Java Platform, Standard Edition
Internationalization Guide

Release 11
E94896-05
July 2023

ORACLE"

Java Platform, Standard Edition Internationalization Guide, Release 11
E94896-05
Copyright © 1993, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation,” or “limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience Vi
Documentation Accessibility Vi
Related Documents Vi
Conventions Vi

1 Internationalization Enhancements
Internationalization Enhancements in JDK 11 1-1
Unicode 10.0.0 1-1
Internationalization Enhancements in JDK 10 1-1
Additional Unicode Language-Tag Extensions 1-1
Internationalization Enhancements in JDK 9 1-2
Unicode 8.0 1-2
CLDR Locale Data Enabled by Default 1-2
UTF-8 Properties Files 1-3
2 Internationalization Overview

Text Representation 2-1
Locale Identification and Localization 2-2
Locales 2-2
Locale Class 2-2
Supported Locales 2-2
Localized Resources 2-3
ResourceBundle Class 2-3
ListResourceBundle Class 2-3
PropertyResourceBundle Class 2-3
Date and Time Handling 2-4
Text Processing 2-4
Formatting 2-4
Format Class 2-4
DateFormat Class 2-4

ORACLE

SimpleDateFormat Class 2-5
DateFormatSymbols Class 2-5
NumberFormat Class 2-5
DecimalFormat Class 2-5
DecimalFormatSymbols Class 2-6
ChoiceFormat Class 2-6
MessageFormat Class 2-6
ParsePosition Class 2-6
FieldPosition Class 2-6
Locale-Sensitive String Operations 2-6
Collator Class 2-7
RuleBasedCollator Class 2-7
CollationElementlterator Class 2-7
CollationKey Class 2-7
Breaklterator Class 2-7
StringCharacterlterator Class 2-8
Characterlterator Interface 2-8
Normalizer Class 2-8
Locale-Sensitive Services SPIs 2-8
Character Encoding Conversion 2-8
Supported Encodings 2-9
Stream 1/O 2-9
Reader and Writer Classes 2-9
PrintStream Class 2-9
Charset Package 2-9
Input Methods 2-9
Input Method Support in Swing 2-10
Input Method Framework 2-10

3 Supported Encodings
Basic Encoding Set (contained in java.base module) 3-1
Extended Encoding Set (contained in jdk.charsets module) 3-4
Printing Charset Information 3-12

4 Supported Calendars

5 Supported Fonts

Support for Physical Fonts 5-1

ORACLE

Support for Logical Fonts 5-1
6 Font Configuration Files
Supported Platforms 6-1
Loading Font Configuration Files 6-1
Names Used in Font Configuration Files 6-2
Properties for All Platforms 6-3
Version Property 6-3
Component Font Mappings 6-3
Search Sequences 6-3
Exclusion Ranges 6-5
Proportional Fonts 6-5
Font File Names 6-6
Appended Font Path 6-6
Properties for Windows 6-7
Property for Solaris and Linux 6-7

ORACLE

Preface

Preface

This guide summarizes the internationalization APIs and features of the Java SE
Platform.

Audience

This guide is intended for Java programmers who want to design applications so that
they can be adapted to various languages and regions without engineering changes.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For coding examples and step-by-step instructions, see the Internationalization Trail in
The Java Tutorials (Java SE 8 and earlier).

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/javase/tutorial/i18n/index.html

Internationalization Enhancements

Recent releases of the JDK include enhancements to the internationalization process to
support updated standards.

Topics:
* Internationalization Enhancements in JDK 11
* Internationalization Enhancements in JDK 10

* Internationalization Enhancements in JDK 9

Internationalization Enhancements in JDK 11

Internationalization enhancements for JDK 11 include:

e Unicode 10.0.0

Unicode 10.0.0

Support has been added for Unicode 10.0.0. Java Platform, Standard Edition (Java SE) 9
and 10 supported Unicode 8.0.

The Unicode 10.0 standard includes 16,018 characters and 10 scripts that were introduced
since Unicode 8.0, all of which are supported in Java SE 11.

Internationalization Enhancements in JDK 10

Internationalization enhancements for JDK 10 include:

» Additional Unicode Language-Tag Extensions

Additional Unicode Language-Tag Extensions

ORACLE

The IETF BCP (best current practice) 47 language tags standard, which has been supported
in the Locale class since Java SE 7, includes a Unicode extension subtag. As of Java SE 9,
only the -ca (calendar) and -nu (number) extensions are supported.

Java SE 10 adds support for the following additional extensions in the relevant JDK classes:
e —cu (currency type)

e -fw (first day of week)

* -rg (region override)

* -tz (time zone)

1-1

http://unicode.org/versions/Unicode10.0.0/

Chapter 1
Internationalization Enhancements in JDK 9

In JDK 10, if an application specifies a locale of en-US-u-cu-EUR, which means US
English with Euro currency, java.util.Currency.getInstance (locale)
instantiates a Euro Currency. If the locale is en-US-u-cu-JPY, a Japanese Yen
Currency is instantiated.

Internationalization Enhancements in JDK 9

Internationalization enhancements for Oracle Java Development Kit 9 include:
* Unicode 8.0

* CLDR Locale Data Enabled by Default

* UTF-8 Properties Files

Unicode 8.0

Support has been added for Unicode 8.0. Java Platform, Standard Edition (Java SE) 8
supported Unicode 6.2.

The Unicode 6.3, 7.0, and 8.0 standards introduced 10,555 characters, 29 scripts, and
42 blocks, all of which are supported in Java SE 9.

CLDR Locale Data Enabled by Default

ORACLE

The XML-based locale data of the Unicode Common Locale Data Repository (CLDR),
first added in JDK 8, is the default locale data in JDK 9. In previous releases, the
default was JRE.

There are four distinct sources for locale data, identified by the following keywords:

* CLDR represents the locale data provided by the Unicode CLDR project.

° HOST represents the current user's customization of the underlying operating
system's settings. It works only with the user's default locale, and the customizable
settings may vary depending on the operating system. However, primarily date,
time, number, and currency formats are supported.

e SPI represents the locale-sensitive services implemented by the installed Service
Provider Interface (SPI) providers.

e COMPAT (formerly called JRE) represents the locale data that is compatible with
releases prior to JDK 9. JRE can still be used as the value, but COMPAT is preferred.

To select a locale data source, use the java.locale.providers System property,
listing the data sources in the preferred order. If a provider cannot offer the requested
locale data, the search proceeds to the next provider in order. For example:

java.locale.providers=HOST, SPI,CLDR, COMPAT

If you do not set this property, the default behavior is equivalent to the following
setting:

java.locale.providers=CLDR, COMPAT, SPI

1-2

http://www.unicode.org/versions/Unicode6.3.0
http://www.unicode.org/versions/Unicode7.0.0
http://www.unicode.org/versions/Unicode8.0.0/
http://cldr.unicode.org/index

Chapter 1
Internationalization Enhancements in JDK 9

To enable behavior that is compatible with JDK 8, set the java.locale.providers system
property to a value with COMPAT to the left of CLDR.

See the JDK 9 and JRE 9 Supported Locales page for supported locales. See
java.util.spi.LocaleServiceProvider API specification for the related API.

UTF-8 Properties Files

ORACLE

In Java SE 9, properties files are loaded in UTF-8 encoding. In previous releases,
ISO-8859-1 encoding was used for loading property resource bundles. UTF-8 is a much more
convenient way to represent non-Latin characters.

Most existing properties files should not be affected: UTF-8 and 1ISO-8859-1 have the same
encoding for ASCII characters, and human-readable non-ASCIl ISO-8859-1 encoding is not
valid UTF-8. If an invalid UTF-8 byte sequence is detected, the Java runtime automatically
rereads the file in ISO-8859-1.

If there is an issue, consider the following options:
e Convert the properties file into UTF-8 encoding.

» Specify the runtime system property for the properties file's encoding, as in this example:

java.util.PropertyResourceBundle.encoding=I150-8859-1

See java.util.PropertyResourceBundle.

1-3

http://www.oracle.com/technetwork/java/javase/documentation/java9locales-3559485.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/spi/LocaleServiceProvider.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PropertyResourceBundle.html

Internationalization Overview

Internationalization is the process of designing an application so that it can be adapted to
various languages and regions without engineering changes. Sometimes the term
internationalization is abbreviated as i18n, because there are 18 letters between the first "i"
and the last "n."

An internationalized program has the following characteristics:

e With the addition of localization data, the same executable can run worldwide.

» Textual elements, such as status messages and the GUI component labels, are not
hardcoded in the program. Instead they are stored outside the source code and retrieved
dynamically.

* Support for new languages does not require recompilation.

* Culturally-dependent data, such as dates and currencies, appear in formats that conform
to the end user's region and language.

e It can be localized quickly.

The global Internet demands global software - that is, software that can be developed
independently of the countries or languages of its users, and then localized for multiple
countries or regions. The Java Platform provides a rich set of APIs for developing global
applications. These internationalization APIs are based on the Unicode standard and include
the ability to adapt text, numbers, dates, currency, and user-defined objects to any country's
conventions.

This guide summarizes the internationalization APIs and features of the Java Platform,
Standard Edition. For coding examples and step-by-step instructions, see the
Internationalization Trail in the Java Tutorials.

Text Representation

ORACLE

The Java programming language is based on the Unicode character set, and several libraries
implement the Unicode standard. Unicode is an international character set standard which
supports all of the major scripts of the world, as well as common technical symbols. The
original Unicode specification defined characters as fixed-width 16-bit entities, but the
Unicode standard has since been changed to allow for characters whose representation
requires more than 16 bits. The range of legal code points is now U+0000 to U+10FFFF. An
encoding defined by the standard, UTF-16, allows to represent all Unicode code points using
one or two 16-bit units.

The primitive data type char in the Java programming language is an unsigned 16-bit integer
that can represent a Unicode code point in the range U+0000 to U+FFFF, or the code units of
UTF-16. The various types and classes in the Java platform that represent character
sequences - char [], implementations of java.lang.CharSequence (such as the String
class), and implementations of java.text.CharacterIterator - are UTF-16 sequences.
Most Java source code is written in ASCII, a 7-bit character encoding, or ISO-8859-1, an 8-bit
character encoding, but is translated into UTF-16 before processing.

2-1

http://docs.oracle.com/javase/tutorial/i18n/index.html
http://unicode.org/standard/standard.html

Chapter 2
Locale Identification and Localization

The Character class is an object wrapper for the char primitive type. The
Character class also contains static methods such as i sLowerCase () and
isDigit () for determining the properties of a character. These methods have
overloads that accept either a char (which allows representation of Unicode code
points in the range U+0000 to U+FFFF) or an int (which allows representation of all
Unicode code points).

Locale Identification and Localization

Locales

Locale Class

A Locale object is an identifier for a particular combination of language and region.
Localization is the process of adapting software for a specific region or language by
adding locale-specific components and translating text.

On the Java platform, a locale is simply an identifier for a particular combination of
language and region. It is not a collection of locale-specific attributes. Instead, each
locale-sensitive class maintains its own locale-specific information. With this design,
there is no difference in how user and system objects maintain their locale-specific
resources. Both use the standard localization mechanism.

Java programs are not assigned a single global locale. All locale-sensitive operations
may be explicitly given a locale as an argument. This greatly simplifies multilingual
programs. While a global locale is not enforced, a default locale is available for
programs that do not wish to manage locales explicitly. A default locale also makes it
possible to affect the behavior of the entire presentation with a single choice.

Java locales act as requests for certain behavior from another object. For example, a
French Canadian locale passed to a Calendar object asks that the Calendar
behave correctly for the customs of Quebec. It is up to the object accepting the locale
to do the right thing. If the object has not been localized for a particular locale, it will try
to find a "close" match with a locale for which it has been localized. Thus if a
Calendar object was not localized for French Canada, but was localized for the
French language in general, it would use the French localization instead.

A Locale object represents a specific geographical, political, or cultural region. An
operation that requires a locale to perform its task is called locale-sensitive and uses
the Locale object to tailor information for the user. For example, displaying a number is
a locale-sensitive operation - the number should be formatted according to the
customs and conventions of the user's native country, region, or culture.

Supported Locales

ORACLE

On the Java Platform, there does not have to be a single set of supported locales,
since each class maintains its own localizations. Nevertheless, there is a consistent
set of localizations supported by the classes of the Java Platform. Other
implementations of the Java Platform may support different locales. Locales that are
supported by the JDK and JRE are summarized by release, using the search field for
the Oracle Technology Network page, search for "Supported Locales".

2-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Character.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Locale.html
http://www.oracle.com/technetwork/index.html

Chapter 2
Locale Identification and Localization

Localized Resources

All locale-sensitive classes must be able to access resources customized for the locales they
support. To aid in the process of localization, it helps to have these resources grouped
together by locale and separated from the locale-neutral parts of the program.

ResourceBundle Class

The class ResourceBundle is an abstract base class representing containers of resources.
Programmers create subclasses of ResourceBundle that contain resources for a particular
locale. New resources can be added to an instance of ResourceBundle, or new instances
of ResourceBundle can be added to a system without affecting the code that uses them.
Packaging resources as classes allows developers to take advantage of Java's class loading
mechanism to find resources.

Resource bundles contain locale-specific objects. When a program needs a locale-specific
resource, such as a String object, the program can load it from the resource bundle that is
appropriate for the current user's locale. In this way, the programmer can write code that is
largely independent of the user's locale, isolating most, if not all, of the locale-specific
information in resource bundles.

This allows Java programmers to write code that can:

e be easily localized, or translated, into different languages
e handle multiple locales at once

e be easily modified later to support even more locales

ResourceBundle.Control Class

ResourceBundle.Control is a nested class of ResourceBundle. It defines methods to be
called by the ResourceBundle.getBundle factory methods so that the resource bundle
loading behavior may be changed. For example, application specific resource bundle
formats, such as XML, could be supported by overriding the methods.

Since Java SE 9, ResourceBundle.Control is not supported in named modules. Existing
code using Control is expected to work, but for new code in a named module, implement
basenameProvider and load the resource bundle from there. See Resource Bundles and
Named Modules.

ListResourceBundle Class

ListResourceBundle is an abstract subclass of ResourceBundle that manages
resources for a locale in a convenient and easy to use list.

PropertyResourceBundle Class

PropertyResourceBundle is a concrete subclass of ResourceBundle that manages
resources for a locale using a set of static strings from a property file.

ORACLE 2-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ResourceBundle.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ResourceBundle.Control.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ResourceBundle.html#getBundle(java.lang.String,java.util.Locale,java.util.ResourceBundle.Control)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ResourceBundle.html#resource-bundle-modules
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ResourceBundle.html#resource-bundle-modules
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ListResourceBundle.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PropertyResourceBundle.html

Chapter 2
Date and Time Handling

Date and Time Handling

The Date-Time package, java.time, introduced in Java SE 8, provides a
comprehensive model for date and time. Although java.time is based on the
International Organization for Standardization (ISO) calendar system, commonly used
global calendars are also supported.

See The Date-Time Packages lesson in The Java Tutorials (Java SE 8 and earlier).

Text Processing

Formatting

Text processing involves formatting locale-sensitive information such as, currencies,
dates, times, and text messages. It also includes manipulating text in a locale-sensitive
manner, meaning that string operations, such as searching and sorting, are properly
performed regardless of locale.

It is in formatting data for output that many cultural conventions are applied. Numbers,
dates, times, and messages may all require formatting before they can be displayed.
The Java platform provides a set of flexible formatting classes that can handle both the
standard locale formats and programmer defined custom formats. These formatting
classes are also able to parse formatted strings back into their constituent objects.

Format Class

The class Format is an abstract base class for formatting locale-sensitive information
such as dates, times, messages, and numbers. Three main subclasses are provided:
DateFormat, NumberFormat, and MessageFormat. These three also provide subclasses
of their own.

DateFormat Class

ORACLE

Dates and times are stored internally in a locale-independent way, but should be
formatted so that they can be displayed in a locale-sensitive manner. For example, the
same date might be formatted as:

* November 3, 1997 (English)
* 3 novembre 1997 (French)

The class DateFormat is an abstract base class for formatting and parsing date and
time values in a locale-independent manner. It has a number of static factory methods
for getting standard time formats for a given locale.

The DateFormat object uses Calendar and TimeZone Objects in order to interpret
time values. By default, a DateFormat object for a given locale will use the
appropriate Calendar object for that locale and the system's default TimeZone
object. The programmer can override these choices if desired.

2-4

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/package-summary.html
https://docs.oracle.com/javase/tutorial/datetime/overview/packages.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/Format.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DateFormat.html

Chapter 2
Text Processing

SimpleDateFormat Class

The class SimpleDateFormat is a concrete class for formatting and parsing dates and
times in a locale-sensitive manner. It allows for formatting (milliseconds to text), parsing (text
to milliseconds), and normalization.

DateFormatSymbols Class

The class DateFormatSymbols is used to encapsulate localizable date-time formatting
data, such as the names of the months, the names of the days of the week, time of day, and
the time zone data. The DateFormat and SimpleDateFormat classes both use the
DateFormatSymbols class to encapsulate this information.

Usually, programmers will not use the DateFormatSymbols directly. Rather, they will
implement formatting with the DateFormat class's factory methods.

NumberFormat Class

The class NumberFormat is an abstract base class for formatting and parsing numeric data.
It contains a number of static factory methods for getting different kinds of locale-specific
number formats.

The NumberFormat class helps programmers to format and parse numbers for any locale.
Code using this class can be completely independent of the locale conventions for decimal
points, thousands-separators, the particular decimal digits used, or whether the number
format is even decimal. The application can also display a number as a normal decimal
number, currency, or percentage:

e 1,234.5 (decimal number in U.S. format)
e $1,234.50 (U.S. currency in U.S. format)
e 1.234,50 € (European currency in German format)

o 123.450% (percent in German format)

DecimalFormat Class

ORACLE

Numbers are stored internally in a locale-independent way, but should be formatted so that
they can be displayed in a locale-sensitive manner. For example, when using "#,###.00" as a
pattern, the same number might be formatted as:

e 1.234,56 (German)
e 1,234.56 (English)

The class DecimalFormat, which is a concrete subclass of the NumberFormat class, can
format decimal numbers. Programmers generally will not instantiate this class directly but will
use the factory methods provided.

The DecimalFormat class has the ability to take a pattern string to specify how a number
should be formatted. The pattern specifies attributes such as the precision of the number,
whether leading zeros should be printed, and what currency symbols are used. The pattern
string can be altered if a program needs to create a custom format.

2-5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DateFormatSymbols.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/NumberFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DecimalFormat.html

Chapter 2
Text Processing

DecimalFormatSymbols Class

The class DecimalFormatSymbols represents the set of symbols (such as the
decimal separator, the grouping separator, and so on) needed by DecimalFormat to
format numbers. DecimalFormat creates for itself an instance of
DecimalFormatSymbols from its locale data. A programmer needing to change any
of these symbols can get the DecimalFormatSymbols object from the
DecimalFormat object and then modify it.

ChoiceFormat Class

The class ChoiceFormat is a concrete subclass of the NumberFormat class. The
ChoiceFormat class allows the programmer to attach a format to a range of
numbers. It is generally used in a MessageFormat object for handling plurals.

MessageFormat Class

Programs often need to build messages from sequences of strings, numbers and other
data. For example, the text of a message displaying the number of files on a disk drive
will vary:

 The disk C contains 100 files.
e The disk D contains 1 file.
e The disk F contains O files.

If a message built from sequences of strings and numbers is hard-coded, it cannot be
translated into other languages. For example, note the different positions of the
parameters "3" and "G" in the following translations:

» The disk G contains 3 files. (English)
* lly a3 fichiers sur le disque G. (French)

The class MessageFormat provides a means to produce concatenated messages in
language-neutral way. The MessageFormat object takes a set of objects, formats
them, and then inserts the formatted strings into the pattern at the appropriate places.

ParsePosition Class

The class parsePosition is used by the Format class and its subclasses to keep
track of the current position during parsing. The parseObject () method in the
Format class requires a ParsePosition object as an argument.

FieldPosition Class

The FieldPosition class is used by the Format class and its subclasses to identify
fields in formatted output. One version of the format () method in the Format class
requires a FieldPosition object as an argument.

Locale-Sensitive String Operations

Programs frequently need to manipulate strings. Common operations on strings
include searching and sorting. Some tasks, such as collating strings or finding various

ORACLE 2-6

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DecimalFormatSymbols.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/ChoiceFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/MessageFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/ParsePosition.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/FieldPosition.html

Chapter 2
Text Processing

boundaries in text, are surprisingly difficult to get right and are even more difficult when
multiple languages must be considered. The Java Platform provides classes for handling
many of these common string manipulations in a locale-sensitive manner.

Collator Class

The Collator class performs locale-sensitive string comparison. Programmers use this
class to build searching and alphabetical sorting routines for natural language text.
Collator is an abstract base class. Its subclasses implement specific collation strategies.
One subclass, RuleBasedCollator, is applicable to a wide set of languages. Other
subclasses may be created to handle more specialized needs.

RuleBasedCollator Class

The RuleBasedCollator class, which is a concrete subclass of the Collator class,
provides a simple, data-driven, table collator. Using RuleBasedCollator, a programmer
can create a customized table-based collator. For example, a programmer can build a collator
that will ignore (or notice) uppercase letters, accents, and Unicode combining characters.

CollationElementlterator Class

The CollationElementIterator class is used as an iterator to walk through each
character of an international string. Programmers use the iterator to return the ordering
priority of the positioned character. The ordering priority of a character, or key, defines how a
character is collated in the given Collator object. The CollationElementIterator
class is used by the compare () method of the RuleBasedCollator class.

CollationKey Class

A CollationKey object represents a string under the rules of a specific Col1lator object.
Comparing two CollationKey objects returns the relative order of the strings they
represent. Using CollationKey objects to compare strings is generally faster than using
the Collator.compare () method. Thus, when the strings must be compared multiple
times, for example when sorting a list of strings, it is more efficient to use CollationKey
objects.

Breaklterator Class

ORACLE

The BreakIterator class indirectly implements methods for finding the position of the
following types of boundaries in a string of text:

* potential line break
e sentence

e word

e character

The conventions on where to break lines, sentences, words, and characters vary from one
language to another. Since the Breaklterator class is locale-sensitive, it can be used by
programs that perform text operations. For example, consider a a word processing program
that can highlight a character, cut a word, move the cursor to the next sentence, or word-wrap
at a line ending. This word processing program would use break iterators to determine the
logical boundaries in text, enabling it to perform text operations in a locale-sensitive manner.

2-7

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/Collator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/RuleBasedCollator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/CollationElementIterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/CollationKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/BreakIterator.html

Chapter 2
Locale-Sensitive Services SPIs

StringCharacterlterator Class

The stringCharacterIterator class provides the ability to iterate over a string of
Unicode characters in a bidirectional manner. This class uses a cursor to move within
a range of text, and can return individual characters or their index values. The
StringCharacterIterator class implements the character iterator functionality of
the CharacterIterator interface.

Characterlterator Interface

The CharacterIterator interface defines a protocol for bidirectional iteration over
Unicode characters. Classes should implement this interface if they want to move
about within a range of text and return individual Unicode characters or their index
values. CharacterIteratoris for searching is useful when performing character
searches.

Normalizer Class

The Normalizer class provides methods to transform Unicode text into an equivalent
composed or decomposed form. The class supports the Unicode Normalization Forms
defined by the Unicode standard.

Locale-Sensitive Services SPIs

Locale sensitive services provided by classes in the java.text and java.util packages
can be extended by implementing locale-sensitive services SPIs for locales the Java
runtime has not yet supported.

Although JDK 9 no longer supports the extension mechanism, SPI implementations for
internationalization functions in the java.text.spi, java.util.spi, and
java.awt.im.spi packages will be loaded from the application's classpath.

In addition to localized symbols or names for the Currency, Locale, and TimeZone
classes in the java.util package, implementations of the following classes in the
java.text package can be plugged in with the SPlIs.

* BreakIterator

* Collator

° DateFormat

* DateFormatSymbols

* DecimalFormatSymbols

o NumberFormat

Character Encoding Conversion

ORACLE

The Java platform uses Unicode as its native character encoding; however, many Java
programs still need to handle text data in other encodings. Java therefore provides a
set of classes that convert many standard character encodings to and from Unicode.
Java programs that need to deal with non-Unicode text data convert that data into

2-8

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/StringCharacterIterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/CharacterIterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/Normalizer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Currency.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Locale.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TimeZone.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/BreakIterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/Collator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DateFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DateFormatSymbols.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DecimalFormatSymbols.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/NumberFormat.html

Chapter 2
Input Methods

Unicode, process the data as Unicode, then convert the result back to the external character
encoding. The InputStreamReader and OutputStreamWriter classes provide methods
that can convert between other character encodings and Unicode.

Supported Encodings

The InputStreamReader, OutputStreamWriter, and String classes can convert
between Unicode and the set of character encodings listed in Supported Encodings.

Stream 1/0

The Java Platform provides features in the java. io package to improve the handling of
character data: the Reader and Writer classes, and an enhancement to the PrintStream
class.

Reader and Writer Classes

The Reader and Writer class hierarchies provide the ability to perform 1/0O operations on
character streams. These hierarchies parallel the TnputStream and OutputStream class
hierarchies, but operate on streams of characters rather than streams of bytes. Character
streams make it easy to write programs that are not dependent upon a specific character
encoding, and are therefore easier to internationalize. The Reader and Writer classes also
have the ability to convert between Unicode and other character encodings.

PrintStream Class

The PrintStream class produces output using the system's default character encoding and
line terminator. This change allows methods such as System.out.println () to act more
reasonably with non-ASCII data.

Charset Package

The java.nio.charset package provides the underpinnings for character encoding
conversion. Applications can use its classes to fine-tune the behavior of built-in character
converters. Developers can also create custom converters for character encodings that are
not supported by built-in character converters, using the java.nio.charset.spi package.

Input Methods

Input methods are software components that let the user enter text in ways other than simple
typing on a keyboard. They are commonly used to enter Japanese, Chinese, or Korean -
languages using thousands of different characters - on keyboards with far fewer keys.
However, the Java platform also supports input methods for other languages and the use of
entirely different input mechanisms, such as handwriting or speech recognition.

The Java platform enables the use of native input methods provided by the host operating
system, such as Windows or Solaris, as well as the implementation and use of input methods
written in the Java programming language.

The term input methods does not refer to class methods of the Java programming language.

ORACLE 2-9

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStreamReader.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/OutputStreamWriter.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/Reader.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/Writer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/PrintStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/charset/package-summary.html

Chapter 2
Input Methods

Input Method Support in Swing

The Swing text components provide an integrated user interface for text input using
input methods. Depending on the locale, one of two input styles is used. With on-the-
spot (inline) input, the style used for most locales, the input methods insert the text
directly into the text component while the text is being composed. With below-the-spot
input, the style used for Chinese locales, a separate composition window is used,
which is positioned automatically to be near the point where the text is to be inserted
after being committed.

An application using Swing text components does not have to coordinate the
interaction between the text components and input methods. However, it should call
InputContext.endComposition when all text must be committed, such as when a
document is saved or printed.

Input Method Framework

ORACLE

The input method framework enables the collaboration between text editing
components and input methods in entering text. Programmers who develop text
editing components or input methods use this framework. Other application developers
generally make only minimal use of it. For example, they should call
InputContext.endComposition when all text must be committed, such as when a
document is saved or printed.

2-10

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/im/InputContext.html#endComposition()
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/im/InputContext.html#endComposition()

Supported Encodings

The java.io.InputStreamReader, java.io.OutputStreamWriter, java.lang.String
classes, and classes in the java.nio.charset package can convert between Unicode and a
number of other character encodings. The supported encodings vary between different
implementations of the Java SE Platform. The class description for
java.nio.charset.Charset lists the encodings that any implementation of the Java SE
Platform is required to support.

The following tables show the encoding sets supported by this version of the Oracle Java SE
Platform. The canonical names used by the java.nio APIs are in many cases not the same
as those used in the java.io and java.lang APIs.

Basic Encoding Set (contained in java.base module)

ORACLE

Canonical Name for Canonical Name for Alias or Aliases Description
java.nio API java.io APl and
java.lang API

CESU-8 CESUS8 CESUS8 csCESU-8 Unicode CESU-8

GB18030 GB18030 gb18030-2022 or Simplified Chinese, PRC
gb18030-2000 if the standard
system property and
value
jdk.charset.GB18030
=2000 are specified

IBM00858 Cp858 cp858 ccsid00858 Variant of Cp850 with
cp00858 858 PC- Euro character
Multilingual-850+euro

IBM437 Cp437 cp437 ibm437 ibm-437 MS-DOS United States,
437 cspc8codepage437 Australia, New Zealand,
windows-437 South Africa

IBM775 Cp775 cp775ibm775 ibm-775 PC Baltic
775

IBM850 Cp850 cp850 ibm-850 ibm850 MS-DOS Latin-1
850 cspc850multilingual

IBM852 Cp852 cp852 ibm852 ibm-852 MS-DOS Latin-2
852 csPCp852

IBM855 Cp855 cp855 ibm-855 ibm855 IBM Cyrillic
855 cspcp855

IBM857 Cp857 cp857 ibm857 ibm-857 IBM Turkish
857 csIBM857

IBM862 Cp862 cp862 ibm862 ibm-862 PC Hebrew
862 csIBM862
cspc862latinhebrew

IBM866 Cp866 cp866 ibm866 ibm-866 MS-DOS Russian

866 csIBM866

3-1

Chapter 3

Basic Encoding Set (contained in java.base module)

Canonical Name for
java.nio API

Canonical Name for
java.io APl and
java.lang API

Alias or Aliases

Description

ISO-8859-1

ISO-8859-13

ISO-8859-15

ISO-8859-16

ISO-8859-2

ISO-8859-4

ISO-8859-5

ISO-8859-7

ORACLE

1ISO8859_1

1ISO8859_13

ISO8859_15

1ISO8859_16

1ISO8859_2

1ISO8859 4

1ISO8859_5

1ISO8859 7

iso-ir-100 ISO_8859-1
latinl 11 IBM819 cp819
csISOLatinl 819
IBM-819 1SO8859_1
ISO_8859-1:1987
ISO_8859 18859 1
1SO8859-1

is08859 13 8859 13
iso_8859-13
1S08859-13
ISO_8859-15 Latin-9
csIS0O885915 8859 15
1SO-8859-15
1SO8859 15
1S08859-15 IBM923
IBM-923 ¢cp923 923
LATINO LATIN9 L9
cslSOlatin0 csISOlatin9
1ISO8859_15_FDIS
iso-ir-226
1ISO_8859-16:2001
ISO_8859-16 latin10 110
cslS0885916

is08859 2 8859 2 iso-
ir-101 1ISO_8859-2
ISO_8859-2:1987
1SO8859-2 latin2 12
ibm912 ibm-912 cp912
912 csISOLatin2

is08859 4 is08859-4
8859 4 iso-ir-110
ISO_8859-4
ISO_8859-4:1988 latin4
14 ibm914 ibm-914
cp914 914 csISOLatin4

is08859 5 8859 5 iso-
ir-144 1SO_8859-5
ISO_8859-5:1988
1SO8859-5 cyrillic
ibm915 ibm-915 cp915
915 csISOLatinCyrillic

iso8859_7 8859 7 iso-
ir-126 1SO_8859-7
ISO_8859-7:1987
ELOT_928 ECMA-118
greek greek8
csISOLatinGreek
sun_eu_greek ibm813
ibm-813 813 cp813
is08859-7

ISO-8859-1, Latin
Alphabet No. 1

Latin Alphabet No. 7

Latin Alphabet No. 9

Latin Alphabet No. 10 or
South-Eastern
European

Latin Alphabet No. 2

Latin Alphabet No. 4

Latin/Cyrillic Alphabet

Latin/Greek Alphabet
(1SO-8859-7:2003)

3-2

ORACLE

Chapter 3

Basic Encoding Set (contained in java.base module)

Canonical Name for Canonical Name for Alias or Aliases Description
java.nio API java.io APl and
java.lang API
ISO-8859-9 1ISO8859 9 is08859 9 8859 9iso- Latin Alphabet No. 5
ir-148 1SO_8859-9
1ISO_8859-9:1989
1ISO8859-9 latin5 15
ibm920 ibm-920 920
cp920 csISOLatin5
KOI8-R KOI8_R koi8_r koi8 cskoi8r KOI8-R, Russian
KOI8-U KOI8_U koi8 u KOI8-U, Ukrainian
US-ASCII ASCII iso0-ir-6 ANSI_X3.4-1986 American Standard
ISO_646.irv:1991 ASCIl Code for Information
1ISO646-US us IBM367 Interchange
cp367 csASCII default
646 iso_646.irv:1983
ANSI_X3.4-1968 ascii7
UTF-16 UTF-16 UTF_16 utf16 unicode Sixteen-bit Unicode (or
UnicodeBig UCS) Transformation
Format, byte order
identified by an optional
byte-order mark
UTF-16BE UnicodeBigUnmarked UTF_16BE ISO-10646- Sixteen-bit Unicode (or
UCS-2 X-UTF-16BE UCS) Transformation
UnicodeBigUnmarked Format, big-endian byte
order
UTF-16LE UnicodelLittleUnmarked UTF_16LE X-UTF-16LE Sixteen-bit Unicode (or
UnicodeLittleUnmarked UCS) Transformation
Format, little-endian
byte order
UTF-32 UTF-32 UTF_32 UTF32 32-bit Unicode (or UCS)
Transformation Format,
byte order identified by
an optional byte-order
mark
UTF-32BE UTF-32BE UTF_32BE X- 32-bit Unicode (or UCS)
UTF-32BE Transformation Format,
big-endian byte order
UTF-32LE UTF-32LE UTF_32LE X-UTF-32LE 32-bit Unicode (or UCS)
Transformation Format,
little-endian byte order
UTF-8 UTF8 UTF8 unicode-1-1-utf-8 Eight-bit Unicode (or
UCS) Transformation
Format
windows-1250 Cp1250 cp1250 cp5346 Windows Eastern
European
windows-1251 Cp1251 cpl251 cp5347 Windows Cyrillic
ansi-1251
windows-1252 Cp1252 cpl252 cp5348 Windows Latin-1
ibm-1252 ibm1252
windows-1253 Cp1253 cp1253 cp5349 Windows Greek
windows-1254 Cpl254 cpl254 cp5350 Windows Turkish
windows-1257 Cp1257 cpl257 cp5353 Windows Baltic

3-3

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

Canonical Name for Canonical Name for Alias or Aliases Description
java.nio API java.io APl and
java.lang API
x-IBM737 Cp737 cp737 ibm737 ibm-737 PC Greek
737
x-IBM874 Cp874 cp874 ibm874 ibm-874 IBM Thai
874
x-UTF-16LE-BOM UnicodelLittle UnicodelLittle Sixteen-bit Unicode (or

UCS) Transformation
Format, little-endian
byte order, with byte-

order mark
X-UTF-32BE-BOM X-UTF-32BE-BOM UTF_32BE_BOM 32-bit Unicode (or UCS)
UTF-32BE-BOM Transformation Format,

big-endian byte order,
with byte-order mark

X-UTF-32LE-BOM X-UTF-32LE-BOM UTF_32LE_BOM 32-hit Unicode (or UCS)
UTF-32LE-BOM Transformation Format,
little-endian byte order,
with byte-order mark

Extended Encoding Set (contained in jdk.charsets module)

Canonical Name for Canonical Name for Alias or Aliases Description
java.nio API java.io APl and
java.lang API
Big5 Bigh5 csBigh Big5, Traditional
Chinese
Big5-HKSCS Big5_HKSCS Big5_HKSCS big5hk Big5 with Hong Kong

big5-hkscs bigshkscs extensions, Traditional
Chinese (incorporating
2001 revision)

EUC-JP EUC_JP euc_jp eucjis eucjp JISX 0201, 0208 and
Extended_UNIX_Cod 0212, EUC encoding
e_Packed_Format_for Japanese
_Japanese
csEUCPkdFmtjapanes
e X-euc-jp x-eucjp

EUC-KR EUC_KR euc_kr ksc5601 euckr KS C 5601, EUC
ks_c_5601-1987 encoding, Korean
ksc5601-1987
ksc5601_1987
ksc_5601 csEUCKR

5601

GB2312 EUC_CN gbh2312 gb2312-80 GB2312, EUC
gbh2312-1980 euc-cn encoding, Simplified
euccn x-EUC-CN Chinese
EUC_CN

GBK GBK windows-936 CP936 GBK, Simplified

Chinese
IBM01140 Cp1140 cp1140 ccsid01140 Variant of Cp037 with

cp01140 1140 ebcdic- Euro character
us-037+euro

ORACLE 3-4

ORACLE

Chapter 3

Extended Encoding Set (contained in jdk.charsets module)

Canonical Name for Canonical Name for Alias or Aliases Description
java.nio API java.io APl and
java.lang API

IBM01141 Cpl141 cpl141 ccsid01141 Variant of Cp273 with
cp01141 1141 ebcdic- Euro character
de-273+euro

IBM01142 Cpl142 cpl142 ccsid01142 Variant of Cp277 with
cp01142 1142 ebcdic- Euro character
no-277+euro ebcdic-
dk-277+euro

IBM01143 Cpl1143 cpl1143 ccsid01143 Variant of Cp278 with
cp01143 1143 ebcdic- Euro character
fi-278+euro ebcdic-
se-278+euro

IBM01144 Cpl144 cpl144 ccsid01144 Variant of Cp280 with
cp01144 1144 ebcdic- Euro character
it-280+euro

IBM01145 Cpl145 cpl145 ccsid01145 Variant of Cp284 with
cp01145 1145 ebcdic- Euro character
es-284+euro

IBM01146 Cpl146 cpl146 ccsid01146 Variant of Cp285 with
cp01146 1146 ebcdic- Euro character
gb-285+euro

IBM01147 Cpl147 cpl147 ccsid01147 Variant of Cp297 with
cp01147 1147 ebcdic- Euro character
fr-277+euro

IBM01148 Cpl148 cp1148 ccsid01148 Variant of Cp500 with
cp01148 1148 ebcdic- Euro character
international-500+euro

IBM01149 Cpl1149 cp1149 ccsid01149 Variant of Cp871 with
cp01149 1149 ebcdic- Euro character
s-871+euro

IBM037 Cp037 cp037 ibm037 ebcdic- USA, Canada
cp-us ebcdic-cp-ca (Bilingual, French),
ebcdic-cp-wt ebcdic- Netherlands, Portugal,
cp-nl csIBM037 cs- Brazil, Australia
ebcdic-cp-us cs-
ebcdic-cp-ca cs-
ebcdic-cp-wt cs-
ebcdic-cp-nl ibm-037
ibm-37 cpibm37 037

IBM1026 Cpl1026 cp1026 ibm1026 IBM Latin-5, Turkey
ibm-1026 1026

IBM1047 Cplo47 cpl047 ibm-1047 Latin-1 character set
1047 for EBCDIC hosts

IBM273 Cp273 cp273 ibm273 IBM Austria, Germany
ibm-273 273

IBM277 Cp277 cp277 ibm277 IBM Denmark, Norway
ibm-277 277

IBM278 Cp278 cp278 ibm278 IBM Finland, Sweden
ibm-278 278 ebcdic-sv
ebcdic-cp-se
csIBM278

IBM280 Cp280 cp280 ibm280 IBM ltaly
ibm-280 280

3-5

ORACLE

Chapter 3

Extended Encoding Set (contained in jdk.charsets module)

Canonical Name for
java.nio API

Canonical Name for
java.io APl and
java.lang API

Alias or Aliases

Description

IBM284

IBM285

IBM290

IBM297

IBM420

IBM424

IBM500

IBM860

IBM861

IBM863

IBM864

IBM865

IBM868

IBM869

IBM870

IBM871

Cp284

Cp285

Cp290

Cp297

Cp420

Cp424

Cp500

Cp860

Cp861

Cp863

Cp864

Cp865

Cp868

Cp869

Cp870

Cp871

cp284 ibm284
ibm-284 284
csIBM284 cpibm284

cp285 ibm285
ibm-285 285 ebcdic-
cp-gb ebcdic-gb
csIBM285 cpibm285
cp290 ibm290
ibm-290 csIBM290
EBCDIC-JP-kana 290

cp297 ibm297
ibm-297 297 ebcdic-
cp-fr cpibm297
csIBM297

cp420 ibm420
ibm-420 ebcdic-cp-arl
420 csIBM420

cp424 ibm424
ibm-424 424 ebcdic-
cp-he csiBM424

cp500 ibm500
ibm-500 500 ebcdic-
cp-ch ebcdic-cp-bh
csIBM500

cp860 ibm860
ibm-860 860
csIBM860

cp861 ibm861
ibm-861 861
csIBM861 cp-is

cp863 ibm863
ibm-863 863
csIBM863

cp864 ibm864
ibm-864 864
csIBM864

cp865 ibm865
ibm-865 865
csIBM865

cp868 ibm868
ibm-868 868 cp-ar
csIBM868

cp869 ibm869
ibm-869 869 cp-gr
csIBM869

cp870 ibm870
ibm-870 870 ebcdic-
cp-roece ebcdic-cp-yu
csIBM870

cp871 ibm871
ibm-871 871 ebcdic-
cp-is csIBM871

IBM Catalan/Spain,
Spanish Latin America

IBM United Kingdom,

Ireland

IBM Japanese
Katakana Host
Extended SBCS

IBM France

IBM Arabic

IBM Hebrew

EBCDIC 500V1

MS-DOS Portuguese

MS-DOS Icelandic

MS-DOS Canadian

French

PC Arabic

MS-DOS Nordic

MS-DOS Pakistan

IBM Modern Greek

IBM Multilingual
Latin-2

IBM Iceland

3-6

ORACLE

Chapter 3

Extended Encoding Set (contained in jdk.charsets module)

Canonical Name for

Canonical Name for

Alias or Aliases

Description

java.nio API java.io APl and
java.lang API
IBM918 Cp918 cp918 ibm-918 918 IBM Pakistan (Urdu)
ebcdic-cp-ar2
IBM-Thai Cp838 cp838 ibm838 IBM Thailand
ibm-838 838 extended SBCS
ISO-2022-CN ISO2022CN ISO2022CN GB2312 and
csIS02022CN CNS11643 in ISO
2022 CN form,
Simplified and
Traditional Chinese
(conversion to
Unicode only)
ISO-2022-JP 1ISO2022JP i502022jp jis JIS X 0201, 0208, in
cslS02022JP ISO 2022 form,
jis_encoding Japanese
csjisencoding
ISO-2022-JP-2 1ISO20223P2 ¢slS020223P2 JIS X 0201, 0208,
i502022jp2 0212 in ISO 2022
form, Japanese
ISO-2022-KR ISO2022KR ISO2022KR ISO 2022 KR, Korean
csISO2022KR
ISO-8859-3 ISO8859_3 is08859_3 8859_3 Latin Alphabet No. 3
ISO_8859-3:1988 iso-
ir-109 1ISO_8859-3
ISO8859-3 latin3 13
ibm913 ibm-913
cp913 913
csISOLatin3
ISO-8859-6 ISO8859 6 is08859_6 8859_6 Latin/Arabic Alphabet
iso-ir-127 ISO_8859-6
ISO_8859-6:1987
ISO8859-6 ECMA-114
ASMO-708 arabic
ibm1089 ibm-1089
cp1089 1089
csISOLatinArabic
ISO-8859-8 1ISO8859_8 is08859_8 8859 8 Latin/Hebrew Alphabet
is0-ir-138 ISO_8859-8
ISO_8859-8:1988
ISO8859-8 cp916 916
ibm916 ibm-916
hebrew
csISOLatinHebrew
JIS_X0201 JIS_X0201 JIS0201 JIS_X0201 JIS X 0201
X0201
csHalfwidthKatakana
JIS_X0212-1990 JIS0212 JIS0212 JIS X 0212
jis_x0212-1990 x0212
iS0-ir-159
¢sIS0O159J1SX021219
90
Shift_JIS SJIs sjis shift_jis shift-jis Shift-JIS, Japanese
ms_kanji x-sjis
csShiftdIs

3-7

ORACLE

Chapter 3

Extended Encoding Set (contained in jdk.charsets module)

Canonical Name for Canonical Name for Alias or Aliases Description
java.nio API java.io APl and

java.lang API
TIS-620 TIS620 tis620 tis620.2533 TIS620, Thai
windows-1255 Cp1255 cpl255 Windows Hebrew
windows-1256 Cpl256 cpl256 Windows Arabic
windows-1258 Cp1258 cpl258 Windows Viethamese
windows-31j MS932 MS932 windows-932 Windows Japanese

csWindows31J

x-Big5-HKSCS-2001

x-Big5-Solaris

X-euc-jp-linux

x-eucJP-Open

x-EUC-TW

x-1BM1006

x-IBM1025

x-1BM1046
x-IBM1097
x-1BM1098
x-IBM1112
x-1BM1122
x-IBM1123
x-1BM1124

x-IBM1129

x-Big5-HKSCS-2001

Big5_Solaris

EUC_JP_LINUX

EUC_JP_Solaris

EUC_TW

Cp1006

Cp1025

Cp1046
Cp1097
Cp1098
Cp1112
Cp1122
Cp1123
Cpl124

Cp1129

Bigs_ HKSCS_2001
big5hk-2001 big5-
hkscs-2001 big5-
hkscs:unicode3.0
big5hkscs-2001

Big5_Solaris

euc_jp_linux euc-jp-
linux

EUC_JP_Solaris
eucJP-open

euc_tw euctw
cns11643 EUC-TW

cp1006 ibm1006
ibm-1006 1006

cp1025 ibm1025
ibm-1025 1025

cpl046 ibm1046
ibm-1046 1046

cpl097 ibm1097
ibm-1097 1097

cp1098 ibm1098
ibm-1098 1098

cpl112ibm1112
ibm-1112 1112

cpl122 ibm1122
ibm-1122 1122

cpl123ibm1123
ibm-1123 1123

cpll24 ibm1124
ibm-1124 1124

cpl129 ibm1129
ibm-1129 1129

Big5 with Hong Kong
Supplementary
Character Set, 2001
revision

Big5 with seven
additional Hanzi
ideograph character
mappings for the
Solaris zh_TW.BIG5
locale

JISX 0201, 0208, EUC
encoding Japanese

JISX 0201, 0208,
0212, EUC encoding
Japanese

CNS11643 (Plane
1-7,15), EUC
encoding, Traditional
Chinese

IBM AIX Pakistan
(Urdu)

IBM Multilingual
Cyrillic: Bulgaria,
Bosnia, Herzegovinia,
Macedonia (FYR)

IBM Arabic - Windows
IBM Iran (Farsi)/

Persian
IBM Iran (Farsi)/

Persian (PC)
IBM Latvia, Lithuania
IBM Estonia
IBM Ukraine

IBM AIX Ukraine

IBM AIX Vietnamese

3-8

ORACLE

Chapter 3

Extended Encoding Set (contained in jdk.charsets module)

Canonical Name for Canonical Name for Alias or Aliases Description
java.nio API java.io APl and
java.lang API
x-IBM1166 Cpl166 cpl166 ibm1166 IBM Cyrillic
ibm-1166 1166 Multilingual with euro
for Kazakhstan
x-IBM1364 Cp1364 cpl364 ibm1364 IBM EBCDIC KS X
ibm-1364 1364 1005-1
x-1BM1381 Cp1381 cpl381 ibm1381 IBM OS/2, DOS
ibm-1381 1381 People's Republic of
China (PRC)
x-IBM1383 Cp1383 cpl1383ibm1383 IBM AIX People's
ibm-1383 1383 Republic of China
ibmeuccn ibm-eucecn (PRC)
cpeuccn
x-IBM300 Cp300 cp300 ibm300 IBM Japanese Latin
ibm-300 300 Host Double-Byte
x-IBM33722 Cp33722 cp33722 ibm33722 IBM-eucJP - Japanese
ibm-33722 ibm-5050 (superset of 5050)
ibm-33722_vascii_vpu
a 33722
x-IBM833 Cp833 cp833 ibm833 IBM Korean Host
ibm-833 Extended SBCS
x-IBM834 Cp834 cp834 ibm834 834 IBM EBCDIC DBCS-
ibm-834 only Korean
x-IBM856 Cp856 cp856 ibm-856 IBM Hebrew
ibm856 856
x-IBM875 Cp875 cp875 ibm875 IBM Greek
ibm-875 875
x-IBM921 Cp921 cp921 ibm921 IBM Latvia, Lithuania
ibm-921 921 (AIX, DOS)
x-IBM922 Cp922 cp922 ibm922 IBM Estonia (AIX,
ibm-922 922 DOS)
x-IBM930 Cp930 cp930 ibm930 Japanese Katakana-
ibm-930 930 Kaniji mixed with 4370
UDC, superset of
5026
x-IBM933 Cp933 cp933 ibm933 Korean Mixed with
ibm-933 933 1880 UDC, superset
of 5029
x-IBM935 Cp935 cp935 ibm935 Simplified Chinese
ibm-935 935 Host mixed with 1880
UDC, superset of
5031
x-IBM937 Cp937 cp937 ibm937 Traditional Chinese
ibm-937 937 Host miexed with 6204
UDC, superset of
5033
x-IBM939 Cp939 cp939 ibm939 Japanese Latin Kanji
ibm-939 939 mixed with 4370 UDC,
superset of 5035
x-IBM942 Cp942 cp942 ibm942 IBM OS/2 Japanese,
ibm-942 942 superset of Cp932

3-9

ORACLE

Chapter 3

Extended Encoding Set (contained in jdk.charsets module)

Canonical Name for Canonical Name for Alias or Aliases Description
java.nio API java.io APl and
java.lang API

x-IBM942C Cp942C cp942C ibm942C Variant of Cp942
ibm-942C 942C cp932
ibm932 ibm-932 932
x-ibm932

x-IBM943 Cp943 cp943 ibm943 IBM OS/2 Japanese,
ibm-943 943 superset of Cp932

and Shift-JIS

x-IBM943C Cp943C cp943C ibm943C Variant of Cp943
ibm-943C 943C

x-IBM948 Cp948 cp948 ibm948 OS/2 Chinese
ibm-948 948 (Taiwan) superset of

938

x-IBM949 Cp949 cp949 ibm949 PC Korean
ibm-949 949

x-IBM949C Cp949C cp949C ibm949C Variant of Cp949
ibm-949C 949C

x-IBM950 Cp950 cp950 ibm950 PC Chinese (Hong
ibm-950 950 Kong, Taiwan)

x-IBM964 Cp964 cp964 ibm9o64 AIX Chinese (Taiwan)
ibm-964 ibm-euctw
964

x-IBM970 Cp970 cp970 ibm970 AIX Korean
ibm-970 ibm-euckKR
970

x-1SCII91 ISCI91 iscii ST_SEV_358-88 ISCII91 encoding of

x-150-2022-CN-CNS

x-1S0O-2022-CN-GB

X-is0-8859-11

x-JIS0208

x-JISAutoDetect

x-Johab

ISO2022CN_CNS

ISO2022CN_GB

X-is0-8859-11

JIS0208

JISAutoDetect

x-Johab

iso-ir-153
csISO153G0OST19768
74 1SCl191

ISO2022CN_CNS
ISO-2022-CN-CNS

ISO2022CN_GB
ISO-2022-CN-GB

is0-8859-11

is08859_ 11

JIS0208
JIS_C6226-1983 iso-
ir-87 x0208
JIS_X0208-1983
¢sIS087J1SX0208

JISAutoDetect

ksc5601-1992
ksc5601_1992
ms1361 johab

Indic scripts

CNS11643 in ISO
2022 CN form,
Traditional Chinese
(conversion from
Unicode only)
GB2312in ISO 2022
CN form, Simplified
Chinese (conversion
from Unicode only)

Latin/Thai Alphabet

JIS X 0208

Detects and converts
from Shift-JIS, EUC-
JP, ISO 2022 JP
(conversion to
Unicode only)

Korean, Johab
character set

3-10

ORACLE

Chapter 3

Extended Encoding Set (contained in jdk.charsets module)

Canonical Name for Canonical Name for Alias or Aliases Description
java.nio API java.io APl and
java.lang API
x-MacArabic MacArabic MacArabic Macintosh Arabic
x-MacCentralEurope MacCentralEurope MacCentralEurope Macintosh Latin-2
x-MacCroatian MacCroatian MacCroatian Macintosh Croatian
x-MacCyrillic MacCyrillic MacCyrillic Macintosh Cyrillic
x-MacDingbat MacDingbat MacDingbat Macintosh Dingbat
x-MacGreek MacGreek MacGreek Macintosh Greek
x-MacHebrew MacHebrew MacHebrew Macintosh Hebrew
x-Maclceland Maclceland Maclceland Macintosh Iceland
x-MacRoman MacRoman MacRoman Macintosh Roman
x-MacRomania MacRomania MacRomania Macintosh Romania
x-MacSymbol MacSymbol MacSymbol Macintosh Symbol
x-MacThai MacThai MacThai Macintosh Thai
x-MacTurkish MacTurkish MacTurkish Macintosh Turkish
x-MacUkraine MacUkraine MacUkraine Macintosh Ukraine
x-MS932_0213 Xx-MS950-HKSCS MS932-0213 Shift_JISX0213
MS932_0213 Windows MS932
MS932:2004 Variant

X-MS950-HKSCS

X-MS950-HKSCS-XP
X-mswin-936
x-PCK

x-SJIS_0213

x-windows-50220

x-windows-50221

Xx-windows-874
X-windows-949
x-windows-950

Xx-windows-is02022jp

MS950_HKSCS

X-mswin-936
MS936
PCK

x-SJIS_0213

MS50220

MS50221

MS874
MS949
MS950

windows-is02022jp

windows-932-0213
windows-932:2004

MS950_HKSCS

MS950_HKSCS_XP
ms936 ms_936
pck

sjis-0213 sjis_0213
sjis:2004
sjis_0213:2004
shift_jis_0213:2004
shift_jis:2004
ms50220 cp50220

ms50221 cp50221

ms874 ms-874
windows-874

ms949 windows949
windows-949 ms_949

ms950 windows-950

windows-is02022jp

Windows Traditional
Chinese with Hong
Kong extensions

HKSCS Windows XP
Variant

Windows Simplified
Chinese

Solaris version of
Shift_JIS

Shift_JISX0213

Windows Codepage
50220 (7-bit
implementation)
Windows Codepage
50221 (7-bit
implementation)
Windows Thai

Windows Korean

Windows Traditional
Chinese

Variant 1ISO-2022-JP
(MS932 based)

3-11

Chapter 3
Printing Charset Information

Printing Charset Information

ORACLE

The following applications print the aliases and the canonical name for java.io and
java.lang APIs of each charset supported by Java SE.

The following application prints the aliases of each charset:
import java.nio.charset.*;
class DisplayCharsetAliases {

public static void main(String[] args) {
System.out.println ("Charset -> Aliases");

System.out.println (" ")
for (Charset cs : Charset.availableCharsets().values()) {
System.out.println(cs.name() + " -> " + cs.aliases());

The following application prints the canonoical name for java.io and java.lang
APIs of each charset:

import java.nio.charset.*;
import sun.nio.cs.*;

class PrintCanonicalName {
public static void main(String[] args) {
for (Charset cs : Charset.availableCharsets().values()) {
System.out.println(cs.name() + ":" +
(cs instanceof HistoricallyNamedCharset ?
((HistoricallyNamedCharset)cs) .historicalName ()

Compile this application as follows:

javac --add-exports java.base/sun.nio.cs=ALL-UNNAMED
PrintCanonicalName.java

3-12

Supported Calendars

ORACLE

The core of the Date-Time API is the java.time package. The classes defined in java.time
base their calendar system on the ISO calendar, which is the world standard for representing
date and time. The ISO calendar follows the proleptic Gregorian rules. There are also non-
ISO calendars predefined in java.time.chrono package: the Japanese, Hijrah, Minguo,
and Thai Buddhist calendars. For more about the Date-Time API, see the Internationalization
Trail in the Java Tutorials.

4-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/package-summary.html
http://docs.oracle.com/javase/tutorial/datetime/iso/index.html
http://docs.oracle.com/javase/tutorial/datetime/iso/index.html

Supported Fonts

Different OS platforms may provide fonts that are implemented using different font
technologies. To support cross-platform use, the Java SE API defines five families of "logical"
fonts that can safely be used by an application using any Java SE implementation. The
names of these families are defined in the Font class description.

Additionally a Java SE implementation may expose the platform fonts to be used directly by
name. These fonts are called "physical” fonts.

For more information on the terminology used here, see the Font class description.

e Support for Physical Fonts

e Support for Logical Fonts

Support for Physical Fonts

The JDK supports TrueType, OpenType, and PostScript Type 1 fonts.

Physical fonts need to be installed in locations known to the Java runtime environment. The
JDK locates fonts in the standard font locations defined by the host operating system.

You can add physical fonts that use a supported font technology by installing them in a way
supported by the host operating system. The recommended location to add per-user fonts on
Solaris or Linux is the $SHOME/ . fonts directory which is searched by the platform's
libfontconfig, and which is in turn used by the JDK.

Support for Logical Fonts

ORACLE

Typically one logical font maps to several physical fonts in order to cover a larger range of
code points than is possible with a single font. Logical fonts are mapped to physical fonts in
implementation-dependent ways, and can vary from platform to platform and from release to
release.

Font configuration files are used by some implementations to handle the mapping, see Font
Configuration Files:

* Current releases for Windows always use font configuration files.
* The macOS implementation always ignores font configuration files.

* Releases for Solaris and Linux use font configuration files only if there is an exact match
for the OS version, otherwise font configuration files are ignored and platform APIs are
used to populate the logical fonts.

5-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/Font.html

Font Configuration Files

The Java Platform defines five logical font names that every implementation must support:
Serif, SansSerif, Monospaced, Dialog, and DialogInput. These logical font names
are mapped to physical fonts in implementation dependent ways.

One way the Oracle JDK maps logical font names to physical fonts is by using font
configuration files. There may be several files to support different mappings depending on the
host operating system version. The files are distributed with the JDK installation. You can edit
or create your own font configuration files to adjust the mappings to your particular system
setup, however these must be placed in conf/fonts, and are subject to implementation
notes discussed below.

Font configuration files come in two formats: a properties format and a binary format. The
properties format is described in detail in this document and can be used for user-defined
configurations. The binary format is undocumented and used only for the JDK's predefined
configurations; the corresponding files in properties format are available for reference as files
with the .properties.src extension.

Supported Platforms

Font configuration files are implementation dependent. Not all implementations of the Java
Platform use them, and the format and content vary between different runtime environments
as well as between releases. The macOS implementation does not use font configuration
files, as the mapping is hard coded in the source and cannot be changed in any way.

The Oracle JDK supports font configuration files on the host operating system as follows:
e For Windows, font configuration files are required.
e For macQOS, font configuration files are unsupported.

e For Linux and Solaris: the Oracle JDK is moving away from providing custom font
configuration files on Linux platforms, as they are difficult to keep up to date across
distributions and versions. A distribution that has control over the fonts on the system can
continue to provide this custom file. If the JRE finds a custom file that exactly matches
the distribution and version it will use it. If no exact match is found, the JRE dynamically
creates the file at runtime. These generated files are placed in a location determined by
the implementation. They should be considered implementation internal: they are not
user editable and do not follow the syntax as described in this specification.

Loading Font Configuration Files

ORACLE

The JDK places any files that it provides in $JDKHOME/1ib. Do not modify that location.
Instead, put any updates or custom versions of the configuration files in $JDKHOME/conf/
fonts. If you provide a custom configuration file, it must adhere to the implementation
limitation that a font cannot contain more than 254 slots.

On platforms that support font configuration files, the runtime will look first in $JDKHOME /
conf/fonts. In other words, a user-supplied file is preferred if it is a match.

6-1

Chapter 6
Names Used in Font Configuration Files

The font configuration file for a host operating system is located as follows:

JavaHome - the JDK directory, as given by the java.home system property.
OS - a string identifying an operating system variant:

— For Windows, empty.

— For Solaris, empty.

— For Linux, "RedHat™", "SuSE", etc.

Version - a string identifying the operating system version.

The runtime uses the first of the following files it finds:

JavaHome/1lib/fontconfig.0S.Version.properties
JavaHome/lib/fontconfig.0S.Version.bfc
JavaHome/1lib/fontconfig.O0S.properties
JavaHome/1lib/fontconfig.0S.bfc
JavaHome/1lib/fontconfig.Version.properties
JavaHome/1lib/fontconfig.Version.bfc
JavaHome/lib/fontconfig.properties
JavaHome/1ib/fontconfig.bfc

Files with a .properties suffix are assumed to be properties files as specified by the
Properties class and are loaded through that class. Files without this suffix are
assumed to be in binary format.

Names Used in Font Configuration Files

Throughout the font configuration files, a number of different names are used:

ORACLE

LogicalFontName - one of the five logical font names: serif, sansserif,
monospaced, dialog, and dialoginput. In font configuration files, these names are
always in lowercase.

StyleName - one of the four standard font styles: plain, bold, italic, and
bolditalic. Again, these names are always in lowercase.

PlatformFontName - the name of a physical font, in a format typically used on the
platform:

— On Windows, a font face name, such as "Courier New" or "\uad74\ub9bc".

— On Solaris and Linux, an xIfd name, such as "-monotype-times new roman-
regular-r---*-%d-*-*-p-*-i1s08859-1". Note that "%d" is used for the font
size - the actual font size is filled in at runtime.

CharacterSubsetName - a name for a subset of the Unicode character set which
certain component fonts can render. For Windows, the following names are
predefined: alphabetic, arabic, chinese-ms936, chinese-gh18030, chinese-ms950,
chinese-hkscs, cyrillic-iso8859-5, cyrillic-cp1251, cyrillic-koi8-r, devanagari,
dingbats, greek, hebrew, japanese, korean, latin, symbol, thai. For Solaris and
Linux, the following names are predefined: arabic, chinese-gh2312, chinese-gbk,
chinese-gh18030-0, chinese-gh18030-1, chinese-cns11643-1, chinese-
cns11643-2, chinese-cns11643-3, chinese-big5, chinese-hkscs, cyrillic,
devanagari, dingbats, greek, hebrew, japanese-x0201, japanese-x0208, japanese-
x0212, korean, korean-johab, latin-1, latin-2, latin-4, latin-5, latin-7, latin-9,

6-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Properties.html

Chapter 6
Properties for All Platforms

symbol,thai. A font configuration file may define additional names to identify additional
character subsets.

* Encoding - the canonical name of the default encoding, as provided by
java.nio.charset.Charset.defaultCharset () .name().

* Language - the language of the initial default locale.

e Country - the country of the initial default locale.

Properties for All Platforms

Properties that are applicable to all platforms enable you to specify the font configuration
format version, component font mappings, search sequences, exclusion ranges, proportional
fonts, font file names, and appended font path.

Version Property

The version property identifies the font configuration format version. This document specifies
version 1.

The complete property has the form:

version=1

Component Font Mappings

Component font mapping properties describe which physical font to use to render characters
from a given character subset with a given logical font in a given style.

The keys have the forms:

allfonts.CharacterSubsetName
LogicalFontName.StyleName.CharacterSubsetName

The first form is used if the same font is used for a character subset independent of logical
font and style (in this case, the font rendering engines apply algorithmic styles to the font).
The second form is used if different physical fonts are used for a character subset for different
logical fonts and styles. In this case, properties must be specified for each combination of
logical font and style, so 20 properties for one character subset. If a property of the first form
is present for a character subset, then properties of the second form for the same character
subset are ignored.

The values are platform font names, as described in Names Used in Font Configuration Files.

Since the character subsets supported by given fonts often overlap, separate search
sequence properties are used to define in which order to try the fonts when rendering a
character.

Search Sequences

The Java runtime uses sequence properties to determine search sequences for the five
logical fonts. However, a font configuration file may specify properties that are specific to a

ORACLE 6-3

ORACLE

Chapter 6
Properties for All Platforms

combination of encoding, language, and country, and the runtime will then use a
lookup to determine the search sequence property for each logical font.

The keys have the form:

sequence.allfonts.Encoding.Language.Country
sequence. LogicalFontName.Encoding.Language.Country
sequence.allfonts.Encoding.Language

sequence. LogicalFontName.Encoding.Language
sequence.allfonts.Encoding

sequence. LogicalFontName.Encoding
sequence.allfonts

sequence. LogicalFontName

The allfonts forms are used if the sequence is used for all five logical fonts. The
forms specifying logical font names are used if different sequences are used for
different logical fonts.

For each logical font, the Java runtime uses the property value with the first of the
above keys. This property determines the primary search sequence for the logical font.

The file may also define a single fallback search sequence. The key for the fallback
search sequence property is:

sequence.fallback

The values of all search sequence properties have the form:

SearchSequenceValue:
CharacterSubsetName
CharacterSubsetName , SearchSequenceValue

The primary search sequence properties specify character subset names for required
fonts, which are used for both AWT and 2D font rendering. The fallback search
sequence property gives character subset names for optional fonts, which are used as
fallbacks for all logical fonts, but only for 2D font rendering. On Windows, if there is a
system EUDC (End User Defined Characters) font registered with Windows, the
runtime automatically adds this font as well as a fallback font for 2D rendering.

The sequence properties determine in which sequence component fonts are tried to
render a given character. For example, given the following properties:

sequence.monospaced=japanese, alphabetic
sequence. fallback=korean
monospaced.plain.alphabetic=Arial
monospaced.plain.japanese=MSGothic
monospaced.plain.korean=Gulim

The runtime will first attempt to render a character with the MSGothic font. If that font
doesn't provide a glyph for the character, it will attempt the Arial font. For 2D rendering,
it will also try the Gulim font as well as any TrueType, OpenType, or Type 1 fonts in the
system's standard font locations. For 2D rendering on Windows, if there is a system
EUDC font registered with Windows, the runtime will also try this EUDC font.

6-4

Chapter 6
Properties for All Platforms

When calculating font metrics for a logical font without reference to a string, only the required
fonts are taken into consideration. For the example above, the
FontMetrics.getMaxDescent method would return results based on the MSGothic and
Arial fonts, but not the Gulim font. In this way, simple user interface elements such as
buttons, which sometimes calculate their size based on font metrics, are not affected by an
extended list of component fonts which their labels usually don't use. On the other hand, text
components typically calculate metrics based on the text they contain and thus will obtain
correct results.

The sequence properties that the runtime obtains for the five logical fonts should list the
same character subsets, but may list them in different order.

Exclusion Ranges

The exclusion range properties specify Unicode character ranges which should be excluded
from being rendered with the fonts corresponding to a given character subset. This is used if
a font with a large character repertoire needs to be placed early in the search sequence (for
example, for performance reasons), but some characters that it supports should be drawn
with a different font instead. These properties are optional, so there's at most one per
character subset.

The keys have the form:

exclusion.CharacterSubsetName

The values have the form:

ExclusionRangeValue:
Range
Range , ExclusionRangeValue

Range:
Char - Char

Char:

HexDigit HexDigit HexDigit HexDigit
HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit

A char is a Unicode character represented as a hexadecimal value.

Proportional Fonts

ORACLE

The proportional font properties describe the relationship between proportional and non-
proportional variants of otherwise equivalent fonts. These properties are used to implement
preferences specified by the GraphicsEnvironment.preferProportionalFonts
method.

The keys have the form:

proportional.PlatformFontName

Space characters in the platform font name must be replaced with underscore characters ().

6-5

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/FontMetrics.html#getMaxDescent()
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/GraphicsEnvironment.html#preferProportionalFonts()

Chapter 6
Properties for All Platforms

The values have the form:

PlatformFontName

In values, space characters are left unmodified.

Each property indicates that the font named in the value is the proportional equivalent
of the font named in the key, and also that the font named in the key is the non-
proportional equivalent of the font named in the value.

Font File Names

Font file name properties provide the names of the files containing the physical fonts
used in the font configuration file. File names are required for all physical fonts on
Windows and recommended for all physical fonts on Solaris and Linux.

The keys have the form:

filename. PlatformFontName

Space characters in the platform font name must be replaced with underscore
characters ().

The values are the file names of the files containing the fonts. On Windows, simple file
names are used; and the runtime environment looks for each file first in its own 1ib/
fonts directory, then in the Windows fonts directory. On Solaris and Linux, absolute
path names, path names starting with "$JRE_LIB FONTS" for the runtime environment's
own lib/fonts directory, or xIfd names are used.

Appended Font Path

The Java runtime can automatically determine a number of directories that contain font
files, such as its own 1ib/fonts directory or the Windows fonts folder. Additional
directories can be specified to be appended to the font path.

The key has the form:

appendedfontpath

The value has the form:

AppendedFontPathValue:
Directory
Directory PathSeparator AppendedFontPathValue

The path separator is the platform dependent value of
java.io.File.pathSeparator

ORACLE 6-6

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/File.html#pathSeparator

Chapter 6
Properties for Windows

Properties for Windows

There are no platform-specific properties for Windows. However, there is a special form of the
character subset name used in search sequences. The name "alphabetic" can take a suffix
indicating the character encoding associated with the subset:

alphabetic
alphabetic/default
alphabetic/1252

This information is only used for AWT, not for 2D. The /default suffix restricts use of the
component fonts for this character subset to the character set of the default encoding; the /
1252 suffix to the Windows-1252 character set. For accessing component font mappings and
exclusion ranges, the character encoding suffix is omitted. For all other character subsets, the
AWT character encoding is determined internally by the Java runtime.

Property for Solaris and Linux

ORACLE

The only property that is specific to Solaris and Linux is the AWT font path, which identifies
platform directories that should be added to the X11 server font path.

The keys have the form:

awtfontpath.CharacterSubsetName

The values have the form:

AWTFontPathValue:
Directory
Directory : AWTFontPathValue

The directories must be valid X11 font directories. The Java runtime ensures that the
directories for all character subsets of a primary search sequence found by the search
sequence lookup (see Search Sequences) are part of the X11 font path. The implementation
assumes that all logical fonts use the same set of character subsets for a given environment
of encoding, language, and country.

6-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Internationalization Enhancements
	Internationalization Enhancements in JDK 11
	Unicode 10.0.0

	Internationalization Enhancements in JDK 10
	Additional Unicode Language-Tag Extensions

	Internationalization Enhancements in JDK 9
	Unicode 8.0
	CLDR Locale Data Enabled by Default
	UTF-8 Properties Files

	2 Internationalization Overview
	Text Representation
	Locale Identification and Localization
	Locales
	Locale Class
	Supported Locales

	Localized Resources
	ResourceBundle Class
	ResourceBundle.Control Class

	ListResourceBundle Class
	PropertyResourceBundle Class

	Date and Time Handling
	Text Processing
	Formatting
	Format Class
	DateFormat Class
	SimpleDateFormat Class
	DateFormatSymbols Class
	NumberFormat Class
	DecimalFormat Class
	DecimalFormatSymbols Class
	ChoiceFormat Class
	MessageFormat Class
	ParsePosition Class
	FieldPosition Class

	Locale-Sensitive String Operations
	Collator Class
	RuleBasedCollator Class
	CollationElementIterator Class
	CollationKey Class
	BreakIterator Class
	StringCharacterIterator Class
	CharacterIterator Interface
	Normalizer Class

	Locale-Sensitive Services SPIs
	Character Encoding Conversion
	Supported Encodings
	Stream I/O
	Reader and Writer Classes
	PrintStream Class
	Charset Package

	Input Methods
	Input Method Support in Swing
	Input Method Framework

	3 Supported Encodings
	Basic Encoding Set (contained in java.base module)
	Extended Encoding Set (contained in jdk.charsets module)
	Printing Charset Information

	4 Supported Calendars
	5 Supported Fonts
	Support for Physical Fonts
	Support for Logical Fonts

	6 Font Configuration Files
	Supported Platforms
	Loading Font Configuration Files
	Names Used in Font Configuration Files
	Properties for All Platforms
	Version Property
	Component Font Mappings
	Search Sequences
	Exclusion Ranges
	Proportional Fonts
	Font File Names
	Appended Font Path

	Properties for Windows
	Property for Solaris and Linux

