Java Platform, Standard Edition
Monitoring and Management Guide

Release 11
E95200-04
October 2025

ORACLE"

Java Platform, Standard Edition Monitoring and Management Guide, Release 11
E95200-04
Copyright © 2006, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Related Documents [
Conventions i

1 Overview of Java SE Monitoring and Management

Key Monitoring and Management Features
Java Virtual Machine Instrumentation
Monitoring and Management API
Monitoring and Management Tools
Java Management Extensions Technology

What Are MBeans?

MBean Server

Creating and Registering MBeans

Instrumenting Applications
Platform MXBeans

A BB W W WDNDNDNDPREP PP

Platform MBean Server

2 Monitoring and Management Using JMX Technology

Setting System Properties
Enabling the Ready-to-Use Management
Local Monitoring and Management
Local Monitoring and Management Using JConsole
Remote Monitoring and Management
Using Password Authentication
Disabling Password Authentication
Using SSL
Enabling RMI Registry Authentication
Enabling SSL Client Authentication
Disabling SSL
Disabling Security

0 N NN OO WODNDN PR

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page i of iii

Remote Monitoring with JConsole 8
Remote Monitoring with JConsole with SSL Enabled 8

Using Password and Access Files 9
Password Files 9

Access Files 9
Remote Monitoring with JConsole with SSL Disabled 10
Ready-to-Use Monitoring and Management Properties 10
Configuration Errors 12
Connecting to the JIMX Agent Programmatically 13
Setting Up Monitoring and Management Programmatically 13
Mimicking Ready-to-Use Management Using the JMX Remote API 14
Example of Mimicking Ready-to-Use Management 14
Monitoring Applications Through a Firewall 17
Using an Agent Class to Instrument an Application 17
Creating an Agent Class to Instrument an Application 18

3 Using JConsole

Starting JConsole 1
Command Syntax 1
Setting Up Local Monitoring 1

Setting Up Remote Monitoring 2

Setting Up Secure Remote Monitoring 2
Connecting to a JIMX Agent 2
Connecting JConsole to a Local Process 3
Connecting JConsole to a Remote Process 4
Connecting Using a JMX Service URL 5
Presenting the JConsole Tabs 6
Viewing Overview Information 6

Saving Chart Data 7
Monitoring Memory Consumption 7
Monitoring Class Loading 12
Viewing VM Information 13
Monitoring and Managing MBeans 15
Creating Custom Tabs 24

4 Using the Platform MBean Server and Platform MXBeans

Using the Platform MBean Server 1
Accessing Platform MXBeans 1
Accessing Platform MXBeans Using the ManagementFactory Class 1
Accessing Platform MXBeans Using an MXBean Proxy 2

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page ii of iii

5

Accessing Platform MXBeans Using the MBeanServerConnection Class
Using Oracle JDK's Platform Extension
Accessing MXBean Attributes Directly
Accessing MXBean Attributes Using MBeanServerConnection
Monitoring Thread Contention and CPU Time
Managing the Operating System
Logging Management
Detecting Low Memory
Memory Thresholds
Usage Threshold
Collection Usage Threshold
Memory MXBean
Memory Pool MXBean
Polling
Threshold Notifications

Java Discovery Protocol (JDP)

0 N OO 0o o O o O A B B W W WD

Monitoring and Management Guide

E95200-04

Copyright © 2006, 2025, Oracle and/or its affiliates.

October 16, 2025
Page iii of iii

ORACLE’

Preface

Audience

The Java Platform, Standard Edition 11 (Java SE 11) provide utilities that allow you to monitor
and manage the performance of a Java Virtual Machine (Java VM), and the Java applications
that are running in it. The Java SE Monitoring and Management Guide describes those
monitoring and management utilities.

This guide is intended for experienced users of the Java language, such as systems
administrators and software developers, for whom the performance of the Java platform and
their applications is of vital importance.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

See JDK 11 Documentation for other JDK 11 guides.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Pageiofi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase11&id=homepage

Overview of Java SE Monitoring and
Management

This topic introduces the features and utilities that provide monitoring and management
services to the Java Platform, Standard Edition (Java SE platform).

Key Monitoring and Management Features

The Java SE platform includes significant monitoring and management features. These
features fall into four broad categories:

« Java Virtual Machine Instrumentation

e Monitoring and Management API

e Monitoring and Management Tools

+ Java Management Extensions Technology

Java Virtual Machine Instrumentation

The Java Virtual Machine (Java VM) is instrumented for monitoring and management, enabling
built-in (or ready-to-use) management capabilities that can be accessed both remotely and
locally.

See Monitoring and Management Using JMX Technology.

The Java VM includes a platform MBean server and platform MBeans for use by management
applications that conform to the Java Management Extensions (JMX) specification. These
platforms are implementations of the monitoring and management API. The platform MXBeans
and MBean servers are introduced in the Platform MXBeans and Platform MBean Server
topics.

Monitoring and Management API

Java SE includes the following APls for monitoring and management:

* java.l ang. managenent : Enables monitoring and managing the Java virtual machine
and the underlying operating system. The API enables applications to monitor themselves,
and enables JMX-compliant tools to monitor and manage a virtual machine locally and
remotely. This API provides access to the following types of information:

— Number of classes loaded and threads running

— Java VM uptime, system properties, and VM input arguments

— Thread state, thread contention statistics, and stack trace of live threads
— Memory consumption

— Garbage collection statistics

— Low memory detection

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 1 of 5

https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/package-summary.html

ORACLE Chapter 1
Key Monitoring and Management Features

— On-demand deadlock detection
— Operating system information
* Attach: Allows a management agent to be dynamically loaded onto a virtual machine.

e JConsole: Provides a programmatic interface to access JConsole such as adding a
JConsole plug-in.

Monitoring and Management Tools

The Java SE platform provides a graphical monitoring tool called JConsole. JConsole
implements the JMX API, and enables you to monitor the performance of a Java VM and any
instrumented applications. It provides information to help you optimize the performance.

Some of the enhancements in JConsole are as follows:

e JConsole plug-in support, which allows you to build your own plug-ins to run with
JConsole. For example, you can add a custom tab for accessing the MBeans of the
application.

* Dynamic attach capability allowing you to connect JConsole to any application that
supports the Attach API.

< Enhanced user interface, which makes data more easily accessible.

* New Overview and VM Summary tabs for a better presentation of general information
about your Java VM.

* HotSpot Diagnostic MBean, which provides an API to request heap dump at runtime and
also change the setting of certain VM options.

* Improved presentation of MBeans to make it easier to access the MBeans operations and
attributes.

JConsole is presented in detail in the Using JConsole topic.

Other command-line tools are also supplied with the Java SE platform.

Java Management Extensions Technology

The Java SE platform, release 11 includes the Java Management Extensions (JMX)
specification, version 1.4. The JMX API allows you to instrument applications for monitoring
and management. A remote method invocation (RMI) connector allows this instrumentation to
be remotely accessible, for example, using JConsole.

See JMX technology documentation in the Java Platform, Standard Edition Java Management
Extensions Guide.

The following sections provide a brief introduction to the main components of the IMX API.

What Are MBeans?

JMX technology MBeans are managed beans, hamely Java objects that represent resources
to be managed. An MBean has a management interface consisting of the following:

* Named and typed attributes that can be read and written.
* Named and typed operations that can be invoked.

« Typed notifications that can be emitted by the MBean.

Monitoring and Management Guide
E95200-04 October 16, 2025
Copyright © 2006, 2025, Oracle and/or its affiliates. Page 2 of 5

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.attach/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jconsole/module-summary.html

ORACLE

Chapter 1
Key Monitoring and Management Features

For example, an MBean representing an application's configuration can have attributes
representing different configuration parameters, such as a CacheSi ze. Reading the CacheSi ze
attribute will return the current size of the cache. Writing CacheSi ze updates the size of the
cache, potentially changing the behavior of the running application. An operation such as save
stores the current configuration persistently. The MBean can send a notification such as

Confi gurati onChangedNoti fi cati on when the configuration changes.

MBeans can be standard or dynamic. Standard MBeans are Java objects that conform to
design patterns derived from the JavaBeans component model. Dynamic MBeans define their
management interface at runtime. An additional type of MBean, called MXBean, is added to
the Java platform.

» A standard MBean exposes the resource to be managed directly through its attributes and
operations. Attributes are exposed through gett er and setter methods. Operations are
the other methods of the class that are available to managers. All these methods are
defined statically in the MBean interface and are visible to a JMX agent through
introspection. This method is the most straightforward way of making a new resource
manageable.

* Adynamic MBean is an MBean that defines its management interface at runtime. For
example, a configuration MBean determines the names and types of the attributes that it
exposes, by parsing an XML file.

« An MXBean is a type of MBean that provides a simple way to code an MBean that
references only a predefined set of types. In this way, you can ensure that the MBean is
usable by any client. It includes remote clients without any requirement that the client has
access to model-specific classes, which represents the types of your MBeans. The
platform MBeans are all MXBeans.

MBean Server

To be useful, an MBean must be registered in an MBean server. An MBean server is a
repository of MBeans. Each MBean is registered with a uniqgue name within the MBean server.
Usually the only access to the MBeans is through the MBean server. In other words, code does
not access an MBean directly, but rather accesses the MBean by the name through the MBean
server.

The Java SE platform includes a built-in platform MBean server. See Using the Platform
MBean Server and Platform MXBeans.

Creating and Registering MBeans

There are two ways to create an MBean. One is to construct a Java object that will be the
MBean, then use the r egi st er MBean method to register it in the MBean server. The other
method is to create and register the MBean in a single operation using one of the cr eat eMBean
methods.

The r egi st er MBean method is simpler for local use, but cannot be used remotely. The

cr eat eMBean method can be used remotely, but sometimes requires attention to the class
loading issues. An MBean can perform actions when it is registered in or unregistered from an
MBean server if it implements the MBeanRegi st rati on interface.

Instrumenting Applications

General instructions on how to instrument your applications for management by the JIMX APl is
beyond the scope of this document.

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE Chapter 1
Platform MXBeans

Platform MXBeans

A platform MXBean is an MBean for monitoring and managing the Java VM, and other
components of the Java Runtime Environment (JRE). Each MXBean encapsulates a part of
VM functionality such as the class loading system, just-in-time (JIT) compilation system,
garbage collector, and so on.

Table 1-1 lists all the platform MXBeans and the aspect of the VM that they manage. Each
platform MXBean has a unique j avax. nmanagenent . (bj ect Name for registration in the platform
MBean server. A Java VM may have zero, one, or more than one instance of each MXBean,
depending on its function, as shown in the table.

Table 1-1 Platform MXBeans

Interface Part of VM Managed Object Name Instances per VM
C assLoadi ngMXBean Class loading system java.lang: type= One
Cl assLoadi ng
Conpi | ati onMXBean Compilation system java.lang: type= Zero or one
Conpi | ation
CGar bageCol | ect or MXB Garbage collector java.lang: type= One or more
ean Gar bageCol | ect or,
name=col | ect or Nane
Loggi ngMXBean Logging system java.util.logging:t One
ype =Loggi ng
Menmor yManager MXBean Memory pool j ava.lang: One or more
(subinterface of t ypeMenor yManager,
Gar bageCol | ect or MXB nanme=nanager Nane
ean)
Menor yPool MXBean Memory java.lang: type= One or more
Menor yPool ,
name=pool Nane
Menor yMXBean Memory system java.lang: type= One
Menory
Oper at i ngSyst emXBe Underlying operating java.lang: type= One
an system Oper ati ngSyst em
Runt i meMXBean Runtime system java.lang: type= One
Runti me
Thr eadMXBean Thread system java.lang: type= One
Thr eadi ng

The details on platform MXBeans (apart from Loggi ngMXBean) are described in the
j ava. | ang. managenent API reference. The Loggi ngMXBean interface is described in the
java. util .|l oggi ng API reference.

Platform MBean Server

The platform MBean server can be shared by different managed components running within
the same Java VM. You can access the platform MBean server with the method
Managenent Fact ory. get Pl at f or mvBeanSer ver () . The first call to this method creates the

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 4 of 5

https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/package-summary.html

ORACLE Chapter 1
Platform MBean Server

platform MBean server and registers the platform MXBeans using their unique object names.
Subsequently, this method returns the initially created platform MBeanSer ver instance.

MXBeans that are created and destroyed dynamically (for example, memory pools and
managers) will automatically be registered and unregistered in the platform MBean server. If
the system property j avax. managenent . bui | der.initial is set, then the platform MBean
server will be created by the specified MBeanSer ver Bui | der parameter.

You can use the platform MBean server to register other MBeans besides the platform
MXBeans. This enables all MBeans to be published through the same MBean server, and
makes network publishing and discovery easier.

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 5 of 5

Monitoring and Management Using JMX
Technology

The Java virtual machine (Java VM) has built-in instrumentation that enables you to monitor
and manage it using the Java Management Extensions (JMX) technology. These built-in
management utilities are often referred to as out-of-the-box management tools for the Java
VM. You can also monitor any appropriately instrumented applications using the JMX API.

Setting System Properties

To enable and configure the ready-to-use JMX agent so that it can monitor and manage the
Java VM, you must set certain system properties when you start the Java VM. You set a
system property on the command line as follows:

java -Dproperty=val ue ...

You can set any number of system properties in this way. If you do not specify a value for a
management property, then the property is set with its default value. See Table 2-1 for the full
set of ready-to-use management properties. You can also set system properties in a
configuration file, as described in the Ready-to-Use Monitoring and Management Properties
section.

@® Note

To run the Java VM from the command line, you must add JRE_HOVE/ bi n to your path,
where JRE_HOME is the directory containing the Java Runtime Environment (JRE)
implementation. Alternatively, you can enter the full path when you enter the
command.

The syntax and the full set of command-line options supported by the Java HotSpot VMs are
described in the Java application launcher section of Java Platform, Standard Edition Tools
Reference.

Enabling the Ready-to-Use Management

To monitor a Java platform using the JMX API, you must do the following:

1. Enable the JMX agent (another name for the platform MBean server) when you start the
Java VM. You can enable the JMX agent for:

e Local monitoring, for a client management application running on the local system.
e Remote monitoring, for a client management application running on a remote system.

2. Monitor the Java VM with a tool that complies with the JMX specification, such as
JConsole. See Using JConsole.

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 1 of 18

ORACLE Chapter 2
Enabling the Ready-to-Use Management

Local Monitoring and Management

Earlier while starting the Java VM or Java application, you set the following property to allow
the JMX client access to a local Java VM:

com sun. managenent . j nxr enot e

Setting this property registered the Java VM platform's MBeans and published the remote
method invocation (RMI) connector through a private interface. This setting allows JMX client
applications to monitor a local Java platform, that is, a Java VM running on the same machine
as the JMX client.

In the current Java SE platform, it is no longer necessary to set this system property. Any
application that is started on the current Java SE platform supports the Attach API, and will
automatically be made available for local monitoring and management when needed.

For example, previously, to enable the IMX agent for the Java SE sample application Not epad,
you would run the following commands:

% cd JDK_HOVE/ deno/ j f ¢/ Not epad
% j ava - Dcom sun. managemnent . j nxremte -jar Notepad.jar

In the preceding command, JDK_HOME is the directory in which the Java Development Kit (JDK)
is installed. In the current Java SE platform, you have to run the following command to start
Not epad.

% java -jar Notepad.jar

After Not epad has been started, a JMX client using the Attach API can then enable the out-of-
the-box management agent to monitor and manage the Not epad application.

@® Note

On Windows platforms, for security reasons, local monitoring and management is
supported only if your default temporary directory is on a file system that allows the
setting of permissions on files and directories (for example, on a New Technology File
System (NTFS) file system). It is not supported on a File Allocation Table (FAT) file
system, which provides insufficient access controls.

Local Monitoring and Management Using JConsole

Local monitoring with JConsole is useful for development and creating prototypes. Using
JConsole locally is not recommended for production environments, because JConsole itself
consumes significant system resources. Rather, you should use JConsole on a remote system
to isolate it from the platform being monitored.

However, if you do wish to perform local monitoring using JConsole, then you start the tool by
entering j consol e in a command shell. When you start j consol e without any arguments, it will
automatically detect all local Java applications, and display a dialog box that enables you to
select the application that you want to monitor. Both JConsole and the application must by

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 2 of 18

ORACLE

Chapter 2
Enabling the Ready-to-Use Management

executed by the same user, because the monitoring and management system uses the
operating system's file permissions.

® Note

To run JConsole from the command line, you must add JDK_HOVE/ bi n to your path.
Alternatively, you can enter the full path when you enter the command. See Using
JConsole.

Remote Monitoring and Management

By default, the remote stubs for locally created remote objects that are sent to client contains
the IP address of the local host in dot t ed- quad format. For remote stubs to be associated with
a specific interface address, the j ava. rm . server. host nane system property must be set to IP
address of that interface.

To enable monitoring and management from remote systems, you must set the following
system property when you start the Java VM:

com sun. managenent . j mxr enot e. por t =por t Num

Where, por t Numis the port number to enable JIMX RMI connections. Ensure that you specify
an unused port number. In addition to publishing an RMI connector for local access, setting this
property publishes an additional RMI connector in a private read-only registry at the specified
port using the name, j nxr i . The port number to which the RMI connector will be bound using
the system property:

com sun. managenent . j mxrenote. rm . port

Ensure to use an unused port number.

@® Note

You must set the prior system property in addition to any properties that you might set
for security.

Remote monitoring and management requires security to ensure that unauthorized persons
cannot control or monitor your application. Password authentication over the Secure Sockets
Layer (SSL) and Transport Layer Security (TLS) is enabled by default. You can disable
password authentication and SSL separately.

@® Note

For production systems, use both SSL client certificates to authenticate the client host
and password authentication for user management. See Using SSL and Using LDAP
Authentication.

The Java platform supports pluggable | ogi n_nodul es for authentication. You can plug in any
login module depending on the authentication infrastructure in your organization. Using LDAP

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 3 of 18

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/package-summary.html

ORACLE

Chapter 2
Enabling the Ready-to-Use Management

Authentication describes how to plug in the
com sun. security. aut h. nodul e. LdaplLogi nibdul e module for Lightweight Directory
Access Protocol (LDAP)-based authentication.

After you have enabled the JMX agent for remote use, you can monitor your application using
JConsole, as described in Remote Monitoring with JConsole. How to connect to the
management agent programmatically is described in Connecting to the JMX Agent
Programmatically.

Using Password Authentication

This section details different password authentication methods that can be implemented based
on the requirement.

Using LDAP Authentication

The JMXAut hent i cat or implementation in the JMX agent is based on Java Authentication
and Authorization Service (JAAS) technology. Authentication is performed by passing the user
credentials to a JAAS | avax. security. aut h. spi . Logi nMbdul e object. The

com sun. security. auth. nodul e. LdapLogi nvbdul e class enables authentication using
LDAP. You can replace the default Logi nMbdul e class with the LdapLogi nvbdul e class.

Create a JAAS configuration file that works in the required business organization. Here is an
example of a configuration file (I dap. config) :

Exanpl eConpanyConfi g {
com sun. security. auth. modul e. LdapLogi nModul e REQUI RED
user Provi der ="| dap: / / exanpl e- ds/ ou=peopl e, dc=exanpl econpany, dc=cont
user Fi |l ter="(& ui d={ USERNAME}) (obj ect C ass=i net Or gPer son)) "
aut hzl denti ty=noni t or Rol e;

b

Here is an overview of the options mentioned in the configuration file:

e Thecomsun. security.auth. modul e. LdapLogi nMbdul e REQUI RED option means that
authentication using LdapLogi nModul e is required for the overall authentication to be
successful.

e The userProvi der option identifies the LDAP server and the position in the directory tree
where user entries are located.

* The userFilter option specifies the search filter to use to locate a user entry in the LDAP
directory. The token { USERNAME} is replaced with the user name before the filter is used to
search the directory.

e The aut hzl dentity option specifies the access role for authenticated users. In the
example, authenticated users will have the noni t or Rol e option. See Access Files.

The details of the configuration options mentioned in the code example is explained in the
com sun. security. aut h. nodul e. LdapLogi nibdul e class.

Start your application with the following properties set on the command line:

e com sun. managenent . j mxrenot e. | ogi n. confi g: This property configures the JMX agent
to use the specified JAAS configuration entry.

e java.security.auth.login.config: This property specifies the path to the JAAS
configuration file.

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 4 of 18

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/LdapLoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/remote/JMXAuthenticator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/security/auth/spi/LoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/LdapLoginModule.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.security.auth/com/sun/security/auth/module/LdapLoginModule.html

ORACLE

Chapter 2
Enabling the Ready-to-Use Management

Here is a sample command line:

java -Dcom sun. managenent . j nxr enot e. port =5000
- Dcom sun. nanagenent . j nxrenot e. | ogi n. conf i g=Exanpl eConpanyConfi g
-Djava. security.auth.login.config=ldap.config

-jar MyApplication.jar

Using File-Based Password Authentication

The file-based password authentication mechanism supported by the JMX agent stores the
password in clear-text and is intended only for development use. For production use, it is
recommended that you use SSL client certificates for authentication or plug in a secure login
configuration.

@ Note

Caution : A potential security issue has been identified with password authentication
for remote connectors when the client obtains the remote connector from an insecure
RMI registry (the default). If an attacker starts a bogus RMI registry on the target
server before the legitimate registry is started, then the attacker can steal clients'
passwords. This scenario includes the case where you start a Java VM with remote
management enabled, using the system property

com sun. managenent . j mxr enot e. port =port Num even when SSL is enabled. Although
such attacks are likely to be noticed, it is nevertheless a vulnerability.

By default, when you enable the JMX agent for remote monitoring, it uses password
authentication. However, the way you set it up depends on whether you are in a single-user
environment or a multiple-user environment.

As passwords are stored in clear-text in the password file, it is not advisable to use your
regular user name and password for monitoring. Instead, use the user names specified in the
password file such as noni t or Rol e and cont r ol Rol e. See Using Password and Access Files.

To Set Up a Single-User Environment

You set up the password file in the JRE_HOVE/ | i b/ managenent directory as follows:

1. Copy the password template file, j mxr enot e. passwor d. t enpl at e, to j nxr enot e. passwor d.
2. Set file permissions so that only the owner can read and write the password file.

3. Add passwords for roles such as noni t or Rol e and cont r ol Rol e.

To Set Up a Multiple-User Environment

You set up the password file in the JRE_HOVE/ | i b/ nanagenent directory as follows:

1. Copy the password template file, j mxr enot e. passwor d. t enpl at e, to your home directory
and rename it to j mxr enot e. passwor d.

2. Set file permissions so that only you can read and write the password file.
3. Add passwords for the roles such as noni t or Rol e and contr ol Rol e.

4. Set the following system property when you start the Java VM.

com sun. managenent . j mxr enot e. passwor d. fi | e=pwFi | ePat h

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 5 of 18

ORACLE Chapter 2
Enabling the Ready-to-Use Management

In the preceding property, pwri | ePat h is the path to the password file.

Disabling Password Authentication

Password authentication for remote monitoring is enabled by default. To disable it, set the
following system property when you start the Java VM:

com sun. managenent . j nxrenot e. aut henti cat e=f al se

® Note

Caution : This configuration is insecure. Any remote user who knows (or guesses)
your JMX port number and host name will be able to monitor and control your Java
application and platform. While it may be acceptable for development, it is not
recommended for production systems.

When you disable password authentication, you can also disable SSL, as described in
Disabling Security. You can also disable passwords, but use SSL client authentication, as
described in Enabling SSL Client Authentication.

Using SSL

SSL is enabled by default when you enable remote monitoring and management. To use SSL,
you need to set up a digital certificate on the system where the JMX agent (the MBean server)
is running and then configure SSL properly. You use the command-line utility keyt ool to work
with certificates.

The general procedure to set up SSL is as follows:

1. If you do not have a key pair and certificate set up on the server, then perform the following
tasks:

e Generate a key pair with the keyt ool - genkey command.

* Request a signed certificate from a certificate authority (CA) with the keyt ool -
certreq command.

* Import the certificate into your keystore with the keyt ool -inmport command. See the
Importing Certificates in keyt ool documentation.

2. Configure SSL on the server system. Complete explanation of configuring and customizing
SSL is beyond the scope of this document, but you generally need to set the system
properties as described in the following list:

j avax. net.ssl . keyStore Keystore location

j avax. net.ssl. keyStoreType Default keystore type

j avax. net. ssl . keySt or ePasswor d Default keystore password
javax.net.ssl.trustStore Truststore location

javax. net.ssl.trust StoreType Default truststore type

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 6 of 18

ORACLE Chapter 2
Enabling the Ready-to-Use Management

j avax. net.ssl.trust StorePassword Default truststore password

Setting system properties is detailed in the Setting System Properties section.

See:

» keytool - Key and Certificate Management Tool in theJava Platform, Standard Edition
Tools Reference

« Customizing the Default Keystores and Truststores, Store Types, and Store
Passwords in Java Platform, Standard Edition Security Developer's Guide

Enabling RMI Registry Authentication

When setting up connections for monitoring remote applications, you can optionally bind the
RMI connector stub to an RMI registry that is protected by SSL. This allows clients with the
appropriate SSL certificates to get the connector stub that is registered in the RMI registry. To
protect the RMI registry using SSL, you must set the following system property:

com sun. managenent. j mxrenot e. regi stry. ssl =true

When this property is set to t r ue, an RMI registry protected by SSL will be created and
configured by the ready-to-use management agent when the Java VM is started. The default
value of this property is f al se. However, it is recommended that you set this property to t r ue.
If this property is set to t r ue, then to have full security, you must also enable SSL client
authentication.

Enabling SSL Client Authentication

To enable SSL client authentication, set the following system property when you start the Java
VM:

com sun. managenent . j nkrenot e. ssl . need. cl i ent. aut h=true

SSL must be enabled (default is set to f al se) to use client SSL authentication. It is
recommended that you set this property to t r ue. This configuration requires that the client
system have a valid digital certificate. You must install a certificate and configure SSL on the
client system, as described in Using SSL. As stated in the previous section, if RMI registry SSL
protection is enabled, then client SSL authentication must be set to t r ue.

Disabling SSL

To disable SSL when monitoring remotely, you must set the following system property when
you start the Java VM:

com sun. managenent . j mxr enot e. ssl =f al se

Password authentication will still be required unless you disable it, as specified in Disabling
Password Authentication.

Monitoring and Management Guide
E95200-04 October 16, 2025
Copyright © 2006, 2025, Oracle and/or its affiliates. Page 7 of 18

ORACLE Chapter 2
Enabling the Ready-to-Use Management

Disabling Security

To disable both password authentication and SSL (namely to disable all security), you should
set the following system properties when you start the Java VM:

com sun. managenent . j mxrenot e. aut henti cat e=f al se
com sun. managenent . j mxr enot e. ssl =f al se

@® Note

Caution : This configuration is insecure; any remote user who knows (or guesses)
your port number and host name will be able to monitor and control your Java
applications and platform. Furthermore, possible harm is not limited to the operations
that you define in your MBeans. A remote client could create a

j avax. managenent . | oadi ng. M.et MBean and use it to create new MBeans from
arbitrary URLSs, at least if there is no security manager. In other words, a remote client
can make your Java application execute arbitrary code.

Consequently, while disabling security might be acceptable for development, it is strongly
recommended that you do not disable security for production systems.

Remote Monitoring with JConsole

You can remotely monitor an application using JConsole, with or without security enabled.

Remote Monitoring with JConsole with SSL Enabled

To monitor a remote application with SSL enabled, you need to set up the trust st or e file on
the system where JConsole is running and configure SSL properly. For example, you can
create a keyst or e file and start your application (called Server in this example) with the
following commands:

% java - D avax. net.ssl.keySt ore=keystore \
- Dj avax. net. ssl . keySt or ePasswor d=passwor d Server

See Customizing the Default Keystores and Truststores, Store Types, and Store Passwords in
the Java Platform, Standard Edition Security Developer's Guide.

If you create the keyst or e file and start the Server applicaton, then start JConsole as follows:

% jconsol e -J-Djavax. net.ssl.trustStore=truststore \
-J-Dj avax. net.ssl . trust St orePasswor d=t rust word

See Using JConsole.

The configuration authenticates the server only. If SSL client authentication is set up, then you
need to provide a similar keyst or e file for JConsole's keys and an appropriate t r ust st or e file
for the application.

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 8 of 18

ORACLE

Chapter 2
Enabling the Ready-to-Use Management

Using Password and Access Files

The password and access files control security for remote monitoring and management. These
files are located by default in JRE_HOME/ | i b/ managenent and are in the standard Java
properties file format. For more information on the format, see the API reference for the

java. util.Properties package.

Password Files

Access Files

The password file defines the different roles and their passwords. The access control file
(j mxrenot e. access by default) defines the permitted access for each role. To be functional, a
role must have an entry in both the password and the access files.

The JRE implementation contains a password file template named

j mxrenot e. passwor d. t enpl at e. Copy this file to j re_home/ | i b/ managenent /

j mxr enot e. passwor d in to your home directory and add the passwords for the roles defined in
the access file.

You must ensure that only the owner has read and write permissions on this file, because it
contains the passwords in clear-text. For security reasons, the system checks that the file is
readable only by the owner and exits with an error if it is not. Thus in a multiple-user
environment, you should store the password file in a private location such as your home
directory.

Property names are roles, and the associated value is the role's password. Example 2—1
shows sample entries in the password file.

Example 2-1 An Example Password File
specify actual password instead of the text password

moni t or Rol e password
control Rol e password

On Solaris, Linux, or macOS operating systems, you can set the file permissions for the
password file by running the following command:

chmod 600 j nxrenote. password

By default, the access file is named j nxr enot e. access. Property names are identities from the
same space as the password file. The associated value must either be readonl y orreadwite.

The access file defines roles and their access levels. By default, the access file defines the
following primary roles:

e noni tor Rol e, which grants read-only access for monitoring.
e control Rol e, which grants read/write access for monitoring and management.

An access control entry consists of a role name and an associated access level. The role
name cannot contain spaces or tabs and must correspond to an entry in the password file. The
access level can be either one of the following:

e readonl y: Grants access to read the MBean's attributes. For monitoring, this means that a
remote client in this role can read measurements but cannot perform any action that

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 9 of 18

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Properties.html

ORACLE Chapter 2
Remote Monitoring with JConsole with SSL Disabled

changes the environment of the running program. The remote client can also listen to
MBean notifications.

* readwite: Grants access to read and write the MBean's attributes, to call operations on
them, and to create or remove them. This access should be granted only to trusted clients,
because they can potentially interfere with the operation of an application.

A role should have only one entry in the access file. If a role has no entry, then it has no
access. If a role has multiple entries, then the last entry takes precedence. Typical predefined
roles in the access file resemble what is shown in the Example 2-2.

Example 2-2 An Example Access File
The "nonitorRole" role has readonly access.
The "control Rol e" role has readwite access.

moni t or Rol e readonly
control Role readwite

Remote Monitoring with JConsole with SSL Disabled

To monitor a remote application with SSL disabled, start the JConsole with the following
command:

% j consol e host Nane: port Num

You can also omit the host name and port number, and enter them in the dialog box that
JConsole provides.

Ready-to-Use Monitoring and Management Properties

You can set ready-to-use monitoring and management properties in a configuration file or on
the command line. Properties specified on the command line override properties in a
configuration file. The default location for the configuration file is j re_hone/ | i b/ managenent /
managenent . properties. The Java VM reads this file if either of the command-line properties
is set:

e cOm sun. managenent . j nxr enot e
or
e com sun. managenent . j nxrenot e. port
You can specify a different location for the configuration file with the following command-line

option:

com sun. managenent . confi g.fil e=Confi gFilePath

Confi gFi | ePat h is the path to the configuration file.

Table 2-1 describes the ready-to-use monitoring and management properties.

Monitoring and Management Guide
E95200-04 October 16, 2025
Copyright © 2006, 2025, Oracle and/or its affiliates. Page 10 of 18

ORACLE

Chapter 2

Ready-to-Use Monitoring and Management Properties

Table 2-1 Ready-to-Use Monitoring and Management Properties

Property

Description

Values

com sun. managenent . j mxr eno
te

com sun. nanagenent . j mxr eno
te. port

com sun. managenent . j NXr eno
te.registry.ssl

com sun. managenent . j mxr eno
te.ssl

com sun. managenent . j mxr eno
te.ssl.enabl ed. prot ocol s

com sun. management . j NXr eno
te.ssl.enabl ed. ci pher. suit
es

com sun. managenent . j NXr eno
te.ssl.need.client.auth

com sun. managenent . j NXr eno
te.authenticate

Monitoring and Management Guide
E95200-04
Copyright © 2006, 2025, Oracle and/or its affiliates.

Enables the JMX remote agent
and local monitoring using a IMX
connector. This agent is
published on a private interface
that is used by JConsole and any
other local JMX clients, which use
the Attach API. JConsole can use
this connector if it is started by
the same user who started the
agent. No password or access
files are checked for requests
coming from this connector.

Enables the JMX remote agent
and creates a remote JMX
connector to listen through the
specified port. By default, the
SSL, password, and access file
properties are used for this
connector. It also enables local
monitoring as described for the
com sun. managenent . j mxreno
t e property.

Binds the RMI connector stub to
an RMI registry that is protected
by SSL.

Enables secure monitoring using
SSL. If the value is f al se, then
SSL is not used.

Shows a comma-delimited list of
SSL/TLS protocol versions to
enable. Used in conjunction with
com sun. managenent . j nxr emo
te.ssl.

Shows a comma-delimited list of
SSL/TLS cipher suites to enable.
Used in conjunction with

com sun. nanagenent J Xr eno
te.ssl.

Performs client authentication if
this property is t r ue and the
property

com sun. managenent . j mxr enmo
te.ssl isalsotrue.

It is recommended that you set
this property to t r ue.

Prevents JMX from using
password or access files if this
property is f al se. All users are
provided complete access.

true/fal se. Defaultis true.

Port number. No default.

true/fal se. Defaultis f al se.

true/fal se. Defaultistrue.

Default SSL/TLS protocol version.

Default SSL/TLS cipher suites.

true/fal se. Defaultis f al se.

true/fal se. Defaultis t rue.

October 16, 2025
Page 11 of 18

ORACLE

Chapter 2
Ready-to-Use Monitoring and Management Properties

Table 2-1 (Cont.) Ready-to-Use Monitoring and Management Properties

Property

Description Values

com sun. managenent . j NXr eno
te.password.file

com sun. managenent . j nxr eno
te.access.file

com sun. management . j NXr eno
te.login.config

JRE_HOWE/ | i b/ managenent/
j nxr enot e. passwor d

Specifies the location for the
password file. If

com sun. managenent . j mxr enmo
te.authenticateisfal se,
then this property, and the
password and access files are
ignored. Otherwise, the password
file must exist and be in the valid
format. If the password file is
empty or nonexistent, then no
access is allowed.

Specifies the location for the
access file. If

com sun. managenent . j nxr emo
t e. aut henti cat e is false, then
this property, and the password
and access files, are ignored.
Otherwise, the access file must
exist and be in the valid format. If
the access file is empty or
nonexistent, then no access is
allowed.

JRE_HOWE/ | i b/ managenent /
j MXrenot e. access

Specifies the name of a Java
Authentication and Authorization
Service (JAAS) login
configuration entry to use when
the JMX agent authenticates
users. When using this property
to override the default login
configuration, the named
configuration entry must be in a
file that is loaded by JAAS. In
addition, the login modules
specified in the configuration
should use the name and
password callbacks to acquire the
user's credentials. For more
information, see the API
documentation for
javax.security.auth.callba
ck. NameCal | back and
javax.security.auth.callba
ck. Passwor dCal | back.

Default login configuration is a
file-based password
authentication.

Configuration Errors

If any errors occur during the start up of the MBean server, the RMI registry, or the connector,
then the Java VM will throw an exception and exit. Configuration errors include the following:

e Failure to bind to the port number

* Invalid password file

* Invalid access file

Monitoring and Management Guide
E95200-04
Copyright © 2006, 2025, Oracle and/or its affiliates.

October 16, 2025
Page 12 of 18

ORACLE Chapter 2
Connecting to the JMX Agent Programmatically

« Password file is readable by users other than the owner

If your application runs a security manager, then additional permissions are required in the
security permissions file.

Connecting to the JMX Agent Programmatically

After you have enabled the JMX agent, a client can use the following URL to access the
monitoring service:

service:jm:rm:///jndi/rm://host Name: port Nuni j mxrmi

A client can create a connector for the agent by instantiating a
j avax. managenent . r enot e. JMXSer vi ceURL object using the URL, and then creating a
connection using the JMXConnect or Fact ory. connect method, as shown in the Example 2-3.

Example 2-3 Creating a Connection Using JMXConnectorFactory.connect

JMXServi ceURL u = new JMXSer vi ceURL(
"service:jm:rm:///jndi/rm://" + hostNane + ":" + portNum+ "/jmxrm");
JMXConnector ¢ = JMXConnect or Fact ory. connect (u);

Setting Up Monitoring and Management Programmatically

You can create a JMX client that uses the Attach API to enable ready-to-use monitoring and
management of any applications that are started on the Java SE 10 platform, without having to
configure the applications for monitoring when you start them. The Attach API provides a way
for tools to attach to and start agents in the target application. After an agent is running, JMX
clients (and other tools) are able to obtain the JMX connector address for that agent using a
property list that is maintained by the Java VM on behalf of the agents. The properties in the
list are accessible from tools that use the Attach API. So, if an agent is started in an
application, and if the agent creates a property to represent a piece of configuration
information, then that configuration information is available to tools that attach to the
application.

The JMX agent creates a property with the address of the local IMX connector server. This
allows JMX tools to attach to and get the connector address of an agent, if it is running.

Example 2-4 shows code that could be used in a JMX tool to attach to a target VM, get the
connector address of the JMX agent and connect to it.

Example 2-4 Attaching a JMX Tool To A Connector And Getting the Agent's Address

static final String CONNECTOR_ADDRESS =
"com sun. management . j nxr enot e. | ocal Connect or Addr ess";

/] attach to the target application
Virtual Machine vm = Virtual Machi ne. attach(id);

/] get the connector address
String connectorAddress =
vm get Agent Properties(). get Property(CONNECTOR_ADDRESS) ;

/1 no connector address, so we start the JMX agent
i f (connectorAddress == null) {

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 13 of 18

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.attach/com/sun/tools/attach/package-summary.html

ORACLE

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

vm st art Local Managenent Agent () ;

/1 agent is started, get the connector address
connect or Address =
vm get Agent Properties(). get Property(CONNECTOR_ADDRESS) ;
}
/] establish connection to connector server
JMXServi ceURL url = new JMXServi ceURL(connect or Addr ess)
t

JMXConnect or jmxConnector = JMXConnect or Fact ory. connect (url);

Example 2-4 uses the com sun. t ool s. attach. Vi rtual Machi ne class's attach() method to
attach to a given Java VM so that it can read the properties that the target Java VM maintains
on behalf of any agents running in it. If an agent is already running, then the Vi r t ual Machi ne
class's get Agent Properti es() method is called to obtain the agent's address. The

get Agent Properti es() method returns a string property for the local connector address

com sun. management . j mxr enot e. | ocal Connect or Addr ess, which you can use to connect to
the local JIMX agent.

If no agent is running, then one is loaded by the Vi rt ual Machi ne class from jre_home/ li b/
managenent - agent . j ar, and its connector address is obtained by the get Agent Properti es()
method.

A connection to the agent is then established by calling JMXConnect or Fact ory. connect on a
JMX service URL that has been constructed from this connector address.

@® Note

Previous to JDK 11, the Attach API had issues locating JVMs running in docker
containers. This is now fixed, and j cnd and j ps work as expected. However, | nt will
not list j ava processes running in separate docker containers. There is no known way
to explicitly provide the PID of the j ava process to this tool.

Mimicking Ready-to-Use Management Using the JMX Remote

API

The remote access to the ready-to-use management agent is protected by authentication and
authorization, and by SSL encryption. The configuration is performed by setting system
properties or by defining a managenent . properti es file. In most cases, using the ready-to-use
management agent and configuring it through the nanagenent . properti es file is sufficient to
provide secure management of remote Java VMs. However, in some cases, greater levels of
security are required and in other cases, certain system configurations do not allow the use of
a management . properti es file. Such cases might involve exporting the RMI server's remote
objects over a certain port to allow passage through a firewall, or exporting the RMI server's
remote objects using a specific network interface in multihomed systems. For such cases, the
behavior of the ready-to-use management agent can be mimicked by using the JIMX Remote
API directly to create, configure, and deploy the management agent programmatically.

Example of Mimicking Ready-to-Use Management

This section provides an example of how to implement a JMX agent that identically mimics an
ready-to-use management agent. In exactly the same way as the ready-to-use management

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 14 of 18

ORACLE

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

agent, the agent created in Example 2-5 will run on port 3000. It will have a password file
named passwor d. properties, an access file named access. properties, and it will implement
the default configuration for SSL/TLS-based RMI Socket Factories, requiring server
authentication only. This example assumes a keyst or e has already been created, as
described in Using SSL. Information about how to set up the SSL configuration is explained in
Creating a Keystore to Use with JSSE section of Java Platform, Standard Edition Security
Developer's Guide.

To enable monitoring and management on an application named com exanpl e. MyApp, using
the ready-to-use JMX agent with the configuration, run the com exanpl e. MyApp with the
following command:

% j ava - Dcom sun. managemnent . j nxr enmot e. port=3000 \
- Dcom sun. managenent . j nxr enot e. passwor d. fi | e=passwor d. properties \
- Dcom sun. managenent . j nxrenot e. access. fi | esaccess. properties \
- Dj avax. net. ssl . keySt ore=keystore \
- Oj avax. net. ssl . keySt or ePasswor d=passwor d \

com exanpl e. M/App

® Note

The com sun. nanagenent . j nxrenot e. * properties can be specified in a
management . properti es file instead of passing them at the command line. In that
case, the system property -

Dcom sun. managenent . confi g. fi | e=managenent . properti es is required to specify
the location of the managenent . properti es file.

Example 2-5 shows the code that you need to write to programmatically create a JMX agent,
which will allow exactly the same monitoring and management on com exanpl e. MyApp as using
the prior command.

Example 2-5 Mimicking a Ready-to-Use JMX Agent Programmatically

package com exanpl e;

i nport java.lang. managenent.*;

inport java.rm.registry.*;

inport java.util.*;

i nport javax.management. *;

i nport javax.nanagement.renote. *;

i nport javax.nmanagenent.renote.rm.*;
inport javax.rm.ssl.*;

public class M/App {

public static void main(String[] args) throws Exception {

/1 Ensure cryptographically strong random nunber generator used
/1 to choose the object nunber - see java.rmi.server.QjID

I/

System set Property("java.rni.server.random Ds", "true");

/1 Start an RM registry on port 3000.
I/

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 15 of 18

ORACLE Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

Systemout.printIn("Create RM registry on port 3000");
Locat eRegi stry. creat eRegi stry(3000);

/1 Retrieve the Pl atfornmvBeanServer.

11

Systemout.printIn("Get the platform s MBean server");
MBeanServer nbs = Managenent Fact ory. get Pl at f or mvBeanServer ();

/1 Environnent map.

11

Systemout.printin("Initialize the environment map");
HashMap<Stri ng, Obj ect > env = new HashMap<String, Qbj ect >();

/1 Provide SSL-based RM socket factories.

11

/1 The protocol and cipher suites to be enabled will be the ones

/1 defined by the default JSSE inplementation and only server

/] authentication will be required.

11

SsI RM Qi ent Socket Factory csf = new Ss| RM C i ent Socket Fact ory();

SsI RM Ser ver Socket Fact ory ssf = new Ss| RM Ser ver Socket Fact ory();

env. put (RM Connect or Server. RM _CLI ENT_SOCKET_FACTORY_ATTRI BUTE, csf);
env. put (RM Connect or Server. RM _SERVER_SOCKET_FACTORY_ATTRI BUTE, ssf);

/1 Provide the password file used by the connector server to

/1 performuser authentication. The password file is a properties
/1 based text file specifying username/password pairs.

I/

env. put ("j nx. renote. x. password. file", "password. properties");

/1 Provide the access level file used by the connector server to

/1 performuser authorization. The access level file is a properties
/1 based text file specifying username/access |evel pairs where

/] access level is either "readonly" or "readwite" access to the

/1 MBeanServer operations.

11

env. put ("jnx.renote. x.access.file", "access.properties");

/I Create an RM connector server.
/1l
/1 As specified in the JMXServi ceURL the RM Server stub will be
/1 registered in the RM registry running in the local host on
/1 port 3000 with the name “jmxrmi". This is the same nanme that the
/1 ready-to-use managenent agent uses to register the RM Server
/1 stub.
/1l
Systemout.printin("Create an RM connector server");
JMXServiceURL url =
new JMXServi ceURL("service:jmk:rm:///jndi/rm://:3000/]mkrm");
JMXConnect or Server cs =
JMXConnect or Server Fact ory. newJMXConnect or Server (url, env, nbs);

I/ Start the RM connector server.

11

Systemout. printIn("Start the RM connector server");
cs.start();

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 16 of 18

ORACLE

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

Start this application with the following command:

java -Djavax. net.ssl.keyStore=keystore \
- Dj avax. net. ssl . keySt or ePasswor d=password \

com exanpl e. M/App

The com exanpl e. MyApp application will enable the JMX agent and will be monitored and
managed in exactly the same way as if the Java platform's ready-to-use management agent
has been used. However, there is one slight but important difference between the RMI registry
used by the ready-to-use management agent and the one used by a management agent that
mimics it. The RMI registry used by the ready-to-use management agent is read-only, namely a
single entry can be bound to it and upon being bound, this entry cannot be unbound. This is
not true with the RMI registry created in Example 2-5.

Furthermore, both RMI registries are insecure as they do not use SSL/TLS. The RMI registries
should be created using SSL/TLS-based RMI socket factories that require client authentication.
This will prevent a client from sending its credentials to a rogue RMI server and will also
prevent the RMI registry from giving access to the RMI server stub to a nontrusted client.

RMI registries that implement SSL/TLS RMI socket factories can be created by adding the
following properties to your nenagenent . properti es file:

com sun. managenent . j mxrenot e. regi stry. ssl =true
com sun. managenent . j mxrenot e. ssl . need. cl i ent. aut h=true

Example 2-5 mimics the main behavior of the ready-to-use JMX agent, but does not replicate
all the existing properties in the managenent . properti es file. However, you can add other
properties by modifying com exanpl e. M\yApp appropriately.

Monitoring Applications Through a Firewall

The code in Example 2-5 can be used to monitor applications through a firewall, which might
not be possible if you use the ready-to-use monitoring solution. The

com sun. management . j mxr enot e. port management property specifies the port where the RMI
registry can be reached but the ports where the RM Server and RM Connect i on remote objects
are exported is chosen by the RMI stack. To export the remote objects (RM Ser ver and

RM Connect i on) to a given port, you need to create your own RMI connector server
programmatically, as described in Example 2-5. However, you must specify JMXSer vi ceURL as
follows:

JMXServiceURL url = new JMXServiceURL("service:jmk:rm://local host:" +
portl + "/jndi/rm://localhost:" + port2 + "/jmkrm");

port 1 is the port number on which the RM Server and RM Connect i on remote objects are
exported, and port 2 is the port number of the RMI Registry.

Using an Agent Class to Instrument an Application

The Java SE platform provides services that allow Java programming language agents to
instrument programs running on the Java VM. Creating an instrumentation agent means that

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 17 of 18

ORACLE

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

you do not have to add any new code to your application in order to allow it to be monitored.
Instead of implementing monitoring and management in your application's static mai n method,
you implement it in a separate agent class, and start your application with the - j avaagent
option specified. See the API reference documentation for the | ava. | ang. i nst r unent
package for full details about how to create an agent class to instrument your applications.

Creating an Agent Class to Instrument an Application

The following procedure shows how you can adapt the code of com exanpl e. MyApp to create
an agent to instrument any other application for monitoring and management.

1.

Create a com exanpl e. MyAgent class.
Create a class called com exanpl e. MyAgent , declaring a pr enai n method rather than a
mai n method.

package com exanpl e;

[...]
public class MyAgent {

public static void premain(String args) throws Exception {

(.1

The rest of the code for the com exanpl e. MyAgent class is same as the
com exanpl e. MyApp class as shown in Example 2-5.

Compile the com exanpl e. MyAgent class.

Create a manifest file, MANI FEST. Mr, with a Premai n- O ass entry.

An agent is deployed as a Java archive (JAR) file. An attribute in the JAR file manifest
specifies the agent class that will be loaded to start the agent. Create a file called

MANI FEST. MF, containing the following line:

Premai n-Cl ass: com exanpl e. MyAgent

Create a JAR file, MyAgent . j ar .
The JAR file should contain the following files:

e META- | NF/ MANI FEST. MF
e con exanpl e/ MyAgent . cl ass

Start an application, specifying the agent to provide monitoring and management services.
You can use com exanpl e. MAgent to instrument any application for monitoring and
management. This example uses the Not epad application.

% java -javaagent: M/Agent.jar -Djavax.net.ssl.keyStore=keystore \
- Dj avax. net. ssl . keySt or ePasswor d=password -jar Not epad.jar

The com exanpl e. MyAgent agent is specified using the - | avaagent option when you start
Not epad. Also, if your com exanpl e. MyAgent application replicates the same code as the
com exanpl e. MyApp application shown in Example 2-5, then provide the keyst or e and
passwor d information because the RMI connector server is protected by SSL.

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 18 of 18

https://docs.oracle.com/en/java/javase/11/docs/api/java.instrument/java/lang/instrument/package-summary.html

Using JConsole

The JConsole graphical user interface is a monitoring tool that complies with the Java
Management Extensions (JMX) specification. JConsole uses the extensive instrumentation of
the Java Virtual Machine (Java VM) to provide information about the performance and
resource consumption of applications running on the Java platform.

JConsole has been updated to present the look and feel of the Windows and GNOME
desktops (other platforms will present the standard Java graphical look and feel). The screen
captures presented in this document are taken from an instance of the interface running on
Windows XP.

Starting JConsole

The j consol e executable file can be found in JDK_HOVE/ bi n, where JDK_HOME is the directory in
which the Java Development Kit (JDK) is installed. If this directory is in your system path, then
you can start JConsole by simply entering j consol e in a command (shell) prompt. Otherwise,
you have to enter the full path to the executable file.

Command Syntax

You can use JConsole to monitor both local applications, namely those running on the same
system as JConsole, as well as remote applications, namely those running on other systems.

@® Note

Using JConsole to monitor a local application is useful for development and for
creating prototypes, but is not recommended for production environments, because
JConsole itself consumes significant system resources. Remote monitoring is
recommended to isolate the JConsole application from the platform being monitored.

See j consol e in the Java Platform, Standard Edition Tools Reference for the complete syntax.

Setting Up Local Monitoring

Start JConsole using the following command:

% j consol e

When JConsole starts, select the required Java applications running locally that JConsole can
connect to.

If you want to monitor a specific application, and you know that application's process ID, then
start JConsole so that it connects to that application. This application must be running with the

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 1 of 25

ORACLE Chapter 3
Starting JConsole

same user ID as JConsole. Use the following command syntax to start JConsole for local
monitoring of a specific application:

% j consol e processlD

processl Dis the application's process ID (PID). You can determine an application's PID in the
following ways:

e On Solaris, Linux, or macOS systems, you can use the ps command to find the PID of the
j ava instance that is running.

e On Windows systems, you can use the Task Manager to find the PID of j ava or j avaw.

* You can also use the j ps command-line utility to determine PIDs. See j ps in Java
Platform, Standard Edition Tools Reference.

For example, if the process ID of the Not epad application is 2956, then start JConsole with the
following command:

% j consol e 2956

Both JConsole and the application must by executed by the same user. The management and
monitoring system uses the operating system's file permissions. If you do not specify a process
ID, JConsole will automatically detect all local Java applications, and display a dialog box that
lets you select which one you want to monitor (see Connecting to a JMX Agent).

See Local Monitoring and Management.

Setting Up Remote Monitoring

To start JConsole for remote monitoring, use the following command syntax:

% j consol e host Nane: port Num

The host Nane is the name of the system running the application and por t Numis the port
number you specified when you enabled the JMX agent while starting the Java VM. See
Remote Monitoring and Management.

If you do not specify a host name/port number combination, then JConsole will display a
connection dialog box (Connecting to a JMX Agent) to enable you to enter a host name and
port number.

Setting Up Secure Remote Monitoring

You can also start JConsole so that monitoring will be performed over a connection that is
secured using Secure Sockets Layer (SSL). See Remote Monitoring with JConsole with SSL
Enabled for the command to start JConsole with a secure connection.

Connecting to a JMX Agent

If you start JConsole with arguments specifying a JMX agent to connect to, then it will
automatically start monitoring the specified Java VM. You can connect to a different host at any
time by selecting Connection and New Connection, and entering the necessary information.

Monitoring and Management Guide
E95200-04 October 16, 2025
Copyright © 2006, 2025, Oracle and/or its affiliates. Page 2 of 25

ORACLE Chapter 3
Starting JConsole

Otherwise, if you do not provide any arguments when you start JConsole, then the first thing
that you see is the connection dialog box. This dialog box has two options, allowing
connections to either Local or Remote processes.

Connecting JConsole to a Local Process

If you start JConsole without providing a specific JMX agent to connect to, then you will see the
following dialog box:

Figure 3-1 Creating a Connection to a Local Process

JConsole: Hew Connection

New Connection

{# Local Process:

! MName
I

| cam.koy, anagrams, ui. Anagrams
sun, kools jronsole, JConsole -inkerval=4
| org/netbeans/Main --branding nb
Mote: The managerient agent will be enabled on this process,

(") Remote Process:

Usage: =zhostnames=: =port= R service:jmx: =protocal =: zsap =

e [———

Username: | | Password: |

Conneck][Cancel

The Local Process option lists any Java VMs running on the local system that were started

with the same user ID as JConsole, along with their process ID and their class or argument
information. To connect JConsole to your application, select the application that you want to
monitor, then click Connect. The list of local processes includes applications running in the
following types of Java VM:

* Applications with the management agent enabled: These include applications on the Java
SE platform that were started with the - Dcom sun. managenent . j nxr enot e option or with
the - Dcom sun. managenent . j nxr enot e. port option specified. In addition, the list also
includes any applications that were started on the Java SE platform without any
management properties, but are attached to by JConsole, which enables the management
agent at runtime.

* Applications that are attachable, with the management agent disabled: These include an
attachable application that supports loading of the management agent at runtime.
Attachable applications include applications that are started on the Java SE platform,
which support the Attach API. Applications that support dynamic attach do not require the
management agent to be started by specifying the com sun. managenent . j mxr enot e or
com sun. management . j mxr enot e. port options at the command line. JConsole does not

Monitoring and Management Guide
E95200-04 October 16, 2025
Copyright © 2006, 2025, Oracle and/or its affiliates. Page 3 of 25

ORACLE Chapter 3
Starting JConsole

need to connect to the management agent before the application is started. If you select
this application, then a note is displayed on screen that the management agent will be
enabled when the connection is made. In the example, connection dialog box that is shown
in Figure 3-1, the NetBeans IDE and JConsole are started within a Java SE platform VM.
Both appear in normal text, meaning that JConsole can connect to them. In Figure 3-1,
JConsole is selected and the note is visible.

* Applications that are not attachable, with the management agent disabled: These include
applications started on a Java SE platform without the - Dcom sun. managenent . j nxr enot e
or com sun. nanagenent . j nxrenot e. port options. These applications appear grayed-out in
the table and JConsole cannot connect to them. In the example connection dialog box
shown in Figure 3-1, the Anagr ans application was started with a Java SE platform VM
without any of the management properties to enable the JMX agent, and consequently
shows up in gray and cannot be selected.

Figure 3-2 Attempting to Connect to an Application Without the Management Agent
Enabled

JConsole: New Connection

New Connection

(*) Local Process:

v anagrams. ui.Anagrams
| sun.tools. jconsole, JConsole -inkerval=4
| orgfnetbeans/Main --branding nb
Mote: The managernent agent is not enabled on this process,

{_) Remote Process:

Usage: chostname:=: =port= OR service:jmx: =protocol=: zsaps=

N

[1 B
Username: | | Password: |

In the example connection dialog box shown in Figure 3-2, you can see that the Anagr ans
application is selected, but Connect remains grayed-out, and a note has appeared informing
you that the management agent is not enabled for this process. JConsole cannot connect to
Anagr ans because it was not started with the correct Java VM or with the correct options.

Connecting JConsole to a Remote Process

When the connection dialog box opens, you are also given the option of connecting to a
remote process.

Figure 3-3 Creating a Connection to a Remote Process

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 4 of 25

ORACLE Chapter 3
Starting JConsole

JConsole: Hew Connection

New Connection

() Local Process:

Marne

carm. boy anagrams, i, Anagrams

sun.tools, jconsole, JZonsole -inkerval=4
org/netbeans/Main --branding nb

{*) Remote Process:

Elucalhust:SSSS

Usage: =hostname:=: =paort= OF sarvice:jmx: =protocol=: <zaps

Username: |Usernams

o ;..----..

Connect ” Cancel

To monitor a process running on a remote Java VM, you must provide the following
information:

* Host name: The name of the machine on which the Java VM is running.
e Port number: The JMX agent port number you specified when you started the Java VM.

* User name and password: The user name and password to use (required only if
monitoring a Java VM through a JMX agent that requires password authentication).

To set the port number of the JMX agent, see Enabling the Ready-to-Use Management.

See Using Password and Access Files.

To monitor the Java VM that is running JConsole, click Connect and enter host as | ocal host
and the port 0.

Connecting Using a JMX Service URL

You can also use the Remote Process option to connect to other JMX agents by specifying
their JMX service URL, and the user name and password. The syntax of a JMX service URL
requires that you provide the transport protocol used to make the connection, as well as a
service access point. The full syntax for a JMX service URL is described in the API
documentation for j avax. managenent . r enot e. JMXSer vi ceURL.

Figure 3-4 Connecting to a JMX Agent Using the JMX Service URL

Monitoring and Management Guide
E95200-04 October 16, 2025
Copyright © 2006, 2025, Oracle and/or its affiliates. Page 5 of 25

ORACLE Chapter 3
Starting JConsole

JConsole: New Connection

New Connection

(") Local Process:

Marme

com.toy . anagrams, ui.Anagrams
sun.tools, jconsole, JConsole -interval=4
| org/netbeans)Main --branding nb

{+) Remote Process:

Eservice:jmx: <protocol = <sap >
Uzage: =hostname=: sport= OR sarvice:jr: <protocol=: <sap=

Username: |Usernams

Password: esesssss

Connect][Zancel

If the IMX agent uses a connector that is not included in the Java platform, then you must add
the connector classes to the class path when you run the j consol e command, as follows:

% j consol e -J-Dj ava. cl ass. pat h=JAVA HOVE/ | i b/ j consol e. jar: JAVA HOVE/ | i b/
tool s.jar: connector-path

connect or - pat h is the directory or the Java archive (JAR) file containing the connector classes
that are not included in the JDK, to be used by JConsole.

Presenting the JConsole Tabs

After you have connected JConsole to an application, JConsole displays the following six tabs:

e Overview: Displays overview information about the Java VM and monitored values
* Memory: Displays information about memory use

e Threads: Displays information about thread use

e Classes: Displays information about class loading

* VM: Displays information about the Java VM

* MBeans: Displays information about MBeans

Use the green connection status icon in the upper right-hand corner of JConsole to disconnect
from or reconnect to a running Java VM. You can connect to any number of running Java VMs
at a time by selecting Connection, then New Connection from the drop-down menu.

Viewing Overview Information

The Overview tab displays graphical monitoring information about CPU usage, memory usage,
thread counts, and the classes loaded in the Java VM, all in a single screen.

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 6 of 25

ORACLE Chapter 3
Starting JConsole

Figure 3-5 Overview Tab

Java Monitoring & Management Console - pid: 3912 sun.tools. jconsole. JConsole = ; r5_<
|| Connection Window Help S| | S
Civerview Memary || Threads | Classes | %M Summary | MBeans “ﬁ'
Time Range: A V
Heap Memary Usage Threads o
40 Mb 40
30Mb . g:e thraads
Z0Mb 30 I —
Used
oMb 4 6,794,544
0.0Mb 20
20:10 20:15 20:20 20:10 20:15 20:20
Used: 6.8 Mb Committed: 35.5Mb Max: 66.7 Mb Live: 34 Peak: 34 Total: 34
Classes CPL Usage
4,000 60%
50%
Loaded 40%
3,000 | TR 30%
20%
10% : ?;U Usage
2,000 0%
20:10 20:15 20:20 20:10 20015 20:20
L

The Overview tab provides an easy way to correlate information that was previously available
only by switching between multiple tabs.

Saving Chart Data

JConsole allows you to save the data presented in the charts in a comma-separated values
(CSV) file. To save data from a chart, right-click on any chart, select Save data as..., and then
specify the file in which the data will be saved. You can save the data from any of the charts
displayed in any of JConsole's different tabs in this way.

The CSV format is commonly used for data exchange between spreadsheet applications. The
CSV file can be imported into spreadsheet applications and can be used to create diagrams in
these applications. The data is presented as two or more hamed columns, where the first
column represents the time stamps. After importing the file into a spreadsheet application, you
will usually need to select the first column and change its format to be dat e ordat e/ ti ne as
appropriate.

Monitoring Memory Consumption

The Memory tab provides information about memory consumption and memory pools.

Figure 3-6 Memory Tab

Monitoring and Management Guide
E95200-04 October 16, 2025
Copyright © 2006, 2025, Oracle and/or its affiliates. Page 7 of 25

ORACLE Chapter 3
Starting JConsole

B Java Monitoring & Management Console - pid: 3912 sun.tools. jconsole. JConsole |'._||Elg|
| %] Connection Window Help S S
Crverview | Memary | Threads | Classes | ¥M Summary | MBeans =
Charts v e Range: v ——
40 Mb——
30 Mb
20 Mb
Used
10Mb 4 9,684,552
0.0MbL
20:10 20:15 20:20
Details
Time: 2006-07-27 20:22:20 100%, -
_ Used: 10,599 khytes -
Committed: 34,696 kbytes
' Max: 65, 058 khytes | B
GC time: 2.051 seconds onCopy (771 collections) 259 -
2.324 seconds on MakSweepCompact (22 collections) | o
| | Heap | | Mon-Heap |

Click Perform GC in the Memory tab to perform garbage collection whenever you want. The
chart shows the memory use of the Java VM over time, for heap and nonheap memory, as well
as for specific memory pools. The memory pools available depend on the version of the Java
VM being used. For the HotSpot Java VM, the memory pools for serial garbage collection are
the following:

* Eden Space (heap): The pool from which memory is initially allocated for most objects.

e Survivor Space (heap): The pool containing objects that have survived the garbage
collection of the Eden space.

e Tenured Generation (heap): The pool containing objects that have existed for some time in
the survivor space.

« Permanent Generation (nonheap): The pool containing all the reflective data of the virtual
machine itself, such as class and method objects. With Java VMs that use class data
sharing, this generation is divided into read-only and read/write areas.

e Code Cache (nonheap): The HotSpot Java VM also includes a code cache, containing
memory that is used for compilation and storage of native code.

You can display different charts for charting the consumption of these memory pools by
selecting the required options in the Chart drop-down menu. Also, clicking either the Heap or
Nonheap bar charts in the bottom right-hand corner will switch the chart displayed. Finally, you
can specify the time range over which you track memory usage, by selecting the required
options in the Time Range drop-down menu.

See Garbage Collection.

The Details area shows several current memory metrics:

e Used: The amount of memory currently used, including the memory occupied by all
objects, both reachable and unreachable.

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 8 of 25

ORACLE

Chapter 3
Starting JConsole

Committed: The amount of memory guaranteed to be available for use by the Java VM.
The amount of committed memory may change over time. The Java virtual machine may
release memory to the system and the amount of committed memory could be less than
the amount of memory initially allocated at startup. The amount of committed memory will
always be greater than or equal to the amount of used memory.

Max: The maximum amount of memory that can be used for memory management. Its
value may change or be undefined. A memory allocation may fail if the Java VM attempts
to increase the used memory to be greater than committed memory, even if the amount
used is less than or equal to nmax (for example, when the system is low on virtual memory).

GC time: The cumulative time spent on garbage collection and the total number of calls. It
may have multiple rows, each of which represents one garbage collector algorithm used in
the Java VM.

The bar chart on the lower right-hand side shows the memory consumed by the memory pools
in heap and nonheap memory. The bar will turn red when the memory used exceeds the
memory usage threshold. You can set the memory usage threshold through an attribute of the
Menor yMXBean.

Heap and Nonheap Memory

The Java VM manages two kinds of memory: heap and nonheap memory, both of which are
created when the Java VM starts.

Heap memory: Is the runtime data area from which the Java VM allocates memory for all
class instances and arrays. The heap may be of a fixed or variable size. The garbage
collector is an automatic memory management system that reclaims heap memory for
objects.

Nonheap memory: Includes a method area shared among all threads and memory
required for the internal processing or optimization for the Java VM. It stores per-class
structures such as a runtime constant pool, field and method data, and the code for
methods and constructors. The method area is logically part of the heap but, depending on
the implementation, a Java VM may not garbage collect or compact it. Like the heap
memory, the method area may be of a fixed or variable size. The memory for the method
area does not need to be contiguous.

In addition to the method area, a Java VM may require memory for internal processing or
optimization, which also belongs to nonheap memory. For example, the Just-In-Time (JIT)
compiler requires memory for storing the native machine code translated from the Java VM
code for high performance.

Memory Pools and Memory Managers

Memory pools and memory managers are key aspects of the Java VM's memory system.

Memory pool: Represents a memory area that the Java VM manages. The Java VM has at
least one memory pool and it may create or remove memory pools during execution. A
memory pool can belong either to heap or to nonheap memory.

Memory manager: Manages one or more memory pools. The garbage collector is a type of
memory manager responsible for reclaiming memory used by unreachable objects. A Java
VM may have one or more memory managers. It may add or remove memory managers
during execution. A memory pool can be managed by more than one memory manager.

Garbage Collection

Garbage collection (GC) is how the Java VM frees memory occupied by objects that are no
longer referenced. It is common to think of objects that have active references as being live

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 9 of 25

ORACLE Chapter 3
Starting JConsole

and nonreferenced (or unreachable) objects as dead. Garbage collection is the process of
releasing memory used by the dead objects. The algorithms and parameters used by GC can
have dramatic effects on performance.

The Java HotSpot VM garbage collector uses generational GC. Generational GC takes
advantage of the observation that most programs conform to the following generalizations:

e They create many objects that have short lives, for example, iterators and local variables.

e They create some objects that have very long lives, for example, high-level persistent
objects.

Generational GC divides memory into several generations, and assigns one or more memory
pools to each. When a generation uses up its allotted memory, the VM performs a partial GC

(also called a minor collection) on that memory pool to reclaim memory used by dead objects.
This partial GC is usually much faster than a full GC.

The Java HotSpot VM defines two generations: the young generation (sometimes called the
nursery) and the old generation. The young generation consists of an Eden space and two
survivor spaces. The VM initially assigns all objects to the Eden space, and most objects die
there. When it performs a minor GC, the VM moves any remaining objects from the Eden
space to one of the survivor spaces. The VM moves objects that live long enough in the
survivor spaces to the tenured space in the old generation. When the tenured generation fills
up, there is a full GC that is often much slower because it involves all live objects. The
permanent generation holds all the reflective data of the virtual machine itself, such as class
and method objects.

The default arrangement of generations looks something like Figure 3-7.

Figure 3-7 Generations of Data in Garbage Collection

Tenured

Eden - -

Virtual

B e -—
Young Perm

If the garbage collector has become a bottleneck, then you can improve performance by
customizing the generation sizes. Using JConsole, you can investigate the sensitivity of your
performance metric by experimenting with the garbage collector parameters. See Performance
Considerations in Java Platform, Standard Edition HotSpot Virtual Machine Garbage Collection
Tuning Guide.

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 10 of 25

ORACLE Chapter 3
Starting JConsole

Monitoring Thread Use

The Threads tab provides information about thread use.

Figure 3-8 Threads Tab

B Java Monitoring & Management Console - pid: 3912 sun.tools. jconsole. JConsole

|£| Connection ‘Window Help &) x
Overview Memory- Thl’eads-classes WM Surnmary | MBeans *

Tirme Range: v

Muriber of Threads 2

40 g:ak
f‘Live thraads
LT
30 (=
20
20:10 20:15 20:20

[Threads 1
Reference Handler i : Neme: Finalizer A

Finalizer State: WAITING on java. lang.ref.ReferencelueusiLockBc7a

Signal Dispatcher Total blocked: 3 Total waited: 96
Attach Listener

JavazD Disposer

AWT-Shukdawn
AWT-Windows Java. lang.Cbhject.wait (Native HMNethod)

AVMT - Fuarb i ziza ¥ |4awa. 1anmd. ref. Referenretnene . remnve (Referennetnene . ava o

¥

:F.iifer. - _Detect Deadlock.

The Threads list in the lower left corner lists all the active threads. If you enter a string in the
Filter field, then the Threads list will show only those threads whose name contains the string
that you entered. Click the name of a thread in the Threads list to display information about
that thread to the right, including the thread name, state, and stack trace.

S3tack trace:

The chart shows the number of live threads over time. Two lines are shown:

e Red: Peak number of threads
e Blue: Number of live threads

The Threading MXBean provides several other useful operations that are not covered by the
Threads tab.

< findMonitorDeadl ockedThr eads: Detects if any threads are deadlocked on the object
monitor locks. This operation returns an array of deadlocked thread IDs.

e get Threadl nf 0: Returns the thread information. This includes the name, stack trace, and
the monitor lock that the thread is currently blocked on, if any, and which thread is holding
that lock, as well as thread contention statistics.

e get ThreadCpuTi me: Returns the CPU time consumed by a given thread.

You can access these additional features through the MBeans tab by selecting Threading
MXBean in the MBeans tree. This MXBean lists all the attributes and operations for accessing
threading information in the Java VM being monitored. See Monitoring and Managing MBeans.

Monitoring and Management Guide
E95200-04 October 16, 2025
Copyright © 2006, 2025, Oracle and/or its affiliates. Page 11 of 25

ORACLE

Chapter 3
Starting JConsole

Detecting Deadlocked Threads

To check if your application has run into a deadlock (for example, your application seems to be
hanging), deadlocked threads can be detected by clicking Detect Deadlock. If any deadlocked
threads are detected, these are displayed in a new tab that appears next to the Threads tab,
as shown in Figure 3-9.

Figure 3-9 Deadlocked Threads

Threads | Deadlock 1 | Deadiock 2

Deadioc j:Name: Deadlock-Thread-3
Deadiock-Thread-1 |segre: WAITING on jawa.util.concurrent. locks.ReentrantLock{NonfairSyn

Deadiock-Thread2 |1 0p o) piocked: 0 Total waited: 2

Stack trace:

suh.wisc. Uhsafe.park (Native Method)
Java.util.concurrent. locks. LockSupport. park (LockSupport. java: 145)
Java.uril.concurrent. locks. AbstractQuensdiynchronizer. parkindCheckIne
Jawva.util.concurrent. locks. AbstractQuensdiynchronizer .. acquireoueued [i
Java.utlil.concurrent. locks. dbhstractgueneddynchronizer..acquire (Abstrac
java.util.concurrent. locks. ReentrantLockiNonfair3vne. lock (ReentrantLo
Jawva.util.concurrent. locks. ReentrantLock. lock (ReentrantLock. java: 263)
3vnchronizerDeadlockibeadlockingThread. giSvachroniserDeadlock. java: 95
3vnchronizerDeadlockibeadlockingThread. £ (SyvnchroniserDeadlock. java: 58
SynchronizerbeadlockileadlockingThread. run (Synchronizerbeadlock. java:

< ¥

Detect Deadlock will detect deadlock cycles involving object monitors and

java. util.concurrent ownable synchronizers (see the API specification documentation for

j ava. |l ang. managenent . Lockl nf 0). Monitoring support for j ava. util. concurrent locks
has been added in Java SE from version 6.0. If JConsole connects to a Java SE 5.0 VM, then
the Detect Deadlock mechanism will find only deadlocks related to object monitors. JConsole
will not show any deadlocks related to ownable synchronizers.

See the API documentation for | ava. | ang. Thr ead for more information about threads and
daemon threads.

Monitoring Class Loading

The Classes tab displays information about class loading.

Figure 3-10 Classes Tab

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 12 of 25

https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/LockInfo.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.State.html

ORACLE Chapter 3
Starting JConsole

Java Monitoring & Management Console - pid: 3912 sun.tools. jconsole. JConsale |'L||'E|E|

| £ Connection ‘Window Help | Fis| e

Owerview | Memory || Threads | Classes 'u'M summary | MBeans E'iﬂ
Time Range: |[F hd [] verbose Cutput

Mumber of Loaded Classes

4,000
Tatal Loaded
3,240

1fLw:-at:lrat:l
3.000 e 3.132
2,000
20:10 20015 20:20
Dekails

| Time: 2006-07-27 20:23:22
ECurrent classes loaded: 3,132
| Total classes loaded: 3,240
Total classes unloaded: 103

The chart plots the number of classes loaded over time.

e The red line is the total number of classes loaded (including those subsequently unloaded).
e The blue line is the current number of classes loaded.

The Details section at the bottom of the tab displays the total number of classes loaded since
the Java VM started, the number currently loaded, and the number unloaded. You can set the
tracing of class loading to verbose output by selecting the check box in the top right-hand
corner.

Viewing VM Information

The VM Summary tab provides information about the Java VM.

Figure 3-11 VM Summary Tab

Monitoring and Management Guide
E95200-04 October 16, 2025
Copyright © 2006, 2025, Oracle and/or its affiliates. Page 13 of 25

ORACLE’

Chapter 3
Starting JConsole

r

Java Monitoring & Management Console - pid: 3036 sun.tools. jconsole. JConsole

|£| Conmection Window Help —a x
‘f MEBeans ==
VM Summary A _
Friday, JTuly 28, 2006 10:43:22 AWM CEST
Connection name: pid: 3036 sun.tnu:u]s.jco.nsu:ule.JCDnsu:ulle Uptirne: | rinute
Virtual Machine: .Ia;'aDHDE:gp;t(TM) Cliext VI wersion Process CPU time: 36.015 seconds
Vendor: S Misrsysterss fn. JIT l:l.:m'lp.l]Br: HotSpot Client Compiler
N . 3036@dolsi Total compile timne: 1720 seconds
Live threads: 259 Current classes loaded: 3,102
Peak: 3z Toial classes loaded: 3,152
Daemon threads: 19 Total classes unloaded: &0
Total threads started: 135
Current heap size: 31,141 Ehytes Committed memory: 56,650 kbytes
Maximum heap size: 65,058 khytes Pending finalization: 0 chijscts
Garhage collector: Name = 'Capy’, Collections = 214, Total tiree spent = 0.217 seconds
Garbage collector: Name = TlarkSwreepCompact’, Collections = 20, Total time spent = 1.926 seconds
Operating System: Windows XF 5.1 Total physical memory: 1,047,788 khytes
Architeciure: 24 Free physical memory: 473,496 kbytes
Number of processors: 2 Total swap space: 2,520,954 Foytes
Cornmitted virtual memory: 91,504 Hortes Free swap space: 2,145,760 Faytes
VM arguments: -Derw class path=C\Program FilesUavaljre1 5.0 080ibet\QT Tava zip -Dapplication horme=C:Program
Files\Wawalycdkl 6.0
Class path: C:'Program FilesUavaljdkl & 0libfjeonsole jar,C\Prograra Files\Tavaljdkl 6 0ilib/tools jar,C Program
EilaciLanzatidle 1l & Olclaccas Jurs

The information presented in this tab includes the following:

e Summary
— Uptime: Total amount of time since the Java VM was started.

— Process CPU Time: Total amount of CPU time that the Java VM has consumed since it
was started.

— Total Compile Time: Total accumulated time spent in JIT compilation. The Java VM
determines when JIT compilation occurs. The Hotspot VM uses adaptive compilation,
in which the VM launches an application using a standard interpreter, but then
analyzes the code as it runs to detect performance bottlenecks, or hot spots.

e Threads
— Live threads: Current number of live daemon threads plus hondaemon threads.
— Peak: Highest number of live threads since Java VM started.
— Daemon threads: Current number of live daemon threads.

— Total threads started: Total number of threads started since Java VM started, including
daemon, nondaemon, and terminated threads.

e Classes

— Current classes loaded: Number of classes currently loaded into memory.

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 14 of 25

ORACLE

Chapter 3
Starting JConsole

Total classes loaded: Total number of classes loaded into memory since the Java VM
started, including those that have subsequently been unloaded.

Total classes unloaded: Number of classes unloaded from memory since the Java VM
started.

* Memory

Current heap size: Number of kilobytes currently occupied by the heap.
Committed memory: Total amount of memory allocated for use by the heap.
Maximum heap size: Maximum number of kilobytes occupied by the heap.
Objects pending for finalization: Number of objects pending for finalization.

Garbage collector: Information about garbage collection, including the garbage
collector names, number of collections performed, and total time spent performing GC.

* Operating System

Total physical memory: Amount of random access memory (RAM) the operating
system has.

Free physical memory: Amount of free RAM available to the operating system.

Committed virtual memory: Amount of virtual memory guaranteed to be available to
the running process.

e Other Information

VM arguments: The input arguments that the application passed to the Java VM, not
including the arguments to the main method.

Class path: The class path that is used by the system class loader to search for class
files.

Library path: The list of paths to search when loading libraries.

Boot class path: The path used by the bootstrap class loader to search for class files.

Monitoring and Managing MBeans

The MBeans tab displays information about all the MBeans registered with the platform MBean
server in a generic way. The MBeans tab allows you to access the full set of the platform
MXBean instrumentation, including the ones that are not visible in the other tabs. In addition,
you can monitor and manage your application's MBeans using the MBeans tab.

Figure 3-12 MBeans Tab

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 15 of 25

ORACLE Chapter 3
Starting JConsole

Java Monitoring & Management Console - pid: 3912 sun.tools. jconsole. JConsole |_"'. ||t| |&|
|£| Connection Window Help =&
Crverview | Memory | Threads | Classes | Wi Summaryi MBBGHSE sg=

{2 IMImplementation MBeanInfo
uﬂ cDm.sun.managEment T T T T

- Marne Walue
1 javallang [t

#-(3 ClassLoading ;Inf?: -

@ Compilation [EOb]ectName java.lang:bype=Memory

liﬂ el s iy || [ClassMame sun.management. MemoryImpl

EI*.?I ey || |pescription Information on the management interface of the MBean

[#-Attributes
---Operatiuns
: - Matifications
[#-{05) MemoryManager
#1735 MemaryPaol
@ OperatingSystem

3 Runtime Desmptor ..
. -4 Threading Mame Yalue
| (-3 java.util. logging || Infa:
| limmutableInfo true
linterfacelasshlame java.lang. management . Mermory i XEean
|| [mebean brue

The tree on the left shows all the MBeans currently running. When you select an MBean in the
tree, its MBeanl nf o and its MBean Descri pt or are both displayed on the right, and any
attributes, operations, or notifications appear in the tree below it.

All the platform MXBeans and their various operations and attributes are accessible from
JConsole's MBeans tab.

Constructing the MBean Tree

By default, the MBeans are displayed in the tree based on their object names. The order of key
properties specified when the object names are created is preserved by JConsole when it adds
MBeans to the MBean tree. The exact key property list that JConsole will use to build the
MBean tree will be the one returned by the method

(oj ect Nare. get KeyPropertyLi st String(), with t ype as the first key, and j 2eeType, if present,
as the second key.

However, relying on the default order of the (bj ect Narme key properties can sometimes lead to
unexpected behavior when JConsole renders the MBean tree. For example, if two object
names have similar keys but their key order differs, then the corresponding MBeans will not be
created under the same node in the MBean tree.

For example, suppose you create Tri angl e MBean objects with the following names.

com sun. exanpl e: t ype=Tri angl e, si de=i soscel es, name=1
com sun. exanpl e: t ype=Tri angl e, name=2, si de=i soscel es
com sun. exanpl e: t ype=Tri angl e, si de=i soscel es, name=3

As far as the JMX technology is concerned, these objects will be treated in exactly the same
way. The order of the keys in the object name makes no difference to the JMX technology.
However, if JConsole connects to these MBeans and the default MBean tree rendering is used,

Monitoring and Management Guide

E95200-04 October 16, 2025
Copyright © 2006, 2025, Oracle and/or its affiliates. Page 16 of 25

ORACLE

Chapter 3
Starting JConsole

then the object com sun. exanpl e: t ype=Tri angl e, name=2, si de=i soscel es will end up being
created under the Tri angl e node, in a node called 2, which in turn will contain a subnode
called i soscel es. The other two isosceles triangles, name=1 and name=3, will be grouped
together under Tri angl e in a different node called i soscel es, as shown in Figure 3-13.

Figure 3-13 Example of Unexpected MBean Tree Rendering

-2 IIrplermentation
—|--\—} com.sun.example
=) Triangle

|75 scalens
|} carm,sun. manadernent
-2 java.lang
-2 jarva.utillogging

F [

To avoid this problem, you can specify the order in which the MBeans are displayed in the tree
by supplying an ordered key property list when you start JConsole at the command line. This is
achieved by setting the system property com sun. t ool s. j consol e. mbeans. keyPr opertyLi st
as shown in the following command.

% j consol e -J-Dcom sun. t ool s. j consol e. mheans. keyPropertyLi st =key[, key] *

The key property list system property takes a comma-separated list of keys, in the order of
your selection, where key must be a string representing an object name key or an empty string.
If a key specified in the list does not apply to a particular MBean, then that key will be
discarded. If an MBean has more keys than the ones specified in the key property list, then the
key order defined by the value returned by bj ect Nare. get KeyPropertyLi st String() will be
used to complete the key order defined by keyPr opert yLi st. Therefore, specifying an empty
list of keys means that JConsole will display keys in the order that they appear in the MBean's
(bj ect Narre.

So, returning to the example of the Tri angl e MBeans cited previously, you can start JConsole
by specifying the keyPropert yLi st system property, so that all your MBeans will be grouped
according to their si de key property first, and their nane key property second. To do this, start
the JConsole with the following command:

% j consol e -J-Dcom sun. t ool s.jconsol e. nheans. keyPr opert yLi st =si de, nane

Starting JConsole with this system property specified will produce the MBean tree as shown in
the Figure 3-14.

Figure 3-14 Example of MBean Tree Constructed Using keyPropertyList

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 17 of 25

ORACLE Chapter 3
Starting JConsole

+-[) IMImplementation
= -3 com.sun.example
5 -} isosceles

_ 1
Pl W3 Triangle
2

Hoeeed 1 Triangle
= K

Lo 3 Triangle
+]-[) scalene

+|-[J) com.sun.management
+J java.lang

+J jawa.util.logging

In Figure 3-14, the si de key comes first, followed by the nane key. The t ype key comes at the
end because it was not specified in the key property list, so the MBean tree algorithm applied
the original key order for the remaining keys. Consequently, the t ype key is appended at the
end, after the keys, which were defined by the keyPr opertyLi st system property.

According to the object name convention defined by the JMX Best Practices Guidelines, the
t ype key should always come first. You must start JConsole with the following system property:

% j consol e -J-Dcom sun. t ool s. j consol e. mheans. keyPr opertyLi st =t ype, si de, nane

The prior command will cause JConsole to render the MBean tree for the Triangle MBeans as
shown in the Figure 3-15.

Figure 3-15 Example of MBean Tree Constructed Respecting JMX Best Practices

+-[) IMImplementation
=7 com.sun,exanmple

=23 Triangle
=) isosceles

+,;‘| scalene
+|--[7) com.sun.management
+,;‘| jawa.lang

+J jawa.util.logging

This is comprehensible than the MBean trees as shown in Figure 3-13 and Figure 3-14.

MBean Attributes

Selecting the Attributes node displays all the attributes of an MBean. Figure 3-16 shows all
the attributes of the Threading platform MXBean.

Figure 3-16 Viewing All MBean Attributes

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 18 of 25

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

ORACLE’

B Java Monitoring & Management Console - pid: 2784 sun.tools. jconsole. JConsole

Chapter 3
Starting JConsole

| %] Connection Window Help

Cveryiew | Memory | Threads | Classes | vM Summary| MBeans|

[#-(y IMImplementation

#0175 com,sun. management

Ell.f} java.lang

308 ClassLoading

-8 Compilation

-[C5) GarbageCallector

-8 Memary

-[C5) MemoryManager

-[C5) MemoryPool

8 OperatingSystem

@ Runtinme

- Threading
---Operations

H-|5) java.util.logging

[+

0

Abtribute values

= [ax

Marne Yalue
alThreadlds long[28]
CurrentThreadCpuTime 2921875000
CurrentThreadCpuTimeSupported triue
CurrentThreadUser Time 2671875000
DaemonThreadCount 18
ObjectMonitorUsageSupported triue
PeakThreadCount 34
SynchronizerlUsageSupported trie
ThreadZontentionftonitoringEnabled False
ThreadContentionfMonitoringSupported ke
ThreadCount 28
ThreadpuTimeEnabled Lriie
ThreadCpuTimeSupported ke
TotalStartedThreadCount 2554

Selecting an individual MBean attribute from the tree then displays the attribute's value, its
MBeanAttri but el nf o, and the associated Descriptor in the right pane, as you can see in

Figure 3-17.

Figure 3-17 Viewing an Individual MBean Attribute

Java Monitoring & Management Console - pid: 3912 sun.tools. jconsole. JConsole

[£| Connection Window Help

| Overview | Memary | Threads | Classes || ¥M Summaryl MBeans |

CEX
5 X
=&

[#-5) IMImplementation

|5 java.util.logging

[25) com.sun.management

|3 javallang

#-6@ ClassLoading

L2 Compilation

[#-105) GarbageCollector

=148 Memary

-Attributes

eapMernory s

MonHeapMemar

ObjectPendingFi
~Alerbose

‘Cperations

[#-Motifications

[#-|C7) MemoryManager

[#-1.5) MemoryPool

@ OperatingSystem

[#-8 Runtime

-8 Threading

Atkribute value

Marne Walue
HeapMemorylsage |java:-:.management.upenmhean.l:umpusite...
MBeanattributeInfo

Mame Yalue
Attribute: "~
Mame HeapMemaoryllsage
Descripkion HeapMermoryUsage
Readable true
‘Writahle False
Is False A
Descripbar

Mame Yalue
Attribute:
apenType jawax . management . openmbean . CompositeTypelname=java.lang. man. ..
original Type jawa.lang.management, Memorylsage

You can display additional information about an attribute by double-clicking the attribute value,
if it appears in bold text. For example, if you click the value of the HeapMenor yUsage attribute of
the j ava. | ang. Menory MBean, then you will see a chart that looks something like Figure 3-18.

Monitoring and Management Guide
E95200-04

Copyright © 2006, 2025, Oracle and/or its affiliates.

October 16, 2025
Page 19 of 25

ORACLE’

Chapter 3
Starting JConsole

Figure 3-18 Displaying Attribute Values

Atktribuke value

Marme YWalue
Mame Yalue
HeapMemarylisage committed 23244300
inik: 0
max Geeo0l12
used 15596160

Double-clicking numeric attribute values will display a chart that plots changes in that numeric
value. For example, double-clicking the CollectionTime attribute of the Garbage Collector
MBean PS Mar ksweep will plot the time spent performing garbage collection.

You can also use JConsole to set the values of writable attributes. The value of a writable
attribute is displayed in blue. Here you can see the Memory MBean's Verbose attribute.

Figure 3-19 Setting Writable Attribute Values

Aktribuke value

=] Walue

vVerbose [alse

You can set attributes by clicking them and then editing them. For example, to enable or
disable the verbose tracing of the garbage collector in JConsole, select the Memory MXBean
in the MBeans tab and set the Ver bose attribute to t r ue or f al se. Similarly, the class loading
MXBean also has the Ver bose attribute, which can be set to enable or disable class loading
verbose tracing.

MBean Operations

Selecting the Operations node displays all the operations of an MBean. The MBean
operations appear as buttons, that you can click to call the operation._Figure 3-20 shows all the
operations of the Threading platform MXBean.

Figure 3-20 Viewing All MBean Operations

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 20 of 25

ORACLE Chapter 3
Starting JConsole

B Java Manitoring & Management Console - pid: 2784 sun.tools. jconsole. IConsole

|£| Connection Window Help = |l & x
Cwerview | Memory | Threads | Classes | Wi Summaryl IMBeans | ==
E] IMImplemnentation Cperation invocation
[#-[5) com.sun.management -
=13 java.lang Gl ’ durnpAllThreads] { po | true . pL | true |)
-8 ClassLoading
@ Compilation longl] [FindDeadiockedThreads | ()
[C5) GarbageCallector
3 Memary
[MemaryManager lang[] ’ findMaonitoreadiocked Threads] ()
|5) MemaryPoal
3 OperatingSystem long .
@ Runtime ’ getThreadCpuTime] { po | a |)
0@ Threading
: ¢ i ikeDat i =
Erribtes e iD=l] aetThreadInfa { p0 | [3 | , Pl | krue , P2 | Erue | I
rations
[F-+[7) jawa.util.logging CompasiteDatal] BT (pi | o | il | g |)
getThreadInfo ,
CompositeData ’ getThreadInfo] { pd | i} |)
Conestebael [N o Tvestivo |V)
CompositeData [get Threadinfo] (po | 0 |, nt | o |)
leme ’ getThreadUser Time] { po | a |)
void ’ resetPeakThreadCount] i

Selecting an individual MBean operation in the tree displays the button for calling the MBean
operation, and the operation's MBeanQper at i onl nf 0 and its Descriptor, as shown in

Figure 3-21.

Figure 3-21 Viewing Individual MBean Operations

Monitoring and Management Guide
E95200-04 October 16, 2025
Copyright © 2006, 2025, Oracle and/or its affiliates. Page 21 of 25

ORACLE’

B Java Monitoring & Management Console - pid: 3912 sun.tools. jconsole. JConsole

@I Connection Window Help

| Overview | Memory | Threads | Classes | M 5ummar\;| MBeans |

Chapter 3
Starting JConsole

D)X

g X

[#-|Z=) IMImplerment ation
(-1 com.sun.management
B3 java.lang

3-8 ClassLoading

8 Compilation

5 GarbageCollectar
=63 Memary

Motifications
{5) MemoaryManager
25 MemaryPoal

18 OperatingSystenm
43 Runtime

{3 Threading
[jawa.util.logging

Operation invocation
-
MBean2perationInfo

Mame Yalue
Cperation:
Mame gc
Description fala
Impact LIMERNCWN
ReturnType waid
Descripkar

MName Yalue
Operation:
openType jawvax.management, openmbean, SimpleTypeiname=java.lang. Yoid)
ariginalType wnid

MBean Notifications

|£:| Connection

Window Help

Figure 3-22 Viewing MBean Notifications

Java Monitoring & Management Console - pid: 2784 sun.tools. jconsole. JConsole

Crverview | Mematy | Threads | Classes | vm Summary| MBE&HS|

You can subscribe to receive notifications by selecting the Notifications node in the left-hand
tree, and clicking the Subscribe button that appears on the right. The number of notifications
received is displayed in brackets, and the Notifications node itself will appear in bold text when
new notifications are received. The notifications of the Memory platform MXBean are shown in

Figure 3-22.

&/ MImplementation
|7 com.sun.management

=123 java.lang

3 ClassLoading

8 Compilation

|) GarbageCollector

L3 Mematy

- Attributes

-Operations
tificakions[11]

|C5) MemaryManager

) MemoryPool

8 OperatingSystemn

8 Runtime

(-7 Threading

(-7 java.util.lagging

=

Motification buffer

Timestamp Type UserData Seqhium Message
12:08:29:453 [java.management.memory threshold.exceeded javax.man.. |11 Memory USage ExCes.. . ||,
12:08:21:156 |java.management.memory threshold. exceeded [javax.man... |10 Memory usage excee... [..|..
12:07:35:671 jawa.management . memory . threshold. exceeded |javas.man... |9 Memory usage excee... [...|..
12:07:33:890 |java.management.memory threshold.exceeded [javar.man... |3 Memory usage exces... |v.|..
12:07:33:328 [java.management.memory . threshold.exceeded [javax.man... |7 Memory USage EXcee... |..|..
12:06:45:250 |jawa.management.memory . threshold.exceeded [javas.man... |6 Memory usage excee... [...|..
12:06:11:000 |java.management.memory threshold.exceeded [javar.man... |5 Memory usage exces... |v.|..
12:06:02:890 [java.management.memory threshold.exceeded [javax.man.. |4 MEMOrY USO8 EXCEE. v |vvd|ie
12:04:55:718 |jawa.management.memory . threshold.exceeded [javas.man... |3 Memory usage excee... [...|..
12:04:23:703 |java.management.memory threshold.exceeded javar.man... |2 Memory usage exces... |v.|..
12:02:07:515 [java.management . memory threshold.exceeded javax.man.. |1 MEMOrY USO8 EXCEE. v |vid|ie

[Subscribe][Unsubscribe][Clear]

Monitoring and Management Guide

E95200-04

Figure 3-23 Viewing Individual MBean Notifications

Copyright © 2006, 2025, Oracle and/or its affiliates.

Selecting an individual MBean notification displays the MBeanNot i fi cati onl nf o in the right
pane, as shown in Figure 3-23.

October 16, 2025
Page 22 of 25

ORACLE’

Java Monitoring & Management Console - pid: 3912 sun.tools. jconsole..JConsole = __'?X_
| £ Connection Window Help =B R
| rverview | Memary || Threads | Classes | M Summary | MBeans =
[#-|=) IMImplementation MBeantatificationInfo
[#-|CT) com. sun.management
: Marne Yalug
EIE} java.lang s
- ClassLoading otification:
@ Compilation MName javax.management . Maotification
[EI GarbageColector Crescripkion Memory Motification
@ Memory Motif Types [iava.management.memory, threshold. exceeded, java.management.m. ..
[#-Attribubes
#-Operations
=) Motifications
S niEnagen:
[MemaryManager
E:' Memnrg.-'Pool Descriptor
[+ OperatingSystem
@ Runtime Mame Yalue

[) java.util.logging

-7 Threading

Chapter 3
Starting JConsole

HotSpot Diagnostic MXBean

Monitoring and Management Guide

E95200-04

Copyright © 2006, 2025, Oracle and/or its affiliates.

JConsole's MBeans tab also allows you to tell the HotSpot VM to perform a heap dump, and to
get or set a VM option using the Hot Spot Di agnosti ¢ MXBean.

Figure 3-24 Viewing the HotSpot Diagnostic MBean

October 16, 2025
Page 23 of 25

ORACLE Chapter 3
Starting JConsole

B Java Monitoring & Management Console - pid: 3912 sun.tools. jconsole. IConsole |_"'. ||t| |§|
|£| Connection ‘Window Help | | s
Overview || Memory | Threads | Classes | ¥M Summary | MBeans ==
I_T_ILJ JMImpIementatlnn || Operation invocation
B_} tDm.sUn.managemEnt , e
' EI"?J HotSpotDiagnostic | e durmnpHeap
[£-Attributes
&- |
&--dumpHeap
s-getWMOption
LoesebyMOption
| [#-[3) java.lang
| () java.util.lagging i
g 5 ;CDmpDS'tEData getWMoption | (po| Sting |)

You can perform a heap dump manually by calling the

com sun. management . Hot Spot Di agnosti ¢ MXBean's dunpHeap operation. In addition, you can
specify the HeapDunpOnQut Of Menor yEr r or Java VM option using the set VMXpt i on operation, so
that the VM performs a heap dump automatically whenever it receives an Qut Of Meror yError .

Creating Custom Tabs

In addition to the existing standard tabs, you can add your own custom tabs to JConsole, to
perform your own monitoring activities. The JConsole plug-in API provides a mechanism by
which you can, for example, add a tab to access your own application's MBeans. The
JConsole plug-in API defines the com sun. t ool s. j consol e. JConsol ePl ugi n abstract class
that you can extend to build your custom plug-in.

As stated previously, your plug-in must extend JConsol ePl ugi n, and implement the

JConsol ePl ugi nget Tabs and newSwi ng\Wr ker methods. The get Tabs method returns either the
list of tabs to be added to JConsole, or an empty list. The newSwi ng\Wr ker method returns the
Swi ngWr ker to be responsible for the plug-in's GUI update.

Your plug-in must be provided in a Java archive (JAR) file that contains a file named META- | NF/
servi ces/ com sun. tool s.jconsol e. JConsol ePl ugi n. This JConsol ePl ugi n file itself contains
a list of all the fully qualified class names of the plug-ins that you want to add as new JConsole
tabs. JConsole uses the service-provider loading facility to look up and load the plug-ins. You
can have multiple plug-ins, with one entry per plug-in in the JConsol ePl ugi n.

To load the new custom plug-ins into JConsole, start JConsole with the following command:

% jconsol e -pluginpath plugin-path

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 24 of 25

ORACLE Chapter 3
Starting JConsole

In the previous command, pl ugi n- pat h specifies the paths to the JConsole plug-ins to be
looked up. These paths can either be to directory names or to JAR files, and multiple paths can
be specified, using your platform’'s standard separator character.

An example JConsole plug-in is provided with the Java SE 11 platform. The JTop application is
a JDK demonstration (demo) that shows the CPU usage of all threads running in the
application. This demo is useful for identifying threads that have high CPU consumption, and it
has been updated to be used as a JConsole plug-in as well as a standalone GUI. JTop is
bundled with the Java SE 11 platform, as a demo application. You can run JConsole with the
JTop plug-in by running the following command:

% JDK_HOVE/ bi n/j consol e -pl ugi npath JDK_HOVE/ dero/ managenent / JTop/ JTop. j ar

If you connect to this instance of JConsole, then you will see that the JTop tab has been added,
showing CPU usage of the various threads running.

Figure 3-25 Viewing a Custom Plug-in Tab

Java Monitoring & Management Console - pid: 3160 sun.tools. jconsole..JConsole -pluginpath;...

|£| Conmection wWindow Help — & x
Cwerview | Memory | Threads | Classes | WM Summary | MBeans JTD [ﬂ“

Threadmame ... cpu(sec) ... State .. i

| A T-EventCueus-0 29,0000 | WATTING

| AT-Windows 2.0000 | RUNMNABLE

RMI TZP Connection(5)-129, 157,209,222 0,0000 | RUMMNABLE

RMI TCP Connection{4)-129, 157,209,222 0,0000 | RUMMNABLE

RMI TCP Connection(6)-129, 157,209,222 0,0000 | RUMMNABLE

Attach Listener 0,0000 | RUMMNABLE

Destroy Jawakt 0.0000 | RUNMAEBLE

‘Worker-MBeans-3160 0,0000 | WAITING

Reference Handler 0.0000 | WAITING

Finalizer 0,0000 | WAITING

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 25 of 25

Using the Platform MBean Server and
Platform MXBeans

This topic introduces the MBean server and the MXBeans that are provided as part of the Java
Platform, Standard Edition (Java SE), which can be used for monitoring and management
purposes. Java Management Extensions (JMX) technology MBeans and MBean servers were
introduced briefly in Overview of Java SE Monitoring and Management. See Introduction to
JMX Technology in Java Platform, Standard Edition Java Management Extensions Guide.

Using the Platform MBean Server

An MBean server is a repository of MBeans that provides management applications access to
MBeans. Applications do not access MBeans directly, but instead access them through the
MBean server using their unique Gbj ect Nane class. An MBean server implements the interface
j avax. managenent . MBeanSer ver .

The platform MBean server was introduced in Java SE 5.0, and is an MBean server that is built
into the Java Virtual Machine (Java VM). The platform MBean server can be shared by all
managed components that are running in the Java VM. You access the platform MBean server
using the j ava. | ang. managenent . Managenent Fact ory method get Pl at f or mvBeanSer ver . Of
course, you can also create your own MBean server using the

j avax. managenent . MBeanSer ver Fact ory class. However, there is generally no need for more
than one MBean server, so using the platform MBean server is recommended.

Accessing Platform MXBeans

A platform MXBean is an MBean for monitoring and managing the Java VM. Each MXBean
encapsulates a part of the VM functionality. A full list of the MXBeans that are provided with the
platform is provided in Table 1-1 - Platform MXBeans.

A management application can access platform MXBeans in three different ways:

« Direct access from the Managenent Fact ory class
« Direct access from an MXBean proxy

* Indirect access from the MBeanSer ver Connecti on class

Accessing Platform MXBeans Using the ManagementFactory Class

An application can make direct calls to the methods of a platform MXBean that is running in the
same Java VM as itself. To make direct calls, you can use the static methods of the

Managenent Fact ory class. The Managenent Fact ory class has accessor methods for each of
the different platform MXBeans, such as, get C assLoadi ngMXBean(),

get Gar bageCol | ect or MXBeans() , get Runti neMXBean(), and so on. In case there are more
than one platform MXBean, the method returns a list of the platform MXBeans found.

For example, Example 4-1 uses the static method of Managenent Fact ory to get the platform
MXBean Runt i meMXBean, and then gets the vendor name from the platform MXBean.

Monitoring and Management Guide
E95200-04 October 16, 2025
Copyright © 2006, 2025, Oracle and/or its affiliates. Page 1 of 8

ORACLE Chapter 4
Accessing Platform MXBeans

Example 4-1 Accessing a Platform MXBean Using ManagementFactory Class

Runt i meMXBean nxbean = Management Fact ory. get Runt i meMXBean() ;
String vendor = mxbean. get VnVendor ();

Accessing Platform MXBeans Using an MXBean Proxy

An application can also call platform MXBean methods using an MXBean proxy. To do so, you
must construct an MXBean proxy instance that forwards the method calls to a given MBean
server by calling the static method Managenent Fact ory. newPl at f or mMvXBeanPr oxy() . An
application typically constructs a proxy to obtain remote access to a platform MXBean of
another Java VM.

For example, Example 4-2 performs exactly the same operation as Example 4-1, but this time
it uses an MXBean proxy.

Example 4-2 Accessing a Platform MXBean Using an MXBean Proxy

MBeanSer ver Connecti on nbs;

/1 Get a MBean proxy for RuntineMXBean interface
Runt i meMXBean proxy =

Managenent Fact ory. newPl at f or mXBeanPr oxy(nbs, Management Fact ory. RUNTI ME_MXBEAN_
NAME, Runt i meMXBean. cl ass);

/] Get standard attribute "VnVendor"

String vendor = proxy. getVnmVendor();

Accessing Platform MXBeans Using the MBeanServerConnection Class

An application can indirectly call platform MXBean methods through an

MBeanSer ver Connect i on interface that connects to the platform MBean server of another
running Java VM. You use the MBeanSer ver Connect i on class get Attri but e() method to get
an attribute of a platform MXBean by providing the MBean's bj ect Nane and the attribute
name as parameters.

For example, Example 4-3 performs the same job as Example 4-1 and Example 4-2, but it
uses an indirect call through MBeanSer ver Connect i on.

Example 4-3 Accessing a Platform MXBean Using the MBeanServerConnection Class
MBeanSer ver Connecti on nbs;
try {
(bj ect Name onane = new Cbj ect Nane(Managenent Fact ory. RUNTI ME_MXBEAN_NAME) ;
/] Get standard attribute "Vmvendor"
String vendor = (String) nbs.getAttribute(onane, "VnVendor");
} catch (....) {

/1 Catch the exceptions thrown by CbjectNane constructor
/1 and MBeanServer.getAttribute nethod

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 2 of 8

ORACLE Chapter 4
Using Oracle JDK's Platform Extension

Using Oracle JDK's Platform Extension

Java VMs can extend the management interface by defining interfaces for platform-specific
measurements and management operations. The static factory methods in the
Managenent Fact ory class will return the MBeans with the platform extension.

The com sun. managenent package contains Oracle JDK's platform extensions. The following
sections provide examples of how to access a platform-specific attribute from Oracle JDK's
implementation of the Qper at i ngSyst enMXBean interface.

Accessing MXBean Attributes Directly

Example 4-4 illustrates direct access to one of Oracle JDK's MXBean interfaces.

Example 4-4 Accessing an MXBean Attribute Directly

com sun. managenent . Oper at i ngSyst emMXBean nxbean =
(com sun. nanagenent . Oper at i ngSyst emviXBean)
Managenent Fact ory. get Oper ati ngSyst emvXBean() ;

/] Get the nunber of processors
int nunProcessors = nxbean. get Avai | abl eProcessors();

/] Get the Oracle JDK-specific attribute Process CPU tinme
l ong cpuTi me = mxbean. get ProcessCpuTi me();

Accessing MXBean Attributes Using MBeanServerConnection

Example 4-5 illustrates access to one of Oracle JDK's MXBean interfaces using the
MBeanSer ver Connect i on class.

Example 4-5 Accessing an MXBean Attribute Using MBeanServerConnection

MBeanSer ver Connecti on nbs;

/1 Connect to a running Java VM (or itself) and get MBeanServer Connection
/1 that has the MXBeans registered in it

try {
/'l Assumi ng the QperatingSystem MXBean has been registered in nbs

(bj ect Name onane = new
bj ect Narme(Managenent Fact ory. OPERATI NG_SYSTEM MXBEAN NAME) ;

Il Get standard attribute "Nane"
String vendor = (String) nbs.getAttribute(onane, "Nane");

[l Check if this MXBean contains Oracle JDK s extension

if (nbs.islnstanceCf(onane, "com sun. managenent. QperatingSyst enMXBean")) {
/1 Get platformspecific attribute "ProcessCpuTi me"
long cpuTime = (Long) nbs.getAttribute(oname, "ProcessCpuTine");

}
} catch (....) {

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 3 of 8

ORACLE’

Chapter 4
Monitoring Thread Contention and CPU Time

/1 Catch the exceptions thrown by CbjectNane constructor
/1 and MBeanServer mnethods

Monitoring Thread Contention and CPU Time

The Thr eadMXBean platform MXBean provides support for monitoring thread contention and
thread central processing unit (CPU) time.

The Oracle JDK's HotSpot VM supports thread contention monitoring. You use the

Thr eadMXBean. i sThr eadCont ent i onMbni t ori ngSupport ed() method to determine if a Java VM
supports thread contention monitoring. Thread contention monitoring is disabled by default.
Use the set Thr eadCont ent i onhbni t or i ngEnabl ed() method to enable it.

The Oracle JDK's HotSpot VM supports the measurement of thread CPU time on most
platforms. The CPU time provided by this interface has nanosecond precision but not
necessarily nanosecond accuracy.

You use the i sThreadCpuTi meSupport ed() method to determine if a Java VM supports the
measurement of the CPU time for any thread. You use i sCur rent Thr eadCpuTi neSupport ed()
to determine if a Java VM supports the measurement of the CPU time for the current thread. A
Java VM that supports CPU time measurement for any thread will also support that for the
current thread.

A Java VM can disable thread CPU time measurement. You use the

i sThreadCpuTi neEnabl ed() method to determine if thread CPU time measurement is enabled.
You use the set ThreadCpuTi meEnabl ed() method to enable or disable the measurement of
thread CPU time.

Managing the Operating System

The Qper at i ngSyst emplatform MXBean allows you to access certain operating system
resource information, such as the following:

* Process CPU time
« Amount of total and free physical memory

e Amount of committed virtual memory (that is, the amount of virtual memory guaranteed to
be available to the running process)

« Amount of total and free swap space
e Number of open file descriptors (only for Solaris, Linux, or macOS platforms).

When the Operating System MXBean in the MBeans tab is selected in JConsole, you see all
the attributes and operations including the platform extension. You can monitor the changes of
a numerical attribute over time by double-clicking the value field of the attribute.

Logging Management

The Java SE platform provides a special MXBean for logging purposes, the Loggi ngMXBean
interface.

The Loggi ngMXBean interface enables you to perform the following tasks:

e Get the name of the log level associated with the specified logger

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 4 of 8

ORACLE

Detecting

Chapter 4
Detecting Low Memory

* Get the list of currently registered loggers
* Get the name of the parent for the specified logger
» Set the specified logger to the specified new level

The unique Cbj ect Nane of the Loggi ngMXBean is j ava. uti | .| oggi ng: t ype=Loggi ng. This
object name is stored in the LogManager . LOGG NG_MXBEAN_NAME field.

There is a single global instance of the Loggi ngMXBean interface, which you can get by calling
LogManager . get Loggi ngMXBean() .

The Loggi ngMXBean interface defines a Logger Nanmes attribute describing the list of logger
names. To find the list of loggers in your application, you can select the Loggi ng MXBean
interface under the j ava. uti | .| oggi ng domain in the MBeans tab, and double-click the value
field of the Logger Nanes attribute.

The Loggi ng MXBean interface also supports two operations:

e get LoggerLevel : Returns the log level of a given logger
e setloggerLevel : Sets the log level of a given logger to a new level

These operations take a logger name as the first parameter. To change the level of a logger,
enter the logger name in the first parameter and the name of the level that it should be set to in
the second parameter of the set Logger Level operation.

Low Memory

Memory use is an important attribute of the memory system. It can be indicative of the
following problems:

* Excessive memory consumption by an application
* An excessive workload imposed on the automatic memory management system
« Potential memory leakages

There are two kinds of memory thresholds that you can use to detect low memory conditions: a
usage threshold and a collection usage threshold. You can detect low memory conditions using
either of these thresholds with polling or threshold notification.

Memory Thresholds

A memory pool can have two kinds of memory thresholds: a usage threshold and a collection
usage threshold. Either one of these thresholds may not be supported by a particular memory
pool. The values for the usage threshold and collection usage threshold can both be set using
the MBeans tab in JConsole.

Usage Threshold

The usage threshold is a manageable attribute of some memory pools. It enables you to
monitor memory use with a low overhead. Setting the threshold to a positive value enables a
memory pool to perform usage threshold checking. Setting the usage threshold to zero
disables usage threshold checking. The default value is supplied by the Java VM.

A Java VM performs usage threshold checking on a memory pool at the most appropriate time,
typically during garbage collection. Each memory pool increments a usage threshold count
whenever the usage crosses the threshold.

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 5 of 8

ORACLE

Chapter 4
Detecting Low Memory

You use the i sUsageThr eshol dSupported() method to determine whether a memory pool
supports a usage threshold, because a usage threshold is not appropriate for some memory
pools. For example, in a generational garbage collector (such as the one in the HotSpot VM;
see Garbage Collection), most of the objects are allocated in the young generation, from the
Eden memory pool. The Eden pool is designed to be filled up. Garbage collecting the Eden
memory pool will free most of its memory space because it is expected to contain mostly short-
lived objects that are unreachable at garbage collection time. So, it is not appropriate for the
Eden memory pool to support a usage threshold.

Collection Usage Threshold

The collection usage threshold is a manageable attribute of some garbage-collected memory
pools. After a Java VM has performed garbage collection on a memory pool, some memory in
the pool will still be in use. The collection usage threshold allows you to set a value for this
memory. You use the i sCol | ecti onUsageThr eshol dSupported() method of the

Menor yPool MXBean interface to determine if the pool supports a collection usage threshold.

A Java VM may check the collection usage threshold on a memory pool when it performs
garbage collection. Set the collection usage threshold to a positive value to enable checking.
Set the collection usage threshold to zero (the default) to disable checking.

The usage threshold and collection usage threshold can be set in the MBeans tab of JConsole.

Memory MXBean

The various memory thresholds can be managed using the platform Memor yMXBean. The
Menor yMXBean defines the following four attributes:

e HeapMenoryUsage: A read-only attribute describing the current heap memory usage.
e NonHeapMenor yUsage: A read-only attribute describing nonheap memory usage.

e (bj ect Pendi ngFi nal i zat i onCount : A read-only attribute describing the number of objects
pending for finalization.

e Verbose: A Boolean attribute describing the Garbage Collection (GC) verbose tracing
setting. This can be set dynamically. The GC verbose traces will be displayed at the
location specified when you start the Java VM. The default location for GC verbose output
of the Hotspot VM is st dout .

The Memory MXBean supports one operation, gc, for explicit garbage collection requests.

Details of the Memory MXBean interface are defined in the
j ava. | ang. managenent . Menor yMXBean specification.

Memory Pool MXBean

The Menor yPool MXBean platform MXBean defines a set of operations to manage memory
thresholds.

e get UsageThreshol d()

» setUsageThreshol d(1 ong threshol d)

e isUsageThreshol dExceeded()

e isUsageThreshol dSupport ed()

e getCol | ecti onUsageThreshol d()

e setCol |l ectionUsageThreshol d(Iong threshol d)

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE

Polling

Chapter 4
Detecting Low Memory

e isCollectionUsageThreshol dSupported()
e isCollectionUsageThreshol dExceeded()

Each memory pool may have two kinds of memory thresholds for low memory detection
support: a usage threshold and a collection usage threshold. Either one of these thresholds
might not be supported by a particular memory pool. For more information, see the API
reference documentation for the Menor yPool MXBean class.

An application can continuously monitor its memory usage by calling either the get Usage()
method for all memory pools or the i sUsageThr eshol dExceeded() method for memory pools
that support a usage threshold.

Example 4-6 has a thread dedicated to task distribution and processing. At every interval, it
determines whether it should receive and process new tasks based on its memory usage. If
the memory usage exceeds its usage threshold, then it redistributes outstanding tasks to other
VMs and stops receiving new tasks until the memory usage returns below the threshold.

Example 4-6 Using Polling

pool . set UsageThr eshol d(nyThr eshol d) ;

bool ean | owmvenory = fal se;
while (true) {
i f (pool.isUsageThreshol dExceeded()) {
| owMerory = true;
redistributeTasks(); // redistribute tasks to other VMs
st opRecei vi ngTasks(); // stop receiving new tasks
} else {
if (lowvenory) { // resune receiving tasks
[owMerory = fal se;
resuneRecei vi ngTasks();

}

/'l processing outstanding task

}...

/1 sleep for sonetime
try {
Thread. sl eep(sonetime);
} catch (InterruptedException e) {

}...

Example 4-6 does not differentiate the case in which the memory usage has temporarily
dropped below the usage threshold from the case in which the memory usage remains above
the threshold between two iterations. You can use the usage threshold count returned by the
get UsageThr eshol dCount () method to determine if the memory usage has returned below the
threshold between two polls.

To test the collection usage threshold instead, you use the
i sCol | ecti onUsageThreshol dSupported(),isCollectionThreshol dExceeded() and
get Col | ecti onUsageThr eshol d() methods in the same way as shown in the Example 4-6.

Monitoring and Management Guide

E95200-04

October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 7 of 8

ORACLE Chapter 4
Detecting Low Memory

Threshold Notifications

When the Menor yMXBean interface detects that a memory pool has reached or exceeded its
usage threshold, it emits a usage threshold exceeded notification. The Menmor yMXBean interface
will not issue another usage threshold exceeded notification until the usage has fallen below
the threshold and then exceeded it again. Similarly, when the memory usage after garbage
collection exceeds the collection usage threshold, the Menor yMXBean interface emits a
collection usage threshold exceeded notification.

Example 4-7 implements the same logic as Example 4-6, but uses usage threshold notification
to detect low memory conditions. Upon receiving a notification, the listener notifies another
thread to perform actions such as redistributing outstanding tasks, refusing to accept new
tasks, or allowing new tasks to be accepted again.

In general, you should design the handl eNot i fi cati on method to do a minimal amount of
work, to avoid causing delay in delivering subsequent notifications. You should perform time-
consuming actions in a separate thread. As multiple threads can concurrently call the
notification listener, the listener should synchronize the tasks that it performs properly.

Example 4-7 Using Threshold Notifications

cl ass MyListener inplenents javax.managenent. NotificationListener {
public void handl eNotification(Notification notification, Qbject handback)
{
String notifType = notification.getType();
if (notifType.equal s(MenoryNotificationlnfo. MEMORY_THRESHOLD EXCEEDED)) {
Il potential |ow nenory, redistribute tasks to other VMs & stop
recei ving new tasks.
[owMerory = true;
noti f yAnot her Thr ead(| owMenory);

}
}
}

/1 Register MyListener with MenoryMXBean

Menor yMXBean nbean = Managenent Fact ory. get Menor yMXBean() ;
NotificationEmtter emitter = (NotificationEmtter) nbean;
M/Li stener |istener = new MyListener();

em tter.addNotificationListener(listener, null, null);

Assuming this memory pool supports a usage threshold, you can set the threshold to some
value (representing a number of bytes), above which the application will not accept new tasks.

pool . set UsageThr eshol d(nyThr eshol d) ;

After this point, usage threshold detection is enabled and MyLi st ener class will handle
notification.

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 8 of 8

Java Discovery Protocol (JDP)

The Java Discovery Protocol (JDP) is a protocol that enables technologies, in particular, Java
Mission Control and Java Flight Recorder, to discover manageable JVMs across the same
network subnet.

A manageable JVM is one that has the Java Management Extensions (JMX) agent running.
JDP is multicast-based and works like a beacon; it broadcasts the JMX service URL (see the
class JMXServiceURL) required to connect to the external IMX agent. This enables
technologies to detect JVMs that have failed or are no longer available for monitoring.

Enabling and Configuring JDP

To enable JDP, specify the following option at the command line when starting a Java
application:

- Dcom sun. managenent . j mxr enot e. aut odi scovery=true

@® Note

Enabling JDP does not affect IMX security. To enable and configure JMX security, see
Monitoring and Management Using JMX Technology.

Table 6-1 describes other properties that you may set to configure JDP:

Table 5-1 JDP Properties

__|
Property Description Default Value

- Enables autodiscovery (JDP) on false
Dcom sun. managenent . j mkrenpt the network subnet
e. aut odi scovery

- Specifies the broadcast interval in 5
Dcom sun. managenent . j dp. paus seconds

e

-Dcom sun. managenent . jdp.ttl Time-to-live in seconds for 1
autodiscovery packets

- Multicast address to send 224.0.23.178

Dcom sun. managenent . j dp. addr autodiscovery packets

ess

- Multicast port to send 7095

Dcom sun. managenent . j dp. port autodiscovery packets. Enables
autodiscovery even if the
com sun. management . j mxr enmo
t e. aut odi scovery property has
not been set.

- Broadcast name of the JVM No default
Dcom sun. managenent . j dp. nane

Monitoring and Management Guide
E95200-04 October 16, 2025
Copyright © 2006, 2025, Oracle and/or its affiliates. Page 1 of 2

https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/remote/JMXServiceURL.html

ORACLE
Chapter 5

Table 5-1 (Cont.) JDP Properties
]

Property Description Default Value

- Address of source interface to Automatically assigned
Dcom sun. managenent . j dp. sour use for broadcast

ce_addr

Monitoring and Management Guide
E95200-04 October 16, 2025

Copyright © 2006, 2025, Oracle and/or its affiliates. Page 2 of 2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Overview of Java SE Monitoring and Management
	Key Monitoring and Management Features
	Java Virtual Machine Instrumentation
	Monitoring and Management API
	Monitoring and Management Tools
	Java Management Extensions Technology
	What Are MBeans?
	MBean Server
	Creating and Registering MBeans
	Instrumenting Applications

	Platform MXBeans
	Platform MBean Server

	2 Monitoring and Management Using JMX Technology
	Setting System Properties
	Enabling the Ready-to-Use Management
	Local Monitoring and Management
	Local Monitoring and Management Using JConsole

	Remote Monitoring and Management
	Using Password Authentication
	Using LDAP Authentication
	Using File-Based Password Authentication
	To Set Up a Single-User Environment
	To Set Up a Multiple-User Environment

	Disabling Password Authentication
	Using SSL
	Enabling RMI Registry Authentication
	Enabling SSL Client Authentication
	Disabling SSL
	Disabling Security
	Remote Monitoring with JConsole
	Remote Monitoring with JConsole with SSL Enabled

	Using Password and Access Files
	Password Files
	Access Files

	Remote Monitoring with JConsole with SSL Disabled
	Ready-to-Use Monitoring and Management Properties
	Configuration Errors

	Connecting to the JMX Agent Programmatically
	Setting Up Monitoring and Management Programmatically
	Mimicking Ready-to-Use Management Using the JMX Remote API
	Example of Mimicking Ready-to-Use Management
	Monitoring Applications Through a Firewall
	Using an Agent Class to Instrument an Application
	Creating an Agent Class to Instrument an Application

	3 Using JConsole
	Starting JConsole
	Command Syntax
	Setting Up Local Monitoring
	Setting Up Remote Monitoring
	Setting Up Secure Remote Monitoring

	Connecting to a JMX Agent
	Connecting JConsole to a Local Process
	Connecting JConsole to a Remote Process
	Connecting Using a JMX Service URL

	Presenting the JConsole Tabs
	Viewing Overview Information
	Saving Chart Data
	Monitoring Memory Consumption
	Heap and Nonheap Memory
	Memory Pools and Memory Managers
	Garbage Collection
	Monitoring Thread Use
	Detecting Deadlocked Threads

	Monitoring Class Loading
	Viewing VM Information
	Monitoring and Managing MBeans
	Constructing the MBean Tree
	MBean Attributes
	MBean Operations
	MBean Notifications
	HotSpot Diagnostic MXBean

	Creating Custom Tabs

	4 Using the Platform MBean Server and Platform MXBeans
	Using the Platform MBean Server
	Accessing Platform MXBeans
	Accessing Platform MXBeans Using the ManagementFactory Class
	Accessing Platform MXBeans Using an MXBean Proxy
	Accessing Platform MXBeans Using the MBeanServerConnection Class

	Using Oracle JDK's Platform Extension
	Accessing MXBean Attributes Directly
	Accessing MXBean Attributes Using MBeanServerConnection

	Monitoring Thread Contention and CPU Time
	Managing the Operating System
	Logging Management
	Detecting Low Memory
	Memory Thresholds
	Usage Threshold
	Collection Usage Threshold
	Memory MXBean
	Memory Pool MXBean

	Polling
	Threshold Notifications

	5 Java Discovery Protocol (JDP)

