
Java Platform, Standard Edition
Java Language Updates

Release 11
E94884-05
January 2025

Java Platform, Standard Edition Java Language Updates, Release 11

E94884-05

Copyright © 2017, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience iv

Documentation Accessibility iv

Diversity and Inclusion iv

Related Documents iv

Conventions iv

1 Java Language Changes Summary

2 Java Language Changes

Java Language Changes for Java SE 11 2-1

Java Language Changes for Java SE 10 2-1

Java Language Changes for Java SE 9 2-1

More Concise try-with-resources Statements 2-2

@SafeVarargs Annotation Allowed on Private Instance Methods 2-3

Diamond Syntax and Anonymous Inner Classes 2-3

Underscore Character Not Legal Name 2-3

Support for Private Interface Methods 2-3

3 Local Variable Type Inference

iii

Preface

This guide describes updates to the language in Java SE 9.

Audience
This document is for Java developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
See JDK 11 Documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

Preface

iv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase11&id=homepage

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

v

1
Java Language Changes Summary

The following tables summarize new Java language features since Java SE 9.

New Language Features

The following table lists the new features in the Java language since Java SE 9.

Table 1-1 Java Language Changes Summary

Release New Language Features

9 Java Platform Module System (JSR 376): see Project Jigsaw on OpenJDK

Milling Project Coin (JEP 213): seeJava Language Changes for Java SE 9

Small Enhancements to the Java Programming Language (JSR 334): see Java
Language Changes for Java SE 9

10 Local Variable Type Inference (JEP 286)

11 Local-Variable Syntax for Lambda Parameters (JEP 323): see Local Variable Type
Inference

Evolution of Language Features

The following tables list the changes made to the Java language since Java SE 9. The first
column specifies the feature while the subsequent columns specify a Java SE release. An icon
specifies when the feature was made permanent.

Table 1-2 Java Language Changes from Java SE 11 to Java SE 9

Feature 11 10 9

Local-Variable Syntax for Lambda Parameters: see Local Variable Type Inference JEP
323

Local Variable Type Inference JEP
286

Java Platform Module System: see Project Jigsaw on OpenJDK JSR
376

Milling Project Coin: see Java Language Changes for Java SE 9 JEP
213

Small Enhancements to the Java Programming Language: see Java Language
Changes for Java SE 9

 JSR
334

1-1

https://openjdk.org/projects/jigsaw/spec/
https://openjdk.org/projects/jigsaw/
https://openjdk.org/jeps/213
https://jcp.org/en/jsr/detail?id=334
https://openjdk.org/jeps/286
https://openjdk.org/jeps/323
https://openjdk.org/jeps/323
https://openjdk.org/jeps/323
https://openjdk.org/jeps/286
https://openjdk.org/jeps/286
https://openjdk.org/projects/jigsaw/
https://openjdk.org/projects/jigsaw/spec/
https://openjdk.org/projects/jigsaw/spec/
https://openjdk.org/jeps/213
https://openjdk.org/jeps/213
https://jcp.org/en/jsr/detail?id=334
https://jcp.org/en/jsr/detail?id=334

2
Java Language Changes

This section summarizes the updated language features in Java SE 9 and subsequent
releases.

Java Language Changes for Java SE 11

Feature Description JEP

Local Variable Type Inference

See also Local Variable Type
Inference: Style Guidelines

Introduced in Java SE 10. In this release, it has been
enhanced with support for allowing var to be used when
declaring the formal parameters of implicitly typed lambda
expressions.

Local-Variable Type Inference extends type inference to
declarations of local variables with initializers.

• JEP 286: Local-Variable
Type Inference

• JEP 323: Local-Variable
Syntax for Lambda
Parameters

Java Language Changes for Java SE 10

Feature Description JEP

Local Variable Type Inference

See also Local Variable Type
Inference: Style Guidelines

Introduced in this release.

Local-Variable Type Inference extends type inference to
declarations of local variables with initializers.

JEP 286: Local-Variable Type
Inference

Java Language Changes for Java SE 9

Feature Description JEP

Java Platform module
system, see Project
Jigsaw on OpenJDK.

Introduced in this release.

The Java Platform module system introduces a
new kind of Java programing component, the
module, which is a named, self-describing
collection of code and data. Its code is organized
as a set of packages containing types, that is, Java
classes and interfaces; its data includes resources
and other kinds of static information. Modules can
either export or encapsulate packages, and they
express dependencies on other modules explicitly.

Java Platform Module
System (JSR 376)

• JEP 261: Module
System

• JEP 200: The
Modular JDK

• JEP 220: Modular
Run-Time Images

• JEP 260:
Encapsulate Most
Internal APIs

2-1

https://openjdk.org/projects/amber/guides/lvti-style-guide
https://openjdk.org/projects/amber/guides/lvti-style-guide
https://openjdk.java.net/jeps/286
https://openjdk.java.net/jeps/286
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.org/projects/amber/guides/lvti-style-guide
https://openjdk.org/projects/amber/guides/lvti-style-guide
https://openjdk.java.net/jeps/286
https://openjdk.java.net/jeps/286
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/spec/
http://openjdk.java.net/projects/jigsaw/spec/
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/200
http://openjdk.java.net/jeps/200
http://openjdk.java.net/jeps/220
http://openjdk.java.net/jeps/220
http://openjdk.java.net/jeps/260
http://openjdk.java.net/jeps/260
http://openjdk.java.net/jeps/260

Feature Description JEP

Small language
enhancements (Project
Coin):

• More Concise try-
with-resources
Statements

• @SafeVarargs
Annotation Allowed
on Private Instance
Methods

• Diamond Syntax
and Anonymous
Inner Classes

• Underscore
Character Not Legal
Name

• Support for Private
Interface Methods

Introduced in Java SE 7 as Project Coin. It has
been enhanced with a few amendments.

JEP 213: Milling Project
Coin

JSR 334: Small
Enhancements to the
Java Programming
Language

More Concise try-with-resources Statements
If you already have a resource as a final or effectively final variable, you can use that
variable in a try-with-resources statement without declaring a new variable. An "effectively
final" variable is one whose value is never changed after it is initialized.

For example, you declared these two resources:

 // A final resource
 final Resource resource1 = new Resource("resource1");
 // An effectively final resource
 Resource resource2 = new Resource("resource2");

In Java SE 7 or 8, you would declare new variables, like this:

 try (Resource r1 = resource1;
 Resource r2 = resource2) {
 ...
 }

In Java SE 9, you don’t need to declare r1 and r2:

// New and improved try-with-resources statement in Java SE 9
 try (resource1;
 resource2) {
 ...
 }

There is a more complete description of the try-with-resources statement in The Java Tutorials
(Java SE 8 and earlier).

Chapter 2
Java Language Changes for Java SE 9

2-2

http://openjdk.java.net/projects/coin/
http://openjdk.java.net/projects/coin/
https://openjdk.java.net/jeps/213
https://openjdk.java.net/jeps/213
https://jcp.org/en/jsr/detail?id=334
https://jcp.org/en/jsr/detail?id=334
https://jcp.org/en/jsr/detail?id=334
https://jcp.org/en/jsr/detail?id=334
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

@SafeVarargs Annotation Allowed on Private Instance Methods
The @SafeVarargs annotation is allowed on private instance methods. It can be applied only to
methods that cannot be overridden. These include static methods, final instance methods, and,
new in Java SE 9, private instance methods.

Diamond Syntax and Anonymous Inner Classes
You can use diamond syntax in conjunction with anonymous inner classes. Types that can be
written in a Java program, such as int or String, are called denotable types. The compiler-
internal types that cannot be written in a Java program are called non-denotable types.

Non-denotable types can occur as the result of the inference used by the diamond operator.
Because the inferred type using diamond with an anonymous class constructor could be
outside of the set of types supported by the signature attribute in class files, using the diamond
with anonymous classes was not allowed in Java SE 7.

Underscore Character Not Legal Name
If you use the underscore character ("_") as an identifier, your source code can no longer be
compiled.

Support for Private Interface Methods
Private interface methods are supported. This support allows nonabstract methods of an
interface to share code between them.

Chapter 2
Java Language Changes for Java SE 9

2-3

3
Local Variable Type Inference

In JDK 10 and later, you can declare local variables with non-null initializers with the var
identifier, which can help you write code that’s easier to read.

Consider the following example, which seems redundant and is hard to read:

URL url = new URL("http://www.oracle.com/");
URLConnection conn = url.openConnection();
Reader reader = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));

You can rewrite this example by declaring the local variables with the var identifier. The type of
the variables are inferred from the context:

var url = new URL("http://www.oracle.com/");
var conn = url.openConnection();
var reader = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));

var is a reserved type name, not a keyword, which means that existing code that uses var as a
variable, method, or package name is not affected. However, code that uses var as a class or
interface name is affected and the class or interface needs to be renamed.

var can be used for the following types of variables:

• Local variable declarations with initializers:

var list = new ArrayList<String>(); // infers ArrayList<String>
var stream = list.stream(); // infers Stream<String>
var path = Paths.get(fileName); // infers Path
var bytes = Files.readAllBytes(path); // infers bytes[]

• Enhanced for-loop indexes:

List<String> myList = Arrays.asList("a", "b", "c");
for (var element : myList) {...} // infers String

• Index variables declared in traditional for loops:

for (var counter = 0; counter < 10; counter++) {...} // infers int

• try-with-resources variable:

try (var input =
 new FileInputStream("validation.txt")) {...} // infers
FileInputStream

3-1

• Formal parameter declarations of implicitly typed lambda expressions: A lambda
expression whose formal parameters have inferred types is implicitly typed:

BiFunction<Integer, Integer, Integer> = (a, b) -> a + b;

In JDK 11 and later, you can declare each formal parameter of an implicitly typed lambda
expression with the var identifier:

(var a, var b) -> a + b;

As a result, the syntax of a formal parameter declaration in an implicitly typed lambda
expression is consistent with the syntax of a local variable declaration; applying the var
identifier to each formal parameter in an implicitly typed lambda expression has the same
effect as not using var at all.

You cannot mix inferred formal parameters and var-declared formal parameters in
implicitly typed lambda expressions nor can you mix var-declared formal parameters and
manifest types in explicitly typed lambda expressions. The following examples are not
permitted:

(var x, y) -> x.process(y) // Cannot mix var and inferred formal
parameters
 // in implicitly typed lambda expressions
(var x, int y) -> x.process(y) // Cannot mix var and manifest types
// in explicitly typed lambda expressions

Local Variable Type Inference Style Guidelines

Local variable declarations can make code more readable by eliminating redundant
information. However, it can also make code less readable by omitting useful information.
Consequently, use this feature with judgment; no strict rule exists about when it should and
shouldn't be used.

Local variable declarations don't exist in isolation; the surrounding code can affect or even
overwhelm the effects of var declarations. Local Variable Type Inference: Style Guidelines
examines the impact that surrounding code has on var declarations, explains tradeoffs
between explicit and implicit type declarations, and provides guidelines for the effective use of
var declarations.

Chapter 3

3-2

https://openjdk.org/projects/amber/guides/lvti-style-guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Java Language Changes Summary
	2 Java Language Changes
	Java Language Changes for Java SE 11
	Java Language Changes for Java SE 10
	Java Language Changes for Java SE 9
	More Concise try-with-resources Statements
	@SafeVarargs Annotation Allowed on Private Instance Methods
	Diamond Syntax and Anonymous Inner Classes
	Underscore Character Not Legal Name
	Support for Private Interface Methods

	3 Local Variable Type Inference

