Java Platform, Standard Edition
Tools Reference

Release 11
E95074-11
April 2024

ORACLE"

Java Platform, Standard Edition Tools Reference, Release 11
E95074-11
Copyright © 1993, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation,” or “limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

Preface

Audience Vi

Documentation Accessibility Vi

Related Documents Vi

Conventions Vi
1 Tools and Commands Reference

2 Main Tools to Create and Build Applications

javac 2-1
Annotation Processing 2-23
Searching for Types 2-24

javap 2-25

javadoc 2-28

java 2-43
java Command-Line Argument Files 2-91
Code Heap State Analytics 2-93
Enable Logging with the JVM Unified Logging Framework 2-94
Validate Java Virtual Machine Flag Arguments 2-105
Large Pages 2-105
Application Class Data Sharing 2-107
Performance Tuning Examples 2-113
Exit Status 2-113

jar 2-114

jlink 2-118

jmod 2-123

jdeps 2-128

jdeprscan 2-133

ORACLE iii

3

Language Shell

jshell 3-1
Security Tools and Commands

keytool 4-1
jarsigner 4-38
Kinit 4-56
klist 4-58
ktab 4-59
Remote Method Invocation (RMI) Tools and Commands

rmic 5-1
rmiregistry 5-4
rmid 5-5
serialver 5-10
Java Deployment Tools and Commands

pack200 6-1
unpack200 6-5
Monitoring Tools and Commands

jconsole 7-1
ips 7-2
jstat 7-6
jstatd 7-14
Java Accessibility Utilities and Commands

jaccessinspector 8-1
jaccesswalker 8-5
Troubleshooting Tools and Commands

jcmd 9-1
jdb 9-12
jhsdb 9-15
jinfo 9-19

ORACLE"

jmap 9-20

jstack 9-22
10 Script Commands

iis 10-1

jrunscript 10-4
ORACLE

Preface

Preface

Audience

The Java Platform, Standard Edition (Java SE) Command Reference describes the
valid options and arguments for Java SE commands. In many cases, examples are
included to show correct usage.

This document is intended for Java SE developers who want to use the tools and
commands provided in the JDK.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see JDK 11 Documentation.

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/java/javase/11/

Tools and Commands Reference

ORACLE

The JDK tools and their commands enable developers to handle development tasks such as
compiling and running a program, packaging source files into a Java Archive (JAR) file,
applying security policies to a JAR file, and more.

The tools and commands reference topic lists and describes the Java Development Kit (JDK)
tools. They're grouped into the following sections based on the related functions that they
perform. Details about the tools and the commands that you use to run them are contained in
the corresponding sections of this guide.

Main Tools
The following foundation tools and commands let you create and build applications:

e javac: You can use the javac tool and its options to read Java class and interface
definitions and compile them into bytecode and class files.

* javap: You use the javap command to disassemble one or more class files.

» javadoc: You use the javadoc tool and its options to generate HTML pages of API
documentation from Java source files.

e java: You can use the java command to launch a Java application.

e jar: You can use the jar command to create an archive for classes and resources, and to
manipulate or restore individual classes or resources from an archive.

e jlink: You can use the j1ink tool to assemble and optimize a set of modules and their
dependencies into a custom runtime image.

* jmod: You use the jmod tool to create JMOD files and list the content of existing JIMOD
files.

* jdeps: You use the jdeps command to launch the Java class dependency analyzer.

» jdeprscan: You use the jdeprscan tool as a static analysis tool that scans a jar file (or
some other aggregation of class files) for uses of deprecated API elements.

Language Shell
The following tool gives you an interactive environment for trying out the Java language:

e jshell: You use the jshell tool to interactively evaluate declarations, statements, and
expressions of the Java programming language in a read-eval-print loop (REPL).

Security Tools

The following security tools set security policies on your system and create applications that
can work within the scope of security policies set at remote sites:

» keytool: You use the keytool command and options to manage a keystore (database) of
cryptographic keys, X.509 certificate chains, and trusted certificates.

e jarsigner: You use the jarsigner tool to sign and verify Java Archive (JAR) files.

1-1

Chapter 1

The following tools obtain, list, and manage Kerberos tickets on Windows:

» Kkinit: You use the kinit tool and its options to obtain and cache Kerberos ticket-
granting tickets.

» Kklist: You use the k1ist tool to display the entries in the local credentials cache
and key table.

e ktab: You use the ktab tool to manage the principal names and service keys
stored in a local key table.

Remote Method Invocation (RMI) Tools

The following tools enable creating applications that interact over the Web or other
network:

* rmic: You use the rmic compiler to generate stub and skeleton class files using
the Java Remote Method Protocol (JRMP).

° rmiregistry: You use the rmiregistry command on UNIX-based systems to
create and start a remote object registry on the specified port on the current host.

e rmid: You use the rmid command to start the activation system daemon that
enables objects to be registered and activated in a Java Virtual Machine (JVM).

» serialver: You use the serialver command to return the serialVersionUID for
one or more classes in a form suitable for copying into an evolving class.

Java Deployment Tools

The following utilities let you deploy Java applications:

< Note:

pack 200 and unpack200 have been deprecated and might be removed in a
future JDK release.

» pack200: You use the pack200 command to transform a Java Archive (JAR) file
into a compressed pack200 file with the Java gzip compressor.

* unpack200: You use the unpack200 command to transform a packed file into a
JAR file for web deployment.

Monitoring Tools
The following tools let you monitor performance statistics:

e jconsole: You use the jconsole command to start a graphical console to monitor
and manage Java applications.

¢ Note:

The following experimental tools are unsupported and should be used with
that understanding. They may not be available in future JDK versions.

ORACLE 1-2

Chapter 1

* jps: Experimental You use the jps command to list the instrumented JVMs on the target
system.

* jstat: Experimental You use the jstat command to monitor JVM statistics.
- jstatd: Experimental You use the jstatd command to monitor the creation and
termination of instrumented Java HotSpot VMs.

Java Accessibility Utilities
The following utilities let you check the accessibility of Java objects:

* jaccessinspector: You use jaccessinspector to examine accessible information about
objects in the Java Virtual Machine that use the Java Accessibility Utilities API.

* jaccesswalker: You use jaccesswalker to navigate through the component trees in a
particular Java Virtual Machine and presents the hierarchy in a tree view.

Troubleshooting Tools
The following tools let you perform specific troubleshooting tasks:

e jemd: You use the jcmd utility to send diagnostic command requests to a running Java
Virtual Machine (JVM).

e jdb: You use the jdb command and its options to find and fix bugs in Java platform
programs.

* jhsdb: You use the jhsdb tool to attach to a Java process or to a core dump from a
crashed Java Virtual Machine (JVM).

Note:

The following experimental tools are unsupported and should be used with that
understanding. They may not be available in future JDK versions. Some of these
tools aren’t currently available on Windows platforms.

» jinfo: Experimental You use the jinfo command to generate Java configuration
information for a specified Java process. This command is experimental and
unsupported. For core files use jhsdb jinfo.

* jmap: Experimental You use the jmap command to print details of a specified process.
This command is experimental and unsupported. For core files use jhsdb jmap.

« jstack: Experimental You use the jstack command to print Java stack traces of Java
threads for a specified Java process. This command is experimental and unsupported.
For core files use jhsdb jstack.

Scripting Tools

The following tools let you run scripts that interact with the Java platform:

ORACLE 1-3

Chapter 1

< Note:

The Nashorn JavaScript script engine, APIs, and the jjs tool have been
deprecated and might be removed in a future JDK release.

* jjs: You use the jjs command-line tool to invoke the Nashorn engine.

" Note:

The following experimental tool is unsupported and should be used with that
understanding. It may not be available in future JDK versions.

e jrunscript: Experimental You use the jrunscript command to run a command-
line script shell that supports interactive and batch modes.

ORACLE 1-4

Main Tools to Create and Build Applications

javac

ORACLE

You can use the foundation JDK tools and commands to create and build applications.

The following sections describe the tools and commands that you can use to create and build
applications:

e javac: You can use the javac tool and its options to read Java class and interface
definitions and compile them into bytecode and class files.

* javap: You use the javap command to disassemble one or more class files.

» javadoc: You use the javadoc tool and its options to generate HTML pages of API
documentation from Java source files.

* java: You can use the java command to launch a Java application.

e jar: You can use the jar command to create an archive for classes and resources, and to
manipulate or restore individual classes or resources from an archive.

e jlink: You can use the j1ink tool to assemble and optimize a set of modules and their
dependencies into a custom runtime image.

e jmod: You use the jmod tool to create JMOD files and list the content of existing JIMOD
files.

* jdeps: You use the jdeps command to launch the Java class dependency analyzer.

» jdeprscan: You use the jdeprscan tool as a static analysis tool that scans a jar file (or
some other aggregation of class files) for uses of deprecated API elements.

You can use the javac tool and its options to read Java class and interface definitions and
compile them into bytecode and class files.

Synopsis

javac [options] [sourcefiles]

options

Command-line options. See Overview of javac Options.

sourcefiles
One or more source files to be compiled (such as MyClass.java) or processed for
annotations (such as MyPackage .MyClass).

Description

The javac command reads class and interface definitions, written in the Java programming
language, and compiles them into bytecode class files. The javac command can also
process annotations in Java source files and classes.

2-1

ORACLE

Chapter 2
javac

A launcher environment variable, JDK_JAVAC OPTIONS, was introduced in JDK 9 that
prepended its content to the command line to javac . See Using
JDK_JAVAC_OPTIONS Environment Variable.

There are two ways to pass source code file names to javac.

* For a small number of source files, you can list the file names on the command
line.

* For alarge number of source files, you can use the @ filename option on the javac
command line to include a file that lists the source file names. See Standard
Options for a description of the option and javac Command-Line Argument Files
for a description of javac argument files.

Source code file names must have .java suffixes, class file names must have .class
suffixes, and both source and class files must have root names that identify the class.
For example, a class called MyClass would be written in a source file called
MyClass.java and compiled into a bytecode class file called MyClass.class.

Inner class definitions produce additional class files. These class files have names that
combine the inner and outer class names, such as MyClass$MyInnerClass.class.

You should arrange the source files in a directory tree that reflects their package tree.
For example:

* Oracle Solaris, Linux, and macOS: If all of your source files are in /workspace,
then put the source code for com.mysoft.mypack.MyClass in /workspace/com/
mysoft/mypack/MyClass.java

* Windows: If all of your source files are in \workspace, then put the source code
for com.mysoft.mypack.MyClass in
\workspace\com\mysoft\mypack\MyClass. java

By default, the compiler puts each class file in the same directory as its source file.
You can specify a separate destination directory with the -d option described in
Standard Options.

Programmatic Interface

The javac command supports the new Java Compiler API defined by the classes and
interfaces in the javax.tools package.

Implicitly Loaded Source Files

To compile a set of source files, the compiler might need to implicitly load additional
source files. See Searching for Types. Such files are currently not subject to
annotation processing. By default, the compiler gives a warning when annotation
processing occurs and any implicitly loaded source files are compiled. The -implicit
option provides a way to suppress the warning.

Using JDK_JAVAC_OPTIONS Environment Variable

The content of the JDK_JAVAC OPTIONS environment variable, separated by white-
spaces () or white-space characters (\n, \t, \r, or \f) is prepended to the command
line arguments passed to javac as a list of arguments.

The encoding requirement for the environment variable is the same as the javac
command line on the system. JDK_JAVAC OPTIONS environment variable content is
treated in the same manner as that specified in the command line.

2-2

Chapter 2
javac

Single quotes (') or double quotes (") can be used to enclose arguments that contain
whitespace characters. All content between the open quote and the first matching close
guote are preserved by simply removing the pair of quotes. In case a matching quote is not
found, the launcher will abort with an error message. @files are supported as they are
specified in the command line. However, as in @files, use of a wildcard is not supported.

Examples of quoting arguments containing white spaces:

export JDK JAVAC OPTIONS='@"C:\white spaces\argfile"'

export JDK JAVAC OPTIONS='"@C:\white spaces\argfile"'

export JDK JAVAC OPTIONS='€C:\"white spaces"\argfile'

Overview of javac Options

The compiler has sets of standard options, and cross-compilation options that are supported
on the current development environment. The compiler also has a set of nonstandard options
that are specific to the current virtual machine and compiler implementations but are subject
to change in the future. The nonstandard options begin with -x . The different sets of javac
options are described in the following sections:

e Standard Options
» Cross-Compilation Options for javac

* Extra Options

Standard Options

@filename

Reads options and file names from a file. To shorten or simplify the javac command, you can
specify one or more files that contain arguments to the javac command (except -J options).
This lets you to create javac commands of any length on any operating system. See javac
Command-Line Argument Files.

-Akey[=value]

Specifies options to pass to annotation processors. These options aren'’t interpreted by
javac directly, but are made available for use by individual processors. The key value should
be one or more identifiers separated by a dot (.).

--add-modules module,module
Specifies root modules to resolve in addition to the initial modules, or all modules on the
module path if module iS ALL-MODULE-PATH.

--boot-class-path path or -bootclasspath path
Overrides the location of the bootstrap class files.

ORACLE 2-3

ORACLE

Chapter 2
javac

< Note:

This can only be used when compiling for versions prior to JDK 9. As
applicable, see the descriptions in --release, -source, Or -target for
details.

--class-path path, -classpath path, Or -cp path
Specifies where to find user class files and annotation processors. This class path
overrides the user class path in the CLASSPATH environment variable.

e If --class-path, -classpath, or -cp aren’t specified, then the user class path is
the current directory.

* If the -sourcepath option isn’t specified, then the user class path is also searched
for source files.

» Ifthe -processorpath option isn’t specified, then the class path is also searched
for annotation processors.

-d directory

Sets the destination directory for class files. If a class is part of a package, then javac
puts the class file in a subdirectory that reflects the package name and creates
directories as needed. For example:

* Oracle Solaris, Linux, and macOS: If you specify -d /home/myclasses and the
class is called com.mypackage.MyClass, then the class file is /home/
myclasses/com/mypackage/MyClass.class.

* Windows: If you specify -d C:\myclasses and the class is called
com.mypackage.MyClass, then the class file is
C:\myclasses\com\mypackage\MyClass.class.

If the -d option isn’t specified, then javac puts each class file in the same directory as
the source file from which it was generated.

Note:

The directory specified by the -d option isn’t automatically added to your
user class path.

-deprecation

Shows a description of each use or override of a deprecated member or class.
Without the -deprecation option, javac shows a summary of the source files that use
or override deprecated members or classes. The -deprecation option is shorthand
for -xlint:deprecation.

--enable-preview
Enables preview language features. Used in conjunction with either -source or --
release.

-encoding encoding
Specifies character encoding used by source files, such as EUC-JP and UTF-8. If the
-encoding option isn't specified, then the platform default encoding is used.

2-4

ORACLE

Chapter 2
javac

-endorseddirs directories
Overrides the location of the endorsed standards path.

Note:

This can only be used when compiling for versions prior to JDK 9. As applicable,
see the descriptions in --release, -source, Or -target for details.

-extdirs directories

Overrides the location of the installed extensions. The directories variable is a colon-
separated list of directories. Each JAR file in the specified directories is searched for class
files. All JAR files found become part of the class path.

If you are cross-compiling, then this option specifies the directories that contain the
extension classes. See Cross-Compilation Options for javac.

Note:

This can only be used when compiling for versions prior to JDK 9. As applicable,
see the descriptions in --release, -source, Or -target for details.

-9
Generates all debugging information, including local variables. By default, only line number
and source file information is generated.

-g:[lines, vars, source]
Generates only the kinds of debugging information specified by the comma-separated list of
keywords. Valid keywords are:

lines
Line number debugging information.

vars
Local variable debugging information.

source
Source file debugging information.

-g:none
Doesn't generate debugging information.

-h directory

Specifies where to place generated native header files.

When you specify this option, a native header file is generated for each class that contains
native methods or that has one or more constants annotated with the
java.lang.annotation.Native annotation. If the class is part of a package, then the
compiler puts the native header file in a subdirectory that reflects the package name and
creates directories as needed.

--help, -help or -?
Prints a synopsis of the standard options.

2-5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/annotation/Native.html

ORACLE

Chapter 2
javac

--help-extra or -X
Prints the help for extra options.

-implicit: [none, class]
Specifies whether or not to generate class files for implicitly referenced files:

* -implicit:class — Automatically generates class files.
° -implicit:none — Suppresses class file generation.

If this option isn’t specified, then the default automatically generates class files. In this
case, the compiler issues a warning if any class files are generated when also doing
annotation processing. The warning isn't issued when the -implicit option is
explicitly set. See Searching for Types.

-Joption

Passes option to the runtime system, where option is one of the Java options
described on javacommand. For example, -J-Xms48m sets the startup memory to 48
MB.

" Note:

The CLASSPATH environment variable, -classpath option, -bootclasspath
option, and -extdirs option don’t specify the classes used to run javac.
Trying to customize the compiler implementation with these options and
variables is risky and often doesn’t accomplish what you want. If you must
customize the complier implementation, then use the -J option to pass
options through to the underlying Java launcher.

--limit-modules module,module*
Limits the universe of observable modules.

--module module-name Or -m module-name
Compiles only the specified module and checks time stamps.

--module-path pathor -p path
Specifies where to find application modules.

--module-source-path module-source-path
Specifies where to find input source files for multiple modules.

--module-version version
Specifies the version of modules that are being compiled.

-nowarn
Disables warning messages. This option operates the same as the -Xlint:none
option.

-parameters

Generates metadata for reflection on method parameters. Stores formal parameter
names of constructors and methods in the generated class file so that the method
java.lang.reflect.Executable.getParameters from the Reflection API can retrieve
them.

2-6

Chapter 2
javac

-proc: [none, only]

Controls whether annotation processing and compilation are done. -proc:none means that
compilation takes place without annotation processing. -proc:only means that only
annotation processing is done, without any subsequent compilation.

-processor classl[,class2,class3...]
Names of the annotation processors to run. This bypasses the default discovery process.

--processor-module-path path
Specifies the module path used for finding annotation processors.

--processor-path path Or -processorpath path
Specifies where to find annotation processors. If this option isn't used, then the class path is
searched for processors.

-profile profile
Checks that the API used is available in the specified profile.

" Note:

This can only be used when compiling for versions prior to JDK 9. As applicable,
see the descriptions in --release, -source, or -target for details.

--release release
Compiles against the public, supported and documented API for a specific VM version.
Supported release targets are 6, 7, 8, 9, 10, and 11.

Note:

When using --release for a version of the Java Platform that supports modules,
you can’t use --add-modules to access internal JDK modules, nor can you use --
add-exports to access internal JDK APIs in the modules.

-s directory

Specifies the directory used to place the generated source files. If a class is part of a
package, then the compiler puts the source file in a subdirectory that reflects the package
name and creates directories as needed. For example:

* Oracle Solaris, Linux, and macOS: If you specify -s /home/mysrc and the class is
called com.mypackage.MyClass, then the source file is put in /home/mysrc/com/
mypackage/MyClass.java.

e Windows: If you specify -s C:\mysrc and the class is called com.mypackage.MyClass,
then the source file is put in C:\mysrc\com\mypackage\MyClass.java.

-source release
Specifies the version of source code accepted. The following values for release are allowed:

ORACLE .

ORACLE

Chapter 2
javac

< Note:

Beginning with JDK 9, javac no longer supports -source release settings
less than or equal to 5. If settings less than or equal to 5 are used, then the
javac command behaves as if -source 6 were specified.

1.6

No language changes were introduced in Java SE 6. However, encoding errors in
source files are now reported as errors instead of warnings as was done in earlier
releases of Java Platform, Standard Edition.

6
Synonym for 1.6.

1.7
The compiler accepts code with features introduced in Java SE 7.

7
Synonym for 1.7.

1.8
The compiler accepts code with features introduced in Java SE 8.

8
Synonym for 1.8.

9
The compiler accepts code with features introduced in Java SE 9.

10
The compiler accepts code with features introduced in Java SE 10.

11

The default value. The compiler accepts code with features introduced in Java SE
1.

--source-path path Or -sourcepath path

Specifies where to find input source files. This is the source code path used to search
for class or interface definitions. As with the user class path, source path entries are
separated by colons (:) on Oracle Solaris, Linux, and macOS and semicolons (;) on
Windows. They can be directories, JAR archives, or ZIP archives. If packages are
used, then the local path name within the directory or archive must reflect the
package name.

" Note:

Classes found through the class path might be recompiled when their
source files are also found. See Searching for Types.

--system jdk | none
Overrides the location of system modules.

2-8

ORACLE

Chapter 2
javac

-target release
Generates class files for a specific VM version.

--upgrade-module—path path
Overrides the location of upgradeable modules.

-verbose
Outputs messages about what the compiler is doing. Messages include information about
each class loaded and each source file compiled.

--version Or -version
Prints version information.

-Werror
Terminates compilation when warnings occur.

Cross-Compilation Options for javac

By default, for releases prior to JDK 9, classes were compiled against the bootstrap classes
of the platform that shipped with thejavac command. But javac also supports cross-
compiling, in which classes are compiled against bootstrap classes of a different Java
platform implementation. It's important to use the -bootclasspath and -extdirs options
when cross-compiling.

" Note:

This can only be used when compiling for versions prior to JDK 9. As applicable,
see the descriptions in --release, -source, Or -target for details.

Extra Options

--add-exports module/package=other-module(, other-module)*
Specifies a package to be considered as exported from its defining module to additional
modules or to all unnamed modules when the value of other-module iS ALL-UNNAMED.

--add-reads module=other-module(,other-module)*
Specifies additional modules to be considered as required by a given module.

--default-module-for-created-files module-name
Specifies the fallback target module for files created by annotation processors, if none is
specified or inferred.

-Djava.endorsed.dirs=dirs
Overrides the location of the endorsed standards path.

Note:

This can only be used when compiling for versions prior to JDK 9. As applicable,
see the descriptions in --release, -source, Or -target for details.

2-9

ORACLE

Chapter 2

javac

-Djava.ext.dirs=dirs
Overrides the location of installed extensions.

Note:

This can only be used when compiling for versions prior to JDK 9. As
applicable, see the descriptions in --release, -source, Or -target for
details.

--doclint-format [html4|html5]
Specifies the format for documentation comments.

--patch-module module=file(:file)*
Overrides or augments a module with classes and resources in JAR files or
directories.

-Xbootclasspath:path
Overrides the location of the bootstrap class files.

" Note:

This can only be used when compiling for versions prior to JDK 9. As
applicable, see the descriptions in --release, -source, Or -target for

details.

-Xbootclasspath/a:path
Adds a suffix to the bootstrap class path.

Note:

This can only be used when compiling for versions prior to JDK 9. As
applicable, see the descriptions in --release, -source, Or -target for
details.

-Xbootclasspath/p:path
Adds a prefix to the bootstrap class path.

< Note:

This can only be used when compiling for versions prior to JDK 9. As
applicable, see the descriptions in --release, -source, Or -target for
details.

-Xdiags: [compact, verbose]
Selects a diagnostic mode.

2-10

ORACLE

Chapter 2
javac

-Xdoclint
Enables recommended checks for problems in javadoc comments.

-Xdoclint: (all|none| [-]group) [/access]
Enables or disables specific groups of checks.
group can have one of the following values:

* accessibility
e html

* missing

e reference

° syntax

access specifies the minimum visibility level of classes and members that the -Xdoclint
option checks. It can have one of the following values (in order of most to least visible):

e public

* protected
* package

°* private

The default access level is private.

For more information about these groups of checks, see the -Xdoclint option of the javadoc
command. The -Xdoclint option is disabled by default in the javac command.

For example, the following option checks classes and members (with all groups of checks)
that have the access level of protected and higher (which includes protected and public):

-Xdoclint:all/protected

The following option enables all groups of checks for all access levels, except it won't check
for HTML errors for classes and members that have the access level of package and higher
(which includes package, protected, and public):

-Xdoclint:all,-html/package

-Xdoclint/package: [-]packages (, [-]package)*

Enables or disables checks in specific packages. Each package is either the qualified nhame
of a package or a package name prefix followed by a period and asterisk (. *), which
expands to all sub-packages of the given package. Each package can be prefixed with a
hyphen (-) to disable checks for a specified package or packages.

-Xlint
Enables all recommended warnings. In this release, enabling all available warnings is
recommended.

-Xlint: [-]key(, [-]1key)*

Supplies warnings to enable or disable, separated by a comma (,). Precede a key by a
hyphen (-) to disable the specified warning.

Supported values for key are:

2-11

Chapter 2
javac

e all: Enables all warnings.

* auxiliaryclass: Warns about an auxiliary class that's hidden in a source file, and
is used from other files.

* cast: Warns about the use of unnecessary casts.
* classfile: Warns about the issues related to classfile contents.
e deprecation: Warns about the use of deprecated items.

* dep-ann: Warns about the items marked as deprecated in javadoc but without the
@Deprecated annotation.

e divzero: Warns about the division by the constant integer O.
* empty: Warns about an empty statement after if.
e exports: Warns about the issues regarding module exports.

e fallthrough: Warns about the falling through from one case of a switch
statement to the next.

e finally: Warns about finally clauses that don’'t terminate normally.

* module: Warns about the module system-related issues.

* opens: Warns about the issues related to module opens.

* options: Warns about the issues relating to use of command line options.

* overloads: Warns about the issues related to method overloads.

* overrides: Warns about the issues related to method overrides.

e path: Warns about the invalid path elements on the command line.

* processing: Warns about the issues related to annotation processing.

* rawtypes: Warns about the use of raw types.

* removal: Warns about the use of an API that has been marked for removal.

° requires-automatic: Warns developers about the use of automatic modules in
requires clauses.

° requires-transitive-automatic: Warns about automatic modules in requires
transitive.

* serial: Warns about the serializable classes that don’t provide a serial version
ID. Also warns about access to non-public members from a serializable element.

* static: Warns about accessing a static member using an instance.

* try: Warns about the issues relating to the use of try blocks (that is, try-with-
resources).

* unchecked: Warns about the unchecked operations.
e varargs: Warns about the potentially unsafe vararg methods.
e none: Disables all warnings.

See Examples of Using -Xlint keys.

ORACLE 2-12

ORACLE

Chapter 2
javac

-Xmaxerrs number
Sets the maximum number of errors to print.

-Xmaxwarns number
Sets the maximum number of warnings to print.

-Xpkginfo: [always, legacy, nonempty]
Specifies when and how the javac command generates package-info.class files from
package-info.java files using one of the following options:

always

Generates a package-info.class file for every package-info.java file. This option may
be useful if you use a build system such as Ant, which checks that each .java file has a
corresponding .class file.

legacy

Generates a package-info.class file only if package-info.java contains annotations.
This option doesn't generate a package-info.class file if package-info.java contains
only comments.

< Note:

A package-info.class file might be generated but be empty if all the annotations
in the package-info.java file have RetentionPolicy.SOURCE.

nonempty
Generates a package-info.class file only if package-info.java contains annotations
with RetentionPolicy.CLASS Of RetentionPolicy.RUNTIME.

-Xplugin:name args
Specifies the name and optional arguments for a plug-in to be run.

-Xprefer: [source, newer]
Specifies which file to read when both a source file and class file are found for an implicitly
compiled class using one of the following options. See Searching for Types.

e -Xprefer:newer: Reads the newer of the source or class files for a type (default).

e -Xprefer:source: Reads the source file. Use -Xprefer:source when you want to be
sure that any annotation processors can access annotations declared with a retention
policy of SOURCE.

-Xprint
Prints a textual representation of specified types for debugging purposes. This doesn’t
perform annotation processing or compilation. The format of the output could change.

-XprintProcessorInfo
Prints information about which annotations a processor is asked to process.

-XprintRounds
Prints information about initial and subsequent annotation processing rounds.

2-13

Chapter 2
javac

-Xstdout filename
Sends compiler messages to the named file. By default, compiler messages go to
System.err.

javac Command-Line Argument Files

An argument file can include javac options and source file names in any combination.
The arguments within a file can be separated by spaces or new line characters. If a file
name contains embedded spaces, then put the whole file name in double quotation
marks.

File names within an argument file are relative to the current directory, not to the
location of the argument file. Wildcards (*) aren’t allowed in these lists (such as for
specifying *.java). Use of the at sign (@) to recursively interpret files isn’t supported.
The -J options aren’t supported because they're passed to the launcher, which doesn’t
support argument files.

When executing the javac command, pass in the path and name of each argument file
with the at sign (¢) leading character. When the javac command encounters an
argument beginning with the at sign (@), it expands the contents of that file into the
argument list.

Examples of Using javac @filename

Single Argument File
You could use a single argument file named argfile to hold all javac arguments:

javac @argfile

This argument file could contain the contents of both files shown in the following Two
Argument Files example.

Two Argument Files

You can create two argument files: one for the javac options and the other for the
source file names. Note that the following lists have no line-continuation characters.
Create a file named options that contains the following:

Oracle Solaris, Linux, and macOS:

-d classes

-9
-sourcepath /java/pubs/ws/1.3/src/share/classes

Windows:
-d classes

-9
-sourcepath C:\java\pubs\ws\1.3\src\share\classes

ORACLE 2-14

ORACLE

Chapter 2

javac

Create a file named classes that contains the following:

MyClassl.java
MyClass2.java
MyClass3.java

Then, run the javac command as follows:

javac @options @classes

Argument Files with Paths
The argument files can have paths, but any file names inside the files are relative to the
current working directory (not pathl or path?2):

javac @pathl/options @path2/classes

Examples of Using -Xlint keys

cast
Warns about unnecessary and redundant casts, for example:

String s = (String) "Hello!"

classfile
Warns about issues related to class file contents.

deprecation
Warns about the use of deprecated items. For example:

java.util.Date myDate = new java.util.Date();
int currentDay = myDate.getDay();

The method java.util.Date.getDay has been deprecated since JDK 1.1.

dep-ann
Warns about items that are documented with the @deprecated Javadoc comment, but don’t
have the @Deprecated annotation, for example:

/**
* @deprecated As of Java SE 7, replaced by {@link #newMethod()}
*/

public static void deprecatedMethod() { }

public static void newMethod() { }

divzero
Warns about division by the constant integer 0, for example:

int divideByZero = 42 / 0;

2-15

ORACLE

Chapter 2
javac

empty
Warns about empty statements after if statements, for example:

class E {
void m() {
if (true) ;

fallthrough

Checks the switch blocks for fall-through cases and provides a warning message for
any that are found. Fall-through cases are cases in a switch block, other than the last
case in the block, whose code doesn’t include a break statement, allowing code
execution to fall through from that case to the next case. For example, the code
following the case 1 label in this switch block doesn’t end with a break statement:

switch (x) {

case 1:
System.out.println("1");
// No break statement here.

case 2:
System.out.println("2");

}

If the -X1int:fallthrough option was used when compiling this code, then the
compiler emits a warning about possible fall-through into case, with the line number of
the case in question.

finally
Warns about finally clauses that can’t be completed normally, for example:

public static int m() {

try {
throw new NullPointerException();

} catch (NullPointerException(); {
System.err.println("Caught NullPointerException.");
return 1;

} finally {
return 0;

The compiler generates a warning for the £inally block in this example. When the
int method is called, it returns a value of 0. A finally block executes when the try
block exits. In this example, when control is transferred to the catch block, the int
method exits. However, the finally block must execute, so it's executed, even
though control was transferred outside the method.

options

Warns about issues that related to the use of command-line options. See Cross-
Compilation Options for javac.

2-16

Chapter 2

javac

overrides

Warns about issues related to method overrides. For example, consider the following two
classes:

public class ClassWithVarargsMethod ({
void varargsMethod (String... s) { }
}

public class ClassWithOverridingMethod extends ClassWithVarargsMethod {
@Override
void varargsMethod (String[] s) { }

The compiler generates a warning similar to the following:.

warning: [override] varargsMethod (String[]) in ClassWithOverridingMethod
overrides varargsMethod(String...) in ClassWithVarargsMethod; overriding
method is missing '...'

When the compiler encounters a varargs method, it translates the varargs formal parameter
into an array. In the method ClassWithVarargsMethod.varargsMethod, the compiler
translates the varargs formal parameter String... s to the formal parameter String[] s,
an array that matches the formal parameter of the method
ClassWithOverridingMethod.varargsMethod. Consequently, this example compiles.

path

Warns about invalid path elements and nonexistent path directories on the command line
(with regard to the class path, the source path, and other paths). Such warnings can’t be
suppressed with the @SuppressWarnings annotation. For example:

e Oracle Solaris, Linux, and macOS: javac -Xlint:path -classpath /
nonexistentpath Example.java

e Windows: javac -Xlint:path -classpath C:\nonexistentpath Example.java

processing

Warns about issues related to annotation processing. The compiler generates this warning
when you have a class that has an annotation, and you use an annotation processor that
can’t handle that type of exception. For example, the following is a simple annotation
processor:

Source file AnnocProc.java:

import java.util.*;

import javax.annotation.processing.*;
import javax.lang.model.*;

import javaz.lang.model.element.*;

@SupportedAnnotationTypes ("NotAnno")
public class AnnoProc extends AbstractProcessor ({
public boolean process (Set<? extends TypeElement> elems, RoundEnvironment
renv) {
return true;

ORACLE 2-17

Chapter 2

javac

public SourceVersion getSupportedSourceVersion() ({
return SourceVersion.latest();

Source file AnnosWithoutProcessors.java:

@interface Anno { }

@Anno
class AnnosWithoutProcessors { }

The following commands compile the annotation processor AnnoProc, then run this
annotation processor against the source file AnnosWithoutProcessors.java:

javac AnnoProc.java
javac -cp . -Xlint:processing -processor AnnoProc -proc:only
AnnosWithoutProcessors.java

When the compiler runs the annotation processor against the source file
AnnosWithoutProcessors.java, it generates the following warning:

warning: [processing] No processor claimed any of these annotations:
Anno

To resolve this issue, you can rename the annotation defined and used in the class
AnnosWithoutProcessors from Anno to NotAnno.

rawtypes
Warns about unchecked operations on raw types. The following statement generates
a rawtypes warning:

void countElements (List 1) { ... }

The following example doesn’t generate a rawtypes warning:

void countElements (List<?> 1) { ... }

List is a raw type. However, List<?> is an unbounded wildcard parameterized type.
Because List is a parameterized interface, always specify its type argument. In this
example, the List formal argument is specified with an unbounded wildcard (?) as its
formal type parameter, which means that the countElements method can accept any
instantiation of the List interface.

ORACLE 2-18

ORACLE

Chapter 2
javac

serial
Warns about missing serialversionUID definitions on serializable classes. For example:

public class PersistentTime implements Serializable

{

private Date time;

public PersistentTime () {
time = Calendar.getInstance().getTime();

public Date getTime() {
return time;

The compiler generates the following warning:

warning: [serial] serializable class PersistentTime has no definition of
serialVersionUID

If a serializable class doesn’t explicitly declare a field named serialVersionUID, then the
serialization runtime environment calculates a default serialversionUID value for that class
based on various aspects of the class, as described in the Java Object Serialization
Specification. However, it's strongly recommended that all serializable classes explicitly
declare serialversionUID values because the default process of computing
serialVersionUID values is highly sensitive to class details that can vary depending on
compiler implementations. As a result, this might cause an unexpected
InvalidClassExceptions during deserialization. To guarantee a consistent
serialVersionUID value across different Java compiler implementations, a serializable class
must declare an explicit serialVersionUID value.

static
Warns about issues relating to the use of static variables, for example:

class XLintStatic {
static void ml() { }
void m2() { this.ml(); }

The compiler generates the following warning:

warning: [static] static method should be qualified by type name,
XLintStatic, instead of by an expression

To resolve this issue, you can call the static method m1 as follows:

XLintStatic.ml () ;

Alternately, you can remove the static keyword from the declaration of the method m1.

2-19

ORACLE

Chapter 2
javac

try

Warns about issues relating to the use of try blocks, including try-with-resources
statements. For example, a warning is generated for the following statement because
the resource ac declared in the try block isn't used:

try (AutoCloseable ac = getResource()) { // do nothing}

unchecked
Gives more detail for unchecked conversion warnings that are mandated by the Java
Language Specification, for example:

List 1 = new ArrayList<Number>();
List<String> 1ls = 1; // unchecked warning

During type erasure, the types ArrayList<Number> and List<String> become
ArrayList and List, respectively.

The 1s command has the parameterized type List<String>. When the List
referenced by 1 is assigned to 1s, the compiler generates an unchecked warning. At
compile time, the compiler and JVM can’t determine whether 1 refers to a
List<String> type. In this case, 1 doesn't refer to a List<String> type. As a result,
heap pollution occurs.

A heap pollution situation occurs when the List object 1, whose static type is
List<Number>, is assigned to another List object, 1s, that has a different static type,
List<String>. However, the compiler still allows this assignment. It must allow this
assignment to preserve backward compatibility with releases of Java SE that don't
support generics. Because of type erasure, List<Number> and List<String> both
become List. Consequently, the compiler allows the assignment of the object 1,
which has a raw type of List, to the object 1s.

varargs
Warns about unsafe use of variable arguments (varargs) methods, in particular, those
that contain non-reifiable arguments, for example:

public class ArrayBuilder {
public static <T> void addTolList (List<T> listArg, T... elements) {
for (T x : elements) {
listArg.add(x);
}

A non-reifiable type is a type whose type information isn’t fully available at runtime.
The compiler generates the following warning for the definition of the method
ArrayBuilder.addToList

warning: [varargs] Possible heap pollution from parameterized vararg
type T

When the compiler encounters a varargs method, it translates the varargs formal
parameter into an array. However, the Java programming language doesn’t permit the
creation of arrays of parameterized types. In the method ArrayBuilder.addToList,

2-20

Chapter 2
javac

the compiler translates the varargs formal parameter T. .. elements to the formal parameter
T[] elements, an array. However, because of type erasure, the compiler converts the
varargs formal parameter to Object [] elements. Consequently, there’s a possibility of heap
pollution.

Example of Compiling by Providing Command-Line Arguments

To compile as though providing command-line arguments, use the following syntax:

JavaCompiler javac = ToolProvider.getSystemJavaCompiler();
The example writes diagnostics to the standard output stream and returns the exit code that
javac command would give when called from the command line.

You can use other methods in the javax.tools.JavaCompiler interface to handle
diagnostics, control where files are read from and written to, and more.

Old Interface

" Note:

This API is retained for backward compatibility only. All new code should use the
Java Compiler API.

The com. sun.tools.javac.Main class provides two static methods to call the compiler from a
program:

public static int compile(String[] args);
public static int compile(String[] args, PrintWriter out);

The args parameter represents any of the command-line arguments that would typically be
passed to the compiler.

The out parameter indicates where the compiler diagnostic output is directed.

The return value is equivalent to the exit value from javac.

¢ Note:

All other classes and methods found in a package with names that start with
com.sun.tools.javac (subpackages of com.sun.tools.javac) are strictly internal
and subject to change at any time.

Example of Compiling Multiple Source Files

This example compiles the Aloha.java, GutenTag.java, Hello.java, and Hi.java source
files in the greetings package.

ORACLE 2-21

Chapter 2

javac

Oracle Solaris, Linux, and macOS:

% javac greetings/*.java
1s greetings

o\

Aloha.class GutenTag.class Hello.class Hi.class
Aloha.java GutenTag.java Hello.java Hi.Jjava
Windows:

C:\>javac greetings*.java

C:\>dir greetings

Aloha.class GutenTag.class Hello.class Hi.class
Aloha.java GutenTag.java Hello.java Hi.java

Example of Specifying a User Class Path
After changing one of the source files in the previous example, recompile it:

Oracle Solaris, Linux, and macOS:

pwd
/examples
javac greetings/Hi.Jjava

Windows:

C:\>cd
\examples
C:\>javac greetings\Hi.Jjava

Because greetings.Hi refers to other classes in the greetings package, the compiler
needs to find these other classes. The previous example works because the default
user class path is the directory that contains the package directory. If you want to
recompile this file without concern for which directory you are in, then add the
examples directory to the user class path by setting CLASSPATH. This example uses the
-classpath option.

Oracle Solaris, Linux, and macOS:

javac -classpath /examples /examples/greetings/Hi.java

Windows:

C:\>javac -classpath \examples \examples\greetings\Hi.java

If you change greetings.Hi to use a banner utility, then that utility also needs to be
accessible through the user class path.

ORACLE 2-22

Chapter 2
javac
Oracle Solaris, Linux, and macOS:

javac -classpath /examples:/lib/Banners.jar \
/examples/greetings/Hi.java

Windows:

A

C:\>javac -classpath \examples;\lib\Banners.jar
\examples\greetings\Hi.java

To execute a class in the greetings package, the program needs access to the greetings
package, and to the classes that the greetings classes use.

Oracle Solaris, Linux, and macOS:

java -classpath /examples:/lib/Banners.jar greetings.Hi

Windows:

C:\>java -classpath \examples;\lib\Banners.jar greetings.Hi

Annotation Processing

ORACLE

The javac command provides direct support for annotation processing, superseding the need
for the separate annotation processing command, apt.

The API for annotation processors is defined in the javax.annotation.processing and
javax.lang.model packages and subpackages.

How Annotation Processing Works

Unless annotation processing is disabled with the -proc:none option, the compiler searches
for any annotation processors that are available. The search path can be specified with the -
processorpath option. If no path is specified, then the user class path is used. Processors
are located by means of service provider-configuration files named META-INF/services/
javax.annotation.processing. Processor on the search path. Such files should contain the
names of any annotation processors to be used, listed one per line. Alternatively, processors
can be specified explicitly, using the -processor option.

After scanning the source files and classes on the command line to determine what
annotations are present, the compiler queries the processors to determine what annotations
they process. When a match is found, the processor is called. A processor can claim the
annotations it processes, in which case no further attempt is made to find any processors for
those annotations. After all of the annotations are claimed, the compiler does not search for
additional processors.

If any processors generate new source files, then another round of annotation processing
occurs: Any newly generated source files are scanned, and the annotations processed as
before. Any processors called on previous rounds are also called on all subsequent rounds.
This continues until no new source files are generated.

After a round occurs where no new source files are generated, the annotation processors are
called one last time, to give them a chance to complete any remaining work. Finally, unless

2-23

Chapter 2
javac

the -proc:only option is used, the compiler compiles the original and all generated
source files.

Searching for Types

To compile a source file, the compiler often needs information about a type, but the
type definition is not in the source files specified on the command line.

The compiler needs type information for every class or interface used, extended, or
implemented in the source file. This includes classes and interfaces not explicitly
mentioned in the source file, but that provide information through inheritance.

For example, when you create a subclass of java.awt.Window, you are also using the
ancestor classes of Window: java.awt.Container, java.awt.Component, and
java.lang.Object.

When the compiler needs type information, it searches for a source file or class file
that defines the type. The compiler searches for class files first in the bootstrap and
extension classes, then in the user class path (which by default is the current
directory). The user class path is defined by setting the CLASSPATH environment
variable or by using the -classpath option.

If you set the -sourcepath option, then the compiler searches the indicated path for
source files. Otherwise, the compiler searches the user class path for both class files
and source files.

You can specify different bootstrap or extension classes with the -bootclasspath and
the -extdirs options.

See Cross-Compilation Options for javac.

A successful type search may produce a class file, a source file, or both. If both are
found, then you can use the -Xprefer option to instruct the compiler which to use. If
newer is specified, then the compiler uses the newer of the two files. If source is
specified, the compiler uses the source file. The default is newer.

If a type search finds a source file for a required type, either by itself, or as a result of
the setting for the -Xprefer option, then the compiler reads the source file to get the
information it needs. By default the compiler also compiles the source file. You can use
the -implicit option to specify the behavior. If none is specified, then no class files
are generated for the source file. If c1ass is specified, then class files are generated
for the source file.

The compiler might not discover the need for some type information until after
annotation processing completes. When the type information is found in a source file
and no -implicit option is specified, the compiler gives a warning that the file is being
compiled without being subject to annotation processing. To disable the warning, either
specify the file on the command line (so that it will be subject to annotation processing)
or use the -implicit option to specify whether or not class files should be generated
for such source files.

ORACLE 2-24

javap

ORACLE

Chapter 2
javap

You use the javap command to disassemble one or more class files.
Synopsis

javap [options] classes...

options
Specifies the command-line options. See Options for javap.

classes

Specifies one or more classes separated by spaces to be processed for annotations. You
can specify a class that can be found in the class path by its file name, URL, or by its fully
gualified class name.

Examples:

path/to/MyClass.class
jar:file:///path/to/MyJar.jar!/mypkg/MyClass.class

java.lang.Object

Description

The javap command disassembles one or more class files. The output depends on the
options used. When no options are used, the javap command prints the protected and public
fields, and methods of the classes passed to it.

The javap command isn’t multirelease JAR aware. Using the class path form of the
command results in viewing the base entry in all JAR files, multirelease or not. Using the URL
form, you can use the URL form of an argument to specify a specific version of a class to be
disassembled.

The javap command prints its output to stdout.

< Note:

In tools that support double hyphen (--) style options, the GNU-style options can
use the equal sign (=) instead of a white space to separate the name of an option
from its value.

Options for javap

-help, --help, Or -?
Prints a help message for the javap command.

2-25

ORACLE

Chapter 2
javap

-version
Prints release information.

-verbose Or -v
Prints additional information about the selected class.

-1

Prints line and local variable tables.
-public

Shows only public classes and members.

-protected
Shows only protected and public classes and members.

-package
Shows package/protected/public classes and members (default).

-private or -p
Shows all classes and members.

-C
Prints disassembled code, for example, the instructions that comprise the Java
bytecodes, for each of the methods in the class.

-S
Prints internal type signatures.

-sysinfo
Shows system information (path, size, date, MD5 hash) of the class being processed.

-constants
Shows static final constants.

--module module Or -m module
Specifies the module containing classes to be disassembled.

--module-path path
Specifies where to find application modules.

--system jdk
Specifies where to find system modules.

--class-path path, -classpath path, Oor -cp path
Specifies the path that the javap command uses to find user class files. It overrides
the default or the CLASSPATH environment variable when it's set.

-bootclasspath path
Overrides the location of bootstrap class files.

-Joption
Passes the specified option to the JVM. For example:

javap -J-version

2-26

Chapter 2
javap

javap -J-Djava.security.manager -J-Djava.security.policy=MyPolicy MyClassName

See Overview of Java Options.

javap Example

Compile the following HelloWorldFrame class:

import java.awt.Graphics;

import javax.swing.JFrame;
import javax.swing.JPanel;

public class HelloWorldFrame extends JFrame {
String message = "Hello World!";

public HelloWorldFrame () {
setContentPane (new JPanel () {
@Override
protected void paintComponent (Graphics g) {
g.drawString (message ,15, 30);

}) i
setSize (100,100);

}

public static void main(String[] args) {
HelloWorldFrame frame = new HelloWorldFrame () ;
frame.setVisible (true);

The output from the javap HelloWorldFrame.class command yields the following:

Compiled from "HelloWorldFrame.java"

public class HelloWorldFrame extends javax.swing.JFrame {
java.lang.String message;
public HelloWorldFrame () ;
public static void main(java.lang.String[]);

}

The output from the javap -c HelloWorldFrame.class command yields the following:

Compiled from "HelloWorldFrame.java"
public class HelloWorldFrame extends javax.swing.JFrame {
java.lang.String message;

public HelloWorldFrame () ;

Code:
0: aload 0
1: invokespecial #1 // Method javax/swing/JFrame."<init>":()V

ORACLE 2.97

javadoc

ORACLE

Chapter 2

javadoc
4: aload 0
5: ldc #2 // String Hello World!
7: putfield #3 // Field message:Ljava/lang/String;
10: aload 0
11: new #4 // class HelloWorldFrame$l
14: dup
15: aload 0
16: invokespecial #5 // Method HelloWorldFrame$1l."<init>":
(LHelloWorldFrame;)V
19: invokevirtual #6 // Method setContentPane: (Ljava/awt/
Container;)V
22: aload 0
23: bipush 100
25: Dbipush 100
27: invokevirtual #7 // Method setSize: (II)V

30: return

public static void main(java.lang.String[]);
Code:
: new #8 // class HelloWorldFrame
: dup
: invokespecial #9 // Method "<init>":()V
: astore 1
: aload 1
: iconst 1
: invokevirtual #10 // Method setVisible: (Z)V
¢ return

w O W 0 I s W o

=

You use the javadoc tool and its options to generate HTML pages of API
documentation from Java source files.

Synopsis

javadoc [options] [packagenames] [sourcefiles] [@files]

options

Specifies command-line options, separated by spaces. See Options for javadoc,
Extended Options, Standard doclet Options, and Additional Options Provided by the
Standard doclet.

packagenames

Specifies names of packages that you want to document, separated by spaces, for
example java.lang java.lang.reflect java.awt. If you want to also document the
subpackages, then use the -subpackages option to specify the packages.

By default, javadoc looks for the specified packages in the current directory and
subdirectories. Use the -sourcepath option to specify the list of directories where to
look for packages.

2-28

ORACLE

Chapter 2
javadoc

sourcefiles

Specifies names of Java source files that you want to document, separated by spaces, for
example Class.java Object.java Button.java. By default, javadoc looks for the specified
classes in the current directory. However, you can specify the full path to the class file and
use wildcard characters, for example /home/src/java/awt/Graphics*.java. You can also
specify the path relative to the current directory.

@files
Specifies names of files that contain a list of javadoc tool options, package names, and
source file names in any order.

Description

The javadoc tool parses the declarations and documentation comments in a set of Java
source files and produces corresponding HTML pages that describe (by default) the public
and protected classes, nested classes (but not anonymous inner classes), interfaces,
constructors, methods, and fields. You can use the javadoc tool to generate the API
documentation or the implementation documentation for a set of source files.

You can run the javadoc tool on entire packages, individual source files, or both. When
documenting entire packages, you can use the -subpackages option either to recursively
traverse a directory and its subdirectories, or to pass in an explicit list of package names.
When you document individual source files, pass in a list of Java source file names. See
javadoc Overview in Java Platform, Standard Edition Javadoc Guide for information about
using the javadoc tool.

Conformance

The standard doclet does not validate the content of documentation comments for
conformance, nor does it attempt to correct any errors in documentation comments. Anyone
running javadoc is advised to be aware of the problems that may arise when generating non-
conformant output or output containing executable content, such as JavaScript. The standard
doclet does provide the doclint feature to help developers detect common problems in
documentation comments; but it is also recommended to check the generated output with
any appropriate conformance and other checking tools.

For more details on the conformance requirements for HTML5 documents, see Conformance
requirements in the HTML5 Specification. For more details on security issues related to web
pages, see the Open Web Application Security Project (OWASP) page.

Options for javadoc

The following core javadoc options are equivalent to corresponding javac options. See
Standard Options for the detailed descriptions of using these options:

. --add-modules

* -bootclasspath

e --class-path, -classpath, Or -cp
* --enable-preview

* -—encoding

e -extdirs

e --limit-modules

e --module

2-29

https://www.w3.org/TR/html5/infrastructure.html#conformance-requirements
https://www.w3.org/TR/html5/infrastructure.html#conformance-requirements
https://www.owasp.org

ORACLE

Chapter 2
javadoc

e --module-path or -p

e --module-source-path

e --release

* -source

e --source-path Or -sourcepath
° --system

e --upgrade-module-path

The following options are the core javadoc options that are not equivalent to a
corresponding javac option:

¢ Note:

In tools that support double hyphen (--) style options, the GNU-style options
can use the equal sign (=) instead of a white space to separate the name of
an option from its value.

-breakiterator

Computes the first sentence with BreakIterator. The first sentence is copied to the
package, class, or member summary and to the alphabetic index. The BreakIterator
class is used to determine the end of a sentence for all languages except for English.

» English default sentence-break algorithm — Stops at a period followed by a space
or an HTML block tag, such as <p>.

» Breakiterator sentence-break algorithm — Stops at a period, question mark, or
exclamation point followed by a space when the next word starts with a capital
letter. This is meant to handle most abbreviations (such as "The serial no. is
valid", but will not handle "Mr. Smith"). The -breakiterator option doesn'’t stop at
HTML tags or sentences that begin with numbers or symbols. The algorithm stops
at the last period in . ./filename, even when embedded in an HTML tag.

-doclet class

Generates output by using an alternate doclet. Use the fully qualified name. This
doclet defines the content and formats the output. If the -doclet option isn't used,
then the javadoc tool uses the standard doclet for generating the default HTML
format. This class must contain the start (Root) method. The path to this starting
class is defined by the -docletpath option.

-docletpath path

Specifies where to find doclet class files (specified with the -doclet option) and any
JAR files it depends on. If the starting class file is in a JAR file, then this option
specifies the path to that JAR file. You can specify an absolute path or a path relative
to the current directory. If classpathlist contains multiple paths or JAR files, then
they should be separated with a colon (:) on Oracle Solaris and a semi-colon (;) on
Windows. This option isn’t necessary when the doclet starting class is already in the
search path.

2-30

ORACLE

Chapter 2
javadoc

-exclude pkglist

Unconditionally, excludes the specified packages and their subpackages from the list formed
by -subpackages. It excludes those packages even when they would otherwise be included
by some earlier or later -subpackages option.

The following example would include java.io, java.util, and java.math (among others),
but would exclude packages rooted at java.net and java.lang. Notice that these examples
exclude java.lang.ref, which is a subpackage of java.lang.

¢ Oracle Solaris, Linux, and macOS:

javadoc -sourcepath /home/user/src -subpackages java -exclude
java.net:java.lang

* Windows:

javadoc -sourcepath \user\src -subpackages java -exclude
java.net:java.lang

--expand-requires value

Instructs the javadoc tool to expand the set of modules to be documented. By default, only
the modules given explicitly on the command line are documented. Supports the following
values:

* transitive: additionally includes all the required transitive dependencies of those
modules.

e all:includes all dependencies.

-help or --help
Displays the online help, which lists all of the javadoc and doclet command-line options.

--help-extra or -X
Prints a synopsis of non-standard options and exits.

-Jflag

Passes flag directly to the Java Runtime Environment (JRE) that runs the javadoc tool. For
example, if you must ensure that the system sets aside 32 MB of memory in which to
process the generated documentation, then you would call the -xmx option as follows:
javadoc -J-Xmx32m -J-Xms32m com.mypackage. Be aware that -Xms is optional because it
only sets the size of initial memory, which is useful when you know the minimum amount of
memory required.

There is no space between the J and the flag.

Use the -version option to report the version of the JRE being used to run the javadoc tool.

javadoc -J-version

java version "10-ea" 2018-03-20

Java (TM) SE Runtime Environment 18.3 (build 10-ea+36)

Java HotSpot (TM) 64-Bit Server VM 18.3 (build 10-ea+36, mixed mode)

-locale name

Specifies the locale that the javadoc tool uses when it generates documentation. The
argument is the name of the locale, as described in java.util.Locale documentation, such
as en_US (English, United States) or en US WIN (Windows variant).

2-31

ORACLE

Chapter 2
javadoc

< Note:

The -locale option must be placed ahead (to the left) of any options
provided by the standard doclet or any other doclet. Otherwise, the
navigation bars appear in English. This is the only command-line option that
depends on order.

Specifying a locale causes the javadoc tool to choose the resource files of that locale
for messages such as strings in the navigation bar, headings for lists and tables, help
file contents, comments in the stylesheet.css file, and so on. It also specifies the
sorting order for lists sorted alphabetically, and the sentence separator to determine
the end of the first sentence. The -locale option doesn't determine the locale of the
documentation comment text specified in the source files of the documented classes.

-package
Shows only package, protected, and public classes and members.

-private
Shows all classes and members.

-protected
Shows only protected and public classes and members. This is the default.

-public

Shows only the public classes and members.

-quiet

Shuts off messages so that only the warnings and errors appear to make them easier
to view. It also suppresses the version string.

--show-members value
Specifies which members (fields or methods) are documented, where value can be
any of the following:

* protected: The default value is protected.
* public: Shows only public values.
e package: Shows public, protected, and package members.

e private: Shows all members.

--show-module-contents value
Specifies the documentation granularity of module declarations, where value can be
apiorall.

--show-packages value
Specifies which modules packages are documented, where value can be exported or
all packages.

--show-types value
Specifies which types (classes, interfaces, etc.) are documented, where value can be
any of the following:

2-32

ORACLE

Chapter 2
javadoc

* protected: The default value. Shows public and protected types.
* public: Shows only public values.
* package: Shows public, protected, and package types.

e private: Shows all types.

-subpackages subpkglist

Generates documentation from source files in the specified packages and recursively in their
subpackages. This option is useful when adding new subpackages to the source code
because they are automatically included. Each package argument is any top-level
subpackage (such as java) or fully qualified package (such as javax.swing) that doesn't
need to contain source files. Arguments are separated by colons on all operating systems.
Wild cards aren't allowed. Use -sourcepath to specify where to find the packages. This
option doesn’t process source files that are in the source tree but don’t belong to the
packages.

For example, the following commands generate documentation for packages named java
and javax.swing and all of their subpackages.

e Oracle Solaris, Linux, and macOS:
javadoc -d docs -sourcepath /home/user/src -subpackages java:javax.swing
* Windows:

javadoc -d docs -sourcepath \user\src -subpackages java:javax.swing

-verbose

Provides more detailed messages while the javadoc tool runs. Without the -verbose option,
messages appear for loading the source files, generating the documentation (one message
per source file), and sorting. The -verbose option causes the printing of additional messages
that specify the number of milliseconds to parse each Java source file.

--version
Prints version information.

Extended Options

Note:

The extended options for javadoc are subject to change without notice.

The following extended javadoc options are equivalent to corresponding javac options. See
Extra Options in javac for the detailed descriptions of using these options:

e --add-exports
e --add-reads

e --patch-module
d -Xmaxerrs

d -Xmaxwarns

2-33

ORACLE

Chapter 2
javadoc

The following extended javadoc options are not equivalent to a corresponding javac
option:

-Xmodule: module-name
Specifies a module to which the classes being compiled belong.

-Xold
Invokes the legacy javadoc tool.

Standard doclet Options
The following options are provided by the standard doclet.

--add-stylesheet file

Adds additional stylesheet file for the generated documentation. This option can be
used one or more times to specify additional stylesheets included in the
documentation.

Command-line example:

javadoc --add-stylesheet new stylesheet 1l.css --add-stylesheet
new stylesheet 2.css pkg foo

--allow-script-in-comments
Allow JavaScript in options and comments

-author
Includes the gauthor text in the generated docs.

-bottom html-code

Specifies the text to be placed at the bottom of each output file. The text is placed at
the bottom of the page, underneath the lower navigation bar. The text can contain
HTML tags and white space, but when it does, the text must be enclosed in quotation
marks. Use escape characters for any internal quotation marks within text.

-charset name

Specifies the HTML character set for this document. The name should be a preferred
MIME name as specified in the IANA Registry, Character Sets.

For example:

javadoc -charset "iso-8859-1" mypackage

This command inserts the following line in the head of every generated page:

<META http-equiv="Content-Type" content="text/html;
charset=I50-8859-1">

The META tag is described in the HTML standard (4197265 and 4137321), HTML
Document Representation.

-d directory
Specifies the destination directory where the javadoc tool saves the generated HTML
files. If you omit the -d option, then the files are saved to the current directory. The

2-34

http://www.iana.org/assignments/character-sets
http://www.w3.org/TR/REC-html40/charset.html#h-5.2.2
http://www.w3.org/TR/REC-html40/charset.html#h-5.2.2

ORACLE

Chapter 2
javadoc

directory value can be absolute or relative to the current working directory. The destination
directory is automatically created when the javadoc tool runs.

e Oracle Solaris, Linux, and macOS: For example, the following command generates
the documentation for the package com.mypackage and saves the results in the /
user/doc/ directory:

javadoc -d /user/doc/ com.mypackage

* Windows: For example, the following command generates the documentation for the
package com.mypackage and saves the results in the \user\doc\ directory:

javadoc -d \user\doc\ com.mypackage

-docencoding name

Specifies the encoding of the generated HTML files. The name should be a preferred MIME
name as specified in the IANA Registry, Character Sets.

Three options are available for use in a javadoc encoding command. The -encoding option
is used for encoding the files read by the javadoc tool, while the -docencoding and -charset
options are used for encoding the files written by the tool. Of the three available options, at
most, only the input and an output encoding option are used in a single encoding command.
If you specify both input and output encoding options in a command, they must be the same
value. If you specify neither output option, the tool defaults to the input encoding.

For example:

javadoc -docencoding "iso-8859-1" mypackage

-docfilessubdirs

Recursively copies doc-file subdirectories. Enables deep copying of doc-files directories.
Subdirectories and all contents are recursively copied to the destination. For example, the
directory doc-files/example/images and all of its contents are copied. The -
excludedocfilessubdir option can be used to exclude specific subdirectories.

-doctitle html-code

Specifies the title to place near the top of the overview summary file. The text specified in the
title tag is placed as a centered, level-one heading directly beneath the top navigation bar.
The title tag can contain HTML tags and white space, but when it does, you must enclose
the title in quotation marks. Additional quotation marks within the title tag must be
escaped. For example, javadoc -header "My Library
v1.0" com.mypackage.

-excludedocfilessubdir namel,name2. ..

Excludes any subdirectories with the given names when recursively copying doc-file
subdirectories. See -docfilessubdirs. For historical reasons, : can be used anywhere in
the argument as a separator instead of , .

-footer html-code

Specifies the footer text to be placed at the bottom of each output file. Thehtml-code value is
placed to the right of the lower navigation bar. The html-code value can contain HTML tags
and white space, but when it does, the html-code value must be enclosed in quotation
marks. Use escape characters for any internal quotation marks within a footer.

--frames
Enables the use of frames in the generated output (default).

2-35

http://www.iana.org/assignments/character-sets

ORACLE

Chapter 2
javadoc

-group namepl:p2
Group the specified packages together in the Overview page.

-header html-code

Specifies the header text to be placed at the top of each output file. The header is
placed to the right of the upper navigation bar. The header can contain HTML tags
and white space, but when it does, the header must be enclosed in quotation marks.
Use escape characters for internal quotation marks within a header. For example,
javadoc -header "My Library
v1.0" com.mypackage.

-helpfile filename

Includes the file that links to the HELP link in the top and bottom navigation bars .
Without this option, the javadoc tool creates a help file, help-doc.html, that is hard-
coded in the javadoc tool. This option lets you override the default. The filename can
be any name and isn't restricted to help-doc.html. The javadoc tool adjusts the links
in the navigation bar accordingly. For example:

e Oracle Solaris, Linux, and macOS:
javadoc -helpfile /home/user/myhelp.html java.awt.
* Windows:

javadoc -helpfile C:\user\myhelp.html java.awt.

-html4
Generates HTML 4.0.1 output. HTML 5 output is the default.

-html5
Generates HTML 5 output (default).

--javafx or -javafx
Enables JavaFX functionality.

-keywords

Adds HTML keyword <META> tags to the generated file for each class. These tags can
help search engines that look for <META> tags find the pages. Most search engines
that search the entire Internet don’t look at <META> tags, because pages can misuse
them. Search engines offered by companies that confine their searches to their own
website can benefit by looking at <META> tags. The <META> tags include the fully
gualified name of the class and the unqualified names of the fields and methods.
Constructors aren't included because they are identical to the class name. For
example, the class string starts with these keywords:

<META NAME="keywords" CONTENT="java.lang.String class">
<META NAME="keywords" CONTENT="CASE INSENSITIVE ORDER">
<META NAME="keywords" CONTENT="length()">
<META NAME="keywords" CONTENT="charAt()">

-link url
Creates links to existing javadoc generated documentation of externally referenced
classes. The url argument is the absolute or relative URL of the directory that

2-36

Chapter 2
javadoc

contains the external javadoc generated documentation. You can specify multiple -1ink
options in a specified javadoc tool run to link to multiple documents.

Either a package-1list or an element-1ist file must be in this url directory (otherwise, use
the -linkoffline option).

Note:

The package-list and element-1list files are generated by the javadoc tool when
generating the APl documentation and should not be modified by the user.

When you use the javadoc tool to document packages, it uses the package-1list file to
determine the packages declared in an API. When you generate APl documents for
modules, the javadoc tool uses the element-1ist file to determine the modules and
packages declared in an API.

The javadoc tool reads the names from the appropriate list file and then links to the
packages or modules at that URL.

When the javadoc tool runs, the url value is copied into the <A HREF> links that are created.
Therefore, url must be the URL to the directory and not to a file.

You can use an absolute link for url to enable your documents to link to a document on any
web site, or you can use a relative link to link only to a relative location. If you use a relative
link, then the value you pass in should be the relative path from the destination directory
(specified with the -d option) to the directory containing the packages being linked to. When
you specify an absolute link, you usually use an HTTP link. However, if you want to link to a
file system that has no web server, then you can use a file link. Use a file link only when
everyone who wants to access the generated documentation shares the same file system. In
all cases, and on all operating systems, use a slash as the separator, whether the URL is
absolute or relative, and https:, http:, or file: as specified in the URL Memo: Uniform
Resource Locators.

-link https://<host>/<directory>/<directory>/.../<name>
-link http://<host>/<directory>/<directory>/.../<name>
-link file://<host>/<directory>/<directory>/.../<name>
-link <directory>/<directory>/.../<name>

-linkoffline urll url2

This option is a variation of the -1ink option. They both create links to javadoc generated
documentation for externally referenced classes. You can specify multiple -1inkoffline
options in a specified javadoc tool run.

Use the -1inkoffline option when:

e Linking to a document on the web that the javadoc tool can’'t access through a web
connection

* The package-list or element-1list file of the external document either isn’t accessible
or doesn't exist at the URL location, but does exist at a different location and can be
specified by either the package-1list or element-1list file (typically local).

ORACLE 2-37

http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1738.txt

ORACLE

Chapter 2
javadoc

< Note:

The package-list and element-1ist files are generated by the javadoc
tool when generating the APl documentation and should not be modified by
the user.

If urll is accessible only on the World Wide Web, then the -1inkoffline option
removes the constraint that the javadoc tool must have a web connection to generate
documentation.

Another use of the -1inkoffline option is as a work-around to update documents.
After you have run the javadoc tool on a full set of packages or modules, you can run
the javadoc tool again on a smaller set of changed packages or modules, so that the
updated files can be inserted back into the original set.

For example, the -1inkoffline option takes two arguments. The first is for the string
to be embedded in the <a href> links, and the second tells the javadoc tool where to
find either the package-1ist or element-1ist file.

The urll or url2 value is the absolute or relative URL of the directory that contains
the external javadoc generated documentation that you want to link to. When relative,
the value should be the relative path from the destination directory (specified with the
-d option) to the root of the packages being linked to. See url in the -1ink option.

-linksource

Creates an HTML version of each source file (with line numbers) and adds links to
them from the standard HTML documentation. Links are created for classes,
interfaces, constructors, methods, and fields whose declarations are in a source file.
Otherwise, links aren’t created, such as for default constructors and generated
classes.

This option exposes all private implementation details in the included source files,
including private classes, private fields, and the bodies of private methods, regardless
of the -public, -package, -protected, and -private options. Unless you also use the
-private option, not all private classes or interfaces are accessible through links.
Each link appears on the name of the identifier in its declaration. For example, the link
to the source code of the Button class would be on the word Button:

public class Button extends Component implements Accessible

The link to the source code of the getLabel method in the Button class is on the word
getLabel:

public String getLabel ()

--main-stylesheet file Or -stylesheetfile file

Specifies the path of an alternate stylesheet file that contains the definitions for the
CSS styles used in the generated documentation. This option lets you override the
default. If you do not specify the option, the javadoc tool will create and use a default
stylesheet. The file name can be any name and isn't restricted to stylesheet.css.
The --main-stylesheet option is the preferred form.

2-38

ORACLE

Chapter 2
javadoc

Command-line example:

javadoc --main-stylesheet main stylesheet.css pkg foo

-nocomment

Suppresses the entire comment body, including the main description and all tags, and
generates only declarations. This option lets you reuse source files that were originally
intended for a different purpose so that you can produce skeleton HTML documentation
during the early stages of a new project.

-nodeprecated

Prevents the generation of any deprecated API in the documentation. This does what the -
nodeprecatedlist option does, and it doesn’'t generate any deprecated API throughout the
rest of the documentation. This is useful when writing code when you don’t want to be
distracted by the deprecated code.

-nodeprecatedlist

Prevents the generation of the file that contains the list of deprecated APIs (deprecated-
list.html) and the link in the navigation bar to that page. The javadoc tool continues to
generate the deprecated API throughout the rest of the document. This is useful when your
source code contains no deprecated APIs, and you want to make the navigation bar cleaner.

--no-frames
Disables the use of frames in the generated output.

-nohelp
Omits the HELP link in the navigation bars at the top and bottom of each page of output.

-noindex
Omits the index from the generated documents. The index is produced by default.

-nonavbar

Prevents the generation of the navigation bar, header, and footer, that are usually found at
the top and bottom of the generated pages. The -nonavbar option has no affect on the -
bottom option. The -nonavbar option is useful when you are interested only in the content
and have no need for navigation, such as when you are converting the files to PostScript or
PDF for printing only.

-noqualifier namel:name2...

Excludes the list of qualifiers from the output. The package name is removed from places
where class or interface names appear.

The following example omits all package qualifiers: -noqualifier all.

The following example omits java.lang and java.io package qualifiers: -noqualifier
java.lang:java.io.

The following example omits package qualifiers starting with java and com. sun
subpackages, but not javax: -noqualifier java.*:com.sun.*.

Where a package qualifier would appear due to the previous behavior, the name can be
suitably shortened. This rule is in effect whether or not the -noqualifier option is used.

-nosince
Omits from the generated documents the since sections associated with the @since tags.

2-39

ORACLE

Chapter 2
javadoc

-notimestamp

Suppresses the time stamp, which is hidden in an HTML comment in the generated
HTML near the top of each page. The -notimestamp option is useful when you want
to run the javadoc tool on two source bases and get the differences between them,
because it prevents time stamps from causing a diff (which would otherwise be a
diff on every page). The time stamp includes the javadoc tool release number.

-notree

Omits the class and interface hierarchy pages from the generated documents. These
are the pages you reach using the Tree button in the navigation bar. The hierarchy is
produced by default.

--override-methods (detail|summary)
Documents overridden methods in the detail or summary sections.

-overview filename

Specifies that the javadoc tool should retrieve the text for the overview documentation
from the source file specified by filename and place it on the Overview page
(overview-summary.html). A relative path specified with the file name is relative to the
current working directory.

While you can use any hame you want for the filename value and place it anywhere
you want for the path, it is typical to name it overview.html and place it in the source
tree at the directory that contains the topmost package directories. In this location, no
path is needed when documenting packages, because the -sourcepath option points
to this file.

e Oracle Solaris, Linux, and macOS: For example, if the source tree for the
java.lang package is /src/classes/java/lang/, then you could place the
overview file at /src/classes/overview.html.

* Windows: For example, if the source tree for the java.lang package is
\src\classes\java\lang\, then you could place the overview file at
\src\classes\overview.html

The overview page is created only when you pass two or more package names to the
javadoc tool. The title on the overview page is set by -doctitle.

-serialwarn

Generates compile-time warnings for missing @serial tags. By default, javadoc
generates no serial warnings. Use this option to display the serial warnings, which
helps to properly document default serializable fields and writeExternal methods.

-sourcetab tablength
Specifies the number of spaces each tab uses in the source.

-splitindex
Splits the index file into multiple files, alphabetically, one file per letter, plus a file for
any index entries that start with non-alphabetical symbols.

-tag name:locations:header

Specifies single argument custom tags. For the javadoc tool to spell-check tag
names, it is important to include a -tag option for every custom tag that is present in
the source code, disabling (with x) those that aren’t being output in the current run.
The colon (¢) is always the separator. The -tag option outputs the tag heading,
header, in bold, followed on the next line by the text from its single argument. Similar

2-40

ORACLE

Chapter 2
javadoc

to any block tag, the argument text can contain inline tags, which are also interpreted. The
output is similar to standard one-argument tags, such as the @return and Qauthor tags.
Omitting a header value causes the tagname to be the heading.

-taglet class

Specifies the fully qualified name of the taglet used in generating the documentation for that
tag. Use the fully qualified name for the class value. This taglet also defines the number of
text arguments that the custom tag has. The taglet accepts those arguments, processes
them, and generates the output.

Taglets are useful for block or inline tags. They can have any number of arguments and
implement custom behavior, such as making text bold, formatting bullets, writing out the text
to a file, or starting other processes. Taglets can only determine where a tag should appear
and in what form. All other decisions are made by the doclet. A taglet can’t do things such as
remove a class name from the list of included classes. However, it can execute side effects,
such as printing the tag's text to a file or triggering another process. Use the -tagletpath
option to specify the path to the taglet. The following example inserts the To Do taglet after
Parameters and ahead of Throws in the generated pages.

-taglet com.sun.tools.doclets.ToDoTaglet
-tagletpath /home/taglets

-tag return

-tag param

-tag todo

-tag throws

-tag see

Alternately, you can use the -taglet option in place of its -tag option, but that might be
difficult to read.

-tagletpath tagletpathlist

Specifies the search paths for finding taglet class files. The tagletpathlist can contain
multiple paths by separating them with a colon (:). The javadoc tool searches all
subdirectories of the specified paths.

-top html-code
Specifies the text to be placed at the top of each output file.

-use

Creates class and package usage pages. Includes one Use page for each documented class
and package. The page describes what packages, classes, methods, constructors and fields
use any API of the specified class or package. Given class C, things that use class C would
include subclasses of C, fields declared as C, methods that return C, and methods and
constructors with parameters of type C. For example, you can look at the Use page for the
String type. Because the getName method in the java.awt.Font class returns type String,
the getName method uses string and so the getName method appears on the Use page for
String. This documents only the uses of the API, not the implementation. When a method
uses String in its implementation, but doesn’t take a string as an argument or return a
string, that isn’t considered a use of String.To access the generated Use page, go to the
class or package and click the Use link in the navigation bar.

-version
Includes the version text in the generated docs. This text is omitted by default. To find out
what version of the javadoc tool you are using, use the -J-version option.

2-41

ORACLE

Chapter 2
javadoc

-windowtitle title

Specifies the title to be placed in the HTML <title> tag. The text specified in the
title tag appears in the window title and in any browser bookmarks (favorite places)
that someone creates for this page. This title shouldn’t contain any HTML tags
because the browser doesn't interpret them correctly. Use escape characters on any
internal quotation marks within the title tag. If the -windowtitle option is omitted,
then the javadoc tool uses the value of the -doctitle option for the -windowtitle
option. For example, javadoc -windowtitle "My Library" com.mypackage

Additional Options Provided by the Standard doclet

The following are additional options provided by the standard doclet and are subject to
change without notice. Additional options might are less commonly used or are
otherwise regarded as advanced.

-Xdoclint
Enables recommended checks for problems in Javadoc comments.

-Xdoclint: (all|none| [-] group)

Enable or disable specific checks for bad references, lack of accessibility, missing
javadoc comments, and reports errors for invalid javadoc syntax and missing HTML
tags.

This option enables the javadoc tool to check for all documentation comments
included in the generated output. You can select which items to include in the
generated output with the standard options -public, -protected, -package, and -
private.

When -Xdoclint is enabled, it reports issues with messages similar to the javac
command. The javadoc tool prints a message, a copy of the source line, and a caret
pointing at the exact position where the error was detected. Messages may be either
warnings or errors, depending on their severity and the likelihood to cause an error if
the generated documentation were run through a validator. For example, bad
references or missing javadoc comments don’t cause the javadoc tool to generate
invalid HTML, so these issues are reported as warnings. Syntax errors or missing
HTML end tags cause the javadoc tool to generate invalid output, so these issues are
reported as errors.

The -Xdoclint option validates input comments based upon the requested markup.
By default, the -xdoclint option is enabled. Disable it with the option -
Xdoclint:none.

The following options change what the -Xdoclint option reports:

* -Xdoclint none: Disables the -Xdoclint option

* -Xdoclint group: Enables group checks

e -Xdoclint all: Enables all groups of checks

e -Xdoclint all,-group: Enables all checks except group checks
The group variable has one of the following values:

* accessibility: Checks for the issues to be detected by an accessibility checker
(for example, no caption or summary attributes specified in a <table> tag).

* html: Detects high-level HTML issues, such as putting block elements inside
inline elements, or not closing elements that require an end tag. The rules are

2-42

java

ORACLE

Chapter 2
java

derived from the HTML 4 Specification or the HTML 5 Specification based on the
standard doclet html output generation selected. This type of check enables the javadoc
tool to detect HTML issues that some browsers might not interpret as intended.

* missing : Checks for missing Javadoc comments or tags (for example, a missing
comment or class, or a missing @return tag or similar tag on a method).

e reference : Checks for issues relating to the references to Java API elements from
javadoc tags (for example, an item not found in @see or a bad name after Gparam).

* syntax : Checks for low level issues like unescaped angle brackets (< and >) and
ampersands (&) and invalid javadoc tags.

You can specify the -Xdoclint option multiple times to enable the option to check errors and
warnings in multiple categories. Alternatively, you can specify multiple error and warning
categories by using the preceding options. For example, use either of the following
commands to check for HTML, syntax, and accessibility issues in the file filenane.

javadoc -Xdoclint:html -Xdoclint:syntax -Xdoclint:accessibility filename
javadoc -Xdoclint:html,syntax,accessibility filename

< Note:

The javadoc tool doesn’t guarantee the completeness of these checks. In
particular, it isn’t a full HTML compliance checker. The goal of the -Xdoclint option
is to enable the javadoc tool to report the majority of common errors.

The javadoc tool doesn'’t attempt to fix invalid input, it just reports it.

-Xdoclint/package: ([-]) packages

Enables or disables checks in specific packages. packages is a comma separated list of
package specifiers. A package specifier is either a qualified name of a package or a package
name prefix followed by *, which expands to all sub packages of the given package. Prefix
the package specifier with a dash (-) to disable checks for the specified packages.

-Xdocrootparent url
Replaces all ¢docRoot items followed by/ .. in javadoc comments with the url.

You can use the java command to launch a Java application.

Synopsis

Windows: The javaw command is identical to java, except that with javaw there’s no
associated console window. Use javaw when you don’t want a command prompt window to
appear. The javaw launcher will, however, display a dialog box with error information if a
launch fails.

To launch a class file:

java [options] mainclass [args...]

2-43

https://www.w3.org/TR/html4/
http://www.w3.org/TR/2014/REC-html5-20141028/

ORACLE

Chapter 2
java

To launch the main class in a JAR file:

java [options] -jar jarfile [args...]

To launch the main class in a module:

java [options] -m module[/mainclass] [args...]

or

java [options] --module module[/mainclass] [args...]

To launch a single source-file program:

java [options] source-file [args...]

[options]
Optional: Specifies command-line options separated by spaces. See Overview of
Java Options for a description of available options.

mainclass
Specifies the name of the class to be launched. Command-line entries following
classname are the arguments for the main method.

-jar jarfile

Executes a program encapsulated in a JAR file. The jarfile argument is the name of
a JAR file with a manifest that contains a line in the form Main-Class: classname that
defines the class with the public static void main(String[] args) method that
serves as your application's starting point. When you use -jar, the specified JAR file
is the source of all user classes, and other class path settings are ignored. If you're
using JAR files, then see jar.

-m Oor --module module[/mainclass]

Executes the main class in a module specified by mainclass if it is given, or, if it is not
given, the value in the module. In other words, mainclass can be used when it is not
specified by the module, or to override the value when it is specified.

See Standard Options for Java.

source-file

Only used to launch a single source-file program. Specifies the source file that
contains the main class when using source-file mode. See Using Source-File Mode to
Launch Single-File Source-Code Programs

[args...]
Optional: Arguments following mainclass, source-file, -jar jarfile, and -m or --
module module/mainclass are passed as arguments to the main class.

Description

The java command starts a Java application. It does this by starting the Java Runtime
Environment (JRE), loading the specified class, and calling that class's main ()
method. The method must be declared public and static, it must not return any

2-44

ORACLE

Chapter 2
java

value, and it must accept a String array as a parameter. The method declaration has the
following form:

public static void main(String[] args)

In source-file mode, the java command can launch a class declared in a source file. See
Using Source-File Mode to Launch Single-File Source-Code Programs for a description of
using the source-file mode.

< Note:

You can use the JDK_JAVA OPTIONS launcher environment variable to prepend its
content to the actual command line of the java launcher. See Using the
JDK_JAVA_OPTIONS Launcher Environment Variable.

By default, the first argument that isn’t an option of the java command is the fully qualified
name of the class to be called. If -jar is specified, then its argument is the name of the JAR
file containing the class and resource files for the application. The startup class must be
indicated by the Main-Class manifest header in its manifest file.

Arguments after the class file name or the JAR file name are passed to the main () method.

Using Source-File Mode to Launch Single-File Source-Code Programs

To launch a class declared in a source file, run the java launcher in source-file mode.
Entering source-file mode is determined by two items on the java command line:

* The first item on the command line that is not an option or part of an option. In other
words, the item in the command line that would otherwise be the main class nhame.

* The --source version option, if present.

If the class identifies an existing file that has a . java extension, or if the --source option is
specified, then source-file mode is selected. The source file is then compiled and run. The --
source option can be used to specify the source version or N of the source code. This
determines the API that can be used. When you set --source N, you can only use the public
API that was defined in JDK N.

Note:

The valid values of N change for each release, with new values added and old
values removed. You'll get an error message if you use a value of N that is no
longer supported. Supported values of N for this release are 6, 7, 8, 9, 10, and 11.

If the file does not have the .java extension, the --source option must be used to tell the
java command to use the source-file mode. The --source option is used for cases when the
source file is a "script” to be executed and the name of the source file does not follow the
normal naming conventions for Java source files.

2-45

ORACLE

Chapter 2
java

In source-file mode, the effect is as though the source file is compiled into memory,
and the first class found in the source file is executed. Any arguments placed after the
name of the source file in the original command line are passed to the compiled class
when it is executed.

For example, if a file were named HelloWorld.java and contained a class named
hello.World, then the source-file mode command to launch the class would be:

java HelloWorld.java

The example illustrates that the class can be in a named package, and does not need
to be in the unnamed package. This use of source-file mode is informally equivalent to
using the following two commands where hello.World is the name of the class in the
package:

javac -d memory HelloWorld.java
java -cp memory hello.World

In source-file mode, any additional command-line options are processed as
follows:

* The launcher scans the options specified before the source file for any that are
relevant in order to compile the source file.

This includes: --class-path, --module-path, --add-exports, --add-modules, --
limit-modules, --patch-module, --upgrade-module-path, and any variant forms
of those options. It also includes the --enable-preview option, described in JEP
12: Preview Language and VM Features.

» No provision is made to pass any additional options to the compiler, such as -
processor Or -Werror.

e Command-line argument files (@-files) may be used in the standard way. Long lists
of arguments for either the VM or the program being invoked may be placed in
files specified on the command-line by prefixing the filename with an @ character.

In source-file mode, compilation proceeds as follows:

* Any command-line options that are relevant to the compilation environment are
taken into account.

» No other source files are found and compiled, as if the source path is set to an
empty value.

e Annotation processing is disabled, as if -proc:none is in effect.

e If a version is specified, via the --source option, the value is used as the argument
for an implicit --release option for the compilation. This sets both the source
version accepted by compiler and the system API that may be used by the code in
the source file.

* The source file is compiled in the context of an unnamed module.

» The source file should contain one or more top-level classes, the first of which is
taken as the class to be executed.

2-46

http://openjdk.java.net/jeps/12
http://openjdk.java.net/jeps/12

ORACLE

Chapter 2
java

» The compiler does not enforce the optional restriction defined at the end of JLS §7.6, that
a type in a named package should exist in a file whose name is composed from the type
name followed by the .java extension.

» If the source file contains errors, appropriate error messages are written to the standard
error stream, and the launcher exits with a non-zero exit code.

In source-file mode, execution proceeds as follows:

e The class to be executed is the first top-level class found in the source file. It must
contain a declaration of the standard public static void main(String[]) method.

e The compiled classes are loaded by a custom class loader, that delegates to the
application class loader. This implies that classes appearing on the application class path
cannot refer to any classes declared in the source file.

e The compiled classes are executed in the context of an unnamed module, as though --
add-modules=ALL-DEFAULT is in effect. This is in addition to any other --add-module
options that may be have been specified on the command line.

* Any arguments appearing after the name of the file on the command line are passed to
the standard main method in the obvious way.

* ltis an error if there is a class on the application class path whose name is the same as
that of the class to be executed.

See JEP 330: Launch Single-File Source-Code Programs for complete details.

Using the JDK_JAVA_OPTIONS Launcher Environment Variable

JDK_JAVA OPTIONS prepends its content to the options parsed from the command line. The
content of the JDK_JAVA OPTIONS environment variable is a list of arguments separated by
white-space characters (as determined by isspace ()). These are prepended to the command
line arguments passed to java launcher. The encoding requirement for the environment
variable is the same as the java command line on the system. JDK_JAVA OPTIONS
environment variable content is treated in the same manner as that specified in the command
line.

Single (') or double (") quotes can be used to enclose arguments that contain whitespace
characters. All content between the open quote and the first matching close quote are
preserved by simply removing the pair of quotes. In case a matching quote is not found, the
launcher will abort with an error message. @-files are supported as they are specified in the
command line. However, as in @-files, use of a wildcard is not supported. In order to mitigate
potential misuse of JDK_JAVA OPTIONS behavior, options that specify the main class (such as
-jar) or cause the java launcher to exit without executing the main class (such as -h) are
disallowed in the environment variable. If any of these options appear in the environment
variable, the launcher will abort with an error message. When JDK_JAVA OPTIONS is set, the
launcher prints a message to stderr as a reminder.

Example:

export JDK JAVA OPTIONS='-g @filel -Dprop=value @file2 -Dws.prop="white
spaces"'
$ java -Xint @file3

is equivalent to the command line:

java -g @filel -Dprop=value @file2 -Dws.prop="white spaces" -Xint @file3

2-47

http://openjdk.java.net/jeps/330

ORACLE

Chapter 2
java

Overview of Java Options
The java command supports a wide range of options in the following categories:

e Standard Options for Java: Options guaranteed to be supported by all
implementations of the Java Virtual Machine (JVM). They're used for common
actions, such as checking the version of the JRE, setting the class path, enabling
verbose output, and so on.

e Extra Options for Java: General purpose options that are specific to the Java
HotSpot Virtual Machine. They aren’t guaranteed to be supported by all JVM
implementations, and are subject to change. These options start with -x.

The advanced options aren’'t recommended for casual use. These are developer
options used for tuning specific areas of the Java HotSpot Virtual Machine operation
that often have specific system requirements and may require privileged access to
system configuration parameters. Several examples of performance tuning are
provided in Performance Tuning Examples. These options aren’t guaranteed to be
supported by all JVM implementations and are subject to change. Advanced options
start with -xx.

* Advanced Runtime Options for Java: Control the runtime behavior of the Java
HotSpot VM.

* Advanced JIT Compiler Options for java: Control the dynamic just-in-time (JIT)
compilation performed by the Java HotSpot VM.

* Advanced Serviceability Options for Java: Enable gathering system information
and performing extensive debugging.

* Advanced Garbage Collection Options for Java: Control how garbage collection
(GC) is performed by the Java HotSpot

Boolean options are used to either enable a feature that's disabled by default or
disable a feature that's enabled by default. Such options don’t require a parameter.
Boolean -xx options are enabled using the plus sign (-xx: +0OptionName) and disabled
using the minus sign (-xX: -OptionName).

For options that require an argument, the argument may be separated from the option
name by a space, a colon (), or an equal sign (=), or the argument may directly follow
the option (the exact syntax differs for each option). If you're expected to specify the
size in bytes, then you can use no suffix, or use the suffix k or K for kilobytes (KB), m or
M for megabytes (MB), or g or G for gigabytes (GB). For example, to set the size to 8
GB, you can specify either 8g, 8192m, 8388608k, or 8589934592 as the argument. If you
are expected to specify the percentage, then use a number from 0 to 1. For example,
specify 0.25 for 25%.

The following sections describe the options that are obsolete, deprecated, and
removed:

» Deprecated Java Options: Accepted and acted upon — a warning is issued when
they’re used.

* Obsolete Java Options: Accepted but ignored — a warning is issued when they're
used.

* Removed Java Options: Removed — using them results in an error.

2-48

ORACLE

Chapter 2
java

Standard Options for Java

These are the most commonly used options supported by all implementations of the JVM.

Note:

To specify an argument for a long option, you can use either --name=value Or --
name value.

-agentlib: libname[=options]
Loads the specified native agent library. After the library name, a comma-separated list of
options specific to the library can be used.

* Oracle Solaris, Linux, and macOS: If the option -agentlib: foo is specified, then the
JVM attempts to load the library named 1ibfoo.so in the location specified by the
LD LIBRARY PATH system variable (on macOS this variable is DYLD LIBRARY PATH).

* Windows: If the option -agentlib:foo is specified, then the JVM attempts to load the
library named foo.d11 in the location specified by the PATH system variable.

The following example shows how to load the Java Debug Wire Protocol (JDWP) library
and listen for the socket connection on port 8000, suspending the JVM before the main
class loads:

-agentlib:jdwp=transport=dt socket, server=y,address=8000

-agentpath: pathname[=options]
Loads the native agent library specified by the absolute path name. This option is equivalent
to -agentlib but uses the full path and file name of the library.

--class-path classpath, -classpath classpath, Or -cp classpath

A semicolon (;) separated list of directories, JAR archives, and ZIP archives to search for
class files.

Specifying classpath overrides any setting of the CLASSPATH environment variable. If the
class path option isn't used and classpath isn’'t set, then the user class path consists of the
current directory (.).

As a special convenience, a class path element that contains a base name of an asterisk (*)
is considered equivalent to specifying a list of all the files in the directory with the

extension .jar or .JAR. A Java program can't tell the difference between the two
invocations. For example, if the directory mydir contains a.jar and b. JAR, then the class
path element mydir/* is expanded to A.jar:b.JAR, except that the order of JAR files is
unspecified. All . jar files in the specified directory, even hidden ones, are included in the list.
A class path entry consisting of an asterisk (*) expands to a list of all the jar files in the
current directory. The CLASSPATH environment variable, where defined, is similarly expanded.
Any class path wildcard expansion occurs before the Java VM is started. Java programs
never see wildcards that aren’t expanded except by querying the environment, such as by
calling System.getenv ("CLASSPATH").

--disable-(@files
Can be used anywhere on the command line, including in an argument file, to prevent further
@filename expansion. This option stops expanding @-ardfiles after the option.

2-49

ORACLE

Chapter 2
java

--enable-preview
Allows classes to depend on preview features of the release.

--module-path modulepath... Or -p modulepath
A semicolon (;) separated list of directories in which each directory is a directory of
modules.

--upgrade-module-path modulepath...
A semicolon (;) separated list of directories in which each directory is a directory of
modules that replace upgradeable modules in the runtime image.

--add-modules module[,module...]
Specifies the root modules to resolve in addition to the initial module. module also can
be ALL-DEFAULT, ALL-SYSTEM, and ALL-MODULE-PATH.

--list-modules
Lists the observable modules and then exits.

-d module name Or --describe-module module name
Describes a specified module and then exits.

--dry-run

Creates the VM but doesn’t execute the main method. This --dry-run option might
be useful for validating the command-line options such as the module system
configuration.

--validate-modules
Validates all modules and exits. This option is helpful for finding conflicts and other
errors with modules on the module path.

-Dproperty=value

Sets a system property value. The property variable is a string with no spaces that
represents the name of the property. The value variable is a string that represents the
value of the property. If value is a string with spaces, then enclose it in quotation
marks (for example -Dfoo="foo bar").

-disableassertions|: [packagename]...|:classname] Or -da[:
[packagename] ... | :classname]

Disables assertions. By default, assertions are disabled in all packages and classes.
With no arguments, -disableassertions (-da) disables assertions in all packages
and classes. With the packagename argument ending in . . ., the switch disables
assertions in the specified package and any subpackages. If the argument is

simply ..., then the switch disables assertions in the unnamed package in the current
working directory. With the classname argument, the switch disables assertions in the
specified class.

The -disableassertions (-da) option applies to all class loaders and to system
classes (which don’t have a class loader). There's one exception to this rule: If the
option is provided with no arguments, then it doesn'’t apply to system classes. This
makes it easy to disable assertions in all classes except for system classes. The -
disablesystemassertions option enables you to disable assertions in all system
classes. To explicitly enable assertions in specific packages or classes, use the -
enableassertions (-ea) option. Both options can be used at the same time. For
example, to run the MyClass application with assertions enabled in the package

2-50

ORACLE

Chapter 2
java

com.wombat . fruitbat (and any subpackages) but disabled in the class
com.wombat.fruitbat.Brickbat, use the following command:

java -ea:com.wombat.fruitbat... -da:com.wombat.fruitbat.Brickbat MyClass

-disablesystemassertions Or -dsa
Disables assertions in all system classes.

-enableassertions|[: [packagename] ... |:classname] Or -ea[:
[packagename] ... |:classname]

Enables assertions. By default, assertions are disabled in all packages and classes. With no
arguments, -enableassertions (-ea) enables assertions in all packages and classes. With
the packagename argument ending in .. ., the switch enables assertions in the specified
package and any subpackages. If the argument is simply ..., then the switch enables
assertions in the unnamed package in the current working directory. With the classname
argument, the switch enables assertions in the specified class.

The -enableassertions (-ea) option applies to all class loaders and to system classes
(which don’t have a class loader). There’s one exception to this rule: If the option is provided
with no arguments, then it doesn’t apply to system classes. This makes it easy to enable
assertions in all classes except for system classes. The -enablesystemassertions option
provides a separate switch to enable assertions in all system classes. To explicitly disable
assertions in specific packages or classes, use the -disableassertions (-da) option. If a
single command contains multiple instances of these switches, then they’re processed in
order, before loading any classes. For example, to run the MyClass application with
assertions enabled only in the package com.wombat. fruitbat (and any subpackages) but
disabled in the class com.wombat.fruitbat.Brickbat, use the following command:

java -ea:com.wombat.fruitbat... -da:com.wombat.fruitbat.Brickbat MyClass
-enablesystemassertions Or -esa
Enables assertions in all system classes.

-help, -h, Or -?
Prints the help message to the error stream.

--help
Prints the help message to the output stream.

-javaagent: jarpath[=options]
Loads the specified Java programming language agent.

--show-version
Prints the product version to the output stream and continues.

-showversion
Prints the product version to the error stream and continues.

--show-module-resolution
Shows module resolution output during startup.

-splash:imagepath
Shows the splash screen with the image specified by imagepath. HiDPI scaled images are
automatically supported and used if available. The unscaled image file name, such as

2-51

ORACLE

Chapter 2
java

image.ext, should always be passed as the argument to the -splash option. The
most appropriate scaled image provided is picked up automatically.

For example, to show the splash.gif file from the images directory when starting
your application, use the following option:

-splash:images/splash.gif

See the SplashScreen API documentation for more information.

-verbose:class
Displays information about each loaded class.

-verbose:gc
Displays information about each garbage collection (GC) event.

-verbose: jni
Displays information about the use of native methods and other Java Native Interface
(INI) activity.

-verbose :module
Displays information about the modules in use.

--version
Prints product version to the error stream and exits.

-version
Prints product version to the output stream and exits.

-X
Prints the help on extra options to the error stream.

--help-extra
Prints the help on extra options to the output stream.

Qargfile

Specifies one or more argument files prefixed by ¢ used by the java command. It isn’t
uncommon for the java command line to be very long because of the . jar files
needed in the classpath. The targfile option overcomes command-line length
limitations by enabling the launcher to expand the contents of argument files after
shell expansion, but before argument processing. Contents in the argument files are
expanded because otherwise, they would be specified on the command line until the -
Xdisable-@files option was encountered.

The argument files can also contain the main class name and all options. If an
argument file contains all of the options required by the java command, then the
command line could simply be:

java @argfile

See java Command-Line Argument Files for a description and examples of using
Qargfile.

Extra Options for Java

The following java options are general purpose options that are specific to the Java
HotSpot Virtual Machine.

2-52

ORACLE

Chapter 2
java

-Xbatch

Disables background compilation. By default, the JVM compiles the method as a background
task, running the method in interpreter mode until the background compilation is finished.
The -xbatch flag disables background compilation so that compilation of all methods
proceeds as a foreground task until completed. This option is equivalent to -xX: -
BackgroundCompilation

-Xbootclasspath/a:directories|zip|JAR-files

Specifies a list of directories, JAR files, and ZIP archives to append to the end of the default
bootstrap class path.

Oracle Solaris, Linux, and macOS: Colons (:) separate entities in this list.

Windows: Semicolons (;) separate entities in this list.

-Xcheck: jni

Performs additional checks for Java Native Interface (JNI) functions. Specifically, it validates
the parameters passed to the JNI function and the runtime environment data before
processing the JNI request. It also checks for pending exceptions between JNI calls. Any
invalid data encountered indicates a problem in the native code, and the JVM terminates
with an irrecoverable error in such cases. Expect a performance degradation when this
option is used.

-Xcomp

Forces compilation of methods on first invocation. By default, the Client VM (-client)
performs 1,000 interpreted method invocations and the Server VM (-server) performs
10,000 interpreted method invocations to gather information for efficient compilation.
Specifying the -xcomp option disables interpreted method invocations to increase compilation
performance at the expense of efficiency. You can also change the number of interpreted
method invocations before compilation by using the -xX:CompileThreshold option.

-Xdebug
Does nothing. Provided for backward compatibility.

-Xdiag
Shows additional diagnostic messages.

-Xfuture

Enables strict class-file format checks that enforce close conformance to the class-file format
specification. Developers should use this flag when developing new code. Stricter checks
may become the default in future releases.

-Xint

Runs the application in interpreted-only mode. Compilation to native code is disabled, and all
bytecode is executed by the interpreter. The performance benefits offered by the just-in-time
(JIT) compiler aren’t present in this mode.

-Xinternalversion
Displays more detailed JVM version information than the -version option, and then exits.

-Xloggc:option
Enables the JVM unified logging framework. Logs GC status to a file with time stamps.

-Xlog:option

Configure or enable logging with the Java Virtual Machine (JVM) unified logging framework.
See Enable Logging with the JVM Unified Logging Framework.

2-53

ORACLE

Chapter 2
java

-Xmixed
Executes all bytecode by the interpreter except for hot methods, which are compiled
to native code.

-Xmn size

Sets the initial and maximum size (in bytes) of the heap for the young generation
(nursery). Append the letter k or K to indicate kilobytes, m or M to indicate megabytes,
or g or G to indicate gigabytes. The young generation region of the heap is used for
new objects. GC is performed in this region more often than in other regions. If the
size for the young generation is too small, then a lot of minor garbage collections are
performed. If the size is too large, then only full garbage collections are performed,
which can take a long time to complete. Oracle recommends that you keep the size
for the young generation greater than 25% and less than 50% of the overall heap
size. The following examples show how to set the initial and maximum size of young
generation to 256 MB using various units:

-Xmn256m
-Xmn262144k
-Xmn268435456

Instead of the -Xmn option to set both the initial and maximum size of the heap for the
young generation, you can use -xX:NewSize to set the initial size and -xX:MaxNewSize
to set the maximum size.

-Xms size

Sets the minimum and the initial size (in bytes) of the heap. This value must be a
multiple of 1024 and greater than 1 MB. Append the letter k or K to indicate kilobytes,
m or M to indicate megabytes, g or G to indicate gigabytes. The following examples
show how to set the size of allocated memory to 6 MB by using various units:

-Xms6291456
-Xms6144k
-Xms6m

If you don'’t set this option, then the initial size will be set as the sum of the sizes
allocated for the old generation and the young generation. The initial size of the heap
for the young generation can be set by using the -Xmn option or the -XX:NewSize
option.

" Note:

The -xX:InitalHeapSize option can also be used to set the initial heap
size. If it appears after -xms on the command line, then the initial heap size
gets set to the value specified with -XX:InitalHeapSize.

-Xmx size

Specifies the maximum size (in bytes) of the memory allocation pool in bytes. This
value must be a multiple of 1024 and greater than 2 MB. Append the letter k or K to
indicate kilobytes, m or M to indicate megabytes, and g or G to indicate gigabytes. The
default value is chosen at runtime based on system configuration. For server

2-54

Chapter 2
java

deployments, -xms and -Xmx are often set to the same value. The following examples show
how to set the maximum allowed size of allocated memory to 80 MB by using various units:

-Xmx83886080
-Xmx81920k
-Xmx80m

The -xmx option is equivalent to -Xx:MaxHeapSize.

-Xnoclassgc

Disables garbage collection (GC) of classes. This can save some GC time, which shortens

interruptions during the application run. When you specify -xnoclassgc at startup, the class
objects in the application are left untouched during GC and are always considered live. This
can result in more memory being permanently occupied which, if not used carefully, throws

an out-of-memory exception.

-Xrs

Reduces the use of operating system signals by the JVM. Shutdown hooks enable the
orderly shutdown of a Java application by running user cleanup code (such as closing
database connections) at shutdown, even if the JVM terminates abruptly.

e Oracle Solaris, Linux, and macOS:

— The JVM catches signals to implement shutdown hooks for unexpected termination.
The JVM uses SIGHUP, SIGINT, and SIGTERM to initiate the running of shutdown
hooks.

— Applications embedding the JVM frequently need to trap signals such as SIGINT or
SIGTERM, which can lead to interference with the JVM signal handlers. The -Xrs
option is available to address this issue. When -Xrs is used, the signal masks for
SIGINT, SIGTERM, SIGHUP, and SIGQUIT aren’t changed by the JVM, and signal
handlers for these signals aren’t installed.

Windows:

— The JVM watches for console control events to implement shutdown hooks for
unexpected termination. Specifically, the JVM registers a console control handler
that begins shutdown-hook processing and returns TRUE for CTRL C EVENT,

CTRL _CLOSE EVENT, CTRL LOGOFF EVENT, and CTRL SHUTDOWN EVENT.

— The JVM uses a similar mechanism to implement the feature of dumping thread
stacks for debugging purposes. The JVM uses CTRL BREAK EVENT to perform thread
dumps.

— Ifthe JVM is run as a service (for example, as a servlet engine for a web server),
then it can receive CTRL LOGOFF EVENT but shouldn’t initiate shutdown because the
operating system doesn’t actually terminate the process. To avoid possible
interference such as this, the -xrs option can be used. When the -xrs option is
used, the JVM doesn't install a console control handler, implying that it doesn’t watch
for or process CTRL C EVENT, CTRL CLOSE EVENT, CTRL LOGOFF EVENT, Of
CTRL SHUTDOWN EVENT.

There are two consequences of specifying -Xrs:
* Oracle Solaris, Linux, and macOS: SIGQUIT thread dumps aren't available.

* Windows: Ctrl + Break thread dumps aren’t available.

ORACLE 2-55

ORACLE

Chapter 2
java

User code is responsible for causing shutdown hooks to run, for example, by calling
the System.exit () when the JVM is to be terminated.

-Xshare:mode
Sets the class data sharing (CDS) mode.
Possible mode arguments for this option include the following:

auto
Uses CDS if possible. This is the default value for Java HotSpot 32-Bit Client VM.

on
Requires the use of CDS. This option prints an error message and exits if class
data sharing can’t be used.

" Note:

-Xshare:on is used for testing purposes only and can cause intermittent
failures due to the use of address space layout randomization by the
operation system. This option should not be used in production
environments.

off
Instructs not to use CDS.

-XshowSettings
Shows all settings and then continues.

-XshowSettings: category
Shows settings and continues. Possible category arguments for this option include
the following:

all
Shows all categories of settings. This is the default value.

locale
Shows settings related to locale.

properties
Shows settings related to system properties.

vm
Shows the settings of the JVM.

system
Linux: Shows host system or container configuration and continues.

-Xss size
Sets the thread stack size (in bytes). Append the letter k or K to indicate KB, m or M to
indicate MB, and g or G to indicate GB. The default value depends on the platform:

« Linux/x64 (64-bit): 1024 KB
« macOS (64-bit): 1024 KB

2-56

ORACLE

Chapter 2
java

» Oracle Solaris/x64 (64-bit): 1024 KB
* Windows: The default value depends on virtual memory

The following examples set the thread stack size to 1024 KB in different units:

-Xsslm
-Xss1024k
-Xss1048576

This option is similar to -xX: ThreadStackSize.

-Xverify
Sets the mode of the bytecode verifier.

--add-reads module=target-module(, target-module) *
Updates module to read the target-module, regardless of the module declaration. target-
module can be all unnamed to read all unnamed modules.

--add-exports module/package=target-module(, target-module) *
Updates module to export package to target-module, regardless of module declaration. The
target-module can be all unnamed to export to all unnamed modules.

--add-opens module/package=target-module (, target-module) *
Updates module to open package t0 target-module, regardless of module declaration.

--illegal-access=parameter
When present at run time, --illegal-access= takes a keyword parameter to specify a mode
of operation:

< Note:

This option will be removed in a future release.

e permit: This mode opens each package in each module in the run-time image to code in
all unnamed modules (such as code on the class path), if that package existed in JDK 8.
This enables both static access (for example, by compiled bytecode), and deep reflective
access through the platform's various reflection APls. The first reflective-access
operation to any such package causes a warning to be issued. However, no warnings
are issued after the first occurrence. This single warning describes how to enable further
warnings. This mode is the default for the current JDK but will change in a future release.

e warn: This mode is identical to permit except that a warning message is issued for each
illegal reflective-access operation.

* debug: This mode is identical to warn except that both a warning message and a stack
trace are issued for each illegal reflective-access operation.

* deny: This mode disables all illegal-access operations except for those enabled by other
command-line options, such as--add-opens. This mode will become the default in a
future release.

The default mode, --illegal-access=permit, is intended to make you aware of code on the
class path that reflectively accesses any JDK-internal APIs at least once. To learn about all

2-57

ORACLE

Chapter 2
java

such accesses, you can use the warn or the debug modes. For each library or
framework on the class path that requires illegal access, you have two options:

» If the component's maintainers have already released a fixed version that no
longer uses JDK-internal APIs then you can consider upgrading to that version.

» If the component still needs to be fixed, then you can contact its maintainers and
ask them to replace their use of JDK-internal APIs with the proper exported APIs.

If you must continue to use a component that requires illegal access, then you can
eliminate the warning messages by using one or more --add-opens options to open
only those internal packages to which access is required.

To verify that your application is ready for a future version of the JDK, run it with --
illegal-access=deny along with any necessary --add-opens options. Any remaining
illegal-access errors will most likely be due to static references from compiled code to
JDK-internal APls. You can identify those by running the jdeps tool with the --5dk-
internals option. For performance reasons, the current JDK does not issue warnings
for illegal static-access operations.

--limit-modules module[,module...]
Specifies the limit of the universe of observable modules.

--patch-module module=file(;file)*
Overrides or augments a module with classes and resources in JAR files or
directories.

--disable-@files
Can be used anywhere on the command line, including in an argument file, to prevent
further @ f1 Iename expansion. This option stops expanding ¢-ardfiles after the option.

--source version
Sets the version of the source in source-file mode.

Extra Options for macOS
The following extra options are macOS-specific.

-XstartOnFirstThread
Runs the main () method on the first (AppKit) thread.

-Xdock:name=application_name
Overrides the default application name displayed in dock.

-Xdock:icon=path to icon file
Overrides the default icon displayed in dock.

Advanced Runtime Options for Java

These java options control the runtime behavior of the Java HotSpot VM.

-XX:ActiveProcessorCount=x

Overrides the number of CPUs that the VM will use to calculate the size of thread
pools it will use for various operations such as Garbage Collection and ForkJoinPool.
The VM normally determines the number of available processors from the operating
system. This flag can be useful for partitioning CPU resources when running multiple
Java processes in docker containers. This flag is honored even if

2-58

Chapter 2
java

UseContainerSupport IS not enabled. See -Xx:-UseContainerSupport for a description of
enabling and disabling container support.

--XX:AllocateHeapAt=path

Takes a path to the file system and uses memory mapping to allocate the object heap on the
memory device. Using this option enables the HotSpot VM to allocate the Java object heap
on an alternative memory device, such as an NV-DIMM, specified by the user.

Alternative memory devices that have the same semantics as DRAM, including the
semantics of atomic operations, can be used instead of DRAM for the object heap without
changing the existing application code. All other memory structures (such as the code heap,
metaspace, and thread stacks) continue to reside in DRAM.

Some operating systems expose non-DRAM memory through the file system. Memory-
mapped files in these file systems bypass the page cache and provide a direct mapping of
virtual memory to the physical memory on the device. The existing heap related flags (such
as -xmx and -Xms) and garbage-collection related flags continue to work as before.

-XX:-CompactStrings

Disables the Compact Strings feature. By default, this option is enabled. When this option is
enabled, Java Strings containing only single-byte characters are internally represented and
stored as single-byte-per-character Strings using 1ISO-8859-1 / Latin-1 encoding. This
reduces, by 50%, the amount of space required for Strings containing only single-byte
characters. For Java Strings containing at least one multibyte character: these are
represented and stored as 2 bytes per character using UTF-16 encoding. Disabling the
Compact Strings feature forces the use of UTF-16 encoding as the internal representation
for all Java Strings.

Cases where it may be beneficial to disable Compact Strings include the following:

e When it's known that an application overwhelmingly will be allocating multibyte character
Strings

e Inthe unexpected event where a performance regression is observed in migrating from
Java SE 8 to Java SE 9 or later and an analysis shows that Compact Strings introduces
the regression

In both of these scenarios, disabling Compact Strings makes sense.

-XX:CompilerDirectivesFile=file
Adds directives from a file to the directives stack when a program starts. See Compiler
Directives and the Command Line.

-XX:CompilerDirectivesPrint
Prints the directives stack when the program starts or when a new directive is added..

-XX:ConcGCThreads=n
Sets the number of parallel marking threads. Sets n to approximately 1/4 of the number of
parallel garbage collection threads (ParallelGCThreads).

-XX:+DisableAttachMechanism

Disables the mechanism that lets tools attach to the JVM. By default, this option is disabled,
meaning that the attach mechanism is enabled and you can use diagnostics and
troubleshooting tools such as jcmd, jstack, jmap, and jinfo.

ORACLE 2-59

ORACLE

Chapter 2
java

< Note:

The tools such as jemd, jinfo, jmap, and jstack shipped with the JDK aren’t
supported when using the tools from one JDK version to troubleshoot a
different JDK version.

-XX:ErrorFile=filename

Specifies the path and file name to which error data is written when an irrecoverable
error occurs. By default, this file is created in the current working directory and named
hs err pidpid.log where pidis the identifier of the process that caused the error.
The following example shows how to set the default log file (note that the identifier of
the process is specified as $p):

-XX:ErrorFile=./hs err pid%p.log

e Oracle Solaris, Linux, and macOS: The following example shows how to set the
error log to /var/log/java/java error.log:

-XX:ErrorFile=/var/log/java/java error.log

* Windows: The following example shows how to set the error log file to C: /1og/
java/java_error.log

-XX:ErrorFile=C:/log/java/java_error.log

If the file can’t be created in the specified directory (due to insufficient space, a
permission problem, or another issue), then the file is created in the temporary
directory for the operating system:

e Oracle Solaris, Linux, and macOS: The temporary directory is /tmp.

* Windows: The temporary directory is specified by the value of the TMP
environment variable. If that environment variable isn’t defined, then the value of
the TEMP environment variable is used.

-XX:+ExtensiveErrorReports

Enables the reporting of more extensive error information in the ErrorFile. This
option can be turned on in environments where maximal information is desired - even
if the resulting logs may be quite large and/or contain information that might be
considered sensitive. The information can vary from release to release, and across
different platforms. By default this option is disabled.

-XX:+FailOverToOldVerifier

Enables automatic failover to the old verifier when the new type checker fails. By
default, this option is disabled and it's ignored (that is, treated as disabled) for classes
with a recent bytecode version. You can enable it for classes with older versions of the
bytecode.

-XX:+FlightRecorder
Enables the use of Java Flight Recorder (JFR) during the runtime of the application.

2-60

ORACLE

Chapter 2
java

< Note:

The -xX:+FlightRecorder option is no longer required to use JFR. This was a
change made in JDK 8u40.

-XX:FlightRecorderOptions=parameter=value
Sets the parameters that control the behavior of JFR.
The following list contains the available JFR parameter=value entries:

allow_threadbuffers to_disk={true|false}
Specifies whether thread buffers are written directly to disk if the buffer thread is blocked.
By default, this parameter is disabled.

globalbuffersize=size

Specifies the total amount of primary memory used for data retention. The default value
is based on the value specified for memorysize. Change the memorysize parameter to
alter the size of global buffers.

maxchunksize=size

Specifies the maximum size (in bytes) of the data chunks in a recording. Append m or M
to specify the size in megabytes (MB), and g or G to specify the size in gigabytes (GB).
By default, the maximum size of data chunks is set to 12 MB. The minimum allowed is 1
MB.

memorysize=size

Determines how much buffer memory should be used, and sets the globalbuffersize
and numglobalbuffers parameters based on the size specified. Append m or M to specify
the size in megabytes (MB), and g or G to specify the size in gigabytes (GB). By default,
the memory size is set to 10 MB.

numglobalbuffers
Specifies the number of global buffers used. The default value is based on the memory
size specified. Change the memorysize parameter to alter the number of global buffers.

old-object-queue-size=number-of-objects
Maximum number of old objects to track. By default, the number of objects is set to 256.

repository=path
Specifies the repository (a directory) for temporary disk storage. By default, the system's
temporary directory is used.

retransform={true|false}

Specifies whether event classes should be retransformed using JVMTI. If false,
instrumentation is added when event classes are loaded. By default, this parameter is
enabled.

samplethreads={true|false}

Specifies whether thread sampling is enabled. Thread sampling occurs only if the
sampling event is enabled along with this parameter. By default, this parameter is
enabled.

2-61

Chapter 2
java

stackdepth=depth

Stack depth for stack traces. By default, the depth is set to 64 method calls. The
maximum is 2048. Values greater than 64 could create significant overhead and
reduce performance.

threadbuffersize=size

Specifies the per-thread local buffer size (in bytes). By default, the local buffer
size is set to 8 kilobytes. Overriding this parameter could reduce performance and
is not recommended.

You can specify values for multiple parameters by separating them with a comma.

-XX:InitiatingHeapOccupancyPercent=n
Sets the Java heap occupancy threshold that triggers a marking cycle. The default
occupancy is 45 percent of the entire Java heap.

-XX:LargePageSizeInBytes=size

Oracle Solaris: Sets the maximum size (in bytes) for large pages used for the Java
heap. The size argument must be a power of 2 (2, 4, 8, 16, and so on). Append the
letter k or K to indicate kilobytes, m or M to indicate megabytes, and g or G to indicate
gigabytes. By default, the size is set to 0, meaning that the JVM chooses the size for
large pages automatically. See Large Pages.

The following example describes how to set the large page size to 4 megabytes (MB):

-XX:LargePageSizeInBytes=4m

-XX:MaxDirectMemorySize=size

Sets the maximum total size (in bytes) of the java.nio package, direct-buffer
allocations. Append the letter k or K to indicate kilobytes, m or M to indicate megabytes,
and g or G to indicate gigabytes. By default, the size is set to 0, meaning that the JVM
chooses the size for NIO direct-buffer allocations automatically.

The following examples illustrate how to set the NIO size to 1024 KB in different units:

-XX:MaxDirectMemorySize=1lm
-XX:MaxDirectMemorySize=1024k
-XX:MaxDirectMemorySize=1048576

-XX:-MaxFDLimit

Disables the attempt to set the soft limit for the number of open file descriptors to the
hard limit. By default, this option is enabled on all platforms, but is ignored on
Windows. The only time that you may need to disable this is on Mac OS, where its
use imposes a maximum of 10240, which is lower than the actual system maximum.

-XX:MaxGCPauseMillis=ms
Sets a target value for the desired maximum pause time. The default value is 200
milliseconds. The specified value doesn’t adapt to your heap size.

-XX:NativeMemoryTracking=mode
Specifies the mode for tracking JVM native memory usage. Possible mode arguments
for this option include the following:

off
Instructs not to track JVM native memory usage. This is the default behavior if you
don't specify the -xX:NativeMemoryTracking option.

ORACLE 2-62

ORACLE

Chapter 2
java

summary
Tracks memory usage only by JVM subsystems, such as Java heap, class, code, and
thread.

detail
In addition to tracking memory usage by JVM subsystems, track memory usage by
individual callsite, individual virtual memory region and its committed regions.

-XX:0ObjectAlignmentInBytes=alignment

Sets the memory alignment of Java objects (in bytes). By default, the value is set to 8 bytes.
The specified value should be a power of 2, and must be within the range of 8 and 256
(inclusive). This option makes it possible to use compressed pointers with large Java heap
sizes.

The heap size limit in bytes is calculated as:

4GB * ObjectAlignmentInBytes

< Note:

As the alignment value increases, the unused space between objects also
increases. As a result, you may not realize any benefits from using compressed
pointers with large Java heap sizes.

-XX:OnError=string

Sets a custom command or a series of semicolon-separated commands to run when an
irrecoverable error occurs. If the string contains spaces, then it must be enclosed in
guotation marks.

e Oracle Solaris, Linux, and macOS: The following example shows how the -
XX:0nError option can be used to run the gcore command to create the core image, and
the debugger is started to attach to the process in case of an irrecoverable error (the $p
designates the current process):

-XX:0nError="gcore %p;dbx - %p"

* Windows: The following example shows how the -xX:0nError option can be used to
run the userdump. exe utility to obtain a crash dump in case of an irrecoverable error (the
$p designates the current process). This example assumes that the path to the
userdump.exe utility is specified in the PATH environment variable:

-XX:0nError="userdump.exe %p"

-XX:0nOutOfMemoryError=string

Sets a custom command or a series of semicolon-separated commands to run when an
OutOfMemoryError exception is first thrown. If the string contains spaces, then it must be
enclosed in quotation marks. For an example of a command string, see the description of the
-XX:OnError option.

-XX:ParallelGCThreads=n
Sets the value of the STW worker threads. Sets the value of n to the number of logical
processors. The value of n is the same as the number of logical processors up to a value of

2-63

Chapter 2
java

8. If there are more than 8 logical processors, then this option sets the value of n to
approximately 5/8 of the logical processors. This works in most cases except for
larger SPARC systems where the value of n can be approximately 5/16 of the logical
processors.

-XX:+PerfDataSaveToFile

If enabled, saves jstat binary data when the Java application exits. This binary data is
saved in a file named hsperfdata pid, where pidis the process identifier of the Java
application that you ran. Use thejstat command to display the performance data
contained in this file as follows:

jstat -class file:///path/hsperfdata pid

jstat -gc file:///path/hsperfdata pid

-XX:+PrintCommandLineFlags

Enables printing of ergonomically selected JVM flags that appeared on the command
line. It can be useful to know the ergonomic values set by the JVM, such as the heap
space size and the selected garbage collector. By default, this option is disabled and
flags aren’t printed.

-XX:+PreserveFramePointer

Selects between using the RBP register as a general purpose register (-xx: -
PreserveFramePointer) and using the RBP register to hold the frame pointer of the
currently executing method (-Xx:+PreserveFramePointer). If the frame pointer is
available, then external profiling tools (for example, Linux perf) can construct more
accurate stack traces.

-XX:+PrintNMTStatistics

Enables printing of collected native memory tracking data at JVM exit when native
memory tracking is enabled (see -xX:NativeMemoryTracking). By default, this option
is disabled and native memory tracking data isn't printed.

-XX:+RelaxAccessControlCheck

Decreases the amount of access control checks in the verifier. By default, this option
is disabled, and it's ignored (that is, treated as disabled) for classes with a recent
bytecode version. You can enable it for classes with older versions of the bytecode.

-XX:SharedArchiveFile=path
Specifies the path and name of the class data sharing (CDS) archive file
See Application Class Data Sharing.

-XX:SharedArchiveConfigFile=shared config file
Specifies additional shared data added to the archive file.

-XX:SharedClassListFile=file name
Specifies the text file that contains the names of the classes to store in the class data
sharing (CDS) archive. This file contains the full name of one class per line, except

ORACLE 2-64

ORACLE

Chapter 2
java

slashes (/) replace dots (.). For example, to specify the classes java.lang.0Object and
hello.Main, create a text file that contains the following two lines:

java/lang/Object
hello/Main

The classes that you specify in this text file should include the classes that are commonly
used by the application. They may include any classes from the application, extension, or
bootstrap class paths.

See Application Class Data Sharing.

-XX:+ShowMessageBoxOnError

Enables the display of a dialog box when the JVM experiences an irrecoverable error. This
prevents the JVM from exiting and keeps the process active so that you can attach a
debugger to it to investigate the cause of the error. By default, this option is disabled.

-XX:StartFlightRecording=parameter=value

Starts a JFR recording for the Java application. This option is equivalent to the JFR.start
diagnostic command that starts a recording during runtime. You can set the following
parameter=value entries when starting a JFR recording:

delay=time

Specifies the delay between the Java application launch time and the start of the
recording. Append s to specify the time in seconds, m for minutes, h for hours, and d for
days. For example, specifying 10m means 10 minutes. By default, there’s no delay, and
this parameter is set to O.

disk={true|false}
Specifies whether to write temporary data to the disk repository. By default, this
parameter is set to false. To enable it, set the parameter to true.

dumponexit={true|false}

Specifies if the running recording is dumped when the JVM shuts down. If enabled and a
filename is not entered, the recording is written to a file in the directory where the
process was started. The file name is a system-generated name that contains the
process ID, recording ID, and current timestamp, similar to hotspot-pid-47496-
id-1-2018 01 25 19 10 41.7jfr. By default, this parameter is disabled.

duration=time

Specifies the duration of the recording. Append s to specify the time in seconds, m for
minutes, h for hours, and d for days. For example, specifying 5h means 5 hours. By
default, the duration isn’t limited, and this parameter is set to 0.

filename=path
Specifies the path and name of the file to which the recording is written when the
recording is stopped, for example:

e recording.jfr
e /home/user/recordings/recording.jfr

* c:\recordings\recording.jfr

name=identifier
Takes both the name and the identifier of a recording.

2-65

Chapter 2
java

maxage=time

Specifies the maximum age of disk data to keep for the recording. This parameter
is valid only when the disk parameter is set to true. Append s to specify the time
in seconds, m for minutes, h for hours, and d for days. For example, specifying 30s
means 30 seconds. By default, the maximum age isn't limited, and this parameter
is set to 0s.

maxsize=size

Specifies the maximum size (in bytes) of disk data to keep for the recording. This
parameter is valid only when the disk parameter is set to true. The value must
not be less than the value for the maxchunksize parameter set with -
XX:FlightRecorderOptions. Append m or M to specify the size in megabytes, and
g or G to specify the size in gigabytes. By default, the maximum size of disk data
isn’t limited, and this parameter is set to 0.

path-to-gc-roots={true|false}

Specifies whether to collect the path to garbage collection (GC) roots at the end of
a recording. By default, this parameter is disabled.

The path to GC roots is useful for finding memory leaks, but collecting it is time-
consuming. Enable this option only when you start a recording for an application
that you suspect has a memory leak. If the settings parameter is set to profile,
the stack trace from where the potential leaking object was allocated is included in
the information collected.

settings=path

Specifies the path and name of the event settings file (of type JFC). By default,
the default.jfc file is used, which is located in JRE_HOME/1ib/jfr. This default
settings file collects a predefined set of information with low overhead, so it has
minimal impact on performance and can be used with recordings that run
continuously.

A second settings file is also provided, profile. jfc, which provides more data
than the default configuration, but can have more overhead and impact
performance. Use this configuration for short periods of time when more
information is needed.

You can specify values for multiple parameters by separating them with a comma.

-XX:ThreadStackSize=size

Sets the Java thread stack size (in kilobytes). Use of a scaling suffix, such as k,
results in the scaling of the kilobytes value so that -Xx: ThreadStackSize=1k sets the
Java thread stack size to 1024*1024 bytes or 1 megabyte. The default value depends
on the platform:

ORACLE

Linux: 1024 KB
macOS: 1024 KB
Oracle Solaris: 1024 KB

Windows: The default value depends on the virtual memory.

2-66

ORACLE

Chapter 2
java

The following examples show how to set the thread stack size to 1 megabyte in different
units:

-XX:ThreadStackSize=1k
-XX:ThreadStackSize=1024

This option is similar to -Xss.

-XX:-UseBiasedLocking

Disables the use of biased locking. Some applications with significant amounts of
uncontended synchronization may attain significant speedups with this flag enabled, but
applications with certain patterns of locking may see slowdowns.

By default, this option is enabled.

-XX:-UseCompressedOops

Disables the use of compressed pointers. By default, this option is enabled, and compressed
pointers are used when Java heap sizes are less than 32 GB. When this option is enabled,
object references are represented as 32-bit offsets instead of 64-bit pointers, which typically
increases performance when running the application with Java heap sizes of less than 32
GB. This option works only for 64-bit JVMs.

It's also possible to use compressed pointers when Java heap sizes are greater than 32 GB.
See the -xX:0bjectAlignmentInBytes option.

-XX:-UseContainerSupport

The VM now provides automatic container detection support, which allows the VM to
determine the amount of memory and number of processors that are available to a Java
process running in docker containers. It uses this information to allocate system resources.
This support is only available on Linux x64 platforms. If supported, the default for this flag

is true, and container support is enabled by default. It can be disabled with -xXx: -
UseContainerSupport.

Unified Logging is available to help diagnose issues related to this support.

Use -Xlog:os+container=trace for maximum logging of container information. See Enable
Logging with the JVM Unified Logging Framework for a description of using Unified Logging.

XX:+UseGCLogRotation
Handles large log files. This option must be used with -Xloggc: filename.

-XX:NumberO£fGClogFiles=number of files
Handles large log files. The number of files must be greater than or equal to 1. The default
is 1.

-XX:GCLogFileSize=number
Handles large log files. The number can be in the form of numberM or numberK. The default is
set to 512K.

-XX:+UseHugeTLBFS

Linux only: This option is the equivalent of specifying -xX:+UseLargePages. This option is
disabled by default. This option pre-allocates all large pages up-front, when memory is
reserved; consequently the JVM can’t dynamically grow or shrink large pages memory
areas. See -XX:UseTransparentHugePages if you want this behavior.

See Large Pages.

2-67

Chapter 2
java

-XX:+UselargePages

Enables the use of large page memory. By default, this option is disabled and large
page memory isn't used.

See Large Pages.

-XX:+UseMembar

Enables issuing of membars on thread-state transitions. This option is disabled by
default on all platforms except ARM servers, where it's enabled. (It's recommended
that you don’t disable this option on ARM servers.)

-XX:+UsePerfData

Enables the perfdata feature. This option is enabled by default to allow JVM
monitoring and performance testing. Disabling it suppresses the creation of the
hsperfdata userid directories. To disable the perfdata feature, specify -xx: -
UsePerfData.

-XX:+UseTransparentHugePages

Linux only: Enables the use of large pages that can dynamically grow or shrink. This
option is disabled by default. You may encounter performance problems with
transparent huge pages as the OS moves other pages around to create huge pages;
this option is made available for experimentation.

-XX:+AllowUserSignalHandlers
Enables installation of signal handlers by the application. By default, this option is
disabled and the application isn’'t allowed to install signal handlers.

-XX:VMOptionsFile=filename
Allows user to specify VM options in a file, for example, java -
XX:VMOptionsFile=/var/my vm options HelloWorld

Advanced JIT Compiler Options for java

These java options control the dynamic just-in-time (JIT) compilation performed by the
Java HotSpot VM.

-XX:AllocateInstancePrefetchLines=lines
Sets the number of lines to prefetch ahead of the instance allocation pointer. By
default, the number of lines to prefetch is set to 1:

-XX:AllocatelInstancePrefetchLines=1

Only the Java HotSpot Server VM supports this option.

-XX:AllocatePrefetchDistance=size

Sets the size (in bytes) of the prefetch distance for object allocation. Memory about to
be written with the value of new objects is prefetched up to this distance starting from
the address of the last allocated object. Each Java thread has its own allocation point.
Negative values denote that prefetch distance is chosen based on the platform.
Positive values are bytes to prefetch. Append the letter k or K to indicate kilobytes, m
or M to indicate megabytes, and g or G to indicate gigabytes. The default value is set to
-1.

ORACLE 2-68

Chapter 2
java

The following example shows how to set the prefetch distance to 1024 bytes:

-XX:AllocatePrefetchDistance=1024

Only the Java HotSpot Server VM supports this option.

-XX:AllocatePrefetchInstr=instruction

Sets the prefetch instruction to prefetch ahead of the allocation pointer. Only the Java
HotSpot Server VM supports this option. Possible values are from 0 to 3. The actual
instructions behind the values depend on the platform. By default, the prefetch instruction is
set to O:

-XX:AllocatePrefetchInstr=0

Only the Java HotSpot Server VM supports this option.

-XX:AllocatePrefetchLines=lines

Sets the number of cache lines to load after the last object allocation by using the prefetch
instructions generated in compiled code. The default value is 1 if the last allocated object
was an instance, and 3 if it was an array.

The following example shows how to set the number of loaded cache lines to 5:

-XX:AllocatePrefetchLines=5

Only the Java HotSpot Server VM supports this option.

-XX:AllocatePrefetchStepSize=size

Sets the step size (in bytes) for sequential prefetch instructions. Append the letter k or K to
indicate kilobytes, m or M to indicate megabytes, and g or G to indicate gigabytes. By default,
the step size is set to 16 bytes:

-XX:AllocatePrefetchStepSize=16

Only the Java HotSpot Server VM supports this option.

-XX:AllocatePrefetchStyle=style
Sets the generated code style for prefetch instructions. The style argumentis an integer
from O to 3:

0
Don't generate prefetch instructions.

1
Execute prefetch instructions after each allocation. This is the default parameter.

2
Use the thread-local allocation block (TLAB) watermark pointer to determine when
prefetch instructions are executed.

3
Use BIS instruction on SPARC for allocation prefetch.

Only the Java HotSpot Server VM supports this option.

ORACLE 2-69

ORACLE

Chapter 2
java

-XX:+BackgroundCompilation

Enables background compilation. This option is enabled by default. To disable
background compilation, specify -xX:-BackgroundCompilation (this is equivalent to
specifying -Xbatch).

-XX:CICompilerCount=threads

Sets the number of compiler threads to use for compilation. By default, the number of
threads is set to 2 for the server JVM, to 1 for the client JVM, and it scales to the
number of cores if tiered compilation is used. The following example shows how to set
the number of threads to 2:

-XX:CICompilerCount=2

-XX:CompileCommand=command, method[, option]
Specifies a command to perform on a method. For example, to exclude the index0f ()
method of the string class from being compiled, use the following:

-XX:CompileCommand=exclude, java/lang/String.indexOf

Note that the full class name is specified, including all packages and subpackages
separated by a slash (/). For easier cut-and-paste operations, it's also possible to use
the method name format produced by the -XX:+PrintCompilation and -
XX:+LogCompilation options:

-XX:CompileCommand=exclude, java.lang.String: :indexOf

If the method is specified without the signature, then the command is applied to all
methods with the specified name. However, you can also specify the signature of the
method in the class file format. In this case, you should enclose the arguments in
guotation marks, otherwise the shell treats the semicolon as a command end. For
example, if you want to exclude only the indexOf (String) method of the string class
from being compiled, use the following:

-XX:CompileCommand="exclude, java/lang/String.index0f, (Ljava/lang/
String;)I"

You can also use the asterisk (*) as a wildcard for class and method names. For
example, to exclude all index0f () methods in all classes from being compiled, use
the following:

-XX:CompileCommand=exclude, *.indexOf

The commas and periods are aliases for spaces, making it easier to pass compiler
commands through a shell. You can pass arguments to -XxX:CompileCommand using
spaces as separators by enclosing the argument in quotation marks:

-XX:CompileCommand="exclude java/lang/String indexOf"

Note that after parsing the commands passed on the command line using the -
XX:CompileCommand options, the JIT compiler then reads commands from

2-70

Chapter 2
java

the .hotspot compiler file. You can add commands to this file or specify a different file by
using the -xX:CompileCommandFile option.

To add several commands, either specify the -xX:CompileCommand option multiple times, or
separate each argument with the new line separator (\n). The following commands are
available:

break
Sets a breakpoint when debugging the JVM to stop at the beginning of compilation of the
specified method.

compileonly

Excludes all methods from compilation except for the specified method. As an
alternative, you can use the -xX:CompileOnly option, which lets you specify several
methods.

dontinline
Prevents inlining of the specified method.

exclude
Excludes the specified method from compilation.

help
Prints a help message for the -xX:CompileCommand option.

inline
Attempts to inline the specified method.

log

Excludes compilation logging (with the -xX:+LogCompilation option) for all methods
except for the specified method. By default, logging is performed for all compiled
methods.

option

Passes a JIT compilation option to the specified method in place of the last argument
(option). The compilation option is set at the end, after the method name. For example,
to enable the BlockLayoutByFrequency option for the append () method of the
StringBuffer class, use the following:

-XX:CompileCommand=option, java/lang/
StringBuffer.append, BlockLayoutByFrequency
You can specify multiple compilation options, separated by commas or spaces.

print

Prints generated assembler code after compilation of the specified method.

quiet

Instructs not to print the compile commands. By default, the commands that you specify
with the -Xx:CompileCommand option are printed. For example, if you exclude from

ORACLE 2-71

ORACLE

Chapter 2
java

compilation the index0f () method of the String class, then the following is
printed to standard output:

CompilerOracle: exclude java/lang/String.indexOf

You can suppress this by specifying the -xx:CompileCommand=quiet option before
other -Xx:CompileCommand options.

-XX:CompileCommandFile=filename

Sets the file from which JIT compiler commands are read. By default,

the .hotspot compiler file is used to store commands performed by the JIT compiler.
Each line in the command file represents a command, a class name, and a method
name for which the command is used. For example, this line prints assembly code for
the toString () method of the String class:

print java/lang/String toString

If you're using commands for the JIT compiler to perform on methods, then see the -
XX:CompileCommand option.

-XX:CompileOnly=methods

Sets the list of methods (separated by commas) to which compilation should be
restricted. Only the specified methods are compiled. Specify each method with the full
class name (including the packages and subpackages). For example, to compile only
the length () method of the String class and the size () method of the List class,
use the following:

-XX:CompileOnly=java/lang/String.length,java/util/List.size

Note that the full class name is specified, including all packages and subpackages
separated by a slash (/). For easier cut and paste operations, it's also possible to use
the method name format produced by the -Xx:+PrintCompilation and -
XX:+LogCompilation options:

-XX:CompileOnly=java.lang.String::length, java.util.List::size

Although wildcards aren'’t supported, you can specify only the class or package name
to compile all methods in that class or package, as well as specify just the method to
compile the methods with this name in any class:

-XX:CompileOnly=java/lang/String
-XX:CompileOnly=java/lang
-XX:CompileOnly=.1length

-XX:CompileThreshold=invocations

Sets the number of interpreted method invocations before compilation. By default, in
the server JVM, the JIT compiler performs 10,000 interpreted method invocations to
gather information for efficient compilation. For the client JVM, the default setting is
1,500 invocations. This option is ignored when tiered compilation is enabled. See the

2-72

ORACLE

Chapter 2
java

option -XX:-TieredCompilation. The following example shows how to set the number of
interpreted method invocations to 5,000:

-XX:CompileThreshold=5000

You can completely disable interpretation of Java methods before compilation by specifying
the -Xcomp option.

-XX:CompileThresholdScaling=scale

Provides unified control of first compilation. This option controls when methods are first
compiled for both the tiered and the nontiered modes of operation. The
CompileThresholdScaling option has an integer value between 0 and +Inf and scales the
thresholds corresponding to the current mode of operation (both tiered and nontiered).
Setting CompileThresholdScaling to a value less than 1.0 results in earlier compilation while
values greater than 1.0 delay compilation. Setting CompileThresholdScalingto O is
equivalent to disabling compilation.

-XX:+DoEscapeAnalysis

Enables the use of escape analysis. This option is enabled by default. To disable the use of
escape analysis, specify -xX:-DoEscapeAnalysis. Only the Java HotSpot Server VM
supports this option.

-XX:InitialCodeCacheSize=size

Sets the initial code cache size (in bytes). Append the letter k or K to indicate kilobytes, m or M
to indicate megabytes, and g or G to indicate gigabytes. The default value is set to 500 KB.
The initial code cache size shouldn’t be less than the system's minimal memory page size.
The following example shows how to set the initial code cache size to 32 KB:

-XX:InitialCodeCacheSize=32k

-XX:+Inline
Enables method inlining. This option is enabled by default to increase performance. To
disable method inlining, specify -xX:-Inline.

-XX:InlineSmallCode=size

Sets the maximum code size (in bytes) for compiled methods that should be inlined. Append
the letter k or K to indicate kilobytes, m or M to indicate megabytes, and g or G to indicate
gigabytes. Only compiled methods with the size smaller than the specified size is inlined. By
default, the maximum code size is set to 1000 bytes:

-XX:InlineSmallCode=1000

-XX:+LogCompilation

Enables logging of compilation activity to a file named hotspot.log in the current working
directory. You can specify a different log file path and name using the -xX:LogFile option.
By default, this option is disabled and compilation activity isn't logged. The -
XX:+LogCompilation option has to be used together with the -
XX:UnlockDiagnosticVMOptions option that unlocks diagnostic JVM options.

You can enable verbose diagnostic output with a message printed to the console every time
a method is compiled by using the -xX:+PrintCompilation option.

2-73

Chapter 2
java

-XX:MaxInlineSize=size

Sets the maximum bytecode size (in bytes) of a method to be inlined. Append the
letter k or K to indicate kilobytes, m or M to indicate megabytes, and g or G to indicate
gigabytes. By default, the maximum bytecode size is set to 35 bytes:

-XX:MaxInlineSize=35

-XX:MaxNodeLimit=nodes
Sets the maximum number of nodes to be used during single method compilation. By
default, the maximum number of nodes is set to 65,000:

-XX:MaxNodeLimit=65000

-XX:NonNMethodCodeHeapSize=size

Sets the size in bytes of the code segment containing nonmethod code.

A nonmethod code segment containing nonmethod code, such as compiler buffers
and the bytecode interpreter. This code type stays in the code cache forever. This flag
is used only if —XX: SegmentedCodeCache is enabled.

—XX:NonProfiledCodeHeapSize=size
Sets the size in bytes of the code segment containing nonprofiled methods. This flag
is used only if —XX: SegmentedCodeCache is enabled.

-XX:MaxTrivialSize=size

Sets the maximum bytecode size (in bytes) of a trivial method to be inlined. Append
the letter k or K to indicate kilobytes, m or M to indicate megabytes, and g or G to
indicate gigabytes. By default, the maximum bytecode size of a trivial method is set to
6 bytes:

-XX:MaxTrivialSize=6

-XX:+OptimizeStringConcat

Enables the optimization of string concatenation operations. This option is enabled
by default. To disable the optimization of string concatenation operations, specify -
XX:-OptimizeStringConcat. Only the Java HotSpot Server VM supports this option.

-XX:+PrintAssembly

Enables printing of assembly code for bytecoded and native methods by using the
external hsdis-<arch>.so or .d11 library. For 64-bit VM on Windows, it's hsdis-
amd64.d11. This lets you to see the generated code, which may help you diagnose
performance issues.

By default, this option is disabled and assembly code isn’t printed. The -
XX:+PrintAssembly option has to be used together with the -
XX:UnlockDiagnosticVMOptions option that unlocks diagnostic JVM options.

-XX:ProfiledCodeHeapSize=size
Sets the size in bytes of the code segment containing profiled methods. This flag is
used only if -XX: SegmentedCodeCache is enabled.

ORACLE 2.74

ORACLE

Chapter 2
java

-XX:+PrintCompilation

Enables verbose diagnostic output from the JVM by printing a message to the console every
time a method is compiled. This lets you see which methods actually get compiled. By
default, this option is disabled and diagnostic output isn’t printed.

You can also log compilation activity to a file by using the -xX:+LogCompilation option.

-XX:+PrintInlining

Enables printing of inlining decisions. This let’'s you see which methods are getting inlined.
By default, this option is disabled and inlining information isn’t printed. The -
XX:+PrintInlining option has to be used together with the -
XX:+UnlockDiagnosticVMOptions option that unlocks diagnostic JVM options.

-XX:ReservedCodeCacheSize=size

Sets the maximum code cache size (in bytes) for JIT-compiled code. Append the letter k or K
to indicate kilobytes, m or M to indicate megabytes, and g or G to indicate gigabytes. The
default maximum code cache size is 240 MB, unless you disable tiered compilation with the
option -XX:-TieredCompilation, then the default size is 48 MB. This option has a limit of 2
GB; otherwise, an error is generated. The maximum code cache size shouldn’t be less than
the initial code cache size. See the option -xX:InitialCodeCacheSize.

-XX:RTMAbortRatio=abort ratio

Specifies the RTM abort ratio as a percentage (%) of all executed RTM transactions. If a
number of aborted transactions becomes greater than this ratio, then the compiled code is
deoptimized. This ratio is used when the -xX:+UseRTMDeopt option is enabled. The default
value of this option is 50. This means that the compiled code is deoptimized if 50% of all
transactions are aborted.

-XX:+SegmentedCodeCache

Enables segmentation of the code cache. Without the -XX: +SegmentedCodeCache, the code
cache consists of one large segment. With -xX:+SegmentedCodeCache, we have separate
segments for nonmethod, profiled method, and nonprofiled method code. These segments
aren't resized at runtime. The feature is enabled by default if tiered compilation is enabled (-
XX:+TieredCompilation) and -xX:ReservedCodeCacheSize >= 240 MB. The advantages are
better control of the memory footprint, reduced code fragmentation, and better iTLB/iCache
behavior due to improved locality. iTLB/iCache is a CPU-specific term meaning Instruction
Translation Lookaside Buffer (ITLB). ICache is an instruction cache in the CPU. The
implementation of the code cache can be found in the file: /share/vm/code/
codeCache. cpp.

-XX:StartAggressiveSweepingAt=percent
Forces stack scanning of active methods to aggressively remove unused code when only the
given percentage of the code cache is free. The default value is 10%.

-XX:RTMRetryCount=number of retries

Specifies the number of times that the RTM locking code is retried, when it is aborted or
busy, before falling back to the normal locking mechanism. The default value for this option
is 5. The -XX:UseRTMLocking option must be enabled.

-XX:-TieredCompilation
Disables the use of tiered compilation. By default, this option is enabled. Only the Java
HotSpot Server VM supports this option.

2-75

ORACLE

Chapter 2
java

-XX:+UseAES

Enables hardware-based AES intrinsics for Intel, AMD, and SPARC hardware. Intel
Westmere (2010 and newer), AMD Bulldozer (2011 and newer), and SPARC (T4 and
newer) are the supported hardware. The -xX:+UseAES is used in conjunction with
UseAESiIntrinsics. Flags that control intrinsics now require the option -
XX:+UnlockDiagnosticVMOptions.

-XX:+UseAESIntrinsics

Enables -xx:+UseAES and -Xx:+UseAESIntrinsics flags by default and are supported
only for the Java HotSpot Server VM. To disable hardware-based AES intrinsics,
specify -Xx:-UseAES -XX:-UseAESIntrinsics. For example, to enable hardware
AES, use the following flags:

-XX:4UseAES -XX:+UseAESIntrinsics

Flags that control intrinsics now require the option -xX:+UnlockDiagnosticVMOptions.
To support UseAES and UseAESIntrinsics flags, use the -server option to select the
Java HotSpot Server VM. These flags aren’t supported on Client VM.

-XX:+UseCMoveUnconditionally
Generates CMove (scalar and vector) instructions regardless of profitability analysis.

-XX:+UseCodeCacheFlushing

Enables flushing of the code cache before shutting down the compiler. This option is
enabled by default. To disable flushing of the code cache before shutting down the
compiler, specify -xX:-UseCodeCacheFlushing.

-XX:+UseCondCardMark

Enables checking if the card is already marked before updating the card table. This
option is disabled by default. It should be used only on machines with multiple
sockets, where it increases the performance of Java applications that rely on
concurrent operations. Only the Java HotSpot Server VM supports this option.

-XX:+UseCountedLoopSafepoints
Keeps safepoints in counted loops. Its default value is false.

-XX:+UseFMA

Enables hardware-based FMA intrinsics for hardware where FMA instructions are
available (such as, Intel, SPARC, and ARM64). FMA intrinsics are generated for the
java.lang.Math.fma(a, b, c) methods that calculate the value of (a * b + ¢)
expressions.

-XX:+UseRTMDeopt

Autotunes RTM locking depending on the abort ratio. This ratio is specified by the -
XX:RTMAbortRatio option. If the number of aborted transactions exceeds the abort
ratio, then the method containing the lock is deoptimized and recompiled with all locks
as normal locks. This option is disabled by default. The -Xx:+UseRTMLocking option
must be enabled.

-XX:+UseRTMLocking

Generates Restricted Transactional Memory (RTM) locking code for all inflated locks,
with the normal locking mechanism as the fallback handler. This option is disabled by
default. Options related to RTM are available only for the Java HotSpot Server VM on
x86 CPUs that support Transactional Synchronization Extensions (TSX).

2-76

ORACLE

Chapter 2
java

RTM is part of Intel's TSX, which is an x86 instruction set extension and facilitates the
creation of multithreaded applications. RTM introduces the new instructions XBEGIN, XABORT,
XEND, and XTEST. The XxBEGIN and XEND instructions enclose a set of instructions to run as a
transaction. If no conflict is found when running the transaction, then the memory and
register modifications are committed together at the XEND instruction. The XABORT instruction
can be used to explicitly abort a transaction and the XEND instruction checks if a set of
instructions is being run in a transaction.

A lock on a transaction is inflated when another thread tries to access the same transaction,
thereby blocking the thread that didn't originally request access to the transaction. RTM
requires that a fallback set of operations be specified in case a transaction aborts or fails. An
RTM lock is a lock that has been delegated to the TSX's system.

RTM improves performance for highly contended locks with low conflict in a critical region
(which is code that must not be accessed by more than one thread concurrently). RTM also
improves the performance of coarse-grain locking, which typically doesn’t perform well in
multithreaded applications. (Coarse-grain locking is the strategy of holding locks for long
periods to minimize the overhead of taking and releasing locks, while fine-grained locking is
the strategy of trying to achieve maximum parallelism by locking only when necessary and
unlocking as soon as possible.) Also, for lightly contended locks that are used by different
threads, RTM can reduce false cache line sharing, also known as cache line ping-pong. This
occurs when multiple threads from different processors are accessing different resources,
but the resources share the same cache line. As a result, the processors repeatedly
invalidate the cache lines of other processors, which forces them to read from main memory
instead of their cache.

-XX:+UseSHA

Enables hardware-based intrinsics for SHA crypto hash functions for SPARC hardware. The
UseSHA option is used in conjunction with the UseSHAlIntrinsics, UseSHA256Intrinsics,
and UseSHA512Intrinsics options.

The UseSHA and UseSHA*Intrinsics flags are enabled by default, and are supported only for
Java HotSpot Server VM 64-bit on SPARC T4 and newer.

This feature is applicable only when using the sun.security.provider.Sun provider for SHA
operations. Flags that control intrinsics now require the option -
XX:+UnlockDiagnosticVMOptions.

To disable all hardware-based SHA intrinsics, specify the -xx:-UsesHA. To disable only a
particular SHA intrinsic, use the appropriate corresponding option. For example: -xx: -
UseSHA256Intrinsics.

-XX:+UseSHAlIntrinsics
Enables intrinsics for SHA-1 crypto hash function. Flags that control intrinsics now require
the option -xX:+UnlockDiagnosticVMOptions.

-XX:+UseSHA256Intrinsics
Enables intrinsics for SHA-224 and SHA-256 crypto hash functions. Flags that control
intrinsics now require the option -xX:+UnlockDiagnosticVMOptions.

-XX:+UseSHA512Intrinsics
Enables intrinsics for SHA-384 and SHA-512 crypto hash functions. Flags that control
intrinsics now require the option -xX:+UnlockDiagnosticVMOptions.

-XX:+UseSuperWord

Enables the transformation of scalar operations into superword operations. Superword is a
vectorization optimization. This option is enabled by default. To disable the transformation of
scalar operations into superword operations, specify -XX: -UseSuperWord. Only the Java
HotSpot Server VM supports this option.

2-77

ORACLE

Chapter 2
java

Advanced Serviceability Options for Java

These java options provide the ability to gather system information and perform
extensive debugging.

-XX:+ExtendedDTraceProbes

Oracle Solaris, Linux, and macOS: Enables additional dtrace tool probes that affect
performance. By default, this option is disabled and dtrace performs only standard
probes.

-XX: +HeapDumpOnOutOfMemoryError

Enables dumping the Java heap to a file in the current directory by using the heap
profiler (HPROF) when a java.lang.OutOfMemoryError exception is thrown. You can
explicitly set the heap dump file path and name using the -xX:HeapDumpPath option.
By default, this option is disabled and the heap isn’t dumped when an
OutOfMemoryError exception is thrown.

-XX :HeapDumpPath=path

Sets the path and file name for writing the heap dump provided by the heap profiler
(HPROF) when the -xX: +HeapDumpOnOutOfMemoryError option is set. By default, the
file is created in the current working directory, and it's named java pid<pid>.hprof
where <pid> is the identifier of the process that caused the error. The following
example shows how to set the default file explicitly (p represents the current process
identifier):

-XX:HeapDumpPath=./java pid%p.hprof

e Oracle Solaris, Linux, and macOS: The following example shows how to set the
heap dump file to /var/log/java/java heapdump.hprof:

-XX:HeapDumpPath=/var/log/java/java_heapdump.hprof

* Windows: The following example shows how to set the heap dump file to
C:/log/java/java_heapdump.log

-XX:HeapDumpPath=C:/log/java/java heapdump.log

-XX:LogFile=path
Sets the path and file name to where log data is written. By default, the file is created
in the current working directory, and it's named hotspot.log.

e Oracle Solaris, Linux, and macOS: The following example shows how to set the
log file to /var/log/java/hotspot.log:

-XX:LogFile=/var/log/java/hotspot.log

* Windows: The following example shows how to set the log file to C: /1og/java/
hotspot.log

-XX:LogFile=C:/log/java/hotspot.log

2-78

Chapter 2
java

-XX:+PrintClassHistogram
Enables printing a class instance histogram after one of the following events:

* Oracle Solaris, Linux, and macOS: Control+Break
* Windows: Control+C (SIGTERM)

By default, this option is disabled.
Setting this option is equivalent to running the jmap -histo command, or the jcmd pid
GC.class histogram command, where pid is the current Java process identifier.

-XX:+PrintConcurrentLocks
Enables printing of java.util.concurrent locks after one of the following events:

e Oracle Solaris, Linux, and macOS: Control+Break
e Windows: Control+C (SIGTERM)

By default, this option is disabled.
Setting this option is equivalent to running the jstack -1 command or thejcmd pid
Thread.print -1 command, where pidis the current Java process identifier.

-XX:+PrintFlagsRanges
Prints the range specified and allows automatic testing of the values. See Validate Java
Virtual Machine Flag Arguments.

-XX:+UnlockDiagnosticVMOptions
Unlocks the options intended for diagnosing the JVM. By default, this option is disabled and
diagnostic options aren’t available.

Advanced Garbage Collection Options for Java

These java options control how garbage collection (GC) is performed by the Java HotSpot
VM.

-XX:+AggressiveHeap

Enables Java heap optimization. This sets various parameters to be optimal for long-running
jobs with intensive memory allocation, based on the configuration of the computer (RAM and
CPU). By default, the option is disabled and the heap isn’t optimized.

-XX:+AlwaysPreTouch

Enables touching of every page on the Java heap during JVM initialization. This gets all
pages into memory before entering the main () method. The option can be used in testing to
simulate a long-running system with all virtual memory mapped to physical memory. By
default, this option is disabled and all pages are committed as JVM heap space fills.

-XX:+CMSClassUnloadingEnabled

Enables class unloading when using the concurrent mark-sweep (CMS) garbage collector.
This option is enabled by default. To disable class unloading for the CMS garbage collector,
specify -XX:-CMSClassUnloadingEnabled.

ORACLE 2-79

ORACLE

Chapter 2
java

-XX:CMSExpAvgFactor=percent

Sets the percentage of time (0 to 100) used to weight the current sample when
computing exponential averages for the concurrent collection statistics. By default, the
exponential averages factor is set to 25%. The following example shows how to set
the factor to 15%:

-XX:CMSExpAvgFactor=15

-XX:CMSIncrementalDutySafetyFactor=percent
Sets the percentage (0 to 100) used to add conservatism when computing the duty
cycle. The default value is 10.

-XX:+CMSScavengeBeforeRemark
Enables scavenging attempts before the CMS remark step. By default, this option is
disabled.

-XX:CMSTriggerRatio=percent

Sets the percentage (0 to 100) of the value specified by the option -
XX:MinHeapFreeRatio that's allocated before a CMS collection cycle commences.
The default value is set to 80%.

The following example shows how to set the occupancy fraction to 75%:

-XX:CMSTriggerRatio=75

-XX:ConcGCThreads=threads

Sets the number of threads used for concurrent GC. Sets threads to approximately
1/4 of the number of parallel garbage collection threads. The default value depends
on the number of CPUs available to the JVM.

For example, to set the number of threads for concurrent GC to 2, specify the
following option:

-XX:ConcGCThreads=2

-XX:+DisableExplicitGC

Enables the option that disables processing of calls to the System.gc () method. This
option is disabled by default, meaning that calls to System.gc () are processed. If
processing calls to system.gc () is disabled, then the JVM still performs GC when
necessary.

-XX:+ExplicitGCInvokesConcurrent

Enables invoking of concurrent GC by using the System.gc () request. This option is
disabled by default and can be enabled only with the deprecated -
XX:+UseConcMarkSweepGC option and the -XX:+UseG1GC option.

-XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses

Enables invoking concurrent GC by using the System.gc () request and unloading
classes during the concurrent GC cycle. This option is disabled by default and can be
enabled only with the deprecated -Xx: +UseConcMarkSweepGC option.

-XX:GlHeapRegionSize=size

Sets the size of the regions into which the Java heap is subdivided when using the
garbage-first (G1) collector. The value is a power of 2 and can range from 1 MB to 32

2-80

Chapter 2
java

MB. The goal is to have around 2048 regions based on the minimum Java heap size. The
default region size is determined ergonomically based on the heap size.
The following example sets the size of the subdivisions to 16 MB:

-XX:GlHeapRegionSize=16m

-XX:GlHeapWastePercent=percent

Sets the percentage of heap that you're willing to waste. The Java HotSpot VM doesn’t
initiate the mixed garbage collection cycle when the reclaimable percentage is less than the
heap waste percentage. The default is 5 percent.

-XX:G1lMaxNewSizePercent=percent

Sets the percentage of the heap size to use as the maximum for the young generation size.
The default value is 60 percent of your Java heap.

This is an experimental flag. This setting replaces the -xX:DefaultMaxNewGenPercent
setting.

This setting isn’t available in Java HotSpot VM build 23 or earlier.

-XX:G1lMixedGCCountTarget=number

Sets the target number of mixed garbage collections after a marking cycle to collect old
regions with at most G1MixedGCLIveThresholdPercent live data. The default is 8 mixed
garbage collections. The goal for mixed collections is to be within this target number.
This setting isn’t available in Java HotSpot VM build 23 or earlier.

-XX:G1lMixedGCLiveThresholdPercent=percent

Sets the occupancy threshold for an old region to be included in a mixed garbage collection
cycle. The default occupancy is 85 percent.

This is an experimental flag. This setting replaces the -
XX:G10ldCSetRegionLiveThresholdPercent setting.

This setting isn’t available in Java HotSpot VM build 23 or earlier.

-XX:GlNewSizePercent=percent

Sets the percentage of the heap to use as the minimum for the young generation size. The
default value is 5 percent of your Java heap.

This is an experimental flag. This setting replaces the -xX:Defaul tMinNewGenPercent
setting.

This setting isn’t available in Java HotSpot VM build 23 or earlier.

-XX:Gl0ldCSetRegionThresholdPercent=percent

Sets an upper limit on the number of old regions to be collected during a mixed garbage
collection cycle. The default is 10 percent of the Java heap.

This setting isn’t available in Java HotSpot VM build 23 or earlier.

-XX:GlReservePercent=percent

Sets the percentage of the heap (0 to 50) that's reserved as a false ceiling to reduce the
possibility of promotion failure for the G1 collector. When you increase or decrease the
percentage, ensure that you adjust the total Java heap by the same amount. By default, this
option is set to 10%.

The following example sets the reserved heap to 20%:

-XX:GlReservePercent=20

ORACLE 2-81

Chapter 2
java

-XX:InitialHeapOccupancyPercent=percent
Sets the Java heap occupancy threshold that triggers a marking cycle. The default
occupancy is 45 percent of the entire Java heap.

-XX:InitialHeapSize=size

Sets the initial size (in bytes) of the memory allocation pool. This value must be either
0, or a multiple of 1024 and greater than 1 MB. Append the letter k or X to indicate
kilobytes, m or M to indicate megabytes, and g or G to indicate gigabytes. The default
value is chosen at run time based on the system configuration.See the section
Ergonomics in the Java SE HotSpot Virtual Machine Garbage Collection Tuning
Guide.

The following examples show how to set the size of allocated memory to 6 MB using
various units:

-XX:InitialHeapSize=6291456
-XX:InitialHeapSize=6144k
-XX:InitialHeapSize=6m

If you set this option to 0, then the initial size will be set as the sum of the sizes
allocated for the old generation and the young generation. The size of the heap for the
young generation can be set using the -xX:NewSize option.

Note:

The -xms option sets both the minimum and the initial heap size of the heap.
If -Xms appears after -xX:InitialHeapSize on the command line, then the
initial heap size gets set to the value specified with -Xms.

-XX:InitialSurvivorRatio=ratio

Sets the initial survivor space ratio used by the throughput garbage collector (which is
enabled by the -xX:+UseParallelGC and/or -XX:+UseParallel01dGC options).
Adaptive sizing is enabled by default with the throughput garbage collector by using
the -XX:+UseParallelGC and -XX:+UseParallel01dGC options, and the survivor
space is resized according to the application behavior, starting with the initial value. If
adaptive sizing is disabled (using the -XX:-UseAdaptiveSizePolicy option), then the
-XX:SurvivorRatio option should be used to set the size of the survivor space for the
entire execution of the application.

The following formula can be used to calculate the initial size of survivor space (S)
based on the size of the young generation (), and the initial survivor space ratio (R):

S=Y/ (R+2)

The 2 in the equation denotes two survivor spaces. The larger the value specified as
the initial survivor space ratio, the smaller the initial survivor space size.

By default, the initial survivor space ratio is set to 8. If the default value for the young
generation space size is used (2 MB), then the initial size of the survivor space is 0.2
MB.

ORACLE 2-82

https://docs.oracle.com/en/java/javase/11/gctuning/ergonomics.html

ORACLE

Chapter 2
java

The following example shows how to set the initial survivor space ratio to 4:

-XX:InitialSurvivorRatio=4

-XX:InitiatingHeapOccupancyPercent=percent

Sets the percentage of the heap occupancy (0 to 100) at which to start a concurrent GC
cycle. It's used by garbage collectors that trigger a concurrent GC cycle based on the
occupancy of the entire heap, not just one of the generations (for example, the G1 garbage
collector).

By default, the initiating value is set to 45%. A value of 0 implies nonstop GC cycles. The
following example shows how to set the initiating heap occupancy to 75%:

-XX:InitiatingHeapOccupancyPercent=75

-XX:MaxGCPauseMillis=time

Sets a target for the maximum GC pause time (in milliseconds). This is a soft goal, and the
JVM will make its best effort to achieve it. The specified value doesn’t adapt to your heap
size. By default, there’s no maximum pause time value.

The following example shows how to set the maximum target pause time to 500 ms:

-XX:MaxGCPauseMillis=500

-XX:MaxHeapSize=size

Sets the maximum size (in byes) of the memory allocation pool. This value must be a
multiple of 1024 and greater than 2 MB. Append the letter k or K to indicate kilobytes, m or M
to indicate megabytes, and g or G to indicate gigabytes. The default value is selected at run
time based on the system configuration. For server deployments, the options -
XX:InitialHeapSize and -XX:MaxHeapSize are often set to the same value.

The following examples show how to set the maximum allowed size of allocated memory to
80 MB using various units:

-XX:MaxHeapSize=83886080
-XX:MaxHeapSize=81920k
-XX:MaxHeapSize=80m

On Oracle Solaris 7 and Oracle Solaris 8 SPARC platforms, the upper limit for this value is
approximately 4,000 MB minus overhead amounts. On Oracle Solaris 2.6 and x86 platforms,
the upper limit is approximately 2,000 MB minus overhead amounts. On Linux platforms, the
upper limit is approximately 2,000 MB minus overhead amounts.

The -xX:MaxHeapSize option is equivalent to -xmx.

-XX:MaxHeapFreeRatio=percent

Sets the maximum allowed percentage of free heap space (0 to 100) after a GC event. If free
heap space expands above this value, then the heap is shrunk. By default, this value is set
to 70%.

Minimize the Java heap size by lowering the values of the parameters MaxHeapFreeRatio
(default value is 70%) and MinHeapFreeRatio (default value is 40%) with the command-line
options -XxX:MaxHeapFreeRatio and -XX:MinHeapFreeRatio. Lowering MaxHeapFreeRatio to
as low as 10% and MinHeapFreeRatio to 5% has successfully reduced the heap size without
too much performance regression; however, results may vary greatly depending on your

2-83

ORACLE

Chapter 2
java

application. Try different values for these parameters until they’re as low as possible
yet still retain acceptable performance.

-XX:MaxHeapFreeRatio=10 -XX:MinHeapFreeRatio=5

Customers trying to keep the heap small should also add the option -xx: -
ShrinkHeapInSteps. See Performance Tuning Examples for a description of using this
option to keep the Java heap small by reducing the dynamic footprint for embedded
applications.

-XX:MaxMetaspaceSize=size

Sets the maximum amount of native memory that can be allocated for class metadata.
By default, the size isn't limited. The amount of metadata for an application depends
on the application itself, other running applications, and the amount of memory
available on the system.

The following example shows how to set the maximum class metadata size to 256
MB:

-XX:MaxMetaspaceSize=256m

-XX:MaxNewSize=size
Sets the maximum size (in bytes) of the heap for the young generation (nursery). The
default value is set ergonomically.

-XX:MaxTenuringThreshold=threshold

Sets the maximum tenuring threshold for use in adaptive GC sizing. The largest value
is 15. The default value is 15 for the parallel (throughput) collector, and 6 for the CMS
collector.

The following example shows how to set the maximum tenuring threshold to 10:

-XX:MaxTenuringThreshold=10

-XX:MetaspaceSize=size

Sets the size of the allocated class metadata space that triggers a garbage collection
the first time it's exceeded. This threshold for a garbage collection is increased or
decreased depending on the amount of metadata used. The default size depends on
the platform.

-XX:MinHeapFreeRatio=percent

Sets the minimum allowed percentage of free heap space (0 to 100) after a GC event.
If free heap space falls below this value, then the heap is expanded. By default, this
value is set to 40%.

Minimize Java heap size by lowering the values of the parameters MaxHeapFreeRatio
(default value is 70%) and MinHeapFreeRatio (default value is 40%) with the
command-line options -XX:MaxHeapFreeRatio and -XX:MinHeapFreeRatio. Lowering
MaxHeapFreeRatio to as low as 10% and MinHeapFreeRatio to 5% has successfully
reduced the heap size without too much performance regression; however, results
may vary greatly depending on your application. Try different values for these
parameters until they're as low as possible, yet still retain acceptable performance.

-XX:MaxHeapFreeRatio=10 -XX:MinHeapFreeRatio=5

2-84

ORACLE

Chapter 2
java

Customers trying to keep the heap small should also add the option -xX: -
ShrinkHeapInSteps. See Performance Tuning Examples for a description of using this option
to keep the Java heap small by reducing the dynamic footprint for embedded applications.

-XX:NewRatio=ratio
Sets the ratio between young and old generation sizes. By default, this option is set to 2. The
following example shows how to set the young-to-old ratio to 1:

-XX:NewRatio=1

-XX:NewSize=size

Sets the initial size (in bytes) of the heap for the young generation (nursery). Append the
letter k or K to indicate kilobytes, m or M to indicate megabytes, and g or G to indicate
gigabytes.

The young generation region of the heap is used for new objects. GC is performed in this
region more often than in other regions. If the size for the young generation is too low, then a
large number of minor GCs are performed. If the size is too high, then only full GCs are
performed, which can take a long time to complete. Oracle recommends that you keep the
size for the young generation greater than 25% and less than 50% of the overall heap size.
The following examples show how to set the initial size of the young generation to 256 MB
by using various units:

-XX:NewSize=256m
-XX:NewSize=262144%k
-XX:NewSize=268435456

The -xX:NewSize option is equivalent to -Xmn.

-XX:ParallelGCThreads=threads

Sets the value of the stop-the-world (STW) worker threads. This option sets the value of
threads to the number of logical processors. The value of threads is the same as the
number of logical processors up to a value of 8.

If there are more than 8 logical processors, then this option sets the value of threads to
approximately 5/8 of the logical processors. This works in most cases except for larger
SPARC systems where the value of threads can be approximately 5/16 of the logical
processors.

The default value depends on the number of CPUs available to the JVM.

For example, to set the number of threads for parallel GC to 2, specify the following option:

-XX:ParallelGCThreads=2

-XX:+ParallelRefProcEnabled
Enables parallel reference processing. By default, this option is disabled.

-XX:+PrintAdaptiveSizePolicy
Enables printing of information about adaptive-generation sizing. By default, this option is
disabled.

-XX:+ScavengeBeforeFullGC

Enables GC of the young generation before each full GC. This option is enabled by default.
Oracle recommends that you don't disable it, because scavenging the young generation
before a full GC can reduce the number of objects reachable from the old generation space

2-85

Chapter 2
java

into the young generation space. To disable GC of the young generation before each
full GC, specify the option -xX:-ScavengeBeforeFullGC.

-XX:-ShrinkHeapInSteps

Incrementally reduces the Java heap to the target size, specified by the option -
XX:MaxHeapFreeRatio. This option is enabled by default. If disabled, then it
immediately reduces the Java heap to the target size instead of requiring multiple
garbage collection cycles. Disable this option if you want to minimize the Java heap
size. You will likely encounter performance degradation when this option is disabled.
See Performance Tuning Examples for a description of using the MaxHeapFreeRatio
option to keep the Java heap small by reducing the dynamic footprint for embedded
applications.

-XX:StringDeduplicationAgeThreshold=threshold

Identifies String objects reaching the specified age that are considered candidates
for deduplication. An object's age is a measure of how many times it has survived
garbage collection. This is sometimes referred to as tenuring. See the deprecated -
XX:+PrintTenuringDistribution option.

Note:

String objects that are promoted to an old heap region before this age has
been reached are always considered candidates for deduplication. The
default value for this option is 3. See the -xX:+UseStringDeduplication
option.

-XX:SurvivorRatio=ratio

Sets the ratio between eden space size and survivor space size. By default, this
option is set to 8. The following example shows how to set the eden/survivor space
ratio to 4:

-XX:SurvivorRatio=4

-XX:TargetSurvivorRatio=percent

Sets the desired percentage of survivor space (0 to 100) used after young garbage
collection. By default, this option is set to 50%.

The following example shows how to set the target survivor space ratio to 30%:

-XX:TargetSurvivorRatio=30

-XX:TLABSize=size

Sets the initial size (in bytes) of a thread-local allocation buffer (TLAB). Append the
letter k or K to indicate kilobytes, m or M to indicate megabytes, and g or G to indicate
gigabytes. If this option is set to 0, then the JVM selects the initial size automatically.
The following example shows how to set the initial TLAB size to 512 KB:

-XX:TLABSize=512k

ORACLE 2-86

ORACLE

Chapter 2
java

-XX:+UseAdaptiveSizePolicy

Enables the use of adaptive generation sizing. This option is enabled by default. To disable
adaptive generation sizing, specify -xX:-UseAdaptiveSizePolicy and set the size of the
memory allocation pool explicitly. See the -xX: SurvivorRatio option.

-XX:+UseCMSInitiatingOccupancyOnly
Enables the use of the occupancy value as the only criterion for initiating the CMS collector.
By default, this option is disabled and other criteria may be used.

-XX:+UseG1GC

Enables the use of the garbage-first (G1) garbage collector. It's a server-style garbage
collector, targeted for multiprocessor machines with a large amount of RAM. This option
meets GC pause time goals with high probability, while maintaining good throughput. The G1
collector is recommended for applications requiring large heaps (sizes of around 6 GB or
larger) with limited GC latency requirements (a stable and predictable pause time below 0.5
seconds). By default, this option is enabled and G1 is used as the default garbage collector.

-XX:+UseGCOverheadLimit

Enables the use of a policy that limits the proportion of time spent by the JVM on GC before
an outOfMemoryError exception is thrown. This option is enabled, by default, and the parallel
GC will throw an outOfMemoryError if more than 98% of the total time is spent on garbage
collection and less than 2% of the heap is recovered. When the heap is small, this feature
can be used to prevent applications from running for long periods of time with little or no
progress. To disable this option, specify the option -Xx:-UseGCOverheadLimit.

-XX:+UseNUMA

Enables performance optimization of an application on a machine with nonuniform memory
architecture (NUMA) by increasing the application's use of lower latency memory. By default,
this option is disabled and no optimization for NUMA is made. The option is available only
when the parallel garbage collector is used (-xX:+UseParallelGC).

-XX:+UseParallelGC

Enables the use of the parallel scavenge garbage collector (also known as the throughput
collector) to improve the performance of your application by leveraging multiple processors.
By default, this option is disabled and the collector is chosen automatically based on the
configuration of the machine and type of the JVM. If it's enabled, then the -
XX:+UseParallelO1dGC option is automatically enabled, unless you explicitly disable it.

-XX:+UseParallelO1ldGC
Enables the use of the parallel garbage collector for full GCs. By default, this option is
disabled. Enabling it automatically enables the -xx: +UseParallelGC option.

-XX:+UseSerialGC

Enables the use of the serial garbage collector. This is generally the best choice for small
and simple applications that don'’t require any special functionality from garbage collection.
By default, this option is disabled and the collector is selected automatically based on the
configuration of the machine and type of the JVM.

-XX:+UseSHM
Linux only: Enables the JVM to use shared memory to set up large pages.
See Large Pages for setting up large pages.

-XX:+UseStringDeduplication
Enables string deduplication. By default, this option is disabled. To use this option, you must
enable the garbage-first (G1) garbage collector.

2-87

ORACLE

Chapter 2
java

String deduplication reduces the memory footprint of Sstring objects on the Java heap
by taking advantage of the fact that many string objects are identical. Instead of
each string object pointing to its own character array, identical string objects can
point to and share the same character array.

-XX:+UseTLAB

Enables the use of thread-local allocation blocks (TLABS) in the young generation
space. This option is enabled by default. To disable the use of TLABSs, specify the
option -XX:-UseTLAB.

Deprecated Java Options

These java options are deprecated and might be removed in a future JDK release.
They're still accepted and acted upon, but a warning is issued when they’re used.

-Xloggc: filename

Sets the file to which verbose GC events information should be redirected for logging.
The information written to this file is similar to the output of -verbose:gc with the time
elapsed since the first GC event preceding each logged event. The -x1oggc option
overrides -verbose:gc if both are given with the same java command.

Example:

-Xlog:gc:garbage-collection.log

-XX:CMSInitiatingOccupancyFraction=percent

Sets the percentage of the old generation occupancy (0 to 100) at which to start a
CMS collection cycle. The default value is set to -1. Any negative value (including the
default) implies that the option -xX:CMSTriggerRatio is used to define the value of
the initiating occupancy fraction.

The following example shows how to set the occupancy fraction to 20%:

-XX:CMSInitiatingOccupancyFraction=20

-XX:CMSInitiatingPermOccupancyFraction=percent
Sets the percentage of the permanent generation occupancy (0 to 100) at which to
start a GC. This option was deprecated in JDK 8 with no replacement.

-XX:+PrintStringDeduplicationStatistics
Printed detailed deduplication statistics. By default, this option is disabled. See the -
XX:+UseStringDeduplication option.

-XX:+PrintTenuringDistribution
Enables printing of tenuring age information. The following is an example of the
output:

Desired survivor size 48286924 bytes, new threshold 10 (max 10)
- age 1: 28992024 bytes, 28992024 total
- age 2: 1366864 bytes, 30358888 total
- age 3: 1425912 bytes, 31784800 total

Age 1 objects are the youngest survivors (they were created after the previous
scavenge, survived the latest scavenge, and moved from eden to survivor space).

2-88

ORACLE

Chapter 2
java

Age 2 objects have survived two scavenges (during the second scavenge they were copied
from one survivor space to the next). This pattern is repeated for all objects in the output.

In the preceding example, 28,992,024bytes survived one scavenge and were copied from
eden to survivor space, 1,366,864 bytes are occupied by age 2 objects, and so on. The third
value in each row is the cumulative size of objects of age n or less.

By default, this option is disabled.

-XX:SoftRefLRUPolicyMSPerMB=time

Sets the amount of time (in milliseconds) a softly reachable object is kept active on the heap
after the last time it was referenced. The default value is one second of lifetime per free
megabyte in the heap. The -Xx:SoftRefLRUPolicyMSPerMB option accepts integer values
representing milliseconds per one megabyte of the current heap size (for Java HotSpot
Client VM) or the maximum possible heap size (for Java HotSpot Server VM). This
difference means that the Client VM tends to flush soft references rather than grow the heap,
whereas the Server VM tends to grow the heap rather than flush soft references. In the latter
case, the value of the -xmx option has a significant effect on how quickly soft references are
garbage collected.

The following example shows how to set the value to 2.5 seconds:

-XX:50ftRefLRUP01icyMSPerMB=2500

-XX:+TraceClassLoading

Enables tracing of classes as they are loaded. By default, this option is disabled and classes
aren’t traced.

The replacement Unified Logging syntax is -Xlog:class+load=Ilevel. See Enable Logging
with the JVM Unified Logging Framework

Use level=info for regular information, or Ievel=debug for additional information. In Unified
Logging syntax, -verbose:class equals -Xlog:class+load=info, class+unload=info..

-XX:+TraceClassLoadingPreorder

Enables tracing of all loaded classes in the order in which they’re referenced. By default, this
option is disabled and classes aren't traced.

The replacement Unified Logging syntax is -x1log:class+preorder=debug. See Enable
Logging with the JVM Unified Logging Framework.

-XX:+TraceClassResolution

Enables tracing of constant pool resolutions. By default, this option is disabled and constant
pool resolutions aren't traced.

The replacement Unified Logging syntax is -X1log:class+resolve=debug. See Enable
Logging with the JVM Unified Logging Framework.

-XX:+TracelLoaderConstraints

Enables tracing of the loader constraints recording. By default, this option is disabled and
loader constraints recording isn't traced.

The replacement Unified Logging syntax is -Xlog:class+loader+constraints=info. See
Enable Logging with the JVM Unified Logging Framework.

-XX:+UseConcMarkSweepGC

Enables the use of the CMS garbage collector for the old generation. CMS is an alternative
to the default garbage collector (G1), which also focuses on meeting application latency
requirements. By default, this option is disabled and the collector is selected automatically
based on the configuration of the machine and type of the JVM. The CMS garbage collector
is deprecated.

2-89

ORACLE

Chapter 2
java

-XX:+UseParNewGC

Enables the use of parallel threads for collection in the young generation. By default,
this option is disabled. It's automatically enabled when you set the -
XX:+UseConcMarkSweepGC option. Using the -xX:+UseParNewGC option without the -
XX:+UseConcMarkSweepGC option was deprecated in JDK 8. All uses of the -
XX:+UseParNewGC option are deprecated. Using the option without -
XX:+UseConcMarkSweepGC isn't possible.

-XX:+UseSplitVerifier

Enables splitting the verification process. By default, this option was enabled in the
previous releases, and verification was split into two phases: type referencing
(performed by the compiler) and type checking (performed by the JVM runtime).
Verification is now split by default without a way to disable it.

Obsolete Java Options

These java options are still accepted but ignored, and a warning is issued when
they’re used.

-XX:+AggressiveOpts

Enables the use of aggressive performance optimization features, which are expected
to become default in upcoming releases. By default, this option is disabled and
experimental performance features are not used.

-XX:+CheckEndorsedAndExtDirs
Enabled the option to prevent the java command from running a Java application if
any of the following directories existed and wasn't empty:

e lib/endorsed
e lib/ext
* The systemwide platform-specific extension directory

The endorsed standards override mechanism and the extension mechanism are no
longer supported.

-XX:MaxPermSize=size
Sets the maximum permanent generation space size (in bytes). This option was
deprecated in JDK 8 and superseded by the -xX:MaxMetaspaceSize option.

-XX:PermSize=size

Sets the space (in bytes) allocated to the permanent generation that triggers a
garbage collection if it's exceeded. This option was deprecated in JDK 8 and
superseded by the -xX:MetaspaceSize option.

-XX:+UseAppCDS

Support for archiving and sharing non-system classes is now enabled automatically if
the application classes or platform classes are present in the classlist and the shared
archive is generated with -Xshare:dump/auto/on. The following customized warning
message is issued, which differs slightly from the standard warning used for an
obsolete flag:

Java HotSpot(TM) 64-Bit Server VM warning: Ignoring obsolete option UseAppCDS;
AppCDS is automatically enabled

2-90

Chapter 2
java

Removed Java Options

These java options have been removed in JDK 11 and using them results in an error of:

Unrecognized VM option option-name

For the lists and descriptions of options removed in previous releases see:

e Java Platform, Standard Edition Tools Reference, Release 10

e Java Platform, Standard Edition Tools Reference, Release 9

e Java Platform, Standard Edition Tools Reference, Release 8 for Oracle JDK on Windows

« Java Platform, Standard Edition Tools Reference, Release 8 for Oracle JDK on Solaris,
Linux, and OS X

-XX:+ResourceManagement
No longer supported. Enabled the use of Resource Management during the runtime of the
application.

-XX:ResourceManagementSampleInterval=value in milliseconds

No longer supported. Set the parameter that controlled the sampling interval for Resource
Management measurements, in milliseconds.

This option was only used when Resource Management was enabled (that is, the -
XX:+ResourceManagement option is specified).

java Command-Line Argument Files

ORACLE

You can shorten or simplify the java command by using ¢argument files to specify one or
more text files that contain arguments, such as options and class names, which are passed
to the java command. This let’s you to create java commands of any length on any operating
system.

In the command line, use the at sign (@) prefix to identify an argument file that contains java
options and class names. When the java command encounters a file beginning with the at
sign (@), it expands the contents of that file into an argument list just as they would be
specified on the command line.

The java launcher expands the argument file contents until it encounters the -xdisable-
@files option. You can use the -Xdisable-@files option anywhere on the command line,
including in an argument file, to stop @argument files expansion.

The following items describe the syntax of java argument files:

* The argument file must contain only ASCII characters or characters in system default
encoding that's ASCII friendly, such as UTF-8.

* The argument file size must not exceed MAXINT (2,147,483,647) bytes.
* The launcher doesn’t expand wildcards that are present within an argument file.
* Use white space or new line characters to separate arguments included in the file.

* White space includes a white space character, \t, \n, \r, and \f.

2-91

https://docs.oracle.com/javase/10/tools/java.htm#JSWOR624
https://docs.oracle.com/javase/9/tools/java.htm#JSWOR624
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html#BGBCIEFC
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html#BGBCIEFC
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html#BGBCIEFC

Chapter 2
java

For example, it is possible to have a path with a space, such as c:\Program Files
that can be specified as either "c:\\Program Files" or, to avoid an escape,
c:\Program" "Files.

« Any option that contains spaces, such as a path component, must be within
guotation marks using quotation (") characters in its entirety.

e A string within quotation marks may contain the characters \n, \r, \t, and \f.
They are converted to their respective ASCII codes.

e If a file name contains embedded spaces, then put the whole file name in double
guotation marks.

e File names in an argument file are relative to the current directory, not to the
location of the argument file.

* Use the number sign (#) in the argument file to identify comments. All characters
following the # are ignored until the end of line.

» Additional at sign (@) prefixes to @ prefixed options act as an escape (the first @ is
removed and the rest of the arguments are presented to the launcher literally).

* Lines may be continued using the continuation character (\) at the end-of-line. The
two lines are concatenated with the leading white spaces trimmed. To prevent
trimming the leading white spaces, a continuation character (\) may be placed at
the first column.

* Because backslash (\) is an escape character, a backslash character must be
escaped with another backslash character.

e Partial quote is allowed and is closed by an end-of-file.

* An open quote stops at end-of-line unless \ is the last character, which then joins
the next line by removing all leading white space characters.

* Wildcards (*) aren’t allowed in these lists (such as specifying *.java).

* Use of the at sign (@) to recursively interpret files isn’t supported.

Example of Open or Partial Quotes in an Argument File
In the argument file,
-cp "lib/

cool/

app/
jars

this is interpreted as:

-cp lib/cool/app/jars
Example of a Backslash Character Escaped with Another Backslash Character
in an Argument File

To output the following:

-cp c:\Program Files (x86)\Java\jre\lib\ext;c:\Program
Files\Java\jre9\lib\ext

ORACLE 2-92

Chapter 2
java

The backslash character must be specified in the argument file as:

-cp "c:\\Program Files (x86)\\Java\\jre\\lib\\ext;c:\\Program Files\\Java\
\Jjred\\1lib\\ext"

Example of an EOL Escape Used to Force Concatenation of Lines in an Argument File

In the argument file,

-cp "/lib/cool app/jars:\
/lib/another app/jars"

This is interpreted as:

-cp /lib/cool app/jars:/lib/another app/jars

Example of Line Continuation with Leading Spaces in an Argument File

In the argument file,

-cp "/lib/cool\
\app/jars”
This is interpreted as:

-cp /lib/cool app/jars

Examples of Using Single Argument File

You can use a single argument file, such as myargumentfile in the following example, to hold
all required java arguments:

java @myargumentfile

Examples of Using Argument Files with Paths

You can include relative paths in argument files; however, they're relative to the current
working directory and not to the paths of the argument files themselves. In the following
example, pathl/options and path2/options represent argument files with different paths.
Any relative paths that they contain are relative to the current working directory and not to the
argument files:

java @pathl/options @path2/classes

Code Heap State Analytics

There are occasions when having insight into the current state of the JVM code heap would
be helpful to answer questions such as:

* Why was the JIT turned off and then on again and again?

* Where has all the code heap space gone?

ORACLE 2-93

Chapter 2
java

* Why is the method sweeper not working effectively?

To provide this insight, a code heap state analytics feature has been implemented that
enables on-the-fly analysis of the code heap. The analytics process is divided into two
parts. The first part examines the entire code heap and aggregates all information that
is believed to be useful or important. The second part consists of several independent
steps that print the collected information with an emphasis on different aspects of the
data. Data collection and printing are done on an "on request” basis.

Syntax

Requests for real-time, on-the-fly analysis can be issued with the following command:

jcmd pid Compiler.CodeHeap Analytics [function] [granularity]

If you are only interested in what the code heap looks like after running a sample
workload, you can use the command line option:

-Xlog:codecache=Trace

To see the code heap state when a "CodeCache full" condition exists, start the VM
with the command line option:

-X1log:codecache=Debug

See CodeHeap State Analytics (OpenJDK) for a detailed description of the code heap
state analytics feature, the supported functions, and the granularity options.

Enable Logging with the JVM Unified Logging Framework

ORACLE

You use the -X1og option to configure or enable logging with the Java Virtual Machine
(JVM) unified logging framework.

Synopsis
-Xlog[: [what] [: [output] [: [decorators] [:output-options[,...1111]
what

Specifies a combination of tags and levels of the form tagi[+tag2...][*][=1evel]l,...]
Unless the wildcard (*) is specified, only log messages tagged with exactly the tags
specified are matched. See -Xlog Tags and Levels.

output
Sets the type of output. Omitting the output type defaults to stdout. See -Xlog
Output.

decorators
Configures the output to use a custom set of decorators. Omitting decorators
defaults to uptime, level, and tags. See Decorations.

output-options
Sets the -x1og logging output options.

2-94

https://bugs.openjdk.java.net/secure/attachment/75649/JVM_CodeHeap_StateAnalytics_V2.pdf

ORACLE

Chapter 2
java

Description

The Java Virtual Machine (JVM) unified logging framework provides a common logging
system for all components of the JVM. GC logging for the JVM has been changed to use the
new logging framework. The mapping of old GC flags to the corresponding new Xlog
configuration is described in Convert GC Logging Flags to Xlog. In addition, runtime logging
has also been changed to use the JVM unified logging framework. The mapping of legacy
runtime logging flags to the corresponding new Xlog configuration is described in Convert
Runtime Logging Flags to Xlog.

The following provides quick reference to the -x1og command and syntax for options:

-Xlog
Enables JVM logging on an info level.

-Xlog:help
Prints -X1log usage syntax and available tags, levels, and decorators along with example
command lines with explanations.

-Xlog:disable
Turns off all logging and clears all configuration of the logging framework including the
default configuration for warnings and errors.

-Xlog|[:option]

Applies multiple arguments in the order that they appear on the command line. Multiple -
X1log arguments for the same output override each other in their given order.

The optionis set as:

[tag selection] [:[output] [:[decorators] [:output-options]]]

Omitting the tag selection defaults to a tag-set of a1l and a level of info.

tag[+...] all

The all tag is a meta tag consisting of all tag-sets available. The asterisk * in a tag set
definition denotes a wildcard tag match. Matching with a wildcard selects all tag sets that
contain at least the specified tags. Without the wildcard, only exact matches of the specified
tag sets are selected.

output optionsis

filecount=file-count filesize=file size with optional K, M or G suffix

Default Configuration

When the -x1og option and nothing else is specified on the command line, the default
configuration is used. The default configuration logs all messages with a level that matches
either the warning or error regardless of what tags the message is associated with. The
default configuration is equivalent to entering the following on the command line:

-Xlog:all=warning:stdout:uptime, level, tags

2-95

ORACLE

Chapter 2
java

Controlling Logging at Runtime

Logging can also be controlled at run time through Diagnostic Commands (with the
jemd utility). Everything that can be specified on the command line can also be
specified dynamically with the VM. 1og command. As the diagnostic commands are
automatically exposed as MBeans, you can use JMX to change logging configuration
at run time.

-Xlog Tags and Levels

Each log message has a level and a tag set associated with it. The level of the
message corresponds to its details, and the tag set corresponds to what the message
contains or which JVM component it involves (such as, GC, compiler, or threads).
Mapping GC flags to the Xlog configuration is described in Convert GC Logging Flags
to Xlog. Mapping legacy runtime logging flags to the corresponding Xlog configuration
is described in Convert Runtime Logging Flags to Xlog.

Available log levels:

e off

° trace
* debug
e info

* warning
° error
Available log tags:

The following are the available log tags. Specifying all instead of a tag combination
matches all tag combinations.

o add
* age
e alloc

* annotation

° aot

i arguments

e attach

* barrier

* Dbiasedlocking
e Dblocks

* bot

°* Dbreakpoint

e Dbytecode

© census

2-96

ORACLE"

class
classhisto
cleanup
compaction
comparator
constraints
constantpool
Ccoops

cpu

cset

data
defaultmethods
dump

ergo

event
exceptions
exit
fingerprint
freelist

gc
hashtables
heap
humongous
ihop

iklass

init
itables

jfr

jni

jvmti
liveness
load

loader

logging

Chapter 2
java

2-97

ORACLE

mark

marking
metadata
metaspace
method

mmu

modules
monitorinflation
monitormismatch
nmethod
normalize
objecttagging
obsolete
oopmap

os

pagesize
parser

patch

path

phases

plab

preorder
promotion
protectiondomain
purge
redefine

ref

refine

region

remset
resolve
safepoint
scavenge

scrub

Chapter 2
java

2-98

ORACLE

Chapter 2
java

* setting

* stackmap

e stacktrace
e stackwalk

° start

°* startuptime
° state

° stats

* stringdedup
* stringtable
e subclass

e survivor

* sweep

° system

° task

e thread
* time

° timer
* tlab

e unload

* update

e verification
e verify

* vmoperation
* vtables

* workgang

The following table describes a list of the possible combination of a tags along with log levels.

Log Tags Description

-Xlog:gc Prints the gc information along with time at which
the garbage collection occurred.

-Xlog:gc* Prints log messages that include at least gc tag. It
can also have other tags associated with it.
However, it will not give phase level information.

-Xlog:gc*=trace Prints the lowest level of gc logging information.
The output displays all gc related tags with
detailed logging information.

2-99

ORACLE

Chapter 2
java

Log Tags Description

-Xlog:gc+phases=debug Prints different phase level information. This gives
detailed level of information logged at debug level.

-Xlog:gc+heap=debug Prints heap usage details before and after gc.
This logs messages tagged with the gc and heap
at debug level.

-Xlog:safepoint Prints details about application concurrent time
and application stop time at the same level.

-Xlog:gctergo*=trace Prints combination of both gc and ergo messages
at trace level. The information includes all details
about heap sizing and collection set construction.

-Xlog:gctage=trace Prints the survivor size and age distribution of
surviving objects in the survivor spaces at trace
level.

- Redirects the output to the file, specifies the
Xlog:gc*:file=<file>::filecount=<count> number of files you want to use and the size of the

,filesize=<filesize in kb> file in kb.

-Xlog Output
The -X1og option supports the following types of outputs:

* stdout — Sends output to stdout
* stderr — Sends output to stderr
e file=filename — Sends output to text file(s).

When using file=filename, specifying $p and/or %t in the file name expands to the
JVM's PID and startup timestamp, respectively. You can also configure text files to
handle file rotation based on file size and a number of files to rotate. For example, to
rotate the log file every 10 MB and keep 5 files in rotation, specify the options
filesize=10M, filecount=5. The target size of the files isn’'t guaranteed to be exact,
it's just an approximate value. Files are rotated by default with up to 5 rotated files of
target size 20 MB, unless configured otherwise. Specifying filecount=0 means that
the log file shouldn’t be rotated. There’s a possibility of the pre-existing log file getting
overwritten.

Decorations

Logging messages are decorated with information about the message. You can
configure each output to use a custom set of decorators. The order of the output is
always the same as listed in the table. You can configure the decorations to be used at
run time. Decorations are prepended to the log message. For example:

[6.567s] [info] [gc,0ld] 0Old collection complete

Omitting decorators defaults to uptime, level, and tags. The none decorator is
special and is used to turn off all decorations.

time (t), utctime (utc), uptime (u), timemillis (tm), uptimemillis (um), timenanos
(tn), uptimenanos (un), hostname (hn), pid (p), tid (ti), level (1), tags (tg)
decorators can also be specified as none for no decoration.

2-100

Table 2-1 Possible Logging Message Decoratio

Chapter 2
java

ns

Decorations

Description

timeort

Current time and date in ISO-8601 format.

utctime or utc

Universal Time Coordinated or Coordinated Universal
Time.

uptime or u

Time since the start of the JVM in seconds and
milliseconds. For example, 6.567s.

timemillis or tm

The same value as generated by
System.currentTimeMillis ().

uptimemillis or um

Milliseconds since the JVM started.

timenanos or tn

The same value generated by System.nanoTime ().

uptimenanos or un

Nanoseconds since the JVM started.

hostname or hn

The host name.

pidorp The process identifier.

tidorti The thread identifier.

levelorl The level associated with the log message.
tags or tg The tag-set associated with the log message.

Convert GC Logging Flags to Xlog

Table 2-2 Mapping Legacy Garbage Collection Logging Flags to the Xlog Configuration

Legacy Garbage Collection (GC) Xlog Configuration Comment

Flag

GlPrintHeapRegions -Xlog:gctregion=trace Not Applicable

GCLogFileSize No configuration available Log rotation is handled by the
framework.

NumberOfGCLogFiles Not Applicable Log rotation is handled by the
framework.

PrintAdaptiveSizePolicy -Xlog:gctergo*=

Use a level of debug for most of
the information, or a Ievel of trace
for all of what was logged for
PrintAdaptiveSizePolicy

level

PrintGC -Xlog:gc

Not Applicable

PrintGCApplicationConcurrent
Time

-Xlog:safepoint

Note that
PrintGCApplicationConcurrent
Time and
PrintGCApplicationStoppedTim
e are logged on the same tag and
aren’t separated in the new logging.

PrintGCApplicationStoppedTim -Xlog:safepoint Note that
e PrintGCApplicationConcurrent
Time and
PrintGCApplicationStoppedTim
e are logged on the same tag and
not separated in the new logging.
ORACLE 2-101

Chapter 2
java

Table 2-2 (Cont.) Mapping Legacy Garbage Collection Logging Flags to the Xlog Configuration

Legacy Garbage Collection (GC)
Flag

Xlog Configuration

Comment

PrintGCCause Not Applicable GC cause is now always logged.

PrintGCDateStamps Not Applicable Date stamps are logged by the
framework.

PrintGCDetails -Xlog:gc* Not Applicable

PrintGCID Not Applicable GC ID is now always logged.

PrintGCTaskTimeStamps

-Xlog:gct+task*=debug

Not Applicable

PrintGCTimeStamps Not Applicable Time stamps are logged by the
framework.

PrintHeapAtGC -Xlog:gctheap=trace Not Applicable

PrintReferenceGC -Xlog:gctref*=debug Note that in the old logging,

PrintReferenceGC had an effect
only if PrintGCDetails was also
enabled.

PrintStringDeduplicationStat
istics

-Xlog:gctstringdedup*=debug

Not Applicable

PrintTenuringDistribution

-Xlog:gctage*=level

Use a level of debug for the most
relevant information, or a 1evel of
trace for all of what was logged for
PrintTenuringDistribution

UseGCLogFileRotation

Not Applicable

What was logged for
PrintTenuringDistribution.

Convert Runtime Logging Flags to Xlog

Table 2-3 Mapping Runtime Logging Flags to the Xlog Configuration

Legacy Runtime Flag

Xlog Configuration

Comment

TraceExceptions

-Xlog:exceptions=info

Not Applicable

TraceClassLoading

-Xlog:classtload=level

Use level=info for regular
information, or Ievel=debug for
additional information. In Unified
Logging syntax, -verbose:class
equals -
Xlog:class+load=info,class+u
nload=info.

TraceClassLoadingPreorder

-Xlog:classtpreorder=debug

Not Applicable

TraceClassUnloading

-Xlog:class+tunload=1level

Use level=info for regular
information, or Ievel=trace for
additional information. In Unified
Logging syntax, -verbose:class
equals -
Xlog:classtload=info,class+u
nload=info.

ORACLE

2-102

Chapter 2
java

Table 2-3 (Cont.) Mapping Runtime Logging Flags to the Xlog Configuration

Legacy Runtime Flag

Xlog Configuration

Comment

VerboseVerification

-Xlog:verification=info

Not Applicable

TraceClassPaths

-Xlog:classtpath=info

Not Applicable

TraceClassResolution

-Xlog:classtresolve=debug

Not Applicable

TraceClassInitialization

-Xlog:class+init=info

Not Applicable

TraceLoaderConstraints

Xlog:classtloadertconstraint
s=info

Not Applicable

TraceClassLoaderData

Xlog:classtloadertdata=level

Use level=debug for regular
information or level=trace for
additional information.

TraceSafepointCleanupTime

-Xlog:safepoint+cleanup=info

Not Applicable

TraceSafepoint

-Xlog:safepoint=debug

Not Applicable

TraceMonitorInflation

-Xlog:monitorinflation=debug

Not Applicable

TraceBiasedLocking

-Xlog:biasedlocking=Ilevel

Use level=info for regular
information, or level=trace for
additional information.

TraceRedefineClasses

-Xlog:redefinetclass*=Ilevel

Use level=info, level=debug
and level=trace to provide
increasing amounts of information.

-Xlog Usage Examples

The following are -X1og examples.

-Xlog

Logs all messages by using the info level to stdout with uptime, levels, and tags
decorations. This is equivalent to using:

-Xlog:all=info:stdout:uptime, levels, tags

-Xlog:gc

Logs messages tagged with the gc tag using info level to stdout. The default configuration
for all other messages at level warning is in effect.

-Xlog:gc,safepoint
Logs messages tagged either with the gc or safepoint tags, both using the info level, to
stdout, with default decorations. Messages tagged with both gc and safepoint won't be

logged.

-Xlog:gctref=debug
Logs messages tagged with both gc and ref tags, using the debug level to stdout, with
default decorations. Messages tagged only with one of the two tags won't be logged.

ORACLE

2-103

ORACLE

Chapter 2
java

-Xlog:gc=debug:file=gc. txt:none

Logs messages tagged with the gc tag using the debug level to a file called gc. txt
with no decorations. The default configuration for all other messages at level warning
is still in effect.

Xlog:gc=trace:file=gctrace.txt:uptimemillis,pids:£filecount=5,filesize=102

Logs messages tagged with the gc tag using the trace level to a rotating file set with
5 files with size 1 MB with the base name gctrace. txt and uses decorations
uptimemillis and pid.

The default configuration for all other messages at level warning is still in effect.

-Xlog:gc: :uptime, tid

Logs messages tagged with the gc tag using the default 'info' level to default the
outputstdout and uses decorations uptime and tid. The default configuration for all
other messages at level warning is still in effect.

-Xlog:gc*=info,safepoint*=off

Logs messages tagged with at least gc using the info level, but turns off logging of
messages tagged with safepoint. Messages tagged with both gc and safepoint
won't be logged.

-Xlog:disable -Xlog:safepoint=trace:safepointtrace.txt

Turns off all logging, including warnings and errors, and then enables messages
tagged with safepoint using trace level to the file safepointtrace.txt. The default
configuration doesn’t apply, because the command line started with -Xlog:disable.

Complex -Xlog Usage Examples

The following describes a few complex examples of using the -x1og option.

-Xlog:gctclass*=debug

Logs messages tagged with at least gc and class tags using the debug level to
stdout. The default configuration for all other messages at the level warning is still in
effect

-Xlog:gctmeta*=trace,class*=off:file=gcmetatrace. txt

Logs messages tagged with at least the gc and meta tags using the trace level to the
file metatrace.txt but turns off all messages tagged with class. Messages tagged
with gc, meta, and class aren’t be logged because class* is set to off. The default
configuration for all other messages at level warning is in effect except for those that
include class.

-Xlog:gctmeta=trace

Logs messages tagged with exactly the gc and meta tags using the trace level to
stdout. The default configuration for all other messages at level warning is still in
effect.

-Xlog:gctclasst+heap*=debug,meta*=warning, threads*=off

Logs messages tagged with at least gc, class, and heap tags using the trace level to
stdout but only log messages tagged with meta with level. The default configuration
for all other messages at the level warning is in effect except for those that include
threads.

2-104

Chapter 2
java

Validate Java Virtual Machine Flag Arguments

You use values provided to all Java Virtual Machine (JVM) command-line flags for validation
and, if the input value is invalid or out-of-range, then an appropriate error message is
displayed.

Whether they're set ergonomically, in a command line, by an input tool, or through the APIs
(for example, classes contained in the package java.lang.management) the values provided
to all Java Virtual Machine (JVM) command-line flags are validated. Ergonomics are
described in Java Platform, Standard Edition HotSpot Virtual Machine Garbage Collection
Tuning Guide.

Range and constraints are validated either when all flags have their values set during JVM
initialization or a flag’s value is changed during runtime (for example using the jcmd tool). The
JVM is terminated if a value violates either the range or constraint check and an appropriate
error message is printed on the error stream.

For example, if a flag violates a range or a constraint check, then the JVM exits with an error:

java -XX:AllocatePrefetchStyle=5 -version

intx AllocatePrefetchStyle=5 is outside the allowed range [0 ... 3]
Improperly specified VM option 'AllocatePrefetchStyle=5'

Error: Could not create the Java Virtual Machine.

Error: A fatal exception has occurred. Program will exit.

The flag -xX:+PrintFlagsRanges prints the range of all the flags. This flag allows automatic
testing of the flags by the values provided by the ranges. For the flags that have the ranges
specified, the type, name, and the actual range is printed in the output.

For example,

intx ThreadStackSize [0 ... 9007199254740987] {pd product}

For the flags that don’t have the range specified, the values aren’t displayed in the print out.
For example,:

size t NewSize [e] {product}

This helps to identify the flags that need to be implemented. The automatic testing framework
can skip those flags that don’t have values and aren’t implemented.

Large Pages

ORACLE

You use large pages, also known as huge pages, as memory pages that are significantly
larger than the standard memory page size (which varies depending on the processor and
operating system). Large pages optimize processor Translation-Lookaside Buffers.

A Translation-Lookaside Buffer (TLB) is a page translation cache that holds the most-recently
used virtual-to-physical address translations. A TLB is a scarce system resource. A TLB miss
can be costly because the processor must then read from the hierarchical page table, which
may require multiple memory accesses. By using a larger memory page size, a single TLB
entry can represent a larger memory range. This results in less pressure on a TLB, and
memory-intensive applications may have better performance.

2-105

Chapter 2
java

However, large pages page memory can negatively affect system performance. For
example, when a large mount of memory is pinned by an application, it may create a
shortage of regular memory and cause excessive paging in other applications and
slow down the entire system. Also, a system that has been up for a long time could
produce excessive fragmentation, which could make it impossible to reserve enough
large page memory. When this happens, either the OS or JVM reverts to using regular
pages.

Oracle Solaris, Linux, and Windows support large pages.

Large Pages Support for Oracle Solaris

Oracle Solaris 9 and later include Multiple Page Size Support (MPSS). No additional
configuration is necessary.

Large Pages Support for Linux

The 2.6 kernel supports large pages. Some vendors have backported the code to their
2.4-based releases. To check if your system can support large page memory, try the
following:

cat /proc/meminfo | grep Huge
HugePages Total: 0

HugePages Free: 0

Hugepagesize: 2048 kB

If the output shows the three "Huge" variables, then your system can support large
page memory but it needs to be configured. If the command prints nothing, then your
system doesn’t support large pages. To configure the system to use large page
memory, login as root, and then follow these steps:

1. If you're using the option -xX:+UseSHM (instead of -XX: +UseHugeTLBES), then
increase the SHMMAX value. It must be larger than the Java heap size. On a system
with 4 GB of physical RAM (or less), the following makes all the memory sharable:

echo 4294967295 > /proc/sys/kernel/shmmax

2. If you're using the option -XX:+UseSHM Or -XX: +UseHugeTLBFS, then specify the
number of large pages. In the following example, 3 GB of a 4 GB system are
reserved for large pages (assuming a large page size of 2048kB, then 3 GB = 3 *
1024 MB = 3072 MB = 3072 * 1024 kB = 3145728 kB and 3145728 kB / 2048 kB =
1536):

echo 1536 > /proc/sys/vm/nr_hugepages

ORACLE 2-106

Chapter 2
java

< Note:

e The values contained in /proc reset after you reboot your system, so you might
want to set them in an initialization script (for example, rc.local or
sysctl.conf).

e If you configure (or resize) the OS kernel parameters /proc/sys/kernel/
shmmax Or /proc/sys/vm/nr_hugepages, Java processes may allocate large
pages for areas in addition to the Java heap. These steps can allocate large
pages for the following areas:

— Java heap
— Code cache
— The marking bitmap data structure for the parallel GC

Consequently, if you configure the nr hugepages parameter to the size of the
Java heap, then the JVM can fail in allocating the code cache areas on large
pages because these areas are quite large in size.

Large Pages Support for Windows

To use large pages support on Windows, the administrator must first assign additional
privileges to the user who is running the application:

1. Select Control Panel, Administrative Tools, and then Local Security Policy.
2. Select Local Policies and then User Rights Assignment.

3. Double-click Lock pages in memory, then add users and/or groups.

4. Reboot your system.

Note that these steps are required even if it's the administrator who's running the application,
because administrators by default don’t have the privilege to lock pages in memory.

Application Class Data Sharing

ORACLE

Application Class Data Sharing (AppCDS) extends class data sharing (CDS) to enable
application classes to be placed in a shared archive.

In addition to the core library classes, AppCDS supports Class Data Sharing from the
following locations:

e Platform classes from the runtime image

e Application classes from the runtime image
e Application classes from the class path

e Application classes from the module path

Archiving application classes provides better start up time at runtime. When running multiple
JVM processes, AppCDS also reduces the runtime footprint with memory sharing for read-
only metadata.

CDS/AppCDS supports archiving classes from JAR files only.

2-107

ORACLE

Chapter 2
java

Prior to JDK 11, a non-empty directory was reported as a fatal error in the following
conditions:

« For base CDS, a non-empty directory cannot exist in the -Xbootclasspath/a path

e With -Xx:+UseAppCDS, a non-empty directory could not exist in the -
Xbootclasspath/a path, class path, and module path.

In JDK 11 and later, -xX: +UseAppCDS is obsolete and the behavior for a non-empty
directory is based on the class types in the classlist. A nhon-empty directory is reported
as a fatal error in the following conditions:

» If application classes or platform classes are not loaded, dump time only reports
an error if a non-empty directory exists in -xbootclasspath/a path

« If application classes or platform classes are loaded, dump time reports an error
for a non-empty directory that exists in -Xbootclasspath/a path, class path, or
module path

In JDK 11 and later, using -xxX:DumpLoadedClassList=<class list file results a
generated classlist with all classes (both system library classes and application
classes) included. You no longer have to specify -xX:+UseAppCDS with -
XX:DumpLoadedClassList to produce a complete class list.

In JDK 11 and later, because UseAppCDS is obsolete, SharedArchiveFile becomes a
product flag by default. Specifying +UnlockDiagnosticVMOptions for
SharedArchiveFile is no longer needed in all configurations.

Class Data Sharing (CDS)/AppCDS does not support archiving array classes in a
class list. When an array in the class list is encountered, CDS dump time gives the
explicit error message:

Preload Warning: Cannot find array name

Although an array in the class list is not allowed, some array classes can still be
created at CDS/AppCDS dump time. Those arrays are created during the execution of
the Java code used by the Java class loaders (PlatformClassLoader and the system
class loader) to load classes at dump time. The created arrays are archived with the
rest of the loaded classes.

Extending Class Data Sharing to Support the Module Path

In JDK 11, Class Data Sharing (CDS) was improved to support archiving classes from
the module path.

e To create a CDS archive by using the --module-path VM option, use the following
command line syntax:

$ java -Xshare:dump -XX:SharedClassListFile=class list file \
-XX:SharedArchiveFile=shared archive file \

--module-path=path to modular jar -m module name

e To run with a CDS archive using the --module-path VM option, use the following
the command line syntax:

$ java -XX:SharedArchiveFile=shared archive file \
--module-path=path to modular jar -m module name

2-108

ORACLE

Chapter 2
java

The following table describes how the VM options related to module paths can be used along
with the -Xshare option.

Option -Xshare:dump -Xshare:{on,auto}
--module-path! mp Allowed Allowed?

--module Allowed Allowed
--add-module Allowed Allowed
--upgrade-module-path® Disallowed (exits if specified) Allowed (disables CDS)
--patch-module? Disallowed (exits if specified) Allowed (disables CDS)
--limit-modules® Disallowed (exits if specified) Allowed (disables CDS)

1Although there are two ways of specifying a module in a --module-path, that is, modular
JAR or exploded module, only modular JARs are supported.

2Different mp can be specified during dump time versus run time. If an archived class K was
loaded from mp1.jar at dump time, but changes in mp cause it to be available from a different
mp2.jar at run time, then the archived version of K will be disregarded at run time; K will be
loaded dynamically.

3Currently, only two system modules are upgradeable (java.compiler and
jdk.internal.vm.compiler). However, these modules are seldom upgraded in production
software.

4As documented in JEP 261, using --patch-module is strongly discouraged for production
use.

5_-limit-modules is intended for testing purposes. It is seldom used in production software.

If -—upgrade-module-path, --patch-module, Or --1imit-modules is specified at dump time,
an error will be printed and the JVM will exit. For example, if the --1imit-modules option is
specified at dump time, the user will see the following error:

Error occurred during initialization of VM
Cannot use the following option when dumping the shared archive: --limit-
modules

If --upgrade-module-path, --patch-module, Or --1limit-modules is specified at run time, a
warning message will be printed indicating that CDS is disabled. For example, if the --1imit-
modules options is specified at run time, the user will see the following warning:

Java HotSpot (TM) 64-Bit Server VM warning: CDS is disabled when the --limit-
modules option is specified.

Several other noteworthy things include:
e Any valid combinations of -cp and --module-path are supported.

* A non-empty directory in the module path causes a fatal error. The user will see the
following error messages:

Error: non-empty directory <directory> Hint: enable -Xlog:classtpath=info to
diagnose the failure Error occurred during initialization of VM Cannot have non-
empty directory in paths

2-109

ORACLE

Chapter 2
java

Unlike the class path, there's no restriction that the module path at dump time
must be equal to or be a prefix of the module path at run time.

The archive is invalidated if an existing JAR in the module path is updated after
archive generation.

Removing a JAR from the module path does not invalidate the shared archive.
Archived classes from the removed JAR are not used at runtime.

Creating a Shared Archive File and Using It to Run an Application

The following steps create a shared archive file that contains all the classes used by
the test.Hello application. The last step runs the application with the shared archive

file.

1.

Create a list of all classes used by the test.Hello application. The following
command creates a file named hello.classlist that contains a list of all classes
used by this application:

java -Xshare:off -XX:DumpLoadedClassList=hello.classlist -cp
hello.jar test.Hello

Note that the classpath specified by the -cp parameter must contain only JAR
files.

Create a shared archive, named hello.jsa, that contains all the classes in
hello.classlist:

java -Xshare:dump -XX:SharedArchiveFile=hello.jsa -
XX:SharedClassListFile=hello.classlist -cp hello.jar

Note that the classpath used at archive creation time must be the same as (or a
prefix of) the classpath used at run time.

Run the application test.Hello with the shared archive hello.jsa:
java -XX:SharedArchiveFile=hello.jsa -cp hello.jar test.Hello

Optional: Verify that the test.Hello application is using the class contained in the
hello.jsa shared archive:

java -XX:SharedArchiveFile=hello.jsa -cp hello.jar -verbose:class
test.Hello

The output of this command should contain the following text:

Loaded test.Hello from shared objects file by sun/misc/
Launcher$AppClassLoader

Sharing a Shared Archive Across Multiple Application Processes

You can share the same archive file across multiple applications processes. This

reduces memory usage because the archive is memory-mapped into the address
space of the processes. The operating system automatically shares the read-only
pages across these processes.

2-110

ORACLE

Chapter 2
java

The following steps demonstrate how to create a common archive that can be shared by
different applications. Only the classes from common. jar are archived in the common. jsa (step
3). Classes from hello.jar and hi.jar are not archived in this particular example because
they are not in the classpath during the archiving step (step 3).

To include classes from hello.jar and hi.jar, the .jar files must be added to the classpath
specified by the-cp parameter.

1.

Create a list of all classes used by the Hello application and another list for the Hi
application:

java -XX:DumpLoadedClassList=hello.classlist -cp common.jar:hello.jar
Hello
java -XX:DumpLoadedClassList=hi.classlist -cp common.jar:hi.jar Hi

Create a single list of classes used by all the applications that will share the shared
archive file.

Oracle Solaris, Linux, and macOS: The following commands combine the files
hello.classlist and hi.classlist into one file, common.classlist:

cat hello.classlist hi.classlist > common.classlist

Windows: The following commands combine the files hello.classlist and
hi.classlist into one file, common.classlist

type hello.classlist hi.classlist > common.classlist

Create a shared archive named common. jsa that contains all the classes in
common.classlist:

java -Xshare:dump -XX:SharedArchiveFile=common.jsa -
XX:SharedClassListFile=common.classlist -cp common.jar:hello.jar:hi.jar

The classpath parameter used is the common class path prefix shared by the Hello and
Hi applications.

Run the Hello and Hi applications with the same shared archive:

java -XX:SharedArchiveFile=common.jsa -cp common.jar:hello.jar:hi.jar
Hello

java -XX:SharedArchiveFile=common.jsa -cp common.jar:hello.jar:hi.jar Hi

Specifying Additional Shared Data Added to an Archive File

The sharedArchiveConfigFile option is used to specify additional shared data to add to the

archive file.

-XX:SharedArchiveConfigFile=shared config file

2-111

Chapter 2
java

JDK 9 and later supports adding both symbols and string objects to an archive for
memory sharing when you have multiple JVM processes running on the same host. An
example of this is having multiple JVM processes that use the same set of Java EE
classes. When these common classes are loaded and used, new symbols and strings
may be created and added to the JVM's internal "symbol" and "string" tables. At
runtime, the symbols or string objects mapped from the archive file can be shared
across multiple JVM processes, resulting in a reduction of overall memory usage. In
addition, archiving strings also provides added performance benefits in both startup
time and runtime execution.

In JDK 10 and later, CONSTANT_String entries in archived classes are resolved to
interned String objects at dump time, and all interned String objects are archived.
However, even though all CONSTANT_String literals in all archived classes are
resolved, it might still beneficial to add additional strings that are not string literals in
class files, but are likely to be used by your application at run time.

Symbol data should be generated by the jcmd tool attaching to a running JVM
process. See jcmd.

The following is an example of the symbol dumping command in jcmd:

jcmd pid VM.symboltable -verbose

Note:

The first line (process ID) and the second line ("@VERSION ...") of this jcmd
output should be excluded from the configuration file.

Example of a Configuration File

The following is an example of a configuration file:

VERSION: 1.0
@SECTION: Symbol
10 -1: linkMethod

In the configuration file example, the @SECTION: Symbol entry uses the following
format:

length refcount: symbol

The refcount for a shared symbol is always -1.

@SECTION specifies the type of the section that follows it. All data within the section
must be the same type that's specified by ¢SECTION. Different types of data can’t be
mixed. Multiple separated data sections for the same type specified by different
@SECTION are allowed within one shared config file.

ORACLE 2-112

Chapter 2
java

Performance Tuning Examples

You can use the Java advanced runtime options to optimize the performance of your
applications.

Tuning for Higher Throughput

Use the following commands and advanced runtime options to achieve higher throughput
performance for your application:

java -server -XX:+UseParallelGC -XX:+UseLargePages -XmnlOg -Xms26g -Xmx26g

Tuning for Lower Response Time

Use the following commands and advanced runtime options to achieve lower response times
for your application:

java -XX:+UseGlGC -Xms26g Xmx26g -XX:MaxGCPauseMillis=500 -
XX:+PrintGCTimeStamp

Keeping the Java Heap Small and Reducing the Dynamic Footprint of Embedded
Applications

Use the following advanced runtime options to keep the Java heap small and reduce the
dynamic footprint of embedded applications:

-XX:MaxHeapFreeRatio=10 -XX:MinHeapFreeRatio=5

< Note:

The defaults for these two options are 70% and 40% respectively. Because
performance sacrifices can occur when using these small settings, you should
optimize for a small footprint by reducing these settings as much as possible
without introducing unacceptable performance degradation.

Exit Status

The following exit values are typically returned by the launcher when the launcher is called
with the wrong arguments, serious errors, or exceptions thrown by the JVM. However, a Java
application may choose to return any value by using the API call System.exit (exitValue).
The values are:

e 0: Successful completion

e >0: An error occurred

ORACLE 2-113

jar

ORACLE

Chapter 2
jar

You can use the jar command to create an archive for classes and resources, and to
manipulate or restore individual classes or resources from an archive.

Synopsis

jar [OPTION...] [[--release VERSION] [-C dir] files]

Description

The jar command is a general-purpose archiving and compression tool, based on the
ZIP and ZLIB compression formats. Initially, the jar command was designed to
package Java applets (not supported since JDK 11) or applications; however,
beginning with JDK 9, users can use the jar command to create modular JARs. For
transportation and deployment, it's usually more convenient to package modules as
modular JARs.

The syntax for the jar command resembles the syntax for the tar command. It has
several main operation modes, defined by one of the mandatory operation arguments.
Other arguments are either options that modify the behavior of the operation or are
required to perform the operation.

When modules or the components of an application (files, images, and sounds) are
combined into a single archive, they can be downloaded by a Java agent (such as a
browser) in a single HTTP transaction, rather than requiring a new connection for each
piece. This dramatically improves download times. The jar command also
compresses files, which further improves download time. The jar command also
enables individual entries in a file to be signed so that their origin can be
authenticated. A JAR file can be used as a class path entry, whether or not it's
compressed.

An archive becomes a modular JAR when you include a module descriptor, module-
info.class, in the root of the given directories or in the root of the JAR archive. The
following operations described in Operation Modifiers Valid Only in Create and Update
Modes are valid only when creating or updating a modular JAR or updating an existing
non-modular JAR:

. --module-version

o --hash-modules

e --module-path
Note:

All mandatory or optional arguments for long options are also mandatory or
optional for any corresponding short options.

2-114

ORACLE

Chapter 2
jar

Main Operation Modes

When using the jar command, you must specify the operation for it to perform. You specify
the operation mode for the jar command by including the appropriate operation arguments
described in this section. You can mix an operation argument with other one-letter options.
Generally the operation argument is the first argument specified on the command line.

-c Or --create
Creates the archive.

-i=FILE Or --generate-index=FILE
Generates index information for the specified JAR file.

-t or --list
Lists the table of contents for the archive.

-u Or --update
Updates an existing JAR file.

-x Or --extract
Extracts the named (or all) files from the archive.

-d or --describe-module
Prints the module descriptor or automatic module name.

Operation Modifiers Valid in Any Mode

You can use the following options to customize the actions of any operation mode included in
the jar command.

-C DIR
Changes the specified directory and includes the riles specified at the end of the command
line.

jar [OPTION...] [[--release VERSION] [-C dir] files]

-f=FILE or --file=FILE
Specifies the archive file name.

--release VERSION

Creates a multirelease JAR file. Places all files specified after the option into a versioned
directory of the JAR file named META-INF/versions/VERSION/, where VERSION must be
must be a positive integer whose value is 9 or greater.

At run time, where more than one version of a class exists in the JAR, the JDK will use the
first one it finds, searching initially in the directory tree whose VERSION number matches the
JDK's major version number. It will then look in directories with successively lower VERSION
numbers, and finally look in the root of the JAR.

-v Or --verbose
Sends or prints verbose output to standard output.

Operation Modifiers Valid Only in Create and Update Modes

You can use the following options to customize the actions of the create and the update main
operation modes:

2-115

ORACLE

Chapter 2
jar

-e=CLASSNAME or --main-class=CLASSNAME
Specifies the application entry point for standalone applications bundled into a
modular or executable modular JAR file.

-m=FILE Or --manifest=FILE
Includes the manifest information from the given manifest file.

-M Oor --no-manifest
Doesn’t create a manifest file for the entries.

--module-version=VERSION
Specifies the module version, when creating or updating a modular JAR file, or
updating a non-modular JAR file.

--hash-modules=PATTERN

Computes and records the hashes of modules matched by the given pattern and that
depend upon directly or indirectly on a modular JAR file being created or a non-
modular JAR file being updated.

-p path or --module-path path
Specifies the location of module dependence for generating the hash.

@file
Reads jar options and file names from a text file.

Operation Modifiers Valid Only in Create, Update, and Generate-index Modes

You can use the following options to customize the actions of the create (-c or --
create) the update (-u or --update) and the generate-index (-i or --generate-
index=FILE) main operation modes:

-0 or --no-compress
Stores without using ZIP compression.

Other Options

The following options are recognized by the jar command and not used with operation
modes:

-h or --help[:compat]
Displays the command-line help for the jar command or optionally the compatibility
help.

--help-extra
Displays help on extra options.

--version
Prints the program version.

2-116

ORACLE

Chapter 2
jar

Examples of jar Command Syntax

Create an archive, classes. jar, that contains two class files, Foo.class and Bar.class.

jar --create --file classes.jar Foo.class Bar.class

Create an archive, classes. jar, by using an existing manifest, mymanifest, that
contains all of the files in the directory foo/.

jar --create --file classes.jar --manifest mymanifest -C foo/

Create a modular JAR archive, foo. jar, where the module descriptor is located in
classes/module-info.class.

jar --create --file foo.jar --main-class com.foo.Main --module-version 1.0 -
C foo/classes resources

Update an existing non-modular JAR, foo.jar, to a modular JAR file.

jar --update --file foo.jar --main-class com.foo.Main --module-version 1.0 -
C foo/module-info.class

Create a versioned or multi-release JAR, foo. jar, that places the files in the classes
directory at the root of the JAR, and the files in the classes-10 directory in the META-
INF/versions/10 directory of the JAR.

In this example, the classes/com/foo directory contains two classes, com. foo.Hello (the
entry point class) and com. foo.NameProvider, both compiled for JDK 8. The
classes-10/com/foo directory contains a different version of the com. foo.NameProvider
class, this one containing JDK 10 specific code and compiled for JDK 10.

Given this setup, create a multirelease JAR file foo.jar by running the following command
from the directory containing the directories classes and classes-10 .

jar --create --file foo.jar --main-class com.foo.Hello -C classes . --
release 10 -C classes-10

The JAR file foo.jar now contains:

Q

% jar -tf foo.jar

META-INF/

META-INF/MANIFEST.MF

com/

com/foo/

com/foo/Hello.class

com/foo/NameProvider.class
META-INF/versions/10/com/
META-INF/versions/10/com/foo/
META-INF/versions/10/com/foo/NameProvider.class

2-117

jlink

ORACLE

Chapter 2
jlink

As well as other information, the file META-INF/MANIFEST.MF, will contain the following
lines to indicate that this is a multirelease JAR file with an entry point of
com. foo.Hello.

Main-Class: com.foo.Hello
Multi-Release: true

Assuming that the com. foo.Hello class calls a method on the com. foo.NameProvider
class, running the program using JDK 10 will ensure that the com.foo.NameProvider
class is the one in META-INF/versions/10/com/foo/. Running the program using JDK
8 will ensure that the com. foo.NameProvider class is the one at the root of the JAR, in
com/foo.

Create an archive, my. jar, by reading options and lists of class files from the
file classes.list.

Note:

To shorten or simplify the jar command, you can specify arguments in a
separate text file and pass it to the jar command with the at sign () as a
prefix.

jar --create --file my.Jjar @classes.list

You can use the j1link tool to assemble and optimize a set of modules and their
dependencies into a custom runtime image.

Synopsis

jlink [options] --module-path modulepath --add-modules
module[,module...]

options
Command-line options separated by spaces. See jlink Options.

modulepath
The path where the j1ink tool discovers observable modules. These modules can be
modular JAR files, IMOD files, or exploded modules.

module
The names of the modules to add to the runtime image. The j1link tool adds these
modules and their transitive dependencies.

Description

The j1ink tool links a set of modules, along with their transitive dependencies, to
create a custom runtime image.

2-118

ORACLE

Chapter 2
jlink

< Note:

Developers are responsible for updating their custom runtime images.

jlink Options

--add-modules mod[,mod. . .]
Adds the named modules, mod, to the default set of root modules. The default set of root
modules is empty.

--bind-services
Link service provider modules and their dependencies.

-c={0|1|2} or --compress={0]1]|2}
Enable compression of resources:

e 0: No compression
* 1: Constant string sharing

e 2:Z1P

--disable-plugin pluginname
Disables the specified plug-in. See jlink Plug-ins for the list of supported plug-ins.

--endian {little|big}
Specifies the byte order of the generated image. The default value is the format of your
system's architecture.

-h or --help
Prints the help message.

--ignore-signing-information
Suppresses a fatal error when signed modular JARs are linked in the runtime image. The
signature-related files of the signed modular JARs aren't copied to the runtime image.

--launcher command=module Or --launcher command=module/main
Specifies the launcher command name for the module or the command name for the module
and main class (the module and the main class names are separated by a slash (/)).

--limit-modules mod[,mod. . .]

Limits the universe of observable modules to those in the transitive closure of the named
modules, mod, plus the main module, if any, plus any further modules specified in the --add-
modules option.

--list-plugins
Lists available plug-ins, which you can access through command-line options. See jlink Plug-
ins.

-p Or --module-path modulepath

Specifies the module path.

If this option is not specified, then the default module path is $JAVA HOME/jmods. This
directory contains the java.base module and the other standard and JDK modules. If this

2-119

ORACLE

Chapter 2
jlink

option is specified but the java.base module cannot be resolved from it, then the
jlink command appends $JAVA HOME/jmods to the module path.

--no-header-files
Excludes header files.

--no-man-pages
Excludes man pages.

--output path
Specifies the location of the generated runtime image.

--save-opts filename
Saves jlink options in the specified file.

--suggest-providers [name, ...]
Suggest providers that implement the given service types from the module path.

--version
Prints version information.

@filename

Reads options from the specified file.

An options file is a text file that contains the options and values that you would
typically enter in a command prompt. Options may appear on one line or on several
lines. You may not specify environment variables for path names. You may comment
out lines by prefixing a hash symbol (#) to the beginning of the line.

The following is an example of an options file for the j1ink command:

#Wed Dec 07 00:40:19 EST 2016
--module-path mlib
--add-modules com.greetings
--output greetingsapp

jlink Plug-ins

< Note:

Plug-ins not listed in this section aren’t supported and are subject to change.

For plug-in options that require a pattern-1ist, the value is a comma-separated list of
elements, with each element using one the following forms:

* glob-pattern

* glob:glob-pattern

° regex:regex-pattern
e (@filename

— filename is the name of a file that contains patterns to be used, one pattern
per line.

For a complete list of all available plug-ins, run the command jlink --list-plugins.

2-120

Table 2-4 List of jlink plugins

Chapter 2
jlink

Plugin Name

Option

Description

compress

include-locales

order-resources

strip-debug

--compress={0[|1]|2}
[:filter=pattern-1list]

--include-
locales=langtagl, langtag

1*

--order-
resources=pattern-1list

--strip-debug

Compresses all resources in the

output image.

e Level 0: No compression

e Level 1: Constant string
sharing

 Level 2:ZIP

An optional pattern-1ist filter

can be specified to list the

pattern of files to include.

Includes the list of locales where
langtagis a BCP 47 language
tag. This option supports locale
matching as defined in RFC
4647. Ensure that you add the
module jdk.localedata
when using this option.

Example:

--add-modules
jdk.localedata --
include-locales=en, ja, *-
IN

Orders the specified paths in
priority order. If @filename is
specified, then each line in
pattern-1ist must be an exact
match for the paths to be
ordered.

Example:

--order-resources=/
module-
info.class,@classlist,/
java.base/java/lang/

Strips debug information from the
output image.

jlink Examples

The following command creates a runtime image in the directory greetingsapp. This
command links the module com. greetings, whose module definition is contained in the

directory m1ib.

jlink --module-path mlib --add-modules com.greetings --output greetingsapp

ORACLE

2-121

ORACLE

Chapter 2
jlink

The following command lists the modules in the runtime image greetingsapp:

greetingsapp/bin/java --list-modules
com.greetings

java.base@1l1l

java.logging@1l1l

org.astro@l.0

The following command creates a runtime image in the directory compressedrt
that's stripped of debug symbols, uses compression to reduce space, and includes
French language locale information:

jlink --add-modules jdk.localedata --strip-debug --compress=2 --include-
locales=fr --output compressedrt

The following example compares the size of the runtime image compressedrt with
fr rt, which isn’t stripped of debug symbols and doesn’t use compression:

jlink --add-modules jdk.localedata --include-locales=fr --output fr rt

du -sh ./compressedrt ./fr rt
23M ./compressedrt
36M ./fr_rt

The following example lists the providers that implement
java.security.Provider:

jlink --suggest-providers java.security.Provider

Suggested providers:
java.naming provides java.security.Provider used by java.base
java.security.jgss provides java.security.Provider used by java.base
java.security.sasl provides java.security.Provider used by java.base
java.smartcardio provides java.security.Provider used by java.base
java.xml.crypto provides java.security.Provider used by java.base
jdk.crypto.cryptoki provides java.security.Provider used by java.base
jdk.crypto.ec provides java.security.Provider used by java.base
jdk.crypto.mscapi provides java.security.Provider used by java.base
jdk.security.jgss provides java.security.Provider used by java.base

The following example creates a custom runtime image named mybuild that includes
only java.naming and jdk.crypto.cryptoki and their dependencies but no
other providers. Note that these dependencies must exist in the module path:

jlink --add-modules java.naming,jdk.crypto.cryptoki --output mybuild

The following command is similar to the one that creates a runtime image named
greetingsapp, except that it will link the modules resolved from root modules with
service binding; see the Configuration.resolveAndBind method.

jlink --module-path mlib --add-modules com.greetings --output
greetingsapp --bind-services

2-122

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/module/Configuration.html

Chapter 2
jmod

The following command lists the modules in the runtime image greetingsapp created by
this command:

greetingsapp/bin/java --list-modules
com.greetings
java.base@ll
java.compiler@ll
java.datatransfer@ll
java.desktop@ll
java.logging@ll
java.management@1l1
java.management.rmi@ll
java.naming@ll
java.prefs@ll
java.rmi@ll
java.security.jgss@ll
java.security.sasl@l1l
java.smartcardio@ll
java.xml@ll
java.xml.crypto@ll
jdk.accessibility@ll
jdk.charsets@ll
jdk.compiler@ll
jdk.crypto.cryptoki@ll
jdk.crypto.ec@l1l
jdk.crypto.mscapi@ll
jdk.internal.opt@1l
jdk.jartool@11
jdk.javadoc@ll
jdk.jdeps@ll
jdk.jfr@ll
jdk.jlink@11l
jdk.localedata@ll
jdk.management@11
jdk.management.jfr@ll
jdk.naming.dns@11
jdk.naming.rmi@11
jdk.security.auth@ll
jdk.security.jgss@ll
jdk.zipfs@ll
org.astro@l.0

jmod
You use the jmod tool to create JIMOD files and list the content of existing JMOD files.
Synopsis

jmod (createl|extract|list|describel|hash) [options] jmod-file

Includes the following:

Main operation modes

ORACLE 2-123

ORACLE

Chapter 2
jmod

create
Creates a new JMOD archive file.

extract
Extracts all the files from the JIMOD archive file.

list
Prints the names of all the entries.

describe
Prints the module details.

hash
Determines leaf modules and records the hashes of the dependencies that directly
and indirectly require them.

Options

options
See Options for jmod.

Required

jmod-file
Specifies the name of the JIMOD file to create or from which to retrieve information.

Description

Note:

For most development tasks, including deploying modules on the module
path or publishing them to a Maven repository, continue to package modules
in modular JAR files. The jmod tool is intended for modules that have native
libraries or other configuration files or for modules that you intend to link, with
the j1link tool, to a runtime image.

The JMOD file format lets you aggregate files other than .class files, metadata, and
resources. This format is transportable but not executable, which means that you can
use it during compile time or link time but not at run time.

Many jmod options involve specifying a path whose contents are copied into the
resulting JMOD files. These options copy all the contents of the specified path,
including subdirectories and their contents, but exclude files whose names match the
pattern specified by the --exclude option.

With the --hash-modules option or the jmod hash command, you can, in each
module's descriptor, record hashes of the content of the modules that are allowed to
depend upon it, thus "tying" together these modules. This enables a package to be
exported to one or more specifically-named modules and to no others through
qualified exports. The runtime verifies if the recorded hash of a module matches the
one resolved at run time; if not, the runtime returns an error.

2-124

ORACLE

Chapter 2
jmod

Options for jmod

--class-path path
Specifies the location of application JAR files or a directory containing classes to copy into
the resulting JMOD file.

--cmds path
Specifies the location of native commands to copy into the resulting JIMOD file.

--config path
Specifies the location of user-editable configuration files to copy into the resulting JMOD file.

--dir path
Specifies the location where jmod puts extracted files from the specified JMOD archive.

--dry-run
Performs a dry run of hash mode. It identifies leaf modules and their required modules
without recording any hash values.

--exclude pattern-list
Excludes files matching the supplied comma-separated pattern list, each element using one
the following forms:

* glob-pattern
* glob:glob-pattern
e regex:regex-pattern

See the FileSystem.getPathMatcher method for the syntax of glob-pattern. See the
Pattern class for the syntax of regex-pattern, which represents a regular expression.

--hash-modules regex-pattern

Determines the leaf modules and records the hashes of the dependencies directly and
indirectly requiring them, based on the module graph of the modules matching the given
regex-pattern. The hashes are recorded in the JMOD archive file being created, or a JIMOD
archive or modular JAR on the module path specified by the jmod hash command.

--header-files path
Specifies the location of the header files to copy into the resulting JMOD file.

--help or -h
Prints a usage message.

--help-extra
Prints help for extra options.

—-legal-notices path
Specifies the location of the legal notices to copy into the resulting JIMOD file.

--libs path
Specifies the location of the native libraries to copy into the resulting JMOD file.

--main-class class-name
Specifies the main class to record in the module-info.class file.

2-125

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/file/FileSystem.html#getPathMatcher(java.lang.String)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/PatternSyntaxException.html

Chapter 2
jmod

--man-pages path
Specifies the location of the man pages to copy into the resulting JMOD file.

--module-version module-version
Specifies the module version to record in the module-info.class file.

--module-path pathor -p path
Specifies the module path. This option is required if you also specify --hash-modules.

--target-platform platform
Specifies the target platform.

--version
Prints the version information of the jmod tool.

@filename

Reads the options from the specified file.

An options file is a text file that contains the options and values that you would
ordinarily enter in a command prompt. Options may appear on one line or on several
lines. You may not specify environment variables for path names. You may comment
out lines by prefixinga hash symbol (#) to the beginning of the line.

The following is an example of an options file for the jmod command:

#Wed Dec 07 00:40:19 EST 2016

create --class-path mods/com.greetings --module-path mlib
--cmds commands --config configfiles --header-files src/h
--1libs lib --main-class com.greetings.Main
--man-pages man --module-version 1.0
--os-arch "x86 x64" --os-name "Mac 0S X"
--os-version "10.10.5" greetingsmod

Extra Options for jmod

In addition to the options described in Options for jmod, the following are extra options
that can be used with the command.

--do-not-resolve-by-default
Exclude from the default root set of modules

--warn-if-resolved
Hint for a tool to issue a warning if the module is resolved. One of deprecated,
deprecated-for-removal, or incubating.

jmod Create Example

The following is an example of creating a JMOD file:

jmod create --class-path mods/com.greetings --cmds commands
--config configfiles --header-files src/h --libs 1lib
--main-class com.greetings.Main --man-pages man --module-version 1.0
--os-arch "x86 x64" --os-name "Mac 0S X"
--os-version "10.10.5" greetingsmod

ORACLE 2-126

ORACLE

Chapter 2
jmod

jmod Hash Example

The following example demonstrates what happens when you try to link a leaf module (in this
example, ma) with a required module (mb), and the hash value recorded in the required
module doesn't match that of the leaf module.

1. Create and compile the following .java files:

* jmodhashex/src/ma/module-info.java

module ma {
requires mb;
}

* jmodhashex/src/mb/module-info.java

module mb

}

* jmodhashex2/src/ma/module-info.java

module ma {
requires mb;

}
* jmodhashex2/src/mb/module-info.java

module mb

}

2. Create a JMOD archive for each module. Create the directories jmodhashex/jmods

and jmodhashex2/jmods, and then run the following commands from the jmodhashex
directory, then from the jmodhashex?2 directory:

°* jmod create --class-path mods/ma jmods/ma.jmod

°* jmod create --class-path mods/mb jmods/mb.jmod

3. Optionally preview the jmod hash command. Run the following command from the

jmodhashex directory:

jmod hash --dry-run -module-path jmods --hash-modules .*
The command prints the following:

Dry run:

mb

hashes ma SHA-256
07667d5032004b37b42ec2bb81b46df380cf29e66962al648lace2e71e74073a

This indicates that the jmod hash command (without the --dry-run option) will record the
hash value of the leaf module ma in the module mb.

4. Record hash values in the JMOD archive files contained in the jmodhashex directory.

Run the following command from the jmodhashex directory:

2-127

jdeps

ORACLE

Chapter 2
jdeps

jmod hash --module-path jmods --hash-modules .*

The command prints the following:
Hashes are recorded in module mb

Print information about each JMOD archive contained in the jmodhashex
directory. Run the highlighted commands from the jmodhashex directory:

jmod describe jmods/ma.jmod

ma
requires mandated java.base
requires mb

jmod describe jmods/mb.jmod

mb

requires mandated java.base

hashes ma SHA-256
07667d5032004b37b42ec2bb81b46df380cf29e66962a1648lace2e71e74073a

Attempt to create a runtime image that contains the module ma from the directory
jmodhashex?2 but the module mb from the directory jmodhashex. Run the following
command from the jmodhashex?2 directory:

* Oracle Solaris, Linux, and macOS: jlink --module-path $JAVA HOME/
jmods:jmods/ma.jmod:../jmodhashex/Jjmods/mb.jmod --add-modules ma --
output ma-app

* Windows: jlink --module-path $JAVA HOME%/jmods;jmods/ma.jmod; ../
jmodhashex/jmods/mb.jmod --add-modules ma --output ma-app

The command prints an error message similar to the following:

Error: Hash of ma
(a2d77889b0cb067df02a3abc39b01ac1151966157a68dc4241562¢60499150d2)
differs to

expected hash
(07667d5032004b37b42ec2bb81b46df380cf29e66962al1648lace2e71e74073a)
recorded in mb

You use the jdeps command to launch the Java class dependency analyzer.
Synopsis

jdeps [options] path ...

options
Command-line options. For detailed descriptions of the options that can be used, see

2-128

ORACLE

Chapter 2
jdeps

* Possible Options
* Module Dependency Analysis Options
* Options to Filter Dependencies

* Options to Filter Classes to be Analyzed

path
A pathname to the .class file, directory, or JAR file to analyze.

Description

The jdeps command shows the package-level or class-level dependencies of Java class
files. The input class can be a path name to a .class file, a directory, a JAR file, or it can be a
fully qualified class name to analyze all class files. The options determine the output. By
default, the jdeps command writes the dependencies to the system output. The command
can generate the dependencies in DOT language (see the -dotoutput option).

Possible Options

-dotoutput dir or --dot-output dir

Specifies the destination directory for DOT file output. If this option is specified, then the
jdeps command generates one .dot file for each analyzed archive named archive-file-
name . dot that lists the dependencies, and also a summary file named summary.dot that lists
the dependencies among the archive files.

-s Or -summary
Prints a dependency summary only.

-v or -verbose
Prints all class-level dependencies. This is equivalent to

-verbose:class -filter:none

-verbose:package
Prints package-level dependencies excluding, by default, dependencies within the same
package.

-verbose:class
Prints class-level dependencies excluding, by default, dependencies within the same
archive.

-apionly Or --api-only

Restricts the analysis to APls, for example, dependencies from the signature of public and
protected members of public classes including field type, method parameter types, returned
type, and checked exception types.

-jdkinternals or --jdk-internals

Finds class-level dependencies in the JDK internal APIs. By default, this option analyzes all
classes specified in the --class-path or -classpathoption and input files unless you
specified the -include option. You can’t use this option with the -p, -e, and -s options.
Warning: The JDK internal APIs are inaccessible.

-cp path, -classpath path, Or --class-path path
Specifies where to find class files.

2-129

ORACLE

Chapter 2
jdeps

--module-path module-path
Specifies the module path.

--upgrade-module-path module-path
Specifies the upgrade module path.

--system java-home
Specifies an alternate system module path.

--add-modules module-name [, module-name...]
Adds modules to the root set for analysis.

--multi-release version
Specifies the version when processing multi-release JAR files. version should be an
integer >=9 or base.

—q Or -quite
Doesn't show missing dependencies from -generate-module-info output.

-version Or --version
Prints version information.

Module Dependency Analysis Options

-m module-name Or --module module-name
Specifies the root module for analysis.

--generate-module-info dir

Generates module-info.java under the specified directory. The specified JAR files
will be analyzed. This option cannot be used with --dot-output or --class-path
options. Use the --generate-open-module option for open modules.

--generate-open-module dir

Generates module-info.java for the specified JAR files under the specified directory
as open modules. This option cannot be used with the --dot-output or --class-path
options.

--check module-name [, module-name...]

Analyzes the dependencies of the specified modules. It prints the module descriptor,
the resulting module dependencies after analysis, and the graph after transition
reduction. It also identifies any unused qualified exports.

--list-deps
Lists the module dependencies and also the package names of JDK internal APlIs (if
referenced).

--list—reduced-deps

Same as --1list-deps without listing the implied reads edges from the module graph.
If module M1 reads M2, and M2 requires transitive on M3, then M1 reading M3 is
implied and is not shown in the graph.

--print-module-deps

Same as --1list-reduced-deps with printing a comma-separated list of module
dependencies. The output can be used by jlink --add-modules to create a custom
image that contains those modules and their transitive dependencies.

2-130

ORACLE

Chapter 2
jdeps

Options to Filter Dependencies

-p pkg name, -package pkg name, Or --package pkg name
Finds dependencies matching the specified package name. You can specify this option
multiple times for different packages. The -p and -e options are mutually exclusive.

-e regex, -regex regex, Or --regex regex
Finds dependencies matching the specified pattern. The -p and -e options are mutually
exclusive.

--require module-name
Finds dependencies matching the given module name (may be given multiple times). The --
package, --regex, and --require options are mutually exclusive.

-f regexor -filter regex
Filters dependencies matching the given pattern. If given multiple times, the last one will be
selected.

-filter:package
Filters dependencies within the same package. This is the default.

-filter:archive
Filters dependencies within the same archive.

-filter:module
Filters dependencies within the same module.

-filter:none
No -filter:package and -filter:archive filtering. Filtering specified via the -filter
option still applies.

Options to Filter Classes to be Analyzed

-include regex

Restricts analysis to the classes matching pattern. This option filters the list of classes to be
analyzed. It can be used together with -p and -e, which apply the pattern to the
dependencies.

-P or -profile
Shows the profile containing a package.

-R Or -recursive
Recursively traverses all run-time dependencies. The -R option implies -filter:none. If -p,
-e, Or -f options are specified, only the matching dependencies are analyzed.

-I or -inverse

Analyzes the dependencies per other given options and then finds all artifacts that directly
and indirectly depend on the matching nodes. This is equivalent to the inverse of the
compile-time view analysis and the print dependency summary. This option must be used
with the --require, --package, Oor --regex options.

--compile-time

Analyzes the compile-time view of transitive dependencies, such as the compile-time view of
the -Rr option. Analyzes the dependencies per other specified options. If a dependency is

2-131

ORACLE

Chapter 2
jdeps

found from a directory, a JAR file, or a module, all classes in that containing archive

are analyzed.

Example of Analyzing Dependencies

The following example demonstrates analyzing the dependencies of the Notepad. jar

file.

Oracle Solaris,

$ jdeps demo/]
Notepad.jar ->
Notepad.jar ->
Notepad.jar ->
<unnamed> (

-> Jjava.

-> Jjava.

-> java

-> Jjava.

-> java

-> java

-> java

-> java

-> javax.

-> javax

-> javax.
-> javax.

-> javax

Windows:

C:\Java\jdkl.9.

Notepad.jar ->
Notepad.jar ->
Notepad.jar ->
<unnamed> (

-> java.

-> java.

-> java

-> java.

-> java.

-> java

-> java

-> java

-> javax

-> javax.
-> javax.
-> javax.
-> javax.

-> javax.

Linux, and macOS:

fc/Notepad/Notepad. jar
java.base
java.desktop
java.logging

Notepad.jar)

awt

awt.event

.beans

io

.lang
.net
.util
.util.logging
-> javax.

swing
swing.border
.swing.event
swing.text
swing.tree
.swing.undo

0>jdeps demo\jfc\Notepad\Notepad.jar
java.base

java.desktop

java.logging

Notepad.jar)

awt

awt.event

.beans

io
lang

.net
.util
.util.logging

.swing
swing.border
swing.event
swing.text
swing.tree
swing.undo

2-132

jdeprscan

ORACLE

Chapter 2
jdeprscan

Example Using the --inverse Option

$ jdeps --inverse --require java.xml.bind
Inverse transitive dependences on [java.xml.bind]
java.xml.bind <- java.se.ee

java.xml.bind <- jdk.xml.ws

java.xml.bind <- java.xml.ws <- java.se.ee
java.xml.bind <- java.xml.ws <- jdk.xml.ws
java.xml.bind <- jdk.xml.bind <- jdk.xml.ws

You use the jdeprscan tool as a static analysis tool that scans a jar file (or some other
aggregation of class files) for uses of deprecated API elements.

Synopsis

jdeprscan [options] {dir|jar|class}

options
See Options for the jdeprscan Command

dir| jar|class
jdeprscan command scans each argument for usages of deprecated APIs. The arguments
can be a:

e dir: Directory
e jar: JARfile
e class: Class name or class file

The class name should use a dot (.) as a separator. For example:

java.lang.Thread

For nested classes, the dollar sign s separator character should be used. For example:
java.lang.Thread$State

A class file can also be named. For example:
build/classes/java/lang/Thread$State.class

Description

The jdeprscan tool is a static analysis tool provided by the JDK that scans a JAR file or some
other aggregation of class files for uses of deprecated API elements. The jdeprscan tool only
identifies the deprecated APIs defined by Java SE. Deprecated APIs defined by third-party
libraries aren’t reported.

To scan a JAR file or a set of class files, you must first ensure that all of the classes that the
scanned classes depend upon are present in the class path. Set the class path using the --
class-path option described in Options for the jdeprscan Command. Typically, you would
use the same class path as the one that you use when invoking your application.

2-133

ORACLE

Chapter 2
jdeprscan

If the jdeprscan can't find all the dependent classes, it will generate an error message
for each class that's missing. These error messages are typically of the form:

error: cannot find class ...

If these errors occur, then you must adjust the class path so that it includes all
dependent classes.

Options for the jdeprscan Command
The following options are available:

--class-path path

Provides a search path for resolution of dependent classes.

path can be a search path that consists of one or more directories separated by the
system-specific path separator. For example:

e Oracle Solaris, Linux, and macOS:

--class-path /some/directory:/another/different/dir

¢ Note:

On Windows, use a semicolon (;) as the separator instead of a colon (:).

Windows:

--class-path \some\directory;\another\different\dir

--for-removal
Limits scanning or listing to APIs that are deprecated for removal. Can’t be used with
a release value of 6, 7, or 8.

--full-version
Prints out the full version string of the tool.

--help or -h
Prints out a full help message.

--listor-1
Prints the set of deprecated APIs. No scanning is done, so no directory, jar, or class
arguments should be provided.

--release 6|7|8|9]10|11
Specifies the Java SE release that provides the set of deprecated APIs for scanning.

--verbose Or —v
Enables additional message output during processing.

--version
Prints out the abbreviated version string of the tool.

2-134

ORACLE

Chapter 2
jdeprscan

Example of jdeprscan Output

The JAR file for this library will be named something similar to commons-math3-3.6.1.jar. To
scan this JAR file for the use of deprecated APIs, run the following command:

jdeprscan commons-math3-3.6.1.7jar

This command produces several lines of output. For example, one line of output might be:

class org/apache/commons/math3/util/MathUtils uses deprecated method java/
lang/Double: :<init>(D)V

Note:

The class name is specified using the slash-separated binary name as described in
JVMS 4.2.1. This is the form used internally in class files.

The deprecated API it uses is a method on the java.lang.Double class.

The name of the deprecated method is <init>, which is a special name that means that the
method is actually a constructor. Another special name is <clinit>, which indicates a class
static initializer.

Other methods are listed just by their method name. Following the method name is the
argument list and return type:

(D)V

This indicates that it takes just one double value (a primitive) and returns void. The argument
and return types can become cryptic. For example, another line of output might be:

class org/apache/commons/math3/util/Precision uses deprecated method java/
math/BigDecimal::setScale (II)Ljava/math/BigDecimal;

In this line of output, the deprecated method is on class java.math.BigDecimal, and the
method is setScale (). In this case, the (II) means that it takes two int arguments. The
Ljava/math/BigDecimal; after the parentheses means that it returns a reference to
java.math.BigDecimal.

jdeprscan Analysis Can Be Version-Specific

You can use jdeprscan relative to the previous three JDK releases. For example, if you are
running JDK 9, then you can check against JDK 8, 7, and 6.

As an example, look at this code snippet:

public class Deprecations {
SecurityManager sm = new RMISecurityManager(); // deprecated in 8

2-135

ORACLE

Chapter 2
jdeprscan

Boolean b2 = new Boolean(true); // deprecated in 9

The complete class compiles without warnings in JDK 7.

If you run jdeprscan on a system with JDK 9, then you see:

$ jdeprscan --class-path classes --release 7 example.Deprecations
(no output)

Run jdeprscan with a release value of 8:

$ jdeprscan --class-path classes --release 8 example.Deprecations
class example/Deprecations uses type java/rmi/RMISecurityManager
deprecated

class example/Deprecations uses method in type java/rmi/
RMISecurityManager deprecated

Run jdeprscan on JDK 9:

$ jdeprscan --class-path classes example.Deprecations

class example/Deprecations uses type java/rmi/RMISecurityManager
deprecated

class example/Deprecations uses method in type java/rmi/
RMISecurityManager deprecated

class example/Deprecations uses method java/lang/Boolean <init> (Z)V
deprecated

2-136

Language Shell

You use the language shell to learn the Java language, explore new features and APIs, and
prototype new code.

The following topic describes the Java language shell:

* jshell: Interactively evaluates declarations, statements, and expressions of the Java
programming language in a read-eval-print loop (REPL).

jshell

You use the jshell tool to interactively evaluate declarations, statements, and expressions of
the Java programming language in a read-eval-print loop (REPL).

Synopsis

jshell [options] [load-files]

options
Command-line options, separated by spaces. See Options for jshell.

load-files

One or more scripts to run when the tool is started. Scripts can contain any valid code
shippets or JShell commands.

The script can be a local file or one of following predefined scripts:

DEFAULT
Loads the default entries, which are commonly used as imports.

JAVASE
Imports all Java SE packages.

PRINTING
Defines print, println, and printf as jshell methods for use within the tool.

For more than one script, use a space to separate the names. Scripts are run in the order in
which they’re entered on the command line. Command-line scripts are run after startup
scripts. To run a script after JShell is started, use the /open command.

To accept input from standard input and suppress the interactive I/O, enter a hyphen (-) for
load-files. This option enables the use of the jshell tool in pipe chains.

Description

JShell provides a way to interactively evaluate declarations, statements, and expressions of
the Java programming language, making it easier to learn the language, explore unfamiliar
code and APIs, and prototype complex code. Java statements, variable definitions, method
definitions, class definitions, import statements, and expressions are accepted. The bits of
code entered are called snippets.

ORACLE 3-1

ORACLE

Chapter 3
jshell

As snippets are entered, they're evaluated, and feedback is provided. Feedback varies
from the results and explanations of actions to nothing, depending on the snippet
entered and the feedback mode chosen. Errors are described regardless of the
feedback mode. Start with the verbose mode to get the most feedback while learning
the tool.

Command-line options are available for configuring the initial environment when JShell
is started. Within JShell, commands are available for modifying the environment as
needed.

Existing snippets can be loaded from a file to initialize a JShell session, or at any time
within a session. Snippets can be modified within the session to try out different
variations and make corrections. To keep snippets for later use, save them to a file.

Options for jshell

--add-modules module[,module. . .]
Specifies the root modules to resolve in addition to the initial module.

-Cflag
Provides a flag to pass to the compiler. To pass more than one flag, provide an
instance of this option for each flag or flag argument needed.

--class-path path

Specifies the directories and archives that are searched to locate class files. This
option overrides the path in the CLASSPATH environment variable. If the environment
variable isn’'t set and this option isn't used, then the current directory is searched. For
Oracle Solaris, Linux, and macOS, use a colon (:) to separate items in the path. For
Windows, use a semicolon (;) to separate items.

--feedback mode

Sets the initial level of feedback provided in response to what's entered. The initial
level can be overridden within a session by using the /set feedback mode command.
The default is normal.

The following values are valid for mode:

verbose

Provides detailed feedback for entries. Additional information about the action
performed is displayed after the result of the action. The next prompt is separated
from the feedback by a blank line.

normal
Provides an average amount of feedback. The next prompt is separated from the
feedback by a blank line.

concise

Provides minimal feedback. The next prompt immediately follows the code
snippet or feedback.

silent
Provides no feedback. The next prompt immediately follows the code snippet.

custom
Provides custom feedback based on how the mode is defined. Custom feedback
modes are created within JShell by using the /set mode command.

3-2

ORACLE

Chapter 3
jshell

--helpor -hor -?
Prints a summary of standard options and exits the tool.

--help-extra or -X
Prints a summary of nonstandard options and exits the tool. Nonstandard options are subject
to change without notice.

-Jflag
Provides a flag to pass to the runtime system. To pass more than one flag, provide an
instance of this option for each flag or flag argument needed.

--module-path modulepath
Specifies where to find application modules. For Oracle Solaris, Linux, and macOS, use a
colon (:) to separate items in the path. For Windows, use a semicolon (;) to separate items.

--enable-preview
Allow code to depend on preview features of this release.

--no-startup

Prevents startup scripts from running when JShell starts. Use this option to run only the
scripts entered on the command line when JShell is started, or to start JShell without any
preloaded information if no scripts are entered. This option can’t be used if the --startup
option is used.

-q
Sets the feedback mode to concise, which is the same as entering --feedback concise.

-Rflag
Provides a flag to pass to the remote runtime system. To pass more than one flag, provide
an instance of this option for each flag or flag argument to pass.

=S
Sets the feedback mode to silent, which is the same as entering --feedback silent.

--show-version
Prints version information and enters the tool.

--startup file

Overrides the default startup script for this session. The script can contain any valid code
shippets or commands.

The script can be a local file or one of the following predefined scripts:

DEFAULT
Loads the default entries, which are commonly used as imports.

JAVASE
Imports all Java SE packages.

PRINTING
Defines print, println, and printf as jshell methods for use within the tool.

For more than one script, provide a separate instance of this option for each script. Startup
scripts are run when JShell is first started and when the session is restarted with the /
reset, /reload, or /env command. Startup scripts are run in the order in which they're
entered on the command line.

This option can’t be used if the --no-startup option is used.

3-3

Chapter 3
jshell

-V
Sets the feedback mode to verbose, which is the same as entering --feedback
verbose.

--version
Prints version information and exits the tool.

jshell Commands

Within the jshell tool, commands are used to modify the environment and manage
code snippets.

/drop {name|id|startID-endID}[{name|id|startID-endID}...]

Drops snippets identified by name, ID, or ID range, making them inactive. For a range
of IDs, provide the starting ID and ending ID separated with a hyphen. To provide a
list, separate the items in the list with a space. Use the /1ist command to see the IDs
of code snippets.

/edit [option]
Opens an editor. If no option is entered, then the editor opens with the active snippets.
The following options are valid:

{name|id|startID-endID}[{name|id|startID-endID}...]

Opens the editor with the snippets identified by name, ID, or ID range. For a
range of IDs, provide the starting ID and ending ID separated with a hyphen. To
provide a list, separate the items in the list with a space. Use the /1ist command
to see the IDs of code snippets.

-all
Opens the editor with all snippets, including startup snippets and snippets that
failed, were overwritten, or were dropped.

-start
Opens the editor with startup snippets that were evaluated when JShell was
started.

To exit edit mode, close the editor window, or respond to the prompt provided if the -
wait option was used when the editor was set.

Use the /set editor command to specify the editor to use. If no editor is set, then the
following environment variables are checked in order: JSHELLEDITOR, VISUAL, and
EDITOR. If no editor is set in JShell and none of the editor environment variables is set,
then a simple default editor is used.

/env [options]

Displays the environment settings, or updates the environment settings and restarts
the session. If no option is entered, then the current environment settings are
displayed. If one or more options are entered, then the session is restarted as follows:

* Updates the environment settings with the provided options.
* Resets the execution state.

* Runs the startup scripts.

ORACLE 3-4

Chapter 3
jshell

» Silently replays the history in the order entered. The history includes all valid snippets
or /drop commands entered at the jshell prompt, in scripts entered on the command
line, or scripts entered with the /open command.

Environment settings entered on the command line or provided with a previous /reset, /env,
or /reload command are maintained unless an option is entered that overwrites the setting.
The following options are valid:

--add-modules module[,module. . .]
Specifies the root modules to resolve in addition to the initial module.

--add-exports source-module/package=target-modulel[, target-module] *
Adds an export of package from source-module to target-module.

--class-path path

Specifies the directories and archives that are searched to locate class files. This option
overrides the path in the CLASSPATH environment variable. If the environment variable
isn’t set and this option isn’t used, then the current directory is searched. For Oracle
Solaris, Linux, and macOS, use a colon (:) to separate items in the path. For Windows,
use a semicolon (;) to separate items.

--module-path modulepath

Specifies where to find application modules. For Oracle Solaris, Linux, and macOS, use
a colon (:) to separate items in the path. For Windows, use a semicolon (;) to separate
items.

/exit [integer-expression-snippet]

Exits the tool. If no snippet is entered, the exit status is zero. If a snippet is entered and the
result of the snippet is an integer, the result is used as the exit status. If an error occurs, or
the result of the snippet is not an integer, an error is displayed and the tool remains active.

/history
Displays what was entered in this session.

/help [command|subject]

Displays information about commands and subjects. If no options are entered, then a
summary of information for all commands and a list of available subjects are displayed. If a
valid command is provided, then expanded information for that command is displayed. If a
valid subject is entered, then information about that subject is displayed.

The following values for subject are valid:

context
Describes the options that are available for configuring the environment.

intro
Provides an introduction to the tool.

shortcuts
Describes keystrokes for completing commands and snippets. See Input Shortcuts.

/imports
Displays the current active imports, including those from the startup scripts and scripts that
were entered on the command line when JShell was started.

ORACLE 3-5

Chapter 3
jshell

/list [option]

Displays a list of snippets and their IDs. If no option is entered, then all active snippets
are displayed, but startup snippets aren't.

The following options are valid:

{name|id|startID-endID} [{name|id|startID-endID}...]

Displays the snippets identified by name, ID, or ID range. For a range of IDs,
provide the starting ID and ending ID separated with a hyphen. To provide a list,
separate the items in the list with a space.

-all

Displays all snippets, including startup snippets and snippets that failed, were
overwritten, or were dropped. IDs that begin with s are startup snippets. IDs that
begin with e are snippets that failed.

-start
Displays startup snippets that were evaluated when JShell was started.

/methods [option]

Displays information about the methods that were entered. If no option is entered,
then the name, parameter types, and return type of all active methods are displayed.
The following options are valid:

{name|id|startID-endID} [{name|id|startID-endID}...]

Displays information for methods identified by name, ID, or ID range. For a range
of IDs, provide the starting ID and ending ID separated with a hyphen. To provide
a list, separate the items in the list with a space. Use the /1ist command to see
the IDs of code snippets.

-all
Displays information for all methods, including those added when JShell was
started, and methods that failed, were overwritten, or were dropped.

-start
Displays information for startup methods that were added when JShell was
started.

/open file
Opens the script specified and reads the snippets into the tool. The script can be a
local file or one of the following predefined scripts:

DEFAULT
Loads the default entries, which are commonly used as imports.

JAVASE
Imports all Java SE packages.

PRINTING
Defines print, println, and printf as jshell methods for use within the tool.

/reload [options]
Restarts the session as follows:
e Updates the environment settings with the provided options, if any.

* Resets the execution state.

ORACLE 3-6

ORACLE

Chapter 3
jshell

* Runs the startup scripts.

* Replays the history in the order entered. The history includes all valid snippets or /drop
commands entered at the jshell prompt, in scripts entered on the command line, or
scripts entered with the /open command.

Environment settings entered on the command line or provided with a previous /reset, /env,
or /reload command are maintained unless an option is entered that overwrites the setting.
The following options are valid:

--add-modules module[,module. . .]
Specifies the root modules to resolve in addition to the initial module.

--add-exports module/package=target-modulel, target-module] *
Adds an export of package from source-module to target-module.

--class-path path

Specifies the directories and archives that are searched to locate class files. This option
overrides the path in the CLASSPATH environment variable. If the environment variable
isn’t set and this option isn’t used, then the current directory is searched. For Oracle
Solaris, Linux, and macOS, use a colon (:) to separate items in the path. For Windows,
use a semicolon (;) to separate items.

--module-path modulepath

Specifies where to find application modules. For Oracle Solaris, Linux, and macOS, use
a colon (:) to separate items in the path. For Windows, use a semicolon (;) to separate
items.

-quiet
Replays the valid history without displaying it. Errors are displayed.

-restore

Resets the environment to the state at the start of the previous run of the tool or to the
last time a /reset , /reload, or /env command was executed in the previous run. The
valid history since that point is replayed. Use this option to restore a previous JShell
session.

/reset [options]

Discards all entered snippets and restarts the session as follows:

* Updates the environment settings with the provided options, if any.
* Resets the execution state.

* Runs the startup scripts.

History is not replayed. All code that was entered is lost.

Environment settings entered on the command line or provided with a previous /reset, /env,
or /reload command are maintained unless an option is entered that overwrites the setting.
The following options are valid:

--add-modules module[,module...]
Specifies the root modules to resolve in addition to the initial module.

--add-exports module/package=target-modulel, target-module] *
Adds an export of package from source-module to target-module.

3-7

Chapter 3
jshell

--class-path path

Specifies the directories and archives that are searched to locate class files. This
option overrides the path in the CLASSPATH environment variable. If the
environment variable isn’'t set and this option isn’t used, then the current directory
is searched. For Oracle Solaris, Linux, and macOS, use a colon (:) to separate
items in the path. For Windows, use a semicolon (;) to separate items.

--module-path modulepath

Specifies where to find application modules. For Oracle Solaris, Linux, and
macOS, use a colon (:) to separate items in the path. For Windows, use a
semicolon (;) to separate items.

/save [options] file

Saves snippets and commands to the file specified. If no options are entered, then
active snippets are saved.

The following options are valid:

{name|id|startID-endID}[{name|id|startID-endID}...]

Saves the snippets and commands identified by name, ID, or ID range. For a
range of IDs, provide the starting ID and ending ID separated with a hyphen. To
provide a list, separate the items in the list with a space. Use the /1ist command
to see the IDs of the code snippets.

-all
Saves all snippets, including startup snippets and snippets that were overwritten
or failed.

-history
Saves the sequential history of all commands and snippets entered in the current
session.

-start
Saves the current startup settings. If no startup scripts were provided, then an
empty file is saved.

/set [setting]

Sets configuration information, including the external editor, startup settings, and
feedback mode. This command is also used to create a custom feedback mode with
customized prompt, format, and truncation values. If no setting is entered, then the
current setting for the editor, startup settings, and feedback mode are displayed.
The following values are valid for setting:

editor [options] [command]

Sets the command used to start an external editor when the /edit command is
entered. The command can include command arguments separated by spaces. If
no command or options are entered, then the current setting is displayed.

The following options are valid:

-default
Sets the editor to the default editor provided with JShell. This option can’t be
used if a command for starting an editor is entered.

ORACLE 3-8

Chapter 3
jshell

-delete

Sets the editor to the one in effect when the session started. If used with the -retain
option, then the retained editor setting is deleted and the editor is set to the first of
the following environment variables found: JSHELLEDITOR, VISUAL, or EDITOR. If none
of the editor environment variables are set, then this option sets the editor to the
default editor.

This option can’t be used if a command for starting an editor is entered.

-retain
Saves the editor setting across sessions. If no other option or a command is
entered, then the current setting is saved.

-wait

Prompts the user to indicate when editing is complete. Otherwise control returns to
JShell when the editor exits. Use this option if the editor being used exits
immediately, for example, when an edit window already exists. This option is valid
only when a command for starting an editor is entered.

feedback [mode]

Sets the feedback mode used to respond to input. If no mode is entered, then the
current mode is displayed.

The following modes are valid: concise, normal, silent, verbose, and any custom mode
created with the /set mode command.

format mode field "format-string" selector

Sets the format of the feedback provided in response to input. If no mode is entered,
then the current formats for all fields for all feedback modes are displayed. If only a
mode is entered, then the current formats for that mode are displayed. If only a mode
and field are entered, then the current formats for that field are displayed.

To define a format, the following arguments are required:

mode
Specifies a feedback mode to which the response format is applied. Only custom
modes created with the /set mode command can be modified.

field

Specifies a context-specific field to which the response format is applied. The fields
are described in the online help, which is accessed from JShell using the /

help /set format command.

"format-string"

Specifies the string to use as the response format for the specified field and selector.
The structure of the format string is described in the online help, which is accessed
from JShell using the /help /set format command.

selector

Specifies the context in which the response format is applied. The selectors are
described in the online help, which is accessed from JShell using the /help /set
format command.

mode [mode-name] [existing-mode] [options]
Creates a custom feedback mode with the mode name provided. If no mode name is
entered, then the settings for all modes are displayed, which includes the mode, prompt,

ORACLE 3-9

ORACLE

Chapter 3
jshell

format, and truncation settings. If the name of an existing mode is provided, then
the settings from the existing mode are copied to the mode being created.
The following options are valid:

-command | -quiet

Specifies the level of feedback displayed for commands when using the
mode. This option is required when creating a feedback mode. Use -command
to show information and verification feedback for commands. Use -quiet to
show only essential feedback for commands, such as error messages.

-delete

Deletes the named feedback mode for this session. The name of the mode to
delete is required. To permanently delete a retained mode, use the -retain
option with this option. Predefined modes can’t be deleted.

-retain
Saves the named feedback mode across sessions. The name of the mode to
retain is required.

Configure the new feedback mode using the /set prompt, /set format,
and /set truncation commands.
To start using the new mode, use the /set feedback command.

prompt mode "prompt-string" "continuation-prompt-string"

Sets the prompts for input within JShell. If no mode is entered, then the current
prompts for all feedback modes are displayed. If only a mode is entered, then the
current prompts for that mode are displayed.

To define a prompt, the following arguments are required:

mode
Specifies the feedback mode to which the prompts are applied. Only custom
modes created with the /set mode command can be modified.

"prompt-string"
Specifies the string to use as the prompt for the first line of input.

"continuation—prompt-string"
Specifies the string to use as the prompt for the additional input lines needed
to complete a snippet.

start [-retain] [file[file...]|option]

Sets the names of the startup scripts used when the next /reset, /reload,

or /env command is entered. If more than one script is entered, then the scripts
are run in the order entered. If no scripts or options are entered, then the current
startup settings are displayed.

The scripts can be local files or one of the following predefined scripts:

DEFAULT
Loads the default entries, which are commonly used as imports.

JAVASE
Imports all Java SE packages.

3-10

ORACLE

Chapter 3
jshell

PRINTING
Defines print, println, and printf as jshell methods for use within the tool.

The following options are valid:

-default
Sets the startup settings to the default settings.

-none
Specifies that no startup settings are used.

Use the -retain option to save the start setting across sessions.

truncation mode length selector

Sets the maximum length of a displayed value. If no mode is entered, then the current
truncation values for all feedback modes are displayed. If only a mode is entered, then
the current truncation values for that mode are displayed.

To define truncation values, the following arguments are required:

mode
Specifies the feedback mode to which the truncation value is applied. Only custom
modes created with the /set mode command can be modified.

length
Specifies the unsigned integer to use as the maximum length for the specified
selector.

selector

Specifies the context in which the truncation value is applied. The selectors are
described in the online help, which is accessed from JShell using the /help /set
truncation command.

/types [option]

Displays classes, interfaces, and enums that were entered. If no option is entered, then all
current active classes, interfaces, and enums are displayed.

The following options are valid:

{name|id|startID-endID} [{name|id|startID-endID}...]

Displays information for classes, interfaces, and enums identified by name, 1D, or ID
range. For a range of IDs, provide the starting ID and ending ID separated with a
hyphen. To provide a list, separate the items in the list with a space. Use the /1ist
command to see the IDs of the code snippets.

-all

Displays information for all classes, interfaces, and enums, including those added when
JShell was started, and classes, interfaces, and enums that failed, were overwritten, or
were dropped.

-start
Displays information for startup classes, interfaces, and enums that were added when
JShell was started.

/vars [option]

Displays the name, type, and value of variables that were entered. If no option is entered,
then all current active variables are displayed.

The following options are valid:

3-11

ORACLE

Chapter 3
jshell

{name|id|startID-endID}[{name|id|startID-endID}...]

Displays information for variables identified by name, ID, or ID range. For a range
of IDs, provide the starting ID and ending ID separated with a hyphen. To provide
a list, separate the items in the list with a space. Use the /1ist command to see
the IDs of the code snippets.

-all
Displays information for all variables, including those added when JShell was
started, and variables that failed, were overwritten, or were dropped.

-start
Displays information for startup variables that were added when JShell was
started.

/?
Same as the /help command.

/!

Reruns the last snippet.

/{id|startID-endID}[{id|startID-endID|name}...]

Reruns the snippets identified by ID, range of IDs, or name. For a range of IDs,
provide the starting ID and ending ID separated with a hyphen. To provide a list,
separate the items in the list with a space. The first item in the list must be an ID or ID
range. Use the /1ist command to see the IDs of the code snippets.

/-n
Reruns the -nth previous snippet. For example, if 15 code snippets were entered,
then /-4 runs the 11th snippet. Commands aren’t included in the count.

Input Shortcuts

The following table describes shortcuts that are available for entering commands and
snippets in JShell.

3-12

ORACLE

Chapter 3
jshell

Shortcut

Usage

Tab completion

<tab>

When entering snippets, commands, subcommands, command arguments,
or command options, use the Tab key to automatically complete the item. If
the item can’t be determined from what was entered, then possible options
are provided.

When entering a method call, use the Tab key after the method call's
opening parenthesis to see the parameters for the method. If the method
has more than one signature, then all signatures are displayed. Pressing the
Tab key a second time displays the description of the method and the
parameters for the first signature. Continue pressing the Tab key for a
description of any additional signatures.

Shift+<Tab>V

After entering a complete expression, use this key sequence to convert the
expression to a variable declaration of a type determined by the type of the
expression.

Shift+<Tab> M

After entering a complete expression or statement, use this key sequence to
convert the expression or statement to a method declaration. If an
expression is entered, the return type is based on the type of the
expression.

Shift+<Tab> |

When an identifier is entered that can’t be resolved, use this key sequence
to show possible imports that resolve the identifier based on the content of
the specified class path.

Command abbreviations

An abbreviation of a command is accepted if the abbreviation uniquely
identifies a command. For example, /1 is recognized as the /1ist
command. However, /s isn't a valid abbreviation because it can’t be
determined if the /set or /save command is meant. Use /se for the /set
command or /sa for the /save command.

Abbreviations are also accepted for subcommands, command arguments,
and command options. For example, use /m -a to display all methods.

History navigation

A history of what was entered is maintained across sessions. Use the up
and down arrows to scroll through commands and snippets from the current
and past sessions. Use the Ctrl key with the up and down arrows to skip all
but the first line of multiline snippets.

History search

Use the Ctrl+R key combination to search the history for the string entered.
The prompt changes to show the string and the match. Ctrl+R searches
backwards from the current location in the history through earlier entries.
Ctrl+S searches forward from the current location in the history though later
entries.

Input Editing

The editing capabilities of JShell are similar to that of other common shells. Keyboard keys
and key combinations provide line editing shortcuts. The Ctrl key and Meta key are used in
key combinations. If your keyboard doesn’t have a Meta key, then the Alt key is often mapped
to provide Meta key functionality.

3-13

ORACLE

Chapter 3
jshell

Key or Key Action

Combination

Return Enter the current line.

Left arrow Move the cursor to the left one character.

Right arrow Move the cursor to the right one character.

Ctrl+A Move the cursor to the beginning of the line.

Ctrl+E Move the cursor to the end of the line.

Meta+B Move the cursor to the left one word.

Meta+F Move the cursor to the right one word.

Delete Delete the character under the cursor.

Backspace Delete the character before the cursor.

Ctrl+K Delete the text from the cursor to the end of the line.
Meta+D Delete the text from the cursor to the end of the word.
Ctrl+W Delete the text from the cursor to the previous white space.
Ctrl+Y Paste the most recently deleted text into the line.

Meta+Y After Ctrl+Y, press to cycle through the previously deleted text.

Example of Starting and Stopping a JShell Session

JShell is provided with the JDK. To start a session, enter jshell on the command line.
A welcome message is printed, and a prompt for entering commands and snippets is
provided.

% jshell
| Welcome to JShell -- Version 9
| For an introduction type: /help intro

jshell>

To see which snippets were automatically loaded when JShell started, use the /1ist -
start command. The default startup snippets are import statements for common
packages. The ID for each snippet begins with the letter s, which indicates it's a
startup snippet.

jshell> /list -start

sl : import java.io.*;

s2 : import java.math.*;

s3 : import java.net.*;

s4 : import java.nio.file.*;

s5 : import java.util.*;

56 : import java.util.concurrent.*;
s7 : import java.util.function.*;
s8 : import java.util.prefs.*;

s9 : import java.util.regex.*;

510 : import java.util.stream.*;

3-14

ORACLE

Chapter 3
jshell

jshell>

To end the session, use the /exit command.

jshell> /exit
| Goodbye

Example of Entering Snippets

Snippets are Java statements, variable definitions, method definitions, class definitions,
import statements, and expressions. Terminating semicolons are automatically added to the
end of a completed snippet if they’re missing.

The following example shows two variables and a method being defined, and the method
being run. Note that a scratch variable is automatically created to hold the result because no
variable was provided.

jshell> int a=4
a ==> 4

jshell> int b=8
b ==> 8

jshell> int square(int il) {
...> return il * il;
A |

| created method square (int)

jshell> square (b)
$5 ==> 04

Example of Changing Snippets
Change the definition of a variable, method, or class by entering it again.

The following examples shows a method being defined and the method run:

jshell> String grade(int testScore) {

> if (testScore >= 90) {
D> return "Pass";

L }

D> return "Fail";

>}

| created method grade(int)

jshell> grade(88)
$3 ==> "Fail"

To change the method grade to allow more students to pass, enter the method definition
again and change the pass score to 80. Use the up arrow key to retrieve the previous entries

3-15

Chapter 3
jshell

to avoid having to reenter them and make the change in the if statement. The
following example shows the new definition and reruns the method to show the new
result:

jshell> String grade(int testScore) {

> if (testScore >= 80) {
D> return "Pass";

L }

o> return "Fail";

>}

| modified method grade (int)

jshell> grade(88)
$5 ==> "Pass"

For snippets that are more than a few lines long, or to make more than a few changes,
use the /edit command to open the snippet in an editor. After the changes are
complete, close the edit window to return control to the JShell session. The following
example shows the command and the feedback provided when the edit window is
closed. The /1ist command is used to show that the pass score was changed to 85.

jshell> /edit grade
| modified method grade (int)
jshell> /list grade

6 : String grade(int testScore) {
if (testScore >= 85) {
return "Pass";

}

return "Fail";

Example of Creating a Custom Feedback Mode

The feedback mode determines the prompt that’s displayed, the feedback messages
that are provided as snippets are entered, and the maximum length of a displayed
value. Predefined feedback modes are provided. Commands for creating custom
feedback modes are also provided.

Use the /set mode command to create a new feedback mode. In the following
example, the new mode mymode, is based on the predefined feedback mode, normal,
and verifying command feedback is displayed:

jshell> /set mode mymode normal -command
| Created new feedback mode: mymode

Because the new mode is based on the normal mode, the prompts are the same. The
following example shows how to see what prompts are used and then changes the

ORACLE 3-16

ORACLE

Chapter 3
jshell

prompts to custom strings. The first string represents the standard JShell prompt. The second
string represents the prompt for additional lines in multiline snippets.

jshell> /set prompt mymode
| /set prompt mymode "\njshell> " " o>

jshell> /set prompt mymode "\nprompt$ " " continue$ "

The maximum length of a displayed value is controlled by the truncation setting. Different
types of values can have different lengths. The following example sets an overall truncation
value of 72, and a truncation value of 500 for variable value expressions:

jshell> /set truncation mymode 72

jshell> /set truncation mymode 500 varvalue

The feedback displayed after snippets are entered is controlled by the format setting and is
based on the type of snippet entered and the action taken for that snippet. In the predefined
mode normal, the string created is displayed when a method is created. The following
example shows how to change that string to defined:

jshell> /set format mymode action "defined" added-primary

Use the /set feedback command to start using the feedback mode that was just created.
The following example shows the custom mode in use:

jshell> /set feedback mymode
| Feedback mode: mymode

prompt$ int square (int numl) {
continue$ return numl*numl;
continue$ }

| defined method square (int)

prompts$

3-17

Security Tools and Commands

keytool

ORACLE

You use specific JDK security tools and commands to set security policies on your local
system and create applications that can work within the scope of the security policies set at
remote sites.

The following sections describe the security tools and commands used to set security policies
and to create applications:

* keytool: You use the keytool command and options to manage a keystore (database) of
cryptographic keys, X.509 certificate chains, and trusted certificates.

e jarsigner: You use the jarsigner tool to sign and verify Java Archive (JAR) files.

The following sections describe the Kerberos security tools and commands for Windows
systems:

e kinit: You use the kinit tool and its options to obtain and cache Kerberos ticket-granting
tickets.

e klist: You use the k1ist tool to display the entries in the local credentials cache and key
table.

e ktab: You use the ktab tool to manage the principal names and service keys stored in a
local key table.

You use the keytool command and options to manage a keystore (database) of
cryptographic keys, X.509 certificate chains, and trusted certificates.

Synopsis

keytool [commands]

commands
Commands for keytool include the following:

* -certreq: Generates a certificate request
° -changealias: Changes an entry's alias

e -delete: Deletes an entry

e -exportcert: Exports certificate

* -genkeypair: Generates a key pair

* -genseckey: Generates a secret key

* -gencert: Generates a certificate from a certificate request

4-1

ORACLE

Chapter 4
keytool

° -importcert: Imports a certificate or a certificate chain

* -importpass: Imports a password

° -importkeystore: Imports one or all entries from another keystore

e -keypasswd: Changes the key password of an entry

e -list: Lists entries in a keystore

* -printcert: Prints the content of a certificate

* -printcertreq: Prints the content of a certificate request

* -printcrl: Prints the content of a Certificate Revocation List (CRL) file
* -storepasswd: Changes the store password of a keystore

See Commands and Options for a description of these commands with their options.

Description

The keytool command is a key and certificate management utility. It enables users to
administer their own public/private key pairs and associated certificates for use in self-
authentication (where a user authenticates themselves to other users and services) or
data integrity and authentication services, by using digital signatures. The keytool
command also enables users to cache the public keys (in the form of certificates) of
their communicating peers.

A certificate is a digitally signed statement from one entity (person, company, and so
on), which says that the public key (and some other information) of some other entity
has a particular value. When data is digitally signed, the signature can be verified to
check the data integrity and authenticity. Integrity means that the data hasn’t been
modified or tampered with, and authenticity means that the data comes from the
individual who claims to have created and signed it.

The keytool command also enables users to administer secret keys and passphrases
used in symmetric encryption and decryption (Data Encryption Standard).

The keytool command stores the keys and certificates in a keystore.

Command and Option Notes
The following notes apply to the descriptions in Commands and Options:
e All command and option names are preceded by a hyphen sign (-).

e Options for each command can be provided in any order.

e All items not italicized or in braces ({ }) or brackets ([]) are required to appear as
is.

e Braces surrounding an option signify that a default value is used when the option
isn't specified on the command line. Braces are also used around the -v, -rfc,
and -J options, which have meaning only when they appear on the command line.
They don’t have any default values.

» Brackets surrounding an option signify that the user is prompted for the values
when the option isn't specified on the command line. For the -keypass option, if
you don't specify the option on the command line, then the keytool command first
attempts to use the keystore password to recover the private/secret key. If this

4-2

ORACLE

Chapter 4
keytool

attempt fails, then the keytool command prompts you for the private/secret key
password.

Items in italics (option values) represent the actual values that must be supplied. For
example, here is the format of the -printcert command:

keytool -printcert {-file cert file} {-v}

When you specify a -printcert command, replace cert file with the actual file name,
such as: keytool -printcert -file VScert.cer

Option values must be enclosed in quotation marks when they contain a blank (space).

The -help command is the default. Running keytool without options is the same as
running keytool -help.

If multiple commands are specified, only the last one is recognized. The only exception is
that if -help is provided along with another command, the keytool command will print
detailed help for that command.

There are two kinds of options. One kind of option is single-valued and should be only
provided once. If a single-valued option is provided multiple times, the value of the last
one is used. The other type of option is multiple-valued and can be provided multiple
times and all values are used. The only multiple-valued option supported now is the -ext
option used to generate X.509v3 certificate extensions.

Commands and Options

The keytool commands and their options can be grouped by the tasks that they perform.

Commands for Creating or Adding Data to the Keystore:

-gencert
-genkeypair
-genseckey
-importcert

-importpass

Commands for Importing Contents from Another Keystore:

-importkeystore

Commands for Generating a Certificate Request:

-certreq

Commands for Exporting Data:

-exportcert

Commands for Displaying Data :

-list
-printcert
-printcertreq

-printcrl

4-3

ORACLE

Chapter 4
keytool

Commands for Managing the Keystore:

-storepasswd
-keypasswd
-delete

-changealias

Commands for Creating or Adding Data to the Keystore

-gencert
The following are the available options for the -gencert command:

{-rfc}: Output in RFC (Request For Comment) style
{-infile infile}: Input file name

{-outfile outfile}: Output file name

{-alias alias}: Alias name of the entry to process
{-sigalg sigalg}: Signature algorithm name
{-dname dname}: Distinguished name

{-startdate startdate}: Certificate validity start date and time
{-ext ext}*: X.509 extension

{-validity days}: Validity number of days
[-keypass arg]: Key password

{-keystore keystore}: Keystore name

[-storepass arg]: Keystore password

{-storetype type}: Keystore type

{-providername name}: Provider name

{-addprovider name [-providerarg arg]}: Adds a security provider by name
(such as SunPKCS11) with an optional configure argument. The value of the
security provider is the name of a security provider that is defined in a module.

For example,

keytool -addprovider SunPKCS1l -providerarg some.cfg ...

4-4

Chapter 4
keytool

< Note:

For compatibility reasons, the SunPKCS11 and OracleUcrypto providers can
still be loaded with -providerclass sun.security.pkcsll.SunPKCS11 and -
providerclass com.oracle.security.crypto.UcryptoProvider even if they
are now defined in modules. These are the only modules included in JDK that
need a configuration, and therefore the most widely used with the -
providerclass option. For legacy security providers located on classpath and
loaded by reflection, -providerclass should still be used.

e {-providerclass class [-providerarg arg]}: Add security provider by fully qualified
class name with an optional configure argument. For example, if MyProvider is a legacy
provider loaded via reflection,

keytool -providerclass com.example.MyProvider ...

* {-providerpath Ilist}: Provider classpath
e {-v}: Verbose output
* {-protected}: Password provided through a protected mechanism

Use the -gencert command to generate a certificate as a response to a certificate request
file (which can be created by the keytool -certreq command). The command reads the
request either from infile or, if omitted, from the standard input, then signs it by using the
alias's private key, and outputs the X.509 certificate into either outfile or, if omitted, to the
standard output. When -rfc is specified, the output format is Base64-encoded PEM;
otherwise, a binary DER is created.

The -sigalg value specifies the algorithm that should be used to sign the certificate. The
startdate argument is the start time and date that the certificate is valid. The days argument
tells the number of days for which the certificate should be considered valid.

When dname is provided, it is used as the subject of the generated certificate. Otherwise, the
one from the certificate request is used.

The -ext value shows what X.509 extensions will be embedded in the certificate. Read
Common Command Options for the grammar of -ext.

The -gencert option enables you to create certificate chains. The following example creates
a certificate, e1, that contains three certificates in its certificate chain.

The following commands create four key pairs named ca, cal, ca2, and el:

keytool -alias ca -dname CN=CA -genkeypair
keytool -alias cal -dname CN=CA -genkeypair
keytool -alias ca2 -dname CN=CA -genkeypair
keytool -alias el -dname CN=El -genkeypair

The following two commands create a chain of signed certificates; ca signs cal and cal
signs ca2, all of which are self-issued:

keytool -alias cal -certreq |
keytool -alias ca -gencert -ext san=dns:cal |

ORACLE 4.5

ORACLE

Chapter 4
keytool

keytool -alias cal -importcert

keytool -alias ca2 -certreq |
keytool -alias cal -gencert -ext san=dns:cal2 |
keytool -alias ca2 -importcert

The following command creates the certificate e1 and stores it in the el.cert file,
which is signed by ca2. As a result, e1 should contain ca, cal, and ca2 in its certificate
chain:

keytool -alias el -certreq | keytool -alias ca2 -gencert > el.cert

-genkeypair
The following are the available options for the -genkeypair command:

e {-alias alias}: Alias name of the entry to process

* {-keyalg alg}: Key algorithm name

o {-keysize size}: Key bit size

* {-groupname name}: Group name. For example, an Elliptic Curve name.
* {-sigalg alg}: Signature algorithm name

e [-dname name]: Distinguished name

e {-startdate date}: Certificate validity start date and time
° [-ext value]*: X.509 extension

o {-validity days}: Validity number of days

* [-keypass arg]: Key password

* {-keystore keystore}: Keystore name

e [-storepass arg]: Keystore password

e {-storetype type}: Keystore type

* {-providername name}: Provider name

* {-addprovider name [-providerarg arg]}: Add security provider by name (such
as SunPKCS11) with an optional configure argument.

* {-providerclass class [-providerarg argl}: Add security provider by fully
qualified class name with an optional configure argument.

* {-providerpath Ilist}: Provider classpath
e {-v}: Verbose output
e {-protected}: Password provided through a protected mechanism

Use the -genkeypair command to generate a key pair (a public key and associated
private key). Wraps the public key in an X.509 v3 self-signed certificate, which is
stored as a single-element certificate chain. This certificate chain and the private key
are stored in a new keystore entry that is identified by its alias.

4-6

ORACLE

Chapter 4
keytool

The -keyalg value specifies the algorithm to be used to generate the key pair, and the -
keysize value specifies the size of each key to be generated. The -sigalg value specifies
the algorithm that should be used to sign the self-signed certificate. This algorithm must be
compatible with the -keyalg value.

The -groupname value specifies the named group (for example, the standard or predefined
name of an Elliptic Curve) of the key to be generated. Only one of -groupname and -keysize
can be specified.

The -dname value specifies the X.500 Distinguished Name to be associated with the value of
-alias, and is used as the issuer and subject fields in the self-signed certificate. If a
distinguished name is not provided at the command line, then the user is prompted for one.
The value of -keypass is a password used to protect the private key of the generated key
pair. If a password is not provided, then the user is prompted for it. If you press the Return
key at the prompt, then the key password is set to the same password as the keystore
password. The -keypass value must have at least six characters.

The value of -startdate specifies the issue time of the certificate, also known as the "Not
Before" value of the X.509 certificate's Validity field.

The option value can be set in one of these two forms:

* ([+-]1nnn[ymdAMS]) +
e lyyyy/mm/dd] [HH:MM:SS]

With the first form, the issue time is shifted by the specified value from the current time. The
value is a concatenation of a sequence of subvalues. Inside each subvalue, the plus sign (+)
means shift forward, and the minus sign (-) means shift backward. The time to be shifted is
nnn units of years, months, days, hours, minutes, or seconds (denoted by a single character
of y, m, d, H, M, or S respectively). The exact value of the issue time is calculated by using the
java.util.GregorianCalendar.add (int field, int amount) method on each subvalue,
from left to right. For example, the issue time can be specified by:

Calendar ¢ = new GregorianCalendar();
c.add(Calendar.YEAR, -1);
c.add(Calendar.MONTH, 1);
c.add(Calendar.DATE, -1);

return c.getTime ()

With the second form, the user sets the exact issue time in two parts, year/month/day and
hour:minute:second (using the local time zone). The user can provide only one part, which
means the other part is the same as the current date (or time). The user must provide the
exact number of digits shown in the format definition (padding with O when shorter). When
both date and time are provided, there is one (and only one) space character between the
two parts. The hour should always be provided in 24—hour format.

When the option isn’t provided, the start date is the current time. The option can only be
provided one time.

The value of date specifies the number of days (starting at the date specified by -startdate,
or the current date when -startdate isn’t specified) for which the certificate should be
considered valid.

-genseckey
The following are the available options for the -genseckey command:

* {-alias alias}: Alias name of the entry to process

* [-keypass arg] : Key password

4-7

ORACLE

Chapter 4
keytool

* {-keyalg alg}: Key algorithm name

o {-keysize size}: Key bit size

* {-keystore keystore}. Keystore name
e [-storepass arg]: Keystore password

e {-storetype type}: Keystore type

* {-providername name}: Provider name

* {-addprovider name [-providerarg arg]}: Add security provider by name (such
as SunPKCS11) with an optional configure argument.

* {-providerclass class [-providerarg argl}: Add security provider by fully
qualified class name with an optional configure argument.

* {-providerpath Ilist}: Provider classpath
e {-v}: Verbose output
e {-protected}: Password provided through a protected mechanism

Use the -genseckey command to generate a secret key and store it in a new
KeyStore.SecretKeyEntry identified by alias.

The value of -keyalg specifies the algorithm to be used to generate the secret key,
and the value of -kxeysize specifies the size of the key that is generated. The -
keypass value is a password that protects the secret key. If a password is not
provided, then the user is prompted for it. If you press the Return key at the prompt,
then the key password is set to the same password that is used for the -keystore.
The -keypass value must contain at least six characters.

-importcert
The following are the available options for the -importcert command:

e {-noprompt}: Do not prompt

e {-trustcacerts}: Trust certificates from cacerts

* {-protected}: Password is provided through protected mechanism
* {-alias alias}: Alias name of the entry to process
o {-file file}: Input file name

e [-keypass arg]: Key password

* {-keystore keystore}. Keystore name

e {-cacerts}: Access the cacerts keystore

* [-storepass arg]: Keystore password

o {-storetype type}: Keystore type

* {-providername name}: Provider name

e {-addprovider name [-providerarg arg]}: Add security provider by name (such
as SunPKCS11) with an optional configure argument.

e {-providerclass class [-providerarg arg]}: Add security provider by fully
gualified class name with an optional configure argument.

4-8

ORACLE

Chapter 4
keytool

* {-providerpath Ilist}: Provider classpath
e {-v}: Verbose output

Use the -importcert command to read the certificate or certificate chain (where the latter is
supplied in a PKCS#7 formatted reply or in a sequence of X.509 certificates) from -file
file, and store it in the keystore entry identified by -alias. If -file file is not specified,
then the certificate or certificate chain is read from stdin.

The keytool command can import X.509 v1, v2, and v3 certificates, and PKCS#7 formatted
certificate chains consisting of certificates of that type. The data to be imported must be
provided either in binary encoding format or in printable encoding format (also known as
Base64 encoding) as defined by the Internet RFC 1421 standard. In the latter case, the
encoding must be bounded at the beginning by a string that starts with ----- BEGIN, and
bounded at the end by a string that starts with ----- END.

You import a certificate for two reasons: To add it to the list of trusted certificates, and to
import a certificate reply received from a certificate authority (CA) as the result of submitting
a Certificate Signing Request (CSR) to that CA. See the -certreq command in Commands
for Generating a Certificate Request.

The type of import is indicated by the value of the -alias option. If the alias doesn'’t point to
a key entry, then the keytool command assumes you are adding a trusted certificate entry.
In this case, the alias shouldn’t already exist in the keystore. If the alias does exist, then the
keytool command outputs an error because a trusted certificate already exists for that alias,
and doesn’t import the certificate. If -alias points to a key entry, then the keytool command
assumes that you're importing a certificate reply.

-importpass
The following are the available options for the -importpass command:

* {-alias alias}: Alias name of the entry to process
* [-keypass arg]: Key password

e {-keyalg alg}: Key algorithm name

e {-keysize size}: Key bit size

* {-keystore keystore}: Keystore name

* [-storepass arg]: Keystore password

» {-storetype type}: Keystore type

o {-providername name}: Provider name

e {-addprovider name [-providerarqg arg]}. Add security provider by name (such as
SunPKCS11) with an optional configure argument.

e {-providerclass class [-providerarg arg]}: Add security provider by fully qualified
class name with an optional configure argument.

e {-providerpath list}: Provider classpath
e {-v}: Verbose output
* {-protected}: Password provided through a protected mechanism

Use the -importpass command to import a passphrase and store it in a new
KeyStore.SecretKeyEntry identified by -alias. The passphrase may be supplied via the
standard input stream; otherwise the user is prompted for it. The -keypass option provides a
password to protect the imported passphrase. If a password is not provided, then the user is

4-9

Chapter 4
keytool

prompted for it. If you press the Return key at the prompt, then the key password is
set to the same password as that used for the keystore. The -keypass value must
contain at least six characters.

Commands for Importing Contents from Another Keystore

-importkeystore
The following are the available options for the -importkeystore command:

ORACLE

{-srckeystore keystore}: Source keystore name
{-destkeystore keystore}: Destination keystore name
{-srcstoretype type}: Source keystore type
{-deststoretype type}: Destination keystore type
[-srcstorepass arg]: Source keystore password
[-deststorepass arg]: Destination keystore password
{-srcprotected Source keystore password protected
{-destprotected}: Destination keystore password protected
{-srcprovidername name}: Source keystore provider name
{-destprovidername name}: Destination keystore provider name
{-srcalias alias}: Source alias

{-destalias alias}: Destination alias

[-srckeypass arg]: Source key password

[-destkeypass arg]: Destination key password
{-noprompt}: Do not prompt

{-addprovider name [-providerarg arg]}: Add security provider by name (such
as SunPKCS11) with an optional configure argument.

{-providerclass class [-providerarg arg]}; Add security provider by fully
qualified class name with an optional configure argument

{-providerpath list}: Provider classpath

{-v}: Verbose output

< Note:

This is the first line of all options:

-srckeystore keystore -destkeystore keystore

Use the -importkeystore command to import a single entry or all entries
from a source keystore to a destination keystore.

4-10

ORACLE

Chapter 4
keytool

< Note:

If you do not specify -destkeystore when using the keytool -importkeystore
command, then the default keystore used is $SHOME/ . keystore.

When the -srcalias option is provided, the command imports the single entry identified by
the alias to the destination keystore. If a destination alias isn't provided with -destalias,
then -srcalias is used as the destination alias. If the source entry is protected by a
password, then -srckeypass is used to recover the entry. If -srckeypass isn't provided, then
the keytool command attempts to use -srcstorepass to recover the entry. If -srcstorepass
is not provided or is incorrect, then the user is prompted for a password. The destination
entry is protected with -destkeypass. If -destkeypass isn’t provided, then the destination
entry is protected with the source entry password. For example, most third-party tools
require storepass and keypass in a PKCS #12 keystore to be the same. To create a
PKCS#12 keystore for these tools, always specify a -destkeypass that is the same as -
deststorepass.

If the -srcalias option isn’t provided, then all entries in the source keystore are imported
into the destination keystore. Each destination entry is stored under the alias from the source
entry. If the source entry is protected by a password, then -srcstorepass is used to recover
the entry. If -srcstorepass is not provided or is incorrect, then the user is prompted for a
password. If a source keystore entry type isn’'t supported in the destination keystore, or if an
error occurs while storing an entry into the destination keystore, then the user is prompted
either to skip the entry and continue or to quit. The destination entry is protected with the
source entry password.

If the destination alias already exists in the destination keystore, then the user is prompted
either to overwrite the entry or to create a new entry under a different alias name.

If the -noprompt option is provided, then the user isn’t prompted for a new destination alias.
Existing entries are overwritten with the destination alias name. Entries that can’'t be
imported are skipped and a warning is displayed.

Commands for Generating a Certificate Request

-certreq
The following are the available options for the -certreq command:

e {-alias alias}: Alias name of the entry to process
e {-sigalg alg}: Signature algorithm name
 {-file file}: Output file name

* [-keypass arg]: Key password

* {-keystore keystore}: Keystore name

e {-dname name}: Distinguished name

e {-ext value}: X.509 extension

e [-storepass arg]: Keystore password

* {-storetype type}: Keystore type

* {-providername name}: Provider name

4-11

ORACLE

Chapter 4
keytool

* {-addprovider name [-providerarg arg]}: Add security provider by name (such
as SunPKCS11) with an optional configure argument.

o {-providerclass class [-providerarg argl]}: Add security provider by fully
qualified class name with an optional configure argument.

* {-providerpath Ilist}: Provider classpath
e {-v}: Verbose output
e {-protected }: Password provided through a protected mechanism

Use the -certreq command to generate a Certificate Signing Request (CSR) using
the PKCS #10 format.

A CSR is intended to be sent to a CA. The CA authenticates the certificate requestor
(usually offline) and returns a certificate or certificate chain to replace the existing
certificate chain (initially a self-signed certificate) in the keystore.

The private key associated with alias is used to create the PKCS #10 certificate
request. To access the private key, the correct password must be provided. If -
keypass isn't provided at the command line and is different from the password used to
protect the integrity of the keystore, then the user is prompted for it. If -dname is
provided, then it is used as the subject in the CSR. Otherwise, the X.500
Distinguished Name associated with alias is used.

The -sigalg value specifies the algorithm that should be used to sign the CSR.

The CSR is stored in the-file file. If afile is not specified, then the CSR is output
to -stdout.

Use the -importcert command to import the response from the CA.

Commands for Exporting Data

-exportcert
The following are the available options for the -exportcert command:

e {-rfc}: Output in RFC style

* {-alias alias}: Alias name of the entry to process
o {-file file}: Output file name

* {-keystore keystore}: Keystore name

e {-cacerts}: Access the cacerts keystore

e [-storepass arg]: Keystore password

* {-storetype type}: Keystore type

* {-providername name}: Provider name

* {-addprovider name [-providerarg arg]}: Add security provider by name (such
as SunPKCS11) with an optional configure argument.

e {-providerclass class [-providerarg arg]}: Add security provider by fully
qualified class nhame with an optional configure argument.

e {-providerpath list}: Provider classpath
e {-v }: Verbose output

* {-protected}: Password provided through a protected mechanism

4-12

ORACLE

Chapter 4
keytool

Use the -exportcert command to read a certificate from the keystore that is associated with
-alias alias and store itinthe cert file file. When a file is not specified, the certificate is
output to stdout.

By default, the certificate is output in binary encoding. If the -rfc option is specified, then the
output in the printable encoding format defined by the Internet RFC 1421 Certificate
Encoding Standard.

If -alias refers to a trusted certificate, then that certificate is output. Otherwise, -alias
refers to a key entry with an associated certificate chain. In that case, the first certificate in
the chain is returned. This certificate authenticates the public key of the entity addressed by
-alias.

Commands for Displaying Data

-list

The following are the available options for the -1ist command:
e {-rfc} Outputin RFC style

e {-alias alias}: Alias name of the entry to process

o {-keystore keystore}: Keystore name

* {-cacerts}: Access the cacerts keystore

* [-storepass arg]: Keystore password

o {-storetype type}: Keystore type

e {-providername name}:. Provider name

e {-addprovider name [-providerarqg arg]}. Add security provider by name (such as
SunPKCS11) with an optional configure argument.

* {-providerclass class [-providerarg arg]}: Add security provider by fully qualified
class name with an optional configure argument.

* {-providerpath Iist}: Provider classpath
e {-v}: Verbose output
* {-protected}: Password provided through a protected mechanism

Use the -1ist command to print the contents of the keystore entry identified by -alias to
stdout. If —alias alias is not specified, then the contents of the entire keystore are printed.
By default, this command prints the SHA-256 fingerprint of a certificate. If the -v option is
specified, then the certificate is printed in human-readable format, with additional information
such as the owner, issuer, serial number, and any extensions. If the -rfc option is specified,
then the certificate contents are printed by using the printable encoding format, as defined by
the Internet RFC 1421 Certificate Encoding Standard.

" Note:

You can't specify both -v and -rfc in the same command. Otherwise, an error is
reported.

-printcert
The following are the available options for the -printcert command:

4-13

ORACLE

Chapter 4
keytool

o {-rfc}: Output in RFC style

* {-file cert file}: Input file name

» {-sslserver server|:port]}. Secure Sockets Layer (SSL) server host and port
* {-jarfile JAR file}: Signed .jar file

e {-v}: Verbose output

Use the -printcert command to read and print the certificate from -file cert file,
the SSL server located -sslserver server[:port], or the signed JAR file specified
by -jarfile JAR file. It prints its contents in a human-readable format. When a port
is not specified, the standard HTTPS port 443 is assumed.

" Note:

The -sslserver and -file options can’t be provided in the same command.
Otherwise, an error is reported. If you don’t specify either option, then the
certificate is read from stdin.

When-rfc is specified, the keytool command prints the certificate in PEM mode as
defined by the Internet RFC 1421 Certificate Encoding standard.

If the certificate is read from a file or stdin, then it might be either binary encoded or
in printable encoding format, as defined by the RFC 1421 Certificate Encoding
standard.

If the SSL server is behind a firewall, then the -J-Dhttps.proxyHost=proxyhost and
-J-Dhttps.proxyPort=proxyport options can be specified on the command line for
proxy tunneling.

" Note:

This option can be used independently of a keystore.

-printcertreq
The following are the available options for the -printcertreq command:

o {-file file}: Input file name
e {-v}: Verbose output

Use the -printcertreq command to print the contents of a PKCS #10 format
certificate request, which can be generated by the keytool -certreq command. The
command reads the request from file. If there is no file, then the request is read from
the standard input.

-printcrl
The following are the available options for the -printcrl command:

e -file crl: Input file name

e {-v}: Verbose output

4-14

ORACLE

Chapter 4
keytool

Use the -printcrl command to read the Certificate Revocation List (CRL) from -file crl .
A CRL is a list of the digital certificates that were revoked by the CA that issued them. The
CA generates the cr1 file.

" Note:

This option can be used independently of a keystore.

Commands for Managing the Keystore

-storepasswd
The following are the available options for the -storepasswd command:

* [-new arg]: New password

* {-keystore keystore}: Keystore name
e {-cacerts}: Access the cacerts keystore
e [-storepass arg]: Keystore password

e {-storetype type}: Keystore type

e {-providername name}:. Provider name

* {-addprovider name [-providerarg arg]}: Add security provider by name (such as
SunPKCS11) with an optional configure argument.

* {-providerclass class [-providerarg argl}: Add security provider by fully qualified
class name with an optional configure argument.

* {-providerpath Ilist}: Provider classpath
e {-v}: Verbose output

Use the -storepasswd command to change the password used to protect the integrity of the
keystore contents. The new password is set by -new arg and must contain at least six
characters.

-keypasswd
The following are the available options for the -keypasswd command:

e {-alias alias}: Alias name of the entry to process
* [-keypass old keypass]: Key password

* [-new new keypass]: New password

* {-keystore keystore}:. Keystore name

» {-storepass arg}: Keystore password

e {-storetype type}: Keystore type

e {-providername name}:. Provider name

* {-addprovider name [-providerarg arg]}: Add security provider by name (such as
SunPKCS11) with an optional configure argument.

4-15

ORACLE

Chapter 4
keytool

* {-providerclass class [-providerarg argl}: Add security provider by fully
qualified class name with an optional configure argument.

* {-providerpath Ilist}: Provider classpath
e {-v}: Verbose output

Use the -keypasswd command to change the password (under which private/secret
keys identified by -alias are protected) from -keypass old keypassto -new

new keypass. The password value must contain at least six characters.

If the -keypass option isn’t provided at the command line and the -keypass password
is different from the keystore password (-storepass arg), then the user is prompted
for it.

If the -new option isn't provided at the command line, then the user is prompted for it.

-delete
The following are the available options for the -delete command:

° [-alias alias]: Alias name of the entry to process
e {-keystore keystore}:. Keystore name

e {-cacerts}: Access the cacerts keystore

* [-storepass arg]: Keystore password

* {-storetype type}: Keystore type

* {-providername name}: Provider name

* {-addprovider name [-providerarg arg]}: Add security provider by name (such
as SunPKCS11) with an optional configure argument.

e {-providerclass class [-providerarg arg]}: Add security provider by fully
qualified class name with an optional configure argument.

e {-providerpath list}: Provider classpath
e {-v}: Verbose output
* {-protected}: Password provided through a protected mechanism

Use the -delete command to delete the -alias alias entry from the keystore. When
not provided at the command line, the user is prompted for the alias.

-changealias
The following are the available options for the -changealias command:

* {-alias alias}: Alias hame of the entry to process
e [-destalias alias]: Destination alias

* [-keypass arg]: Key password

* {-keystore keystore}. Keystore name

* {-cacerts}: Access the cacerts keystore

* [-storepass arg]: Keystore password

» {-storetype type}: Keystore type

* {-providername name}: Provider name

4-16

ORACLE

Chapter 4
keytool

* {-addprovider name [-providerarg arg]}: Add security provider by name (such as
SunPKCS11) with an optional configure argument.

* {-providerclass class [-providerarg argl}: Add security provider by fully qualified
class name with an optional configure argument.

* {-providerpath Ilist}: Provider classpath
e {-v}: Verbose output
e {-protected}: Password provided through a protected mechanism

Use the -changealias command to move an existing keystore entry from -alias aliasto a
new -destalias alias. If a destination alias is not provided, then the command prompts
you for one. If the original entry is protected with an entry password, then the password can
be supplied with the -keypass option. If a key password is not provided, then the -storepass
(if provided) is attempted first. If the attempt fails, then the user is prompted for a password.

Commands for Displaying Help Information

You can use --help to display a list of keytool commands or to display help information
about a specific keytool command.

e To display a list of keytool commands, enter:
keytool --help
* To display help information about a specific keytool command, enter:

keytool -command --help

Common Command Options

The -v option can appear for all commands except --help. When the -v option appears, it
signifies verbose mode, which means that more information is provided in the output.

The -Joption argument can appear for any command. When the -Joption is used, the
specified option string is passed directly to the Java interpreter. This option doesn’t contain
any spaces. It's useful for adjusting the execution environment or memory usage. For a list of
possible interpreter options, enter java -h or java -X at the command line.

The following options can appear for all commands operating on a keystore:

-addprovider name
Used to add a security provider by name (such as SunPKCS11) .

-cacerts cacerts

Operates on the cacerts keystore . This option is equivalent to "-keystore
path to cacerts -storetype type of cacerts". An error is reported if the -keystore or -
storetype option is used with the -cacerts option.

-conf file
Specifies a pre-configured options file.

-ext {namef{:critical} {=value}}
Denotes an X.509 certificate extension. The option can be used in -genkeypair and -
gencert to embed extensions into the generated certificate, or in -certreqg to show what

4-17

ORACLE

Chapter 4
keytool

extensions are requested in the certificate request. The option can appear multiple
times. The name argument can be a supported extension name (see Supported
Named Extensions) or an arbitrary OID number. The value argument, when
provided, denotes the argument for the extension. When value is omitted, the default
value of the extension or the extension itself requires no argument. The :critical
modifier, when provided, means the extension's isCritical attribute is true;
otherwise, itis false. You can use :c in place of :critical.

-keystore keystore

The keystore location.

If the JKS storetype is used and a keystore file doesn’t yet exist, then certain
keytool commands can result in a new keystore file being created. For example, if
keytool -genkeypair is called and the -keystore option isn’t specified, the default
keystore file named .keystore is created in the user's home directory if it doesn’t
already exist. Similarly, if the ~-keystore ks_file option is specified but ks_file
doesn't exist, then it is created. For more information on the JKS storetype, see the
KeyStore Implementation section in KeyStore aliases.

Note that the input stream from the -keystore option is passed to the KeyStore.load
method. If NONE is specified as the URL, then a null stream is passed to the
KeyStore.load method. NONE should be specified if the keystore isn't file-based. For
example, when the keystore resides on a hardware token device.

-protected=true|false

Specify this value as true when a password must be specified by way of a protected
authentication path, such as a dedicated PIN reader. Because there are two keystores
involved in the -importkeystore command, the following two options, -srcprotected
and -destprotected, are provided for the source keystore and the destination
keystore respectively.

-providerarg arg
Used with the -addprovider or -providerclass option to represent an optional string
input argument for the constructor of class name.

-providerclass class
Used to specify the name of a cryptographic service provider's master class file when
the service provider isn't listed in the security properties file.

-providername name
Used to identify a cryptographic service provider's name when listed in the security
properties file.

-providerpath list
Used to specify the provider classpath.

-storepass [:env | :file] argument

The password that is used to protect the integrity of the keystore.

If the modifier env or £ile isn’'t specified, then the password has the value argument,
which must contain at least six characters. Otherwise, the password is retrieved as
follows:

* env: Retrieve the password from the environment variable named argument.

e file: Retrieve the password from the file named argument.

4-18

ORACLE

Chapter 4
keytool

Note: All other options that require passwords, such as -keypass, -srckeypass, -
destkeypass, -srcstorepass, and -deststorepass, accept the env and file modifiers.
Remember to separate the password option and the modifier with a colon (:).

The password must be provided to all commands that access the keystore contents. For
such commands, when the -storepass option isn’t provided at the command line, the user is
prompted for it.

When retrieving information from the keystore, the password is optional. If a password is not
specified, then the integrity of the retrieved information can't be verified and a warning is
displayed.

-storetype storetype
This qualifier specifies the type of keystore to be instantiated.

Pre-configured options file

A pre-configured options file is a Java properties file that can be specified with the -conf
option. Each property represents the default option(s) for a keytool command using
keytool.command name as the property name. A special property named keytool.all
represents the default option(s) applied to all commands. A property value can include $
{prop} which will be expanded to the system property associated with it. If an option value
includes white spaces inside, it should be surrounded by quotation marks (" or *). All property
names must be in lower case.

When keytool is launched with a pre-configured options file, the value for keytool.all (if it
exists) is prepended to the keytool command line first, with the value for the command name
(if it exists) coming next, and then the existing options on the command line at last. For a
single-valued option, this allows the property for a specific command to override the
keytool.all value, and the value specified on the command line to override both. For
multiple-valued options, all of them will be used by keytool. See Example of Using a Pre-
Configured Options File below.

Examples of Option Values

The following examples show the defaults for various option values:
-alias "mykey"
-keyalg
"DSA" (when using -genkeypair)
"DES" (when using -genseckey)
~-keysize
2048 (when using -genkeypair and -keyalg is "RSA")
2048 (when using -genkeypair and -keyalg is "DSA")
256 (when using -genkeypair and -keyalg is "EC")
56 (when using -genseckey and -keyalg is "DES")
168 (when using -genseckey and -keyalg is "DESede")
-validity 90
-keystore <the file named .keystore in the user's home directory>

-destkeystore <the file named .keystore in the user's home directory>

-storetype <the value of the "keystore.type" property in the

4-19

Chapter 4
keytool

security properties file, which is returned by the static
getDefaultType method in java.security.KeyStore>

-file
stdin (if reading)
stdout (if writing)

-protected false

When generating a certificate or a certificate request, the default signature algorithm (-
sigalg option) is derived from the algorithm of the underlying private key to provide an
appropriate level of security strength as follows:

keyalg

keysize default sigalg

DSA

any size SHA256withDSA

RSA

<=3072 SHA256withRSA
<=7680 SHA384withRSA
> 7680 SHA512withRSA

EC

<384 SHA256withECDSA
<512 SHA384withECDSA
=512 SHA512withECDSA

ORACLE

Note:

To improve out of the box security, default key size and signature algorithm
names are periodically updated to stronger values with each release of the
JDK. If interoperability with older releases of the JDK is important, make sure
that the defaults are supported by those releases. Alternatively, you can use
the -keysize Or -sigalg options to override the default values at your own
risk.

Supported Named Extensions

The keytool command supports these named extensions. The names aren'’t case-
sensitive.

BC or BasicContraints

Values:

The full formis ca: {true|false} [,pathlen: len] or len, which is short for
ca:true,pathlen:len.

When len is omitted, the resulting value is ca:true.

KU or KeyUsage

Values:

usage(,usage)*

usage can be one of the following:

e digitalSignature

4-20

ORACLE

nonRepudiation (contentCommitment)
keyEncipherment

dataEncipherment

keyAgreement

keyCertSign

cRLSign

encipherOnly

decipherOnly

Chapter 4
keytool

Provided there is no ambiguity, the usage argument can be abbreviated with the first few

letters (such as dig for digitalSignature) or in camel-case style (such as ds for
digitalSignature or cRLS for cRLSign). The usage values are case-sensitive.

EKU or ExtendedKeyUsage

Values:

usage(,usage)*

usage can be one of the following:

anyExtendedKeyUsage
serverAuth
clientAuth
codeSigning
emailProtection
timeStamping
OCSPSigning

Any OID string

Provided there is no ambiguity, the usage argument can be abbreviated with the first few

letters or in camel-case style. The usage values are case-sensitive.

SAN or SubjectAlternativeName
Values:
type:value(,type:value)*

type can be one of the following:

The value argument is the string format value for the type.

EMAIL

URI

DNS

IP

OID

IAN Or IssuerAlternativeName
Values:

4-21

ORACLE

Chapter 4
keytool

Same as SAN or SubjectAlternativeName.

SIA or SubjectInfoAccess

Values:

method:location-type:location-value (,method: location-type:location-value)*
method can be one of the following:

* timeStamping
°* caRepository
« AnyOID

The location-type and location-value arguments can be any type:value
supported by the SubjectAlternativeName extension.

AIA or AuthorityInfoAccess

Values:

Same as STA or SubjectInfoAccess.

The method argument can be one of the following:

. ocsp
d calssuers

e AnyOID

When name is OID, the value is the hexadecimal dumped Definite Encoding Rules
(DER) encoding of the extnValue for the extension excluding the OCTET STRING
type and length bytes. Other than standard hexadecimal numbers (0-9, a-f, A-F), any
extra characters are ignored in the HEX string. Therefore, both 01:02:03:04 and
01020304 are accepted as identical values. When there is no value, the extension has
an empty value field.

A special name honored, used only in -gencert, denotes how the extensions included
in the certificate request should be honored. The value for this name is a comma-
separated list of a11 (all requested extensions are honored), name{: [critical |non-
criticall} (the named extension is honored, but it uses a different isCritical
attribute), and -name (used with al1, denotes an exception). Requested extensions
aren’'t honored by default.

If, besides the -ext honored option, another named or OID -ext option is provided,
this extension is added to those already honored. However, if this name (or OID) also
appears in the honored value, then its value and criticality override that in the request.
If an extension of the same type is provided multiple times through either a name or an
OID, only the last extension is used.

The subjectKeyIdentifier extension is always created. For non-self-signed
certificates, the authorityKeyIdentifier is created.

Caution:

Users should be aware that some combinations of extensions (and other
certificate fields) may not conform to the Internet standard. See Certificate
Conformance Warning.

4-22

Chapter 4
keytool

Examples of Tasks in Creating a keystore

The following examples describe the sequence actions in creating a keystore for managing
public/private key pairs and certificates from trusted entities.

* Generating the Key Pair

* Requesting a Signed Certificate from a CA

* Importing a Certificate for the CA

* Importing the Certificate Reply from the CA

» Exporting a Certificate That Authenticates the Public Key
* Importing the Keystore

» Generating Certificates for an SSL Server

Generating the Key Pair
Create a keystore and then generate the key pair.

You can enter the command as a single line such as the following:

keytool -genkeypair -dname "cn=myname, ou=mygroup, o=mycompany, c=mycountry"
-alias business -keypass password
-keystore /working/mykeystore
-storepass passwd -validity 180

The command creates the keystore named mykeystore in the working directory (provided it
doesn'’t already exist), and assigns it the password specified by -keypass. It generates a
public/private key pair for the entity whose distinguished name is myname , mygroup ,
mycompany , and a two-letter country code of mycountry. It uses the default DSA key
generation algorithm to create the keys; both are 2048 bits

The command uses the default SHA256withDSA signature algorithm to create a self-signed
certificate that includes the public key and the distinguished name information. The certificate
is valid for 180 days, and is associated with the private key in a keystore entry referred to by
-alias business. The private key is assigned the password specified by -keypass.

The command is significantly shorter when the option defaults are accepted. In this case, no
options are required, and the defaults are used for unspecified options that have default
values. You are prompted for any required values. You could have the following:

keytool -genkeypair

In this case, a keystore entry with the alias mykey is created, with a newly generated key pair
and a certificate that is valid for 90 days. This entry is placed in your home directory in a
keystore named .keystore . .keystore is created if it doesn't already exist. You are
prompted for the distinguished name information, the keystore password, and the private key
password.

ORACLE 4-23

ORACLE

Chapter 4
keytool

< Note:

The rest of the examples assume that you executed the -genkeypair
command without specifying options, and that you responded to the prompts
with values equal to those specified in the first -genkeypair command. For
example, a distinguished name of cn=myname, ou=mygroup, o=mycompany,
c=mycountry).

Requesting a Signed Certificate from a CA

" Note:

Generating the key pair created a self-signed certificate; however, a
certificate is more likely to be trusted by others when it is signed by a CA.

To get a CA signature, complete the following process:

L Generate a CSR:

keytool -certreq -file myname.csr

This creates a CSR for the entity identified by the default alias mykey and puts the
request in the file named myname. csr.

2. Submit myname.csr to a CA, such as DigiCert.

The CA authenticates you, the requestor (usually offline), and returns a certificate,
signed by them, authenticating your public key. In some cases, the CA returns a chain
of certificates, each one authenticating the public key of the signer of the previous
certificate in the chain.

Importing a Certificate for the CA
To import a certificate for the CA, complete the following process:

1. Before you import the certificate reply from a CA, you need one or more trusted
certificates either in your keystore or in the cacerts keystore file. See -importcert
in Commands.

» If the certificate reply is a certificate chain, then you need the top certificate of
the chain. The root CA certificate that authenticates the public key of the CA.

» If the certificate reply is a single certificate, then you need a certificate for the
issuing CA (the one that signed it). If that certificate isn't self-signed, then you
need a certificate for its signer, and so on, up to a self-signed root CA
certificate.

The cacerts keystore ships with a set of root certificates issued by the CAs of the
Oracle Java Root Certificate program. If you request a signed certificate from a
CA, and a certificate authenticating that CA's public key hasn't been added to
cacerts, then you must import a certificate from that CA as a trusted certificate.

4-24

http://www.oracle.com/technetwork/java/javase/javasecarootcertsprogram-1876540.html
http://www.oracle.com/technetwork/java/javase/javasecarootcertsprogram-1876540.html

ORACLE

Chapter 4
keytool

A certificate from a CA is usually self-signed or signed by another CA. If it is signed by
another CA, you need a certificate that authenticates that CA's public key.

For example, you have obtained a X. cer file from a company that is a CA and the file is
supposed to be a self-signed certificate that authenticates that CA's public key. Before
you import it as a trusted certificate, you should ensure that the certificate is valid by:

a. Viewing it with the keytool -printcert command or the keytool -importcert
command without using the -noprompt option. Make sure that the displayed
certificate fingerprints match the expected fingerprints.

b. Calling the person who sent the certificate, and comparing the fingerprints that you
see with the ones that they show or that a secure public key repository shows.

Only when the fingerprints are equal is it assured that the certificate wasn't replaced in
transit with somebody else's certificate (such as an attacker’s certificate). If such an
attack takes place, and you didn’t check the certificate before you imported it, then you
would be trusting anything that the attacker signed.

2. Replace the self-signed certificate with a certificate chain, where each certificate in the
chain authenticates the public key of the signer of the previous certificate in the chain, up
to a root CA.

If you trust that the certificate is valid, then you can add it to your keystore by entering the
following command:

keytool -importcert -alias alias -file X.cer

This command creates a trusted certificate entry in the keystore from the data in the CA
certificate file and assigns the values of the alias to the entry.

Importing the Certificate Reply from the CA

After you import a certificate that authenticates the public key of the CA that you submitted
your certificate signing request to (or there is already such a certificate in the cacerts file),

you can import the certificate reply and replace your self-signed certificate with a certificate
chain.

The certificate chain is one of the following:
* Returned by the CA when the CA reply is a chain.

e Constructed when the CA reply is a single certificate. This certificate chain is constructed
by using the certificate reply and trusted certificates available either in the keystore where
you import the reply or in the cacerts keystore file.

For example, if you sent your certificate signing request to DigiCert, then you can import their
reply by entering the following command:

Note:

In this example, the returned certificate is named DCmyname. cer.

keytool -importcert -trustcacerts -file DCmyname.cer

4-25

ORACLE

Chapter 4
keytool

Exporting a Certificate That Authenticates the Public Key

< Note:

If you used the jarsigner command to sign a Java Archive (JAR) file, then
clients that use the file will want to authenticate your signature.

One way that clients can authenticate you is by importing your public key certificate
into their keystore as a trusted entry. You can then export the certificate and supply it
to your clients.

For example:

1. Copy your certificate to a file named myname. cer by entering the following
command:

¢ Note:

In this example, the entry has an alias of mykey.

keytool -exportcert -alias mykey -file myname.cer

2. With the certificate and the signed JAR file, a client can use the jarsigner
command to authenticate your signature.

Importing the Keystore

Use the importkeystore command to import an entire keystore into another keystore.
This imports all entries from the source keystore, including keys and certificates, to the
destination keystore with a single command. You can use this command to import
entries from a different type of keystore. During the import, all new entries in the
destination keystore will have the same alias names and protection passwords (for
secret keys and private keys). If the keytool command can’t recover the private keys
or secret keys from the source keystore, then it prompts you for a password. If it
detects alias duplication, then it asks you for a new alias, and you can specify a new
alias or simply allow the keytool command to overwrite the existing one.

For example, import entries from a typical JKS type keystore key.jks into a PKCS #11
type hardware-based keystore, by entering the following command:

keytool -importkeystore
-srckeystore key.jks -destkeystore NONE
-srcstoretype JKS -deststoretype PKCS11
-srcstorepass passwd
-deststorepass passwd

The importkeystore command can also be used to import a single entry from a
source keystore to a destination keystore. In this case, besides the options you used in

4-26

ORACLE

Chapter 4
keytool

the previous example, you need to specify the alias you want to import. With the -srcalias
option specified, you can also specify the destination alias name, protection password for a
secret or private key, and the destination protection password you want as follows:

keytool -importkeystore
-srckeystore key.jks -destkeystore NONE
-srcstoretype JKS -deststoretype PKCSI11
-srcstorepass passwd
-deststorepass passwd
-srcalias myprivatekey -destalias myoldprivatekey
-srckeypass passwd
-destkeypass passwd
-noprompt

Generating Certificates for an SSL Server

The following are keytool commands used to generate key pairs and certificates for three
entities:

* Root CA (root)
e Intermediate CA (ca)
e SSL server (server)

Ensure that you store all the certificates in the same keystore. In the following examples,
RSA is the recommended the key algorithm.

keytool -genkeypair -keystore root.jks -alias root -ext bc:c
keytool -genkeypair -keystore ca.jks -alias ca -ext bc:c
keytool -genkeypair -keystore server.jks -alias server

keytool -keystore root.jks -alias root -exportcert -rfc > root.pem

keytool -storepass passwd -keystore ca.jks -certreq -alias ca |
keytool -storepass passwd -keystore root.jks
-gencert -alias root -ext BC=0 -rfc > ca.pem

keytool -keystore ca.jks -importcert -alias ca -file ca.pem

keytool -storepass passwd -keystore server.jks -certreq -alias server |
keytool -storepass passwd -keystore ca.jks -gencert -alias ca
-ext ku:c=dig,kE -rfc > server.pem

cat root.pem ca.pem server.pem |
keytool -keystore server.jks -importcert -alias server

Terms

Keystore
A keystore is a storage facility for cryptographic keys and certificates.

Keystore entries

Keystores can have different types of entries. The two most applicable entry types for the
keytool command include the following:

Key entries: Each entry holds very sensitive cryptographic key information, which is stored in
a protected format to prevent unauthorized access. Typically, a key stored in this type of

4-27

ORACLE

Chapter 4
keytool

entry is a secret key, or a private key accompanied by the certificate chain for the
corresponding public key. See Certificate Chains. The keytool command can
handle both types of entries, while the jarsigner tool only handles the latter type of
entry, that is private keys and their associated certificate chains.

Trusted certificate entries: Each entry contains a single public key certificate that
belongs to another party. The entry is called a trusted certificate because the keystore
owner trusts that the public key in the certificate belongs to the identity identified by
the subject (owner) of the certificate. The issuer of the certificate vouches for this, by
signing the certificate.

Keystore aliases

All keystore entries (key and trusted certificate entries) are accessed by way of unique
aliases.

An alias is specified when you add an entity to the keystore with the -genseckey
command to generate a secret key, the -genkeypair command to generate a key pair
(public and private key), or the -importcert command to add a certificate or
certificate chain to the list of trusted certificates. Subsequent keytool commands
must use this same alias to refer to the entity.

For example, you can use the alias duke to generate a new public/private key pair and
wrap the public key into a self-signed certificate with the following command. See
Certificate Chains.

keytool -genkeypair -alias duke -keypass passwd

This example specifies an initial passwd required by subsequent commands to access
the private key associated with the alias duke. If you later want to change Duke's
private key password, use a command such as the following:

keytool -keypasswd -alias duke -keypass passwd -new newpasswd

This changes the initial passwd to newpasswd. A password shouldn’t be specified on a
command line or in a script unless it is for testing purposes, or you are on a secure
system. If you don't specify a required password option on a command line, then you
are prompted for it.

Keystore implementation

The KeyStore class provided in the java.security package supplies well-defined
interfaces to access and modify the information in a keystore. It is possible for there to
be multiple different concrete implementations, where each implementation is that for
a particular type of keystore.

Currently, two command-line tools (keytool and jarsigner) make use of keystore
implementations. Because the KeyStore class is public, users can write additional
security applications that use it.

In JDK 9 and later, the default keystore implementation is PKCS12. This is a cross
platform keystore based on the RSA PKCS12 Personal Information Exchange Syntax
Standard. This standard is primarily meant for storing or transporting a user's private
keys, certificates, and miscellaneous secrets. There is another built-in
implementation, provided by Oracle. It implements the keystore as a file with a
proprietary keystore type (format) named JXS. It protects each private key with its
individual password, and also protects the integrity of the entire keystore with a
(possibly different) password.

4-28

Chapter 4
keytool

Keystore implementations are provider-based. More specifically, the application interfaces
supplied by KeyStore are implemented in terms of a Service Provider Interface (SPI). That
is, there is a corresponding abstract KeystoreSpi class, also in the java.security package,
which defines the Service Provider Interface methods that providers must implement. The
term provider refers to a package or a set of packages that supply a concrete
implementation of a subset of services that can be accessed by the Java Security API. To
provide a keystore implementation, clients must implement a provider and supply a
KeystoreSpi subclass implementation, as described in Steps to Implement and Integrate a
Provider.

Applications can choose different types of keystore implementations from different providers,
using the getInstance factory method supplied in the KeyStore class. A keystore type
defines the storage and data format of the keystore information, and the algorithms used to
protect private/secret keys in the keystore and the integrity of the keystore. Keystore
implementations of different types aren’t compatible.

The keytool command works on any file-based keystore implementation. It treats the
keystore location that is passed to it at the command line as a file name and converts it to a
FileInputStream, from which it loads the keystore information.)The jarsigner commands
can read a keystore from any location that can be specified with a URL.

For keytool and jarsigner, you can specify a keystore type at the command line, with the -
storetype option.

If you don't explicitly specify a keystore type, then the tools choose a keystore
implementation based on the value of the keystore. type property specified in the security
properties file. The security properties file is called java.security, and resides in the
security properties directory:

e Oracle Solaris, Linux, and macOS: java.home/lib/security
* Windows: java.home\lib\security

Each tool gets the keystore. type value and then examines all the currently installed
providers until it finds one that implements a keystores of that type. It then uses the keystore
implementation from that provider.The KeyStore class defines a static method named
getDefaultType that lets applications retrieve the value of the keystore.type property. The
following line of code creates an instance of the default keystore type as specified in the
keystore. type property:

KeyStore keyStore = KeyStore.getInstance (KeyStore.getDefaultType()):;

The default keystore type is pkcs12, which is a cross-platform keystore based on the RSA
PKCS12 Personal Information Exchange Syntax Standard. This is specified by the following
line in the security properties file:

keystore.type=pkcsl2

To have the tools utilize a keystore implementation other than the default, you can change
that line to specify a different keystore type. For example, if you want to use the Oracle's jks
keystore implementation, then change the line to the following:

keystore.type=jks

ORACLE 4-29

ORACLE

Chapter 4
keytool

< Note:

Case doesn’t matter in keystore type designations. For example, JKS would
be considered the same as jks.

Certificate

A certificate (or public-key certificate) is a digitally signed statement from one entity

(the issuer), saying that the public key and some other information of another entity

(the subject) has some specific value. The following terms are related to certificates:

e Public Keys: These are numbers associated with a particular entity, and are
intended to be known to everyone who needs to have trusted interactions with
that entity. Public keys are used to verify signatures.

« Digitally Signed: If some data is digitally signed, then it is stored with the identity
of an entity and a signature that proves that entity knows about the data. The data
is rendered unforgeable by signing with the entity's private key.

e |dentity: A known way of addressing an entity. In some systems, the identity is the
public key, and in others it can be anything from an Oracle Solaris UID to an emalil
address to an X.509 distinguished name.

e Signature: A signature is computed over some data using the private key of an
entity. The signer, which in the case of a certificate is also known as the issuer.

e Private Keys: These are numbers, each of which is supposed to be known only to
the particular entity whose private key it is (that is, it is supposed to be kept
secret). Private and public keys exist in pairs in all public key cryptography
systems (also referred to as public key crypto systems). In a typical public key
crypto system, such as DSA, a private key corresponds to exactly one public key.
Private keys are used to compute signatures.

e Entity: An entity is a person, organization, program, computer, business, bank, or
something else you are trusting to some degree.

Public key cryptography requires access to users' public keys. In a large-scale
networked environment, it is impossible to guarantee that prior relationships between
communicating entities were established or that a trusted repository exists with all
used public keys. Certificates were invented as a solution to this public key
distribution problem. Now a Certification Authority (CA) can act as a trusted third
party. CAs are entities such as businesses that are trusted to sign (issue) certificates
for other entities. It is assumed that CAs only create valid and reliable certificates
because they are bound by legal agreements. There are many public Certification
Authorities, such as DigiCert, Comodo, Entrust, and so on.

You can also run your own Certification Authority using products such as Microsoft
Certificate Server or the Entrust CA product for your organization. With the keytool
command, it is possible to display, import, and export certificates. It is also possible to
generate self-signed certificates.

The keytool command currently handles X.509 certificates.

X.509 Certificates

The X.509 standard defines what information can go into a certificate and describes
how to write it down (the data format). All the data in a certificate is encoded with two
related standards called ASN.1/DER. Abstract Syntax Notation 1 describes data. The
Definite Encoding Rules describe a single way to store and transfer that data.

All X.509 certificates have the following data, in addition to the signature:

4-30

ORACLE

Chapter 4
keytool

Version: This identifies which version of the X.509 standard applies to this certificate,
which affects what information can be specified in it. Thus far, three versions are defined.
The keytool command can import and export v1, v2, and v3 certificates. It generates v3
certificates.

— X.509 Version 1 has been available since 1988, is widely deployed, and is the most
generic.

— X.509 Version 2 introduced the concept of subject and issuer unique identifiers to
handle the possibility of reuse of subject or issuer names over time. Most certificate
profile documents strongly recommend that names not be reused and that
certificates shouldn’t make use of unique identifiers. Version 2 certificates aren’t
widely used.

— X.509 Version 3 is the most recent (1996) and supports the notion of extensions
where anyone can define an extension and include it in the certificate. Some
common extensions are: KeyUsage (limits the use of the keys to particular purposes
such as signing-only) and AlternativeNames (allows other identities to also be
associated with this public key, for example. DNS names, email addresses, IP
addresses). Extensions can be marked critical to indicate that the extension should
be checked and enforced or used. For example, if a certificate has the KeyUsage
extension marked critical and set to keyCertSign, then when this certificate is
presented during SSL communication, it should be rejected because the certificate
extension indicates that the associated private key should only be used for signing
certificates and not for SSL use.

Serial number: The entity that created the certificate is responsible for assigning it a
serial number to distinguish it from other certificates it issues. This information is used in
numerous ways. For example, when a certificate is revoked its serial number is placed in
a Certificate Revocation List (CRL).

Signature algorithm identifier: This identifies the algorithm used by the CA to sign the
certificate.

Issuer name: The X.500 Distinguished Name of the entity that signed the certificate. This
is typically a CA. Using this certificate implies trusting the entity that signed this
certificate. In some cases, such as root or top-level CA certificates, the issuer signs its
own certificate.

Validity period: Each certificate is valid only for a limited amount of time. This period is
described by a start date and time and an end date and time, and can be as short as a
few seconds or almost as long as a century. The validity period chosen depends on a
number of factors, such as the strength of the private key used to sign the certificate, or
the amount one is willing to pay for a certificate. This is the expected period that entities
can rely on the public value, when the associated private key has not been
compromised.

Subject name: The name of the entity whose public key the certificate identifies. This
name uses the X.500 standard, so it is intended to be unique across the Internet. This is
the X.500 Distinguished Name (DN) of the entity. For example,

CN=cName, OU=orqUnit, O=org, C=countryCode

These refer to the subject's common name (CN), organizational unit (OU), organization
(O), and country (C).

4-31

ORACLE

Chapter 4
keytool

* Subject public key information: This is the public key of the entity being named
with an algorithm identifier that specifies which public key crypto system this key
belongs to and any associated key parameters.

Certificate Chains

The keytool command can create and manage keystore key entries that each
contain a private key and an associated certificate chain. The first certificate in the
chain contains the public key that corresponds to the private key.

When keys are first generated, the chain starts off containing a single element, a self-
signed certificate. See -genkeypair in Commands. A self-signed certificate is one for
which the issuer (signer) is the same as the subject. The subject is the entity whose
public key is being authenticated by the certificate. Whenever the -genkeypair
command is called to generate a new public/private key pai, it also wraps the public
key into a self-signed certificate.

Later, after a Certificate Signing Request (CSR) was generated with the -certreq
command and sent to a Certification Authority (CA), the response from the CA is
imported with -importcert, and the self-signed certificate is replaced by a chain of
certificates. At the bottom of the chain is the certificate (reply) issued by the CA
authenticating the subject's public key. The next certificate in the chain is one that
authenticates the CA's public key.

In many cases, this is a self-signed certificate, which is a certificate from the CA
authenticating its own public key, and the last certificate in the chain. In other cases,
the CA might return a chain of certificates. In this case, the bottom certificate in the
chain is the same (a certificate signed by the CA, authenticating the public key of the
key entry), but the second certificate in the chain is a certificate signed by a different
CA that authenticates the public key of the CA you sent the CSR to. The next
certificate in the chain is a certificate that authenticates the second CA's key, and so
on, until a self-signed root certificate is reached. Each certificate in the chain (after the
first) authenticates the public key of the signer of the previous certificate in the chain.
Many CAs only return the issued certificate, with no supporting chain, especially when
there is a flat hierarchy (no intermediates CASs). In this case, the certificate chain must
be established from trusted certificate information already stored in the keystore.

A different reply format (defined by the PKCS #7 standard) includes the supporting
certificate chain in addition to the issued certificate. Both reply formats can be handled
by the keytool command.

The top-level (root) CA certificate is self-signed. However, the trust into the root's
public key doesn’t come from the root certificate itself, but from other sources such as
a newspaper. This is because anybody could generate a self-signed certificate with
the distinguished name of, for example, the DigiCert root CA. The root CA public key
is widely known. The only reason it is stored in a certificate is because this is the
format understood by most tools, so the certificate in this case is only used as a
vehicle to transport the root CA's public key. Before you add the root CA certificate to
your keystore, you should view it with the -printcert option and compare the
displayed fingerprint with the well-known fingerprint obtained from a newspaper, the
root CA's Web page, and so on.

cacerts Certificates File
A certificates file named cacerts resides in the security properties directory:

» Oracle Solaris, Linux, and macOS: JAVA HOME/lib/security
e Windows: java.home\lib\security

java.home is the runtime environment directory, which is the jre directory in the JDK
or the top-level directory of the Java Runtime Environment (JRE).

4-32

ORACLE

Chapter 4
keytool

The cacerts file represents a system-wide keystore with CA certificates. System
administrators can configure and manage that file with the keytool command by specifying
jks as the keystore type. The cacerts keystore file ships with a default set of root CA
certificates. For Oracle Solaris, Linux, OS X, and Windows, you can list the default
certificates with the following command:

keytool -list -cacerts

System administrators must change the initial password and the default access permission
of the cacerts keystore file upon installing the SDK.

Note:

It is important to verify your cacerts file. Because you trust the CAs in the cacerts
file as entities for signing and issuing certificates to other entities, you must
manage the cacerts file carefully. The cacerts file should contain only certificates
of the CAs you trust. It is your responsibility to verify the trusted root CA certificates
bundled in the cacerts file and make your own trust decisions.

To remove an untrusted CA certificate from the cacerts file, use the -delete option of the
keytool command. You can find the cacerts file in the JRE installation directory. Contact
your system administrator if you don’'t have permission to edit this file

Internet RFC 1421 Certificate Encoding Standard

Certificates are often stored using the printable encoding format defined by the Internet RFC
1421 standard, instead of their binary encoding. This certificate format, also known as
Base64 encoding, makes it easy to export certificates to other applications by email or
through some other mechanism.

Certificates read by the -importcert and -printcert commands can be in either this format
or binary encoded. The -exportcert command by default outputs a certificate in binary
encoding, but will instead output a certificate in the printable encoding format, when the -rfc
option is specified.

The -1ist command by default prints the SHA-256 fingerprint of a certificate. If the -v option
is specified, then the certificate is printed in human-readable format. If the -rfc option is
specified, then the certificate is output in the printable encoding format.

In its printable encoding format, the encoded certificate is bounded at the beginning and end
by the following text:

X.500 Distinguished Names

X.500 Distinguished Names are used to identify entities, such as those that are named by
the subject and issuer (signer) fields of X.509 certificates. The keytool command supports
the following subpatrts:

* commonName: The common name of a person.

4-33

Chapter 4
keytool

e organizationUnit: The small organization (such as department or division) name.
For example, Purchasing.

* localityName: The locality (city) name. For example, Palo Alto.
» stateName: State or province name. For example, California.
e country: Two-letter country code. For example, CH.

When you supply a distinguished name string as the value of a -dname option, such
as for the -genkeypair command, the string must be in the following format:

CN=cName, OU=orgUnit, O=org, L=city, S=state, C=countryCode

All the following items represent actual values and the previous keywords are
abbreviations for the following:

CN=commonName
OU=organizationUnit
O=organizationName
L=IocalityName
S=stateName
C=country

A sample distinguished name string is:

CN=commonName, OU=organizationUnit, O=organizationName,
L=localityName, S=stateName, C=country

A sample command using such a string is:

keytool -genkeypair -dname "CN=commonName, OU=organizationUnit,
O=organizationName, L=IlocalityName,
S=stateName, C=country" -alias mark

Case doesn’t matter for the keyword abbreviations. For example, CN, cn, and Cn are
all treated the same.

Order matters; each subcomponent must appear in the designated order. However, it
isn't necessary to have all the subcomponents. You can use a subset, for example:

CN=commonName, OU=organizationUnit, O=organizationName, C=country

If a distinguished name string value contains a comma, then the comma must be
escaped by a backslash (\) character when you specify the string on a command line,
asin:

cn=commonName, ou=organizationUnit\, department, o=organizationName,
c=country

It is never necessary to specify a distinguished name string on a command line. When
the distinguished name is needed for a command, but not supplied on the command

ORACLE 4-34

ORACLE

Chapter 4
keytool

line, the user is prompted for each of the subcomponents. In this case, a comma doesn’t
need to be escaped by a backslash (V).

Warnings

Importing Trusted Certificates Warning

Important: Be sure to check a certificate very carefully before importing it as a trusted
certificate.

Windows Example:

View the certificate first with the -printcert command or the -importcert command without
the -noprompt option. Ensure that the displayed certificate fingerprints match the expected
ones. For example, suppose someone sends or emails you a certificate that you put it in a file
named \tmp\cert. Before you consider adding the certificate to your list of trusted
certificates, you can execute a -printcert command to view its fingerprints, as follows:

keytool -printcert -file \tmp\cert
Owner: CN=11, OU=11, 0=11, L=11, Ss=11, C=11
Issuer: CN=11, OU=11, 0=11, L=11, S=11, C=11
Serial Number: 59092b34
Valid from: Thu Jun 24 18:01:13 PDT 2016 until: Wed Jun 23 17:01:13 PST
2016
Certificate Fingerprints:

SHA-1:
20:B6:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C0:37:13:0E:5E:FE
SHA-256: 90:7B:70:0A:EA:DC:16:79:92:99:41:FF:8A:FE:EB:90:
17:75:E0:90:B2:24:4D:3A:2A:16:A6:E4:11:0F:67:A4

Oracle Solaris Example:

View the certificate first with the -printcert command or the -importcert command without
the -noprompt option. Ensure that the displayed certificate fingerprints match the expected
ones. For example, suppose someone sends or emails you a certificate that you put it in a file
named /tmp/cert. Before you consider adding the certificate to your list of trusted
certificates, you can execute a -printcert command to view its fingerprints, as follows:

keytool -printcert -file /tmp/cert
Owner: CN=11, OU=11, 0=11, L=11, S=11, C=11
Issuer: CN=11, OU=11, 0=11, L=11, S=11, C=11
Serial Number: 59092b34
Valid from: Thu Jun 24 18:01:13 PDT 2016 until: Wed Jun 23 17:01:13 PST
2016
Certificate Fingerprints:

SHA-1:
20:B6:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C0:37:13:0E:5E:FE
SHA-256: 90:7B:70:0A:EA:DC:16:79:92:99:41:FF:8A:FE:EB:90:
17:75:E0:90:B2:24:4D:3A:2A:16:A6:E4:11:0F:67:A4

Then call or otherwise contact the person who sent the certificate and compare the
fingerprints that you see with the ones that they show. Only when the fingerprints are equal is
it guaranteed that the certificate wasn't replaced in transit with somebody else's certificate

4-35

ORACLE

Chapter 4
keytool

such as an attacker's certificate. If such an attack took place, and you didn’t check the
certificate before you imported it, then you would be trusting anything the attacker
signed, for example, a JAR file with malicious class files inside.

Note:

It isn’t required that you execute a -printcert command before importing a
certificate. This is because before you add a certificate to the list of trusted
certificates in the keystore, the -importcert command prints out the
certificate information and prompts you to verify it. You can then stop the
import operation. However, you can do this only when you call the -
importcert command without the -noprompt option. If the -noprompt option
is specified, then there is no interaction with the user.

Passwords Warning

Most commands that operate on a keystore require the store password. Some
commands require a private/secret key password. Passwords can be specified on the
command line in the -storepass and -keypass options. However, a password
shouldn’t be specified on a command line or in a script unless it is for testing, or you
are on a secure system. When you don'’t specify a required password option on a
command line, you are prompted for it.

Certificate Conformance Warning

Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile defined a profile on conforming X.509 certificates, which includes what
values and value combinations are valid for certificate fields and extensions.

The keytool command doesn’t enforce all of these rules so it can generate certificates
that don’t conform to the standard, such as self-signed certificates that would be used
for internal testing purposes. Certificates that don’t conform to the standard might be
rejected by JRE or other applications. Users should ensure that they provide the
correct options for -dname, -ext, and so on.

Import a New Trusted Certificate

Before you add the certificate to the keystore, the keytool command verifies it by
attempting to construct a chain of trust from that certificate to a self-signed certificate
(belonging to a root CA), using trusted certificates that are already available in the
keystore.

If the -trustcacerts option was specified, then additional certificates are considered
for the chain of trust, namely the certificates in a file named cacerts.

If the keytool command fails to establish a trust path from the certificate to be
imported up to a self-signed certificate (either from the keystore or the cacerts file),
then the certificate information is printed, and the user is prompted to verify it by
comparing the displayed certificate fingerprints with the fingerprints obtained from
some other (trusted) source of information, which might be the certificate owner. Be
very careful to ensure the certificate is valid before importing it as a trusted certificate.
The user then has the option of stopping the import operation. If the -noprompt option
is specified, then there is no interaction with the user.

4-36

https://tools.ietf.org/rfc/rfc5280.txt
https://tools.ietf.org/rfc/rfc5280.txt

ORACLE

Chapter 4
keytool

Import a Certificate Reply

When you import a certificate reply, the certificate reply is validated with trusted certificates
from the keystore, and optionally, the certificates configured in the cacerts keystore file when
the -trustcacerts option is specified.

The methods of determining whether the certificate reply is trusted are as follows:

* If the reply is a single X.509 certificate, then the keytool command attempts to establish
a trust chain, starting at the certificate reply and ending at a self-signed certificate
(belonging to a root CA). The certificate reply and the hierarchy of certificates is used to
authenticate the certificate reply from the new certificate chain of aliases. If a trust chain
can't be established, then the certificate reply isn’t imported. In this case, the keytool
command doesn't print the certificate and prompt the user to verify it, because it is very
difficult for a user to determine the authenticity of the certificate reply.

» Ifthe reply is a PKCS #7 formatted certificate chain or a sequence of X.509 certificates,
then the chain is ordered with the user certificate first followed by zero or more CA
certificates. If the chain ends with a self-signed root CA certificate and the -
trustcacerts option was specified, the keytool command attempts to match it with any
of the trusted certificates in the keystore or the cacerts keystore file. If the chain doesn’t
end with a self-signed root CA certificate and the -trustcacerts option was specified,
the keytool command tries to find one from the trusted certificates in the keystore or the
cacerts keystore file and add it to the end of the chain. If the certificate isn’t found and
the -noprompt option isn’t specified, the information of the last certificate in the chain is
printed, and the user is prompted to verify it.

If the public key in the certificate reply matches the user's public key already stored with
alias, then the old certificate chain is replaced with the new certificate chain in the reply. The
old chain can only be replaced with a valid keypass, and so the password used to protect the
private key of the entry is supplied. If no password is provided, and the private key password
is different from the keystore password, the user is prompted for it.

This command was named -import in earlier releases. This old name is still supported in this
release. The new name, -importcert, is preferred.

Example of Using a Pre-Configured Options File

You can use a file named preconfig as a pre-configured options file.

A tiny pre-configured options file

keytool.all = -keystore ${user.home}/ks
keytool.list = -v

keytool.genkeypair = -keyalg rsa

Running keytool -conf preconfig -list

is identical to

keytool -keystore ~/ks -v -list

Running keytool -conf preconfig -genkeypair -alias me
is identical to

keytool -keystore ~/ks -keyalg rsa -genkeypair -alias me

4-37

jarsigner

ORACLE

Chapter 4
jarsigner

Running keytool -conf preconfig -genkeypair -alias you -keyalg ec
is identical to

keytool -keystore ~/ks -keyalg rsa -genkeypair -alias you -keyalg ec
which is equivalent to

keytool -keystore ~/ks -genkeypair -alias me -keyalg ec

You use the jarsigner tool to sign and verify Java Archive (JAR) files.
Synopsis

jarsigner [options] jar-file alias

jarsigner -verify [options] jar-file [alias ...]

options
The command-line options. See Options for jarsigner.

-verify

The -verify option can take zero or more keystore alias names after the JAR file
name. When the -verify option is specified, the jarsigner command checks that the
certificate used to verify each signed entry in the JAR file matches one of the keystore
aliases. The aliases are defined in the keystore specified by -keystore or the default
keystore.

If you also specify the -strict option, and the jarsigner command detects severe
warnings, the message, "jar verified, with signer errors" is displayed.

jar-file

The JAR file to be signed.

If you also specified the -strict option, and the jarsigner command detected
severe warnings, the message, "jar signed, with signer errors" is displayed.

alias
The aliases are defined in the keystore specified by -keystore or the default
keystore.

Description
The jarsigner tool has two purposes:

* To sign Java Archive (JAR) files.
* To verify the signatures and integrity of signed JAR files.

The JAR feature enables the packaging of class files, images, sounds, and other
digital data in a single file for faster and easier distribution. A tool named jar enables
developers to produce JAR files. Technically, any ZIP file can also be considered a
JAR file, although when created by the jar command or processed by the jarsigner
command, JAR files also contain a META-INF/MANIFEST.MF file.

4-38

ORACLE

Chapter 4
jarsigner

A digital signature is a string of bits that is computed from some data (the data being signed)
and the private key of an entity (a person, company, and so on). Similar to a handwritten
signature, a digital signature has many useful characteristics:

» Its authenticity can be verified by a computation that uses the public key corresponding to
the private key used to generate the signature.

* It can't be forged, assuming the private key is kept secret.

e ltis a function of the data signed and thus can't be claimed to be the signature for other
data as well.

» The signed data can't be changed. If the data is changed, then the signature can't be
verified as authentic.

To generate an entity's signature for a file, the entity must first have a public/private key pair

associated with it and one or more certificates that authenticate its public key. A certificate is
a digitally signed statement from one entity that says that the public key of another entity has
a particular value.

The jarsigner command uses key and certificate information from a keystore to generate
digital signatures for JAR files. A keystore is a database of private keys and their associated
X.509 certificate chains that authenticate the corresponding public keys. The keytool
command is used to create and administer keystores.

The jarsigner command uses an entity's private key to generate a signature. The signed
JAR file contains, among other things, a copy of the certificate from the keystore for the
public key corresponding to the private key used to sign the file. The jarsigner command
can verify the digital signature of the signed JAR file using the certificate inside it (in its
signature block file).

The jarsigner command can generate signatures that include a time stamp that enables a
system or deployer to check whether the JAR file was signed while the signing certificate was
still valid.

In addition, APIs allow applications to obtain the timestamp information.

At this time, the jarsigner command can only sign JAR files created by the jar command or
zip files. JAR files are the same as zip files, except they also have a META-INF/MANIFEST .MF
file. A META-INF/MANIFEST.MF file is created when the jarsigner command signs a zip file.

The default jarsigner command behavior is to sign a JAR or zip file. Use the -verify option
to verify a signed JAR file.

The jarsigner command also attempts to validate the signer's certificate after signing or
verifying. If there is a validation error or any other problem, the command generates warning
messages. If you specify the -strict option, then the command treats severe warnings as
errors. See Errors and Warnings.

Keystore Aliases
All keystore entities are accessed with unique aliases.

When you use the jarsigner command to sign a JAR file, you must specify the alias for the
keystore entry that contains the private key needed to generate the signature. If no output file
is specified, it overwrites the original JAR file with the signed JAR file.

Keystores are protected with a password, so the store password must be specified. You are
prompted for it when you don’t specify it on the command line. Similarly, private keys are
protected in a keystore with a password, so the private key's password must be specified,

4-39

ORACLE

Chapter 4
jarsigner

and you are prompted for the password when you don'’t specify it on the command line
and it isn't the same as the store password.

Keystore Location

The jarsigner command has a -keystore option for specifying the URL of the
keystore to be used. The keystore is by default stored in a file named .keystore in the
user's home directory, as determined by the user.home system property.

Oracle Solaris, Linux, and macOS: user.home defaults to the user's home directory.

The input stream from the -keystore option is passed to the KeyStore.load method. If
NONE is specified as the URL, then a null stream is passed to the KeyStore.load
method. NONE should be specified when the KeyStore class isn't file based, for
example, when it resides on a hardware token device.

Keystore Implementation

The KeyStore class provided in the java.security package supplies a number of
well-defined interfaces to access and modify the information in a keystore. You can
have multiple different concrete implementations, where each implementation is for a
particular type of keystore.

Currently, there are two command-line tools that use keystore implementations
(keytool and jarsigner).

The default keystore implementation is PKCS12. This is a cross platform keystore based
on the RSA PKCS12 Personal Information Exchange Syntax Standard. This standard
is primarily meant for storing or transporting a user's private keys, certificates, and
miscellaneous secrets. There is another built-in implementation, provided by Oracle. It
implements the keystore as a file with a proprietary keystore type (format) named JKS.
It protects each private key with its individual password, and also protects the integrity
of the entire keystore with a (possibly different) password.

Keystore implementations are provider-based, which means the application interfaces
supplied by the Keystore class are implemented in terms of a Service Provider
Interface (SPI). There is a corresponding abstract KeystoreSpi class, also in the
java.security package, that defines the Service Provider Interface methods that
providers must implement. The term provider refers to a package or a set of packages
that supply a concrete implementation of a subset of services that can be accessed by
the Java Security API. To provide a keystore implementation, clients must implement a
provider and supply a KeystoreSpi subclass implementation, as described in How to
Implement a Provider in the Java Cryptography Architecture.

Applications can choose different types of keystore implementations from different
providers, with the getInstance factory method in the KeyStore class. A keystore type
defines the storage and data format of the keystore information and the algorithms
used to protect private keys in the keystore and the integrity of the keystore itself.
Keystore implementations of different types aren’t compatible.

The jarsigner commands can read file-based keystores from any location that can be
specified using a URL. In addition, these commands can read non-file-based
keystores such as those provided by MSCAPI on Windows and PKCS11 on all
platforms.

For the jarsigner and keytool commands, you can specify a keystore type at the
command line with the -storetype option.

4-40

ORACLE

Chapter 4
jarsigner

If you don't explicitly specify a keystore type, then the tools choose a keystore
implementation based on the value of the keystore. type property specified in the security
properties file. The security properties file is called java.security, and it resides in the JDK
security properties directory, java.home/conf/security.

Each tool gets the keystore. type value and then examines all the installed providers until it
finds one that implements keystores of that type. It then uses the keystore implementation
from that provider.

The KeyStore class defines a static method named getDefaultType that lets applications
retrieve the value of the keystore. type property. The following line of code creates an
instance of the default keystore type as specified in the keystore.type property:

KeyStore keyStore = KeyStore.getInstance (KeyStore.getDefaultType()):

The default keystore type is pkcs12, which is a cross platform keystore based on the RSA
PKCS12 Personal Information Exchange Syntax Standard. This is specified by the following
line in the security properties file:

keystore.type=pkcsl2

Case doesn’t matter in keystore type designations. For example, JKS is the same as jks.

To have the tools utilize a keystore implementation other than the default, you can change
that line to specify a different keystore type. For example, if you want to use Oracle's jks
keystore implementation, then change the line to:

keystore.type=jks

Supported Algorithms

By default, the jarsigner command signs a JAR file using one of the following signature
algorithms files depending on the type and size of the private key:

keyalg keysize default sigalg
DSA any size SHA256withDSA
RSA <=3072 SHA256withRSA
<=7680 SHA384withRSA
> 7680 SHA512withRSA
EC <384 SHA256withECDSA
<512 SHA384withECDSA
=512 SHA512withECDSA

These default signature algorithms can be overridden by using the -sigalg option.

Signed JAR file algorithms are checked against the jdk.jar.disabledAlgorithms Security
property during verification (-verify). If the JAR file was signed with any algorithms that are
disabled, it will be treated as an unsigned JAR file. For detailed verification output, include -
J-Djava.security.debug=jar. The default value for the jdk.jar.disabledAlgorithms
security property is defined in the java.security file (located in the JRE's $JAVA HOME/conf/
security directory).

4-41

Chapter 4
jarsigner

< Note:

In order to improve out-of-the-box security, default key size and signature
algorithm names are periodically updated to stronger values with each
release of the JDK. If interoperability with older releases of the JDK is
important, please make sure the defaults are supported by those releases, or
alternatively use the -sigalg option to override the default values at your
own risk.

The Signed JAR File

When the jarsigner command is used to sign a JAR file, the output signed JAR file is
the same as the input JAR file, with the exception that it has two additional files placed
in the META-INF directory:

e A signature file with an . SF extension
* A signature block file with a .DSa, .RSa, or .EC extension

The base file names for these two files come from the value of the -sigfile option.
For example, when the option is -sigfile MKSIGN, the files are named MKSIGN.SF and
MKSIGN.DSA

If no -sigfile option appears on the command line, then the base file name for

the .sF and .DSA files is the first 8 characters of the alias name specified on the
command line, all converted to uppercase. If the alias name has fewer than 8
characters, then the full alias name is used. If the alias name contains any characters
that aren’t allowed in a signature file name, then each such character is converted to
an underscore (_) character in forming the file name. Valid characters include letters,
digits, underscores, and hyphens.

Signature File

A signature file (. SF file) looks similar to the manifest file that is always included in a
JAR file when the jarsigner command is used to sign the file. For each source file
included in the JAR file, the . sF file has two lines, such as in the manifest file, that list
the following:

* File name
* Name of the digest algorithm (SHA)
* SHA digest value

< Note:

The name of the digest algorithm (SHA) and the SHA digest value are on the
same line.

In the manifest file, the SHA digest value for each source file is the digest (hash) of the
binary data in the source file. In the . SF file, the digest value for a specified source file
is the hash of the two lines in the manifest file for the source file.

ORACLE 4-42

ORACLE

Chapter 4
jarsigner

The signature file, by default, includes a header with a hash of the whole manifest file. The
header also contains a hash of the manifest header. The presence of the header enables
verification optimization. See JAR File Verification.

Signature Block File

The . sF file is signed and the signature is placed in the signature block file. This file also
contains, encoded inside it, the certificate or certificate chain from the keystore that
authenticates the public key corresponding to the private key used for signing. The file has
the extension .DSA, .RSA, or .EC, depending on the digest algorithm used.

Signature Time Stamp

The jarsigner command used with the following options generates and stores a signature
time stamp when signing a JAR file:

e -tsa url

* -tsacert alias

e -tsapolicyid policyid

e -tsadigestalg algorithm

See Options for jarsigner.

JAR File Verification

A successful JAR file verification occurs when the signatures are valid, and none of the files
that were in the JAR file when the signatures were generated have changed since then. JAR
file verification involves the following steps:

1. Verify the signature of the . sF file.

The verification ensures that the signature stored in each signature block (.Ds2) file was
generated using the private key corresponding to the public key whose certificate (or
certificate chain) also appears in the .Dsa file. It also ensures that the signature is a valid
signature of the corresponding signature (. SF) file, and thus the . sF file wasn’'t tampered
with.

2. Verify the digest listed in each entry in the . sF file with each corresponding section in the
manifest.

The . sF file by default includes a header that contains a hash of the entire manifest file.
When the header is present, the verification can check to see whether or not the hash in
the header matches the hash of the manifest file. If there is a match, then verification
proceeds to the next step.

If there is no match, then a less optimized verification is required to ensure that the hash
in each source file information section in the . SF file equals the hash of its corresponding
section in the manifest file. See Signature File.

One reason the hash of the manifest file that is stored in the . sF file header might not
equal the hash of the current manifest file is that one or more files were added to the JAR
file (with the jar tool) after the signature and . sF file were generated. When the jar tool
is used to add files, the manifest file is changed by adding sections to it for the new files,
but the . SF file isn’'t changed. A verification is still considered successful when none of
the files that were in the JAR file when the signature was generated have been changed
since then. This happens when the hashes in the non-header sections of the . SF file
equal the hashes of the corresponding sections in the manifest file.

4-43

Chapter 4
jarsigner

3. Read each file in the JAR file that has an entry in the . SF file. While reading,
compute the file's digest and compare the result with the digest for this file in the
manifest section. The digests should be the same or verification fails.

If any serious verification failures occur during the verification process, then the
process is stopped and a security exception is thrown. The jarsigner command
catches and displays the exception.

4. Check for disabled algorithm usage. See Supported Algorithms.

Note:

You should read any addition warnings (or errors if you specified the -strict
option), as well as the content of the certificate (by specifying the -verbose
and -certs options) to determine if the signature can be trusted.

Multiple Signatures for a JAR File

A JAR file can be signed by multiple people by running the jarsigner command on
the file multiple times and specifying the alias for a different person each time, as
follows:

jarsigner myBundle.jar susan
jarsigner myBundle.jar kevin

When a JAR file is signed multiple times, there are multiple .sr and .DSA files in the
resulting JAR file, one pair for each signature. In the previous example, the output JAR
file includes files with the following names:

SUSAN.SF
SUSAN.DSA
KEVIN.SF
KEVIN.DSA

Options for jarsigner

The following sections describe the options for the jarsigner. Be aware of the
following standards:

» All option names are preceded by a hyphen sign (-).
* The options can be provided in any order.

* Items that are in italics or underlined (option values) represent the actual values
that must be supplied.

* The -storepass, -keypass, -sigfile, -sigalg, -digestalg, -signedjar, and
TSA-related options are only relevant when signing a JAR file; they aren’t relevant
when verifying a signed JAR file. The -keystore option is relevant for signing and
verifying a JAR file. In addition, aliases are specified when signing and verifying a
JAR file.

ORACLE 4-44

ORACLE

Chapter 4
jarsigner

-keystore url

Specifies the URL that tells the keystore location. This defaults to the file . keystore in the
user's home directory, as determined by the user.home system property.

A keystore is required when signing. You must explicitly specify a keystore when the default
keystore doesn't exist or if you want to use one other than the default.

A keystore isn't required when verifying, but if one is specified or the default exists and the -
verbose option was also specified, then additional information is output regarding whether or
not any of the certificates used to verify the JAR file are contained in that keystore.

The -keystore argument can be a file name and path specification rather than a URL, in
which case it is treated the same as a file: URL. For example, the following are equivalent:

-keystore filePathAndName
-keystore file: filePathAndName

If the Sun PKCS #11 provider was configured in the java.security security properties file
(located in the JRE's $JAVA HOME/conf/security directory), then the keytool and
jarsigner tools can operate on the PKCS #11 token by specifying these options:

-keystore NONE -storetype PKCS1l1

For example, the following command lists the contents of the configured PKCS#11 token:

keytool -keystore NONE -storetype PKCS11 -list

-storepass[:env | :file] argument

Specifies the password that is required to access the keystore. This is only needed when
signing (not verifying) a JAR file. In that case, if a -storepass option isn’'t provided at the
command line, then the user is prompted for the password.

If the modifier env or file isn’'t specified, then the password has the value argument.
Otherwise, the password is retrieved as follows:

e env: Retrieve the password from the environment variable named argument.

e file: Retrieve the password from the file named argument.

< Note:

The password shouldn’t be specified on the command line or in a script unless it is
for testing purposes, or you are on a secure system.

-storetype storetype

Specifies the type of keystore to be instantiated. The default keystore type is the one that is
specified as the value of the keystore. type property in the security properties file, which is
returned by the static getDefaultType method in java.security.KeyStore.

The PIN for a PKCS #11 token can also be specified with the -storepass option. If none is
specified, then the keytool and jarsigner commands prompt for the token PIN. If the token
has a protected authentication path (such as a dedicated PIN-pad or a biometric reader),
then the -protected option must be specified and no password options can be specified.

4-45

ORACLE

Chapter 4
jarsigner

-keypass [:env | :file] argument -certchain file

Specifies the password used to protect the private key of the keystore entry
addressed by the alias specified on the command line. The password is required
when using jarsigner to sign a JAR file. If no password is provided on the command
line, and the required password is different from the store password, then the user is
prompted for it.

If the modifier env or £ile isn’'t specified, then the password has the value argument.
Otherwise, the password is retrieved as follows:

* env: Retrieve the password from the environment variable named argument.

e file: Retrieve the password from the file named argument.

Note:

The password shouldn’t be specified on the command line or in a script
unless it is for testing purposes, or you are on a secure system.

-certchain file

Specifies the certificate chain to be used when the certificate chain associated with
the private key of the keystore entry that is addressed by the alias specified on the
command line isn’t complete. This can happen when the keystore is located on a
hardware token where there isn’t enough capacity to hold a complete certificate chain.
The file can be a sequence of concatenated X.509 certificates, or a single PKCS#7
formatted data block, either in binary encoding format or in printable encoding format
(also known as Base64 encoding) as defined by Internet RFC 1421 Certificate
Encoding Standard.

-sigfile file

Specifies the base file name to be used for the generated . sF and .DsA files. For
example, if file is DUKESIGN, then the generated . sF and .DSA files are named
DUKESIGN.SF and DUKESIGN.DSA, and placed in the META-INF directory of the signed
JAR file.

The characters in the file must come from the set a-zA-20-9 -. Only letters, numbers,
underscore, and hyphen characters are allowed. All lowercase characters are
converted to uppercase for the .SF and .DsA file names.

If no -sigfile option appears on the command line, then the base file name for

the .SF and .DsA files is the first 8 characters of the alias name specified on the
command line, all converted to upper case. If the alias name has fewer than 8
characters, then the full alias name is used. If the alias name contains any characters
that aren’t valid in a signature file name, then each such character is converted to an
underscore (_) character to form the file name.

-signedjar file
Specifies the name of signed JAR file.

-digestalg algorithm

Specifies the name of the message digest algorithm to use when digesting the entries
of a JAR file.

For a list of standard message digest algorithm names, see Java Security Standard
Algorithm Names.

If this option isn't specified, then sEA256 is used. There must either be a statically
installed provider supplying an implementation of the specified algorithm or the user

4-46

http://tools.ietf.org/html/rfc1421
http://tools.ietf.org/html/rfc1421
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

ORACLE

Chapter 4
jarsigner

must specify one with the -addprovider or -providerClass options; otherwise, the
command will not succeed.

-sigalg algorithm

Specifies the name of the signature algorithm to use to sign the JAR file.

This algorithm must be compatible with the private key used to sign the JAR file. If this option
isn’t specified, then use a default algorithm matching the private key as described in the
Supported Algorithms section. There must either be a statically installed provider supplying
an implementation of the specified algorithm or you must specify one with the -addprovider
or -providerClass option; otherwise, the command doesn’t succeed.

For a list of standard message digest algorithm names, see Java Security Standard
Algorithm Names.

-verify
Verifies a signed JAR file.

-verbose [:suboptions]

When the -verbose option appears on the command line, it indicates that the jarsigner use
the verbose mode when signing or verifying with the suboptions determining how much
information is shown.. This causes the jarsigner to output extra information about the
progress of the JAR signing or verification. The suboptions can be all, grouped, Or
summary.

If the -certs option is also specified, then the default mode (or suboption a11) displays each
entry as it is being processed, and after that, the certificate information for each signer of the
JAR file.

If the -certs and the -verbose:grouped suboptions are specified, then entries with the same
signer info are grouped and displayed together with their certificate information.

If -certs and the -verbose: summary suboptions are specified, then entries with the same
signer information are grouped and displayed together with their certificate information.
Details about each entry are summarized and displayed as one entry (and more). See
Example of Verifying a Signed JAR File and Example of Verification with Certificate
Information.

-certs

If the -certs option appears on the command line with the -verify and -verbose options,
then the output includes certificate information for each signer of the JAR file. This
information includes the name of the type of certificate (stored in the .Dsa file) that certifies
the signer's public key, and if the certificate is an X.509 certificate (an instance of the
java.security.cert.X509Certificate), then the distinguished name of the signer.

The keystore is also examined. If no keystore value is specified on the command line, then
the default keystore file (if any) is checked. If the public key certificate for a signer matches
an entry in the keystore, then the alias name for the keystore entry for that signer is
displayed in parentheses.

-tsa url

If -tsa http://example.tsa.url appears on the command line when signing a JAR file
then a time stamp is generated for the signature. The URL, http://example.tsa.url,
identifies the location of the Time Stamping Authority (TSA) and overrides any URL found
with the -tsacert option. The -tsa option doesn’t require the TSA public key certificate to be
present in the keystore.

To generate the time stamp, jarsigner communicates with the TSA with the Time-Stamp
Protocol (TSP) defined in RFC 3161. When successful, the time stamp token returned by the
TSA is stored with the signature in the signature block file.

4-47

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

ORACLE

Chapter 4
jarsigner

-tsacert alias

When -tsacert alias appears on the command line when signing a JAR file, a time
stamp is generated for the signature. The alias identifies the TSA public key certificate
in the keystore that is in effect. The entry's certificate is examined for a Subject
Information Access extension that contains a URL identifying the location of the TSA.
The TSA public key certificate must be present in the keystore when using the -
tsacert option.

-tsapolicyid policyid

Specifies the object identifier (OID) that identifies the policy ID to be sent to the TSA
server. If this option isn’t specified, no policy ID is sent and the TSA server will choose
a default policy ID.

Object identifiers are defined by X.696, which is an ITU Telecommunication
Standardization Sector (ITU-T) standard. These identifiers are typically period-
separated sets of non-negative digits like 1.2.3.4.

—tsadigestalg algorithm

Specifies the message digest algorithm that is used to generate the message imprint
to be sent to the TSA server. If this option isn’t specified, SHA-256 will be used.

See Supported Algorithms.

For a list of standard message digest algorithm names, see Java Security Standard
Algorithm Names.

-internalsf

In the past, the .DSA (signature block) file generated when a JAR file was signed
included a complete encoded copy of the . SF file (signature file) also generated. This
behavior has been changed. To reduce the overall size of the output JAR file, the .DSA
file by default doesn’t contain a copy of the . SF file anymore. If -internalsf appears
on the command line, then the old behavior is utilized. This option is useful for testing.
In practice, don't use the -internalsf option because it incurs higher overhead.

-sectionsonly

If the -sectionsonly option appears on the command line, then the . SF file (signature
file) generated when a JAR file is signed doesn’t include a header that contains a
hash of the whole manifest file. It contains only the information and hashes related to
each individual source file included in the JAR file. See Signature File.

By default, this header is added, as an optimization. When the header is present,
whenever the JAR file is verified, the verification can first check to see whether the
hash in the header matches the hash of the whole manifest file. When there is a
match, verification proceeds to the next step. When there is no match, it is necessary
to do a less optimized verification that the hash in each source file information section
in the . sF file equals the hash of its corresponding section in the manifest file. See
JAR File Verification.

The -sectionsonly option is primarily used for testing. It shouldn’t be used other than
for testing because using it incurs higher overhead.

-protected
Values can be either true or false. Specify true when a password must be specified
through a protected authentication path such as a dedicated PIN reader.

-providerName providerName

If more than one provider was configured in the java.security security properties
file, then you can use the -providerName option to target a specific provider instance.
The argument to this option is the name of the provider.

4-48

https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html

ORACLE

Chapter 4
jarsigner

For the Oracle PKCS #11 provider, providerName is of the form SunPKCS11-TokenName,
where TokenName is the name suffix that the provider instance has been configured with, as
detailed in the configuration attributes table. For example, the following command lists the
contents of the PKCS #11 keystore provider instance with name suffix SmartCard:

jarsigner -keystore NONE -storetype PKCS1l
-providerName SunPKCSll-SmartCard
-list

-addprovider name [-providerArg arg]

Adds a security provider by name (such as SunPKCS11) and an optional configure
argument. The value of the security provider is the name of a security provider that is defined
in a module.

Used with the -providerArg ConfigFilePath option, the keytool and jarsigner tools
install the provider dynamically and use ConfigFilePath for the path to the token
configuration file. The following example shows a command to list a PKCS #11 keystore when
the Oracle PKCS #11 provider wasn’t configured in the security properties file.

jarsigner -keystore NONE -storetype PKCS11
-addprovider SunPKCS11
-providerArg /mydirl/mydir2/token.config

-providerClass provider-class-name [-providerArg arg]

Used to specify the name of cryptographic service provider's master class file when the
service provider isn't listed in the java.security security properties file. Adds a security
provider by fully-qualified class name and an optional configure argument.

Note:

The preferred way to load PKCS11 is by using modules. See -addprovider.

-Jjavaoption

Passes through the specified javaoption string directly to the Java interpreter. The
jarsigner command is a wrapper around the interpreter. This option shouldn’t contain any
spaces. It is useful for adjusting the execution environment or memory usage. For a list of
possible interpreter options, type java -h or java -X at the command line.

-strict

During the signing or verifying process, the command may issue warning messages. If you
specify this option, the exit code of the tool reflects the severe warning messages that this
command found. See Errors and Warnings.

-conf url
Specifies a pre-configured options file.

-conf file

Specifies a pre-configured options file. Read the keytool documentation for details. The
property keys supported are "jarsigner.all" for all actions, "jarsigner.sign” for signing, and
"jarsigner.verify" for verification.

Jarsigner arguments including jar file name and alias name(s) cannot be set in this file.

4-49

ORACLE

Chapter 4
jarsigner

Deprecated Options

The following jarsigner options are deprecated and might be removed in a future
JDK release.

-altsigner class

This option specifies an alternative signing mechanism. The fully qualified class name
identifies a class file that extends the com.sun.jarsigner.ContentSigner abstract
class. The path to this class file is defined by the -altsignerpath option. If the -
altsigner option is used, then the jarsigner command uses the signing mechanism
provided by the specified class. Otherwise, the jarsigner command uses its default
signing mechanism.

For example, to use the signing mechanism provided by a class hamed
com.sun.sun.jarsigner.AuthSigner, use the jarsigner option -altsigner
com.sun.jarsigner.AuthSigner.

-altsignerpath classpathlist

Specifies the path to the class file and any JAR file it depends on. The class file name
is specified with the -altsigner option. If the class file is in a JAR file, then this option
specifies the path to that JAR file.

An absolute path or a path relative to the current directory can be specified. If
classpathlist contains multiple paths or JAR files, then they should be separated
with a:

e Colon (:) on Oracle Solaris, Linux, and macOS
e Semicolon (;) on Windows

This option isn’t necessary when the class is already in the search path.
The following example shows how to specify the path to a JAR file that contains the
class file. The JAR file name is included.

-altsignerpath /home/user/lib/authsigner.jar

The following example shows how to specify the path to the JAR file that contains the
class file. The JAR file name is omitted.

-altsignerpath /home/user/classes/com/sun/tools/jarsigner/

Errors and Warnings

During the signing or verifying process, the jarsigner command may issue various
errors or warnings.

If there is a failure, the jarsigner command exits with code 1. If there is no failure, but
there are one or more severe warnings, the jarsigner command exits with code 0
when the -strict option is not specified, or exits with the OR-value of the warning
codes when the -strict is specified. If there is only informational warnings or no
warning at all, the command always exits with code O.

For example, if a certificate used to sign an entry is expired and has a KeyUsage
extension that doesn't allow it to sign a file, the jarsigner command exits with code
12 (=4+8) when the -strict option is specified.

4-50

ORACLE

Chapter 4
jarsigner

< Note:

Exit codes are reused because only the values from 0 to 255 are legal on Oracle
Solaris, Linux, and macOS.

The following sections describes the names, codes, and descriptions of the errors and
warnings that the jarsigner command can issue.

Failure

Reasons why the jarsigner command fails include (but aren’t limited to) a command line
parsing error, the inability to find a keypair to sign the JAR file, or the verification of a signed
JAR fails.

failure
Code 1. The signing or verifying fails.

Severe Warnings

Note:

Severe warnings are reported as errors if you specify the -strict option.

Reasons why the jarsigner command issues a severe warning include the certificate used
to sign the JAR file has an error or the signed JAR file has other problems.

hasExpiredCert
Code 4. This JAR contains entries whose signer certificate has expired.

hasExpiredTsaCert
Code 4. The timestamp has expired.

notYetValidCert
Code 4. This JAR contains entries whose signer certificate isn't yet valid.

chainNotValidated
Code 4. This JAR contains entries whose certificate chain isn’t validated.

tsaChainNotValidated
Code 64. The timestamp is invalid.

signerSelfSigned
Code 4. This JAR contains entries whose signer certificate is self signed.

weakAlg
Code 4. An algorithm specified on the command line is considered a security risk.

badKeyUsage
Code 8. This JAR contains entries whose signer certificate's KeyUsage extension doesn’t
allow code signing.

4-51

Chapter 4
jarsigner

badExtendedKeyUsage
Code 8. This JAR contains entries whose signer certificate's ExtendedKeyUsage
extension doesn't allow code signing.

badNetscapeCertType
Code 8. This JAR contains entries whose signer certificate's NetscapeCertType
extension doesn't allow code signing.

hasUnsignedEntry
Code 16. This JAR contains unsigned entries which haven't been integrity-checked.

notSignedByAlias
Code 32. This JAR contains signed entries which aren’t signed by the specified
alias(es).

aliasNotinStore
Code 32. This JAR contains signed entries that aren’t signed by alias in this keystore.

tsaChainNotValidated
Code 64. This JAR contains entries whose TSA certificate chain is invalid.

Informational Warnings

Informational warnings include those that aren’t errors but regarded as bad practice.
They don’t have a code.

hasExpiringCert
This JAR contains entries whose signer certificate expires within six months.

hasExpiringTsaCert
The timestamp will expire within one year on YYYY-MM-DD.

noTimestamp

This JAR contains signatures that doesn’t include a timestamp. Without a timestamp,
users may not be able to validate this JAR file after the signer certificate's expiration
date (YYYY-MM-DD) or after any future revocation date.

Example of Signing a JAR File

Use the following command to sign bundle. jar with the private key of a user whose
keystore alias is jane in a keystore named mystore in the working directory and name
the signed JAR file sbundle.jar:

jarsigner -keystore /working/mystore
-storepass keystore password
-keypass private key password
-signedjar sbundle.jar bundle.jar jane

There is no -sigfile specified in the previous command so the generated . sF
and .DSA files to be placed in the signed JAR file have default names based on the
alias name. They are named JANE. SF and JANE . DSA.

ORACLE 4-52

ORACLE

Chapter 4
jarsigner

If you want to be prompted for the store password and the private key password, then you
could shorten the previous command to the following:

jarsigner -keystore /working/mystore
-signedjar sbundle.jar bundle.jar Jjane

If the keystore is the default keystore (. keystore in your home directory), then you don’t
need to specify a keystore, as follows:

jarsigner -signedjar sbundle.jar bundle.jar jane

If you want the signed JAR file to overwrite the input JAR file (bundle.jar), then you don't
need to specify a -signedjar option, as follows:

jarsigner bundle.jar jane

Example of Verifying a Signed JAR File

To verify a signed JAR file to ensure that the signature is valid and the JAR file wasn't been
tampered with, use a command such as the following:

jarsigner -verify ButtonDemo.jar

When the verification is successful, jar verified is displayed. Otherwise, an error message
is displayed. You can get more information when you use the -verbose option. A sample use
of jarsigner with the -verbose option follows:

jarsigner -verify -verbose ButtonDemo.jar

S 866 Tue Sep 12 20:08:48 EDT 2017 META-INF/MANIFEST.MF
825 Tue Sep 12 20:08:48 EDT 2017 META-INF/ORACLE C.SF
7475 Tue Sep 12 20:08:48 EDT 2017 META—INF/ORACLEiC.RSA
0 Tue Sep 12 20:07:54 EDT 2017 META-INF/
0 Tue Sep 12 20:07:16 EDT 2017 components/
0 Tue Sep 12 20:07:16 EDT 2017 components/images/

sm 523 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo$l.class
sm 3440 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo.class
sm 2346 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo.jnlp
sm 172 Tue Sep 12 20:07:16 EDT 2017 components/images/left.gif
sm 235 Tue Sep 12 20:07:16 EDT 2017 components/images/middle.gif
sm 172 Tue Sep 12 20:07:16 EDT 2017 components/images/right.gif

s = signature was verified
m = entry is listed in manifest
k = at least one certificate was found in keystore

- Signed by "CN="Oracle America, Inc.", OU=Software Engineering, O="Oracle
America, Inc.", L=Redwood City, ST=California, C=US"
Digest algorithm: SHA-256
Signature algorithm: SHA256withRSA, 2048-bit key
Timestamped by "CN=Symantec Time Stamping Services Signer - G4, O=Symantec
Corporation, C=US" on Tue Sep 12 20:08:49 UTC 2017

4-53

ORACLE

Chapter 4
jarsigner

Timestamp digest algorithm: SHA-1
Timestamp signature algorithm: SHAlwithRSA, 2048-bit key

jar verified.

The signer certificate expired on 2018-02-01. However, the JAR will be
valid until the timestamp expires on 2020-12-29.

Example of Verification with Certificate Information

If you specify the -certs option with the -verify and -verbose options, then the
output includes certificate information for each signer of the JAR file. The information
includes the certificate type, the signer distinguished name information (when it is an
X.509 certificate), and in parentheses, the keystore alias for the signer when the public
key certificate in the JAR file matches the one in a keystore entry, for example:

jarsigner -keystore $JAVA HOME/lib/security/cacerts -verify -verbose -
certs ButtonDemo.jar

s k 866 Tue Sep 12 20:08:48 EDT 2017 META-INF/MANIFEST.MF

>>> Signer

X.509, CN="Oracle America, Inc.", OU=Software Engineering,
0="Oracle America, Inc.", L=Redwood City, ST=California, C=US

[certificate is valid from 2017-01-30, 7:00 PM to 2018-02-01,
6:59 PM]

X.509, CN=Symantec Class 3 SHA256 Code Signing CA, OU=Symantec
Trust Network, O=Symantec Corporation, C=US

[certificate is valid from 2013-12-09, 7:00 PM to 2023-12-09,
6:59 PM]

X.509, CN=VeriSign Class 3 Public Primary Certification
Authority - G5, 0U="(c) 2006 VeriSign, Inc. - For authorized use
only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US
(verisignclass3gbca [jdk])

[trusted certificate]

>>> TSA

X.509, CN=Symantec Time Stamping Services Signer - G4,
O=Symantec Corporation, C=US

[certificate is valid from 2012-10-17, 8:00 PM to 2020-12-29,
6:59 PM]

X.509, CN=Symantec Time Stamping Services CA - G2, O=Symantec
Corporation, C=US

[certificate is valid from 2012-12-20, 7:00 PM to 2020-12-30,
6:59 PM]

825 Tue Sep 12 20:08:48 EDT 2017 META—INF/ORACLE_C.SF
7475 Tue Sep 12 20:08:48 EDT 2017 META—INF/ORACLE_C.RSA
0 Tue Sep 12 20:07:54 EDT 2017 META-INF/
0 Tue Sep 12 20:07:16 EDT 2017 components/
0 Tue Sep 12 20:07:16 EDT 2017 components/images/
smk 523 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo$1.class

[entry was signed on 2017-09-12, 4:08 PM]

>>> Signer
X.509, CN="Oracle America, Inc.", OU=Software Engineering,

4-54

Chapter 4
jarsigner

0="Oracle America, Inc.", L=Redwood City, ST=California, C=US

[certificate is valid from 2017-01-30, 7:00 PM to 2018-02-01, 6:59 PM]

X.509, CN=Symantec Class 3 SHA256 Code Signing CA, OU=Symantec Trust
Network, O=Symantec Corporation, C=US

[certificate is valid from 2013-12-09, 7:00 PM to 2023-12-09, 6:59 PM]

X.509, CN=VeriSign Class 3 Public Primary Certification Authority -
G5, 0U="(c) 2006 VeriSign, Inc. - For authorized use only", OU=VeriSign
Trust Network, 0="VeriSign, Inc.", C=US (verisignclass3gbca [jdk])

[trusted certificate]

>>> TSA

X.509, CN=Symantec Time Stamping Services Signer - G4, O=Symantec
Corporation, C=US

[certificate is valid from 2012-10-17, 8:00 PM to 2020-12-29, 6:59 PM]

X.509, CN=Symantec Time Stamping Services CA - G2, O=Symantec
Corporation, C=US

[certificate is valid from 2012-12-20, 7:00 PM to 2020-12-30, 6:59 PM]

smk 3440 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo.class
smk 2346 Tue Sep 12 20:07:16 EDT 2017 components/ButtonDemo.jnlp

smk 172 Tue Sep 12 20:07:16 EDT 2017 components/images/left.gif

smk 235 Tue Sep 12 20:07:16 EDT 2017 components/images/middle.gif
smk 172 Tue Sep 12 20:07:16 EDT 2017 components/images/right.gif

s = signature was verified
m = entry is listed in manifest
at least one certificate was found in keystore

-
Il

- Signed by "CN="Oracle America, Inc.", OU=Software Engineering, O="Oracle
America, Inc.", L=Redwood City, ST=California, C=US"

Digest algorithm: SHA-256

Signature algorithm: SHA256withRSA, 2048-bit key

Timestamped by "CN=Symantec Time Stamping Services Signer - G4, O=Symantec

Corporation, C=US" on Tue Sep 12 20:08:49 UTC 2017

Timestamp digest algorithm: SHA-1

Timestamp signature algorithm: SHAlwithRSA, 2048-bit key

jar verified.

The signer certificate expired on 2018-02-01. However, the JAR will be valid
until the timestamp expires on 2020-12-29.

If the certificate for a signer isn’t an X.509 certificate, then there is no distinguished name
information. In that case, just the certificate type and the alias are shown. For example, if the
certificate is a PGP certificate, and the alias is bob, then you would get: PGP, (bob).

ORACLE 4-55

Chapter 4
kinit

Kinit
You use the kinit tool and its options to obtain and cache Kerberos ticket-granting
tickets.

Synopsis

Initial ticket request:

kinit [-A] [-f] [-p] [-c cache name] [-1 lifetime] [-r renewable time]
[[-k [-t keytab file name]] [principal] [password]

Renew a ticket:

kinit -R [-c cache name] [principal]

Description

This tool is similar in functionality to the kinit tool that is commonly found in other
Kerberos implementations, such as SEAM and MIT Reference implementations. The
user must be registered as a principal with the Key Distribution Center (KDC) prior to
running kinit.

By default, on Windows, a cache file named USER _HOME\krb5cc USER NAME iS
generated.

The identifier USER_HOME is obtained from the java.lang.System property user.home.
USER NAME is obtained from the java.lang.System property user.name. If USER_HOME is
null, the cache file is stored in the current directory from which the program is running.
USER NAME is the operating system's login user name. This user name could be
different from the user's principal name. For example, on Windows, the cache file
could be C:\Windows\Users\duke\krb5cc_duke, in which duke is the USER_NAME and
C:\Windows\Users\duke is the USER HOME.

By default, the keytab name is retrieved from the Kerberos configuration file. If the
keytab name isn't specified in the Kerberos configuration file, the kinit tool assumes
that the name is USER_HOME\krb5.keytab.

If you don't specify the password by using the password option on the command line,
the kinit tool prompts you for the password.

" Note:

The password option is provided only for testing purposes. Don't specify your
password in a script or provide your password on the command line. Doing
so will compromise your password.

Commands

You can specify one of the following commands. After the command, specify the
options for it.

ORACLE 4-56

ORACLE

Chapter 4
kinit

-A
Doesn't include addresses.

-f
Issues a forwardable ticket.

-p
Issues a proxiable ticket.

-c cache_name
The cache name (for example, FILE:D: \temp\mykrb5cc).

-1 lifetime
Sets the lifetime of a ticket. The value can be one of "h:m[:s]", "NdNhNmNSs", and "N". See
the MIT krb5 Time Duration definition for more information.

-r renewable time
Sets the total lifetime that a ticket can be renewed.

-R
Renews a ticket.

-k
Uses keytab

-t keytab filename
The keytab name (for example, D: \winnt\profiles\duke\krb5.keytab).

principal
The principal name (for example, duke@example. com).

password
The principal’s Kerberos password. Don’t specify this on the command line or in a
script.

Run kinit -help to display the instructions above.

Examples

Requests credentials valid for authentication from the current client host, for the default
services, storing the credentials cache in the default location
(C:\Windows\Users\duke\krb5cc_ duke):

kinit duke@example.com

Requests proxiable credentials for a different principal and stores these credentials in a
specified file cache:

kinit -1 1h -r 10h duke@example.com

Requests a TGT for the specified principal that will expire in 1 hour but is renewable for up to
10 hours. Users must renew a ticket before it has expired. The renewed ticket can be
renewed repeatedly within 10 hours from its initial request.

kinit -R duke@example.com

4-57

http://web.mit.edu/kerberos/krb5-1.17/doc/basic/date_format.html#duration

Chapter 4
klist

Renews an existing renewable TGT for the specified principal.

kinit -p -c FILE:C:\Windows\Users\duke\credentials\krb5cc cafebeef
cafebeef@example.com

Requests proxiable and forwardable credentials for a different principal and stores
these credentials in a specified file cache:

kinit -f -p -c FILE:C:\Windows\Users\duke\credentials\krb5cc cafebeef
cafebeef@example.com

Displays the help menu for the kinit tool:

kinit -help

klist

You use the klist tool to display the entries in the local credentials cache and key
table.

Synopsis

klist [[-c] [-f] [-e] [-a [-n]]] [~k [-t] [-K]] [name] [-help]]

Description

The klist tool displays the entries in the local credentials cache and key table. After
you modify the credentials cache with the kinit tool or modify the keytab with the ktab
tool, the only way to verify the changes is to view the contents of the credentials cache
or keytab using the k1ist tool. The k1list tool doesn’t change the Kerberos database.

Commands

-C
Specifies that the credential cache is to be listed.
The following are the options for credential cache entries:

-f
Show credential flags.

-e
Show the encryption type.

-a
Show addresses.

-n
If the -a option is specified, don't reverse resolve addresses.

-k

Specifies that key tab is to be listed.
List the keytab entries. The following are the options for keytab entries:

ORACLE 4-58

ktab

ORACLE

Chapter 4
ktab

-t
Show keytab entry timestamps.

-K
Show keytab entry DES keys.

-e
Shows keytab entry key type.

name

Specifies the credential cache name or the keytab name. File-based cache or keytab's prefix
is FILE:. If the name isn’t specified, the k1ist tool uses default values for the cache name
and keytab. The kinit documentation lists these default values.

-help
Displays instructions.

Examples

List entries in the keytable specified including keytab entry timestamps and DES keys:

klist -k -t -K FILE:\temp\mykrb5cc

List entries in the credentials cache specified including credentials flag and address list:

klist -c¢ -f FILE:\temp\mykrb5cc

You use the ktab tool to manage the principal names and service keys stored in a local key
table.

Synopsis

ktab commands options

commands options
Lists the keytab name and entries, adds new key entries to the keytab, deletes existing key
entries, and displays instructions. See Commands and Options.

Description

The ktab enables the user to manage the principal names and service keys stored in a local
key table. Principal and key pairs listed in the keytab enable services running on a host to
authenticate themselves to the Key Distribution Center (KDC).

Before configuring a server to use Kerberos, you must set up a keytab on the host running
the server. Note that any updates made to the keytab using the ktab tool don't affect the
Kerberos database.

A keytab is a host's copy of its own keylist, which is analogous to a user's password. An
application server that needs to authenticate itself to the Key Distribution Center (KDC) must
have a keytab which contains its own principal and key. If you change the keys in the keytab,
you must also make the corresponding changes to the Kerberos database. The ktab tool

4-59

ORACLE

Chapter 4
ktab

enables you to list, add, update or delete principal names and key pairs in the key
table. None of these operations affect the Kerberos database.

Security Alert

Don't specify your password on the command line. Doing so can be a security risk. For
example, an attacker could discover your password while running the UNIX ps
command.

Just as it is important for users to protect their passwords, it is equally important for
hosts to protect their keytabs. You should always store keytab files on the local disk
and make them readable only by root. You should never send a keytab file over a
network in the clear.

Commands and Options

-1 [-e] [-t]
Lists the keytab name and entries. When -e is specified, the encryption type for each
entry is displayed. When -t is specified, the timestamp for each entry is displayed.

-a principal name [password] [-n kvno] [-append]

Adds new key entries to the keytab for the given principal name with an optional
password. If a kvno is specified, the new keys' Key Version Numbers is equal to the
value, otherwise, it automatically increments the Key Version Numbers. If -append is
specified, new keys are appended to the keytab, otherwise, old keys for the same
principal are removed.

No changes are made to the Kerberos database. Don’t specify the password on
the command line or in a script. This tool will prompt for a password if it isn’t
specified.

-d principal name [—f] [-e etype] [kvno | all | old]
Deletes key entries from the keytab for the specified principal. No changes are made
to the Kerberos database.

* If kvno is specified, the tool deletes keys whose Key Version Numbers match
kvno.

* If all is specified, the tool deletes all keys.

« If old is specified, the tool deletes all keys except those with the highest kvno.
The default action is all.

e If etype is specified, the tool only deletes keys of this encryption type. etype
should be specified as the numeric value etype defined in RFC 3961, section 8. A
prompt to confirm the deletion is displayed unless -f is specified.

When etype is provided, only the entry matching this encryption type is deleted.
Otherwise, all entries are deleted.

-help
Displays instructions.

Common Options

This option can be used with the -1, -a, or -d commands.

4-60

Chapter 4
ktab

-k keytab name
Specifies the keytab name and path with the FILE: prefix.

Examples

Lists all the entries in the default keytable

ktab -1

Adds a new principal to the key table (note that you will be prompted for your
password)

ktab -a duke@example.com

Deletes a principal from the key table

ktab -d duke@example.com

ORACLE 4-61

Remote Method Invocation (RMI) Tools and
Commands

You use the RMI tools and commands to create applications that interact over the web or with
another network.

The following sections describe the RMI tools and commands:

* rmic: You use the rmic compiler to generate stub and skeleton class files using the Java
Remote Method Protocol (JRMP).

* rmiregistry: You use the rmiregistry command on UNIX-based systems to create and
start a remote object registry on the specified port on the current host.

* rmid: You use the rmid command to start the activation system daemon that enables
objects to be registered and activated in a Java Virtual Machine (JVM).

» serialver: You use the serialver command to return the serialVersionUID for one or
more classes in a form suitable for copying into an evolving class.

rmic

You use the rmic compiler to generate stub and skeleton class files using the Java Remote
Method Protocol (JRMP).

Synopsis

rmic [options] package-qualified-class-names

options
This represents the command-line options for the rmic compiler. See Options for the rmic
Compiler.

package-qualified-class-names
Class names that include their packages, for example, java.awt.Color.

Description

" Note:

Support for static generation of Java Remote Method Protocol (JRMP) stubs and
skeletons has been deprecated. Oracle recommends that you use dynamically
generated JRMP stubs instead, eliminating the need to use this tool for JRMP-
based applications.

The rmic compiler generates stub and skeleton class files using the JRMP.

ORACLE 5-1

ORACLE

Chapter 5
rmic

< Note:

The rmic compiler has been updated to remove the -id1 and -iiop options
and can no longer generate IDL or IIOP stubs and tie classes.

JRMP class files are generated from compiled Java programming language classes
that are remote object implementation classes. A remote implementation class is a
class that implements the interface java.rmi.Remote. The class names in the rmic
command must be for classes that were compiled successfully with the javac
command and must be fully package qualified. For example, running the rmic
command on the class file name HelloImpl as shown here creates the

HelloImpl Stub.class file in the hello subdirectory (named for the class's package):

rmic hello.HelloImpl

A skeleton for a remote object is a JRMP protocol server-side entity that has a method
that dispatches calls to the remote object implementation.

A stub is a client-side proxy for a remote object that's responsible for communicating
method invocations on remote objects to the server where the actual remote object
implementation resides. A client's reference to a remote object, therefore, is actually a
reference to a local stub.

By default, the rmic command generates stub classes that use the 1.2 JRMP stub
protocol version only, as though the -v1.2 option were specified. See Options for the
rmic Compiler.

A stub implements only the remote interfaces, and not local interfaces that the remote
object also implements. Because a JRMP stub implements the same set of remote
interfaces as the remote object, a client can use the Java programming language built-
in operators for casting and type checking.

Options for the rmic Compiler

-bootclasspath path
Overrides the location of bootstrap class files.

-classpath path

Specifies the path the rmic command uses to look up classes. This option overrides
the default or the CLASSPATH environment variable when it is set. Directories are
separated by colons or semicolons, depending on your operating system. The
following is the general format for path:

* Oracle Solaris, Linux, and macOS: . : your path, for example: .:/usr/local/
java/classes

* Windows: .;your path, for example: .; /usr/local/java/classes

-d directory
Specifies the root destination directory for the generated class hierarchy. You can use
this option to specify a destination directory for the stub, skeleton, and tie files.

5-2

ORACLE

Chapter 5
rmic

* Oracle Solaris, Linux, and macOS: For example, the following command places the
stub and skeleton classes derived from MyClass into the directory /java/classes/
exampleclass:

rmic -d /java/classes exampleclass.MyClass

e Windows: For example, the following command places the stub and skeleton classes
derived from MyClass into the directory C:\java\classes\exampleclass:

rmic -d C:\java\classes exampleclass.MyClass

If the -d option isn’t specified, then the default behavior is as though -d was specified. The
package hierarchy of the target class is created in the current directory, and stub/tie/skeleton
files are placed within it.

-g
Enables the generation of all debugging information, including local variables. By default,
only line number information is generated.

-Jargument
Used with any Java command, the -J option passes the argument that follows it (no spaces
between the -J and the argument) to the Java interpreter.

-keep Or -keepgenerated
Retains the generated . java source files for the stub, skeleton, and tie classes and writes
them to the same directory as the .class files.

-nowarn
Turns off warnings. When the -nowarn option is used, the compiler doesn’t print warnings.

-nowrite
Doesn't write compiled classes to the file system.

-vcompat (deprecated)

Generates stub and skeleton classes that are compatible with both the 1.1 and 1.2 JRMP
stub protocol versions. This option was the default in releases before 5.0. The generated
stub classes use the 1.1 stub protocol version when loaded in a JDK 1.1 virtual machine and
use the 1.2 stub protocol version when loaded into a 1.2 (or later) virtual machine. The
generated skeleton classes support both 1.1 and 1.2 stub protocol versions. The generated
classes are relatively large to support both modes of operation.

Note:

This option has been deprecated. See Description.

-verbose
Causes the compiler and linker to print messages about what classes are being compiled
and what class files are being loaded.

-v1l.1 (deprecated)
Generates stub and skeleton classes for the 1.1 JRMP stub protocol version only. The -v1.1
option is useful only for generating stub classes that are serialization-compatible with

5-3

Chapter 5
rmiregistry

existing, statically deployed stub classes generated by the rmic command from JDK
1.1 that can't be upgraded (and dynamic class loading isn’'t being used).

" Note:

This option has been deprecated. See Description.

-v1.2 (deprecated)

(Default) Generates stub classes for the 1.2 JRMP stub protocol version only. No
skeleton classes are generated because skeleton classes aren’t used with the 1.2
stub protocol version. The generated stub classes don’t work when they’re loaded into
a JDK 1.1 virtual machine.

< Note:

This option has been deprecated. See Description.

Environment Variables
CLASSPATH
Used to provide the system a path to user-defined classes.

» Oracle Solaris, Linux, and macOS: Directories are separated by colons, for
example:

.:/usr/local/java/classes
* Windows: Directories are separated by colons, for example:

.;C:\usr\locall\java\classes

rmiregistry

ORACLE

You use the rmiregistry command on UNIX-based systems to create and start a
remote object registry on the specified port on the current host.

Synopsis

rmiregistry options port

options
This represents the option for the rmiregistry command. See Options

port
The number of a port on the current host at which to start the remote object registry.

Description

On Oracle Solaris, Linux, and macOS systems, the rmiregistry command creates
and starts a remote object registry on the specified port on the current host. If the port

5-4

rmid

ORACLE

Chapter 5
rmid

is omitted, then the registry is started on port 1099. The rmiregistry command produces no
output and is typically run in the background, for example:

rmiregistry &

A remote object registry is a bootstrap naming service that's used by RMI servers on the
same host to bind remote objects to names. Clients on local and remote hosts can then look
up remote objects and make remote method invocations.

The registry is typically used to locate the first remote object on which an application needs to
call methods. That object then provides application-specific support for finding other objects.

The methods of the java.rmi.registry.LocateRegistry class are used to get a registry
operating on the local host or local host and port.

The URL-based methods of the java.rmi.Naming class operate on a registry and can be
used to:

e Bind the specified name to a remote object

e Return an array of the names bound in the registry

e Return a reference, a stub, for the remote object associated with the specified name
¢ Rebind the specified name to a new remote object

e Destroy the binding for the specified name that's associated with a remote object
Options

-Joption
Used with any Java option to pass the option following the -J (no spaces between the -J
and the option) to the Java interpreter.

You use the rmid command to start the activation system daemon that enables objects to be
registered and activated in a Java Virtual Machine (JVM).

Synopsis

rmid [options]

options
This represents the command-line options for the rmid command. See Options for rmid.

Description

The rmid command starts the activation system daemon. The activation system daemon
must be started before objects that can be activated are either registered with the activation
system or activated in a JVM.

Start the daemon by executing the rmid command and specifying a security policy file, as
follows:

rmid -J-Djava.security.policy=rmid.policy

5-5

ORACLE

Chapter 5
rmid

When you run Oracle's implementation of the rmid command, by default you must
specify a security policy file so that the rmid command can verify whether or not the
information in each ActivationGroupDesc is allowed to be used to start a JVM for an
activation group. Specifically, the command and options specified by the
CommandEnvironment and any properties passed to an ActivationGroupDesc
constructor must now be explicitly allowed in the security policy file for the rmid
command. The value of the sun.rmi.activation.execPolicy property dictates the
policy that the rmid command uses to determine whether or not the information in an
ActivationGroupDesc can be used to start a JVM for an activation group. For more
information, see the description of the -J-Dsun.rmi.activation.execPolicy=policy
option.

Executing the rmid command starts the Activator and an internal registry on the
default port 1098 and binds an ActivationSystem to the name
java.rmi.activation.ActivationSystem in this internal registry.

To specify an alternate port for the registry, you must specify the -port option when
you execute the rmid command. For example, the following command starts the
activation system daemon and a registry on the registry's default port, 1099.

rmid -J-Djava.security.policy=rmid.policy -port 1099

Start RMID on Demand (Oracle Solaris and Linux Only)

An alternative to starting rmid from the command line is to configure inetd (Oracle
Solaris) or xinetd (Linux) to start rmid on demand.

When RMID starts, it attempts to obtain an inherited channel (inherited from inetd/
xinetd) by calling the System. inheritedChannel method. If the inherited channel is
null or not an instance of java.nio.channels.ServerSocketChannel, then RMID
assumes that it wasn't started by inetd/xinetd, and it starts as previously described.

If the inherited channel is a ServerSocketChannel instance, then RMID uses the
java.net.ServerSocket obtained from the ServerSocketChannel as the server socket
that accepts requests for the remote objects it exports: The registry in which the
java.rmi.activation.ActivationSystem is bound and the
java.rmi.activation.Activator remote object. In this mode, RMID behaves the
same as when it is started from the command line, except in the following cases:

e Output printed to Ssystem.err is redirected to a file. This file is located in the
directory specified by the java.io.tmpdir system property (typically /var/tmp or /
tmp) with the prefix rmid-err and the suffix tmp.

e The -port option isn't allowed. If this option is specified, then RMID exits with an
error message.

e The -1og option is required. If this option isn’t specified, then RMID exits with an
error message

Options for rmid

-C option
Specifies an option that's passed as a command-line argument to each child process
(activation group) of the rmid command when that process is created. For example,

5-6

Chapter 5
rmid

you could pass a property to each virtual machine spawned by the activation system
daemon:

rmid -C-Dsome.property=value

This ability to pass command-line arguments to child processes can be useful for debugging.
For example, the following command enables server-call logging in all child JVMs.

rmid -C-Djava.rmi.server.logCalls=true

-Joption

Specifies an option that's passed to the Java interpreter running the RMID command. For
example, to specify that the rmid command use a policy file named rmid.policy, the -J
option can be used to define the java.security.policy property on the rmid command line,
for example:

rmid -J-Djava.security.policy-rmid.policy

-J-Dsun.rmi.activation.execPolicy=policy

Specifies the policy that the RMID command employs to check commands and command-
line options used to start the JVM in which an activation group runs. This option exists only in
Oracle's implementation of the Java RMI activation daemon. If this property isn’t specified on
the command line, then the result is the same as though -J-
Dsun.rmi.activation.execPolicy=default were specified.

The possible values of policy can be default, policyClassName, Of none.

o default

The default or unspecified value execPolicy allows the rmid command to execute
commands with specific command-line options only when the rmid command was
granted permission to execute those commands and options in the security policy file
that the rmid command uses. Only the default activation group implementation can be
used with the default execution policy.

The rmid command starts a JVM for an activation group with the information in the
group's registered activation group descriptor, ActivationGroupDesc. The group
descriptor specifies an optional ActivationGroupDesc.CommandEnvironment that
includes the command to execute to start the activation group and any command-line
options to be added to the command line. By default, the rmid command uses the java
command found in java.home. The group descriptor also contains properties overrides
that are added to the command line as options defined as: -Dproperty=value. The
com.sun.rmi.rmid.ExecPermission permission grants the rmid command permission to
execute a command that’s specified in the group descriptor's CommandEnvironment to
start an activation group. The com. sun.rmi.rmid.ExecOptionPermission permission
enables the rmid command to use command-line options, specified as properties
overrides in the group descriptor or as options in the CommandEnvironment when starting
the activation group. When granting the rmid command permission to execute various
commands and options, the permissions ExecPermission and ExecOptionPermission
must be granted to all code sources.

ORACLE .

ORACLE

Chapter 5
rmid

ExecPermission class: Represents permission for the rmid command to execute
a specific command to start an activation group.

ExecPermission syntax: The name of ExecPermission is the path name of a
command to grant the rmid command permission to execute.

A path name that ends in a slash (/) and an asterisk (*) indicates that all of the
files are contained in that directory where the slash is the file-separator character,
File.separatorChar.

A path name that ends in a slash (/) and a minus sign (-) indicates that all files
and subdirectories are contained in that directory (recursively).

A path name that consists of the special token <<ALL FILES>> matches any file.

A path name that consists of an asterisk (*) indicates that all the files are in the
current directory.

A path name that consists of a minus sign (-) indicates that all the files are in the
current directory and (recursively) all files and subdirectories are contained in the
current directory.

ExecOptionPermission class: Represents permission for the rmid command to
use a specific command-line option when starting an activation group. The name
of ExecOptionPermission is the value of a command-line option.

ExecOptionPermission syntax: Options support a limited wild card scheme. An
asterisk signifies a wild card match, and it can appear as the option name itself
(matches any option), or an asterisk (*) can appear at the end of the option name
only when the asterisk (*) follows a dot (.) or an equals sign (=).

For example: * or -Dmydir.* or -Da.b.c=* is valid, but *mydir or -Da*b Or ab*
isn’t valid.

Policy file for rmid

When you grant the rmid command permission to execute various commands
and options, the permissions ExecPermission and ExecOptionPermission must

be granted to all code sources (universally). It is safe to grant these permissions
universally because only the rmid command checks these permissions.

An example policy file that grants various execute permissions to the rmid
command is:

— Oracle Solaris:

grant {
permission com.sun.rmi.rmid.ExecPermission
"/files/apps/java/jdkl.7.0/solaris/bin/java";

permission com.sun.rmi.rmid.ExecPermission
"/files/apps/rmidcmds/*";

permission com.sun.rmi.rmid.ExecOptionPermission
"-Djava.security.policy=/files/policies/group.policy";

5-8

Chapter 5
rmid

permission com.sun.rmi.rmid.ExecOptionPermission
"-Djava.security.debug=*";

permission com.sun.rmi.rmid.ExecOptionPermission
"-Dsun.rmi.*";

}i
— Windows:

grant {
permission com.sun.rmi.rmid.ExecPermission
"c:\\files\\apps\\java\\jdkl.7.0\\win\\bin\\java";

permission com.sun.rmi.rmid.ExecPermission
"c:\\files\\apps\\rmidcmds*";

permission com.sun.rmi.rmid.ExecOptionPermission
"-Djava.security.policy=c:\\files\\policies\\group.policy";

permission com.sun.rmi.rmid.ExecOptionPermission
"-Djava.security.debug=*";

permission com.sun.rmi.rmid.ExecOptionPermission
"-Dsun.rmi.*";

}i

The first permission granted allows the rmid command to execute the 1.7.0 release of
the java command, specified by its explicit path name. By default, the version of the
java command found in java.home is used (the same one that the rmid command uses),
and doesn’t need to be specified in the policy file. The second permission allows the
rmid command to execute any command in either the directory /files/apps/rmidcmds
(Oracle Solaris, Linux, and macOS) or the directory c:\files\apps\rmidcmds\
(Windows).

The third permission granted, ExecOptionPermission, allows the rmid command to start
an activation group that defines the security policy file to be either /files/policies/
group.policy (Oracle Solaris) or c:\files\policies\group.policy (Windows). The
next permission allows the java.security.debug property to be used by an activation
group. The last permission allows any property in the sun.rmi property name hierarchy
to be used by activation groups.

To start the rmid command with a policy file, the java.security.policy property needs
to be specified on the rmid command line, for example:

rmid -J-Djava.security.policy=rmid.policy.
* policyClassName

If the default behavior isn't flexible enough, then an administrator can provide, when
starting the rmid command, the name of a class whose checkExecCommand method is
executed to check commands to be executed by the rmid command.

ORACLE 5.9

serialver

ORACLE

Chapter 5
serialver

The policyClassName specifies a public class with a public, no-argument
constructor and an implementation of the following checkExecCommand method:

public void checkExecCommand (ActivationGroupDesc desc, Stringl[]
command)
throws SecurityException;

Before starting an activation group, the rmid command calls the policy's
checkExecCommand method and passes to it the activation group descriptor and an
array that contains the complete command to start the activation group. If the
checkExecCommand throws a SecurityException, then the rmid command doesn’t
start the activation group and an ActivationException is thrown to the caller
attempting to activate the object.

° none

If the sun.rmi.activation.execPolicy property value is none, then the rmid
command doesn’t perform any validation of commands to start activation groups.

-log dir

Specifies the name of the directory that the activation system daemon uses to write its
database and associated information. The log directory defaults to creating a log, in
the directory in which the rmid command was executed.

-port port

Specifies the port that the registry uses. The activation system daemon binds
ActivationSystem, with the name java.rmi.activation.ActivationSystem, in this
registry. The ActivationSystem on the local machine can be obtained using the
following Naming. lookup method call:

import java.rmi.*;
import java.rmi.activation.*;

ActivationSystem system; system = (ActivationSystem)
Naming.lookup ("//:port/java.rmi.activation.ActivationSystem");

-stop

Stops the current invocation of the rmid command for a port specified by the -port
option. If no port is specified, then this option stops the rmid invocation running on
port 1098.

You use the serialver command to return the serialVersionUID for one or more
classes in a form suitable for copying into an evolving class.

Synopsis

serialver [options] [classnames]

5-10

ORACLE

Chapter 5
serialver

options
This represents the command-line options for the serialver command. See Options for
serialver.

classnames
The classes for which serialversionUID is to be returned.

Description

The serialver command returns the serialVersionUID for one or more classes in a form
suitable for copying into an evolving class. When called with no arguments, the serialver
command prints a usage line.

Options for serialver

-classpath path-files
Sets the search path for application classes and resources. Separate classes and resources
with a colon (:).

-Joption
Passes the specified option to the Java Virtual Machine, where option is one of the options

described on the reference page for the Java application launcher. For example, -J-Xms48m
sets the startup memory to 48 MB.

Notes

The serialver command loads and initializes the specified classes in its virtual machine, and
by default, it doesn'’t set a security manager. If the serialver command is to be run with
untrusted classes, then a security manager can be set with the following option:

-J-Djava.security.manager

When necessary, a security policy can be specified with the following option:

-J-Djava.security.policy=policy file

5-11

Java Deployment Tools and Commands

pack200

ORACLE

You use Java deployment tools and commands to package Java applications for deployment.

The following sections describe the deployment tools and commands:

Note:

pack200 and unpack200 have been deprecated and might be removed in a future
JDK release.

* pack200: You use the pack200 command to transform a Java Archive (JAR) file into a
compressed pack200 file with the Java gzip compressor.

e unpack200: You use the unpack200 command to transform a packed file into a JAR file
for web deployment.

You use the pack200 command to transform a Java Archive (JAR) file into a compressed
pack200 file with the Java gzip compressor.

Synopsis

" Note:

pack200 and unpack200 have been deprecated and might be removed in a future
JDK release.

pack200 [-opt... | --option=value] x.pack[.gz] JAR-file

-opt... | --option=value
Options can be in any order. The last option on the command line or in a properties file
supersedes all previously specified options. See Options for the pack200 Command.

x.pack[.gz]
Name of the output file.

file.jar
Name of the input file.

6-1

ORACLE

Chapter 6
pack200

Description

The pack200 command is a Java application that transforms a JAR file into a
compressed pack200 file with the Java gzip compressor. This command packages a
JAR file into a compressed pack200 file for web deployment. The pack200 files are
highly compressed files that can be directly deployed to save bandwidth and reduce
download time.

Typical usage is shown in the following example, where myarchive.pack.gz is
produced with the default pack200 command settings:

pack200 myarchive.pack.gz myarchive.jar

Note:

This command shouldn’t be confused with pack. The pack and pack200
commands are separate products. The Java SE API Specification provided
with the JDK is the superseding authority, when there are discrepancies.

Exit Status

The following exit values are returned: O for successful completion and a number
greater than 0 when an error occurs.

Options for the pack200 Command

The pack200 command has several options to fine-tune and set the compression
engine. The typical usage is shown in the following example, where
myarchive.pack.gz is produced with the default pack200 command settings:

pack200 myarchive.pack.gz myarchive.jar

-r Or --repack

Produces a JAR file by packing and unpacking a JAR file. The resulting file can be
used as an input to the jarsigner tool. The following example packs and unpacks the
myarchive.jar file:

pack200 --repack myarchive-packer.jar myarchive.jar
pack200 --repack myarchive.jar

-g Or --no-gzip
Produces a pack200 file. With this option, a suitable compressor must be used, and
the target system must use a corresponding decompresser.

pack200 --no-gzip myarchive.pack myarchive.jar

--gzip
(Default) Post-compresses the pack output with gzip.

6-2

ORACLE

Chapter 6
pack200

-G or --strip-debug

Strips debugging attributes from the output. These include SourceFile, LineNumberTable,
LocalVariableTable and LocalVariableTypeTable. Removing these attributes reduces the
size of both downloads and installations, also reduces the usefulness of debuggers.

--keep-file-order
Preserves the order of files in the input file. This is the default behavior.

-0 or --no-keep-file-order

Reorders and transmits all elements. The packer can also remove JAR directory names to
reduce the download size. However, certain JAR file optimizations, such as indexing, might
not work correctly.

-SNor --segment-limit=N

The value is the estimated target size N (in bytes) of each archive segment. If a single input
file requires more than v bytes, then its own archive segment is provided. As a special case,
a value of -1 produces a single large segment with all input files, while a value of O produces
one segment for each class. Larger archive segments result in less fragmentation and better
compression, but processing them requires more memory.

The size of each segment is estimated by counting the size of each input file to be
transmitted in the segment with the size of its name and other transmitted properties.

The default is -1, which means that the packer creates a single segment output file. In cases
where extremely large output files are generated, users are strongly encouraged to use
segmenting or break up the input file into smaller JAR files.

A 10 MB JAR packed without this limit typically packs about 10 percent smaller, but the
packer might require a larger Java heap (about 10 times the segment limit).

-Evalue or --effort=value

If the value is set to a single decimal digit, then the packer uses the indicated amount of
effort in compressing the archive. Level 1 might produce somewhat larger size and faster
compression speed, while level 9 takes much longer, but can produce better compression.
The special value 0 instructs the pack200 command to copy through the original JAR file
directly with no compression. The JSR 200 standard requires any unpacker to understand
this special case as a pass-through of the entire archive.

The default is 5, to invest a modest amount of time to produce reasonable compression.

-Hvalue or --deflate-hint=value

Overrides the default, which preserves the input information, but can cause the transmitted
archive to be larger. The possible values are: true, false, Or keep.

If the value is true or false, then the packer200 command sets the deflation hint accordingly
in the output archive and doesn’t transmit the individual deflation hints of archive elements.
The keep value preserves deflation hints observed in the input JAR. This is the default.

-mvalue OF --modification-time=value

The possible values are latest and keep.

If the value is latest, then the packer attempts to determine the latest modification time,
among all the available entries in the original archive, or the latest modification time of all the
available entries in that segment. This single value is transmitted as part of the segment and
applied to all the entries in each segment. This can marginally decrease the transmitted size
of the archive at the expense of setting all installed files to a single date.

If the value is keep, then modification times observed in the input JAR are preserved. This is
the default.

6-3

ORACLE

Chapter 6
pack200

-Pfile Or --pass-file=file

Indicates that a file should be passed through bytewise with no compression. By
repeating the option, multiple files can be specified. There is no path name
transformation, except that the system file separator is replaced by the JAR file
separator forward slash (/). The resulting file names must match exactly as strings
with their occurrences in the JAR file. If file is a directory name, then all files under
that directory are passed.

-Uaction Oor --unknown-attribute=action

Overrides the default behavior, which means that the class file that contains the
unknown attribute is passed through with the specified action. The possible values
for actions are error, strip, Or pass.

If the value is error, then the entire pack200 command operation fails with a suitable
explanation.

If the value is strip, then the attribute is dropped. Removing the required Java Virtual
Machine (JVM) attributes can cause class loader failures.

If the value is pass, then the entire class is transmitted as though it is a resource.

-Cattribute-name=layout Or --class-attribute=attribute-name=action
(user-defined attribute) See the description for —Dattribute-name=Ilayout.

-Fattribute-name=layout Oor --field-attribute=attribute-name=action
(user-defined attribute) See the description for -Dattribute-name=layout

-Mattribute-name=layout Or --method-attribute=attribute-name=action
(user-defined attribute) See the description for —Dattribute-name=layout

—Dattribute-name=layout Or --code-attribute=attribute-name=action
(user-defined attribute) The attribute layout can be specified for a class entity, such as
class-attribute, field-attribute, method-attribute, and code-attribute. The
attribute-name is the name of the attribute for which the layout or action is being
defined. The possible values for action are some-layout-string, error, strip, pass.
some-layout-string: The layout language is defined in the JSR 200 specification, for
example: --class-attribute=SourceFile=RUH.

If the value is error, then the pack200 operation fails with an explanation.

If the value is strip, then the attribute is removed from the output. Removing JVM-
required attributes can cause class loader failures. For example, --class-
attribute=CompilationID=pass causes the class file that contains this attribute to be
passed through without further action by the packer.

If the value is pass, then the entire class is transmitted as though it's a resource.

-f pack.properties or --config-file=pack.properties
Indicates a configuration file, containing Java properties to initialize the packer, can be
specified on the command line.

pack200 -f pack.properties myarchive.pack.gz myarchive.jar
more pack.properties

Generic properties for the packer.
modification.time=latest

deflate.hint=false

keep.file.order=false

This option will cause the files bearing new attributes to

6-4

Chapter 6
unpack200

be reported as an error rather than passed uncompressed.
unknown.attribute=error

Change the segment limit to be unlimited.
segment.limit=-1

-v Or --verbose
Outputs minimal messages. Multiple specification of this option will create more verbose
messages.

-q Or --quiet
Specifies quiet operation with no messages.

-1filename Or --log-file=filename
Specifies a log file to output messages.

-?,-h, or--help
Prints help information about this command.

-V Oor --version
Prints version information about this command.

-Joption
Passes the specified option to the Java Virtual Machine. For example, -J-Xms48m sets the
startup memory to 48 MB.

unpack200

ORACLE

You use the unpack200 command to transform a packed file into a JAR file for web
deployment.

Synopsis

" Note:

pack200 and unpack200 have been deprecated and might be removed in a future
JDK release.

unpack200 [options] input-file JAR-file

options
The command-line options. See Options for the unpack200 Command.

input-file

Name of the input file, which can be a pack200 gzip file or a pack200 file. The input can also
be a JAR file produced by pack200 with an effort of 0, in which case the contents of the input
file are copied to the output JAR file with the pack200 marker.

JAR-file
Name of the output JAR file.

6-5

ORACLE

Chapter 6
unpack200

Description

The unpack200 command is a native implementation that transforms a packed file
produced by pack200 into a JAR file for web deployment. An example of typical usage
follows. In the following example, the myarchive. jar file is produced from
myarchive.pack.gz with the default unpack200 command settings.

unpack200 myarchive.pack.gz myarchive.jar

Options for the unpack200 Command

-Hvalue Or --deflate-hint=value

Sets deflation to be true, false, or keep on all entries within a JAR file. The default
mode is keep. If the value is true or false, then the --deflate=hint option overrides
the default behavior and sets the deflation mode on all entries within the output JAR
file.

-r Or --remove-pack-file
Removes the input pack file.

-v Or --verbose
Displays minimal messages. Multiple specifications of this option displays more
verbose messages.

-q Or --quiet
Specifies quiet operation with no messages.

-1 filename or --log-file=filename
Specifies a log file where output messages are logged.

-?, -h, or --help
Prints help information about the unpack200 command.

-V or --version
Prints version information about the unpack200 command.

-Joption

Passes option to the Java Virtual Machine, where option is one of the options
described on the reference page for the Java application launcher. For example, -J-
Xms48m sets the startup memory to 48 MB.

Notes

This command shouldn’t be confused with the unpack command. They're distinctly
separate products.

The Java SE API Specification provided with the JDK is the superseding authority in
case of discrepancies.

Exit Status

The following exit values are returned: 0 for successful completion, and a value that is
greater than 0 when an error occurred.

6-6

Monitoring Tools and Commands

jconsole

ORACLE

You use Java Virtual Machine (JVM) monitoring tools and commands to monitor and manage
Java applications and the JVM.

The following sections describe the JDK tools and commands used to monitor and manage
Java applications and the JVM:

e jconsole: You use the jconsole command to start a graphical console to monitor and
manage Java applications.

< Note:

Tools identified as Experimental are unsupported and might not be available in
future JDK releases.

* jps: Experimental You use the jps command to list the instrumented JVMs on the target
system.

» jstat: Experimental You use the jstat command to monitor JVM statistics.

e jstatd: Experimental You use the jstatd command to monitor the creation and
termination of instrumented Java HotSpot VMs.

You use the jconsole command to start a graphical console to monitor and manage Java
applications.

Synopsis
jconsole [-interval=n] [-notile] [-plugin path] [-version] [connection ...]

[-Jinput arguments]

jconsole -help

Options

-interval
Sets the update interval to n seconds (default is 4 seconds).

-notile
Doesn't tile the windows for two or more connections.

7-1

Jps

ORACLE

Chapter 7
jps

-pluginpath path

Specifies the path that jconsole uses to look up plug-ins. The plug-in path should
contain a provider-configuration file named META-INF/services/
com.sun.tools.jconsole.JConsolePlugin that contains one line for each plug-in.
The line specifies the fully qualified class name of the class implementing the
com.sun.tools.jconsole.JConsolePlugin class.

-version
Prints the program version.

connection = pid | host:port | jmxURL
A connection is described by either pid, host:port Or jmxURL.

* The pidvalue is the process ID of a target process. The JVM must be running
with the same user ID as the user ID running the jconsole command.

* The host:port values are the name of the host system on which the JVM is
running, and the port number specified by the system property
com.sun.management.jmxremote.port when the JVM was started.

* The jmxUrl value is the address of the JMX agent to be connected to as
described in JMXServiceURL.

-Jinput_arguments
Passes input_arguments to the JVM on which the jconsole command is run.

-help or --help
Displays the help message for the command.

Description

The jconsole command starts a graphical console tool that lets you monitor and
manage Java applications and virtual machines on a local or remote machine.

On Windows, the jconsole command doesn’t associate with a console window. It
does, however, display a dialog box with error information when the jconsole
command fails.

You use the jps command to list the instrumented JVMs on the target system.

Synopsis

Note:

This command is experimental and unsupported.

jps [-q] [-mlvV] [hostid]

jps [-help]

7-2

ORACLE

Chapter 7
jps

-9
Suppresses the output of the class name, JAR file name, and arguments passed to the main
method, producing a list of only local JVM identifiers.

-mlvV

e -mdisplays the arguments passed to the main method. The output may be null for
embedded JVMs.

» -1 displays the full package name for the application's main class or the full path name to
the application's JAR file.

* -v displays the arguments passed to the JVM.

e -V suppresses the output of the class name, JAR file name, and arguments passed to
the main method, producing a list of only local JVM identifiers.

hostid

The identifier of the host for which the process report should be generated. The hostid can
include optional components that indicate the communications protocol, port number, and
other implementation specific data. See Host Identifier.

-help
Displays the help message for the jps command.

Description

The jps command lists the instrumented Java HotSpot VMs on the target system. The
command is limited to reporting information on JVMs for which it has access permission.

Note:

JDK 10 added support for using the Attach APl when attaching to Java processes
running in a separate docker process. However, the jps tool cannot see JVM
processes running in a separate docker instance. If you are trying to connect a
Linux host with a Virtual Machine within a docker container, you must use tools
such as ps to look up the PID of the JVM and then specify the PID on the command
line of the tools that accept the PID.

If the jps command is run without specifying a hostid, then it searches for instrumented
JVMs on the local host. If started with a hostid, then it searches for JVMs on the indicated
host, using the specified protocol and port. A jstatd process is assumed to be running on the
target host.

The jps command reports the local JVM identifier, or 1vmid, for each instrumented JVM
found on the target system. The 1vmid is typically, but not necessarily, the operating system's
process identifier for the JVM process. With no options, the jps command lists each Java
application's Ivmid followed by the short form of the application's class name or JAR file
name. The short form of the class name or JAR file name omits the class's package
information or the JAR files path information.

The jps command uses the Java launcher to find the class name and arguments passed to
the main method. If the target JVM is started with a custom launcher, then the class or JAR
file name, and the arguments to the main method aren’t available. In this case, the jps

7-3

Chapter 7
jps

command outputs the string Unknown for the class name, or JAR file name, and for the
arguments to the main method.

The list of JVMs produced by the jps command can be limited by the permissions
granted to the principal running the command. The command lists only the JVMs for
which the principal has access rights as determined by operating system-specific
access control mechanisms.

Host Identifier

The host identifier, or hostid, is a string that indicates the target system. The syntax of
the hostid string corresponds to the syntax of a URI:

[protocol:]1[[//]hostname] [:port] [/servername]

protocol

The communications protocol. If the protocol is omitted and a hostname isn’t
specified, then the default protocol is a platform-specific, optimized, local protocol. If
the protocol is omitted and a host name is specified, then the default protocol is rmi.

hostname
A host name or IP address that indicates the target host. If you omit the hostname
parameter, then the target host is the local host.

port

The default port for communicating with the remote server. If the hostname parameter
is omitted or the protocol parameter specifies an optimized, local protocol, then the
port parameter is ignored. Otherwise, treatment of the port parameter is
implementation-specific. For the default rmi protocol, the port parameter indicates
the port number for the rmiregistry on the remote host. If the port parameter is
omitted, and the protocol parameter indicates rmi, then the default rmiregistry port
(1099) is used.

servername

The treatment of this parameter depends on the implementation. For the optimized,
local protocol, this field is ignored. For the rmi protocol, this parameter is a string that
represents the name of the RMI remote object on the remote host. See the
jstatdcommand -n option.

Output Format of the jps Command

The output of the jps command has the following pattern:

lvmid [[classname | JARfilename | "Unknown"] [arg*] [jvmarg*]]

All output tokens are separated by white space. An arg value that includes embedded
white space introduces ambiguity when attempting to map arguments to their actual
positional parameters.

ORACLE 7-4

ORACLE

Chapter 7
jps

< Note:

It's recommended that you don't write scripts to parse jps output because the
format might change in future releases. If you write scripts that parse jps output,
then expect to modify them for future releases of this tool.

Examples
This section provides examples of using the jps command.

List the instrumented JVMs on the local host:

Jps

18027 JavaZ2Demo.JAR
18032 Jjps

18005 jstat

The following example lists the instrumented JVMs on a remote host. This example assumes
that the jstat server and either its internal RMI registry or a separate external rmiregistry
process are running on the remote host on the default port (port 1099). It also assumes that
the local host has appropriate permissions to access the remote host. This example includes
the -1 option to output the long form of the class names or JAR file names.

jps -1 remote.domain
3002 /opt/jdkl.7.0/demo/jfc/Java2D/Java2Demo.JAR
2857 sun.tools.jstatd.jstatd

The following example lists the instrumented JVMs on a remote host with a nondefault port
for the RMI registry. This example assumes that the jstatd server, with an internal RMI
registry bound to port 2002, is running on the remote host. This example also uses the -n
option to include the arguments passed to the main method of each of the listed Java
applications.

jps -m remote.domain:2002
3002 /opt/jdkl.7.0/demo/jfc/Java2D/Java2Demo.JAR
3102 sun.tools.jstatd.jstatd -p 2002

7-5

Jstat

ORACLE

Chapter 7
jstat

You use the jstat command to monitor JVM statistics.

Synopsis

Note:

This command is experimental and unsupported.

jstat generalOptions

jstat outputOptions [-t] \[-h lines] vmid [interval [count]]

generalOptions
A single general command-line option. See General Options.

outputOptions

An option reported by the -options option. One or more output options that consist of
a single statOption, plus any of the -t, -h, and -J options. See Output Options for
the jstat Command.

-t
Displays a time-stamp column as the first column of output. The time stamp is the
time since the start time of the target JVM.

-h n

Displays a column header every n samples (output rows), where n is a positive
integer. The default value is 0, which displays the column header of the first row of
data.

vmid
A virtual machine identifier, which is a string that indicates the target JVM. See Virtual
Machine Identifier.

interval

The sampling interval in the specified units, seconds (s), or milliseconds (ms). Default
units are milliseconds. This must be a positive integer. When specified, the jstat
command produces its output at each interval.

count

The number of samples to display. The default value is infinity, which causes the
jstat command to display statistics until the target JVM terminates or the jstat
command is terminated. This value must be a positive integer.

Description

The jstat command displays performance statistics for an instrumented Java HotSpot
VM. The target JVM is identified by its virtual machine identifier, or vmid option.

7-6

ORACLE

Chapter 7
jstat

The jstat command supports two types of options, general options and output options.
General options cause the jstat command to display simple usage and version information.
Output options determine the content and format of the statistical output.

All options and their functionality are subject to change or removal in future releases.

General Options

If you specify one of the general options, then you can't specify any other option or
parameter.

-help
Displays a help message.

-options
Displays a list of static options. See Output Options for the jstat Command.

Output Options for the jstat Command

If you don'’t specify a general option, then you can specify output options. Output options
determine the content and format of the jstat command's output, and consist of a single
statOption, plus any of the other output options (-h, -t, and -J). The statOption must come
first.

Output is formatted as a table, with columns that are separated by spaces. A header row with
titles describes the columns. Use the -h option to set the frequency at which the header is
displayed. Column header names are consistent among the different options. In general, if
two options provide a column with the same name, then the data source for the two columns
is the same.

Use the -t option to display a time-stamp column, labeled Timestamp as the first column of
output. The Timestamp column contains the elapsed time, in seconds, since the target JVM
started. The resolution of the time stamp is dependent on various factors and is subject to
variation due to delayed thread scheduling on heavily loaded systems.

Use the interval and count parameters to determine how frequently and how many times,
respectively, the jstat command displays its output.

< Note:

Don't write scripts to parse the jstat command's output because the format might
change in future releases. If you write scripts that parse the jstat command output,
then expect to modify them for future releases of this tool.

-statOption

Determines the statistics information that the jstat command displays. The following lists
the available options. Use the -options general option to display the list of options for a
particular platform installation. See Stat Options and Output.

class: Displays statistics about the behavior of the class loader.

compiler: Displays statistics about the behavior of the Java HotSpot VM Just-in-Time
compiler.

gc: Displays statistics about the behavior of the garbage collected heap.

7-7

ORACLE

Chapter 7
jstat

gccapacity: Displays statistics about the capacities of the generations and their
corresponding spaces.

gccause: Displays a summary about garbage collection statistics (same as -gcutil),
with the cause of the last and current (when applicable) garbage collection events.
gcnew: Displays statistics about the behavior of the new generation.
gcnewcapacity: Displays statistics about the sizes of the new generations and their
corresponding spaces.

gcold: Displays statistics about the behavior of the old generation and metaspace
statistics.

gcoldcapacity: Displays statistics about the sizes of the old generation.
gcmetacapacity: Displays statistics about the sizes of the metaspace.

gcutil: Displays a summary about garbage collection statistics.
printcompilation: Displays Java HotSpot VM compilation method statistics.

-JjavaOption
Passes javaOption to the Java application launcher. For example, -J-Xms48m sets the
startup memory to 48 MB. For a complete list of options, see java.

Stat Options and Output

The following information summarizes the columns that the jstat command outputs
for each statOption

-class option

Class loader statistics.

Loaded: Number of classes loaded.

Bytes: Number of KB loaded.

Unloaded: Number of classes unloaded.

Bytes: Number of KB loaded.

Time: Time spent performing class loading and unloading operations.

-compiler option

Java HotSpot VM Just-in-Time compiler statistics.

Compiled: Number of compilation tasks performed.

Failed: Number of compilations tasks failed.

Invalid: Number of compilation tasks that were invalidated.

Time: Time spent performing compilation tasks.

FailedType: Compile type of the last failed compilation.
FailedMethod: Class name and method of the last failed compilation.

-gc option

Garbage collected heap statistics.

s0c: Current survivor space 0 capacity (KB).
S1cC: Current survivor space 1 capacity (KB).
S0U: Survivor space 0 utilization (KB).

S1U: Survivor space 1 utilization (KB).

EC: Current eden space capacity (KB).

EU: Eden space utilization (KB).

oc: Current old space capacity (KB).

0U: Old space utilization (KB).

MC: Metaspace Committed Size (KB).

MU: Metaspace utilization (KB).

ccsc: Compressed class committed size (KB).

7-8

ORACLE

ccsu: Compressed class space used (KB).

YGC: Number of young generation garbage collection (GC) events.

YGCT: Young generation garbage collection time.
FGC: Number of full GC events.

FGCT: Full garbage collection time.

GCT: Total garbage collection time.

-gccapacity option

Memory pool generation and space capacities.

NGCMN: Minimum new generation capacity (KB).

NGCMX: Maximum new generation capacity (KB).

NGC: Current new generation capacity (KB).

s0c: Current survivor space 0 capacity (KB).

Sic: Current survivor space 1 capacity (KB).

EC: Current eden space capacity (KB).

0GCMN: Minimum old generation capacity (KB).

0GCMx: Maximum old generation capacity (KB).

0GC: Current old generation capacity (KB).

oc: Current old space capacity (KB).

MCMN: Minimum metaspace capacity (KB).

MCMX: Maximum metaspace capacity (KB).

MC: Metaspace Committed Size (KB).

CCsSMN: Compressed class space minimum capacity (KB).
ccsMx: Compressed class space maximum capacity (KB).
ccsc: Compressed class committed size (KB).

YGC: Number of young generation GC events.

FGC: Number of full GC events.

-gccause option

This option displays the same summary of garbage collection statistics as the -gcutil

Chapter 7
jstat

option, but includes the causes of the last garbage collection event and (when applicable),
the current garbage collection event. In addition to the columns listed for -gcutil, this option

adds the following columns:
LGCC: Cause of last garbage collection
Gcc: Cause of current garbage collection

-gcnew option

New generation statistics.

S0c: Current survivor space 0 capacity (KB).
S1C: Current survivor space 1 capacity (KB).
S0U: Survivor space 0 utilization (KB).

S1U: Survivor space 1 utilization (KB).

TT: Tenuring threshold.

MTT: Maximum tenuring threshold.

DSS: Desired survivor size (KB).

EC: Current eden space capacity (KB).

EU: Eden space utilization (KB).

YGC: Number of young generation GC events.
YGCT: Young generation garbage collection time.

-gcnewcapacity option
New generation space size statistics.

7-9

ORACLE

Chapter 7
jstat

NGCMN: Minimum new generation capacity (KB).
NGCMX: Maximum new generation capacity (KB).
NGC: Current new generation capacity (KB).
S0cMx: Maximum survivor space 0 capacity (KB).
S0cC: Current survivor space 0 capacity (KB).
S1cMx: Maximum survivor space 1 capacity (KB).
S1c: Current survivor space 1 capacity (KB).
ECMX: Maximum eden space capacity (KB).

EC: Current eden space capacity (KB).

YGC: Number of young generation GC events.
FGC: Number of full GC events.

-gcold option

Old generation size statistics.

MC: Metaspace Committed Size (KB).

MU: Metaspace utilization (KB).

ccsc: Compressed class committed size (KB).
ccsu: Compressed class space used (KB).
oc: Current old space capacity (KB).

0U: Old space utilization (KB).

YGC: Number of young generation GC events.
FGC: Number of full GC events.

FGCT: Full garbage collection time.

GCT: Total garbage collection time.

-gcoldcapacity option

Old generation statistics.

OGCMN: Minimum old generation capacity (KB).
0GCMx: Maximum old generation capacity (KB).
0GC: Current old generation capacity (KB).

oc: Current old space capacity (KB).

YGC: Number of young generation GC events.

FGC: Number of full GC events.

FGCT: Full garbage collection time.

GCT: Total garbage collection time.

-gcmetacapacity option

Metaspace size statistics.

MCMN: Minimum metaspace capacity (KB).

MCMX: Maximum metaspace capacity (KB).

MC: Metaspace Committed Size (KB).

CCSMN: Compressed class space minimum capacity (KB).
ccsMx: Compressed class space maximum capacity (KB).
YGC: Number of young generation GC events.

FGC: Number of full GC events.

FGCT: Full garbage collection time.

GCT: Total garbage collection time.

-gcutil option

Summary of garbage collection statistics.

S0: Survivor space 0 utilization as a percentage of the space's current capacity.
S1: Survivor space 1 utilization as a percentage of the space’s current capacity.

7-10

Chapter 7
jstat

E: Eden space utilization as a percentage of the space's current capacity.
0: Old space utilization as a percentage of the space's current capacity.
M: Metaspace utilization as a percentage of the space's current capacity.
ccs: Compressed class space utilization as a percentage.

YGC: Number of young generation GC events.

YGCT: Young generation garbage collection time.

FGC: Number of full GC events.

FGCT: Full garbage collection time.

GCT: Total garbage collection time.

-printcompilation option

Java HotSpot VM compiler method statistics.

Compiled: Number of compilation tasks performed by the most recently compiled method.
Size: Number of bytes of byte code of the most recently compiled method.

Type: Compilation type of the most recently compiled method.

Method: Class name and method name identifying the most recently compiled method. Class
name uses a slash (/) instead of a dot (.) as a hame space separator. The method name is
the method within the specified class. The format for these two fields is consistent with the
HotSpot -XX:+PrintCompilation option.

Virtual Machine Identifier

The syntax of the vmid string corresponds to the syntax of a URI:

[protocol:]1[//]1lvmid[Qhostname|:port]/servername]

The syntax of the vmid string corresponds to the syntax of a URI. The vmid string can vary
from a simple integer that represents a local JVM to a more complex construction that
specifies a communications protocol, port number, and other implementation-specific values.

protocol

The communications protocol. If the protocol value is omitted and a host name isn'’t
specified, then the default protocol is a platform-specific optimized local protocol. If the
protocol value is omitted and a host name is specified, then the default protocol is rmi.

Ivmid

The local virtual machine identifier for the target JVM. The 1vmidis a platform-specific value
that uniquely identifies a JVM on a system. The Ivmid is the only required component of a
virtual machine identifier. The Ivmid is typically, but not necessarily, the operating system's
process identifier for the target JVM process. You can use the jps command to determine
the Ivmid provided the JVM processes is not running in a separate docker instance. You can
also determine the 1vmid on Oracle Solaris, Linux, and macOS platforms with the ps
command, and on Windows with the Windows Task Manager.

ORACLE 7-11

ORACLE

Chapter 7
jstat

< Note:

JDK 10 added support for using the Attach API when attaching to Java
processes running in a separate docker process. However, the jps
command will not list the JVM processes that are running in a separate
docker instance. If you are trying to connect a Linux host with a Virtual
Machine that is in a docker container, you must use tools such as ps to look
up the PID of the JVM.

hostname
A host name or IP address that indicates the target host. If the hostname value is
omitted, then the target host is the local host.

port

The default port for communicating with the remote server. If the hostname value is
omitted or the protocol value specifies an optimized, local protocol, then the port
value is ignored. Otherwise, treatment of the port parameter is implementation-
specific. For the default rmi protocol, the port value indicates the port number for the
rmiregistry on the remote host. If the port value is omitted and the protocol value
indicates rmi, then the default rmiregistry port (1099) is used.

servername

The treatment of the servername parameter depends on implementation. For the
optimized local protocol, this field is ignored. For the rmi protocol, it represents the
name of the RMI remote object on the remote host.

Examples

This section presents some examples of monitoring a local JVM with an Ivmid of
21891.

The gcutil Option

This example attaches to lvmid 21891 and takes 7 samples at 250 millisecond
intervals and displays the output as specified by the -gcutil option.

The output of this example shows that a young generation collection occurred between
the third and fourth sample. The collection took 0.078 seconds and promoted objects
from the eden space (E) to the old space (O), resulting in an increase of old space
utilization from 66.80% to 68.19%. Before the collection, the survivor space was
97.02% utilized, but after this collection it's 91.03% utilized.

jstat -gcutil 21891 250 7

S0 S1 E 0 M CCs YGC YGCT FGC
FGCT GCT

0.00 97.02 70.31 66.80 95.52 89.14 7 0.300 0
0.000 0.300

0.00 97.02 86.23 66.80 95.52 89.14 7 0.300 0
0.000 0.300

0.00 97.02 96.53 66.80 095.52 89.14 7 0.300 0
0.000 0.300

91.03 0.00 1.98 68.19 95.89 91.24 8 0.378 0
0.000 0.378

91.03 0.00 15.82 68.19 95.89 91.24 8 0.378 0

7-12

ORACLE

Chapter 7
jstat

0.000 0.378

91.03 0.00 17.80 68.19 95.89 91.24 8 0.378 0 0.000
0.378

91.03 0.00 17.80 68.19 95.89 91.24 8 0.378 0 0.000
0.378

Repeat the Column Header String

This example attaches to lvmid 21891 and takes samples at 250 millisecond intervals and
displays the output as specified by the -gcnew option. In addition, it uses the -h3 option to
output the column header after every 3 lines of data.

In addition to showing the repeating header string, this example shows that between the
second and third samples, a young GC occurred. Its duration was 0.001 seconds. The
collection found enough active data that the survivor space 0 utilization (SOU) would have
exceeded the desired survivor size (DSS). As a result, objects were promoted to the old
generation (not visible in this output), and the tenuring threshold (TT) was lowered from 31 to
2.

Another collection occurs between the fifth and sixth samples. This collection found very few
survivors and returned the tenuring threshold to 31.

jstat -gcnew -h3 21891 250

sS0C S1C S0U S1U TT MTT DSS EC EU YGC YGCT
64.0 64.0 0.0 31.7 31 31 32.0 512.0 178.6 249 0.203
64.0 64.0 0.0 31.7 31 31 32.0 512.0 355.5 249 0.203
64.0 64.0 35.4 0.0 2 31 32.0 512.0 21.9 250 0.204

sS0C S1C S0U S1U TT MTT DSS EC EU YGC YGCT
64.0 64.0 35.4 0.0 2 31 32.0 512.0 245.9 250 0.204
64.0 64.0 35.4 0.0 2 31 32.0 512.0 421.1 250 0.204
64.0 64.0 0.0 19.0 31 31 32.0 512.0 84.4 251 0.204

sS0C S1C S0U S1U TT MTT DSS EC EU YGC YGCT
64.0 64.0 0.0 19.0 31 31 32.0 512.0 306.7 251 0.204

Include a Time Stamp for Each Sample

This example attaches to 1vmid 21891 and takes 3 samples at 250 millisecond intervals. The
-t option is used to generate a time stamp for each sample in the first column.

The Timestamp column reports the elapsed time in seconds since the start of the target JVM.
In addition, the -gcoldcapacity output shows the old generation capacity (OGC) and the old
space capacity (OC) increasing as the heap expands to meet allocation or promotion
demands. The old generation capacity (OGC) has grown from 11,696 KB to 13,820 KB after
the eighty-first full garbage collection (FGC). The maximum capacity of the generation (and
space) is 60,544 KB (OGCMX), so it still has room to expand.

Timestamp OGCMN OGCMX 0GC oc YGC FGC FGCT GCT

150.1 1408.0 60544.0 11696.0 11696.0 194 80 2.874
3.799

150.4 1408.0 60544.0 13820.0 13820.0 194 81 2.938
3.863

150.7 1408.0 60544.0 13820.0 13820.0 194 81 2.938
3.863

7-13

jstatd

ORACLE

Chapter 7
jstatd

Monitor Instrumentation for a Remote JVM

This example attaches to lvmid 40496 on the system named remote.domain using the
-gcutil option, with samples taken every second indefinitely.

The lvmid is combined with the name of the remote host to construct a vmid of
40496@remote.domain. This vmid results in the use of the rmi protocol to communicate
to the default jstatd server on the remote host. The jstatd server is located using the
rmiregistry command on remote.domain that's bound to the default port of the
rmiregistry command (port 1099).

jstat -gcutil 40496@remote.domain 1000
. output omitted

You use the jstatd command to monitor the creation and termination of instrumented
Java HotSpot VMs.

Synopsis

¢ Note:

This command is experimental and unsupported.

jstatd [options]

options
This represents the jstatd command-line options. See Options for the jstatd
Command.

Description

The jstatd command is an RMI server application that monitors for the creation and
termination of instrumented Java HotSpot VMs and provides an interface to enable
remote monitoring tools, jstat and jps, to attach to JVMs that are running on the local
host and collect information about the JVM process.

The jstatd server requires an RMI registry on the local host. The jstatd server
attempts to attach to the RMI registry on the default port, or on the port you specify
with the -p port option. If an RMI registry is not found, then one is created within the
jstatd application that’s bound to the port that's indicated by the -p port option or to
the default RMI registry port when the -p port option is omitted. You can stop the
creation of an internal RMI registry by specifying the -nr option.

7-14

ORACLE

Chapter 7
jstatd

Options for the jstatd Command

-nr
This option does not attempt to create an internal RMI registry within the jstatd process
when an existing RMI registry isn’t found.

-p port
This option sets the port number where the RMI registry is expected to be found, or when not
found, created if the -nr option isn’t specified.

-n rminame

This option sets the name to which the remote RMI object is bound in the RMI registry. The
default name is JStatRemoteHost. If multiple jstatd servers are started on the same host,
then the name of the exported RMI object for each server can be made unique by specifying
this option. However, doing so requires that the unique server name be included in the
monitoring client's hostid and vmid strings.

-Joption

This option passes a Java option to the JVM, where the option is one of those described on
the reference page for the Java application launcher. For example, -J-Xms48m sets the
startup memory to 48 MB. See java.

Security

The jstatd server can monitor only JVMs for which it has the appropriate native access
permissions. Therefore, the jstatd process must be running with the same user credentials
as the target JVMs. Some user credentials, such as the root user in Oracle Solaris, Linux,
and macOS operating systems, have permission to access the instrumentation exported by
any JVM on the system. A jstatd process running with such credentials can monitor any
JVM on the system, but introduces additional security concerns.

The jstatd server doesn'’t provide any authentication of remote clients. Therefore, running a
jstatd server process exposes the instrumentation export by all JVMs for which the jstatd
process has access permissions to any user on the network. This exposure might be
undesirable in your environment, and therefore, local security policies should be considered
before you start the jstatd process, particularly in production environments or on networks
that aren’t secure.

The jstatd server installs an instance of RMISecurityPolicy when no other security
manager is installed, and therefore, requires a security policy file to be specified. The policy
file must conform to Default Policy Implementation and Policy File Syntax.

If your security concerns can’t be addressed with a customized policy file, then the safest
action is to not run the jstatd server and use the jstat and jps tools locally. However, when
using jps to get a list of instrumented JVMs, the list will not include any JVMs running in
docker containers.

Remote Interface

The interface exported by the jstatd process is proprietary and guaranteed to change. Users
and developers are discouraged from writing to this interface.

Examples

The following are examples of the jstatd command. The jstatd scripts automatically start
the server in the background.

7-15

Chapter 7
jstatd

Internal RMI Registry

This example shows how to start a jstatd session with an internal RMI registry. This
example assumes that no other server is bound to the default RMI registry port (port
1099).

jstatd -J-Djava.security.policy=all.policy

External RMI Registry
This example starts a jstatd session with an external RMI registry.

rmiregistryé&
jstatd -J-Djava.security.policy=all.policy

This example starts a jstatd session with an external RMI registry server on port
2020.

jrmiregistry 2020&
jstatd -J-Djava.security.policy=all.policy -p 2020

This example starts a jstatd session with an external RMI registry on port 2020 that's
bound to AlternateJstatdServerName.

rmiregistry 2020&
jstatd -J-Djava.security.policy=all.policy -p 2020 \
-n AlternateJstatdServerName

Stop the Creation of an In-Process RMI Registry

This example starts a jstatd session that doesn’t create an RMI registry when one
isn’'t found. This example assumes an RMI registry is already running. If an RMI
registry isn’t running, then an error message is displayed.

jstatd -J-Djava.security.policy=all.policy -nr

Enable RMI Logging

This example starts a jstatd session with RMI logging capabilities enabled. This
technique is useful as a troubleshooting aid or for monitoring server activities.

jstatd -J-Djava.security.policy=all.policy \
-J-Djava.rmi.server.logCalls=true

ORACLE 7-16

Java Accessibility Utilities and Commands

You use Java accessibility utilities to examin accessible information about the objects in the
Java Virtual Machine (JVM) and the component trees in a particular Java Virtual Machine.

The following topics describe the Java accessibility utilities and their commands:

e jaccessinspector: You use jaccessinspector to examine accessible information about
objects in the Java Virtual Machine that use the Java Accessibility Utilities API.

* jaccesswalker: You use jaccesswalker to navigate through the component trees in a
particular Java Virtual Machine and presents the hierarchy in a tree view.

jaccessinspector

ORACLE

You use jaccessinspector to examine accessible information about objects in the Java
Virtual Machine that use the Java Accessibility Utilities API.

Description

The jaccessinspector tool lets you select different methods for examining the object
accessibility information:

e When events occur, such as a change of focus, mouse movement, property change,
menu selection, and the display of a popup menu

» Press the F1 key when the mouse is over an object, or F2 when the mouse is over a
window

After an object has been selected for examination, the jaccessinspector tool displays the
results of calling Java Accessibility APl methods on that object.

Running the jaccessinspector Tool

Launch a Java application and then launch the jaccessinspector tool by running the
following command:

¢ Note:

JAVA HOME is an environment variable and should be set to the path of the JDK or
JRE, such as c:\Program Files\Java\jdk-11.

$JAVA HOME%\bin\jaccessinspector.exe

You now have two windows open: The Java application window and the jaccessinspector
window. The jaccessinspector window contains five menus:

e File Menu

8-1

ORACLE

Chapter 8
jaccessinspector

* UpdateSettings Menu

« JavaEvents Menu

* AccessibilityEvents Menu

e Options Menu

The items in UpdateSettings, JavaEvents, and AccessibilityEvents menus let you

guery Java applications in a variety of ways.

File Menu

This section describes the File menu items.

AccessBridge DLL Loaded
Enables and disables AccessBridge DLL Loaded.

Exit
Exits from the tool.

UpdateSettings Menu

This section describes the UpdateSettings menu items.

Update from Mouse

Determines the x- and y-coordinates of the mouse (assuming the jaccessinspector
tool window is on top) when the mouse has stopped moving, and then queries the
Java application for the accessible object underneath the mouse, dumping the output
into the jaccessinspector window.

Update with F2 (Mouse HWND)

Determines the x- and y-coordinates of the mouse (assuming the jaccessinspector

tool window is on top), and then queries the Java application for the accessible object
of the HWND underneath the mouse, dumping the output into the jaccessinspector

window.

Update with F1 (Mouse Point)

Determines the x- and y-coordinates of the mouse (assuming the jaccessinspector
tool window is on top), and then queries the Java application for the accessible object
underneath the cursor, dumping the output into the jaccessinspector window.

JavaEvents Menu

This section describes the JavaEvents menu items.

Track Mouse Events

Registers with the Java application to receive all Java Mouse Entered events. Upon
receiving an event, queries the object that was entered by the cursor and dumps the
output into the jaccessinspector window.

Note:

If the mouse is moved quickly, then there may be a delay before the
displayed information is updated.

8-2

ORACLE

Chapter 8
jaccessinspector

Track Focus Events

Registers with the Java application to receive all Java Focus Gained events. Upon receiving
an event, queries the object that received the focus and dumps the output into the
jaccessinspector window.

Track Caret Events

Registers with the Java application to receive all Java Caret Update events. Upon receiving
an event, queries the object in which the caret was updated, and dumps the output into the
jaccessinspector window.

< Note:

Because objects that contain carets are almost by definition objects that are rich
text objects, this won't seem as responsive as the other event tracking options. In
real use, one would make fewer accessibility calls in Caret Update situations (for
example, just get the new letter, word, sentence at the caret location), which would
be significantly faster.

Track Menu Selected | Deselected | Canceled Events

Registers with the Java application to receive all Menu events. Upon receiving an event,
gueries the object in which the caret was updated, and dumps the output into the
jaccessinspector window.

Track Popup Visible | Invisible | Cancelled Events

Registers with the Java application to receive all Popup Menu events. Upon receiving an
event, queries the object in which the caret was updated, and dumps the output into the
jaccessinspector window.

Track Shutdown Events
Registers with the Java application to receive a Property Changed event when a Java
application terminates.

AccessibilityEvents Menu

This section describes the AccessibilityEvents menu items.

" Note:

The items listed in the AccessibilityEvents menu are the most important for testing
applications, especially for assistive technology applications.

Track Name Property Events

Registers with the Java application to receive all Java Property Changed events specifically
on accessible objects in which the Name property has changed. Upon receiving an event,
dumps the output into the scrolling window, along with information about the property that
changed.

Track Description Property Events
Registers with the Java application to receive all Java Property Changed events specifically
on accessible objects in which the Description property has changed. Upon receiving an

8-3

ORACLE

Chapter 8
jaccessinspector

event, dumps the output into the jaccessinspector window, along with information
about the property that changed.

Track State Property Events

Registers with the Java application to receive all Java Property Changed events
specifically on accessible objects in which the State property has changed. Upon
receiving an event, dumps the output into the jaccessinspector window, along with
information about the property that changed.

Track Value Property Events

Registers with the Java application to receive all Java Property Changed events
specifically on accessible objects in which the Value property has changed, Upon
receiving an event, dumps the output into the scrolling window, along with information
about the property that changed.

Track Selection Property Events

Registers with the Java application to receive all Java Property Changed events
specifically on accessible objects in which the Selection property has changed. Upon
receiving an event, dumps the output into the jaccessinspector window, along with
information about the property that changed.

Track Text Property Events

Registers with the Java application to receive all Java Property Changed events
specifically on accessible objects in which the Text property has changed. Upon
receiving one event, dumps the output into the jaccessinspector window, along with
information about the property that changed.

Track Caret Property Events

Registers with the Java application to receive all Java Property Changed events
specifically on accessible objects in which the Caret property has changed. Upon
receiving an event, dumps the output into the jaccessinspector window, along with
information about the property that changed.

Track VisibleData Property Events

Registers with the Java application to receive all Java Property Changed events
specifically on accessible objects in which the VisibleData property has changed.
Upon receiving an event, dumps the output into the jaccessinspector window, along
with information about the property that changed.

Track Child Property Events

Registers with the Java application to receive all Java Property Changed events
specifically on accessible objects in which the Child property has changed. Upon
receiving an event, dumps the output into the jaccessinspector window, along with
information about the property that changed.

Track Active Descendent Property Events

Registers with the Java application to receive all Java Property Changed events
specifically on accessible objects in which the Active Descendent property has
changed. Upon receiving an event, dumps the output into the jaccessinspector
window, along with information about the property that changed.

Track Table Model Change Property Events
Registers with the Java application to receive all Property Changed events specifically
on accessible objects in which the Table Model Change property has changed. Upon

8-4

Chapter 8
jaccesswalker

receiving an event, dumps the output into the jaccessinspector window, along with
information about the property that changed.

Options Menu

This section describes the Options menu items.

Monitor the same events as JAWS
Enables monitoring of only the events also monitored by JAWS.

Monitor All Events
Enables monitoring of all events in the jaccessinspector window.

Reset All Events
Resets the selected Options to the default settings.

Go To Message
Opens the Go To Message dialog that lets you display a logged message by entering its
message number.

Clear Message History
Clears the history of logged messages from the jaccessinspector window.

jaccesswalker

ORACLE

You use jaccesswalker to navigate through the component trees in a particular Java Virtual
Machine and presents the hierarchy in a tree view.

Description

You select a node in the tree, and from the Panels menu, you select Accessibility API
Panel. The jaccesswalker tool shows you the accessibility information for the object in the
window.

Running the jaccesswalker Tool

To use jaccesswalker, launch the jaccesswalker tool after launching a Java application. For
example, to launch jaccesswalker, enter the following command:

¢ Note:

JAVA HOME is an environment variable and should be set to the path of the JDK or
JRE, such as, c:\Program Files\Java\jdk-11

%$JAVA HOME%\bin\jaccesswalker.exe

You now have two windows open: The Java application window, and the window for the
jaccesswalker tool. There are two tasks that you can do with jaccesswalker . You can build
a tree view of the Java applications' GUI hierarchy, and you can query the Java Accessibility
API information of a particular element in the GUI hierarchy.

8-5

ORACLE

Chapter 8
jaccesswalker

Building the GUI Hierarchy

From the File menu, select Refresh Tree menu. The jaccesswalker tool builds a list
of the top-level windows belonging to Java applications. The tool then recursively
queries the elements in those windows, and builds a tree of all of the GUI components
in all of the Java applications in all of the JVMs running in the system.

Examining a GUI Component

After a GUI tree is built, you can view detailed accessibility information about an
individual GUI component by selecting it in the tree, then selecting Panels, and then
Display Accessibility Information.

8-6

Troubleshooting Tools and Commands

jcmd

ORACLE

You use JDK troubleshooting tools and commands to troubleshoot Java applications and the
Java Virtual Machine (JVM).

The following sections describe the JDK troubleshooting tools and commands:

jcmd: You use the jcmd utility to send diagnostic command requests to a running Java
Virtual Machine (JVM).

jdb: You use the jdb command and its options to find and fix bugs in Java platform
programs.

jhsdb: You use the jhsdb tool to attach to a Java process or to a core dump from a
crashed Java Virtual Machine (JVM).

" Note:

Tools identified as Experimental are unsupported and might not be available in
future JDK releases.

jinfo: Experimental You use the jinfo command to generate Java configuration
information for a specified Java process. This command is experimental and
unsupported. For core files use jhsdb jinfo.

jmap: Experimental You use the jmap command to print details of a specified process.

This command is experimental and unsupported. For core files use jhsdb jmap.

jstack: Experimental You use the jstack command to print Java stack traces of Java

threads for a specified Java process. This command is experimental and unsupported.

For core files use jhsdb jstack.

You use the jcmd utility to send diagnostic command requests to a running Java Virtual
Machine (JVM).

Synopsis

jemd [pid | main-class] command...|PerfCounter.print|
-f filename

jemd -1

jcmd -h

9-1

ORACLE

Chapter 9
jemd

pid
When used, the jcmd utility sends the diagnostic command request to the process ID
for the Java process.

main-class
When used, the jcmd utility sends the diagnostic command request to all Java
processes with the specified name of the main class.

command

The command must be a valid jcmd command for the selected JVM. The list of
available commands for jcmd is obtained by running the help command (jemd pid
help) where pidis the process ID for the running Java process. If the pidis 0,
commands will be sent to all Java processes. The main class argument will be used
to match, either partially or fully, the class used to start Java. If no options are given, it
lists the running Java process identifiers with the main class and command-line
arguments that were used to launch the process (the same as using -1).

Perfcounter.print
Prints the performance counters exposed by the specified Java process.

-f filename
Reads and executes commands from a specified file, filename.

-1

Displays the list of Java Virtual Machine process identifiers that are not running in a
separate docker process along with the main class and command-line arguments that
were used to launch the process. If the JVM is in a docker process, you must use
tools such as ps to look up the PID.

Note:

Using jcmd without arguments is the same as using jcmd -1.

-h
Displays the jcmd utility's command-line help.

Description

The jcmd utility is used to send diagnostic command requests to the JVM. It must be
used on the same machine on which the JVM is running, and have the same effective
user and group identifiers that were used to launch the JVM. Each diagnostic
command has its own set of arguments. To display the description, syntax, and a list of
available arguments for a diagnostic command, use the name of the command as the
argument. For example

jcmd pid help command

If arguments contain spaces, then you must surround them with single or double
guotation marks (' or "). In addition, you must escape single or double quotation
marks with a backslash (\) to prevent the operating system shell from processing
guotation marks. Alternatively, you can surround these arguments with single quotation
marks and then with double quotation marks (or with double quotation marks and then
with single quotation marks).

9-2

ORACLE

Chapter 9
jemd

If you specify the process identifier (pid) or the main class (main-class) as the first
argument, then the jcmd utility sends the diagnostic command request to the Java process
with the specified identifier or to all Java processes with the specified nhame of the main class.
You can also send the diagnostic command request to all available Java processes by
specifying 0 as the process identifier.

Commands for jemd

The command must be a valid §cmd diagnostic command for the selected JVM. The list of
available commands for jcmd is obtained by running the help command (jcmd pid help)
where pid is the process ID for a running Java process. If the pidis 0, commands will be
sent to all Java processes. The main class argument will be used to match, either partially or
fully, the class used to start Java. If no options are given, it lists the running Java process
identifiers that are not in separate docker processes along with the main class and command-
line arguments that were used to launch the process (the same as using -1).

The following commands are available:

help [options] [arguments]
For more information about a specific command.
arguments:

* command name : The name of the command for which we want help (STRING, no
default value)

" Note:

The following options must be specified by using either key or key=value syntax.

options:

e -all: (Optional) Show help for all commands (BOOLEAN, false) .

Compiler.codecache

Prints code cache layout and bounds.

Impact: Low

Permission: java.lang.management.ManagementPermission (monitor)

Compiler.codelist

Prints all compiled methods in code cache that are alive.

Impact: Medium

Permission: java.lang.management.ManagementPermission (monitor)

Compiler.queue

Prints methods queued for compilation.

Impact: Low

Permission: java.lang.management.ManagementPermission (monitor)

Compiler.directives_add filename arguments

Adds compiler directives from a file.

Impact: Low

Permission: java.lang.management.ManagementPermission (monitor)
arguments.

filename: The name of the directives file (STRING, no default value)

9-3

ORACLE

Chapter 9
jemd

Compiler.directives_clear

Remove all compiler directives.

Impact: Low

Permission: java.lang.management.ManagementPermission (monitor)

Compiler.directives print

Prints all active compiler directives.

Impact: Low

Permission: java.lang.management.ManagementPermission (monitor)

Compiler.directives_remove

Remove latest added compiler directive.

Impact: Low

Permission: java.lang.management.ManagementPermission (monitor)

GC.class_histogram [options]

Provides statistics about the Java heap usage.

Impact: High — depends on Java heap size and content.

Permission: java.lang.management.ManagementPermission (monitor)

< Note:

The options must be specified by using either key or key=value syntax.

options:

e -all: (Optional) Inspects all objects, including unreachable objects (BOOLEAN,
false)

GC.class_stats [options] [arguments]
Provide statistics about Java class meta data.
Impact: High — depends on Java heap size and content.

Note:

The options must be specified by using either key or key=value Syntax.

options:
e -all: (Optional) Shows all columns (BOOLEAN, false)

* -csv: (Optional) Prints in CSV (comma-separated values) format for spreadsheets
(BOOLEAN, false)

* -help: (Optional) Shows the meaning of all the columns (BOOLEAN, false)
arguments

e columns: (Optional) Comma-separated list of all the columns to be shown. If not
specified, the following columns are shown:

9-4

Chapter 9
jemd

— InstBytes

— KlassBytes

— CpAll

— annotations

— MethodCount
— Bytecodes

— MethodAll

— ROAI

- RWAI

— Total
(STRING, no default value)

GC.finalizer info

Provides information about the Java finalization queue.

Impact: Medium

Permission: java.lang.management.ManagementPermission (monitor)

GC.heap_dump [options] [arguments]

Generates a HPROF format dump of the Java heap.

Impact: High — depends on the Java heap size and content. Request a full GC unless the -
all option is specified.

Permission: java.lang.management.ManagementPermission (monitor)

Note:

The following options must be specified by using either key or key=value syntax.

options:

e -all: (Optional) Dump all objects, including unreachable objects (BOOLE AN, false)
arguments:

e filename: The name of the dump file (STRING, no default value)

GC.heap_info

Provides generic Java heap information.

Impact: Medium
Permission: java.lang.management.ManagementPermission (monitor)

GC.run
Calls java.lang.System.gc ().
Impact: Medium — depends on the Java heap size and content.

GC.run finalization
Calls java.lang.System.runFinalization ().
Impact: Medium — depends on the Java content.

ORACLE 9-5

ORACLE

Chapter 9
jemd

JFR.check [options]
See JFR.check in the Java Flight Recorder Command Reference.

JFR.configure [options]
See JFR.configure in the Java Flight Recorder Command Reference.

JFR.dump [options]
See JFR.dump in the Java Flight Recorder Command Reference.

JFR.start [options]
See JFR.start in the Java Flight Recorder Command Reference.

JFR.stop [options]
See JFR.stop in the Java Flight Recorder Command Reference.

JVMTI.agent load [arguments]

Loads JVMTI native agent.

Impact: Low

Permission: java.lang.management.ManagementPermission (control)
arguments:

e library path: Absolute path of the JVMTI agent to load. (STRING, no default
value)

* agent option: (Optional) Option string to pass the agent. (STRING, no default
value)

JVMTI.data_dump

Signals the JVM to do a data-dump request for IVMTI.

Impact: High

Permission: java.lang.management.ManagementPermission (monitor)

ManagementAgent.start [options]
Starts remote management agent.
Impact: Low — no impact

Note:

The following options must be specified by using either key or key=value
syntax.

options:

e config.file: (Optional) Sets com.sun.management.config.file (STRING, no
default value)

° jmxremote.host : (Optional) Sets com.sun.management . jmxremote.host
(STRING, no default value)

* jmxremote.port : (Optional) Sets com.sun.management.jmxremote.port
(STRING, no default value)

° jmxremote.rmi.port : (Optional) Sets com.sun.management.jmxremote.rmi.port
(STRING, no default value)

9-6

Chapter 9
jemd

* jmxremote.ssl: (Optional) Sets com.sun.management . jmxremote.ssl (STRING, no
default value)

°* Jjmxremote.registry.ssl :(Optional) Sets
com.sun.management.jmxremote.registry.ssl (STRING, no default value)

° Jjmxremote.authenticate : (Optional) Sets
com.sun.management.jmxremote.authenticate (STRING, no default value)

* jmxremote.password.file : (Optional) Sets
com.sun.management. jmxremote.password.file (STRING, no default value)

° jmxremote.access.file: (Optional) Sets com.sun.management.jmxremote.access.file
(STRING, no default value)

° Jjmxremote.login.confiqg : (Optional) Sets
com.sun.management.jmxremote.login.config (STRING, no default value)

° Jjmxremote.ssl.enabled.cipher.suites : (Optional) Sets com.sun.management.
* Jjmxremote.ssl.enabled.cipher.suite: (STRING, no default value)

* jmxremote.ssl.enabled.protocols : (Optional) Sets
com.sun.management . jmxremote.ssl.enabled.protocols (STRING, no default value)

* Jjmxremote.ssl.need.client.auth : (Optional) Sets
com.sun.management.jmxremote.need.client.auth (STRING, no default value)

° Jjmxremote.ssl.config.file : (Optional) Sets
com.sun.management. jmxremote.ssl config file (STRING, no default value)

* jmxremote.autodiscovery : (Optional) Sets
com.sun.management . jmxremote.autodiscovery (STRING, no default value)

* jdp.port : (Optional) Sets com. sun.management.jdp.port (INT, no default value)

* jdp.address : (Optional) Sets com. sun.management.jdp.address (STRING, no default
value)

* jdp.source addr : (Optional) Sets com. sun.management.jdp.source addr (STR ING,
no default value)

* jdp.ttl: (Optional) Sets com.sun.management.jdp.ttl (INT, no default value)
* jdp.pause : (Optional) Sets com.sun.management.jdp.pause (INT, no default value)

* jdp.name : (Optional) Sets com. sun.management.jdp.name (STRING, no default value)

ManagementAgent.start local
Starts the local management agent.
Impact: Low — no impact

ManagementAgent.status

Print the management agent status.

Impact: Low — no impact

Permission: java.lang.management.ManagementPermission (monitor)

ManagementAgent.stop
Stops the remote management agent.
Impact: Low — no impact

ORACLE o

ORACLE

Chapter 9
jemd

Thread.print [options]

Prints all threads with stacktraces.

Impact: Medium — depends on the number of threads.

Permission: java.lang.management.ManagementPermission (monitor)

" Note:

The following options must be specified by using either key or key=value
syntax.

options:

e -1:(Optional) Prints java.util.concurrent locks (BOOLEAN, false)

VM.check_commercial features
Display status of commercial features
Impact: Low — no impact

VM.unlock commercial features

Unlock commercial features

Impact: Low — no impact

Permission: java.lang.management.ManagementPermission (control)

VM.classloader_ stats

Prints statistics about all ClassLoaders.

Impact: Low

Permission: java.lang.management.ManagementPermission (monitor)

VM.class_hierarchy [options] [arguments]

Prints a list of all loaded classes, indented to show the class hierarchy. The name of
each class is followed by the ClassLoaderData* of its ClassLoader, or "null " if it is
loaded by the bootstrap class loader.

Impact: Medium — depends on the number of loaded classes.

Permission: java.lang.management.ManagementPermission (monitor)

Note:

The following options must be specified by using either key or key=value
syntax.

options:
e -i: (Optional) Inherited interfaces should be printed. (BOOLEAN, false)

* -s:(Optional) If a class name is specified, it prints the subclasses. If the class
name is not specified, only the superclasses are printed. (BOOLEAN, false)

arguments

* classname: (Optional) The name of the class whose hierarchy should be printed.
If not specified, all class hierarchies are printed. (STRING, no default value)

9-8

ORACLE

Chapter 9
jemd

VM. command_line

Prints the command line used to start this VM instance.

Impact: Low

Permission: java.lang.management.ManagementPermission (monitor)

VM.dynlibs

Prints the loaded dynamic libraries.

Impact: Low

Permission: java.lang.management.ManagementPermission (monitor)

VM.info

Prints information about the JVM environment and status.

Impact: Low

Permission: java.lang.management.ManagementPermission (monitor)

VM.log [options]

Lists current log configuration, enables/disables/configures a log output, or rotates all logs.
Impact: Low

Permission: java.lang.management.ManagementPermission (control)

options:

< Note:

The following options must be specified by using either key or key=value syntax.

e output: (Optional) The name or index (#) of output to configure. (STRING, no default
value)

* output options: (Optional) Options for the output. (STRING, no default value)
* what: (Optional) Configures what tags to log. (STRING, no default value)

* decorators: (Optional) Configures which decorators to use. Use 'none' o r an empty
value to remove all. (STRING, no default value)

e disable: (Optional) Turns off all logging and clears the log configuration. (BOOLEAN, no
default value)

e list: (Optional) Lists current log configuration. (BOOLEAN, no default value)

e rotate: (Optional) Rotates all logs. (BOOLEAN, no default value)
VM.flags [options]
Prints the VM flag options and their current values.

Impact: Low
Permission: java.lang.management.ManagementPermission (monitor)

¢ Note:

The following options must be specified by using either key or key=value syntax.

options:

9-9

ORACLE

Chapter 9
jemd

* -all: (Optional) Prints all flags supported by the VM (BOOLEAN, false).

VM.native memory [options]

Prints native memory usage

Impact: Medium

Permission: java.lang.management.ManagementPermission (monitor)

Note:

The following options must be specified by using either key or key=value
syntax.

options:

* summary: (Optional) Requests runtime to report current memory summary, which
includes total reserved and committed memory, along with memory usage
summary by each subsystem. (BOOLEAN, false)

* detail: (Optional) Requests runtime to report memory allocation >= 1K by each
callsite. (BOOLEAN, false)

* baseline: (Optional) Requests runtime to baseline current memory usage, so it
can be compared against in later time. (BOOLEAN, false)

e summary.diff: (Optional) Requests runtime to report memory summary
comparison against previous baseline. (BOOLEAN, false)

e detail.diff : (Optional) Requests runtime to report memory detail comparison
against previous baseline, which shows the memory allocation activities at
different callsites. (BOOLEAN, false)

* shutdown: (Optional) Requests runtime to shutdown itself and free the memory
used by runtime. (BOOLEAN, false)

° statistics: (Optional) Prints tracker statistics for tuning purpose. (BOOLEAN,
false)

e scale: (Optional) Memory usage in which scale, KB, MB or GB (STRING, KB)

VM.print_touched methods
Prints all methods that have ever been touched during the lifetime of this JVM.
Impact: Medium — depends on Java content.

VM.set_flag [arguments]

Sets the VM flag option by using the provided value.

Impact: Low

Permission: java.lang.management.ManagementPermission (control)
arguments.

» flag name : The name of the flag that you want to set (STRING, no default value)

* string value : (Optional) The value that you want to set (STRING, no default value)
VM.stringtable [options]
Dumps the string table.

Impact: Medium — depends on the Java content.
Permission: java.lang.management.ManagementPermission (monitor)

9-10

ORACLE

Chapter 9
jemd

< Note:

The following options must be specified by using either key or key=value syntax.

options:

e -verbose : (Optional) Dumps the content of each string in the table (BOOLEAN, false)

VM.symboltable [options]

Dumps the symbol table.

Impact: Medium — depends on the Java content.

Permission: java.lang.management.ManagementPermission (monitor)

< Note:

The following options must be specified by using either key or key=value syntax).

options:

* -verbose : (Optional) Dumps the content of each symbol in the table (BOOLEAN, false)

VM.systemdictionary

Prints the statistics for dictionary hashtable sizes and bucket length.
Impact: Medium

Permission: java.lang.management.ManagementPermission (monitor)

< Note:

The following options must be specified by using either key or key=value syntax.

options:

* verbose : (Optional) Dump the content of each dictionary entry for all class loaders
(BOOLEAN, false).

VM. system properties

Prints the system properties.

Impact: Low

Permission: java.util.PropertyPermission (*, read)

VM.uptime [options]

Prints the VM uptime.
Impact: Low

Note:

The following options must be specified by using either key or key=value syntax.

9-11

idb

ORACLE

Chapter 9
jdb

options:

e -date: (Optional) Adds a prefix with the current date (BOOLEAN, false)

VM.version

Prints JVM version information.

Impact: Low

Permission: java.util.PropertyPermission (java.vm.version, read)

You use the jdb command and its options to find and fix bugs in Java platform
programs.

Synopsis

jdb [options] [classname] [arguments]

options
This represents the jdo command-line options. See Options for the jdb command.

classname
This represents the name of the main class to debug.

arguments
This represents the arguments that are passed to the main () method of the class.

Description

The Java Debugger (JDB) is a simple command-line debugger for Java classes. The
jdb command and its options call the JDB. The j7db command demonstrates the Java
Platform Debugger Architecture and provides inspection and debugging of a local or
remote JVM.

Start a JDB Session

There are many ways to start a JDB session. The most frequently used way is to have
the JDB launch a new JVM with the main class of the application to be debugged. Do
this by substituting the jdb command for the java command in the command line. For
example, if your application's main class is MyClass, then use the following command
to debug it under the JDB:

jdb MyClass

When started this way, the jdb command calls a second JVM with the specified
parameters, loads the specified class, and stops the JVM before executing that class's
first instruction.

Another way to use the 5db command is by attaching it to a JVM that's already
running. Syntax for starting a JVM to which the jdb command attaches when the JVM
is running is as follows. This loads in-process debugging libraries and specifies the
kind of connection to be made.

java -agentlib:jdwp=transport=dt socket,server=y, suspend=n MyClass

9-12

ORACLE

Chapter 9
jdb

You can then attach the jdb command to the JVM with the following command:

jdb -attach 8000

8000 is the address of the running JVM.

The MyClass argument isn’t specified in the jdb command line in this case because the jdb
command is connecting to an existing JVM instead of launching a new JVM.

There are many other ways to connect the debugger to a JVM, and all of them are supported
by the jdb command. The Java Platform Debugger Architecture has additional
documentation on these connection options.

Breakpoints

Breakpoints can be set in the JDB at line numbers or at the first instruction of a method, for
example:

« The command stop at MyClass:22 sets a breakpoint at the first instruction for line 22 of
the source file containing MyClass.

e The command stop in java.lang.String.length sets a breakpoint at the beginning of
the method java.lang.String.length.

e The command stop in MyClass.<clinit> uses <clinit> to identify the static
initialization code for MyClass.

When a method is overloaded, you must also specify its argument types so that the proper
method can be selected for a breakpoint. For example,
MyClass.myMethod (int, java.lang.String) or MyClass.myMethod ().

The clear command removes breakpoints using the following syntax: clear MyClass:45.
Using the clear or stop command with no argument displays a list of all breakpoints currently
set. The cont command continues execution.

Stepping

The step command advances execution to the next line whether it's in the current stack
frame or a called method. The next command advances execution to the next line in the
current stack frame.

Exceptions

When an exception occurs for which there isn’t a catch statement anywhere in the throwing
thread's call stack, the JVM typically prints an exception trace and exits. When running under
the JDB, however, control returns to the JDB at the offending throw. You can then use the jdb
command to diagnose the cause of the exception.

Use the catch command to cause the debugged application to stop at other thrown
exceptions, for example: catch java.io.FileNotFoundException Of catch
mypackage.BigTroubleException. Any exception that's an instance of the specified class or
subclass stops the application at the point where the exception is thrown.

The ignore command negates the effect of an earlier catch command. The ignore command
doesn’t cause the debugged JVM to ignore specific exceptions, but only to ignore the
debugger.

9-13

ORACLE

Chapter 9
jdb

Options for the jdb command

When you use the jdbo command instead of the java command on the command line,
the jdb command accepts many of the same options as the java command.

The following options are accepted by the §db command:

-help
Displays a help message.

-sourcepath dirl:dir2:...
Uses the specified path to search for source files in the specified path. If this option is
not specified, then use the default path of dot (.).

-attach address
Attaches the debugger to a running JVM with the default connection mechanism.

-listen address
Waits for a running JVM to connect to the specified address with a standard
connector.

-listenany
Waits for a running JVM to connect at any available address using a standard
connector.

-launch

Starts the debugged application immediately upon startup of the jdb command. The -
launch option removes the need for the run command. The debugged application is
launched and then stopped just before the initial application class is loaded. At that
point, you can set any necessary breakpoints and use the cont command to continue
execution.

-listconnectors
Lists the connectors available in this JVM.

-connect connector-name:namel=valuel....
Connects to the target JVM with the named connector and listed argument values.

-dbgtrace [flags]
Prints information for debugging the jdo command.

-tclient
Runs the application in the Java HotSpot VM client.

-tserver
Runs the application in the Java HotSpot VM server.

-Joption

Passes option to the JVM, where option is one of the options described on the
reference page for the Java application launcher. For example, -J-Xms48m sets the
startup memory to 48 MB. See Overview of Java Options.

The following options are forwarded to the debuggee process:

9-14

jhsdb

ORACLE

Chapter 9
jhsdb

-v -verbose[:class|gc|jni]
Turns on the verbose mode.

-Dname=value
Sets a system property.

-classpath dir
Lists directories separated by colons in which to look for classes.

-X option
A nonstandard target JVM option.

Other options are supported to provide alternate mechanisms for connecting the debugger to
the JVM that it's to debug.

You use the jhsdb tool to attach to a Java process or to a core dump from a crashed Java
Virtual Machine (JVM).

jhsdb is a Serviceability Agent (SA) tool. Serviceability Agent (SA) is a JDK component used
to provide snapshot debugging, performance analysis and to get an in-depth understanding
of the Hotspot JVM and the Java application executed by the Hotspot JVM.

Even though native debuggers like gdb are available for examining the JVM, unlike jhsdb,
these native debuggers do not have an inbuilt understanding of the data structures in Hotspot
and hence, are not able to throw insights on the Java application being executed. jhsdb
knows about the locations and address ranges of crucial components of the JVM like the
Java heap, heap generations, regions, code cache, etc.

Synopsis

jhsdb clhsdb [--pid pid | --exe executable --core coredump]

jhsdb debugd [options] (pid | executable coredump) [server-id]

jhsdb hsdb [--pid pid | --exe executable --core coredump]

jhsdb jstack [--pid pid | --exe executable --core coredump] [options]
jhsdb jmap [--pid pid | --exe executable --core coredump] [options]
jhsdb jinfo [--pid pid | --exe executable --core coredump] [options]
jhsdb jsnap [options] [--pid pid | --exe executable --core coredump]

9-15

ORACLE

Chapter 9
jhsdb

pid

The process ID to which the jhsdb tool should attach. The process must be a Java
process. To get a list of Java processes running on a machine, use the ps command
or, if the JVM processes are not running in a separate docker instance, the jps
command.

" Note:

JDK 10 added support for using the Attach APl when attaching to Java
processes running in a separate docker process. However, the jps
command will not list the JVM processes that are running in a separate
docker instance. If you are trying to connect a Linux host with a Virtual
Machine that is in a docker container, you must use tools such as ps to look
up the PID of the JVM.

server-id
An optional unique ID to use when multiple debug servers are running on the same
remote host.

executable
The Java executable file from which the core dump was produced.

coredump
The core file to which the jhsdb tool should attach.

options

The command-line options for a jhsdb mode. See Common Options for jhsdb Modes,
Options for the debugd Mode, Options for the jinfo Mode, Options for the jmap Mode,
Options for the jmap Mode, Options for the jstack Mode, and Options for the jsnap
Mode.

Note:

Either the pid or the pair of executable and coredump files must be provided.

Description

You can use the jhsdb tool to attach to a Java process or to launch a postmortem
debugger to analyze the content of a core-dump from a crashed Java Virtual Machine
(JVM). This command is experimental and unsupported.

" Note:

Attaching the jhsdb tool to a live process will cause the process to hang and
the process will probably crash when the debugger detaches.

The jhsdb tool can be launched in any one of the following modes:

9-16

ORACLE

Chapter 9
jhsdb

jhsdb clhsdb
Starts the interactive command-line debugger.

jhsdb debugd
Starts the remote debug server.

jhsdb hsdb
Starts the interactive GUI debugger.

jhsdb jstack
Prints stack and locks information.

jhsdb jmap
Prints heap information.

jhsdb jinfo
Prints basic JVM information.

jhsdb jsnap
Prints performance counter information.

Common Options for jhsdb Modes

In addition to any required jstack, jmap, jinfo or jsnap mode specific options, the pid, exe,
or core options must be provided for all modes. The following options are available for all
modes.

--pid
The process ID of the hanging process.

-—-exe
The executable file name.

--Core
The core dump file name.

--help
Displays the options available for the command.

Options for the debugd Mode

server-id
An optional unique ID for this debug server. This is required if multiple debug servers are run
on the same machine.

Options for the jinfo Mode
Without specified options, the jhsdb jinfo command prints both flags and properties.

--flags
Prints the VM flags.

--sysprops
Prints the Java system properties.

no option
Prints the VM flags and the Java system properties.

9-17

ORACLE

Chapter 9
jhsdb

Options for the jmap Mode

In addition to the following mode specific options, the pid, exe, or core options
described in Common Options for jhsdb Modes must be provided.

no option
Prints the same information as Solaris pmap.

--heap
Prints the java heap summary.

--binaryheap
Dumps the java heap in hprof binary format.

--dumpfile
The name of the file to which the information needs to be written.

--histo
Prints the histogram of java object heap.

--clstats
Prints the class loader statistics.

--finalizerinfo
Prints the information on objects awaiting finalization.

Options for the jstack Mode

In addition to the following mode specific options, the pid, exe, or core options
described in Common Options for jhsdb Modes must be provided.

--locks
Prints the java.util.concurrent locks information.

--mixed
Attempts to print both java and native frames if the platform allows it.

Options for the jsnap Mode

In addition to the following mode specific option, the pid, exe, or core options
described in Common Options for jhsdb Modes must be provided.

--all
Prints all performance counters.

9-18

jinfo

ORACLE

Chapter 9
jinfo

You use the jinfo command to generate Java configuration information for a specified Java
process. This command is experimental and unsupported. For core files use jhsdb jinfo.

Synopsis

" Note:

This command is experimental and unsupported.

jinfo [option] pid

option
This represents the jinfo command-line options. See Options for the jinfo Command.

pid

The process ID for which the configuration information is to be printed. The process must be
a Java process. To get a list of Java processes running on a machine, use either the ps
command or, if the JVM processes are not running in a separate docker instance, the jps
command.

Note:

JDK 10 added support for using the Attach APl when attaching to Java processes
running in a separate docker process. However, the jps command will not list the

JVM processes that are running in a separate docker instance. If you are trying to
connect a Linux host with a Virtual Machine that is in a docker container, you must
use tools such as ps to look up the PID of the JVM.

Description

The jinfo command prints Java configuration information for a specified Java process. The
configuration information includes Java system properties and JVM command-line flags. If
the specified process is running on a 64-bit JVM, then you might need to specify the -J-d64
option, for example:

jinfo -J-d64 -sysprops pid

This command is unsupported and might not be available in future releases of the JDK. In
Windows Systems where dbgeng.dll is not present, the Debugging Tools for Windows must
be installed to have these tools work. The PATH environment variable should contain the
location of the jvm.d11 that's used by the target process or the location from which the core
dump file was produced.

9-19

Jmap

ORACLE

Chapter 9
jmap

Options for the jinfo Command

¢ Note:

If none of the following options are used, both the command-line flags and
the system property name-value pairs are printed.

-flag name
Prints the name and value of the specified command-line flag.

-flag [+|-]name
Enables or disables the specified Boolean command-line flag.

-flag name=value
Sets the specified command-line flag to the specified value.

-flags
Prints command-line flags passed to the JVM.

-sysprops
Prints Java system properties as hame-value pairs.

-h or -help
Prints a help message.

You use the jmap command to print details of a specified process. This command is
experimental and unsupported. For core files use jhsdb jmap.

Synopsis

" Note:

This command is experimental and unsupported.

jmap [options] pid

options
This represents the jmap command-line options. See Options for the jmap Command.

pid

The process ID for which the information specified by the options is to be printed.
The process must be a Java process. To get a list of Java processes running on a
machine, use either the ps command or, if the JVM processes are not running in a
separate docker instance, the jps command.

9-20

Chapter 9
jmap

< Note:

JDK 10 added support for using the Attach API when attaching to Java processes
running in a separate docker process. However, the jps command will not list the

JVM processes that are running in a separate docker instance. If you are trying to
connect a Linux host with a Virtual Machine that is in a docker container, you must
use tools such as ps to look up the PID of the JVM.

Description

The jmap command prints details of a specified running process.

" Note:

This command is unsupported and might not be available in future releases of the
JDK. On Windows Systems where the dbgeng.dl1 file isn’'t present, the Debugging
Tools for Windows must be installed to make these tools work. The PATH
environment variable should contain the location of the jvm.d11 file that's used by
the target process or the location from which the core dump file was produced.

Options for the jmap Command

-clstats pid
Connects to a running process and prints class loader statistics of Java heap.

-finalizerinfo pid
Connects to a running process and prints information on objects awaiting finalization.

-histo[:1live] pid
Connects to a running process and prints a histogram of the Java object heap. If the 1ive
suboption is specified, it then counts only live objects.

-dump:dump options pid
Connects to a running process and dumps the Java heap. The dump options include:

e live — When specified, dumps only the live objects; if not specified, then dumps all
objects in the heap.

format=b — Dumps the Java heap,. in hprof binary format
° file=filename — Dumps the heap to filename

Example: jmap -dump:live, format=b, file=heap.bin pid

ORACLE 9-21

jstack

ORACLE

Chapter 9
jstack

You use the jstack command to print Java stack traces of Java threads for a specified
Java process. This command is experimental and unsupported. For core files use
jhsdb jstack.

Synopsis

" Note:

This command is experimental and unsupported.

jstack [options] pid

options
This represents the jstack command-line options. See Options for the jstack
Command.

pid

The process ID for which the stack trace is printed. The process must be a Java
process. To get a list of Java processes running on a machine, use either the ps
command or, if the JVM processes are not running in a separate docker instance,jps
command.

Note:

JDK 10 added support for using the Attach APl when attaching to Java
processes running in a separate docker process. However, the jps
command will not list the JVM processes that are running in a separate
docker instance. If you are trying to connect a Linux host with a Virtual
Machine that is in a docker container, you must use tools such as ps to look
up the PID of the JVM.

Description

The jstack command prints Java stack traces of Java threads for a specified Java
process. For each Java frame, the full class name, method name, byte code index
(BCI), and line number, when available, are printed. C++ mangled names aren't
demangled. To demangle C++ names, the output of this command can be piped to c+
+£ilt. When the specified process is running on a 64-bit JVM, you might need to
specify the -J-d64 option, for example: jstack -J-d64pid.

9-22

Chapter 9
jstack

< Note:

This command is unsupported and might not be available in future releases of the
JDK. In Windows Systems where the dbgeng.dl1 file isn’t present, the Debugging
Tools for Windows must be installed so that these tools work. The PATH environment
variable needs to contain the location of the jvm.d11 that is used by the target
process, or the location from which the core dump file was produced.

Options for the jstack Command

-1
The long listing option prints additional information about locks.

-h or —help
Prints a help message.

ORACLE 9-23

Script Commands

Iis

ORACLE

You use JDK commands to run scripts that interact with the Java platform.

The following sections describe the commands used to run scripts:

Note:

The Nashorn JavaScript script engine, APIs, and the jjs tool have been
deprecated and might be removed in a future JDK release.

e jjs: You use the s command-line tool to invoke the Nashorn engine.

< Note:

Commands identified as Experimental are unsupported and might not be available
in future JDK releases.

* jrunscript: Experimental You use the jrunscript command to run a command-line script
shell that supports interactive and batch modes.

You use the jjs command-line tool to invoke the Nashorn engine.

" Note:

The jjs tool and the Nashorn engine are deprecated in JDK 11 in preparation for
removal in a future release.

Synopsis
jjs loptions] script-files [-- arguments]

options
This represents one or more options of the s command, separated by spaces. See
Options for the jjs Command.

10-1

Chapter 10
jis

script-files

This represents one or more script files that you want to interpret using the Nashorn
engine, separated by spaces. If no files are specified, then an interactive shell is
started.

arguments

All values after the double hyphen marker (--) are passed through to the script or the
interactive shell as arguments. These values can be accessed by using the
arguments property.

Description

The jjs command-line tool is used to invoke the Nashorn engine. You can use it to
interpret one or several script files, or to run an interactive shell.

Options for the jjs Command

The options of the §js command control the conditions under which scripts are
interpreted by Nashorn engine.

-Dname=value

Sets a system property to be passed to the script by assigning a value to a property
name. The following example shows how to invoke the Nashorn engine in interactive
mode and assign myValue to the property named myKey:

>> jjs -DmyKey=myValue

jjs> java.lang.System.getProperty ("myKey")
myValue

jis>

This option can be repeated to set multiple properties.

--add-modules modules
Specifies the root user Java modules.

-cp pathor -classpath path
Specifies the path to the supporting class files. To set multiple paths, the option can
be repeated, or you can separate each path with the following character:

* Oracle Solaris, Linux, and macOS: Colon (:)
* Windows: Semicolon (;)
-doe=[true|false] Or -dump-on-error=[true|false]

Provides a full stack trace when an error occurs. By default, only a brief error
message is printed. The default parameter is false.

-fv=[true|false] Or -fullversion=[true|false]
Prints the full Nashorn version string. The default parameter is false.

-fx=[true|false]
Launches the script as a JavaFX application. The default parameter is false.

ORACLE 10-2

ORACLE

Chapter 10
iis

< Note:

You must explicitly add the JavaFX modules to launch the script as a JavaFX
application. The following example specifies the location of the JavaFX modules
and adds them with the --module-path and --add-modules options:

jjs -fx --module-path /SOMEDIR/javafx-sdk-11/1ib --add-modules
javafx.controls HelloWorld.js

The following example uses the j1ink command to create a custom runtime image
that contains the JavaFX modules. The example then launches a script as a
JavaFX application without specifying the JavaFX modules in the jjs command:
jlink --module-path /SOMEDIR/javafx-jmods-11 --add-modules
jdk.scripting.nashorn, jdk.scripting.nashorn.shell, javafx.controls --
output /SOMEDIR/myjdk

/SOMEDIR/myjdk/bin/jjs -fx HelloWorld.js

If you don't explicitly specify the JavaFX modules, then the jjs command prints a
message and exits:

jjs -fx HelloWorld.js

JavaFX is not available.

-h or -help
Prints the list of options and their descriptions.

--language=[es5|es6]
Specifies the ECMAScript language version. The default version is ES5.

--module-path path
Specifies where to find user Java modules.

-ot=[true|false] Or -optimistic-types=[true|false]

Enables or disables optimistic type assumptions with deoptimizing recompilation. This makes
the compiler try, for any program symbol whose type can’t be proven at compile time, to type
it as narrowly and primitively as possible. If the runtime encounters an error because the
symbol type is too narrow, then a wider method is generated until a steady stage is reached.
While this produces as optimal Java bytecode as possible, erroneous type guesses will lead
to longer warmup. Optimistic typing is currently enabled by default, but it can be disabled for
faster startup performance. The default parameter is true.

-scripting=[true|false]
Enables a shell scripting features. The default parameter is true.

-strict=[true|false]

Enables a strict mode, which enforces stronger adherence to the standard (ECMAScript
Edition 5.1), making it easier to detect common coding errors. The default parameter is
false.

-t=zone Or -timezone=zone
Sets the specified time zone for script execution. It overrides the time zone set in the OS and
used by the Date object. The default zone is America/Los Angeles.

-v=[true|false] Or -version=[true|false]
Prints the Nashorn version string. The default parameter is false.

10-3

jrunscript

ORACLE

Chapter 10
jrunscript

Example of Running a Script with Nashorn

jjs script.js

Example of Running Nashorn in Interactive Mode
>> jjs

jjs> println("Hello, World!")

Hello, World!

338> quit()
>>

Example of Passing Arguments to Nashorn

>> jjs -- abec

jjs> arguments.join(", ")
a, b, c

jjs>

You use the jrunscript command to run a command-line script shell that supports
interactive and batch modes.

" Note:

This tool is experimental and unsupported.

Synopsis

jrunscript [options] [arguments]

options
This represents the jrunscript command-line options that can be used. See Options
for the jrunscript Command.

arguments
Arguments, when used, follow immediately after options or the command name. See
Arguments.

Description

The jrunscript command is a language-independent command-line script shell. The
jrunscript command supports both an interactive (read-eval-print) mode and a batch
(-£ option) mode of script execution. By default, JavaScript is the language used, but
the -1 option can be used to specify a different language. By using Java to scripting
language communication, the jrunscript command supports an exploratory
programming style.

10-4

ORACLE

Chapter 10
jrunscript

If JavaScript is used, then before it evaluates a user defined script, the jrunscript command
initializes certain built-in functions and objects, which are documented in the API
Specification for jrunscript JavaScript built-in functions.

Options for the jrunscript Command

-cp pathor -classpath path
Indicates where any class files are that the script needs to access.

-Dname=value
Sets a Java system property.

-Jflag
Passes flag directly to the Java Virtual Machine where the jrunscript command is running.

-1 language

Uses the specified scripting language. By default, JavaScript is used. To use other scripting
languages, you must specify the corresponding script engine's JAR file with the -cp or -
classpath option.

-e script
Evaluates the specified script. This option can be used to run one-line scripts that are
specified completely on the command line.

-encoding encoding
Specifies the character encoding used to read script files.

-f script-file
Evaluates the specified script file (batch mode).

-f -
Enters interactive mode to read and evaluate a script from standard input.

-help or -?
Displays a help message and exits.

-q
Lists all script engines available and exits.

Arguments

If arguments are present and if no -e or -f option is used, then the first argument is the script
file and the rest of the arguments, if any, are passed as script arguments. If arguments and
the -e or the -f option are used, then all arguments are passed as script arguments. If
arguments -e and -f are missing, then the interactive mode is used.

Example of Executing Inline Scripts

jrunscript -e "print('hello world')"
jrunscript -e "cat('http://www.example.com')"

Example of Using Specified Language and Evaluate the Script File

jrunscript -1 js -f test.js

10-5

ORACLE

Chapter 10
jrunscript

Example of Interactive Mode

jrunscript

js> print ('Hello World\n');

Hello World

js> 34 + 55

89.0

js> t = new java.lang.Thread(function() { print('Hello World\n'); })
Thread[Thread-0,5,main]

js> t.start()

js> Hello World

js>

Run Script File with Script Arguments

In this example, the test.js file is the script file. The argl, arg2, and arg3 arguments
are passed to the script. The script can access these arguments with an arguments
array.

jrunscript test.js argl arg2 arg3

10-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Tools and Commands Reference
	2 Main Tools to Create and Build Applications
	javac
	Annotation Processing
	Searching for Types

	javap
	javadoc
	java
	java Command-Line Argument Files
	Code Heap State Analytics
	Enable Logging with the JVM Unified Logging Framework
	Validate Java Virtual Machine Flag Arguments
	Large Pages
	Application Class Data Sharing
	Performance Tuning Examples
	Exit Status

	jar
	jlink
	jmod
	jdeps
	jdeprscan

	3 Language Shell
	jshell

	4 Security Tools and Commands
	keytool
	jarsigner
	kinit
	klist
	ktab

	5 Remote Method Invocation (RMI) Tools and Commands
	rmic
	rmiregistry
	rmid
	serialver

	6 Java Deployment Tools and Commands
	pack200
	unpack200

	7 Monitoring Tools and Commands
	jconsole
	jps
	jstat
	jstatd

	8 Java Accessibility Utilities and Commands
	jaccessinspector
	jaccesswalker

	9 Troubleshooting Tools and Commands
	jcmd
	jdb
	jhsdb
	jinfo
	jmap
	jstack

	10 Script Commands
	jjs
	jrunscript

