
Java Card Platform
Specification Release Notes

Version 3.2

F74152-01

January 2023

Table of Contents
• Preface

• Introduction

• What's New

• Detailed Changes

• Clarifications

• Supported Platforms

• Downloading the Specification Documents

• Known Issues

• Product Information

Preface
Java Card technology combines a portion of the Java programming language with a
runtime environment optimized for smart cards and related, small-memory embedded
devices. The goal of Java Card technology is to bring many of the benefits of the Java
programming language to the resource-constrained world of smart cards and secure
elements.

The Classic Edition of the Java Card platform is defined by three specifications:

• Java Card Runtime Environment Specification, Java Card Platform, Version 3.2,
Classic Edition

• Virtual Machine Specification, Java Card Platform, Version 3.2, Classic Edition

• Application Programming Interface, Java Card Platform, Version 3.2, Classic
Edition

This document describes the list of changes introduced in the Version 3.2 of the
specifications.

Audience

1

This document is intended both for Oracle Java Card licensees who are implementing
the Java Card Platform and for application developers who want an understanding of
the changes introduced in this release of the Java Card specifications.

Before You Read This Document

Before reading this guide, you should be familiar with the Java programming language,
the Java Card technology specifications, and smart card technology. A good resource
for becoming familiar with Java technology and Java Card technology located at:

https://www.oracle.com/technetwork/java/embedded/javacard/overview/.

Typographic Conventions
The following text conventions are used in this document:

Typeface1 Meaning Examples

AaBbCc123 The names of commands, files, and directories;
onscreen computer output.

Edit
your .login
file.

Use ls -a
to list all
files.

% You have
mail.

AaBbCc123 What you type, when contrasted with on-screen
computer output.

%su
Password:

AaBbCc123 Book titles, new words or terms, words to be
emphasized. Replace command-line variables with real
names or values.

Read
Chapter 6 in
the User's
Guide.

These are
called class
options.

You must be
superuser to
do this.

To delete a
file, type rm
filename.

1 The settings on your browser might differ from these settings.

Related Documents
A list of related documents that may help in understanding this document are:

• [JCAPI] - Application Programming Interface Specification, Version 3.2, Classic
Edition

2

https://www.oracle.com/technetwork/java/embedded/javacard/overview/

• [JCVM] - Virtual Machine Specification, Version 3.2, Classic Edition

• [JCRE] - Runtime Environment Specification, Version 3.2, Classic Edition

• [JLS]The Java Language Specification Third Edition by James Gosling, Bill Joy,
and Guy L. Steele (Addison-Wesley, 2005)

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Oracle Welcomes Your Comments
Oracle is interested in improving its documentation and welcomes your comments and
suggestions.

Please include the title of your document with your feedback:

Java Card Platform, v3.2, Classic Edition

Introduction
This release notes describes the list of changes introduced in the Version 3.2 of the
Java Card specifications.

This document is intended for both the Oracle Java Card licensees who are
implementing the Java Card Platform and for the application developers who want to
understand the changes introduced in this release.

What's New
This section lists the important changes and features in Java Card Platform
Specifications, Version 3.2.

Topics:
• What’s new in the Java Card Runtime Environment

• What's new in the Java Card API

3

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What’s new in the Java Card Runtime Environment
The following table outlines the new features in the Java Card Runtime Environment,
Version 3.2.

Table New Features in Java Card Virtual Machine Specifications

Feature Description

Logical Channel Configuration A Java Card implementation must support one of the
following configurations:
• A configuration that provides support for multiple logical

channels, either supporting Type 4 channel encoding in
APDU commands, or supporting both Type 4 and Type
16 channel encodings.

• A configuration that does not provide support for multiple
logical channels and uses only the basic logical channel.

What's new in the Java Card API
The following table outlines the new features in the Java Card Application
Programming Interface (API) specification version 3.2.

Table New Features in Java Card API Specification

New Feature Description

Logical channel encoding Add an API to retrieve the supported logical
channel encoding type used by the JCRE .

TLS1.3 and DTLS1.3 key schedule Add key derivation algorithm and intermediate
message digest mechanisms to perform
TLS1.3 and DTLS1.3 key schedule operations.

Additional ISO9796 digital signature with
message recovery paddings

Support the trailer field option 2 for all
schemes defined in the ISO9796 digital
signature with message recovery specification.

Extend support to EdDSA digital signature
algorithm

Add capability to create a signature instance
for predefined edwards25519 and edwards448
curves.

Extend support to SM2 key agreement with
confirmation values

Add support to SM2 key exchange with and
without confirmation values.

Configure RSA-OAEP cipher scheme Add the configuration of the message digest
algorithm of the Mask Generation function
(MGF1) of the RSA OAEP cipher scheme.

Configure RSA-PSS digital signature scheme Add the configuration of the message digest
algorithm of the Mask Generation function
(MGF1) of the RSA PSS digital signature
scheme.

Retrieve available memory value as a byte
array

Add an API to retrieve the memory available
for a given type as a convenient byte array
parameter

4

Table (Cont.) New Features in Java Card API Specification

New Feature Description

Instantiate random generator with external
access

Add an API to instantiate a random generator
instance that can be used even if the current
context is not the context of the currently
selected Applet.

Clear a biometric template Add an API to clear a biometric template.

Detailed Changes
This topic provides comprehensive information about each change made in the
specifications for this release.

The list below gives more details about the changes made in this release. They
provide information on the following elements:

• Component - lists the specifications modified for this feature (Java Card Virtual
Machine, Java Card Runtime Environment, Java Card API)

• Compliance - describes if the feature is mandatory or optional.

– A mandatory feature must be supported by any implementation.

– An optional feature is not necessarily supported. However, when the feature
is supported, the proposed API, defined based on industry requirements,
should be used instead of proprietary APIs to guarantee interoperability and
avoid fragmentation.

• API - Lists the package or class that supports the feature.

Core – logical channel encoding
Support for logical channel encoding.

• Component: Java Card Runtime Environment – Logical Channels and Applet
Selection Java Card Application Programming Interface

• API: javacard.framework.APDU class

• Compliance: Mandatory

The Java Card Runtime Environment must support one of the following configurations:

• A configuration where the Java Card Platform provides support for multiple logical
channels. A terminal can open multiple logical channels over any I/O interface and
assign each logical channel to an Applet instance. In this configuration, a platform
may support the logical channels Type 4 encoding (logical channels 0 to 3) only or
both the Type 4 and the Type 16 (logical channels 4 to 19) encodings.

• A configuration where the Java Card platform does not provide support for multiple
logical channels. A terminal can only use the basic logical channel (logical channel
0) on each I/O interface and assign it to an Applet instance.

5

The Java card API provide means to retrieve the supported logical channel encoding
of the platform:

New Constant referring to CLA
encoding without logical channel
information

javacard.framework.APDU.LC_ENCODING_
NO

New Constant referring a CLA
encoding with Type 4 logical channel
information

javacard.framework.APDU.LC_ENCODING_
TYPE_4

New Constant referring to CLA
encoding with Type 4 and Type 16
logical channel information

javacard.framework.APDU.LC_ENCODING_
TYPE_4_TYPE_16

New method to retrieve the logical
channel encoding type used by the
JCRE to interpret the CLA byte of the
current APDU

javacard.framework.APDU.getLogicalCh
annelEncoding()

API - TLS1.3 and DTLS1.3
Support for the TLS1.3 and DTLS1.3 interfaces.

• Component: Java Card Application Programming Interface

• API: javacardx.security.derivation and javacard.security.MessageDigest
Class

• Compliance: Optional

The API for cryptography is extended to support the TLS1.3 (RFC 8446) and DTLS
(RFC 9147) key schedule. For this purpose:

• A new derivation function algorithm is added to perform the HKDF-Expand-Label
operation defined in RFC 8446 and to choose the label prefix either for TLS1.3 or
for DTLS1.3.

• A new method is added to perform the transcript hash operation defined in RFC
8446: it is possible to perform an intermediate message digest calculation without
changing the current state of the message digest instance and continue the
operation.

The new classes, interfaces, methods or constants for this feature must be available in
any Java Card 3.2 compliant implementation, but the corresponding algorithm
implementation is optional and may throw an exception with the following reason code
CryptoException.NO_SUCH_ALGORITHM.

New method to determine if
intermediate hash calculation is
supported

javacard.security.MessageDigest.isIn
termediateMessageDigestSupported()

New method to generate an
intermediate hash calculation

javacard.security.MessageDigest.doIn
termediateMessageDigest()

6

javacard.security.MessageDigest.OneS
hot.doIntermediateMessageDigest()

New constant for HKDF-Expand-Label
algorithm

javacardx.derivation.DerivationFunct
ion.ALG_HKDF_EXPAND_LABEL_TLS13

New interface for HKDF-Expand-Label
algorithm

javacardx.security.derivation.TLSKDF
ExpandLabelSpec

API – ISO9796 signature with message recovery with
trailer field option 2
Support for ISO9796 signature with message recovery.

• Component: Java Card Application Programming Interface

• API: javacardx.crypto.Cipher class and javacard.security.Signature class
• Compliance: Optional

The API for cryptography is extended to support the following paddings for signatures
with message recovery:

• padding specified by ISO/IEC 9796-2 for signature scheme 1, signature production
function B.6 and giving message recovery with a trailer field option 2.

• padding specified by ISO/IEC 9796-2 for signature scheme 2, signature production
function B.6 and giving message recovery with a trailer field option 2.

• padding specified by ISO/IEC 9796-2 for signature scheme 3, signature production
function B.6 and giving message recovery with a trailer field option 2.

The new classes, interfaces, methods or constants for this feature must be available in
any Java Card 3.2 compliant implementation, but the corresponding algorithm
implementation is optional and may throw an exception with the following reason code
CryptoException.NO_SUCH_ALGORITHM.

New constant for ISO9796 scheme 1
trailer field option 2

javacardx.crypto.Cipher.PAD_ISO9796_
MR_SCHEME_1_OPTION_2

New constant for ISO9796 scheme 2
trailer field option 2

javacardx.crypto.Cipher.PAD_ISO9796_
MR_SCHEME_2_OPTION_2

New constant for ISO9796 scheme 3
trailer field option 2

javacardx.crypto.Cipher.PAD_ISO9796_
MR_SCHEME_3_OPTION_2

API – Extend support to EdDSA digital signature algorithm
Support for EdDSA digital signature algorithm.

• Component: Java Card Application Programming Interface

• API: javacard.security.Signature
• Compliance: optional

7

The API for pure and pre-hash EdDSA signatures is extended to bind a signature
instance to edwards25519 or edwards448 curves prior knowing the related key type.

The new classes, interfaces, methods or constants for this feature must be available in
any Java Card 3.2 compliant implementation, but the corresponding algorithm
implementation is optional and may throw an exception with the following reason code
CryptoException.NO_SUCH_ALGORITHM.

New constant for pure EdDSA for the
variant Ed25519

javacard.security.Signature.SIG_CIPH
ER_EDDSA_ED25519

New constant for pure EdDSA for the
variant Ed448

javacard.security.Signature.SIG_CIPH
ER_EDDSA_ED448

New constant for pre-hash EdDSA for
the variant Ed25519ph

javacard.security.Signature.SIG_CIPH
ER_EDDSAPH_ED25519

New constant for pre-hash EdDSA for
the variant Ed448ph

javacard.security.Signature.SIG_CIPH
ER_EDDSAPH_ED448

API –Extend support to SM2 key agreement with
confirmation value
Support for SM2 key agreements with confirmation value.

• Component: Java Card Application Programming Interface

• API: javacardx.security and javacard.security.KeyAgreement
• Compliance: Optional

The existing API for SM2 is extended to support the SM2 key agreement protocol with
and without confirmation values and for both the initiator and the receiver roles.

The new classes, interfaces, methods or constants for this feature must be available in
any Java Card 3.2 compliant implementation, but the corresponding algorithm
implementation is optional and may throw an exception with the following reason code
CryptoException.NO_SUCH_ALGORITHM.

New constant to perform an SM2 key
agreement operation using
confirmation values in and/or out

javacard.security.KeyAgreement.ALG_S
M2_WITH_CONFIRMATION

New interface to configure the role and
the parameters involved during an SM2
key agreement operation

javacard.security.SM2KeyAgreementPar
ameterSpec

New method to initialize a key
agreement instance based on
algorithm parameters such as for SM2

javacard.security.KeyAgreement.init(
)

API – Configure RSA-OAEP cipher scheme

8

Configuration of RSA-OAEP cipher scheme.

The RSA-OAEP cipher scheme refers to a message digest algorithm for both the
OAEP scheme itself and its underlying mask generation function (MGF1). The API is
extended to configure independently the message digest algorithm of the scheme and
the message digest algorithm of the MGF1.

The new classes, interfaces, methods or constants for this feature must be available in
any Java Card 3.2 compliant implementation, but the corresponding algorithm
implementation is optional and may throw an exception with the following reason code
CryptoException.NO_SUCH_ALGORITHM.

The following table lists the method and interfaces added to configure parameters.

New constant allowing to configure
OAEP parameters within Cipher.init()

javacardx.crypto.PAD_PKCS1_OAEP_EXT_
PARAMETERS

API – Configure RSA-PSS digital signature scheme
Configuration for RSA-PSS digital signature scheme

• Component: Java Card Application Programming Interface

• API: javacard.security.Signature and javacardx.crypto.Cipher
• Compliance: Optional

The RSA-PSS digital signature scheme refers to a message digest algorithm for both
the PSS scheme itself and its underlying mask generation function (MGF1). The API is
extended to configure independently the message digest algorithm of the scheme and
the message digest algorithm of the MGF1 as well as the salt length.

The new classes, interfaces, methods or constants for this feature must be available in
any Java Card 3.2 compliant implementation, but the corresponding algorithm
implementation is optional and may throw an exception with the following reason code
CryptoException.NO_SUCH_ALGORITHM.

New constant allowing to configure
PSS parameters within Signature.init()

javacardx.crypto.PAD_PKCS1_PSS_EXT_P
ARAMETERS

API – Retrieve available memory value as byte array
Retrieve available memory as byte array.

• Component: Java Card Application Programming Interface

• API: javacard.framework.JCSystem
• Compliance: Mandatory

Two methods already exist to retrieve the memory available for a given type either as
a short or in a short[]. The API is extended to also retrieve the value as a byte[].

9

New method to retrieve memory
available as a byte array

javacard.framework.JCSystem.getAvail
ableMemory()

API – Instantiate random generator with external access
Support for instantiating random generator with external access.

• Component: Java Card Application Programming Interface

• API: javacard.security.RandomData class
• Compliance: Optional

As for any other cryptographic objects, the random generator API is extended to
request explicitly a RandomData instance with external access. Such an instance can
be shared among multiple applet instances and/or can also be accessed (via a
Shareable interface) when the owner of the RandomData instance is not the currently
selected applet.

The previous method RandomData.getInstance() is deprecated.

The new classes, interfaces, methods, and constants for this feature must be available
in any Java Card 3.2 compliant implementation, but the corresponding algorithm
implementation is optional and may throw an exception with the following reason code
CryptoExcpetion.NO_SUCH_ALGORITHM reason code.

New method to instantiate a
RandomData object with external
access

javacard.security.RandomData.getInst
ance()

API – Clear a biometic template
Support for clearing a biometric template.

The interfaces referring to a biometric template owned by an applet are extended to
offer the possibility to clear the biometric template. Doing so, its state becomes
uninitialized.

New method to clear a biometric
template in owned by an applet

javacardx.biometry.OwnerBioTemplate.
clear()

New method to clear a biometric
template owned by an applet (1:N
biometric framework)

javacardx.biometry1toN.OwnerBioTempl
ateData.clear()

Clarifications
Additional information on clarifications and fixes.

This release contains the following clarifications and fixes:

10

3.1 Java Card Platform Virtual Machine
Specification, Classic Edition, Version 3.2
3.1.1 6.16 Static Resource Component

• Fix typo: static_resource replaced by static_resource_info

3.2 Java Card API Specification, Classic
Edition, Version 3.2
3.2.1 javacard.framework.MultiSelectable interface

• Method boolean select(boolean appInstAlreadyActive) – “package” replaced by
“group context”. Clarify the behavior when multiple I/O interfaces are supported.

• Method void deselect(boolean appInstStillActive) – “package” replaced by “group
context”. Clarify the behavior when multiple I/O interfaces are supported.

3.2.2 javacard.framework.APDU class

• Method byte getCLAChannel() – Clarify that the return value is based on the
logical channel encoding type returned by APDU.getLogicalChannelEncoding().

• Method boolean isSecureMessagingCLA() – Clarify that the return value is based
on the logical channel encoding type returned by
APDU.getLogicalChannelEncoding().

• Method void setOutgoingLength(short len) – Clarify when
APDUException.NO_T0_GETRESPONSE and
APDUException.NO_T0_REISSUE are thrown when multiple I/O interfaces are
supported.

• Method void sendBytesLong(byte[] outData, short bOff, short len) – Clarify when
APDUException.NO_T0_GETRESPONSE is thrown when multiple I/O interfaces
are supported.

3.2.3 javacard.framework.Applet class

• Method boolean select() – “package” replaced by “group context”. Clarify the
behavior when multiple I/O interfaces are supported.

• Method void deselect() – “package” replaced by “group context”. Clarify the
behavior when multiple I/O interfaces are supported.

3.2.4 javacard.framework.JCSystem class

• Method Shareable getAppletShareableInterfaceObject(AID serverAID, byte
parameter) – Clarify the behavior when multiple I/O interfaces are supported.

• Method static boolean isAppletActive(AID theApplet) – Clarify the behavior when
multiple I/O interfaces are supported.

3.2.5 javacard.framework.Resources class

11

• Method Resources getResources() – Clarify the returned instance is a permanent
JCRE Entry Point Object that can be accessed from any applet context.

• Method byte[] getView(short resourceId, short ofs, short len) – Clarify that an
IOException is thrown when the value offset + length exceeds the size returned by
getSize().

3.2.6 javacard.security.ECKey interface

• Method void setK(short K) – Clarify that the value “1” must be supported by any
implementation. A CryptoException.ILLEGAL_VALUE can be thrown when the
cofactor value K is different from 1 and not supported by the platform.

3.2.7 javacard.security.GenericSecretKey interface

• Interface description – Clarify that the key can be of any length aligned on a
multiple of 8 bits.

3.2.8 javacard.security.HMACKey interface

• Interface description – Clarify that the key can be of any length aligned on a
multiple of 8 bits.

3.2.9 javacard.security.Key interface

• Method byte getType() – Clarify that KeyBuilder.TYPE_XEC is returned for keys
implementing XECKey interface. Clarify that “0” is returned for keys for which the
type is not one of the pre-defined algorithms.

3.2.10 Javacard.security.SignatureMessageRecovery interface

• Interface description – Clarify the list of algorithms used by
Signature.getInstance(byte, boolean) and Signature.getInstance(byte, byte, byte,
boolean) that return an instance implementing this interface.

3.2.11 javacard.security.InitializedMessageDigest class

• Method void setInitialDigest(byte[] state, short stateOffset, short stateLength,
byte[] digestedMsgLenBuf, short digestedMsgLenOffset, short
digestedMsgLenLength) – Correct typo “initalDigestLength” into “stateLength”
when describing the CryptoException.ILLEGAL_VALUE case.

3.2.12 javacard.security.InitializedMessageDigest.OneShot class

• Method void setInitialDigest(…) – align parameters names with the same method
described into the InitializedMessageDigest class.

3.2.13 javacard.security.KeyAgreement class

• Class description – Clarify preserved (e.g. key) and unpreserved instance values
after a reset or a tear down.

• Constants ALG_EC_SVDP_DH, ALG_EC_SVDP_DHC – Clarify that those
constants are deprecated and should be replaced respectively by
ALG_EC_SVDP_DH_KDF and ALG_EC_SVDP_DHC_KDF.

• Constant ALG_SM2 – Clarify that it requires additional algorithm parameters and
the use of the init(PrivateKey, AlgoritmParameterSpec) method.

• Method void init(PrivateKey privKey) – Clarify CryptoException.ILLEGAL_VALUE
is thrown if KeyAgreement algorithm requires additional algorithm parameters.

12

• Method generateSecret(byte[] publicData, short publicOffset, short publicLength,
byte[] secret, short secretOffset) – Clarify the preserved (e.g. key) and
unpreserved instance values after generateSecret operation.
CryptoException.UNINITIALIZED_KEY is thrown if the PrivateKey or any other key
passed in additional parameters is not initialized.
CryptoException.ILLEGAL_VALUE is thrown if the publicData data is inconsistent
with the additional algorithm parameters passed in init(PrivateKey,
AlgoritmParameterSpec). Clarify the return value and value length when
ALG_SM2_WITH_CONFIRMATION algorithm is used.

3.2.14 javacard.security.KeyPair class

• Method void genKeyPair() – Clarify that, for DSA algorithm, default precomputed
p, q and g parameters may be used by the platform if not provided by the
application. It aligns with the Elliptic curve case.

3.2.15 javacard.security.RandomData class

• Method RandomData getInstance(byte algorithm) – This method is deprecated.
getInstance(byte algorithm, boolean externalAccess) should be used instead.

3.2.16 javacard.security.Signature class

• Class description – Clarify the preserved (e.g. key and mode) and unpreserved
instance values after a reset or a tear down.

• Constants ALG_RSA_SHA_ISO9796, ALG_RSA_RIPEMD160_ISO9796,
ALG_RSA_SHA_ISO9796_MR, ALG_RSA_RIPEMD160_ISO9796_MR – Clarify
constants refer to the scheme 1, the signature production function B.6 and trailer
field option 1 of the ISO9796 specification.

• Constants ALG_RSA_SHA_PKCS1_PSS, ALG_RSA_MD5_PKCS1_PSS,
ALG_RSA_RIPEMD160_PKCS1_PSS, ALG_RSA_SHA_224_PKCS1_PSS,
ALG_RSA_SHA_256_PKCS1_PSS, ALG_RSA_SHA_384_PKCS1_PSS,
ALG_RSA_SHA_512_PKCS1_PSS – Clarify the default salt length, the scheme
digest algorithm and the MGF1 digest algorithm.

• Constants SIG_CIPHER_EDDSA, SIG_CIPHER_EDDSAPH – Clarify to which
edDSA variants those constants refer to as per the RFC 8032. Clarify that this
cipher algorithm must be associated with message digest algorithm
MessageDigest.ALG_NULL and the padding algorithm Cipher.PAD_NULL when
calling getInstance(byte, byte, byte, boolean).

• Method void init(Key theKey, byte theMode) – Remove the note about the default
salt length value in case of RSA-PSS which is now decribed in the related RSA-
PSS constants. Remove the note about “optimal performance”.

• Method init(Key theKey, byte theMode, byte[] bArray, short bOff, short bLen) –
Remove the note about “optimal performance”. Clarify the expected behavior for
managing RSA PSS and EDDSA Java Card Platform Specification Release Notes,
v3.2 Page 23 parameters. CryptoException.NO_SUCH_ALGORITHM can be
thrown if the parameters referenced in the byte array parameter are not supported
in case of PAD_PKCS1_PSS_EXT_PARAMETERS padding.

• Method short getLength() – Clarify that for DSA and ECDSA, the returned length
must be the maximum possible length of the related ASN.1 sequence.

13

• Method void setInitialDigest(…) – align parameters names with the same method
described into the InitializedMessageDigest class.

• Method short sign(byte[] inBuff, short inOffset, short inLength, byte[] sigBuff, short
sigOffset) – Clarify the preserved (e.g. key and mode) and unpreserved instance
values after sign operation.

• Method short signPreComputedHash(byte[] hashBuff, short hashOffset, short
hashLength, byte[] sigBuff, short sigOffset) – Clarify the preserved (e.g. key and
mode) and unpreserved instance values after signPreComputedHash operation.
Clarify CryptoException.ILLEGAL_USE is thrown for edDSA algorithm.

• Method boolean verify(byte[] inBuff, short inOffset, short inLength, byte[] sigBuff,
short sigOffset, short sigLength) – Clarify the preserved (e.g. key and mode) and
unpreserved instance values after verify operation.

• Method boolean verifyPreComputedHash(byte[] hashBuff, short hashOffset, short
hashLength, byte[] sigBuff, short sigOffset, short sigLength) – Clarify the preserved
(e.g. key and mode) and unpreserved instance values after
verifyPreComputedHash operation. Clarify CryptoException.ILLEGAL_USE is
thrown for edDSA algorithm.

3.2.17 javacard.security.Signature.OneShot class

• Method void setInitialDigest(…) – align parameter names with the same method
described into the InitializedMessageDigest class.

3.2.18 javacardx.apdu.util.APDUUTIL class

• Method byte getCLAChannel(byte CLAbyte) – Clarify that this utility method
always refer to the type APDU.LC_ENCODING_TYPE_4_TYPE_16.

3.2.19 javacardx.biometry.OwnerBioTemplate interface

• Method short initMatch(byte[] candidate, short offset, short length) – Clarify that
the matching session ends in failed state if an exception is thrown during the
match.

• Method short match(byte[] candidate, short offset, short length) – Clarify that the
matching session ends in failed state if an exception is thrown during the match.

3.2.20 javacardx.biometry1toN.BioMatcher interface

• Method BioTemplateData getBioTemplateData(short index) – Clarify that template
indexing starts at value « 1 » (« 0 » is an invalid value).

• Method short getIndexOfLastMatchingBioTemplateData() – Clarify that template
indexing starts at value « 1 » (« 0 » is an invalid value).

• Method short initMatch(byte[] candidate, short offset, short length) – Clarify the
matching session ends in failed state if an exception is thrown during the match.
Also clarify that if the matching session ends, the validated flag remains in the
reset state.

• Method short match(byte[] candidate, short offset, short length) – Clarify the
matching session ends in failed state if an exception is thrown during the match.
Also clarify that the matching session must ignore any enrolled BioTemplateData
that is uninitialized. Bio1toNException.NO_BIO_TEMPLATE_ENROLLED is
thrown if none of the enrolled BioTemplateData is initialized.

14

3.2.21 javacardx.biometry1toN.OwnerBioMatcher interface

• Method OwnerBioTemplateData getBioTemplateData(short index) – Clarify that
template indexing starts at value « 1 » (« 0 » is an invalid value).

• Method short getIndexOfLastMatchingBioTemplateData() – Clarify that template
indexing starts at value « 1 » (« 0 » is an invalid value).

• Method void putBioTemplateData(short index, BioTemplateData templateData) –
Clarify that template indexing starts at value « 1 » (« 0 » is an invalid value).

3.2.22 javacardx.crypto.AEADCipher class

• Class description – Clarify the preserved (e.g. key and mode) and unpreserved
instance values after a reset or a tear down.

• Method void init(Key theKey, byte theMode) – Remove references to non-AEAD
algorithms. Clarify the nonce is a 12 bytes buffer full of zeroes for GCM mode.

• Method void init(Key theKey, byte theMode, byte[] bArray, short bOff, short bLen) –
Remove references to non-AEAD algorithms.

• Method short update(byte[] inBuff, short inOffset, short inLength, byte[] outBuff,
short outOffset) – Clarify the expected output length based on the algorithm. Add
reference to array views case when input/output buffers overlap. Remove
references to non-AEAD algorithms.

• Method short doFinal(byte[] inBuff, short inOffset, short inLength, byte[] outBuff,
short outOffset) – Clarify the preserved (e.g. key and mode) and unpreserved
instance values after doFinal operation. Remove references to non-AEAD
algorithms.

• Method short retrieveTag(byte[] tagBuf, short tagOff, short tagLen) – Clarify
CryptoException.ILLEGAL_USE is thrown if the mode is not MODE_ENCRYPT.
Clarify CryptoException.ILLEGAL_VALUE if the tag length is not equal to the
generated tag length e.g the length passed in init() method for ALD_AES_CCM.

• Method boolean verifyTag(byte[] receivedTagBuf, short receivedTagOff, short
receivedTagLen, short requiredTagLen) – Fix typos: “bits” renamed in “bytes”.
Clarify that if recievedTagLen and requiredTagLen are valid values and
recievedTagLen < requiredTagLen, the method returns false. Clarify
CryptoException.ILLEGAL_USE is thrown if the mode is not MODE_DECRYPT.

3.2.23 javacardx.crypto.Cipher class

• Class description – Clarify the preserved (e.g. key and mode) and unpreserved
instance values after a reset or a tear down.

• Constants PAD_ISO9796, PAD_ISO9796_MR, PAD_ISO9796_MR_SCHEME_2,
PAD_ISO9796_MR_SCHEME_3 – Clarify that these constants refer to the
signature production function B.6 and trailer field option 1 of the ISO9796
specification.

• Constant PAD_PKCS1_PSS – Clarify default salt length, scheme digest algorithm
and MGF1 digest algorithm.

• Constants ALG_RSA_PKCS1_OAEP, PAD_PKCS1_OAEP,
PAD_PKCS1_OAEP_SHA224, PAD_PKCS1_OAEP_SHA256,
PAD_PKCS1_OAEP_SHA384, PAD_PKCS1_OAEP_SHA512,
PAD_PKCS1_OAEP_SHA3_224, PAD_PKCS1_OAEP_SHA3_256,

15

PAD_PKCS1_OAEP_SHA3_384, PAD_PKCS1_OAEP_SHA3_512 – Clarify the
scheme digest algorithm and the MGF1 digest algorithm.

• Method void init(Key theKey, byte theMode) – Remove the note about “optimal
performance” and add reference to SM4.

• Method void init(Key theKey, byte theMode, byte[] bArray, short bOff, short bLen) –
Remove the note about “optimal performance”. Clarify the input array format for
AES XTS mode. Clarify the input array format for SM4 CBC mode. Clarify the
expected behavior for managing RSA OAEP parameters.
CryptoException.NO_SUCH_ALGORITHM can be thrown if the parameters
referenced in the byte array parameter are not supported in case of
PAD_PKCS1_OAEP_EXT_PARAMETERS padding.

• Method short update(byte[] inBuff, short inOffset, short inLength, byte[] outBuff,
short outOffset) – Clarify the expected output length based on the algorithm. Add
reference to array views case when input/output buffers overlap.

• Method short doFinal(byte[] inBuff, short inOffset, short inLength, byte[] outBuff,
short outOffset) – Clarify preserved (e.g. key and mode) and unpreserved instance
values after doFinal operation.

3.2.24 javacardx.security.derivation.DerivationFunction class

• Class description – Clarify that after a reset or a tear down, the object state is
reset, like after a call to one of the nextBytes() methods, and has to be initialized
again using the init(AlgorithmParameterSpec) method.

Supported Platforms
The Java Card specification documents are accessible on any computer system with
an Unzip utility, Adobe Acrobat Reader (version 4.0 or later), and a CSS-compliant
web browser.

View the HTML files using any of the following CSS-compliant browsers:

• Internet Explorer, version 5.0 or later.

• Mozilla Firefox, version 11.0 or later.

View the PDF files in your web browser with an appropriate plugin or in the Adobe®

Acrobat Reader. Most recent browsers include the PDF reader plugin. However, if your
browser doesn’t have one, then download the plugin from the Install Adobe Acrobat
Reader website.

Downloading the Specification Documents
Perform the following steps to download the specifications:

1. Download the specification bundle from the Java Card Technology web site.

2. Unzip the bundle.

3. Browse to the javacard_specifications-3_2/classic folder.

The classic directory has the following sub folders:

16

http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html
https://www.oracle.com/technetwork/java/embedded/javacard/downloads/index.html

• api_classic: Contains the Java Card API specification for the Classic Edition,
Version 3.2 in the JavadocTM tool HTML format. Use the available browsers to
view the APIs. However, the APIs might not render well in Mozilla Firefox,
version 3.0.10.

• jcre_classic: Contains the Java Card Runtime Environment specification for
the Classic Edition, Version 3.2 in the PDF format
(JCREspecCLASSIC-3_2.pdf).

• jcvm_classic: Contains the Java Card Virtual Machine specification for the
Classic Edition, version 3.2 in the PDF format (JCVMspecCLASSIC_3_2.pdf).

Known Issues
There are no known issues in this release of Java Card specifications.

Product Information
The Java Card Technology website provides useful information about the Java Card
product.

Visit the Java Card Technology website to access the most up-to-date information on
the following:

• Product news and reviews

• Release notes and product documentation

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Java Card Platform Specification Release Notes, Version 3.2
F74152-01

Copyright © 1998, 2023, Oracle and/or its affiliates. All rights reserved.

Release notes for Java Card Platform Specifications, Version 3.2.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws.
Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,

17

https://www.oracle.com/technetwork/java/embedded/javacard/downloads/index.html
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are
"commercial computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i)
Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take
all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable
agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-
party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

18

