Java Platform, Standard Edition
Troubleshooting Guide

Release 11
E94880-09
October 2025

ORACLE"

Java Platform, Standard Edition Troubleshooting Guide, Release 11
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Related Documents [
Conventions i

Part | General Java Troubleshooting

1 Prepare Java for Troubleshooting

Set Up Java for Troubleshooting
Enable Options and Flags for JVM Troubleshooting
Gather Relevant Data

Make a Java Application Easier to Debug

w Wk

2 Diagnostic Tools

Diagnostic Tools Overview
JDK Mission Control
Troubleshoot with JDK Mission Control
Flight Recorder
Produce a Flight Recording
Start a Flight Recording
Use Triggers for Automatic Flight Recordings
Use Startup Flags at the Command Line to Produce a Flight Recording
Analyze a Flight Recording

0 00 N O o o b~ WONDN

Analyze a Flight Recording Using JMC
Analyze a Flight Recording Using the jfr tool or JFR APIs
The jemd Utility
Useful Commands for the jemd Utility
Troubleshoot with the jemd Utility

e~ i e
g bh W N O

Native Memory Tracking
Use NMT to Detect a Memory Leak

=
(6]

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page i of viii

How to Monitor VM Internal Memory 15

NMT Memory Categories 23
JConsole 24
Troubleshoot with the JConsole Tool 24
Monitor Local and Remote Applications with JConsole 25
The jdb Utility 27
Troubleshoot with the jdb Utility 27
The jinfo Utility 27
Troubleshooting with the jinfo Utility 29
The jmap Utility 29
Heap Configuration and Usage 29
Heap Histogram 31
Class Loader Statistics 32
The jps Utility 34
The jstack Utility 34
Troubleshoot with the jstack Utility 35
Stack Trace from a Core Dump 35
Mixed Stack 35
The jstat Utility 38
The visualgc Tool 39
Control+Break Handler 40
Thread Dump 41
Thread States for a Thread Dump 42
Detect Deadlocks 42
Heap Summary 43
Native Operating System Tools 44
DTrace Tool 44
Probe Providers in Java HotSpot VM 45
Improvements to the pmap Utility 45
Improvements to the pstack Utility 46
Custom Diagnostic Tools 46
Java Platform Debugger Architecture 47
Postmortem Diagnostic Tools a7
Hung Processes Tools 48
Monitoring Tools 49
Other Tools, Options, Variables, and Properties 50
The java.lang.management Package 51
The java.lang.instrument Package 52
The java.lang.Thread Class 52
JVM Tool Interface 52
The jrunscript Utility 52
The jstatd Daemon 52

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page ii of viii

Troubleshooting Tools Based on the Operating System 53

3 Troubleshoot Memory Leaks

Use JDK Mission Control to Debug Memory Leak
Detect Memory Leak
Find the Leaking Class

The jfr tool

Understand the OutOfMemoryError Exception

© N D W R R

Troubleshoot a Crash Instead of OutOfMemoryError
Diagnose Leaks in Java Language Code 10
Get a Heap Histogram 10
Monitor the Objects Pending Finalization 12
Diagnose Leaks in Native Code 12
Track All Memory Allocation and Free Calls 12
Track All Memory Allocations in the NI Library 13
Track Memory Allocation with Operating System Support 14
Find Leaks with the dbx Debugger 14
Find Leaks with the libumem Tool 16

4 Troubleshoot Performance Issues Using Flight Recorder

Flight Recorder Overhead

Use JDK Mission Control to Find Bottlenecks

Use JDK Mission Control to Debug Garbage Collection Issues
Use JDK Mission Control to Debug Synchronization Issues
Use JDK Mission Control to Debug I/O Issues

N O O wN

Use JDK Mission Control to Monitor Code Execution Performance

Part |l Debug JVM Issues

5 Troubleshoot System Crashes

Determine Where the Crash Occurred

Crash the Native Code

Crash in the Compiled Code

Crash in the HotSpot Compiler Thread

Crash in the VM Thread

Crash Due to Stack Overflow

Crash Due to Exceeded Memory Map Area Limit
Find a Workaround

o o A MM WR PR

Working Around Crashes in the HotSpot Compiler Thread or Compiled Code

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page iii of viii

Working Around Crashes During Garbage Collection

Working Around Crashes Caused by Class Data Sharing

Microsoft Visual C++ Version Considerations

Troubleshoot Process Hangs and Loops

10
10

Diagnose a Loop Process

Diagnose a Hung Process
Deadlock Detected
Deadlock Not Detected
No Thread Dump

Oracle Solaris 8 Thread Library

Handle Signals and Exceptions

a A B N DN PP

Handle Signals on Oracle Solaris, Linux, and macOS
Handle Exceptions on Windows

Signal Chaining

Handle Exceptions Using the Java HotSpot VM
Console Handlers

Signals Used in Oracle Solaris, Linux, and macOS

Part |l Debug Core Library Issues

g o b W EFE P

8

Time Zone Settings in the JRE

Native Time Zone Information and the JRE
Determine the Time Zone Data Version in Use
Troubleshoot Problems with TZupdater

Determine the Default Time Zone on Windows
Check the Default Time Zone Java Runtime Reports
Determine the Setting in the Control Panel
Check for Automatic Daylight Saving Time Adjustment
Set the Default Time Zone in Windows Settings
Check -Duser.timezone System Property
Special Tool in Windows
Internal Representation of Time Zone Mappings

Part IV Debug Client Issues

o o1 o0 AW W WDN PP P

Troubleshooting Guide

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page iv of viii

9 Introduction to Client Issues

Java SE Desktop Technologies
General Steps to Troubleshoot an Issue
Identify the Type of Issue
Java Client Crashes
Performance Problems
Behavior Problems
Basic Tools
Java Debug Wire Protocol

10 AWT

O o O A B WOWDN PP

Debug Tips for AWT
Layout Manager Issues
Key Events
Modality Issues
AWT Crashes
Focus Events
How to Trace Focus Events
Native Focus System
Focus Models Supported by X Window Managers
Miscellaneous Problems with Focus
Data Transfer
Debug Drag-and-Drop Applications
Frequent Issues with Data Transfer
Other Issues
Splash Screen Issues
Tray Icon Issues
Pop-up Menu Issues
Background or Foreground Color Inheritance
AWT Panel Size Restriction
Hangs During Debugging of Pop-up Menus and Similar Components on X11
Window.toFront()/toBack() Behavior on X11
Heavyweight or Lightweight Components Mix

11 Java 2D Pipeline Rendering and Properties

© © © N N O O O W W N N P

i s e i s =
W W WNNNMNDNR PR

Oracle Solaris and Linux: X11 Pipeline
X11 Pipeline Pixmaps Properties
X11 Pipeline MIT Shared Memory Extension
Oracle Solaris on SPARC: DGA Support

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

w W N P

October 20, 2025
Page v of viii

Oracle Solaris on SPARC - Change Java 2D Default Visual
Windows OS: DirectDraw/GDI Pipeline
Windows OS: Direct3D Pipeline in Full-Screen Mode
OpenGL Pipeline in Oracle Solaris, Linux, and Windows
Enable OpenGL Pipeline
Minimum Requirements
Diagnose Startup Issues
Diagnose Rendering and Performance Issues
Latest OpenGL Drivers

12 Java 2D

© 00 0 N N N O B~ b

Generic Performance Issues
Hardware-Accelerated Rendering Primitives
Primitive Tracing to Detect and Avoid Non-Accelerated Rendering
Causes of Poor Rendering Performance
Improve Performance of Software-only Rendering
Text-Related Issues
Application Crash During Text Rendering
Differences in Text Appearance
Metrics
Java 2D Printing

13 Swing

© © 00 OO O O W N PP -

General Debug Tips for Swing

Specific Debug Tips for Swing
Incorrect Threading
JComponent Children Overlap
Display Update
Model Change
Add or Remove Components
Opaqgue Override
Permanent Changes to Graphics
Custom Painting and Double Buffering
Opaque Content Pane
Renderer Call for Each Cell Performance
Possible Leaks
Mix Heavyweight and Lightweight Components
Use Synth
Track Activity on Event Dispatch Thread
Specify Default Layout Manager

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

oo O O o ot oo o0~ B DM DS DM ODNMNDNPR

October 20, 2025
Page vi of viii

Listener Object Dispatched to Incorrect Component
Add a Component to Content Pane

Drag and Drop Support

One Parent for a Component

JFileChooser Issues with Windows Shortcuts

14 Internationalization

N N NN

Troubleshoot Internationalization and Localization

15 Java Sound

Troubleshoot Java Sound Issues

Part V' Submit Bug Reports

16 Submit a Bug Report

Check for Fixes in Update Releases
Prepare to Submit a Bug Report
Collect Data for a Bug Report
Detailed Description of the Problem
Hardware Details
Operating System Details
Java SE Version
Command-Line Options
Environment Variables
Fatal Error Log
Core and Crash Dump
Logs and Traces
Report a Bug
Collect Core Dumps
Collect Core Dumps on Oracle Solaris
Collect Core Dumps on Linux
Reasons for Not Getting a Core File
Collect Crash Dumps on Windows

Part VI Appendices

00 N N O O oo g DWW W WDNDNRE P

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page vii of viii

A Fatal Error Log

Location of Fatal Error Log A-1
Description of Fatal Error Log A-2
Header Format A-2
Thread Section Format A-5
Process Section Format A-8
System Section Format A-14

B Java 2D Properties

Properties on Oracle Solaris and Linux B-1
Properties on Windows B-2

C Environment Variables and System Properties

The JAVA_TOOL_OPTIONS Environment Variable C-1
The java.security.debug System Property C-2

D Command-Line Options

Java HotSpot VM Command-Line Options D-1
Other Command-Line Options D-5

E Summary of Tools in This Release

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page viii of viii

ORACLE’

Preface

This document helps you to troubleshoot issues that might occur on the Java Platform,
Standard Edition (Java SE) and on Java HotSpot VM. This document provides a description of
the available tools and command-line options that can help to analyze problems. This
document also provides guidance about debugging core library and client issues and describes
some general issues, such as crashes, hangs, and memory leaks. Finally, this document
provides directions for data collection and bug report preparation.

Audience

The target audience for this document is developers who are using the Java Development Kit
(JDK), which is Oracle's implementation of Java Platform, Standard Edition (Java SE). Most of
the information in this document can be applied to the current and previous releases.

This document is intended for readers with a detailed understanding of the Java Client
technologies, a high-level understanding of the components of the Java HotSpot VM, as well
as some understanding of concepts such as garbage collection, threads, and native libraries. It
is also assumed that the reader is reasonably proficient with the operating system where the
Java application is developed and run.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information about Java SE and the relevant client/desktop technologies, visit Java
SE Home.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/java/javase
http://www.oracle.com/technetwork/java/javase

ORACLE’

Preface
Convention Meaning
italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.
nonospace Monospace type indicates commands within a paragraph, URLSs, code in

examples, text that appears on the screen, or text that you enter.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page ii of ii

General Java Troubleshooting

Java troubleshooting techniques for various diagnostic and monitoring tools, diagnosing
memory leaks, and identifying performance issues.

This part describes general Java troubleshooting techniques and contains the following topics.

Troubleshooting Guide
E94880-09

Prepare Java for Troubleshooting

Provides guidelines for setting up both Java and a Java application for better
troubleshooting techniques. These proactive Java setups help debug and narrow down
issues with Java and a Java application.

Diagnostic Tools

Describes various diagnostic and monitoring tools used with Java Development Kit (JDK).
Further describes the troubleshooting tools available and explains custom tools
development using application programming interfaces (APIS).

Troubleshoot Memory Leaks

Provides suggestions for diagnosing problems involving possible memory leaks.

Troubleshoot Performance Issues Using Flight Recorder

Identifies performance issues with a Java application and debugs issues using the Java
Flight Recorder.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 1

Prepare Java for Troubleshooting

This chapter provides some guidelines for setting up both Java and a Java application for
better troubleshooting techniques. These proactive Java setups help debug and narrow down
issues with Java and the application. Not all suggestions apply to every application.

This chapter contains the following sections:

e Set Up Java for Troubleshooting

 Enable Options and Flags for JVM Troubleshooting

¢ Gather Relevant Data

Set Up Java for Troubleshooting

Set up the Java environment and command-line options to enable gathering relevant data for
troubleshooting.

To set up Java, perform the following:

1. Update the Java version: Use the latest Java version to avoid spending time on
troubleshooting issues in Java that were fixed. Often, a problem caused by a bug in the
Java runtime is fixed in the latest update release. Working with the latest Java version
helps avoid some known and common issues.

2. Set up the Java environment to debug: Consider the following scenarios while setting
up a bigger Java application, starting an application with a launcher script, or running
distributed Java on several machines.

a. Make it easy to change the Java version: Using the latest Java version helps avoid
many runtime issues. If your application starts by running a script, ensure that you
have to update the Java path in only one place. If you run in a distributed system, then
think about easy ways to change the Java versions across all of the machines.

b. Make it easy to change the Java command-line options: Sometimes, while
troubleshooting, you may want to change Java options; for example, to add a verbose
output, to turn off a feature, or to tune Java for better performance. Prepare your
systems for these changes.

In a Java application that is running remotely, for example in a testing framework or a
cloud solution, ensure that you can still change the Java flags easily. Sometimes, the
application takes command-line parameters, or you may want to try a flag quickly to
reproduce a problem. Prepare the systems to make these changes easy.

Enable Options and Flags for JVM Troubleshooting

Set up JVM options and flags to enable gathering relevant data for troubleshooting.

The data you gather depends on the system and what data you would use in case you run into
problems. Consider gathering the following data.

1. Enable core files: If Java crashes, for example due to a segmentation fault, the OS saves
to disk a core file (complete dump of the memory). On Linux and Solaris, core files are
sometimes disabled by default. To enable core files on Linux/Solaris, it is usually enough to

Troubleshooting Guide
E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE

Troubleshooting Guide

E94880-09

Chapter 1
Enable Options and Flags for JVM Troubleshooting

runtheulint -c unlinited before starting the application command. Some systems
may have different ways to handle these limits.

@® Note

The core files take up a lot of disk space, especially when run with a large Java
heap.

To decide whether to enable core files, consider what you would do if you had a crash in
your system. Would you want to see a core file? Many Java users won't have much use for
a core file. However, if you would want to debug a possible crash either in a native
debugger such as gdb or by using the Serviceability Agent, then ensure that you enable
core files before the starting the application.

Many times, crashes are hard to reproduce; therefore, enable core files before the starting
the application.

Add -XX:+HeapDumpOnOutOfMemoryError to the JVM flags: The -
XX: +HeapDunpOnQut O Menor yEr ror flag saves a Java Heap dump to disk if the applications
runs into an Qut O Menor yError.

Like core files, heap dumps can be very large, especially when run with a big Java heap.

Again, think about what you would do if the application runs into an Qut Of Menor yEr r or .
Would you want to inspect the heap at the time of the error? In that case, turn flag by
default so that you get this data if the application runs into an unexpected

Qut O Menor yError .

Run a continuous Java flight recording: Set up Java to run with a continuous flight
recording.

Continuous flight recordings are a circular buffer of JFR events. If the application runs into
an issue, you can dump the data from the last hour of the run. The JFR events can be
helpful to debug a wide range of issues from memory leaks to network errors, high CPU
usage, thread blocks, and so on.

The overhead of running with a continuous flight recording is very low. See Produce a
Flight Recording for producing a continuous Java Flight Recording.

Add -verbosegc to the JVM command-line: The flag - ver bosegc logs basic information
about Java Garbage Collector. This log helps you find the following:

* Does garbage collection run for a long time?
* Does the free memory decrease over time?

The garbage collector log helps diagnose issues when the application throws an
Qut OFMenor yErr or or the application runs into performance issues; therefore, turning on
the - ver bosegc flag by default helps troubleshoot issues.

@® Note

Use log rotation so that an application restart doesn't delete the previous logs.
Since JDK7, the flags UseGCl ogFi | eRot at i on and Nurmber OF GCLogFi | es can be
used to set up for log rotation. For a description of these flags, see Debugging
Options for Java HotSpot VM.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 2 of 3

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

ORACLE Chapter 1
Gather Relevant Data

5. Print Java version and JVM flags: Before filing a bug on Java or seeking help from a
forum, have the basic information handy in the log files. For example, it's helpful to print
the Java version and the JVM flags used.

If your application starts with a script, run j ava - versi on to print the Java version and print
the command line before executing it. Another alternative is to add -
XX+Pri nt ConmandLi neFl ags and - shower si on to the JVM arguments.

6. Set up JMC JMX for remote monitoring: JMX can be used to connect to a Java
application remotely using tools such as Mission Control or Visual VM. Unless you can run
these tools on the same machine that is running your application, setting this up can be
helpful later on to monitor the application, send diagnostic commands, manage flight
recordings, and so on. There is no performance overhead if you enable JMX.

Another alternative, is to enable JMX after a Java application has started is to use the
diagnostic command Managenent Agent . start. Runjcnd <pid> hel p
Managenent Agent . start for a list of flags that can be sent with the command.

See The jemd Utility.

Gather Relevant Data

If your application runs into a problem and you want to debug the problem further, ensure that
you collect any relevant data before restarting the system, especially if restarting will remove
previous files.

e Itis important to gather the following files:
— Core files for crash issues.
— hs_err printed text file for Java crashes.
— Log files: Java and application logs.
— Java heap dumps for - XX: +HeapDunpOnQut Of Menor yEr r or .

— Java flight recordings (if enabled). If the problem didn't terminate the application, dump
the continuous recordings.

« If the application stopped responding, then gather the following files:

— Stack traces: Take several stack traces using j cnmd <pi d> Thread. print before
restarting the system.

— Dump flight recordings (if enabled).

— Force a core file: If the application can't be closed properly, then stop the application,
and force a core file using ki I | -6 <pi d> on Linux or Solaris systems.

Make a Java Application Easier to Debug

Using a logging framework is a good way to enable future debugging.

If you run into problems in a specific module, you should be able to enable logging in that
module. It is also good to specify different levels of logging, for example info, debug, and trace.
For more information about Java logging, see Java Logging Overview.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 3 of 3

https://www.oracle.com/pls/topic/lookup?ctx=javase17&id=logging_overview

Diagnostic Tools

The Java Development Kit (JDK) provides diagnostic tools and troubleshooting tools specific to
various operating systems. Custom diagnostic tools can also be developed using the APIs
provided by the JDK.

This chapter contains the following sections:

Troubleshooting Guide
E94880-09

Diagnostic Tools Overview
JDK Mission Control
Flight Recorder

The jemd Utility
Native Memory Tracking

JConsole

The jdb Utility
The jinfo Utility
The jmap Utility
The jps Utility
The jstack Utility

The jstat Utility
The visualgc Tool

Control+Break Handler

Native Operating System Tools

Custom Diagnostic Tools

Postmortem Diagnostic Tools

Hung Processes Tools

Monitoring Tools

Other Tools, Options, Variables, and Properties

The java.lang.management Package

The java.lang.instrument Package

The java.lang.Thread Class
JVM Tool Interface

The jrunscript Utility

The jstatd Daemon

Troubleshooting Tools Based on the Operating System

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 55

ORACLE Chapter 2
Diagnostic Tools Overview

Diagnostic Tools Overview

Most of the command-line utilities described in this section are either included in the JDK or
native operating system tools and utilities.

Although the JDK command-line utilities are included in the JDK download, it is important to
consider that they can be used to diagnose issues and monitor applications that are deployed
with the Java Runtime Environment (JRE).

In general, the diagnostic tools and options use various mechanisms to get the information
they report. The mechanisms are specific to the virtual machine (VM) implementation,
operating systems, and release. Frequently, only a subset of the tools is applicable to a given
issue at a particular time. Command-line options that are prefixed with - XX are specific to Java
HotSpot VM. See Java HotSpot VM Command-Line Options.

@® Note

The - XX options are not part of the Java API and can vary from one release to the
next.

The tools and options are divided into several categories, depending on the type of problem
that you are troubleshooting. Certain tools and options might fall into more than one category.

* Postmortem diagnostics These tools and options can be used to diagnose a problem
after an application crashes. See Postmortem Diagnostic Tools.

* Hung processes These tools can be used to investigate a hung or deadlocked process.
See Hung Processes Tools.

* Monitoring These tools can be used to monitor a running application. See Monitoring
Tools.

e Other These tools and options can be used to help diagnose other issues. See Other
Tools, Options, Variables, and Properties.

@® Note

Some command-line utilities described in this section are experimental. The j st ack,
jinfo,and | nmap utilities are examples of utilities that are experimental. It is suggested
to use the latest diagnostic utility, j cmd instead of the earlier j st ack, ji nfo, and j map
utilities.

JDK Mission Control

Java Platform, Standard Edition (JMC) is a production-time profiling and diagnostics tool. It
includes tools to monitor and manage your Java application with very small performance
overhead.

JMC's very small performance overhead is a result of its tight integration with the HotSpot VM.
JMC functionality is always available on-demand, and its small performance overhead is only
in effect while the tools are running. This approach also eliminates the problem of the observer
effect, which occurs when monitoring tools alter the execution characteristics of the system.

Troubleshooting Guide
E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Page 2 of 55

https://docs.oracle.com/en/java/javase/11/vm/java-virtual-machine-technology-overview.html#GUID-982B244A-9B01-479A-8651-CB6475019281

ORACLE

Chapter 2
JDK Mission Control

JMC enables you to troubleshoot issues and identify root causes and bottlenecks. These
properties make the JMC tool ideal for applications running in production.

JMC consists of the following client applications and plug-ins :

JVM Browser shows running Java applications and their JVMs.

JMX Console is a mechanism for monitoring and managing JVMs. It connects to a running
JVM, collects, displays its characteristics in real time, and enables you to change some of
its runtime properties through Managed Beans (MBeans). You can also create rules that
trigger on certain events (for example, send an e-mail if the CPU usage by the application
reaches 90 percent).

Flight Recorder (JFR) is a tool for collecting diagnostic and profiling data about a running
Java application. It is integrated into the JVM and causes very small performance
overhead, so it can be used in production environments. JFR continuously saves large
amounts of data about the running applications. This profiling information includes thread
samples, lock profiles, and garbage collection details. JFR presents diagnostic information
in logically grouped tables and charts. It enables you to select the range of time and level
of detail necessary to focus on the problem. Data collected by JFR can be essential when
contacting Oracle support to help diagnose issues with your Java application.

jemd Ultility or Diagnostic Commands is used to send diagnostic command requests to the
JVM. These requests are useful for managing recordings from Flight Recorder,
troubleshooting, and diagnosing JVM and Java applications.

Plug-ins help in heap dump analysis and DTrace recording. See Plug-in Details. Java SE
plug-ins connect to a JVM using the Java Management Extensions (JMX) agent. For more
information about JMX, see the Java Platform, Standard Edition Java Management
Extensions Guide .

Troubleshoot with JDK Mission Control

JMC provides the following features or functionalities that can help you in troubleshooting:

Troubleshooting Guide
E94880-09

Copyright © 1995, 2025

Java Management console (JMX) connects to a running JVM, and collects and displays
key characteristics in real time.

Triggers user-provided custom actions and rules for JVM.
Experimental plug-ins from the JMC tool provide troubleshooting activities.

Flight Recording in JMC is available to analyze events. The preconfigured tabs enable you
to easily to drill down in various areas of common interest, such as, code, memory and
garbage collection, threads, and I/O. The Automated Analysis Results page of flight
recordings helps you to diagnose issues quicker. The provided rules and heuristics help
you find functional and performance problems in your application and provide tuning tips.
Some rules that operate with relatively unknown concepts, like safe points, will provide
explanations and links to further information. Some rules are parametrized and can be
configured to make more sense in your particular environment. Individual rules can be
enabled or disabled as you see fit.

— Flight Recorder in the JMC application presents diagnostic information in logically
grouped tables, charts, and dials. It enables you to select the range of time and level of
detail necessary to focus on the problem.

The JMC plug-ins connect to JVM using the Java Management Extensions (JMX) agent.
The JMX is a standard API for the management and monitoring of resources such as
applications, devices, services, and the Java Virtual Machine.

October 20, 2025

, Oracle and/or its affiliates. Page 3 of 55

https://docs.oracle.com/javacomponents/doc/JDMUG/installing-jdk-mission-control-and-supported-plugins.htm#JDMUG-GUID-8F03B4DF-F76C-4BFD-AA67-B5E54C317103

ORACLE

Chapter 2
Flight Recorder

Flight Recorder

Flight Recorder (JFR) is a profiling and event collection framework built into the JDK.

Flight Recorder allows Java administrators and developers to gather detailed low-level
information about how a JVM and Java applications are behaving. You can use JMC, with a
plug-in, to visualize the data collected by JFR. Flight Recorder and JMC together create a
complete toolchain to continuously collect low-level and detailed runtime information enabling
after-the-fact incident analysis.

The advantages of using JFR are:

e It records data about JVM events. You can record events at a particular instance of time.

* Recording events with JFR enables you to preserve the execution states to analyze
issues. You can access the data anytime to better understand problems and resolve them.

« JFR can record a large amount of data on production systems while keeping the overhead
of the recording process low.

» Itis most suited for recording latencies. It records situations where the application is not
executing as expected and provide details on the bottlenecks.

* It provides insight into how programs interact with execution environment as a whole,
ranging from hardware, operating systems, JVM, JDK, and the Java application
environment.

Flight recordings can be started when the application is started or while the application is
running. The data is recorded as time-stamped data points called events. Events are
categorized as follows:

< Duration events: occurs at a particular duration with specific start time and stop time.

e Instant events: occurs instantly and gets logged immediately, for example, a thread gets
blocked.

e Sample events: occurs at regular intervals to check the overall health of the system, for
example, printing heap diagnostics every minute.

e Custom events: user defined events created using JMC or APlIs.

In addition, there are predefined events that are enabled in a recording template. Some
templates only save very basic events and have virtually no impact on performance. Other
templates may come with slight performance overhead and may also trigger garbage
collections to gather additional data. The following templates are provided with Flight Recorder
in the <JDK_ROOT>/1i b/ | fr directory:

« default.jfc: Collects a predefined set of data with low overhead.

« profile.jfc:Provides more data than the def aul t . j f ¢ template, but with overhead
and impact on performance.

Flight Recorder produces following types of recordings:

* Time fixed recordings: A time fixed recording is also known as a profiling recording that
runs for a set amount of time, and then stops. Usually, a time fixed recording has more
events enabled and may have a slightly bigger performance effect. Events that are turned
on can be modified according to your requirements. Time fixed recordings will be
automatically dumped and opened.

Typical use cases for a time fixed recording are as follows:

— Profile which methods are run the most and where most objects are created.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 4 of 55

ORACLE

Chapter 2
Flight Recorder

— Look for classes that use more and more heap, which indicates a memory leak.
— Look for bottlenecks due to synchronization and many more such use cases.

Continuous recordings: A continuous recording is a recording that is always on and saves,
for example, the last six hours of data. During this recording, JFR collects events and
writes data to the global buffer. When the global buffer fills up, the oldest data is discarded.
The data currently in the buffer is written to the specified file whenever you request a
dump, or if the dump is triggered by a rule.

A continuous recording with the default template has low overhead and gathers a lot of
useful data. However, this template doesn't gather heap statistics or allocation profiling.

Produce a Flight Recording

The following sections describe different ways to produce a flight recording.

Start a Flight Recording

Use Triggers for Automatic Flight Recordings

Use Startup Flags at the Command Line to Produce a Flight Recording

Start a Flight Recording

Follow these steps to start a flight recording using JMC.

1.
2.

Troubleshooting Guide
E94880-09

Find your JVM in the JVM Browser.

Right-click the JVM and select Start Flight Recording...

The Start Flight Recording window opens.

Click Browse to find a suitable location and file name to save the recording.

Select either Time fixed recording (profiling recording), or Continuous recording. For
continuous recordings, you can specify the maximum size or maximum age of events you
want to save.

Select the flight recording template in the Event settings drop-down list. Templates define
the events that you want to record. To create your own templates, click Template
Manager. However, for most use cases, select either the Continuous template (for very
low overhead recordings) or the Profiling template (for more data and slightly more
overhead).

Click Finish to start the recording or click Next to modify the event options defined in the
selected template.

Modify the event options for the flight recording. The default settings provide a good
balance between data and performance. You can change these settings based on your
requirement.

For example:

* The Threshold value is the length of event recording. By default, synchronization
events above 10 ms are collected. This means, if a thread waits for a lock for more
than 10 ms, an event is saved. You can lower this value to get more detailed data for
short contentions.

e The Thread Dump setting gives you an option to perform periodic thread dumps.
These are normal textual thread dumps.

Click Finish to start the recording or click Next to modify the event details defined in the
selected template.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 5 of 55

ORACLE

9.

10.

Chapter 2
Flight Recorder

Modify the event details for the selected flight recording template. Event details define
whether the event should be included in the recording. For some events, you can also
define whether a stack trace should be attached to the event, specify the duration
threshold (for duration events) and a request period (for requestable events).

Click Back if you want to modify any of the settings set in the previous steps or click
Finish to start the recording.

The new flight recording appears in the Progress View.

® Note

Expand the node in the JVM Browser to view the recordings that are running.
Right-click any of the recordings to dump, dump whole, dump last part, edit, stop,
or close the recording. Stopping a profiling recording will still produce a recording
file and closing a profiling recording will discard the recording.

@ Note

You can set up JMC to automatically start a flight recording if a condition is met using
the Triggers tab in the JMX console. For more information, see Use Triggers for
Automatic Flight Recordings.

Use Triggers for Automatic Flight Recordings

The Triggers tab allows you to define and activate rules that trigger events when a certain
condition is met. For example, you can set up JDK Mission Control to automatically start a
flight recording if a condition is met. This is useful for tracking specific JVM runtime issues.

This is done from the JMX console.

1.

Troubleshooting Guide
E94880-09

To start the IMX console, find your application in the JVM Browser, right-click it, and select
Start IMX Console

Click the Triggers tab at the bottom of the screen.

Click Add. You can choose any MBean in the application, including your own application-
specific ones.

The Add New Rule dialog opens.

Select an attribute for which the rule should trigger and click Next . For example, select
java.lang > OperatingSystem > ProcessCpuLoad.

Set the condition on which the rule should trigger and click Next. For example, set a value
for the Maximum trigger value, Sustained period, and Limit period.

@® Note

You can either select the Trigger when condition is met or Trigger when
recovering from condition check box.

Select what action you would like your rule to perform when triggered and click Next. For
example, choose Start Time Limited Flight Recording and browse the file destination
and recording time. Select the Open automatically checkbox, if you wish to open the flight
recording automatically when it is triggered.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 6 of 55

ORACLE

Chapter 2
Flight Recorder

Select constraints for your rule and click Next. For example, select the particular dates,
days of the week, or time of day when the rule should be active.

Enter a name for your rule and click Finish.
The rule is added to the My Rules list.

When you select your rule from the Trigger Rules list, the Rule Details pane displays its
components in the following tabs. You can edit the conditions, attributes, and constraints if you
wish:

Condition
Action

Constraint

Use Startup Flags at the Command Line to Produce a Flight Recording

Use startup flags to start recording when the application is started. If the application is already
running, use the j cnd utility to start recording.

Use the following methods to generate a flight recording:

Troubleshooting Guide
E94880-09

Generate a profiling recording when an application is started.

You can configure a time fixed recording at the start of the application using the -

XX: St art Fl i ght Recor di ng option. The following example shows how to run the MyApp
application and start a 60-second recording 20 seconds after starting the JVM, which will
be saved to a file named nyrecording.jfr:

java -
XX: Start Fl i ght Recor di ng. del ay=20s, dur ati on=60s, name=nyr ecor di ng, fi | enane=nyrec
ording.jfr,settings=profile M/App

The settings parameter takes the name of a template. Include the path if the template is
not in the j ava- hone/ | i b/ j f r directory, which is the location of the default templates.
The standard templates are: pr of i | e, which gathers more data and is primarily for
profiling recordings, and def aul t , which is a low overhead setting made primarily for
continuous recordings.

For a complete description of Flight Recorder flags for the j ava command, see Advanced
Runtime Options for Java in the Java Platform, Standard Edition Tools Reference.

Generate a continuous recording when an application is started.

You can start a continuous recording from the command line using the -

XX: St art Fl i ght Recor di ng option. The - XX: FI i ght Recor der Opt i ons provides
additional settings for managing the recording. These flags start a continuous recording
that can later be dumped if needed. The following example shows how to run the MyApp
application with a continuous recording that saves 6 hours of data to disk. The temporary
data will be saved to the / t np folder.

java - XX: StartFlight Recording. di sk=true, naxage=6h, setti ngs=defaul t -
XX: Fl i ght Recor der Opt i ons=reposi tory=/tnp M/App

@® Note

When you actually dump the recording, you specify a new location for the dumped
file, so the files in the repository are only temporary.

Generate a recording using diagnostic commands.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 7 of 55

https://www.oracle.com/pls/topic/lookup?ctx=javase14&id=java_advanced_runtime_tool_reference
https://www.oracle.com/pls/topic/lookup?ctx=javase14&id=java_advanced_runtime_tool_reference

ORACLE

Chapter 2
Flight Recorder

For a running application, you can generate recordings by using Java command-line
diagnostic commands. The simplest way to execute a diagnostic command is to use the
j cmd tool located in the j ava- hone/ bi n directory. For more details see, The jcmd Utility.

The following example shows how to start a recording for the MyApp application with the
process ID 5361. 30 minutes of data is recorded and written to / usr/ r ecor di ng/
myapp-recordingl.jfr.

jcmd 5361 JFR start duration=30m fil ename=/usr/recordings/ nyapp-recordingl.jfr

Analyze a Flight Recording

The following sections describe different ways to analyze a flight recording:

* Analyze a Flight Recording Using IMC

* Analyze a Flight Recording Using the jfr tool or JFR APIs

Analyze a Flight Recording Using JMC

Once the flight recording file opens in the JMC, you can look at a number of different areas like
code, memory, threads, locks and I/0O and analyze various aspects of runtime behavior of your
application.

The recording file is automatically opened in the JMC when a timed recording finishes or when
a dump of a running recording is created. You can also open any recording file by double-
clicking it or by opening it through the File menu. The flight recording opens in the Automated
Analysis Results page. This page helps you to diagnose issues quicker. For example, if
you're tuning the garbage collection, or tracking down memory allocation issues, then you can
use the memory view to get a detailed view on individual garbage collection events, allocation
sites, garbage collection pauses, and so on. You can visualize the latency profile of your
application by looking at I/0 and Threads views, and even drill down into a view representing
individual events in the recording.

View Automated Analysis Results Page

The Flight Recorder extracts and analyzes the data from the recordings and then displays
color-coded report logs on the Automated Analysis Results page.

By default, results with yellow and red scores are displayed to draw your attention to potential
problems. If you want to view all results in the report, click the Show OK Results button (a tick
mark) on the top-right side of the page. Similarly, to view the results as a table, click the Table
button.

The benchmarks are mainly divided into problems related to the following:

« Java Application

¢ JVM Internals
¢ Environment

Clicking on a heading in the report, for example, Java Application, displays a corresponding
page.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 8 of 55

ORACLE

Chapter 2
Flight Recorder

@® Note

You can select a respective entry in the Outline view to navigate between the pages
of the automated analysis.

Analyze the Java Application

Threads

Memory

Method Profiling

Java Application dashboard displays the overall health of the Java application.

Concentrate on the parameters having yellow and red scores. The dashboard provides exact
references to the problematic situations. Navigate to the specific page to analyze the data and
fix the issue.

The Threads page provides a snapshot of all the threads that belong to the Java application. It
reveals information about an application’s thread activity that can help you diagnose problems
and optimize application and JVM performance.

Threads are represented in a table and each row has an associated graph. Graphs can help
you to identify the problematic execution patterns. The state of each thread is presented as a
Stack Trace, which provides contextual information of where you can instantly view the
problem area. For example, you can easily locate the occurrence of a deadlock.

Lock Instances

Lock instances provides further details on threads specifying the lock information, that is, if the
thread is trying to take a lock or waiting for a notification on a lock. If a thread has taken any
lock, the details are shown in the stack trace.

One way to detect problems with application performance to is to see how it uses memory
during runtime.

In the Memory page, the graph represents heap memory usage of the Java application. Each
cycle consists of a Java heap growth phase that represents the period of heap memory
allocations, followed by a short drop that represents garbage collection, and then the cycle
starts over. The important inference from the graph is that the memory allocations are short-
lived as garbage collector pushes down the heap to the start position at each cycle.

Select the Garbage Collection check box to see the garbage collection pause time in the
graph. It indicates that the garbage collector stopped the application during the pause time to
do its work. Long pause times lead to poor application performance, which needs to be
addressed.

Method Profiling page enables you to see how often a specific method is run and for how
long it takes to run a method. The bottlenecks are determined by identifying the methods that
take a lot of time to execute.

As profiling generates a lot of data, it is not turned on by default. Start a new recording and
select Profiling - on server in the Event settings drop-down menu. Do a time fixed recording
for a short duration. JFR dumps the recording to the file name specified. Open the Method
Profiling page in JMC to see the top allocations. Top packages and classes are displayed.
Verify the details in the stack trace. Inspect the code to verify if the memory allocation is
concentrated on a particular object. JFR points to the particular line number where the problem
persists.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 9 of 55

ORACLE

JVM Internals

Environment

Chapter 2
Flight Recorder

The JVM Internals page provides detailed information about the JVM and its behavior.

One of the most important parameters to observe is Garbage Collections. Garbage collection
is a process of deleting unused objects so that the space can be used for allocation of new
objects. The Garbage Collections page helps you to better understand the system behavior
and garbage collection performance during runtime.

The graphs shows the heap usage as compared to the pause times and how it varies during
the specified period. The page also lists all the garbage collection events that occurred during
the recording. Observe the longest pause times against the heap. The pause time indicates
that garbage collections are taking longer during application processing. It implies that garbage
collections are freeing less space on the heap. This situation can lead to memory leaks.

For effective memory management, see the Compilations page, which provides details on
code compilation along with duration. In large applications, you may have many compiled
methods, and memory can be exhausted, resulting in performance issues.

The Environment page provides information about the environment in which the recording
was made. It helps to understand the CPU usage, memory, and operating system that is being
used.

See the Processes page to understand concurrent processes running and the competing CPU
usage of these processes. The application performance will be affected if many processes use
CPU and other system resources.

Check the Event Browser page to see the statistics of all the event types. It helps you to focus
on the bottlenecks and take appropriate action to improve application performance.

You can create Custom Pages using the Event Browser page. Select the required event type
from Event Type Tree and click the Create a hew page using the select event type button in
the top right corner of the page. The custom page is listed as a new event page below the
event browser page.

Analyze a Flight Recording Using the jfr tool or JFR APIs

To access the information in a recording from Flight Recorder, use the j fr tool to print event
information, or use the Flight Recorder API to programmatically process the data.

Flight Recorder provides the following methods for reviewing the information that was
recorded:

e jfr tool - Use this command-line tool to print event data from a recording. The tool is
located in the j ava- hone/ bi n directory. For details about this tool, see The jfr Command
in the Java Platform, Standard Edition Tools Reference

e Flight Recorder API - Use the j dk. j fr. consuner API to extract and format the
information in a recording. For more information, see Flight Recorder APl Programmer’s
Guide.

The events in a recording can be used to investigate the following areas:
e General information
— Number of events recorded at each time stamp

— Maximum heap usage

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 10 of 55

https://www.oracle.com/pls/topic/lookup?ctx=javase15&id=jfr_tool_reference
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jfr/jdk/jfr/consumer/package-summary.html

ORACLE

Troubleshooting Guide
E94880-09

Chapter 2
Flight Recorder

— CPU usage over time, application's CPU usage, and total CPU usage

Watch for CPU usage spiking near 100 percent or the CPU usage is too low or too
long garbage collection pauses.

— GC pause time

— JVM information and system properties set
Memory

— Memory usage over time

Typically, temporary objects are allocated all the time. When a condition is met, a
Garbage Collection (GC) is triggered and all of the objects no longer used are
removed. Therefore, the heap usage increases steadily until a GC is triggered, then it
drops suddenly. Watch for a steadily increasing heap size over time that could indicate
a memory leak.

— Information about garbage collections, including the time spent doing them
— Memory allocations made

The more temporary objects the application allocates, the more the application must
perform garbage collection. Reviewing memory allocations helps you find the most
allocations and reduce the GC pressure in your application.

— Classes that have the most live set

Watch how each object type increases in size during a flight recording. A specific
object type that increases a lot in size indicates a memory leak; however, a small
variance is normal. Especially, investigate the top growers of non-standard Java
classes.

Code
— Packages and classes that used the most execution time
Watch where methods are being called from to identify bottlenecks in your application.
— Exceptions thrown
— Methods compiled over time as the application was running
— Number of loaded classes, actual loaded classes and unloaded classes over time
Threads
— CPU usage and the number of threads over time
— Threads that do most of the code execution
— Objects that are the most waited for due to synchronization
I/O
— Information about file reads, file writes, socket reads, and socket writes
System
— Information about the CPU, memory and OS of the machine running the application
— Environment variables and any other processes running at the same time as the JVM
Events

— Al of the events in the recording

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 11 of 55

ORACLE

The jcmd Utility

The j cmd utility is used to send diagnostic command requests to the JVM, where these
requests are useful for controlling Java Flight Recordings, troubleshoot, and diagnose JVM

and Java applications.

Chapter 2
The jemd Utility

j cnmd must be used on the same machine where the JVM is running, and have the same

effective user and group identifiers that were used to launch the JVM.

A special command j cnd <process id/min class> PerfCounter.print prints all

performance counters in the process.

The command j cnd <process id/min class> <command> [options] sends the command to

the JVM.

The following example shows diagnostic command requests to the JVM using j cmd utility.

> jcmd

5485 j dk.jcmd/ sun.tool s.jcnd. JCnd

2125 MyProgram

> jcnd MyProgram (or "jcnd 2125")

2125:

The foll owi ng cormands are avail abl e:

Conpi | er. CodeHeap_Anal ytics
Conpi | er. codecache

Conpi | er. codel i st

Conpi l er.directives_add
Conpil er.directives_clear
Conpiler.directives print
Conpil er.directives_renove
Conpi | er. queue

CGC. cl ass_hi st ogram
QC.class_stats
CC.finalizer_info

GC. heap_dunp

CC. heap_info

GC.run
GC.run_finalization

JFR. check

JFR configure

JFR. dunp

JFR start

JFR stop

JVMII . agent _| oad

JVMII . dat a_dunp
Managenent Agent . start
Managenent Agent . start | ocal
Managenent Agent . st at us
Managenent Agent . st op
Thread. print

VM cl ass_hi erar chy

VM cl assl oader _stats

VM cl assl oaders

VM comand_| i ne

Troubleshooting Guide

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 12 of 55

ORACLE Chapter 2
The jemd Utility

VM dynl i bs

VM event s

WM fl ags

VMinfo

VM | og

VM net aspace

VM native_nenory

VM print _t ouched_net hods
VWM set flag

VM stringtable

VM synbol t abl e

VM syst em properties
VM syst endi cti onary

VM upti me
VM ver si on
hel p

For nmore infornation about a specific command use 'hel p <command>'.

> jcnmd MyProgram hel p Thread. print
2125:

Thread. print

Print all threads with stacktraces.

[npact: Medium Depends on the nunber of threads.

Perm ssion: java.lang. managenent. Managenent Per mi ssi on(noni t or)

Syntax : Thread. print [options]

Options: (options must be specified using the <key> or <key>=<val ue> synt ax)
-1 : [optional] print java.util.concurrent |ocks (BOOLEAN, false)
-e : [optional] print extended thread information (BOOLEAN, false)

> jcmd MyProgram Thread. print

2125:

2019-11-16 16:06:09
Full thread dunp Java Hot Spot (TM 64-Bit Server VM (11.0.5+10-LTS m xed node):

The following sections describe some useful commands and troubleshooting techniques with
the j cnd utility:

* Useful Commands for the jcmd Utility

e Troubleshoot with the jcmd Utility

Useful Commands for the jcmd Utility

The available diagnostic command may be different in different versions of HotSpot VM;
therefore, using j cnd <process i d/ main class> hel p is the best way to see all available
options.

The following are some of the most useful commands in the j cnd tool. Remember you can
always use j cnmd <process id/main class> hel p <cormand> to get any additional options to
these commands:

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 13 of 55

ORACLE

Chapter 2
The jemd Utility

Print full HotSpot and JDK version ID.

jcmd <process id/main class> VM version

Print all the system properties set for a VM.

There can be several hundred lines of information displayed.
jcmd <process id/main class> VM system properties
Print all the flags used for a VM.

Even if you have provided no flags, some of the default values will be printed, for example
initial and maximum heap size.

jcmd <process id/main class> VM flags
Print the uptime in seconds.

jcmd <process id/main class> VM uptine
Create a class histogram.

The results can be rather verbose, so you can redirect the output to a file. Both internal
and application-specific classes are included in the list. Classes taking the most memory
are listed at the top, and classes are listed in a descending order.

jcmd <process id/main class> CC. class_histogram
Create a heap dump.
jcmd GC. heap_dunp fil ename=Myheapdunp

This is the same as using j map -dunp: file=<file> <pi d>, butjcnd is the recommended
tool to use.

Create a heap histogram.

jcmd <process id/main class> CC. class_histogramfil enane=Myheaphi st ogram
This is the same as using j map - hi sto <pi d>, butj cnd is the recommended tool to use.
Print all threads with stack traces.

jcmd <process id/main class> Thread. print

Troubleshoot with the jemd Utility

Use the j cnd utility to troubleshoot.

The j cmd utility provides the following troubleshooting options:

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025

Start a recording.

For example, to start a 2-minute recording on the running Java process with the identifier
7060 and save it to myrecording.jfr in the current directory, use the following:

jcmd 7060 JFR start name=MyRecording settings=profile del ay=20s durati on=2m
fil ename=C \ TEMP\ nyrecording.jfr

Check a recording.
The JFR check diagnostic command checks a running recording. For example:
jcmd 7060 JFR. check

Stop a recording.

October 20, 2025

, Oracle and/or its affiliates. Page 14 of 55

ORACLE’

Chapter 2
Native Memory Tracking

The JFR st op diagnostic command stops a running recording and has the option to discard
the recording data. For example:

jcmd 7060 JFR stop
Dump a recording.

The JFR dunp diagnostic command stops a running recording and has the option to dump
recordings to a file. For example:

jemd 7060 JFR. dunp name=MyRecordi ng fil enane=C:\ TEMP\ nyrecording.jfr
Create a heap dump.

The preferred way to create a heap dump is

jcmd <pi d> GC heap_dunp fil ename=Myheapdunp

Create a heap histogram.

The preferred way to create a heap histogram is

jemd <pid> GC. class_histogram fil ename=Myheaphi st ogram

Native Memory Tracking

The Native Memory Tracking (NMT) is a Java HotSpot VM feature that tracks internal memory
usage for a Java HotSpot VM.

Since NMT doesn't track memory allocations by non-JVM code, you may have to use tools
supported by the operating system to detect memory leaks in native code.

The following sections describe how to monitor VM internal memory allocations and diagnose
VM memory leaks.

Use NMT to Detect a Memory Leak

How to Monitor VM Internal Memory

NMT Memory Categories

Use NMT to Detect a Memory Leak

Procedure to use Native Memory Tracking to detect memory leaks.

Follow these steps to detect a memory leak:

1.

3.
4.

Start the JVM with summary or detail tracking using the command line option: -
XX: Nat i veMenor yTr acki ng=summary or - XX: Nat i veMenor yTr acki ng=det ai | .

Establish an early baseline. Use NMT baseline feature to get a baseline to compare during
development and maintenance by running: j cnd <pi d> VM native_nenory basel i ne.

Monitor memory changes using: j cmd <pi d> VM native_nmenory detail.diff.

If the application leaks a small amount of memory, then it may take a while to show up.

How to Monitor VM Internal Memory

Native Memory Tracking can be set up to monitor memory and ensure that an application does
not start to use increasing amounts of memory during development or maintenance.

See Table 2-1 for details about NMT memory categories.

Troubleshooting Guide
E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 15 of 55

ORACLE

Chapter 2
Native Memory Tracking

The following sections describe how to get summary or detail data for NMT and describes
how to interpret the sample output.

Troubleshooting Guide
E94880-09

Interpret sample output: From the following sample output, you will see reserved and
committed memory. Note that only committed memory is actually used. For example, if
you run with - Xms100m - Xmx1000m then the JVM will reserve 1000 MB for the Java heap.
Because the initial heap size is only 100 MB, only 100 MB will be committed to begin with.
For a 64-bit machine where address space is almost unlimited, there is no problem if a
JVM reserves a lot of memory. The problem arises if more and more memory gets
committed, which may lead to swapping or native out of memory (OOM) situations.

An arena is a chunk of memory allocated using malloc. Memory is freed from these chunks
in bulk, when exiting a scope or leaving an area of code. These chunks can be reused in
other subsystems to hold temporary memory, for example, pre-thread allocations. An
arena malloc policy ensures no memory leakage. So arena is tracked as a whole and not
individual objects. Some initial memory cannot be tracked.

Enabling NMT will result in a 5-10 percent JVM performance drop, and memory usage for
NMT adds 2 machine words to all malloc memory as a malloc header. NMT memory usage
is also tracked by NMT.

>jcnd 17320 VM native_nenory
Native Menmory Tracking:

Total : reserved=5699702KB, committed=351098KB

- Java Heap (reserved=4153344KB, committed=260096KB)
(mrap: reserved=4153344KB, commi tted=260096KB)

- O ass (reserved=1069839KB, committed=22543KB)

(cl asses #3554)

(instance classes #3294, array classes #260)

(mal I 0c=783KB #7965)

(mmap: reserved=1069056KB, committed=21760KB)

(I\/Et adat a:)

(reserved=20480KB, conmmitted=18944KB)

(used=18267KB)

(free=677KB)

(wast e=0KB =0. 00%

(Cass space:)

(reserved=1048576KB, conmmitted=2816KB)

(used=2454KB)

(free=362KB)

(wast e=0KB =0. 00%

- Thread (reserved=24685KB, committed=1205KB)

(thread #24)

(stack: reserved=24576KB, conmitted=1096KB)

(mal | oc=78KB #132)

(arena=30KB #46)

- Code (reserved=248022KB, conmitted=7890KB)
(mal | oc=278KB #1887)
(map: reserved=247744KB, conmmitted=7612KB)

- GC (reserved=197237KB, committed=52789KB)

(mal | 0c=9717KB #2877)
(mrap: reserved=187520KB, conmitted=43072KB)

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 16 of 55

ORACLE

Troubleshooting Guide
E94880-09

Chapter 2
Native Memory Tracking

- Conpil er (reserved=148KB, conmitted=148KB)
(mal [oc=19KB #95)
(arena=129KB #5)

- Internal (reserved=735KB, committed=735KB)
(mal | 0c=663KB #1914)
(mmap: reserved=72KB, conmitted=72KB)

- G her (reserved=48KB, conmitted=48KB)
(mal | oc=48KB #4)

- Synbol (reserved=4835KB, commi tted=4835KB)
(mal 1 oc=2749KB #17135)
(arena=2086KB #1)

- Native Menmory Tracking (reserved=539KB, conmitted=539KB)
(mal | oc=8KB #109)
(tracki ng overhead=530KB)

- Arena Chunk (reserved=187KB, committed=187KB)
(mal | 0c=187KB)

- Loggi ng (reserved=4KB, conmitted=4KB)
(mal | oc=4KB #179)

- Argurments (reserved=18KB, conmitted=18KB)
(mal | oc=18KB #467)

- Modul e (reserved=62KB, conmitted=62KB)
(mal 1 oc=62KB #1060)

Get detail data: To get a more detailed view of native memory usage, start the JVM with
command line option: - XX: Nat i veMenor yTr acki ng=det ai | . This will track exactly what
methods allocate the most memory. Enabling NMT will result in 5-10 percent JVM
performance drop and memory usage for NMT adds 2 words to all malloc memory as
malloc header. NMT memory usage is also tracked by NMT.

The following example shows a sample output for virtual memory for track level set to
detail. One way to get this sample output is to run: j cnd <pi d> VM nati ve_menory
detail.

Virtual memory nap:

[0x0000000702800000 - 0x0000000800000000] reserved 4153344KB for Java Heap
from

[0x00007f f dcabb217d]
[0x00007f f dca6b19a3]
[0x00007f f dca6b0d63]
[0x00007f f dca68e7ae]
[0x0000000702800000 - 0x0000000712600000] conmitted 260096KB from
[0x00007f f dca254ecc]
[0x00007f f dca254d52]
[0x00007f f dca25a5¢6]
[0x00007f f dca2a66bf]

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 17 of 55

ORACLE Chapter 2
Native Memory Tracking

[0x0000000800000000 - 0x0000000840000000] reserved 1048576KB for C ass from
[0x00007f f dca6bl54a]
[0x00007f f dcabbOf b4]
[0x00007f f dcab1d2f 9]
[0x00007f f dcable4d2]

[0x0000000800000000 - 0x00000008003a0000] committed 3712KB from
[0x00007f f dca6b10c4]
[0x00007f f dcabb1250]
[0x00007f f dca6b0087]
[0x00007f f dcabaf 852]

[0x000000bae6d00000 - 0x000000bae6e00000] reserved 1024KB for Thread Stack
from

[0x00007f f dca679569]

[0x00007f f dca5751c2]

[0x00007f f e13edlf f a]

[0x00007f fel7d17974]

[0x000000bae6d00000 - 0x000000bae6d04000] committed 16KB from
[0x00007f f dca67354¢]
[0x00007f f dca679571]
[0x00007f f dca5751c2]
[0x00007f f e13ed1f f a]

[0x000000bae6df 2000 - 0x000000bae6e00000] conmitted 56KB

[0x000000bae6f 00000 - 0x000000bae7000000] reserved 1024KB for Thread Stack

from
[0x00007f f dca679569]
[0x00007f f dcab751c2]
[0x00007f f e13ed1f f a]
[0x00007f fel7d17974]
[0x000000bae6f 00000 - 0x000000bae6f 04000] committed 16KB from
[0x00007f f dca67354¢€]
[0x00007f f dca679571]
[0x00007f f dcab5751c2]
[0x00007f f e13ed1f f a]

[0x000000bae6f f 3000 - 0x000000bae7000000] conmitted 52KB

[0x000001d4d3480000 - 0x000001d4d3482000] reserved and conmitted 8KB for
Internal from

[0x00007f f dca5df 383]
[0x00007f f dca6737a9]
[0x00007f f dca322e1d]
[0x00007f f dca3251e1]
[0x000001d4d3480000 - 0x000001d4d3482000] committed 8KB from
[0x00007f f dca5df 39b]
[0x00007f f dca6737a9]
[0x00007f f dca322e1d]
[0x00007f f dca3251e1]

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 18 of 55

ORACLE Chapter 2
Native Memory Tracking

[0x000001d4d4d50000 - 0x000001d4d4d60000] reserved and conmitted 64KB for
Internal from

[0x00007f f dca5a0719]

[0x00007f f dca59f 627]

[0x00007f f dca59f 03e]

[0x00007f f dca2b3632]

[0x000001d4d4d60000 - 0x000001d4d4d70000] reserved 64KB for Code from
[0x00007f f dca6b159d]
[0x00007f f dca6bOf 40]
[0x00007f f dca29a2b2]
[0x00007f f dcal358e9]

[0x000001d4d4d60000 - 0x000001d4d4d65000] committed 20KB from
[0x00007f f dca6b10c4]
[0x00007f f dcabb1250]
[0x00007f f dcabb1720]
[0x00007f f dca29a2ee]

[0x000001d4d51d0000 - 0x000001d4d52c0000] reserved 960KB for Code from
[0x00007f f dca6b159d]
[0x00007f f dca6bOf 40]
[0x00007f f dca29a2b?]
[0x00007f f dcal358e9]

[0x000001d4d51d0000 - 0x000001d4d51d5000] committed 20KB from
[0x00007f f dca6b10c4]
[0x00007f f dcabb1250]
[0x00007f f dcabb1720]
[0x00007f f dca29a2ee]

[0x000001d4d51d5000 - 0x000001d4d51e2000] committed 52KB from
[0x00007f f dca6b10c4]
[0x00007f f dca6b1250]
[0x00007f f dca299df 8]
[0x00007f f dcal35acf]

[0x000001d4d57f 0000 - 0x000001d4d5880000] reserved and conmitted 576KB for

CC from
[0x00007f f dca24258b]
[0x00007f f dca2654bb]
[0x00007f f dca232bcd]
[0x00007f f dca68d437]
[0x000001d4d57f 0000 - 0x000001d4d5880000] conmitted 576KB from
[0x00007f f dca2425d1]
[0x00007f f dca2654bb]
[0x00007f f dca232bcd]
[0x00007f f dca68d437]

[0x000001d4f 8930000 - 0x000001d4f 9130000] reserved and conmmitted 8192KB
for dass from

[0x00007f f dca6b159d]

[0x00007f f dca6bOf b4]

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 19 of 55

ORACLE Chapter 2
Native Memory Tracking

[0x00007f f dcabaf ee3]
[0x00007f f dcabaf 7b5]

[0x000001d4f 8930000 - 0x000001d4f 9130000] committed 8192KB from
[0x00007f f dca6b10c4]
[0x00007f f dcabb1250]
[0x00007f f dca6b0087]
[0x00007f f dcabaf 852]

[0x000001d4f a0d0000 - 0x000001d4f a2d0000] reserved and conmitted 2048KB
for Class from

[0x00007f f dcabb159d]
[0x00007f f dcabbOf b4]
[0x00007f f dcabaf ee3]
[0x00007f f dcabaf 7b5]
[0x000001d4f a0d0000 - 0x000001d4f a2d0000] committed 2048KB from
[0x00007f f dca6b10c4]
[0x00007f f dcabb1250]
[0x00007f f dca6b0087]
[0x00007f f dcabaf 852]

« Get diff from NMT baseline: For both summary and detail level tracking, you can set a
baseline after the application is up and running. Do this by running j cnd <pi d>
VM native_nenory basel i ne after the application warms up. Then, you can runj cnd
<pid> VM native_menory sunmary.diff orjcmd <pid> VM native_nenory detail.diff.

The following example shows sample output for the summary difference in native memory
usage since the baseline was set and is a great way to find memory leaks.

>jcnd 17320 VM native_nenory summary. dif f
17320:

Total : reserved=5712754KB +8236KB, conmitted=370550KB +12940KB

Java Heap (reserved=4153344KB, committed=260096KB)
(mmap: reserved=4153344KB, commi tted=260096KB)

- C ass (reserved=1078291KB +6357KB, committed=32915KB
+7381KB)
(cl asses #4868 +958)
(instance classes #4528 +901, array classes
#340 +57)
(mal 1 0c=1043KB +213KB #12345 +3198)
(mmap: reserved=1077248KB +6144KB,
conmmi tt ed=31872KB +7168KB)
(Metadata:)
(reserved=28672KB +6144KB,
commi tt ed=27904KB +6400KB)
(used=27206KB +6181KB)
(free=698KB +219KB)
(wast e=0KB =0. 00%
(Cass space:)
(reserved=1048576KB, committed=3968KB

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 20 of 55

ORACLE

+768KB)

+4KB)

+3999KB)

+3676KB)

+70KB)

+1082KB)

Chapter 2
Native Memory Tracking

(used=3395KB +643KB)
(free=573KB +125KB)
(wast e=0KB =0. 00%

Thread (reserved=26745KB +2KB, committed=1421KB +6KB)

(thread #26)
(stack: reserved=26624KB, comitted=1300KB

(mal | oc=85KB #142)
(arena=35KB +2 #50)

Code (reserved=248533KB +323KB, committed=14725KB

(mal | oc=789KB +323KB #4505 +1596)
(mmap: reserved=247744KB, conmitted=13936KB

CC (reserved=197345KB +70KB, committed=52897KB

Conpi | er

| nt er nal

O her

Synbol

(mal | 0c=9825KB +70KB #4868 +1395)
(mmap: reserved=187520KB, conmitted=43072KB)

(reserved=153KB +4KB, comnitted=153KB +4KB)
(mal | oc=27KB +6KB #312 +154)
(arena=126KB -2 #5)

(reserved=785KB +27KB, committed=785KB +27KB)
(mal | oc=713KB +27KB #2213 +214)
(mmap: reserved=72KB, conmitted=72KB)

(reserved=49KB, committed=49KB)
(mal | oc=49KB #4)

(reserved=6268KB +1082KB, conmitted=6268KB

(mal | 0c=3926KB +1018KB #34608 +16640)
(arena=2342KB +64 #1)

- Native Memory Tracking (reserved=963KB +364KB, committed=963KB +364KB)

Troubleshooting Guide
E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

(mal | oc=9KB +1KB #123 +8)
(tracking overhead=953KB +363KB)

Arena Chunk (reserved=187KB, conmitted=187KB)

(mal | 0c=187KB)

Loggi ng (reserved=4KB, conmitted=4KB)

(mal | 0c=4KB #179)

Argurments (reserved=18KB, conmitted=18KB)

(mal | oc=18KB #467)

Modul e (reserved=71KB +7KB, committed=71KB +7KB)

(mal | 0c=71KB +7KB #1119 +53)

October 20, 2025
Page 21 of 55

ORACLE

Troubleshooting Guide
E94880-09

Chapter 2
Native Memory Tracking

The following example is a sample output that shows the detail difference in native
memory usage since the baseline and is a great way to find memory leaks.

[0x00007f f dca51ce00]
[0x00007f f dcal27ca3]
[0x00007f f dca51d08b]
[0x00007f f dca195288]

[0x00007f f dcal69f 01]
[0x00007f f dcal6480a]
[0x00007f f dcal64349]
[0x00007f f dcal6444d]

[0x00007f f dca5c160a]
[0x000001d4ddd73b66]

[0x00007f f dca5¢c160a]
[0x00007f f dca22d16h]
[0x00007f f dca254a62]
[0x00007f f dca264h9¢e]

[0x00007f f dca2b860a]
[0x00007f f dcal66d7c]
[0x00007f f dca3237bf]
[0x00007f f dca313331]

[0x00007f f dca67170c]
[0x00007f f dca6712f 3]
[0x00007f f dca369ed1]
[0x000001d4ddd6f 0b7]

[0x00007f f dca60a90c]
[0x00007f f dca60ca3f]
[0x00007f f dca60cd29]
[0x00007f f dca2d78f 3]

[0x00007f f dca60a90c]
[0x00007f f dca60ca3f]
[0x00007f f dca60cc2e]
[0x00007f f dcal9a631]

[0x00007f f dca29860f |
[0x00007f f dca204dc4]
[0x00007f f dca65070a]
[0x00007f f dca64f d17]

Copyright © 1995, 2025, Oracle and/or its affiliates.

(mal 1 oc=81KB type=Cl ass +18KB #869 +194)

(mal 1 oc=3KB type=Conpi | er +1KB #27 +8)

(mal | oc=2KB type=CC +2KB #1 +1)

(mal | oc=6KB type=CC +6KB #3 +3)

(mal 1 oc=16KB type=Cl ass +1KB #61 +6)

(mal 1 oc=3KB type=Internal +1KB #9 +3)

(mal 1 0oc=16KB type=Synbol +6KB #1030 +399)

(mal 1 oc=116KB type=Synbol +23KB #7411 +1442)

(mal 1 oc=11KB type=Cl ass +3KB #357 +82)

October 20, 2025
Page 22 of 55

ORACLE

[0x00007f f dca29860f |
[0x00007f f dca204dc4]
[0x00007f f dca65070a]
[0x00007f f dcab4aef b]

[0x00007f f dca50c00f]
[0x00007f f dca50be9d]
[0x00007f f dca552f c9]
[0x00007f f dca203aa0]

#20 +20)
[0x00007f f dca53dd17]

[0x00007f f dca53f 52a]
[0x00007f f dca350c54]

[0x000001d4ddd6f Ob7]

NMT Memory Categories

Chapter 2
Native Memory Tracking

(mal 1 oc=105KB type=Cl ass +23KB #3371 +749)

(mal 1 oc=1KB type=Native Menory Tracking +1KB

List of native memory tracking memory categories used by NMT.

Table 2-1 describes native memory categories used by NMT. These categories may change

with a release.

Table 2-1 Native Memory Tracking Memory Categories

Category Description

Java Heap The heap where your objects live

Class Class meta data

Thread Memory used by threads, including thread data structure, resource area,
handle area, and so on

Code Generated code

GC Data use by the GC, such as card table

Compiler Memory tracking used by the compiler when generating code

Internal Memory that does not fit the previous categories, such as the memory
used by the command line parser, JVMTI, properties, and so on

Other Memory not covered by another category

Symbol Memory for symbols

Native Memory Tracking Memory used by NMT

Arena Chunk Memory used by chunks in the arena chunk pool

Logging Memory used by logging

Arguments Memory for arguments

Module Memory used by modules

Troubleshooting Guide

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 23 of 55

ORACLE

JConsole

Chapter 2
JConsole

Another useful tool included in the JDK download is the JConsol e monitoring tool. This tool is
compliant with JMX. The tool uses the built-in JMX instrumentation in the JVM to provide
information about the performance and resource consumption of running applications.

Although the tool is included in the JDK download, it can also be used to monitor and manage
applications deployed with the JRE.

The JConsol e tool can attach to any Java application in order to display useful information
such as thread usage, memory consumption, and details about class loading, runtime
compilation, and the operating system.

This output helps with the high-level diagnosis of problems such as memory leaks, excessive
class loading, and running threads. It can also be useful for tuning and heap sizing.

In addition to monitoring, JConsol e can be used to dynamically change several parameters in
the running system. For example, the setting of the - ver bose: gc option can be changed so
that the garbage collection trace output can be dynamically enabled or disabled for a running
application.

The following sections describe troubleshooting techniques with the JConsole tool.

e Troubleshoot with the JConsole Tool

* Monitor Local and Remote Applications with JConsole

Troubleshoot with the JConsole Tool

Use the JConsol e tool to monitor data.

The following list provides an idea of the data that can be monitored using the JConsol e tool.
Each heading corresponds to a tab pane in the tool.

« Overview

This pane displays graphs that shows the heap memory usage, number of threads,
number of classes, and CPU usage over time. This overview allows you to visualize the
activity of several resources at once.

* Memory
— For a selected memory area (heap, non-heap, various memory pools):
* Graph showing memory usage over time
* Current memory size
* Amount of committed memory
* Maximum memory size

— Garbage collector information, including the number of collections performed, and the
total time spent performing garbage collection

— Graph showing the percentage of heap and non-heap memory currently used
In addition, on this pane you can request garbage collection to be performed.
* Threads

— Graph showing thread usage over time.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 24 of 55

ORACLE

Chapter 2
JConsole

Live threads: Current number of live threads.
Peak: Highest number of live threads since the JVM started.

For a selected thread, the name, state, and stack trace, as well as, for a blocked
thread, the synchronizer that the thread is waiting to acquire, and the thread that owns
the lock.

The Deadlock Detection button sends a request to the target application to perform
deadlock detection and displays each deadlock cycle in a separate tab.

« Classes

Graph showing the number of loaded classes over time
Number of classes currently loaded into memory

Total number of classes loaded into memory since the JVM started, including those
subsequently unloaded

Total number of classes unloaded from memory since the JVM started

e VM Summary

General information, such as the JConsole connection data, uptime for the JVM, CPU
time consumed by the JVM, compiler name, total compile time, and so on.

Thread and class summary information

Memory and garbage collection information, including number of objects pending
finalization, and so on

Information about the operating system, including physical characteristics, the amount
of virtual memory for the running process, and swap space

Information about the JVM itself, such as the arguments and class path

+ MBeans

This pane displays a tree structure that shows all platform and application MBeans that are
registered in the connected JMX agent. When you select an MBean in the tree, its
attributes, operations, notifications, and other information are displayed.

You can invoke operations, if any. For example, the operation dunpHeap for the

Hot Spot Di agnost i ¢ MBean, which is in the com sun. nanagenent domain, performs a
heap dump. The input parameter for this operation is the path name of the heap dump
file on the machine where the target VM is running.

You can set the value of writable attributes. For example, you can set, unset, or
change the value of certain VM flags by invoking the set VMOpt i on operation of the
Hot Spot Di agnosti ¢ MBean. The flags are indicated by the list of values of the

Di agnosti cOpti ons attribute.

You can subscribe to naotifications, if any, by using the Subscribe and Unsubscribe
buttons.

Monitor Local and Remote Applications with JConsole

JConsole can monitor both local applications and remote applications. If you start the tool with
an argument specifying a JMX agent to connect to, then the tool will automatically start
monitoring the specified application.

To monitor a local application, execute the command j consol epi d , where pi d is the process
ID of the application.

Troubleshooting Guide
E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 25 of 55

ORACLE’

Chapter 2
JConsole

To monitor a remote application, execute the command j consol ehost nane: portnumber,
where host nane is the name of the host running the application, and por t nunber is the port
number you specified when you enabled the JMX agent.

If you execute the j consol e command without arguments, the tool will start by displaying the
New Connection window, where you specify the local or remote process to be monitored. You
can connect to a different host at any time by using the Connection menu.

With the latest JDK releases, no option is necessary when you start the application to be

monitored.

As an example of the output of the monitoring tool, Figure 2-1 shows a chart of the heap

memory usage.

Figure 2-1 Sample Output from JConsole

| £ Java Monitoring & Management Conscle - pid: 15988 jdkjconsele/suntoelsjconsele) Console 21156 — | >
| £ Connection Window Help - & *x
Overview Memory Threads Classes VM Summary MBeans ==
Chart: |Heap Memory Usage ~ Time Range: s Perform GC
30Mb
25Mb 1
20Mb +
Usad
4 17,99%,208
15Mb 1
10Mb L
16:18 16:19 16:20 16:21 16:22 16:23
Details
Time: 2019-12-17 16:23:31 1005 -
Used: 22,797 kbytes _—
Committed: 35,340 kbytes
Max: 4,153,344 kbytes B> =
GC time: 0.414 secondsen Gl Young Generation (233 collections) 259 -
0.100 seconds on Gl Old Generation (3 collechons) 0% --
Heap | | Jon-Heap

Troubleshooting Guide

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 26 of 55

ORACLE Chapter 2
The jdb Utility

The jdb Utility

The j db utility is included in the JDK as an example command-line debugger. The j db utility
uses the Java Debug Interface (JDI) to launch or connect to the target JVM.

The JDI is a high-level Java API that provides information useful for debuggers and similar
systems that need access to the running state of a (usually remote) virtual machine. JDI is a
component of the Java Platform Debugger Architecture (JPDA). See Java Platform Debugger
Architecture.

The following section provides troubleshooting techniques for the j db utility.

e Troubleshoot with the jdb Utility

Troubleshoot with the jdb Utility

The jdb utility is used to monitor the debugger connectors used for remote debugging.

In JDI, a connector is the way that the debugger connects to the target JVM. The JDK
traditionally ships with connectors that launch and establish a debugging session with a target
JVM, as well as connectors that are used for remote debugging (using TCP/IP or shared
memory transports).

These connectors are generally used with enterprise debuggers, such as the NetBeans
integrated development environment (IDE) or commercial IDEs.

The command jdb -1i stconnect ors prints a list of the available connectors. The command
j db -hel p prints the command usage help.

See jdb Utility in the Java Platform, Standard Edition Tools Reference

The jinfo Utility

The j i nf o command-line utility gets configuration information from a running Java process or
crash dump, and prints the system properties or the command-line flags that were used to start
the JVM.

Java Mission Control, Java Flight Recorder, and j cnd utility can be used for diagnosing
problems with JVM and Java applications. Use the latest utility, j cnd, instead of the previous
j 1 nf o utility for enhanced diagnostics and reduced performance overhead.

With the - f | ag option, the j i nf o utility can dynamically set, unset, or change the value of
certain JVM flags for the specified Java process. See Java HotSpot VM Command-Line

Options.

The output for the j i nf o utility for a Java process with PID number 29620 is shown in the
following example.

c:\Program Fi | es\Java\j dk- 11\ bi n>j i nfo 29620
Java System Properties:

sun. deskt op=wi ndows

awt . t ool ki t =sun. awt . wi ndows. Wrool ki t

java. specification.version=11

sun. cpu. i sal i st =and64

sun. j nu. encodi ng=Cp1252

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 27 of 55

ORACLE Chapter 2
The jinfo Utility

j ava. cl ass. pat h=C\:\\ sanpl eApps\\ Dynamni cTr eeDeno\ \ di st\\ Dynani cTreeDeno. j ar
sun. awt . enabl eExt r aMbuseBut t ons=t r ue

java. vm vendor =Oracl e Corporation

sun. ar ch. dat a. model =64

user.variant=

java.vendor.url=http\://java.oracle.com

user.tinmezone=

java.vm speci fication. version=11

0s. name=W ndows 10

sun. j ava. | auncher =SUN_STANDARD

user. country=US

sun. boot . | i brary. path=c\:\\ Program Fil es\\Java\\j dk-11.0.5\\bin
sun. j ava. command=C\: \\ sanpl eApps\\ Dynani cTr eeDermo\ \ di st \\ Dynani cTr eeDeno. j ar
j dk. debug=r el ease

sun. cpu. endian=little

user. home=C\:\\ Users\\userl

user. | anguage=en

sun. stderr. encodi ng=cp437

java. speci fication.vendor=0Cacle Corporation

j ava. versi on. dat e=2019- 10- 15

j ava. home=c\ :\\ Program Fil es\\ Java\\j dk-11.0.5
file.separator=\\

j ava. vm conpr essedOQopsMde=Zer o based
line.separator=\r\n

sun. st dout . encodi ng=cp437

j ava. speci fication. nane=Java Pl atform APl Specification
java.vm speci fication. vendor=0Oracl e Corporation

j ava. awt . graphi csenv=sun. awt . W n32G- aphi csEnvi r onnent
user.script=

sun. managenent . conpi | er=Hot Spot 64-Bit Tiered Conpilers
java.runtinme.version=11.0.5+10- LTS

user. name=user 1

pat h. separat or =

0s.version=10.0

java.runtinme.name=Java(TM SE Runtine Environnment
file.encodi ng=Cpl1252

java.vm name=Java Hot Spot (TM 64-Bit Server VM

j ava. vendor. version=18. 9

java.vendor. url.bug=http\://bugreport.java.com bugreport/
java.io.tnpdir=C:\\Users\\user1\\ AppDat a\\ Local \\ Tenp\\
java.version=11.0.5

user.dir=c\:\\Users\\userl

0s. ar ch=and64

java.vm speci fication. name=Java Virtual Machine Specification
java.awt . printerjob=sun. awt .w ndows. WPri nt er Job

sun. os. patch. | evel =
java.library.path=c\:\\Program Fil es\\Java\\j dk-11.0.5\\bin; ..
j ava. vendor =Oracl e Corporation

java.vminfo=ni xed nmode

java.vmversion=11. 0. 5+10- LTS

sun. i 0. uni code. encodi ng=Uni codeLi ttle

j ava. cl ass. ver si on=55. 0

VM Fl ags:

The following topic describes the troubleshooting technique with j i nf o utility.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 28 of 55

ORACLE

Chapter 2
The jmap Utility

* Troubleshooting with the jinfo Utility

Troubleshooting with the jinfo Utility

The jmap

The output from j i nf o provides the settings for j ava. cl ass. pat h and sun. boot . cl ass. pat h.

If you start the target JVM with the - ¢l asspat h and - Xboot ¢l asspat h arguments, then the
output from j i nf o provides the settings for j ava. cl ass. pat h and sun. boot . cl ass. pat h. This
information might be needed when investigating class loader issues.

In addition to getting information from a process, the j hsdb | i nf o tool can use a core file as
input. On the Oracle Solaris operating system, for example, the gcor e utility can be used to get
a core file of the process in the preceding example. The core file will be named cor e. 29620
and will be generated in the working directory of the process. The path to the Java executable
file and the core file must be specified as arguments to the j hsdb j i nf o utility, as shown in the
following example.

$ jhsdb jinfo --exe java-home/bin/java --core core. 29620

Sometimes, the binary name will not be j ava. This happens when the VM is created using the
JNI invocation API. The j hsdb ji nf o tool requires the binary from which the core file was
generated.

Utility

The j map command-line utility prints memory-related statistics for a running VM or core file. For
a core file, use j hsdb j map.

JDK Mission Control, Flight Recorder, and j cnd utility can be used for diagnosing problems
with JVM and Java applications. It is suggested to use the latest utility, j cnd instead of the
previous j map utility for enhanced diagnostics and reduced performance overhead.

If j map is used with a process or core file without any command-line options, then it prints the
list of shared objects loaded (the output is similar to the pmap utility on Oracle Solaris operating
system). For more specific information, you can use the options - heap, - hi sto, or -cl stats.
These options are described in the subsections that follow.

In addition, the JDK 7 release introduced the - dunp: f or mat =b, fi | e=fi | ename option, which
causes | map to dump the Java heap in binary format to a specified file.

If the j map pi d command does not respond because of a hung process, then use the j hsdb
j map utility to run the Serviceability Agent.

The following sections describe troubleshooting techniques with examples that print memory-
related statistics for a running VM or a core file.

« Heap Configuration and Usage

 Heap Histogram

e Class Loader Statistics

Heap Configuration and Usage

Use the j hsdb jmap --heap command to get the Java heap information.

The - - heap option is used to get the following Java heap information:

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 29 of 55

ORACLE

Chapter 2
The jmap Utility

* Information specific to the garbage collection (GC) algorithm, including the name of the GC
algorithm (for example, parallel GC) and algorithm-specific details (such as the number of

threads for parallel GC).

* Heap configuration that might have been specified as command-line options or selected by

the VM based on the machine configuration.

» Heap usage summary: For each generation (area of the heap), the tool prints the total
heap capacity, in-use memory, and available free memory. If a generation is organized as a
collection of spaces (for example, the new generation), then a space-specific memory size

summary is included.

The following example shows output from the j hsdb j map - - heap command.

$ jhsdb jmap --heap --pid 29620

Attaching to process ID 29620, please wait...
Debugger attached successfully.

Server conpiler detected.

JVW version is 11.0.5+10-LTS

using thread-local object allocation.
CGarbage-First (Gl) GCwith 4 thread(s)

Heap Confi guration:
M nHeapFreeRati o
MaxHeapFr eeRati o

40
70

MaxHeapSi ze 4253024256 (4056. OMB)

NewSi ze 1363144 (1.2999954223632812MB)
MaxNewSi ze 2551185408 (2433. 0MB)

a dsSi ze 5452592 (5.1999969482421875MVB)
NewRat i 0 2

SurvivorRatio 8

Met aspaceSi ze

Conpr essedCl assSpaceSi ze
MaxMet aspaceSi ze
GlHeapRegi onSi ze

21807104 (20. 796875MB)
1073741824 (1024. OMB)
17592186044415 MB
1048576 (1.0MB)

Heap Usage:

Gl Heap:
regions = 4056
capacity = 4253024256 (4056. 0MB)
used = 10485760 (10. 0MB)
free = 4242538496 (4046. 0MB)

0.2465483234714004% used
Gl Young Generation:

Eden Space:
regions =11
capacity = 15728640 (15.0MB)
used = 11534336 (11.0MB)
free = 4194304 (4.0MB)

73. 33333333333333% used
Survivor Space:

regi ons

capacity

used

free

0. 0% used

oo
o o oo
=

—_—~
coo
o O O
22D

~

Troubleshooting Guide

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 30 of 55

ORACLE

Chapter 2
The jmap Utility

GL A d Ceneration:

regions =10

capacity = 250609664 (239.0MB)
used =0 (0.0MB)

free = 250609664 (239. 0MB)
0. 0% used

Heap Histogram

The j map command with the - hi st o option or the j hsdb j map - - hi st o command can be used
to get a class-specific histogram of the heap.

The j map - hi st o command can print the heap histogram for a running process. Use j hsdb
jmap --histo to print the heap histogram for a core file.

When the j map - hi st o command is executed on a running process, the tool prints the number
of objects, memory size in bytes, and fully qualified class name for each class. Internal classes
in the Java HotSpot VM are enclosed within angle brackets. The histogram is useful to
understand how the heap is used. To get the size of an object, you must divide the total size by
the count of that object type.

The following example shows output from the j map - hi st o command when it is executed on a
process with PID number 29620.

$ jmap -histo 29620

num #i nst ances #bytes class name (nodul e)
1 37127 2944304 [B (java. base@l)
2: 5773 1860840 [I (java.base@l)
3: 15844 887264 jdk.internal.org.objectweb.asmltem
(java. base@l1)
4. 24061 577464 java.lang.String (java.base@l)
5: 13334 575120 [Ljava.lang. Ooject; (java.base@l)
6: 562 373280 [Ljdk.internal.org.objectweb.asmltem
(java. base@l1)
7: 2575 313392 java.lang.Cass (java. base@l)
8: 8233 250792 [Ljava.lang.Cass; (java.base@l)
9: 6043 241720 java.lang.invoke. Met hodType (java. base@l)
10: 6716 214912
j ava.lang.invoke. Met hodType$Concurr ent Weakl nt er nSet $\WeakEntry (j ava. base@1)
11: 6324 202368 java.util.HashMap$Node (java.base@l)
12: 5352 171264 java.l ang.invoke. LanrbdaFor nName
(java. base@l1)
13: 612 155160 [C (java. base@ll)
14: 594 133056
jdk.internal.org.objectweb.asm MethodWiter (java.base@l)
15: 1538 110864 [Ljava.l ang.invoke. LanbdaFor nNane;
(java. base@l1)
16: 4521 108504 java.lang. StringBuilder (java.base@l)
17: 2252 108096 java.lang.invoke. Menber Nane (j ava. base@l)
18: 644 103208 [Ljava.util.HashMap$Node; (] ava.base@l)
19: 1375 77000
j ava.lang.invoke. LanbdaFor nEdi t or $Transform (j ava. base@1)
20: 2215 70880

java.util.concurrent. Concurrent HashMap$Node (j ava. base@ll)
nore lines remved here to reduce output...

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 31 of 55

ORACLE

Chapter 2
The jmap Utility

1425: 1 16
sun. util.resources. Local eDat a$Local eDat aStrat egy (j ava. base@l)
1426: 1 16

sun. util.resources. provi der. NonBaseLocal eDat aMet al nfo (j dk. | ocal edat a@1)
Tot al 184008 11075800

When the j hsdb j map - hi st o command is executed on a core file, the tool prints serial
number, number of instances, bytes, and class name for each class. Internal classes in the
Java HotSpot VM are prefixed with an asterisk (*).

The following example shows output of the j hsdb j map - hi st o command when it is executed
on a core file.

& jhsdb jmap --exe /usr/javal/jdk_11/bin/java --core core. 16395 --
hi st oDebugger attached successful ly.

Server conpiler detected.

JVWMversion is 11.0.5+10-LTS

Iterating over heap. This may take a while...

(bj ect Hi st ogram

num #i nst ances #bytes O ass description

1: 11102 564520 byte[]

2: 10065 241560 java.lang.String

3: 1421 163392 java.lang.d ass

4: 26403 2997816 * Const Met hodKl ass

5: 26403 2118728 * MethodKl ass

6: 39750 1613184 * Synbol Kl ass

7 2011 1268896 * Const ant Pool Kl ass

8: 2011 1097040 * InstancekKl assKl ass

9: 1906 882048 * Const ant Pool CacheKl ass

10: 1614 125752 java.lang. Qbject[]

11: 1160 64960 jdk.internal.org.objectweb.asmltem
12: 1834 58688 java.util.HashMap$Node

13: 359 40880 java.util.HashMap$Node[]

14: 1189 38048 java.util.concurrent. Concurrent HashMap$Node
15: 46 37280 jdk.internal.org.objectweb.asmlteni]
16: 29 35600 char[]

17: 968 32320 int[]

18: 650 26000 java.lang.invoke. Met hodType

19: 475 22800 java.lang.invoke. Member Nane

Class Loader Statistics

Use the j map command with the - cl st at s option to print class loader statistics for the Java
heap.

The j mp command connects to a running process using the process ID and prints detailed
information about classes loaded in the Metaspace:

* Index - Unique index for the class
* Super - Index number of the super class
* InstBytes - Number of bytes per instance

* KlassBytes - Number of bytes for the class

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 32 of 55

ORACLE

Chapter 2
The jmap Utility

* annotations - Size of annotations

e CpAll - Combined size of the constants, tags, cache, and operands per class
* MethodCount - Number of methods per class

* Bytecodes - Number of bytes used for byte codes

e MethodAll - Combined size of the bytes per method, CONSTMETHOD, stack map, and
method data

* ROAII - Size of class metadata that could be put in read-only memory
* RWAII - Size of class metadata that must be put in read/write memory
* Total - Sum of ROAIl + RWAII

* ClassName - Name of the loaded class

The following example shows a subset of the output from the j map - cl st at s command when it
is executed on a process with PID number 10952.

c:\Program Fi | es\Java\j dk-11. 0.5\ bi n> map -clstats 10952

I ndex Super InstBytes Kl assBytes annotations CpAll MethodCount Bytecodes
Met hodAl | ROAI | RWAI | Total O assNanme

1 -1 304816 512 0 0 0
0 0 24 624 648 [B

2 51 285264 784 0 23344 147
5815 48848 28960 46640 75600 j ava.l ang. d ass

3 -1 256368 512 0 0 0
0 0 24 624 648 [

4 51 166344 680 136 17032 123
5433 48256 23920 44160 68080 java.lang. String

5 -1 146360 512 0 0 0
0 0 24 624 648 [Ljava.lang. Obj ect;

6 51 123680 600 0 1384 7
149 1888 1200 3024 4224 java.util.HashMap$Node

7 51 52928 608 0 1360 9
213 2472 1632 3184 4816
java.util.concurrent. Concurrent HashMap$Node

8 -1 51888 512 0 0 0
0 0 24 624 648 [C

9 -1 49904 512 0 0 0
0 0 32 624 656 [Ljava.util.HashMap$Node

10 51 30400 624 0 1512 8
240 2224 1472 3256 4728 java.util.Hashtabl e$Entry

11 51 25488 592 0 11520 89
4365 47936 16696 45072 61768 j ava.lang.invoke. Menber Name

12 1604 19296 1024 0 7904 51
4071 27568 14664 23024 37688 java.util.HashMap

13 -1 18304 512 0 0 0
0 0 32 624 656
[Ljava. util.concurrent. Concurrent HashMap$Node

14 51 17504 544 120 5464 37
1783 16648 7416 16072 23488 java.l ang. i nvoke. LarbdaFor nfName

15 -1 16680 512 0 0 0
0 0 80 624 704 [Ljava.lang. d ass
...lines renoved to reduce output..
2320 1955 0 560 0 1912 7
170 1520 1312 3016 4328

Troubleshooting Guide

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 33 of 55

ORACLE

Chapter 2

The jps Utility

sun. util.logging.internal.Loggi ngProviderl npl

2321 51 0 528 0 232 1
0 144 128 936 1064
sun. util.logging.internal.LoggingProviderl| npl $LogManager Access

2055400 1621472 10680 5092080 27820 1288076
7335944 5407792 9513160 14920952 Tot al
13. 8% 10. 9% 0.1% 34.1% -

8.6% 49.2% 36.2% 63.8% 100.0%
I ndex Super InstBytes KlassBytes annotations CpAll MethodCount Bytecodes
Met hodAl | RQOAl | RWAl | Total O assNane

The jps Utility

The j ps utility lists every instrumented Java HotSpot VM for the current user on the target
system.

The utility is very useful in environments where the VM is embedded, that is, where it is started
using the JNI Invocation API rather than the j ava launcher. In these environments, it is not
always easy to recognize the Java processes in the process list.

The following example shows the use of the j ps utility.

$jps
16217 MyApplication
16342 j ps

The j ps utility lists the virtual machines for which the user has access rights. This is
determined by access-control mechanisms specific to the operating system. On the Oracle
Solaris operating system, for example, if a non-root user executes the j ps utility, then the
output is a list of the virtual machines that were started with that user's UID.

In addition to listing the PID, the utility provides options to output the arguments passed to the
application's nai n method, the complete list of VM arguments, and the full package name of
the application's mai n class. The j ps utility can also list processes on a remote system if the
remote system is running the j st at d daemon.

The jstack Utility

Use the j cnd or | hsdb | st ack utility, instead of the j st ack utility to diagnose problems with
JVM and Java applications.

JDK Mission Control, Flight Recorder, and j cnd utility can be used to diagnose problems with
JVM and Java applications. It is suggested to use the latest utility, j cmd, instead of the previous
j st ack utility for enhanced diagnostics and reduced performance overhead.

The following sections describe troubleshooting techniques with the | st ack and j hsdb j st ack
utilities.

Troubleshoot with the jstack Utility

Stack Trace from a Core Dump
Mixed Stack

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 34 of 55

ORACLE Chapter 2
The jstack Utility

Troubleshoot with the jstack Utility

The j st ack command-line utility attaches to the specified process, and prints the stack traces
of all threads that are attached to the virtual machine, including Java threads and VM internal
threads, and optionally native stack frames. The utility also performs deadlock detection. For

core files, use j hsdb j st ack.

A stack trace of all threads can be useful in diagnosing a number of issues, such as deadlocks
or hangs.

The -1 option instructs the utility to look for ownable synchronizers in the heap and print
information about j ava. util.concurrent. | ocks. Without this option, the thread dump includes
information only on monitors.

The output from the j st ack pi d option is the same as that obtained by pressing Ctrl+\ at the
application console (standard input) or by sending the process a quit signal. See
Control+Break Handler for an example of the output.

Thread dumps can also be obtained programmatically using the Thr ead. get Al | St ackTr aces
method, or in the debugger using the debugger option to print all thread stacks (the wher e
command in the case of the j db sample debugger).

Stack Trace from a Core Dump

Use the j hsdb j st ack command to obtain stack traces from a core dump.

To get stack traces from a core dump, execute the j hsdb j stack command on a core file, as
shown in the following example.

$ jhsdb jstack --exe java-hone/bin/java --core core-file

Mixed Stack

The j hsdb j st ack utility can also be used to print a mixed stack; that is, it can print native
stack frames in addition to the Java stack. Native frames are the C/C++ frames associated with
VM code and JNI/native code.

To print a mixed stack, use the - - m xed option, as shown in the following example.

>j hsdb jstack --mixed --pid 21177

Attaching to process ID 21177, please wait...
Debugger attached successfully.

Server conpiler detected.

JW version is 11.0.5+10-LTS

Deadl ock Detecti on:

No deadl ocks found.

"DestroyJavaVM' #19 prio=5 tid=0x000001a5607af 000 ni d=0x5ad8 wai ti ng on
condi ti on [0x0000000000000000]

Troubleshooting Guide
E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Page 35 of 55

ORACLE

Chapter 2
The jstack Utility

java.lang. Thread. State: RUNNABLE
JavaThread state: _thread bl ocked

0x00007f f el7e8f 7e4 ntdl | ! ZwWi t For Si ngl eCbj ect + 0x14
OXO000TT eTedt Ted nidl 11 Zavel For S ngleChj ect + 0x14
OXO000TT eTedt Ted nidl 11 Zavel For S gl eChj ect + 0x14
OXO000TH eTedt Ted nidl 11 Zavel For S ngleChj ect + 0x14
OXO000TT eTedt Ted nidl 11 Zavel For S gl eChj ect + 0x14
OXO000TT el7edt Ted nidl 11 Zavel For S gl eChj ect + 0x14
OXO000TT elTedt Ted nidl 11 Zavel For S gl eChj ect + 0x14
................. o J DR

"Ref erence Handl er" #2 daenon prio=10 ti d=0x000001a57f 747800 ni d=0x2ecc
wai ting on condition [0x00000060f 3af e000]

java.lang. Thread. State: RUNNABLE

JavaThread state: _thread bl ocked
0x00007f f el7e8f 7e4 ntdl | ! ZwWi t For Si ngl eCbj ect + 0x14
................. 10 - ----cmmm e -
“Finalizer" #3 daenon prio=8 tid=0x000001a50400c000 ni d=0x3e70 in
Obj ect. wait() [0x00000060f 3bfe000]

java.lang. Thread. State: WAITING (on object monitor)

JavaThread state: _thread bl ocked
0x00007f f el7e8f 7e4 ntdl | ! ZwWi t For Si ngl eCbj ect + 0x14
................. 11 = m e e e e o
"Signal Dispatcher" #4 daenon prio=9 tid=0x000001a504062800 ni d=0x550
runnabl e [0x0000000000000000]

java.lang. Thread. State: RUNNABLE

JavaThread state: _thread bl ocked

0x00007f f el7e8f 7e4 ntdl | ! ZwWi t For Si ngl eCbj ect + 0x14

................. 12 - - e oo

"Attach Listener" #5 daenon prio=5 ti d=0x000001a504063800 ni d=0x488c runnabl e
[0x0000000000000000]

java.lang. Thread. State: RUNNABLE

JavaThread state: _thread bl ocked
0x00007f f e17e8f 7e4 ntdl | ! ZwWai t For Si ngl eCbj ect + 0x14
0x000001a504064340 22?2?7277
................. 13 - i mme e e e
"C2 Conpil er Thread0" #6 daemon prio=9 tid=0x000001a504066000 ni d=0x5968
wai ting on condition [0x0000000000000000]

java.lang. Thread. State: RUNNABLE

JavaThread state: _thread bl ocked
0x00007f f e17e8f 7e4 ntdl | ! ZwWai t For Si ngl eCbj ect + 0x14
0x0400030091000000 ?2?2?27277
................. 1
"Cl ConpilerThread0" #8 daermon prio=9 tid=0x000001a50406d800 ni d=0x67c
wai ting on condition [0x0000000000000000]

java.lang. Thread. State: RUNNABLE

JavaThread state: _thread bl ocked
0x00007f f e17e8f 7e4 ntdl | ! ZwWai t For Si ngl eCbj ect + 0x14
................. 15 - mmm e e ok
"Sweeper thread" #9 daemon prio=9 tid=0x000001a50406e800 ni d=0x4690 runnabl e
[0x0000000000000000]

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 36 of 55

ORACLE

Chapter 2
The jstack Utility

java.lang. Thread. State: RUNNABLE
JavaThread state: _thread bl ocked

0x00007f f el7e8f 7e4 ntdl | ! ZwWi t For Si ngl eCbj ect + 0x14

0x010a012700000004 ?22?27277

................. 16 - -----mmmm o -

"Service Thread" #10 daenon prio=9 ti d=0x000001a5041fd800 ni d=0x3060 runnabl e
[0x0000000000000000]

java.lang. Thread. State: RUNNABLE
JavaThread state: _thread bl ocked
0x00007f f el7e8f 7e4 ntdl | ! ZwWi t For Si ngl eCbj ect + 0x14

................. 18 - - - - e mme e o -
" Common- Cl eaner” #11 daenon prio=8 ti d=0x000001a504205800 ni d=0x5db4 in
Obj ect. wai t () [0x00000060f 43ff000]

java.lang. Thread. State: TIMED WAI TING (on object nonitor)

JavaThread state: _thread bl ocked
0x00007f f el7e8f 7e4 ntdl | ! ZwWi t For Si ngl eCbj ect + 0x14
................. 19 - - i mee e o -
"Java2D Disposer" #12 daenon prio=10 tid=0x000001a50c8ef 800 ni d=0x58e8 in
Obj ect. wai t () [0x00000060f 44f e000]

java.lang. Thread. State: WAITING (on object monitor)

JavaThread state: _thread bl ocked

0x00007f f e17e8f 7e4 ntdl | ! ZwWi t For Si ngl eCbj ect + 0x14

................. 20 -

" AW- Shut down" #13 prio=5 ti d=0x000001a50c8d0800 ni d=0x3a34 in bject.wait()
[0x00000060f 45f f 000]

java.lang. Thread. State: WAITING (on object monitor)
JavaThread state: _thread bl ocked

0x00007f f e17e8f 7e4 ntdl | ! ZwWi t For Si ngl eCbj ect + 0x14
................. 2

" AWT- W ndows" #14 daenon prio=6 tid=0x000001a50c8d4000 ni d=0x5c8 runnabl e
[0x00000060f 46f e000]

java.lang. Thread. State: RUNNABLE
JavaThread state: _thread_in_native
................. S
" AWT- Event Queue- 0" #17 prio=6 ti d=0x000001a50df e9000 ni d=0x5a00 waiting on
condi tion [0x00000060f 49f f 000]
java.lang. Thread. State: WAI TI NG (parki ng)
JavaThread state: _thread bl ocked
0x00007f f e17e8f 7e4 ntdl | ! ZwWai t For Si ngl eCbj ect + 0x14

Frames that are prefixed with an asterisk (*) are Java frames, whereas frames that are not
prefixed with an asterisk are native C/C++ frames.

The output of the utility can be piped through c++fi |t to demangle C++ mangled symbol
names. Because the Java HotSpot VM is developed in the C++ language, the j hsdb j st ack
utility prints C++ mangled symbol names for the Java HotSpot internal functions.

The c++filt utility is delivered with the native C++ compiler suite: SUN\Wpr o on the Oracle
Solaris operating system and gnu on Linux.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 37 of 55

ORACLE Chapter 2
The jstat Utility

The jstat Utility

The j st at utility uses the built-in instrumentation in the Java HotSpot VM to provide
information about performance and resource consumption of running applications.

The tool can be used when diagnosing performance issues, and in particular issues related to
heap sizing and garbage collection. The j st at utility does not require the VM to be started with
any special options. The built-in instrumentation in the Java HotSpot VM is enabled by default.
This utility is included in the JDK download for all operating system platforms supported by
Oracle.

@® Note

The instrumentation is not accessible on a FAT32 file system.

See jstat in the Java Platform, Standard Edition Tools Reference.

The j st at utility uses the virtual machine identifier (VMID) to identify the target process. The
documentation describes the syntax of the VMID, but its only required component is the local
virtual machine identifier (LVMID). The LVMID is typically (but not always) the operating
system's PID for the target JVM process.

The j st at utility provides data similar to the data provided by the vist at and i ost at on Oracle
Solaris and Linux operating systems.

For a graphical representation of the data, you can use the vi sual gc tool. See The visualgc
Tool.

The following example illustrates the use of the - gcuti | option, where the j st at utility
attaches to LVMID number 2834 and takes 7 samples at 250-millisecond intervals.

$ jstat -gcutil 2834 250 7

—

SO S1 E 0 M YGC YGCT FGC FCCT CCT

0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124
0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124
0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124
0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124
0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124
0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124
0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124

The output of this example shows you that a young generation collection occurred between the
third and fourth samples. The collection took 0.017 seconds and promoted objects from the
eden space (E) to the old space (O), resulting in an increase of old space utilization from
46.56% to 54.60%.

The following example illustrates the use of the - gcnew option where the j st at utility attaches
to LVMID number 2834, takes samples at 250-millisecond intervals, and displays the output. In
addition, it uses the - h3 option to display the column headers after every 3 lines of data.

$ jstat -gcnew -h3 2834 250
S0C S1C SOuU SIU TT MIT DSS EC EU YGC YGCT

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 38 of 55

ORACLE

Chapter 2
The visualgc Tool

015 15 96.0 1984.0 942.0 218 1. 999
015 15 96.0 1984.0 1024.8 218 1. 999
015 15 96.0 1984.0 1068.1 218 1. 999

192.0 192.0
192.0 192.0
192.0 192.0
S0C SicC SO
192.0 192.0 0.015 15 96.0 1984.0 1109.0 218 1. 999

0 0.
0 0.
0 0.
U v

0.0
192.0 192.0 0.0 103.2 1 15 96.0 1984.0 0.0 219 2.019

0.0

U

0

0

0

S1 TT MIT DSS EC EU YGC YGCT

192.0 192.0 103.2 1 15 96.0 1984.0 71.6 219 2.019
S0C SicC SO S1U TT MIT DSS EC EU YGC YGCT

192.0 192.0
192.0 192.0
192.0 192.0

0 103.2 1 15 96.0 1984.0 73.7 219 2.019
.0 103.2 1 15 96.0 1984.0 78.0 219 2.019
0 103.2 1 15 96.0 1984.0 116.1 219 2.019

In addition to showing the repeating header string, this example shows that between the fourth
and fifth samples, a young generation collection occurred, whose duration was 0.02 seconds.
The collection found enough live data that the survivor space 1 utilization (S1U) would have
exceeded the desired survivor size (DSS). As a result, objects were promoted to the old
generation (not visible in this output), and the tenuring threshold (TT) was lowered from 15 to
1.

The following example illustrates the use of the - gcol dcapaci ty option, where the j st at utility
attaches to LVMID number 21891 and takes 3 samples at 250-millisecond intervals. The -t
option is used to generate a time stamp for each sample in the first column.

$ jstat -gcoldcapacity -t 21891 250 3

Ti mest anp OGCWN OGCMX ocC oC YEC FGC FCCT GCT
150.1 1408.0 60544.0 11696.0 11696.0 194 80 2.874 3.799
150.4 1408.0 60544.0 13820.0 13820.0 194 81 2.938 3.863
150.7 1408.0 60544.0 13820.0 13820.0 194 81 2.938 3.863

The Timestamp column reports the elapsed time in seconds since the start of the target JVM.
In addition, the - gcol dcapaci ty output shows the old generation capacity (OGC) and the old
space capacity (OC) increasing as the heap expands to meet the allocation or promotion
demands. The OGC has grown from 11696 KB to 13820 KB after the 815! full generation
capacity (FGC). The maximum capacity of the generation (and space) is 60544 KB (OGCMX),
so it still has room to expand.

The visualgc Tool

The vi sual gc tool provides a graphical view of the garbage collection (GC) system.

The vi sual gc tool is related to the j st at tool. See The jstat Utility. The vi sual gc tool provides
a graphical view of the garbage collection (GC) system. As with j st at, it uses the built-in
instrumentation of the Java HotSpot VM.

The vi sual gc tool is not included in the JDK release, but is available as a separate download
from the | vnst at technology page.

Figure 2-2 shows how the GC and heap are visualized.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 39 of 55

http://www.oracle.com/technetwork/java/jvmstat-142257.html

ORACLE Chapter 2
Control+Break Handler

Figure 2-2 Sample Output from vi sual gc

Compile Time: 939 compiles - 2.321s

e | B e | S

Class Loader Time: 1636 loaded, 0 unleaded - 715.073ms

’—GC Time: 100 collections, 3.877s

- -

Eden Space (7.125M, 7.125M): 1.379M, 89 collections, 660,34

Survivor 0 (448.000K, 448.000K): 0

Perm Gen (64.000M, 7.000M); 6.810M

_————————————————— e

Control+Break Handler

The result of pressing the Control key and the backslash (\) key at the application console on
operating systems such as Oracle Solaris or Linux, or Windows.

On Oracle Solaris or Linux operating systems, the combination of pressing the Control key and
the backslash (\) key at the application console (standard input) causes the Java HotSpot VM
to print a thread dump to the application's standard output. On Windows, the equivalent key
sequence is the Control and Break keys. The general term for these key combinations is the
Control+Break handler.

On Oracle Solaris and Linux operating systems, a thread dump is printed if the Java process
receives a quit signal. Therefore, the kil -QU T pi d command causes the process with the
ID pi d to print a thread dump to standard output.

The following sections describe the data traced by the Control+Break handler:

e Thread Dump
 Thread States for a Thread Dump

Troubleshooting Guide
E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Page 40 of 55

ORACLE Chapter 2
Control+Break Handler

 Detect Deadlocks

e Heap Summary

Thread Dump

The thread dump consists of the thread stack, including the thread state, for all Java threads in
the virtual machine.

The thread dump does not terminate the application: it continues after the thread information is
printed.

The following example illustrates a thread dump.

Ful'l thread dunp Java Hot Spot(TM Cient VM (1.6.0-rc-bl00 m xed node):

"DestroyJavaVM' prio=10 ti d=0x00030400 ni d=0x2 waiting on condition
[0x00000000. . 0xf e77f bf 0]
java.lang. Thread. State: RUNNABLE

"Thread2" prio=10 ti d=0x000d7c00 ni d=0xb waiting for nonitor entry
[Oxf 36f f 000. . Oxf 36f f 8¢0]
java.lang. Thread. State: BLOCKED (on object monitor)
at Deadl ock$Deadl ockMaker Thr ead. r un(Deadl ock. j ava: 32)
- waiting to | ock <Oxf819a938> (a java.lang. String)
- locked <0xf819a970> (a java.lang. String)

"Threadl" prio=10 ti d=0x000d6¢c00 ni d=0xa waiting for nonitor entry
[Oxf 37f f 000. . Oxf 37f f bcO]
java.lang. Thread. State: BLOCKED (on object monitor)
at Deadl ock$Deadl ockMaker Thr ead. r un(Deadl ock. j ava: 32)
- waiting to | ock <Oxf819a970> (a java.lang. String)
- locked <0xf819a938> (a java.lang. String)

"Low Menory Detector" daermon prio=10 ti d=0x000c7800 ni d=0x8 runnabl e
[0x00000000. . 0x00000000]
java.lang. Thread. State: RUNNABLE

" Conpi | er Thread0" daenon pri0=10 ti d=0x000¢c5400 ni d=0x7 waiting on condition
[0x00000000. . 0x00000000]
java.lang. Thread. State: RUNNABLE

"Signal Dispatcher" daemon prio=10 ti d=0x000c4400 ni d=0x6 waiting on
condi ti on [0x00000000..0x00000000]
java.lang. Thread. State: RUNNABLE

“Finalizer" daermon prio=10 tid=0x000b2800 ni d=0x5 in Cbject.wait()
[Oxf 3f 7f 000. . Oxf 3f 7f 9c0]
java.lang. Thread. State: WAITING (on object nonitor)

at java.lang. Qbject.wait(Native Method)
- waiting on <0xf4000b40> (a java.lang.ref. ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue. renove(Ref erenceQueue. j ava: 116)
- locked <0xf4000b40> (a java.lang.ref. ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue. renmove(Ref erenceQueue. j ava: 132)
at java.lang.ref.Finalizer$FinalizerThread. run(Finalizer.java: 159)

"Ref erence Handl er" daenmon prio=10 ti d=0x000ae000 ni d=0x4 in Object.wait ()

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 41 of 55

ORACLE

Chapter 2
Control+Break Handler

[Oxf e57f 000. . Oxf e57f 940]
java.lang. Thread. State: WAITING (on object nonitor)
at java.lang. Qbj ect.wait(Native Method)
- waiting on <0xf4000a40> (a java.lang. ref. Reference$Lock)
at java.lang. Qbj ect.wait (Object.java: 485)
at java.lang.ref. Reference$Ref erenceHandl er. run(Reference. java: 116)
- locked <0xf4000a40> (a java.lang.ref. Reference$Lock)

"VM Thread" prio=10 ti d=0x000ab000 ni d=0x3 runnabl e

"VM Periodic Task Thread" prio=10 tid=0x000c8c00 ni d=0x9 waiting on condition

The output consists of a number of thread entries separated by an empty line. The Java
Threads (threads that are capable of executing Java language code) are printed first, and
these are followed by information about VM internal threads. Each thread entry consists of a
header line followed by the thread stack trace.

The header line contains the following information about the thread:

e Thread name.

* Indication if the thread is a daemon thread.

e Thread priority (prio).

e Thread ID (tid), which is the address of a thread structure in memaory.
e |D of the native thread (nid).

* Thread state, which indicates what the thread was doing at the time of the thread dump.
See Table 2-2 for more details.

* Address range, which gives an estimate of the valid stack region for the thread.

Thread States for a Thread Dump

List of possible thread states for a thread dump.

Table 2-2 lists the possible thread states for a thread dump using the Control+Break Handler.

Table 2-2 Thread States for a Thread Dump
]

Thread State Description

NEW The thread has not yet started.

RUNNABLE The thread is executing in the JVM.

BLOCKED The thread is blocked, waiting for a monitor lock.

WAITING The thread is waiting indefinitely for another thread to perform a
particular action.

TIMED_WAITING The thread is waiting for another thread to perform an action for up to a
specified waiting time.

TERMINATED The thread has exited.

Detect Deadlocks

The Control+Break handler can be used to detect deadlocks in threads.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 42 of 55

ORACLE Chapter 2
Control+Break Handler

In addition to the thread stacks, the Control+Break handler executes a deadlock detection
algorithm. If any deadlocks are detected, then the Control+Break handler, as shown in the
following example, prints additional information after the thread dump about each deadlocked
thread.

Found one Java-|evel deadl ock:

"Thread2":
waiting to | ock nmonitor 0x000af330 (object Oxf819a938, a java.lang.String),
which is held by "Threadl"

"Threadl":
waiting to | ock nonitor 0x000af398 (object Oxf819a970, a java.lang.String),
which is held by "Thread2"

Java stack information for the threads |isted above:

"Thread2":
at Deadl ock$Deadl ockMaker Thr ead. r un(Deadl ock. j ava: 32)
- waiting to lock <Oxf819a938> (a java.lang. String)
- locked <0xf819a970> (a java.lang. String)

"Threadl":
at Deadl ock$Deadl ockMaker Thr ead. r un(Deadl ock. j ava: 32)
- waiting to lock <Oxf819a970> (a java.lang. String)
- locked <0xf819a938> (a java.lang. String)

Found 1 deadl ock.

If the JVM flag - XX: +Pri nt Concur r ent Locks is set, then the Control+Break handler will also
print the list of concurrent locks owned by each thread.

Heap Summary

The Control+Break handler can be used to print a heap summary.

The following example shows the different generations (areas of the heap), with the size, the
amount used, and the address range. The address range is especially useful if you are also
examining the process with tools such as prmap.

Heap
def new generation total 1152K, used 435K [0x22960000, 0x22a90000,
0x22e40000
)
eden space 1088K, 40% used [0x22960000, 0x229ccd40, 0x22a70000)
from space 64K, 0% used [0x22a70000, 0x22a70000, 0x22a80000)
to space 64K 0% used [0x22a80000, 0x22a80000, 0x22a90000)
tenured generation total 13728K, used 6971K [0x22e40000, 0x23ba8000
0x269600
00)
the space 13728K, 50% used [0x22e40000, 0x2350ech0, 0x2350ee00,
0x23ba8000)
conpacting permgen total 12288K, used 1417K [0x26960000, 0x27560000
0x2a9600
00)
the space 12288K, 11% used [0x26960000, 0x26ac24f8, 0x26ac2600,
0x27560000)
ro space 8192K, 62% used [0x2a960000, 0x2ae5ba98, 0x2ae5bc00, 0x2b160000)
rw space 12288K, 52% used [0x2b160000, 0x2b79e410, 0x2b79e600,
0x2hd60000)

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 43 of 55

ORACLE

Chapter 2
Native Operating System Tools

If the JVM flag - XX: +Pri nt Cl assHi st ogr amis set, then the Control+Break handler will
produce a heap histogram.

Native Operating System Tools

List of native tools available on Windows, Linux, and Oracle Solaris operating systems that are
useful for troubleshooting or monitoring purposes.

A brief description is provided for each tool. For further details, see the operating system
documentation (or man pages for the Oracle Solaris and Linux operating systems).

The format of log files and output from command-line utilities depends on the release. For
example, if you develop a script that relies on the format of the fatal error log, then the same
script may not work if the format of the log file changes in a future release.

You can also search for Windows-specific debug support on the MSDN developer network.

The following sections describe troubleshooting techniques and improvements to a few native
operating system tools.

e Troubleshooting Tools Based on the Operating System

« DTrace Tool

* Probe Providers in Java HotSpot VM

e |Improvements to the pmap Utility

* |Improvements to the pstack Utility

DTrace Tool

The Oracle Solaris 10 operating system includes the DTrace tool, which allows dynamic tracing
of the operating system kernel and user-level programs.

This tool supports scripting at system-call entry and exit, at user-mode function entry and exit,
and at many other probe points. The scripts are written in the D programming language,
which is a C-like language with safe pointer semantics. These scripts can help you to
troubleshoot problems or solve performance issues.

The dt race command is a generic front end to the DTrace tool. This command provides a
simple interface to invoke the D language, to retrieve buffered trace data, and to access a set
of basic routines to format and print traced data.

You can write your own customized DTrace scripts, using the D language, or download and
use one or more of the many scripts that are already available on various sites.

The probes are delivered and instrumented by kernel modules called providers. The types of
tracing offered by the probe providers include user instruction tracing, function boundary
tracing, kernel lock instrumentation, profile interrupt, system call tracing, and many more. If you
write your own scripts, you use the D language to enable the probes; this language also allows
conditional tracing and output formatting.

You can use the dtrace -1 command to explore the set of providers and probes that are
available on your Oracle Solaris operating system.

The DTraceToolkit is a collection of useful documented scripts developed by the Open Oracle
Solaris DTrace community. See DTraceToolkit.

See Solaris Dynamic Tracing Guide.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 44 of 55

http://msdn.microsoft.com
http://www.brendangregg.com/dtracetoolkit.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-intro/

ORACLE Chapter 2
Native Operating System Tools

Probe Providers in Java HotSpot VM

The Java HotSpot VM contains two built-in probe providers hot spot and hot spot _j ni .

These providers deliver probes that can be used to monitor the internal state and activities of
the VM, as well as the Java application that is running.

The JVM probe providers can be categorized as follows:

* VM lifecycle: VM initialization begin and end, and VM shutdown

e Thread lifecycle: thread start and stop, thread name, thread ID, and so on

e Class-loading: Java class loading and unloading

e Garbage collection: Start and stop of garbage collection, systemwide or by memory pool

¢ Method compilation: Method compilation begin and end, and method loading and
unloading

e Monitor probes: Wait events, notification events, contended monitor entry and exit
« Application tracking: Method entry and return, allocation of a Java object

In order to call from native code to Java code, the native code must make a call through the
JNI interface. The hot spot _j ni provider manages DTrace probes at the entry point and return
point for each of the methods that the JNI interface provides for invoking Java code and
examining the state of the VM.

At probe points, you can print the stack trace of the current thread using the ust ack built-in
function. This function prints Java method names in addition to C/C++ native function names.
The following example is a simple D script that prints a full stack trace whenever a thread calls
the r ead system call.

#!/usr/sbhin/dtrace -s

syscal | ::read:entry

/pid==8%1 && tid == 1/ {
ustack(50, 0x2000);

}

The script in the previous example is stored in a file named r ead. d and is run by specifying the
PID of the Java process that is traced as shown in the following example.

read.d pid

If your Java application generated a lot of I/O or had some unexpected latency, then the
DTrace tool and its ust ack() action can help you to diagnose the problem.

Improvements to the pmap Utility

Improvements to the pmap utility in Oracle Solaris 10 operating system.

The pnap utility was improved in Oracle Solaris 10 operating system to print stack segments
with the text [st ack] . This text helps you to locate the stack easily.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 45 of 55

ORACLE

Chapter 2
Custom Diagnostic Tools

The following example shows the stack trace with improved pnap utility.

19846: I net/ myserver/export1/user/j2sdk6/bin/java -Djava. endorsed.d

00010000 72K r-x-- [export/disk09/jdk/6/rc/b63/binaries/sol sparc/bin/
java

00030000 16K rwx-- /export/disk09/jdk/6/rc/b63/binaries/sol sparc/bin/
java

00034000 32544K rwx- - [heap]

D1378000 32K rwx- R [stack tid=44]

D1478000 32K rwx- R [stack tid=43]

D1578000 32K rwx- R [stack tid=42]

D1678000 32K rwx- R [stack tid=41]

D1778000 32K rwx- R [stack tid=40]

D1878000 32K rwx- R [stack tid=39]

D1974000 48K rwx- R [stack tid=38]

D1A78000 32K rwx- R [stack tid=37]

D1B78000 32K rwx- R [stack tid=36]

[.. nore lines removed here to reduce output ..]

FF370000 8K r-x-- Jusr/lib/libsched.so.1

FF380000 8K r-x-- [platform sundu-us3/lib/libc_psr.so.1
FF390000 16K r-x-- /lib/libthread.so.1

FF3A4000 8K rwx [1ibllibthread.so.1

FF3B0000 8K r-x-- [lib/libdl.so.1

FF3C0000 168K r-x-- [lib/ld.so.1

FF3F8000 8K rwx /lib/ld. so.1

FF3FA000 8K rwx-- /lib/ld.so.1

FFB80000 24K ----- [anon]

FFBF0000 64K rwx- - [stack]

total 167224K

Improvements to the pstack Utility

Improvements to the pst ack utility in Oracle Solaris 10 operating system.

Before Oracle Solaris 10 operating system, the pst ack utility did not support Java. It printed
hexadecimal addresses for both interpreted and compiled Java methods.

Starting with Oracle Solaris 10 operating system, the pst ack command-line tool prints mixed-
mode stack traces (Java and C/C++ frames) from a core file or a live process. The utility prints
Java method names for interpreted, compiled, and inlined Java methods.

Custom Diagnostic Tools

The JDK has extensive APIs to develop custom tools to observe, monitor, profile, debug, and
diagnose issues in applications that are deployed in the JRE.

The development of new tools is beyond the scope of this document. Instead, this section
provides a brief overview of the APIs available.

All the packages mentioned in this section are described in the Java SE API specification.

See the example and demonstration code that is included in the JDK download.

The following sections describe packages, interface classes, and the Java debugger that can
be used as custom diagnostic tools for troubleshooting.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 46 of 55

https://docs.oracle.com/en/java/javase/11/docs/api/index.html

ORACLE’

Chapter 2
Postmortem Diagnostic Tools

* The java.lang.management Package

e The java.lang.instrument Package

 The java.lang.Thread Class

 JVM Tool Interface

e Java Platform Debugger Architecture

Java Platform Debugger Architecture

The Java Platform Debugger Architecture (JPDA) is the architecture designed for use by
debuggers and debugger-like tools.

The Java Platform Debugger Architecture consists of two programming interfaces and a wire
protocol:

e The Java Virtual Machine Tool Interface (JVM TI) is the interface to the virtual machine.
See JVM Tool Interface.

e The Java Debug Interface (JDI) defines information and requests at the user code level. It
is a pure Java programming language interface for debugging Java programming language
applications. In JPDA, the JDI is a remote view in the debugger process of a virtual
machine in the process being debugged. It is implemented by the front end, where as a
debugger-like application (for example, IDE, debugger, tracer, or monitoring tool) is the
client. See the module j dk. j di .

e The Java Debug Wire Protocol (JDWP) defines the format of information and requests
transferred between the process being debugged and the debugger front end, which
implements the JDI.

The j db utility is included in the JDK as an example command-line debugger. The j db utility
uses the JDI to launch or connect to the target VM. See The jdb Utility.

In addition to traditional debugger-type tools, the JDI can also be used to develop tools that
help in postmortem diagnostics and scenarios where the tool needs to attach to a process in a
noncooperative manner (for example, a hung process).

Postmortem Diagnostic Tools

List of tools and options available for post-mortem diagnostics of problems between the
application and the Java HotSpot VM.

Table 2-3 summarizes the options and tools that are designed for postmortem diagnostics. If
an application crashes, then these options and tools can be used to get additional information,
either at the time of the crash or later using information from the crash dump.

Table 2-3 Postmortem Diagnhostics Tools

Tool or Option Description and Usage

Fatal Error Log When an irrecoverable (fatal) error occurs, an error log is created. This
file contains information obtained at the time of the fatal error. In many
cases, it is the first item to examine when a crash occurs. See Fatal

Error Log.
This command-line option specifies the generation of a heap dump

XX: +HeapDunmpOnCQut OF Meno when the VM detects a native out-of-memory error. See The -
ryError option XX:HeapDumpOnOutOfMemoryError Option.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 47 of 55

https://docs.oracle.com/en/java/javase/11/docs/specs/jpda/jpda.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jdi/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/specs/jdwp/jdwp-spec.html

ORACLE

Chapter 2
Hung Processes Tools

Table 2-3 (Cont.) Postmortem Diagnostics Tools

Tool or Option

Description and Usage

- XX: OnError option

XX: +ShowvessageBoxOnEr r
or option

Other - XX options

j hsdb ji nfo utility
j hsdb j map utility

j stack utility

Native tools

This command-line option specifies a sequence of user-supplied scripts
or commands to be executed when a fatal error occurs. For example, on
Windows, this option can execute a command to force a crash dump.
This option is very useful on systems where a postmortem debugger is
not configured. See The -XX:OnError Option.

This command-line option suspends a process when a fatal error occurs.
Depending on the user response, the option can launch the native
debugger (for example, dbx, gdb, nsdev) to attach to the VM. See The -
XX:ShowMessageBoxOnError Option.

Several other - XX command-line options can be useful in
troubleshooting. See Other -XX Options.

This utility can get configuration information from a core file obtained
from a crash or from a core file obtained using the gcor e utility. See The
jinfo Utility.

This utility can get memory map information, including a heap histogram,
from a core file obtained from a crash or from a core file obtained using
the gcor e utility. See The jmap Utility.

This utility can get Java and native stack information from a Java
process. On the Oracle Solaris and Linux operating systems, the utility
can also get the information from a core file or a remote debug server.

See The jstack Utility.

Each operating system has native tools and utilities that can be used for
postmortem diagnosis. See Native Operating System Tools.

Hung Processes Tools

List of tools and options for diagnosing problems between the application and the Java
HotSpot VM in a hung process.

Table 2-4 summarizes the options and tools that can help in scenarios involving a hung or
deadlocked process. These tools do not require any special options to start the application.

Java Mission Control, Java F
problems with JVM and Java

light Recorder, and the j cnd utility can be used to diagnose
applications. It is suggested to use the latest utility, j cnd, instead

of the previous j st ack, j i nfo, and j map utilities for enhanced diagnostics and reduced

performance overhead.

Table 2-4 Hung ProcessTools

Tool or Option

Description and Usage

Ctrl+Break handler
(Control+\orkill -QUT pid

Oracle Solaris and Linux operating

systems, and Control+Break on
Windows)

j cmd utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

This key combination performs a thread dump and deadlock
onthe detection. The Ctrl+Break handler can optionally print a list of
concurrent locks and their owners, as well as a heap
histogram. See Control+Break Handler.

This utility is used to send diagnostic command requests to
the JVM, where these requests are useful for controlling Java
Flight Recordings (JFRs). The JFRs are used to troubleshoot
and diagnose flight recording events. See The jcmd Utility.

October 20, 2025
Page 48 of 55

ORACLE Chapter 2
Monitoring Tools

Table 2-4 (Cont.) Hung ProcessTools

. ___|
Tool or Option Description and Usage

j db utility Debugger support includes attaching connectors, which allow
j db and other Java language debuggers to attach to a
process. This can help show what each thread is doing at the
time of a hang or deadlock. See The jdb Utility.

j i nfo utility This utility can get configuration information from a Java
process. See The jinfo Utility.
j map utility This utility can get memory map information, including a heap

histogram, from a Java process. The j hsdb j map utility can
be used if the process is hung. See The jmap Utility.

j stack utility This utility can obtain Java and native stack information from a
Java process. See The jstack Utility.

Native tools Each operating system has native tools and utilities that can
be useful in hang or deadlock situations. See Native
Operating System Tools.

Monitoring Tools

Tools and options for monitoring running applications and detecting problems are available in
the JDK and in the operating system.

The tools listed in the Table 2-5 are designed for monitoring applications that are running.

Java Mission Control, Java Flight Recorder, and the j cnd utility can be used to diagnose
problems with JVM and Java applications. It is suggested to use the latest utility, | cnd, instead
of the previous j st ack, ji nfo, and j map utilities for enhanced diagnostics and reduced
performance overhead.

Table 2-5 Monitoring Tools

|
Tool or Option Description and Usage

Java Mission Control Java Mission Control (JMC) is a new JDK profiling and diagnostic tool platform for
HotSpot JVM. It is a tool suite for basic monitoring, managing, and production time
profiling and diagnostics with high performance. Java Mission Control minimizes the
performance overhead that's usually an issue with profiling tools.

jemd utility This utility is used to send diagnostic command requests to the JVM, where these
requests are useful for controlling Java Flight Recordings. The JFRs are used to
troubleshoot and diagnose JVM and Java applications with flight recording events.

See The jemd Utility.

JConsole utility This utility is a monitoring tool that is based on Java Management Extensions (JMX).
The tool uses the built-in IMX instrumentation in the Java Virtual Machine to provide
information about the performance and resource consumption of running applications.
See JConsole.

j map utility This utility can get memory map information, including a heap histogram, from a Java
process or a core file. See The jmap Utility.

j ps utility This utility lists the instrumented Java HotSpot VMs on the target system. The utility is
very useful in environments where the VM is embedded, that is, it is started using the
JNI Invocation API rather than the j ava launcher. See The jps Utility.

j stack utility This utility can get Java and native stack information from a Java process. The utility
can also get the information from a core file. See The jstack Utility.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 49 of 55

ORACLE

Chapter 2
Other Tools, Options, Variables, and Properties

Table 2-5 (Cont.) Monitoring Tools
|

Tool or Option

Description and Usage

j stat utility

j st atd daemon

vi sual gc utility

Native tools

This utility uses the built-in instrumentation in Java to provide information about
performance and resource consumption of running applications. The tool can be used
when diagnosing performance issues, especially those related to heap sizing and
garbage collection. See The jstat Utility.

This tool is a Remote Method Invocation (RMI) server application that monitors the
creation and termination of instrumented Java Virtual Machines and provides an
interface to allow remote monitoring tools to attach to VMs running on the local host.
See The jstatd Daemon.

This utility provides a graphical view of the garbage collection system. As with j st at,
it uses the built-in instrumentation of Java HotSpot VM. See The visualgc Tool.

Each operating system has native tools and utilities that can be useful for monitoring
purposes. For example, the dynamic tracing (DTrace) capability introduced in Oracle
Solaris 10 operating system performs advanced monitoring. See Native Operating

System Tools.

Other Tools, Options, Variables, and Properties

List of general troubleshooting tools, options, variables, and properties that can help to

diagnose issues.

In addition to the tools that are designed for specific types of problems, the tools, options,
variables, and properties listed in Table 2-6 can help in diagnosing other issues.

JDK Mission Control, Flight Recorder, and the j cnd utility can be used for diagnosing problems
with JVM and Java applications. It is suggested to use the latest utility, j cnd, instead of the
previous j st ack, j i nfo, and j map utilities for enhanced diagnostics and reduced performance

overhead.

Table 2-6 General Troubleshooting Tools and Options

Tool or Option

Description and Usage

JDKMission Control JDK Mission Control (JMC) is a new JDK profiling and diagnostic tool

j cmd utility

j i nfo utility

platform for HotSpot JVM. It is a tool suite for basic monitoring,
managing, and production time profiling and diagnostics with high
performance. JMC minimizes the performance overhead that's usually
an issue with profiling tools. See JDK Mission Control.

This utility is used to send diagnostic command requests to the JVM,
where these requests are useful for controlling Java Flight Recordings
(JFRs). The JFRs are used to troubleshoot and diagnose JVM and Java
applications with flight recording events.

This utility can dynamically set, unset, and change the values of certain
JVM flags for a specified Java process. On Oracle Solaris and Linux
operating systems, it can also print configuration information.

jrunscript utility This utility is a command-line script shell, which supports both interactive

Troubleshooting Guide
E94880-09

and batch-mode script execution.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 50 of 55

https://docs.oracle.com/javacomponents/index.html

ORACLE’

Chapter 2
The java.lang.management Package

Table 2-6 (Cont.) General Troubleshooting Tools and Options

Tool or Option

Description and Usage

Oracle Solaris Studio dbx
debugger

Oracle Solaris Studio
Performance Analyzer

Sun's Dataspace Profiling:

DProfile

- Xcheck: j ni option

-verbose: cl ass option
- ver bose: gc option
-verbose: j ni option

JAVA TOOL_OPTI ONS
environment variable

j ava. security. debug
system property

This is an interactive, command-line debugging tool, which allows you to
have complete control of the dynamic execution of a program, including

stopping the program and inspecting its state. For details, see the latest
dbx documentation located at Oracle Solaris Studio Program

Debugging.

This tool can help you assess the performance of your code, identify
potential performance problems, and locate the part of the code where
the problems occur. The Performance Analyzer can be used from the
command line or from a graphical user interface. For details, see the
Oracle Solaris Studio Performance Analyzer.

This tool provides insight into the flow of data within Sun computing
systems, helping you identify bottlenecks in both software and hardware.
DProfile is supported in the Sun Studio 11 compiler suite through the
Performance Analyzer GUI. See DTrace or Dynamic Tracing diagnostic
tool.

This option is useful in diagnosing problems with applications that use
the Java Native Interface (JNI) or that employ third-party libraries (some
JDBC drivers, for example). See The -Xcheck:jni Option.

This option enables logging of class loading and unloading. See The -
verbose:class Option.

This option enables logging of garbage collection information. See The -
verbose:gc Option.

This option enables logging of JNI. See The -verbose:jni Option.

This environment variable allows you to specify the initialization of tools,
specifically the launching of native or Java programming language
agents using the - agent | i b or - j avaagent options. See Environment
Variables and System Properties.

This system property controls whether the security checks in the JRE of
the Java print trace messages during execution. See The
java.security.debug System Property.

The java.lang.management Package

The j ava. | ang. managenent package provides the management interface for the monitoring
and management of the JVM and the operating system.

Specifically, it covers interfaces for the following systems:

e Class loading

e Compilation

* Garbage collection
* Memory manager
* Runtime

e Threads

In addition to the j ava. | ang. managenment package, the JDK release includes platform
extensions in the com sun. managenment package. The platform extensions include a
management interface to get detailed statistics from garbage collectors that perform collections

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 51 of 55

http://docs.oracle.com/cd/E24457_01/html/E21993/blabb.html#scrolltoc
http://docs.oracle.com/cd/E24457_01/html/E21993/blabb.html#scrolltoc
http://docs.oracle.com/cd/E18659_01/html/821-1379/afabb.html#scrolltoc
http://www.oracle.com/technetwork/server-storage/solaris/dtrace-tutorial-142317.html
http://www.oracle.com/technetwork/server-storage/solaris/dtrace-tutorial-142317.html

ORACLE’

Chapter 2
The java.lang.instrument Package

in cycles. These extensions also include a management interface to get additional memory
statistics from the operating system.

The java.lang.instrument Package

The j ava.l ang. i nstrunment package provides services that allow the Java programming
language agents to instrument programs running on the JVM.

Instrumentation is used by tools such as profilers, tools for tracing method calls, and many
others. The package facilitates both load-time and dynamic instrumentation. It also includes
methods to get information about the loaded classes and information about the amount of
storage consumed by a given object.

The java.lang.Thread Class

The j ava. | ang. Thr ead class has a static method called get Al | St ackTr aces, which returns
a map of stack traces for all live threads.

The Thr ead class also has a method called get St at e, which returns the thread state; states
are defined by the j ava. | ang. Thr ead. St at e enumeration. These methods can be useful when
you add diagnostic or monitoring capabilities to an application.

JVM Tool Interface

The JVM Tool Interface (JVM TI) is a native (C/C++) programming interface that can be used
by a wide range of development and monitoring tools.

JVM TI provides an interface for the full breadth of tools that need access to the VM state,
including but not limited to profiling, debugging, monitoring, thread analysis, and coverage
analysis tools.

Some examples of agents that rely on JVM TI are the following:

e Java Debug Wire Protocol (JDWP)
e Thejava.lang.instrument package

The specification for JVM Tl can be found in the JVM Tool Interface documentation.

The jrunscript Utility

The j runscri pt utility is a command-line script shell.

It supports script execution in both interactive mode and in batch mode. By default, the shell
uses JavaScript, but you can specify any other scripting language for which you supply the
path to the script engine JAR file of . cl ass files.

Thanks to the communication between the Java language and the scripting language, the
jrunscript utility supports an exploratory programming style.

The jstatd Daemon

The j st at d daemon is an RMI server application that monitors the creation and termination of
each instrumented Java HotSpot, and provides an interface to allow remote monitoring tools to
attach to JVMs running on the local host.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 52 of 55

https://docs.oracle.com/en/java/javase/11/docs/specs/jvmti.html

ORACLE’

Chapter 2
Troubleshooting Tools Based on the Operating System

For example, this daemon allows the j ps utility to list processes on a remote system.

@® Note

The instrumentation is not accessible on FAT32 file system.

Troubleshooting Tools Based on the Operating System

List of native Windows tools that can be used for troubleshooting problems.

Table 2-7 lists the troubleshooting tools available on the Windows operating system.

Table 2-7 Native Troubleshooting Tools on Windows

Tool

Description

dunpchk

msdev debugger

user dunp

wi ndbg

/ Ml and / Mdd compiler
options

Command-line utility to verify that a memory dump file was created
correctly. This tool is included in the Debugging Tools for Windows
download available from the Microsoft website. See Collect Crash
Dumps on Windows.

Command-line utility that can be used to launch Visual C++ and the
Win32 debugger

The User Mode Process Dumper is included in the OEM Support Tools
download available from the Microsoft website. See Collect Crash
Dumps on Windows.

Windows debugger can be used to debug Windows applications or crash
dumps. This tool is included in the Debugging Tools for Windows
download available from the Microsoft website. See Collect Crash
Dumps on Windows.

Compiler options that automatically include extra support for tracking
memory allocations

Table 2-8 describes some troubleshooting tools introduced or improved in the Linux operating

system version 10.

Table 2-8 Native Troubleshooting Tools on Linux
|

Tool Description

cHHfilt Demangle C++ mangled symbol names. This utility is delivered with the
native C++ compiler suite: gcc on Linux.

gdb GNU debugger

l'ibnjand Memory allocation tracking

| sstack Print thread stack (similar to pst ack in the Oracle Solaris operating
system)
Not all distributions provide this tool by default; therefore, you might have
to download it from Open Source downloads.

[trace Library call tracer (equivalentto t r uss -u in the Oracle Solaris

Troubleshooting Guide
E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

operating system)

Not all distributions provide this tool by default; therefore, you might have
to download it from Open Source downloads.

October 20, 2025
Page 53 of 55

http://sourceforge.net
http://sourceforge.net

ORACLE

Chapter 2
Troubleshooting Tools Based on the Operating System

Table 2-8 (Cont.) Native Troubleshooting Tools on Linux

Tool

Description

ntrace and nuntrace

proc tools such as pmap and

GNU nal | oc tracer

Some, but not all, of the pr oc tools on the Oracle Solaris operating

pst ack system have equivalent tools on Linux. Core file support is not as good
for Linux as for Oracle Solaris operating system; for example, pst ack
does not work for core dumps

strace System call tracer (equivalentto truss -t in the Oracle Solaris
operating system)

top Display most CPU-intensive processes.

virst at Report information about processes, memory, paging, block I/O, traps,

and CPU activity.

Table 2-9 lists troubleshooting tools available on Oracle Solaris operating system.

Table 2-9 Native Troubleshooting Tools on Oracle Solaris Operating System

Tool Description

coreadm Specify name and location of core files produced by the JVM.

cpust at Monitor system behavior using CPU performance counters.

cput rack Monitor process and LWP behavior using CPU performance counters.

cH++filt Demangle C++ mangled symbol names. This utility is delivered with the
native C++ compiler suite: SUNVé pr 0 on the Oracle Solaris operating
system.

dtrace Introduced in Oracle Solaris 10 operating system, DTrace is a dynamic
tracing compiler and tracing utility. It can perform dynamic tracing of
kernel functions, system calls, and user functions. This tool allows
arbitrary, safe scripting to be executed at entry, exit, and other probe
points. The script is written in the C-like, but safe, pointer semantics
language called the D programming language. See also DTrace Tool.

gcore Force a core dump of a process. The process continues after the core
dump is written.

intrstat Report statistics on the CPU consumed by interrupt threads.

i ost at Report 1/O statistics.

['i bumem Introduced in the Oracle Solaris 9 operating system update 3, this library
provides fast, scalable object-caching memory allocation and extensive
debugging support. The tool can be used to find and fix memory
management bugs. See Find Leaks with the libumem Tool.

mdb Modular debugger for kernel and user applications and crash dumps

net st at Display the contents of various network-related data structures.

pargs Print process arguments, environment variables, or the auxiliary vector.
Long output is not truncated as it would be by other commands, such as
ps.

pfiles Print information on process file descriptors. Starting with the Oracle
Solaris 10 operating system, the tool prints the file name also.

pl dd Print shared objects loaded by a process.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 54 of 55

ORACLE

Chapter 2
Troubleshooting Tools Based on the Operating System

Table 2-9 (Cont.) Native Troubleshooting Tools on Oracle Solaris Operating System

Tool Description

pnap Print memory layout of a process or core file, including heap, data, and
text sections. Starting with Oracle Solaris 10, stack segments are clearly
identified with the text [st ack] along with the thread ID. See
Improvements to the pmap Utility.

pr st at Report statistics for active Oracle Solaris operating system processes.
(Similar to t op)

prun Set the process to running mode (reverse of pst op).

ps List all processes.

psi g List the signal handlers of a process.

pst ack Print stack of threads of a given process or core file. Starting with the
Oracle Solaris 10 operating system, Java method names can be printed
for Java frames. See Improvements to the pstack Utility.

pst op Stop the process (suspend).

ptree Print the process tree that contains the given PID.

sar System activity reporter

sdt process
sdt per f met er

top
trapst at

truss

viet at
wat chmal | oc

Display most CPU-intensive processes. (similar to t op).

Display graphs that show the system performance (for example, CPU,
disks, and network).

Display most CPU-intensive processes. This tool is available as freeware
for the Oracle Solaris operating system, but is not installed by default.

Display runtime trap statistics (SPARC only).

Trace entry and exit events for system calls, user-mode functions, and
signals; optionally stop the process at one of these events. This tool also
prints the arguments of system calls and user functions.

Report system virtual memory statistics.

Track memory allocations.

Troubleshooting Guide

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 55 of 55

Troubleshoot Memory Leaks

This chapter provides some suggestions for diagnosing problems involving possible memory
leaks.

If your application's execution time becomes longer, or if the operating system seems to be
performing slower, this could be an indication of a memory leak. In other words, virtual memory
is being allocated but is not being returned when it is no longer needed. Eventually the
application or the system runs out of memory, and the application terminates abnormally.

This chapter contains the following sections:
e Use JDK Mission Control to Debug Memory Leak

e The jfr tool
* Understand the OutOfMemoryError Exception

¢ Troubleshoot a Crash Instead of OutOfMemoryError

 Diagnose Leaks in Java Language Code

+ Diagnose Leaks in Native Code

Use JDK Mission Control to Debug Memory Leak

The Flight Recorder records detailed information about the Java runtime and the Java
applications running in the Java runtime.

The following sections describe how to debug a memory leak by analyzing a flight recording in
JMC.

* Detect Memory Leak

* Find the Leaking Class

Detect Memory Leak

You can detect memory leaks early and prevent Qut O nenor yErr or s using JMC.

Detecting a slow memory leak can be hard. A typical symptom could be the application
becoming slower after running for a long time due to frequent garbage collections. Eventually,
Qut O menor yEr ror s may be seen. However, memory leaks can be detected early, even before
such problems occur, by analyzing Java Flight recordings.

Watch if the live set of your application is increasing over time. The live set is the amount of
Java heap that is used after an old collection (all objects that are not live) and have been
garbage collected. To inspect the live set, open JMC and connect to a JVM using the Java
Management console (JMX). Open the MBean Browser tab and look for the

Gar bageCol | ect or Aggr egat or MBean under com sun. nenagenent .

Open JMC and start a Time fixed recording (profiling recording) for an hour. Before starting a
flight recording, make sure that the option Object Types + Allocation Stack Traces + Path to
GC Root is selected from the Memory Leak Detection setting.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 16

ORACLE

Chapter 3

Use JDK Mission Control to Debug Memory Leak

Once the recording is complete, the recording file (. j f r) opens in IMC. Look at the
Automated Analysis Results page. To detect a memory leak focus on the Live Objects
section of the page. Here is a sample figure of a recording, which shows heap size issue:

Figure 3-1 Memory Leak - Automated Analysis Page

B 10K Wission Control
File Edit Navigate Window Help
B VM Browser B2 Outline o

"0 Leakffr

B Automated Analysis Results
v B Java Application
E Threads
v % Memory
4 Live Objects
o Lock Instances
<& File VO
& Socket I/O
@ Methed Profiling
’1 Exceptions
Thread Dumps
v & WM Internals
@ Garbage Callections
i GC Configuration
> @ Compilations
@ Class Loading
VM Operations
™ TLAB Allocaticns
* & Environment
T3 Processes

= Properties ©
Field

4 Results
Value

0 events

s Automated Analysis Results

& Java Application
[

reads Allocating

<3 Memory
¥R | Allocated Classes
I Heap Content

Most of the heap was used by only a few ciasses. If the heap usage needs o be
reduced, then this would be a good place to start.

= Live Objects
I 7 | Heap Live Set Trend

The live set on the heap seems to Increase with a speed of about 12.2 KIB per
second during the recording.
An analysis of the reference tree found 1 leak candidates.
« java.util HashtableSEntry[6534/98303]
The candidate is referenced by this chain.
+ java.util Hashtable table (Stack Variable : Threads (Thread
Name: main))

~

<

- 8 x
0 p|[Eno
JVM Internals A

J0 | stackdepth Setting -
@ Garbage Collections
KT c1/cMs Full Collection -

At least one Full, Stop-The-World Garbage Callection oocurred during this
recording, For the CMS and G1 collectors, Full GC events are a strong negative:
performance indicator. Tunable GG parameters can be used to allow the collector
10 operate in concurrent mode, avoiding Stop-The-World pauses and increasing
GC and application performance

N | 6Cs caused by Heap Inspection -
The JVM performed & heap inspection garbag g heap
Inspection garbage collections may be a problem since they usually take a lot of
time.

& Environment
= Processes

I competing CPU Ratio Usage -
An average CPU load of 45 % was caused by other processes during 32.415 s
starting at 7/7/20, 5:05:24 PM
The application performance c¢an be affeclted when the machine is under heavy
load and there are other processes that use CPU or other resources an the same
NNNNN sl bl shaives sbhaeoy e St Bidrlos e ch o i

You can observe that in the Heap Live Set Trend section, the live set on the heap seems to
increase rapidly and the analysis of the reference tree detected a leak candidate.

For further analysis, open the Java Applications page and then click the Memory page. Here
is a sample figure of a recording, which shows memory leak issue.

Figure 3-2 Memory Leak - Memory Page

EJDK Mission Control
File Edit Navigate Window Help
B4 VM Browser B Outline| @ & 7 2
B Automated Analysis Resulls A |
v T Java Application
B Threads
¥ % Memery
4 Live Objects
o Lock Instances
& File YO
<& Socket /O
© Methed Profiling
’} Exceplions
Thread Dumps v

™ Properties * Results ShE

IEZIN Heap Content

Mast of the heap was used by only &
lfew classes. If the heap usage needs
lto be reduced, then this would be a
Igood place to start.

[F Allocated Classes
IThe most allocated class is likely
fehar(]. This is the most commen
|allocation path for that class:

- LeakSDemoObject.<init>(int)

(86.9 %)

Frequently aliocated classes are likely
lgoad places ta start when lrying 1o
Ireduce garbage collections, Look at
lthe aggregated stack traces of the
Imast commonly allocated classes to
[see if many instances are created
lalong the same call path. Try to
reduce the number of instances
lcreated by invoking the most
lcommonly taken paths less.

LI GC Pressure -
WP string Deduplication + V|

-A|

= =} X
= flight_recording_1401Leak31092 jfr = =
-4 Memory e o
<No Selection> ~ Aspect: <No Selection> o [show concurrent: Contained Sarme threads Time Range: Set Clear
Class Max Live Co.. Max Live Size Live Size Inc... Total Allocat... A
& charll 51723 261 MB 255 MiB 102 Gig |
@ java.util. TreeMapSEntry 107.783 4.11 MiB 113 MiB. 171 Mig
@ Leak$DemoObject 51,655 1.97 MiB 193 Mib 505 MiB
@ java.util. HashtableSEntry 51,663 1.58 MiB 1.54 MiB 252 MiB
@ java.util. TreeMap 34,317 1.57 MiB 441 Kib. 97.6 MiB
@ java.lang.Long 54,521 125 Mg 354 Kifl 375 Mig
| Gbyten 21,761 1.18 Mig 121KiB 577 Mig
Gjavax. bean,C i t 34,277 803 i 221KB 497 MiB ¥
768 MiB ‘EHGanhage Collectio A
512 MIB @ Total Allocation
§ . W Used Heap

B Heap Space : Con
B Heap Space: Rest
|

|OMUsed size

32 MiB
Memery Usage |OWTotal size
TM112020 4:30:00 PM 4:45:00 PM 5:00:00 PM SABD0 P 1241 e ive 5
| < >
= Progress View| = Stack Trace| KAR[&|@w -=0
Stack Trace Count

Hvoid Leak§DemoOkbject.<inits (int)
Hvoid Leak§ DemaThread. putfint)

1 void Leak$DemoThread.run()

1 void Javalang.Threac.run{

You can observe from the graph that the memory usage has increased steadily, which
indicates a memory leak issue.

Troubleshooting Guide
E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 16

ORACLE’

Chapter 3
Use JDK Mission Control to Debug Memory Leak

Find the Leaking Class

You can use the Java Flight Recordings to identify the leaking class.

To find the leaking class, open the Memory page and click the Live Objects page. Here is a
sample figure of a recording, which shows the leaking class.

Figure 3-3 Memory Leak - Live Objects Page

5 VM Browser |5 Qutline @ &/ 7 = O |las Leqk jfr i
B Automated Analysis Results ~| . Live Objects

~ { Java Application

R Theeds Allocation | e O e : s R s e
~ % Memory e S
Live Objects 12020 4:20:00 PM 4:30:00 PM 4:40:00 PM 4:50:00 PM 5:00.00 PM 5:10:00 PM
& Lock Instances -
8Fie /0 Live Object Sample Count Description ~
8 Socket /0 ~ Hashtable > Stack Variable : Threads (Thread Na..
© Method Profiling v Hashtable$Entryl] [2
4 Bxceptions ~ Hashtable$Entry 1
Thread Dumps v ~ Leak$DemoObject 1
= char]] 1
I Properties £ | % Results i > HashtableSEntry 1
. Value Hashtable$Entry 1
e Old Object Sample | > Hashtable$Entry 1
7/7/20, 5:15:49 PM Hashtable$Entry 1
BDuration 91.053 ms Hashtable$Entry 1
@knd Time 7/1/20, 5:15:49 PM > Hashtable$Entry 1
Thread-1 > Hashtable$Entry 1
fon... 7/7/20, 413:15 PM > Hashtable$Entry 1
1h3 min > Hashtable$Entry 1
fLast Know... 4.56 MiB > HashtableSEntry 1
=Object charfl.chunk @ 0x70.. » Hashtable$Entry 1 v
= Armay Ele.. 255
@GCRoot Stack Variable : Threa & Progress View| = Stack Trace R il 1%
1 events Stack Trace Count
1 void Leak$ DemoOkbject. <init> int} I i
1 void Leak$ DemoThread put(int) 1
1 void Leak$ DemaoThread runi) T
1 void javalang.Thread.run() 1

You can observe that most of the live objects being tracked are actually held on to by
Leak$DenoThr ead, which in turn holds on to a leaked char[] class. For further analysis, see the
A d nject Sanpl e eventin the Results tab that contains sampling of the objects that have
survived. This event contains the time of allocation, the allocation stack trace, the path back to
the GC root.

When a potentially leaking class is identified, look at the TLAB Allocations page in the JVM
Internals page for some samples of where objects were allocated. Here is a sample figure of a
recording, which shows TLAB allocations.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 3 of 16

ORACLE Chapter 3

The jfr tool
Figure 3-4 Memory Leak - TLAB Allocations
J# JVM Browser & Outline| ¢ & = = £ |/as L oakjfr == a2 widfjfr 8
1 Exceptions ~ | = TLAB Allocations o
Thiead Dumps
v # VM Internals <No Selection> ~ Aspect: <Mo Selection> v [l Show cencurrent: (] Contained [Same threads Time Range: Sat Clear
fo Garbage Collections
WGeCorigurstion Thread Count Average TL.. Average All. Est TLAB AL. Total Aflocat... ~
Z’ g;’s:"::':::; ‘S Transient Allocator |] 124175 2058 408 KB 146GB 589 MB
11 Opseaticns +© RMI TCP Connection(idle) |] 37.407 1138 331KB 3TOMIE 31.1MB
P £ RMI TEP Connection(idle)] 29,239 928 307K 250MiB 262 M
T #RMI TCP Connectionidle) 12493 1798 64SKB 281ME 159MB
G Processes o #* RMI TCP Connection(idle) 10,825 1048 5.6 KiB 132 MiB 12.5 MiB
— | ®RMITCP Connection(idle) 15,022 9598 244KB 162MB 104 M
[7 Properties | Results 7 5RMITCP Connection(idle) 12,888 158 352K 13MIE 102 MiB
NI TLAB Allocation Ratio + || |.9RMI TCP Connection(idle) 7473 1828 653KB 155 MiB 10 MiB
+ RMI TCP Connection(idle) 7.008 1388 625KB 135MiB 848 MB
RMI TCP Connection(idle) 6467 178 62TKB 154MB 811MB
+ RMI TCP Connection(idle) 5,942 1048 6ATKB 103MB 7.24MB
=& RMI TCP Connection(idle) 11,852 8188 1.87 KiB 130 Mig 6.2 MiB
M TCP Connection(idle) 3,800 1288 SAOKE 496 MiB 4.21MiB
#RMI TCP Connection(idle) 6303 8298 191KB S53MiE 3.28MB
4 RMI TCP Connection(idle) 927 138 793KB 17.1MiB 1.3 M8
©Thread-0 [| 106,697 4948 16KB 5.44Gi8 707 KiB v
1.25 GiB EIMEst. TLAB Allocation
168 | B Total Allocation Outs
768 MiB
512 MiB
256 MiB
TLAB Allocations (1 thread)
1112020 4:30:00 PM 4:45:00 Pl 5:00:00 PM s1500P| .

Check the class samples being allocated. If the leak is slow, there may be a few allocations of
this object and may be no samples. Also, it may be that only a specific allocation site is leading
to a leak. You can make required changes to the code to fix the leaking class.

The jfr tool

Java Flight Recorder (JFR) records detailed information about the Java runtime and the Java
application running on the Java runtime. This information can be used to identify memory
leaks.

To detect a memory leak, JFR must be running at the time that the leak occurs. The overhead
of JFR is very low, less than 1%, and it has been designed to be safe to have always on in
production.

Start a recording when the application is started using the j ava command as shown in the
following example:

$ java - XX StartFlight Recordi ng

When the JVM runs out of memory and exits due to a j ava. | ang. Qut Of Menor yError error, a
recording with the prefix hs_oom pi d is often, but not always, written to the directory in which
the JVM was started. An alternative way to get a recording is to dump it before the application
runs out of memory using the j cnd tool, as shown in the following example:

$ jcenmd pid JFR dunp filename=recording.jfr path-to-gc-roots=true

When you have a recording, use the j fr tool located in the j ava- home/ bi n directory to print
Old Object Sample events that contain information about potential memory leaks. The
following example shows the command and an example of the output from a recording for an
application with the pid 16276:

jfr print --events O dbj ect Sanpl e pi d16276.jfr

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 4 of 16

ORACLE

j dk. O dbj ect Sanmpl e {

startTime = 18:32:52.192
duration = 5.317 s
allocationTinme = 18:31:38.213
objectAge = 74.0 s
| ast KnownHeapUsage = 63.9 MB
object = |

java. util.HashMap$Node

[15052855] : java. util.HashMap$Node[33554432]
table : java.util.HashMap Size: 15000000

map @ java.util.HashSet

]

arrayEl enents = N A

root = {
description = "Thread Nane: main"
system = "Threads"
type = "Stack Variable"

}

users : java.lang.dass Cass Nane: Application

event Thread = "main" (javaThreadld = 1)

j dk. O doj ect Sanpl e {

startTime = 18:32:52.192
duration = 5.317 s
all ocationTime = 18: 31: 38. 266
objectAge = 74.0 s
| ast KnownHeapUsage = 84.4 MB
object = |

java. util.HashMap$Node

[8776975] : java.util.HashMap$Node[33554432]
table : java.util.HashMap Size: 15000000

map : java.util.HashSet

]

arrayEl enents
root = {
description = "Thread Nane: main"
system = "Threads"
type = "Stack Variable"

}

users : java.lang.dass Cass Nane: Application

N A

event Thread = "main" (javaThreadld = 1)

j dk. O doj ect Sanpl e {

Troubleshooting Guide
E94880-09

startTime = 18:32:52.192
duration = 5.317 s

al l ocationTime = 18:31: 38.540
objectAge = 73.7 s

| ast KnownHeapUsage = 121.7 MB
object = |

Copyright © 1995, 2025, Oracle and/or its affiliates.

Chapter 3
The jfr tool

October 20, 2025
Page 5 of 16

ORACLE

Chapter 3
The jfr tool

java. util.HashMap$Node
[393162] : java.util.HashMap$Node[33554432]
table : java.util.HashMap Size: 15000000
map @ java.util.HashSet
users : java.lang.dass Cass Nane: Application
]
arrayEl ement s
root = {
description = "Thread Nane: main"
system = "Threads"
type = "Stack Variable"
}

event Thread = "main" (javaThreadld = 1)

N A

To identify a possible memory leak, review the following elements in the recording:

First, notice that the | ast KnownHeapUsage element in the Old Object Sample events is
increasing over time, from 63.9 MB in the first event in the example to 121.7 MB in the last
event. This increase is an indication that there is a memory leak. Most applications allocate
objects during startup and then allocate temporary objects that are periodically garbage
collected. Objects that are not garbage collected, for whatever reason, accumulate over
time and increase the value of | ast KnownHeapUsage.

Next, look at the al | ocat i onTi ne element to see when the object was allocated. Objects
that are allocated during startup are typically not memory leaks, neither are objects
allocated close to when the dump was taken. The obj ect Age element shows how long the
object has been alive. The start Ti me and dur ati on elements are not related to when the
memory leak occurred, but when the O dCbj ect event was emitted and how long it took to
gather data for it. This information can be ignored.

Then look at the obj ect element to see the memory leak candidate; in this example, an
object of type j ava. uti | . HashMap$Node. It is held by the t abl e field in the

java. util . HashMap class, which is held by j ava. uti | . HashSet , which in turn is held
by the user s field of the Appl i cat i on class.

The root element contains information about the GC root. In this example, the
Appl i cati on class is held by a stack variable in the main thread. The event Thr ead
element provides information about the thread that allocated the object.

If the application is started with the - XX: St art Fl i ght Recor di ng: setti ngs=profil e option,
then the recording also contains the stack trace from where the object was allocated, as shown
in the following example:

stackTrace = |

Troubleshooting Guide

E94880-09

java.util.HashMap. newNode(int, Cbject, Object, HashMap$Node) |ine: 1885
java.util.HashMap. putVal (int, Cbject, bject, bool ean, boolean) line: 631
java.util.HashMap. put (Object, Cbject) line: 612
java.util.HashSet.add(Object) line: 220

Application.storeUser(String, String) line: 53
Application.validate(String, String) line: 48

Application.login(String, String) line: 44

Application.main(String[]) line: 30

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 6 of 16

ORACLE

Chapter 3
Understand the OutOfMemoryError Exception

In this example we can see that the object was put in the HashSet when the
storeUser(String, String) method was called. This suggests that the cause of the memory
leak might be objects that were not removed from the HashSet when the user logged out.

It is not recommended to always run all applications with the -
XX: StartFl i ght Recordi ng: settings=profil e option due to overhead in certain allocation-
intensive applications, but is typically OK when debugging. Overhead is usually less than 2%.

Setting pat h-t 0- gc-r oot s=t r ue creates overhead, similar to a full garbage collection, but also
provides reference chains back to the GC root, which is usually sufficient information to find the
cause of a memory leak.

Understand the OutOfMemoryError Exception

j ava. |l ang. Qut Of Menor yEr ror error is thrown when there is insufficient space to allocate an
object in the Java heap.

One common indication of a memory leak is the j ava. | ang. Qut O Menor yEr ror exception. In
this case, the garbage collector cannot make space available to accommodate a new object,
and the heap cannot be expanded further. Also, this error may be thrown when there is
insufficient native memory to support the loading of a Java class. In a rare instance, a

java. | ang. Qut Of Menor yEr ror can be thrown when an excessive amount of time is being spent
doing garbage collection, and little memory is being freed.

When a j ava. | ang. Qut OF Menor yErr or exception is thrown, a stack trace is also printed.

The j ava. | ang. Qut O Menor yEr r or exception can also be thrown by native library code when a
native allocation cannot be satisfied (for example, if swap space is low).

An early step to diagnose an Qut O Menor yEr ror exception is to determine the cause of the
exception. Was it thrown because the Java heap is full, or because the native heap is full? To
help you find the cause, the text of the exception includes a detail message at the end, as
shown in the following exceptions:

Exception in thread thread_name: java.lang.OutOfMemoryError: Java heap space
Cause: The detailed message Java heap space indicates that an object could not be
allocated in the Java heap. This error does not necessarily imply a memory leak. The problem
can be as simple as a configuration issue, where the specified heap size (or the default size, if
it is not specified) is insufficient for the application.

In other cases, and in particular for a long-lived application, the message might be an
indication that the application is unintentionally holding references to objects, and this
prevents the objects from being garbage collected. This is the Java language equivalent of a
memory leak.

@® Note

The APIs that are called by an application could also be unintentionally holding object
references.

One other potential source of this error arises with applications that make excessive use of
finalizers. If a class has a fi nal i ze method, then objects of that type do not have their space
reclaimed at garbage collection time. Instead, after garbage collection, the objects are queued
for finalization, which occurs at a later time. In the Oracle Sun implementation, finalizers are
executed by a daemon thread that services the finalization queue. If the finalizer thread cannot
keep up with the finalization queue, then the Java heap could fill up, and this type of

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 7 of 16

ORACLE

Chapter 3
Understand the OutOfMemoryError Exception

Qut O Menor yEr ror exception would be thrown. One scenario that can cause this situation is
when an application creates high-priority threads that cause the finalization queue to increase
at a rate that is faster than the rate at which the finalizer thread is servicing that queue.

Action: Try increasing the Java heap size. See Monitor the Objects Pending Finalization to
learn more about how to monitor objects for which finalization is pending. See Finalization and
Weak, Soft, and Phantom References in Java Platform, Standard Edition HotSpot Virtual
Machine Garbage Collection Tuning Guide for information about detecting and migrating from
finalization.

Exception in thread thread_name: java.lang.OutOfMemoryError: GC Overhead limit
exceeded

Cause: The detail message "GC overhead limit exceeded" indicates that the garbage collector
is running all the time, and the Java program is making very slow progress. After a garbage
collection, if the Java process is spending more than approximately 98% of its time doing
garbage collection and if it is recovering less than 2% of the heap and has been doing so for
the last 5 (compile time constant) consecutive garbage collections, then a

java. | ang. Qut Of Menor yErr or is thrown. This exception is typically thrown because the
amount of live data barely fits into the Java heap having little free space for new allocations.

Action: Increase the heap size. The j ava. | ang. Qut Of Menor yEr r or exception for GC
Overhead limit exceeded can be turned off with the command-line flag - XX: -
UseGCOver headLinit.

Exception in thread thread_name: Requested array size exceeds VM limit

Cause: The detail message "Requested array size exceeds VM limit" indicates that the
application (or APIs used by that application) attempted to allocate an array with a size larger
than the VM implementation limit, irrespective of how much heap size is available.

Action: Ensure that your application (or APIs used by that application) allocates an array with
a size less than the VM implementation limit.

Exception in thread thread_name: java.lang.OutOfMemoryError: Metaspace

Cause: Java class metadata (the virtual machines internal presentation of Java class) is
allocated in native memory (referred to here as metaspace). If metaspace for class metadata
is exhausted, a j ava. | ang. Qut Of Menor yEr ror exception with a detail Met aSpace is thrown.
The amount of metaspace that can be used for class metadata is limited by the parameter
MaxMet aSpaceSi ze, which is specified on the command line. When the amount of native
memory needed for a class metadata exceeds MaxMet aSpaceSi ze, a

j ava. | ang. Qut Of Menor yEr r or exception with a detail Met aSpace is thrown.

Action: If MaxMet aSpaceSi ze, has been set on the command-line, increase its value.

Met aSpace is allocated from the same address spaces as the Java heap. Reducing the size of
the Java heap will make more space available for Met aSpace. This is only a correct trade-off if
there is an excess of free space in the Java heap. See the following action for Out of swap
space detailed message.

Exception in thread thread_name: java.lang.OutOfMemoryError: request size bytes for
reason. Out of swap space?

Cause: The detail message "request size bytes for reason. Out of swap space?" appears to
be an Qut O Menor yEr ror exception. However, the Java HotSpot VM code reports this
apparent exception when an allocation from the native heap failed and the native heap might
be close to exhaustion. The message indicates the size (in bytes) of the request that failed
and the reason for the memory request. Usually the reason is the name of the source module
reporting the allocation failure, although sometimes it is the actual reason.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 8 of 16

ORACLE Chapter 3
Troubleshoot a Crash Instead of OutOfMemoryError

Action: When this error message is thrown, the VM invokes the fatal error handling
mechanism (that is, it generates a fatal error log file, which contains useful information about
the thread, process, and system at the time of the crash). In the case of native heap
exhaustion, the heap memory and memory map information in the log can be useful. See
Fatal Error Log.

If this type of the Qut OF Menor yEr r or exception is thrown, you might need to use
troubleshooting utilities on the operating system to diagnose the issue further. See Native
Operating System Tools.

Exception in thread thread_name: java.lang.OutOfMemoryError: Compressed class
space

Cause: On 64-bit platforms, a pointer to class metadata can be represented by 32-bit offset
(with UseConpr essedQops). This is controlled by the command line flag

UseConpr essedd assPoi nt ers (on by default). If the UseConpr essedd assPoi nt er s is used,
the amount of space available for class metadata is fixed at the amount

Conpr essedC assSpaceSi ze. If the space needed for UseConpr essedC assPoi nt er s exceeds
Conpr essedC assSpaceSi ze, aj ava. | ang. Qut O Menor yEr r or with detail Compressed class
space is thrown.

Action: Increase Conpr essedC assSpaceSi ze to turn off UseConpr essedC assPoi nt er s. Note:
There are bounds on the acceptable size of Conpr essedC assSpaceSi ze. For example - XX:
Conpr essedC assSpaceSi ze=4¢g, exceeds acceptable bounds will result in a message such as
Conpr essedC assSpaceSi ze of 4294967296 is invalid; must be between 1048576 and
3221225472.

@® Note

There is more than one kind of class metadata, -kl ass metadata, and other
metadata. Only kl ass metadata is stored in the space bounded by
Conpr essedd assSpaceSi ze. The other metadata is stored in Met aspace.

Exception in thread thread_name: java.lang.OutOfMemoryError: reason
stack_trace_with_native_method

Cause: If the detail part of the error message is "reason stack_trace_with_native_method, and
a stack trace is printed in which the top frame is a native method, then this is an indication that
a native method, has encountered an allocation failure. The difference between this and the
previous message is that the allocation failure was detected in a Java Native Interface (INI) or
native method rather than in the JVM code.

Action: If this type of the Qut O Menor yEr r or exception is thrown, you might need to use native
utilities of the OS to further diagnose the issue. See Native Operating System Tools.

Troubleshoot a Crash Instead of OutOfMemaoryError

Use the information in the fatal error log or the crash dump to troubleshoot a crash.

Sometimes an application crashes soon after an allocation from the native heap fails. This
occurs with native code that does not check for errors returned by the memory allocation
functions.

For example, the nal | oc system call returns nul | if there is no memory available. If the return
from mal | oc is not checked, then the application might crash when it attempts to access an
invalid memory location. Depending on the circumstances, this type of issue can be difficult to
locate.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 9 of 16

ORACLE

Diagnose

Chapter 3
Diagnose Leaks in Java Language Code

However, sometimes the information from the fatal error log or the crash dump is sufficient to
diagnose this issue. The fatal error log is covered in detail in Fatal Error Log. If the cause of the
crash is an allocation failure, then determine the reason for the allocation failure. As with any
other native heap issue, the system might be configured with the insufficient amount of swap
space, another process on the system might be consuming all memory resources, or there
might be a leak in the application (or in the APIs that it calls) that causes the system to run out
of memory.

Leaks in Java Language Code

Use the NetBeans profiler to diagnose leaks in the Java language code.

Diagnosing leaks in the Java language code can be difficult. Usually, it requires very detailed
knowledge of the application. In addition, the process is often iterative and lengthy. This
section provides information about the tools that you can use to diagnose memory leaks in the
Java language code.

@® Note

Beside the tools mentioned in this section, a large number of third-party memory
debugger tools are available. The Eclipse Memory Analyzer and YourKit are two
examples of commercial tools with memory debugging capabilities. There are many
others, and no specific product is recommended.

The following utilities used to diagnose leaks in the Java language code.

® The NetBeans Profiler: The NetBeans Profiler can locate memory leaks very quickly.
Commercial memory leak debugging tools can take a long time to locate a leak in a large
application. The NetBeans Profiler, however, uses the pattern of memory allocations and
reclamations that such objects typically demonstrate. This process includes also the lack of
memory reclamations. The profiler can check where these objects were allocated, which
often is sufficient to identify the root cause of the leak.

See Introduction to Profiling Java Applications in NetBeans IDE.

The following sections describe the other ways to diagnose leaks in the Java language code.

e Get a Heap Histogram

* Monitor the Objects Pending Finalization

Get a Heap Histogram

Get a heap histogram to identify memory leaks using the different commands and options
available.

You can try to quickly narrow down a memory leak by examining the heap histogram. You can
get a heap histogram in several ways:

« If the Java process is started with the - XX: +Pri nt O assH st ogr amcommand-line
option, then the Control+Break handler will produce a heap histogram.

e You can use the j map utility to get a heap histogram from a running process:

It is recommended to use the latest utility, j cnd, instead of j map utility for enhanced
diagnostics and reduced performance overhead. See Useful Commands for the jcmd

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 10 of 16

https://eclipse.dev/mat/
https://www.yourkit.com/
https://netbeans.apache.org/tutorial/main/kb/docs/java/profiler-intro/

ORACLE

Troubleshooting Guide

E94880-09

Chapter 3
Diagnose Leaks in Java Language Code

Utility. The command in the following example creates a heap histogram for a running
process using j cnd and results similar to the following j map command.

jcmd <process id/min class> GC. class_histogramfilenane=Myheaphi st ogram

jmap -histo pid

The output shows the total size and instance count for each class type in the heap. If a
sequence of histograms is obtained (for example, every 2 minutes), then you might be able
to see a trend that can lead to further analysis.

You can use the j hsdb j map utility to get a heap histogram from a core file, as shown in
the following example.

jhsdb jmap --histo --exe jdk-hone/bin/java --corecore_file

For example, if you specify the - XX: +Cr ashOnQut OF Menor yEr r or command-line option
while running your application, then when an Qut O Menor yEr r or exception is thrown, the
JVM will generate a core dump. You can then execute j map on the core file to get a
histogram, as shown in the following example.

$ jhsdb jmap --histo --exe /usr/javaljdk-11/bin/java --core core. 21844

$ Attaching to core core.21844 from executable /usr/javaljdk-11/bin/java,
pl ease wait. ..

Debugger attached successfully.

Server conpiler detected.

JVMversion is 11-eat24

Iterating over heap. This may take a while...

(hj ect Hi st ogram

num #i nst ances #bytes O ass description

1: 2108 112576 byt e[]

2: 546 66112 java.lang. d ass

3 1771 56672 java.util.HashMap$Node
4. 574 53288 java.lang. Qbject[]

5: 1860 44640 java.lang. String

6: 349 40016 java. util.HashMap$Node[]
7: 16 33920 char[]

8: 977 31264

java. util.concurrent. Concurrent HashMap$Node

9: 327 15696 java.util.HashMap

10: 266 13800 java.lang. String[]

11: 485 12880 int[]

Total : 14253 633584
Heap traversal took 1.15 seconds.

The above example shows that the Qut Of Menor yEr r or exception was caused by the
number of byte arrays (2108 instances in the heap). Without further analysis it is not clear
where the byte arrays are allocated. However, the information is still useful.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 11 of 16

ORACLE’

Chapter 3
Diagnose Leaks in Native Code

Monitor the Objects Pending Finalization

Diagnose

Different commands and options available to monitor the objects pending finalization.

When the OutOfMemoryError exception is thrown with the "Java heap space"” detail message,
the cause can be excessive use of finalizers. To diagnose this, you have several options for
monitoring the number of objects that are pending finalization:

* The JConsole management tool can be used to monitor the number of objects that are
pending finalization. This tool reports the pending finalization count in the memory statistics
on the Summary tab pane. The count is approximate, but it can be used to characterize an
application and understand if it relies a lot on finalization.

e On Oracle Solaris and Linux operating systems, the j map utility can be used with the -
finalizerinfo option to print information about objects awaiting finalization.

* An application can report the approximate number of objects pending finalization using the
get Qbj ect Pendi ngFi nal i zat i onCount method of the
j ava. | ang. managenent . Menor yMXBean class. Links to the API documentation and example
code can be found in Custom Diagnostic Tools. The example code can easily be extended
to include the reporting of the pending finalization count.

See Finalization and Weak, Soft, and Phantom References in Java Platform, Standard Edition
HotSpot Virtual Machine Garbage Collection Tuning Guidefor information about detecting and
migrating from finalization.

Leaks in Native Code

Several technigues can be used to find and isolate native code memory leaks. In general,
there is no ideal solution for all platforms.

The following are some techniques to diagnose leaks in native code.

e Track All Memory Allocation and Free Calls

¢ Track All Memory Allocations in the JNI Library

* Track Memory Allocation with Operating System Support

¢ Find Leaks with the dbx Debugger

¢ Find Leaks with the libumem Tool

Track All Memory Allocation and Free Calls

Tools available to track all memory allocation and use of that memory.

A very common practice is to track all allocation and free calls of the native allocations. This
can be a fairly simple process or a very sophisticated one. Many products over the years have
been built up around the tracking of native heap allocations and the use of that memory.

Tools like IBM Rational Purify and the runtime checking functionality of Sun Studio dbx
debugger can be used to find these leaks in normal native code situations and also find any
access to native heap memory that represents assignments to un-initialized memory or
accesses to freed memory. See Find Leaks with the dbx Debugger.

Not all these types of tools will work with Java applications that use native code, and usually
these tools are platform-specific. Because the virtual machine dynamically creates code at
runtime, these tools can incorrectly interpret the code and fail to run at all, or give false

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 12 of 16

ORACLE

Chapter 3
Diagnose Leaks in Native Code

information. Check with your tool vendor to ensure that the version of the tool works with the
version of the virtual machine you are using.

See sourceforge for many simple and portable native memory leak detecting examples. Most
libraries and tools assume that you can recompile or edit the source of the application and
place wrapper functions over the allocation functions. The more powerful of these tools allow
you to run your application unchanged by interposing over these allocation functions
dynamically. This is the case with the library | i bunem so first introduced in the Oracle Solaris 9
operating system update 3; see Find Leaks with the libumem Tool.

Track All Memory Allocations in the JNI Library

If you write a JNI library, then consider creating a localized way to ensure that your library does
not leak memory, by using a simple wrapper approach.

The procedure in the following example is an easy localized allocation tracking approach for a
JNI library. First, define the following lines in all source files.

#include <stdlib. h>
#define malloc(n) debug malloc(n, _FILE , LINE)
#define free(p) debug_free(p, _FILE_, __LINE)

Then, you can use the functions in the following example to watch for leaks.

/* Total bytes allocated */

static int total allocated;

/* Memory alignment is inportant */

typedef union { double d; struct {size_t n; char *file; int line;} s; } Site;
void *

debug_mal l oc(size_t n, char *file, int line)

{
char *rp;
rp = (char*)mall oc(sizeof (Site)+n);
total allocated += n;
((Site*)rp)->s.n = n;
((Site*)rp)->s.file =file;
((Site*)rp)->s.line = line;
return (void*)(rp + sizeof(Site));

}

voi d

debug free(void *p, char *file, int line)

{
char *rp;
rp = ((char*)p) - sizeof(Site);
total _allocated -= ((Site*)rp)->s.n;
free(rp);

}

The JNI library would then need to periodically (or at shutdown) check the value of the

total _all ocat ed variable to verify that it made sense. The preceding code could also be
expanded to save in a linked list the allocations that remained, and report where the leaked
memory was allocated. This is a localized and portable way to track memory allocations in a
single set of sources. You would need to ensure that debug_fr ee() was called only with the
pointer that came from debug_nal | oc(), and you would also need to create similar functions
forreal l oc(),call oc(), strdup(), and so forth, if they were used.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 13 of 16

http://sourceforge.net/

ORACLE

Chapter 3
Diagnose Leaks in Native Code

A more global way to look for native heap memory leaks involves interposition of the library
calls for the entire process.

Track Memory Allocation with Operating System Support

Tools available for tracking memory allocation in an operating system.
Most operating systems include some form of global allocation tracking support.

e On Windows, search the MSDN library for debug support. The Microsoft C++ compiler has
the / Ml and / Mdd compiler options that will automatically include extra support for tracking
memory allocation.

e Linux systems have tools such as ntrace and | i bnj and to help in dealing with allocation
tracking.

* The Oracle Solaris operating system provides the wat chmal | oc tool. Oracle Solaris 9
operating system update 3 also introduced the | i bunemtool. See Find Leaks with the
libumem Tool.

Find Leaks with the dbx Debugger

The dbx debugger includes the Runtime Checking (RTC) functionality, which can find leaks.
The dbx debugger is part of Oracle Solaris Studio and also available for Linux.

The following example shows a sample dbx session.

$ dbx ${java_hone}/bin/java

Readi ng j ava

Reading ld.so.1

Readi ng |ibthread.so.1

Reading libdl.so.1

Reading libc.so.1

(dbx) dbxenv rtc_inherit on

(dbx) check -Ieaks

| eaks checking - ON

(dbx) run HelloWrld

Runni ng: java Hel |l oWorld

(process id 15426)

Readi ng rtcapi hook. so

Readi ng rtcaudit.so

Readi ng |ibmapnal | oc.so. 1

Readi ng |ibgen.so.1

Reading |ibmso.2

Readi ng rtchoot. so

Reading librtc.so

RTC. Enabling Error Checking..

RTC. Running program..

dbx: process 15426 about to exec("/net/bonsai.sfbay/export/home2/ user/ws/j2se/
bui | d/ sol ari s-i 586/ bin/java")

dbx: program "/ net/bonsai . sfbay/ export/hone2/ user/ws/j2se/ build/solaris-
i 586/ bi n/java"

just exec'ed

dbx: to go back to the original programuse "debug $oprog"
RTC. Enabling Error Checking..

RTC. Running program..

t@ (l@) stopped in main at 0x0805136d

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 14 of 16

http://msdn.microsoft.com/library

ORACLE

0x0805136d: nain

(dbx) when dl open libjvm{ suppress al
(2) when dlopen libjvm{ suppress al

Chapter 3

Diagnose Leaks in Native Code

pushl Y%ebp
inlibjvmso; }
inlibjvmso; }

(dbx) when dl open libjava { suppress all in libjava.so; }

(3) when dlopen libjava { suppress al

(dbx) cont

Reading |ibjvm so
Readi ng |ibsocket.so.1
Readi ng |ibsched. so.1
Reading libCrun.so.1
Reading libmso.1
Readi ng libnsl.so.1
Readi ng |ibnd5. so.1
Readi ng |ibnp. so.2
Readi ng | i bhpi.so
Reading libverify.so
Readi ng |ibjava. so
Readi ng |ibzip.so
Readi ng en_US. |1 SO8859- 1. s0. 3
hello world

hello world

Checking for nenory |eaks..

in libjava.so; }

Actual |eaks report (actual |eaks: 27 total size: 46851
byt es)
Tot al Num of Leaked Al'location call stack
Size Bl ocks Bl ock
Addr ess
44376 4 - calloc < zcalloc
1072 1 0x8151c70 _nss_XbyY buf alloc < get _pwouf < getpwiid <
CGet JavaProperties <
Java_java_lang_System.initProperties <
Oxa740a89a< 0xa7402al4< 0xa74001fc
814 1 0x8072518 MemAlloc < CreateExecutionEnvironnment < main
280 10 - operator new < Thread:: Thread
102 1 0x8072498 _strdup < CreateExecuti onEnvironment < main
56 1 0x81697f0 calloc < Java_java util_zip_Inflater_init <
Oxa740a89a<
Oxa7402a6a< Oxa7402aeb< 0xa7402al4<
Oxa7402al4< Oxa7402al4
41 1 0x8072bd8 nmain
30 1 0x8072c58 Set JavaCommandLi neProp < main
16 1 0x806f180 _setlocale < GetJavaProperties <
Java_java_lang_System.initProperties <
Oxa740a89a< Oxa7402al4<
0xa74001f c< JavaCal I s::call _hel per <
0S:: 0S_exception_w apper
12 1 0x806f2e8 operator new <
i nstanceKl ass: : add_dependent _nmet hod <
nmet hod: : new_nnet hod < ci Env: :register_nethod <
Conpi l e:: Conpi | e #Nvariant 1 <
C2Conpi | er:: conpile_method <
Conpi | eBroker: :invoke conpiler_on_nethod <

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

Conpi | eBroker:: conpiler_thread_| oop

October 20, 2025

Page 15 of 16

ORACLE

Chapter 3
Diagnose Leaks in Native Code

12 1 0x806ee60 CheckJvniType < CreateExecutionEnvironment <
mai n
12 1 0x806ede8 MemAlloc < CreateExecutionEnvironnment < main
12 1 0x806edcO0 nain
8 1 0x8071ch8 _strdup < ReadknownVMs <
Creat eExecut i onEnvi ronnent < nain
8 1 0x8071cf8 _strdup < ReadknownVMs <

Cr eat eExecut i onEnvi ronnent < main

The output shows that the dbx debugger reports memory leaks if memory is not freed at the
time the process is about to exit. However, memory that is allocated at initialization time and
needed for the life of the process is often never freed in native code. Therefore, in such cases,
the dbx debugger can report memory leaks that are not really leaks.

@® Note

The previous example used two suppr ess commands to suppress the leaks reported
in the virtual machine: | i bj vm so and the Java support library, | i bj ava. so.

Find Leaks with the libumem Tool

First introduced in the Oracle Solaris 9 operating system update 3, the | i bunem so library, and
the modular debugger ndb can be used to debug memory leaks.

Before using | i bunem you must preload the | i bumemlibrary and set an environment variable,
as shown in the following example.

$ LD PRELOAD=I i bumem so
$ export LD PRELOAD
$ UVEM DEBUG=def aul t
$ export UMEM DEBUG

Now, run the Java application, but stop it before it exits. The following example uses truss to
stop the process when it calls the _exit system call.

$ truss -f -T _exit java MainCd ass argunents

At this point you can attach the mdb debugger, as shown in the following example.

$ mdb -p pid
>:: findl eaks

The : : findl eaks command is the ndb command to find memory leaks. If a leak is found, then
this command prints the address of the allocation call, buffer address, and nearest symbol.

It is also possible to get the stack trace for the allocation that resulted in the memory leak by
dumping the buf ct| structure. The address of this structure can be obtained from the output of
the :: findl eaks command.

See analyzing memory leaks using | i bunemfor troubleshooting the cause for a memory leak.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 16 of 16

http://docs.oracle.com/cd/E19424-01/820-4814/geogv/

Troubleshoot Performance Issues Using Flight
Recorder

Identify performance issues with a Java application and debug these issues using recordings
from Flight Recorder.
To learn more about creating a recording with Flight Recorder, see Produce a Flight Recording.

The data provided by Flight Recorder helps you investigate performance issues. No other tool
gives as much profiling data without skewing the results with its own performance overhead.
This chapter provides information about performance issues that you can identify and debug
using data from Flight Recorder.

This chapter contains the following sections:

e Flight Recorder Overhead

« Use JDK Mission Control to Find Bottlenecks

* Use JDK Mission Control to Debug Garbage Collection Issues

 Use JDK Mission Control to Debug Synchronization Issues

* Use JDK Mission Control to Debug I/O Issues

 Use JDK Mission Control to Monitor Code Execution Performance

Flight Recorder Overhead

When you measure performance, it is important to consider any performance overhead added
by Flight Recorder. The overhead will differ depending on the application. If you have any
performance tests set up, you can measure if there is any noticeable overhead on your
application.

The overhead for recording a standard time fixed recording (profiling recording) using the
default settings is less than two percent for most applications. Running with a standard
continuous recording generally has no measurable performance effect.

Using Heap Statistics event, which is disabled by default, can cause significant performance
overhead. This is because enabling Heap Statistics triggers an old garbage collection at the
beginning and the at end of the test run. These old GCs give some extra pause times to the
application, so if you are measuring latency or if your environment is sensitive to pause times,
do not run with Heap Statistics enabled. Heap Statistics are useful when debugging memory
leaks or when investigating the live set of the application. For more information, see Use JDK
Mission Control to Debug Memory Leak.

@® Note

For performance profiling use cases, heap statistics may not be necessary.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 8

ORACLE Chapter 4
Use JDK Mission Control to Find Bottlenecks

Use JDK Mission Control to Find Bottlenecks

You can use JMC to find application bottlenecks.

One way to find out the application bottlenecks is to analyze the Automated Analysis Results
page. This page provides comprehensive automatic analysis of flight recording data.

Open the Threads page in the Java Application page. The Threads page contains the
following information:

e A graph that plots live thread usage by the application over time.
e Atable with all live threads used by the application.

» Stack traces for selected threads.

Here is a sample figure of a recording, which shows a graph with thread details.

Figure 4-1 Bottlenecks - Threads - Graph

I8 JUM Browser = Oulline &% & 7 7 & e yldgjfr =2 =0
1 Automnated Analysis Results ~ | . Threads i
v Java Application
= Thieads <Nao Selection> | Aspect: | <No Selection> 4 [Show concurrent: | Contained Same threads Time Range: Set| | Clear
& Memary
A8 Lock Instances Thread Thread Group Threac A
B File 1/0

+# DynamicJSs... WeblogicServer 80
“Finalizer system E)
A Timer-1 main 20
#[STANDBY] ... Pooled Threads 92
+#DynamicList... WeblogicServer 78

+ DynamicList... WeblogicServer 70 | . Pl
T Properties ** Results T 7 SRMITCP Ace... system 47 I W B T
Th_ers are no results associated with S[STANDBY] ... Pooled Threads 93 = VU
i pegt 2 [ACTIVE] Ex... Pooled Threads 40
+ DynamicJsS... WeblogicServer 69
+* DynamicList... WeblogicServer 72
- DynamicList.. WebLogicServer 76 T L 1 L T T
+# main main 1 = = = = 7
ExecuteThre... Thread Group f.. 31
+ Java2D Disp... system 83
©[ACTIVE] Ex... Pooled Threads 45
+#DynamicList.. WeblogicServer 67

5 Socket /0
@ Method Profiling
* Exceptions
Thead Dumps
v & VM Intemals v

SMTUTimer main 43
+RunlevelCo... main 18
#[ACTIVE] Ex... Pooled Threads 66
#MTUTimer main EE)

#ExecuteThre... Thread Group f.. 29
W [ACTIVE] Ex... Pooled Threads 88

#RMITCP Co... RMIRuntime 48 v apemo1s 337:30 PM 3:38:00 PM 3:38:30 PM 3:39:00 PM
< >

In the graph, each row is a thread, and each thread can have several lines. In the figure, each
thread has a line, which represents the Java Application events that were enabled for this
recording. The selected Java Application events all have the important property that they are
all thread-stalling events. Thread stalling indicates that the thread was not running your
application during the event, and they are all duration events. The duration event measures the
duration the application was not running.

In the graph, each color represents a different type of event. For example:

e Yellow represents Java Monitor Wait events. The yellow part is when threads are waiting
for an object. This often means that the thread is idle, perhaps waiting for a task.

e Salmon represents the Java Monitor Blocked events or synchronization events. If your
Java application's important threads spend a lot of time being blocked, then that means
that a critical section of the application is single threaded, which is a bottleneck.

* Red represents the Socket Reads and Socket Writes events. Again, if the Java
application spends a lot of time waiting for sockets, then the main bottleneck may be in the
network or with the other machines that the application communicates.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 2 of 8

ORACLE’

Chapter 4
Use JDK Mission Control to Debug Garbage Collection Issues

e Green represents parts that don't have any events. This part means that the thread is not
sleeping, waiting, reading to or from a socket, or not being blocked. In general, this is
where the application code is run. If your Java application's important threads are spending
a lot of time without generating any application events, then the bottleneck in the
application is the time spent executing code or the CPU itself.

® Note

For most Java Application event types, only events longer than 20 ms are recorded.
(This threshold can be modified when starting the flight recording.) The areas may not
have recorded events because the application is doing a lot of short tasks, such as
writing to a file (a small part at a time) or spending time in synchronization for very
short amounts of time.

The Automated Analysis Results page also shows information about garbage collections. To
see if garbage collections may be a bottleneck, see the next topic about garbage collection
performance.

Use JDK Mission Control to Debug Garbage Collection Issues

You can use JMC to debug garbage collections (GC) issues.

Tuning the HotSpot Garbage Collector can have a big effect on performance. See Garbage
Collection Tuning Guide for general information.

Take a profiling flight recording of your running application. Do not include the heap statistics,
as that will trigger additional old garbage collections. To get a good sample, take a longer
recording, for example one hour.

Open the recording in JMC. Look at the Garbage Collections section in the Automated
Analysis Results page. Here is a sample figure of a recording, which provides a snapshot of
garbage collection performance during runtime.

Figure 4-2 Automated Analysis Results - Garbage Collections

B DK Mission Control - [5} X
file Edit Navigate Window Help
| JVM Browser 2 Outline o & 7 7 O |as | gakjfr 1 '8
L s | mAutomated Analysis Results o p|Eo
~ [T Java Application
Threads ™ . g »
ki & Java Application & JVM Internals A
~ % Memory
Live Objects “:b | Threads Allocating + 41 Stackdepth Setting +
Lock I
. thEI:Kr;staH(cs 77| Parallel Threads + 0 Garbage Collections
& File
<& Socket /0 4 Memory G1/CMS Full Collection
© Method Profilin - At least one Full, Stop-The-World Garbage Collection occurred during this
% Except 9 2 Allooated Classes + recording. For the CMS and G1 collectors, Full GC events are a strong negative
eplions Ny perfermance indicator. Tunable GC parameters can be used to allow the collector
Thread Dumps HespConent 1o operate in concurrent mode, avelding Stop-The-World pauses and Increasing
i Rl tamalo Most of the heap was used by only a few classes. If the heap usage needs to be G and appiication performance.

reduced, then this would be a good place fo start

(& Garbage Collections 7l | GCs Caused by Heap Inspection

I GC Configuration 3 Live Objects The JVM performed & heap inspaction garbage collections. Performing heap

@ Compilations 7| Heap Live Set Trend - inspection garbage collsctions may be a problem since they usually take a lot of

@ Class Loading :zceu\'l;tdedsslv:\:; t;?:':e_ied gfems to increase with a speed of about 12.2 KiB per '”"E" s t

cording 5

VM Operations An analysis of the reference Iree found 1 leak candidates ¢ Environmen

™ TLAR Allocations + java.util HashtableSEniry[6534/38303] & Pr
v & Environment The candidate is referenced by this chain. s Frocesses

P Java.utll Hashtable table (Stack Variable - Threads (Thread I competing CPU Ratio Usage

rocesses - mal

° M Name: maln)) An average CPU load of 45 % was caused by olher processes during 32.415 s

T Properties | Results ®-=8 starting al 7/7/20, 5:05:24 PM.
The application perfarmance can be affected when the machine is under heavy

Field Value load and there are other pracesses that use GPU or other resources on the same v

0 events

You can observe from the figure that there is a Full GC event. This is indicative of the fact that
application needs more memory than what you have allocated.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 3 of 8

ORACLE’

Chapter 4
Use JDK Mission Control to Debug Garbage Collection Issues

For further analysis, open the Garbage Collections page under the JVM Internals page to
investigate the overall performance impact of the GC. Here is a sample figure of a recording,
which shows a graph with GC pauses.

Figure 4-3 Garbage Collection Performance - GC Pauses

[VM Browser & Qutline| = A e Leak jfr =0ls

O Method Profiing * | g Garbage Collections oz =
‘i Exceptions
Thread Dumps <No Selection> ~ Aspect:|<No Selection> > [[] Show concurrent. | Contained - Same threads Time Range: |Set| | Clear
¥ VM Internals
fe gacrzagTCc\fmmns GCID Cause Collector Name Longest Pau.. Sum of Pauses Final Refi & Pause Phases| Metaspace
E onfiguration 2
& Com “akgom 2524 Heap Inspectio... G1Full N7ATT ms 117177 ms Event Type Name Duration Start Time Thread
> 8 ti
Vi 2525 Heap Inspectio.. GiFull 109317 ms 109.317 ms
@ Class Loading et o ot ea
2 VM Operations LS, leap nsvect:o ! u 912 ms z ms
= TLAB Allocations a Heap Inspect!o GIFull 81.680 ms. 81.680 ms
: 1.874 Heap Inspectic.. GiFull 79.500 ms 79.900 ms
« & Environment v !
—— 1873 Heap Inspectio.. G1Ful 16627 ms 76.627 ms
Properties | Results: ~ 950 Heap Inspectio.. G1Full 62.728 ms 62.728 ms
400 | g;:::er::;uu LA 951 Heap Inspectio... G1Full 56.130 ms 56.130 ms
- T 2136 G1 Evacuation .. GINew 6352 ms 6352 ms
t least one Full, Stop-The-Worl N
|Garbage Collection oocurred during 294 61 Evacuation .. G10ld 5591 ms 5639 ms
[this recarding. For the CMS and G1 180 61 Evacuation . GiMew 3966 ms 3966 ms v
loollectors, Full GG events are a < > < >
lstrong negative performance
ndicator. Tunable GC parameters M used Heap

lcan be used to allow the collector to 500 ms
loperate in concurrent mode, avoiding

|Stop-The-World pauses and 430 me
ncreasing GG and application 400 ms

B Heap Space : Commi
M Heap Space ; Reserve

lperformance. 350 ms i
W Metaspace : Commit

|
| i
| | |OEMetaspace : Used
|
. GCs Caused by Heap 300 ms = | =
7l Inspection B 250 ms == | B Metaspace : Reserve
[The JUM performed 8 heap 200 5 | [I®Longest Pause
nspec bage collections ms i ‘ | ‘ | AW Sum of Pauses
Performing heap inspection garbage 150 ms: | | | G et
lcollections may be a problem since 100 ms | ‘ i (32 Pause Phases
they usually take a lot of time. 50 me: | | | [= Thread Activity
s SumotPauses ° | || i 1l | i 1l 1l i I | I 1l
GC Pause Peak Duration = 7712020 4:30:00 PM 4:45:00 PM 5:00:00 PM 5:15:00 P
< 3
I GC Pauses N

From the graph look at the Sum of Pauses from the recording. The Sum of Pauses is the
total amount of time that the application was paused during a GC. Many GCs do most of their
work in the background. In those cases, the length of the GC does not matter and what matters
is how long the application actually had to stop. Therefore, the Sum of Pauses is a good
measure for the GC effect.

The main performance problems with garbage collections are usually either that individual GCs
take too long, or that too much time is spent in paused GCs (total GC pauses).

When an individual GC takes too long, you may need to change the GC strategy. Different GCs
have different trade-offs when it comes to pause times verses throughput performance. See
Behavior-Based Tuning.

In addition, you may also need to fix your application so that it makes less use of finalizers or
semireferences. See Monitor the Objects Pending Finalization and Finalization and Weak, Soft,
and Phantom References in Java Platform, Standard Edition HotSpot Virtual Machine Garbage
Collection Tuning Guide for information about detecting and migrating from finalization.

If the application spends too much time paused, you can look into different ways to overcome
this. One way is to increase the Java heap size. Look at the GC Configuration page to
estimate the heap size used by the application, and change the initial heap size and maximum
heap size to a higher value. The bigger the heap, the longer time it is between GCs. Watch out
for any memory leaks in the Java application, because that may cause more frequent GCs until
an Qut Of Menor yEr r or is thrown. For more information, see Use JDK Mission Control to Debug
Memory Leak. Another way to reduce the GC cycles is to allocate fewer temporary objects. In
the TLAB Allocations page, look at how much memory is allocated over the course of the
recording. Small objects are allocated inside TLABs, and large objects are allocated outside
TLABs. Often, the majority of allocations happen inside TLABs. Lastly, to reduce the need of
GCs, decrease the allocation rate. Select the TLAB Allocations page and then look at the
allocation sites that have the most memory pressure. You can either view it per class or thread
to see which one consumes the most allocation.

Troubleshooting Guide

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 8

ORACLE’

Use JDK

Chapter 4
Use JDK Mission Control to Debug Synchronization Issues

Some other settings may also increase GC performance of the Java application. See Garbage
Collection Tuning Guide in the Java Platform, Standard Edition HotSpot Virtual Machine
Garbage Collection Tuning Guide to discuss GC performance.

Mission Control to Debug Synchronization Issues

You can use JMC to debug Java Application synchronization issues.

Open the flight recording in IMC and look at the Automated Analysis Results page. Here is a
sample figure of a recording, which shows threads that are blocked on locks.

Figure 4-4 Synchronization Issue - Automated Analysis Results Page

B JDK Mission Control

- 8 %
Fle Edit Navigate Window Help
|54)M Browser 2 Outline d 7 7 ° 2 lusflight recording_1407Latencies21544 i & s
B Automated Analysis Results * | g Automated Analysis Results ocEo
+ & Java Application
i Threads = e i
5 & Java Application 4 Environment
“4 Memory
@ Lock Instances T ethod Profiling + GProcesses
<& File 110 # Lock Instances il |Competing Processes =
& Socket /O
@ Method Profiling T Java Blocking
¥ Exceplions Threads in the application were blocked on locks for a total time of 3 h 1 min. The
most common monitor class was "Logger’, which was blacked on 2,872 times for
Thread Dumps total time of 3 h 1 min
“ & WM Internals The following regular expression was used to exclude threads from this rule:
8 Garbage Collections {*weblogich socket Muxer.')
£ GE Configuration © Methed Profiling
@ Compilations B2 Method Profiling =

& Class Loading
@ VM Operations
% TLAB Allocations
* & Environment

3 Processes

B Environment Variables v

Focus on the Lock Instances section of the page, which is highlighted in red. This is indicative
of a potential problem. You can observe that there are threads that are blocked on locks.

For further analysis, open the Lock Instances page. Here is a sample figure of a recording,

which shows the thread that is blocked on locks the most and the stack trace of the thread
waiting to acquire the lock.

Figure 4-5 Synchronization Issue - Lock Instance

File Edit Navigate Window Help

|8 JVM Browser B2 Outline o 7 B | = flight_recording_1401Latencies2 1544 jir &
B Automated Analysis Results ~| s Lock Instances 515
i Java Application
E Threads <No Selection> > Aspect; <Mo Selection> o [(Ishow concurrent: | Contained | Same threads
“4 Memory
“'f Lock Instances Monitor Class Total Blocked Time Distinct Threads Count
8 Flel0 ©Lagger 3h1min 20
& Socket /O
@ Method Profiling
4t Exceptions

Thread Dumps
~ @ WM Internals
0 Garbage Colkections Manitor Address Total Blocked Time Distinct Threads

Count

5 GC Configuration E0x1ECT3552088 3h 1 min 20

@ Compilations

@ Class Loading

@ VM Operations

T TLAB Allocations
il Thread Total Blocked Time Count A

= o i o] [erkerThrand s 2

#Worker Thread 8 9 min 365 | 7
T Properties |+ Results o || #Worker Thread 18 9 min 365 | 82
Field Vabse ~ | | #Worker Thread 2 9min35s | 82
@ Event Type JavaMonite 5 Worker Thread 7 & min 165 ms | 166 v
@start Time 111172020, . —————
®Duration 71250 ms . Stk ok LT - [-
End Time F/1F2020, .. Stack Trace
+ Event Thread Teo many v... T void Logger log(String)
@ Monitor Class Logger ' void Worker.run()
¥ Previous Manitor .. Too many v.. 1 void java.lang.Thread.runf)
® Monitor Address OxTEC7355...
2,972 events v

Troubleshooting Guide
E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 5 of 8

ORACLE’

Chapter 4
Use JDK Mission Control to Debug /0 Issues

You can notice that threads in the application were blocked on locks for a total time of 3 hours.
The most common monitor class in contention was Logger , which was blocked 2972 times.

Typically, logging is an area that can be a bottleneck in applications. In this scenario, the
blocking events all seem to be due to calls to the log method. You can review and make
required code changes to fix this issue.

Use JDK Mission Control to Debug I/O Issues

You can diagnose I/O issues in an application by monitoring the Socket I/O or the File 1/0
pages in JMC.

When a Java application spends a lot of time either in Socket Read, Socket Write, File Read,
or File Write, then 1/O or networking can cause bottleneck. To diagnose /O issues in
applications, open the Socket 1/O page under the Java Application page in the Automated
Analysis Results page. Here is a sample figure of a recording, which shows Socket I/0
details.

Figure 4-6 Socket /O - Java Application

Tile tdit Navigate Window Help

|54 VM Brawser 2= Outline T O e i
%Amumats.d Analysis Results ~ | sSocket I/O BIEwh D
 Flava Application
Threads <No Selection> “ Aspect: <o Selection> v [Ishow concurrent: Contained — Same thieads Time Range: Set| Clear
“ Memory
) ;‘:“k 'gs“"“‘ Remote Address Total 1/0 Time Count Read Count " Write Count Bytes Read Bytes Wiitten A
= 5: k";t i 0:0:0:0:0:0:0:1 195,747 ms 2 2 547 KiB
P (m s 10.161.190.213 2min 20 < [73 265] 153 kB 772 KiB
ethod Profiing ;
v
5 bieptons 127.0.0.1 ; 6084 < [N 260 25 24 461 KB 214 KB
Thread Dumps Remote Port Total 170 Time Count Read Count Write Count Bytes Read 2
v & M Internals < >
& Garbage Collections Timeline Durations Event Log
f; SC c”:‘gw"t‘”" Start Time Remote Address Remate Port Duration Bytes Read Bytes Written Thread €nd of Stream Timi~
i
r G"m"l' ‘:,"5 9/24/15, 33831 PM 10161190213 58548 29.037 ms 92896 RMITCP Co.
._;V;; e 9/24/15,339:12PM 10.161.190.213 58,699 349745 ms 818 [ACTIVE] Ex.
4 it
pepane 9/24/15, 33914 PM 10.167.190.212 58716 21251ms 218 [ACTIVE] Ex.

™ TLAB Allocations
“ 4l Environment 55 L
T3 Processes

= KAKEEID» -=rc
B Environment Variables oy |E eI
= = —— | Stack Trace Ceunt ~
Properties | Results 1 int sun.nio.ch SocketChannellmplwita(ByteBuffer) 1
7l | Socket Write Peak Duration = T void weblogicsocket NIOSocketMuxer§ NIOOUtputStream wiitelntermal(ByteBuffer)| 1
[The langest recorded sacket wrile ook T void weblogic.socket NIOSocketMuser$ NIOOutputStream write{bytell int, int) 1
[349.745 ms to write 81 B o the host at 1 .
Rl bl A et e S ! void weblogic.utils io.ChunkedOutputStream.writeTo(OutputStream) 1
lwrite pattems with high duration writes that we veld weblogic servlet internal ServietOutputStreamimplwriteHeader(Chunked Data(1
[censider to be normal and are therefore excluded, T int weblogicsenvlet.internal. ResponseHeaderswriteHeaders{ServietQutputStreamin 1
|Such pattems inciude JMX RMI communication. [= = oy |-
vold weblogicservist.internal Serviet 5
[socket Read Peak Duration + t yoid weblogic serviet internal Serviet Outpy g
T yoid weblogicservlet.intemal ServietOutp flushi) 1
T void weblogic senvletinternal ServietResponselmpl flushBuffer) 1
1 void i nnection transport serviet HtpServer rt.confirmOnewt 1 v

The figure shows that for the application the longest recorded socket write took 349.745 ms to
write 81 B to the host.

File or networking I/O issues are diagnosed in a similar fashion. Look at the files read from or
written to the most, then see each file read/write and the time spent on /0.

By default, the Socket 1/O page lists events with a duration longer than 10 ms. When starting a
flight recording, you can lower the file I/O Threshold or socket I/O Threshold to gather more
data, but this could potentially have a higher performance overhead.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE

Chapter 4

Use JDK Mission Control to Monitor Code Execution Performance

Use JDK Mission Control to Monitor Code Execution
Performance

You can use JMC to monitor the code execution performance.

When there are not a lot of Java Application events, it could be that the main bottleneck of your
application is the running code. In such scenarios, look at the Method Profiling section of the
Automated Analysis Results page. Here is a sample figure of a recording, which indicates

that there is value in optimizing certain methods.

Figure 4-7 Code Execution Performance - Automated Analysis Results Page

B DK Mission Control

- o X
File Edit Navigate Window Help
I VM Browser 2 Outline. @i 7 = 0 |las HotMethods jfr & =0
_SHRIC s “ | mAutomated Analysis Results 0/ED
“ & Java Application
& Threads e s 2
5 ~
ol 71Java Application & Environment
& Lock Instances ST Threads Allocating + EProcesses
508 | High JVM GPU Load + WG competing Processes %
& Sackst /O
@ Method Profiling T vethod Profiling +
1 Exceptions Memory
Thread Dumps S iocsted i N
v & WM Internals ocaled Classes
@ Garbage Collections WSS Primitive To Object Conversion +
N ton o Method Profiling
> @ Compilations -
@ Class Loading TN Vethod Prafiing)
ORI The most sampled method was HolderQfUniqueValues countintersection
P 3 (HolderOfUniqueValues), with 64.1 % of the maximum possible samples during a
T TLAB Allocations 30 s window of the recording, and 99,5 % of the actual samples.
v & Environment The following methods are the most ing candidates for code
e - com.oracle example. HolderOfUniqueValues countintersection
. TocesEn) (HolderOfUniqueValues) (99.5 % of samples) 7/20/2020, 5:35:06 PM —
™ Environment Variables v 5:35:36 PM
= e These methods were the most sampled methods during their particular windews of
C Properties = Results = | the recording. The percentage shown for each method tells how many execution
There are no results associated with this samples il was seen in compared 1o the maximum possible number of samples. v
lpage. during that windaw
Now, open the Java Application page. Here is a sample figure of a recording, which shows
the Method Profiling graph and the stack traces.
Figure 4-8 Code Execution Performance - Java Application
File Edit Navigate Window Lelp
[JVM Browser 5= Qutline AT g
B Automated Analysis Results A |2 HotMethodsfr =
“ & Java Application 3 e
» Java Application me|E
& Threads o PP’ omz HE
* @ Memory <Mo Selection> ~ | Aspect: <No Selection> >] show concument: Contained - Same threads Time Range: Set| Clear
& Lock Instances
Sifeld Thread Profiling Sa.. Total I/0 Ti.. Total Blocke.. Class Loadi.. Total Allocat.. Throwabl ~
gl rea wolfing Sa-.| Total O | Tota Bockn | Class Loadi ToralAllccat| - Theowables
& Hiethod brofilig +#Worker Thread 0 48,433 29868
4 Exceptions +*Worker Thread 1 48,187 28 553
- Thsend B *Worker Thread 2 43,047 51.981 s 2760
v @ WM Intemals *Warker Thread 3 47.706 259 GiB
W Garlosaga Coestioais 12 JFR Periodic Tasks 233 1,010 KB v
£ GC Configuration 1
e
lass Loading v
VM = Applicat
& VM Operations 6,000 + Application

* TLAB Allocations 4,000
v & Environment
3 Processes 200¢:
Method Profiing

=pn 7r20/2020

™ Environment Variables
5:32:00 PM

™ Properties * Results. 5:34:00 PM 5:36:00 PM

TN Vistrod Profiing A

[The most sampled methed was = Stack Trace
HolderOfUniqueValues.countintersection
|(HolderOMUniqueValues), with 84.1 % of Stack Trace Count
[possible samples during a 30 s window of the v L HashMap$hode java util LinkedHashMap newNodelint, Object, Object, HashMap$hode) 179
ffhf;g}‘“n?hw el ars i st Wigeatig I ohj‘m J‘H\(s‘ulﬂ HashMap.putValint, Obje.d‘ Object, boolean, boolean) 178
lcandidates for code optimization: Object java.util HashMap.put{Object. Object) 179
+ com.oracle.example. HolderOfUniqueV t CompasiteData j portintemalPut(Compos 179
E’,['”jg ;:;‘m‘;’:@;“fgﬁ e 1 void Java : openmbean TabularData wiCompositeDats) 179
71202020, 5:35:06 PM — 5:35:36 PM » % Object com sunjr Detaul “actory$ TabularMapping toNo 178
[These methods were the most sampled > nbiart aun . Tunath (inanTimaNatalOhis: 1

5:38:00 PM

5:40:00 PM

W Used Heap
B Method Profiling

Troubleshooting Guide

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 7 of 8

ORACLE’

Chapter 4
Use JDK Mission Control to Monitor Code Execution Performance

You can observe that the stack trace view shows the aggregated stack traces of any selection
in the editor and also the stack traces for the profiling samples. In the figure, you can notice
that one of these methods has a lot more samples than the others. This means that the JVM

has spent more time executing that method relative to the other methods.

To identify which method would be the one to optimize to improve the performance of the
application, open the Method Profiling page. Here is a sample figure of a recording, which
shows the method that needs to be optimized.

Figure 4-9 Code Execution Performance - Method Profiling

Fle Edit Navigate Window Help
B4 WM Browser Bz Outline! L

[These methods were the most sampled

B Automated Analysis Results A | 2= HotMethodsjfr =0
v & Java Application M =
lethod Prefilin, 1
Threads 2 9 o8
% Memory <MNo Selection> ~ | Aspect: <No Selection> ~ [IShow concurrent: | Contained " Same threads
@ Lock Instances
& File /O E
Top Package Count
@ Sacket /0
java.util
G Meathod Profilng S
* Exceptions fanlang e
Thread Dumps jdicjfrinternal 232
v @ VM Intemals com.oracle.example 199
@ Garbage Collections jdk jfrinternal.handlers 2
£ 6C Configuration idk jfr.events 1
@ Compilations Top Class “Count
@ Class Loading @ com.oracle.example.HolderOfUniqueValues
VM Operations @ com.oracle.example.Worker | 10
 TLAB Allocations @ com.oracle.example. WorkEvent 3
v & Environment
3 Processes.
™ Environment Variables v
= Properties == Results =
&, [Q..
I Method Profiling A | =k e
IThe most sampled method was Stack Trace I Count
HolderOfUniqueValues.countintersection v Vint com.oracle.sxample HolderOfUni ion(HolderOfUnig e
(HolderOfUnigueValues), with 64,1 % of | e R i-
()
lpossible samples during a 30 s window of the 1 Yokl o onadesantld Warkenang - e
Irecarging void java.lang. Thread run() s
IThe following methods are the most interesting L void comorade. example Worker.run() 10
ca“n‘:’a;‘s"ﬁ:s.iii;::gia:mmO'Umquev L yoid com.orace. example HolderOfUnigueValues initialize{int) 5
alues.countintersection L vold com.oracle.example.HolderOfUniqueValues. <init>) 3
(HolderOfUnigueValues) (4.1 %) void com.oradle example WorkEvent begin() 2
lette0et;b:dal TM = o000t 8 void com oracle.example WorkEvent <init>() 1

As you can observe, in the stack trace view, the most sampled method was
Hol der O Uni queVal ues. count I nt ersecti on(). You can review and make required code
changes to optimize this method to effectively improve the performance of the application.

Troubleshooting Guide

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 8 of 8

Debug JVM Issues

This part describes causes and various debugging techniques for the following topics.

¢ Troubleshoot System Crashes

Provides guidance about specific procedures for troubleshooting system crashes.

e Troubleshoot Process Hangs and Loops

Provides guidance about specific procedures for troubleshooting hanging or looping
processes.

 Handle Signals and Exceptions

Provides guidance about signal and exception handling by Java HotSpot Server VM.

Troubleshooting Guide

E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 1

Troubleshoot System Crashes

This chapter presents information and guidance about some specific procedures for
troubleshooting system crashes.

A crash, or fatal error, causes a process to terminate abnormally. There are various possible
reasons for a crash. For example, a crash can occur due to a bug in the Java HotSpot VM, in a
system library, in a Java SE library or an API, in application native code, or even in the
operating system (OS). External factors, such as resource exhaustion in the OS can also
cause a crash.

Crashes caused by bugs in the Java HotSpot VM or in the Java SE library code are rare. This
chapter provides suggestions about how to examine a crash and work around some of the
issues (if possible) until the cause of the bug is diagnosed and fixed.

In general, the first step with any crash is to locate the fatal error log. This is a text file that the
Java HotSpot VM generates in the event of a crash. See Fatal Error Log for an explanation of
how to locate this file, as well as a detailed description of the file.

This chapter contains the following sections:

 Determine Where the Crash Occurred

¢ Find a Workaround

¢ Microsoft Visual C++ Version Considerations

Determine Where the Crash Occurred

Examples that demonstrate how the error log can be used to find the cause of the crash, and
suggests some tips for troubleshooting the problem depending on the cause.

The error log header indicates the type of error and the problematic frame, while the thread
stack indicates the current thread and stack trace. See Header Format.

The following are possible causes for the crash.

¢ Crash the Native Code

¢ Crash in the Compiled Code

¢ Crash in the HotSpot Compiler Thread
¢ Crash in the VM Thread

¢ Crash Due to Stack Overflow

¢ Crash Due to Exceeded Memory Map Area Limit

Crash the Native Code

Analyze the crash dump file or core file to identify if the crash occurred in the native code or
the Java Native Interface (INI) library code.

If the fatal error log indicates the problematic frame to be a native library, then there might be a
bug in the native code or the Java Native Interface (JNI) library code. The crash could be

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 10

ORACLE

Chapter 5
Determine Where the Crash Occurred

caused by something else, but analysis of the library and any core file or crash dump is a good
starting place. Consider the extract in the following example from the header of a fatal error
log.

An unexpected error has been detected by Hot Spot Virtual Machine:
SI GSEGV (0xb) at pc=0x417789d7, pid=21139, tid=1024
Java VM Java Hot Spot (TM Server VM (6-beta2-b63 ni xed node)

Probl ematic frane:
C [libApplication.so+0x9d7]

H oH O H H R R

In this case a SI GSEGV occurred with a thread executing in the library | i bAppl i cati on. so.

In some cases a bug in a native library manifests itself as a crash in Java VM code. Consider
the crash in the following example where a JavaThr ead fails while in the _t hread_i n_vmstate
(meaning that it is executing in Java VM code).

An unexpected error has been detected by Hot Spot Virtual Machine:

#

EXCEPTI ON_ACCESS VI OLATI ON (0xc0000005) at pc=0x08083d77, pid=3700,
tid=2896

#

Java VM Java Hot Spot (TM dient VM (1.5-internal nmixed node)

Problematic frame:

#V [jvmdl|+0x83d77]

--------------- THREAD ----cemmmeama-
Current thread (0x00036960): JavaThread "main" [_thread in_vm id=2896]

Stack: [0x00040000, 0x00080000), sp=0x0007f9f8, free space=254k
Native frames: (J=conpiled Java code, j=interpreted, W=VM code, C=native
code)

V [jvmdl|+0x83d77]

[App. dI 1 +0x1047] <========= (/native frane

Test . foo() V+0

Test. mai n([Ljaval/lang/ String;)V+0

~St ubRout i nes: :call_stub

[jvmdl | +0x80f 13]

[jvmdl | +0xd3842]

[jvmdl 1 +0x80de4]

[jvmdl|+0x87cd2]

[java. exe+0x14c0]

[j ava. exe+0x64cd]

[kernel 32.dI | +0x214c7]

(@]

Loo0o0<< << <™—T™T

In this case, although the problematic frame is a VM frame, the thread stack shows that a
native routine in App. dl | has called into the VM (probably with JNI).

The first step to solving a crash in a native library is to investigate the source of the native
library where the crash occurred.

< If the native library is provided by your application, then investigate the source code of your
native library. A significant number of issues with JNI code can be identified by running the

Troubleshooting Guide

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 10

ORACLE

Chapter 5
Determine Where the Crash Occurred

application with the - Xcheck: j ni option added to the command line. See The -Xcheck:jni
Option.

* If the native library has been provided by another vendor and is used by your application,
then file a bug report against this third-party application and provide the fatal error log
information.

* If the native library where the crash occurred is part of the Java Runtime Environment
(JRE) (for example awt.dll, net.dll, and so forth), then it is possible that you encountered a
library or API bug. If so, gather as much data as possible, and submit a bug or report,
indicating the library name. You can find JRE librariesinthejre/liborjre/bin
directories of the JRE distribution. See Submit a Bug Report.

You can troubleshoot a crash in a native application library by attaching the native debugger to
the core file or crash dump, if it is available. Depending on the OS, the native debugger is dbx,
gdb, or wi ndbg. See Native Operating System Tools.

Crash in the Compiled Code

Analyze the fatal error log to identify if the crash occurred in the compiled code.

If the fatal error log indicates that the crash occurred in compiled code, then it is possible that
you encountered a compiler bug that resulted in incorrect code generation. You can recognize
a crash in compiled code if the type of the problematic frame is J (meaning a compiled Java
frame). The following example shows such a crash.

An unexpected error has been detected by Hot Spot Virtual Machine:
SI GSEGV (0xb) at pc=0x0000002a99eb0c10, pi d=6106, ti d=278546
Java VM Java Hot Spot (TM 64-Bit Server VM (1.6.0-beta-b51 m xed node)

Probl ematic frame:
J org.foobar. Scanner. body()V

HoH H R R

Stack: [0x0000002aea560000, 0x0000002aea660000), sp=0x0000002aea65ddf 0
free space=1015k

Native frames: (J=conpiled Java code, j=interpreted, W=VM code, C=native

code)

J org.foobar. Scanner. body()V

[error occurred during error reporting, step 120, id Oxb]

@® Note

A complete thread stack is not available. The output line "error occurred during error
reporting” means that a problem arose trying to get the stack trace (this might indicate
stack corruption).

It might be possible to temporarily work around the issue by switching the compiler or by
excluding from compilation the method that provoked the crash.

See Working Around Crashes in the HotSpot Compiler Thread or Compiled Code.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 3 of 10

ORACLE Chapter 5
Determine Where the Crash Occurred

Crash in the HotSpot Compiler Thread

Analyze the fatal error log to identify if the crash occurred in the HotSpot compiler thread.

If the fatal error log output shows that the current thread is a JavaThr ead named

Conpi | er Thr eadQ, Conpi | er Threadl, or Adapt er Conpi | er, then it is possible that you
encountered a compiler bug. In this case, it might be necessary to temporarily work around the
issue by switching the compiler (for example, by using the HotSpot Client VM instead of the
HotSpot Server VM, or vice versa), or by excluding from compilation the method that provoked
the crash.

See Working Around Crashes in the HotSpot Compiler Thread or Compiled Code.

Crash in the VM Thread

Analyze the fatal error log to identify if the crash occurred in the VMThr ead.

If the fatal error log output shows that the current thread is a VMrhr ead, then look for the line
containing VM Oper at i on in the THREAD section. A VMrhr ead is a special thread in the HotSpot
VM. It performs special tasks in the VM such as garbage collection (GC). If the VM Qperati on
suggests that the operation is a GC, then it is possible that you encountered an issue such as
heap corruption.

Beside a GC issue, it could be something else (such as a compiler or runtime bug) that leaves
object references in the heap in an inconsistent or incorrect state. In this case, collect as much
information as possible about the environment and try possible workarounds. If the issue is
related to GC, then you might be able to temporarily work around the issue by changing the
GC configuration.

See Working Around Crashes During Garbage Collection.

Crash Due to Stack Overflow

A stack overflow in the Java language code will normally result in the offending thread throwing
the java. | ang. St ackOver f | owEr r or exception.

On the other hand, C and C++ write beyond the end of the stack and cause a stack overflow.
This is a fatal error that causes the process to terminate.

In the HotSpot implementation, Java methods share stack frames with C/C++ native code,
namely user native code and the virtual machine itself. Java methods generate code that
checks whether the stack space is available at a fixed distance towards the end of the stack so
that the native code can be called without exceeding the stack space. The distance toward the
end of the stack is called shadow pages. The size of the shadow pages is between 3 and 20
pages, depending on the platform. This distance is tunable, so that applications with native
code needing more than the default distance can increase the shadow page size. The option to
increase shadow pages is - XX: St ackShadowPages=n, where n is greater than the default
stack shadow pages for the platform.

If your application gets a segmentation fault without a core file or fatal error log file, see Fatal
Error Log. Or if you application gets a STACK_OVERFLOW ERROR on Windows or the message "An
irrecoverable stack overflow has occurred,” then this indicates that the value of

St ackShadowPages was exceeded, and more space is needed.

If you increase the value of St ackShadowPages, you might also need to increase the default
thread stack size using the - Xss parameter. Increasing the default thread stack size might

Troubleshooting Guide
E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Page 4 of 10

ORACLE

Chapter 5
Determine Where the Crash Occurred

decrease the number of threads that can be created, so be careful in choosing a value for the
thread stack size. The thread stack size varies by platform from 256 KB to 1024 KB.

An unexpected error has been detected by Hot Spot Virtual Machine:
EXCEPTI ON_STACK_OVERFLOW (0xc00000fd) at pc=0x10001011, pi d=296, tid=2940
Java VM Java Hot Spot(TM Client VM (1.6-internal mxed node, sharing)

Probl ematic frane:
C [App.dlI+0x1011]

H H O H R R R

--------------- THREAD ----------mn---
Current thread (0x000367c0): JavaThread "main" [_thread_ in_native, id=2940]

Stack: [0x00040000, 0x00080000), sp=0x00041000, free space=4k

Native frames: (J=conpiled Java code, j=interpreted, W=VM code, C=native
code)

C [App.dll+0x1011]

C [App.dl | +0x1020]

C [App.dl | +0x1020]

C [App.dl | +0x1020]
C [App.dl | +0x1020]
.<nore frames>...

Java franes: (J=conpiled Java code, j=interpreted, W=VM code)
j Test.foo()V+0

j Test.min([Ljaval/lang/String;)V+0

v ~StubRoutines::call_stub

You can interpret the following information from the above example.

e The exception is EXCEPTI ON_STACK_OVERFLOW

e The thread state is _thread_i n_native, which means that the thread is executing native
or JNI code.

* Inthe stack information, the free space is only 4 KB (a single page on a Windows system).
In addition, the stack pointer (sp) is at 0x00041000, which is close to the end of the stack at
0x00040000.

e The printout of the native frames shows that a recursive native function is the issue in this
case. The output notation . .. <nore frames>. .. indicates that additional frames exist but
were not printed. The output is limited to 100 frames.

Crash Due to Exceeded Memory Map Area Limit

Certain application behaviors may cause the virtual machine to use a large number of memory
map areas. On Linux systems, the number of memory map areas is limited by
vm max_map_count .

This is an example of the type of error that you might receive if you encounter this problem:;

fatal error: Failed to map menmory (Not enough space)

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 5 of 10

ORACLE

Chapter 5
Find a Workaround

If you experience crashes with this type of error message, you can look in the hs_err. | og to
see the number of mappings made by the process and compare to the limit of the system. You
can find these numbers by searching the hs_err. | og file for these two lines:

Total nunber of mappings: <nunber>
/ proc/ sys/vm max_map_count (maxi num nunber of menory nmap areas a process nay
have): <nunber >

If the numbers are similar, you should try to re-run the application with an increased value of
vm max_map_count . Please refer to your Linux manual for more information on how to do this.
The error could also occur if the JVM runs out of memory. This error does in general not
indicate a bug in the virtual machine.

Find a Workaround

Possible workarounds if a crash occurs with a critical application.

If a crash occurs with a critical application, and the crash appears to be caused by a bug in the
HotSpot VM, then it might be desirable to quickly find a temporary workaround. If the crash
occurs with an application that is deployed with the most recent release of the JDK, then the
crash should be reported to Oracle.

()
© Important
Even if a workaround in this section successfully eliminates a crash, the workaround is

not a fix for the problem, but merely a temporary solution. Place a support call or file a
bug report with the original configuration that demonstrated the issue.

.

The following are three scenarios to find workarounds for system crashes.

e Working Around Crashes in the HotSpot Compiler Thread or Compiled Code

Working Around Crashes During Garbage Collection

e Working Around Crashes Caused by Class Data Sharing

Working Around Crashes in the HotSpot Compiler Thread or Compiled

Code

Possible workarounds if the crash occurred in the hotspot compiler thread.

If the fatal error log indicates that the crash occurred in a compiler thread, then it is possible
(but not always the case) that you encountered a compiler bug. Similarly, if the crash is in
compiled code, then it is possible that the compiler generated incorrect code.

In the case of the HotSpot Client VM (- cl i ent option), the compiler thread appears in the
error log as Conpi | er Thr ead0. With the HotSpot Server VM, there are multiple compiler
threads, and these appear in the error log file as Conpi | er Thr ead0, Conpi | er Thr eadl, and
Adapt er Thr ead.

Since the JDK 7u5 release, the HotSpot compiler is ignored by default. A command-line option
is available to simulate the old behavior, which is useful when multiple methods were excluded.
See notable bug fixes in JDK 7ub.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 6 of 10

http://www.oracle.com/technetwork/java/javase/7u5-relnotes-1653274.html

ORACLE

Chapter 5
Find a Workaround

To exclude methods from being compiled by using a JVM flag instead of the . hot spot _conpil e
file, see - XX: Conpi | eCommand in Advanced JIT Compiler Options in the Java Platform,
Standard Edition Tools Reference.

The following example shows a fragment of an error log for a compiler bug that was
encountered and fixed during development. The log file shows that the HotSpot Server VM is
used, and the crash occurred in Conpi | er Thr eadl. In addition, the log file shows that the
current Conpi | eTask was the compilation of the j ava. | ang. Thread. set Pri ority method.

An unexpected error has been detected by Hot Spot Virtual Machine:
#

Java VM Java Hot Spot (TM Server VM (1.5-internal -debug mi xed node)
--------------- THREAD --------mem---

Current thread (0x001e9350): JavaThread "Conpil er Threadl"” daenon
[_thread_in_vm id=20]

Stack: [0xb2500000, 0xb2580000), sp=0xb257e500, free space=505k

Native frames: (J=conpiled Java code, j=interpreted, W=VM code, C=native
code)

V' [libjvm so+0xc3bl3c]

Current Conpil eTask:
opto: 11 java.l ang. Thread. setPriority(l)V (53 bytes)

--------------- PROCESS -crrommeremnnn-

Java Threads: (=> current thread)
0x00229930 JavaThread "Low Menory Detector" daenon [_thread_bl ocked, id=21]
=>0x001€9350 JavaThread "Conpil er Threadl" daenon [_thread_in_vm id=20]

In this case, there are two potential workarounds:

e The brute force approach: Change the configuration so that the application is run with the
- cl i ent option to specify the HotSpot Client VM.

e The subtle approach: Assume that the bug only occurs during the compilation of the
java.lang. Thread. set Priority method, and exclude this method from compilation.

The first approach (to use the - cl i ent option) might be trivial to configure in some
environments. In others, it might be more difficult if the configuration is complex or if the
command line to configure the VM is not readily accessible. In general, switching from the
HotSpot Server VM to the HotSpot Client VM also reduces the peak performance of an
application. Depending on the environment, this might be acceptable until the issue is
diagnosed and fixed.

The second approach (exclude the method from compilation) requires creating the
file . hot spot _conpi | er in the working directory of the application. The following example
shows this approach.

exclude java/lang/ Thread setPriority

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE

Chapter 5
Find a Workaround

In general, the format of this file is excl udecl assmet hod, where cl ass is the class (fully
qualified with the package name) and net hod is the name of the method. Constructor methods
are specified as <i ni t > and static initializers are specified as <cl i ni t >.

@® Note

The. hot spot _conpi | er file is an unsupported interface. It is documented here solely
for the purposes of troubleshooting and finding a temporary workaround.

After the application is restarted, the compiler will not attempt to compile any of the methods
excluded in the . hot spot _conpi | er file. In some cases this can provide temporary relief until
the root cause of the crash is diagnosed and the bug is fixed.

In order to verify that the HotSpot VM correctly located and processed the . hot spot _conpi | er
file that is shown in the previous example from the second approach, look for the log
information at runtime.

@® Note

The file name separator is a dot, not a slash.

Working Around Crashes During Garbage Collection

Possible workaround if the crash occurs during garbage collection.

If a crash occurs during garbage collection (GC), then the fatal error log reports that a

VM _Oper ati on is in progress. For the purpose of this discussion, assume that the mostly
concurrent GC (- XX: +UseConcMar kSweep) is not in use. The VM Oper at i on is shown in the
THREAD section of the log and indicates one of the following situations:

* Generation collection for allocation

* Full generation collection

» Parallel GC failed allocation

e Parallel GC failed permanent allocation
e Parallel GC system GC

Most likely, the current thread reported in the log is the VMrhr ead. This is the special thread
used to execute special tasks in the HotSpot VM. The following example is a fragment of the
fatal error log from a crash in the serial garbage collector.

--------------- THREAD -c-cemcmmamnn-

Current thread (0x002ch720): VMrhread [id=3252]

si ginfo: ExceptionCode=0xc0000005, reading address 0x00000000
Regi sters:

EAX=0x0000000a, EBX=0x00000001, ECX=0x00289530, EDX=0x00000000

ESP=0x02aef c2c, EBP=0x02aefc44, ESI=0x00289530, EDI =0x00289530
El P=0x0806d17a, EFLAGS=0x00010246

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 8 of 10

ORACLE

Chapter 5
Find a Workaround

Top of Stack: (sp=0x02aefc2c)

0x02aef c2c: 00289530 081641e8 00000001 0806e4h8

0x02aef c3c: 00000001 00000000 02aefc9c 0806e4c5

Ox02aef c4c: 081641e8 081641c8 00000001 00289530

0x02aef c5c: 00000000 00000000 00000001 00000001

0x02aef c6e: 00000000 00000000 00000000 08072a9%e

0x02aef c7c: 00000000 00000000 00000000 00035378

0x02aef c8c: 00035378 00280d88 00280d88 147f ee00

0x02aef c9c: 02aef ce8 0806e0f5 00000001 00289530
Instructions: (pc=0x0806d17a)

0x0806d16a: 15 08 83 3d c0 be 15 08 05 53 56 57 8h f1 75 Of
0x0806d17a: 0f be 05 00 00 00 00 83 cO 05 a3 cO be 15 08 8b

Stack: [0x02ab0000, 0x02af 0000), sp=0x02aefc2c, free space=255k
Native frames: (J=conpiled Java code, j=interpreted, W=VM code, C=native
code)

[jvmdl | +0x6d173]

[jvmdl | +0x6e4c5]

[jvmdl | +0x6e0f 5]

[jvmdl | +0x71771]

[jvmdl | +0xfd1d3]

[jvmdll+0x6cd99]

[jvmdl | +0x504bf]

[jvmdl | +0x6cf 4b]

[jvmdll+0x1175d5]

[jvmdll+0x1170a0]

[jvmdll+0x11728f]

[jvmdll+0x116f d5]

[MSVCRT. dI | +0x27f b8]

[kernel 32.dI | +0x1d33b]

OO0<K< <K<K <K <K<K <K<K <K LKL

VM Qperation (0x0373f71c): generation collection for allocation, node:
saf epoint, requested by thread 0x02db7108

@® Note

A crash during garbage collection does not suggest a bug in the garbage collection
implementation. It could also indicate a compiler or runtime bug, or some other issue.

You can try the following workarounds if you repeatedly get a crash during garbage collection:

» Switch GC configuration. For example, if you are using the serial collector, then try the
throughput collector, or vice versa.

« If you are using the HotSpot Server VM, then try the HotSpot Client VM.

If you are not sure which garbage collector is in use, then you can use the j map utility on the
Oracle Solaris and Linux operating systems. See The jmap Utility to get the heap information
from the core file, if the core file is available. In general, if the GC configuration is not specified
on the command line, then the serial collector will be used on Windows. On the Oracle Solaris
and Linux operating systems, it depends on the machine configuration. If the machine has at
least 2 GB of memory and has at least 2 CPUs, then the throughput collector (Parallel GC) will
be used. For smaller machines, the serial collector is the default. The option to select the serial
collector is - XX: +UseSer i al GC and the option to select the throughput collector is -

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 9 of 10

ORACLE

Chapter 5
Microsoft Visual C++ Version Considerations

XX: +UsePar al | el GC. If, as a workaround, you switch from the throughput collector to the
serial collector, then you might experience some performance degradation on multiprocessor
systems. This might be acceptable until the root issue is diagnosed and fixed.

Working Around Crashes Caused by Class Data Sharing

When the JRE is installed, the installer loads a set of classes from the system JAR file into a
private internal representation and dumps that representation to a file called a shared archive.
When the JVM starts, the shared archive is memory-mapped to allow sharing of read-only JVM
metadata for these classes among multiple JVM processes. The startup time is reduced thus
saving the cost because restoring the shared archive is faster than loading the classes. Class
data sharing is supported with the Java HotSpot VM. The G1, serial, parallel, and
parallelOldGC garbage collectors are supported. The shared string feature (part of class data
sharing) supports only the G1 garbage collector on non-Windows platforms.

The fatal error log prints the version string in the header of the log. If sharing is enabled, it is
indicated by the text "sharing," as shown in the following example.

An unexpected error has been detected by Hot Spot Virtual Machine:
EXCEPTI ON_ACCESS_VI OLATI ON (0xc0000005) at pc=0x08083d77, pid=3572, tid=784
Java VWM Java Hot Spot (TM Cient VM (1.5-internal mxed node, sharing)

Probl ematic frane:
V [jvmdl | +0x83d77]

HoH H H R R

CDS can be disabled by providing the - Xshar e: of f option on the command line. If the crash
only occurs with sharing enabled, then it is possible that you encountered a bug in this feature.
In that case, gather as much information as possible and submit a bug report.

Microsoft Visual C++ Version Considerations

If you experience a crash with a Java application and if you have native or JNI libraries that are
compiled with a different release of the compiler, then you must consider compatibility issues
between the runtimes. Specifically, your environment is supported only if you follow the
Microsoft guidelines when dealing with multiple runtimes. For example, if you allocate memory
using one runtime, then you must release it using the same runtime. Unpredictable behavior or
crashes can happen if you release a resource using a different library than the one that
allocated the resource.

@® Note

Use the j ava command option - Xi nt er nal ver si on to determine which version of
Microsoft Visual Studio built the JDK. This version may vary depending on the JDK
release.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 10 of 10

Troubleshoot Process Hangs and Loops

Diagnose

This chapter provides information and guidance about some specific procedures for
troubleshooting hanging or looping processes.

Problems can occur that involve hanging or looping processes. A hang can occur for many
reasons, but often stems from a deadlock in an application code, API code, or library code. A
hang can be due to a bug in the Java HotSpot VM.

Sometimes an apparent hang turns out to be, in fact, a loop. For example, a bug in a VM
process that causes one or more threads to go into an infinite loop can consume all available
CPU cycles.

The initial step when you diagnose a hang is to find out if the VM process is idle or consuming
all available CPU cycles. You can do this using a native operating system (OS) utility. If the
process appears to be busy and is consuming all available CPU cycles, then it is likely that the
issue is a looping thread rather than a deadlock. On the Oracle Solaris operating system, for
example, the command prstat -L -p pid can be used to report the statistics for all
lightweight processes (LWPs) in the target process and therefore will identify the threads that
are consuming a lot of CPU cycles.

This chapter contains the following sections:

» Diagnose a Loop Process

 Diagnose a Hung Process

e Oracle Solaris 8 Thread Library

a Loop Process

If a VM process appears to be looping, try to get a thread dump. A thread dump often makes it
clear which thread is looping, and the trace stack in the thread dump can provide the direction
on where (and maybe why) the thread is looping.

If the application console (standard input/output) is available, then press the Control+\ key
combination (on Oracle Solaris or Linux) or the Control+Break key combination (on Windows)
to cause the HotSpot VM to print a thread dump, including thread state. On Oracle Solaris and
Linux operating systems the thread dump can also be obtained by sending a SI GQUI T to the
process (command kil | -QUI T pid). In this case, the thread dump is printed to the standard
output of the target process. The output might be directed to a file, depending on how the
process was started.

If the Java process is started with the - XX: +Pri nt O assHi st ogr amcommand-line option,
then the Control+Break handler will produce a heap histogram.

If a thread dump can be obtained, then a good place to start is the thread stacks of the threads
that are in the RUNNABLE state. See Thread Dump, for more information about the format of the
thread dump, as well as a table of the possible thread states in the thread dump. In some
cases, it might be necessary to get a sequence of thread dumps in order to determine which
threads appear to be continuously busy.

If the application console is not available (for example, the process is running in the
background, or the VM output is directed to an unknown location), then the | st ack utility or the

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE

Diagnose

Chapter 6
Diagnose a Hung Process

j hsdb j stack utility can be used to get the stack thread. See The jstack Utility or the j st ack
mode of jhsdb for more about the output of these utilities. The j st ack utility or the j hsdb

j st ack utility should also be used if the thread dump does not provide any evidence that a
Java thread is looping.

When reviewing the output of the j st ack ultility, focus initially on the threads that are in the
RUNNABLE state. This is the most likely state for threads that are busy and possibly looping. It
might be necessary to execute j st ack a number of times to get a better idea of which threads
are looping. If a thread appears to be always in the RUNNABLE state, then use j hsdb j stack
with the - - m xed option to print the native frames and provide a further hint about what the
thread is doing. If a thread appears to be looping continuously while in the RUNNABLE state, then
this situation can indicate a potential HotSpot VM bug that needs further investigation.

If the VM does not respond to Control+\, then this could indicate a VM bug rather than an issue
with the application or library code. In this case, use j hsdb j st ack with the - - mi xed option to
get a thread stack for all threads. The output will include the thread stacks for VM internal
threads. In this stack trace, identify threads that do not appear to be waiting. For example, on
the Oracle Solaris operating system, you identify the threads that are not in functions such as
__lwp_cond wait, |w _park, _ pollsys, orother blocking functions. If it appears that the
looping is caused by a VM bug, then collect as much data as possible and submit a bug report.
See Submit a Bug Report for more about data collection.

a Hung Process

Use the thread dump to diagnose a hung process.

If the application appears to be hung and the process appears to be idle, then the first step is
to try to get a thread dump. If the application console is available, then press Control+\ (on
Oracle Solaris or Linux), or Control+Break (on Windows) to cause the HotSpot VM to print a
thread dump. On the Oracle Solaris and Linux operating systems, the thread dump can also be
obtained by sending a SI GQUI T to the process (command kil | - QU T pi d). If the hung
process can generate a thread dump, then the output is printed to the standard output of the
target process.

After printing the thread dump, the HotSpot VM executes a deadlock detection algorithm.
The following sections describe various situations for a hung process.

 Deadlock Detected

 Deadlock Not Detected

e No Thread Dump

Deadlock Detected

If a deadlock is detected, then it will be printed along with the stack trace of the threads
involved in the deadlock.

The following example shows the stack trace for this situation.

Found one Java-|evel deadl ock:

" AW- Event Queue- 0":

waiting to lock monitor 0x000ffbf8 (object Oxf0c30560, a
j ava. awt . Conponent $AWITr eeLock) ,

which is held by "nain"
" mai n":

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE Chapter 6
Diagnose a Hung Process

waiting to I ock monitor 0x000ffe38 (object OxfOc4lec8, a java.util.Vector),
which is held by "AW-Event Queue-0"

Java stack information for the threads |isted above:

" AW- Event Queue- 0":
at java.awt. Container.renoveNotify(Container.java: 2503)
- waiting to | ock <0xf0c30560> (a java.awt . Conponent SAWITr eeLock)
at java.awt . Wndow$1D sposeAction. run(W ndow. j ava: 604)
at java.awt. W ndow. doDi spose(W ndow. j ava: 617)
at java.awt.Di al og. doDi spose(Di al og. j ava: 625)
at java.awt. W ndow. di spose(W ndow. j ava: 574)
at java.awt . W ndow. di sposel npl (W ndow. j ava: 584)
at java.aw . W ndow$1D sposeAction. run(W ndow. j ava: 598)
- locked <OxfOc4lec8> (a java.util.Vector)
at java.awt. W ndow. doDi spose(W ndow. j ava: 617)
at java.awt. W ndow. di spose(W ndow. j ava: 574)
at
javax.swing. SwingUtilities$SharedOaner Frane. di spose(Swi ngUtilities.java: 1743)
at
j avax. swing. SwingUtilities$SharedOaner Frane. wi ndowd osed(SwingUtilities.java:l
722)
at java.aw . W ndow. processW ndowEvent (W ndow. j ava: 1173)
at javax.sw ng.JDi al og. processW ndowEvent (JDi al og. j ava: 407)
at java.awt . W ndow. processEvent (W ndow. j ava: 1128)
at java.awt . Conponent. di spat chEvent | npl (Conponent . j ava: 3922)
at java.awt. Cont ai ner. di spat chEvent I npl (Cont ai ner. j ava: 2009)
at java.awt.W ndow. di spat chEvent | npl (W ndow. j ava: 1746)
at java.awt. Conponent. di spat chEvent (Conponent . j ava: 3770)
at java.awt.Event Queue. di spat chEvent (Event Queue. j ava: 463)
at
j ava. awt . Event Di spat chThr ead. punpOneEvent For Hi er ar chy(Event Di spat chThr ead. j ava
1 214)
at
java. awt . Event Di spat chThr ead. punpEvent sFor Hi er ar chy(Event Di spat chThread. j ava: 1
63)
at
j ava. awt . Event Di spat chThr ead. punpEvent s(Event Di spat chThr ead. j ava: 157)
at
j ava. awt . Event Di spat chThr ead. punpEvent s(Event Di spat chThr ead. j ava: 149)
at java.awt. Event Di spat chThread. run(Event Di spat chThr ead. j ava: 110)

mai n":
at java.awt . W ndow. get OmedW ndows(W ndow. j ava: 844)
- waiting to | ock <0xfOc4lec8> (a java.util.Vector)
at
javax.swing. SwingUtilities$SharedOaner Frane.installListeners(SwingUtilities.ja
va: 1697)
at
javax.sw ng. SwingUtilities$Shar edOmner Frame. addNotify(Swi ngUtilities.java: 1690
)

at java.awt.Dial og. addNot i fy(Di al og. | ava: 370)

- locked <0xf0c30560> (a java.awt.Conmponent $AWITr eeLock)
at java.awt.Dial og. condi tional Show(Di al og. j ava: 441)

- locked <0xf0c30560> (a java.awt.Conmponent $AWITr eeLock)
at java.awt.Dial og. show(Di al og. j ava: 499)

at java.awt . Conponent. show Conponent . j ava: 1287)

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE

Chapter 6
Diagnose a Hung Process

at java.awt . Conponent . set Vi si bl e(Conponent . j ava: 1242)
at test01.main(testOl.java: 10)

Found 1 deadl ock.

The default deadlock detection works with locks that are obtained using the synchronized
keyword, as well as with locks that are obtained using the j ava. util. concurrent package. If
the Java VM flag - XX: +Pri nt Concur r ent Locks is set, then the stack trace also shows a
list of lock owners.

If a deadlock is detected, then you must examine the output in more detail in order to
understand the deadlock. In the previous example, the thread mai n is locking object

0xf 0c30560 and is waiting to enter 0xf 0c4lec8, which is locked by thread AWT- Event Queue- 0.
However, thread AWT- Event Queue- 0 is waiting to enter 0xf 0c30560, which is locked by mai n.

The detall in the stack traces provides information to help you find the deadlock.

Deadlock Not Detected

If the thread dump is printed and no deadlocks are found, then the issue might be a bug in
which a thread is waiting for a monitor that is never notified. This could be a timing issue or a
general logic bug.

To find out more about the issue, examine each of the threads in the thread dump and each
thread that is blocked in Cbj ect . wai t () . The caller frame in the stack trace indicates the class
and method that is invoking the wai t () method. If the code was compiled with line number
information (the default), then this provides a direction as to the code to examine. In most
cases, you must have some knowledge of the application logic or library in order to diagnose
this issue further. In general, you must understand how the synchronization works in the
application and the details and conditions for when and where the monitors are notified.

No Thread Dump

If the VM is deadlocked or hung, use the j st ack orj hsdb j stack command.

If the VM does not respond to Control+\ or Control+Break, then it is possible that the VM is
deadlocked or hung for some other reason. In that case, use The jstack Utility or jhsdb jstack
to get a thread dump. This also applies in the case when the application is not accessible, or
the output is directed to an unknown location.

In the thread dump, examine each of the threads in the BLOCKED state. The top frame can
sometimes indicate why the thread is blocked (for example, Cbj ect . wai t or Thr ead. sl eep).
The rest of the stack will give an indication of what the thread is doing. This is particularly true
when the source is compiled with line number information (the default), and you can cross-
reference the source code.

If a thread is in the BLOCKED state and the reason is not clear, then use j hsdb j stack --m xed
to get a mixed stack. With the mixed stack output, it should be possible to identify why the
thread is blocked. If a thread is blocked trying to enter a synchronized method or block, then
you will see frames such as Chj ect Moni tor: : ent er near the top of the stack. The following
example shows a sample, mixed-stack output.

----------------- t@3 -----------------
Oxff31e8h8 ___lwp _cond wait + 0x4
Oxf eaBc810 void CbjectMnitor::Enterl(Thread*) + 0x2b8

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE

Chapter 6
Oracle Solaris 8 Thread Library

Oxf eac86hb8 void CbjectMnitor::enter2(Thread*) + 0x250

Threads in the RUNNABLE state might also be blocked. The top frames in the mixed stack should
indicate what the thread is doing.

One specific thread to check is VMThr ead. This is the special thread used to execute operations
like garbage collection (GC). It can be identified as the thread that is executing

VMThr ead: : run() in its initial frames. On the Oracle Solaris, it is typically t @. On Linux, it
should be identifiable using the C++ mangled name _ZN3VMThr ead4| oopEv.

In general, the VM thread is in one of three states: waiting to execute a VM operation,
synchronizing all threads in preparation for a VM operation, or executing a VM operation. If you
suspect that a hang is a HotSpot VM bug rather than an application or class library deadlock,
then pay special attention to the VM thread.

If the VM thread appears to be stuck in Saf epoi nt Synchr oni ze: : begi n, then this could
indicate an issue bringing the VM to a safepoint. A safepoint indicates that all threads
executing in the VM are blocked and waiting for a special operation, such as GC, to complete.

If the VM thread appears to be stuck in f uncti on, where functi on ends in doi t, then this
could also indicate a VM problem.

In general, if you can execute the application from the command line, and you get to a state
where the VM does not respond to Control+\ or Control+Break, it is more likely that you have
uncovered a VM bug, a thread library issue, or a bug in another library. When this occurs, get a
crash dump. See Collect Core Dumps for instructions about gathering as much information as
possible, and submit a bug report or call support.

One other tool to mention in the context of hung processes is the pst ack utility on the Oracle
Solaris operating system. On the Oracle Solaris 8 and 9 operating systems, this utility prints
the thread stacks for LWPs in the target process. On the Oracle Solaris 10 operating system
and starting with the JDK 5.0 release, the output of pst ack is similar, though not identical, to
the output from j hsdb j stack --ni xed.The Oracle Solaris 10 operating system
implementation of pst ack prints the fully qualified class hame, method name, and bytecode
index (BCI). It will also print line numbers for cases where the source was compiled with line
number information (the default). This is useful for developers and administrators who are
familiar with the other utilities on the Oracle Solaris operating system that exercise features of
the / pr oc file system.

The equivalent tool of pst ack on Linux is | sst ack. This utility is included in some distributions
and otherwise obtained from sourceforge. At the time of this writing, | sst ack reported native
frames only.

Oracle Solaris 8 Thread Library

The default thread library on the Oracle Solaris 8 operating system is often referred to as the
T1 library. This thread library implemented the m:n threading model, where m user threads are
mapped to n kernel-level threads (LWPs). The Oracle Solaris 8 operating system also shipped
with an alternative and newer thread library in / usr/1i b/ | wp. The alternative thread library is
often referred to as the T2 library, and it became the default thread library in the Oracle Solaris
9 and 10 operating systems. In older releases of J2SE (pre-1.4.0 in particular), there were a
number of issues with the default thread library (for example, bugs in the thread library, LWP
synchronization problems, or LWP starvation). LWP starvation is a scenario in which there are
user threads in the RUNNABLE state, but there are no kernel level threads available.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 5 of 6

http://sourceforge.net

ORACLE Chapter 6
Oracle Solaris 8 Thread Library

Although the issues cited are historical, it should be noted that when the JDK software is
deployed on the Oracle Solaris 8 operating system, it still uses the T1 library by default. LWP
starvation type issues do not happen because the JDK release uses "bound threads" so that
each user thread is bound to a kernel thread. However, in the event that you encounter an
issue, such as a hang, that you believe is a thread library issue, then you can instruct the
HotSpot VM to use the T2 library by adding /usr/lib/lwp to the LD_LI BRARY _PATH. To check if the
T2 library is in use, issue the command pl dd pi d to list the libraries loaded by the specified
process.

Troubleshooting Guide
E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Page 6 of 6

Handle Signals and Exceptions

This chapter provides information about how signals and exceptions are handled by the Java
HotSpot Virtual Machine. It also describes the signal chaining facility, available on the Oracle
Solaris, Linux, and macOS operating systems, which facilitates writing applications that must
install their own signal handlers.

This chapter contains the following sections:

* Handle Signals on Oracle Solaris, Linux, and macOS

e Handle Exceptions on Windows

e Signal Chaining
 Handle Exceptions Using the Java HotSpot VM

* Console Handlers

* Signals Used in Oracle Solaris, Linux, and macOS

Handle Signals on Oracle Solaris, Linux, and macOS

The Java HotSpot VM installs signal handlers to implement various features and to handle fatal
error conditions.

For example, in an optimization to avoid explicit null checks in cases where
java.l ang. Nul | Poi nt er Except i on will be thrown rarely, the SI GSEGV signal is caught and
handled, and the Nul | Poi nt er Excepti on is thrown.

In general, there are two categories where signal/traps happen:

* When signals are expected and handled, like implicit null-handling. Another example is the
safepoint polling mechanism, which protects a page in memory when a safepoint is
required. Any thread that accesses that page causes a S| GSEGV, which results in the
execution of a stub that brings the thread to a safepoint.

e Unexpected signals. This includes a S| GSEGY when executing in VM code, Java Native
Interface (JNI) code, or native code. In these cases, the signal is unexpected, so fatal error
handling is invoked to create the error log and terminate the process.

Table 7-2 lists the signals that are currently used on the Oracle Solaris, Linux, and macOS
operating systems.

Handle Exceptions on Windows

On Windows, an exception is an event that occurs during the execution of a program.

There are two kinds of exceptions: hardware exceptions and software exceptions. Hardware
exceptions are comparable to signals such as SI GSEGV and S| &I LL on the Oracle Solaris and
Linux operating systems. Software exceptions are initiated explicitly by applications or the
operating system using the Rai seExcepti on() APL

On Windows, the mechanism for handling both hardware and software exceptions is called
structured exception handling (SEH). This is stack frame-based exception handling similar to

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE

Chapter 7
Handle Exceptions on Windows

the C++ and Java exception handling mechanism. In C++, the __try and __except keywords
are used to guard a section of code that might result in an exception, as shown in the following
example.

_try {
/1 guarded body of code

} __except (filter-expression) {
/'l exception-handl er block
}

The __except block is filtered by a filter expression that uses the integer exception code
returned by the Get Except i onCode() API, exception information returned by the
Get Excepti onl nf ormat i on() API, or both.

The filter expression should evaluate to one of the following values:

o EXCEPTI ON_CONTI NUE_EXECUTION = -1

The filter expression repaired the situation, and execution continues where the exception
occurred. Unlike some exception schemes, SEH supports the resumption model as well.
This is much like the UNIX signal handling in the sense that after the signal handler
finishes, the execution continues where the program was interrupted. The difference is that
the handler in this case is just the filter expression itself and not the __except block.
However, the filter expression might also involve a function call.

e EXCEPTI ON_CONTI NUE_SEARCH = 0

The current handler cannot handle this exception. Continue the handler search for the next
handler. This is similar to the cat ch block not matching an exception type in C++ and Java.

e EXCEPTI ON_EXECUTE_HANDLER = 1

The current handler matches and can handle the exception. The __except block is
executed.

The __try and _ finally keywords are used to construct a termination handler, as shown in
the following example.

_try {
/1 guarded body of code
} _finally {

/1 __finally bl ock
}

When control leaves the __try block (after an exception or without an exception), the
__finally block is executed. Inside the _ final | y block, the Abnor mal Ter mi nati on() API
can be called to test whether control continued after the exception or not.

Windows programs can also install a top-level unhandled exception filter function to catch
exceptions that are not handled in the __try/ except block. This function is installed on a
process-wide basis using the Set Unhandl edExcepti onFi |l t er () APIL. If there is no
handler for an exception, then Unhandl edExcepti onFi | t er () is called, and this will call
the top-level unhandled exception filter function, if any, to catch that exception. This function
also shows a message box to notify the user about the unhandled exception.

Windows exceptions are comparable to Unix synchronous signals that are attributable to the
current execution stream. In Windows, asynchronous events such as console events (for
example, the user pressing Control+C at the console) are handled by the console control
handler registered using the Set Consol eCt | Handl er () APL.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE

Chapter 7
Signal Chaining

If an application uses the si gnal () API on Windows, then the C runtime library (CRT) maps
both Windows exceptions and console events to appropriate signals or C runtime errors. For
example, CRT maps Control+C to SI G NT and all other console events to S| GBREAK. Similarly, if
you register the S| GSEGV handler, CRT translates the corresponding exception to a signal. CRT
startup code implements a __try/ _except block around the mai n() function. The CRT's
exception filter function (named _Xcpt Fi | t er) maps the Win32 exceptions to signals and
dispatches signals to their appropriate handlers. If a signal's handler is set to S| G DFL (default
handling), then _Xcpt Fi | t er calls Unhandl edExceptionFilter.

The vectored exception handling mechanism can also be used. Vectored handlers are not
frame-based handlers. A program can register zero or more vectored exception handlers using
the AddVect or edExcept i onHandl er API. Vectored handlers are invoked before structured
exception handlers, if any, are invoked, regardless of where the exception occurred.

vectored exception handler returns one of the following values:

e EXCEPTI ON_CONTI NUE_EXECUTI ON: Skip the next vectored and SEH handlers.
e EXCEPTI ON_CONTI NUE_SEARCH: Continue to the next vectored or SEH handler.

See the Microsoft website to know more on Windows exception handling.

Signal Chaining

Signal chaining enables you to write applications that need to install their own signal handlers.
This facility is available on Solaris, Linux, and macOS.

The signal chaining facility has the following features:

e Support for preinstalled signal handlers when you create Oracle’s HotSpot Virtual Machine.

When the HotSpot VM is created, the signal handlers for signals that are used by the
HotSpot VM are saved. During execution, when any of these signals are raised and are not
to be targeted at the HotSpot VM, the preinstalled handlers are invoked. In other words,
preinstalled signal handlers are chained behind the HotSpot VM handlers for these signals.

e Support for the signal handlers that are installed after you create the HotSpot VM, either
inside the Java Native Interface code or from another native thread.

Your application can link and load the | i bj si g. so shared library before the | i bc/

l'i bt hread/|ibpthread library. This library ensures that calls such as si gnal (), si gset(),
and si gaction() are intercepted and don’t replace the signal handlers that are used by
the HotSpot VM, if the handlers conflict with the signal handlers that are already installed
by HotSpot VM. Instead, these calls save the new signal handlers. The new signal
handlers are chained behind the HotSpot VM signal handlers for the signals. During
execution, when any of these signals are raised and are not targeted at the HotSpot VM,
the preinstalled handlers are invoked.

If support for signal handler installation after the creation of the VM is not required, then the
l'i bj si g.so shared library is not needed.

To enable signal chaining, perform one of the following procedures to use the | i bj si g. so
shared library:

— Link the l'i bj si g. so shared library with the application that creates or embeds the
HotSpot VM:

cc -L libjvmso-directory -ljsig -ljvmjava_ application.c

— Use the LD_PRELOAD environment variable:

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 3 of 6

http://www.microsoft.com

ORACLE

Chapter 7
Handle Exceptions Using the Java HotSpot VM

* Korn shell (ksh):

export LD PRELOAD=Ili bjvm so-directory/libjsig.so; java_application
* C shell (csh):

setenv LD PRELOAD |ibjvmso-directory/libjsig.so; java_application

The interposed si gnal () , sigset() , and si gaction() calls return the saved signal
handlers, not the signal handlers installed by the HotSpot VM and are seen by the
operating system.

@® Note

The SI GQUI T, SI GTERM SI @ NT, and S| GHUP signals cannot be chained. If the
application must handle these signals, then consider using the —Xr s option.

Enable Signal Chaining in macOS
To enable signal chaining in macQOS, set the following environment variables:

e DYLD I NSERT_LI BRARI ES: Preloads the specified libraries instead of the LD_PRELOAD
environment variable available on Solaris and Linux.

e DYLD FORCE FLAT_NAMESPACE: Enables functions in the | i bj si g library and replaces the
OS implementations, because of macOS’s two-level namespace (a symbol's fully qualified
name includes its library). To enable this feature, set this environment variable to any
value.

The following command enables signal chaining by preloading the | i bj si g library:

$ DYLD FORCE_FLAT_NAMESPACE=0 DYLD | NSERT_LI BRARI ES="JAVA HOVE/|i b/ li bjsig. dylib"
java MySpiffyJavaApp

@® Note

The library file name on macOS is | i bj si g. dyli b notlibjsig.so asitis on Solaris or
Linux.

Handle Exceptions Using the Java HotSpot VM

The HotSpot VM installs a top-level exception handler during initialization using the
AddVect or edExcept i onHandl er API for 64-bit systems.

It also installs the Win32 SEH usinga __try /__except block in C++ around the thread
(internal) start function call for each thread created.

Finally, it installs an exception handler around JNI functions.

If an application must handle structured exceptions in JNI code, then it can use __try/
__except statements in C++. However, if it must use the vectored exception handler in NI
code, then the handler must return EXCEPTI ON_CONTI NUE_SEARCH to continue to the VM's
exception handler.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE

Chapter 7
Console Handlers

In general, there are two categories in which exceptions happen:

* When exceptions are expected and handled. Examples include the implicit null handling
cited, previously where accessing a null causes an EXCEPTI ON_ACCESS VI OLATI ON, which is

handled.

* Unexpected exceptions. An example is an EXCEPTI ON_ACCESS VI OLATI ON when executing
in VM code, in JNI code, or in native code. In these cases, the signal is unexpected, and
fatal error handling is invoked to create the error log and terminate the process.

Console Handlers

This topic describes a list of console events that are registered with the Java HotSpot VM.

The Java HotSpot VM registers console events, as shown in Table 7-1.

Table 7-1 Console Events

Console Event Signal

Usage

CTRL_C_EVENT SIGNT

CTRL_CLOSE_EVENTCTRL_LO SI GTERM
GOFF_EVENTCTRL_SHUTDOWN
_EVENT

CTRL_BREAK_EVENT SI GBREAK

This event and signal is used to terminate a
process. (Optional)

This event and signal is used by the shutdown hook
mechanism when the VM is terminated abnormally.
(Optional)

This event and signal is used to dump Java stack
traces at the standard error stream. (Optional)

If an application must register its own console handler, then the - Xr s option can be used. With
this option, shutdown hooks are not run on S| GTERM (with the previously shown mapping of
events), and thread dump support is not available on S| GBREAK (with the above mapping of the

Control+Break event).

Signals Used in Oracle Solaris, Linux, and macOS

This topic describes a list of signals that are used on Solaris OS, Linux, and macOS

Table 7-2 Signals Used on Oracle Solaris, Linux, and macOS

Signal

Description

SI GSEGV, SI GBUS, SI GFPE, SI GPI PE, SI G LL

SIGQUI T

SI GTERM SI G NT, SI GHUP

SI GJVML , SI VMR

SI GUSR2

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

These signals are used in the implementation for
implicit null check, and so forth.

This signal is used to dump Java stack traces to the
standard error stream. (Optional)

These signals are used to support the shutdown
hook mechanism

(j ava. | ang. Runt i me. addShut downHook) when
the VM is terminated abnormally. (Optional)

These signals are reserved for use by the Java
Virtual Machine. (Solaris only)

This signal is used internally on Linux and macOS.
It is not used by the VM on Solaris.

October 20, 2025
Page 5 of 6

ORACLE

Chapter 7
Signals Used in Oracle Solaris, Linux, and macOS

Table 7-2 (Cont.) Signals Used on Oracle Solaris, Linux, and macOS

___|
Signal Description

SI GABRT The HotSpot VM does not handle this signal.
Instead, it calls the abort function after fatal error
handling. If an application uses this signal, then it
should terminate the process to preserve the
expected semantics.

Signals tagged as "optional" are not used when the - Xr s option is specified to reduce signal
usage. With this option, fewer signals are used, although the VM installs its own signal handler
for essential signals such as SI GSEGV. Specifying this option means that the shutdown hook
mechanism will not execute if the process receives a SI GQUI T, SI GTERM S| G NT, or SI GHUP.
Shutdown hooks will execute, as expected, if the VM terminates normally (that is, when the last
non-daemon thread completes or the Syst em exi t method is invoked).

SI GQUSR2 is used to implement, suspend, and resume on Linux and macOS. However, it is
possible to specify an alternative signal to be used instead of SI GUSR2. This is done by
specifying the _JAVA SR SI GNUMenvironment variable. If this environment variable is set, then
it must be set to a value larger than the maximum of S| GSEGV and S| GBUS.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 6 of 6

Debug Core Library Issues

This part describes issues and troubleshooting techniques that arise with time zone settings
and contains the following topic.

¢« Time Zone Settings in the JRE

Describes some issues that arise with time zone settings with Java Runtime Environment
(JRE) and troubleshooting techniques to resolve these issues.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 1

Time Zone Settings in the JRE

This chapter describes some issues that can arise with time zone settings with the Java
Runtime Environment (JRE) on the Windows operating system. It further describes
troubleshooting techniques and workarounds to solve these issues.

This chapter contains the following sections:

* Native Time Zone Information and the JRE

» Determine the Default Time Zone on Windows

Native Time Zone Information and the JRE

The JRE reads the native time zone information to determine your default time zone.
For example, on Windows, the JRE queries the registry to determine the default time zone.

However, the JRE also maintains its own time zone database. This provides cross-platform
support because the different operating system APIs are not sufficient to support the Java
APIs. The Java time zone database supports time zone IDs and determines daylight saving
time rules for all the time zones that the JRE supports. The t zupdat er tool is available for
download from the Java SE Download Page.

Modifications to the JRE for each specific operating system are necessary so that the
operating system can deliver the system time to the JRE. Then, if a Java application requests
the system date by calling date and time related constructors, the system time is returned.

Examples of such constructors are:

java.util . Date()
java. util .G egorianCal endar ()

Constructors related to date and time include:

SystemcurrentTimeM | 1is()
Syst em nanoTi ne()

Operating system-specific patches might be required to ensure that the correct system time is
delivered to the JRE.

The following sections describe troubleshooting techniques for time zone settings.

 Determine the Time Zone Data Version in Use

¢ Troubleshoot Problems with TZupdater

Determine the Time Zone Data Version in Use

The time zone database version that ships in any Java runtime from Oracle is documented in
the release notes. However, the actual version can be different from the version mentioned
there if the Java runtime was patched using the Java time zone updater tool called t zupdat er .

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 6

http://www.oracle.com/technetwork/java/javase/downloads/index.html

ORACLE

Chapter 8
Native Time Zone Information and the JRE

To determine the current time zone data version of your Java runtime using the t zupdat er tool,
run the tool with the - V option as shown in the following example:

java -jar tzupdater.jar -V

Here is a typical output from running the t zupdat er tool.

t zupdat er version 2.2.0-b01
JRE tzdata version: tzdata2018g

You can download the t zupdat er tool from this web page: Timezone Updater Tool.

Troubleshoot Problems with TZupdater

Sometimes, when you run t zupdat er, it quits with the message: “There's no tzdata available
for this Java runtime.” The following are two examples.

$ java -jar tzupdater.jar -V

tzupdat er version 2.1.1-b01

JRE tzdata version: tzdata2017b

There's no tzdata available for this Java runtime.

The likely cause is that you are using a Java runtime that is not from Oracle. Oracle provides
the Java runtime for Oracle Solaris (x64, SPARC), Linux (x64), Microsoft Windows (x64), and
macOS (x64). The j ava. vendor property value for these is Sun Microsystems Inc., Oracle
Corporation, or BEA Systems, Inc. Oracle does not provide the Java runtime for other
platforms.

The output of running the j ava - ver si on command does not provide enough information to
determine the actual vendor of a Java runtime. However, running t zupdat er in update mode
with the - v option does print out the j ava. vendor property. The following example shows the
result of running tzupdater when the environment is HP_UX from Hewlett Packard.

root @ry_server:/opt/java6é/bi n> uname -a

HP- UX my_server B.11.23 U ia64 1114591084 unlim ted-user |icense

root @ry_server:/opt/javaé/bin> ./java -version

java version "1.6.0.05"

Java(TM SE Runtine Environnment (build 1.6.0.05-jinteg_14 oct 2009 01 44-b00)
Java Hot Spot (TM Server VM (build 14.2-b01-jrel.6.0.05-rc5, mnixed node)
root @y_server:/opt/javaé/bin> ./java -jar tzupdater.jar -v -

java. hone: /opt/java6b/jre

java.vendor: Hew ett-Packard Co

java.version: 1.6.0.05

JRE tzdata version: tzdata2009

There's no tzdata available for this Java runtinme.

In the previous example, j ava. vendor is set to “Hewlett-Packard Co." The Java runtime that
you are trying to update using t zupdat er is not supported by Oracle.

A possible solution is to visit the website of your Java runtime vendor and determine whether a
time zone updater tool is available.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 2 of 6

http://www.oracle.com/technetwork/java/javase/tzupdater-readme-136440.html

ORACLE’

Chapter 8
Determine the Default Time Zone on Windows

Determine the Default Time Zone on Windows

This section clarifies how the JRE determines the default time zone on the Windows 10 and
later operating systems. If the expected time zone isn't reported, then use the troubleshooting
techniques provided in the following sections:

e Check the Default Time Zone Java Runtime Reports

e Determine the Setting in the Control Panel

e Check for Automatic Daylight Saving Time Adjustment

* Set the Default Time Zone in Windows Settings

e Check -Duser.timezone System Property

» Special Tool in Windows

* Internal Representation of Time Zone Mappings

Check the Default Time Zone Java Runtime Reports

You can write a simple program to determine which time zone the JDK reports the default time
zone-based on a check with the native operating system.

The Java program in the following example returns the default time zone:

public class Defaul tTimeZone {
public static void nain(String[] args) {
Systemout. println(java.util.Ti meZone.getDefault().getlD());
}

}

You can save the code snippet in the previous example to a file named Def aul t Ti neZone. j ava
and compile it using the j avac command. Then, you can run the compiled Def aul t Ti neZone
class, as shown in the following example.

c:\tztest> javac Defaul t Ti meZone.java
c:\tztest> java Defaul t Ti meZone
Europe/Berlin

In the previous example, the default time zone is Europe/Berlin. Running the program should
display your local time zone. If the output is not the expected time zone, then continue with the
following troubleshooting steps.

Determine the Setting in the Control Panel

You can change or examine the system's default time zone using Windows Settings or the
Windows Control Panel. For example, you can select this time zone setting in Windows 10:

(UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

The corresponding value for the Registry key Ti meZoneKeyNane is “W. Europe Standard Time."

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE

Chapter 8
Determine the Default Time Zone on Windows

Check for Automatic Daylight Saving Time Adjustment

You can check whether the automatic adjustment of daylight saving time is enabled through
the graphical user interface (GUI) or through the Windows registry.

e GUI Method: To use the Control Panel to check whether automatic adjustment of daylight
saving time is enabled:

1.
2
3.
4

5.

Click the Windows Start button and then click Control Panel.
Click Date and Time.
Click the Change Time Zone button.

There is a check box labeled “Automatically adjust time for Daylight Savings Time.
“See if this check box is selected, and change the setting if you want.

Click OK. This returns you to the Date and Time dialog box.

e Windows Registry Method: You can run Windows Registry Editor to check whether
automatic adjustment of daylight saving time is enabled.

@® Note

It is a good practice to back up the Windows registry before reviewing or editing it.
If you make a mistake, you can damage the Windows registry.

To enable the automatic adjustment of daylight saving time from the Windows registry:

1.
2.

Click the Windows Start button.

In the Search programs and files field, enter regedit and then press Enter to open the
Registry Editor.

In the Registry Editor, search for the key DynamicDaylightTimeDisabled and look at
the setting.

If the registry setting is 1, then dynamic daylight time is disabled.

If the registry setting is 0, then dynamic daylight time is enabled.

If you prefer, you can access the Windows registry from the Windows command window.

In the following example, the registry setting is 1. With this setting, the clock is not
automatically adjusted for daylight saving time.

[HKEY_LOCAL_MACHI NE\ SYSTEM Cur rent Cont r ol Set\ Control \ Ti meZonel nf or mat i on]
"Dynam cDayl i ght Ti neDi sabl ed" =dwor d: 00000001

If you disable the Dynani cDayl i ght Ti meDi sabl ed option, then Java returns a GMT (Greenwich
Mean Time) offset and not a time zone ID that is compatible with the uniform naming
convention (such as "Europe/Berlin"). For example, the offset will be expressed as GMT+01
and not "Europe/Berlin."

Set the Default Time Zone in Windows Settings

You can change or review the system's default time zone by using Windows Settings.

To set the system's default time zone from Windows Settings:

Troubleshooting Guide
E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE

Chapter 8
Determine the Default Time Zone on Windows

1. Click the Windows Start button.

2. Click Settings.

3. Click Time & Language.

4. From the Time zone drop-down list, select your preferred time zone.

For example, you can select this time zone in Windows 10:

(UTC) +1: 00) Ansterdam Berlin, Bern, Rone, Stockholm Vienna.

The corresponding value for the Registry key Ti meZoneKeyNane is “W. Europe Standard Time."

Check -Duser.timezone System Property

You can explicitly set a default time zone on the command line by using the Java system
property called user. ti mezone. This bypasses the settings in the Windows operating system
and can be a workaround. For instance, this setting is useful if you want daylight saving time
(DST) only for a single Java program running on the system.

The following example shows the system property - Duser . ti mezone. Compile the
Def aul t Ti neTest Zone. j ava program discussed in Check the Default Time Zone Java Runtime
Reports from the Windows Command Prompt window. Run the following command:

c:\tztest> java -Duser.tinezone=Anerica/ New York Defaul t Ti meTest Zone Anerical
New_Yor k

If setting a default time zone explicitly by specifying - Duser . t i mezone works for the
Def aul t Ti neTest Zone program, but does not work for your program, you should check whether
your code overwrites the default Java time zone during runtime with a method call such as this:

Ti meZone. set Def aul t (Ti neZone zone)

Special Tool in Windows

The Windows operating system provides a tool called t zut i | . exe. With this tool, you can
request the current time zone ID abbreviation without manually reading the registry.

Here is an example of running t zut i | . exe. The first line is the command that you enter in the
Windows Command Prompt window. The second line is the system response.

tzutil /g

W Europe Standard Tine

Internal Representation of Time Zone Mappings

On Windows, the Java runtime uses a file <j ava- home>\| i b\ t znappi ngs to represent the
mapping between Windows and Java time zones. Each line in the file has three tokens. The
first token is the Windows time zone registry key called Ti meZoneKeyNane. See Determine the
Setting in the Control Panel.

The second token is a country code or the default code 001, which is the UN M49 code
meaning "World". The third token represents the Java time zone ID.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE

Chapter 8
Determine the Default Time Zone on Windows

If you select the time zone called (UTC+01: 00) Ansterdam Berlin, Bern, Rone,
St ockhol m Vi enna in the Windows Control Panel, then the relevant lines in the file
t zmappi ngs are:

Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti
Europe Standard Ti

: AD: Eur ope/ Andorra:

: AT: Eur ope/ Vi enna:

: CH: Eur ope/ Zuri ch:

: DE: Eur ope/ Ber | i n:

;G :Europe/Gbraltar:
.1 T: Eur ope/ Rone:

: LI : Eur ope/ Vaduz:

: LU: Eur ope/ Luxenbour g:
: MC: Eur ope/ Monaco:

: M. Eur ope/ Mal t a:

: NL: Eur ope/ Anst er dam
: NO Eur ope/ Gsl o:

: SE: Eur ope/ St ockhol m

: SJ: Arctic/ Longyear byen:
: SM Eur ope/ San_Mar i no:
: VA: Eur ope/ Vat i can:

: 001: Eur ope/ Berl i n:

SE=E=E=E=======E=s=s=s:s¢&=
Siddddcddctsoddsadda®®

In this example, the Java runtime recognizes your default time zone (token number three)
based on your country. For example, if your country code is AD, then your default time zone is
"Europe/Andorra”.

If there is no appropriate mapping entry in the t zmappi ngs file, then it is possible that
Microsoft introduced a new time zone in a Windows update and that the new time zone is not
available to the Java runtime. In this situation, you can file a bug report, and request a new
entry in the t zmappi ngs file from Oracle Java bugs website.

A similar disconnect between the operating system and the Java runtime is possible if you ran
the tool t zedi t . exe. This tool is provided by Microsoft, and allows users to add new time
zones. The Java runtime is unlikely to have a time zone introduced into the system by this tool.
Again, the solution is to file a bug to request that a new entry be added to the t zrmappi ngs
file.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 6 of 6

http://bugs.java.com

Debug Client Issues

This part describes Java client issues, troubleshooting techniques, and debugging tips for
client issues. The following topics are included.

¢ Introduction to Client Issues

Provides an overview of Java client technologies, describes Java client issues, and
troubleshooting tips.

« AWT

Provides guidance on specific procedures for debugging issues that occur with Java SE
Abstract Windows Toolkit (AWT).

« Java 2D
Provides guidance about troubleshooting some common issues found in Java 2D API.
e Swin

Provides guidance about troubleshooting some common issues found in Java SE Swing
API.

¢ Internationalization

Provides guidance about troubleshooting some issues found in Java Internationalization.
e Java Sound

Describes some issues and causes that happen with Java Sound technology and suggests
workarounds.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 1

Introduction to Client Issues

This chapter explains how the different Java SE Desktop technologies interact with each other.
In addition, the chapter helps you to pinpoint the technology from which you might start
troubleshooting your problem and provides general troubleshooting tips.

This chapter contains the following sections:

« Java SE Desktop Technologies

* General Steps to Troubleshoot an Issue

« Identify the Type of Issue

» Basic Tools

e Java Debug Wire Protocol

Java SE Desktop Technologies

Java SE Desktop consists of several technologies used to create rich client applications.

The desktop tools and libraries provide an interface between the Java application and the core
tools and libraries of the platform, as shown in Figure 9-1.

Figure 9-1 Overview of the Java SE Desktop

User Application

Desktop Technologies

Swing
Deployment Media APls

AWT Java 2D

Core Tools and Libraries

This topic describes troubleshooting techniques for the following Java SE desktop
technologies:

« Abstract Window Toolkit (AWT) provides a set of application programming interfaces
(APIs) for constructing graphical user interface (GUI) components such as menus, buttons,

Troubleshooting Guide
E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE Chapter 9
General Steps to Troubleshoot an Issue

text fields, dialog boxes, check boxes, and for handling user input through those
components. In addition, AWT allows for rendering of simple shapes such as ovals and
polygons and enables developers to control the interface layout and fonts used by their
applications. It also includes data transfer classes (including drag and drop) that allow cut
and paste through the native platform clipboard.

The classes of this API are at the bottom of the software stack (closest to the underlying
operating and desktop system).

AWT also provides a set of heavyweight components.

Purely AWT applications are usually not related to Swing. If an AWT application does
custom rendering, it uses Java 2D.

* Java 2D is a set of classes for advanced 2D graphics and imaging. It encompasses line
art, text, and images in a single comprehensive model. The API provides extensive support
for image compositing and alpha channel images, a set of classes to provide accurate
color space definition and conversion, and a rich set of display-oriented imaging operators.
These classes are provided as additions to the j ava. awt and j ava. awt . i mage packages.

Like AWT, Java 2D is also at the bottom of the software stack (closest to the underlying
operating and desktop system).

* Swing provides a comprehensive set of GUI components and services which enables the
development of commercial-quality desktop and Internet/Intranet applications.

Swing is built on top of many of the other Java SE Desktop technologies, including AWT,
Java2D and Internationalization. In most cases the Swing high-level components are
recommended instead of those in AWT. However, there are many APIs in AWT that are
important to understand when programming in Swing.

Since Swing is a lightweight toolkit, it has very little interaction with the native platform.
Swing uses Java 2D for rendering, and AWT provides creation and manipulation of top-
level components, such as Windows, Frames, and Dialogs.

* Internationalization is the process of designing software so that it can be adapted
(localized) to various languages and regions easily, cost-effectively, and in particular
without engineering changes to the software. Localization is performed by simply adding
locale-specific components, such as translated text, data describing locale-specific
behavior, fonts, and input methods.

In Java SE, internationalization support is fully integrated into the classes and packages
that provide language-dependent or culture-dependent functionality.

To know more about internationalization APls and features of Java SE, see
Internationalization Overview.

* Java Sound provides low-level support for audio operations such as audio playback and
capture (recording), mixing, musical instrument digital interface (MIDI) sequencing, and
MIDI synthesis in an extensible, flexible framework. This APl is supported by an efficient
sound engine which guarantees high-quality audio mixing and MIDI synthesis capabilities
for the platform.

The better you understand the relationships between these technologies, the more quickly you
can pinpoint the area your problem falls into.

General Steps to Troubleshoot an Issue

General steps to troubleshoot problems in your application.

When you experience problems running your application, follow the steps below for
troubleshooting the issue.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE Chapter 9
Identify the Type of Issue

1. Identify the symptom:
e ldentify the Type of Issue.

* Find the problem area.
* Note the vant configuration information.
2. Eliminate non-issues:
» Ensure that the correct patches, drivers, and operating systems are installed.
e Try earlier releases (back-tracing).
* Minimize the test. Restrict the test to as few issues at a time as possible.

* Minimize the hardware and software configuration. Determine if the problem is
reproducible on a single system and on multiple systems. Determine if the problem
changes with the browser version.

e Determine if the problem depends on whether multiple VMs are installed.
3. Find the cause:

e Check for typical causes in the area.

* Use flags to change defaults.

e Use tracing.

* In exceptional cases, use system properties to temporarily change the behavior of the
painting system.

4. Find the fix:
e Find a possible workaround.
e File a bug.

For guidance about how to submit a bug report and suggestions about what data to
collect for the report, see Submit a Bug Report.

e Fix the setup.

* Fix the application.

Identify the Type of Issue

Guidance about identifying the problem you are experiencing, and finding the cause and
solution.

First of all, take a moment to categorize the problem you are experiencing. This will help you to
identify the specific area of the problem, find the cause, and ultimately determine a solution or
a workaround.

The following subsections below provide information about common issue types:

» Java Client Crashes

* Performance Problems

* Behavior Problems

Some of these might seem obvious, but it is always helpful to consider every possibility and to
eliminate what is not an issue.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE Chapter 9
Identify the Type of Issue

Java Client Crashes

An error log is created that contains information and the state obtained at the time of the fatal
error, when the Java client crashes.

The default name of the error log file is hs_err_pid.log where pid is the process identifier (PID)
of the process that crashed. For a standalone Java application this file is created in the current
directory.

To know more about the fatal error log, see Fatal Error Log.

A line near the top of the header section indicates the library where the error occurred. The
following example shows that the crash was related to the AWT library.

Java VM Java Hot Spot (TM dient VM (1.6.0-beta2-b76 m xed node, sharing)
Problematic frane:
C [awt.dl | +0x123456]

If the crash occurred in the Java Native Interface (JNI), it was likely to have been caused by
the desktop libraries. A crash in a native library typically means a problem in Java 2D or AWT
because Swing does not have much native code. The small amount of native code in Swing is
then concerned with the native look and feel, and if your application is using native look and
feel, then the crash may be related to this area.

The error log usually shows the exact library where the crash occurred, and this can give you a
good idea of the cause. Crashes in libraries which are not part of the Java Development Kit
(JDK) usually indicate problems with the environment, for example, bad video drivers or
desktop managers.

Performance Problems

Performance problems are harder to diagnose because you generally do not have as much
information.

First, you must determine which technology has the problem. For example, rendering
performance problems are probably in Java 2D, and responsiveness issues can be Swing-
related.

Performance-related problems can be divided into the following categories:

e Startup
How long does the application take to start up and become useful to the user?
* Footprint

How much memory does the application take? This can be measured by tools such as
Task Manager on Windows or t op and pr st at on the Oracle Solaris and Linux operating
systems.

* Runtime

How fast does the application complete the task it is designed to perform? For example, if
the application computes something, how long does it take to finish the computations? In
the case of a game, is the frame rate acceptable, and does the animation look smooth?

Note: This is not the same as responsiveness, which is the next topic.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE

Chapter 9
Identify the Type of Issue

Responsiveness

How fast does the application respond to user interaction? If the user clicks a menu, how
long does it take for the menu to appear? Can a long-running task be interrupted? Does
the application repaint fast enough so that it does not appear to be slow?

Behavior Problems

Guidance about dealing with various problems in the application.

In addition to crashes, various behavior-related problems can occur. Some of these problems
are listed below. Their descriptions can guide you to the Java SE Desktop technology to
troubleshoot.

Troubleshooting Guide
E94880-09

Hangs occur when the application stops responding to user input. See Troubleshoot
Process Hangs and Loops .

Exceptions in Java code are visibly thrown to the console or the application log files. An
examination of this output will guide you to the problem area.

Rendering and repainting issues indicate a problem in Java 2D or in Swing. For
example, the application’s appearance is incorrect after a repaint that was caused by
another application being dragged over it. Other examples are incorrect font, wrong colors,
scrolling, damaging the application's frame by dragging another window over it, and
updating a damaged area.

A quick test is the following: If the problem is reproducible on a different platform (for
example, the problem was originally seen on Windows, and it is also present on Oracle
Solaris or Linux), it is very likely to be a Swing Pai nt Manager problem.

For the ways to change the Java 2D rendering pipelines with some flags, see Java 2D.
This can also help determine if the problem is related to Java 2D or to Swing.

Multiscreen-related repainting issues belong to Java 2D (for example, repainting problems
when moving a window from one screen to another, or other unusual behavior caused by
the interaction with a non-default screen device).

Issues related to desktop interaction indicate a problem in AWT. Some examples of
such issues occur when moving, resizing, minimizing and maximizing windows, handling
focus, enumerating multiple screens, using modality, interacting with the notification area
(system tray), and viewing splash screens.

Drag-and-drop problems are related to AWT.

Printing problems could be related either to Java 2D or AWT depending on the API that is
used.

Text-rendering issues in AWT applications might be a problem in font properties or in
internationalization.

However, if your application is purely AWT, text rendering problems might also be caused
by Java 2D. On Oracle Solaris or Linux, text rendering is performed by Java 2D.

Text rendering in Swing is performed by Java 2D. Therefore, if your application uses Swing
and you have text rendering problems (such as missing glyphs, incorrect rendering of
glyphs, incorrect spacing between lines or characters, bad quality of font rendering), then
the problem is likely to be in Java 2D.

Painting problems are most likely a Swing issue.
Full-screen issues are related to the Java 2D API.

Encoding and locales issues (for example, no locale-specific characters displayed)
indicate internalization problems.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE

Basic Tools

Chapter 9
Basic Tools

List of basic tools that can help troubleshoot certain types of issues.

This section lists a few tools that can help you troubleshoot certain types of issues.

Performance: Benchmarks, profilers, DTrace, Java probe.
FootPrint: | map, profilers

Crashes: Native debuggers

Hangs: JConsole, j st ack, Control+Break

Font-rendering: Font2DTest (delivered with the JDK 8 demos and samples bundle in the
deno/ j f ¢/ Font 2DTest directory)

Java Debug Wire Protocol

The Java Debug Wire Protocol (JDWP) is very useful for debugging applications.

To debug an application using JDWP:

1.

Troubleshooting Guide
E94880-09

Open the command line, and set the PATH environment variable to j dk/ bi n where j dk is
the installation directory of the JDK.

Use the following command to run the application (called Test in this example) that you
want to debug:

e On Windows:

java - Xdebug -
Xrunj dwp: transport =dt _shnem addr ess=debug, server =y, suspend=y Test

e On Oracle Solaris and Linux operating systems:

java - Xdebug -
Xrunj dwp: transport=dt _socket, addr ess=8888, server =y, suspend=y Test

The Test class will start in the debugging mode and wait for a debugger to attach to it at
address debug (on Windows) or 8888 (on Oracle Solaris and Linux operating systems).

Open another command line, and use the following command to run j db and attach it to
the running debug server:

e On Windows:
jdb -attach ' debug'

e On Oracle Solaris and Linux operating systems:

jdb -attach 8888

After j db initializes and attaches to Test, you can perform Java-level debugging.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 9
Java Debug Wire Protocol

4. Set your breakpoints and run the application. For example, to set the breakpoint at the
beginning of the mai n method in Test , run the following command:

stop in Test.main run

When the j db utility hits the breakpoint, you will be able to inspect the environment in
which the application is running and see if it is functioning as expected.

5. (Optional) To perform native-level debugging along with Java-level debugging, use native
debuggers to attach to the Java process running with JDWP.

e On Oracle Solaris, you can use the dbx utility and on Linux, you can use the gdb utility.
« On Windows, you can use Visual Studio for native-level debugging as follows:
a. Open Visual Studio.

b. On the Debug menu, select Attach to Process. Select the Java process that is
running with JDWP.

c. Onthe Project menu, select Settings, and open the Debug tab. In the Category
drop-down list, select Additional DLLs and add the native DLL that you want to
debug (for example, Test . dl |).

d. Open the source file (one or more) of Test . dl | and set your breakpoints.

e. Enter cont inthe j db window. The process will hit the breakpoint in Visual Studio.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 7 of 7

AWT

This chapter provides information and guidance about some specific procedures for
troubleshooting common issues that might occur in the Java SE Abstract Window Toolkit
(AWT).

This chapter contains the following sections:

» Debug Tips for AWT

e Layout Manager Issues

« Key Events

e Modality Issues
e AWT Crashes

e Focus Events
¢ Data Transfer
e Other Issues

» Heavyweight or Lightweight Components Mix

Debug Tips for AWT

Helpful tips to debug issues related to AWT.
To dump the AWT component hierarchy, press Control+Shift+F1.

If the application hangs, get a stack trace by pressing Control+Break on Windows (which
sends the SIGBREAK signal) or Control+\ on the Oracle Solaris and Linux operating systems
(which sends the SIGQUIT signal).

To trace X11 errors on the Oracle Solaris and Linux operating systems, set the
sun. awt . noi syerror handl er system property to true. In Java SE 6 and earlier releases, the
NO SY_AWT environment variable was used for this purpose.

Before Java SE 8, exceptions thrown in the AWT Event Dispatch Thread (EDT) could be
caught by setting the system property sun. awt . excepti on. handl er to the name of the class
that implements the publ i ¢ voi d handl e(Thr owabl) method. This mechanism was updated
in Java SE 8 to use the standard Thr ead. Uncaught Except i onHandl er interface.

Loggers can produce helpful output when debugging AWT problems. See j ava. util .| oggi ng
package description.

The following loggers are available:

j ava. awt

java. aw . focus
java. awt . event
java. awt . m xi ng
sun. awt

sun. awt . wi ndows

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 15

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.UncaughtExceptionHandler.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/package-summary.html

ORACLE

Chapter 10
Layout Manager Issues

sun. awm . X11

Layout Manager Issues

This section describes possible problems with layout managers and provides workarounds
when available.

The following problems occur with layout managers and workarounds:

1.

Key Events

Calltoi nval i dat e() and validate() increases component size

Cause: Due to some specifics of the Gri dBagLayout layout manager, if i padx or i pady is
set,andi nval i dat e() and val i dat e() are called, then the size of the component
increases to the value of i padx or i pady. This happens because the G i dBagLayout layout
manager iteratively calculates the amount of space needed to store the component within
the container.

Workaround: The JDK does not provide a reliable and simple way to detect if the layout
manager should rearrange components or not in such a case, but there is a simple
workaround. Use components with the overridden method get Pr ef err edSi ze(), which
returns the current size needed, as shown in the following example.

public Dinension getPreferredSi ze(){
return new Di mension(size+xpad*2+1, size+ypad*2+1);

}

Infinite recursion with val i dat e() from any Container.doLayout() method

Cause: Invoking val i dat e() from any Cont ai ner. doLayout () method can lead to
infinite recursion because AWT itself invokes doLayout () fromval i dat e().

Issues related to handling key events that do not have a solution in the current release.

The following keyboard issues are currently unresolved:

On some non-English keyboards, certain accented keys are engraved on the key and
therefore are primary layer characters. Nevertheless, they cannot be used for mnemonics
because there is no corresponding Java keycode.

Changing the default locale at runtime does not change the text that is displayed for the
menu accelerator keys.

On a standard 109-key Japanese keyboard, the yen key and the backslash key both
generate a backslash, because they have the same character code for the W\ CHAR
message. AWT should distinguish them.

The following keyboard issues concern the Oracle Solaris 10 and Linux x86 systems.

Troubleshooting Guide
E94880-09

Keyboard input in these systems is usually based on the X keyboard extension (XKB) of
the X Window System. Users can configure one keyboard layout (for instance, Danish: dk)
or several layouts to switch between (for example, us and dk).

With some keyboard layouts, for instance sk, hu, and cz, pressing the decimal separator
on the numeric keypad not only enters a delimiter but also deletes the previous character.
This is due to a native bug. A workaround is to use two layouts, for example, us and sk. In
this case, the numeric keypad works correctly in both layouts.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 2 of 15

ORACLE

Chapter 10
Modality Issues

e On UNIX systems that support dynamic keyboard changes, a running Java application
does not recognize such a change. For instance, changing the keyboard from US to
German does not change the keyboard mapping. Although the X server detects the
change and sends out a Mappi ngNot i fy event to interested clients AWT does not refresh
its notion of the keycode-keysym mapping.

Modality Issues

Information about issues related to using modality.

With the Java SE 6 release, many problems were fixed and many improvements were
implemented in the area of AWT modality. If you see a modality problem with Java SE 1.5 or
an earlier release, first upgrade to the latest Java SE release to see if the problem was already
fixed.

Some of the problems that were fixed in Java SE 6 are the following:

A modal dialog box goes behind a blocked frame.
« Two modal dialog boxes with the same parent window opened at the same time.

The section addresses the following issues.

* UNIX window managers:

Many of the modality improvements are unavailable in some Oracle Solaris or Linux
environments, for example, when using Common Desktop Environment (CDE) window
managers. With Java SE 6 and later releases, to see if a modality type or modal exclusion
type is supported in a particular configuration, use the following methods:

— Tool kit.isMdalityTypeSupported()
— Tool ki t.isMdal Excl usi onTypeSupported()

When a modal dialog box appears on the screen, the window manager might hide some of
the Java top-level windows in the same application from the taskbar. This can confuse end
users, but it does not affect their work much, because all the hidden windows are modal
blocked and cannot be operated.

e Other modality problems:

For more information about modality-related features and how to use them, see the AWT
Modality specification.

One of the sections in that specification describes some AWT features that might be
related to or affected by modal dialog boxes: always-on-top property, focus handling,
window states, and so on. Application behavior in such cases is usually unspecified or
depends on the platform; therefore, do not rely on any particular behavior.

AWT Crashes

This section shows you how to identify and troubleshoot crashes related to AWT.

e Distinguish an AWT crash:

When a crash occurs, an error log is created with information and the state obtained at the
time of the crash. See Fatal Error Log.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 3 of 15

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/doc-files/Modality.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/doc-files/Modality.html

ORACLE

Troubleshooting Guide
E94880-09

Chapter 10
AWT Crashes

A line near the top of the file indicates the library where the error occurred. The following
example shows part of the error log file in the case when the crash was related to the AWT
library.

Java VM Java Hot Spot (TM dient VM (1.6.0-beta2-b76 m xed node, sharing)
Problematic frane:
C [awt.dl | +0x123456]

However, the crash can happen somewhere deep in the system libraries, although still
caused by AWT. In such cases, the indication awt . dl | does not appear as a problematic
frame, and you need to look further in the file, in the section St ack: Native franmes: Java
frames as shown in the following example.

Stack: [0x0aeb0000, OxO0aef 0000), sp=0x0aeefad4, free space=254k
Native frames: (J=conpiled Java code, j=interpreted, W=VM code, C=native
code)

0x00abc751

[USER32. dI | +0x3a5f]

[USER32. dI | +0x3b2e]

[USER32. dI | +0x5874]

[USER32. dI | +0x58a4]

[ntdll.dll+0x108f]

[USER32. dI | +0Ox5e7e]

[awt. dl | +Oxec889]

[awt. dl | +Oxf 877d]

sun. awt . wi ndows. Wrool ki t. event Loop() V+0
sun. awt . wi ndows. Wrool ki t. run() V+69
java. | ang. Thread. run() V+11

~St ubRout i nes; :call_stub
[jvmdll+0x83c86]

[jvmdll+0xd870f]

[jvmdl | +0x83b48]

[jvmdl | +0x838a5]

[jvmdll+0x9ebc8]

[jvmdll+0x108bal]

[jvmdl | +0x108b6f]

[MSVCRT. dI | +0x27f b8]

[kernel 32. dl | +0x202ed]

OO0O0O000O0O0O0

NDo<< < <K<K <K<K <S—T—/—

Java franes: (J=conpiled Java code, j=interpreted, W=VM code)
j sun.awt.w ndows. Wrool ki t. event Loop() V+0

j sun.awt.w ndows. Wrool ki t.run()V+69

j java.lang. Thread. run()V+11

v ~StubRoutines:;:call_stub

If the text awt . dl | appears somewhere in the native frames, then the crash might be
related to AWT.

Troubleshoot an AWT crash:

One of the possible causes of crashes is that many AWT operations are asynchronous.
For example, if you show a frame with a call to f r ane. set Vi si bl e(t rue), then you
cannot be sure that it will be the active window after the return from this call.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 4 of 15

ORACLE Chapter 10
Focus Events

Another example concerns native file dialogs. It takes some time for the operating system
to initialize and show these dialogs, and if you dispose of them immediately after the call to
set Vi si bl e(true), then a crash might occur. Therefore, if your application contains
some AWT calls running simultaneously or immediately one after another, it is a good idea
to insert some delays between them or add some synchronization.

Focus Events

The following sections discuss the troubleshooting issues related to focus events:

e How to Trace Focus Events

* Native Focus System

e Focus Models Supported by X Window Managers

e Miscellaneous Problems with Focus

How to Trace Focus Events

You can trace focus events by adding a focus listener to the toolkit, as shown in the following
example.

Tool ki t. get Defaul t Tool kit ().addAWIEvent Li st ener (new AWEvent Li st ener (
public void event D spat ched(AWTEvent e) {
Systemerr.printin(e);
}
), FocusEvent.FOCUS _EVENT MASK | W ndowEvent. W NDOW FOCUS_EVENT_ MASK |
W ndowEvent . W NDOW EVENT _MASK) ;

The System err stream is used here because it does not buffer the output.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 5 of 15

ORACLE

Chapter 10
Focus Events

NOT_SUPPORTED

The correct order of focus events is the following:

e FOCUS_LGST on component losing focus

e W NDOW LCST_FQOCUS on top-level losing focus

* W NDOW DEACTI VATED on top-level losing activation

e W NDOW ACTI VATED on top-level becoming active widow

W NDOW GAI NED_FOCUS on top-level becoming focused window
» FOCUS_GAI NED on component gaining focus

When focus is transferred between components inside the focused window, only
FOCUS_LOST and FOCUS_GAI NED events should be generated. When focus is transferred
between owned windows of the same owner or between an owned window and its
owner, then the following events should be generated:

.« FOOUS_LOST
W NDOW LOST_FOCUS

- W NDOW GAI NED_FOCUS
. FOOUS_GAl NED

@® Note

The events losing focus or activation should come first.

Native Focus System

Sometimes, a problem can be caused by the native platform. To check this, investigate the
native events that are related to focus.

Ensure that the window you want to be focused gets activated and that the component you
want to focus receives the native focus event.

On the Windows platform, the native focus events are the following:

e WM ACTI VATE for a top-level. WPARAMis WA_ACTI VE when activating and WA_| NACTI VE when
deactivating.

e WM SETFOCUS and WM KI LLFOCUS for a component.

On the Windows platform, a concept of synthetic focus was implemented. It means that a
focus owner component only emulates its focusable state, whereas real native focus is set to a
focus proxy component. This component receives key and input method native messages
and dispatches them to a focus owner. Before JDK7, a focus proxy component was a
dedicated hidden child component inside a frame or dialog box. In the latest JDK releases a
frame or dialog box serves as a focus proxy. Now, it proxies focus not only for components in
an owned window but for all child components as well. A simple window never receives native
focus and relies on the focus proxy of its owner. This mechanism is transparent for a user but
should be taken into account when debugging.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 6 of 15

ORACLE

Chapter 10
Focus Events

On Oracle Solaris and Linux operating systems, XToolkit uses a focus model that allows AWT
to manage focus itself. With this model the window manager does not directly set input focus

on a top-level window, but instead it sends only the WM TAKE_FOCUS client message to indicate
that focus should be set. AWT then explicitly sets focus on the top-level window if it is allowed.

@® Note

The X server and some window managers may send focus events to a window.
However, these events are discarded by AWT.

AWT does not generate the hierarchical chains of focus events when a component inside a
top-level gains focus. Moreover, the native window mapped to the component does not get a
native focus event. On the Oracle Solaris and Linux platforms, as well as on the Windows
platform, AWT uses the focus proxy mechanism. Therefore, focus on the component is set by
synthesizing a focus event, whereas the invisible focus proxy has native focus.

A native window that is mapped to a W ndow object (not a Frame or Di al og object) has the
override-redirect flag set. Thus, the window manager does not notify the window about the
focus change. Focus is requested on the window only in response to a mouse click. This
window will not receive native focus events at all. Therefore, you can trace only Focusl n or
FocusQut events on a frame or dialog box. Because the major processing of focus occurs at
the Java level, debugging focus with XToolkit is simpler than with WToolkit.

Focus Models Supported by X Window Managers

The following focus models are supported by X window managers:

e Click-to-focus is a commonly used focus model. (For example, Microsoft Windows uses
this model.)

* Focus-follows-mouse is a focus model in which focus goes to the window that the mouse
hovers over.

Miscellaneous Problems with Focus

This section discusses issues related to focus in AWT that can occur and suggested solutions.

1. Linux + KDE, XToolkit cannot be switched between two frames when a frame's title
is clicked.

Clicking a component inside a frame causes the focus to change.
Solution: Check the version of your window manager and upgrade it to 3.0 or greater.

2. You want to manage focus using KeyLi st ener to transfer the focus in response to
Tab/Shift+Tab, but the key event doesn’t appear.

Solution: To catch traversal key events, you must enable them by calling
Conponent . set FocusTr aver sal KeysEnabl ed(true).

3. A window is set to modal excluded with
W ndow. set Modal Excl usi onType(Modal Excl usi onType).

The frame, its owner, is modal blocked. In this case, the window will also remain modal
blocked.

Solution: A window cannot become the focused window when its owner is not allowed to
get focus. The solution is to exclude the owner from modality.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 7 of 15

ORACLE Chapter 10
Focus Events

4. On Windows, a component requests focus and is concurrently removed from its
container.

Sometimes j ava. | ang. Nul | Poi nt er Exception: nul | pData is thrown.

Solution: The easiest way to avoid throwing the exception is to do the removal along with
requesting focus on EDT. Another, more complicated approach is to synchronize the
requesting focus and removal if you need to perform these actions on different threads.

5. When focus is requested on a component and the focus owner is immediately
removed, focus goes to the component after the removed component.

For example, Component A is the focus owner. Focus is requested on Component B, and
immediately after this Component A is removed from its container. Eventually, focus goes
to Component C, which is located after Component A in the container, but not to
Component B.

Solution: In this case, ensure that the requesting focus is executed after Component A is
removed, not before.

6. On Windows, when a window is set to al waysOnTop in an inactive frame, the window
cannot receive key events.

For example, a frame is displayed with a window that it owns. The frame is inactive, so the
window is not focused. Then, the window is set to al waysOnTop. The window gains focus,
but its owner remains inactive. Therefore, the window cannot receive key events.

Solution: Bring the frame to the front (the Fr ame. t oFr ont () method) before setting the
window to al waysOnTop.

7. When a splash screen is shown and a frame is shown after the splash screen
window closes, the frame does not get activated.

Solution: Bring the frame to the front (the Fr ane. t oFr ont () method) after showing it
(the Frane. set Vi si bl e(true) method).

8. The W ndowFocusLi st ener. wi ndowGai nedFocus(W ndowEvent) method does
not return the frame's most-recent focus owner.

For example, a frame is the focused window, and one of its components is the focus
owner. Another window is clicked, and then the frame is clicked again.

W NDOW GAI NED_FOCUS comes to the frame and the

W ndowFocusLi st ener . wi ndowGai nhedFocus(W ndowEvent) method is called.
However, inside of this callback, you cannot determine the frame's most-recent focus
owner, because Fr ane. get Most Recent FocusOaner () returns nul | .

Solution: You can get the frame's most recent focus owner inside the
W ndowLi st ener . wi ndowAct i vat ed(W ndowEvent) callback. However, by this time,
the frame will have become the focused window only if it does not have owned windows.

® Note

This approach does not work for the window, only for the frame or dialog box.

9. A window is disabled with Conponent . set Enabl ed(f al se), but is not get
completely unfocusable.

Solution: Do not assume that the condition set by calling

Conponent . set Enabl ed(f al se) or Conponent . set Focusabl e(fal se) will be
maintained unfocusable along with all its content. Instead, use the

W ndow. set Focusabl eW ndowSt at e(bool ean) method.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 8 of 15

ORACLE

Chapter 10
Data Transfer

Data Transfer

The following sections discuss possible problems with data transfer features, which allow you
to add drag-and-drop (DnD) and cut, copy, and paste (CCP) operations to the application.

Debug Drag-and-Drop Applications

Frequent Issues with Data Transfer

Debug Drag-and-Drop Applications

It is difficult to use a debugger to troubleshoot DnD features, because during the drag-and-drop
operation all input is grabbed. Therefore, if you place a breakpoint during DnD, you might need
to restart your X server. Try to use remote debugging instead.

Two simple methods can be used to troubleshoot most issues with DnD:

Printing all Dat aFl avor instances
Printing received data

An alternative to remote debugging is the System err. pri ntl n() function, which prints
output without delay.

Frequent Issues with Data Transfer

This section describes issues that frequently occur with data transfer operations in AWT and
suggests troubleshooting solutions.

1.

Troubleshooting Guide
E94880-09

Pasting a large amount of data from the clipboard takes too much time.

Using the Cl i pboar d. get Cont ent s() function for a paste operation sometimes causes
the application to hang for a while, especially if a rich application provides the data to
paste.

The d i pboar d. get Cont ent s() function fetches clipboard data in all available types
(for example, some text and image types), and this can be expensive and unnecessatry.

Solution: Use the Cl i pboar d. get Dat a() method to get only specific data from the
clipboard. If data in only one or a few types are needed, then use one of the following
A i pboar d methods instead of get Cont ent s() :

- DataFlavor[] getAvail abl eDat aFl avors()
* bool ean isDat aFl avor Avai | abl e(Dat aFl avor fl avor)
e (bject getData(DataFl avor flavor)

When a Java application uses Tr ansf er abl e. get Tr ansf er Dat a() for DhD
operations, the drag seems to take a long time.

In order to initialize transferred data only if it is needed, the initialization code was put in
Transf er abl e. get TransferDat a() .

Transf er abl e data is expensive to generate, and during a DnD operation
Tr ansf er abl e. get Tr ansf er Dat a() is invoked more than once, causing a slowdown.

Solution: Cache the Transf er abl e data so that it is generated only once.

Files cannot be transferred between a Java application and the GNOME/KDE
desktop and file browser.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 9 of 15

ORACLE

Troubleshooting Guide

E94880-09

Chapter 10
Data Transfer

On Windows and some window managers, transferred file lists can be represented as the
Dat aFl avor. j avaFi | eLi st Fl avor data type. But, not all window managers represent lists
of files in this format. For example, the GNOME window manager represents a file list as a
list of URIs.

Workaround: To get files, request data of type Stri ng, and then translate the string to a
list of files according to the text/uri-list format described in RFC 2483. To enable dropping
files from a Java application to GNOME/KDE desktop and file browser, export data in the
text/uri-list format. For an example, see the Work Around section from the RFE.

An image is passed to one of the st art Dr ag() methods of DragGest ur eEvent or
DragSour ce, but the image is not displayed during the subsequent DnD operation.

Solution: Move a window with an image rendered on it as the mouse cursor moves during
a DnD operation. See the code example in the Work Around section from the RFE.

There is no way to transfer an array using DnD.

The Dat aFl avor class has no constructor that handles arrays. The mime type for an array
contains characters that escapes. The code in the following example throws an
Il egal Argument Except i on.

new Dat aFl avor (Dat aFl avor. j avaJVM.ocal Obj ect M meType +
", class=" +
(new String[0]).getd ass().getName())

Solution: “Quote” the value of the representation class parameter, as shown in the
following example, where the quotation marks escape:

new Dat aFl avor (Dat aFl avor. j avaJVM.ocal Obj ect M meType +

; class=" +
Il\llll +
(new String[0]).getd ass().getName() +
Il\llll)

See bug report.
There are problems using AWT DnD support with Swing components.

Various problems can happen, for example, odd events are fired during a DnD operation,
multiple items cannot be dragged and dropped, an | nval i dDnDOper at i onExcepti on is
thrown.

Solution: Use Swing's DnD support with Swing components. Although the Swing DnD
implementation is based on the AWT DnD implementation, you cannot mix Swing and
AWT DnD. See Lesson: Drag and Drop and Data Transfer in the Java Tutorials.

There is no way to change the state of the source to depend on the target.

In order to change the state of the source to depend on the target, you must have
references to the source and target components in the same area of code, but this is not
currently implemented in the DnD API.

Workaround: One workaround is to add flags to the transferable object that allow you to
determine the context of the event.

For the transfer of data within one Java VM, the following workaround is proposed:

* Implement your target component as Dr agSour ceLi st ener.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 10 of 15

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4899516
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4899516
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4276926
http://docs.oracle.com/javase/tutorial/uiswing/dnd/

ORACLE

Chapter 10
Other Issues

 InDragGest ureRecogni zer. dragGest ur eRecogni zed() , add the target at the
drag source listener, as shown in the following example.

public void dragGestureRecogni zed(DragCest ureEvent dge) {
dge.startDrag(null, new
StringSel ection("SomeTransferedText"));

dge. get DragSour ce() . addDr agSour ceLi st ener (target);
}

* Now you can get the target and the source in the dr agEnt er (), dr agOver (),
dr opAct i onChanged(), and dr agDr opEnd() methods of
Dr agSour celLi st ener ().

Transferring objects in an application takes a long time.

The transferring of a big bundle of data or the creation of transferred objects takes too
long. The user must wait a long time for the data transfer to complete.

This expensive operation makes transferring too long because you must wait until
Tr ansf er abl e. get Tr ansf er Dat a() finishes.

Solution: This solution is valid only for transferring data within one Java VM. Create or get
expensive resources before the drag operation. For example, get the file content when you
create a transferable data, so that Tr ansf er abl e. get Tr ansf er Dat a() will not be too
long.

Other Issues

The following subsections discuss troubleshooting tips for other issues:

Splash Screen Issues

Tray Icon Issues

Pop-up Menu Issues

Background or Foreground Color Inheritance

AWT Panel Size Restriction

Hangs During Debugging of Pop-up Menus and Similar Components on X11
Window.toFront()/toBack() Behavior on X11

Splash Screen Issues

Issues that can happen with splash screen AWT and solutions.

This section describes some issues that can happen with the splash screen in AWT:

1.

Troubleshooting Guide
E94880-09

The user specified a JAR file with an appropriate MANI FEST. M- in - ¢l asspat h, but the
splash screen does not work.

Solution: See the solution for the next issue.

It is not clear which of several JAR files in an application should contain the splash
screen image.

Solution: The splash screen image will be picked from a JAR file only if the file is used
with the -j ar command-line option. This JAR file should contain both the "SplashScreen-

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 11 of 15

ORACLE

Chapter 10
Other Issues

Image" manifest option and the image file. JAR files in - cl asspat h will never be checked
for splash screens in MANI FEST. M. If you do not use -j ar, you can still use - spl ash to
specify the splash screen image in the command line.

3. Translucent PNG splash screens do not work on the Oracle Solaris and Linux
operating systems.

Solution: This is a native limitation of X11. On the Oracle Solaris and Linux operating
systems, the alpha channel of a translucent image will be compared with the 50%
threshold. Alpha values above 0.5 will make opaque pixels, and pixels with alpha values
below 0.5 will be completely transparent.

Tray Icon Issues

If a SecurityManager is installed, then the value of AWTPer ni ssi on must be set to
accessSyst enTray in order to create a Tr ayl con object.

Pop-up Menu Issues

In the JPopupMenu. set | nvoker () method, the invoker is the component in which the pop-
up menu is to be displayed. If this property is set to nul | , then the pop-up menu does not
function correctly.

The solution is to set the pop-up menu's invoker to itself.

Background or Foreground Color Inheritance

To ensure the consistency of your application on every platform, use explicit color assignment
(both foreground and background) for every component or container.

Many AWT components use their own defaults for background and foreground colors instead
of using parent colors.

This behavior is platform-dependent; the same component can behave differently on different
platforms. In addition, some components use the default value for one of the background or
foreground colors, but take the value from the parent for another color.

AWT Panel Size Restriction

The AWT container has a size limitation. On most platforms, this limit is 32,767 pixels.

This means that, for example, if the canvas objects are 25 pixels high, then a Java AWT panel
cannot display more than 1310 objects.

Unfortunately, there is no way to change this limit, neither with Java code nor with native code.
The limit depends on what data type the operating system uses to store the widget size. For
example, the Linux X windows system use the i nt eger type, and are therefore limited to the
maximum size of an integer. Other operating systems might use different types, such as | ong,
and in this case, the limit could be higher.

See the documentation for your platform.
The following are examples of workarounds for this limit that might be helpful:
» Display components, page by page.

* Use tabs to display a few components at a time.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 12 of 15

ORACLE Chapter 10
Heavyweight or Lightweight Components Mix

Hangs During Debugging of Pop-up Menus and Similar Components on X11

Set the - Dsun. awt . di sabl egr ab=t r ue system property during the debugging of certain
graphical user interface (GUI) components.

Certain graphical user interface (GUI) actions require grabbing all the input events in order to
determine when the action should terminate (for example, navigating pop-up menus). While
the grab is active, no other applications receive input events. If a Java application is being
debugged, and a breakpoint is reached while the grab is active, then the operating system
appears to hang. This happens because the Java application holding the grab is stopped by
the debugger and cannot process any input events, and other applications do not receive the
events due to the installed grab. In order to allow debugging such applications, the following
system property should be set when running the application from the debugger:

- Dsun. awt . di sabl egrab=true

This property effectively turns off setting the grab, and does not hang the system. However,
with this option set, in some cases, this can lead to the inability to terminate a GUI actions that
would normally be terminated. For example, pop-up menus may not be dismissed when
clicking a window's title bar.

Window.toFront()/toBack() Behavior on X11

Due to restrictions enforced by third-party software (in particular, by window managers such as
the Metacity), the t oFr ont () /t oBack() methods may not work as expected and cause the
window to not change its stacking order in relation to other top-level windows.

More details are available in the CR 6472274.

If an application wants to bring a window to the top, it can try to workaround the issue by
calling W ndow. set Al waysOnTop(true) totemporarily make the window always stay on
top and then calling set Al waysOnTop(f al se) to reset the "always on top" state.

@® Note

This workaround is not guaranteed to work because window managers can enforce
more restrictions. Also, setting a window to "always on top" is available to trusted
applications only.

However, native applications experience similar issues, and this peculiarity makes
Java applications behave similar to native applications.

Heavyweight or Lightweight Components Mix

The following issues are addressed in the heavyweight or lightweight (HW/LW) component
mixing feature:

e Validate the component hierarchy:

Changing any layout-related properties of a component, such as its size, location, or font,
invalidates the component as well as its ancestors. In order for the HW/LW Mixing feature
to function correctly, the component hierarchy must be validated after making such

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 13 of 15

ORACLE

Troubleshooting Guide

E94880-09

Chapter 10
Heavyweight or Lightweight Components Mix

changes. By default, invalidation stops on the top-most container of the hierarchy (for
example, a Frame object). Therefore, to restore the validity of the hierarchy, the application
should call the Frane. val i dat e() method. For example:

conponent . set Font (nyFont) ;
frane.validate();

frame refers to a frame that contains conponent .

@® Note

Swing applications and the Swing library often use the following pattern:

conponent . set Font (nyFont) ;
conmponent . reval i date();

The reval i dat e() callis not sufficient because it validates the hierarchy starting
from the nearest validate root of the component only, thus leaving the upper
containers invalid. In that case, the HW/LW feature may not calculate correct
shapes for the HW components, and visual artifacts may be seen on the screen.

To verify the validity of the whole component hierarchy, a user can use the key
combination Control+Shift+F1, as described in Debug Tips for AWT. A component
marked i nval i d may indicate a missing val i dat e() call somewhere.

Validate roots:

The concept of validate roots mentioned in Validate the component hierarchy was
introduced in Swing in order to speed up the process of validating component hierarchies
because it may take a significant amount of time. While such optimization leaves upper
parts of hierarchies invalid, this did not create any issues because the layout of
components inside a validate root does not affect the layout of the outside component
hierarchy (that is, the siblings of the validate root). However, when HW and LW
components are mixed together in a hierarchy, this statement is no longer true. That is why
the feature requires the whole component hierarchy to be valid.

Calling f rane. val i dat e() may be inefficient, and AWT supports an alternative,
optimized way of handling invalidation/validation of component hierarchies. This feature is
enabled with a system property:

-Djava. awt . snart | nval i date=true

Once this property is specified, the i nval i dat e() method will stop invalidation of the
hierarchy when it reaches the nearest validate root of a component on which the

i nval i dat e() method has been invoked. Afterward, to restore the validity of the
component hierarchy, the application should simply call:

conponent.reval i date();

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 14 of 15

ORACLE

Troubleshooting Guide
E94880-09

Chapter 10
Heavyweight or Lightweight Components Mix

@® Note

In this case, calling f r ane. val i dat e() would be effectively a no-op (a
statement that does nothing) because f r ane is still valid. Since some applications
rely on calling val i dat e() directly on a component upper than the validate root
of the hierarchy (for example, a frame), this new optimized behavior may cause
incompatibility issues, and hence it is available only when specifying the system

property.

If an application experiences any difficulties running in this new optimized mode, a user
can use the key combination Control+Shift+F1 as described in Debug Tips for AWT to
investigate what parts of the component hierarchy are left invalid, and thus possibly cause
the problems.

Swing painting optimization:

By default, the Swing library assumes that there are no HW components in the component
hierarchy, and therefore uses optimized drawing techniques to boost performance of the
Swing GUI. If a component hierarchy contains HW components, the optimizations must be
turned off. This is relevant for Swing JScr ol | Panes in the first place. You can change the
scrolling mode by using the JVi ewPor t . set Scrol | Mode(i nt) method.

Non-opaque LW components:

Non-opaque LW components are not supported by the HW/LW mixing feature
implementation by default. In order to enable mixing non-rectangular LW components with
HW components, the application must use the

com sun.awt. AWTUtilities. set Conponent M xi ngCut out Shape() non-public
API.

@® Note

The non-rectangular LW components should still paint themselves using either
opaque (alpha = 1.0) or transparent (alpha = 0.0) colors. Using translucent colors
(with 0.0 < alpha < 1.0) is not supported.

Disable the default HW/LW mix feature:

In the past, some developers have implemented their own support for cases when HW and
LW components must be mixed together. In order to disable the built-in feature the
application must be started with the following system property:

- Dsun. awt . di sabl eM xi ng=true

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 15 of 15

Java 2D Pipeline Rendering and Properties

This chapter provides information and guidance for troubleshooting some of the most common
issues that might be found in the Java 2D APl when changing pipeline rendering and
properties.

For a summary of Java 2D properties, see Java 2D Properties.

By choosing a different pipeline, or manipulating the properties of a pipeline, you might be able
to determine the cause of the problem, and often find a workaround.

In general, you can troubleshoot Java 2D pipeline issues by determining the default pipeline
used in your configuration. Then, either change the pipeline to another one, or modify the
properties of the default pipeline.

If the problem disappears, then you found a workaround. If the problem persists, then try
changing another property or pipeline.

Java 2D uses a set of pipelines, which can be roughly defined as different ways of rendering
the primitives. These pipelines are as follows:

¢ Oracle Solaris and Linux: X11 Pipelineis the default for the Oracle Solaris and Linux
operating systems.

« Windows OS: DirectDraw/GDI Pipeline is the default on Windows

« Windows OS: Direct3D Pipeline in Full-Screen Mode is an alternative on Windows.

e OpenGL Pipeline in Oracle Solaris, Linux, and Windowsis an alternative on the Oracle
Solaris and Linux operating systems, as well as Windows.

Oracle Solaris and Linux: X11 Pipeline

On UNIX platforms, the default pipeline is the X11 pipeline. This pipeline uses the X protocol
for rendering to the screen or to certain types of offscreen images, such as Vol ati | el mages, or
"compatible" images (images that are created with the

Graphi csConfi gurati on. creat eConpati bl el nrage() method).

These types of images can be put into X11 pixmaps for improved performance, especially in
the case of the Remote X server.

In addition, in certain cases, Java 2D uses X server extensions, for example, the MIT X shared
memory extension, or Direct Graphics Access extension, Double-buffer extension for double-
buffering when using the Buf f er St rat egy API.

An additional pipeline, the OpenGL pipeline, might offer greater performance in some
configurations.

The following are X11 pipeline properties to troubleshoot.

* X11 Pipeline Pixmaps Properties

e X11 Pipeline MIT Shared Memory Extension
* Oracle Solaris on SPARC: DGA Support
e Oracle Solaris on SPARC - Change Java 2D Default Visual

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 9

ORACLE Chapter 11
Oracle Solaris and Linux: X11 Pipeline

X11 Pipeline Pixmaps Properties

Java 2D by default uses X11 pixmaps for storing or caching certain types of offscreen images.
Only the following types of images can be stored in pixmaps:

* Opaque images, in which case Col or Model . get Tr anspar ency() returns
Transpar ency. OPAQUE

* 1-bit transparent images (also known as sprites, Tr anspar ency. Bl TMASK)

The advantage of using pixmaps for storing images is that they can be put into the
framebuffer's video memory at the driver's discretion, which improves the speed at which these
pixmaps can be copied to the screen or another pixmap.

The use of pixmaps typically results in better performance. However, in certain cases, the
opposite is true. These cases typically involve the use of operations that cannot be performed
using the X protocol, such as antialiasing, alpha compositing, and transforms that are more
complex than simple translation transforms.

For these operations, the X11 pipeline must do the rendering using the built-in software
renderer. In most cases, this includes reading the contents of the pixmap to system memory
(over the network in the case of remote X server), performing the rendering, and then sending
the pixels back to the pixmap. These operations could result in extremely poor performance,
especially if the X server is remote.

The following are two cases to disable the use of X11 pipeline:
» Disable X11 pipeline pixmaps:

To disable the use of pixmaps by Java2D, pass the following property to the Java VM: -
Dsun. j ava2d. pnof f scr een=f al se.

» Disable X11 pipeline shared memory pixmaps:

To minimize the effect of operations that require reading pixels from a pixmap on overall
performance, the X11 pipeline uses shared memory pixmaps for storing images that are
often read from.

@ Note

The shared memory pixmaps can only be used in the case of a local X server.

The advantage of using shared memory pixmaps is that the pipeline can get direct access
to the pixels in the pipeline, bypassing the X11 protocol, which results in better
performance.

By default, an image is stored in a normal X server pixmap, but it can be later moved to a
shared memory pixmap if the pipeline detects excessive reading from such an image. The
image can be moved back to a server pixmap if it is copied from often enough.

The pipeline allows two ways of controlling the use of shared memory pixmaps: either
disabling them or forcing all images to be stored in shared memory pixmaps.

First, try forcing the shared memory pixmaps because it often improves performance.
However, with certain video board/driver configurations, it may be necessary to disable the
shared memory pixmaps to avoid rendering artifacts or crashes.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 2 of 9

ORACLE Chapter 11
Oracle Solaris and Linux: X11 Pipeline

— To disable shared memory pixmaps, set the J2D Pl XMAPS environment variable to
server. This is the default in remote X server case.

— To force all pixmaps to be created in shared memory, set J2D_PI XMAPS to shar ed.

X11 Pipeline MIT Shared Memory Extension

The Java 2D X11 pipeline uses the MIT Shared Memory Extension (MIT SHM), which allows a
faster exchange of data between the client and the X server. This can significantly improve the
performance of Java applications.

The following are two ways to improve the performance of the Java application.

* Increase X Server and Java 2D shared memory:

On the Oracle Solaris operating system releases 8 and earlier, it was sometimes
necessary to increase the amount of shared memory available to the system (and to X
server in particular) because the default was too low, resulting in poor rendering
performance. Increasing the amount of shared memory and shared memory segments can
result in better performance.

To change the default settings on the Oracle Solaris operating system, edit the / et ¢/
system file and change the shrsys: shni nf 0_* settings, as shown in the following example.
Note that this is not needed on Oracle Solaris 9 and later.

set shnsys: shni nf o_shnmmmax=10000000
set shnsys: shmi nf o_shmi =200
set shnsys: shni nf o_shni nf 0=150

On Linux, this setting can be configured by editing the / pr oc/ sys/ ker nel / shn¥t files.
e Disable X11 pipeline shared memory extension:

In case of problems (such as crashes, or rendering artifacts) with older X servers and the
Shared Memory Extension, it is useful to be able to disable the extension. To disable the
use of MIT SHM, set the J2D_USE_M TSHMenvironment variable to f al se.

Oracle Solaris on SPARC: DGA Support

On SPARC hardware, if the framebuffer supports Sun's Direct Graphics Access (DGA) X
server extension, and Java 2D has a corresponding module for accessing the framebuffer, then
DGA will be used for rendering to the screen.

All offscreen images will reside in Java heap memory, and Java 2D's software-only rendering
pipeline is used for rendering to them. This is different from a typical UNIX configuration, where
X11 pixmaps are used for offscreen images.

The following are use cases that describe how to detect DGA extension support and disable or
enable DGA:

* DGA extension for rending

To detect if the DGA extension is used for rendering to the screen, run any Java
application that does some rendering or displays a GUI, and check if a/ t mp/ wg* file was
created when the application started. Exit the application and verify that the file was
deleted. If this is the case, then on this system, Java 2D is using DGA.

e Typical DGA Issues:

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 3 of 9

ORACLE

Chapter 11
Windows OS: DirectDraw/GDI Pipeline

Because DGA allows direct access to the framebuffer's video memory, the typical
problems include corruption outside of window bounds, complete system, and X server
lock-ups.

« Enable or Disable DGA:

If you determine that DGA is being used, the first thing to try is to disable it. This can be
done by setting the NO_J2D DGA environment variable to t r ue. This forces the default UNIX
path to use only X11 for rendering to the screen, and pixmaps for accelerating offscreen
images.

Sometimes, it could be beneficial to enable the use of pixmaps, while also using DGA for
rendering to the screen. To force the use of pixmaps for accelerating offscreen images, set
the following property when starting the application: -

Dsun. j ava2d. pnof f scr een=t r ue.

Oracle Solaris on SPARC - Change Java 2D Default Visual

On certain video boards on the SPARC platform, more than one visual can be available from
the X server.

By default, Java 2D tries to select the best visual, where "best" is typically a higher-bit depth
visual. For example, on some Oracle Solaris operating system releases, the default X11 visual
is 8-bit PseudoColor, although 24-bit visual is also available. In these cases, Java 2D selects a
24-bit TrueColor visual as the default for Java windows.

While it is possible to create a Java top-level window with a G- aphi csConfi gurati on object
corresponding to a different visual, in some cases, it is necessary to make Java use a different
default visual instead. This can be done by setting the FORCEDEFVI S environment variable. It
can be set to t r ue to force the use of the default X server visual (even if it is not the best one),
or it can be set to a hexadecimal number corresponding to the visual ID as reported by tools
like xdpyi nf o.

To determine your X server default visual, execute the xdpyi nf o command and look at the
default visual id field.

Windows OS: DirectDraw/GDI Pipeline

The default pipeline on the Windows platform is a mixture of the DirectDraw pipeline and the
GDI pipeline, where some operations are performed with the DirectDraw pipeline and others
with the GDI pipeline. DirectDraw and GDI APls are used for rendering to accelerated
offscreen and onscreen surfaces.

The possible issues with the Direct3D pipeline include rendering artifacts, crashes, and
performance related problems.

An additional pipeline, the OpenGL pipeline, might offer greater performance in some
configurations.

The following are three cases to troubleshoot issues with the Direct3D pipeline such as
rendering artifacts, crashes, and performance related problems:

e Disable the DirectDraw pipeline:

When DirectDraw is disabled, all operations are performed with GDI. Provide the following
flag to disable the use of DirectDraw: - Dsun. j ava2d. noddr aw=t r ue. In this case, all
offscreen images will be created in the Java heap, and rendered with the default software
pipeline. All onscreen rendering, as well as copies of offscreen images to the screen, will
be performed using GDI.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 4 of 9

ORACLE

Troubleshooting Guide
E94880-09

Chapter 11
Windows OS: DirectDraw/GDI Pipeline

Enable the DirectDraw pipeline:

If the pipeline was disabled by default for some reason, then it can be enabled by providing
the - Dsun. j ava2d. noddr aw=f al se flag to the VM.

However, typically there was a reason why it was disabled in the first place, so it is better
not to force it.

Disable the built-in punting mechanism:

In general, the DirectDraw pipeline attempts to place the offscreen surfaces in the
framebuffer's video memory, which provides the fast copies from these surfaces to the
screen or other accelerated surfaces, as well as hardware accelerated rendering of certain
graphics operations.

To limit the effect of unaccelerated rendering to VRAM-based surfaces, there exists a
punting mechanism, which moves the surface that is detected to be often read from to the
system memory. If the surface is found to be copied from often enough, it may be
promoted back to video memory.

However, if the pipeline cannot perform an operation using the DirectDraw API (operations
using, for example, alpha compositing, or transforms, or antialiasing), then rendering is
performed using the software pipeline. In some cases, this means that the pixels of the
destination surface, which resides in VRAM, must be read into system memory, which is a
very expensive operation.

On certain video boards/drivers combinations, the system-memory-based DirectDraw
surfaces are known to cause rendering artifacts and other issues. The DirectDraw pipeline
provides a way to disable the punting mechanism so that the system memory surfaces are
not used.

To defeat the built-in surface punting mechanism, provide the following flag to the Java
VM: - Dsun. j ava2d. ddf or cevr an¥t r ue.

@® Note

This mechanism can result in performance degradation because the software
loops may be reading pixels from VRAM on each operation. In this case, consider
disabling the DirectDraw pipeline.

Disable the DirectDraw BILT operations:

In a Bit Block Transfer (BILT) operation, two bitmap patterns are combined. This operation
corresponds to a call to the Gr aphi cs. dr aw nage() API.

In some cases, it is possible to avoid rendering problems by disabling the DirectDraw BLIT
operations. GDI BLITs will be used instead.

@® Note

This operation might result in bad performance. Consider disabling the DirectDraw
pipeline instead.

To disable the use of DirectDraw BLIT operations, pass the parameter -
Dsun. j ava2d. ddbl i t =f al se to the Java VM.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 5 of 9

ORACLE Chapter 11
Windows OS: Direct3D Pipeline in Full-Screen Mode

Windows OS: Direct3D Pipeline in Full-Screen Mode

This pipeline is enabled in full-screen mode by default, if the drivers support the required
features and the level of rendering quality.

It is possible to enable the Direct3D pipeline or to force its use, as described in the following
sections.

Consider enabling the Direct3D pipeline for your application if it heavily uses rendering
operations such as alpha compositing, antialiasing, and transforms.

However, use caution when deciding to enable this pipeline in your application. For example,
some built-in video chipsets (which are used in most notebooks) do not perform well using
Direct3D, even if they satisfy the quality requirements for Java 2D pipelines.

The following are three cases to troubleshoot problems with Direct3D API.

1. Disable the Direct3D pipeline:

Some older video boards/drivers combinations are known to cause issues (both rendering
and performance) with the Direct3D pipeline. To disable the pipeline in these cases, pass
the parameter - Dsun. j ava2d. d3d=f al se to the Java VM, or set the J2D D3D
environment variable to f al se.

2. Enable the Direct3D pipeline:

To enable the Direct3D pipeline in both windowed and full-screen mode, use the parameter
- Dsun. j ava2d. d3d=t r ue, or set the J2D_D3D environment variable to t r ue.

@® Note

The pipeline is enabled only if the drivers support the minimum required features.

3. Diagnose the Direct3D pipeline rendering problems:

Some rendering issues (like missing pixels, garbled rendering) can be diagnosed by
forcing different Direct3D rasterizers. Set the J2D_D3D_RASTERI ZER environment variable to
one of the following: ref , rgb, hal , ortnl .

See the Direct3D documentation for a description of these rasterizers. By default, the best
rasterizer is chosen based on its advertised capabilities. In particular, the r ef rasterizer
forces the use of the reference Direct3D rasterizer from Microsoft. If a rendering problem is
not reproducible with this rasterizer, then it is likely to be a video driver bug.

The r gb rasterizer is available only if the Direct3D SDK is installed. The Software
Rasterizer for the Microsoft DirectX 9.0 Software Development Kit (SDK) is compatible with
Microsoft Direct 3D. This can be obtained from Software Rasterizer for the Microsoft
DirectX 9.0 Software Development Kit (SDK). Alternatively, download the Microsoft
DirectX® End-User Runtime. For more information about the Direct3D SDK, see Enabling
Support for the Direct3D Version 11 DDI.

For performance or quality problems with text rendering with the Direct3D pipeline, you can
force the use of the ARGB texture instead of the default Alpha texture for the Direct3D
pipeline's glyph cache. To do this, set the J2D D3D_NOALPHATEXTURE environment variable
totrue.

Troubleshooting Guide
E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Page 6 of 9

https://download.cnet.com/Software-Rasterizer-for-the-Microsoft-DirectX-9-0-Software-Development-Kit-SDK/3000-2070_4-10725516.html
https://download.cnet.com/Software-Rasterizer-for-the-Microsoft-DirectX-9-0-Software-Development-Kit-SDK/3000-2070_4-10725516.html
https://www.microsoft.com/en-us/download/details.aspx?id=35
https://www.microsoft.com/en-us/download/details.aspx?id=35
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/enabling-support-for-the-direct3d-version-11-ddi
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/enabling-support-for-the-direct3d-version-11-ddi

ORACLE Chapter 11
OpenGL Pipeline in Oracle Solaris, Linux, and Windows

OpenGL Pipeline in Oracle Solaris, Linux, and Windows

The OpenGL pipeline is available on Oracle Solaris, Linux, and Windows.

This alternate pipeline uses the hardware-accelerated, cross-platform OpenGL APl when
rendering to Vol at i | el mages, to backbuffers created with Buf f er St rat egy API, and to the
screen.

This pipeline can offer great performance advantages over the default (X11 or GDI/DirectDraw)
pipelines for certain applications. Consider enabling the pipeline for your application if it heavily
uses of rendering operations like alpha compositing, antialiasing, and transforms.

The following are use cases for troubleshooting problems in OpenGL pipeline

* Enable OpenGL Pipeline

¢ Minimum Requirements

* Diagnose Startup Issues

» Diagnose Rendering and Performance Issues

e Latest OpenGL Drivers

Enable OpenGL Pipeline

The OpenGL pipeline is disabled by default.
To attempt to enable the OpenGL pipeline, provide the following option to the JVM:
- Dsun. j ava2d. opengl =Tr ue

To receive verbose console output about whether the OpenGL pipeline is initialized
successfully for a particular screen, set the option to Tr ue (note the uppercase T).

Minimum Requirements

The OpenGL pipeline will not be enabled if the hardware or drivers do not meet the minimum
requirements.

If one of the following requirements is not met, Java 2D will fall back and use the default
pipeline (X11 on Oracle Solaris/Linux or GDI/DirectDraw on Windows), which means your
application will continue to work correctly, but without the OpenGL acceleration.

The minimum requirements for the Oracle Solaris and Linux operating systems are the
following:

e Hardware accelerated OpenGL/GLX libraries installed and configured properly
* OpenGL version 1.2 or higher

¢ GLX version 1.3 or higher

* At least one TrueColor visual with an available depth buffer

The minimum requirements for Windows OS are the following:

e Hardware accelerated drivers supporting the extensions WG__ARB_pbuf f er,
WGE._ARB render _texture, and WAL_ARB pi xel _f or mat

e OpenGL version 1.2 or higher

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 7 of 9

ORACLE Chapter 11
OpenGL Pipeline in Oracle Solaris, Linux, and Windows

* At least one pixel format with an available depth buffer

Diagnose Startup Issues

You can get detailed information about the startup procedures of the OpenGL-based Java 2D
pipeline by using the J2D_TRACE_LEVEL environment variable.

As previously mentioned, the OpenGL pipeline might not be enabled on certain machines for
various reasons. For example, the drivers might not be properly installed and might report an
insufficient version number. Alternatively, your machine might have an older graphics card that
does not support the appropriate OpenGL version or extensions.

In the Java SE 6 and later releases, you can get detailed information about the startup
procedures of the OpenGL-based Java 2D pipeline by using the J2D TRACE_LEVEL environment
variable, as shown in the following examples.

Set the J2D TRACE LEVEL environment variable on Windows.

set J2D TRACE LEVEL=4
java -Dsun.java2d. opengl =True Your App

Set the J2D TRACE _LEVEL environment variable on Solaris and Linux.

export J2D TRACE LEVEL=4
java -Dsun.java2d. opengl =True Your App

The output will be different depending on your platform and the installed graphics hardware,
but it can give you some insight into the reasons why the OpenGL pipeline is not being
successfully enabled for your configuration.

® Note

This output is especially useful when filing bug reports intended for the Java 2D team
at Sun.

Diagnose Rendering and Performance Issues

Diagnose if rendering or performance issues are being caused by Java 2D or by the OpenGL
drivers.

Because the OpenGL pipeline relies so heavily on the underlying graphics hardware and
drivers, it might sometimes be difficult to determine whether rendering or performance issues
are being caused by Java 2D or by the OpenGL drivers.

One feature new to the OpenGL pipeline in the Java SE 6 release is the use of the

GL_EXT framebuffer_object extension, which provides better performance for rendering and
reduced VRAM consumption when using Vol ati | el nages. This "FBO" codepath is enabled by
default when the OpenGL pipeline is enabled, but only if your graphics hardware and driver
support this OpenGL extension. This extension is generally available on Nvidia GeForce/
Quadro FX series and later, and on ATl Radeon 9500 and later. If you suspect that the "FBO"
codepath is causing problems in your application, then you can disable it by setting the
following system property:

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 8 of 9

ORACLE Chapter 11
Latest OpenGL Drivers

- Dsun. j ava2d. opengl . f bobj ect =f al se
Setting this property will cause Java 2D to fall back on the older pbuf f er - based codepath.

If you find that a certain Java 2D operation causes different visual results with the OpenGL
pipeline enabled than without, then it probably indicates a graphics driver bug. Similarly, if the
performance of Java 2D rendering is significantly worse with the OpenGL pipeline enabled
than without, then it is most likely caused by a driver or hardware problem.

In either case, file a detailed bug report through the normal bug reporting channels. See
Submit a Bug Report. When filing bug reports, be as detailed as possible, and include the
following information:

e Operating system (for example, Ubuntu Linux 6.06, Windows XP SP2)

« Name of graphics hardware manufacturer and device (for example, Nvidia GeForce 2 MX
440)

e Exact driver version (for example, ATl Catalyst 6.8, Nvidia 91.33)

e Output when J2D TRACE_LEVEL=4 is specified on the command line (as described in the
previous section)

e The output of the gl xi nf o command if you are on Oracle Solaris or Linux

Latest OpenGL Drivers

Because the OpenGL pipeline relies heavily on the OpenGL API and the underlying graphics
hardware and drivers, it is very important to ensure that you have the latest graphics drivers
installed on your computer. The following table lists graphics card manufacturers with their
corresponding supported platforms and some examples of cards that are known to support

OpenGL.
Manufacturer Platforms Cards Known to Work
AMD Linux, Windows Radeon 8500 and later, FireGL series
Nvidia Oracle Solaris on x64, Linux, Windows GeForce 2 series and later, Quadro FX
series and later
Oracle Oracle Solaris on SPARC Expert3D series, XVR-500, XVR-600,
XVR-1200, XVR-2500
Xi Graphics Oracle Solaris on x86, Linux Various (check with Xi Graphics)

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 9 of 9

Java 2D

This chapter provides information and guidance for troubleshooting some of the most common
issues that might be found in the Java 2D API.

This chapter contains the following sections:

e Generic Performance Issues

* Text-Related Issues

e Java 2D Printing

For a summary of Java 2D properties, see Java 2D Properties.

Generic Performance Issues

There could be many causes for poor rendering performance. The following topics identify the
cause for your applications poor rendering performance and suggests some approaches to
improve performance of software-only rendering.

This topic contains the following subsections:

« Hardware-Accelerated Rendering Primitives

* Primitive Tracing to Detect and Avoid Non-Accelerated Rendering

e Causes of Poor Rendering Performance

* Improve Performance of Software-only Rendering

Hardware-Accelerated Rendering Primitives

In order to better understand what could be causing performance problems, take a look at what
hardware acceleration means.

In general, hardware-accelerated rendering could be divided into two categories.

e Hardware-accelerated rendering to an "accelerated" destination. Examples of rendering
destinations that can be hardware-accelerated are Vol ati | el mage, screen and
Buf f er St r at egy. If a destination is accelerated, then rendering goes to a surface may be
performed by video hardware. So, if you issue a dr awRect call, Java 2D redirects this call
to the underlying native API (such as GDI, DirectDraw, Direct3D or OpenGL, or X11),
which performs the operation using hardware.

e Caching images in accelerated memory (video memory or pixmaps) so that they can be
copied very fast to another accelerated surface. These images are known as managed
images.

Ideally, all operations performed on an accelerated surface are hardware-accelerated. In this
case, the application takes full advantage of what is offered by the platform.

Unfortunately in many cases the default pipelines are not able to use the hardware for
rendering. This can happen due to the pipeline limitations, or the underlying native API. For
example, most X servers do not support rendering antialiased primitives, or alpha compositing.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 10

ORACLE

Chapter 12
Generic Performance Issues

One cause of performance issues is when operations performed are not hardware-accelerated.
Even in cases when a destination surface is accelerated, some primitives may not be.

It is important to know how to detect the cases when hardware acceleration is not being used.
Knowing this may help in improving performance.

Primitive Tracing to Detect and Avoid Non-Accelerated Rendering

To detect a non-accelerated rendering, you can use Java 2D primitive tracing.

Run your application with - Dsun. j ava2d. t race=count . When the application exits, a list of
primitives and their counts is printed to the console.

Any time you see a MaskBl i t or any of the Gener al * primitives, it typically means that some of
your rendering is going through software loops. Here is the output from performing dr aw mage
on a translucent Buf f er edl mage to a Vol ati | el mage on Linux:

sun. j ava2d. | oops. Bl i t $CGeneral MaskBlit::Blit(IntArgh, SrcOverNoEa, "Integer
BGR Pi xmap")sun.java2d. | oops. MaskBlit:: MaskBlit(IntArgb, SrcOver, IntBgr)

Here are some of the common non-accelerated primitives in the default pipelines, and their
signatures in the tracing output.

@® Note

Most of this tracing was taken on Linux; you may see some differences depending on
your platform and configuration.

e Translucent images (images with Col or Model . get Tr ansl ucency()
returnTr ans| ucency. TRANSLUCENT), or images with Al phaConposi ti ng. Sample primitive
tracing output:

sun. java2d. | oops. Bl i t $General MaskBlit::Blit(IntArgb, SrcOverNoEa, "I nteger
BGR Pi xmap") sun. j ava2d. | oops. MaskBlit:: MaskBlit(IntArgb, SrcOver, |ntBgr)

« Use of antialiasing (by setting the antialiasing hint). Sample primitive tracing output:
sun. j ava2d. | oops. MaskFi | | :: MaskFi | | (AnyCol or, Src, IntBgr)

* Rendering antialiased text (setting the text antialising hint). Sample output can be one of
the following:

— sun.java2d. | oops. Drawd yphLi st AA: : Drawd yphLi st AA(OpaqueCol or, SrcNoEa,
Anyl nt)

— sun.java2d. | oops. Drawd yphLi st LCD: : Drawd yphLi st LCD(AnyCol or, SrcNoEa,
[nt Bgr)

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 2 of 10

ORACLE

Chapter 12
Generic Performance Issues

Alpha compositing, either by rendering with translucent color (a color with an alpha value
that is not Oxf f) or by setting a non-default Al phaConposi ti ng mode with
G aphi cs2D. set Conposite():

sun. java2d. | oops. Bl i t $General MaskBlit::Blit(IntArgb, SrcOver,
I nt Rgb) sun. j ava2d. | oops. MaskBl i t:: MaskBlit(IntArgh, SrcOver, |ntRgh)

]

Non-trivial transforms (if the transform is more than only translation). Rendering a
transformed opaque image to a Vol ati | el mage:

sun. j ava2d. | oops. Transf or ntHel per: : Transf or nHel per (I nt Bgr, SrcNoEa,
I nt Ar gbPre)

Rendering a rotated line:

sun. j ava2d. | oops. Dr awPat h: : Dr awPat h(AnyCol or, SrcNoEa, Anylnt)

Run your application with tracing and ensure that you do not use unaccelerated primitives
unless they are needed.

Causes of Poor Rendering Performance

List of causes of poor rendering performance and possible alternatives.

Some of the possible causes of poor rendering performance and possible alternatives are
described as follows:

Troubleshooting Guide
E94880-09

Mixing accelerated and non-accelerated rendering:

A situation when only part of the primitives rendered by an application could be
accelerated by the particular pipeline when rendering to an accelerated surface can cause
thrashing, because the pipelines will be constantly trying to adjust for better rendering
performance but with possibly little success.

If it is known beforehand that most of the rendering primitives will not be accelerated, then
it could be better to either render to a Buf f er edl mage and then copy it to the back buffer or
the screen, or switch to a non-hardware accelerated pipeline using one of the flags
discussed.

@® Note

This approach may limit your application's ability to take advantage of future
improvements in Java 2D's use of hardware acceleration.

For example, if your application is often used in remote X server cases, but it heavily uses
antialiasing, alpha compositing, and so forth, then the performance can be severely
degraded. To avoid this, disable the use of pixmaps by setting the -

Dsun. j ava2d. pnof f scr een=f al se property either by passing it to the Java runtime, or
by setting it programmatically using the Syst em set Property() API.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 3 of 10

ORALCLE Chapter 12
Generic Performance Issues

@® Note

This property must be set before any GUI-related operations because it is read
only once.

* Non-optimal rendering primitives:
It is preferable to use the simplest primitive possible to achieve the desired visual effect.

For example, use Gr aphi cs. dr awLi ne() instead of new Li ne2D() . draw() . The
result looks the same. However, the second operation is much more computationally
intensive because it is rendered as a generic shape, which is typically much more
expensive to render. Shapes show up in different ways in the primitive tracing, depending
on antialiasing settings and the specific pipeline, but most likely they will show up as many
*Fi | | Spans or Dr awPat h primitives.

Another example of complicated attributes is G- adi ent Pai nt . Although it may be hardware
accelerated by some of the non-default pipelines (such as OpenGL), it is hot hardware
accelerated by the default pipelines. Therefore, you can restrict the use of G- adi ent Pai nt
if it causes performance problems.

* Heap-based destination surface Buf f er edl mage:
Rendering to a Buf f er edl mage almost always uses software loops.

An exception on some SPARC systems is that the VIS instruction set can be used for
accelerating certain imaging operations. See VIS Instruction Set.

To ensure that the rendering has the opportunity of being hardware accelerated, choose a
Buf fer Strat egy or a Vol ati | el mage object as the rendering destination.

¢ Defeat built-in acceleration mechanism:

Java 2D attempts to accelerate certain types of images. The contents of images can be
cached in video memory for faster copying to accelerated destinations such as
Vol ati | el mages. These mechanisms can be unknowingly defeated by the application.

* Get direct access to pixels with get Dat aBuffer():

If an application gets access to Buf f er edl mage pixels by using the

get Rast er (). get Dat aBuf f er () API, then Java 2D will not be able to guarantee that
the data in the cache is up to date, so it will disable any acceleration attempts of this type
of image.

To avoid this, do not call get Dat aBuf f er () . Instead, work with Wi t eabl eRast er, which
can be obtained with the Buf f er edl nage. get Rast er () method.

If you need to modify the pixels directly, then you can manually cache your image in video
memory by maintaining the cached copy of your image in a Vol ati | el mage, and updating
the cached data when the original image is touched.

* Render to a sprite before every copy:

If an application renders to an image before copying it to an accelerated surface

(Vol ati | el mage, Buf f er St r at egy), then the image cannot take advantage of being cached
in accelerated memory. This is because the cached copy must be updated every time the
original image is updated, and therefore only the default system-memory-based surface is
used, and this means no acceleration.

« Exhausted accelerated memory resources:

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 4 of 10

http://docs.oracle.com/cd/E19120-01/open.solaris/816-1681/sparcv9-tbl-26/

ORACLE

Chapter 12
Generic Performance Issues

If the application uses many images, then it can exhaust the available accelerated
memory. If this is the cause of performance issues for your application, then you might
need to handle the resources.

The following API can be used to request the amount of available accelerated memory:
Graphi csDevi ce. get Avai | abl eAccel er at edMenory().

In addition, the following API can be used to determine if your image is being accelerated:
| mage. get Capabilities().

If you determined that your application is exhausting the resources, you can handle the
problem by not holding images you no longer need. For example, if your game advanced
to the next level, release all images from the previous levels. You can also release
accelerated resources associated with an image by using the | nage. f1 ush() APL

You can also use the acceleration priority APl | mage. get Accel erati onPriority()
and set Accel erationPriority() tospecify the acceleration priority for your images.
It is a good idea to make sure that at least your back-buffer is accelerated, so create it first,
and with acceleration priority of 1 (default). You can also prohibit certain images from being
accelerated if needed by setting the acceleration priority to 0.0.

Improve Performance of Software-only Rendering

If your application relies on software-only rendering (by only rendering to a Buf f er edl mage, or
changing the default pipeline to an unaccelerated one), or even if it does mixed rendering, then
the following are certain approaches to improving performance:

1.

Troubleshooting Guide
E94880-09

Image types or operations with optimized support:

Due to overall platform size constraints, Java 2D has a limited number of optimized
routines for converting from one image format to another. In situations where an optimized
direct loop can not be found, Java 2D will do the conversion through an intermediate image
format (I nt Ar gb). This results in performance degradation.

Java 2D primitive tracing can be used for detecting such situations.

For each dr awl mage call there will be two primitives: the first one converting the image from
the source format to an intermediate | nt Ar gb format and the second one converting from
intermediate | nt Ar gb to the destination format.

Here are two ways to avoid such situations:
e Use a different image format if possible.

e Convert your image to an intermediate image of one of the better-supported formats,
such as I NT_RGB or | NT_ARGB. In this way the conversion from the custom image
format will happen only once instead of on every copy.

Transparency vs translucency:

Consider using 1-bit transparent (Bl TMASK) images for your sprites as opposed to images
with full translucency (such as | NT_ARGB) if possible.

Processing images with full alpha is more CPU-intensive.

You can get a 1-bit transparent image using a call to
Graphi csConfi guration. creat eConpati bl el mrage(w, h,
Transpar ency. Bl TMASK) .

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 5 of 10

ORACLE Chapter 12
Text-Related Issues

Text-Related Issues

This section describes possible issues and crashes that are related to text rendering and
describes tips to overcome such issues.

This section contains the following subsections:

« Application Crash During Text Rendering

« Differences in Text Appearance

¢ Metrics

Application Crash During Text Rendering

If an application crashes during text rendering, first check the fatal error log file.

See Fatal Error Log for detailed information about this error log file. If the crash occurred in

f ont manager . dl | or if f ont manager is present in the stack, then the crash occurred in the
font processing code. The following example shows typical native stack frames (excerpt from
the full log file).

Stack: [0x008a0000, 0x008f 0000), sp=0x008ef52c, free space=317k

Native frames: (J=conpiled Java code, j=interpreted, W=VM code, C=native
code)

[ntdll.dll+0x1888f]

[ntdll.dll+0x18238]

[ntdll.dll+0x11c76]

[MSVCR71. dl | +0x16b3]

[MSVCR71. dI | +0x16db]

[font nanager . dl | +0x21f 93]

[font nanager . dl | +0x22876]

[font nanager . dl | +0x1de40]

[font manager . dl | +0x1da94]

[font nanager . dl | +0x48abb]

sun. font. Fil eFont. get @ yphl mage(JI) J+0

sun. font. Fil eFont Strike. getd yphl magePtrs([I[JI)V+92

sun. font. d yphLi st. mapChar s(Lsun/j ava2d/ | oops/ Font I nf o; 1) Z+37

sun. font. d yphLi st. set FronString(Lsun/java2d/| oops/ Font|nfo; Ljavallang/
String; FF) z+71

j sun.java2d. pi pe. A yphLi st Pi pe. drawSt ri ng(Lsun/j ava2d/ SunG aphi cs2D; Lj ava/
| ang/ String; DD) V+148

j sun.java2d. SunG aphi cs2D. drawst ri ng(Ljaval/lang/ String;11)V+60

j FontCrasher.tryFont(Ljaval/lang/ String;)V+138

j FontCrasher.main([Ljaval/lang/String;)V+20

v ~StubRoutines::call _stub

OO0O0O0O0O00O0O00O0O0OO0

J
)
)
j

In this case, a particular font is probably the problem. If so, then removing this font from the
system will likely resolve the problem.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 6 of 10

ORACLE

Chapter 12
Text-Related Issues

To identify the font file, execute the application with - Dsun. j ava2d. debugf ont s=t r ue. The
font that is mentioned last is usually the one that is causing problems, as shown in the
following example.

INFO Registered file C\WNDOAS\ Font s\WNGDI NG TTF as font ** TrueType Font:
Fami | y=W ngdi ngs
Name=W ngdi ngs styl e=0 fil eName=C:\ W NDOAB\ Font s\ W NGDI NG TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font.Font Manager initialiseDeferredFont
INFO Opening deferred font file SYMBOL. TTF
Aug 16, 2006 10:59:06 PM sun.font.Font Manager addToFont Li st
INFO Add to Family Symbol, Font Symbol rank=2
Aug 16, 2006 10:59:06 PM sun.font. Font Manager registerFontFile
INFO Registered file C\WNDOAS\ Font s\ SYMBOL. TTF as font ** TrueType Font:
Fami | y=Synbol
Name=Synmbol style=0 fil eNanme=C:\ W NDOAB\ Font s\ SYMBCL. TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font.Font Manager findFont2D
INFO. Search for font: Dial og
Aug 16, 2006 10:59:06 PM sun.font.Font Manager initialiseDeferredFont
INFO Opening deferred font file ARIALBD. TTF
Aug 16, 2006 10:59:06 PM sun.font.Font Manager addToFont Li st
INFO Add to Famly Arial, Font Arial Bold rank=2
Aug 16, 2006 10:59:06 PM sun.font. Font Manager registerFontFile
INFO Registered file C\WNDOAS\ Font s\ ARI ALBD. TTF as font ** TrueType Font:
Fami | y=Ari al
Name=Arial Bold style=1 fileName=C:\ WNDOWS\ Font s\ ARI ALBD. TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font.Font Manager initialiseDeferredFont
INFO Opening deferred font file WNGDI NG TTF
Aug 16, 2006 10:59:06 PM sun.font.Font Manager initialiseDeferredFont
INFO Opening deferred font file SYMBOL. TTF
Aug 16, 2006 10:59:06 PM sun.font.Font Manager findFont2D
INFO. Search for font: Dial og
Aug 16, 2006 10:59:06 PM sun.font.Font Manager initialiseDeferredFont
INFO Opening deferred font file ARIAL. TTF
Aug 16, 2006 10:59:06 PM sun.font.Font Manager addToFont Li st
INFO Add to Famly Arial, Font Arial rank=2
Aug 16, 2006 10:59:06 PM sun.font. Font Manager registerFontFile
INFO Registered file C\WNDOAS\ Font s\ ARIAL. TTF as font ** TrueType Font:
Fami | y=Ari al
Name=Arial style=0 fileName=C \ W NDOAS\ Font s\ ARI AL. TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font.Font Manager initialiseDeferredFont
INFO Opening deferred font file WNGDI NG TTF
Aug 16, 2006 10:59:06 PM sun.font.Font Manager initialiseDeferredFont
INFO Opening deferred font file SYMBOL. TTF

® Note

In some cases, the font that is last mentioned might not be the problem. Font names
are printed when they are first used and subsequent uses are not shown.

To verify that this particular font is causing the problem, you can temporarily remove it from
your system. You can easily find the file name associated with this particular family name from
the output.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE’

Chapter 12
Text-Related Issues

Another verification approach is to use the Font2DTest tool to test fonts that you suspect. You
can specify a particular font size, style, and rasterization mode. If the process of viewing a
particular font with Font2DTest causes the JDK to crash, then it is very likely that it is the font
that is causing the problems.

If you found a font causing the JDK to crash, it is very important to report this problem,
including the particular font and the operating system in the Bugs Database. See Submit a Bug

Report.

Differences in Text Appearance

Java has its own font rasterizer, and you can expect some small differences between the
appearance of text in a Java application and in a native application.

One of the typical sources of these differences is that the antialiasing settings can be different.
In particular, a Swing application sometimes ignores the Linux desktop font antialiasing
settings.

There are several likely reasons for this behavior:

e Over the remote X11 antialiasing is not enabled by default for performance reasons. See
Font and Test questions in the Java 2D FAQ.

e CJK fonts that use embedded bitmaps may render using the bitmaps instead of subpixel
text.

e Some variants of unsupported desktops do not report their font smoothing settings
properly. For example, KDE is unsupported but should generally work; however, some
problem seems to prevent JDK from picking up the setting.

The best way to ensure that the configuration is what you expect is to run Font2DTest,
explicitly select the font used by the native application, and set other parameters as
appropriate. Figure 12-1 is a sample screen from the Font2DTest tool.

Figure 12-1 Sample Screen from Font2DTest Tool

B} Font20Test E“‘Elgl

Fila Optian

Font | Micrasoft Sans Sedf | = | Bize 12 -; Fant Transfarm :Huns |'

Ranga: | Siyle Flain | = Graghics Transﬂ:lrrn!Hnnu |'
- = -

Method: | Tawdto use [Ghygins |~

LCD condrast : i Bntialiasing: (OEF]-"' Fracional medrics: QFF J"'

1 | I AERERE: O e rlof1 |23 |4 |5 |6 |7 |8 |9]: = |F | |@ t

AIBIC|DIE|F|G|H | [JIE|L|M|N|O[(F|Q|R|S|TIH[(V|W]X|Y[Z]T1Y1]"]- albla|d]|—=

elflofhlilifklimlintolplale|sfv ulv]wlulylz](fi |} |~IAJAICIEIRN|O0]4]a]s

B|laja|g|ele]e|a)i|lili|i|Aale]|alala|d|aja|ala|t|" |« |E |5 = |N|E ||| .

/E slefs|z|(¥|u]|e|Zin]m|i]2 |t |0|e|laleli|-|d]|Ff|a|a]=<]=> AA O [E | -|-

i e lalFF s m e a0]4 - A ELAJEJENT [T T] (&[S |da|o|(d], 5

= Lo e el slE 2l) [elalT ale|p - (2wl w|E|G|E |15] |G

s Cjelal |- Al (ala|l|d|D|E|e|Efa|L)TJL|T|L]|F]|H|a 8| |d|a[A]f|R|F[S]|T

t Tl fjofalo Ilé|Z|z|r|o|e|lal|d|le|alr|e|[P|™ M ij | R I . 22

Dizplaying Ghoh Code DD00 (0 0743

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 8 of 10

http://bugs.java.com
http://www.oracle.com/technetwork/java/index-137037.html#Font_and_Text_questions

ORACLE Chapter 12
Java 2D Printing

@ Tip

You can input your own string by choosing User Text in the drop-down list labeled
Text to use.

The size of the font in the Java language is always expressed with 72 dpi. A native OS can use
a different screen dpi, and therefore an adjustment must be made. Matching Java font size can
be calculated as Tool ki t. get ScreenResol ution() divided by 72 multiplied by the size of the
native font.

In all native Swing look and feel, such as the Windows look and feel or the GTK look and feel
(for Oracle Solaris and Linux operating systems), Swing components perform this adjustment
automatically, but if you are running Font2DTest, the text display area will always use 72 dpi.

On operating systems other than Windows, the general recommendation is to use TrueType
fonts instead of Typel fonts. The easiest way to figure out the type of font is to look at the file
extension: extensions pfa and pfb indicate Typel fonts, and ttf, ttc, and tte represent TrueType
fonts.

Metrics

If you find that text bounds are different from what you expect, then ensure that you are using
the appropriate way to calculate them. For example, the height obtained from a Font Metri cs is
not specific to a particular piece of text, and the st ri ngW dt h indicates logical advance, which
is not the same thing as wide. For more details, see the Font and Text questions in the Java

2D FAQ.

Java 2D Printing

List of issues that can happen with Java 2D printing.

This section describes some issues that can happen with Java 2D printing and suggests
causes and solutions.

Also, see the Printing questions in the Java 2D FAQ.

1. JRE crashes during printing on Windows.
Cause: The JRE uses Windows printer drivers, and they might have problems.
Solution: Upgrade the Windows printer driver for the printer that is being used.

2. The printing seems to be successful, but the job does not print on Windows.
Cause: Some jobs fail to properly spool to the printer.
Solution: In the printer driver properties, disable Advanced Printing Options.

3. The print dialog box takes a long time to appear on Windows.

Cause: Applications might cause the JRE to probe all printers, including those that are
disconnected.

Solution: Look for disconnected or unreachable network printers and remove them from
the list of printers.

4. PrintJob.printDialog() shows no service found error on Oracle Solaris and Linux.

Cause: The cause is one of the following:

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 9 of 10

http://www.oracle.com/technetwork/java/index-137037.html#Font_and_Text_questions
http://www.oracle.com/technetwork/java/index-137037.html#Font_and_Text_questions
http://www.oracle.com/technetwork/java/index-137037.html#Printing_questions

ORACLE Chapter 12
Java 2D Printing

e The | pc utility is not in the / usr / sbi n directory.
e Thel pstat utility is notin the / usr/ sbi n directory.

Solution: Install | pc and | pst at in the standard location, as previously mentioned.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 10 of 10

Swing

This chapter provides information and guidance on some specific procedures for
troubleshooting some of the most common issues that might be found in the Java SE Swing
API.

This chapter contains the following sections:

e General Debug Tips for Swing

» Specific Debug Tips for Swing

General Debug Tips for Swing

Swing's painting infrastructure changed quite extensively in Java SE 6. If you notice painting
artifacts specific in Java SE 6 or later releases, you can try turning off the new functionality.
This can be done with the property swi ng. buf f er Per W ndow.

When you are debugging the Swing code which is executed while any menu is popped up, it is
recommended to use the debugger remotely. Otherwise, the debugging process and the
application execution block each other, and this prevents further work with the system. If that
happens, the only action that can be taken is to kill the X server for Oracle Solaris and Linux.

See Bug Database.

The following are some common Swing problems:

e Painting.

* Renderers.

e Updating models from wrong thread.

¢ Hangs.

e Responsiveness.

e Repainting issues.

e isOpaque usage.

e Startup: could be caused by small heap, loading unnecessary classes.
The following are some things to consider:

- Buffer-per-window feature.

* Native look-and-feel fidelity: Gnome vs Windows

* Footprint of Swing applications.

e JTabl e, JTree, and JLi st all use renderers.

e Make sure that custom renderers do as little as possible.

* Update models only from event dispatch thread. Otherwise the display will not reflect the
state of the model.

The following identify bad renderers:

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 8

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6517045

ORACLE’

Sluggish application, especially when scrolling.

Use an optimizer to watch painting calls, look for calls to

get Tabl eCel | TRender er Conponent .

Specific Debug Tips for Swing

Chapter 13
Specific Debug Tips for Swing

The following topics describe problems in Swing and troubleshooting techniques:

Incorrect Threading

JComponent Children Overlap

Display Update

Model Change
Add or Remove Components

Opaque Override

Permanent Changes to Graphics

Custom Painting and Double Buffering

Opagque Content Pane

Renderer Call for Each Cell Performance

Possible Leaks
Mix Heavyweight and Lightweight Components

Use Synth
Track Activity on Event Dispatch Thread

Specify Default Layout Manager

Listener Object Dispatched to Incorrect Component

Add a Component to Content Pane

Drag and Drop Support

One Parent for a Component

JFileChooser Issues with Windows Shortcuts

Incorrect Threading

Random exceptions and painting problems are usually the result of incorrect threading usage
by Swing.

All access to Swing components, unless specifically noted in the javadoc, must be done on the
event dispatch thread. This includes any models (Tabl eModel , Li st Model , and others) that are
attached to Swing components.

The best way to check for bad usage of Swing is by using instrumented Repai nt Manager, as
illustrated in the following example.

public class CheckThreadVi ol ati onRepai nt Manager extends Repai nt Manager {

Troubleshooting Guide
E94880-09

/1 it is reconmended to pass the conplete check

private bool ean conpl et eCheck = true;

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 8

ORACLE

Chapter 13
Specific Debug Tips for Swing

public bool ean i sConpl et eCheck() {
return conpl et eCheck;

}

public void set Conpl et eCheck(bool ean conpl et eCheck) {
t hi s. conpl et eCheck = conpl et eCheck;

}

public synchroni zed void addl nval i dConponent (JConponent conponent) {
checkThreadVi ol ati ons(conponent);
super . addl nval i dConponent (conponent) ;

}

public void addDirtyRegi on(JConponent conponent, int x, int y, int w
i nt
h) {
checkThreadVi ol ati ons(conponent);
super. addDi rt yRegi on(conponent, x, y, w, h);
}

private void checkThreadVi ol ati ons(JConponent c¢) {
if ('SwingWilities.isEventD spatchThread() && (conpleteCheck ||
c.isShowing())) {
Exception exception = new Exception();
bool ean repaint = fal se;
bool ean fronBwi ng = fal se;
StackTraceEl ement[] stackTrace = exception. get StackTrace();
for (StackTraceEl enent st : stackTrace) {
if (repaint & st.getd assName().startsWth("javax.swing."))

{
fronBwing = true;
}
if ("repaint".equal s(st.getMethodName())) {
repaint = true;
}
}
if (repaint & !frombwi ng) {
/Ino problens here, since repaint() is thread safe
return;
}
exception. printStackTrace();
}
}
}

JComponent Children Overlap

Another possible source of painting problems can occur if you allow children of a JConponent
to overlap.

In this case, the parent must override i sOpti m zedDr awi ngEnabl ed to return f al se. If you do
not override i sOpt i m zedDr awi ngEnabl ed, then components can randomly appear on top of
others, depending upon which component repaint was invoked on.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 3 of 8

ORACLE Chapter 13
Specific Debug Tips for Swing

Display Update

Another source of painting problems can occur if you do not invoke repaint correctly when you
need to update the display.

Changing a visible property of a Swing component, such as the font, will trigger a repaint or
revalidate. If you are writing a custom component, then you must invoke repaint and possibly
revalidate whenever the display or sizing information is updated. If you do not, the display will
only update the next time someone triggers a repaint.

A good way to diagnose this is to resize the window. If the content appears after a resize, then
that implies that the component did not invoke repaint or revalidate correctly.

Model Change

Invoke r epai nt when you change a visible property of a Swing component, but you need not
invoke r epai nt when your model changes.

If your model sends out the correct change notification, the JConponent will invoke r epai nt or
reval i dat e as appropriate.

However, if you change your model but do not send out a notification, then a repaint event may
not even work. In particular this will not work with JTr ee. The correct thing to do is to send the
appropriate model notification. This can usually be diagnosed by resizing the window and
noticing that the display did not update correctly.

Add or Remove Components

When you add or remove components, you must manually invoke repaint or revalidate Swing
and AWT.

Opaque Override

Another possible area of painting problems is if a component does not override opaque.

Further, if you do not invoke implementation you must honor the opaque property, that is, if this
component is opaque, you must completely fill in the background with a non-opaque color. If
you do not honor the opaque property, then you will likely see visual artifacts.

The only way to check for this is to look for consistent visual artifacts when the component
invokes repaint.

Permanent Changes to Graphics

Do not make any permanent changes to a G- aphi ¢s object that is passed to pai nt,
pai nt Conponent , or pai nt Chi | dren.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 4 of 8

ORACLE

Chapter 13
Specific Debug Tips for Swing

@® Note

If you override the graphics in a subclass, then you should not make permanent
changes to the pai nt, pai nt Conponent, or pai nt Chi | dr en passed in the G aphi cs
object. For example, you should not alter the clip Rect angl e or modify the transform. If
you need to do these operations you may find it easier to create a new G aphi cs
object from the passed in G- aphi ¢cs object and manipulate it instead.

If you ignore this restriction, then the result will be clipping or other weird visual artifacts.

Custom Painting and Double Buffering

Although you can override pai nt and do custom painting in the override, you should instead
override pai nt Conponent .

The JConponent . pai nt method ensures that painting happens to the double buffer. If you
override pai nt directly, then you may lose double buffering.

Opague Content Pane

Swing's painting architecture requires an opaque content pane.

The painting architecture of Swing requires an opaque JConponent to exist in the containment
hierarchy above all other components. This is typically provided by using the content pane. If
you replace the content pane, it is recommended that you make the content pane opaque by
using set Opaque(t r ue) . Additionally, if the content pane overrides pai nt Conponent , then it
will need to completely fill in the background in an opaque color in pai nt Conponent .

Renderer Call for Each Cell Performance

Renderers are painted for each cell, so ensure that the renderer does as little as possible.

Any slowdown in the renderer is magnified across all cells. For example, if you repaint the
visible region of a table with 50x20 visible cells, then there will be 1000 calls to the renderer.

Possible Leaks

If the life cycle of your model is longer than that of a window with a component using the
model, you must explicitly set the model of the Swing component to null.

If you do not set the model to null, your model will retain a reference to the Conponent , which
will keep all components in the window from being garbage collected. Take a look at the
following example.

Tabl eMbdel nmyModel = .. .;

JFrame frame = new JFrame();

franme. set Cont ent Pane(new JScr ol | Pane(new JTabl e(myModel)));
frane. di spose();

If your application still holds a reference to nyMdel , then frame and all its children will still be
reachable by way of the listener JTabl e installations on myMdel . The solution is to invoke
t abl e. set Mbdel (new Def aul t Tabl eModel ()).

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 5 of 8

ORACLE

Chapter 13
Specific Debug Tips for Swing

Mix Heavyweight and Lightweight Components

Use Synth

Mixing heavyweight and lightweight components can work in certain scenarios, as long as the
heavyweight component does not overlap with any existing Swing components.

For example, a heavyweight will not work in an internal frame, because when the user drags
around the internal frame it will overlap with other internal frames. If you use heavyweights,
then invoke the following methods:

e JPopupMenu. set Def aul t Li ght Wi ght PopupEnabl ed(f al se)
e Tool Ti pManager. shar edl nst ance() . set Li ght Wei ght PopupEnabl ed(f al se)

Synt h is an empty canvas.

To use Synt h, you must either provide a complete XML file that configures the look and feel, or
extend Synt hLookAndFeel and provide your own Synt hStyl eFact ory.

Track Activity on Event Dispatch Thread

If a Swing application tries to do too much on the event dispatch thread, then the application
will appear sluggish and unresponsive.

One way to detect this situation is to push a new Event Queue that can output logging
information if an event takes too long to process. This approach is not perfect in that it has
problems with focus events and modality, but it is good for ad-hoc testing.

Specify Default Layout Manager

Problems can be caused by differing default layout manager classes on a Swing component.

For example, the default for the JPanel class is Fl owLayout , but the default for the JFrane
class is Bor der Layout . This situation is easily fixed by specifying a Layout Manager .

Listener Object Dispatched to Incorrect Component

MouselLi st ener objects are dispatched to the deepest component that has MouselLi st ener
objects (or has enabled MuseEvent objects).

A ramification of this is if you attach a MuseLi st ener to a component whose descendants
have MuselLi st ener objects, your MbuseLi st ener object will never get called.

This is easily reproduced with a composite component, like an editable JConboBox. Because a
JConmboBox has child components that have a MuselLi st ener, a MuselLi st ener attached to an
editable JConboBox will never get notified.

If your MouseLi st ener suddenly stops getting events, then it could be the result of a change in
the application whereby a descendant component now has a MuseLi st ener . A good way to
check for this is to iterate over the descendants asking if they have any mouse listeners.

A similar scenario occurs with the KeyLi st ener class. A KeyLi st ener object is dispatched only
to the focused component.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE Chapter 13
Specific Debug Tips for Swing

The JConboBox case is another example of this situation. In the editable JConboBox case the
editor gets focus, not the JConmboBox. As a result, a KeyLi st ener attached to an editable
JConboBox will never get notified.

Add a Component to Content Pane

You must add a JFr anme, JW ndow, or JDi al og component to the content pane.

A component added to a top-level Swing component must go to the content pane, but the add
method (and a couple of other methods) on the JFr ame, JW ndow, and JDi al og classes redirect
to the content pane. In other words, f r ane. get Cont ent Pane() . add(component) is the
same as f r ane. add(conponent) .

The following methods redirect to the content pane for you: add (and its variants), r enove
(and its variants), and set Layout .

This is purely a convenience, but can cause confusion. In particular, get Chi | dren, get Layout ,
and various others do not redirect to the content pane.

This change affects Layout Manager s that only work with one component, such as G oupLayout
and BoxLayout . For example, new Gr oupLayout (frane) will not work; instead, you must
use G oupLayout (frane. get Cont ent Pane()) .

Drag and Drop Support

When using Swing you should use Swing's drag-and-drop support as provided by
Transf er Handl er .

One Parent for a Component

Remember that a component can only exist in one parent at a time.

Problems occur when you share menu items between menus. For example, JMenul t emis a
component, and therefore can exist in only one menu at a time.

JFileChooser Issues with Windows Shortcuts

The JFi | eChooser class does not support shortcuts on Windows OS (.Ink files).

Unlike the standard Windows file choosers, JFi | eChooser does not allow the user to follow
Windows shortcuts when browsing the file system, because it does not show the correct path
to the file.

To reproduce the problem, follow these steps:

1. Create a text file on the Desktop called, for example, MyFi | e. t xt . Open the text file and
type some text, for example: This is the contents of MyFile.txt.

2. Create a shortcut to the new text file in the following way: Drag the file with the right mouse
button to another location on the Desktop and choose Create Shortcut(s) here.

3. Runthe Jfil eChooser test application, browse the Desktop, select Shortcut to
MyFi | e. t xt and click Open.

4. The result file is Pat hToDeskt op\ Short cut to MyFi | e. t xt. | nk, but it should be
Pat hToDeskt op\ MyFi | e. t xt .

Troubleshooting Guide
E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Page 7 of 8

ORACLE Chapter 13
Specific Debug Tips for Swing

5. In addition, the contents of the result file in the text area shows the contents of the file
shortcut to MyFi | e. t xt . | nk, but the contents should be This is the contents of
M/Fi | e. t xt, which was typed in step 1.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 8 of 8

Internationalization

Information and guidance about troubleshooting issues that might be found in the area of
internationalization support.

For detailed information, visit the Internationalization Overview.

This chapter describes troubleshooting techniques for internationalization and localization.

Troubleshoot Internationalization and Localization

Troubleshoot Internationalization and Localization

Before troubleshooting, ensure that you understand the difference between internationalization
and localization:

Internationalization is the process of designing software so that it can be adapted
(localized) to various languages and regions easily, in a cost-effective way, and without
changes to the software. This process generally involves isolating the parts of a program
that are dependent on language and culture. For example, the text of error messages are
kept separate from the program source code because the messages must be translated
during localization.

Localization is the process of adapting a program for use in a specific locale. A locale is a
geographic or political region that shares the same language and customs. Localization
includes the translation of text such as user interface labels, error messages, and online
help. It also includes the culture-specific formatting of data items such as monetary values,
times, dates, and numbers.

The user interface libraries in the Java SE platform enable the development of rich interactive
applications. The internationalization aspects include text input, text display, and user interface
layout. The following descriptions show the relationship between internationalization and the
functionality provided by the AWT, Java 2D, and Swing APIs:

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025

Text input is the process of entering new text into a document, whether by typing on a
keyboard or through front-end software such as input methods, handwriting recognition, or
speech input.

Text display is a multistep process that includes selecting a font, arranging text into
paragraphs and lines, selecting glyphs for characters or character sequences, and
rendering these glyphs. Some writing systems require bidirectional text layout or complex
character-to-glyph mappings. Text display is handled by the Java 2D graphics system and
the Swing toolkit for lightweight user interface components and by AWT for peered user
interface components.

User interface layout needs to accommodate text expansion or shrinkage caused by
localization, and match the direction of the user's writing system.

October 20, 2025

, Oracle and/or its affiliates. Page 1 of 1

https://docs.oracle.com/en/java/javase/16/intl/internationalization-overview.html

Java Sound

This chapter describes some issues that can arise with the Java sound technology and
suggests causes and workarounds.

The following topic describes scenarios to troubleshoot Java sound problems.

Troubleshoot Java Sound Issues

Troubleshoot Java Sound Issues

Troubleshoot Java sound issues such as system sound configuration, audio file format, audio
format, and overrun and underrun conditions.

Troubleshooting Guide
E94880-09

System sound configuration:

Ensure that your audio system is correctly configured (sound card driver/DirectSound for
Windows, ALSA for Linux, Audio Mixer for Oracle Solaris). In addition, ensure that your
speakers are connected and that your sound card volume and mute state are adjusted to
the appropriate value. To test your sound configuration, run any native sound application
and play some sound through it.

On the Oracle Solaris and Linux operating systems, you might be unable to play sounds
because an application (or sound daemon, such as esd or ar t sd) opens the audio device
exclusively, thereby denying Java Sound access to the device.

Audio file formats:

Java Sound supports a set of audio file formats, for example AU, AlF, and WAV. Most of
the file formats are only containers and can contain audio data in various compressed
audio formats. Java Sound file readers support some formats (uncompressed PCM, a-law,
mu-law), but do not support ADPCM, MP3, and others.

Java Sound also supports plug-ins for file readers and writers through the service provider
interface (SPI). You can use Sun, third-party, or your own plug-ins to read various audio
files. In any case, you must handle the presence of the plug-in, for example, by distributing
the required plug-ins with your application or by requiring plug-ins to be installed in the
client Java environment.

Audio formats:

Java Sound supports various audio formats, but their availability depends on the operating
system. To use some audio format for recording or playing, the format must be supported
by your system (sound card drivers). Use supported formats as much as possible: PCM; 8
or 16 bits; 8000, 11025, 22050, 44100 Hz. The formats are supported by most sound
cards. Most sound cards support only PCM formats, and even if the driver supports mu-
law, then it requires some modification to the software. If you need to play or record mu-
law data, then the preferred way is to convert it to PCM format through a format converter.

See Audi oSyst em get Audi ol nput St r eamdocumentation for details about format
conversion.

Overrun and underrun conditions:

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 2

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/sound/sampled/AudioSystem.html

ORACLE Chapter 15
Troubleshoot Java Sound Issues

Recorded data is kept in a Dat aLi ne buffer. If you did not read from the line for a long time,
then an overrun condition will occur, and older data will be replaced with new data. This will
produce artifacts in the recorded audio data.

A similar situation occurs with playing. If all data from the buffer has been played and no
new data is written to the line, then an underrun condition will occur, and silence will be
played until you write a new portion of audio data to the line.

The preferred way to record is to read data in a separate thread to prevent the possible
influence of other tasks (for example, Ul handling). If you use Sour ceDat aLi ne for playing,
then a separate thread for writing data into the line is also the preferred method to use. If
you use C i p for playing, then the Cl i p implementation creates this type of thread itself.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 2

Submit Bug Reports

The chapter Submit a Bug Report shows you how to submit a bug report. It includes
suggestions about what to try before submitting a report and which data to collect for the
report.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 1

Submit a Bug Report

This chapter shows you how to submit a bug report. It includes suggestions about what to try
before submitting a report and which data to collect for the report.

This chapter contains the following sections:

* Check for Fixes in Update Releases

* Prepare to Submit a Bug Report

e Collect Data for a Bug Report

* Report a Bug
e Collect Core Dumps

Check for Fixes in Update Releases

Regularly scheduled updates to each release contain fixes for a set of critical bugs identified
since the initial release of the platform.

When an update release becomes available, it becomes the default download at the Java SE
Downloads page.

The download site includes a link to the release notes that list the bug fixes in the release.
Each bug in the list is linked to the bug description in the bug database. The release notes also
includes the list of fixes in previous update releases. If you encounter an issue, or suspect a
bug, then, as an early step in the diagnosis, check the list of fixes that are available in the most
recent update release.

Sometimes, it is not obvious if an issue is a duplicate of a bug that was already fixed.

Prepare to Submit a Bug Report

The following is the recommended procedure to submit a bug report.
Before submitting a bug report, consider the following recommendations:

e Collect as much relevant data as possible. For example, generate a thread dump in the
case of a deadlock, or locate the core file (where applicable) and hs_err file in the case of
a crash. In every case, it is important to document the environment and the actions
performed just before the problem happened. See Collect Data for a Bug Report.

* Where applicable, try to restore the original state and reproduce the problem using the
documented steps. This helps to determine if the problem is reproducible or an intermittent
issue.

e Ifthe issue is reproducible, try to narrow down the problem. In some cases, a bug can be
demonstrated with a small standalone test case. Bugs that are demonstrated by small test
cases will typically be easy to diagnose as compared to test cases that consist of a large
complex application.

Troubleshooting Guide
E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Page 1 of 10

https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html

ORACLE’

Chapter 16
Collect Data for a Bug Report

e Search the Java Bug Database to see if this issue or a similar issue was reported. If the
issue has already been reported, then the bug report might have further information, such
as the following:

— If the issue was already fixed, then the release in which it was fixed is given.
— A workaround for the issue.

— Comments in the evaluation that explain, in further detail, the circumstances that
cause the issue to happen.

* If you conclude that the issue was not already reported, then report it at Report a Bug or
Request a Feature.

Before reporting an issue, verify that the environment where the problem happens is a
supported configuration. See Oracle JDK 11 Certified System Configurations.

In addition to the system configurations, check the list of supported locales. See JDK 11
Supported Locales.

In the case of Oracle Solaris, check the recommended patch cluster for the operating system
release to ensure that the recommended patches are installed.

Collect Data for a Bug Report

The following sections list the commands or recommend a general procedure to obtain the
data:

* Detailed Description of the Problem

» Hardware Details

e Operating System Details

 Java SE Version

e Command-Line Options

* Environment Variables

e Fatal Error Log
e Core and Crash Dump

 Logs and Traces

Detailed Description of the Problem

When creating a problem description, try to include as much relevant information as possible.

Describe the application, the environment, and the most important events leading up to the
time when the problem happened.

Report all troubleshooting steps and results that have already occurred.

Sometimes, the problem can be reproduced only in a complex application environment. In this
case, the description, coupled with logs, core file, and other relevant information, might be the
only way to diagnose the issue. In these situations, the description should indicate if the
submitter is willing to run further diagnostics or run test binaries on the system where the issue
occurs.

« If the problem is reproducible at will, then list the steps that are required to demonstrate the
problem.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 2 of 10

https://bugs.java.com/bugdatabase/index.jsp
https://bugreport.java.com/bugreport/
https://bugreport.java.com/bugreport/
https://www.oracle.com/java/technologies/javase/products-doc-jdk11certconfig.html
https://www.oracle.com/java/technologies/javase/jdk11-suported-locales.html
https://www.oracle.com/java/technologies/javase/jdk11-suported-locales.html

ORACLE

Chapter 16
Collect Data for a Bug Report

* If the problem can be demonstrated with a small test case, then include the test case and
the commands to compile and execute the test case.

« If the test case or problem requires third-party code, such as a commercial or open source
library or package, then provide then details about where and how to obtain the library.

Hardware Detalls

The hardware details are stored in the error logs when a fatal error occurs.

Sometimes, a bug happens or can be reproduced only on certain hardware configurations. If a
fatal error occurs, then the error log might contain the hardware details. If an error log is not
available, then document in the bug report the number and the type of processors in the
machine, the clock speed, and, where applicable and if known, some details on the features of
that processor. For example, in the case of Intel processors, it might be relevant that hyper-
threading is available.

Operating System Details

The commands that you can use to get the operating system details.

On the Oracle Solaris operating system, the showr ev - a command prints the operating system
version and patch information.

On Linux, it is important to know which distribution and version is used. Sometimes the / et c/
*r el ease file indicates the release information, but because components and packages can
be upgraded independently, it is not always a reliable indication of the configuration. Therefore,
in addition to the information from the *r el ease file, collect the following information:

* The kernel version. This can be obtained using the uname -a command.
e Theglibc version. The rpm -q gl i bc command indicates the patch level of gl i bc.

e The thread library. There are two thread libraries for Linux, namely Li nuxThr eads and
NPTL. The Li nuxThr eads library is used on 2.4, and earlier kernels and has fixed stack and
floating stack variants. The Native POSIX Thread Library (NPTL) is used on the 2.6 kernel.
Some Linux releases (such as RHELS3) include backports of NPTL to the 2.4 kernel. Use the
command get conf GNU_LI BPTHREAD VERSI ON to determine which thread library is used. If
the get conf command returns an error to say that the variable does not exist, then it is
likely that you are using an old kernel with the Li nuxThr eads library.

Java SE Version

Obtain the Java SE version string with the j ava - ver si on command.

Multiple versions of Java SE may be installed on the same machine. Therefore, ensure that
you use the version of the j ava command used by the failing application. It is very likely to be
different from the default j ava command included in a user's PATH environment variable.

Command-Line Options

If the bug report does not include a fatal error log then, it is important to document the full
command line and all its options. This includes any options that specify heap settings, for
example, the - Xmx option, or any - XX options that specify HotSpot specific options.

If you can reproduce the issue at will, and you're able to read standard output (stdout) for the
JVM, then you can add the - XX: +Pri nt CommandLi neFl ags option to obtain the full list of

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 3 of 10

ORACLE Chapter 16
Collect Data for a Bug Report

command-line options used by the application. This option will be active the next time the JVM
is restarted.

You can also run the j cmd command as follows to obtain the command-line options of a
running VM:

jemd <process ID for the Java process> VM comand_| i ne

In addition, you can change the flags of a running JVM through j cnd. See the VM set _fl ag
command.

Environment Variables

Sometimes problems arise due to environment variable settings. When creating the bug report,
indicate the values of the following Java environment variables (if set).

« JAVA TOOL_OPTI ONS
< _JAVA OPTIONS

e CLASSPATH
e JAVA COWPILER
.« PATH
« USERNAME
@ Note

You should obtain the values of environment variables from the context of the failing
application. In addition, one or more configuration files may set the values of these
environment variables for that failing application.

In addition, collect the following operating-system-specific environment variables.

e On Oracle Solaris and Linux operating systems, collect the values of the following
environment variables:

— LD LI BRARY_PATH
— LD _PRELOAD
e On Windows, collect the values of the following environment variables:
- 08
— PROCESSOR_| DENTI FI ER
— _ALT_JAVA HOVE DI R

Fatal Error Log

When a fatal error occurs, an error log is created. See Fatal Error Log.

The error log contains information obtained at the time of the fatal error, such as version and
environment information, details about the threads that provoked the crash, and so forth.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 4 of 10

ORACLE Chapter 16
Report a Bug

If the fatal error log is generated, then be sure to include it in the bug report or report it during a
support call.

Core and Crash Dump

If a core file or crash dump has been created because of the reported issue, include it with the
bug, size permitting.

A Linux core file or a Windows crash dump contains the memory state of either an application
or the operating system at the time the core or dump was created. Depending on a system's
configuration, a core or crash dump may be created automatically when a crash happens.
Consult with the system administrator to determine if a core file will be generate automatically
and where.

In the case of a hung process, the procedure for generating a dump is described in Collect
Core Dumps.

Logs and Traces

Log or trace output can help to quickly determine the cause of a problem.

For example, in the case of a performance issue, the output of the - ver bose: gc option can
help in diagnosing the problem. This option enables output from the garbage collector.

In other cases, you can use Java Flight Recorder and JDK Mission Control to capture
statistical information over the time period leading up to the problem.

In the case of a deadlock or a hung VM, the thread stacks can help diagnose the problem.
Obtain thread stacks by pressing Cont r ol +\ on Oracle Solaris and Linux or Cont r ol +Br eak
on Windows. Alternatively, use the Thread. dunp_to_fil e option in the j cnd command.

In general, provide all relevant logs, traces, and other output in the bug report or during the
support call.

Report a Bug

Once you have concluded that your issue was not already reported and collected data about it,
report it at Report a Bug or Request a Feature.

Collect Core Dumps

A core dump or a crash dump is a memory snapshot of a process.

A core dump can be automatically created by the operating system when a fatal or unhandled
error occurs. Alternatively, a core dump can be forced by using system-provided command-line
utilities. Sometimes, a core dump is useful when diagnosing a process that appears to be
hung; the core dump may reveal information about the cause of the hang.

The following sections describe scenarios for collecting core dumps.

e Collect Core Dumps on Oracle Solaris

e Collect Core Dumps on Linux

» Reasons for Not Getting a Core File

e Collect Crash Dumps on Windows

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 5 of 10

https://docs.oracle.com/en/java/java-components/jdk-mission-control/
https://bugreport.java.com/bugreport/

ORACLE Chapter 16
Collect Core Dumps

Collect Core Dumps on Oracle Solaris

By default, the core dump is created in the current working directory of the process. The name
of the core dump file is cor e. The user can configure the location and name of the core dump
using the core file administration utility, cor eadm This procedure is fully described in the man
page for the cor eadmutility.

The ul i m t utility is used to get or set the limitations on the system resources available to the
current shell and its descendants. Use the ul i mt -¢ command to check or set the core file
size limit. Ensure that the limit is set to unl i m t ed; otherwise, the core file could be truncated.

@® Note

ul i mt is a Bash shell built-in command; on a C shell, use the | i mt command.

Ensure that any scripts that are used to launch the VM or your application do not disable core
dump creation.

The gcor e utility can be used to get a core image of running processes. This utility accepts a
process ID (pid) of the process for which you want to force a core dump.

To get the list of Java processes running on the machine, you can use any of the following
commands:

e ps -ef | grep java
e pgrep java

* jps

@® Note

The j ps command-line utility does not perform name matching (that is, looking for
"java" in the process command name) and so it can list Java VM embedded
processes as well as the Java processes.

The following are two methods to collect core dumps on Oracle Solaris.

ShowMessageBoxOnError option on Oracle Solaris:

A Java process can be started with the - XX: +ShowMessageBoxOnEr r or command-line
option. When a fatal error occurs, the process prints a message to standard error and
waits for a yes or no response from standard input.

e Suspend a process with the truss utility:

In situations where it is not possible to specify the - XX: +ShowMessageBoxOnEr r or option,
you might be able to use the t r uss utility. This Oracle Solaris operating system utility is
used to trace system calls and signals. You can use this utility to suspend the process
when it reaches a specific function or system call.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 6 of 10

ORACLE

Chapter 16
Collect Core Dumps

The command in the following example shows how to use the t russ utility to suspend a
process when the exi t system call is executed (in other words, the process is about to
exit).

$truss -t \lall -s \lall -T exit -p pid

When the process calls exi t, it will be suspended. At this point, you can attach the
debugger to the process or call gcor e to force a core dump.

Collect Core Dumps on Linux

By default, the core dump is created in the current working directory of the process. The name
of the core dump file is cor e. pi d, where pi d is the process ID of the crashed Java process.

Not all systems are configured to allow the creation of core files. The ul i ni t utility is used to
get or set the limitations on the system resources available to the current shell and its
descendants. Use the ulimit - ¢ command to check or set the core file size limit. Ensure that
the limit is set to unl i m t ed; otherwise, the core file could be truncated or not produced.

@ Note

ulimt is a Bash shell built-in command; on a C shell, use the | i ni t command.

Ensure that any scripts that are used to launch the VM or your application do not disable core
dump creation.

You can use the gcore command in the gdb (GNU debugger) interface to get a core image of a
running process. This utility accepts the pi d of the process for which you want to force the core
dump.

To get the list of Java processes running on the machine, you can use any of the following
commands:

e jcmd
e ps -ef | grep java
° pgrep java

You can use the ShowvessageBoxOnEr r or option to collect core dumps on Linux. Start a Java
process with the - XX: +ShowMessageBoxOnEr r or command-line option. When a fatal error
occurs, the process prints a message to standard error and waits for a yes or no response from
standard input.

Reasons for Not Getting a Core File

The following is a list of reasons why a core file might not be generated on Linux:

* The application user does not have permission to write in the current working directory of
the process.

* The application user has write permission on the current working directory, but there is
already a file named cor e that has read-only permission.

e The current directory does not have enough space.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE

Chapter 16
Collect Core Dumps

e The current directory has a subdirectory named cor e.

e The current working directory is remote. It might be mapped to a Network File System
(NFS), and NFS failed at the time the core dump was about to be created.

* Oracle Solaris operating system only: The cor eadmtool has been used to configure the
directory and name of the core file, but one or more of the previous reasons apply to the
configured directory.

e The process is running a set ui d program, and therefore the operating system will not
dump the core unless it is configured explicitly.

« Java specific: If the process received SI GSEGV or Sl G LL but did not produce a core file, it
is possible that the process handled it. For example, HotSpot VM uses the S| GSEGV signall
for legitimate purposes, such as throwing Nul | Poi nt er Except i on, deoptimization, and so
forth. The signal is unhandled by the Java VM only if the current instruction (PC) falls
outside the Java VM generated code. These are the only cases in which HotSpot dumps
the core.

« Java specific: The NI Invocation APl was used to create the VM. The standard Java
launcher was not used. The custom Java launcher program handled the signal by
consuming it and produced the log entry silently. This situation has occurred with certain
application servers and web servers. These Java VM embedding programs transparently
attempt to restart (fail over) the system after an abnormal termination. In this case, the fact
that a core dump is not produced is a feature and not a bug.

Collect Crash Dumps on Windows

In the Windows operating system, there are three types of crash dumps: Dr. Watson log file,
user minidump, and Dr. Watson full dump.

» Dr. Watson log file, which is a text error log file that includes faulting stack trace and a few
other details.

e User minidump, which is considered a partial core dump. It is not a complete core dump,
because it does not contain all the useful memory pages of the process.

e Dr. Watson full dump, which is equivalent to a UNIX core dump. This dump contains most
memory pages of the process except for code pages.

When an unexpected exception occurs on Windows, the action taken depends on two values
in the following registry key:

\\ HKEY_LOCAL_MACHI NE\ Sof t war e\ M cr osof t \ Wndows NT\ Cur rent Ver si on\ AeDebug

The two values are named Debugger and Aut 0. The Aut o value indicates if the debugger
specified in the value of the Debugger entry starts automatically when an application error
occurs.

* Avalue of 0 for Aut o means that the system displays a message box notifying the user
when an application error occurs.

e Avalue of 1 for Aut 0 means that the debugger starts automatically.

The value of Debugger is the debugger command that is to be used to debug program errors.

When a program error occurs, Windows examines the Aut o value, and if the value is 0, then it
executes the command in the Debugger value. If the value for Debugger is a valid command,
then a message box is created with two buttons: OK and Cancel. If the user clicks OK, then
the program is terminated. If the user clicks Cancel, then the specified debugger is started. If
the value for the Aut 0 entry is set to 1 and the value for the Debugger entry specifies the

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 8 of 10

ORACLE

Chapter 16
Collect Core Dumps

command for a valid debugger, then the system automatically starts the debugger and does
not generate a message box.

The following are two ways to collect crash dump on Windows.

Troubleshooting Guide

E94880-09

Configure Dr.Watson:

The Dr. Watson debugger is used to create crash dump files. By default, the Dr. Watson
debugger (drwt sn32. exe) is installed in the Windows system folder (%8yst enRoot %
\ Syst enB2).

To install Dr. Watson as the postmortem debugger, run the following command:

drwtsn32 -i

To configure the name and location of crash dump files, run dr wt sn32 without any options.

In the Dr. Watson GUI window, ensure that the Create Crash Dump File check box is
selected and that the crash dump file path and log file path are configured in their
respective text fields.

Dr. Watson can be configured to create a full dump using the registry. The registry key is
shown in the following example.

System Key: [HKEY_LOCAL_MACHI NE\ SOFTWARE\ M cr osof t\ Dr Wat son]
Entry Name: CreateCrashDunp
Value: (0 = disabled, 1 = enabled)

@® Note

If the application handles the exception, then the registry-configured debugger is
not invoked. In that case, it might be appropriate to use the -

XX: +ShowvessageBoxOnEr r or command-line option to force the process to wait for
user intervention on fatal error conditions.

Force a crash dump:

The user dunp command-line utility can be used to force a Dr. Watson dump of a running
process. The user dunp utility does not ship with Windows. It is released as a component of
the OEM Support Tools package.

An alternative way to force a crash dump is to use the wi ndbg debugger. The main
advantage of using wi ndbg is that it can attach to a process in a hon-invasive manner (that
is, read-only). Usually, Windows terminates a process after a crash dump is obtained, but
with the noninvasive attach, it is possible to obtain a crash dump and let the process
continue. To attach the debugger check box requires selecting the Attach to Process
option and the Noninvasive check box.

When the debugger is attached, a crash dump can be obtained using the command shown
in the following example.

.dump /f crash.dnp
The wi ndbg debugger is included in the Debugging Tools for Windows download.

An additional utility in this download is the dunpchk. exe utility, which can verify that a
memory dump file was created correctly.

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 9 of 10

ORACLE Chapter 16
Collect Core Dumps

Both user dunp. exe and wi ndbg require the pi d of the process. The userdunp -p command
lists the process and program for all processes. This is useful if you know that the
application is started with the j ava. exe launcher. However, if a custom launcher is used
(embedded VM), then it might be difficult to recognize the process. In that case, you can
use the j ps command-line utility because it lists the PIDs of the Java processes only.

You can also use the - XX: +ShowiessageBoxOnEr r or command-line option on Windows.
When a fatal error occurs, the process shows a message box and waits for a yes or no
response from the user.

Before clicking Yes or No, you can use the user dunp. exe utility to generate the Dr. Watson
dump for the Java process. This utility can also be used in cases when the process
appears to be hung.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Page 10 of 10

Appendices

This part contains the following topics.
e Fatal Error Log
Describes fatal error log contents and location

« Java 2D Properties

Describes properties that are useful in troubleshooting issues with Java 2D

« Environment Variables and System Properties

Describes environment variables and system properties that are useful when
troubleshooting issues with Java HotSpot Server VM

e Command-Line Options

Describes command-line options that are useful when diagnosing issues with Java
HotSpot Server VM

e Summary of Tools in This Release

Provides a summary of the tools available in the current and previous releases of the JDK.

Fatal Error Log

The fatal error log is created when a fatal error occurs. It contains information and the state
obtained at the time of the fatal error.

@® Note

The format of this file can change slightly in update releases.

This appendix contains the following sections:

* Location of Fatal Error Log

» Description of Fatal Error Log

e Header Format

 Thread Section Format

e Process Section Format

e System Section Format

Location of Fatal Error Log

To specify where the log file will be created, use the product flag - XX: Error Fi | e=file,
where fi | e represents the full path for the log file location.

The substring %%in the file variable is converted to % and the substring % is converted to the
PID of the process.

In the following example, the error log file will be written to the directory / var /| og/ j ava and
will be named j ava_errorpi d. | og:

java - XX ErrorFile=/var/log/javaljava_error%.| og

If the - XX: Error Fi | e=fi | e flag is not specified, then the default log file name is
hs_err _pi d. | og, where pi d is the PID of the process.

In addition, if the - XX: Error Fi | e=fi | e flag is not specified, the system attempts to create
the file in the working directory of the process. In the event that the file cannot be created in the
working directory (insufficient space, permission problem, or other issue), the file is created in
the temporary directory for the operating system. On the Oracle Solaris and Linux operating
systems, the temporary directory is / t np. On the Windows, the temporary directory is
specified by the value of the TMP environment variable. If that environment variable is not
defined, then the value of the TEMP environment variable is used.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-1 of A-18

ORACLE’

Appendix A
Description of Fatal Error Log

Description of Fatal Error Log

The error log contains information obtained at the time of the fatal error, including the following
information, where possible:

The operating exception or signal that provoked the fatal error

Version and configuration information

Details about the thread that provoked the fatal error and the thread's stack trace
List of running threads and their states

Summary information about the heap

List of native libraries loaded

Command-line arguments

Environment variables

Details about the operating system and CPU

@ Note

In some cases only a subset of this information is output to the error log. This can
happen when a fatal error is of such severity that the error handler is unable to recover
and report all the details.

The error log is a text file consisting of the following sections:

A header that provides a brief description of the crash. See Header Format.

A section with thread information. See Thread Section Format.

A section with process information. See Process Section Format.

A section with system information. See System Section Format.

@® Note

The format of the fatal error log described here is based on Java SE 6. The format
might be different with other releases.

Header Format

The header section at the beginning of every fatal error log file contains a brief description of
the problem.

The header is also printed to standard output and may show up in the application's output log.

Troubleshooting Guide
E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-2 of A-18

ORACLE

Appendix A
Header Format

The header includes a link to the HotSpot Virtual Machine Error Reporting Page, where the
user can submit a bug report.

#

A fatal error has been detected by the Java Runtime Environnent:

#

SIGSEGV (0xb) at pc=0x00007f 0Of 159f 857d, pi d=18240, ti d=18245

#

JRE version: Java(TM SE Runtine Environnent (9.0+167) (build 9-ea+167)
Java VM Java Hot Spot (TM 64-Bit Server VM (9-ea+167, m xed node, tiered,
conpressed oops, gl gc, |inux-and64)

Probl ematic frame:

C [libMApp.so+0x57d] Java_MyApp_readDat a+Ox11

H+

Core dunp will be witten. Default location: /cores/core.18240)

If you would like to submit a bug report, please visit:
http://bugreport.java. conf bugreport/crash.jsp

The crash happened outside the Java Virtual Machine in native code.

See problematic frane for where to report the bug.

HoH H H O H R R R

The example shows that the VM crashed on an unexpected signal.

The next line describes the signal type, program counter (pc) that caused the signal, process
ID, and thread ID, as shown in the following example.

The following line and table describes the signal type, program counter (pc) that caused the
signal, process ID, and thread ID.

SIGSEGV (0xb) at pc=0x00007fOf 159f 857d, pi d=18240, tid=18245

Table A-1 Line Description
]

Line Component Description

SI GSEGV Signal name

(0xb) Signal number

pc=0x00007f Of 159f 857d Program counter (instruction pointer)
pi d=18240 Process ID

tid=18245 Thread ID

The next line contains the VM version (client VM or server VM), an indication of whether the
application was run in mixed or interpreted mode, and an indication of whether class file
sharing was enabled, as shown in the following line.

Java VM Java Hot Spot (TM 64-Bit Server VM (9-ea+167, m xed node, tiered,
conpressed oops, gl gc, linux-and64)

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-3 of A-18

ORACLE

Troubleshooting Guide

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

Appendix A
Header Format

The next information is the function frame that caused the crash, as shown in the following
example.

Problematic frame:
C [libMApp. so+0x57d] Java MyApp_readDat a+0x11

Table A-2 Line Description
]

Line Component Description

C Frame type

[1i bM/App. so+0x57d] Same as program counter, but represented as
Java_M/App_readDat a+0x11 library name and offset. For position-independent

libraries (JVM and most shared libraries), it is
possible to inspect the instructions that caused the
crash without a debugger or core file by using a
disassembler to dump instructions near the offset.

In this example, the "C" frame type indicates a native C frame. Table A-3 shows the possible
frame types.

Table A-3 Frame Types
]

Frame Description

Type
c Native C frame
i Interpreted Java frame
\% VM frame
VM-generated stub frame
J Other frame types, including compiled Java frames

Internal errors will cause the VM error handler to generate a similar error dump. However, the
header format is different. Examples of internal errors are guar ant ee() failure, assertion
failure, Shoul dNot ReachHer e() , and so forth. The following example shows the header format
for an internal error.

#

An unexpected error has been detected by Hot Spot Virtual Machine:
#

Internal Error (4F533F4C494E55583F491418160E43505000F5), pid=10226,
tid=16384

#

Java VM Java Hot Spot (TM dient VM (1.6.0-rc-b63 nixed node)

In the above header, there is no signal name or signal number. Instead the second line now
contains I nternal Error and along hexadecimal string. This hexadecimal string encodes the
source module and line number where the error was detected. In general this "error string" is
useful only to engineers working on the HotSpot Virtual Machine.

The error string encodes a line number and therefore it changes with each code change and
release. A crash with a given error string in one release (for example, 1.6.0) might not

October 20, 2025
Appendix A-4 of A-18

ORACLE Appendix A
Thread Section Format

correspond to the same crash in an update release (for example, 1.6.0_01), even if the strings
match.

® Note

Do not assume that a workaround or solution that worked in one situation associated
with a given error string will work in another situation associated with that same error
string. Note the following facts:

e Errors with the same root cause might have different error strings.
e Errors with the same error string might have completely different root causes.

Therefore, the error string should not be used as the sole criterion when
troubleshooting bugs.

Thread Section Format

Information about the thread that crashed.

If multiple threads crash at the same time, then only one thread is printed.

Thread Information

The first part of the thread section shows the thread that caused the fatal error, as shown in the
following example.

Current thread (0x00007f102c013000): JavaThread "main" [_thread_in_native,
i d=18245, stack(0x00007f10345c0000, 0x00007f 10346c0000)]

Table A-4 Thread Information
]

Thread Component Description
0x00007f 102c¢013000 Thread Pointer
JavaThr ead Thread Type
mai n Thread Name
_thread_in_native Thread State

i d=18245 Thread ID

st ack(0x00007f 10345¢0000, 0x00007f 10346¢0000) Stack

The thread pointer is the pointer to the Java VM internal thread structure. It is generally of no
interest unless you are debugging a live Java VM or core file.

The following list shows possible thread types.
e JavaThread

e VMrhread

e Conpil er Thread

e (CTaskThread

e \WatcherThread

e Concurrent Mar kSweepThr ead

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-5 of A-18

ORACLE

Appendix A
Thread Section Format

Table A-5 shows the important thread states.

Table A-5 Thread States

Thread State Description

thread uninitialized Thread is not created. This occurs only in the case of memory
corruption.

_thread_new Thread was created, but it has not yet started.

_thread_in_native Thread is running native code. The error is probably a bug in the native
code.

_thread_in_vm Thread is running VM code.

_thread_in_Java Thread is running either interpreted or compiled Java code.

_thread_bl ocked Thread is blocked.

.._trans If any of the previous states is followed by the string _t r ans, then that

means that the thread is changing to a different state.

The thread ID in the output is the native thread identifier.

If a Java thread is a daemon thread, then the string daemon is printed before the thread state.

Signal Information

The next information in the error log describes the unexpected signal that caused the VM to
terminate. On a Windows system the output appears as shown in the following example.

si ginfo: ExceptionCode=0xc0000005, readi ng address 0xd8ffecfl

In the above example, the exception code is 0xc0000005 (ACCESS VI OLATI ON), and the
exception occurred when the thread attempted to read address 0xd8f f ecf 1.

On Oracle Solaris and Linux operating systems the signal number (si _si gno) and signal code
(si _code) are used to identify the exception, as follows:

siginfo: si_signo: 11 (SIGSEGVY), si_code: 1 (SEGV_MAPERR), si _addr:
0x0000000000000000

Register Context

The next information in the error log shows the register context at the time of the fatal error.
The exact format of this output is processor-dependent. The following example shows output
for the Intel(R) Xeon(R) processor.

Regi sters:

RAX=0x0000000000000000, RBX=0x00007f Of 17af f 30, RCX=0x0000000000000001
RDX=0x00007f 1033880358

RSP=0x00007f 10346be930, RBP=0x00007f 10346be930, RSI=0x00007f 10346be9al
RDI =0x00007f 102¢013218

R8 =0x00007f Of 17af f 3b0, R9 =0x0000000000000008, R10=0x00007f 1011bblde9
R11=0x0000000101cf c5e0

R12=0x0000000000000000, R13=0x00007f Of 17af f 3b0, R14=0x00007f 10346be9a8
R15=0x00007f 102¢013000

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-6 of A-18

ORACLE

Appendix A
Thread Section Format

Rl P=0x00007f Of 159f 857d, EFLAGS=0x0000000000010283, CSGSFS=0x0000000000000033,
ERR=0x0000000000000004

The register values might be useful when combined with instructions, as described below.

Machine Instructions

After the register values, the following example shows the error log that contains the top of
stack followed by 32 bytes of instructions (opcodes) near the program counter (PC) when the
system crashed. These opcodes can be decoded with a disassembler to produce the
instructions around the location of the crash. Note: 1A32 and AMD64 instructions are variable
in length, and so it is not always possible to reliably decode instructions before the crash PC.

Top of Stack: (sp=0x00007f10346be930)

0x00007f 10346be930: 00007f 10346be990 00007f 1011bblel5
0x00007f 10346be940: 00007f 1011bb1b33 00007f 10346he948
0x00007f 10346be950: 00007f Of 17af f 3b0 00007f 10346be9a8
0x00007f 10346be960: 00007f Of 17af f 520 0000000000000000

I nstructions: (pc=0x00007f0f 159f 857d)

0x00007f Of 159f 855d: 3d e6 08 20 00 ff e0 Of 1f 40 00 5d c3 90 90 55
0x00007f Of 159f 856d: 48 89 e5 48 89 7d f8 48 89 75 f0 h8 00 00 00 00
0x00007f Of 159f 857d: 8b 00 5d ¢3 90 90 90 90 90 90 90 90 90 90 90 90
0x00007f Of 159f 858d: 90 90 90 55 48 89 e5 53 48 83 ec 08 48 8b 05 88

Thread Stack

Where possible, the next output in the error log is the thread stack, as shown in the following
example. This includes the addresses of the base and the top of the stack, the current stack
pointer, and the amount of unused stack available to the thread. This is followed, where
possible, by the stack frames, and up to 100 frames are printed. For C/C++ frames, the library
name may also be printed. Note: In some fatal error conditions, the stack may be corrupt, and
this detail may not be available.

Stack: [0x00007f 10345c¢0000, 0x00007f 10346c0000], sp=0x00007f 10346be930, free
space=1018k

Native frames: (J=conpiled Java code, A=aot conpiled Java code,
j=interpreted, W=VM code, C=native code)

C [libMApp.so+0x57d] Java_MyApp_readDat a+0Ox11

i MApp.readData()!+0

i MApp. mai n([Ljaval/l ang/ String;) V+15

v ~StubRoutines::call_stub

V' [libjvmso+0x839eea] JavaCalls::call_hel per(JavaVal ue*, nethodHandl e
const & JavaCal | Argurent s*, Thread*) +0x47a

V. [libjvmso+0x896fcf] jni_invoke_static(JNIEnv_*, JavaVal ue*, _jobject*,
JNI Cal | Type, _jnmethodl D*, JN _Argunent Pusher*, Thread*) [clone .isra.90]+0x21f
V [libjvmso+0x8a7fle] jni_CallStaticVoi dvet hod+0x14e

C [libjli.sot0x4142] JavaMni n+0x812

C [libpthread. so.0+0x7e9a] start _thread+0xda

Java franes: (J=conpiled Java code, j=interpreted, W=VM code)
i MApp.readData()!+0

i MApp. mai n([Ljaval/l ang/ String;) V+15

v ~StubRoutines::call_stub

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-7 of A-18

ORACLE Appendix A
Process Section Format

The log contains two thread stacks.

e The first thread stack is Nati ve franes, which prints the native thread showing all function
calls. However, this thread stack does not take into account the Java methods that are
inlined by the runtime compiler; if methods are inlined, then they appear to be part of the
parent's stack frame.

The information in the thread stack for native frames provides important information about
the cause of the crash. By analyzing the libraries in the list from the top down, you can
generally determine which library might have caused the problem and report it to the
appropriate organization responsible for that library.

e The second thread stack is Java franes, which prints the Java frames including the inlined
methods, skipping the native frames. Depending on the crash, it might not be possible to
print the native thread stack, but it might be possible to print the Java frames.

Further Details

If the error occurred in the VM thread or in a compiler thread, then further details may be seen
from the following example. For example, in the case of the VM thread, the VM operation is
printed if the VM thread is executing a VM operation at the time of the fatal error. In the
following output example, the compiler thread caused the fatal error. The task is a compiler
task, and the HotSpot Client VM is the compiling method hs101t 004Thr ead. acker mann.

Current Conpi | eTask:
Hot Spot Client Conpiler:754 b
nsk.jvnti.scenarios. hot swap. HS101. hs101t 004Thr ead. acker mann(1J)J (42 bytes)

For the HotSpot Server VM, the output for the compiler task is slightly different but will also
include the full class name and method.

Process Section Format

The process section is printed after the thread section.

It contains information about the whole process, including the thread list and memory usage of
the process.

Thread List

The thread list includes the threads that the VM is aware of, as shown in the following
example.

=>0x0805ac88 JavaThread "main" [_thread in_native, id=21139,
st ack(0x00007f 10345c0000, 0x00007f 10346c0000)]

Table A-6 Thread List Description
]

Thread Component Description
=> Current Thread
0x0805ac88 Thread Pointer
JavaThr ead Thread Type
mai n Thread Name
_thread_in_native Thread State

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-8 of A-18

ORACLE

Appendix A
Process Section Format

Table A-6 (Cont.) Thread List Description
__|
Thread Component Description

i d=21139 Thread ID

st ack(0x00007f 10345c0000, 0x00007f 10346c0000) Stack

This includes all Java threads and some VM internal threads, but does not include any native
threads created by the user application that have not attached to the VM, as shown in the
following example.

Java Threads: (=> current thread)

0x00007f 102c469800 JavaThread "C2 Conpil er Thread0" daermon [_thread_bl ocked,
i d=18302, stack(0x00007f 0f 16f 31000, 0x00007f Of 17032000)]

0x00007f 102c468000 JavaThread "Signal Dispatcher" daenon [_thread_bl ocked,
i d=18301, stack(0x00007f0f 17032000, 0x00007f Of 17133000)]

0x00007f 102c450800 JavaThread "Finalizer" daemon [_thread_bl ocked,
i d=18298, stack(0x00007f0f 173f c000, 0x00007f Of 174f d000)]

0x00007f 102c448800 JavaThread "Reference Handl er" daenon [_thread_bl ocked,
i d=18297, stack(0x00007f 0f 174f d000, 0x00007f Of 175f €000)]
=>0x00007f 102c013000 JavaThread "main" [_thread_in_native, id=18245
st ack(0x00007f 10345c0000, 0x00007f 10346c0000)]

Ot her Threads:
0x00007f 102c43f 000 VMThread "VM Thread" [stack:
0x00007f Of 175f f 000, 0x00007f Of 176f f 000] [i d=18296]
0x00007f 102c54b000 Wt cher Thread [st ack:
0x00007f Of 15bf b000, 0x00007f Of 15¢f b000] [i d=18338]

The thread type and thread state are described in Thread Section Format.

VM State

The next information is the VM state, which indicates the overall state of the virtual machine.
Table A-7 describes the general states.

Table A-7 VM States
]

General VM State Description

not at a safepoint Normal execution.

at saf epoi nt All threads are blocked in the VM waiting for a special VM operation to
complete.

synchroni zi ng A special VM operation is required, and the VM is waiting for all threads

in the VM to block.

The VM state output is a single line in the error log, as follows:

VM state: not at safepoint (normal execution)

Mutexes and Monitors

The next information in the error log is a list of mutexes and monitors that are currently owned
by a thread, as shown in the following example. These mutexes are VM internal locks rather

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-9 of A-18

ORACLE

Appendix A
Process Section Format

than monitors associated with Java objects. The following is an example to show how the
output might look when a crash happens when VM locks are held. For each lock, the log
contains the name of the lock, its owner, and the addresses of a VM internal mutex structure
and its OS lock. In general, this information is useful only to those who are very familiar with
the HotSpot VM. The owner thread can be cross-referenced to the thread list.

VM Mut ex/ Monitor currently owned by a thread:

([rmutex/ | ock_event])[0x007357b0/ 0x0000031c] Threads | ock - owner thread:
0x00996318

[0x00735978/ 0x000002e0] Heap_| ock - owner thread: 0x00736218

Heap Summary

The next information is a summary of the heap, as shown in the following example. The output
depends on the garbage collection (GC) configuration. In this example, the serial collector is
used, class data sharing is disabled, and the tenured generation is empty. This probably
indicates that the fatal error occurred early or during startup, and a GC has not yet promoted
any objects into the tenured generation.

Heap
def new generation total 576K, used 161K [0x46570000, 0x46610000,
0x46a50000)

eden space 512K, 31% used [0x46570000, 0x46598768, 0x465f0000)

from space 64K, 0% used [0x465f 0000, 0x465f 0000, 0x46600000)

to space 64K, 0% used [0x46600000, 0x46600000, 0x46610000)
tenured generation total 1408K, used OK [0x46a50000, 0x46bb0000,
0x4a570000)

the space 1408K, 0% used [0x46a50000, 0x46a50000, 0x46a50200, 0x46bb0000)
compacting permgen total 8192K, used 1319K [0x4a570000, 0x4ad70000
0x4e570000)

the space 8192K, 16% used [0x4a570000, Ox4a6b9d48, 0x4a6b9e00, 0x4ad70000)
No shared spaces configured.

Memory Map

The next information in the log is a list of virtual memory regions at the time of the crash. This
list can be long if the application is large. The memory map can be very useful when
debugging some crashes, because it can tell you which libraries are actually being used, their
location in memory, as well as the location of the heap, stack, and guard pages.

The format of the memory map is operating system-specific. On the Oracle Solaris operating
system, the base address and library name are printed. On the Linux system, the process
memory map (/ pr oc/ pi d/ maps) is printed. On the Windows system, the base and end
addresses of each library are printed. The following example shows the output generated on
Linux/x86.

@® Note

Most of the lines were omitted from the example for the sake of brevity.

Dynanmic libraries:

00400000- 00401000 r-xp 00000000 00: 47 1374716350 /
export/java_reljdk/ 9/ eal 167/ binaries/|inux-x64/bin/java
00601000- 00602000 rwp 00001000 00: 47 1374716350 /

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-10 of A-18

ORACLE

export/java_reljdk/9/eal 167/ bi naries/|inux-

016c6000- 0167000 rwp 00000000 00:00 O

[heap]

82000000- 102000000 rwp 00000000 00:00 O
102000000- 800000000 ---p 00000000 00:00 O
40014000- 40015000 r--p 00000000 00:00 O
Lines omtted

7f 0f 159f 8000- 7f Of 159f 9000 r-xp 00000000 08

Appendix A
Process Section Format

x64/ bi n/java

export/users/ dh198349/tests/ hs-err/li bM/App. so

7f 0f 159f 9000- 7f Of 15bf 8000 ---p 00001000 08

export/users/ dh198349/tests/ hs-err/li bM/App. so

7f 0f 15bf 8000- 7f Of 15bf 9000 r--p 00000000 08

export/users/ dh198349/tests/ hs-err/li bM/App. so

7f 0f 15bf 9000- 7f Of 15bf a000 rw-p 00001000 08

export/users/ dh198349/tests/ hs-err/li bM/App. so

Lines om tted

7f 0f 15df c000- 7f Of 1500000 ---p 00000000 00:
7f 0f 15e00000- 7f Of 15ef OO0 rwp 00000000 00:
7f 0f 15ef d000O- 7f Of 15f 13000 r-xp 00000000 00:
export/java_reljdk/9/eal 167/ bi naries/|inux-
7f 0f 15f 13000- 7f 0f 16113000 ---p 00016000 00:
export/java_reljdk/ 9/ eal 167/ bi naries/|inux-
7f 0f 16113000- 7f 0f 16114000 rwp 00016000 00:
export/java_reljdk/ 9/ eal 167/ bi naries/|inux-
7f 0f 16114000- 7f 0f 16124000 r-xp 00000000 00:
export/java_reljdk/ 9/ eal 167/ bi naries/|inux-

Li nes om tted

7f 0f 17032000- 7f 0f 17036000 ---p 00000000 00:
7f 0f 17036000- 7f 0Of 17133000 rw-p 00000000 00:
7f 0f 17133000- 7f 0f 173f cO00 r--p 00000000 08

11 116808980 /
11 116808980 /
11 116808980 /
11 116808980 /
000

000

47 1374714565 /
x64/1ib/libnet.so

47 1374714565 /
x64/1ib/libnet.so

47 1374714565 /
x64/1ib/libnet.so

47 1374714619 /

x64/1ib/libnio.so

000
000
02

2102853 fusr/libl/local e/l ocal e-archive

7f 0f 173f c000- 7f Of 17400000 ---p 00000000 00:

Li nes ontted.

000

The following is a format of memory map in the error log.

40049000- 4035c000 r-xp 00000000 03:05 824473 /jdkl.5/jre/lib/i386/client/

libjvmso

Table A-8 Memory Map Format Description

Memory Map Component

Description

40049000- 4035c000

Memory region

r-xp Permission:
° read
° write
* execute
* private
e share
00000000 File offset
03: 05 Major ID and minor ID of the device

where the file is located (that is / dev/
hdab)

Troubleshooting Guide

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-11 of A-18

ORACLE

Table A-8 (Cont.) Memory Map Format Description

Appendix A

Process Section Format

. __|]
Memory Map Component

Description

824473

An inode number

[jdk1.5/jre/lib/i386/client/libjvmso

File name

The example shows the memory map output and each library has two virtual memory regions:
one for code and one for data. The permission for the code segment is marked with r - xp
(readable, executable, private), and the permission for the data segment is rw p (readable,
writable, private).

The Java heap is already included in the heap summary earlier in the output, but it can be
useful to verify that the actual memory regions reserved for the heap match the values in the
heap summary and that the attributes are set to r wxp.

Thread stacks usually show up in the memory map as two back-to-back regions, one with
permission - - - p (guard page) and one with permission r wxp (actual stack space). In addition, it
is useful to know the guard page size or stack size. For example, in this memory map, the
stack is located from 4127b000 to 412fb000.

On a Windows system, the memory map output is the load and end address of each loaded
module, as shown in the following example.

Dynanmic libraries:

0x00400000 - 0x0040c000 c:\jdk6\ bi n\java. exe

0x77f50000 - Ox77ff 7000 C:\ W NDONB\ SystenB2\ ntdl | . dl|
0x77e60000 - Ox77f46000 C: \ W NDONB\ syst enB2\ ker nel 32. dl |
0x77dd0000 - 0x77e5d000 C: \ W NDOWNB\ syst enB2\ ADVAPI 32. dI |
0x78000000 - 0x78087000 C. \ W NDOAB\ syst enB2\ RPCRT4. dI |
0x77¢10000 - 0x77c63000 C: \ W NDOAB\ syst enB2\ MSVCRT. dI |
0x08000000 - 0x08183000 c:\jdke\jre\biniclient\jvmdll
0x77d40000 - 0x77dcc000 C: \ W NDOAB\ syst enB2\ USER32. dI |
0x7e090000 - 0x7e0d1000 C: \ W NDONB\ syst enB2\ GDI 32. dI |
0x76b40000 - 0x76h6c000 C. \ W NDOAB\ Syst enB2\ W NWM dI |
0x6d2f 0000 - Ox6d2f 8000 c:\jdk6\jre\bin\hpi.dll

0x76bf 0000 - 0x76hf b000 C. \ W NDOAB\ Syst enB2\ PSAPI . DLL
0x6d680000 - 0x6d68c000 c:\jdk6\jre\bin\verify.dll
0x6d370000 - 0x6d38d000 c:\jdk6\jre\bin\java.dll
0x6d6a0000 - Ox6d6af 000 c:\jdk6\jre\bin\zip.dll
0x10000000 - 0x10032000 C:\ bugs\ crash2\ App. dl |

VM Arguments and Environment Variables

The next information in the error log is a list of VM arguments, followed by a list of environment
variables, as shown in the following example.

VM Ar gunent s:

jvmargs:

java_command: MyApp

java_class_path (initial):
Launcher Type: SUN_STANDARD

Loggi ng:
Log output configuration:

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-12 of A-18

ORACLE

Appendix A
Process Section Format

#0: stdout all=warning uptime,level,tags
#1: stderr all=off uptine,level,tags

Envi ronment Vari abl es:

PATH=/ usr /1 ocal / shin:/usr/local /bin:/usr/sbin:/usr/bin:/sbin:/bin
SHELL=/ bi n/ bash

DI SPLAY=I ocal host:10.0

ARCH=i 386

® Note

The list of environment variables is not the full list but rather a subset of the
environment variables that are applicable to the Java VM.

Signal Handlers

On the Oracle Solaris and Linux operating systems, the next information in the error log is the
list of signal handlers, as shown in the following example.

Signal Handl ers:

SI GSEGV: [Iibjvm so+0xd48840], sa mask[0]=11111111011111111101111111111110,
sa_f | ags=SA_RESTART| SA_SI G NFO

SIGBUS: [libjvm so+0xd48840], sa_mask[0]=11111111011111111101111111111110,
sa_f | ags=SA_RESTART| SA_SI G NFO

SIGFPE: [libjvm so+0xd48840], sa_mask[0]=11111111011111111101111111111110,
sa_f 1 ags=SA_RESTART| SA_SI G NFO

SIGPIPE: [Iibjvm so+0xb60080], sa mask[0]=11111111011111111101111111111110,
sa_f | ags=SA_RESTART| SA_SI G NFO

SI GXFSZ: [I1ibjvm so+0xb60080], sa mask[0]=11111111011111111101111111111110,
sa_f 1 ags=SA_RESTART| SA_SI G NFO

SIGLL: [libjvm so+0xd48840], sa_mask[0]=11111111011111111101111111111110,
sa_f | ags=SA_RESTART| SA_SI G NFO

SI QUSR2: [1ibjvm so+0xb5ff40], sa_mask[0] =00000000000000000000000000000000,
sa_f 1 ags=SA_RESTART| SA_SI G NFO

SIGHUP: [1ibjvm so+0xb60150], sa_mask[0]=11111111011111111101111111111110,
sa_f | ags=SA_RESTART| SA_SI G NFO

SIGNT: [libjvm so+0xb60150], sa_mask[0]=11111111011111111101111111111110,
sa_f | ags=SA_RESTART| SA_SI G NFO

SI GTERM [Iibj vm so+0xb60150], sa mask[0]=11111111011111111101111111111110,
sa_f | ags=SA_RESTART| SA_SI G NFO

SIGUT: [libjvmso+0xb60150], sa mask[0]=11111111011111111101111111111110,
sa_f 1 ags=SA_RESTART| SA_SI G NFO

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-13 of A-18

ORACLE Appendix A
System Section Format

System Section Format

The final section in the error log is the system information. The output is operating-system-
specific but in general includes the operating system version, CPU information, and summary
information about the memory configuration.

The following example shows output on a Linux operating system.
--------------- SYSTEM ----cmmemamnn--

0s: DI STRI B_I D=Ubunt u

Dl STRI B_RELEASE=12. 04

DI STRI B_CODENAME=pr eci se

Dl STRI B_DESCRI PTI ON="Ubuntu 12.04 LTS"

uname: Li nux 3. 2.0-24-generic #39-Ubuntu SMP Mon May 21 16:52:17 UTC 2012
x86_64

libc:glibc 2.15 NPTL 2.15

rlimt: STACK 8192k, CORE infinity, NPROC 1160369, NOFILE 4096, AS infinity
| oad average:0.46 0.33 0.27

/ proc/ meni nf o:

MenfTot al : 148545440 kB
Mentr ee: 1020964 kB
Buf fers: 29600728 kB
Cached: 86607768 kB
SwapCached: 16112 kB
Acti ve: 52272944 kB
[nactive: 64862992 kB
Active(anon): 314080 kB

I nactive(anon): 616296 kB
Active(file): 51958864 kB
Inactive(file): 64246696 kB

Unevi ct abl e: 16 kB
M ocked: 16 kB
SwapTot al : 1051644 kB
SwapFr ee: 976092 kB
Dirty: 40 kB
Wit eback: 0 kB
AnonPages: 912404 kB
Mapped: 95804 kB
Shmem 2936 kB
Sl ab: 28625980 kB
SRecl ai mabl e: 28337400 kB
SUnrecl aim 288580 kB
Ker nel St ack: 6040 kB
PageTabl es: 42524 kB
NFS_Unst abl e: 0 kB
Bounce: 0 kB
WitebackTnp: 0 kB
ComitLimt: 75324364 kB

Conm tted_AS: 6172612 kB
Vmal | ocTot al : 34359738367 kB
Vmal | ocUsed: 681668 kB
Vmal | ocChunk: 34282379392 kB

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-14 of A-18

ORACLE Appendix A
System Section Format

Har dwar eCor r upt ed: 0 kB
AnonHugePages: 0 kB
HugePages_Tot al : 0
HugePages_Fr ee: 0
HugePages_Rsvd: 0
HugePages_Sur p: 0
Hugepagesi ze: 2048 kB
Di rect Map4k: 171520 kB
Di rect Map2M 8208384 kB

Di rect MaplG 142606336 kB

CPU.total 24 (initial active 24) (6 cores per cpu, 2 threads per core) fanily
6 nodel 44 stepping 2, cnov, cx8, fxsr, mmx, sse, sse2, sse3, ssse3, ssed. 1,
ssed. 2, popcnt, aes, clml, ht, tsc, tscinvbit, tscinv

CPU Model and flags from/ proc/cpuinfo:

model namne . Intel (R Xeon(R) CPU X5675 @3.07GH

flags . fpu vre de pse tsc msr pae nte cx8 apic sep ntrr pge ncta cnov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgb
rdtscp I mconstant_tsc arch_perfron pebs bts rep_good nopl xtopol ogy
nonstop_tsc aperfrperf pni pclmlgdg dtes64 monitor ds_cpl vnx snx est tn?
ssse3 cx16 xtpr pdcmpcid dca ssed 1 ssed 2 popcnt aes lahf Imida arat epb
dts tpr_shadow vnnmi flexpriority ept vpid

Menmory: 4k page, physical 148545440k(1020964k free), swap 1051644k(976092k
free)

vminfo: Java Hot Spot(TM 64-Bit Server VM (9-ea+167) for |inux-anmi64 JRE (9-
ea+l67), built on Apr 27 2017 00:28:45 by "javare" with gcc 4.9.2

On the Oracle Solaris and Linux, the operating system, information is in the file / et ¢/

*r el ease. This file describes the kind of system the application is running on, and in some
cases, the information string might include the patch level. Some system upgrades are not
reflected in the / et c/ *r el ease file. This is especially true on the Linux system, where the
user can rebuild any part of the system.

On Oracle Solaris operating system the unane system call is used to get the name for the
kernel. The thread library (T1 or T2) is also printed.

On the Linux system, the unane system call is also used to get the kernel name. The | i bc
version and the thread library type are also printed, as shown in the following example.

unane: Li nux 3. 2.0-24-generic #39-Ubuntu SMP Mon May 21 16:52:17 UTC 2012
x86_64
libc:glibc 2.15 NPTL 2. 15

On Linux, there are three possible thread types, namely | i nuxt hreads (fixed stack),
linuxthreads (floating stack), and NPTL. They are normally installedin/1lib,/lib/i 686,
and/lib/tls.

It is useful to know the thread type. For example, if the crash appears to be related to pt hr ead,
then you might be able to work around the issue by selecting a different pt hr ead library. A
different pt hr ead library (and | i bc) can be selected by setting LD LI BRARY_PATH or

LD ASSUME_KERNEL.

The gl i bc version usually does not include the patch level. The command rpm -q gl i bc might
provide more detailed version information.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-15 of A-18

ORACLE Appendix A
System Section Format

On the Oracle Solaris and Linux operating systems, the next information is the rli nmi t
information.

@® Note

The default stack size of the VM is usually smaller than the system limit, as shown in
the following examples:

rlimt: STACK 8192k, CORE infinity, NPROC 1160369, NOFILE 4096, AS infinity
| oad average: 0.04 0.05 0.02

Table A-9 rlimit Description

rlimit Component Description

STACK 8192k Stack size (ulimit -s)

CORE infinity Core dump size (ulimit -c)
NPROC 1160369 Max user processes (ulimit -u)
NOFI LE 4096 Max open files (ulimit -n)

AS infinity Virtual memory (-v)

rlimt: STACK 8192k, CORE Ok, NPROC 4092, NOFILE 1024, AS infinity
| oad average: 0.04 0.05 0.02

Table A-10 rlimit Description

rlimit Component Description

STACK 8192k Stack size (ulimit -s)

CORE 0k Core dump size (ulimit -c)
NPROC 4092 Max user processes (ulimit -u)
NOFI LE 1024 Max open files (ulimit -n)
ASinfinity Virtual memory (-v)

The next information specifies the CPU architecture and capabilities identified by the VM at
startup, as shown in the following example.

CPU:total 24 (initial active 24) (6 cores per cpu, 2 threads per core) fanily
6 nodel 44 stepping 2, cnov, cx8, fxsr, mx,sse, sse2, sse3, ssse3, ssed.l,
ssed. 2, popcnt, aes, clml, ht, tsc, tscinvbit, tscinv

Table A-11 CPU Architecture Description

CPU Architecture Attribute Description

CPU.total 24 (initial active 24) (6 cores per cpu, 2 Total number of CPUs
t hreads per core)

Troubleshooting Guide
E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-16 of A-18

ORACLE Appendix A
System Section Format

Table A-11 (Cont.) CPU Architecture Description
]

CPU Architecture Attribute Description

famly 6 nmodel 44 stepping 2 processor family (IA32 only):
e 3-i386
o 4-i486

e 5-Pentium
e 6 - PentiumPro, PII, PIII
e« 15 - Pentium 4

cnov, cx8, fxsr, nmx... CPU features

Table A-12 shows the possible CPU features on a SPARC system.

Table A-12 SPARC Features

|
SPARC Feature Description

has_v8 Supports v8 instructions.

has_v9 Supports v9 instructions.

has_visl Supports visualization instructions.

has_vis2 Supports visualization instructions.

is_ultra3 UltraSparc Ill.

no- mul di v No hardware integer multiply and divide.
no-fsnul d No multiply-add and multiply-subtract instructions.

Table A-13 shows the possible CPU features on an Intel/IA32 system.

Table A-13 Intel/lA32 Features

. ___|
Intel/llA32 Feature Description

cnov Supports cmov instruction.

cx8 Supports cmpxchg8b instruction.

fxsr Supports fxsave and fxrstor.

nmx Supports MMX.

sse Supports SSE extensions.

sse? Supports SSE2 extensions.

ht Supports Hyper-Threading Technology.

Table A-14 shows the possible CPU features on an AMD64/EM64T system.

Table A-14 AMDG64/EM64T Features

. __|
AMDG64/EM64T Description

Feature
anmd64 AMD Opteron, Athlon64, and so forth.
enb4t Intel EM64T processor.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-17 of A-18

ORACLE

Appendix A
System Section Format

Table A-14 (Cont.) AMD64/EM64T Features

. ___|
AMDG64/EM64T Description

Feature
3dnow Supports 3DNow extension.
ht Supports Hyper-Threading Technology.

The next information in the error log is memory information, as shown in the following example.

Menory: 4k page, physical 513604k(11228k free), swap 530104k(497504k free)

Table A-15 Memory Configuration Description
]

Memory Configuration Description

4k page Page size

physi cal 513604k Total amount of physical memory
(11228k free) Unused physical memory

swap 530104k Total amount of swap space
(497504k free) Unused swap space

Some systems require swap space to be at lease twice the size of real physical memory,
whereas other systems do not have any requirements. As a general rule, if both physical
memory and swap space are almost full, then there is good reason to suspect that the crash
was due to insufficient memory.

On Linux system, the kernel may convert most of unused physical memory to file cache. When
there is a need for more memory, the Linux kernel will give the cache memory back to the
application. This is handled transparently by the kernel, but it means that the amount of unused
physical memory reported by the fatal error handler could be close to zero when there is still
sufficient physical memory available.

The final information in the SYSTEM section of the error log is vm i nf o, which is a version
string embedded in | i bj vm so/j vm dl | . Every Java VM has its own unique vm i nf o string.
If you are in doubt about whether the fatal error log was generated by a particular Java VM,
check the version string.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix A-18 of A-18

Java 2D Properties

This appendix presents properties that can be useful in troubleshooting Java 2D.
This appendix contains the following sections:

e Properties on Oracle Solaris and Linux

* Properties on Windows

Properties on Oracle Solaris and Linux

List of Java 2D properties on Oracle Solaris and Linux.

Table B-1 describes the default values of some useful properties on Oracle Solaris and Linux
platforms.

Table B-1 Default Java 2D Properties on Oracle Solaris and Linux

Setup DGA SHM Pixmap OnScreen OffScreen

s
Oracle Solaris SPARC with On On Off DGA/Software Software
DGA support
Oracle Solaris SPARC with no Off On On X11/MITSHM Shared/Server
DGA, Oracle Solaris x86, Pixmaps
Linux, SunRay, VNC
J2SE 1.4 or greater: Remote Off Off On X11 Server Pixmaps
X server, ssh
J2SE 1.3.1 or less: Remote X Off Off Off X11 Software
server, ssh

The following list explains how to change the defaults.

e The X11 pipeline is the default pipeline for Oracle Solaris and Linux. Change this default as
follows:

— -Dsun. java2d. opengl =t r ue — Attempt to enable the OpenGL pipeline.
e The use of DGA is controlled as follows:
— NO J2D DGA unset — Use DGA, if available.
— NO J2D DGA set — Disable the use of DGA.
e MIT Shared Memory Extension (SHM) is controlled as follows:
— To use SHM, if available, specify either one of the following properties:
NO J2D_M TSHM unset
J2D_USE_M TSHWEL r ue
— To not use SHM, specify either one of the following properties:
NO J2D_M TSHM set

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix B-1 of B-2

ORACLE Appendix B
Properties on Windows

J2D_USE_M TSHMEf al se

* The general use of pixmaps is controlled as follows:

— -Dsun. java2d. pmof f screen unset — Use pixmaps if DGA is not available.

— -Dsun.java2d. pnof f scr een=t r ue — Force the use of pixmaps.

— -Dsun. java2d. pmof f scr een=f al se — Disable the use of pixmaps.
e The use of Shared and Server pixmaps is controlled as follows:

— J2D _PI XMAPS unset — Use both types.

— J2D_PI XMAPS=shar ed — Use only shared memory pixmaps.

— J2D Pl XMAPS=sserver — Use only server-side pixmaps.
e The choice of default visual is controlled as follows:

— FORCEDEFVI S unset (default) — Use the best visual available.

— FORCEDEFVI S set to a hexadecimal value — Use the visual whose ID is the
hexadecimal value.

— FORCEDEFVI S set to any other value — Use the default visual.

Properties on Windows

The following list describes some useful properties on Windows platforms.

e The DirectDraw/GDI pipeline is the default pipeline for Windows. Change this default as
follows:

— -Dsun. java2d. noddr aw=t r ue — Disable the use of the DirectDraw pipeline. GDI will
be used instead.

— -Dsun.java2d. noddr aw=f al se — Enable the use of the DirectDraw pipeline.
— -Dsun.java2d. d3d=f al se — Disable the use of the Direct3D pipeline.
— J2D D3D=f al se — Disable the use of the Direct3D pipeline.
— -Dsun.java2d. d3d=t r ue — Enable the use of the Direct3D pipeline.
— J2D D3D=t rue — Enable the use of the Direct3D pipeline.
e Control the use of the built-in surface punting mechanism as follows:
— -Dsun.java2d. ddf or cedr anrt r ue — Keep volatile images in VRAM.
« Control the use of DirectDraw blit operations as follows:

— -Dsun.java2d. ddbl i t =f al se — Disable the use of DirectDraw blit operations. GDI
blits will be used instead.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix B-2 of B-2

Environment Variables and System Properties

This appendix describes environment variables and system properties that can be useful for
troubleshooting problems with the Java HotSpot VM.

Submit a Bug Report contains information on collecting environment variables in Environment
Variables.

This appendix contains the following sections:

e The JAVA TOOL OPTIONS Environment Variable

e The java.security.debug System Property

The JAVA TOOL_OPTIONS Environment Variable

In many environments, the command line is not readily accessible to start the application with
the necessary command-line options.

This often happens with applications that use embedded VMs (meaning they use the Java
Native Interface (JNI) Invocation API to start the VM), or where the startup is deeply nested in
scripts. In these environments the JAVA TOOL_OPTI ONS environment variable can be useful to
augment a command line.

@® Note

In some cases, this option is disabled for security reasons. For example, on the Oracle
Solaris operating system, this option is disabled when the effective user or group ID
differs from the real ID.

This environment variable allows you to specify the initialization of tools, specifically the
launching of native or Java programming language agents using the - agent | i b or - j avaagent
options.

This variable can also be used to augment the command line with other options for diagnostic
purposes. For example, you can supply the - XX: OnEr r or option to specify a script or command
to be executed when a fatal error occurs.

Because this environment variable is examined at the time, that the JNI _Cr eat eJavaVMfunction
is called, it cannot be used to augment the command line with options that would normally be
handled by the launcher, for example, VM selection using the - cl i ent option or the - server
option.

Troubleshooting Guide
E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix C-1 of C-3

ORACLE’

Appendix C
The java.security.debug System Property

The java.security.debug System Property

This system property controls whether the security system of the Java Runtime Environment
(JRE) prints trace messages during execution.

This option can be useful when diagnosing an issue involving a security manager when a
SecurityExcepti on is thrown.

The j ava. security. debug property can have the following values:

Troubleshooting Guide
E94880-09

access
Print all checkPer m ssi on results.
The following additional options can be specified with the access option:
— stack

Include stack trace.
— domain

Dump all domains in context.
— failure

Before throwing an exception, dump the stack and domain that did not have
permission.

jar

Print the JAR verification information.

policy

Print the permissions that Secur ed assLoader assigns.
scl

For example, to print all checkPer ni ssi on results and trace all domains in context, set the
java. security. debug property to access, st ack. To trace access failures, set the property
to access, failure.

The following example shows the output of a checkPer ni ssi on failure.

$ java -Djava.security.debug="access,failure" MApp
access denied (java.net. Socket Permi ssion server.foobar.comresol ve
)
java. | ang. Exception: Stack trace
at java.lang. Thread. dunpSt ack(Thread. j ava: 1158)
at java.security.AccessControl Cont ext. checkPerni ssion
(AccessCont rol Cont ext . j ava: 253)
at
java.security. AccessControl | er.checkPermi ssi on(AccessControl | er.java: 427)
at java.lang. SecurityMnager. checkPerm ssi on(SecurityMnager.java: 532)
at java.lang. SecurityMnager.checkConnect (SecurityMnager.java: 1031)
at java.net.|net Address. get Al | ByNaneO(| net Addr ess. java: 1117)
at java.net.|net Address. get Al | ByNaneO(| net Addr ess. j ava: 1098)
at java.net.|net Address. get Al | ByNane(| net Addr ess. j ava: 1061)
at java.net.|net Address. get ByNane(| net Addr ess. j ava: 958)
at java.net.|net Socket Address. <i ni t>(1 net Socket Addr ess. j ava: 124)

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix C-2 of C-3

ORACLE Appendix C
The java.security.debug System Property

at java.net. Socket. <init>(Socket.java:178)

at MyApp. mai n(MyApp. j ava: 7)

To know more about the j ava. security. debug system property, see the Troubleshooting
Security in the Java Platform, Standard Edition Security Developer's Guide.

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix C-3 of C-3

Command-Line Options

This appendix describes some command-line options that can be useful when diagnosing
problems with the Java HotSpot VM.

This appendix contains the following sections:

¢ Java HotSpot VM Command-Line Options

¢ Other Command-Line Options

Java HotSpot VM Command-Line Options

Command-line options that are prefixed with - XX are specific to the Java HotSpot Virtual
Machine. Many of these options are important for performance tuning and diagnostic purposes,
and are therefore described in this appendix.

To know more about all possible - XX options, see the Java HotSpot VM Options.

You can dynamically set, unset, or change the value of certain Java VM flags for a specified
Java process using the jinfo -fl ag command. See The jinfo Utility and the JConsole utility.

For a complete list of these flags, use the MBeans tab of the JConsole utility. See the list of
values for the Di agnosti cOpti ons attribute of the Hot Spot Di agnost i ¢ MBean, which is in the
com sun. managenent domain. The following are the flags:

e HeapDunpOnQut Of Menor yErr or
e HeapDunpPat h

e PrintGC

° PrintGCDetails

e PrintGCTi meSt anps

e PrintC assHi stogram

e PrintConcurrentLocks

The -XX:HeapDumpOnOutOfMemoryError Option

This option tells the Java HotSpot VM to generate a heap dump when an allocation from the
Java heap or the permanent generation cannot be satisfied. There is no overhead in running
with this option, so it can be useful for production systems where the Qut Of Menor yEr r or
exception takes a long time to appear.

You can also specify this option at runtime with the MBeans tab in the JConsole utility.

The following example shows the result of running out of memory with this flag set.

$ java - XX +HeapDunmpOnQut Of Memor yError - m256m - mx512m ConsuneHeap
java. | ang. Qut O Menmor yError: Java heap space

Dunpi ng heap to java_pi d2262. hpr of

Heap dunp file created [531535128 bytes in 14.691 secs]

Exception in thread "main" java.lang. Qut Of MemoryError: Java heap space

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix D-1 of D-7

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

ORACLE Appendix D
Java HotSpot VM Command-Line Options

at ConsumeHeap$Bi gObj ect . (ConsunmeHeap. j ava: 22)
at ConsumeHeap. mai n(ConsumeHeap. j ava: 32)

The ConsuneHeap fills the Java heap and runs out of memory. When the
j ava. | ang. Qut Of Menor yErr or exception is thrown, a heap dump file is created. In this case
the file is 507 MB and is created with the name j ava_pi d2262. hpr of in the current directory.

By default, the heap dump is created in a file called j ava_pi dpi d. hpr of in the working
directory of the VM, as in the example above. You can specify an alternative file name or
directory with the - XX: HeapDunpPat h= option. For example - XX: HeapDunpPat h=/ di sk2/ dunps
will cause the heap dump to be generated in the / di sk2/ dunps directory.

The -XX:OnError Option

When a fatal error occurs, the Java HotSpot VM can optionally execute a user-supplied script
or command. The script or command is specified using the - XX: OnEr r or =st ri ng command-line
option, where string is a single command, or a list of commands separated by semicolons.
Within this string, all occurrences of % are replaced with the current PID, and all occurrences
of %W%are replaced by a single % The following examples demonstrate how this option can be
used when launching a Java application named MyApp with the j ava launcher.

¢ java -XX OnError="pmap %" MApp

On the Oracle Solaris operating system the pmap command displays information about the
address space of a process. In the example, if a fatal error occurs, then the pmap command
is executed and displays the address space of the current process.

e java - XX OnError="cat hs_err_pid%.log | mail support@xanple.cont M/App

In the example above, the contents of the fatal error log file are mailed to a support alias
when a fatal error occurs.

* java -XX OnError="gcore %; dbx - %" MApp

On the Oracle Solaris operating system the gcor e command creates a core image of the
specified process, and the dbx command launches the debugger. In the example above,
the gcor e command is executed to create the core image of the current process, and the
debugger is started to attach to the process when an unexpected error occurs.

e java -XX nError="gdb - %" MApp

On Linux, the gdb command launches the debugger. In the example above, the gdb
debugger is launched and attached to the current process when an unexpected error is
encountered.

e java - XX OnError="userdunp. exe %" MApp

On Windows, the user dunp. exe utility creates a crash dump of the specified process. The
utility does not ship with Windows and should be downloaded from the Microsoft website
as a part of the Microsoft OEM Support Tools package.

In the example, the user dunp. exe utility is executed to create a core dump of the current
process in case of a fatal error.

@® Note

The example assumes that the path to the user dunp. exe utility is defined in the
PATH variable.

Troubleshooting Guide
E94880-09 October 20, 2025
Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix D-2 of D-7

ORACLE

Appendix D
Java HotSpot VM Command-Line Options

To know more about creating crash dumps on Windows, see Collect Crash Dumps on
Windows.

The -XX:ShowMessageBoxOnError Option

When this option is set and a fatal error occurs, the HotSpot VM will display information about
the fatal error and prompt the user to specify whether the native debugger is to be launched. In
the case of the Oracle Solaris and Linux operating systems, the output and prompt are sent to
the application console (standard input and standard output). In the case of Windows, a
Windows message box pops up.

The following example shows a fatal error on a Linux system.

Unexpected Error

SI GSEGV (0xb) at pc=0x2000000001164db1, pid=10791, tid=1026
Do you want to debug the problen®
To debug, run 'gdb /proc/ 10791/ exe 10791'; then switch to thread 1026

Enter 'yes' to launch gdb automatically (PATH nust include gdb)
Ot herwi se, press RETURN to abort. ..

In this case, a SI GSEGV error occurred, and the user is prompted to specify whether the gdb
debugger is to be launched to attach to the process. If the user enters y or yes, thengdb will be
launched (assuming it is set in the PATH variable).

On the Oracle Solaris operating system, the message is similar to the Linux example, except
that the user is prompted to start the dbx debugger.

On Windows a message box is displayed. If the user clicks Yes, the VM will attempt to start the
default debugger. This debugger is configured by a registry setting which is described in
Collect Crash Dumps on Windows. If Microsoft Visual Studio is installed, the default debugger
is typically configured to be nsdev. exe.

In the above example, the output includes the PID (pi d=10791) and also the thread ID
(tid=1026). If the debugger is launched, one of the initial steps in the debugger might be to
select the thread and get its stack trace.

When the process is waiting for a response, it is possible to use other tools to get a crash
dump or query the state of the process. On the Oracle Solaris operating system, for example, a
core dump can be obtained using the gcor e utility.

On Windows, a Dr. Watson crash dump can be obtained using the user dunp or wi ndbg
programs. The wi ndbg utility is included in Microsoft's Debugging Tools for Windows and is
described in Collect Crash Dumps on Windows. In wi ndbg, select the Attach to a Process
menu option, which displays the list of processes and prompts for the PID. The HotSpot VM
displays a message box, which includes the PID. After you selected the PID, the . dunp /f
command can be used to force a crash dump. Figure D-1 is an example crash dump created in
a file named crash. dunp.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix D-3 of D-7

ORACLE"

Appendix D
Java HotSpot VM Command-Line Options

Figure D-1 Example of a Crash Dump Created by windbg

{ermiriind - Phil 2012 - Winbbapet 2001 105

fHedlead: 77440000 77deccOBd C: W DIDOVS costanll~DERI2, d1)
Hodload: Ped 30000 7=0di000 C O WINDOWSwoymtendlGDI32 41
HedLoad - 7ebA0000 7EbecOOD AT INDOFS S tan 3TWWIKNN AL
[Hedload . &4240000 &d42i 5000 ekl Sngretbinthpd dll
Hedloed: 7ELE0000 TEbIH00D SFINDORS\Syrstem 32 FSAPT . DLL

HedLoad - &di #0004 édéie00n il Shvyresbinrarify dll

HedLoad . GAI70000 GddE000 Spdkl . Engrebinsjave 10

Medload Gdialifd fddafonn siedkl Sadrenbintzip. 4l

HodLload : &d0700040 edlde000 Skl Eyyyenbintavt il

Hedlead: FIE0O00Q 73023000 LW INDORS Sz e 3WIKSTOOL DRV

ledload - FEI50000 7E3actnn AFINDORS Syratan3d INKIZ 11

|HodLead: FRIBO000 TR2E4000 PR INDOFS sratenilnaledl 411

Hodload - S10G0000 51042000 C:<WINDOVS-Systendi ddrav 4l

HodLoad - F3Le0009 7abcf000 STINDORS - Somten 30 DCINARIY dll

HodLoad : E=0E0000 Sclci0Dl W INDOVS SpatenIDIDIHT00. DLL

HodLoad . 63050000 d30L4000 SFINDOWS Serstean 30 SonTTFon 11

HodLoad & Fre000d 777000 W INDOPS ayaten 32 VERSION 11

[Hedload: 77140000 F7bcalln SPINDOWS opstenilahel 132 411

[HedLoad - F0AT0000 Thadd0nn WFINDORS yrstan 31 SHLVAFT A11

fodload: FLI50009 T1lal4000 SPINDOWS WanSuSh b _Eicyocolt, Vindows Conmen-Controle bt REba A 1ehcct 1dE_&. 0, 2600, 1515 x=
[HedLoad: FRI40000 773ch000 SFINDORS s tewdicorot 132 . d11

HodToad - S42R0000 Ed2edDDD Sidkl Bhiratbinslonteanagar dl1

Hedload: 64430000 64444000 Cohgdkl. E—N*ﬂ\bln\jm a1l

Hodload - 64530000 645430000 Covgdkl 5\1:@\b1n\=ﬂ! gl

[Medload: F1ax0000 7laef000 O FINDORS-Seravenldl-VS2 32

HedLoad: Flaal00d Tlaad(dd C: \?IHE‘J“S‘\%W!R‘\N:‘&E{-.P dll

[Hodlosd: 64550000 €d553000 C: \Id'kl Fhiretbintaio.dil

(e, Jac): Hreak instreotios 0w = code SO000083 [first chanea)

Fﬂ:-?‘!diﬂﬁﬂ ekac=S0000001 ecx=000 0002 adies DIO0AT0T wez=CA0000M odi -DUD&DDGS

ips P71 75858 aape3difoz ebpe0I36tL 4 icplsD rv up #i pl ¥r oma po nc

zeeflb mse 0023 de=0023 ese0023 fse00)E goe(000 et Le00C0021E

wun ERROR: Syabol file cculd not be found, Dafanlted to expoxt synbols for CoWIFDIRESGysteadl-atdll 41l -

nidll | DbgBreakPoint

"'""'T"F?"!!'?!"!!'."!T""

OOOOGNOGH

TTE7haGE oo b 1)

0:813:

0:0135 .dunp /I user. dusp

e FYS— annnan hnann nsan nan
o dunp “ma iz the recomwend aetbod of creating & coaplete semary dunsp .
|* af a usar mode procesa. -

0 R B R N A N AR R
Cragting ekt Juep - usie [ul] daap
Uump successiully weitten

i |
| FRLTEE|

i

In general, the - XX: +ShowMessageBoxOnEr r or option is more useful in a development
environment where the debugger tools are available. The - XX: OnErr or option is more suitable
for production environments where a fixed sequence of commands or scripts are executed
when a fatal error occurs.

Other -XX Options
Several other - XX command-line options can be useful when troubleshooting:

o - XX OnQut OF Menor yError=string

This option can be used to specify a command or script to execute when an
Qut O Menor yEr ror exception is thrown.

e -XX ErrorFile=filenane

This option can be used to specify a location for the fatal error log file. See Location of
Fatal Error Log.

e -xx: HeapDunpPat h=pat h

This option can be used to specify a location for the heap dump. See The -
XX:HeapDumpOnOutOfMemoryError Option.

e - XX MaxPernfi ze=si ze

This option can be used to specify the size of the permanent generation memory. See
Understand the OutOfMemoryError Exception.

e - XX +Print CommandLi neFl ags

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix D-4 of D-7

ORACLE’

Appendix D
Other Command-Line Options

This option can be used to print all the VM command-line flags. See Collect Data for a Bug
Report.

e - XX +Print Concurrent Locks

This option can be used to cause the Control+Break handler to print a list of concurrent
locks owned by each thread.

e -XX +Printd assHi st ogram
This option can be used to cause the Control+Break handler to print a heap histogram.
e - XX +PrintCGCDetails and- XX: +Pri nt GCTi meSt anps

These options can be used to print detailed information about garbage collection. See The
-verbose:gc Option.

e - XX +UseAl t Sigs

On Oracle Solaris 8 and 9 operating system, this option can be used to instruct the
HotSpot VM to use alternate signals to SI GUSRL and SI GUSR2. See Handle Signals on
Oracle Solaris, Linux, and macOS.

e - XX tUseConcMar kSweepGC , - XX: +UseSeri al GCand - XX: +UseParal | el GC

These options can be used to specify the garbage collection policy to be used. See
Working Around Crashes During Garbage Collection.

Other Command-Line Options

In addition to the - XX options, many other command-line options can provide troubleshooting
information.

This section describes a few of these options.

The -Xcheck:jni Option

This option is useful when diagnosing problems with applications that use the Java Native
Interface (JNI). Sometimes, bugs in the native code can cause the HotSpot VM to crash or
behave incorrectly.

The - Xcheck: j ni option is added to the command line that starts the application, as in the
following example:

java - Xcheck:jni M/App

The - Xcheck: j ni option causes the VM to do additional validation of the use of JNI
functions. This includes argument validation and other usage constraints as described below.

@® Note

The option is not guaranteed to find all invalid arguments or diagnose logic bugs in the
application code, but it can help diagnose a large number of such problems.

When a significant usage error is detected, the VM prints a message to the application console
or to standard output, prints the stack trace of the offending thread, and stops the VM.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix D-5 of D-7

ORACLE Appendix D
Other Command-Line Options

The following example shows a nul | value was incorrectly passed to a JNI function that does
not allow a nul | value.

FATAL ERROR in native nmethod: Null object passed to JN

at java.net.PlainSocketl|npl.socket Accept (Native Method)

at java.net. Pl ai nSocket | npl.accept (Pl ai nSocket | npl . j ava: 343)

- locked <0x450b9f 70> (a java. net. Pl ai nSocket | npl)

at java.net. ServerSocket. i npl Accept (Server Socket . j ava: 439)

at java.net. Server Socket.accept (Server Socket . j ava: 410)

at org. apache. tontat. servi ce. Pool TcpEndpoi nt. accept Socket
(Pool TcpEndpoi nt. j ava: 286)

at org. apache. tontat. service. TcpWr ker Thread. runl t
(Pool TcpEndpoi nt. j ava: 402)

at org.apache.tontat.util. ThreadPool $Cont r ol Runnabl e. run
(ThreadPool . j ava: 498)

at java.lang. Thread. run(Thread. | ava: 536)

The following example shows an incorrect argument that was provided to a JNI function that
expects aj fiel dl Dargument.

FATAL ERROR in native nethod: Instance field not found in JN get/set
field operations
at java.net. Pl ai nSocket I npl . socket Bi nd(Native Met hod)
at java.net. Pl ai nSocket | npl . bi nd(Pl ai nSocket I npl . j ava: 359)
- locked <0Oxf082f290> (a java. net. Pl ai nSocket | npl)
at java. net. Server Socket . bi nd(Server Socket . j ava: 318)
at java.net. ServerSocket. <i nit>(Server Socket .java: 185)
at jvn003a. <init>(jvn003.java: 190)
at jvn003a. <init>(jvn003.java: 151)
at jvn003.run(jvnmd03.java; 51)
at jvn003. mai n(j vnD03. j ava: 30)

The following checks are considered indicative of significant problems with the native code:
e The thread doing the call is not attached to the JVM
e The thread doing the call is using the JNIEnv belonging to another thread
e A parameter validation check fails:
— AffieldID, or jmethodID, is detected as being invalid. For example:
* Of the wrong type
* Associated with the wrong class
— A parameter of the wrong type is detected
— Aninvalid parameter value is detected. For example:
* NULL where not permitted
* An out-of-bounds array index, or frame capacity
* A non-UTF-8 string
* Aninvalid NI reference

* An attempt to use a ReleaseXXX function on a parameter not produced by the
corresponding GetXXX function

Troubleshooting Guide
E94880-09 October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix D-6 of D-7

ORACLE

Appendix D
Other Command-Line Options

The following checks only result in warnings being printed:

* A JNI call was made without checking for a pending exception from a previous JNI call,
and the current call is not safe when an exception may be pending

* The number of JNI local references existing when a JNI function terminates exceeds the
number guaranteed to be available. See the EnsureLocalcapacity function

* A class descriptor is in decorated format (Lhame;) when it should not be
* A NULL parameter is allowed, but its use is questionable

« Calling other JNI functions in the scope of Get/ReleasePrimitiveArrayCritical or Get/
ReleaseStringCritical

This non-fatal warning message is shown in the following example.

Warning: Calling other JNI functions in the scope of
Get/ Rel easePrinmitiveArrayCritical or Get/ReleaseStringCritical

A JINI critical region is created when native code uses the JNI functions
GetPrimtiveArrayCritical orGetStringCritical to obtain a reference to an array or string
in the Java heap. The reference is held until the native code calls the corresponding release
function. The code between the get and release is called a JNI critical section, and during that
time, the HotSpot VM cannot bring the VM to a state that allows garbage collection to occur.
The general recommendation is not to use other JNI functions within a JNI critical section, and
in particular any JNI function that could potentially cause a deadlock. The warning printed
above by the - Xcheck: j ni option is thus an indication of a potential issue; it does not always
indicate an application bug.

The -verbose:class Option

This option enables logging of class loading and unloading.

The -verbose:gc Option

This option enables logging of garbage collection (GC) information. It can be combined with
other HotSpot VM-specific options such as - XX: +Pri nt GCDet ai | s and -

XX: +Pri nt GCTi neSt anps to get further information about GC. The information output
includes the size of the generations before and after each GC, total size of the heap, the size
of objects promoted, and the time taken.

The - ver bose: gc option can be dynamically enabled at runtime using the management API
or JVM TI. See Custom Diagnostic Tools.

The JConsole monitoring and management tool can also enable or disable the option when the
tool is attached to a management VM. See JConsole.

The -verbose:jni Option

This option enables the logging of JNI. When a JNI or native method is resolved, the HotSpot
VM prints a trace message to the application console (standard output). It also prints a trace
message when a native method is registered using the JNI Regi st er Nat i ve function. The -
ver bose: j ni option can be useful when diagnosing issues with applications that use native
libraries.

Troubleshooting Guide

E94880-09

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix D-7 of D-7

Summary of Tools in This Release

This appendix prvoides a summary of tools available in the current release of the JDK, as well
as the changes since the previous release.

All the JDK troubleshooting tools that are described in this document are available in JDK 9 on
both Oracle Solaris and Linux.

The following JDK troubleshooting tools are also available in JDK 9 on Windows:

Troubleshooting Guide
E94880-09

Java Mission Control

Java Flight Recordings

How to Produce a Flight Recording

Inspect a Flight Recording

jcmd

JConsole

Java Virtual Machine

j db

jinfo

j map

j ps (not currently available on Windows 98 or Windows ME)
jrunscript

j stack

j stat (not currently available on Windows 98 or Windows ME)
j statd (not currently available on Windows 98 or Windows ME)

vi sual gc (not currently available on Windows 98 or Windows ME)

October 20, 2025

Copyright © 1995, 2025, Oracle and/or its affiliates. Appendix E-1 of E-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I General Java Troubleshooting
	1 Prepare Java for Troubleshooting
	Set Up Java for Troubleshooting
	Enable Options and Flags for JVM Troubleshooting
	Gather Relevant Data
	Make a Java Application Easier to Debug

	2 Diagnostic Tools
	Diagnostic Tools Overview
	JDK Mission Control
	Troubleshoot with JDK Mission Control

	Flight Recorder
	Produce a Flight Recording
	Start a Flight Recording
	Use Triggers for Automatic Flight Recordings
	Use Startup Flags at the Command Line to Produce a Flight Recording

	Analyze a Flight Recording
	Analyze a Flight Recording Using JMC
	View Automated Analysis Results Page
	Analyze the Java Application
	Threads
	Memory
	Method Profiling

	JVM Internals
	Environment

	Analyze a Flight Recording Using the jfr tool or JFR APIs

	The jcmd Utility
	Useful Commands for the jcmd Utility
	Troubleshoot with the jcmd Utility

	Native Memory Tracking
	Use NMT to Detect a Memory Leak
	How to Monitor VM Internal Memory
	NMT Memory Categories

	JConsole
	Troubleshoot with the JConsole Tool
	Monitor Local and Remote Applications with JConsole

	The jdb Utility
	Troubleshoot with the jdb Utility

	The jinfo Utility
	Troubleshooting with the jinfo Utility

	The jmap Utility
	Heap Configuration and Usage
	Heap Histogram
	Class Loader Statistics

	The jps Utility
	The jstack Utility
	Troubleshoot with the jstack Utility
	Stack Trace from a Core Dump
	Mixed Stack

	The jstat Utility
	The visualgc Tool
	Control+Break Handler
	Thread Dump
	Thread States for a Thread Dump
	Detect Deadlocks
	Heap Summary

	Native Operating System Tools
	DTrace Tool
	Probe Providers in Java HotSpot VM
	Improvements to the pmap Utility
	Improvements to the pstack Utility

	Custom Diagnostic Tools
	Java Platform Debugger Architecture

	Postmortem Diagnostic Tools
	Hung Processes Tools
	Monitoring Tools
	Other Tools, Options, Variables, and Properties
	The java.lang.management Package
	The java.lang.instrument Package
	The java.lang.Thread Class
	JVM Tool Interface
	The jrunscript Utility
	The jstatd Daemon
	Troubleshooting Tools Based on the Operating System

	3 Troubleshoot Memory Leaks
	Use JDK Mission Control to Debug Memory Leak
	Detect Memory Leak
	Find the Leaking Class

	The jfr tool
	Understand the OutOfMemoryError Exception
	Troubleshoot a Crash Instead of OutOfMemoryError
	Diagnose Leaks in Java Language Code
	Get a Heap Histogram
	Monitor the Objects Pending Finalization

	Diagnose Leaks in Native Code
	Track All Memory Allocation and Free Calls
	Track All Memory Allocations in the JNI Library
	Track Memory Allocation with Operating System Support
	Find Leaks with the dbx Debugger
	Find Leaks with the libumem Tool

	4 Troubleshoot Performance Issues Using Flight Recorder
	Flight Recorder Overhead
	Use JDK Mission Control to Find Bottlenecks
	Use JDK Mission Control to Debug Garbage Collection Issues
	Use JDK Mission Control to Debug Synchronization Issues
	Use JDK Mission Control to Debug I/O Issues
	Use JDK Mission Control to Monitor Code Execution Performance

	Part II Debug JVM Issues
	5 Troubleshoot System Crashes
	Determine Where the Crash Occurred
	Crash the Native Code
	Crash in the Compiled Code
	Crash in the HotSpot Compiler Thread
	Crash in the VM Thread
	Crash Due to Stack Overflow
	Crash Due to Exceeded Memory Map Area Limit

	Find a Workaround
	Working Around Crashes in the HotSpot Compiler Thread or Compiled Code
	Working Around Crashes During Garbage Collection
	Working Around Crashes Caused by Class Data Sharing

	Microsoft Visual C++ Version Considerations

	6 Troubleshoot Process Hangs and Loops
	Diagnose a Loop Process
	Diagnose a Hung Process
	Deadlock Detected
	Deadlock Not Detected
	No Thread Dump

	Oracle Solaris 8 Thread Library

	7 Handle Signals and Exceptions
	Handle Signals on Oracle Solaris, Linux, and macOS
	Handle Exceptions on Windows
	Signal Chaining
	Handle Exceptions Using the Java HotSpot VM
	Console Handlers
	Signals Used in Oracle Solaris, Linux, and macOS

	Part III Debug Core Library Issues
	8 Time Zone Settings in the JRE
	Native Time Zone Information and the JRE
	Determine the Time Zone Data Version in Use
	Troubleshoot Problems with TZupdater

	Determine the Default Time Zone on Windows
	Check the Default Time Zone Java Runtime Reports
	Determine the Setting in the Control Panel
	Check for Automatic Daylight Saving Time Adjustment
	Set the Default Time Zone in Windows Settings
	Check -Duser.timezone System Property
	Special Tool in Windows
	Internal Representation of Time Zone Mappings

	Part IV Debug Client Issues
	9 Introduction to Client Issues
	Java SE Desktop Technologies
	General Steps to Troubleshoot an Issue
	Identify the Type of Issue
	Java Client Crashes
	Performance Problems
	Behavior Problems

	Basic Tools
	Java Debug Wire Protocol

	10 AWT
	Debug Tips for AWT
	Layout Manager Issues
	Key Events
	Modality Issues
	AWT Crashes
	Focus Events
	How to Trace Focus Events
	Native Focus System
	Focus Models Supported by X Window Managers
	Miscellaneous Problems with Focus

	Data Transfer
	Debug Drag-and-Drop Applications
	Frequent Issues with Data Transfer

	Other Issues
	Splash Screen Issues
	Tray Icon Issues
	Pop-up Menu Issues
	Background or Foreground Color Inheritance
	AWT Panel Size Restriction
	Hangs During Debugging of Pop-up Menus and Similar Components on X11
	Window.toFront()/toBack() Behavior on X11

	Heavyweight or Lightweight Components Mix

	11 Java 2D Pipeline Rendering and Properties
	Oracle Solaris and Linux: X11 Pipeline
	X11 Pipeline Pixmaps Properties
	X11 Pipeline MIT Shared Memory Extension
	Oracle Solaris on SPARC: DGA Support
	Oracle Solaris on SPARC - Change Java 2D Default Visual

	Windows OS: DirectDraw/GDI Pipeline
	Windows OS: Direct3D Pipeline in Full-Screen Mode
	OpenGL Pipeline in Oracle Solaris, Linux, and Windows
	Enable OpenGL Pipeline
	Minimum Requirements
	Diagnose Startup Issues
	Diagnose Rendering and Performance Issues

	Latest OpenGL Drivers

	12 Java 2D
	Generic Performance Issues
	Hardware-Accelerated Rendering Primitives
	Primitive Tracing to Detect and Avoid Non-Accelerated Rendering
	Causes of Poor Rendering Performance
	Improve Performance of Software-only Rendering

	Text-Related Issues
	Application Crash During Text Rendering
	Differences in Text Appearance
	Metrics

	Java 2D Printing

	13 Swing
	General Debug Tips for Swing
	Specific Debug Tips for Swing
	Incorrect Threading
	JComponent Children Overlap
	Display Update
	Model Change
	Add or Remove Components
	Opaque Override
	Permanent Changes to Graphics
	Custom Painting and Double Buffering
	Opaque Content Pane
	Renderer Call for Each Cell Performance
	Possible Leaks
	Mix Heavyweight and Lightweight Components
	Use Synth
	Track Activity on Event Dispatch Thread
	Specify Default Layout Manager
	Listener Object Dispatched to Incorrect Component
	Add a Component to Content Pane
	Drag and Drop Support
	One Parent for a Component
	JFileChooser Issues with Windows Shortcuts

	14 Internationalization
	Troubleshoot Internationalization and Localization

	15 Java Sound
	Troubleshoot Java Sound Issues

	Part V Submit Bug Reports
	16 Submit a Bug Report
	Check for Fixes in Update Releases
	Prepare to Submit a Bug Report
	Collect Data for a Bug Report
	Detailed Description of the Problem
	Hardware Details
	Operating System Details
	Java SE Version
	Command-Line Options
	Environment Variables
	Fatal Error Log
	Core and Crash Dump
	Logs and Traces

	Report a Bug
	Collect Core Dumps
	Collect Core Dumps on Oracle Solaris
	Collect Core Dumps on Linux
	Reasons for Not Getting a Core File
	Collect Crash Dumps on Windows

	Part VI Appendices
	A Fatal Error Log
	Location of Fatal Error Log
	Description of Fatal Error Log
	Header Format
	Thread Section Format
	Process Section Format
	System Section Format

	B Java 2D Properties
	Properties on Oracle Solaris and Linux
	Properties on Windows

	C Environment Variables and System Properties
	The JAVA_TOOL_OPTIONS Environment Variable
	The java.security.debug System Property

	D Command-Line Options
	Java HotSpot VM Command-Line Options
	Other Command-Line Options

	E Summary of Tools in This Release

