- make the specifications available in any manner to any third party;

- use the specifications to provide third party training;

- assign this agreement or give or transfer the specifications or an interest in them to another

Java Card Platform Virtual Machine Specification, v3.2 Page 272

individual or entity;

- cause or permit modification of the specifications;

- disclose results of any benchmark test results related to the specifications without our prior

consent.

- create, modify, or change the behavior of classes, interfaces, or subpackages that are in any

way identified as "java", "javax", "javafx", “javaee”,"sun", “oracle” or similar convention as

specified by Oracle in any naming convention designation;

Export

You agree that U.S. export control laws and other applicable export and import laws govern

your use of the specifications, including technical data; additional information can be found on

Oracle's Global Trade Compliance web site located at

https://www.oracle.com/products/export-regulations.html. You agree that neither the

specifications nor any direct product thereof will be exported, directly, or indirectly, in violation

of these laws, or will be used for any purpose prohibited by these laws including, without

limitation, nuclear, chemical, or biological weapons proliferation.

Disclaimer of Warranty and Exclusive Remedies

THE SPECIFICATIONS IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. WE FURTHER

DISCLAIM ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION, ANY

IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR

NONINFRINGEMENT.

IN NO EVENT SHALL WE BE LIABLE FOR ANY INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE OR

CONSEQUENTIAL DAMAGES, OR DAMAGES FOR LOSS OF PROFITS, REVENUE, DATA OR DATA

USE, INCURRED BY YOU OR ANY THIRD PARTY, WHETHER IN AN ACTION IN CONTRACT OR

TORT, EVEN IF WE HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. OUR ENTIRE

LIABILITY FOR DAMAGES HEREUNDER SHALL IN NO EVENT EXCEED ONE THOUSAND DOLLARS

(U.S. $1,000).

https://www.oracle.com/products/export-regulations.html

Java Card Platform Virtual Machine Specification, v3.2 Page 273

No Technical Support

Our technical support organization will not provide technical support, phone support, or

updates to you for the specifications licensed under this agreement.

End of Agreement

You may terminate this agreement by destroying all copies of the specifications. We have the

right to terminate your right to use the specifications if you fail to comply with any of the terms

of this agreement, in which case you shall destroy all copies of the specifications.

Relationship Between the Parties

The relationship between you and us is that of licensee/licensor. Neither party will represent

that it has any authority to assume or create any obligation, express or implied, on behalf of the

other party, nor to represent the other party as agent, employee, franchisee, or in any other

capacity. Nothing in this agreement shall be construed to limit either party's right to

independently develop or distribute software that is functionally similar to the other party's

products, so long as proprietary information of the other party is not included in such software.

Open Source Software

"Open Source" software - software available without charge for use, modification and

distribution - is often licensed under terms that require the user to make the user's

modifications to the Open Source software or any software that the user 'combines' with the

Open Source software freely available in source code form. If you use Open Source software in

conjunction with the specifications, you must ensure that your use does not: (i) create, or

purport to create, obligations of us with respect to the Oracle specifications; or (ii) grant, or

purport to grant, to any third party any rights to or immunities under our intellectual property

or proprietary rights in the Oracle specifications. For example, you may not develop a software

program using an Oracle program/specification and an Open Source program where such use

results in a program file(s) that contains code from both the Oracle program/specification and

the Open Source program (including without limitation libraries) if the Open Source program is

licensed under a license that requires any "modifications" be made freely available. You also

may not combine the Oracle specifications with a program licensed under the GNU General

Public License ("GPL") in any manner that could cause, or could be interpreted or asserted to

cause, the Oracle specifications or any modifications thereto to become subject to the terms of

the GPL.

Java Card Platform Virtual Machine Specification, v3.2 Page 274

Entire Agreement

You agree that this agreement is the complete agreement for the specifications and licenses,

and this agreement supersedes all prior or contemporaneous agreements or representations. If

any term of this agreement is found to be invalid or unenforceable, the remaining provisions

will remain effective.

Last updated: 3 April 2012

Should you have any questions concerning this License Agreement, or if you desire to contact

Oracle for any reason, please write:

Oracle America, Inc.

500 Oracle Parkway, Redwood City, CA 94065

