Java Platform, Standard Edition
Core Libraries

Release 11
E94895-12
October 2025

ORACLE"

Java Platform, Standard Edition Core Libraries, Release 11
E94895-12
Copyright © 2017, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience
Related Documents
Conventions

1 Java Core Libraries

2 Serialization Filtering

Addressing Deserialization Vulnerabilities

Java Serialization Filters

Filter Factories

Allow-Lists and Reject-Lists

Creating Pattern-Based Filters

Creating Custom Filters
Reading a Stream of Serialized Objects
Setting a Custom Filter for an Individual Stream
Setting a JVM-Wide Custom Filter
Setting a Custom Filter Using a Pattern
Setting a Custom Filter as a Class
Setting a Custom Filter as a Method

Setting a Filter Factory

Built-in Filters

Logging Filter Actions

3 Enhanced Deprecation

© 00 00 N N O OO o0 A W WwWwN PP

i
AN

Deprecation in the JDK
How to Deprecate APIs
Notifications and Warnings
Running jdeprscan

Core Libraries
E94895-12
Copyright © 2017, 2025, Oracle and/or its affiliates.

a w k-

October 14, 2025
Page i of iii

4 XML Catalog API

Purpose of XML Catalog API
XML Catalog API Interfaces
Using the XML Catalog API
System Reference
Public Reference
URI Reference
Java XML Processors Support
Enable Catalog Support

00 N O O o w w N

Use Catalog with XML Processors

[N
N

Calling Order for Resolvers

[EnN
N

Detecting Errors

5 Creating Unmodifiable Lists, Sets, and Maps

Use Cases
Syntax
Unmodifiable List Static Factory Methods
Unmodifiable Set Static Factory Methods
Unmodifiable Map Static Factory Methods
Creating Unmaodifiable Copies of Collections
Creating Unmodifiable Collections from Streams
Randomized Iteration Order
About Unmodifiable Collections
Space Efficiency
Thread Safety

0 N O oA M WOWDNDNDNPE

3) Process API

Process API Classes and Interfaces
ProcessBuilder Class
Process Class
ProcessHandle Interface
ProcessHandle.Info Interface
Creating a Process
Getting Information About a Process
Redirecting Output from a Process
Filtering Processes with Streams

N o o o B~ B W DN DN PR

Handling Processes When They Terminate with the onExit Method

=Y
o

Controlling Access to Sensitive Process Information

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page ii of iii

7 Preferences API

Comparing the Preferences API to Other Mechanisms
Usage Notes
Obtain Preferences Objects for an Enclosing Class
Obtain Preferences Objects for a Static Method
Atomic Updates
Determine Backing Store Status
Design FAQ

8 Java Logging Overview

A A W W DNDDN PR

Java Logging Examples
Appendix A: DTD for XMLFormatter Output

o Java Networking

Networking System Properties
HTTP Client Properties
HTTP Server Properties
IPv4 and IPv6 Protocol Properties
HTTP Proxy Properties
HTTPS Proxy Properties
FTP Proxy Properties
SOCKS Proxy Properties
Acquiring the SOCKS User Name and Password
Other Proxy-Related Properties
Other HTTP URL Stream Protocol Handler Properties

System Properties That Modify the Behavior of HTTP Digest Authentication
Mechanism

Address Cache Properties
Enhanced Exception Messages

Core Libraries
E94895-12
Copyright © 2017, 2025, Oracle and/or its affiliates.

© © 00 00 N O b PP

e
P O

L
» b W

October 14, 2025
Page iii of iii

ORACLE’

Preface

This guide provides information about the Java core libraries.

Audience

This document is for Java developers who develop applications that require functionality such
as threading, process control, I/0O, monitoring and management of the Java Virtual Machine
(JVM), serialization, concurrency, and other functionality close to the JVM.

Related Documents

See JDK 11 Documentation.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Pageiofi

https://www.oracle.com/pls/topic/lookup?ctx=javase11&id=homepage

Java Core Libraries

The core libraries consist of classes which are used by many portions of the JDK. They include
functionality which is close to the VM and is not explicitly included in other areas, such as
security. Here you will find current information that will help you use some of the core libraries.

Topics in this Guide

e Serialization Filtering

 Enhanced Deprecation
e XML Catalog API

e Creating Unmodifiable Lists, Sets, and Maps

e Process API

» Preferences API

e Java Logging Overview

Other Core Libraries Guides

e Internationalization Overview in Java Platform, Standard Edition Internationalization Guide

Security Related Topics

» Serialization Filtering
* RMI:

— RMI Security Recommendations in Java Platform, Standard Edition Java Remote
Method Invocation User's Guide

— Using Custom Socket Factories with Java RMI in the Java Tutorials
e JAXP:

— JAXP Processing Limits in the Java Tutorials

— External Access Restriction Properties in the Java Tutorials

Core Libraries
E94895-12 October 14, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 1

https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/socketfactory/index.html
https://docs.oracle.com/javase/tutorial/jaxp/limits/index.html
https://docs.oracle.com/javase/tutorial/jaxp/properties/backgnd.html

Serialization Filtering

You can use the Java serialization filtering mechanism to help prevent deserialization
vulnerabilities. You can define pattern-based filters or you can create custom filters.

Topics:

« Addressing Deserialization Vulnerabilities

e Java Serialization Filters

e Filter Factories

» Allow-Lists and Reject-Lists

e Creating Pattern-Based Filters

e Creating Custom Filters

e Setting a Filter Factory

e Built-in Filters

e Logging Filter Actions

Addressing Deserialization Vulnerabilities

Core Libraries
E94895-12

An application that accepts untrusted data and deserializes it is vulnerable to attacks. You can
create filters to screen incoming streams of serialized objects before they are deserialized.

Inherent Dangers of Deserialization

Deserializing untrusted data, especially from an unknown, untrusted, or unauthenticated client,
is an inherently dangerous activity because the content of the incoming data stream
determines the objects that are created, the values of their fields, and the references between
them. By careful construction of the stream, an adversary can run code in arbitrary classes
with malicious intent.

For example, if object construction has side effects that change state or invoke other actions,
then those actions can compromise the integrity of application objects, library objects, and
even the Java runtime. "Gadget classes,” which can perform arbitrary reflective actions such
as create classes and invoke methods on them, can be deserialized maliciously to cause a
denial of service or remote code execution.

The key to disabling deserialization attacks is to prevent instances of arbitrary classes from
being deserialized, thereby preventing the direct or indirect execution of their methods. You
can do this through serialization filters.

Java Serialization and Deserialization Overview

An object is serialized when its state is converted to a byte stream. That stream can be sent to
a file, to a database, or over a network. A Java object is serializable if its class or any of its
superclasses implements either the j ava. i 0. Seri al i zabl e interface or the

j ava.i o. Ext er nal i zabl e subinterface. In the JDK, serialization is used in many areas,

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 14

ORACLE

Chapter 2
Java Serialization Filters

including Remote Method Invocation (RMI), custom RMI for interprocess communication (IPC)
protocols (such as the Spring HTTP invoker), and Java Management Extensions (JMX).

An object is deserialized when its serialized form is converted to a copy of the object. It is
important to ensure the security of this conversion. Deserialization is code execution because
the r eadObj ect method of the class that is being deserialized can contain custom code.

Serialization Filters

A serialization filter enables you to specify which classes are acceptable to an application and
which should be rejected. Filters also enable you to control the object graph size and
complexity during deserialization so that the object graph doesn’t exceed reasonable limits.
You can configure filters as properties or implement them programmatically.

® Note

A serialization filter is not enabled or configured by default. Serialization filtering
doesn't occur unless you have specified the filter in a system property or a Security
Property or set it with the Obj ect | nput Fi | t er class.

Besides creating filters, you can take the following actions to help prevent deserialization
vulnerabilities:

* Do not deserialize untrusted data.
* Use SSL to encrypt and authenticate the connections between applications.

* Validate field values before assignment, for example, checking object invariants by using
the r eadObj ect method.

@® Note

Built-in filters are provided for RMI. However, you should use these built-in filters as
starting points only. Configure reject-lists and/or extend the allow-list to add additional
protection for your application that uses RMI. See Built-in Filters.

For more information about these and other strategies, see "Serialization and Deserialization"
in Secure Coding Guidelines for Java SE.

Java Serialization Filters

Core Libraries
E94895-12

Copyright © 2017, 2025, Oracle and/or its affiliates.

The Java serialization filtering mechanism screens incoming streams of serialized objects to
help improve security and robustness. Filters can validate incoming instances of classes
before they are deserialized.

As stated in JEP 290 and JEP 415, the goals of the Java serialization filtering mechanism are
to:

* Provide a way to narrow the classes that can be deserialized down to a context-
appropriate set of classes.

* Provide metrics to the filter for graph size and complexity during deserialization to validate
normal graph behaviors.

« Allow RMI-exported objects to validate the classes expected in invocations.

October 14, 2025
Page 2 of 14

https://www.oracle.com/java/technologies/javase/seccodeguide.html
https://openjdk.java.net/jeps/290
https://openjdk.java.net/jeps/415

ORACLE

Chapter 2
Filter Factories

There are two kinds of filters:

« JVM-wide filter: Is applied to every deserialization in the JVM. However, whether and how
a JVM-wide filter validates classes in a particular deserialization depends on how it's
combined with other filters.

- Stream-specific filter: Validates classes from one specific Obj ect | nput St r eam

You can implement a serialization filter in the following ways:

* Specify a JVM-wide, pattern-based filter with the j dk. serial Fi | ter property: A
pattern-based filter consists of a sequence of patterns that can accept or reject the name
of specific classes, packages, or modules. It can place limits on array sizes, graph depth,
total references, and stream size. A typical use case is to add classes that have been
identified as potentially compromising the Java runtime to a reject-list. If you specify a
pattern-based filter with the j dk. seri al Fi | t er property, then you don't have to modify
your application.

« Implement a custom or pattern-based stream-specific filter with the
oj ect I nput Fi | ter API: You can implement a filter with the Cbj ect | nput Fi | t er API,
which you then set on an Obj ect | nput St r eam You can create a pattern-based filter with
the bj ect I nput Fi | t er API by calling the Confi g.createFilter(String) method.

@® Note

A serialization filter is not enabled or configured by default. Serialization filtering
doesn't occur unless you have specified the filter in a system property or a Security
Property or set it with the Obj ect | nput Fi | t er class.

For every new object in the stream, the filter mechanism applies only one filter to it. However,
this filter might be a combination of filters.

In most cases, a stream-specific filter should check if a JVM-wide filter is set, especially if you
haven't specified a filter factory. If a JVM-wide filter does exist, then the stream-specific filter
should invoke it and use the JVM-wide filter’s result unless the status is UNDECI DED.

Filter Factories

A filter factory selects, chooses, or combines filters into a single filter to be used for a stream.
When you specify one, a deserialization operation uses it when it encounters a class for the
first time to determine whether to allow it. (Subsequent instances of the same class aren't
filtered.) It's implemented as a Bi nar yOper at or <Cbj ect | nput Fi | t er > and specified in a
system or Security property; see Setting a Filter Factory. Whenever an Obj ect | nput St r eam
is created, the filter factory selects an Obj ect | nput Fi | t er . However, you can have a
different filter created based on the characteristics of the stream and the filter that the filter
factory previously created.

Allow-Lists and Reject-Lists

Core Libraries
E94895-12

Allow-lists and reject-lists can be implemented using pattern-based filters or custom filters.
These lists allow you to take proactive and defensive approaches to protect your applications.

The proactive approach uses allow-lists to allow only class names that are recognized and
trusted and to reject all others. You can implement allow-lists in your code when you develop
your application, or later by defining pattern-based filters. If your application only deals with a

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 14

ORACLE

Chapter 2
Creating Pattern-Based Filters

small set of classes then this approach can work very well. You can implement allow-lists by
specifying the names of classes, packages, or modules that are allowed.

The defensive approach uses reject-lists to reject instances of classes that are not trusted.
Usually, reject-lists are implemented after an attack that reveals that a class is a problem. A
class name can be added to a reject-list, without a code change, by adding it to a pattern-
based filter that's specified in the j dk. seri al Fi | t er property.

Creating Pattern-Based Filters

Core Libraries
E94895-12

Copyright © 2017, 2025, Oracle and/or its affiliates.

Pattern-based filters are filters that you define without changing your application code. You add

JVM-wide filters in properties files or application-specific filters on the j ava command line.

A pattern-based filter is a sequence of patterns. Each pattern is matched against the name of a

class in the stream or a resource limit. Class-based and resource limit patterns can be
combined in one filter string, with each pattern separated by a semicolon (;).

Pattern-based Filter Syntax

When you create a filter that is composed of patterns, use the following guidelines:

e Separate patterns by semicolons. For example:
patternl.*;pattern2. *

* White space is significant and is considered part of the pattern.

Put the limits first in the string. They are evaluated first regardless of where they are in the
string, so putting them first reinforces the ordering. Otherwise, patterns are evaluated from
left to right.

A class name that matches a pattern that is preceded by ! is rejected. A class name that
matches a pattern without ! is allowed. The following filter rejects patternl. Myd ass but

allows pattern2. MC ass:

I'patternl. *;pattern2. *

« Use the wildcard symbol (*) to represent unspecified class names in a pattern as shown in

the following examples:

— To match every class name, use *

— To match every class name in nypackage, use nypackage. *

— To match every class name in nypackage and its subpackages, use nypackage. **

— To match every class name that starts with t ext, use t ext *

If a class name doesn’t match any filter, then it is allowed. If you want to allow only certain
class names, then your filter must reject everything that doesn’t match. To reject all class
names other than those specified, include ! * as the last pattern in a class filter.

For a complete description of the syntax for the patterns, see JEP 290.

Pattern-Based Filter Limitations
The following are some of the limitations of pattern-based filters:

« Patterns can't allow different sizes of arrays based on the class name.

« Patterns can’t match classes based on the supertype or interfaces of the class name.

October 14, 2025
Page 4 of 14

http://openjdk.java.net/jeps/290

ORACLE

Core Libraries
E94895-12

Chapter 2
Creating Pattern-Based Filters

« Patterns have no state and can’t make choices depending on the class instances
deserialized earlier in the stream.

® Note

A pattern-based filter doesn't check interfaces that are implemented by classes being
deserialized. The filter is invoked for interfaces explicitly referenced in the stream; it
isn't invoked for interfaces implemented by classes for objects being deserialized.

Define a Pattern-Based Filter for One Application

You can define a pattern-based filter as a system property for one application. A system
property supersedes a Security Property value.

To create a filter that only applies to one application, and only to a single invocation of Java,
define the j dk. seri al Fi | t er system property in the command line.

The following example shows how to limit resource usage for an individual application:
java -

Dj dk. seri al Fi | t er=maxarr ay=100000; maxdept h=20; naxr ef =500 com exanpl e. t est. App
l'ication

Define a Pattern-Based Filter for All Applications

You can define a pattern-based, JVM-wide filter that affects every application run with a Java

runtime from $JAVA_HOME by specifying it as a Security Property. (Note that a system property
supersedes a Security Property value.) Edit the file $JAVA HOVE/ conf/ security/

j ava. security and add the pattern-based filter to the j dk. seri al Fi | t er Security Property.

Define a Class Filter

You can create a pattern-based class filter that is applied globally. For example, the pattern
might be a class hame or a package with wildcard.

In the following example, the filter rejects one class nhame from a package (!
exanpl e. somepackage. SomeC ass), and allows all other class names in the package:

j dk.serial Filter=!exanpl e. sonepackage. Soned ass; exanpl e. sonepackage. *;

The previous example filter allows all other class hames, not just those in
exanpl e. somepackage. *. To reject all other class names, add ! *:

jdk.serial Filter=!exanpl e. sonepackage. Soned ass; exanpl e. somepackage. *; ! *

Define a Resource Limit Filter

A resource filter limits graph complexity and size. You can create filters for the following
parameters to control the resource usage for each application:

Maximum allowed array size. For example: maxar r ay=100000;

Maximum depth of a graph. For example: maxdept h=20;

Maximum references in a graph between objects. For example: maxr ef s=500;

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 14

ORACLE Chapter 2
Creating Custom Filters

e Maximum number of bytes in a stream. For example: maxbyt es=500000;

Creating Custom Filters

Custom filters are filters you specify in your application’s code. They are set on an individual
stream or on all streams in a process. You can implement a custom filter as a pattern, a
method, a lambda expression, or a class.

Topics

 Reading a Stream of Serialized Objects

e Setting a Custom Filter for an Individual Stream
e Setting a JVM-Wide Custom Filter

e Setting a Custom Filter Using a Pattern

e Setting a Custom Filter as a Class

e Setting a Custom Filter as a Method

Reading a Stream of Serialized Objects

You can set a custom filter on one Qhj ect | nput St r eam or, to apply the same filter to every
stream, set a JVM-wide filter. If an Obj ect | nput St r eamdoesn’t have a filter defined for it, the
JVM-wide filter is called, if there is one.

While the stream is being decoded, the following actions occur:

e For each new object in the stream and before the object is instantiated and deserialized,
the filter is called when it encounters a class for the first time. (Subsequent instances of the
same class aren't filtered.)

» For each class in the stream, the filter is called with the resolved class. It is called
separately for each supertype and interface in the stream.

e The filter can examine each class referenced in the stream, including the class of objects
to be created, supertypes of those classes, and their interfaces.

e For each array in the stream, whether it is an array of primitives, array of strings, or array
of objects, the filter is called with the array class and the array length.

e For each reference to an object already read from the stream, the filter is called so it can
check the depth, number of references, and stream length. The depth starts at 1 and
increases for each nested object and decreases when each nested call returns.

e The filter is not called for primitives or for j ava. | ang. St ri ng instances that are encoded
concretely in the stream.

e The filter returns a status of accept, reject, or undecided.
» Filter actions are logged if logging is enabled.

Unless a filter rejects the object, the object is accepted.

Setting a Custom Filter for an Individual Stream

You can set a filter on an individual Qbj ect | nput St r eamwhen the input to the stream is
untrusted and the filter has a limited set of classes or constraints to enforce. For example, you
could ensure that a stream only contains numbers, strings, and other application-specified

types.

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 14

ORACLE

Chapter 2
Creating Custom Filters

A custom filter is set using the set Obj ect | nput Fi | t er method. The custom filter must be
set before objects are read from the stream.

In the following example, the set Cbj ect | nput Fi | t er method is invoked with the
dat eTi meFi | t er method. This filter only accepts classes from the j ava. t i ne package. The
dat eTi meFi | t er method is defined in a code sample in Setting a Custom Filter as a Method.

Local Dat eTi ne readDat eTi me(I nput Streamis) throws | OException {

try (CbjectlnputStreamois = new QbjectlnputStrean(is)) {
ois.setCbjectinputFilter(FilterCdass::dateTimeFilter);
return (Local DateTine) ois.readbject();

} catch (O assNot FoundException ex) {
| CException ioe = new StreanCorruptedException("class nissing");
i oe.initCause(ex);
throw i oe;

Setting a JVM-Wide Custom Filter

You can set a JVM-wide filter that applies to every use of bj ect | nput St r eamunless it is
overridden on a specific stream. If you can identify every type and condition that is needed by
the entire application, the filter can allow those and reject the rest. Typically, JVM-wide filters
are used to reject specific classes or packages, or to limit array sizes, graph depth, or total
graph size.

A JVM-wide filter is set once using the methods of the Obj ect | nput Fi | t er. Conf i g class.
The filter can be an instance of a class, a lambda expression, a method reference, or a pattern.

ojectInputFilter filter = ...
QojectInputFilter.Config.setSerial Filter(filter);

In the following example, the JVM-wide filter is set by using a lambda expression.

bj ectinputFilter.Config.setSerial Filter(
info ->info.depth() > 10 ? Status. REJECTED : Status. UNDECI DED);

In the following example, the JVM-wide filter is set by using a method reference:

ojectInputFilter.Config.setSerial Filter(FilterCl ass::dateTineFilter);

Setting a Custom Filter Using a Pattern

Core Libraries
E94895-12

A pattern-based custom filter, which is convenient for simple cases, can be created by using
the Gbj ect I nput Fil ter. Confi g. createFil ter method. You can create a pattern-based
filter as a system property or Security Property. Implementing a pattern-based filter as a
method or a lambda expression gives you more flexibility.

The filter patterns can accept or reject specific names of classes, packages, and modules and
can place limits on array sizes, graph depth, total references, and stream size. Patterns cannot
match the names of the supertype or interfaces of the class.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 14

ORACLE

Chapter 2
Creating Custom Filters

In the following example, the filter allows exanpl e. Fi | e and rejects exanpl e. Directory.

ojectinputFilter filesOnlyFilter =
Qbj ectlnputFilter.Config.createFilter("exanple.File;!exanple.Directory");

This example allows only exanpl e. Fi | e. All other class names are rejected.

QojectInputFilter filesOnlyFilter =
QbjectinputFilter.Config.createFilter("example.File;!*");

Setting a Custom Filter as a Class

A custom filter can be implemented as a class implementing the
java.io. oject !l nput Filter interface, as a lambda expression, or as a method.

A filter is typically stateless and performs checks solely on the input parameters. However, you
may implement a filter that, for example, maintains state between calls to the checkl nput
method to count artifacts in the stream.

In the following example, the Fi | t er Nunber class allows any object that is an instance of the
Nunber class and rejects all others.

class FilterNunber inplenents QbjectlnputFilter {
public Status checklnput(Filterinfo filterlnfo) {
O ass<?> clazz = filterInfo.serial dass();
if (clazz '= null) {
return (Number. cl ass. i sAssi gnabl eFrom(cl azz))
? CbjectlnputFilter. Status. ALLOAED
bj ectInput Fil ter. Status. REJECTED;

1
return QojectlnputFilter. Status. UNDECI DED,

In the example:

e The checkl nput method accepts an Obj ect I nputFilter. Filterlnfo object. The object’s
methods provide access to the class to be checked, array size, current depth, number of
references to existing objects, and stream size read so far.

e Ifserial dass is not null, then the value is checked to see if the class of the object is
Nurber . If so, it is accepted and returns Cbj ect | nput Fi | t er. St at us. ALLOAED. Otherwise, it
is rejected and returns oj ect I nput Fi | ter. St at us. REJECTED.

« Any other combination of arguments returns bj ect | nput Fi | t er. St at us. UNDECI DED.
Deserialization continues, and any remaining filters are run until the object is accepted or
rejected. If there are no other filters, the object is accepted.

Setting a Custom Filter as a Method

Core Libraries
E94895-12

A custom filter can also be implemented as a method. The method reference is used instead of
an inline lambda expression.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 14

ORACLE Chapter 2
Setting a Filter Factory

The dat eTi meFi | t er method that is defined in the following example is used by the code
sample in Setting a Custom Filter for an Individual Stream.

public class Filterdass {
static ObjectlnputFilter. Status
dateTimeFilter(QbjectinputFilter.Filterlnfo info) {
O ass<?> serial Cass = info.serial dass();
if (serialCass !'=null) {
return serial O ass. get PackageNanme() . equal s("j ava.time")
? ObjectinputFilter. Status. ALLOAED
bj ect I nput Fi | ter. Status. REJECTED;

}
return QojectlnputFilter. Status. UNDECI DED,

This custom filter allows only the classes found in the base module of the JDK:

static ObjectinputFilter. Status
baseFilter(CbjectinputFilter.Filterlnfo info) {
O ass<?> serial Cass = info.serial dass();
if (serialClass !'=null) {
return serial O ass. get Modul e(). get Narre() . equal s("j ava. base")
? CbjectinputFilter. Status. ALLONED
bj ect I nput Fi | ter. Status. REJECTED;

}
return QojectlnputFilter. Status. UNDECI DED,

Setting a Filter Factory

A filter factory is a Bi nar yQper at or , which is a function of two operands that chooses the
filter for a stream. You set a filter factory by specifying its class name in the system property
jdk.serial FilterFactory orinthe Security Property j dk. serial Fi |l terFactory.

Creating a Filter Factory

The following is a simple example of a filter factory. It prints its Cbj ect | nput Fi | t er
parameters every time its appl y method is invoked, then returns an Qbj ect | nput Fi | t er
that consists of the appl y method's parameters merged into one filter:

public class BasicFilterFactory inplenents BinaryQOperator<CbjectlnputFilter> {

public bjectlinputFilter apply(CbjectinputFilter curr, CbjectinputFilter

next) {
Systemout.printIn("Current filter: " + curr);
Systemout. println("Requested filter: " + next);
if (curr == null) return next;
if (next == null) return curr;

return (Filterlnfo info) -> {
Qbj ectlnputFilter.Status currStatus = curr. checkl nput (info);
if (ObjectlinputFilter. Status. REJECTED. equal s(currStatus)) {
return QojectlnputFilter. Status. REJECTED,
}

Core Libraries
E94895-12 October 14, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 9 of 14

ORACLE

Core Libraries
E94895-12

Chapter 2
Setting a Filter Factory

Obj ectlnputFilter. Status nextStatus = next.checkl nput (info);

if (ObjectlInputFilter. Status. REJECTED. equal s(next Status)) {
return QojectlnputFilter. Status. REJECTED,

}

if (ObjectinputFilter. Status. ALLOAED. equal s(curr Stat us)
|| ObjectlnputFilter.Status. ALLOAED. equal s(next Status)) {
return QbjectlnputFilter. Status. ALLOVED,

}
return QojectlnputFilter. Status. UNDECI DED;

When you set a filter factory, the filter factory's method

Bi nar yQper at or <Qbj ect I nput Fi | t er>. appl y(Cbj ectInputFilter t, ObjectInputFilter u)
will be invoked when an Obj ect | nput St r eamis constructed and when a stream-specific filter is
set on an bj ect | nput St ream The parameter t is the current filter and u is the requested filter.
When appl vy is first invoked, t will be null. If a JVM-wide filter has been set, then when appl y
is first invoked, u will be the JVM-wide filter. Otherwise, u will be null. The appl y method
(which you must implement yourself) returns the filter to be used for the stream. If appl y is
invoked again, then the parameter t will be this returned filter. When you set a filter with the
method Obj ect | nput St ream set Cbj ect I nputFilter(QbjectlnputFilter),then
parameter u will be this filter.

@® Note

To protect against unexpected deserializations, ensure that security experts thoroughly
review how your filter factories select and combine filters.

Specifying a Filter Factory in a System or Security Property

You can set a filter factory that applies to only one application and to only a single invocation of
Java by specifying it in the j dk. seri al Fi | t er Fact ory system property in the command line:

java -Djdk.serial FilterFactory=FilterFactoryC assName YourApplication

The value of j dk. seri al Fi | t er Fact ory is the fully qualified class name of the filter factory to
be set before the first deserialization. The class must be public and accessible to the
application class loader (which the method

java.l ang. O assLoader . get Syst enC assLoader () returns).

You can set a JVM-wide filter factory that affects every application run with a Java runtime
from $JAVA HOME by specifying it in a Security Property. Note that a system property
supersedes a Security Property value. Edit the file $JAVA_HOVE/ conf/ security/

j ava. securi ty and specify the filter factory's class name in the j dk. seri al Fi | t er Fact ory
Security Property.

The following example demonstrates the filter factory Basi cFi | t er Fact ory:

public class TestBasicFilter {

private static byte[] createSinpleStream bject obj) {
Byt eArrayQut put St ream boas = new Byt eArrayQut put Streamn();
try (CbjectQutputStreamois = new (bject Qut put Stream boas)) {
oi s.writeChject(obj);

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 10 of 14

ORACLE Chapter 2
Setting a Filter Factory

return boas.toByteArray();
} catch (I CException ioe) {

i oe. printStackTrace();
}

t hrow new Runti nmeException();

}

static class FilterNunber inplenents QojectlnputFilter {
public Status checklnput(Filterinfo filterlnfo) {
C ass<?> clazz = filterInfo.serial dass();
if (clazz !'=null) {
return (Nunber. cl ass. i sAssi gnabl eFrom(cl azz)) ?
Status. ALLOAED : St at us. REJECTED;

!
return Status. UNDECI DED;

}
public static void main(String[] args) throws |CException {
/1 Set the JVMwide static filter

ojectinputFilter filterl =
oj ectInputFilter.Config.createFilter("exanple.*;java. base/*;!*");
ojectInputFilter.Config.setSerial Filter(filterl);

/1 Create another filter
QojectInputFilter filter2 = new FilterNunber();
/] Create input stream

byte[] intByteStream = createSinpl eStrean(42);

Input Streamis = new ByteArrayl nput Strean(intByteStrean);
oj ect I nput Stream oi s = new Qbj ect | nput Strean(is);
ois.setQbjectlnputFilter(filter2);

try {
(bj ect obj = ois.readOhject();
Systemout. printin("Read obj: " + obj);
} catch (C assNot FoundException e) {
e.printStackTrace();

}

Run Test Basi cFi | t er with the following command:

java -Djdk.serial FilterFactory=BasicFilterFactory TestBasicFilter

This command prints output similar to the following:

Aug. 03, 2021 2:30:19 P.M java.io.ojectlnputFilter$Config <clinit>
INFO. Creating deserialization filter factory for BasicFilterFactory
Current filter: null

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 11 of 14

ORACLE

Chapter 2
Built-in Filters

Requested filter: exanple.*;java.base/*;!*

Current filter: exanple.*;java. base/*;!*

Requested filter: TestBasicFilter$FilterNunber @9f 99ea
Read obj: 42

The appl y method is invoked twice: when the Cbj ect | nput St r eamoi s is created and when
the method set Obj ect I nput Fi | t er is called.

@® Note

You can set a filter on an Qbj ect | nput St r eamonly once. An
I Il egal St at eExcepti on will be thrown otherwise.

Built-in Filters

Core Libraries
E94895-12

The Java Remote Method Invocation (RMI) Registry, the RMI Distributed Garbage Collector,
and Java Management Extensions (JMX) all have filters that are included in the JDK. You
should specify your own filters for the RMI Registry and the RMI Distributed Garbage Collector
to add additional protection.

Filters for RMI Registry

@® Note

Use these built-in filters as starting points only. Edit the
sun.rm.registry.registryFilter system property to configure reject-lists and/or
extend the allow-list to add additional protection for the RMI Registry. To protect the
whole application, add the patterns to the j dk. seri al Fi | t er global system property to
increase protection for other serialization users that do not have their own custom
filters.

The RMI Registry has a built-in allow-list filter that allows objects to be bound in the registry. It
includes instances of the j ava. rmi . Renot e, j ava. | ang. Nunber, j ava. | ang. refl ect. Proxy,
java.rm.server. UnicastRef,java.rm.server. U D,

java.rm.server. RM O ient Socket Factory, and java.rni.server.RM Server Socket Fact ory
classes.

The built-in filter includes size limits:

maxar r ay=1000000; maxdept h=20

Supersede the built-in filter by defining a filter using the sun. rm . regi stry.registryFilter
system property with a pattern. If the filter that you define either accepts classes passed to the
filter, or rejects classes or sizes, the built-in filter is not invoked. If your filter does not accept or
reject anything, the built-filter is invoked.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 12 of 14

ORACLE Chapter 2
Built-in Filters

Filters for RMI Distributed Garbage Collector

@® Note

Use these built-in filters as starting points only. Edit the
sun.rmi.transport.dgcFilter system property to configure reject-lists and/or extend
the allow-list to add additional protection for Distributed Garbage Collector. To protect
the whole application, add the patterns to the j dk. seri al Fi | t er global system
property to increase protection for other serialization users that do not have their own
custom filters.

The RMI Distributed Garbage Collector has a built-in allow-list filter that accepts a limited set of
classes. It includes instances of the j ava. rmi . server. Qj | D, java. rni. server. U D,
java.rm.dgc. VM D, and j ava. rmi . dgc. Lease classes.

The built-in filter includes size limits:

maxar r ay=1000000; maxdept h=20

Supersede the built-in filter by defining a filter using the sun. rmi . transport. dgcFil ter system
property with a pattern. If the filter accepts classes passed to the filter, or rejects classes or
sizes, the built-in filter is not invoked. If the superseding filter does not accept or reject
anything, the built-filter is invoked.

Filters for IMX

@® Note

Use these built-in filters as starting points only. Edit the

com sun. managenent . j mxrenot e. serial . filter. pattern management property to
configure reject-lists and/or extend the allow-list to add additional protection for JMX.
To protect the whole application, add the patterns to the j dk. seri al Fi | t er global
system property to increase protection for other serialization users that do not have
their own custom filters.

JMX has a built-in filter to limit a set of classes allowed to be sent as a deserializing
parameters over RMI to the server. That filter is disabled by default. To enable the filter, define
the com sun. managenent . j nxrenot e. serial . filter. pattern management property with a
pattern.

The pattern must include the types that are allowed to be sent as parameters over RMI to the
server and all types that they depend on, plus j avax. managenent . Cbj ect Nane and

java.rmi . Marshal | edObj ect types. For example, to limit the allowed set of classes to Open
MBean types and the types that they depend on, add the following line to

managenent . properti es file:

com sun. managenent . j nxrenote.serial .filter.pattern=java.lang.*;java.math.Bigln
teger;java. mat h. Bi gDeci mal ;j ava. util.*;javax. managenent . opennbean. *;j avax. mana
genent . Cbj ect Narre; j ava. rni . Marshal | edObj ect ;! *

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 13 of 14

ORACLE Chapter 2
Logging Filter Actions

Logging Filter Actions

You can turn on logging to record the initialization, rejections, and acceptances of calls to
serialization filters. Use the log output as a diagnostic tool to see what's being deserialized,
and to confirm your settings when you configure allow-lists and reject-lists.

When logging is enabled, filter actions are logged to the j ava. i 0. seri al i zat i on logger.
To enable serialization filter logging, edit the $JDK_HOVE/ conf /| oggi ng. properti es file.

To log calls that are rejected, add

java.io.serialization.level = FINE
To log all filter results, add
java.io.serialization.level = FINEST

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 14 of 14

Enhanced Deprecation

The semantics of what deprecation means has been clarified, including whether an APl may
be removed in the near future.

If you are a library maintainer, you can take advantage of the updated deprecation syntax to
inform users of your library about the status of APIs provided by your library.

If you are a library or application developer, you can use the j depr scan tool to find uses of
deprecated JDK API elements in your applications or libraries.

Topics

e Deprecation in the JDK

e How to Deprecate APls

* Notifications and Warnings

* Running jdeprscan

Deprecation in the JDK

Deprecation is a natification to library consumers that they should migrate code from a
deprecated API.

In the JDK, APIs have been deprecated for widely varying reasons, such as:
e The APl is dangerous (for example, the Thr ead. st op method).

e There is a simple rename (for example, AWT Conponent . show hi de replaced by
set Vi si bl e).

A newer, better APl can be used instead.

e The deprecated API is going to be removed.

In prior releases, APIs were deprecated but virtually never removed. Starting with JDK 9, APIs
may be marked as deprecated for removal. This indicates that the API is eligible to be removed
in the next release of the JDK platform. If your application or library consumes any of these
APIs, then you should make a plan to migrate from them soon.

For a list of deprecated APIs in the current release of the JDK, see the Deprecated APl page in
the API specification.

How to Deprecate APIs

Deprecating an API requires using two different mechanisms: the @epr ecat ed annotation
and the @lepr ecat ed Javadoc tag.

The @epr ecat ed annotation marks an API in a way that is recorded in the class file and is
available at runtime. This allows various tools, such as j avac and j depr scan, to detect and flag
usage of deprecated APIs. The @epr ecat ed Javadoc tag is used in documentation of
deprecated APIs, for example, to describe the reason for deprecation, and to suggest
alternative APIs.

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 5

https://docs.oracle.com/en/java/javase/11/docs/api/deprecated-list.html

ORACLE

Core Libraries
E94895-12

Chapter 3
How to Deprecate APIs

Note the capitalization: the annotation starts with an uppercase D and the Javadoc tag starts
with a lowercase d.

Using the @Deprecated Annotation

To indicate deprecation, precede the module, class, method, or member declaration with
@epr ecat ed. The annotation contains these elements:

e (@eprecated(si nce="<version>")

— <version> is the version when the API was deprecated. This is for informational
purposes. The default is the empty string ("").

° (@eprecat ed(forRenoval =<bool ean>)
— forRenoval =t r ue indicates that the API is subject to removal in a future release.

— forRenoval =f al se recommends that code should no longer use this API; however,
there is no current intent to remove the API. This is the default value.

For example: @epr ecat ed(si nce="9", forRenoval =true)

The @epr ecat ed annotation causes the Javadoc-generated documentation to be marked
with one of the following, wherever that program element appears:

e Deprecated.

- Deprecated, for removal: This API element is subject to removal in a future version.

The j avadoc tool generates a page named depr ecat ed- | i st. ht mM which contains the list
of deprecated APls, and adds a link in the navigation bar to that page.

The following is a simple example of using the @epr ecat ed annotation from the
j ava. |l ang. Thr ead class:

public class Thread inplenments Runnable {

@eprecat ed(since="1.2")
public final void stop() {

}

Semantics of Deprecation

The two elements of the @epr ecat ed annotation give developers the opportunity to clarify
what deprecation means for their exported APIs.

For the JDK platform:

 @eprecated(forRenoval =t rue) indicates that the API is eligible to be removed in a
future release of the JDK platform.

e (@eprecated(si nce="<version>") contains the JDK version string that indicates when
the API element was deprecated, for those deprecated in JDK 9 and beyond.

If you maintain libraries and produce your own APIs, then you probably use the @epr ecat ed
annotation. You should determine and communicate your policy around API removals. For
example, if you release a new library every 6 weeks, then you may choose to deprecate an
API for removal, but not remove it for several months to give your customers time to migrate.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE

Chapter 3
Notifications and Warnings

Using the @deprecated Javadoc Tag

Use the @lepr ecat ed tag in the javadoc comment of any deprecated program element to
indicate that it should no longer be used (even though it may continue to work). This tag is
valid in all class, method, or field documentation comments. The @epr ecat ed tag must be
followed by a space or a newline. In the paragraph following the @lepr ecat ed tag, explain
why the item was deprecated, and suggest what to use instead. Mark the text that refers to
new versions of the same functionality with an @i nk tag.

When it encounters an @lepr ecat ed tag, the j avadoc tool moves the text following the
@lepr ecat ed tag to the front of the description and precedes it with a warning. For example,
this source:

@eprecated This method does not properly convert bytes into
characters. As of JDK 1.1, the preferred way to do this is via the
{@ode String} constructors that take a {@ink

java.nio.charset. Charset}, charset nane, or that use the platfornis
default charset.

* * * * * * *

*

*/. o
@eprecated(since="1.1")
public String(byte ascii[], int hibyte) {

generates the following output:

@Deprecated(since="1. 1")
public String(byte[] ascii,
int hibyte)
Deprecated. This method does not properly convert bytes into characters. As
of
JDK 1.1, the preferred way to do this is via the String constructors that
take a
Charset, charset name, or that use the platforms default charset.

If you use the @lepr ecat ed Javadoc tag without the corresponding @epr ecat ed
annotation, a warning is generated.

Notifications and Warnings

Core Libraries
E94895-12

When an APl is deprecated, developers must be notified. The deprecated APl may cause
problems in your code, or, if it is eventually removed, cause failures at run time.

The Java compiler generates warnings about deprecated APIs. There are options to generate
more information about warnings, and you can also suppress deprecation warnings.

Compiler Deprecation Warnings

If the deprecation is f or Renoval =f al se, the Java compiler generates an "ordinary deprecation
warning". If the deprecation is f or Renoval =t r ue, the compiler generates a "removal warning".

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Deprecated.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Deprecated.html#since()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/charset/Charset.html

ORACLE

Core Libraries
E94895-12

Chapter 3
Notifications and Warnings

The two kinds of warnings are controlled by separate - Xl i nt flags: - Xl i nt: deprecation and -
Xint:renoval . Thejavac - Xl int:renoval option is enabled by default, so removal warnings
are shown.

The warnings can also be turned off independently (note the "—"): - Xl i nt : - deprecati on and -
Xint:-renoval .

This is an example of an ordinary deprecation warning.

$ javac src/exanpl e/ Deprecati onExanpl e. j ava

Not e: src/exanpl e/ Deprecati onExanpl e.java uses or overrides a deprecated
APl .

Note: Reconpile with -Xlint:deprecation for details.

Use the javac - Xlint: deprecation option to see what API is deprecated.

$ javac -Xlint:deprecation src/exanpl e/ DeprecationExanpl e.] ava
src/ exanpl e/ Deprecati onExanpl e. j ava: 12: warni ng: [deprecation]
get Sel ect edVal ues() in JList has been deprecated
oj ect[] values = jlist.getSelectedVal ues();
N

1 warning

Here is an example of a removal warning.

public class Rermoval Exanpl e {
public static void main(String[] args) {
System runFinal i zersOnExit (true);
}
}

$ javac Renpval Exanpl e.] ava
Rermoval Exanpl e. java: 3: warning: [renoval] runFinalizersOnExit(boolean) in
System
has been deprecated and marked for renoval
System runFinal i zersOnExit (true);

N

1 warni ng

Suppressing Deprecation Warnings

The javac - X int options control warnings for all files compiled in a particular run of j avac.
You may have identified specific locations in source code that generate warnings that you no
longer want to see. You can use the @uppr essWar ni ngs annotation to suppress warnings
whenever that code is compiled. Place the @uppr essWar ni ngs annotation at the declaration of
the class, method, field, or local variable that uses a deprecated API.

The @uppr essVar ni ngs options are:

e @uppress\Warni ngs("deprecation") — Suppresses only the ordinary deprecation
warnings.

e @uppressWarni ngs("renmoval ") — Suppresses only the removal warnings.

° @uppressWarni ngs({"deprecation","renoval "}) — Suppresses both types of
warnings.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE

Chapter 3
Running jdeprscan

Here’s an example of suppressing a warning.

@uppr essWar ni ngs("deprecation")
oj ect[] values = jlist.getSelectedVal ues();

With the @uppr essWar ni ngs annotation, no warnings are issued for this line, even if warnings
are enabled on the command line.

Running jdeprscan

Core Libraries
E94895-12

j depr scan is a static analysis tool that reports on an application’s use of deprecated JDK API
elements. Run j depr scan to help identify possible issues in compiled class files or jar files.

You can find out about deprecated JDK APIs from the compiler notifications. However, if you
don’t recompile with every JDK release, or if the warnings were suppressed, or if you depend
on third-party libraries that are distributed as binary artifacts, then you should run j depr scan.

It's important to discover dependencies on deprecated APIs before the APIs are removed from
the JDK. If the binary uses an API that is deprecated for removal in the current JDK release,
and you don’t recompile, then you won't get any notifications. When the APl is removed in a
future JDK release, then the binary will simply fail at runtime. j depr scan lets you detect such
usage now, well before the APl is removed.

For the complete syntax of how to run the tool and how to interpret the output, see j deprscan
in the Java Platform, Standard Edition Tools Reference.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 5

XML Catalog API

Use the XML Catalog API to implement a local XML catalog.

Java SE 9 introduces a new XML Catalog API to support the Organization for the
Advancement of Structured Information Standards (OASIS) XML Catalogs, OASIS Standard
V1.1. This chapter of the Oracle JDK 9 Core Libraries Guide describes the API, its support by
the Java XML processors, and usage patterns.

The XML Catalog API is a straightforward API for implementing a local catalog, and the
support by the JDK XML processors makes it easier to configure your processors or the entire
environment to take advantage of the feature.

Learning More About Creating Catalogs

To learn about creating catalogs, see the Catalog Standard. The XML catalogs under the
directory / et ¢/ xni / cat al og on some Linux distributions can also be a good reference for
creating a local catalog.

Purpose of XML Catalog AP!

The XML Catalog API and the Java XML processors provide an option for developers and
system administrators to better manage external resources.

The XML Catalog API provides an implementation of OASIS XML Catalogs v1.1, a standard
designed to address issues caused by external resources.

Problems Caused by External Resources

XML, XSD and XSL documents may contain references to external resources that the Java
XML processors need to retrieve to process the documents. External resources can cause a
problem for the applications or the system. The Catalog API and the Java XML processors
provide an option for developers and system administrators to better manage these external
resources.

External resources can cause a problem for the applications or the system in these areas:

e Availability. When the resources are remote, the XML processors must be able to connect
to the remote server. Even though connectivity is rarely an issue, it's still a factor in the
stability of an application. Too many connections can be a hazard to servers that hold the
resources (such as the well-documented case involving excessive DTD traffic directed to
the W3C's servers), and this in turn could affect your applications. See Use Catalog with
XML Processors) for an example that solves this issue using the XML Catalog API.

« Performance. Although in most cases connectivity isn’'t an issue, a remote fetch can
still cause a performance issue for an application. Furthermore, there may be multiple
applications on the same system attempting to resolve the same source, and this would be
a waste of system resources.

e Security. Allowing remote connections can pose a security risk if the application processes
untrusted XML sources.

e Manageability. If a system processes a large number of XML documents, then externally
referenced documents, whether local or remote, can become a maintenance hassle.

Core Libraries
E94895-12 October 14, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 13

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

ORACLE

Chapter 4
XML Catalog API Interfaces

How XML Catalog API Addresses Problems Caused by External Resources

The XML Catalog API and the Java XML processors provide an option for developers and
system administrators to better manage the external resources.

e Application developers — You can create a local catalog of all external references for your
application, and let the Catalog API resolve them for the application. This not only avoids
remote connections but also makes it easier to manage these resources.

e System administrators — You can establish a local catalog for your system and configure
the Java VM to point to the catalog. Then, all of your applications on the system may share
the same catalog without any code changes to the applications, assuming they're
compatible with Java SE 9. To establish a catalog, you may take advantage of existing
catalogs such as those included with some Linux distributions.

XML Catalog API Interfaces

Core Libraries
E94895-12

Access the XML Catalog API through its interfaces.

XML Catalog API Interfaces
The XML Catalog API defines the following interfaces:

e The Cat al og interface represents an entity catalog as defined by XML Catalogs, OASIS
Standard V1.1, 7 October 2005. A Cat al og object is immutable. After it's created, the
Cat al og object can be used to find matches in a system public, oruri entry. A custom
resolver implementation may find it useful to locate local resources through a catalog.

e The Cat al ogFeat ur es class holds all of the features and properties the Catalog API
supports, including j avax. xm . catal og.files, javax.xm .catal og. defer,
javax. xnl . catal og. prefer, andjavax.xm . catal og. resol ve.

e The Cat al ogManager class manages the creation of XML catalogs and catalog resolvers.

* The Cat al ogResol ver interface is a catalog resolver that implements
SAX EntityResol ver, StAX XM_Resol ver, DOM LS LSResour ceResol ver used by schema
validation, and transform URI Resol ver . This interface resolves external references using
catalogs.

Details on the CatalogFeatures Class

The catalog features are collectively defined in the Cat al ogFeat ur es class. The features are
defined at the API and system levels, which means that they can be set through the API,
system properties, and JAXP properties. To set a feature through the API, use the

Cat al ogFeat ur es class.

The following code sets j avax. xnl . cat al og. resol ve to "continue" so that the process
continues even if no match is found by the Cat al ogResol ver:

Cat al ogFeatures f = Catal ogFeatures. buil der().w th(Feature. RESOLVE,
“continue").build();

To set this" cont i nue" functionality system-wide, use the Java command line or
Syst em set Property method:

Syst em set Propert y(Feat ure. RESOLVE. get PropertyNane(), "continue");

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 13

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

ORACLE

Using the

Chapter 4
Using the XML Catalog API

To set this" cont i nue" functionality for the whole JVM instance, enter a line in the
j axp. properti es file:

javax. xm . cat al og. resol ve = "conti nue"

The resol ve property, as well as the pref er and def er properties, can be set as an attribute of
the catalog or group entry in a catalog file. For example, in the following catalog, the r esol ve
attribute is set with a value "cont i nue" on the catalog entry that instructs the processor to
continue when the no match is found through this catalog. The attribute can also be set on the
group entry as follows:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<catal og
xm ns="urn: oasi s: nanes:tc:entity:xmns: xn : catal og"
resol ve="conti nue"
xm : base="http://local / base/dtd/">
<group resol ve="continue">
<system
system d="http://renote/dtd/alice/docAlice.dtd"
uri ="http://local/dtd/ docAliceSys.dtd"/>
</ group>
</ cat al og>

Properties set in a narrower scope override those that are set in a wider one. Therefore, a
property set through the API always takes preference.

XML Catalog API

Resolve DTD, entity, and alternate URI references in XML source documents using the various
entry types of the XML Catalog standard.

The XML Catalog Standard defines a number of entry types. Among them, the system entries,
including system rewriteSystem and syst enfuf fi x entries, are used for resolving DTD and
entity references in XML source documents, while uri entries are for alternate URI references.

System Reference

Core Libraries
E94895-12

Use a Cat al ogResol ver object to locate a local resource.

Locating a Local Resource

The following example demonstrates how to use a Cat al ogResol ver object to locate a local
resource using a syst ementry, given an XML file that contains a reference to exanpl e. dt d

property:

<?xnml version="1.0"?7>
<! DOCTYPE cat al ogt est PUBLIC "-//OPENJDK// XML CATALOG DTDY / 1. 0"
"http://openjdk.java.net/xm/catal og/ dt d/ exanpl e. dtd">

<cat al ogt est >

Test &exanple; entry
</ cat al ogt est >

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 13

ORACLE

Core Libraries
E94895-12

Chapter 4
Using the XML Catalog API

The exanpl e. dt d defines an entity " exanpl e":

<IENTITY exanple "systen'>

The URI to the exanpl e. dt d in the XML doesn't need to exist. The purpose is to provide a
unigue identifier for the Cat al ogResol ver object to locate a local resource. To do this, create a
catalog entry file called cat al og. xm with a syst ementry to refer to the local resource:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<catal og xm ns="urn: oasi s: nanes:tc:entity:xnns:xnl:catal og">
<system
system d="http://openjdk.java. net/xm /catal og/ dt d/ exanpl e. dt d"
uri ="exanple.dtd"/>
</ cat al og>

With this catalog and the syst ementry, all you need to do is get a default Cat al ogFeat ur es
object, and set the URI to the catalog file to create a Cat al ogResol ver object:

Cat al ogResol ver cr =
Cat al ogManager . cat al ogResol ver (Cat al ogFeat ures. defaul ts(), catal ogUri);

cat al ogUri must be a valid URI. For example:

URI . create("file://lusers/auser/catal og/catal og. xm")

The Cat al ogResol ver object can now be used as a JDK XML resolver. In the following
example, it's used as a SAX Enti t yResol ver:

SAXPar ser Factory factory = SAXParser Fact ory. newl nstance();
factory. set NanespaceAwar e(true);

XM_.Reader reader = factory.newSAXParser (). get XM_Reader ();
reader. set EntityResol ver(cr);

Notice that in the example the system identifier is given an absolute URI. That makes it easy
for the resolver to find the match with exactly the same syst el d in the catalog's syst ementry.

If the syst emidentifier in the XML is relative, then it may complicate the matching process
because the XML processor may have made it absolute with a specified base URI or the
source file's URI. In that situation, the syst em d of the system entry would need to match the
anticipated absolute URI. An easier solution is to use the syst entuf f i x entry, for example:

<systentuffix system dSuffix="exanpl e.dtd" uri="exanple.dtd"/>

The syst enBuf fi X entry matches any reference that ends with exanpl e. dt d in an XML source
and resolves it to a local exanpl e. dt d file as specified in the uri attribute. You may add more
to the syst enl d to ensure that it's unique or the correct reference. For example, you may set
the system dSuf fi x to xm / cat al og/ dt d/ exanpl e. dt d, or rename the i d in both the XML
source file and the syst enBuf fi x entry to make it a unique match, for example

my_exanpl e. dtd.

The URI of the syst ementry can be absolute or relative. If the external resources have a fixed
location, then an absolute URI is more likely to guarantee uniqueness. If the external resources

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 13

ORACLE

Chapter 4
Using the XML Catalog API

are placed relative to your application or the catalog entry file, then a relative URI may be more
effective, allowing the deployment of your application without knowing where it's installed. Such
a relative URI then is resolved using the base URI or the catalog file’'s URI if the base URI isn'’t
specified. In the previous example, exanpl e. dt d is assumed to have been placed in the same
directory as the catalog file.

Public Reference

Use a publ i c entry instead of a syst ementry to find a desired resource.

If no syst ementry matches the desired resource, and the PREFER property is specified to match
publ i c, then a publ i ¢ entry can do the same as a syst ementry. Note that publ i ¢ is the default
setting for the PREFER property.

Using a Public Entry

When the DTD reference in the parsed XML file contains a public identifier such as "-//
OPENJDK/ / XML CATALOG DTDY / 1. 0", a publ i ¢ entry can be written as follows in the catalog
entry file:

<public publicld="-//OPENJDK// XM CATALOG DTD//1.0" uri="exanple.dtd"/>

When you create and use a Cat al ogResol ver object with this entry file, the exanpl e. dtd
resolves through the publ i cl d property. See System Reference for an example of creating a
Cat al ogResol ver object.

URI Reference

Core Libraries
E94895-12

Use auri entry to find a desired resource.

The URI type entries, including uri, rewiteURl, and uri Suf fix, can be used in a similar way
as the system type entries.

Using URI Entries

While the XML Catalog Standard gives a preference to the syst emtype entries for resolving
DTD references, and uri type entries for everything else, the Java XML Catalog API doesn't
make that distinction. This is because the specifications for the existing Java XML Resolvers,
such as XMLResol ver and LSResour ceResol ver, doesn't give a preference. The uri type
entries, including uri, rewiteURl, and uri Suf fi x, can be used in a similar way as the system
type entries. The uri elements are defined to associate an alternate URI reference with a URI
reference. In the case of syst emreference, this is the syst enl d property.

You may therefore replace the syst ementry with a uri entry in the following example, although
syst ementries are more generally used for DTD references.

<system
system d="http://openjdk.java. net/xmnl /catal og/ dt d/ exanpl e. dt d"
uri ="exanple.dtd"/>

A uri entry would look like the following:

<uri nane="http://openjdk.java. net/xn/catal og/ dt d/ exanpl e. dt d"
uri ="exanpl e.dtd"/>

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 13

ORACLE

Chapter 4
Java XML Processors Support

While syst ementries are frequently used for DTDs, uri entries are preferred for URI
references such as XSD and XSL import and include. The next example uses a uri entry to
resolve a XSL import.

As described in XML Catalog API Interfaces, the XML Catalog API defines the

Cat al ogResol ver interface that extends Java XML Resolvers including Enti t yResol ver,
XM.Resol ver, URI Resol ver, and LSResol ver . Therefore, a Cat al ogResol ver object can be
used by SAX, DOM, StAX, Schema Validation, as well as XSLT Transform. The following code
creates a Cat al ogResol ver object with default feature settings:

Cat al ogResol ver cr =
Cat al ogManager . cat al ogResol ver (Cat al ogFeat ures. defaul ts(), catal ogUri);

The code then registers this Cat al ogResol ver object on a Tr ansf or mer Fact ory class where a
URI Resol ver object is expected:

TransfornerFactory factory = Transfornmer Factory. new nstance();
factory. set URl Resol ver(cr);

Alternatively the code can register the Cat al ogResol ver object on the Tr ansf or ner object:

Transforner transformer = factory. newlransformer (xsl Source);
transformer. set URl Resol ver (cur);

Assuming the XSL source file contains an i nport element to import the xsl | mport . xsl file into
the XSL source:

<xsl:inmport href="pathto/xsllnport.xsl"/>

To resolve the i nport reference to where the import file is actually located, a Cat al ogResol ver
object should be set on the Tr ansf or ner Fact ory class before creating the Tr ansf or ner object,
and a uri entry such as the following must be added to the catalog entry file:

<uri nane="pathto/xsl|Inport.xsl" uri="xsllnmport.xsl"/>

The discussion about absolute or relative URIs and the use of syst enuf fi x or uri Suffi x
entries with the system reference applies to the uri entries as well.

Java XML Processors Support

Core Libraries
E94895-12

Use the XML Catalogs features with the standard Java XML processors.

The XML Catalogs features are supported throughout the Java XML processors, including SAX
and DOM (j avax. xm . par sers), and StAX parsers (j avax. xm . st r ean), schema validation
(j avax. xm . val i dati on), and XML transformation (j avax. xnl . t r ansf or nj.

This means that you don’t need to create a Cat al ogResol ver object outside an XML
processor. Catalog files can be registered directly to the Java XML processor, or specified
through system properties, or in the j axp. pr operti es file. The XML processors perform the
mappings through the catalogs automatically.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 13

ORACLE Chapter 4
Java XML Processors Support

Enable Catalog Support

To enable the support for the XML Catalogs feature on a processor, the USE_CATALOG feature
must be set to t rue, and at least one catalog entry file specified.

USE_CATALOG

A Java XML processor determines whether the XML Catalogs feature is supported based on
the value of the USE_CATALOGfeature. By default, USE_CATALOG is set to t r ue for all JIDK XML
Processors. The Java XML processor further checks for the availability of a catalog file, and
attempts to use the XML Catalog API only when the USE_CATALOG feature is t r ue and a catalog
is available.

The USE_CATALOG feature is supported by the XML Catalog API, the system property, and the

j axp. properties file. For example, if USE_CATALOGs set to t r ue and it's desirable to disable
the catalog support for a particular processor, then this can be done by setting the
USE_CATALOGfeature to f al se through the processor's set Feat ur e method. The following code
sets the USE_CATALQG feature to the specified value useCat al og for an XMLReader object:

SAXPar ser Factory spf = SAXParser Factory. new nstance();
spf. set NamespaceAwar e(true);
XM_.Reader reader = spf.newSAXParser().get XM.Reader ();
if (setUseCatal og) {
reader. set Feat ur e(XMLConst ant s. USE_CATALOG, useCat al og) ;
}

On the other hand, if the entire environment must have the catalog turned off, then this can be
done by configuring the j axp. properti es file with a line:

javax. xm . useCat al og = fal se;

javax.xml.catalog.files

The j avax. xm . catal og. fil es property is defined by the XML Catalog APl and supported by
the JDK XML processors, along with other catalog features. To employ the catalog feature on a
parsing, validating, or transforming process, all that's needed is to set the FI LES property on
the processor, through its system property or using the j axp. properti es file.

Catalog URI

The catalog file reference must be a valid URI, such asfile:///users/auser/catal og/
catal og. xn .

The URI reference in a system or a URI entry in the catalog file can be absolute or relative. If
they're relative, then they are resolved using the catalog file's URI or a base URI if specified.

Using system or uri Entries

When using the XML Catalog API directly (see XML Catalog API Interfaces for an example),
systemand uri entries both work when using the JDK XML Processors' native support of the
Cat al ogFeat ur es class. In general, syst ementries are searched first, then publ i ¢ entries, and
if no match is found then the processor continues searching uri entries. Because both syst em
and uri entries are supported, it's recommended that you follow the custom of XML
specifications when selecting between using a syst emor uri entry. For example, DTDs are
defined with a syst enl d and therefore syst ementries are preferable.

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 13

ORACLE Chapter 4
Java XML Processors Support

Use Catalog with XML Processors

Use the XML Catalog API with various Java XML processors.

The XML Catalog API is supported throughout JDK XML processors. The following sections
describe how it can be enabled for a particular type of processor.

Use Catalog with DOM

To use a catalog with DOM, set the FI LES property on a Docunent Bui | der Fact ory instance as
demonstrated in the following code:

static final String CATALOG FILE =
Cat al ogFeat ures. Feat ure. FI LES. get Propert yNane() ;
Docunent Bui | der Fact ory dbf = Docunent Bui | der Fact ory. new nst ance();
dbf . set NanespaceAwar e(true);
if (catalog '= null) {
dbf . set Attri but e(CATALOG FI LE, catal og);
}

Note that cat al og is a URI to a catalog file. For example, it could be something like "file:///
users/auser/catal og/ catal og. xm ".

It's best to deploy resolving target files along with the catalog entry file, so that the files can be
resolved relative to the catalog file. For example, if the following is a uri entry in the catalog
file, then the XSLInport _htm . xsl file will be located at / user s/ auser/ cat al og/

XSLI mport _htm . xsl .

<uri nane="patht o/ XSLI nport_htm . xsl" uri="XSLI nport_htm .xsl"/>

Use Catalog with SAX

To use the Catalog feature on a SAX parser, set the catalog file to the SAXPar ser instance:

SAXPar ser Factory spf = SAXParser Factory. new nstance();
spf. set NamespaceAwar e(true);

spf. set Xl ncl udeAwar e(true);

SAXPar ser parser = spf.newSAXParser();

par ser. set Property(CATALOG FI LE, catal og);

In the prior sample code, note the statement spf . set XI ncl udeAwar e(t r ue) . When this is
enabled, any Xl ncl ude is resolved using the catalog as well.

Given an XML file XI _si npl e. xm :

<si mpl e>
<test xnlns:xinclude="http://wwv. w3. org/ 2001/ Xl ncl ude" >
<l atinl>
<firstEl enent/>
<xinclude:include href="pathto/ Xl _text.xm" parse="text"/>
<insi deChi |l dren/ >
<anot her >
<deeper >t ext </ deeper >
</ anot her >

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 13

ORACLE

Core Libraries
E94895-12

Chapter 4
Java XML Processors Support

</latinl>
<t est 2>
<xi ncl ude:include href="pathto/ Xl _test2.xm"/>
</test2>
</test>
</ si npl e>

Additionally, given another XML file XI _test2.xm :

<?xm version="1.0"?7>
<l-- conment before root -->
<! DOCTYPE red SYSTEM "pathto/ Xl _red. dtd">
<red xm ns: xincl ude="http://ww.w3. or g/ 2001/ Xl ncl ude" >
<bl ue>
<xi ncl ude:include href="pathto/ Xl _text.xm " parse="text"/>
</ bl ue>
</red>

Assume another text file, XI _t ext. xm , contains a simple string, and the file XI _red. dtd is as
follows:

<IENTITY red "it is read">

In these XML files, there is an Xl ncl ude element inside an Xl ncl ude element, and a reference
to a DTD. Assuming they are located in the same folder along with the catalog file
Cat al ogSupport . xm , add the following catalog entries to map them:

<uri nanme="pathto/ Xl text.xm" uri="X _text.xm"/>
<uri nane="pathto/ Xl test2.xm" uri="X test2.xm"/>
<system system d="pathto/ Xl red.dtd" uri="X _red.dtd"/>

When the par ser. par se method is called to parse the Xl _si npl e. xnl file, it's able to locate the
Xl _test2. xmi file in the XI _si npl e. xnl file, and the XI _text. xnl file and the Xl _red. dt d file
in the XI _test2.xm file through the specified catalog.

Use Catalog with StAX

To use the catalog feature with a StAX parser, set the catalog file on the XM.I nput Fact ory
instance before creating the XM_St r eanReader object:

XM.I nput Factory factory = XM.I nput Fact ory. newl nst ance();
factory. set Property(Catal ogFeat ures. Feat ure. FI LES. get PropertyNane(), catal og);
XML.St r eanReader streanReader =

factory. createXM St reanReader (xm , new Fil el nput Strean(xm));

When the XMLSt r eanReader streanReader object is used to parse the XML source, external
references in the source are then resolved in accordance with the specified entries in the
catalog.

Note that unlike the Docunent Bui | der Fact ory class that has both set Feat ure and
set Attri but e methods, the XMLI nput Fact ory class defines only a set Property method. The
XML Catalog API features including XM_Const ant s. USE_CATALOG are all set through this

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 9 of 13

ORACLE

Core Libraries
E94895-12

Chapter 4
Java XML Processors Support

set Property method. For example, to disable USE_CATALOG on a XMLSt r eanReader object, you
can do the following:

factory. set Property(XM.Const ants. USE CATALOG fal se);

Use Catalog with Schema Validation

To use a catalog to resolve any external resources in a schema, such as XSD i nport and
i ncl ude, set the catalog on the SchemaFact ory object:

SchemaFactory factory =

SchemaFact ory. newl nst ance(XM_.Const ant s. WBC_XM._SCHEMA NS URI) ;
factory. set Property(Catal ogFeat ures. Feat ure. FI LES. get PropertyNane(), catal og);
Schema schema = factory. newSchena(schenaFil e);

The XMLSchema schema document contains references to external DTD:

<! DOCTYPE xs:schema PUBLIC "-//WBC// DTD XMLSCHEMA 200102//EN' "pat ht o/
XM.Schena. dtd" [

]>...

And to xsd import:

<xs:inport
nanmespace="htt p://ww. w3. or g/ XM/ 1998/ nanespace"
schemalLocation="http://wwmu w3. or g/ 2001/ pat ht o/ xn . xsd" >
<xs:annot ati on>
<xs: document at i on>
CGet access to the xnml: attribute groups for xn:lang
as declared on 'schema' and 'docunentation' bel ow
</ xs: docunent ati on>
</ xs:annot ati on>
</ xs:inport>

Following along with this example, to use local resources to improve your application
performance by reducing calls to the W3C server:

* Include these entries in the catalog set on the SchenaFact ory object:

<public publicld="-//WBC//DID XM.SCHEMA 200102//EN" uri="XM.Schena. dtd"/ >
<I-- XM.Schena.dtd refers to datatypes.dtd -->

<systentuf fix system dSuffix="datatypes. dtd" uri="datatypes.dtd"/>

<uri name="http://ww. w3. org/ 2001/ pat ht o/ xm . xsd" uri="xm .xsd"/>

« Download the source files XM_Schena. dt d, dat at ypes. dtd, and xm . xsd and save them
along with the catalog file.

As already discussed, the XML Catalog API lets you use any of the entry types that you prefer.
In the prior case, instead of the uri entry, you could also use either one of the following:

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 10 of 13

https://www.w3.org/2009/XMLSchema/XMLSchema.xsd

ORACLE

Core Libraries
E94895-12

Chapter 4
Java XML Processors Support

* Apublic entry, because the nanespace attribute in the i nport element is treated as the
publicld element:

<public publicld="http://ww:.w3.org/ XM./ 1998/ namespace" uri="xm .xsd"/>

e Asystementry:

<system system d="http://ww. w3. org/ 2001/ pat ht o/ xm . xsd" uri="xm . xsd"/>

@® Note

When experimenting with the XML Catalog API, it might be useful to ensure that none
of the URIs or system IDs used in your sample files points to any actual resources on
the internet, and especially not to the W3C server. This lets you catch mistakes early
should the catalog resolution fail, and avoids putting a burden on W3C servers, thus
freeing them from any unnecessary connections. All the examples in this topic and
other related topics about the XML Catalog API, have an arbitrary string " pat ht 0"
added to any URI for that purpose, so that no URI could possibly resolve to an
external W3C resource.

To use the catalog to resolve any external resources in an XML source to be validated, set the
catalog on the Val i dat or object:

SchemaFact ory schemaFactory =
SchemaFact ory. newl nst ance(XMLConst ant s. WBC_XM__SCHEMA_NS_UR!) ;
Schema schema = schemaFact ory. newSchema() ;
Val i dat or validator = schema. newvalidator();
val i dat or. set Property(Cat al ogFeat ures. Feat ure. FI LES. get Propert yNane(),
catal og);
StreanBSource source = new StreanfSource(new File(xn));
val i dat or.val i dat e(source);

Use Catalog with Transform

To use the XML Catalog APl in a XSLT transform process, set the catalog file on the
Transf or ner Fact ory object.

TransfornerFactory factory = TransfornerFactory. new nstance();
factory.setAttribute(Catal ogFeat ures. Feature. FI LES. get PropertyName(),
catal og);

Transforner transforner = factory. newlransformer(xsl Source);

If the XSL source that the factory is using to create the Transf or mer object contains DTD,
import, and include statements similar to these:

<! DOCTYPE HTM.l at 1 SYSTEM "http://openj dk.java. net/xm /catal og/ dt d/
XSLDTD. dt d" >

<xsl:inport href="pathto/ XSLI nport_htm .xsl"/>

<xsl:include href="patht o/ XSLI ncl ude_header. xsl "/ >

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 11 of 13

ORACLE

Chapter 4
Calling Order for Resolvers

Then the following catalog entries can be used to resolve these references:

<system
system d="http://openjdk.java. net/xm /catal og/ dt d/ XSLDTD. dt d"
uri ="XSLDTD. dtd"/ >
<uri nane="pathto/ XSLI nport_htm .xsl" uri="XSLI nport_htm .xsl"/>
<uri nane="pat ht o/ XSLI ncl ude_header. xsl " uri="XSLI ncl ude_header. xsl "/>

Calling Order for Resolvers

Detecting

Core Libraries
E94895-12

The JDK XML processors call a custom resolver before the catalog resolver.

Custom Resolver Preferred to Catalog Resolver

The catalog resolver (defined by the Cat al ogResol ver interface) can be used to resolve
external references by the JDK XML processors to which a catalog file has been set. However,
if a custom resolver is also provided, then it's always be placed ahead of the catalog resolver.
This means that a JDK XML processor first calls a custom resolver to attempt to resolve
external resources. If the resolution is successful, then the processor skips the catalog resolver
and continues. Only when there’s no custom resolver or if the resolution by a custom resolver
returns null, does the processor then call the catalog resolver.

For applications that use custom resolvers, it’s therefore safe to set an additional catalog to
resolve any resources that the custom resolvers don't handle. For existing applications, if
changing the code isn't feasible, then you may set a catalog through the system property or
j axp. properti es file to redirect external references to local resources knowing that such a
setting won't interfere with existing processes that are handled by custom resolvers.

Errors

Detect configuration issues by isolating the problem.

The XML Catalogs Standard requires that the processors recover from any resource
failures and continue, therefore the XML Catalog API ignores any failed catalog entry files
without issuing an error, which makes it harder to detect configuration issues.

Dectecting Configuration Issues

To detect configuration issues, isolate the issues by setting one catalog at a time, setting the
RESOLVE value to stri ct, and checking for a Cat al ogExcept i on exception when no match is
found.

Table 4-1 RESOLVE Settings
]

RESOLVE Value Cat al ogResol ver Behavior Description

strict (default) Throws a Cat al ogExceptionif An unmatched reference may
no match is found with a specified indicate a possible error in the
reference catalog or in setting the catalog.

continue Returns quietly This is useful in a production

environment where you want the
XML processors to continue
resolving any external references
not covered by the catalog.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 12 of 13

ORACLE Chapter 4
Detecting Errors

Table 4-1 (Cont.) RESOLVE Settings

]
RESCLVE value Cat al ogResol ver Behavior Description

i gnore Returns quietly For processors such as SAX, that
allow skipping the external
references, the i gnor e value
instructs the
Cat al ogResol ver object to
return an empty | nput Sour ce
object, thus skipping the external
reference.

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 13 of 13

Creating Unmodifiable Lists, Sets, and Maps

Convenience static factory methods on the Li st , Set , and Map interfaces let you easily create
unmodifiable lists, sets, and maps.

A collection is considered unmodifiable if elements cannot be added, removed, or replaced.
After you create an unmodifiable instance of a collection, it holds the same data as long as a
reference to it exists.

A collection that is modifiable must maintain bookkeeping data to support future modifications.
This adds overhead to the data that is stored in the modifiable collection. A collection that is
unmodifiable does not need this extra bookkeeping data. Because the collection never needs
to be modified, the data contained in the collection can be packed much more densely.
Unmodifiable collection instances generally consume much less memory than modifiable
collection instances that contain the same data.

Topics
e Use Cases

e Syntax
* Creating Unmodifiable Copies of Collections

e Creating Unmodifiable Collections from Streams

 Randomized Iteration Order

* About Unmodifiable Collections

* Space Efficiency

e Thread Safety

Use Cases

Core Libraries
E94895-12

Whether to use an unmaodifiable collection or a modifiable collection depends on the data in the
collection.

An unmodifiable collection provides space efficiency benefits and prevents the collection from
accidentally being modified, which might cause the program to work incorrectly. An
unmodifiable collection is recommended for the following cases:

* Collections that are initialized from constants that are known when the program is written

« Collections that are initialized at the beginning of a program from data that is computed or
is read from something such as a configuration file

For a collection that holds data that is modified throughout the course of the program, a
modifiable collection is the best choice. Modifications are performed in-place, so that
incremental additions or deletions of data elements are quite inexpensive. If this were done
with an unmodifiable collection, a complete copy would have to be made to add or remove a
single element, which usually has unacceptable overhead.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 8

ORACLE Chapter 5
Syntax

Syntax

The API for these new collections is simple, especially for small numbers of elements.
Topics

« Unmodifiable List Static Factory Methods

* Unmodifiable Set Static Factory Methods

e Unmodifiable Map Static Factory Methods

Unmodifiable List Static Factory Methods

The Li st . of static factory methods provide a convenient way to create unmodifiable lists.

A list is an ordered collection, where duplicate elements are allowed. Null values are not
allowed.

The syntax of these methods is:

Li st. of ()
Li st.of (el)
List.of (el, e2) /] fixed-argunent form overloads up to 10 el ements

List.of (elenents...) // varargs formsupports an arbitrary nunber of
el ements or an array

Example 5-1 Examples

In JDK 8:

List<String> stringList = Arrays.asList("a", "b", "c¢");
stringList = Collections.unnodifiablelList(stringList);

In JDK 9:
List<String> stringList = List.of("a", "b", "c");
See Unmodifiable Lists.

Unmodifiable Set Static Factory Methods

The Set . of static factory methods provide a convenient way to create unmodifiable sets.

A set is a collection that does not contain duplicate elements. If a duplicate entry is detected,
then an || | egal Argunent Except i on is thrown. Null values are not allowed.

The syntax of these methods is:

Set . of ()
Set . of (el)
Set.of (el, e2) Il fixed-argument formoverloads up to 10 el ements
Set.of (el ements...) [/ varargs formsupports an arbitrary nunber of

el ements or an array

of
of

Core Libraries
E94895-12 October 14, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 8

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/List.html#unmodifiable

ORACLE

Chapter 5
Syntax

Example 5-2 Examples

In JDK 8:

Set<String> stringSet = new HashSet<>(Arrays.asList("a", "b", "c"));
stringSet = Col | ections.unmodifiableSet(stringSet);

In JDK 9:

Set<String> stringSet = Set.of("a", "b", "c¢");

See Unmodifiable Sets.

Unmodifiable Map Static Factory Methods

Core Libraries
E94895-12

The Map. of and Map. of Ent ri es static factory methods provide a convenient way to create
unmodifiable maps.

A Map cannot contain duplicate keys. If a duplicate key is detected, then an
I'll egal Argunent Excepti on is thrown. Each key is associated with one value. Null cannot be
used for either Map keys or values.

The syntax of these methods is:

Map. of ()

Map. of (k1, v1)

Map. of (k1, v1, k2, v2) /1 fixed-argunent formoverloads up to 10 key-val ue
pairs

Map. of Entries(entry(kl, v1), entry(k2, v2),...)

/1 varargs formsupports an arbitrary nunber of Entry objects or an array

Example 5-3 Examples

In JDK 8:

Map<String, Integer> stringMap = new HashMap<String, |nteger>();
stringMap. put("a", 1);

stringMap. put("b", 2);

stringMap. put("c", 3);
stringMap = Col | ections. unmodi fi abl eMap(stringMap);

In JDK 9:

Map<String, Integer> stringhMap = Map.of("a", 1, "b", 2, "c", 3);

Example 5-4 Map with Arbitrary Number of Pairs

If you have more than 10 key-value pairs, then create the map entries using the Map. entry
method, and pass those objects to the Map. of Ent ri es method. For example:

inport static java.util.Map.entry;

Map <Integer, String> friendMap = Map. of Entries(
entry(l, "Tonl'),
entry(2, "Dick"),

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 8

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Set.html#unmodifiable

ORACLE Chapter 5
Creating Unmodifiable Copies of Collections

entry(3, "Harry"),

entry(99, "Mathilde"));

See Unmodifiable Maps.

Creating Unmodifiable Copies of Collections

Let's consider the case where you create a collection by adding elements and modifying it, and
then at some point, you want an unmodifiable snapshot of that collection. Create the copy
using the copy O family of methods.

For example, suppose you have some code that gathers elements from several places:

List<Iten> list = new ArrayList<>();
list.addAll (getltensFronSonewhere());
|ist.addAll (getltensFronkl sewhere())
l'ist.addAl | (getltenmsFronyet Anot her Pl ace());

It's inconvenient to create an unmodifiable collection using the Li st . of method. Doing this
would require creating an array of the right size, copying elements from the list into the array,
and then calling Li st. of (array) to create the unmodifiable snapshot. Instead, do it in one
step using the copyf static factory method:

Li st<Iten> snapshot = List.copyOf(list);

There are corresponding static factory methods for Set and Map called Set . copyOf and
Map. copy O . Because the parameter of Li st. copyOf and Set . copyOf is Col | ecti on,
you can create an unmodifiable Li st that contains the elements of a Set and an unmodifiable
Set that contains the elements of a Li st . If you use Set . copyF to create a Set from a

Li st, and the Li st contains duplicate elements, an exception is not thrown. Instead, an
arbitrary one of the duplicate elements is included in the resulting Set .

If the collection you want to copy is modifiable, then the copyOf method creates an
unmodifiable collection that is a copy of the original. That is, the result contains all the same
elements as the original. If elements are added to or removed from the original collection, that
won't affect the copy.

If the original collection is already unmodifiable, then the copyOf method simply returns a
reference to the original collection. The point of making a copy is to isolate the returned
collection from changes to the original one. But if the original collection cannot be changed,
there is no need to make a copy of it.

In both of these cases, if the elements are mutable, and an element is modified, that change
causes both the original collection and the copy to appear to have changed.

Creating Unmodifiable Collections from Streams

The Streams library includes a set of terminal operations known as Col | ect ors. A Col | ect or
is most often used to create a new collection that contains the elements of the stream. The
java.util.stream Col | ect ors class has Col | ect or s that create new unmaodifiable
collections from the elements of the streams.

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 8

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Map.html#unmodifiable

ORACLE

Chapter 5
Randomized lteration Order

If you want to guarantee that the returned collection is unmodifiable, you should use one of the
t oUnnodi fi abl e- collectors. These collectors are:

Col I ectors. t oUnnodi fi abl eLi st ()

Col I ect ors. t oUnnodi fi abl eSet ()

Col I ectors. t oUnmodi f i abl eMap(keyMapper, val ueMapper)

Col | ectors. t oUnnodi fi abl eMap(keyMapper, val ueMapper, mergeFunction)

For example, to transform the elements of a source collection and place the results into an
unmodifiable set, you can do the following:

Set<Itenm> unnodi fiabl eSet =
sour ceCol | ection. stream()

.map(...)
.coll ect(Col |l ectors.toUnnodifiableSet());

If the stream contains duplicate elements, the t oUnnodi fi abl eSet collector chooses an
arbitrary one of the duplicates to include in the resulting Set . For the

t oUnnodi fi abl eMap(keyMapper, val ueMapper) collector, if the keyMapper function
produces duplicate keys, an | | | egal St at eExcepti on is thrown. If duplicate keys are a
possibility, use the t oUnnodi fi abl eMap(keyMapper, val ueMapper, mergeFuncti on)
collector instead. If duplicate keys occur, the ner geFunct i on is called to merge the values of
each duplicate key into a single value.

The t oUnnodi f i abl e- collectors are conceptually similar to their counterparts t oLi st ,

t 0Set , and the corresponding two t oMap methods, but they have different characteristics.
Specifically, the t oLi st, t 0Set, and t oMap methods make no guarantee about the
modifiablilty of the returned collection, however, the t oUnnodi f i abl e- collectors guarantee
that the result is unmodifiable.

Randomized Iteration Order

Core Libraries
E94895-12

Iteration order for Set elements and Map keys is randomized and likely to be different from one
JVM run to the next. This is intentional and makes it easier to identify code that depends on
iteration order. Inadvertent dependencies on iteration order can cause problems that are
difficult to debug.

The following example shows how the iteration order is different after j shel | is restarted.

j shel | > var stringMap = Map.of ("a", 1, "b", 2, "c", 3);
stringMap ==> {b=2, c=3, a=1}

jshell> [exit
| Goodbye

C.\ Program Fi | es\ Java\j dk\ bi n>j shel |

j shel | > var stringMap = Map.of ("a", 1, "b", 2, "c", 3);
stringMap ==> {a=1, b=2, c=3}

Randomized iteration order applies to the collection instances created by the Set . of ,
Map. of , and Map. of Ent ri es methods and the t oUnnodi f i abl eSet and t oUnmodi f i abl eMap

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 8

ORACLE Chapter 5
About Unmodifiable Collections

collectors. The iteration ordering of collection implementations such as Hashiap and HashSet
is unchanged.

About Unmodifiable Collections

The collections returned by the convenience factory methods added in JDK 9 are unmodifiable.
Any attempt to add, set, or remove elements from these collections causes an
Unsupport edOper ati onExcept i on to be thrown.

However, if the contained elements are mutable, then this may cause the collection to behave
inconsistently or make its contents to appear to change.

Let’'s look at an example where an unmodifiable collection contains mutable elements. Using
j shel |, create two lists of St ri ng objects using the Arr ayLi st class, where the second list
is a copy of the first. Trivial j shel | output was removed.

jshell > List<String> listl = new ArrayList<>();
jshell> listl. add("a")

jshell> listl. add("b")

jshell> listl

listl ==> [a, b]

jshel I > List<String> list2 = new ArrayList<>(listl);
list2 ==> [a, b]

Next, using the Li st . of method, create unnodl i st 1 and unnodl i st 2 that point to the first
lists. If you try to modify unnodl i st 1, then you see an exception error because unnodl i st 1 is
unmodifiable. Any modification attempt throws an exception.

jshell> List<List<String>> unnodlistl = List.of(listl, listl);
unmodlistl ==> [[a, b], [a, Db]]

jshell> List<List<String>> unnodlist2 = List.of(list2, list2);
unmodlist2 ==> [[a, b], [a, Db]]

jshel > unnmodlistl. add(new ArrayList<String>())

| java.lang. UnsupportedQperationException thrown:

| at | mut abl eCol | ecti ons. uoe (Inmutabl eCol | ections.java: 71)
| at | mmut abl eCol | ecti ons$Abstract | mut abl eLi st . add

(I'nmut abl eCol | ecti ons

.java: 75)

| at (#8:1)

But if you modify the original | i st 1, the contents of unnod! i st 1 changes, even though
unnod| i st 1 is unmodifiable.

jshell> listl. add("c")

jshell> listl

listl ==>[a, b, c]

j shel | > unnodlist1

ilistl ==>[[a, b, c], [a, b, c]]

j shel | > unnodl i st2
ilist2 ==>[[a, b], [a, b]]

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE

Chapter 5
Space Efficiency

j shel I > unnodl i st 1. equal s(unmodl i st 2)
$14 ==> fal se

Unmodifiable Collections vs. Unmodifiable Views

The unmodifiable collections behave in the same way as the unmodifiable views returned by
the Col | ecti ons. unnodi fi abl e. .. methods. However, the unmodifiable collections are
not views — these are data structures implemented by classes where any attempt to modify

the data causes an exception to be thrown.

If you create a Li st and pass it to the Col | ecti ons. unnodi fi abl eLi st method, then you
get an unmodifiable view. The underlying list is still modifiable, and modifications to it are
visible through the Li st that is returned, so it is not actually immutable.

To demonstrate this behavior, create a Li st and pass it to
Col | ecti ons. unnodi fi abl eLi st . If you try to add to that Li st directly, then an exception
is thrown.

jshel I > List<String> listl = new ArrayList<>();
jshell> listl. add("a")

jshell> listl. add("b")

jshell> listl

listl ==>[a, b]

jshell> List<String> unmodlistl = Collections.unnodifiableList(listl);
unnodlistl ==> [a, b]

j shel I > unnodlistl. add("c")

| Exception java.lang. UnsupportedQOperati onException

| at Col l ections$Unmodi fiabl eCol | ection. add (Col | ections. java: 1058)
| at (#8:1)

Note that unnodl i st 1 is a view of | i st 1. You cannot change the view directly, but you can
change the original list, which changes the view. If you change the original | i st 1, no error is
generated, and the unnodl i st 1 list has been modified.

jshell> listl. add("c")
$19 ==> true
jshell>listl

listl ==>[a, b, c]

j shel | > unnodlistl
unnodlistl ==>[a, b, c]

The reason for an unmodifiable view is that the collection cannot be modified by calling
methods on the view. However, anyone with a reference to the underlying collection, and the
ability to modify it, can cause the unmodifiable view to change.

Space Efficiency

Core Libraries
E94895-12

The collections returned by the convenience factory methods are more space efficient than
their modifiable equivalents.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 8

ORACLE

Chapter 5
Thread Safety

All of the implementations of these collections are private classes hidden behind a static
factory method. When it is called, the static factory method chooses the implementation class
based on the size. The data may be stored in a compact field-based or array-based layout.

Let's look at the heap space consumed by two alternative implementations. First, here’s an
unmodifiable HashSet that contains two strings:

Set<String> set = new HashSet<>(3); /'l 3 buckets
set.add("silly");

set.add("string");

set = Coll ections.unnodifiabl eSet (set);

The set includes six objects: the unmodifiable wrapper; the HashSet , which contains a
HashMap; the table of buckets (an array); and two Node instances (one for each element). On
a typical VM, with a 12—byte header per object, the total overhead comes to 96 bytes + 28 * 2
= 152 bytes for the set. This is a large amount of overhead compared to the amount of data
stored. Plus, access to the data unavoidably requires multiple method calls and pointer
dereferences.

Instead, we can implement the set using Set . of :

Set<String> set = Set.of ("silly", "string");

Because this is a field-based implementation, the set contains one object and two fields. The
overhead is 20 bytes. The new collections consume less heap space, both in terms of fixed
overhead and on a per-element basis.

Not needing to support mutation also contributes to space savings. In addition, the locality of
reference is improved, because there are fewer objects required to hold the data.

Thread Safety

Core Libraries
E94895-12

If multiple threads share a modifiable data structure, steps must be taken to ensure that
modifications made by one thread do not cause unexpected side effects for other threads.
However, because an immutable object cannot be changed, it is considered thread safe
without requiring any additional effort.

When several parts of a program share data structures, a modification to a structure made by
one part of the program is visible to the other parts. If the other parts of the program aren't
prepared for changes to the data, then bugs, crashes, or other unexpected behavior could
occur. However, if different parts of a program share an immutable data structure, such
unexpected behavior can never happen, because the shared structure cannot be changed.

Similarly, when multiple threads share a data structure, each thread must take precautions
when modifying that data structure. Typically, threads must hold a lock while reading from or
writing to any shared data structure. Failing to lock properly can lead to race conditions or
inconsistencies in the data structure, which can result in bugs, crashes, or other unexpected
behavior. However, if multiple threads share an immutable data structure, these problems
cannot occur, even in the absence of locking. Therefore, an immutable data structure is said to
be thread safe without requiring any additional effort such as adding locking code.

A collection is considered unmodifiable if elements cannot be added, removed, or replaced.
However, an unmodifiable collection is only immutable if the elements contained in the
collection are immutable. To be considered thread safe, collections created using the static
factory methods and t oUnnodi fi abl e- collectors must contain only immutable elements.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 8

Process API

The Process API lets you start, retrieve information about, and manage native operating
system processes.

With this API, you can work with operating system processes as follows:

Run arbitrary commands:
— Filter running processes.
— Redirect output.

— Connect heterogeneous commands and shells by scheduling processes to start when
another ends.

Test the execution of commands:

— Run a series of tests.

— Log output.

— Cleanup leftover processes.

Monitor commands:

— Monitor long-running processes and restart them if they terminate

— Collect usage statistics

Topics

Process API Classes and Interfaces

Creating a Process

Getting Information About a Process

Redirecting Output from a Process

Filtering Processes with Streams

Handling Processes When They Terminate with the onExit Method

Controlling Access to Sensitive Process Information

Process API Classes and Interfaces

The Process API consists of the classes and interfaces ProcessBui | der, Process,
ProcessHandl e, and ProcessHandl e. | nf o.

Topics

Core Libraries
E94895-12
Copyright © 2017, 2025

ProcessBuilder Class

Process Class

ProcessHandle Interface

ProcessHandle.Info Interface

October 14, 2025

, Oracle and/or its affiliates. Page 1 of 10

ORACLE’

ProcessBuilder Class

Chapter 6
Process API Classes and Interfaces

The Pr ocessBui | der class lets you create and start operating system processes.

See Creating a Process for examples on how to create and start a process. The
Pr ocessBui | der class manages various process attributes, which the following table

summarizes:

Table 6-1 ProcessBuilder Class Attributes and Related Methods
]

Process Attribute

Description

Related Methods

Command

Environment

Working directory

Standard input source

Standard output and standard
error destinations

redi rect Error Stream
property

Strings that specify the external
program file to call and its
arguments, if any.

The environment variables (and
their values). This is initially a
copy of the system environment
of the current process.

By default, the current working
directory of the current process.

By default, a process reads
standard input from a pipe;
access this through the output
stream returned by the
Process. get Qut put Strea
mmethod.

By default, a process writes
standard output and standard
error to pipes; access these
through the input streams
returned by the

Process. getl nput Stream
and

Process. getErrorStream
methods. See Redirecting Output
from a Process for an example.

Specifies whether to send
standard output and error output
as two separate streams (with a
value of false) or merge any error
output with standard output (with
a value of true).

e ProcessBuil der
constructor

e conmmnd(String...
comand)

- environnent()

- directory()
- directory(File
directory)

- redirectlnput
(ProcessBui |l der. Red
i rect source)

« redirectQutput (Proc
essBui | der. Redi rect
destinati on)

- redirectError(Proce
ssBui | der. Redi r ect
desti nati on)

e redirectErrorStream

Q

e redirectErrorStream

(bool ean

redirect ErrorStream

)

Process Class

The methods in the Pr ocess class let you to control processes started by the methods
ProcessBui | der. start and Runti ne. exec. The following table summarizes these

methods:

The following table summarizes the methods of the Pr ocess class.

Core Libraries
E94895-12
Copyright © 2017, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 2 of 10

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#%3Cinit%3E(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#command(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#command(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#environment()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory(java.io.File)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory(java.io.File)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html

ORACLE Chapter 6
Process API Classes and Interfaces

Table 6-2 Process Class Methods

Method Type Related Methods
Wait for the process to complete. e waitfor()
e waitFor(long tinmeout, TinmeUnit
unit)
Retrieve information about the process. e IsAlive()
o pid()
- info()
« exitValue()
Retrieve input, output, and error streams. See « getlnputStream)

Handling Processes When They Terminate with the . et Qut put St r eam()
onExit Method for an example. . getErrorStrean)

Retrieve direct and indirect child processes. « children()
+ descendants()
Destroy or terminate the process. e destroy()

« destroyForcibly()

« supportsNornmal Term nation()
Return a Conpl et abl eFut ur e instance that e onExit()
will be completed when the process exits. See

Handling Processes When They Terminate with the
onExit Method for an example.

ProcessHandle Interface

The Pr ocessHandl e interface lets you identify and control native processes. The Process
class is different from Pr ocessHandl e because it lets you control processes started only by
the methods ProcessBui | der. start and Runti me. exec; however, the Pr ocess class

lets you access process input, output, and error streams.

See Filtering Processes with Streams for an example of the Pr ocessHandl e interface. The
following table summarizes the methods of this interface:

Table 6-3 ProcessHandle Interface Methods

Method Type Related Methods
Retrieve all operating system processes. « allProcesses()
Retrieve process handles. e current()
- of (1 ong pid)
 parent()
Retrieve information about the process. e IsAlive()
e pid()
 info()
Retrieve streams of direct and indirect child e children()
processes. + descendant s()
Destroy processes. « destroy()

« destroyForcibly()

Core Libraries
E94895-12 October 14, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 10

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor(long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor(long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#isAlive()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#pid()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#info()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#exitValue()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#children()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#descendants()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#destroy()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#destroyForcibly()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#supportsNormalTermination()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#onExit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#allProcesses()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#current()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#of(long)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#parent()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#isAlive()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#pid()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#info()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#children()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#descendants()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#destroy()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#destroyForcibly()

ORACLE Chapter 6
Creating a Process

Table 6-3 (Cont.) ProcessHandle Interface Methods

___|
Method Type Related Methods

Return a Conpl et abl eFut ur e instance that « onExit()
will be completed when the process exits. See

Handling Processes When They Terminate with the

onExit Method for an example.

ProcessHandle.Info Interface

The ProcessHandl e. | nf o interface lets you retrieve information about a process, including
processes created by the Pr ocessBui | der. st art method and native processes.

See Getting Information About a Process for an example of the Pr ocessHandl e. I nf o
interface. The following table summarizes the methods in this interface:

Table 6-4 ProcessHandle.Info Interface Methods
]

Method Description

argunment s Returns the arguments of the process as a
String array.

command() Returns the executable path name of the process.

commandLi ne() Returns the command line of the process.

startlnstant () Returns the start time of the process.

tot al CpuDur ati on() Returns the total CPU time accumulated of the
process.

user () Returns the user of the process.

Creating a Process

To create a process, first specify the attributes of the process, such as the command name and
its arguments, with the Pr ocessBui | der class. Then, start the process with the
ProcessBui | der. st art method, which returns a Pr ocess instance.

The following lines create and start a process:

ProcessBui | der pb = new ProcessBui |l der("echo", "Hello Wrld!");
Process p = pb.start();

In the following excerpt, the set EnvTest method sets two environment variables, hor se and
oat s, then prints the value of these environment variables (as well as the system environment
variable HOVE) with the echo command:

public static void setEnvTest() throws | OException, |nterruptedException {
ProcessBui | der pb =
new ProcessBuil der("/bin/sh", "-c",
"echo $horse $dog $HOME').inheritl (();
pb. envi ronment (). put("horse", "oats");
pb. environment (). put("dog", "treats");

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 10

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#onExit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#arguments()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#command()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#commandLine()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#startInstant()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#totalCpuDuration()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#user()

ORACLE’

Chapter 6
Getting Information About a Process

pb.start().waitFor();

This method prints the following (assuming that your home directory is / hore/ adni n):

oats treats /hone/admn

Getting Information About a Process

Core Libraries
E94895-12

The method Pr ocess. pi d returns the native process ID of the process. The method
Process. i nf o returns a ProcessHandl e. | nf o instance, which contains additional
information about the process, such as its executable path name, start time, and user.

In the following excerpt, the method get | nf oTest starts a process and then prints information
about it:

public static void getlnfoTest() throws | CException {

ProcessBui | der pb = new ProcessBuil der ("echo”, "Hello World!");

String na = "<not avail abl e>";

Process p = pb.start();

ProcessHandl e.Info info = p.info();

Systemout.printf("Process ID. %%", p.pid());

System out. printf (" Comand nane: %%", info.comand().orEl se(na));
Systemout. printf("Command line: %%", info.comandLine().orEl se(na));

Systemout.printf("Start tine: %%",
info.startInstant().map(i -> i.atZone(Zoneld.systenDefault())
.toLocal DateTime().toString())
.0rEl se(na));

Systemout. printf("Arguments: %%",
i nfo.argunents().mp(a -> Stream of (a)
.collect(Collectors.joining(" ")))
.0rEl se(na));

Systemout. printf("User: %%", info.user().orEl se(na));

This method prints output similar to the following:

Process ID: 18761

Command nane: /usr/bin/echo

Command |ine: echo Hello Wrld!
Start time: 2017-05-30T18:52: 15. 577
Argunents: <not avail abl e>

User: administrator

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 10

ORACLE Chapter 6
Redirecting Output from a Process

@® Note

* The attributes of a process vary by operating system and are not available in all
implementations. In addition, information about processes is limited by the
operating system privileges of the process making the request.

« All the methods in the interface Pr ocessHandl e. | nf o return instances of
Opt i onal <T>; always check if the returned value is empty.

Redirecting Output from a Process

By default, a process writes standard output and standard error to pipes. In your application,
you can access these pipes through the input streams returned by the methods

Pr ocess. get Qut put St r eamand Pr ocess. get Er r or St r eam However, before starting
the process, you can redirect standard output and standard error to other destinations, such as
a file, with the methods r edi r ect Qut put and redi rectError.

In the following excerpt, the method r edi r ect ToFi | eTest redirects standard input to a file,
out . t np, then prints this file:

public static void redirectToFileTest() throws | CException,
I nterruptedException {

File outFile = new File("out.tnp");

Process p = new ProcessBuilder("ls", "-la")
.redirectQutput (outFile)
.redirectError(Redirect.|NHERI T)
.start();

int status = p.waitFor();

if (status == 0) {

p = new ProcessBuilder("cat" , outFile.toString())
.inheritl Q)
.start();

p. wai t For ();

}
}

The excerpt redirects standard output to the file out . t np. It redirects standard error to the
standard error of the invoking process; the value Redi r ect . | NHERI T specifies that the
subprocess I/O source or destination is the same as that of the current process. The call to the
i nheritl Q) method is equivalent to

redirectlnput (Redirect. I NHERIT).redirectQuput (Redirect. INHERIT).redire
CtError(Redirect. INHERIT).

Filtering Processes with Streams

The method ProcessHandl e. al | Processes returns a stream of all processes visible to the
current process. You can filter the Pr ocessHandl e instances of this stream the same way
that you filter elements from a collection.

Core Libraries
E94895-12 October 14, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 10

ORACLE Chapter 6
Handling Processes When They Terminate with the onExit Method

In the following excerpt, the method fi | t er ProcessesTest prints information about all the
processes owned by the current user, sorted by the process ID of their parent's process:

public class ProcessTest {
...

static void filterProcessesTest() {
Optional <String> currUser = ProcessHandl e.current().info().user();
ProcessHandl e. al | Processes()
filter(pl -> pl.info().user().equal s(currUser))
.sorted(ProcessTest: : parent Conpar at or)
. forEach(ProcessTest:: showProcess);

}

static int parentConparator(ProcessHandl e pl, ProcessHandl e p2) {
long pidl = pl.parent().map(ph -> ph.pid()).orE se(-1L);
[ong pid2 = p2.parent().map(ph -> ph.pid()).orE se(-1L);
return Long. conpare(pidl, pid2);

}

static void showProcess(ProcessHandl e ph) {
ProcessHandl e. Info info = ph.info();
Systemout.printf("pid: %, user: %, cnd: %%",
ph. pid(), info.user().orEl se("none"), info.command().orEl se("none"));

...

Note that the al | Pr ocesses method is limited by native operating system access controls.
Also, because all processes are created and terminated asynchronously, there is no guarantee
that a process in the stream is alive or that no other processes may have been created since
the call to the al | Pr ocesses method.

Handling Processes When They Terminate with the onExit
Method

The Process. onExi t and Pr ocessHandl e. onExi t methods return a

Conpl et abl eFut ur e instance, which you can use to schedule tasks when a process
terminates. Alternatively, if you want your application to wait for a process to terminate, then
you can call onExi t (). get ().

In the following excerpt, the method st art ProcessesTest creates three processes and then
starts them. Afterward, it calls onExi t ().t henAccept (onExi t Met hod) on each of the
processes; onExi t Met hod prints the process ID (PID), exit status, and output of the process.

public class ProcessTest {
...

static public void startProcessesTest() throws | COException,
I nterruptedException {

Core Libraries
E94895-12 October 14, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE Chapter 6
Handling Processes When They Terminate with the onExit Method

Li st <ProcessBui | der> greps = new ArrayList<>();
greps. add(new ProcessBuil der("/bin/sh", "-c", "grep -c \"java\" *"));
greps. add(new ProcessBuil der ("/bin/sh", "-c", "grep -c \"Process\" *"));
greps. add(new ProcessBuil der("/bin/sh", "-c", "grep -c \"onExit\" *"));
ProcessTest. start Several Processes (greps,

ProcessTest:: printGepResults);
Systemout. printIn("\nPress enter to continue ...\n");
Systemin.read();

}

static void startSeveral Processes (
Li st <ProcessBui | der> pBLi st
Consurmer <Pr ocess> onExi t Met hod)
throws InterruptedException {
Systemout. println("Nurber of processes: " + pBList.size());
pBLi st . stream() . f or Each(
pb -> {
try {
Process p = pb.start();
Systemout.printf("Start %, %%",
p.pid(), p.info().conmandLine().orEl se("<na>"));
p.onExit().thenAccept (onExit Met hod) ;
} catch (I OException e) {
Systemerr.println("Exception caught");
e.printStackTrace();

}
}
)
}

static void printGepResults(Process p) {
Systemout.printf("Exit %l, status %%%% %",
p.pid(), p.exitValue(), output(p.getlnputStrean()));

private static String output(lnputStreaminputStream {
String s ="";
try (BufferedReader br = new BufferedReader(new
| nput St reanReader (i nput Stream)) {
S =
br.lines().collect(Collectors.joining(SystemgetProperty("line.separator")));
} catch (I CException e) {
Systemerr. println("Caught | CException");
e.printStackTrace();
}

return s;

}

...
}

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 8 of 10

ORACLE Chapter 6
Handling Processes When They Terminate with the onExit Method

The output of the method st art ProcessesTest is similar to the following. Note that the
processes might exit in a different order than the order in which they were started.

Nunber of processes: 3

Start 12401, /bin/sh -c grep -c "java" *
Start 12403, /bin/sh -c grep -c¢ "Process" *
Start 12404, /bin/sh -c grep -c "onExit" *

Press enter to continue ...

Exit 12401, status O
ProcessTest.cl ass: 0
ProcessTest.java: 16

Exit 12404, status O
ProcessTest.cl ass: 0
ProcessTest.java: 8

Exit 12403, status O
ProcessTest.cl ass: 0
ProcessTest. java: 38

This method calls the Syst em i n. r ead() method to prevent the program from terminating
before all the processes have exited (and have run the method specified by the t henAccept
method).

If you want to wait for a process to terminate before proceeding with the rest of the program,
then call onExi t (). get():

static void startSeveral Processes (
Li st <ProcessBui | der> pBLi st, Consumer <Process> onExit Met hod)
throws InterruptedException {
Systemout. println("Nunber of processes: " + pBList.size());
pBLi st . strean() . f or Each(
pb -> {
try {
Process p = pb.start();
Systemout.printf("Start %, %%",
p.pid(), p.info().comandLine().orElse("<na>"));
p.onExit().get();
print GrepResul ts(p);
} catch (I CException|InterruptedException|ExecutionException e) {
Systemerr.println("Exception caught");
e.printStackTrace();

The Conput abl eFut ur e class contains a variety of methods that you can call to schedule tasks
when a process exits including the following:

e thenAppl y: Similar to t henAccept , except that it takes a lambda expression of type
Functi on (a lambda expression that returns a value).

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 9 of 10

ORACLE Chapter 6
Controlling Access to Sensitive Process Information

* thenRun: Takes a lambda expression of type Runnabl e (no formal parameters or return
value).

* thenAppl yAsyc: Runs the specified Funct i on with a thread from
For kJoi nPool . conmonPool ().

Because Conput abl eFut ur e implements the Fut ur e interface, this class also contains
synchronous methods:

e get(long tineout, TinmeUnit unit):Waits, if necessary, at most the time specified
by its arguments for the process to complete.

e i sDone: Returns true if the process is completed.

Controlling Access to Sensitive Process Information

Process information may contain sensitive information such as user IDs, paths, and arguments
to commands. Control access to process information with a security manager.

When running as a normal application, a Pr ocessHandl e has the same operating system
privileges to information about other processes as a native application; however, information
about system processes may not be available.

If your application uses the Securi t yManager class to implement a security policy, then to
enable it to access process information, the security policy must grant

Runt i nePer m ssi on(" managePr ocess") . This permission enables native process
termination and access to the process Pr ocessHandl e information. Note that this permission
enables code to identify and terminate processes that it did not create.

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 10 of 10

Preferences API

The Preferences API enables applications to manage preference and configuration data.

Applications require preference and configuration data to adapt to the needs of different users
and environments. The j ava. uti | . pr ef s package provides a way for applications to store
and retrieve user and system preference and configuration data. The data is stored persistently
in an implementation-dependent backing store. There are two separate trees of preference
nodes, one for user preferences and one for system preferences.

All of the methods that modify preference data are permitted to operate asynchronously. They
may return immediately, and changes will eventually propagate to the persistent backing store.
The f 1 ush method can be used to force updates to the backing store.

The methods in the Pr ef er ences class may be invoked concurrently by multiple threads in a
single JVM without the need for external synchronization, and the results will be equivalent to
some serial execution. If this class is used concurrently by multiple JVMs that store their
preference data in the same backing store, the data store will not be corrupted, but no other
guarantees are made concerning the consistency of the preference data.

Topics:

e Comparing the Preferences API to Other Mechanisms

e Usage Notes
e Design FAQ

Comparing the Preferences API to Other Mechanisms

Prior to the introduction of the Preferences API, developers could choose to manage
preference and configuration data in an ad hoc fashion by using the Properties API or the Java
Naming and Directory Interface (JNDI) API.

Often, preference and configuration data was stored in properties files, accessed through the
java.util.Properties API. However, there are no standards as to where such files
should reside on disk, or what they should be called. Using this mechanism, it is extremely
difficult to back up a user's preference data, or transfer it from one machine to another. As the
number of applications increases, the possibility of file name conflicts increases. Also, this
mechanism is of no help on platforms that lack a local disk, or where it is desirable that the
data be stored in an external data store, such as an enterprise-wide LDAP directory service.

Less frequently, developers stored user preference and configuration data in a directory
service accessed through the JNDI API. Unlike the Properties API, JNDI allows the use of
arbitrary data stores (back-end neutrality). While JNDI is extremely powerful, it is also rather
large, consisting of 5 packages and 83 classes. JNDI provides no policy as to where in the
directory name space the preference data should be stored, or in which name space.

Neither Properties nor JNDI provide a simple, ubiquitous, back-end neutral preferences
management facility. The Preferences API does provide such a facility, combining the simplicity
of Properties with the back-end neutrality of INDI. It provides sufficient built-in policy to prevent
name clashes, foster consistency, and encourage robustness in the face of inaccessibility of
the backing data store.

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 6

https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/Preferences.html#flush()
https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/Preferences.html

ORACLE Chapter 7
Usage Notes

Usage Notes

The information in this section is not part of the Preferences API specification. It is intended to
provide some examples of how the Preferences API might be used.

Topics:

e Obtain Preferences Objects for an Enclosing Class

* Obtain Preferences Objects for a Static Method

e Atomic Updates
» Determine Backing Store Status

Obtain Preferences Objects for an Enclosing Class

The examples in this section show how you can obtain the system and user Preferences
objects pertaining to the enclosing class. These examples only work inside instance methods.

The following example obtains per-user preferences. Reasonable defaults are provided for
each of the preference values obtained. These defaults are returned if no preference value has
been set, or if the backing store is inaccessible.

Note that static final fields, rather than inline St r i ng literals, are used for the key names
(NUM_ROWS and NUM COLS). This reduces the likelihood of runtime bugs from typographical
errors in key names.

package com greencorp.w dget;
inport java.util.prefs.*;

public class Gadget {
/'l Preference keys for this package
private static final String NUM ROAS
private static final String NUM COLS

"numrows";
"num col s";

void getPrefs() {
Preferences prefs = Preferences. user NodeFor Package(Gadget . cl ass);

i nt nunRows
i nt nunCol s

prefs. getlnt(NUM ROA5, 40);
prefs. getlnt(NUMCOLS, 80);

The previous example obtains per-user preferences. If a single, per-system value is desired,
replace the first line in get Pr ef s with the following:

Preferences prefs = Preferences. systemNodeFor Package(Gadget . cl ass);

Core Libraries
E94895-12 October 14, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE Chapter 7
Usage Notes

Obtain Preferences Objects for a Static Method

The examples in this section show how you can obtain the system and user Preferences
objects in a static method.

In a static method (or static initializer), you need to explicitly provide the name of the package:

static String ourNodeName = "/cont greencorp/ wi dget";
static void getPrefs() {
Preferences prefs = Preferences. userRoot (). node(our NodeNane) ;

It is always acceptable to obtain a system preferences object once, in a static initializer, and
use it whenever system preferences are required:

static Preferences prefs = Preferences. systenRoot (). node(our NodeNane);

In general, it is acceptable to do the same thing for a user preferences object, but not if the
code in question is to be used in a server, wherein multiple users are running concurrently or
serially. In such a system, user NodeFor Package and user Root return the appropriate node for
the calling user, thus it's critical that calls to user NodeFor Package or user Root be made from
the appropriate thread at the appropriate time. If a piece of code may eventually be used in
such a server environment, it is a good, conservative practice to obtain user preferences
objects immediately before they are used, as in the prior example.

Atomic Updates

The Preferences API does not provide database-like "transactions" wherein multiple
preferences are modified atomically. Occasionally, it is necessary to modify two or more
preferences as a unit.

For example, suppose you are storing the x and y coordinates where a window is to be placed.
The only way to achieve atomicity is to store both values in a single preference. Many
encodings are possible. Here's a simple one:

int x, vy;

prefs.put (POSITION, x + "," +y);

When such a "compound preference" is read, it must be decoded. For robustness, allowances
should be made for a corrupt (unparseable) value:

static int X DEFAULT = 50, Y _DEFAULT = 25;
voi d parsePrefs() {
String position = prefs.get(PCSITION, X DEFAULT + "," + Y_DEFAULT);
int x,vy;
try {
int i = position.indexOr(',");
X = Integer. parselnt(coordinates.substring(0, i));
y = Integer.parselnt(position.substring(i + 1));
} catch(Exception e) {

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE Chapter 7
Design FAQ

/1 Value was corrupt, just use defaults
x = X_DEFAULT;
y = Y_DEFAULT;

Determine Backing Store Status

Typical application code has no need to know whether the backing store is available. It should
almost always be available, but if it isn't, the code should continue to execute using default
values in place of preference values from the backing store.

Very rarely, some advanced program might want to vary its behavior, or simply refuse to run, if
the backing store is unavailable. Following is a method that determines whether the backing
store is available by attempting to modify a preference value and flush the result to the backing
store.

private static final String BACKI NG STORE _AVAIL = "Backi ngStoreAvail";

private static bool ean backi ngStoreAvail abl e() {

Preferences prefs = Preferences. userRoot (). node("<tenporary>");

try {
bool ean ol dVal ue = prefs. get Bool ean(BACKI NG_STORE_AVAI L, fal se);
prefs. put Bool ean(BACKI NG_STORE_AVAI L, !ol dVal ue);
prefs.flush();

} catch(Backi ngSt oreException e) {
return fal se;

}

return true;

Design FAQ

This section provides answers to frequently asked questions about the design of the
Preferences API.

Topics:

* How does this Preferences API relate to the Properties API?

 How does the Preferences API relate to JNDI?

* Why do all of the get methods require the caller to pass in a default?

 How was it decided which methods should throw BackingStoreException?

Why doesn't this API provide stronger guarantees concerning concurrent access by
multiple VMs? Similarly, why doesn't the API allow multiple Preferences updates to be
combined into a single "transaction", with all or nothing semantics?

* Why does this API have case-sensitive keys and node-names, while other APIs playing in
a similar space (such as the Microsoft Windows Registry and LDAP) do not?

Why doesn't this API use the Java 2 Collections Framework?

Why don't the put and remove methods return the old values?

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE’

Core Libraries
E94895-12

Chapter 7
Design FAQ

Why does the API permit, but not require, stored defaults?

* Why doesn't this API contain methods to read and write arbitrary serializable objects?

« Why is Preferences an abstract class rather than an interface?

Where is the default backing store?

How does this Preferences API relate to the Properties API?

It is intended to replace most common uses of Properties, rectifying many of its deficiencies,
while retaining its light weight. When using Properties, the programmer must explicitly specify a
path name for each properties file, but there is no standard location or naming convention.
Properties files are "brittle”, as they are hand-editable but easily corrupted by careless editing.
Support for non-string data types in properties is non-existent. Properties cannot easily be
used with a persistence mechanism other than the file system. In sum, the Properties facility
does not scale.

How does the Preferences API relate to JNDI?

Like JNDI, it provides back-end neutral access to persistent key-value data. JNDI, however, is
far more powerful, and correspondingly heavyweight. JNDI is appropriate for enterprise
applications that need its power. The Preferences API is intended as a simple, ubiquitous,
back-end neutral preferences-management facility, enabling any Java application to easily
tailor its behavior to user preferences and maintain small amounts of state from run to run.

Why do all of the get methods require the caller to pass in a default?

This forces the application authors to provide reasonable default values, so that applications
have a reasonable chance of running even if the repository is unavailable.

How was it decided which methods should throw BackingStoreException?

Only methods whose semantics absolutely require the ability to communicate with the backing
store throw this exception. Typical applications will have no need to call these methods. As
long as these methods are avoided, applications will be able to run even if the backing store is
unavailable, which was an explicit design goal.

Why doesn't this API provide stronger guarantees concerning concurrent access by
multiple VMs? Similarly, why doesn't the API allow multiple Preferences updates to be
combined into a single "transaction”, with all or nothing semantics?

While the API does provide rudimentary persistent data storage, it is not intended as a
substitute for a database. It is critical that it be possible to implement this API atop standard
preference/configuration repositories, most of which do not provide database-like guarantees
and functionality. Such repositories have proven adequate for the purposes for which this API
is intended.

Why does this APl have case-sensitive keys and node-names, while other APIs playing
in a similar space (such as the Microsoft Windows Registry and LDAP) do not?

In the Java programming universe, case-sensitive String keys are ubiquitous. In particular, they
are provided by the Properties class, which this API is intended to replace. It is not uncommon
for people to use Properties in a fashion that demands case-sensitivity. For example, Java
package names (which are case-sensitive) are sometimes used as keys. It is recognized that
this design decision complicates the life of the systems programmer who implements
Preferences atop a backing store with case-insensitive keys, but this is considered an
acceptable price to pay, as far more programmers will use the Preferences API than will
implement it.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE

Core Libraries
E94895-12

Chapter 7
Design FAQ

Why doesn't this API use the Java 2 Collections Framework?

This API is designed for a very particular purpose, and is optimized for that purpose. In the
absence of generic types (see JSR-14), the API would be less convenient for typical users. It
would lack compile-time type safety, if forced to conform to the Map API. Also, it is not
anticipated that interoperability with other Map implementations will be required (though it
would be straightforward to implement an adapter class if this assumption turned out to be
wrong). The Preferences APl is, by design, so similar to Map that programmers familiar with
the latter should have no difficulties using the former.

Why don't the put and remove methods return the old values?

It is desirable that both of these methods be executable even if the backing store is
unavailable. This would not be possible if they were required to return the old value. Further, it
would have negative performance impact if the APl were implemented atop some common
back-end data stores.

Why does the API permit, but not require, stored defaults?

This functionality is required in enterprise settings for scalable, cost-effective administration of
preferences across the enterprise, but would be overkill in a self-administered single-user
setting.

Why doesn't this API contain methods to read and write arbitrary serializable objects?

Serialized objects are somewhat fragile: if the version of the program that reads such a
property differs from the version that wrote it, the object may not deserialize properly (or at all).
It is not impossible to store serialized objects using this API, but we do not encourage it, and
have not provided a convenience method.

Why is Preferences an abstract class rather than an interface?

It was decided that the ability to add new methods in an upward compatible fashion
outweighed the disadvantage that Preferences cannot be used as a "mixin". That is to say,
arbitrary classes cannot also be made to serve as Preferences objects. Also, prior to JDK 8,
this obviated the need for a separate class for the static methods; in releases prior to JDK 8,
interfaces cannot contain static methods.

Where is the default backing store?

System and user preference data is stored persistently in an implementation-dependent

backing store. Typical implementations include flat files, OS-specific registries, directory

servers and SQL databases. For example, on Windows systems the data is stored in the
Windows registry.

On Linux systems, the system preferences are typically stored at j ava-

hone/ . syst enPr ef s in a network installation, or / et ¢/ . j ava/ . syst enPref s in alocal
installation. If both are present, / et ¢/ . j ava/ . syst enPr ef s takes precedence. The system
preferences location can be overridden by setting the system property

java. util.prefs.systenRoot. The user preferences are typically stored at user -

home/ . j aval . user Pr ef s. The user preferences location can be overridden by setting the
system property j ava. util. prefs. userRoot.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 6

Java Logging Overview

The Java Logging APls, contained in the package j ava. uti | . | oggi ng, facilitate software
servicing and maintenance at customer sites by producing log reports suitable for analysis by
end users, system administrators, field service engineers, and software development teams.
The Logging APIs capture information such as security failures, configuration errors,

performance bottlenecks, and/or bugs in the application or platform.

The core package includes support for delivering plain text or XML-formatted log records to
memory, output streams, consoles, files, and sockets. In addition, the logging APIs are capable
of interacting with logging services that already exist on the host operating system.

Topics

Overview of Control Flow

Log Levels

Loggers
Logging Methods

Handlers
Formatters

The LogManager

Configuration File

Default Configuration

Dynamic Configuration Updates
Native Methods
XML DTD

Unique Message IDs

Security
Configuration Management

Packaging
Localization

Remote Access and Serialization

Java Logging Examples

Appendix A: DTD for XMLFormatter Output

Overview of Control Flow

Applications make logging calls on Logger objects. Logger objects are organized in a
hierarchical namespace and child Logger objects may inherit some logging properties from
their parents in the namespace.

Core Libraries
E94895-12

Copyright © 2017, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 1 of 10

https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/package-summary.html

ORACLE

Core Libraries
E94895-12

Chapter 8

Applications make logging calls on Logger objects. These Logger objects allocate
LogRecor d objects which are passed to Handl er objects for publication. Both Logger and
Handl er objects may use logging Level objects and (optionally) Fi | t er objects to decide if
they are interested in a particular LogRecor d object. When it is necessary to publish a
LogRecor d object externally, a Handl er object can (optionally) use a For nat t er object to
localize and format the message before publishing it to an I/O stream.

Figure 8-1 Java Logging Control Flow

Application —— > Logger ——> Handler ———> Outside World

Filter Filter Formatter

Each Logger object keeps track of a set of output Handl er objects. By default all Logger
objects also send their output to their parent Logger . But Logger objects may also be
configured to ignore Handl er objects higher up the tree.

Some Handl er objects may direct output to other Handl er objects. For example, the
Menor yHandl er maintains an internal ring buffer of LogRecor d objects, and on trigger
events, it publishes its LogRecor d object through a target Handl er . In such cases, any
formatting is done by the last Handl er in the chain.

Figure 8-2 Java Logging Control Flow with MemoryHandler

Application ——————> Logger ——> MemoryHandler —— > Handler = ——>| Outside World

Filter Filter Filter Formatter

The APIs are structured so that calls on the Logger APIs can be cheap when logging is
disabled. If logging is disabled for a given log level, then the Logger can make a cheap
comparison test and return. If logging is enabled for a given log level, the Logger is still careful
to minimize costs before passing the LogRecor d into the Handl er . In particular, localization
and formatting (which are relatively expensive) are deferred until the Handl er requests them.
For example, a Menor yHand| er can maintain a circular buffer of LogRecor d objects without
having to pay formatting costs.

Log Levels

Each log message has an associated log Level object. The Level gives a rough guide to the
importance and urgency of a log message. Log Level objects encapsulate an integer value,
with higher values indicating higher priorities.

The Level class defines seven standard log levels, ranging from FI NEST (the lowest priority,
with the lowest value) to SEVERE (the highest priority, with the highest value).

Loggers

As stated earlier, client code sends log requests to Logger objects. Each logger keeps track of
a log level that it is interested in, and discards log requests that are below this level.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 10

ORACLE

Core Libraries
E94895-12

Chapter 8

Logger objects are normally named entities, using dot-separated names such as j ava. awt .
The namespace is hierarchical and is managed by the LogManager . The namespace should
typically be aligned with the Java packaging namespace, but is not required to follow it exactly.
For example, a Logger called j ava. awt might handle logging requests for classes in the

j ava. awt package, but it might also handle logging for classes in sun. awt that support the
client-visible abstractions defined in the j ava. awt package.

In addition to named Logger objects, it is also possible to create anonymous Logger objects
that don't appear in the shared namespace. See the Security section.

Loggers keep track of their parent loggers in the logging namespace. A logger's parent is its

nearest extant ancestor in the logging namespace. The root logger (hamed ") has no parent.
Anonymous loggers are all given the root logger as their parent. Loggers may inherit various
attributes from their parents in the logger namespace. In particular, a logger may inherit:

* Logging level: If a logger's level is set to be null, then the logger will use an effective
Level that will be obtained by walking up the parent tree and using the first non-null
Level .

* Handlers: By default, a Logger will log any output messages to its parent's handlers, and
S0 on recursively up the tree.

* Resource bundle names: If a logger has a null resource bundle name, then it will inherit
any resource bundle name defined for its parent, and so on recursively up the tree.

Logging Methods

The Logger class provides a large set of convenience methods for generating log messages.
For convenience, there are methods for each logging level, named after the logging level
name. Thus rather than calling | ogger . | og(Level . WARNI NG, .. .), a developer can
simply call the convenience method | ogger . warni ng(...).

There are two different styles of logging methods, to meet the needs of different communities
of users.

First, there are methods that take an explicit source class hame and source method name.
These methods are intended for developers who want to be able to quickly locate the source of
any given logging message. An example of this style is:

void warning(String sourceC ass, String sourceMethod, String nsg);

Second, there are a set of methods that do not take explicit source class or source method
names. These are intended for developers who want easy-to-use logging and do not require
detailed source information.

voi d warning(String msg);

For this second set of methods, the Logging framework will make a "best effort" to determine
which class and method called into the logging framework and will add this information into the
LogRecor d. However, it is important to realize that this automatically inferred information may
only be approximate. Virtual machines perform extensive optimizations when just-in-time
compiling and may entirely remove stack frames, making it impossible to reliably locate the
calling class and method.

Handlers

Java SE provides the following Handl er classes:

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 10

ORACLE

Core Libraries
E94895-12

Chapter 8

e StreanHandl er: A simple handler for writing formatted records to an Qut put St r eam
e Consol eHandl er : A simple handler for writing formatted records to Syst em err

« Fil eHandl er: A handler that writes formatted log records either to a single file, or to a set
of rotating log files.

e Socket Handl er : A handler that writes formatted log records to remote TCP ports.
e Menor yHandl er: A handler that buffers log records in memory.

It is fairly straightforward to develop new Handl er classes. Developers requiring specific
functionality can either develop a handler from scratch or subclass one of the provided
handlers.

Formatters

Java SE also includes two standard For mat t er classes:

e Si npl eFor nat t er : Writes brief "human-readable" summaries of log records.
XM.For mat t er : Writes detailed XML-structured information.

As with handlers, it is fairly straightforward to develop new formatters.

The LogManager

There is a global LogManager object that keeps track of global logging information. This
includes:

* A hierarchical namespace of named Loggers.

* A set of logging control properties read from the configuration file. See the section
Configuration File.

There is a single LogManager object that can be retrieved using the static

LogManager . get LogManager method. This is created during LogManager initialization,
based on a system property. This property allows container applications (such as EJB
containers) to substitute their own subclass of LogManager in place of the default class.

Configuration File

The logging configuration can be initialized using a logging configuration file that will be read at
startup. This logging configuration file is in standard j ava. uti | . Properti es format.

Alternatively, the logging configuration can be initialized by specifying a class that can be used
for reading initialization properties. This mechanism allows configuration data to be read from
arbitrary sources, such as LDAP and JDBC. See the Configuration File section.

There is a small set of global configuration information. This is specified in the description of
the LogManager class and includes a list of root-level handlers to install during startup.

The initial configuration may specify levels for particular loggers. These levels are applied to
the named logger and any loggers below it in the naming hierarchy. The levels are applied in
the order they are defined in the configuration file.

The initial configuration may contain arbitrary properties for use by handlers or by subsystems
doing logging. By convention, these properties should use names starting with the name of the
handler class or the name of the main Logger for the subsystem.

For example, the Menor yHandl er uses a property
java. util.loggi ng. MenoryHandl er . si ze to determine the default size for its ring
buffer.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 10

ORACLE

Core Libraries
E94895-12

Chapter 8

Default Configuration

The default logging configuration that ships with the JRE is only a default and can be
overridden by ISVs, system administrators, and end users.

The default configuration makes only limited use of disk space. It doesn't flood the user with
information, but does make sure to always capture key failure information.

The default configuration establishes a single handler on the root logger for sending output to
the console.

Dynamic Configuration Updates
Programmers can update the logging configuration at run time in a variety of ways:

* Fil eHandl er, Menor yHandl er, and Consol eHandl er objects can all be created with
various attributes.

* New Handl er objects can be added and old ones removed.
* New Logger object can be created and can be supplied with specific Handlers.

* Level objects can be set on target Handl er objects.

Native Methods
There are no native APIs for logging.

Native code that wishes to use the Java Logging mechanisms should make normal JNI calls
into the Java Logging APIs.

XML DTD

The XML DTD used by the XM_For mat t er is specified in Appendix A: DTD for XMLFormatter
Output.

The DTD is designed with a <l og> element as the top-level document. Individual log records
are then written as <r ecor d> elements.

Note that in the event of JVM crashes it may not be possible to cleanly terminate an
XM_For mat t er stream with the appropriate closing </ | og>. Therefore, tools that are
analyzing log records should be prepared to cope with un-terminated streams.

Unique Message IDs

The Java Logging APIs do not provide any direct support for unique message IDs. Those
applications or subsystems requiring unique message IDs should define their own conventions
and include the unique IDs in the message strings as appropriate.

Security

The principal security requirement is that untrusted code should not be able to change the
logging configuration. Specifically, if the logging configuration has been set up to log a
particular category of information to a particular Handler, then untrusted code should not be
able to prevent or disrupt that logging.

The security permission Loggi ngPer mi ssi on controls updates to the logging configuration.

Trusted applications are given the appropriate Loggi ngPer mi ssi on so they can call any of
the logging configuration APIs. Untrusted applets are a different story. Untrusted applets can
create and use named loggers in the normal way, but they are not allowed to change logging

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 10

ORACLE

Core Libraries
E94895-12

Chapter 8

control settings, such as adding or removing handlers, or changing log levels. However,
untrusted applets are able to create and use their own "anonymous" loggers, using

Logger . get AnonynousLogger . These anonymous loggers are not registered in the global
namespace, and their methods are not access-checked, allowing even untrusted code to
change their logging control settings.

The logging framework does not attempt to prevent spoofing. The sources of logging calls
cannot be determined reliably, so when a LogRecor d is published that claims to be from a
particular source class and source method, it may be a fabrication. Similarly, formatters such
as the XMLFor mat t er do not attempt to protect themselves against nested log messages
inside message strings. Thus, a spoof LogRecor d might contain a spoof set of XML inside its
message string to make it look as if there was an additional XML record in the output.

In addition, the logging framework does not attempt to protect itself against denial of service
attacks. Any given logging client can flood the logging framework with meaningless messages
in an attempt to conceal some important log message.

Configuration Management

The APIs are structured so that an initial set of configuration information is read as properties
from a configuration file. The configuration information may then be changed programatically
by calls on the various logging classes and objects.

In addition, there are methods on LogManager that allow the configuration file to be re-read.
When this happens, the configuration file values will override any changes that have been
made programatically.

Packaging

All of the logging class are in the j ava. * part of the namespace, inthe j ava. util .| oggi ng
package.

Localization
Log messages may need to be localized.

Each logger may have a Resour ceBundl e hame associated with it. The corresponding
Resour ceBundl e can be used to map between raw message strings and localized message
strings.

Normally, formatters perform localization. As a convenience, the For mat t er class provides a
f or mat Message method that provides some basic localization and formatting support.

Remote Access and Serialization

As with most Java platform APIs, the logging APIs are designed for use inside a single address
space. All calls are intended to be local. However, it is expected that some handlers will want
to forward their output to other systems. There are a variety of ways of doing this:

Some handlers (such as the Socket Handl er) may write data to other systems using the
XM_For mat t er . This provides a simple, standard, inter-change format that can be parsed and
processed on a variety of systems.

Some handlers may wish to pass LogRecor d objects over RMI. The LogRecor d class is
therefore serializable. However, there is a problem in how to deal with the LogRecor d
parameters. Some parameters may not be serializable and other parameters may have been
designed to serialize much more state than is required for logging. To avoid these problems,
the LogRecor d class has a custom wr i t eCbj ect method that converts the parameters to
strings (using Obj ect . t oSt ri ng()) before writing them out.

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 6 of 10

ORACLE Chapter 8
Java Logging Examples

Most of the logging classes are not intended to be serializable. Both loggers and handlers are
stateful classes that are tied into a specific virtual machine. In this respect they are analogous
to the j ava. i o classes, which are also not serializable.

Java Logging Examples

Simple Use
The following is a small program that performs logging using the default configuration.

This program relies on the root handlers that were established by the LogManager based on
the configuration file. It creates its own Logger object and then makes calls to that Logger
object to report various events.

package com wonbat ;
inport java.util.logging.*;

public class Nose {
/1 Obtain a suitable | ogger
private static Logger |ogger = Logger.getLogger("com wonbat.nose");
public static void main(String argv[]) {
/1 Log a FINE tracing nessage
| ogger. fine("doing stuff");
try {
Wonbat . sneeze();
} catch (Exception ex) {
/'l Log the exception
| ogger. | og(Level . WARNI NG, "troubl e sneezing", ex);
}

| ogger. fine("done");

Changing the Configuration

Here's a small program that dynamically adjusts the logging configuration to send output to a
specific file and to get lots of information on wombats. The pattern % means the system
temporary directory.

public static void main(String[] args) {
Handl er fh = new Fil eHandl er ("% /wonbat.|0g");
Logger. get Logger ("") . addHandl er (f h);
Logger . get Logger (" com wonbat ") . set Level (Level . FI NEST) ;

Simple Use, Ignoring Global Configuration

Here's a small program that sets up its own logging Handl er and ignores the global
configuration.

package com wonbat ;
inport java.util.logging.*;
Core Libraries

E94895-12 October 14, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE

Chapter 8

Appendix A: DTD for XMLFormatter Output

public class Nose {

private static Logger |ogger = Logger.getLogger("comwonbat.nose");

private static FileHandler fh = new FileHandl er("nylog.txt");
public static void main(String argv[]) {
/1 Send |ogger output to our FileHandl er.
| ogger . addHand! er (fh);
/1 Request that every detail gets |ogged
| ogger . set Level (Level . ALL);
/1 Log a sinple |INFO message.
| ogger.info("doing stuff");
try {
Wnbat . sneeze();
} catch (Exception ex) {
I ogger.log(Level . WARNING, "troubl e sneezing", ex);
}

| ogger.fine("done");

Sample XML Output

Here's a small sample of what some XMLFor mat t er XML output looks like:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<! DOCTYPE | og SYSTEM "l ogger.dtd">
<l og>
<record>
<dat e>2015- 02- 27T09: 35: 44. 885562Z</ dat e>
<m|1is>1425029744885</m|lis>
<nanos>562000</ nanos>
<sequence>1256</ sequence>
<l ogger >kgh. test . fred</| ogger >
<l evel > NFO</ | evel >
<cl ass>kgh. t est. XM.Test </ cl ass>
<met hod>wr i t eLog</ et hod>
<t hread>10</t hr ead>
<message>Hel | o worl d! </ message>
</record>
</l og>

Appendix A: DTD for XMLFormatter Output

Core Libraries
E94895-12

<l-- DID used by the java.util.logging. XM_.Formatter -->
<I-- This provides an XM_ formatted | og message. -->

<I'-- The docunent type is "log" which consists of a sequence
of record el enents -->
<! ELEMENT | og (record*)>

<I-- Each logging call is described by a record elenment. -->
< ELEMENT record (date, nmillis, nanos?, sequence, |ogger?, |evel

class?, method?, thread?, nessage, key?, catal og?, parant, exception?)>

Copyright © 2017, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 8 of 10

ORACLE

Core Libraries
E94895-12

Chapter 8
Appendix A: DTD for XMLFormatter Output

<I-- Date and time when LogRecord was created in | SO 8601 format -->
<! ELEMENT date (#PCDATA) >

<I'-- Tinme when LogRecord was created in milliseconds since
m dni ght January 1st, 1970, UTC. -->
<IELEMENT millis (#PCDATA)>

<I'-- Nano second adjustenent to add to the tinme in mlliseconds
This is an optional elenent, added since JDK 9, which adds further
precision to the time when LogRecord was created

-->

<! ELEMENT nanos (#PCDATA) >

<I'-- Uni que sequence nunber within source VM -->
<! ELEMENT sequence (#PCDATA) >

<I'-- Nane of source Logger object. -->
<! ELEMENT | ogger (#PCDATA) >

<I'-- Logging level, may be either one of the constant
names fromjava.util.logging.Level (such as "SEVERE'
or "WARNING') or an integer value such as "20". -->
<! ELEMENT | evel (#PCDATA) >

<l-- Fully qualified name of class that issued
l ogging call, e.g. "javax.marsupial.Wnbat". -->
<l ELEMENT cl ass (#PCDATA) >

<I-- Nane of nethod that issued | ogging call.

It may be either an unqualified method name such as
“fred" or it may include argunent type information
in parenthesis, for exanple "fred(int,String)". -->
<! ELEMENT net hod (#PCDATA) >

<I-- Integer thread ID. -->
<! ELEMENT thread (#PCDATA)>

<I-- The nmessage el ement contains the text string of a log nmessage. -->
<! ELEMENT message (#PCDATA) >

<I-- If the nmessage string was localized, the key el enent provides
the original localization nessage key. -->
<! ELEMENT key (#PCDATA) >

<I-- If the nessage string was |ocalized, the catalog el enment provides
the logger's localization resource bundle nane. -->
<! ELEMENT cat al og (#PCDATA) >

<I-- If the nessage string was localized, each of the param el enents
provi des the String val ue (obtained using Object.toString())
of the correspondi ng LogRecord paraneter. -->

<! ELEMENT par am (#PCDATA) >

<I-- An exception consists of an optional message string followed
by a series of StackFranes. Exception elements are used

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 9 of 10

ORACLE Chapter 8
Appendix A: DTD for XMLFormatter Output

for Java exceptions and other java Throwables. -->
< ELEMENT exception (nessage?, frame+)>

<l-- A frame describes one line in a Throwabl e backtrace. -->
<IELEMENT frame (class, nethod, |ine?)>

<I-- an integer line nunmber within a class's source file. -->
<! ELEMENT |ine (#PCDATA) >

Core Libraries
E94895-12 October 14, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 10 of 10

Java Networking

The Java networking API provides classes for networking functionality, including addressing,
classes for using URLs and URIs, socket classes for connecting to servers, networking
security functionality, and more. It consists of these packages and modules:

j ava. net : Classes for implementing networking applications.

j ava. net . ht t p: Contains the API for the HTTP Client, which provides high-level client
interfaces to HTTP (versions 1.1 and 2) and low-level client interfaces to WebSocket
instances. See Java HTTP Client for more information about this API, including videos and
sample code.

j avax. net : Classes for creating sockets.

j avax. net . ssl : Secure socket classes.

j dk. ht t pser ver : Defines the JDK-specific HTTP server API.

j dk. net : Platform-specific socket options for the j ava. net and j ava. ni 0. channel s
socket classes.

Networking System Properties

You can set the following networking system properties in one of three ways:

Using the - D option of the java command
Using the Syst em set Property(String, String) method

Specifying them in the $JAVA HOVE/ conf/ net . properti es file. Note that you can
specify only proxy-related properties in this file.

Unless specified otherwise, a property value is checked every time it's used.

See Networking Properties and the | ava. net . htt p and | dk. ht t pser ver modules in the
Java SE API Specification for more information.

HTTP Client Properties

Some of the following properties are subject to predefined minimum and maximum values that
override any user-specified values. Note that the default value of boolean values is true if the
property exists but has no value.

Core Libraries
E94895-12

October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 15

https://openjdk.java.net/groups/net/httpclient/

ORACLE’

Table 9-1 HTTP Client Properties
]

Property

Default Value

Chapter 9
Networking System Properties

Description

jdk. httpclient.

ct edHeader s

al | owRestri No default value

A comma-separated list of
normally restricted HTTP header
names that users may set in
HTTP requests or by user code in
Ht t pRequest instances.

By default, the following request
headers are not allowed to be set
by user code: connecti on,
cont ent - | engt h, expect,
host , and upgr ade. You can
override this behavior with this
property.

The names are case-insensitive
and whitespace is ignored. Note
that this property is intended for
testing and not for real-world
deployments. Protocol errors or
other undefined behavior are
likely to occur when using this
property. There may be other
headers that are restricted from
being set depending on the
context. This includes the
"Authorization" header when the
relevant H t pCl i ent has an
authenticator set. These
restrictions cannot be overridden
by this property.

jdk.httpclient.

buf si ze 16384 (16 kB)

The size to use for internal
allocated buffers in bytes.

jdk. httpclient.

ool Si ze

connectionP 0

The maximum number of
connections to keep in the
HTTP/1.1 keep alive cache. A
value of 0 means that the cache
is unbounded.

jdk. httpclient.

i ndowSi ze

connecti onW 2726

The HTTP/2 client connection
window size in bytes.

The maximum size is 2"31-1.
This value cannot be smaller than
the stream window size.

jdk. httpclient.

yConnect

di sabl eRetr false

Whether automatic retry of
connection failures is disabled. If
false, then retries are attempted
(subject to the retry limit).

jdk. httpclient.

thodRetry

enabl eAl | Me false

Whether it is permitted to
automatically retry non-
idempotent HTTP requests.

jdk.httpclient.

enabl epush 1

Whether HTTP/2 push promise is
enabled. A value of 1 enables
push promise; a value of 0
disables it.

Core Libraries
E94895-12

Copyright © 2017, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 2 of 15

ORACLE Chapter 9

Networking System Properties

Table 9-1 (Cont.) HTTP Client Properties
]

Core Libraries
E94895-12

Property

Default Value

Description

jdk. httpclient.hpack. maxhe 16384 (16 kB)

adert abl esi ze

The HTTP/2 client maximum
HPACK header table size in
bytes.

jdk.httpclient.

| og

H tpCient.

No default value

Enables high-level logging of
various events through the Java
Logging API (which is contained
in the package

java.util .l ogging).

The value contains a comma-
separated list of any of the
following items:

e errors

* requests

- headers

o frames

- ssl

 trace

e channel

You can append the f r anes item
with a colon-separated list of any
of the following items:

- control

- data

e Wi ndow

- all

Specifying an item adds it to the
HTTP client's log. For example, if
you specify the following value,
then the Java Logging API logs
all possible HTTP Client events:

errors, requests, headers, fr
ames: control : data: w ndow, s
sl, trace, channel

Note that you can replace
control : dat a: wi ndow with
all.

The name of the logger is
jdk.httpclient. Htpdient,
and all logging is at level | NFO.

jdk. httpclient.

i meout

keepal i ve.t

1200

The number of seconds to keep
idle HTTP/1.1 connections alive
in the keep alive cache.

jdk.httpclient.

e

maxf ranesi z

16384 (16 kB)

The HTTP/2 client maximum
frame size in bytes. The server is
not permitted to send a frame
larger than this.

jdk. httpclient.

maxst reans

100

The maximum number of HTTP/2
streams per connection.

jdk.httpclient.

erSize

recei veBuf f

The operating system's default
value

The HTTP client socket receive
buffer size in bytes.

Copyright © 2017, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 3 of 15

ORACLE

Table 9-1 (Cont.) HTTP Client Properties

Chapter 9
Networking System Properties

Property Default Value

Description

jdk.httpclient.redirects.r 5
etrylimt

The maximum number of
attempts to send a HTTP request
when redirected or any failure
occurs for any reason.

jdk. httpclient.websocket.w 16384 (16 kB)
riteBufferSize

The buffer size used by the web
socket implementation for socket
writes.

jdk. httpclient.w ndowsize 16777216 (16 MB)

The HTTP/2 client stream window
size in bytes.

HTTP Server Properties

The following are JDK-specific system properties used by the default HTTP server
implementation in the JDK. Any of these properties that take a numeric value assume the

default value if given a string that does not parse as a number.

Table 9-2 HTTP Server Properties

Property Default Value

Description

j dk. http. maxHeader Si ze 393216 (384 kB)

The maximum response header
size that the JDK built-in
implementation of the legacy URL
protocol handler for HTTP,

java. net. H t pURLConnec
t i on and the newer HTTP
client,

java.net.http. HtpCie
nt , will accept from a remote
party. This limit is computed as
the cumulative size of all header
names and header values plus an
overhead of 32 bytes per header
name-value pair.

If this limit is exceeded, then the
request fails with a protocol
exception.

If this property has a zero or
negative value, then there's no
limit.

j dk. htt pserver. maxConnecti -1
ons

The maximum number of open
connections at a time. This
includes active and idle
connections. If this property has a
zero or negative value, then no
limit is enforced.

Core Libraries
E94895-12
Copyright © 2017, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 4 of 15

ORACLE Chapter 9
Networking System Properties

Table 9-2 (Cont.) HTTP Server Properties

Property Default Value Description
sun. net. httpserver. drai nAm 65536 The maximum number of bytes
ount that will be automatically read

and discarded from a request
body that has not been
completely consumed by its

Ht t pHandl er . If the number of
remaining unread bytes are less
than this limit, then the
connection will be put in the idle
connection cache. If not, then it
will be closed.

sun. net. httpserver.idlelnt 30 The maximum duration in

erval seconds which an idle connection
is kept open. This timer has an
implementation-specific
granularity that may mean that
idle connections are closed later
than the specified interval. If this
property has a zero or negative
value, then the default value is

used.
sun. net. httpserver. maxl dl e 200 The maximum number of idle
Connections connections that may exist at the

same time. If this property has a
zero or negative value, then
connections are closed after use.

sun. net. httpserver. maxReqH 200 The maximum number of header

eaders fields accepted in a request. If
this limit is exceeded while the
headers are being read, then the
connection is terminated and the
request ignored. If this property
has a zero or negative value, then
the default value is used.

sun. net. htt pserver. naxReqH 393216 (384 kB) The maximum request header

eader Si ze size that the JDK built-in
implementation of
com sun. net. httpserver
. Ht t pSer ver will accept. This
limit is computed the same way
asj dk. htt p. naxHeader Si ze.
If the limit is exceeded. then the
connection is closed. If this
property has a zero or negative
value, then there's no limit.

Core Libraries
E94895-12 October 14, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 15

ORACLE

Table 9-2 (Cont.) HTTP Server Properties

Chapter 9
Networking System Properties

Property Default Value

Description

sun. net. httpserver. mxReqT -1
i me

The maximum time in
milliseconds allowed to receive a
request headers and body. In
practice, the actual time is a
function of request size, network
speed, and handler processing
delays. If this property has a zero
or negative value, then the time is
not limited. If the limit is
exceeded, then the connection is
terminated and the handler will
receive an | OExcept i on. This
timer has an implementation-
specific granularity that may
mean requests are aborted later
than the specified interval.

sun. net. htt pserver. mxRspT -1
i me

The maximum time in
milliseconds allowed to receive a
response headers and body. In
practice, the actual time is a
function of response size,
network speed, and handler
processing delays. If this property
has a zero or negative value, then
the time is not limited. If the limit
is exceeded then the connection
is terminated and the handler will
receive an | OExcept i on. This
timer has an implementation-
specific granularity that may
mean responses are aborted
later than the specified interval.

sun. net. httpserver. nodel ay fal se

A boolean value, which if true,
sets the TCP_NODELAY socket
option on all incoming
connections.

IPv4 and IPv6 Protocol Properties

These two properties are checked only once, at startup.

Core Libraries
E94895-12
Copyright © 2017, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 6 of 15

ORACLE Chapter 9
Networking System Properties

Table 9-3 IPv4 and IPv6 Protocol Properties

. ___|
Property Default Value Description

java.net.preferlPv4Stack false If IPV6 is available on the
operating system, then the
underlying native socket will be,
by default, an IPv6 socket, which
lets applications connect to, and
accept connections from, both
IPv4 and IPv6 hosts.

Set this property to t r ue if you
want your application use IPv4-
only sockets. This implies that it
won't be possible for the
application to communicate with
IPv6-only hosts.

java. net. preferl Pv6Address false When dealing with a host which

es has both IPv4 and IPv6
addresses, and if IPv6 is
available on the operating
system, the default behavior is to
prefer using IPv4 addresses over
IPv6 ones. This is to ensure
backward compatibility, for
example, for applications that
depend on the representation of
an IPv4 address (such as
192.168.1.1).

Set this property to t r ue to
change this preference and use
IPv6 addresses over IPv4 ones
where possible.

Set this property to Syst emto
preserve the order of the
addresses as returned by the
operating system.

HTTP Proxy Properties

The following proxy settings are used by the HTTP protocol handler and the default proxy
selector.

Table 9-4 HTTP Proxy Properties
]

Property Default Value Description

http. proxyHost No default value Proxy server that the HTTP
protocol handler will use.

http. proxyPort 80 Port that the HTTP protocol

handler will use.

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 7 of 15

ORACLE

Table 9-4 (Cont.) HTTP Proxy Properties

Chapter 9
Networking System Properties

Property

Default Value

Description

ht t p. nonPr oxyHost s

| ocal host | 127.*|[:: 1]

Indicates the hosts that should be
accessed without going through
the proxy. Typically, this defines
internal hosts. The value of this
property is a list of hosts,
separated by the vertical bar (|)
character. In addition, you can
use the asterisk (*) for pattern
matching. For example, the
following specifies that every host
in the exmapl e. comdomain and
| ocal host should be accessed
directly even if a proxy server is
specified:

Dht t p. nonPr oxyHost s="*. exa
mpl e. conj | ocal host "

The default value excludes all
common variations of the
loopback address.

HTTPS Proxy Properties

HTTPS, HTTP over SSL, is a secure version of HTTP mainly used when confidentiality is
needed (such as payment web sites). The following proxy settings are used by the HTTPS

protocol handler and the default proxy selector.

@ Note

The HTTPS protocol handler uses the same htt p. nonPr oxyHost s property as the

HTTP protocol.

Table 9-5 HTTPS Proxy Properties

Property

Default Value

Description

htt ps. pr oxyHost

No default value

Proxy server that the HTTPS
protocol handler will use.

htt ps. proxyPort

Port that the HTTPS protocol
handler will use.

FTP Proxy Properties

The following proxy settings are used by the FTP protocol handler.

Core Libraries
E94895-12

Copyright © 2017, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 8 of 15

ORACLE’

Table 9-6 FTP Proxy Properties
]

System Property

Default Value

Chapter 9
Networking System Properties

Description

ftp. proxyHost

No default value

Proxy server that the FTP
protocol handler will use.

ftp. proxyPort

80

Port that the FTP protocol
handler will use.

ftp. nonProxyHost s

| ocal host| 127.*|[:: 1]

Similar to

htt p. nonPr oxyHost s, this
property indicates the hosts that
should be accessed without going
through the proxy.

The default value excludes all
common variations of the
loopback address.

SOCKS Proxy Properties

The SOCKS proxy enables a lower-level type of tunneling because it works at the TCP level.
Specifying a SOCKS proxy server results in all TCP connections going through that proxy
server unless other proxies are specified. The following proxy settings are used by the SOCKS

protocol handler.

Table 9-7 SOCKS Proxy Properties
]

Property

Default Value

Description

j ava. net . socks. user name

No default value

See Acquiring the SOCKS User
Name and Password

j ava. net . socks. password

No default value

See Acquiring the SOCKS User
Name and Password

socksPr oxyHost

No default value

SOCKS proxy server that the
SOCKS protocol handler will use.

socksProxyPort 1080 Port that the SOCKS protocol
handler will use.
socksProxyVer si on 5 The version of the SOCKS

protocol supported by the server.
The default is 5 indicating
SOCKS V5; alternatively 4 can
be specified for SOCKS V4.
Setting the property to values
other than these leads to
unspecified behavior.

Acquiring the SOCKS User Name and Password

The SOCKS user name and password are acquired in the following way:

1. First, if the application has registered a j ava. net . Aut hent i cat or default instance,
then this will be queried with the protocol set to the string SOCKS5, and the prompt set to the
string SOCKS aut henti cati on.

Core Libraries
E94895-12
Copyright © 2017, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 9 of 15

ORACLE

Chapter 9
Networking System Properties

2. If the authenticator does not return a user name/password or if no authenticator is
registered, then the system checks the values of properties j ava. net . socks. user narme and

j ava. net. socks. passwor d.

3. If these values don't exist, then the system property user . nare is checked for a user name.

In this case, no password is supplied.

Other Proxy-Related Properties

Table 9-8 Other Proxy-Related Properties

Property Default Value

Description

j ava. net.useSystenProxies false

If t r ue, then the operating
system's proxy settings are used.

Note that the system properties
that explicitly set proxies like

htt p. pr oxyHost take
precedence over the system
settings even if

j ava. net. useSyst enPr oxi es
is set to true.

This property is checked only
once, at startup.

jdk. http.auth. tunneling.di Basic
sabl edSchemes

Lists the authentication schemes
that will be disabled when
tunneling HTTPS over a proxy
with the HTTP CONNECT
method.

The value of this property is a
comma-separated list of case-
insensitive authentication scheme
names, as defined by their
relevant RFCs. Schemes include
Basi c, Di gest, NTLM

Ker ber os, and Negoti ate. A
scheme that is not known or
supported is ignored.

Core Libraries
E94895-12
Copyright © 2017, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 10 of 15

ORACLE Chapter 9
Networking System Properties

Table 9-8 (Cont.) Other Proxy-Related Properties
]

Property Default Value Description
j dk. http.auth. proxying. di s No default value Lists the authentication schemes
abl edSchenes that will be disabled when

proxying HTTP.

The value of this property is a
comma-separated list of case-
insensitive authentication scheme
names, as defined by their
relevant RFCs. Schemes include
Basi c, Di gest, NTLM

Ker ber 0s, and Negoti ate. A
scheme that is not known or
supported is ignored.

In some environments, certain
authentication schemes may be
undesirable when proxying HTTP
or HTTPS. For example, Basi ¢
results in effectively the cleartext
transmission of the user's
password over the physical
network.

Other HTTP URL Stream Protocol Handler Properties

These properties are checked only once, at startup.

Table 9-9 Other HTTP URL Stream Protocol Handler Properties

|
Property Default Value Description

http. agent Java/ <versi on> Defines the string sent in the
User-Agent request header in
HTTP requests. Note that the
string Javal <ver si on> will be
appended to the one provided in
the property.
For example, if -
Dhtt p. agent ="f oobar" is
specified, the User-Agent header
will contain f oobar Java/ 1. 8.0
if the version of the JVM is 1.8.0).

http.aut h. di gest. cnonceRep 5 See System Properties That

eat Modify the Behavior of HTTP
Digest Authentication
Mechanism.

http.auth. digest.validateP fal se See System Properties That

r oxy Modify the Behavior of HTTP
Digest Authentication
Mechanism.

http.auth. digest.validateS fal se See System Properties That

erver Modify the Behavior of HTTP
Digest Authentication
Mechanism.

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 11 of 15

ORACLE

Chapter 9
Networking System Properties

Table 9-9 (Cont.) Other HTTP URL Stream Protocol Handler Properties
]

Property

Default Value

Description

http.auth.ntl mdonain

No default value

Similar to other HTTP
authentication schemes, New
Technology LAN Manager
(NTLM) uses the

j ava. net . Aut henti cat or
class to acquire user names and
passwords when they are
needed. However, NTLM also
needs the NT domain name.
There are three options for
specifying the domain:

1. Do not specify it. In some
environments, the domain is
not actually required and the
application does not have to
specify it.

2. The domain name can be
encoded within the user
name by prefixing the
domain name followed by a
backslash (\) before the user
name. With this method,
existing applications that use
the Aut hent i cat or class
do not need to be modified,
as long as users are made
aware that this notation must
be used.

3. If adomain name is not
specified as in the second
option and the system
property
http.auth.ntl mdonain
is defined, then the value of
this property will be used as
the domain name.

http. keepAlive

Indicates if persistent (keep-alive)
connections should be supported.
They improve performance by
allowing the underlying socket
connection to be reused for
multiple HTTP requests. If this is
settot rue, then persistent
connections will be requested
with HTTP 1.1 servers.

Set this property to f al se to

disable the use of persistent
connections.

http. KeepAlive. queuedConne 10

ctions

The maximum number of keep-
alive connections to be on the
gueue for clean up.

Core Libraries
E94895-12

Copyright © 2017, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 12 of 15

ORACLE Chapter 9
Networking System Properties

Table 9-9 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property Default Value Description
http. KeepAl i ve. remai ni ngDa 512 The maximum amount of data in
ta kilobytes that will be cleaned off

the underlying socket so that it
can be reused.

htt p. maxConnecti ons 5 If HTTP persistent connections
(see the ht't p. keepAl i ve
property) are enabled, then this
value determines the maximum
number of idle connections that
will be simultaneously kept alive
per destination.

jdk.http.ntl mtransparent A No default value Enables transparent New

uth Technology LAN Manager
(NTLM) HTTP authentication on
Windows.

Transparent authentication can
be used for the NTLM scheme,
where the security credentials
based on the currently logged in
user's hame and password can
be obtained directly from the
operating system, without
prompting the user.

If this value is not set, then
transparent authentication is
never used.

This property has three possible
values:

e di sabl ed: Transparent
authentication is never used.
« al | Host s: Transparent.
authentication is used for all
hosts
e trustedHosts: Transparent
authentication is enabled for
hosts that are trusted in
Windows Internet settings.
Note that NTLM is not a strongly
secure authentication scheme;
care should be taken before
enabling it.

System Properties That Modify the Behavior of HTTP Digest Authentication
Mechanism

The system properties ht t p. aut h. di gest . val i dat eServer and

http. aut h. di gest. val i dat ePr oxy modify the behavior of the HTTP digest authentication
mechanism. Digest authentication provides a limited ability for the server to authenticate itself
to the client (that is, by proving that it knows the user's password). However, not all servers
support this capability and by default the check is switched off. To enforce this check for
authentication with an origin, set htt p. aut h. di gest . val i dat eSer ver to t r ue; with a proxy
server, set http. aut h. di gest . val i dat eProxy to true.

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 13 of 15

ORACLE Chapter 9
Networking System Properties

It is usually not necessary to set the system property htt p. aut h. di gest. cnonceRepeat . This
determines how many times a cnonce value is reused. This can be useful when the MD5-sess
algorithm is being used. Increasing the value reduces the computational overhead on both the
client and the server by reducing the amount of material that has to be hashed for each HTTP
request.

Address Cache Properties

The j ava. net package, when performing name resolution, uses an address cache for both
security and performance reasons. Any address resolution attempt, be it forward (name to IP
address) or reverse (IP address to name), will have its result cached, whether it was
successful or not, so that subsequent identical requests will not have to access the naming
service. These properties enable you to tune how the address cache operates.

Table 9-10 Address Cache Properties

|
Property Default Value Description

net wor kaddr ess. cache. ttl -1 Specified in the $JAVA_HOVE/
conf/security/
j ava. securi ty file to indicate
the caching policy for successful
name lookups from the name
service. The value is an integer
corresponding to the number of
seconds successful name
lookups will be kept in the cache.

A value of - 1 (or any other
negative value) indicates a
“cache forever” policy, while a
value of 0 (zero) means no
caching.

The default value is - 1 (forever) if
a security manager is installed
and implementation-specific if no
security manager is installed.

net wor kaddr ess. cache. negat 10 Specified in the $JAVA_HOVE/

ive.ttl conf/security/
j ava. securi ty file to indicate
the caching policy for
unsuccessful name lookups from
the name service.
The value is an integer
corresponding to the number of
seconds an unsuccessful name
lookup will be kept in the cache.
A value of - 1 (or any negative
value) means “cache forever,”
while a value of 0 (zero) means
no caching.

Enhanced Exception Messages

By default, for security reasons, exception messages do not include potentially sensitive
security information such as hostnames or UNIX domain socket address paths. Use the
j dk. i ncl udel nExcept i ons to relax this restriction for debugging and other purposes.

Core Libraries
E94895-12 October 14, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 14 of 15

ORACLE

Table 9-11 Enhanced Exception Messages Property

Chapter 9
Networking System Properties

Property Default Value

Description

j dk. i ncl udel nExcepti ons No default value

The value is a omma-separated
list of keywords that refer to
exception types whose messages
may be enhanced with more
detailed information.

In particular, if the value includes
the string host | nf 0, then socket
addresses will be included in
exception message texts (for
example, hostnames and UNIX
domain socket address paths).

Core Libraries
E94895-12
Copyright © 2017, 2025, Oracle and/or its affiliates.

October 14, 2025
Page 15 of 15

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	1 Java Core Libraries
	2 Serialization Filtering
	Addressing Deserialization Vulnerabilities
	Java Serialization Filters
	Filter Factories
	Allow-Lists and Reject-Lists
	Creating Pattern-Based Filters
	Creating Custom Filters
	Reading a Stream of Serialized Objects
	Setting a Custom Filter for an Individual Stream
	Setting a JVM-Wide Custom Filter
	Setting a Custom Filter Using a Pattern
	Setting a Custom Filter as a Class
	Setting a Custom Filter as a Method

	Setting a Filter Factory
	Built-in Filters
	Logging Filter Actions

	3 Enhanced Deprecation
	Deprecation in the JDK
	How to Deprecate APIs
	Notifications and Warnings
	Running jdeprscan

	4 XML Catalog API
	Purpose of XML Catalog API
	XML Catalog API Interfaces
	Using the XML Catalog API
	System Reference
	Public Reference
	URI Reference

	Java XML Processors Support
	Enable Catalog Support
	Use Catalog with XML Processors

	Calling Order for Resolvers
	Detecting Errors

	5 Creating Unmodifiable Lists, Sets, and Maps
	Use Cases
	Syntax
	Unmodifiable List Static Factory Methods
	Unmodifiable Set Static Factory Methods
	Unmodifiable Map Static Factory Methods

	Creating Unmodifiable Copies of Collections
	Creating Unmodifiable Collections from Streams
	Randomized Iteration Order
	About Unmodifiable Collections
	Space Efficiency
	Thread Safety

	6 Process API
	Process API Classes and Interfaces
	ProcessBuilder Class
	Process Class
	ProcessHandle Interface
	ProcessHandle.Info Interface

	Creating a Process
	Getting Information About a Process
	Redirecting Output from a Process
	Filtering Processes with Streams
	Handling Processes When They Terminate with the onExit Method
	Controlling Access to Sensitive Process Information

	7 Preferences API
	Comparing the Preferences API to Other Mechanisms
	Usage Notes
	Obtain Preferences Objects for an Enclosing Class
	Obtain Preferences Objects for a Static Method
	Atomic Updates
	Determine Backing Store Status

	Design FAQ

	8 Java Logging Overview
	Java Logging Examples
	Appendix A: DTD for XMLFormatter Output

	9 Java Networking
	Networking System Properties
	HTTP Client Properties
	HTTP Server Properties
	IPv4 and IPv6 Protocol Properties
	HTTP Proxy Properties
	HTTPS Proxy Properties
	FTP Proxy Properties
	SOCKS Proxy Properties
	Acquiring the SOCKS User Name and Password

	Other Proxy-Related Properties
	Other HTTP URL Stream Protocol Handler Properties
	System Properties That Modify the Behavior of HTTP Digest Authentication Mechanism

	Address Cache Properties
	Enhanced Exception Messages

