
Java Platform, Standard Edition
Troubleshooting Guide

Release 11
E94880-09
October 2025

Java Platform, Standard Edition Troubleshooting Guide, Release 11

E94880-09

Copyright © 1995, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Related Documents i

Conventions i

Part I General Java Troubleshooting

1 Prepare Java for Troubleshooting

Set Up Java for Troubleshooting 1

Enable Options and Flags for JVM Troubleshooting 1

Gather Relevant Data 3

Make a Java Application Easier to Debug 3

2 Diagnostic Tools

Diagnostic Tools Overview 2

JDK Mission Control 2

Troubleshoot with JDK Mission Control 3

Flight Recorder 4

Produce a Flight Recording 5

Start a Flight Recording 5

Use Triggers for Automatic Flight Recordings 6

Use Startup Flags at the Command Line to Produce a Flight Recording 7

Analyze a Flight Recording 8

Analyze a Flight Recording Using JMC 8

Analyze a Flight Recording Using the jfr tool or JFR APIs 10

The jcmd Utility 12

Useful Commands for the jcmd Utility 13

Troubleshoot with the jcmd Utility 14

Native Memory Tracking 15

Use NMT to Detect a Memory Leak 15

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page i of viii

How to Monitor VM Internal Memory 15

NMT Memory Categories 23

JConsole 24

Troubleshoot with the JConsole Tool 24

Monitor Local and Remote Applications with JConsole 25

The jdb Utility 27

Troubleshoot with the jdb Utility 27

The jinfo Utility 27

Troubleshooting with the jinfo Utility 29

The jmap Utility 29

Heap Configuration and Usage 29

Heap Histogram 31

Class Loader Statistics 32

The jps Utility 34

The jstack Utility 34

Troubleshoot with the jstack Utility 35

Stack Trace from a Core Dump 35

Mixed Stack 35

The jstat Utility 38

The visualgc Tool 39

Control+Break Handler 40

Thread Dump 41

Thread States for a Thread Dump 42

Detect Deadlocks 42

Heap Summary 43

Native Operating System Tools 44

DTrace Tool 44

Probe Providers in Java HotSpot VM 45

Improvements to the pmap Utility 45

Improvements to the pstack Utility 46

Custom Diagnostic Tools 46

Java Platform Debugger Architecture 47

Postmortem Diagnostic Tools 47

Hung Processes Tools 48

Monitoring Tools 49

Other Tools, Options, Variables, and Properties 50

The java.lang.management Package 51

The java.lang.instrument Package 52

The java.lang.Thread Class 52

JVM Tool Interface 52

The jrunscript Utility 52

The jstatd Daemon 52

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page ii of viii

Troubleshooting Tools Based on the Operating System 53

3 Troubleshoot Memory Leaks

Use JDK Mission Control to Debug Memory Leak 1

Detect Memory Leak 1

Find the Leaking Class 3

The jfr tool 4

Understand the OutOfMemoryError Exception 7

Troubleshoot a Crash Instead of OutOfMemoryError 9

Diagnose Leaks in Java Language Code 10

Get a Heap Histogram 10

Monitor the Objects Pending Finalization 12

Diagnose Leaks in Native Code 12

Track All Memory Allocation and Free Calls 12

Track All Memory Allocations in the JNI Library 13

Track Memory Allocation with Operating System Support 14

Find Leaks with the dbx Debugger 14

Find Leaks with the libumem Tool 16

4 Troubleshoot Performance Issues Using Flight Recorder

Flight Recorder Overhead 1

Use JDK Mission Control to Find Bottlenecks 2

Use JDK Mission Control to Debug Garbage Collection Issues 3

Use JDK Mission Control to Debug Synchronization Issues 5

Use JDK Mission Control to Debug I/O Issues 6

Use JDK Mission Control to Monitor Code Execution Performance 7

Part II Debug JVM Issues

5 Troubleshoot System Crashes

Determine Where the Crash Occurred 1

Crash the Native Code 1

Crash in the Compiled Code 3

Crash in the HotSpot Compiler Thread 4

Crash in the VM Thread 4

Crash Due to Stack Overflow 4

Crash Due to Exceeded Memory Map Area Limit 5

Find a Workaround 6

Working Around Crashes in the HotSpot Compiler Thread or Compiled Code 6

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page iii of viii

Working Around Crashes During Garbage Collection 8

Working Around Crashes Caused by Class Data Sharing 10

Microsoft Visual C++ Version Considerations 10

6 Troubleshoot Process Hangs and Loops

Diagnose a Loop Process 1

Diagnose a Hung Process 2

Deadlock Detected 2

Deadlock Not Detected 4

No Thread Dump 4

Oracle Solaris 8 Thread Library 5

7 Handle Signals and Exceptions

Handle Signals on Oracle Solaris, Linux, and macOS 1

Handle Exceptions on Windows 1

Signal Chaining 3

Handle Exceptions Using the Java HotSpot VM 4

Console Handlers 5

Signals Used in Oracle Solaris, Linux, and macOS 5

Part III Debug Core Library Issues

8 Time Zone Settings in the JRE

Native Time Zone Information and the JRE 1

Determine the Time Zone Data Version in Use 1

Troubleshoot Problems with TZupdater 2

Determine the Default Time Zone on Windows 3

Check the Default Time Zone Java Runtime Reports 3

Determine the Setting in the Control Panel 3

Check for Automatic Daylight Saving Time Adjustment 4

Set the Default Time Zone in Windows Settings 4

Check -Duser.timezone System Property 5

Special Tool in Windows 5

Internal Representation of Time Zone Mappings 5

Part IV Debug Client Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page iv of viii

9 Introduction to Client Issues

Java SE Desktop Technologies 1

General Steps to Troubleshoot an Issue 2

Identify the Type of Issue 3

Java Client Crashes 4

Performance Problems 4

Behavior Problems 5

Basic Tools 6

Java Debug Wire Protocol 6

10

AWT

Debug Tips for AWT 1

Layout Manager Issues 2

Key Events 2

Modality Issues 3

AWT Crashes 3

Focus Events 5

How to Trace Focus Events 5

Native Focus System 6

Focus Models Supported by X Window Managers 7

Miscellaneous Problems with Focus 7

Data Transfer 9

Debug Drag-and-Drop Applications 9

Frequent Issues with Data Transfer 9

Other Issues 11

Splash Screen Issues 11

Tray Icon Issues 12

Pop-up Menu Issues 12

Background or Foreground Color Inheritance 12

AWT Panel Size Restriction 12

Hangs During Debugging of Pop-up Menus and Similar Components on X11 13

Window.toFront()/toBack() Behavior on X11 13

Heavyweight or Lightweight Components Mix 13

11

Java 2D Pipeline Rendering and Properties

Oracle Solaris and Linux: X11 Pipeline 1

X11 Pipeline Pixmaps Properties 2

X11 Pipeline MIT Shared Memory Extension 3

Oracle Solaris on SPARC: DGA Support 3

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page v of viii

Oracle Solaris on SPARC - Change Java 2D Default Visual 4

Windows OS: DirectDraw/GDI Pipeline 4

Windows OS: Direct3D Pipeline in Full-Screen Mode 6

OpenGL Pipeline in Oracle Solaris, Linux, and Windows 7

Enable OpenGL Pipeline 7

Minimum Requirements 7

Diagnose Startup Issues 8

Diagnose Rendering and Performance Issues 8

Latest OpenGL Drivers 9

12

Java 2D

Generic Performance Issues 1

Hardware-Accelerated Rendering Primitives 1

Primitive Tracing to Detect and Avoid Non-Accelerated Rendering 2

Causes of Poor Rendering Performance 3

Improve Performance of Software-only Rendering 5

Text-Related Issues 6

Application Crash During Text Rendering 6

Differences in Text Appearance 8

Metrics 9

Java 2D Printing 9

13

Swing

General Debug Tips for Swing 1

Specific Debug Tips for Swing 2

Incorrect Threading 2

JComponent Children Overlap 3

Display Update 4

Model Change 4

Add or Remove Components 4

Opaque Override 4

Permanent Changes to Graphics 4

Custom Painting and Double Buffering 5

Opaque Content Pane 5

Renderer Call for Each Cell Performance 5

Possible Leaks 5

Mix Heavyweight and Lightweight Components 6

Use Synth 6

Track Activity on Event Dispatch Thread 6

Specify Default Layout Manager 6

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page vi of viii

Listener Object Dispatched to Incorrect Component 6

Add a Component to Content Pane 7

Drag and Drop Support 7

One Parent for a Component 7

JFileChooser Issues with Windows Shortcuts 7

14

Internationalization

Troubleshoot Internationalization and Localization 1

15

Java Sound

Troubleshoot Java Sound Issues 1

Part V Submit Bug Reports

16

Submit a Bug Report

Check for Fixes in Update Releases 1

Prepare to Submit a Bug Report 1

Collect Data for a Bug Report 2

Detailed Description of the Problem 2

Hardware Details 3

Operating System Details 3

Java SE Version 3

Command-Line Options 3

Environment Variables 4

Fatal Error Log 4

Core and Crash Dump 5

Logs and Traces 5

Report a Bug 5

Collect Core Dumps 5

Collect Core Dumps on Oracle Solaris 6

Collect Core Dumps on Linux 7

Reasons for Not Getting a Core File 7

Collect Crash Dumps on Windows 8

Part VI Appendices

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page vii of viii

A Fatal Error Log

Location of Fatal Error Log A-1

Description of Fatal Error Log A-2

Header Format A-2

Thread Section Format A-5

Process Section Format A-8

System Section Format A-14

B Java 2D Properties

Properties on Oracle Solaris and Linux B-1

Properties on Windows B-2

C Environment Variables and System Properties

The JAVA_TOOL_OPTIONS Environment Variable C-1

The java.security.debug System Property C-2

D Command-Line Options

Java HotSpot VM Command-Line Options D-1

Other Command-Line Options D-5

E Summary of Tools in This Release

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page viii of viii

Preface

This document helps you to troubleshoot issues that might occur on the Java Platform,
Standard Edition (Java SE) and on Java HotSpot VM. This document provides a description of
the available tools and command-line options that can help to analyze problems. This
document also provides guidance about debugging core library and client issues and describes
some general issues, such as crashes, hangs, and memory leaks. Finally, this document
provides directions for data collection and bug report preparation.

Audience
The target audience for this document is developers who are using the Java Development Kit
(JDK), which is Oracle's implementation of Java Platform, Standard Edition (Java SE). Most of
the information in this document can be applied to the current and previous releases.

This document is intended for readers with a detailed understanding of the Java Client
technologies, a high-level understanding of the components of the Java HotSpot VM, as well
as some understanding of concepts such as garbage collection, threads, and native libraries. It
is also assumed that the reader is reasonably proficient with the operating system where the
Java application is developed and run.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information about Java SE and the relevant client/desktop technologies, visit Java
SE Home.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/java/javase
http://www.oracle.com/technetwork/java/javase

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page ii of ii

Part I
General Java Troubleshooting

Java troubleshooting techniques for various diagnostic and monitoring tools, diagnosing
memory leaks, and identifying performance issues.

This part describes general Java troubleshooting techniques and contains the following topics.

• Prepare Java for Troubleshooting

Provides guidelines for setting up both Java and a Java application for better
troubleshooting techniques. These proactive Java setups help debug and narrow down
issues with Java and a Java application.

• Diagnostic Tools

Describes various diagnostic and monitoring tools used with Java Development Kit (JDK).
Further describes the troubleshooting tools available and explains custom tools
development using application programming interfaces (APIs).

• Troubleshoot Memory Leaks

Provides suggestions for diagnosing problems involving possible memory leaks.

• Troubleshoot Performance Issues Using Flight Recorder

Identifies performance issues with a Java application and debugs issues using the Java
Flight Recorder.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 1

1
Prepare Java for Troubleshooting

This chapter provides some guidelines for setting up both Java and a Java application for
better troubleshooting techniques. These proactive Java setups help debug and narrow down
issues with Java and the application. Not all suggestions apply to every application.
This chapter contains the following sections:

• Set Up Java for Troubleshooting

• Enable Options and Flags for JVM Troubleshooting

• Gather Relevant Data

Set Up Java for Troubleshooting
Set up the Java environment and command-line options to enable gathering relevant data for
troubleshooting.

To set up Java, perform the following:

1. Update the Java version: Use the latest Java version to avoid spending time on
troubleshooting issues in Java that were fixed. Often, a problem caused by a bug in the
Java runtime is fixed in the latest update release. Working with the latest Java version
helps avoid some known and common issues.

2. Set up the Java environment to debug: Consider the following scenarios while setting
up a bigger Java application, starting an application with a launcher script, or running
distributed Java on several machines.

a. Make it easy to change the Java version: Using the latest Java version helps avoid
many runtime issues. If your application starts by running a script, ensure that you
have to update the Java path in only one place. If you run in a distributed system, then
think about easy ways to change the Java versions across all of the machines.

b. Make it easy to change the Java command-line options: Sometimes, while
troubleshooting, you may want to change Java options; for example, to add a verbose
output, to turn off a feature, or to tune Java for better performance. Prepare your
systems for these changes.

In a Java application that is running remotely, for example in a testing framework or a
cloud solution, ensure that you can still change the Java flags easily. Sometimes, the
application takes command-line parameters, or you may want to try a flag quickly to
reproduce a problem. Prepare the systems to make these changes easy.

Enable Options and Flags for JVM Troubleshooting
Set up JVM options and flags to enable gathering relevant data for troubleshooting.

The data you gather depends on the system and what data you would use in case you run into
problems. Consider gathering the following data.

1. Enable core files: If Java crashes, for example due to a segmentation fault, the OS saves
to disk a core file (complete dump of the memory). On Linux and Solaris, core files are
sometimes disabled by default. To enable core files on Linux/Solaris, it is usually enough to

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 3

run the ulimit -c unlimited before starting the application command. Some systems
may have different ways to handle these limits.

Note

The core files take up a lot of disk space, especially when run with a large Java
heap.

To decide whether to enable core files, consider what you would do if you had a crash in
your system. Would you want to see a core file? Many Java users won't have much use for
a core file. However, if you would want to debug a possible crash either in a native
debugger such as gdb or by using the Serviceability Agent, then ensure that you enable
core files before the starting the application.

Many times, crashes are hard to reproduce; therefore, enable core files before the starting
the application.

2. Add -XX:+HeapDumpOnOutOfMemoryError to the JVM flags: The -
XX:+HeapDumpOnOutOfMemoryError flag saves a Java Heap dump to disk if the applications
runs into an OutOfMemoryError.

Like core files, heap dumps can be very large, especially when run with a big Java heap.

Again, think about what you would do if the application runs into an OutOfMemoryError.
Would you want to inspect the heap at the time of the error? In that case, turn flag by
default so that you get this data if the application runs into an unexpected
OutOfMemoryError.

3. Run a continuous Java flight recording: Set up Java to run with a continuous flight
recording.

Continuous flight recordings are a circular buffer of JFR events. If the application runs into
an issue, you can dump the data from the last hour of the run. The JFR events can be
helpful to debug a wide range of issues from memory leaks to network errors, high CPU
usage, thread blocks, and so on.

The overhead of running with a continuous flight recording is very low. See Produce a
Flight Recording for producing a continuous Java Flight Recording.

4. Add -verbosegc to the JVM command-line: The flag -verbosegc logs basic information
about Java Garbage Collector. This log helps you find the following:

• Does garbage collection run for a long time?

• Does the free memory decrease over time?

The garbage collector log helps diagnose issues when the application throws an
OutOFMemoryError or the application runs into performance issues; therefore, turning on
the -verbosegc flag by default helps troubleshoot issues.

Note

Use log rotation so that an application restart doesn't delete the previous logs.
Since JDK7, the flags UseGClogFileRotation and NumberOfGCLogFiles can be
used to set up for log rotation. For a description of these flags, see Debugging
Options for Java HotSpot VM.

Chapter 1
Enable Options and Flags for JVM Troubleshooting

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 3

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

5. Print Java version and JVM flags: Before filing a bug on Java or seeking help from a
forum, have the basic information handy in the log files. For example, it's helpful to print
the Java version and the JVM flags used.

If your application starts with a script, run java -version to print the Java version and print
the command line before executing it. Another alternative is to add -
XX+PrintCommandLineFlags and -showversion to the JVM arguments.

6. Set up JMC JMX for remote monitoring: JMX can be used to connect to a Java
application remotely using tools such as Mission Control or Visual VM. Unless you can run
these tools on the same machine that is running your application, setting this up can be
helpful later on to monitor the application, send diagnostic commands, manage flight
recordings, and so on. There is no performance overhead if you enable JMX.

Another alternative, is to enable JMX after a Java application has started is to use the
diagnostic command ManagementAgent.start. Run jcmd <pid> help
ManagementAgent.start for a list of flags that can be sent with the command.

See The jcmd Utility.

Gather Relevant Data
If your application runs into a problem and you want to debug the problem further, ensure that
you collect any relevant data before restarting the system, especially if restarting will remove
previous files.

• It is important to gather the following files:

– Core files for crash issues.

– hs_err printed text file for Java crashes.

– Log files: Java and application logs.

– Java heap dumps for -XX:+HeapDumpOnOutOfMemoryError.

– Java flight recordings (if enabled). If the problem didn't terminate the application, dump
the continuous recordings.

• If the application stopped responding, then gather the following files:

– Stack traces: Take several stack traces using jcmd <pid> Thread.print before
restarting the system.

– Dump flight recordings (if enabled).

– Force a core file: If the application can't be closed properly, then stop the application,
and force a core file using kill -6 <pid> on Linux or Solaris systems.

Make a Java Application Easier to Debug
Using a logging framework is a good way to enable future debugging.

If you run into problems in a specific module, you should be able to enable logging in that
module. It is also good to specify different levels of logging, for example info, debug, and trace.
For more information about Java logging, see Java Logging Overview.

Chapter 1
Gather Relevant Data

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 3

https://www.oracle.com/pls/topic/lookup?ctx=javase17&id=logging_overview

2
Diagnostic Tools

The Java Development Kit (JDK) provides diagnostic tools and troubleshooting tools specific to
various operating systems. Custom diagnostic tools can also be developed using the APIs
provided by the JDK.
This chapter contains the following sections:

• Diagnostic Tools Overview

• JDK Mission Control

• Flight Recorder

• The jcmd Utility

• Native Memory Tracking

• JConsole

• The jdb Utility

• The jinfo Utility

• The jmap Utility

• The jps Utility

• The jstack Utility

• The jstat Utility

• The visualgc Tool

• Control+Break Handler

• Native Operating System Tools

• Custom Diagnostic Tools

• Postmortem Diagnostic Tools

• Hung Processes Tools

• Monitoring Tools

• Other Tools, Options, Variables, and Properties

• The java.lang.management Package

• The java.lang.instrument Package

• The java.lang.Thread Class

• JVM Tool Interface

• The jrunscript Utility

• The jstatd Daemon

• Troubleshooting Tools Based on the Operating System

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 55

Diagnostic Tools Overview
Most of the command-line utilities described in this section are either included in the JDK or
native operating system tools and utilities.

Although the JDK command-line utilities are included in the JDK download, it is important to
consider that they can be used to diagnose issues and monitor applications that are deployed
with the Java Runtime Environment (JRE).

In general, the diagnostic tools and options use various mechanisms to get the information
they report. The mechanisms are specific to the virtual machine (VM) implementation,
operating systems, and release. Frequently, only a subset of the tools is applicable to a given
issue at a particular time. Command-line options that are prefixed with -XX are specific to Java
HotSpot VM. See Java HotSpot VM Command-Line Options.

Note

The -XX options are not part of the Java API and can vary from one release to the
next.

The tools and options are divided into several categories, depending on the type of problem
that you are troubleshooting. Certain tools and options might fall into more than one category.

• Postmortem diagnostics These tools and options can be used to diagnose a problem
after an application crashes. See Postmortem Diagnostic Tools.

• Hung processes These tools can be used to investigate a hung or deadlocked process.
See Hung Processes Tools.

• Monitoring These tools can be used to monitor a running application. See Monitoring
Tools.

• Other These tools and options can be used to help diagnose other issues. See Other
Tools, Options, Variables, and Properties.

Note

Some command-line utilities described in this section are experimental. The jstack,
jinfo, and jmap utilities are examples of utilities that are experimental. It is suggested
to use the latest diagnostic utility, jcmd instead of the earlier jstack, jinfo, and jmap
utilities.

JDK Mission Control
Java Platform, Standard Edition (JMC) is a production-time profiling and diagnostics tool. It
includes tools to monitor and manage your Java application with very small performance
overhead.

JMC's very small performance overhead is a result of its tight integration with the HotSpot VM.
JMC functionality is always available on-demand, and its small performance overhead is only
in effect while the tools are running. This approach also eliminates the problem of the observer
effect, which occurs when monitoring tools alter the execution characteristics of the system.

Chapter 2
Diagnostic Tools Overview

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 55

https://docs.oracle.com/en/java/javase/11/vm/java-virtual-machine-technology-overview.html#GUID-982B244A-9B01-479A-8651-CB6475019281

JMC enables you to troubleshoot issues and identify root causes and bottlenecks. These
properties make the JMC tool ideal for applications running in production.

JMC consists of the following client applications and plug-ins :

• JVM Browser shows running Java applications and their JVMs.

• JMX Console is a mechanism for monitoring and managing JVMs. It connects to a running
JVM, collects, displays its characteristics in real time, and enables you to change some of
its runtime properties through Managed Beans (MBeans). You can also create rules that
trigger on certain events (for example, send an e-mail if the CPU usage by the application
reaches 90 percent).

• Flight Recorder (JFR) is a tool for collecting diagnostic and profiling data about a running
Java application. It is integrated into the JVM and causes very small performance
overhead, so it can be used in production environments. JFR continuously saves large
amounts of data about the running applications. This profiling information includes thread
samples, lock profiles, and garbage collection details. JFR presents diagnostic information
in logically grouped tables and charts. It enables you to select the range of time and level
of detail necessary to focus on the problem. Data collected by JFR can be essential when
contacting Oracle support to help diagnose issues with your Java application.

• jcmd Utility or Diagnostic Commands is used to send diagnostic command requests to the
JVM. These requests are useful for managing recordings from Flight Recorder,
troubleshooting, and diagnosing JVM and Java applications.

• Plug-ins help in heap dump analysis and DTrace recording. See Plug-in Details. Java SE
plug-ins connect to a JVM using the Java Management Extensions (JMX) agent. For more
information about JMX, see the Java Platform, Standard Edition Java Management
Extensions Guide .

Troubleshoot with JDK Mission Control
JMC provides the following features or functionalities that can help you in troubleshooting:

• Java Management console (JMX) connects to a running JVM, and collects and displays
key characteristics in real time.

• Triggers user-provided custom actions and rules for JVM.

• Experimental plug-ins from the JMC tool provide troubleshooting activities.

• Flight Recording in JMC is available to analyze events. The preconfigured tabs enable you
to easily to drill down in various areas of common interest, such as, code, memory and
garbage collection, threads, and I/O. The Automated Analysis Results page of flight
recordings helps you to diagnose issues quicker. The provided rules and heuristics help
you find functional and performance problems in your application and provide tuning tips.
Some rules that operate with relatively unknown concepts, like safe points, will provide
explanations and links to further information. Some rules are parametrized and can be
configured to make more sense in your particular environment. Individual rules can be
enabled or disabled as you see fit.

– Flight Recorder in the JMC application presents diagnostic information in logically
grouped tables, charts, and dials. It enables you to select the range of time and level of
detail necessary to focus on the problem.

• The JMC plug-ins connect to JVM using the Java Management Extensions (JMX) agent.
The JMX is a standard API for the management and monitoring of resources such as
applications, devices, services, and the Java Virtual Machine.

Chapter 2
JDK Mission Control

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 55

https://docs.oracle.com/javacomponents/doc/JDMUG/installing-jdk-mission-control-and-supported-plugins.htm#JDMUG-GUID-8F03B4DF-F76C-4BFD-AA67-B5E54C317103

Flight Recorder
Flight Recorder (JFR) is a profiling and event collection framework built into the JDK.

Flight Recorder allows Java administrators and developers to gather detailed low-level
information about how a JVM and Java applications are behaving. You can use JMC, with a
plug-in, to visualize the data collected by JFR. Flight Recorder and JMC together create a
complete toolchain to continuously collect low-level and detailed runtime information enabling
after-the-fact incident analysis.

The advantages of using JFR are:

• It records data about JVM events. You can record events at a particular instance of time.

• Recording events with JFR enables you to preserve the execution states to analyze
issues. You can access the data anytime to better understand problems and resolve them.

• JFR can record a large amount of data on production systems while keeping the overhead
of the recording process low.

• It is most suited for recording latencies. It records situations where the application is not
executing as expected and provide details on the bottlenecks.

• It provides insight into how programs interact with execution environment as a whole,
ranging from hardware, operating systems, JVM, JDK, and the Java application
environment.

Flight recordings can be started when the application is started or while the application is
running. The data is recorded as time-stamped data points called events. Events are
categorized as follows:

• Duration events: occurs at a particular duration with specific start time and stop time.

• Instant events: occurs instantly and gets logged immediately, for example, a thread gets
blocked.

• Sample events: occurs at regular intervals to check the overall health of the system, for
example, printing heap diagnostics every minute.

• Custom events: user defined events created using JMC or APIs.

In addition, there are predefined events that are enabled in a recording template. Some
templates only save very basic events and have virtually no impact on performance. Other
templates may come with slight performance overhead and may also trigger garbage
collections to gather additional data. The following templates are provided with Flight Recorder
in the <JDK_ROOT>/lib/jfr directory:

• default.jfc: Collects a predefined set of data with low overhead.

• profile.jfc: Provides more data than the default.jfc template, but with overhead
and impact on performance.

Flight Recorder produces following types of recordings:

• Time fixed recordings: A time fixed recording is also known as a profiling recording that
runs for a set amount of time, and then stops. Usually, a time fixed recording has more
events enabled and may have a slightly bigger performance effect. Events that are turned
on can be modified according to your requirements. Time fixed recordings will be
automatically dumped and opened.

Typical use cases for a time fixed recording are as follows:

– Profile which methods are run the most and where most objects are created.

Chapter 2
Flight Recorder

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 55

– Look for classes that use more and more heap, which indicates a memory leak.

– Look for bottlenecks due to synchronization and many more such use cases.

• Continuous recordings: A continuous recording is a recording that is always on and saves,
for example, the last six hours of data. During this recording, JFR collects events and
writes data to the global buffer. When the global buffer fills up, the oldest data is discarded.
The data currently in the buffer is written to the specified file whenever you request a
dump, or if the dump is triggered by a rule.

A continuous recording with the default template has low overhead and gathers a lot of
useful data. However, this template doesn't gather heap statistics or allocation profiling.

Produce a Flight Recording
The following sections describe different ways to produce a flight recording.

• Start a Flight Recording

• Use Triggers for Automatic Flight Recordings

• Use Startup Flags at the Command Line to Produce a Flight Recording

Start a Flight Recording
Follow these steps to start a flight recording using JMC.

1. Find your JVM in the JVM Browser.

2. Right-click the JVM and select Start Flight Recording...

The Start Flight Recording window opens.

3. Click Browse to find a suitable location and file name to save the recording.

4. Select either Time fixed recording (profiling recording), or Continuous recording. For
continuous recordings, you can specify the maximum size or maximum age of events you
want to save.

5. Select the flight recording template in the Event settings drop-down list. Templates define
the events that you want to record. To create your own templates, click Template
Manager. However, for most use cases, select either the Continuous template (for very
low overhead recordings) or the Profiling template (for more data and slightly more
overhead).

6. Click Finish to start the recording or click Next to modify the event options defined in the
selected template.

7. Modify the event options for the flight recording. The default settings provide a good
balance between data and performance. You can change these settings based on your
requirement.

For example:

• The Threshold value is the length of event recording. By default, synchronization
events above 10 ms are collected. This means, if a thread waits for a lock for more
than 10 ms, an event is saved. You can lower this value to get more detailed data for
short contentions.

• The Thread Dump setting gives you an option to perform periodic thread dumps.
These are normal textual thread dumps.

8. Click Finish to start the recording or click Next to modify the event details defined in the
selected template.

Chapter 2
Flight Recorder

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 55

9. Modify the event details for the selected flight recording template. Event details define
whether the event should be included in the recording. For some events, you can also
define whether a stack trace should be attached to the event, specify the duration
threshold (for duration events) and a request period (for requestable events).

10. Click Back if you want to modify any of the settings set in the previous steps or click
Finish to start the recording.

The new flight recording appears in the Progress View.

Note

Expand the node in the JVM Browser to view the recordings that are running.
Right-click any of the recordings to dump, dump whole, dump last part, edit, stop,
or close the recording. Stopping a profiling recording will still produce a recording
file and closing a profiling recording will discard the recording.

Note

You can set up JMC to automatically start a flight recording if a condition is met using
the Triggers tab in the JMX console. For more information, see Use Triggers for
Automatic Flight Recordings.

Use Triggers for Automatic Flight Recordings
The Triggers tab allows you to define and activate rules that trigger events when a certain
condition is met. For example, you can set up JDK Mission Control to automatically start a
flight recording if a condition is met. This is useful for tracking specific JVM runtime issues.

This is done from the JMX console.

1. To start the JMX console, find your application in the JVM Browser, right-click it, and select
Start JMX Console

2. Click the Triggers tab at the bottom of the screen.

3. Click Add. You can choose any MBean in the application, including your own application-
specific ones.

The Add New Rule dialog opens.

4. Select an attribute for which the rule should trigger and click Next . For example, select
java.lang > OperatingSystem > ProcessCpuLoad.

5. Set the condition on which the rule should trigger and click Next. For example, set a value
for the Maximum trigger value, Sustained period, and Limit period.

Note

You can either select the Trigger when condition is met or Trigger when
recovering from condition check box.

6. Select what action you would like your rule to perform when triggered and click Next. For
example, choose Start Time Limited Flight Recording and browse the file destination
and recording time. Select the Open automatically checkbox, if you wish to open the flight
recording automatically when it is triggered.

Chapter 2
Flight Recorder

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 6 of 55

7. Select constraints for your rule and click Next. For example, select the particular dates,
days of the week, or time of day when the rule should be active.

8. Enter a name for your rule and click Finish.

The rule is added to the My Rules list.

When you select your rule from the Trigger Rules list, the Rule Details pane displays its
components in the following tabs. You can edit the conditions, attributes, and constraints if you
wish:

• Condition

• Action

• Constraint

Use Startup Flags at the Command Line to Produce a Flight Recording
Use startup flags to start recording when the application is started. If the application is already
running, use the jcmd utility to start recording.

Use the following methods to generate a flight recording:

• Generate a profiling recording when an application is started.

You can configure a time fixed recording at the start of the application using the -
XX:StartFlightRecording option. The following example shows how to run the MyApp
application and start a 60-second recording 20 seconds after starting the JVM, which will
be saved to a file named myrecording.jfr:

java -
XX:StartFlightRecording.delay=20s,duration=60s,name=myrecording,filename=myrec
ording.jfr,settings=profile MyApp

The settings parameter takes the name of a template. Include the path if the template is
not in the java-home/lib/jfr directory, which is the location of the default templates.
The standard templates are: profile, which gathers more data and is primarily for
profiling recordings, and default, which is a low overhead setting made primarily for
continuous recordings.

For a complete description of Flight Recorder flags for the java command, see Advanced
Runtime Options for Java in the Java Platform, Standard Edition Tools Reference.

• Generate a continuous recording when an application is started.

You can start a continuous recording from the command line using the -
XX:StartFlightRecording option. The -XX:FlightRecorderOptions provides
additional settings for managing the recording. These flags start a continuous recording
that can later be dumped if needed. The following example shows how to run the MyApp
application with a continuous recording that saves 6 hours of data to disk. The temporary
data will be saved to the /tmp folder.

java -XX:StartFlightRecording.disk=true,maxage=6h,settings=default -
XX:FlightRecorderOptions=repository=/tmp MyApp

Note

When you actually dump the recording, you specify a new location for the dumped
file, so the files in the repository are only temporary.

• Generate a recording using diagnostic commands.

Chapter 2
Flight Recorder

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 7 of 55

https://www.oracle.com/pls/topic/lookup?ctx=javase14&id=java_advanced_runtime_tool_reference
https://www.oracle.com/pls/topic/lookup?ctx=javase14&id=java_advanced_runtime_tool_reference

For a running application, you can generate recordings by using Java command-line
diagnostic commands. The simplest way to execute a diagnostic command is to use the
jcmd tool located in the java-home/bin directory. For more details see, The jcmd Utility.

The following example shows how to start a recording for the MyApp application with the
process ID 5361. 30 minutes of data is recorded and written to /usr/recording/
myapp-recording1.jfr.

jcmd 5361 JFR.start duration=30m filename=/usr/recordings/myapp-recording1.jfr

Analyze a Flight Recording
The following sections describe different ways to analyze a flight recording:

• Analyze a Flight Recording Using JMC

• Analyze a Flight Recording Using the jfr tool or JFR APIs

Analyze a Flight Recording Using JMC
Once the flight recording file opens in the JMC, you can look at a number of different areas like
code, memory, threads, locks and I/O and analyze various aspects of runtime behavior of your
application.

The recording file is automatically opened in the JMC when a timed recording finishes or when
a dump of a running recording is created. You can also open any recording file by double-
clicking it or by opening it through the File menu. The flight recording opens in the Automated
Analysis Results page. This page helps you to diagnose issues quicker. For example, if
you’re tuning the garbage collection, or tracking down memory allocation issues, then you can
use the memory view to get a detailed view on individual garbage collection events, allocation
sites, garbage collection pauses, and so on. You can visualize the latency profile of your
application by looking at I/O and Threads views, and even drill down into a view representing
individual events in the recording.

View Automated Analysis Results Page
The Flight Recorder extracts and analyzes the data from the recordings and then displays
color-coded report logs on the Automated Analysis Results page.

By default, results with yellow and red scores are displayed to draw your attention to potential
problems. If you want to view all results in the report, click the Show OK Results button (a tick
mark) on the top-right side of the page. Similarly, to view the results as a table, click the Table
button.

The benchmarks are mainly divided into problems related to the following:

• Java Application

• JVM Internals

• Environment

Clicking on a heading in the report, for example, Java Application, displays a corresponding
page.

Chapter 2
Flight Recorder

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 8 of 55

Note

You can select a respective entry in the Outline view to navigate between the pages
of the automated analysis.

Analyze the Java Application

Java Application dashboard displays the overall health of the Java application.

Concentrate on the parameters having yellow and red scores. The dashboard provides exact
references to the problematic situations. Navigate to the specific page to analyze the data and
fix the issue.

Threads
The Threads page provides a snapshot of all the threads that belong to the Java application. It
reveals information about an application’s thread activity that can help you diagnose problems
and optimize application and JVM performance.

Threads are represented in a table and each row has an associated graph. Graphs can help
you to identify the problematic execution patterns. The state of each thread is presented as a
Stack Trace, which provides contextual information of where you can instantly view the
problem area. For example, you can easily locate the occurrence of a deadlock.

Lock Instances

Lock instances provides further details on threads specifying the lock information, that is, if the
thread is trying to take a lock or waiting for a notification on a lock. If a thread has taken any
lock, the details are shown in the stack trace.

Memory
One way to detect problems with application performance to is to see how it uses memory
during runtime.

In the Memory page, the graph represents heap memory usage of the Java application. Each
cycle consists of a Java heap growth phase that represents the period of heap memory
allocations, followed by a short drop that represents garbage collection, and then the cycle
starts over. The important inference from the graph is that the memory allocations are short-
lived as garbage collector pushes down the heap to the start position at each cycle.

Select the Garbage Collection check box to see the garbage collection pause time in the
graph. It indicates that the garbage collector stopped the application during the pause time to
do its work. Long pause times lead to poor application performance, which needs to be
addressed.

Method Profiling
Method Profiling page enables you to see how often a specific method is run and for how
long it takes to run a method. The bottlenecks are determined by identifying the methods that
take a lot of time to execute.

As profiling generates a lot of data, it is not turned on by default. Start a new recording and
select Profiling - on server in the Event settings drop-down menu. Do a time fixed recording
for a short duration. JFR dumps the recording to the file name specified. Open the Method
Profiling page in JMC to see the top allocations. Top packages and classes are displayed.
Verify the details in the stack trace. Inspect the code to verify if the memory allocation is
concentrated on a particular object. JFR points to the particular line number where the problem
persists.

Chapter 2
Flight Recorder

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 9 of 55

JVM Internals

The JVM Internals page provides detailed information about the JVM and its behavior.

One of the most important parameters to observe is Garbage Collections. Garbage collection
is a process of deleting unused objects so that the space can be used for allocation of new
objects. The Garbage Collections page helps you to better understand the system behavior
and garbage collection performance during runtime.

The graphs shows the heap usage as compared to the pause times and how it varies during
the specified period. The page also lists all the garbage collection events that occurred during
the recording. Observe the longest pause times against the heap. The pause time indicates
that garbage collections are taking longer during application processing. It implies that garbage
collections are freeing less space on the heap. This situation can lead to memory leaks.

For effective memory management, see the Compilations page, which provides details on
code compilation along with duration. In large applications, you may have many compiled
methods, and memory can be exhausted, resulting in performance issues.

Environment

The Environment page provides information about the environment in which the recording
was made. It helps to understand the CPU usage, memory, and operating system that is being
used.

See the Processes page to understand concurrent processes running and the competing CPU
usage of these processes. The application performance will be affected if many processes use
CPU and other system resources.

Check the Event Browser page to see the statistics of all the event types. It helps you to focus
on the bottlenecks and take appropriate action to improve application performance.

You can create Custom Pages using the Event Browser page. Select the required event type
from Event Type Tree and click the Create a new page using the select event type button in
the top right corner of the page. The custom page is listed as a new event page below the
event browser page.

Analyze a Flight Recording Using the jfr tool or JFR APIs
To access the information in a recording from Flight Recorder, use the jfr tool to print event
information, or use the Flight Recorder API to programmatically process the data.

Flight Recorder provides the following methods for reviewing the information that was
recorded:

• jfr tool - Use this command-line tool to print event data from a recording. The tool is
located in the java-home/bin directory. For details about this tool, see The jfr Command
in the Java Platform, Standard Edition Tools Reference

• Flight Recorder API - Use the jdk.jfr.consumer API to extract and format the
information in a recording. For more information, see Flight Recorder API Programmer’s
Guide.

The events in a recording can be used to investigate the following areas:

• General information

– Number of events recorded at each time stamp

– Maximum heap usage

Chapter 2
Flight Recorder

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 10 of 55

https://www.oracle.com/pls/topic/lookup?ctx=javase15&id=jfr_tool_reference
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jfr/jdk/jfr/consumer/package-summary.html

– CPU usage over time, application's CPU usage, and total CPU usage

Watch for CPU usage spiking near 100 percent or the CPU usage is too low or too
long garbage collection pauses.

– GC pause time

– JVM information and system properties set

• Memory

– Memory usage over time

Typically, temporary objects are allocated all the time. When a condition is met, a
Garbage Collection (GC) is triggered and all of the objects no longer used are
removed. Therefore, the heap usage increases steadily until a GC is triggered, then it
drops suddenly. Watch for a steadily increasing heap size over time that could indicate
a memory leak.

– Information about garbage collections, including the time spent doing them

– Memory allocations made

The more temporary objects the application allocates, the more the application must
perform garbage collection. Reviewing memory allocations helps you find the most
allocations and reduce the GC pressure in your application.

– Classes that have the most live set

Watch how each object type increases in size during a flight recording. A specific
object type that increases a lot in size indicates a memory leak; however, a small
variance is normal. Especially, investigate the top growers of non-standard Java
classes.

• Code

– Packages and classes that used the most execution time

Watch where methods are being called from to identify bottlenecks in your application.

– Exceptions thrown

– Methods compiled over time as the application was running

– Number of loaded classes, actual loaded classes and unloaded classes over time

• Threads

– CPU usage and the number of threads over time

– Threads that do most of the code execution

– Objects that are the most waited for due to synchronization

• I/O

– Information about file reads, file writes, socket reads, and socket writes

• System

– Information about the CPU, memory and OS of the machine running the application

– Environment variables and any other processes running at the same time as the JVM

• Events

– All of the events in the recording

Chapter 2
Flight Recorder

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 11 of 55

The jcmd Utility
The jcmd utility is used to send diagnostic command requests to the JVM, where these
requests are useful for controlling Java Flight Recordings, troubleshoot, and diagnose JVM
and Java applications.

jcmd must be used on the same machine where the JVM is running, and have the same
effective user and group identifiers that were used to launch the JVM.

A special command jcmd <process id/main class> PerfCounter.print prints all
performance counters in the process.

The command jcmd <process id/main class> <command> [options] sends the command to
the JVM.

The following example shows diagnostic command requests to the JVM using jcmd utility.

> jcmd
5485 jdk.jcmd/sun.tools.jcmd.JCmd
2125 MyProgram

> jcmd MyProgram (or "jcmd 2125")
2125:
The following commands are available:
Compiler.CodeHeap_Analytics
Compiler.codecache
Compiler.codelist
Compiler.directives_add
Compiler.directives_clear
Compiler.directives_print
Compiler.directives_remove
Compiler.queue
GC.class_histogram
GC.class_stats
GC.finalizer_info
GC.heap_dump
GC.heap_info
GC.run
GC.run_finalization
JFR.check
JFR.configure
JFR.dump
JFR.start
JFR.stop
JVMTI.agent_load
JVMTI.data_dump
ManagementAgent.start
ManagementAgent.start_local
ManagementAgent.status
ManagementAgent.stop
Thread.print
VM.class_hierarchy
VM.classloader_stats
VM.classloaders
VM.command_line

Chapter 2
The jcmd Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 12 of 55

VM.dynlibs
VM.events
VM.flags
VM.info
VM.log
VM.metaspace
VM.native_memory
VM.print_touched_methods
VM.set_flag
VM.stringtable
VM.symboltable
VM.system_properties
VM.systemdictionary
VM.uptime
VM.version
help

For more information about a specific command use 'help <command>'.

> jcmd MyProgram help Thread.print
2125:
Thread.print
Print all threads with stacktraces.

Impact: Medium: Depends on the number of threads.

Permission: java.lang.management.ManagementPermission(monitor)

Syntax : Thread.print [options]

Options: (options must be specified using the <key> or <key>=<value> syntax)
 -l : [optional] print java.util.concurrent locks (BOOLEAN, false)
 -e : [optional] print extended thread information (BOOLEAN, false)

> jcmd MyProgram Thread.print
2125:
2019-11-16 16:06:09
Full thread dump Java HotSpot(TM) 64-Bit Server VM (11.0.5+10-LTS mixed mode):
...

The following sections describe some useful commands and troubleshooting techniques with
the jcmd utility:

• Useful Commands for the jcmd Utility

• Troubleshoot with the jcmd Utility

Useful Commands for the jcmd Utility
The available diagnostic command may be different in different versions of HotSpot VM;
therefore, using jcmd <process id/main class> help is the best way to see all available
options.

The following are some of the most useful commands in the jcmd tool. Remember you can
always use jcmd <process id/main class> help <command> to get any additional options to
these commands:

Chapter 2
The jcmd Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 13 of 55

• Print full HotSpot and JDK version ID.

jcmd <process id/main class> VM.version

• Print all the system properties set for a VM.

There can be several hundred lines of information displayed.

jcmd <process id/main class> VM.system_properties

• Print all the flags used for a VM.

Even if you have provided no flags, some of the default values will be printed, for example
initial and maximum heap size.

jcmd <process id/main class> VM.flags

• Print the uptime in seconds.

jcmd <process id/main class> VM.uptime

• Create a class histogram.

The results can be rather verbose, so you can redirect the output to a file. Both internal
and application-specific classes are included in the list. Classes taking the most memory
are listed at the top, and classes are listed in a descending order.

jcmd <process id/main class> GC.class_histogram

• Create a heap dump.

jcmd GC.heap_dump filename=Myheapdump

This is the same as using jmap -dump:file=<file> <pid>, but jcmd is the recommended
tool to use.

• Create a heap histogram.

jcmd <process id/main class> GC.class_histogram filename=Myheaphistogram

This is the same as using jmap -histo <pid>, but jcmd is the recommended tool to use.

• Print all threads with stack traces.

jcmd <process id/main class> Thread.print

Troubleshoot with the jcmd Utility
Use the jcmd utility to troubleshoot.

The jcmd utility provides the following troubleshooting options:

• Start a recording.

For example, to start a 2-minute recording on the running Java process with the identifier
7060 and save it to myrecording.jfr in the current directory, use the following:

jcmd 7060 JFR.start name=MyRecording settings=profile delay=20s duration=2m
filename=C:\TEMP\myrecording.jfr

• Check a recording.

The JFR.check diagnostic command checks a running recording. For example:

jcmd 7060 JFR.check

• Stop a recording.

Chapter 2
The jcmd Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 14 of 55

The JFR.stop diagnostic command stops a running recording and has the option to discard
the recording data. For example:

jcmd 7060 JFR.stop

• Dump a recording.

The JFR.dump diagnostic command stops a running recording and has the option to dump
recordings to a file. For example:

jcmd 7060 JFR.dump name=MyRecording filename=C:\TEMP\myrecording.jfr

• Create a heap dump.

The preferred way to create a heap dump is

jcmd <pid> GC.heap_dump filename=Myheapdump

• Create a heap histogram.

The preferred way to create a heap histogram is

jcmd <pid> GC.class_histogram filename=Myheaphistogram

Native Memory Tracking
The Native Memory Tracking (NMT) is a Java HotSpot VM feature that tracks internal memory
usage for a Java HotSpot VM.

Since NMT doesn't track memory allocations by non-JVM code, you may have to use tools
supported by the operating system to detect memory leaks in native code.

The following sections describe how to monitor VM internal memory allocations and diagnose
VM memory leaks.

• Use NMT to Detect a Memory Leak

• How to Monitor VM Internal Memory

• NMT Memory Categories

Use NMT to Detect a Memory Leak
Procedure to use Native Memory Tracking to detect memory leaks.

Follow these steps to detect a memory leak:

1. Start the JVM with summary or detail tracking using the command line option: -
XX:NativeMemoryTracking=summary or -XX:NativeMemoryTracking=detail.

2. Establish an early baseline. Use NMT baseline feature to get a baseline to compare during
development and maintenance by running: jcmd <pid> VM.native_memory baseline.

3. Monitor memory changes using: jcmd <pid> VM.native_memory detail.diff.

4. If the application leaks a small amount of memory, then it may take a while to show up.

How to Monitor VM Internal Memory
Native Memory Tracking can be set up to monitor memory and ensure that an application does
not start to use increasing amounts of memory during development or maintenance.

See Table 2-1 for details about NMT memory categories.

Chapter 2
Native Memory Tracking

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 15 of 55

The following sections describe how to get summary or detail data for NMT and describes
how to interpret the sample output.

• Interpret sample output: From the following sample output, you will see reserved and
committed memory. Note that only committed memory is actually used. For example, if
you run with -Xms100m -Xmx1000m, then the JVM will reserve 1000 MB for the Java heap.
Because the initial heap size is only 100 MB, only 100 MB will be committed to begin with.
For a 64-bit machine where address space is almost unlimited, there is no problem if a
JVM reserves a lot of memory. The problem arises if more and more memory gets
committed, which may lead to swapping or native out of memory (OOM) situations.

An arena is a chunk of memory allocated using malloc. Memory is freed from these chunks
in bulk, when exiting a scope or leaving an area of code. These chunks can be reused in
other subsystems to hold temporary memory, for example, pre-thread allocations. An
arena malloc policy ensures no memory leakage. So arena is tracked as a whole and not
individual objects. Some initial memory cannot be tracked.

Enabling NMT will result in a 5-10 percent JVM performance drop, and memory usage for
NMT adds 2 machine words to all malloc memory as a malloc header. NMT memory usage
is also tracked by NMT.

>jcmd 17320 VM.native_memory
Native Memory Tracking:

Total: reserved=5699702KB, committed=351098KB
- Java Heap (reserved=4153344KB, committed=260096KB)
 (mmap: reserved=4153344KB, committed=260096KB)

- Class (reserved=1069839KB, committed=22543KB)
 (classes #3554)
 (instance classes #3294, array classes #260)
 (malloc=783KB #7965)
 (mmap: reserved=1069056KB, committed=21760KB)
 (Metadata:)
 (reserved=20480KB, committed=18944KB)
 (used=18267KB)
 (free=677KB)
 (waste=0KB =0.00%)
 (Class space:)
 (reserved=1048576KB, committed=2816KB)
 (used=2454KB)
 (free=362KB)
 (waste=0KB =0.00%)

- Thread (reserved=24685KB, committed=1205KB)
 (thread #24)
 (stack: reserved=24576KB, committed=1096KB)
 (malloc=78KB #132)
 (arena=30KB #46)

- Code (reserved=248022KB, committed=7890KB)
 (malloc=278KB #1887)
 (mmap: reserved=247744KB, committed=7612KB)

- GC (reserved=197237KB, committed=52789KB)
 (malloc=9717KB #2877)
 (mmap: reserved=187520KB, committed=43072KB)

Chapter 2
Native Memory Tracking

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 16 of 55

- Compiler (reserved=148KB, committed=148KB)
 (malloc=19KB #95)
 (arena=129KB #5)

- Internal (reserved=735KB, committed=735KB)
 (malloc=663KB #1914)
 (mmap: reserved=72KB, committed=72KB)

- Other (reserved=48KB, committed=48KB)
 (malloc=48KB #4)

- Symbol (reserved=4835KB, committed=4835KB)
 (malloc=2749KB #17135)
 (arena=2086KB #1)

- Native Memory Tracking (reserved=539KB, committed=539KB)
 (malloc=8KB #109)
 (tracking overhead=530KB)

- Arena Chunk (reserved=187KB, committed=187KB)
 (malloc=187KB)

- Logging (reserved=4KB, committed=4KB)
 (malloc=4KB #179)

- Arguments (reserved=18KB, committed=18KB)
 (malloc=18KB #467)

- Module (reserved=62KB, committed=62KB)
 (malloc=62KB #1060)

• Get detail data: To get a more detailed view of native memory usage, start the JVM with
command line option: -XX:NativeMemoryTracking=detail. This will track exactly what
methods allocate the most memory. Enabling NMT will result in 5-10 percent JVM
performance drop and memory usage for NMT adds 2 words to all malloc memory as
malloc header. NMT memory usage is also tracked by NMT.

The following example shows a sample output for virtual memory for track level set to
detail. One way to get this sample output is to run: jcmd <pid> VM.native_memory
detail.

Virtual memory map:

[0x0000000702800000 - 0x0000000800000000] reserved 4153344KB for Java Heap
from
 [0x00007ffdca6b217d]
 [0x00007ffdca6b19a3]
 [0x00007ffdca6b0d63]
 [0x00007ffdca68e7ae]

 [0x0000000702800000 - 0x0000000712600000] committed 260096KB from
 [0x00007ffdca254ecc]
 [0x00007ffdca254d52]
 [0x00007ffdca25a5c6]
 [0x00007ffdca2a66bf]

Chapter 2
Native Memory Tracking

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 17 of 55

[0x0000000800000000 - 0x0000000840000000] reserved 1048576KB for Class from
 [0x00007ffdca6b154a]
 [0x00007ffdca6b0fb4]
 [0x00007ffdca51d2f9]
 [0x00007ffdca51e4d2]

 [0x0000000800000000 - 0x00000008003a0000] committed 3712KB from
 [0x00007ffdca6b10c4]
 [0x00007ffdca6b1250]
 [0x00007ffdca6b0087]
 [0x00007ffdca6af852]

[0x000000bae6d00000 - 0x000000bae6e00000] reserved 1024KB for Thread Stack
from
 [0x00007ffdca679569]
 [0x00007ffdca5751c2]
 [0x00007ffe13ed1ffa]
 [0x00007ffe17d17974]

 [0x000000bae6d00000 - 0x000000bae6d04000] committed 16KB from
 [0x00007ffdca67354e]
 [0x00007ffdca679571]
 [0x00007ffdca5751c2]
 [0x00007ffe13ed1ffa]

 [0x000000bae6df2000 - 0x000000bae6e00000] committed 56KB

[0x000000bae6f00000 - 0x000000bae7000000] reserved 1024KB for Thread Stack
from
 [0x00007ffdca679569]
 [0x00007ffdca5751c2]
 [0x00007ffe13ed1ffa]
 [0x00007ffe17d17974]

 [0x000000bae6f00000 - 0x000000bae6f04000] committed 16KB from
 [0x00007ffdca67354e]
 [0x00007ffdca679571]
 [0x00007ffdca5751c2]
 [0x00007ffe13ed1ffa]

 [0x000000bae6ff3000 - 0x000000bae7000000] committed 52KB

 ...
[0x000001d4d3480000 - 0x000001d4d3482000] reserved and committed 8KB for
Internal from
 [0x00007ffdca5df383]
 [0x00007ffdca6737a9]
 [0x00007ffdca322e1d]
 [0x00007ffdca3251e1]

 [0x000001d4d3480000 - 0x000001d4d3482000] committed 8KB from
 [0x00007ffdca5df39b]
 [0x00007ffdca6737a9]
 [0x00007ffdca322e1d]
 [0x00007ffdca3251e1]

Chapter 2
Native Memory Tracking

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 18 of 55

[0x000001d4d4d50000 - 0x000001d4d4d60000] reserved and committed 64KB for
Internal from
 [0x00007ffdca5a0719]
 [0x00007ffdca59f627]
 [0x00007ffdca59f03e]
 [0x00007ffdca2b3632]

[0x000001d4d4d60000 - 0x000001d4d4d70000] reserved 64KB for Code from
 [0x00007ffdca6b159d]
 [0x00007ffdca6b0f40]
 [0x00007ffdca29a2b2]
 [0x00007ffdca1358e9]

 [0x000001d4d4d60000 - 0x000001d4d4d65000] committed 20KB from
 [0x00007ffdca6b10c4]
 [0x00007ffdca6b1250]
 [0x00007ffdca6b1720]
 [0x00007ffdca29a2ee]

[0x000001d4d51d0000 - 0x000001d4d52c0000] reserved 960KB for Code from
 [0x00007ffdca6b159d]
 [0x00007ffdca6b0f40]
 [0x00007ffdca29a2b2]
 [0x00007ffdca1358e9]

 [0x000001d4d51d0000 - 0x000001d4d51d5000] committed 20KB from
 [0x00007ffdca6b10c4]
 [0x00007ffdca6b1250]
 [0x00007ffdca6b1720]
 [0x00007ffdca29a2ee]

 [0x000001d4d51d5000 - 0x000001d4d51e2000] committed 52KB from
 [0x00007ffdca6b10c4]
 [0x00007ffdca6b1250]
 [0x00007ffdca299df8]
 [0x00007ffdca135acf]
 ...

[0x000001d4d57f0000 - 0x000001d4d5880000] reserved and committed 576KB for
GC from
 [0x00007ffdca24258b]
 [0x00007ffdca2654bb]
 [0x00007ffdca232bcd]
 [0x00007ffdca68d437]

 [0x000001d4d57f0000 - 0x000001d4d5880000] committed 576KB from
 [0x00007ffdca2425d1]
 [0x00007ffdca2654bb]
 [0x00007ffdca232bcd]
 [0x00007ffdca68d437]
 ...
[0x000001d4f8930000 - 0x000001d4f9130000] reserved and committed 8192KB
for Class from
 [0x00007ffdca6b159d]
 [0x00007ffdca6b0fb4]

Chapter 2
Native Memory Tracking

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 19 of 55

 [0x00007ffdca6afee3]
 [0x00007ffdca6af7b5]

 [0x000001d4f8930000 - 0x000001d4f9130000] committed 8192KB from
 [0x00007ffdca6b10c4]
 [0x00007ffdca6b1250]
 [0x00007ffdca6b0087]
 [0x00007ffdca6af852]

[0x000001d4fa0d0000 - 0x000001d4fa2d0000] reserved and committed 2048KB
for Class from
 [0x00007ffdca6b159d]
 [0x00007ffdca6b0fb4]
 [0x00007ffdca6afee3]
 [0x00007ffdca6af7b5]

 [0x000001d4fa0d0000 - 0x000001d4fa2d0000] committed 2048KB from
 [0x00007ffdca6b10c4]
 [0x00007ffdca6b1250]
 [0x00007ffdca6b0087]
 [0x00007ffdca6af852]

 ...

• Get diff from NMT baseline: For both summary and detail level tracking, you can set a
baseline after the application is up and running. Do this by running jcmd <pid>
VM.native_memory baseline after the application warms up. Then, you can runjcmd
<pid> VM.native_memory summary.diff or jcmd <pid> VM.native_memory detail.diff.

The following example shows sample output for the summary difference in native memory
usage since the baseline was set and is a great way to find memory leaks.

>jcmd 17320 VM.native_memory summary.diff
17320:

Total: reserved=5712754KB +8236KB, committed=370550KB +12940KB

- Java Heap (reserved=4153344KB, committed=260096KB)
 (mmap: reserved=4153344KB, committed=260096KB)

- Class (reserved=1078291KB +6357KB, committed=32915KB
+7381KB)
 (classes #4868 +958)
 (instance classes #4528 +901, array classes
#340 +57)
 (malloc=1043KB +213KB #12345 +3198)
 (mmap: reserved=1077248KB +6144KB,
committed=31872KB +7168KB)
 (Metadata:)
 (reserved=28672KB +6144KB,
committed=27904KB +6400KB)
 (used=27206KB +6181KB)
 (free=698KB +219KB)
 (waste=0KB =0.00%)
 (Class space:)
 (reserved=1048576KB, committed=3968KB

Chapter 2
Native Memory Tracking

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 20 of 55

+768KB)
 (used=3395KB +643KB)
 (free=573KB +125KB)
 (waste=0KB =0.00%)

- Thread (reserved=26745KB +2KB, committed=1421KB +6KB)
 (thread #26)
 (stack: reserved=26624KB, committed=1300KB
+4KB)
 (malloc=85KB #142)
 (arena=35KB +2 #50)

- Code (reserved=248533KB +323KB, committed=14725KB
+3999KB)
 (malloc=789KB +323KB #4505 +1596)
 (mmap: reserved=247744KB, committed=13936KB
+3676KB)

- GC (reserved=197345KB +70KB, committed=52897KB
+70KB)
 (malloc=9825KB +70KB #4868 +1395)
 (mmap: reserved=187520KB, committed=43072KB)

- Compiler (reserved=153KB +4KB, committed=153KB +4KB)
 (malloc=27KB +6KB #312 +154)
 (arena=126KB -2 #5)

- Internal (reserved=785KB +27KB, committed=785KB +27KB)
 (malloc=713KB +27KB #2213 +214)
 (mmap: reserved=72KB, committed=72KB)

- Other (reserved=49KB, committed=49KB)
 (malloc=49KB #4)

- Symbol (reserved=6268KB +1082KB, committed=6268KB
+1082KB)
 (malloc=3926KB +1018KB #34608 +16640)
 (arena=2342KB +64 #1)

- Native Memory Tracking (reserved=963KB +364KB, committed=963KB +364KB)
 (malloc=9KB +1KB #123 +8)
 (tracking overhead=953KB +363KB)

- Arena Chunk (reserved=187KB, committed=187KB)
 (malloc=187KB)

- Logging (reserved=4KB, committed=4KB)
 (malloc=4KB #179)

- Arguments (reserved=18KB, committed=18KB)
 (malloc=18KB #467)

- Module (reserved=71KB +7KB, committed=71KB +7KB)
 (malloc=71KB +7KB #1119 +53)

Chapter 2
Native Memory Tracking

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 21 of 55

The following example is a sample output that shows the detail difference in native
memory usage since the baseline and is a great way to find memory leaks.

 ...
[0x00007ffdca51ce00]
[0x00007ffdca127ca3]
[0x00007ffdca51d08b]
[0x00007ffdca195288]
 (malloc=81KB type=Class +18KB #869 +194)

[0x00007ffdca169f01]
[0x00007ffdca16480a]
[0x00007ffdca164349]
[0x00007ffdca16444d]
 (malloc=3KB type=Compiler +1KB #27 +8)

[0x00007ffdca5c160a]
[0x000001d4ddd73b66]
 (malloc=2KB type=GC +2KB #1 +1)

[0x00007ffdca5c160a]
[0x00007ffdca22d16b]
[0x00007ffdca254a62]
[0x00007ffdca264b9e]
 (malloc=6KB type=GC +6KB #3 +3)
 ...
[0x00007ffdca2b860a]
[0x00007ffdca166d7c]
[0x00007ffdca3237bf]
[0x00007ffdca313331]
 (malloc=16KB type=Class +1KB #61 +6)

[0x00007ffdca67170c]
[0x00007ffdca6712f3]
[0x00007ffdca369ed1]
[0x000001d4ddd6f0b7]
 (malloc=3KB type=Internal +1KB #9 +3)

[0x00007ffdca60a90c]
[0x00007ffdca60ca3f]
[0x00007ffdca60cd29]
[0x00007ffdca2d78f3]
 (malloc=16KB type=Symbol +6KB #1030 +399)

[0x00007ffdca60a90c]
[0x00007ffdca60ca3f]
[0x00007ffdca60cc2e]
[0x00007ffdca19a631]
 (malloc=116KB type=Symbol +23KB #7411 +1442)
 ...
[0x00007ffdca29860f]
[0x00007ffdca204dc4]
[0x00007ffdca65070a]
[0x00007ffdca64fd17]
 (malloc=11KB type=Class +3KB #357 +82)

Chapter 2
Native Memory Tracking

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 22 of 55

[0x00007ffdca29860f]
[0x00007ffdca204dc4]
[0x00007ffdca65070a]
[0x00007ffdca64aefb]
 (malloc=105KB type=Class +23KB #3371 +749)

[0x00007ffdca50c00f]
[0x00007ffdca50be9d]
[0x00007ffdca552fc9]
[0x00007ffdca203aa0]
 (malloc=1KB type=Native Memory Tracking +1KB
#20 +20)

[0x00007ffdca53dd17]
[0x00007ffdca53f52a]
[0x00007ffdca350c54]
[0x000001d4ddd6f0b7]
 ...

NMT Memory Categories
List of native memory tracking memory categories used by NMT.

Table 2-1 describes native memory categories used by NMT. These categories may change
with a release.

Table 2-1 Native Memory Tracking Memory Categories

Category Description

Java Heap The heap where your objects live

Class Class meta data

Thread Memory used by threads, including thread data structure, resource area,
handle area, and so on

Code Generated code

GC Data use by the GC, such as card table

Compiler Memory tracking used by the compiler when generating code

Internal Memory that does not fit the previous categories, such as the memory
used by the command line parser, JVMTI, properties, and so on

Other Memory not covered by another category

Symbol Memory for symbols

Native Memory Tracking Memory used by NMT

Arena Chunk Memory used by chunks in the arena chunk pool

Logging Memory used by logging

Arguments Memory for arguments

Module Memory used by modules

Chapter 2
Native Memory Tracking

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 23 of 55

JConsole
Another useful tool included in the JDK download is the JConsole monitoring tool. This tool is
compliant with JMX. The tool uses the built-in JMX instrumentation in the JVM to provide
information about the performance and resource consumption of running applications.

Although the tool is included in the JDK download, it can also be used to monitor and manage
applications deployed with the JRE.

The JConsole tool can attach to any Java application in order to display useful information
such as thread usage, memory consumption, and details about class loading, runtime
compilation, and the operating system.

This output helps with the high-level diagnosis of problems such as memory leaks, excessive
class loading, and running threads. It can also be useful for tuning and heap sizing.

In addition to monitoring, JConsole can be used to dynamically change several parameters in
the running system. For example, the setting of the -verbose:gc option can be changed so
that the garbage collection trace output can be dynamically enabled or disabled for a running
application.

The following sections describe troubleshooting techniques with the JConsole tool.

• Troubleshoot with the JConsole Tool

• Monitor Local and Remote Applications with JConsole

Troubleshoot with the JConsole Tool
Use the JConsole tool to monitor data.

The following list provides an idea of the data that can be monitored using the JConsole tool.
Each heading corresponds to a tab pane in the tool.

• Overview

This pane displays graphs that shows the heap memory usage, number of threads,
number of classes, and CPU usage over time. This overview allows you to visualize the
activity of several resources at once.

• Memory

– For a selected memory area (heap, non-heap, various memory pools):

* Graph showing memory usage over time

* Current memory size

* Amount of committed memory

* Maximum memory size

– Garbage collector information, including the number of collections performed, and the
total time spent performing garbage collection

– Graph showing the percentage of heap and non-heap memory currently used

In addition, on this pane you can request garbage collection to be performed.

• Threads

– Graph showing thread usage over time.

Chapter 2
JConsole

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 24 of 55

– Live threads: Current number of live threads.

– Peak: Highest number of live threads since the JVM started.

– For a selected thread, the name, state, and stack trace, as well as, for a blocked
thread, the synchronizer that the thread is waiting to acquire, and the thread that owns
the lock.

– The Deadlock Detection button sends a request to the target application to perform
deadlock detection and displays each deadlock cycle in a separate tab.

• Classes

– Graph showing the number of loaded classes over time

– Number of classes currently loaded into memory

– Total number of classes loaded into memory since the JVM started, including those
subsequently unloaded

– Total number of classes unloaded from memory since the JVM started

• VM Summary

– General information, such as the JConsole connection data, uptime for the JVM, CPU
time consumed by the JVM, compiler name, total compile time, and so on.

– Thread and class summary information

– Memory and garbage collection information, including number of objects pending
finalization, and so on

– Information about the operating system, including physical characteristics, the amount
of virtual memory for the running process, and swap space

– Information about the JVM itself, such as the arguments and class path

• MBeans

This pane displays a tree structure that shows all platform and application MBeans that are
registered in the connected JMX agent. When you select an MBean in the tree, its
attributes, operations, notifications, and other information are displayed.

– You can invoke operations, if any. For example, the operation dumpHeap for the
HotSpotDiagnostic MBean, which is in the com.sun.management domain, performs a
heap dump. The input parameter for this operation is the path name of the heap dump
file on the machine where the target VM is running.

– You can set the value of writable attributes. For example, you can set, unset, or
change the value of certain VM flags by invoking the setVMOption operation of the
HotSpotDiagnostic MBean. The flags are indicated by the list of values of the
DiagnosticOptions attribute.

– You can subscribe to notifications, if any, by using the Subscribe and Unsubscribe
buttons.

Monitor Local and Remote Applications with JConsole
JConsole can monitor both local applications and remote applications. If you start the tool with
an argument specifying a JMX agent to connect to, then the tool will automatically start
monitoring the specified application.

To monitor a local application, execute the command jconsolepid , where pid is the process
ID of the application.

Chapter 2
JConsole

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 25 of 55

To monitor a remote application, execute the command jconsolehostname: portnumber,
where hostname is the name of the host running the application, and portnumber is the port
number you specified when you enabled the JMX agent.

If you execute the jconsole command without arguments, the tool will start by displaying the
New Connection window, where you specify the local or remote process to be monitored. You
can connect to a different host at any time by using the Connection menu.

With the latest JDK releases, no option is necessary when you start the application to be
monitored.

As an example of the output of the monitoring tool, Figure 2-1 shows a chart of the heap
memory usage.

Figure 2-1 Sample Output from JConsole

Chapter 2
JConsole

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 26 of 55

The jdb Utility
The jdb utility is included in the JDK as an example command-line debugger. The jdb utility
uses the Java Debug Interface (JDI) to launch or connect to the target JVM.

The JDI is a high-level Java API that provides information useful for debuggers and similar
systems that need access to the running state of a (usually remote) virtual machine. JDI is a
component of the Java Platform Debugger Architecture (JPDA). See Java Platform Debugger
Architecture.

The following section provides troubleshooting techniques for the jdb utility.

• Troubleshoot with the jdb Utility

Troubleshoot with the jdb Utility
The jdb utility is used to monitor the debugger connectors used for remote debugging.

In JDI, a connector is the way that the debugger connects to the target JVM. The JDK
traditionally ships with connectors that launch and establish a debugging session with a target
JVM, as well as connectors that are used for remote debugging (using TCP/IP or shared
memory transports).

These connectors are generally used with enterprise debuggers, such as the NetBeans
integrated development environment (IDE) or commercial IDEs.

The command jdb -listconnectors prints a list of the available connectors. The command
jdb -help prints the command usage help.

See jdb Utility in the Java Platform, Standard Edition Tools Reference

The jinfo Utility
The jinfo command-line utility gets configuration information from a running Java process or
crash dump, and prints the system properties or the command-line flags that were used to start
the JVM.

Java Mission Control, Java Flight Recorder, and jcmd utility can be used for diagnosing
problems with JVM and Java applications. Use the latest utility, jcmd, instead of the previous
jinfo utility for enhanced diagnostics and reduced performance overhead.

With the -flag option, the jinfo utility can dynamically set, unset, or change the value of
certain JVM flags for the specified Java process. See Java HotSpot VM Command-Line
Options.

The output for the jinfo utility for a Java process with PID number 29620 is shown in the
following example.

c:\Program Files\Java\jdk-11\bin>jinfo 29620
Java System Properties:
sun.desktop=windows
awt.toolkit=sun.awt.windows.WToolkit
java.specification.version=11
sun.cpu.isalist=amd64
sun.jnu.encoding=Cp1252

Chapter 2
The jdb Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 27 of 55

java.class.path=C\:\\sampleApps\\DynamicTreeDemo\\dist\\DynamicTreeDemo.jar
sun.awt.enableExtraMouseButtons=true
java.vm.vendor=Oracle Corporation
sun.arch.data.model=64
user.variant=
java.vendor.url=http\://java.oracle.com/
user.timezone=
java.vm.specification.version=11
os.name=Windows 10
sun.java.launcher=SUN_STANDARD
user.country=US
sun.boot.library.path=c\:\\Program Files\\Java\\jdk-11.0.5\\bin
sun.java.command=C\:\\sampleApps\\DynamicTreeDemo\\dist\\DynamicTreeDemo.jar
jdk.debug=release
sun.cpu.endian=little
user.home=C\:\\Users\\user1
user.language=en
sun.stderr.encoding=cp437
java.specification.vendor=Oracle Corporation
java.version.date=2019-10-15
java.home=c\:\\Program Files\\Java\\jdk-11.0.5
file.separator=\\
java.vm.compressedOopsMode=Zero based
line.separator=\r\n
sun.stdout.encoding=cp437
java.specification.name=Java Platform API Specification
java.vm.specification.vendor=Oracle Corporation
java.awt.graphicsenv=sun.awt.Win32GraphicsEnvironment
user.script=
sun.management.compiler=HotSpot 64-Bit Tiered Compilers
java.runtime.version=11.0.5+10-LTS
user.name=user1
path.separator=;
os.version=10.0
java.runtime.name=Java(TM) SE Runtime Environment
file.encoding=Cp1252
java.vm.name=Java HotSpot(TM) 64-Bit Server VM
java.vendor.version=18.9
java.vendor.url.bug=http\://bugreport.java.com/bugreport/
java.io.tmpdir=C\:\\Users\\user1\\AppData\\Local\\Temp\\
java.version=11.0.5
user.dir=c\:\\Users\\user1
os.arch=amd64
java.vm.specification.name=Java Virtual Machine Specification
java.awt.printerjob=sun.awt.windows.WPrinterJob
sun.os.patch.level=
java.library.path=c\:\\Program Files\\Java\\jdk-11.0.5\\bin;...
java.vendor=Oracle Corporation
java.vm.info=mixed mode
java.vm.version=11.0.5+10-LTS
sun.io.unicode.encoding=UnicodeLittle
java.class.version=55.0
VM Flags:
 ...

The following topic describes the troubleshooting technique with jinfo utility.

Chapter 2
The jinfo Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 28 of 55

• Troubleshooting with the jinfo Utility

Troubleshooting with the jinfo Utility
The output from jinfo provides the settings for java.class.path and sun.boot.class.path.

If you start the target JVM with the -classpath and -Xbootclasspath arguments, then the
output from jinfo provides the settings for java.class.path and sun.boot.class.path. This
information might be needed when investigating class loader issues.

In addition to getting information from a process, the jhsdb jinfo tool can use a core file as
input. On the Oracle Solaris operating system, for example, the gcore utility can be used to get
a core file of the process in the preceding example. The core file will be named core.29620
and will be generated in the working directory of the process. The path to the Java executable
file and the core file must be specified as arguments to the jhsdb jinfo utility, as shown in the
following example.

$ jhsdb jinfo --exe java-home/bin/java --core core.29620

Sometimes, the binary name will not be java. This happens when the VM is created using the
JNI invocation API. The jhsdb jinfo tool requires the binary from which the core file was
generated.

The jmap Utility
The jmap command-line utility prints memory-related statistics for a running VM or core file. For
a core file, use jhsdb jmap.

JDK Mission Control, Flight Recorder, and jcmd utility can be used for diagnosing problems
with JVM and Java applications. It is suggested to use the latest utility, jcmd instead of the
previous jmap utility for enhanced diagnostics and reduced performance overhead.

If jmap is used with a process or core file without any command-line options, then it prints the
list of shared objects loaded (the output is similar to the pmap utility on Oracle Solaris operating
system). For more specific information, you can use the options -heap, -histo, or -clstats.
These options are described in the subsections that follow.

In addition, the JDK 7 release introduced the -dump:format=b,file=filename option, which
causes jmap to dump the Java heap in binary format to a specified file.

If the jmap pid command does not respond because of a hung process, then use the jhsdb
jmap utility to run the Serviceability Agent.

The following sections describe troubleshooting techniques with examples that print memory-
related statistics for a running VM or a core file.

• Heap Configuration and Usage

• Heap Histogram

• Class Loader Statistics

Heap Configuration and Usage
Use the jhsdb jmap --heap command to get the Java heap information.

The --heap option is used to get the following Java heap information:

Chapter 2
The jmap Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 29 of 55

• Information specific to the garbage collection (GC) algorithm, including the name of the GC
algorithm (for example, parallel GC) and algorithm-specific details (such as the number of
threads for parallel GC).

• Heap configuration that might have been specified as command-line options or selected by
the VM based on the machine configuration.

• Heap usage summary: For each generation (area of the heap), the tool prints the total
heap capacity, in-use memory, and available free memory. If a generation is organized as a
collection of spaces (for example, the new generation), then a space-specific memory size
summary is included.

The following example shows output from the jhsdb jmap --heap command.

$ jhsdb jmap --heap --pid 29620
Attaching to process ID 29620, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 11.0.5+10-LTS

using thread-local object allocation.
Garbage-First (G1) GC with 4 thread(s)

Heap Configuration:
 MinHeapFreeRatio = 40
 MaxHeapFreeRatio = 70
 MaxHeapSize = 4253024256 (4056.0MB)
 NewSize = 1363144 (1.2999954223632812MB)
 MaxNewSize = 2551185408 (2433.0MB)
 OldSize = 5452592 (5.1999969482421875MB)
 NewRatio = 2
 SurvivorRatio = 8
 MetaspaceSize = 21807104 (20.796875MB)
 CompressedClassSpaceSize = 1073741824 (1024.0MB)
 MaxMetaspaceSize = 17592186044415 MB
 G1HeapRegionSize = 1048576 (1.0MB)

Heap Usage:
G1 Heap:
 regions = 4056
 capacity = 4253024256 (4056.0MB)
 used = 10485760 (10.0MB)
 free = 4242538496 (4046.0MB)
 0.2465483234714004% used
G1 Young Generation:
Eden Space:
 regions = 11
 capacity = 15728640 (15.0MB)
 used = 11534336 (11.0MB)
 free = 4194304 (4.0MB)
 73.33333333333333% used
Survivor Space:
 regions = 0
 capacity = 0 (0.0MB)
 used = 0 (0.0MB)
 free = 0 (0.0MB)
 0.0% used

Chapter 2
The jmap Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 30 of 55

G1 Old Generation:
 regions = 0
 capacity = 250609664 (239.0MB)
 used = 0 (0.0MB)
 free = 250609664 (239.0MB)
 0.0% used

Heap Histogram
The jmap command with the -histo option or the jhsdb jmap --histo command can be used
to get a class-specific histogram of the heap.

The jmap -histo command can print the heap histogram for a running process. Use jhsdb
jmap --histo to print the heap histogram for a core file.

When the jmap -histo command is executed on a running process, the tool prints the number
of objects, memory size in bytes, and fully qualified class name for each class. Internal classes
in the Java HotSpot VM are enclosed within angle brackets. The histogram is useful to
understand how the heap is used. To get the size of an object, you must divide the total size by
the count of that object type.

The following example shows output from the jmap -histo command when it is executed on a
process with PID number 29620.

$ jmap -histo 29620
 num #instances #bytes class name (module)

 1: 37127 2944304 [B (java.base@11)
 2: 5773 1860840 [I (java.base@11)
 3: 15844 887264 jdk.internal.org.objectweb.asm.Item
(java.base@11)
 4: 24061 577464 java.lang.String (java.base@11)
 5: 13334 575120 [Ljava.lang.Object; (java.base@11)
 6: 562 373280 [Ljdk.internal.org.objectweb.asm.Item;
(java.base@11)
 7: 2575 313392 java.lang.Class (java.base@11)
 8: 8233 250792 [Ljava.lang.Class; (java.base@11)
 9: 6043 241720 java.lang.invoke.MethodType (java.base@11)
 10: 6716 214912
java.lang.invoke.MethodType$ConcurrentWeakInternSet$WeakEntry (java.base@11)
 11: 6324 202368 java.util.HashMap$Node (java.base@11)
 12: 5352 171264 java.lang.invoke.LambdaForm$Name
(java.base@11)
 13: 612 155160 [C (java.base@11)
 14: 594 133056
jdk.internal.org.objectweb.asm.MethodWriter (java.base@11)
 15: 1538 110864 [Ljava.lang.invoke.LambdaForm$Name;
(java.base@11)
 16: 4521 108504 java.lang.StringBuilder (java.base@11)
 17: 2252 108096 java.lang.invoke.MemberName (java.base@11)
 18: 644 103208 [Ljava.util.HashMap$Node; (java.base@11)
 19: 1375 77000
java.lang.invoke.LambdaFormEditor$Transform (java.base@11)
 20: 2215 70880
java.util.concurrent.ConcurrentHashMap$Node (java.base@11)
... more lines removed here to reduce output...

Chapter 2
The jmap Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 31 of 55

1425: 1 16
sun.util.resources.LocaleData$LocaleDataStrategy (java.base@11)
1426: 1 16
sun.util.resources.provider.NonBaseLocaleDataMetaInfo (jdk.localedata@11)
Total 184008 11075800

When the jhsdb jmap -histo command is executed on a core file, the tool prints serial
number, number of instances, bytes, and class name for each class. Internal classes in the
Java HotSpot VM are prefixed with an asterisk (*).

The following example shows output of the jhsdb jmap -histo command when it is executed
on a core file.

& jhsdb jmap --exe /usr/java/jdk_11/bin/java --core core.16395 --
histoDebugger attached successfully.
Server compiler detected.
JVM version is 11.0.5+10-LTS
Iterating over heap. This may take a while...
Object Histogram:

num #instances #bytes Class description
--
1: 11102 564520 byte[]
2: 10065 241560 java.lang.String
3: 1421 163392 java.lang.Class
4: 26403 2997816 * ConstMethodKlass
5: 26403 2118728 * MethodKlass
6: 39750 1613184 * SymbolKlass
7: 2011 1268896 * ConstantPoolKlass
8: 2011 1097040 * InstanceKlassKlass
9: 1906 882048 * ConstantPoolCacheKlass
10: 1614 125752 java.lang.Object[]
11: 1160 64960 jdk.internal.org.objectweb.asm.Item
12: 1834 58688 java.util.HashMap$Node
13: 359 40880 java.util.HashMap$Node[]
14: 1189 38048 java.util.concurrent.ConcurrentHashMap$Node
15: 46 37280 jdk.internal.org.objectweb.asm.Item[]
16: 29 35600 char[]
17: 968 32320 int[]
18: 650 26000 java.lang.invoke.MethodType
19: 475 22800 java.lang.invoke.MemberName

Class Loader Statistics
Use the jmap command with the -clstats option to print class loader statistics for the Java
heap.

The jmap command connects to a running process using the process ID and prints detailed
information about classes loaded in the Metaspace:

• Index - Unique index for the class

• Super - Index number of the super class

• InstBytes - Number of bytes per instance

• KlassBytes - Number of bytes for the class

Chapter 2
The jmap Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 32 of 55

• annotations - Size of annotations

• CpAll - Combined size of the constants, tags, cache, and operands per class

• MethodCount - Number of methods per class

• Bytecodes - Number of bytes used for byte codes

• MethodAll - Combined size of the bytes per method, CONSTMETHOD, stack map, and
method data

• ROAll - Size of class metadata that could be put in read-only memory

• RWAll - Size of class metadata that must be put in read/write memory

• Total - Sum of ROAll + RWAll

• ClassName - Name of the loaded class

The following example shows a subset of the output from the jmap -clstats command when it
is executed on a process with PID number 10952.

c:\Program Files\Java\jdk-11.0.5\bin>jmap -clstats 10952
Index Super InstBytes KlassBytes annotations CpAll MethodCount Bytecodes
MethodAll ROAll RWAll Total ClassName
 1 -1 304816 512 0 0 0
0 0 24 624 648 [B
 2 51 285264 784 0 23344 147
5815 48848 28960 46640 75600 java.lang.Class
 3 -1 256368 512 0 0 0
0 0 24 624 648 [I
 4 51 166344 680 136 17032 123
5433 48256 23920 44160 68080 java.lang.String
 5 -1 146360 512 0 0 0
0 0 24 624 648 [Ljava.lang.Object;
 6 51 123680 600 0 1384 7
149 1888 1200 3024 4224 java.util.HashMap$Node
 7 51 52928 608 0 1360 9
213 2472 1632 3184 4816
java.util.concurrent.ConcurrentHashMap$Node
 8 -1 51888 512 0 0 0
0 0 24 624 648 [C
 9 -1 49904 512 0 0 0
0 0 32 624 656 [Ljava.util.HashMap$Node;
 10 51 30400 624 0 1512 8
240 2224 1472 3256 4728 java.util.Hashtable$Entry
 11 51 25488 592 0 11520 89
4365 47936 16696 45072 61768 java.lang.invoke.MemberName
 12 1604 19296 1024 0 7904 51
4071 27568 14664 23024 37688 java.util.HashMap
 13 -1 18304 512 0 0 0
0 0 32 624 656
[Ljava.util.concurrent.ConcurrentHashMap$Node;
 14 51 17504 544 120 5464 37
1783 16648 7416 16072 23488 java.lang.invoke.LambdaForm$Name
 15 -1 16680 512 0 0 0
0 0 80 624 704 [Ljava.lang.Class;
...lines removed to reduce output...
 2320 1955 0 560 0 1912 7
170 1520 1312 3016 4328

Chapter 2
The jmap Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 33 of 55

sun.util.logging.internal.LoggingProviderImpl
 2321 51 0 528 0 232 1
0 144 128 936 1064
sun.util.logging.internal.LoggingProviderImpl$LogManagerAccess
 2055400 1621472 10680 5092080 27820 1288076
7335944 5407792 9513160 14920952 Total
 13.8% 10.9% 0.1% 34.1% -
8.6% 49.2% 36.2% 63.8% 100.0%
Index Super InstBytes KlassBytes annotations CpAll MethodCount Bytecodes
MethodAll ROAll RWAll Total ClassName

The jps Utility
The jps utility lists every instrumented Java HotSpot VM for the current user on the target
system.

The utility is very useful in environments where the VM is embedded, that is, where it is started
using the JNI Invocation API rather than the java launcher. In these environments, it is not
always easy to recognize the Java processes in the process list.

The following example shows the use of the jps utility.

$ jps
16217 MyApplication
16342 jps

The jps utility lists the virtual machines for which the user has access rights. This is
determined by access-control mechanisms specific to the operating system. On the Oracle
Solaris operating system, for example, if a non-root user executes the jps utility, then the
output is a list of the virtual machines that were started with that user's UID.

In addition to listing the PID, the utility provides options to output the arguments passed to the
application's main method, the complete list of VM arguments, and the full package name of
the application's main class. The jps utility can also list processes on a remote system if the
remote system is running the jstatd daemon.

The jstack Utility
Use the jcmd or jhsdb jstack utility, instead of the jstack utility to diagnose problems with
JVM and Java applications.

JDK Mission Control, Flight Recorder, and jcmd utility can be used to diagnose problems with
JVM and Java applications. It is suggested to use the latest utility, jcmd, instead of the previous
jstack utility for enhanced diagnostics and reduced performance overhead.

The following sections describe troubleshooting techniques with the jstack and jhsdb jstack
utilities.

• Troubleshoot with the jstack Utility

• Stack Trace from a Core Dump

• Mixed Stack

Chapter 2
The jps Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 34 of 55

Troubleshoot with the jstack Utility
The jstack command-line utility attaches to the specified process, and prints the stack traces
of all threads that are attached to the virtual machine, including Java threads and VM internal
threads, and optionally native stack frames. The utility also performs deadlock detection. For
core files, use jhsdb jstack.

A stack trace of all threads can be useful in diagnosing a number of issues, such as deadlocks
or hangs.

The -l option instructs the utility to look for ownable synchronizers in the heap and print
information about java.util.concurrent.locks. Without this option, the thread dump includes
information only on monitors.

The output from the jstack pid option is the same as that obtained by pressing Ctrl+\ at the
application console (standard input) or by sending the process a quit signal. See
Control+Break Handler for an example of the output.

Thread dumps can also be obtained programmatically using the Thread.getAllStackTraces
method, or in the debugger using the debugger option to print all thread stacks (the where
command in the case of the jdb sample debugger).

Stack Trace from a Core Dump
Use the jhsdb jstack command to obtain stack traces from a core dump.

To get stack traces from a core dump, execute the jhsdb jstack command on a core file, as
shown in the following example.

$ jhsdb jstack --exe java-home/bin/java --core core-file

Mixed Stack
The jhsdb jstack utility can also be used to print a mixed stack; that is, it can print native
stack frames in addition to the Java stack. Native frames are the C/C++ frames associated with
VM code and JNI/native code.

To print a mixed stack, use the --mixed option, as shown in the following example.

>jhsdb jstack --mixed --pid 21177
Attaching to process ID 21177, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 11.0.5+10-LTS
Deadlock Detection:

No deadlocks found.

----------------- 0 -----------------
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 1 -----------------
----------------- 2 -----------------
"DestroyJavaVM" #19 prio=5 tid=0x000001a5607af000 nid=0x5ad8 waiting on
condition [0x0000000000000000]

Chapter 2
The jstack Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 35 of 55

 java.lang.Thread.State: RUNNABLE
 JavaThread state: _thread_blocked
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 3 -----------------
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 4 -----------------
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 5 -----------------
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 6 -----------------
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 7 -----------------
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 8 -----------------
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 9 -----------------
"Reference Handler" #2 daemon prio=10 tid=0x000001a57f747800 nid=0x2ecc
waiting on condition [0x00000060f3afe000]
 java.lang.Thread.State: RUNNABLE
 JavaThread state: _thread_blocked
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 10 -----------------
"Finalizer" #3 daemon prio=8 tid=0x000001a50400c000 nid=0x3e70 in
Object.wait() [0x00000060f3bfe000]
 java.lang.Thread.State: WAITING (on object monitor)
 JavaThread state: _thread_blocked
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 11 -----------------
"Signal Dispatcher" #4 daemon prio=9 tid=0x000001a504062800 nid=0x550
runnable [0x0000000000000000]
 java.lang.Thread.State: RUNNABLE
 JavaThread state: _thread_blocked
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 12 -----------------
"Attach Listener" #5 daemon prio=5 tid=0x000001a504063800 nid=0x488c runnable
[0x0000000000000000]
 java.lang.Thread.State: RUNNABLE
 JavaThread state: _thread_blocked
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
0x000001a504064340 ????????
----------------- 13 -----------------
"C2 CompilerThread0" #6 daemon prio=9 tid=0x000001a504066000 nid=0x5968
waiting on condition [0x0000000000000000]
 java.lang.Thread.State: RUNNABLE
 JavaThread state: _thread_blocked
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
0x0400030091000000 ????????
----------------- 14 -----------------
"C1 CompilerThread0" #8 daemon prio=9 tid=0x000001a50406d800 nid=0x67c
waiting on condition [0x0000000000000000]
 java.lang.Thread.State: RUNNABLE
 JavaThread state: _thread_blocked
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 15 -----------------
"Sweeper thread" #9 daemon prio=9 tid=0x000001a50406e800 nid=0x4690 runnable
[0x0000000000000000]

Chapter 2
The jstack Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 36 of 55

 java.lang.Thread.State: RUNNABLE
 JavaThread state: _thread_blocked
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
0x010a012700000004 ????????
----------------- 16 -----------------
"Service Thread" #10 daemon prio=9 tid=0x000001a5041fd800 nid=0x3060 runnable
[0x0000000000000000]
 java.lang.Thread.State: RUNNABLE
 JavaThread state: _thread_blocked
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 17 -----------------
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 18 -----------------
"Common-Cleaner" #11 daemon prio=8 tid=0x000001a504205800 nid=0x5db4 in
Object.wait() [0x00000060f43ff000]
 java.lang.Thread.State: TIMED_WAITING (on object monitor)
 JavaThread state: _thread_blocked
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 19 -----------------
"Java2D Disposer" #12 daemon prio=10 tid=0x000001a50c8ef800 nid=0x58e8 in
Object.wait() [0x00000060f44fe000]
 java.lang.Thread.State: WAITING (on object monitor)
 JavaThread state: _thread_blocked
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 20 -----------------
"AWT-Shutdown" #13 prio=5 tid=0x000001a50c8d0800 nid=0x3a34 in Object.wait()
[0x00000060f45ff000]
 java.lang.Thread.State: WAITING (on object monitor)
 JavaThread state: _thread_blocked
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 21 -----------------
"AWT-Windows" #14 daemon prio=6 tid=0x000001a50c8d4000 nid=0x5c8 runnable
[0x00000060f46fe000]
 java.lang.Thread.State: RUNNABLE
 JavaThread state: _thread_in_native
----------------- 22 -----------------
"AWT-EventQueue-0" #17 prio=6 tid=0x000001a50dfe9000 nid=0x5a00 waiting on
condition [0x00000060f49ff000]
 java.lang.Thread.State: WAITING (parking)
 JavaThread state: _thread_blocked
0x00007ffe17e8f7e4 ntdll!ZwWaitForSingleObject + 0x14
----------------- 23 -----------------
----------------- 24 -----------------

Frames that are prefixed with an asterisk (*) are Java frames, whereas frames that are not
prefixed with an asterisk are native C/C++ frames.

The output of the utility can be piped through c++filt to demangle C++ mangled symbol
names. Because the Java HotSpot VM is developed in the C++ language, the jhsdb jstack
utility prints C++ mangled symbol names for the Java HotSpot internal functions.

The c++filt utility is delivered with the native C++ compiler suite: SUNWspro on the Oracle
Solaris operating system and gnu on Linux.

Chapter 2
The jstack Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 37 of 55

The jstat Utility
The jstat utility uses the built-in instrumentation in the Java HotSpot VM to provide
information about performance and resource consumption of running applications.

The tool can be used when diagnosing performance issues, and in particular issues related to
heap sizing and garbage collection. The jstat utility does not require the VM to be started with
any special options. The built-in instrumentation in the Java HotSpot VM is enabled by default.
This utility is included in the JDK download for all operating system platforms supported by
Oracle.

Note

The instrumentation is not accessible on a FAT32 file system.

See jstat in the Java Platform, Standard Edition Tools Reference.

The jstat utility uses the virtual machine identifier (VMID) to identify the target process. The
documentation describes the syntax of the VMID, but its only required component is the local
virtual machine identifier (LVMID). The LVMID is typically (but not always) the operating
system's PID for the target JVM process.

The jstat utility provides data similar to the data provided by the vmstat and iostat on Oracle
Solaris and Linux operating systems.

For a graphical representation of the data, you can use the visualgc tool. See The visualgc
Tool.

The following example illustrates the use of the -gcutil option, where the jstat utility
attaches to LVMID number 2834 and takes 7 samples at 250-millisecond intervals.

$ jstat -gcutil 2834 250 7
 S0 S1 E O M YGC YGCT FGC FGCT GCT
 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124
 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124
 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124
 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124
 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124
 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124
 0.00 99.74 13.49 7.86 95.82 3 0.124 0 0.000 0.124

The output of this example shows you that a young generation collection occurred between the
third and fourth samples. The collection took 0.017 seconds and promoted objects from the
eden space (E) to the old space (O), resulting in an increase of old space utilization from
46.56% to 54.60%.

The following example illustrates the use of the -gcnew option where the jstat utility attaches
to LVMID number 2834, takes samples at 250-millisecond intervals, and displays the output. In
addition, it uses the -h3 option to display the column headers after every 3 lines of data.

$ jstat -gcnew -h3 2834 250
S0C S1C S0U S1U TT MTT DSS EC EU YGC YGCT

Chapter 2
The jstat Utility

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 38 of 55

 192.0 192.0 0.0 0.0 15 15 96.0 1984.0 942.0 218 1.999
 192.0 192.0 0.0 0.0 15 15 96.0 1984.0 1024.8 218 1.999
 192.0 192.0 0.0 0.0 15 15 96.0 1984.0 1068.1 218 1.999
 S0C S1C S0U S1U TT MTT DSS EC EU YGC YGCT
 192.0 192.0 0.0 0.0 15 15 96.0 1984.0 1109.0 218 1.999
 192.0 192.0 0.0 103.2 1 15 96.0 1984.0 0.0 219 2.019
 192.0 192.0 0.0 103.2 1 15 96.0 1984.0 71.6 219 2.019
 S0C S1C S0U S1U TT MTT DSS EC EU YGC YGCT
 192.0 192.0 0.0 103.2 1 15 96.0 1984.0 73.7 219 2.019
 192.0 192.0 0.0 103.2 1 15 96.0 1984.0 78.0 219 2.019
 192.0 192.0 0.0 103.2 1 15 96.0 1984.0 116.1 219 2.019

In addition to showing the repeating header string, this example shows that between the fourth
and fifth samples, a young generation collection occurred, whose duration was 0.02 seconds.
The collection found enough live data that the survivor space 1 utilization (S1U) would have
exceeded the desired survivor size (DSS). As a result, objects were promoted to the old
generation (not visible in this output), and the tenuring threshold (TT) was lowered from 15 to
1.

The following example illustrates the use of the -gcoldcapacity option, where the jstat utility
attaches to LVMID number 21891 and takes 3 samples at 250-millisecond intervals. The -t
option is used to generate a time stamp for each sample in the first column.

$ jstat -gcoldcapacity -t 21891 250 3
Timestamp OGCMN OGCMX OGC OC YGC FGC FGCT GCT
 150.1 1408.0 60544.0 11696.0 11696.0 194 80 2.874 3.799
 150.4 1408.0 60544.0 13820.0 13820.0 194 81 2.938 3.863
 150.7 1408.0 60544.0 13820.0 13820.0 194 81 2.938 3.863

The Timestamp column reports the elapsed time in seconds since the start of the target JVM.
In addition, the -gcoldcapacity output shows the old generation capacity (OGC) and the old
space capacity (OC) increasing as the heap expands to meet the allocation or promotion
demands. The OGC has grown from 11696 KB to 13820 KB after the 81st full generation
capacity (FGC). The maximum capacity of the generation (and space) is 60544 KB (OGCMX),
so it still has room to expand.

The visualgc Tool
The visualgc tool provides a graphical view of the garbage collection (GC) system.

The visualgc tool is related to the jstat tool. See The jstat Utility. The visualgc tool provides
a graphical view of the garbage collection (GC) system. As with jstat, it uses the built-in
instrumentation of the Java HotSpot VM.

The visualgc tool is not included in the JDK release, but is available as a separate download
from the jvmstat technology page.

Figure 2-2 shows how the GC and heap are visualized.

Chapter 2
The visualgc Tool

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 39 of 55

http://www.oracle.com/technetwork/java/jvmstat-142257.html

Figure 2-2 Sample Output from visualgc

Control+Break Handler
The result of pressing the Control key and the backslash (\) key at the application console on
operating systems such as Oracle Solaris or Linux, or Windows.

On Oracle Solaris or Linux operating systems, the combination of pressing the Control key and
the backslash (\) key at the application console (standard input) causes the Java HotSpot VM
to print a thread dump to the application's standard output. On Windows, the equivalent key
sequence is the Control and Break keys. The general term for these key combinations is the
Control+Break handler.

On Oracle Solaris and Linux operating systems, a thread dump is printed if the Java process
receives a quit signal. Therefore, the kill -QUIT pid command causes the process with the
ID pid to print a thread dump to standard output.

The following sections describe the data traced by the Control+Break handler:

• Thread Dump

• Thread States for a Thread Dump

Chapter 2
Control+Break Handler

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 40 of 55

• Detect Deadlocks

• Heap Summary

Thread Dump
The thread dump consists of the thread stack, including the thread state, for all Java threads in
the virtual machine.

The thread dump does not terminate the application: it continues after the thread information is
printed.

The following example illustrates a thread dump.

Full thread dump Java HotSpot(TM) Client VM (1.6.0-rc-b100 mixed mode):

"DestroyJavaVM" prio=10 tid=0x00030400 nid=0x2 waiting on condition
[0x00000000..0xfe77fbf0]
 java.lang.Thread.State: RUNNABLE

"Thread2" prio=10 tid=0x000d7c00 nid=0xb waiting for monitor entry
[0xf36ff000..0xf36ff8c0]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at Deadlock$DeadlockMakerThread.run(Deadlock.java:32)
 - waiting to lock <0xf819a938> (a java.lang.String)
 - locked <0xf819a970> (a java.lang.String)

"Thread1" prio=10 tid=0x000d6c00 nid=0xa waiting for monitor entry
[0xf37ff000..0xf37ffbc0]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at Deadlock$DeadlockMakerThread.run(Deadlock.java:32)
 - waiting to lock <0xf819a970> (a java.lang.String)
 - locked <0xf819a938> (a java.lang.String)

"Low Memory Detector" daemon prio=10 tid=0x000c7800 nid=0x8 runnable
[0x00000000..0x00000000]
 java.lang.Thread.State: RUNNABLE

"CompilerThread0" daemon prio=10 tid=0x000c5400 nid=0x7 waiting on condition
[0x00000000..0x00000000]
 java.lang.Thread.State: RUNNABLE

"Signal Dispatcher" daemon prio=10 tid=0x000c4400 nid=0x6 waiting on
condition [0x00000000..0x00000000]
 java.lang.Thread.State: RUNNABLE

"Finalizer" daemon prio=10 tid=0x000b2800 nid=0x5 in Object.wait()
[0xf3f7f000..0xf3f7f9c0]
 java.lang.Thread.State: WAITING (on object monitor)
 at java.lang.Object.wait(Native Method)
 - waiting on <0xf4000b40> (a java.lang.ref.ReferenceQueue$Lock)
 at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:116)
 - locked <0xf4000b40> (a java.lang.ref.ReferenceQueue$Lock)
 at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:132)
 at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:159)

"Reference Handler" daemon prio=10 tid=0x000ae000 nid=0x4 in Object.wait()

Chapter 2
Control+Break Handler

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 41 of 55

[0xfe57f000..0xfe57f940]
 java.lang.Thread.State: WAITING (on object monitor)
 at java.lang.Object.wait(Native Method)
 - waiting on <0xf4000a40> (a java.lang.ref.Reference$Lock)
 at java.lang.Object.wait(Object.java:485)
 at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:116)
 - locked <0xf4000a40> (a java.lang.ref.Reference$Lock)

"VM Thread" prio=10 tid=0x000ab000 nid=0x3 runnable

"VM Periodic Task Thread" prio=10 tid=0x000c8c00 nid=0x9 waiting on condition

The output consists of a number of thread entries separated by an empty line. The Java
Threads (threads that are capable of executing Java language code) are printed first, and
these are followed by information about VM internal threads. Each thread entry consists of a
header line followed by the thread stack trace.

The header line contains the following information about the thread:

• Thread name.

• Indication if the thread is a daemon thread.

• Thread priority (prio).

• Thread ID (tid), which is the address of a thread structure in memory.

• ID of the native thread (nid).

• Thread state, which indicates what the thread was doing at the time of the thread dump.
See Table 2-2 for more details.

• Address range, which gives an estimate of the valid stack region for the thread.

Thread States for a Thread Dump
List of possible thread states for a thread dump.

Table 2-2 lists the possible thread states for a thread dump using the Control+Break Handler.

Table 2-2 Thread States for a Thread Dump

Thread State Description

NEW The thread has not yet started.

RUNNABLE The thread is executing in the JVM.

BLOCKED The thread is blocked, waiting for a monitor lock.

WAITING The thread is waiting indefinitely for another thread to perform a
particular action.

TIMED_WAITING The thread is waiting for another thread to perform an action for up to a
specified waiting time.

TERMINATED The thread has exited.

Detect Deadlocks
The Control+Break handler can be used to detect deadlocks in threads.

Chapter 2
Control+Break Handler

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 42 of 55

In addition to the thread stacks, the Control+Break handler executes a deadlock detection
algorithm. If any deadlocks are detected, then the Control+Break handler, as shown in the
following example, prints additional information after the thread dump about each deadlocked
thread.

Found one Java-level deadlock:
=============================
"Thread2":
 waiting to lock monitor 0x000af330 (object 0xf819a938, a java.lang.String),
 which is held by "Thread1"
"Thread1":
 waiting to lock monitor 0x000af398 (object 0xf819a970, a java.lang.String),
 which is held by "Thread2"

Java stack information for the threads listed above:
===
"Thread2":
 at Deadlock$DeadlockMakerThread.run(Deadlock.java:32)
 - waiting to lock <0xf819a938> (a java.lang.String)
 - locked <0xf819a970> (a java.lang.String)
"Thread1":
 at Deadlock$DeadlockMakerThread.run(Deadlock.java:32)
 - waiting to lock <0xf819a970> (a java.lang.String)
 - locked <0xf819a938> (a java.lang.String)

Found 1 deadlock.

If the JVM flag -XX:+PrintConcurrentLocks is set, then the Control+Break handler will also
print the list of concurrent locks owned by each thread.

Heap Summary
The Control+Break handler can be used to print a heap summary.

The following example shows the different generations (areas of the heap), with the size, the
amount used, and the address range. The address range is especially useful if you are also
examining the process with tools such as pmap.

Heap
 def new generation total 1152K, used 435K [0x22960000, 0x22a90000,
0x22e40000
)
 eden space 1088K, 40% used [0x22960000, 0x229ccd40, 0x22a70000)
 from space 64K, 0% used [0x22a70000, 0x22a70000, 0x22a80000)
 to space 64K, 0% used [0x22a80000, 0x22a80000, 0x22a90000)
 tenured generation total 13728K, used 6971K [0x22e40000, 0x23ba8000,
0x269600
00)
 the space 13728K, 50% used [0x22e40000, 0x2350ecb0, 0x2350ee00,
0x23ba8000)
 compacting perm gen total 12288K, used 1417K [0x26960000, 0x27560000,
0x2a9600
00)
 the space 12288K, 11% used [0x26960000, 0x26ac24f8, 0x26ac2600,
0x27560000)
 ro space 8192K, 62% used [0x2a960000, 0x2ae5ba98, 0x2ae5bc00, 0x2b160000)
 rw space 12288K, 52% used [0x2b160000, 0x2b79e410, 0x2b79e600,
0x2bd60000)

Chapter 2
Control+Break Handler

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 43 of 55

If the JVM flag -XX:+PrintClassHistogram is set, then the Control+Break handler will
produce a heap histogram.

Native Operating System Tools
List of native tools available on Windows, Linux, and Oracle Solaris operating systems that are
useful for troubleshooting or monitoring purposes.

A brief description is provided for each tool. For further details, see the operating system
documentation (or man pages for the Oracle Solaris and Linux operating systems).

The format of log files and output from command-line utilities depends on the release. For
example, if you develop a script that relies on the format of the fatal error log, then the same
script may not work if the format of the log file changes in a future release.

You can also search for Windows-specific debug support on the MSDN developer network.

The following sections describe troubleshooting techniques and improvements to a few native
operating system tools.

• Troubleshooting Tools Based on the Operating System

• DTrace Tool

• Probe Providers in Java HotSpot VM

• Improvements to the pmap Utility

• Improvements to the pstack Utility

DTrace Tool
The Oracle Solaris 10 operating system includes the DTrace tool, which allows dynamic tracing
of the operating system kernel and user-level programs.

This tool supports scripting at system-call entry and exit, at user-mode function entry and exit,
and at many other probe points. The scripts are written in the D programming language,
which is a C-like language with safe pointer semantics. These scripts can help you to
troubleshoot problems or solve performance issues.

The dtrace command is a generic front end to the DTrace tool. This command provides a
simple interface to invoke the D language, to retrieve buffered trace data, and to access a set
of basic routines to format and print traced data.

You can write your own customized DTrace scripts, using the D language, or download and
use one or more of the many scripts that are already available on various sites.

The probes are delivered and instrumented by kernel modules called providers. The types of
tracing offered by the probe providers include user instruction tracing, function boundary
tracing, kernel lock instrumentation, profile interrupt, system call tracing, and many more. If you
write your own scripts, you use the D language to enable the probes; this language also allows
conditional tracing and output formatting.

You can use the dtrace -l command to explore the set of providers and probes that are
available on your Oracle Solaris operating system.

The DTraceToolkit is a collection of useful documented scripts developed by the Open Oracle
Solaris DTrace community. See DTraceToolkit.

See Solaris Dynamic Tracing Guide.

Chapter 2
Native Operating System Tools

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 44 of 55

http://msdn.microsoft.com
http://www.brendangregg.com/dtracetoolkit.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-intro/

Probe Providers in Java HotSpot VM
The Java HotSpot VM contains two built-in probe providers hotspot and hotspot_jni.

These providers deliver probes that can be used to monitor the internal state and activities of
the VM, as well as the Java application that is running.

The JVM probe providers can be categorized as follows:

• VM lifecycle: VM initialization begin and end, and VM shutdown

• Thread lifecycle: thread start and stop, thread name, thread ID, and so on

• Class-loading: Java class loading and unloading

• Garbage collection: Start and stop of garbage collection, systemwide or by memory pool

• Method compilation: Method compilation begin and end, and method loading and
unloading

• Monitor probes: Wait events, notification events, contended monitor entry and exit

• Application tracking: Method entry and return, allocation of a Java object

In order to call from native code to Java code, the native code must make a call through the
JNI interface. The hotspot_jni provider manages DTrace probes at the entry point and return
point for each of the methods that the JNI interface provides for invoking Java code and
examining the state of the VM.

At probe points, you can print the stack trace of the current thread using the ustack built-in
function. This function prints Java method names in addition to C/C++ native function names.
The following example is a simple D script that prints a full stack trace whenever a thread calls
the read system call.

#!/usr/sbin/dtrace -s
syscall::read:entry
/pid == $1 && tid == 1/ {
 ustack(50, 0x2000);
}

The script in the previous example is stored in a file named read.d and is run by specifying the
PID of the Java process that is traced as shown in the following example.

read.d pid

If your Java application generated a lot of I/O or had some unexpected latency, then the
DTrace tool and its ustack() action can help you to diagnose the problem.

Improvements to the pmap Utility
Improvements to the pmap utility in Oracle Solaris 10 operating system.

The pmap utility was improved in Oracle Solaris 10 operating system to print stack segments
with the text [stack]. This text helps you to locate the stack easily.

Chapter 2
Native Operating System Tools

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 45 of 55

The following example shows the stack trace with improved pmap utility.

19846: /net/myserver/export1/user/j2sdk6/bin/java -Djava.endorsed.d
00010000 72K r-x-- /export/disk09/jdk/6/rc/b63/binaries/solsparc/bin/
java
00030000 16K rwx-- /export/disk09/jdk/6/rc/b63/binaries/solsparc/bin/
java
00034000 32544K rwx-- [heap]
D1378000 32K rwx-R [stack tid=44]
D1478000 32K rwx-R [stack tid=43]
D1578000 32K rwx-R [stack tid=42]
D1678000 32K rwx-R [stack tid=41]
D1778000 32K rwx-R [stack tid=40]
D1878000 32K rwx-R [stack tid=39]
D1974000 48K rwx-R [stack tid=38]
D1A78000 32K rwx-R [stack tid=37]
D1B78000 32K rwx-R [stack tid=36]
[.. more lines removed here to reduce output ..]
FF370000 8K r-x-- /usr/lib/libsched.so.1
FF380000 8K r-x-- /platform/sun4u-us3/lib/libc_psr.so.1
FF390000 16K r-x-- /lib/libthread.so.1
FF3A4000 8K rwx-- /lib/libthread.so.1
FF3B0000 8K r-x-- /lib/libdl.so.1
FF3C0000 168K r-x-- /lib/ld.so.1
FF3F8000 8K rwx-- /lib/ld.so.1
FF3FA000 8K rwx-- /lib/ld.so.1
FFB80000 24K ----- [anon]
FFBF0000 64K rwx-- [stack]
 total 167224K

Improvements to the pstack Utility
Improvements to the pstack utility in Oracle Solaris 10 operating system.

Before Oracle Solaris 10 operating system, the pstack utility did not support Java. It printed
hexadecimal addresses for both interpreted and compiled Java methods.

Starting with Oracle Solaris 10 operating system, the pstack command-line tool prints mixed-
mode stack traces (Java and C/C++ frames) from a core file or a live process. The utility prints
Java method names for interpreted, compiled, and inlined Java methods.

Custom Diagnostic Tools
The JDK has extensive APIs to develop custom tools to observe, monitor, profile, debug, and
diagnose issues in applications that are deployed in the JRE.

The development of new tools is beyond the scope of this document. Instead, this section
provides a brief overview of the APIs available.

All the packages mentioned in this section are described in the Java SE API specification.

See the example and demonstration code that is included in the JDK download.

The following sections describe packages, interface classes, and the Java debugger that can
be used as custom diagnostic tools for troubleshooting.

Chapter 2
Custom Diagnostic Tools

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 46 of 55

https://docs.oracle.com/en/java/javase/11/docs/api/index.html

• The java.lang.management Package

• The java.lang.instrument Package

• The java.lang.Thread Class

• JVM Tool Interface

• Java Platform Debugger Architecture

Java Platform Debugger Architecture
The Java Platform Debugger Architecture (JPDA) is the architecture designed for use by
debuggers and debugger-like tools.

The Java Platform Debugger Architecture consists of two programming interfaces and a wire
protocol:

• The Java Virtual Machine Tool Interface (JVM TI) is the interface to the virtual machine.
See JVM Tool Interface.

• The Java Debug Interface (JDI) defines information and requests at the user code level. It
is a pure Java programming language interface for debugging Java programming language
applications. In JPDA, the JDI is a remote view in the debugger process of a virtual
machine in the process being debugged. It is implemented by the front end, where as a
debugger-like application (for example, IDE, debugger, tracer, or monitoring tool) is the
client. See the module jdk.jdi.

• The Java Debug Wire Protocol (JDWP) defines the format of information and requests
transferred between the process being debugged and the debugger front end, which
implements the JDI.

The jdb utility is included in the JDK as an example command-line debugger. The jdb utility
uses the JDI to launch or connect to the target VM. See The jdb Utility.

In addition to traditional debugger-type tools, the JDI can also be used to develop tools that
help in postmortem diagnostics and scenarios where the tool needs to attach to a process in a
noncooperative manner (for example, a hung process).

Postmortem Diagnostic Tools
List of tools and options available for post-mortem diagnostics of problems between the
application and the Java HotSpot VM.

Table 2-3 summarizes the options and tools that are designed for postmortem diagnostics. If
an application crashes, then these options and tools can be used to get additional information,
either at the time of the crash or later using information from the crash dump.

Table 2-3 Postmortem Diagnostics Tools

Tool or Option Description and Usage

Fatal Error Log When an irrecoverable (fatal) error occurs, an error log is created. This
file contains information obtained at the time of the fatal error. In many
cases, it is the first item to examine when a crash occurs. See Fatal
Error Log.

-
XX:+HeapDumpOnOutOfMemo
ryError option

This command-line option specifies the generation of a heap dump
when the VM detects a native out-of-memory error. See The -
XX:HeapDumpOnOutOfMemoryError Option.

Chapter 2
Postmortem Diagnostic Tools

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 47 of 55

https://docs.oracle.com/en/java/javase/11/docs/specs/jpda/jpda.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jdi/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/specs/jdwp/jdwp-spec.html

Table 2-3 (Cont.) Postmortem Diagnostics Tools

Tool or Option Description and Usage

-XX:OnError option This command-line option specifies a sequence of user-supplied scripts
or commands to be executed when a fatal error occurs. For example, on
Windows, this option can execute a command to force a crash dump.
This option is very useful on systems where a postmortem debugger is
not configured. See The -XX:OnError Option.

-
XX:+ShowMessageBoxOnErr
or option

This command-line option suspends a process when a fatal error occurs.
Depending on the user response, the option can launch the native
debugger (for example, dbx, gdb, msdev) to attach to the VM. See The -
XX:ShowMessageBoxOnError Option.

Other -XX options Several other -XX command-line options can be useful in
troubleshooting. See Other -XX Options.

jhsdb jinfo utility This utility can get configuration information from a core file obtained
from a crash or from a core file obtained using the gcore utility. See The
jinfo Utility.

jhsdb jmap utility This utility can get memory map information, including a heap histogram,
from a core file obtained from a crash or from a core file obtained using
the gcore utility. See The jmap Utility.

jstack utility This utility can get Java and native stack information from a Java
process. On the Oracle Solaris and Linux operating systems, the utility
can also get the information from a core file or a remote debug server.
See The jstack Utility.

Native tools Each operating system has native tools and utilities that can be used for
postmortem diagnosis. See Native Operating System Tools.

Hung Processes Tools
List of tools and options for diagnosing problems between the application and the Java
HotSpot VM in a hung process.

Table 2-4 summarizes the options and tools that can help in scenarios involving a hung or
deadlocked process. These tools do not require any special options to start the application.

Java Mission Control, Java Flight Recorder, and the jcmd utility can be used to diagnose
problems with JVM and Java applications. It is suggested to use the latest utility, jcmd, instead
of the previous jstack, jinfo, and jmap utilities for enhanced diagnostics and reduced
performance overhead.

Table 2-4 Hung ProcessTools

Tool or Option Description and Usage

Ctrl+Break handler

(Control+\ or kill -QUIT pid on the
Oracle Solaris and Linux operating
systems, and Control+Break on
Windows)

This key combination performs a thread dump and deadlock
detection. The Ctrl+Break handler can optionally print a list of
concurrent locks and their owners, as well as a heap
histogram. See Control+Break Handler.

jcmd utility This utility is used to send diagnostic command requests to
the JVM, where these requests are useful for controlling Java
Flight Recordings (JFRs). The JFRs are used to troubleshoot
and diagnose flight recording events. See The jcmd Utility.

Chapter 2
Hung Processes Tools

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 48 of 55

Table 2-4 (Cont.) Hung ProcessTools

Tool or Option Description and Usage

jdb utility Debugger support includes attaching connectors, which allow
jdb and other Java language debuggers to attach to a
process. This can help show what each thread is doing at the
time of a hang or deadlock. See The jdb Utility.

jinfo utility This utility can get configuration information from a Java
process. See The jinfo Utility.

jmap utility This utility can get memory map information, including a heap
histogram, from a Java process. The jhsdb jmap utility can
be used if the process is hung. See The jmap Utility.

jstack utility This utility can obtain Java and native stack information from a
Java process. See The jstack Utility.

Native tools Each operating system has native tools and utilities that can
be useful in hang or deadlock situations. See Native
Operating System Tools.

Monitoring Tools
Tools and options for monitoring running applications and detecting problems are available in
the JDK and in the operating system.

The tools listed in the Table 2-5 are designed for monitoring applications that are running.

Java Mission Control, Java Flight Recorder, and the jcmd utility can be used to diagnose
problems with JVM and Java applications. It is suggested to use the latest utility, jcmd, instead
of the previous jstack, jinfo, and jmap utilities for enhanced diagnostics and reduced
performance overhead.

Table 2-5 Monitoring Tools

Tool or Option Description and Usage

Java Mission Control Java Mission Control (JMC) is a new JDK profiling and diagnostic tool platform for
HotSpot JVM. It is a tool suite for basic monitoring, managing, and production time
profiling and diagnostics with high performance. Java Mission Control minimizes the
performance overhead that's usually an issue with profiling tools.

jcmd utility This utility is used to send diagnostic command requests to the JVM, where these
requests are useful for controlling Java Flight Recordings. The JFRs are used to
troubleshoot and diagnose JVM and Java applications with flight recording events.
See The jcmd Utility.

JConsole utility This utility is a monitoring tool that is based on Java Management Extensions (JMX).
The tool uses the built-in JMX instrumentation in the Java Virtual Machine to provide
information about the performance and resource consumption of running applications.
See JConsole.

jmap utility This utility can get memory map information, including a heap histogram, from a Java
process or a core file. See The jmap Utility.

jps utility This utility lists the instrumented Java HotSpot VMs on the target system. The utility is
very useful in environments where the VM is embedded, that is, it is started using the
JNI Invocation API rather than the java launcher. See The jps Utility.

jstack utility This utility can get Java and native stack information from a Java process. The utility
can also get the information from a core file. See The jstack Utility.

Chapter 2
Monitoring Tools

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 49 of 55

Table 2-5 (Cont.) Monitoring Tools

Tool or Option Description and Usage

jstat utility This utility uses the built-in instrumentation in Java to provide information about
performance and resource consumption of running applications. The tool can be used
when diagnosing performance issues, especially those related to heap sizing and
garbage collection. See The jstat Utility.

jstatd daemon This tool is a Remote Method Invocation (RMI) server application that monitors the
creation and termination of instrumented Java Virtual Machines and provides an
interface to allow remote monitoring tools to attach to VMs running on the local host.
See The jstatd Daemon.

visualgc utility This utility provides a graphical view of the garbage collection system. As with jstat,
it uses the built-in instrumentation of Java HotSpot VM. See The visualgc Tool.

Native tools Each operating system has native tools and utilities that can be useful for monitoring
purposes. For example, the dynamic tracing (DTrace) capability introduced in Oracle
Solaris 10 operating system performs advanced monitoring. See Native Operating
System Tools.

Other Tools, Options, Variables, and Properties
List of general troubleshooting tools, options, variables, and properties that can help to
diagnose issues.

In addition to the tools that are designed for specific types of problems, the tools, options,
variables, and properties listed in Table 2-6 can help in diagnosing other issues.

JDK Mission Control, Flight Recorder, and the jcmd utility can be used for diagnosing problems
with JVM and Java applications. It is suggested to use the latest utility, jcmd, instead of the
previous jstack, jinfo, and jmap utilities for enhanced diagnostics and reduced performance
overhead.

Table 2-6 General Troubleshooting Tools and Options

Tool or Option Description and Usage

JDKMission Control JDK Mission Control (JMC) is a new JDK profiling and diagnostic tool
platform for HotSpot JVM. It is a tool suite for basic monitoring,
managing, and production time profiling and diagnostics with high
performance. JMC minimizes the performance overhead that's usually
an issue with profiling tools. See JDK Mission Control.

jcmd utility This utility is used to send diagnostic command requests to the JVM,
where these requests are useful for controlling Java Flight Recordings
(JFRs). The JFRs are used to troubleshoot and diagnose JVM and Java
applications with flight recording events.

jinfo utility This utility can dynamically set, unset, and change the values of certain
JVM flags for a specified Java process. On Oracle Solaris and Linux
operating systems, it can also print configuration information.

jrunscript utility This utility is a command-line script shell, which supports both interactive
and batch-mode script execution.

Chapter 2
Other Tools, Options, Variables, and Properties

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 50 of 55

https://docs.oracle.com/javacomponents/index.html

Table 2-6 (Cont.) General Troubleshooting Tools and Options

Tool or Option Description and Usage

Oracle Solaris Studio dbx
debugger

This is an interactive, command-line debugging tool, which allows you to
have complete control of the dynamic execution of a program, including
stopping the program and inspecting its state. For details, see the latest
dbx documentation located at Oracle Solaris Studio Program
Debugging.

Oracle Solaris Studio
Performance Analyzer

This tool can help you assess the performance of your code, identify
potential performance problems, and locate the part of the code where
the problems occur. The Performance Analyzer can be used from the
command line or from a graphical user interface. For details, see the
Oracle Solaris Studio Performance Analyzer.

Sun's Dataspace Profiling:
DProfile

This tool provides insight into the flow of data within Sun computing
systems, helping you identify bottlenecks in both software and hardware.
DProfile is supported in the Sun Studio 11 compiler suite through the
Performance Analyzer GUI. See DTrace or Dynamic Tracing diagnostic
tool.

-Xcheck:jni option This option is useful in diagnosing problems with applications that use
the Java Native Interface (JNI) or that employ third-party libraries (some
JDBC drivers, for example). See The -Xcheck:jni Option.

-verbose:class option This option enables logging of class loading and unloading. See The -
verbose:class Option.

-verbose:gc option This option enables logging of garbage collection information. See The -
verbose:gc Option.

-verbose:jni option This option enables logging of JNI. See The -verbose:jni Option.

JAVA_TOOL_OPTIONS
environment variable

This environment variable allows you to specify the initialization of tools,
specifically the launching of native or Java programming language
agents using the -agentlib or -javaagent options. See Environment
Variables and System Properties.

java.security.debug
system property

This system property controls whether the security checks in the JRE of
the Java print trace messages during execution. See The
java.security.debug System Property.

The java.lang.management Package
The java.lang.management package provides the management interface for the monitoring
and management of the JVM and the operating system.

Specifically, it covers interfaces for the following systems:

• Class loading

• Compilation

• Garbage collection

• Memory manager

• Runtime

• Threads

In addition to the java.lang.management package, the JDK release includes platform
extensions in the com.sun.management package. The platform extensions include a
management interface to get detailed statistics from garbage collectors that perform collections

Chapter 2
The java.lang.management Package

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 51 of 55

http://docs.oracle.com/cd/E24457_01/html/E21993/blabb.html#scrolltoc
http://docs.oracle.com/cd/E24457_01/html/E21993/blabb.html#scrolltoc
http://docs.oracle.com/cd/E18659_01/html/821-1379/afabb.html#scrolltoc
http://www.oracle.com/technetwork/server-storage/solaris/dtrace-tutorial-142317.html
http://www.oracle.com/technetwork/server-storage/solaris/dtrace-tutorial-142317.html

in cycles. These extensions also include a management interface to get additional memory
statistics from the operating system.

The java.lang.instrument Package
The java.lang.instrument package provides services that allow the Java programming
language agents to instrument programs running on the JVM.

Instrumentation is used by tools such as profilers, tools for tracing method calls, and many
others. The package facilitates both load-time and dynamic instrumentation. It also includes
methods to get information about the loaded classes and information about the amount of
storage consumed by a given object.

The java.lang.Thread Class
The java.lang.Thread class has a static method called getAllStackTraces, which returns
a map of stack traces for all live threads.

The Thread class also has a method called getState, which returns the thread state; states
are defined by the java.lang.Thread.State enumeration. These methods can be useful when
you add diagnostic or monitoring capabilities to an application.

JVM Tool Interface
The JVM Tool Interface (JVM TI) is a native (C/C++) programming interface that can be used
by a wide range of development and monitoring tools.

JVM TI provides an interface for the full breadth of tools that need access to the VM state,
including but not limited to profiling, debugging, monitoring, thread analysis, and coverage
analysis tools.

Some examples of agents that rely on JVM TI are the following:

• Java Debug Wire Protocol (JDWP)

• The java.lang.instrument package

The specification for JVM TI can be found in the JVM Tool Interface documentation.

The jrunscript Utility
The jrunscript utility is a command-line script shell.

It supports script execution in both interactive mode and in batch mode. By default, the shell
uses JavaScript, but you can specify any other scripting language for which you supply the
path to the script engine JAR file of .class files.

Thanks to the communication between the Java language and the scripting language, the
jrunscript utility supports an exploratory programming style.

The jstatd Daemon
The jstatd daemon is an RMI server application that monitors the creation and termination of
each instrumented Java HotSpot, and provides an interface to allow remote monitoring tools to
attach to JVMs running on the local host.

Chapter 2
The java.lang.instrument Package

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 52 of 55

https://docs.oracle.com/en/java/javase/11/docs/specs/jvmti.html

For example, this daemon allows the jps utility to list processes on a remote system.

Note

The instrumentation is not accessible on FAT32 file system.

Troubleshooting Tools Based on the Operating System
List of native Windows tools that can be used for troubleshooting problems.

Table 2-7 lists the troubleshooting tools available on the Windows operating system.

Table 2-7 Native Troubleshooting Tools on Windows

Tool Description

dumpchk Command-line utility to verify that a memory dump file was created
correctly. This tool is included in the Debugging Tools for Windows
download available from the Microsoft website. See Collect Crash
Dumps on Windows.

msdev debugger Command-line utility that can be used to launch Visual C++ and the
Win32 debugger

userdump The User Mode Process Dumper is included in the OEM Support Tools
download available from the Microsoft website. See Collect Crash
Dumps on Windows.

windbg Windows debugger can be used to debug Windows applications or crash
dumps. This tool is included in the Debugging Tools for Windows
download available from the Microsoft website. See Collect Crash
Dumps on Windows.

/Md and /Mdd compiler
options

Compiler options that automatically include extra support for tracking
memory allocations

Table 2-8 describes some troubleshooting tools introduced or improved in the Linux operating
system version 10.

Table 2-8 Native Troubleshooting Tools on Linux

Tool Description

c++filt Demangle C++ mangled symbol names. This utility is delivered with the
native C++ compiler suite: gcc on Linux.

gdb GNU debugger

libnjamd Memory allocation tracking

lsstack Print thread stack (similar to pstack in the Oracle Solaris operating
system)

Not all distributions provide this tool by default; therefore, you might have
to download it from Open Source downloads.

ltrace Library call tracer (equivalent to truss -u in the Oracle Solaris
operating system)

Not all distributions provide this tool by default; therefore, you might have
to download it from Open Source downloads.

Chapter 2
Troubleshooting Tools Based on the Operating System

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 53 of 55

http://sourceforge.net
http://sourceforge.net

Table 2-8 (Cont.) Native Troubleshooting Tools on Linux

Tool Description

mtrace and muntrace GNU malloc tracer

proc tools such as pmap and
pstack

Some, but not all, of the proc tools on the Oracle Solaris operating
system have equivalent tools on Linux. Core file support is not as good
for Linux as for Oracle Solaris operating system; for example, pstack
does not work for core dumps

strace System call tracer (equivalent to truss -t in the Oracle Solaris
operating system)

top Display most CPU-intensive processes.

vmstat Report information about processes, memory, paging, block I/O, traps,
and CPU activity.

Table 2-9 lists troubleshooting tools available on Oracle Solaris operating system.

Table 2-9 Native Troubleshooting Tools on Oracle Solaris Operating System

Tool Description

coreadm Specify name and location of core files produced by the JVM.

cpustat Monitor system behavior using CPU performance counters.

cputrack Monitor process and LWP behavior using CPU performance counters.

c++filt Demangle C++ mangled symbol names. This utility is delivered with the
native C++ compiler suite: SUNWspro on the Oracle Solaris operating
system.

dtrace Introduced in Oracle Solaris 10 operating system, DTrace is a dynamic
tracing compiler and tracing utility. It can perform dynamic tracing of
kernel functions, system calls, and user functions. This tool allows
arbitrary, safe scripting to be executed at entry, exit, and other probe
points. The script is written in the C-like, but safe, pointer semantics
language called the D programming language. See also DTrace Tool.

gcore Force a core dump of a process. The process continues after the core
dump is written.

intrstat Report statistics on the CPU consumed by interrupt threads.

iostat Report I/O statistics.

libumem Introduced in the Oracle Solaris 9 operating system update 3, this library
provides fast, scalable object-caching memory allocation and extensive
debugging support. The tool can be used to find and fix memory
management bugs. See Find Leaks with the libumem Tool.

mdb Modular debugger for kernel and user applications and crash dumps

netstat Display the contents of various network-related data structures.

pargs Print process arguments, environment variables, or the auxiliary vector.
Long output is not truncated as it would be by other commands, such as
ps.

pfiles Print information on process file descriptors. Starting with the Oracle
Solaris 10 operating system, the tool prints the file name also.

pldd Print shared objects loaded by a process.

Chapter 2
Troubleshooting Tools Based on the Operating System

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 54 of 55

Table 2-9 (Cont.) Native Troubleshooting Tools on Oracle Solaris Operating System

Tool Description

pmap Print memory layout of a process or core file, including heap, data, and
text sections. Starting with Oracle Solaris 10, stack segments are clearly
identified with the text [stack] along with the thread ID. See
Improvements to the pmap Utility.

prstat Report statistics for active Oracle Solaris operating system processes.
(Similar to top)

prun Set the process to running mode (reverse of pstop).

ps List all processes.

psig List the signal handlers of a process.

pstack Print stack of threads of a given process or core file. Starting with the
Oracle Solaris 10 operating system, Java method names can be printed
for Java frames. See Improvements to the pstack Utility.

pstop Stop the process (suspend).

ptree Print the process tree that contains the given PID.

sar System activity reporter

sdtprocess Display most CPU-intensive processes. (similar to top).

sdtperfmeter Display graphs that show the system performance (for example, CPU,
disks, and network).

top Display most CPU-intensive processes. This tool is available as freeware
for the Oracle Solaris operating system, but is not installed by default.

trapstat Display runtime trap statistics (SPARC only).

truss Trace entry and exit events for system calls, user-mode functions, and
signals; optionally stop the process at one of these events. This tool also
prints the arguments of system calls and user functions.

vmstat Report system virtual memory statistics.

watchmalloc Track memory allocations.

Chapter 2
Troubleshooting Tools Based on the Operating System

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 55 of 55

3
Troubleshoot Memory Leaks

This chapter provides some suggestions for diagnosing problems involving possible memory
leaks.
If your application's execution time becomes longer, or if the operating system seems to be
performing slower, this could be an indication of a memory leak. In other words, virtual memory
is being allocated but is not being returned when it is no longer needed. Eventually the
application or the system runs out of memory, and the application terminates abnormally.

This chapter contains the following sections:

• Use JDK Mission Control to Debug Memory Leak

• The jfr tool

• Understand the OutOfMemoryError Exception

• Troubleshoot a Crash Instead of OutOfMemoryError

• Diagnose Leaks in Java Language Code

• Diagnose Leaks in Native Code

Use JDK Mission Control to Debug Memory Leak
The Flight Recorder records detailed information about the Java runtime and the Java
applications running in the Java runtime.

The following sections describe how to debug a memory leak by analyzing a flight recording in
JMC.

• Detect Memory Leak

• Find the Leaking Class

Detect Memory Leak
You can detect memory leaks early and prevent OutOfmemoryErrors using JMC.

Detecting a slow memory leak can be hard. A typical symptom could be the application
becoming slower after running for a long time due to frequent garbage collections. Eventually,
OutOfmemoryErrors may be seen. However, memory leaks can be detected early, even before
such problems occur, by analyzing Java Flight recordings.

Watch if the live set of your application is increasing over time. The live set is the amount of
Java heap that is used after an old collection (all objects that are not live) and have been
garbage collected. To inspect the live set, open JMC and connect to a JVM using the Java
Management console (JMX). Open the MBean Browser tab and look for the
GarbageCollectorAggregator MBean under com.sun.management.

Open JMC and start a Time fixed recording (profiling recording) for an hour. Before starting a
flight recording, make sure that the option Object Types + Allocation Stack Traces + Path to
GC Root is selected from the Memory Leak Detection setting.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 16

Once the recording is complete, the recording file (.jfr) opens in JMC. Look at the
Automated Analysis Results page. To detect a memory leak focus on the Live Objects
section of the page. Here is a sample figure of a recording, which shows heap size issue:

Figure 3-1 Memory Leak - Automated Analysis Page

You can observe that in the Heap Live Set Trend section, the live set on the heap seems to
increase rapidly and the analysis of the reference tree detected a leak candidate.

For further analysis, open the Java Applications page and then click the Memory page. Here
is a sample figure of a recording, which shows memory leak issue.

Figure 3-2 Memory Leak - Memory Page

You can observe from the graph that the memory usage has increased steadily, which
indicates a memory leak issue.

Chapter 3
Use JDK Mission Control to Debug Memory Leak

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 16

Find the Leaking Class
You can use the Java Flight Recordings to identify the leaking class.

To find the leaking class, open the Memory page and click the Live Objects page. Here is a
sample figure of a recording, which shows the leaking class.

Figure 3-3 Memory Leak - Live Objects Page

You can observe that most of the live objects being tracked are actually held on to by
Leak$DemoThread, which in turn holds on to a leaked char[] class. For further analysis, see the
Old Object Sample event in the Results tab that contains sampling of the objects that have
survived. This event contains the time of allocation, the allocation stack trace, the path back to
the GC root.

When a potentially leaking class is identified, look at the TLAB Allocations page in the JVM
Internals page for some samples of where objects were allocated. Here is a sample figure of a
recording, which shows TLAB allocations.

Chapter 3
Use JDK Mission Control to Debug Memory Leak

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 16

Figure 3-4 Memory Leak - TLAB Allocations

Check the class samples being allocated. If the leak is slow, there may be a few allocations of
this object and may be no samples. Also, it may be that only a specific allocation site is leading
to a leak. You can make required changes to the code to fix the leaking class.

The jfr tool
Java Flight Recorder (JFR) records detailed information about the Java runtime and the Java
application running on the Java runtime. This information can be used to identify memory
leaks.

To detect a memory leak, JFR must be running at the time that the leak occurs. The overhead
of JFR is very low, less than 1%, and it has been designed to be safe to have always on in
production.

Start a recording when the application is started using the java command as shown in the
following example:

$ java -XX:StartFlightRecording

When the JVM runs out of memory and exits due to a java.lang.OutOfMemoryError error, a
recording with the prefix hs_oom_pid is often, but not always, written to the directory in which
the JVM was started. An alternative way to get a recording is to dump it before the application
runs out of memory using the jcmd tool, as shown in the following example:

$ jcmd pid JFR.dump filename=recording.jfr path-to-gc-roots=true

When you have a recording, use the jfr tool located in the java-home/bin directory to print
Old Object Sample events that contain information about potential memory leaks. The
following example shows the command and an example of the output from a recording for an
application with the pid 16276:

jfr print --events OldObjectSample pid16276.jfr
...

Chapter 3
The jfr tool

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 16

jdk.OldObjectSample {
 startTime = 18:32:52.192
 duration = 5.317 s
 allocationTime = 18:31:38.213
 objectAge = 74.0 s
 lastKnownHeapUsage = 63.9 MB
 object = [
 java.util.HashMap$Node
 [15052855] : java.util.HashMap$Node[33554432]
 table : java.util.HashMap Size: 15000000
 map : java.util.HashSet
 users : java.lang.Class Class Name: Application
]
 arrayElements = N/A
 root = {
 description = "Thread Name: main"
 system = "Threads"
 type = "Stack Variable"
 }
 eventThread = "main" (javaThreadId = 1)
}

...

jdk.OldObjectSample {
 startTime = 18:32:52.192
 duration = 5.317 s
 allocationTime = 18:31:38.266
 objectAge = 74.0 s
 lastKnownHeapUsage = 84.4 MB
 object = [
 java.util.HashMap$Node
 [8776975] : java.util.HashMap$Node[33554432]
 table : java.util.HashMap Size: 15000000
 map : java.util.HashSet
 users : java.lang.Class Class Name: Application
]
 arrayElements = N/A
 root = {
 description = "Thread Name: main"
 system = "Threads"
 type = "Stack Variable"
 }
 eventThread = "main" (javaThreadId = 1)
}

...

jdk.OldObjectSample {
 startTime = 18:32:52.192
 duration = 5.317 s
 allocationTime = 18:31:38.540
 objectAge = 73.7 s
 lastKnownHeapUsage = 121.7 MB
 object = [

Chapter 3
The jfr tool

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 16

 java.util.HashMap$Node
 [393162] : java.util.HashMap$Node[33554432]
 table : java.util.HashMap Size: 15000000
 map : java.util.HashSet
 users : java.lang.Class Class Name: Application
]
 arrayElements = N/A
 root = {
 description = "Thread Name: main"
 system = "Threads"
 type = "Stack Variable"
 }
 eventThread = "main" (javaThreadId = 1)
}

...

To identify a possible memory leak, review the following elements in the recording:

• First, notice that the lastKnownHeapUsage element in the Old Object Sample events is
increasing over time, from 63.9 MB in the first event in the example to 121.7 MB in the last
event. This increase is an indication that there is a memory leak. Most applications allocate
objects during startup and then allocate temporary objects that are periodically garbage
collected. Objects that are not garbage collected, for whatever reason, accumulate over
time and increase the value of lastKnownHeapUsage.

• Next, look at the allocationTime element to see when the object was allocated. Objects
that are allocated during startup are typically not memory leaks, neither are objects
allocated close to when the dump was taken. The objectAge element shows how long the
object has been alive. The startTime and duration elements are not related to when the
memory leak occurred, but when the OldObject event was emitted and how long it took to
gather data for it. This information can be ignored.

• Then look at the object element to see the memory leak candidate; in this example, an
object of type java.util.HashMap$Node. It is held by the table field in the
java.util.HashMap class, which is held by java.util.HashSet, which in turn is held
by the users field of the Application class.

• The root element contains information about the GC root. In this example, the
Application class is held by a stack variable in the main thread. The eventThread
element provides information about the thread that allocated the object.

If the application is started with the -XX:StartFlightRecording:settings=profile option,
then the recording also contains the stack trace from where the object was allocated, as shown
in the following example:

stackTrace = [
 java.util.HashMap.newNode(int, Object, Object, HashMap$Node) line: 1885
 java.util.HashMap.putVal(int, Object, Object, boolean, boolean) line: 631
 java.util.HashMap.put(Object, Object) line: 612
 java.util.HashSet.add(Object) line: 220
 Application.storeUser(String, String) line: 53
 Application.validate(String, String) line: 48
 Application.login(String, String) line: 44
 Application.main(String[]) line: 30
]

Chapter 3
The jfr tool

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 6 of 16

In this example we can see that the object was put in the HashSet when the
storeUser(String, String) method was called. This suggests that the cause of the memory
leak might be objects that were not removed from the HashSet when the user logged out.

It is not recommended to always run all applications with the -
XX:StartFlightRecording:settings=profile option due to overhead in certain allocation-
intensive applications, but is typically OK when debugging. Overhead is usually less than 2%.

Setting path-to-gc-roots=true creates overhead, similar to a full garbage collection, but also
provides reference chains back to the GC root, which is usually sufficient information to find the
cause of a memory leak.

Understand the OutOfMemoryError Exception
java.lang.OutOfMemoryError error is thrown when there is insufficient space to allocate an
object in the Java heap.

One common indication of a memory leak is the java.lang.OutOfMemoryError exception. In
this case, the garbage collector cannot make space available to accommodate a new object,
and the heap cannot be expanded further. Also, this error may be thrown when there is
insufficient native memory to support the loading of a Java class. In a rare instance, a
java.lang.OutOfMemoryError can be thrown when an excessive amount of time is being spent
doing garbage collection, and little memory is being freed.

When a java.lang.OutOfMemoryError exception is thrown, a stack trace is also printed.

The java.lang.OutOfMemoryError exception can also be thrown by native library code when a
native allocation cannot be satisfied (for example, if swap space is low).

An early step to diagnose an OutOfMemoryError exception is to determine the cause of the
exception. Was it thrown because the Java heap is full, or because the native heap is full? To
help you find the cause, the text of the exception includes a detail message at the end, as
shown in the following exceptions:

Exception in thread thread_name: java.lang.OutOfMemoryError: Java heap space
Cause: The detailed message Java heap space indicates that an object could not be
allocated in the Java heap. This error does not necessarily imply a memory leak. The problem
can be as simple as a configuration issue, where the specified heap size (or the default size, if
it is not specified) is insufficient for the application.
In other cases, and in particular for a long-lived application, the message might be an
indication that the application is unintentionally holding references to objects, and this
prevents the objects from being garbage collected. This is the Java language equivalent of a
memory leak.

Note

The APIs that are called by an application could also be unintentionally holding object
references.

One other potential source of this error arises with applications that make excessive use of
finalizers. If a class has a finalize method, then objects of that type do not have their space
reclaimed at garbage collection time. Instead, after garbage collection, the objects are queued
for finalization, which occurs at a later time. In the Oracle Sun implementation, finalizers are
executed by a daemon thread that services the finalization queue. If the finalizer thread cannot
keep up with the finalization queue, then the Java heap could fill up, and this type of

Chapter 3
Understand the OutOfMemoryError Exception

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 7 of 16

OutOfMemoryError exception would be thrown. One scenario that can cause this situation is
when an application creates high-priority threads that cause the finalization queue to increase
at a rate that is faster than the rate at which the finalizer thread is servicing that queue.

Action: Try increasing the Java heap size. See Monitor the Objects Pending Finalization to
learn more about how to monitor objects for which finalization is pending. See Finalization and
Weak, Soft, and Phantom References in Java Platform, Standard Edition HotSpot Virtual
Machine Garbage Collection Tuning Guide for information about detecting and migrating from
finalization.

Exception in thread thread_name: java.lang.OutOfMemoryError: GC Overhead limit
exceeded
Cause: The detail message "GC overhead limit exceeded" indicates that the garbage collector
is running all the time, and the Java program is making very slow progress. After a garbage
collection, if the Java process is spending more than approximately 98% of its time doing
garbage collection and if it is recovering less than 2% of the heap and has been doing so for
the last 5 (compile time constant) consecutive garbage collections, then a
java.lang.OutOfMemoryError is thrown. This exception is typically thrown because the
amount of live data barely fits into the Java heap having little free space for new allocations.

Action: Increase the heap size. The java.lang.OutOfMemoryError exception for GC
Overhead limit exceeded can be turned off with the command-line flag -XX:-
UseGCOverheadLimit.

Exception in thread thread_name: Requested array size exceeds VM limit
Cause: The detail message "Requested array size exceeds VM limit" indicates that the
application (or APIs used by that application) attempted to allocate an array with a size larger
than the VM implementation limit, irrespective of how much heap size is available.

Action: Ensure that your application (or APIs used by that application) allocates an array with
a size less than the VM implementation limit.

Exception in thread thread_name: java.lang.OutOfMemoryError: Metaspace
Cause: Java class metadata (the virtual machines internal presentation of Java class) is
allocated in native memory (referred to here as metaspace). If metaspace for class metadata
is exhausted, a java.lang.OutOfMemoryError exception with a detail MetaSpace is thrown.
The amount of metaspace that can be used for class metadata is limited by the parameter
MaxMetaSpaceSize, which is specified on the command line. When the amount of native
memory needed for a class metadata exceeds MaxMetaSpaceSize, a
java.lang.OutOfMemoryError exception with a detail MetaSpace is thrown.

Action: If MaxMetaSpaceSize, has been set on the command-line, increase its value.
MetaSpace is allocated from the same address spaces as the Java heap. Reducing the size of
the Java heap will make more space available for MetaSpace. This is only a correct trade-off if
there is an excess of free space in the Java heap. See the following action for Out of swap
space detailed message.

Exception in thread thread_name: java.lang.OutOfMemoryError: request size bytes for
reason. Out of swap space?
Cause: The detail message "request size bytes for reason. Out of swap space?" appears to
be an OutOfMemoryError exception. However, the Java HotSpot VM code reports this
apparent exception when an allocation from the native heap failed and the native heap might
be close to exhaustion. The message indicates the size (in bytes) of the request that failed
and the reason for the memory request. Usually the reason is the name of the source module
reporting the allocation failure, although sometimes it is the actual reason.

Chapter 3
Understand the OutOfMemoryError Exception

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 8 of 16

Action: When this error message is thrown, the VM invokes the fatal error handling
mechanism (that is, it generates a fatal error log file, which contains useful information about
the thread, process, and system at the time of the crash). In the case of native heap
exhaustion, the heap memory and memory map information in the log can be useful. See
Fatal Error Log.
If this type of the OutOfMemoryError exception is thrown, you might need to use
troubleshooting utilities on the operating system to diagnose the issue further. See Native
Operating System Tools.

Exception in thread thread_name: java.lang.OutOfMemoryError: Compressed class
space
Cause: On 64-bit platforms, a pointer to class metadata can be represented by 32-bit offset
(with UseCompressedOops). This is controlled by the command line flag
UseCompressedClassPointers (on by default). If the UseCompressedClassPointers is used,
the amount of space available for class metadata is fixed at the amount
CompressedClassSpaceSize. If the space needed for UseCompressedClassPointers exceeds
CompressedClassSpaceSize, a java.lang.OutOfMemoryError with detail Compressed class
space is thrown.

Action: Increase CompressedClassSpaceSize to turn off UseCompressedClassPointers. Note:
There are bounds on the acceptable size of CompressedClassSpaceSize. For example -XX:
CompressedClassSpaceSize=4g, exceeds acceptable bounds will result in a message such as
CompressedClassSpaceSize of 4294967296 is invalid; must be between 1048576 and
3221225472.

Note

There is more than one kind of class metadata, –klass metadata, and other
metadata. Only klass metadata is stored in the space bounded by
CompressedClassSpaceSize. The other metadata is stored in Metaspace.

Exception in thread thread_name: java.lang.OutOfMemoryError: reason
stack_trace_with_native_method
Cause: If the detail part of the error message is "reason stack_trace_with_native_method, and
a stack trace is printed in which the top frame is a native method, then this is an indication that
a native method, has encountered an allocation failure. The difference between this and the
previous message is that the allocation failure was detected in a Java Native Interface (JNI) or
native method rather than in the JVM code.

Action: If this type of the OutOfMemoryError exception is thrown, you might need to use native
utilities of the OS to further diagnose the issue. See Native Operating System Tools.

Troubleshoot a Crash Instead of OutOfMemoryError
Use the information in the fatal error log or the crash dump to troubleshoot a crash.

Sometimes an application crashes soon after an allocation from the native heap fails. This
occurs with native code that does not check for errors returned by the memory allocation
functions.

For example, the malloc system call returns null if there is no memory available. If the return
from malloc is not checked, then the application might crash when it attempts to access an
invalid memory location. Depending on the circumstances, this type of issue can be difficult to
locate.

Chapter 3
Troubleshoot a Crash Instead of OutOfMemoryError

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 9 of 16

However, sometimes the information from the fatal error log or the crash dump is sufficient to
diagnose this issue. The fatal error log is covered in detail in Fatal Error Log. If the cause of the
crash is an allocation failure, then determine the reason for the allocation failure. As with any
other native heap issue, the system might be configured with the insufficient amount of swap
space, another process on the system might be consuming all memory resources, or there
might be a leak in the application (or in the APIs that it calls) that causes the system to run out
of memory.

Diagnose Leaks in Java Language Code
Use the NetBeans profiler to diagnose leaks in the Java language code.

Diagnosing leaks in the Java language code can be difficult. Usually, it requires very detailed
knowledge of the application. In addition, the process is often iterative and lengthy. This
section provides information about the tools that you can use to diagnose memory leaks in the
Java language code.

Note

Beside the tools mentioned in this section, a large number of third-party memory
debugger tools are available. The Eclipse Memory Analyzer and YourKit are two
examples of commercial tools with memory debugging capabilities. There are many
others, and no specific product is recommended.

The following utilities used to diagnose leaks in the Java language code.

• The NetBeans Profiler: The NetBeans Profiler can locate memory leaks very quickly.
Commercial memory leak debugging tools can take a long time to locate a leak in a large
application. The NetBeans Profiler, however, uses the pattern of memory allocations and
reclamations that such objects typically demonstrate. This process includes also the lack of
memory reclamations. The profiler can check where these objects were allocated, which
often is sufficient to identify the root cause of the leak.

See Introduction to Profiling Java Applications in NetBeans IDE.

The following sections describe the other ways to diagnose leaks in the Java language code.

• Get a Heap Histogram

• Monitor the Objects Pending Finalization

Get a Heap Histogram
Get a heap histogram to identify memory leaks using the different commands and options
available.

You can try to quickly narrow down a memory leak by examining the heap histogram. You can
get a heap histogram in several ways:

• If the Java process is started with the -XX:+PrintClassHistogram command-line
option, then the Control+Break handler will produce a heap histogram.

• You can use the jmap utility to get a heap histogram from a running process:

It is recommended to use the latest utility, jcmd, instead of jmap utility for enhanced
diagnostics and reduced performance overhead. See Useful Commands for the jcmd

Chapter 3
Diagnose Leaks in Java Language Code

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 10 of 16

https://eclipse.dev/mat/
https://www.yourkit.com/
https://netbeans.apache.org/tutorial/main/kb/docs/java/profiler-intro/

Utility.The command in the following example creates a heap histogram for a running
process using jcmd and results similar to the following jmap command.

jcmd <process id/main class> GC.class_histogram filename=Myheaphistogram

jmap -histo pid

The output shows the total size and instance count for each class type in the heap. If a
sequence of histograms is obtained (for example, every 2 minutes), then you might be able
to see a trend that can lead to further analysis.

• You can use the jhsdb jmap utility to get a heap histogram from a core file, as shown in
the following example.

jhsdb jmap --histo --exe jdk-home/bin/java --corecore_file

For example, if you specify the -XX:+CrashOnOutOfMemoryError command-line option
while running your application, then when an OutOfMemoryError exception is thrown, the
JVM will generate a core dump. You can then execute jmap on the core file to get a
histogram, as shown in the following example.

$ jhsdb jmap --histo --exe /usr/java/jdk-11/bin/java --core core.21844

$ Attaching to core core.21844 from executable /usr/java/jdk-11/bin/java,
please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 11-ea+24
Iterating over heap. This may take a while...
Object Histogram:

num #instances #bytes Class description
--
1: 2108 112576 byte[]
2: 546 66112 java.lang.Class
3: 1771 56672 java.util.HashMap$Node
4: 574 53288 java.lang.Object[]
5: 1860 44640 java.lang.String
6: 349 40016 java.util.HashMap$Node[]
7: 16 33920 char[]
8: 977 31264
java.util.concurrent.ConcurrentHashMap$Node
9: 327 15696 java.util.HashMap
10: 266 13800 java.lang.String[]
11: 485 12880 int[]
:

Total : 14253 633584
Heap traversal took 1.15 seconds.

The above example shows that the OutOfMemoryError exception was caused by the
number of byte arrays (2108 instances in the heap). Without further analysis it is not clear
where the byte arrays are allocated. However, the information is still useful.

Chapter 3
Diagnose Leaks in Java Language Code

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 11 of 16

Monitor the Objects Pending Finalization
Different commands and options available to monitor the objects pending finalization.

When the OutOfMemoryError exception is thrown with the "Java heap space" detail message,
the cause can be excessive use of finalizers. To diagnose this, you have several options for
monitoring the number of objects that are pending finalization:

• The JConsole management tool can be used to monitor the number of objects that are
pending finalization. This tool reports the pending finalization count in the memory statistics
on the Summary tab pane. The count is approximate, but it can be used to characterize an
application and understand if it relies a lot on finalization.

• On Oracle Solaris and Linux operating systems, the jmap utility can be used with the -
finalizerinfo option to print information about objects awaiting finalization.

• An application can report the approximate number of objects pending finalization using the
getObjectPendingFinalizationCount method of the
java.lang.management.MemoryMXBean class. Links to the API documentation and example
code can be found in Custom Diagnostic Tools. The example code can easily be extended
to include the reporting of the pending finalization count.

See Finalization and Weak, Soft, and Phantom References in Java Platform, Standard Edition
HotSpot Virtual Machine Garbage Collection Tuning Guidefor information about detecting and
migrating from finalization.

Diagnose Leaks in Native Code
Several techniques can be used to find and isolate native code memory leaks. In general,
there is no ideal solution for all platforms.

The following are some techniques to diagnose leaks in native code.

• Track All Memory Allocation and Free Calls

• Track All Memory Allocations in the JNI Library

• Track Memory Allocation with Operating System Support

• Find Leaks with the dbx Debugger

• Find Leaks with the libumem Tool

Track All Memory Allocation and Free Calls
Tools available to track all memory allocation and use of that memory.

A very common practice is to track all allocation and free calls of the native allocations. This
can be a fairly simple process or a very sophisticated one. Many products over the years have
been built up around the tracking of native heap allocations and the use of that memory.

Tools like IBM Rational Purify and the runtime checking functionality of Sun Studio dbx
debugger can be used to find these leaks in normal native code situations and also find any
access to native heap memory that represents assignments to un-initialized memory or
accesses to freed memory. See Find Leaks with the dbx Debugger.

Not all these types of tools will work with Java applications that use native code, and usually
these tools are platform-specific. Because the virtual machine dynamically creates code at
runtime, these tools can incorrectly interpret the code and fail to run at all, or give false

Chapter 3
Diagnose Leaks in Native Code

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 12 of 16

information. Check with your tool vendor to ensure that the version of the tool works with the
version of the virtual machine you are using.

See sourceforge for many simple and portable native memory leak detecting examples. Most
libraries and tools assume that you can recompile or edit the source of the application and
place wrapper functions over the allocation functions. The more powerful of these tools allow
you to run your application unchanged by interposing over these allocation functions
dynamically. This is the case with the library libumem.so first introduced in the Oracle Solaris 9
operating system update 3; see Find Leaks with the libumem Tool.

Track All Memory Allocations in the JNI Library
If you write a JNI library, then consider creating a localized way to ensure that your library does
not leak memory, by using a simple wrapper approach.

The procedure in the following example is an easy localized allocation tracking approach for a
JNI library. First, define the following lines in all source files.

#include <stdlib.h>
#define malloc(n) debug_malloc(n, __FILE__, __LINE__)
#define free(p) debug_free(p, __FILE__, __LINE__)

Then, you can use the functions in the following example to watch for leaks.

/* Total bytes allocated */
static int total_allocated;
/* Memory alignment is important */
typedef union { double d; struct {size_t n; char *file; int line;} s; } Site;
void *
debug_malloc(size_t n, char *file, int line)
{
 char *rp;
 rp = (char*)malloc(sizeof(Site)+n);
 total_allocated += n;
 ((Site*)rp)->s.n = n;
 ((Site*)rp)->s.file = file;
 ((Site*)rp)->s.line = line;
 return (void*)(rp + sizeof(Site));
}
void
debug_free(void *p, char *file, int line)
{
 char *rp;
 rp = ((char*)p) - sizeof(Site);
 total_allocated -= ((Site*)rp)->s.n;
 free(rp);
}

The JNI library would then need to periodically (or at shutdown) check the value of the
total_allocated variable to verify that it made sense. The preceding code could also be
expanded to save in a linked list the allocations that remained, and report where the leaked
memory was allocated. This is a localized and portable way to track memory allocations in a
single set of sources. You would need to ensure that debug_free() was called only with the
pointer that came from debug_malloc(), and you would also need to create similar functions
for realloc(), calloc(), strdup(), and so forth, if they were used.

Chapter 3
Diagnose Leaks in Native Code

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 13 of 16

http://sourceforge.net/

A more global way to look for native heap memory leaks involves interposition of the library
calls for the entire process.

Track Memory Allocation with Operating System Support
Tools available for tracking memory allocation in an operating system.

Most operating systems include some form of global allocation tracking support.

• On Windows, search the MSDN library for debug support. The Microsoft C++ compiler has
the /Md and /Mdd compiler options that will automatically include extra support for tracking
memory allocation.

• Linux systems have tools such as mtrace and libnjamd to help in dealing with allocation
tracking.

• The Oracle Solaris operating system provides the watchmalloc tool. Oracle Solaris 9
operating system update 3 also introduced the libumem tool. See Find Leaks with the
libumem Tool.

Find Leaks with the dbx Debugger
The dbx debugger includes the Runtime Checking (RTC) functionality, which can find leaks.
The dbx debugger is part of Oracle Solaris Studio and also available for Linux.

The following example shows a sample dbx session.

$ dbx ${java_home}/bin/java
Reading java
Reading ld.so.1
Reading libthread.so.1
Reading libdl.so.1
Reading libc.so.1
(dbx) dbxenv rtc_inherit on
(dbx) check -leaks
leaks checking - ON
(dbx) run HelloWorld
Running: java HelloWorld
(process id 15426)
Reading rtcapihook.so
Reading rtcaudit.so
Reading libmapmalloc.so.1
Reading libgen.so.1
Reading libm.so.2
Reading rtcboot.so
Reading librtc.so
RTC: Enabling Error Checking...
RTC: Running program...
dbx: process 15426 about to exec("/net/bonsai.sfbay/export/home2/user/ws/j2se/
build/solaris-i586/bin/java")
dbx: program "/net/bonsai.sfbay/export/home2/user/ws/j2se/build/solaris-
i586/bin/java"
just exec'ed
dbx: to go back to the original program use "debug $oprog"
RTC: Enabling Error Checking...
RTC: Running program...
t@1 (l@1) stopped in main at 0x0805136d

Chapter 3
Diagnose Leaks in Native Code

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 14 of 16

http://msdn.microsoft.com/library

0x0805136d: main : pushl %ebp
(dbx) when dlopen libjvm { suppress all in libjvm.so; }
(2) when dlopen libjvm { suppress all in libjvm.so; }
(dbx) when dlopen libjava { suppress all in libjava.so; }
(3) when dlopen libjava { suppress all in libjava.so; }
(dbx) cont
Reading libjvm.so
Reading libsocket.so.1
Reading libsched.so.1
Reading libCrun.so.1
Reading libm.so.1
Reading libnsl.so.1
Reading libmd5.so.1
Reading libmp.so.2
Reading libhpi.so
Reading libverify.so
Reading libjava.so
Reading libzip.so
Reading en_US.ISO8859-1.so.3
hello world
hello world
Checking for memory leaks...

Actual leaks report (actual leaks: 27 total size: 46851
bytes)

 Total Num of Leaked Allocation call stack
 Size Blocks Block
 Address
========== ====== =========== =======================================
 44376 4 - calloc < zcalloc
 1072 1 0x8151c70 _nss_XbyY_buf_alloc < get_pwbuf < _getpwuid <
 GetJavaProperties <
Java_java_lang_System_initProperties <
 0xa740a89a< 0xa7402a14< 0xa74001fc
 814 1 0x8072518 MemAlloc < CreateExecutionEnvironment < main
 280 10 - operator new < Thread::Thread
 102 1 0x8072498 _strdup < CreateExecutionEnvironment < main
 56 1 0x81697f0 calloc < Java_java_util_zip_Inflater_init <
0xa740a89a<
 0xa7402a6a< 0xa7402aeb< 0xa7402a14<
0xa7402a14< 0xa7402a14
 41 1 0x8072bd8 main
 30 1 0x8072c58 SetJavaCommandLineProp < main
 16 1 0x806f180 _setlocale < GetJavaProperties <
 Java_java_lang_System_initProperties <
0xa740a89a< 0xa7402a14<
 0xa74001fc< JavaCalls::call_helper <
os::os_exception_wrapper
 12 1 0x806f2e8 operator new <
instanceKlass::add_dependent_nmethod <
 nmethod::new_nmethod < ciEnv::register_method <
 Compile::Compile #Nvariant 1 <
C2Compiler::compile_method <
 CompileBroker::invoke_compiler_on_method <
 CompileBroker::compiler_thread_loop

Chapter 3
Diagnose Leaks in Native Code

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 15 of 16

 12 1 0x806ee60 CheckJvmType < CreateExecutionEnvironment <
main
 12 1 0x806ede8 MemAlloc < CreateExecutionEnvironment < main
 12 1 0x806edc0 main
 8 1 0x8071cb8 _strdup < ReadKnownVMs <
CreateExecutionEnvironment < main
 8 1 0x8071cf8 _strdup < ReadKnownVMs <
CreateExecutionEnvironment < main

The output shows that the dbx debugger reports memory leaks if memory is not freed at the
time the process is about to exit. However, memory that is allocated at initialization time and
needed for the life of the process is often never freed in native code. Therefore, in such cases,
the dbx debugger can report memory leaks that are not really leaks.

Note

The previous example used two suppress commands to suppress the leaks reported
in the virtual machine: libjvm.so and the Java support library, libjava.so.

Find Leaks with the libumem Tool
First introduced in the Oracle Solaris 9 operating system update 3, the libumem.so library, and
the modular debugger mdb can be used to debug memory leaks.

Before using libumem, you must preload the libumem library and set an environment variable,
as shown in the following example.

$ LD_PRELOAD=libumem.so
$ export LD_PRELOAD
$ UMEM_DEBUG=default
$ export UMEM_DEBUG

Now, run the Java application, but stop it before it exits. The following example uses truss to
stop the process when it calls the _exit system call.

$ truss -f -T _exit java MainClass arguments

At this point you can attach the mdb debugger, as shown in the following example.

$ mdb -p pid
>::findleaks

The ::findleaks command is the mdb command to find memory leaks. If a leak is found, then
this command prints the address of the allocation call, buffer address, and nearest symbol.

It is also possible to get the stack trace for the allocation that resulted in the memory leak by
dumping the bufctl structure. The address of this structure can be obtained from the output of
the ::findleaks command.

See analyzing memory leaks using libumem for troubleshooting the cause for a memory leak.

Chapter 3
Diagnose Leaks in Native Code

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 16 of 16

http://docs.oracle.com/cd/E19424-01/820-4814/geogv/

4
Troubleshoot Performance Issues Using Flight
Recorder

Identify performance issues with a Java application and debug these issues using recordings
from Flight Recorder.
To learn more about creating a recording with Flight Recorder, see Produce a Flight Recording.

The data provided by Flight Recorder helps you investigate performance issues. No other tool
gives as much profiling data without skewing the results with its own performance overhead.
This chapter provides information about performance issues that you can identify and debug
using data from Flight Recorder.

This chapter contains the following sections:

• Flight Recorder Overhead

• Use JDK Mission Control to Find Bottlenecks

• Use JDK Mission Control to Debug Garbage Collection Issues

• Use JDK Mission Control to Debug Synchronization Issues

• Use JDK Mission Control to Debug I/O Issues

• Use JDK Mission Control to Monitor Code Execution Performance

Flight Recorder Overhead
When you measure performance, it is important to consider any performance overhead added
by Flight Recorder. The overhead will differ depending on the application. If you have any
performance tests set up, you can measure if there is any noticeable overhead on your
application.

The overhead for recording a standard time fixed recording (profiling recording) using the
default settings is less than two percent for most applications. Running with a standard
continuous recording generally has no measurable performance effect.

Using Heap Statistics event, which is disabled by default, can cause significant performance
overhead. This is because enabling Heap Statistics triggers an old garbage collection at the
beginning and the at end of the test run. These old GCs give some extra pause times to the
application, so if you are measuring latency or if your environment is sensitive to pause times,
do not run with Heap Statistics enabled. Heap Statistics are useful when debugging memory
leaks or when investigating the live set of the application. For more information, see Use JDK
Mission Control to Debug Memory Leak.

Note

For performance profiling use cases, heap statistics may not be necessary.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 8

Use JDK Mission Control to Find Bottlenecks
You can use JMC to find application bottlenecks.

One way to find out the application bottlenecks is to analyze the Automated Analysis Results
page. This page provides comprehensive automatic analysis of flight recording data.

Open the Threads page in the Java Application page. The Threads page contains the
following information:

• A graph that plots live thread usage by the application over time.

• A table with all live threads used by the application.

• Stack traces for selected threads.

Here is a sample figure of a recording, which shows a graph with thread details.

Figure 4-1 Bottlenecks - Threads - Graph

In the graph, each row is a thread, and each thread can have several lines. In the figure, each
thread has a line, which represents the Java Application events that were enabled for this
recording. The selected Java Application events all have the important property that they are
all thread-stalling events. Thread stalling indicates that the thread was not running your
application during the event, and they are all duration events. The duration event measures the
duration the application was not running.

In the graph, each color represents a different type of event. For example:

• Yellow represents Java Monitor Wait events. The yellow part is when threads are waiting
for an object. This often means that the thread is idle, perhaps waiting for a task.

• Salmon represents the Java Monitor Blocked events or synchronization events. If your
Java application's important threads spend a lot of time being blocked, then that means
that a critical section of the application is single threaded, which is a bottleneck.

• Red represents the Socket Reads and Socket Writes events. Again, if the Java
application spends a lot of time waiting for sockets, then the main bottleneck may be in the
network or with the other machines that the application communicates.

Chapter 4
Use JDK Mission Control to Find Bottlenecks

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 8

• Green represents parts that don't have any events. This part means that the thread is not
sleeping, waiting, reading to or from a socket, or not being blocked. In general, this is
where the application code is run. If your Java application's important threads are spending
a lot of time without generating any application events, then the bottleneck in the
application is the time spent executing code or the CPU itself.

Note

For most Java Application event types, only events longer than 20 ms are recorded.
(This threshold can be modified when starting the flight recording.) The areas may not
have recorded events because the application is doing a lot of short tasks, such as
writing to a file (a small part at a time) or spending time in synchronization for very
short amounts of time.

The Automated Analysis Results page also shows information about garbage collections. To
see if garbage collections may be a bottleneck, see the next topic about garbage collection
performance.

Use JDK Mission Control to Debug Garbage Collection Issues
You can use JMC to debug garbage collections (GC) issues.

Tuning the HotSpot Garbage Collector can have a big effect on performance. See Garbage
Collection Tuning Guide for general information.

Take a profiling flight recording of your running application. Do not include the heap statistics,
as that will trigger additional old garbage collections. To get a good sample, take a longer
recording, for example one hour.

Open the recording in JMC. Look at the Garbage Collections section in the Automated
Analysis Results page. Here is a sample figure of a recording, which provides a snapshot of
garbage collection performance during runtime.

Figure 4-2 Automated Analysis Results - Garbage Collections

You can observe from the figure that there is a Full GC event. This is indicative of the fact that
application needs more memory than what you have allocated.

Chapter 4
Use JDK Mission Control to Debug Garbage Collection Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 8

For further analysis, open the Garbage Collections page under the JVM Internals page to
investigate the overall performance impact of the GC. Here is a sample figure of a recording,
which shows a graph with GC pauses.

Figure 4-3 Garbage Collection Performance - GC Pauses

From the graph look at the Sum of Pauses from the recording. The Sum of Pauses is the
total amount of time that the application was paused during a GC. Many GCs do most of their
work in the background. In those cases, the length of the GC does not matter and what matters
is how long the application actually had to stop. Therefore, the Sum of Pauses is a good
measure for the GC effect.

The main performance problems with garbage collections are usually either that individual GCs
take too long, or that too much time is spent in paused GCs (total GC pauses).

When an individual GC takes too long, you may need to change the GC strategy. Different GCs
have different trade-offs when it comes to pause times verses throughput performance. See
Behavior-Based Tuning.

In addition, you may also need to fix your application so that it makes less use of finalizers or
semireferences. See Monitor the Objects Pending Finalization and Finalization and Weak, Soft,
and Phantom References in Java Platform, Standard Edition HotSpot Virtual Machine Garbage
Collection Tuning Guide for information about detecting and migrating from finalization.

If the application spends too much time paused, you can look into different ways to overcome
this. One way is to increase the Java heap size. Look at the GC Configuration page to
estimate the heap size used by the application, and change the initial heap size and maximum
heap size to a higher value. The bigger the heap, the longer time it is between GCs. Watch out
for any memory leaks in the Java application, because that may cause more frequent GCs until
an OutOfMemoryError is thrown. For more information, see Use JDK Mission Control to Debug
Memory Leak. Another way to reduce the GC cycles is to allocate fewer temporary objects. In
the TLAB Allocations page, look at how much memory is allocated over the course of the
recording. Small objects are allocated inside TLABs, and large objects are allocated outside
TLABs. Often, the majority of allocations happen inside TLABs. Lastly, to reduce the need of
GCs, decrease the allocation rate. Select the TLAB Allocations page and then look at the
allocation sites that have the most memory pressure. You can either view it per class or thread
to see which one consumes the most allocation.

Chapter 4
Use JDK Mission Control to Debug Garbage Collection Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 8

Some other settings may also increase GC performance of the Java application. See Garbage
Collection Tuning Guide in the Java Platform, Standard Edition HotSpot Virtual Machine
Garbage Collection Tuning Guide to discuss GC performance.

Use JDK Mission Control to Debug Synchronization Issues
You can use JMC to debug Java Application synchronization issues.

Open the flight recording in JMC and look at the Automated Analysis Results page. Here is a
sample figure of a recording, which shows threads that are blocked on locks.

Figure 4-4 Synchronization Issue - Automated Analysis Results Page

Focus on the Lock Instances section of the page, which is highlighted in red. This is indicative
of a potential problem. You can observe that there are threads that are blocked on locks.

For further analysis, open the Lock Instances page. Here is a sample figure of a recording,
which shows the thread that is blocked on locks the most and the stack trace of the thread
waiting to acquire the lock.

Figure 4-5 Synchronization Issue - Lock Instance

Chapter 4
Use JDK Mission Control to Debug Synchronization Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 8

You can notice that threads in the application were blocked on locks for a total time of 3 hours.
The most common monitor class in contention was Logger, which was blocked 2972 times.

Typically, logging is an area that can be a bottleneck in applications. In this scenario, the
blocking events all seem to be due to calls to the log method. You can review and make
required code changes to fix this issue.

Use JDK Mission Control to Debug I/O Issues
You can diagnose I/O issues in an application by monitoring the Socket I/O or the File I/O
pages in JMC.

When a Java application spends a lot of time either in Socket Read, Socket Write, File Read,
or File Write, then I/O or networking can cause bottleneck. To diagnose I/O issues in
applications, open the Socket I/O page under the Java Application page in the Automated
Analysis Results page. Here is a sample figure of a recording, which shows Socket I/O
details.

Figure 4-6 Socket I/O - Java Application

The figure shows that for the application the longest recorded socket write took 349.745 ms to
write 81 B to the host.

File or networking I/O issues are diagnosed in a similar fashion. Look at the files read from or
written to the most, then see each file read/write and the time spent on I/O.

By default, the Socket I/O page lists events with a duration longer than 10 ms. When starting a
flight recording, you can lower the file I/O Threshold or socket I/O Threshold to gather more
data, but this could potentially have a higher performance overhead.

Chapter 4
Use JDK Mission Control to Debug I/O Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 6 of 8

Use JDK Mission Control to Monitor Code Execution
Performance

You can use JMC to monitor the code execution performance.

When there are not a lot of Java Application events, it could be that the main bottleneck of your
application is the running code. In such scenarios, look at the Method Profiling section of the
Automated Analysis Results page. Here is a sample figure of a recording, which indicates
that there is value in optimizing certain methods.

Figure 4-7 Code Execution Performance - Automated Analysis Results Page

Now, open the Java Application page. Here is a sample figure of a recording, which shows
the Method Profiling graph and the stack traces.

Figure 4-8 Code Execution Performance - Java Application

Chapter 4
Use JDK Mission Control to Monitor Code Execution Performance

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 7 of 8

You can observe that the stack trace view shows the aggregated stack traces of any selection
in the editor and also the stack traces for the profiling samples. In the figure, you can notice
that one of these methods has a lot more samples than the others. This means that the JVM
has spent more time executing that method relative to the other methods.

To identify which method would be the one to optimize to improve the performance of the
application, open the Method Profiling page. Here is a sample figure of a recording, which
shows the method that needs to be optimized.

Figure 4-9 Code Execution Performance - Method Profiling

As you can observe, in the stack trace view, the most sampled method was
HolderOfUniqueValues.countIntersection(). You can review and make required code
changes to optimize this method to effectively improve the performance of the application.

Chapter 4
Use JDK Mission Control to Monitor Code Execution Performance

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 8 of 8

Part II
Debug JVM Issues

This part describes causes and various debugging techniques for the following topics.

• Troubleshoot System Crashes

Provides guidance about specific procedures for troubleshooting system crashes.

• Troubleshoot Process Hangs and Loops

Provides guidance about specific procedures for troubleshooting hanging or looping
processes.

• Handle Signals and Exceptions

Provides guidance about signal and exception handling by Java HotSpot Server VM.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 1

5
Troubleshoot System Crashes

This chapter presents information and guidance about some specific procedures for
troubleshooting system crashes.

A crash, or fatal error, causes a process to terminate abnormally. There are various possible
reasons for a crash. For example, a crash can occur due to a bug in the Java HotSpot VM, in a
system library, in a Java SE library or an API, in application native code, or even in the
operating system (OS). External factors, such as resource exhaustion in the OS can also
cause a crash.

Crashes caused by bugs in the Java HotSpot VM or in the Java SE library code are rare. This
chapter provides suggestions about how to examine a crash and work around some of the
issues (if possible) until the cause of the bug is diagnosed and fixed.

In general, the first step with any crash is to locate the fatal error log. This is a text file that the
Java HotSpot VM generates in the event of a crash. See Fatal Error Log for an explanation of
how to locate this file, as well as a detailed description of the file.

This chapter contains the following sections:

• Determine Where the Crash Occurred

• Find a Workaround

• Microsoft Visual C++ Version Considerations

Determine Where the Crash Occurred
Examples that demonstrate how the error log can be used to find the cause of the crash, and
suggests some tips for troubleshooting the problem depending on the cause.

The error log header indicates the type of error and the problematic frame, while the thread
stack indicates the current thread and stack trace. See Header Format.

The following are possible causes for the crash.

• Crash the Native Code

• Crash in the Compiled Code

• Crash in the HotSpot Compiler Thread

• Crash in the VM Thread

• Crash Due to Stack Overflow

• Crash Due to Exceeded Memory Map Area Limit

Crash the Native Code
Analyze the crash dump file or core file to identify if the crash occurred in the native code or
the Java Native Interface (JNI) library code.

If the fatal error log indicates the problematic frame to be a native library, then there might be a
bug in the native code or the Java Native Interface (JNI) library code. The crash could be

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 10

caused by something else, but analysis of the library and any core file or crash dump is a good
starting place. Consider the extract in the following example from the header of a fatal error
log.

An unexpected error has been detected by HotSpot Virtual Machine:
#
SIGSEGV (0xb) at pc=0x417789d7, pid=21139, tid=1024
#
Java VM: Java HotSpot(TM) Server VM (6-beta2-b63 mixed mode)
Problematic frame:
C [libApplication.so+0x9d7]

In this case a SIGSEGV occurred with a thread executing in the library libApplication.so.

In some cases a bug in a native library manifests itself as a crash in Java VM code. Consider
the crash in the following example where a JavaThread fails while in the _thread_in_vm state
(meaning that it is executing in Java VM code).

An unexpected error has been detected by HotSpot Virtual Machine:
#
EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x08083d77, pid=3700,
tid=2896
#
Java VM: Java HotSpot(TM) Client VM (1.5-internal mixed mode)
Problematic frame:
V [jvm.dll+0x83d77]

--------------- T H R E A D ---------------

Current thread (0x00036960): JavaThread "main" [_thread_in_vm, id=2896]
 :
Stack: [0x00040000,0x00080000), sp=0x0007f9f8, free space=254k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native
code)
V [jvm.dll+0x83d77]
C [App.dll+0x1047] <========= C/native frame
j Test.foo()V+0
j Test.main([Ljava/lang/String;)V+0
v ~StubRoutines::call_stub
V [jvm.dll+0x80f13]
V [jvm.dll+0xd3842]
V [jvm.dll+0x80de4]
V [jvm.dll+0x87cd2]
C [java.exe+0x14c0]
C [java.exe+0x64cd]
C [kernel32.dll+0x214c7]
 :

In this case, although the problematic frame is a VM frame, the thread stack shows that a
native routine in App.dll has called into the VM (probably with JNI).

The first step to solving a crash in a native library is to investigate the source of the native
library where the crash occurred.

• If the native library is provided by your application, then investigate the source code of your
native library. A significant number of issues with JNI code can be identified by running the

Chapter 5
Determine Where the Crash Occurred

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 10

application with the -Xcheck:jni option added to the command line. See The -Xcheck:jni
Option.

• If the native library has been provided by another vendor and is used by your application,
then file a bug report against this third-party application and provide the fatal error log
information.

• If the native library where the crash occurred is part of the Java Runtime Environment
(JRE) (for example awt.dll, net.dll, and so forth), then it is possible that you encountered a
library or API bug. If so, gather as much data as possible, and submit a bug or report,
indicating the library name. You can find JRE libraries in the jre/lib or jre/bin
directories of the JRE distribution. See Submit a Bug Report.

You can troubleshoot a crash in a native application library by attaching the native debugger to
the core file or crash dump, if it is available. Depending on the OS, the native debugger is dbx,
gdb, or windbg. See Native Operating System Tools.

Crash in the Compiled Code
Analyze the fatal error log to identify if the crash occurred in the compiled code.

If the fatal error log indicates that the crash occurred in compiled code, then it is possible that
you encountered a compiler bug that resulted in incorrect code generation. You can recognize
a crash in compiled code if the type of the problematic frame is J (meaning a compiled Java
frame). The following example shows such a crash.

An unexpected error has been detected by HotSpot Virtual Machine:
#
SIGSEGV (0xb) at pc=0x0000002a99eb0c10, pid=6106, tid=278546
#
Java VM: Java HotSpot(TM) 64-Bit Server VM (1.6.0-beta-b51 mixed mode)
Problematic frame:
J org.foobar.Scanner.body()V
#
:
Stack: [0x0000002aea560000,0x0000002aea660000), sp=0x0000002aea65ddf0,
 free space=1015k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native
code)
J org.foobar.Scanner.body()V

[error occurred during error reporting, step 120, id 0xb]

Note

A complete thread stack is not available. The output line "error occurred during error
reporting" means that a problem arose trying to get the stack trace (this might indicate
stack corruption).

It might be possible to temporarily work around the issue by switching the compiler or by
excluding from compilation the method that provoked the crash.

See Working Around Crashes in the HotSpot Compiler Thread or Compiled Code.

Chapter 5
Determine Where the Crash Occurred

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 10

Crash in the HotSpot Compiler Thread
Analyze the fatal error log to identify if the crash occurred in the HotSpot compiler thread.

If the fatal error log output shows that the current thread is a JavaThread named
CompilerThread0, CompilerThread1, or AdapterCompiler, then it is possible that you
encountered a compiler bug. In this case, it might be necessary to temporarily work around the
issue by switching the compiler (for example, by using the HotSpot Client VM instead of the
HotSpot Server VM, or vice versa), or by excluding from compilation the method that provoked
the crash.

See Working Around Crashes in the HotSpot Compiler Thread or Compiled Code.

Crash in the VM Thread
Analyze the fatal error log to identify if the crash occurred in the VMThread.

If the fatal error log output shows that the current thread is a VMThread, then look for the line
containing VM_Operation in the THREAD section. A VMThread is a special thread in the HotSpot
VM. It performs special tasks in the VM such as garbage collection (GC). If the VM_Operation
suggests that the operation is a GC, then it is possible that you encountered an issue such as
heap corruption.

Beside a GC issue, it could be something else (such as a compiler or runtime bug) that leaves
object references in the heap in an inconsistent or incorrect state. In this case, collect as much
information as possible about the environment and try possible workarounds. If the issue is
related to GC, then you might be able to temporarily work around the issue by changing the
GC configuration.

See Working Around Crashes During Garbage Collection.

Crash Due to Stack Overflow
A stack overflow in the Java language code will normally result in the offending thread throwing
the java.lang.StackOverflowError exception.

On the other hand, C and C++ write beyond the end of the stack and cause a stack overflow.
This is a fatal error that causes the process to terminate.

In the HotSpot implementation, Java methods share stack frames with C/C++ native code,
namely user native code and the virtual machine itself. Java methods generate code that
checks whether the stack space is available at a fixed distance towards the end of the stack so
that the native code can be called without exceeding the stack space. The distance toward the
end of the stack is called shadow pages. The size of the shadow pages is between 3 and 20
pages, depending on the platform. This distance is tunable, so that applications with native
code needing more than the default distance can increase the shadow page size. The option to
increase shadow pages is -XX:StackShadowPages=n, where n is greater than the default
stack shadow pages for the platform.

If your application gets a segmentation fault without a core file or fatal error log file, see Fatal
Error Log. Or if you application gets a STACK_OVERFLOW_ERROR on Windows or the message "An
irrecoverable stack overflow has occurred," then this indicates that the value of
StackShadowPages was exceeded, and more space is needed.

If you increase the value of StackShadowPages, you might also need to increase the default
thread stack size using the -Xss parameter. Increasing the default thread stack size might

Chapter 5
Determine Where the Crash Occurred

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 10

decrease the number of threads that can be created, so be careful in choosing a value for the
thread stack size. The thread stack size varies by platform from 256 KB to 1024 KB.

An unexpected error has been detected by HotSpot Virtual Machine:
#
EXCEPTION_STACK_OVERFLOW (0xc00000fd) at pc=0x10001011, pid=296, tid=2940
#
Java VM: Java HotSpot(TM) Client VM (1.6-internal mixed mode, sharing)
Problematic frame:
C [App.dll+0x1011]
#

--------------- T H R E A D ---------------

Current thread (0x000367c0): JavaThread "main" [_thread_in_native, id=2940]
:
Stack: [0x00040000,0x00080000), sp=0x00041000, free space=4k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native
code)
C [App.dll+0x1011]
C [App.dll+0x1020]
C [App.dll+0x1020]
:
C [App.dll+0x1020]
C [App.dll+0x1020]
...<more frames>...

Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)
j Test.foo()V+0
j Test.main([Ljava/lang/String;)V+0
v ~StubRoutines::call_stub

You can interpret the following information from the above example.

• The exception is EXCEPTION_STACK_OVERFLOW.

• The thread state is _thread_in_native, which means that the thread is executing native
or JNI code.

• In the stack information, the free space is only 4 KB (a single page on a Windows system).
In addition, the stack pointer (sp) is at 0x00041000, which is close to the end of the stack at
0x00040000.

• The printout of the native frames shows that a recursive native function is the issue in this
case. The output notation ...<more frames>... indicates that additional frames exist but
were not printed. The output is limited to 100 frames.

Crash Due to Exceeded Memory Map Area Limit
Certain application behaviors may cause the virtual machine to use a large number of memory
map areas. On Linux systems, the number of memory map areas is limited by
vm.max_map_count.

This is an example of the type of error that you might receive if you encounter this problem:

fatal error: Failed to map memory (Not enough space)

Chapter 5
Determine Where the Crash Occurred

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 10

If you experience crashes with this type of error message, you can look in the hs_err.log to
see the number of mappings made by the process and compare to the limit of the system. You
can find these numbers by searching the hs_err.log file for these two lines:

Total number of mappings: <number>
/proc/sys/vm/max_map_count (maximum number of memory map areas a process may
have): <number>

If the numbers are similar, you should try to re-run the application with an increased value of
vm.max_map_count. Please refer to your Linux manual for more information on how to do this.
The error could also occur if the JVM runs out of memory. This error does in general not
indicate a bug in the virtual machine.

Find a Workaround
Possible workarounds if a crash occurs with a critical application.

If a crash occurs with a critical application, and the crash appears to be caused by a bug in the
HotSpot VM, then it might be desirable to quickly find a temporary workaround. If the crash
occurs with an application that is deployed with the most recent release of the JDK, then the
crash should be reported to Oracle.

Important

Even if a workaround in this section successfully eliminates a crash, the workaround is
not a fix for the problem, but merely a temporary solution. Place a support call or file a
bug report with the original configuration that demonstrated the issue.

The following are three scenarios to find workarounds for system crashes.

• Working Around Crashes in the HotSpot Compiler Thread or Compiled Code

• Working Around Crashes During Garbage Collection

• Working Around Crashes Caused by Class Data Sharing

Working Around Crashes in the HotSpot Compiler Thread or Compiled
Code

Possible workarounds if the crash occurred in the hotspot compiler thread.

If the fatal error log indicates that the crash occurred in a compiler thread, then it is possible
(but not always the case) that you encountered a compiler bug. Similarly, if the crash is in
compiled code, then it is possible that the compiler generated incorrect code.

In the case of the HotSpot Client VM (-client option), the compiler thread appears in the
error log as CompilerThread0. With the HotSpot Server VM, there are multiple compiler
threads, and these appear in the error log file as CompilerThread0, CompilerThread1, and
AdapterThread.

Since the JDK 7u5 release, the HotSpot compiler is ignored by default. A command-line option
is available to simulate the old behavior, which is useful when multiple methods were excluded.
See notable bug fixes in JDK 7u5.

Chapter 5
Find a Workaround

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 6 of 10

http://www.oracle.com/technetwork/java/javase/7u5-relnotes-1653274.html

To exclude methods from being compiled by using a JVM flag instead of the .hotspot_compile
file, see -XX:CompileCommand in Advanced JIT Compiler Options in the Java Platform,
Standard Edition Tools Reference.

The following example shows a fragment of an error log for a compiler bug that was
encountered and fixed during development. The log file shows that the HotSpot Server VM is
used, and the crash occurred in CompilerThread1. In addition, the log file shows that the
current CompileTask was the compilation of the java.lang.Thread.setPriority method.

An unexpected error has been detected by HotSpot Virtual Machine:
#
:
Java VM: Java HotSpot(TM) Server VM (1.5-internal-debug mixed mode)
:
--------------- T H R E A D ---------------

Current thread (0x001e9350): JavaThread "CompilerThread1" daemon
[_thread_in_vm, id=20]

Stack: [0xb2500000,0xb2580000), sp=0xb257e500, free space=505k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native
code)
V [libjvm.so+0xc3b13c]
:

Current CompileTask:
opto: 11 java.lang.Thread.setPriority(I)V (53 bytes)

--------------- P R O C E S S ---------------

Java Threads: (=> current thread)
 0x00229930 JavaThread "Low Memory Detector" daemon [_thread_blocked, id=21]
=>0x001e9350 JavaThread "CompilerThread1" daemon [_thread_in_vm, id=20]
 :

In this case, there are two potential workarounds:

• The brute force approach: Change the configuration so that the application is run with the
-client option to specify the HotSpot Client VM.

• The subtle approach: Assume that the bug only occurs during the compilation of the
java.lang.Thread.setPriority method, and exclude this method from compilation.

The first approach (to use the -client option) might be trivial to configure in some
environments. In others, it might be more difficult if the configuration is complex or if the
command line to configure the VM is not readily accessible. In general, switching from the
HotSpot Server VM to the HotSpot Client VM also reduces the peak performance of an
application. Depending on the environment, this might be acceptable until the issue is
diagnosed and fixed.

The second approach (exclude the method from compilation) requires creating the
file .hotspot_compiler in the working directory of the application. The following example
shows this approach.

exclude java/lang/Thread setPriority

Chapter 5
Find a Workaround

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 7 of 10

In general, the format of this file is excludeclassmethod, where class is the class (fully
qualified with the package name) and method is the name of the method. Constructor methods
are specified as <init> and static initializers are specified as <clinit>.

Note

The.hotspot_compiler file is an unsupported interface. It is documented here solely
for the purposes of troubleshooting and finding a temporary workaround.

After the application is restarted, the compiler will not attempt to compile any of the methods
excluded in the .hotspot_compiler file. In some cases this can provide temporary relief until
the root cause of the crash is diagnosed and the bug is fixed.

In order to verify that the HotSpot VM correctly located and processed the .hotspot_compiler
file that is shown in the previous example from the second approach, look for the log
information at runtime.

Note

The file name separator is a dot, not a slash.

Working Around Crashes During Garbage Collection
Possible workaround if the crash occurs during garbage collection.

If a crash occurs during garbage collection (GC), then the fatal error log reports that a
VM_Operation is in progress. For the purpose of this discussion, assume that the mostly
concurrent GC (-XX:+UseConcMarkSweep) is not in use. The VM_Operation is shown in the
THREAD section of the log and indicates one of the following situations:

• Generation collection for allocation

• Full generation collection

• Parallel GC failed allocation

• Parallel GC failed permanent allocation

• Parallel GC system GC

Most likely, the current thread reported in the log is the VMThread. This is the special thread
used to execute special tasks in the HotSpot VM. The following example is a fragment of the
fatal error log from a crash in the serial garbage collector.

--------------- T H R E A D ---------------

Current thread (0x002cb720): VMThread [id=3252]

siginfo: ExceptionCode=0xc0000005, reading address 0x00000000

Registers:
EAX=0x0000000a, EBX=0x00000001, ECX=0x00289530, EDX=0x00000000
ESP=0x02aefc2c, EBP=0x02aefc44, ESI=0x00289530, EDI=0x00289530
EIP=0x0806d17a, EFLAGS=0x00010246

Chapter 5
Find a Workaround

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 8 of 10

Top of Stack: (sp=0x02aefc2c)
0x02aefc2c: 00289530 081641e8 00000001 0806e4b8
0x02aefc3c: 00000001 00000000 02aefc9c 0806e4c5
0x02aefc4c: 081641e8 081641c8 00000001 00289530
0x02aefc5c: 00000000 00000000 00000001 00000001
0x02aefc6c: 00000000 00000000 00000000 08072a9e
0x02aefc7c: 00000000 00000000 00000000 00035378
0x02aefc8c: 00035378 00280d88 00280d88 147fee00
0x02aefc9c: 02aefce8 0806e0f5 00000001 00289530
Instructions: (pc=0x0806d17a)
0x0806d16a: 15 08 83 3d c0 be 15 08 05 53 56 57 8b f1 75 0f
0x0806d17a: 0f be 05 00 00 00 00 83 c0 05 a3 c0 be 15 08 8b

Stack: [0x02ab0000,0x02af0000), sp=0x02aefc2c, free space=255k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native
code)
V [jvm.dll+0x6d17a]
V [jvm.dll+0x6e4c5]
V [jvm.dll+0x6e0f5]
V [jvm.dll+0x71771]
V [jvm.dll+0xfd1d3]
V [jvm.dll+0x6cd99]
V [jvm.dll+0x504bf]
V [jvm.dll+0x6cf4b]
V [jvm.dll+0x1175d5]
V [jvm.dll+0x1170a0]
V [jvm.dll+0x11728f]
V [jvm.dll+0x116fd5]
C [MSVCRT.dll+0x27fb8]
C [kernel32.dll+0x1d33b]

VM_Operation (0x0373f71c): generation collection for allocation, mode:
 safepoint, requested by thread 0x02db7108

Note

A crash during garbage collection does not suggest a bug in the garbage collection
implementation. It could also indicate a compiler or runtime bug, or some other issue.

You can try the following workarounds if you repeatedly get a crash during garbage collection:

• Switch GC configuration. For example, if you are using the serial collector, then try the
throughput collector, or vice versa.

• If you are using the HotSpot Server VM, then try the HotSpot Client VM.

If you are not sure which garbage collector is in use, then you can use the jmap utility on the
Oracle Solaris and Linux operating systems. See The jmap Utility to get the heap information
from the core file, if the core file is available. In general, if the GC configuration is not specified
on the command line, then the serial collector will be used on Windows. On the Oracle Solaris
and Linux operating systems, it depends on the machine configuration. If the machine has at
least 2 GB of memory and has at least 2 CPUs, then the throughput collector (Parallel GC) will
be used. For smaller machines, the serial collector is the default. The option to select the serial
collector is -XX:+UseSerialGC and the option to select the throughput collector is -

Chapter 5
Find a Workaround

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 9 of 10

XX:+UseParallelGC. If, as a workaround, you switch from the throughput collector to the
serial collector, then you might experience some performance degradation on multiprocessor
systems. This might be acceptable until the root issue is diagnosed and fixed.

Working Around Crashes Caused by Class Data Sharing

When the JRE is installed, the installer loads a set of classes from the system JAR file into a
private internal representation and dumps that representation to a file called a shared archive.
When the JVM starts, the shared archive is memory-mapped to allow sharing of read-only JVM
metadata for these classes among multiple JVM processes. The startup time is reduced thus
saving the cost because restoring the shared archive is faster than loading the classes. Class
data sharing is supported with the Java HotSpot VM. The G1, serial, parallel, and
parallelOldGC garbage collectors are supported. The shared string feature (part of class data
sharing) supports only the G1 garbage collector on non-Windows platforms.

The fatal error log prints the version string in the header of the log. If sharing is enabled, it is
indicated by the text "sharing," as shown in the following example.

An unexpected error has been detected by HotSpot Virtual Machine:
#
EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x08083d77, pid=3572, tid=784
#
Java VM: Java HotSpot(TM) Client VM (1.5-internal mixed mode, sharing)
Problematic frame:
V [jvm.dll+0x83d77]

CDS can be disabled by providing the -Xshare:off option on the command line. If the crash
only occurs with sharing enabled, then it is possible that you encountered a bug in this feature.
In that case, gather as much information as possible and submit a bug report.

Microsoft Visual C++ Version Considerations
If you experience a crash with a Java application and if you have native or JNI libraries that are
compiled with a different release of the compiler, then you must consider compatibility issues
between the runtimes. Specifically, your environment is supported only if you follow the
Microsoft guidelines when dealing with multiple runtimes. For example, if you allocate memory
using one runtime, then you must release it using the same runtime. Unpredictable behavior or
crashes can happen if you release a resource using a different library than the one that
allocated the resource.

Note

Use the java command option -Xinternalversion to determine which version of
Microsoft Visual Studio built the JDK. This version may vary depending on the JDK
release.

Chapter 5
Microsoft Visual C++ Version Considerations

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 10 of 10

6
Troubleshoot Process Hangs and Loops

This chapter provides information and guidance about some specific procedures for
troubleshooting hanging or looping processes.
Problems can occur that involve hanging or looping processes. A hang can occur for many
reasons, but often stems from a deadlock in an application code, API code, or library code. A
hang can be due to a bug in the Java HotSpot VM.

Sometimes an apparent hang turns out to be, in fact, a loop. For example, a bug in a VM
process that causes one or more threads to go into an infinite loop can consume all available
CPU cycles.

The initial step when you diagnose a hang is to find out if the VM process is idle or consuming
all available CPU cycles. You can do this using a native operating system (OS) utility. If the
process appears to be busy and is consuming all available CPU cycles, then it is likely that the
issue is a looping thread rather than a deadlock. On the Oracle Solaris operating system, for
example, the command prstat -L -p pid can be used to report the statistics for all
lightweight processes (LWPs) in the target process and therefore will identify the threads that
are consuming a lot of CPU cycles.

This chapter contains the following sections:

• Diagnose a Loop Process

• Diagnose a Hung Process

• Oracle Solaris 8 Thread Library

Diagnose a Loop Process
If a VM process appears to be looping, try to get a thread dump. A thread dump often makes it
clear which thread is looping, and the trace stack in the thread dump can provide the direction
on where (and maybe why) the thread is looping.

If the application console (standard input/output) is available, then press the Control+\ key
combination (on Oracle Solaris or Linux) or the Control+Break key combination (on Windows)
to cause the HotSpot VM to print a thread dump, including thread state. On Oracle Solaris and
Linux operating systems the thread dump can also be obtained by sending a SIGQUIT to the
process (command kill -QUIT pid). In this case, the thread dump is printed to the standard
output of the target process. The output might be directed to a file, depending on how the
process was started.

If the Java process is started with the -XX:+PrintClassHistogram command-line option,
then the Control+Break handler will produce a heap histogram.

If a thread dump can be obtained, then a good place to start is the thread stacks of the threads
that are in the RUNNABLE state. See Thread Dump, for more information about the format of the
thread dump, as well as a table of the possible thread states in the thread dump. In some
cases, it might be necessary to get a sequence of thread dumps in order to determine which
threads appear to be continuously busy.

If the application console is not available (for example, the process is running in the
background, or the VM output is directed to an unknown location), then the jstack utility or the

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 6

jhsdb jstack utility can be used to get the stack thread. See The jstack Utility or the jstack
mode of jhsdb for more about the output of these utilities. The jstack utility or the jhsdb
jstack utility should also be used if the thread dump does not provide any evidence that a
Java thread is looping.

When reviewing the output of the jstack utility, focus initially on the threads that are in the
RUNNABLE state. This is the most likely state for threads that are busy and possibly looping. It
might be necessary to execute jstack a number of times to get a better idea of which threads
are looping. If a thread appears to be always in the RUNNABLE state, then use jhsdb jstack
with the --mixed option to print the native frames and provide a further hint about what the
thread is doing. If a thread appears to be looping continuously while in the RUNNABLE state, then
this situation can indicate a potential HotSpot VM bug that needs further investigation.

If the VM does not respond to Control+\, then this could indicate a VM bug rather than an issue
with the application or library code. In this case, use jhsdb jstack with the --mixed option to
get a thread stack for all threads. The output will include the thread stacks for VM internal
threads. In this stack trace, identify threads that do not appear to be waiting. For example, on
the Oracle Solaris operating system, you identify the threads that are not in functions such as
__lwp_cond_wait, __lwp_park, ___pollsys, or other blocking functions. If it appears that the
looping is caused by a VM bug, then collect as much data as possible and submit a bug report.
See Submit a Bug Report for more about data collection.

Diagnose a Hung Process
Use the thread dump to diagnose a hung process.

If the application appears to be hung and the process appears to be idle, then the first step is
to try to get a thread dump. If the application console is available, then press Control+\ (on
Oracle Solaris or Linux), or Control+Break (on Windows) to cause the HotSpot VM to print a
thread dump. On the Oracle Solaris and Linux operating systems, the thread dump can also be
obtained by sending a SIGQUIT to the process (command kill -QUIT pid). If the hung
process can generate a thread dump, then the output is printed to the standard output of the
target process.

After printing the thread dump, the HotSpot VM executes a deadlock detection algorithm.

The following sections describe various situations for a hung process.

• Deadlock Detected

• Deadlock Not Detected

• No Thread Dump

Deadlock Detected
If a deadlock is detected, then it will be printed along with the stack trace of the threads
involved in the deadlock.

The following example shows the stack trace for this situation.

Found one Java-level deadlock:
=============================
"AWT-EventQueue-0":
 waiting to lock monitor 0x000ffbf8 (object 0xf0c30560, a
java.awt.Component$AWTTreeLock),
 which is held by "main"
"main":

Chapter 6
Diagnose a Hung Process

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 6

 waiting to lock monitor 0x000ffe38 (object 0xf0c41ec8, a java.util.Vector),
 which is held by "AWT-EventQueue-0"

Java stack information for the threads listed above:
===
"AWT-EventQueue-0":
 at java.awt.Container.removeNotify(Container.java:2503)
 - waiting to lock <0xf0c30560> (a java.awt.Component$AWTTreeLock)
 at java.awt.Window$1DisposeAction.run(Window.java:604)
 at java.awt.Window.doDispose(Window.java:617)
 at java.awt.Dialog.doDispose(Dialog.java:625)
 at java.awt.Window.dispose(Window.java:574)
 at java.awt.Window.disposeImpl(Window.java:584)
 at java.awt.Window$1DisposeAction.run(Window.java:598)
 - locked <0xf0c41ec8> (a java.util.Vector)
 at java.awt.Window.doDispose(Window.java:617)
 at java.awt.Window.dispose(Window.java:574)
 at
javax.swing.SwingUtilities$SharedOwnerFrame.dispose(SwingUtilities.java:1743)
 at
javax.swing.SwingUtilities$SharedOwnerFrame.windowClosed(SwingUtilities.java:1
722)
 at java.awt.Window.processWindowEvent(Window.java:1173)
 at javax.swing.JDialog.processWindowEvent(JDialog.java:407)
 at java.awt.Window.processEvent(Window.java:1128)
 at java.awt.Component.dispatchEventImpl(Component.java:3922)
 at java.awt.Container.dispatchEventImpl(Container.java:2009)
 at java.awt.Window.dispatchEventImpl(Window.java:1746)
 at java.awt.Component.dispatchEvent(Component.java:3770)
 at java.awt.EventQueue.dispatchEvent(EventQueue.java:463)
 at
java.awt.EventDispatchThread.pumpOneEventForHierarchy(EventDispatchThread.java
:214)
 at
java.awt.EventDispatchThread.pumpEventsForHierarchy(EventDispatchThread.java:1
63)
 at
java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:157)
 at
java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:149)
 at java.awt.EventDispatchThread.run(EventDispatchThread.java:110)
"main":
 at java.awt.Window.getOwnedWindows(Window.java:844)
 - waiting to lock <0xf0c41ec8> (a java.util.Vector)
 at
javax.swing.SwingUtilities$SharedOwnerFrame.installListeners(SwingUtilities.ja
va:1697)
 at
javax.swing.SwingUtilities$SharedOwnerFrame.addNotify(SwingUtilities.java:1690
)
 at java.awt.Dialog.addNotify(Dialog.java:370)
 - locked <0xf0c30560> (a java.awt.Component$AWTTreeLock)
 at java.awt.Dialog.conditionalShow(Dialog.java:441)
 - locked <0xf0c30560> (a java.awt.Component$AWTTreeLock)
 at java.awt.Dialog.show(Dialog.java:499)
 at java.awt.Component.show(Component.java:1287)

Chapter 6
Diagnose a Hung Process

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 6

 at java.awt.Component.setVisible(Component.java:1242)
 at test01.main(test01.java:10)

Found 1 deadlock.

The default deadlock detection works with locks that are obtained using the synchronized
keyword, as well as with locks that are obtained using the java.util.concurrent package. If
the Java VM flag -XX:+PrintConcurrentLocks is set, then the stack trace also shows a
list of lock owners.

If a deadlock is detected, then you must examine the output in more detail in order to
understand the deadlock. In the previous example, the thread main is locking object
0xf0c30560 and is waiting to enter 0xf0c41ec8, which is locked by thread AWT-EventQueue-0.
However, thread AWT-EventQueue-0 is waiting to enter 0xf0c30560, which is locked by main.

The detail in the stack traces provides information to help you find the deadlock.

Deadlock Not Detected
If the thread dump is printed and no deadlocks are found, then the issue might be a bug in
which a thread is waiting for a monitor that is never notified. This could be a timing issue or a
general logic bug.

To find out more about the issue, examine each of the threads in the thread dump and each
thread that is blocked in Object.wait(). The caller frame in the stack trace indicates the class
and method that is invoking the wait() method. If the code was compiled with line number
information (the default), then this provides a direction as to the code to examine. In most
cases, you must have some knowledge of the application logic or library in order to diagnose
this issue further. In general, you must understand how the synchronization works in the
application and the details and conditions for when and where the monitors are notified.

No Thread Dump
If the VM is deadlocked or hung, use the jstack or jhsdb jstack command.

If the VM does not respond to Control+\ or Control+Break, then it is possible that the VM is
deadlocked or hung for some other reason. In that case, use The jstack Utility or jhsdb jstack
to get a thread dump. This also applies in the case when the application is not accessible, or
the output is directed to an unknown location.

In the thread dump, examine each of the threads in the BLOCKED state. The top frame can
sometimes indicate why the thread is blocked (for example, Object.wait or Thread.sleep).
The rest of the stack will give an indication of what the thread is doing. This is particularly true
when the source is compiled with line number information (the default), and you can cross-
reference the source code.

If a thread is in the BLOCKED state and the reason is not clear, then use jhsdb jstack --mixed
to get a mixed stack. With the mixed stack output, it should be possible to identify why the
thread is blocked. If a thread is blocked trying to enter a synchronized method or block, then
you will see frames such as ObjectMonitor::enter near the top of the stack. The following
example shows a sample, mixed-stack output.

----------------- t@13 -----------------
0xff31e8b8 ___lwp_cond_wait + 0x4
0xfea8c810 void ObjectMonitor::EnterI(Thread*) + 0x2b8

Chapter 6
Diagnose a Hung Process

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 6

0xfeac86b8 void ObjectMonitor::enter2(Thread*) + 0x250
:

Threads in the RUNNABLE state might also be blocked. The top frames in the mixed stack should
indicate what the thread is doing.

One specific thread to check is VMThread. This is the special thread used to execute operations
like garbage collection (GC). It can be identified as the thread that is executing
VMThread::run() in its initial frames. On the Oracle Solaris, it is typically t@4. On Linux, it
should be identifiable using the C++ mangled name _ZN8VMThread4loopEv.

In general, the VM thread is in one of three states: waiting to execute a VM operation,
synchronizing all threads in preparation for a VM operation, or executing a VM operation. If you
suspect that a hang is a HotSpot VM bug rather than an application or class library deadlock,
then pay special attention to the VM thread.

If the VM thread appears to be stuck in SafepointSynchronize::begin, then this could
indicate an issue bringing the VM to a safepoint. A safepoint indicates that all threads
executing in the VM are blocked and waiting for a special operation, such as GC, to complete.

If the VM thread appears to be stuck in function, where function ends in doit, then this
could also indicate a VM problem.

In general, if you can execute the application from the command line, and you get to a state
where the VM does not respond to Control+\ or Control+Break, it is more likely that you have
uncovered a VM bug, a thread library issue, or a bug in another library. When this occurs, get a
crash dump. See Collect Core Dumps for instructions about gathering as much information as
possible, and submit a bug report or call support.

One other tool to mention in the context of hung processes is the pstack utility on the Oracle
Solaris operating system. On the Oracle Solaris 8 and 9 operating systems, this utility prints
the thread stacks for LWPs in the target process. On the Oracle Solaris 10 operating system
and starting with the JDK 5.0 release, the output of pstack is similar, though not identical, to
the output from jhsdb jstack --mixed.The Oracle Solaris 10 operating system
implementation of pstack prints the fully qualified class name, method name, and bytecode
index (BCI). It will also print line numbers for cases where the source was compiled with line
number information (the default). This is useful for developers and administrators who are
familiar with the other utilities on the Oracle Solaris operating system that exercise features of
the /proc file system.

The equivalent tool of pstack on Linux is lsstack. This utility is included in some distributions
and otherwise obtained from sourceforge. At the time of this writing, lsstack reported native
frames only.

Oracle Solaris 8 Thread Library
The default thread library on the Oracle Solaris 8 operating system is often referred to as the
T1 library. This thread library implemented the m:n threading model, where m user threads are
mapped to n kernel-level threads (LWPs). The Oracle Solaris 8 operating system also shipped
with an alternative and newer thread library in /usr/lib/lwp. The alternative thread library is
often referred to as the T2 library, and it became the default thread library in the Oracle Solaris
9 and 10 operating systems. In older releases of J2SE (pre-1.4.0 in particular), there were a
number of issues with the default thread library (for example, bugs in the thread library, LWP
synchronization problems, or LWP starvation). LWP starvation is a scenario in which there are
user threads in the RUNNABLE state, but there are no kernel level threads available.

Chapter 6
Oracle Solaris 8 Thread Library

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 6

http://sourceforge.net

Although the issues cited are historical, it should be noted that when the JDK software is
deployed on the Oracle Solaris 8 operating system, it still uses the T1 library by default. LWP
starvation type issues do not happen because the JDK release uses "bound threads" so that
each user thread is bound to a kernel thread. However, in the event that you encounter an
issue, such as a hang, that you believe is a thread library issue, then you can instruct the
HotSpot VM to use the T2 library by adding /usr/lib/lwp to the LD_LIBRARY_PATH. To check if the
T2 library is in use, issue the command pldd pid to list the libraries loaded by the specified
process.

Chapter 6
Oracle Solaris 8 Thread Library

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 6 of 6

7
Handle Signals and Exceptions

This chapter provides information about how signals and exceptions are handled by the Java
HotSpot Virtual Machine. It also describes the signal chaining facility, available on the Oracle
Solaris, Linux, and macOS operating systems, which facilitates writing applications that must
install their own signal handlers.
This chapter contains the following sections:

• Handle Signals on Oracle Solaris, Linux, and macOS

• Handle Exceptions on Windows

• Signal Chaining

• Handle Exceptions Using the Java HotSpot VM

• Console Handlers

• Signals Used in Oracle Solaris, Linux, and macOS

Handle Signals on Oracle Solaris, Linux, and macOS
The Java HotSpot VM installs signal handlers to implement various features and to handle fatal
error conditions.

For example, in an optimization to avoid explicit null checks in cases where
java.lang.NullPointerException will be thrown rarely, the SIGSEGV signal is caught and
handled, and the NullPointerException is thrown.

In general, there are two categories where signal/traps happen:

• When signals are expected and handled, like implicit null-handling. Another example is the
safepoint polling mechanism, which protects a page in memory when a safepoint is
required. Any thread that accesses that page causes a SIGSEGV, which results in the
execution of a stub that brings the thread to a safepoint.

• Unexpected signals. This includes a SIGSEGV when executing in VM code, Java Native
Interface (JNI) code, or native code. In these cases, the signal is unexpected, so fatal error
handling is invoked to create the error log and terminate the process.

Table 7-2 lists the signals that are currently used on the Oracle Solaris, Linux, and macOS
operating systems.

Handle Exceptions on Windows
On Windows, an exception is an event that occurs during the execution of a program.

There are two kinds of exceptions: hardware exceptions and software exceptions. Hardware
exceptions are comparable to signals such as SIGSEGV and SIGKILL on the Oracle Solaris and
Linux operating systems. Software exceptions are initiated explicitly by applications or the
operating system using the RaiseException() API.

On Windows, the mechanism for handling both hardware and software exceptions is called
structured exception handling (SEH). This is stack frame-based exception handling similar to

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 6

the C++ and Java exception handling mechanism. In C++, the __try and __except keywords
are used to guard a section of code that might result in an exception, as shown in the following
example.

__try {
 // guarded body of code
 } __except (filter-expression) {
 // exception-handler block
 }

The __except block is filtered by a filter expression that uses the integer exception code
returned by the GetExceptionCode() API, exception information returned by the
GetExceptionInformation() API, or both.

The filter expression should evaluate to one of the following values:

• EXCEPTION_CONTINUE_EXECUTION = -1

The filter expression repaired the situation, and execution continues where the exception
occurred. Unlike some exception schemes, SEH supports the resumption model as well.
This is much like the UNIX signal handling in the sense that after the signal handler
finishes, the execution continues where the program was interrupted. The difference is that
the handler in this case is just the filter expression itself and not the __except block.
However, the filter expression might also involve a function call.

• EXCEPTION_CONTINUE_SEARCH = 0

The current handler cannot handle this exception. Continue the handler search for the next
handler. This is similar to the catch block not matching an exception type in C++ and Java.

• EXCEPTION_EXECUTE_HANDLER = 1

The current handler matches and can handle the exception. The __except block is
executed.

The __try and __finally keywords are used to construct a termination handler, as shown in
the following example.

__try {
 // guarded body of code
} __finally {
 // __finally block
}

When control leaves the __try block (after an exception or without an exception), the
__finally block is executed. Inside the __finally block, the AbnormalTermination() API
can be called to test whether control continued after the exception or not.

Windows programs can also install a top-level unhandled exception filter function to catch
exceptions that are not handled in the __try/__except block. This function is installed on a
process-wide basis using the SetUnhandledExceptionFilter() API. If there is no
handler for an exception, then UnhandledExceptionFilter() is called, and this will call
the top-level unhandled exception filter function, if any, to catch that exception. This function
also shows a message box to notify the user about the unhandled exception.

Windows exceptions are comparable to Unix synchronous signals that are attributable to the
current execution stream. In Windows, asynchronous events such as console events (for
example, the user pressing Control+C at the console) are handled by the console control
handler registered using the SetConsoleCtlHandler() API.

Chapter 7
Handle Exceptions on Windows

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 6

If an application uses the signal() API on Windows, then the C runtime library (CRT) maps
both Windows exceptions and console events to appropriate signals or C runtime errors. For
example, CRT maps Control+C to SIGINT and all other console events to SIGBREAK. Similarly, if
you register the SIGSEGV handler, CRT translates the corresponding exception to a signal. CRT
startup code implements a __try/__except block around the main() function. The CRT's
exception filter function (named _XcptFilter) maps the Win32 exceptions to signals and
dispatches signals to their appropriate handlers. If a signal's handler is set to SIG_DFL (default
handling), then _XcptFilter calls UnhandledExceptionFilter.

The vectored exception handling mechanism can also be used. Vectored handlers are not
frame-based handlers. A program can register zero or more vectored exception handlers using
the AddVectoredExceptionHandler API. Vectored handlers are invoked before structured
exception handlers, if any, are invoked, regardless of where the exception occurred.

vectored exception handler returns one of the following values:

• EXCEPTION_CONTINUE_EXECUTION: Skip the next vectored and SEH handlers.

• EXCEPTION_CONTINUE_SEARCH: Continue to the next vectored or SEH handler.

See the Microsoft website to know more on Windows exception handling.

Signal Chaining
Signal chaining enables you to write applications that need to install their own signal handlers.
This facility is available on Solaris, Linux, and macOS.

The signal chaining facility has the following features:

• Support for preinstalled signal handlers when you create Oracle’s HotSpot Virtual Machine.

When the HotSpot VM is created, the signal handlers for signals that are used by the
HotSpot VM are saved. During execution, when any of these signals are raised and are not
to be targeted at the HotSpot VM, the preinstalled handlers are invoked. In other words,
preinstalled signal handlers are chained behind the HotSpot VM handlers for these signals.

• Support for the signal handlers that are installed after you create the HotSpot VM, either
inside the Java Native Interface code or from another native thread.

Your application can link and load the libjsig.so shared library before the libc/
libthread/libpthread library. This library ensures that calls such as signal(), sigset(),
and sigaction() are intercepted and don’t replace the signal handlers that are used by
the HotSpot VM, if the handlers conflict with the signal handlers that are already installed
by HotSpot VM. Instead, these calls save the new signal handlers. The new signal
handlers are chained behind the HotSpot VM signal handlers for the signals. During
execution, when any of these signals are raised and are not targeted at the HotSpot VM,
the preinstalled handlers are invoked.

If support for signal handler installation after the creation of the VM is not required, then the
libjsig.so shared library is not needed.

To enable signal chaining, perform one of the following procedures to use the libjsig.so
shared library:

– Link the libjsig.so shared library with the application that creates or embeds the
HotSpot VM:

cc -L libjvm.so-directory -ljsig -ljvm java_application.c

– Use the LD_PRELOAD environment variable:

Chapter 7
Signal Chaining

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 6

http://www.microsoft.com

* Korn shell (ksh):

export LD_PRELOAD=libjvm.so-directory/libjsig.so; java_application

* C shell (csh):

setenv LD_PRELOAD libjvm.so-directory/libjsig.so; java_application

The interposed signal() , sigset() , and sigaction() calls return the saved signal
handlers, not the signal handlers installed by the HotSpot VM and are seen by the
operating system.

Note

The SIGQUIT, SIGTERM, SIGINT, and SIGHUP signals cannot be chained. If the
application must handle these signals, then consider using the —Xrs option.

Enable Signal Chaining in macOS

To enable signal chaining in macOS, set the following environment variables:

• DYLD_INSERT_LIBRARIES: Preloads the specified libraries instead of the LD_PRELOAD
environment variable available on Solaris and Linux.

• DYLD_FORCE_FLAT_NAMESPACE: Enables functions in the libjsig library and replaces the
OS implementations, because of macOS’s two-level namespace (a symbol's fully qualified
name includes its library). To enable this feature, set this environment variable to any
value.

The following command enables signal chaining by preloading the libjsig library:

$ DYLD_FORCE_FLAT_NAMESPACE=0 DYLD_INSERT_LIBRARIES="JAVA_HOME/lib/libjsig.dylib"
java MySpiffyJavaApp

Note

The library file name on macOS is libjsig.dylib not libjsig.so as it is on Solaris or
Linux.

Handle Exceptions Using the Java HotSpot VM
The HotSpot VM installs a top-level exception handler during initialization using the
AddVectoredExceptionHandlerAPI for 64-bit systems.

It also installs the Win32 SEH using a __try /__except block in C++ around the thread
(internal) start function call for each thread created.

Finally, it installs an exception handler around JNI functions.

If an application must handle structured exceptions in JNI code, then it can use __try /
__except statements in C++. However, if it must use the vectored exception handler in JNI
code, then the handler must return EXCEPTION_CONTINUE_SEARCH to continue to the VM's
exception handler.

Chapter 7
Handle Exceptions Using the Java HotSpot VM

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 6

In general, there are two categories in which exceptions happen:

• When exceptions are expected and handled. Examples include the implicit null handling
cited, previously where accessing a null causes an EXCEPTION_ACCESS_VIOLATION, which is
handled.

• Unexpected exceptions. An example is an EXCEPTION_ACCESS_VIOLATION when executing
in VM code, in JNI code, or in native code. In these cases, the signal is unexpected, and
fatal error handling is invoked to create the error log and terminate the process.

Console Handlers
This topic describes a list of console events that are registered with the Java HotSpot VM.

The Java HotSpot VM registers console events, as shown in Table 7-1.

Table 7-1 Console Events

Console Event Signal Usage

CTRL_C_EVENT SIGINT This event and signal is used to terminate a
process. (Optional)

CTRL_CLOSE_EVENTCTRL_LO
GOFF_EVENTCTRL_SHUTDOWN
_EVENT

SIGTERM This event and signal is used by the shutdown hook
mechanism when the VM is terminated abnormally.
(Optional)

CTRL_BREAK_EVENT SIGBREAK This event and signal is used to dump Java stack
traces at the standard error stream. (Optional)

If an application must register its own console handler, then the -Xrs option can be used. With
this option, shutdown hooks are not run on SIGTERM (with the previously shown mapping of
events), and thread dump support is not available on SIGBREAK (with the above mapping of the
Control+Break event).

Signals Used in Oracle Solaris, Linux, and macOS
This topic describes a list of signals that are used on Solaris OS, Linux, and macOS

Table 7-2 Signals Used on Oracle Solaris, Linux, and macOS

Signal Description

SIGSEGV, SIGBUS, SIGFPE, SIGPIPE, SIGILL These signals are used in the implementation for
implicit null check, and so forth.

SIGQUIT This signal is used to dump Java stack traces to the
standard error stream. (Optional)

SIGTERM, SIGINT, SIGHUP These signals are used to support the shutdown
hook mechanism
(java.lang.Runtime.addShutdownHook) when
the VM is terminated abnormally. (Optional)

SIGJVM1 , SIGJVM2 These signals are reserved for use by the Java
Virtual Machine. (Solaris only)

SIGUSR2 This signal is used internally on Linux and macOS.
It is not used by the VM on Solaris.

Chapter 7
Console Handlers

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 6

Table 7-2 (Cont.) Signals Used on Oracle Solaris, Linux, and macOS

Signal Description

SIGABRT The HotSpot VM does not handle this signal.
Instead, it calls the abort function after fatal error
handling. If an application uses this signal, then it
should terminate the process to preserve the
expected semantics.

Signals tagged as "optional" are not used when the -Xrs option is specified to reduce signal
usage. With this option, fewer signals are used, although the VM installs its own signal handler
for essential signals such as SIGSEGV. Specifying this option means that the shutdown hook
mechanism will not execute if the process receives a SIGQUIT, SIGTERM, SIGINT, or SIGHUP.
Shutdown hooks will execute, as expected, if the VM terminates normally (that is, when the last
non-daemon thread completes or the System.exit method is invoked).

SIGUSR2 is used to implement, suspend, and resume on Linux and macOS. However, it is
possible to specify an alternative signal to be used instead of SIGUSR2. This is done by
specifying the _JAVA_SR_SIGNUM environment variable. If this environment variable is set, then
it must be set to a value larger than the maximum of SIGSEGV and SIGBUS.

Chapter 7
Signals Used in Oracle Solaris, Linux, and macOS

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 6 of 6

Part III
Debug Core Library Issues

This part describes issues and troubleshooting techniques that arise with time zone settings
and contains the following topic.

• Time Zone Settings in the JRE

Describes some issues that arise with time zone settings with Java Runtime Environment
(JRE) and troubleshooting techniques to resolve these issues.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 1

8
Time Zone Settings in the JRE

This chapter describes some issues that can arise with time zone settings with the Java
Runtime Environment (JRE) on the Windows operating system. It further describes
troubleshooting techniques and workarounds to solve these issues.
This chapter contains the following sections:

• Native Time Zone Information and the JRE

• Determine the Default Time Zone on Windows

Native Time Zone Information and the JRE
The JRE reads the native time zone information to determine your default time zone.

For example, on Windows, the JRE queries the registry to determine the default time zone.

However, the JRE also maintains its own time zone database. This provides cross-platform
support because the different operating system APIs are not sufficient to support the Java
APIs. The Java time zone database supports time zone IDs and determines daylight saving
time rules for all the time zones that the JRE supports. The tzupdater tool is available for
download from the Java SE Download Page.

Modifications to the JRE for each specific operating system are necessary so that the
operating system can deliver the system time to the JRE. Then, if a Java application requests
the system date by calling date and time related constructors, the system time is returned.

Examples of such constructors are:

java.util.Date()

java.util.GregorianCalendar()

Constructors related to date and time include:

System.currentTimeMillis()

System.nanoTime()

Operating system-specific patches might be required to ensure that the correct system time is
delivered to the JRE.

The following sections describe troubleshooting techniques for time zone settings.

• Determine the Time Zone Data Version in Use

• Troubleshoot Problems with TZupdater

Determine the Time Zone Data Version in Use
The time zone database version that ships in any Java runtime from Oracle is documented in
the release notes. However, the actual version can be different from the version mentioned
there if the Java runtime was patched using the Java time zone updater tool called tzupdater.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 6

http://www.oracle.com/technetwork/java/javase/downloads/index.html

To determine the current time zone data version of your Java runtime using the tzupdater tool,
run the tool with the -V option as shown in the following example:

java -jar tzupdater.jar -V

Here is a typical output from running the tzupdater tool.

tzupdater version 2.2.0-b01
JRE tzdata version: tzdata2018g

You can download the tzupdater tool from this web page: Timezone Updater Tool.

Troubleshoot Problems with TZupdater
Sometimes, when you run tzupdater, it quits with the message: “There's no tzdata available
for this Java runtime." The following are two examples.

$ java -jar tzupdater.jar -V
tzupdater version 2.1.1-b01
JRE tzdata version: tzdata2017b
There's no tzdata available for this Java runtime.

The likely cause is that you are using a Java runtime that is not from Oracle. Oracle provides
the Java runtime for Oracle Solaris (x64, SPARC), Linux (x64), Microsoft Windows (x64), and
macOS (x64). The java.vendor property value for these is Sun Microsystems Inc., Oracle
Corporation, or BEA Systems, Inc. Oracle does not provide the Java runtime for other
platforms.

The output of running the java -version command does not provide enough information to
determine the actual vendor of a Java runtime. However, running tzupdater in update mode
with the -v option does print out the java.vendor property. The following example shows the
result of running tzupdater when the environment is HP_UX from Hewlett Packard.

root@my_server:/opt/java6/bin> uname -a
HP-UX my_server B.11.23 U ia64 1114591084 unlimited-user license
root@my_server:/opt/java6/bin> ./java -version
java version "1.6.0.05"
Java(TM) SE Runtime Environment (build 1.6.0.05-jinteg_14_oct_2009_01_44-b00)
Java HotSpot(TM) Server VM (build 14.2-b01-jre1.6.0.05-rc5, mixed mode)
root@my_server:/opt/java6/bin> ./java -jar tzupdater.jar -v -l
java.home: /opt/java6/jre
java.vendor: Hewlett-Packard Co.
java.version: 1.6.0.05
JRE tzdata version: tzdata2009i
There's no tzdata available for this Java runtime.

In the previous example, java.vendor is set to “Hewlett-Packard Co." The Java runtime that
you are trying to update using tzupdater is not supported by Oracle.

A possible solution is to visit the website of your Java runtime vendor and determine whether a
time zone updater tool is available.

Chapter 8
Native Time Zone Information and the JRE

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 6

http://www.oracle.com/technetwork/java/javase/tzupdater-readme-136440.html

Determine the Default Time Zone on Windows
This section clarifies how the JRE determines the default time zone on the Windows 10 and
later operating systems. If the expected time zone isn't reported, then use the troubleshooting
techniques provided in the following sections:

• Check the Default Time Zone Java Runtime Reports

• Determine the Setting in the Control Panel

• Check for Automatic Daylight Saving Time Adjustment

• Set the Default Time Zone in Windows Settings

• Check -Duser.timezone System Property

• Special Tool in Windows

• Internal Representation of Time Zone Mappings

Check the Default Time Zone Java Runtime Reports
You can write a simple program to determine which time zone the JDK reports the default time
zone-based on a check with the native operating system.

The Java program in the following example returns the default time zone:

public class DefaultTimeZone {
 public static void main(String[] args) {
 System.out.println(java.util.TimeZone.getDefault().getID());
 }
}

You can save the code snippet in the previous example to a file named DefaultTimeZone.java
and compile it using the javac command. Then, you can run the compiled DefaultTimeZone
class, as shown in the following example.

c:\tztest> javac DefaultTimeZone.java
c:\tztest> java DefaultTimeZone
Europe/Berlin

In the previous example, the default time zone is Europe/Berlin. Running the program should
display your local time zone. If the output is not the expected time zone, then continue with the
following troubleshooting steps.

Determine the Setting in the Control Panel
You can change or examine the system's default time zone using Windows Settings or the
Windows Control Panel. For example, you can select this time zone setting in Windows 10:

(UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

The corresponding value for the Registry key TimeZoneKeyName is “W. Europe Standard Time."

Chapter 8
Determine the Default Time Zone on Windows

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 6

Check for Automatic Daylight Saving Time Adjustment
You can check whether the automatic adjustment of daylight saving time is enabled through
the graphical user interface (GUI) or through the Windows registry.

• GUI Method: To use the Control Panel to check whether automatic adjustment of daylight
saving time is enabled:

1. Click the Windows Start button and then click Control Panel.

2. Click Date and Time.

3. Click the Change Time Zone button.

4. There is a check box labeled “Automatically adjust time for Daylight Savings Time.
“See if this check box is selected, and change the setting if you want.

5. Click OK. This returns you to the Date and Time dialog box.

• Windows Registry Method: You can run Windows Registry Editor to check whether
automatic adjustment of daylight saving time is enabled.

Note

It is a good practice to back up the Windows registry before reviewing or editing it.
If you make a mistake, you can damage the Windows registry.

To enable the automatic adjustment of daylight saving time from the Windows registry:

1. Click the Windows Start button.

2. In the Search programs and files field, enter regedit and then press Enter to open the
Registry Editor.

3. In the Registry Editor, search for the key DynamicDaylightTimeDisabled and look at
the setting.

If the registry setting is 1, then dynamic daylight time is disabled.

If the registry setting is 0, then dynamic daylight time is enabled.

If you prefer, you can access the Windows registry from the Windows command window.

In the following example, the registry setting is 1. With this setting, the clock is not
automatically adjusted for daylight saving time.

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\TimeZoneInformation]
"DynamicDaylightTimeDisabled"=dword:00000001

If you disable the DynamicDaylightTimeDisabled option, then Java returns a GMT (Greenwich
Mean Time) offset and not a time zone ID that is compatible with the uniform naming
convention (such as "Europe/Berlin"). For example, the offset will be expressed as GMT+01
and not "Europe/Berlin."

Set the Default Time Zone in Windows Settings
You can change or review the system's default time zone by using Windows Settings.

To set the system's default time zone from Windows Settings:

Chapter 8
Determine the Default Time Zone on Windows

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 6

1. Click the Windows Start button.

2. Click Settings.

3. Click Time & Language.

4. From the Time zone drop-down list, select your preferred time zone.

For example, you can select this time zone in Windows 10:

(UTC)+1:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna.

The corresponding value for the Registry key TimeZoneKeyName is “W. Europe Standard Time."

Check -Duser.timezone System Property
You can explicitly set a default time zone on the command line by using the Java system
property called user.timezone. This bypasses the settings in the Windows operating system
and can be a workaround. For instance, this setting is useful if you want daylight saving time
(DST) only for a single Java program running on the system.

The following example shows the system property -Duser.timezone. Compile the
DefaultTimeTestZone.java program discussed in Check the Default Time Zone Java Runtime
Reports from the Windows Command Prompt window. Run the following command:

c:\tztest> java -Duser.timezone=America/New_York DefaultTimeTestZone America/
New_York

If setting a default time zone explicitly by specifying -Duser.timezone works for the
DefaultTimeTestZone program, but does not work for your program, you should check whether
your code overwrites the default Java time zone during runtime with a method call such as this:

TimeZone.setDefault(TimeZone zone)

Special Tool in Windows
The Windows operating system provides a tool called tzutil.exe. With this tool, you can
request the current time zone ID abbreviation without manually reading the registry.

Here is an example of running tzutil.exe. The first line is the command that you enter in the
Windows Command Prompt window. The second line is the system response.

tzutil /g

W. Europe Standard Time

Internal Representation of Time Zone Mappings
On Windows, the Java runtime uses a file <java-home>\lib\tzmappings to represent the
mapping between Windows and Java time zones. Each line in the file has three tokens. The
first token is the Windows time zone registry key called TimeZoneKeyName. See Determine the
Setting in the Control Panel.

The second token is a country code or the default code 001, which is the UN M49 code
meaning "World". The third token represents the Java time zone ID.

Chapter 8
Determine the Default Time Zone on Windows

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 6

If you select the time zone called (UTC+01:00) Amsterdam, Berlin, Bern, Rome,
Stockholm, Vienna in the Windows Control Panel, then the relevant lines in the file
tzmappings are:

W. Europe Standard Time:AD:Europe/Andorra:
W. Europe Standard Time:AT:Europe/Vienna:
W. Europe Standard Time:CH:Europe/Zurich:
W. Europe Standard Time:DE:Europe/Berlin:
W. Europe Standard Time:GI:Europe/Gibraltar:
W. Europe Standard Time:IT:Europe/Rome:
W. Europe Standard Time:LI:Europe/Vaduz:
W. Europe Standard Time:LU:Europe/Luxembourg:
W. Europe Standard Time:MC:Europe/Monaco:
W. Europe Standard Time:MT:Europe/Malta:
W. Europe Standard Time:NL:Europe/Amsterdam:
W. Europe Standard Time:NO:Europe/Oslo:
W. Europe Standard Time:SE:Europe/Stockholm:
W. Europe Standard Time:SJ:Arctic/Longyearbyen:
W. Europe Standard Time:SM:Europe/San_Marino:
W. Europe Standard Time:VA:Europe/Vatican:
W. Europe Standard Time:001:Europe/Berlin:

In this example, the Java runtime recognizes your default time zone (token number three)
based on your country. For example, if your country code is AD, then your default time zone is
"Europe/Andorra".

If there is no appropriate mapping entry in the tzmappings file, then it is possible that
Microsoft introduced a new time zone in a Windows update and that the new time zone is not
available to the Java runtime. In this situation, you can file a bug report, and request a new
entry in the tzmappings file from Oracle Java bugs website.

A similar disconnect between the operating system and the Java runtime is possible if you ran
the tool tzedit.exe. This tool is provided by Microsoft, and allows users to add new time
zones. The Java runtime is unlikely to have a time zone introduced into the system by this tool.
Again, the solution is to file a bug to request that a new entry be added to the tzmappings
file.

Chapter 8
Determine the Default Time Zone on Windows

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 6 of 6

http://bugs.java.com

Part IV
Debug Client Issues

This part describes Java client issues, troubleshooting techniques, and debugging tips for
client issues. The following topics are included.

• Introduction to Client Issues

Provides an overview of Java client technologies, describes Java client issues, and
troubleshooting tips.

• AWT

Provides guidance on specific procedures for debugging issues that occur with Java SE
Abstract Windows Toolkit (AWT).

• Java 2D

Provides guidance about troubleshooting some common issues found in Java 2D API.

• Swing

Provides guidance about troubleshooting some common issues found in Java SE Swing
API.

• Internationalization

Provides guidance about troubleshooting some issues found in Java Internationalization.

• Java Sound

Describes some issues and causes that happen with Java Sound technology and suggests
workarounds.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 1

9
Introduction to Client Issues

This chapter explains how the different Java SE Desktop technologies interact with each other.
In addition, the chapter helps you to pinpoint the technology from which you might start
troubleshooting your problem and provides general troubleshooting tips.
This chapter contains the following sections:

• Java SE Desktop Technologies

• General Steps to Troubleshoot an Issue

• Identify the Type of Issue

• Basic Tools

• Java Debug Wire Protocol

Java SE Desktop Technologies
Java SE Desktop consists of several technologies used to create rich client applications.

The desktop tools and libraries provide an interface between the Java application and the core
tools and libraries of the platform, as shown in Figure 9-1.

Figure 9-1 Overview of the Java SE Desktop

This topic describes troubleshooting techniques for the following Java SE desktop
technologies:

• Abstract Window Toolkit (AWT) provides a set of application programming interfaces
(APIs) for constructing graphical user interface (GUI) components such as menus, buttons,

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 7

text fields, dialog boxes, check boxes, and for handling user input through those
components. In addition, AWT allows for rendering of simple shapes such as ovals and
polygons and enables developers to control the interface layout and fonts used by their
applications. It also includes data transfer classes (including drag and drop) that allow cut
and paste through the native platform clipboard.

The classes of this API are at the bottom of the software stack (closest to the underlying
operating and desktop system).

AWT also provides a set of heavyweight components.

Purely AWT applications are usually not related to Swing. If an AWT application does
custom rendering, it uses Java 2D.

• Java 2D is a set of classes for advanced 2D graphics and imaging. It encompasses line
art, text, and images in a single comprehensive model. The API provides extensive support
for image compositing and alpha channel images, a set of classes to provide accurate
color space definition and conversion, and a rich set of display-oriented imaging operators.
These classes are provided as additions to the java.awt and java.awt.image packages.

Like AWT, Java 2D is also at the bottom of the software stack (closest to the underlying
operating and desktop system).

• Swing provides a comprehensive set of GUI components and services which enables the
development of commercial-quality desktop and Internet/Intranet applications.

Swing is built on top of many of the other Java SE Desktop technologies, including AWT,
Java2D and Internationalization. In most cases the Swing high-level components are
recommended instead of those in AWT. However, there are many APIs in AWT that are
important to understand when programming in Swing.

Since Swing is a lightweight toolkit, it has very little interaction with the native platform.
Swing uses Java 2D for rendering, and AWT provides creation and manipulation of top-
level components, such as Windows, Frames, and Dialogs.

• Internationalization is the process of designing software so that it can be adapted
(localized) to various languages and regions easily, cost-effectively, and in particular
without engineering changes to the software. Localization is performed by simply adding
locale-specific components, such as translated text, data describing locale-specific
behavior, fonts, and input methods.

In Java SE, internationalization support is fully integrated into the classes and packages
that provide language-dependent or culture-dependent functionality.

To know more about internationalization APIs and features of Java SE, see
Internationalization Overview.

• Java Sound provides low-level support for audio operations such as audio playback and
capture (recording), mixing, musical instrument digital interface (MIDI) sequencing, and
MIDI synthesis in an extensible, flexible framework. This API is supported by an efficient
sound engine which guarantees high-quality audio mixing and MIDI synthesis capabilities
for the platform.

The better you understand the relationships between these technologies, the more quickly you
can pinpoint the area your problem falls into.

General Steps to Troubleshoot an Issue
General steps to troubleshoot problems in your application.

When you experience problems running your application, follow the steps below for
troubleshooting the issue.

Chapter 9
General Steps to Troubleshoot an Issue

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 7

1. Identify the symptom:

• Identify the Type of Issue.

• Find the problem area.

• Note the vant configuration information.

2. Eliminate non-issues:

• Ensure that the correct patches, drivers, and operating systems are installed.

• Try earlier releases (back-tracing).

• Minimize the test. Restrict the test to as few issues at a time as possible.

• Minimize the hardware and software configuration. Determine if the problem is
reproducible on a single system and on multiple systems. Determine if the problem
changes with the browser version.

• Determine if the problem depends on whether multiple VMs are installed.

3. Find the cause:

• Check for typical causes in the area.

• Use flags to change defaults.

• Use tracing.

• In exceptional cases, use system properties to temporarily change the behavior of the
painting system.

4. Find the fix:

• Find a possible workaround.

• File a bug.

For guidance about how to submit a bug report and suggestions about what data to
collect for the report, see Submit a Bug Report.

• Fix the setup.

• Fix the application.

Identify the Type of Issue
Guidance about identifying the problem you are experiencing, and finding the cause and
solution.

First of all, take a moment to categorize the problem you are experiencing. This will help you to
identify the specific area of the problem, find the cause, and ultimately determine a solution or
a workaround.

The following subsections below provide information about common issue types:

• Java Client Crashes

• Performance Problems

• Behavior Problems

Some of these might seem obvious, but it is always helpful to consider every possibility and to
eliminate what is not an issue.

Chapter 9
Identify the Type of Issue

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 7

Java Client Crashes
An error log is created that contains information and the state obtained at the time of the fatal
error, when the Java client crashes.

The default name of the error log file is hs_err_pid.log where pid is the process identifier (PID)
of the process that crashed. For a standalone Java application this file is created in the current
directory.

To know more about the fatal error log, see Fatal Error Log.

A line near the top of the header section indicates the library where the error occurred. The
following example shows that the crash was related to the AWT library.

...
Java VM: Java HotSpot(TM) Client VM (1.6.0-beta2-b76 mixed mode, sharing)
Problematic frame:
C [awt.dll+0x123456]
...

If the crash occurred in the Java Native Interface (JNI), it was likely to have been caused by
the desktop libraries. A crash in a native library typically means a problem in Java 2D or AWT
because Swing does not have much native code. The small amount of native code in Swing is
then concerned with the native look and feel, and if your application is using native look and
feel, then the crash may be related to this area.

The error log usually shows the exact library where the crash occurred, and this can give you a
good idea of the cause. Crashes in libraries which are not part of the Java Development Kit
(JDK) usually indicate problems with the environment, for example, bad video drivers or
desktop managers.

Performance Problems
Performance problems are harder to diagnose because you generally do not have as much
information.

First, you must determine which technology has the problem. For example, rendering
performance problems are probably in Java 2D, and responsiveness issues can be Swing-
related.

Performance-related problems can be divided into the following categories:

• Startup

How long does the application take to start up and become useful to the user?

• Footprint

How much memory does the application take? This can be measured by tools such as
Task Manager on Windows or top and prstat on the Oracle Solaris and Linux operating
systems.

• Runtime

How fast does the application complete the task it is designed to perform? For example, if
the application computes something, how long does it take to finish the computations? In
the case of a game, is the frame rate acceptable, and does the animation look smooth?

Note: This is not the same as responsiveness, which is the next topic.

Chapter 9
Identify the Type of Issue

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 7

• Responsiveness

How fast does the application respond to user interaction? If the user clicks a menu, how
long does it take for the menu to appear? Can a long-running task be interrupted? Does
the application repaint fast enough so that it does not appear to be slow?

Behavior Problems
Guidance about dealing with various problems in the application.

In addition to crashes, various behavior-related problems can occur. Some of these problems
are listed below. Their descriptions can guide you to the Java SE Desktop technology to
troubleshoot.

• Hangs occur when the application stops responding to user input. See Troubleshoot
Process Hangs and Loops .

• Exceptions in Java code are visibly thrown to the console or the application log files. An
examination of this output will guide you to the problem area.

• Rendering and repainting issues indicate a problem in Java 2D or in Swing. For
example, the application’s appearance is incorrect after a repaint that was caused by
another application being dragged over it. Other examples are incorrect font, wrong colors,
scrolling, damaging the application's frame by dragging another window over it, and
updating a damaged area.

A quick test is the following: If the problem is reproducible on a different platform (for
example, the problem was originally seen on Windows, and it is also present on Oracle
Solaris or Linux), it is very likely to be a Swing PaintManager problem.

For the ways to change the Java 2D rendering pipelines with some flags, see Java 2D.
This can also help determine if the problem is related to Java 2D or to Swing.

Multiscreen-related repainting issues belong to Java 2D (for example, repainting problems
when moving a window from one screen to another, or other unusual behavior caused by
the interaction with a non-default screen device).

• Issues related to desktop interaction indicate a problem in AWT. Some examples of
such issues occur when moving, resizing, minimizing and maximizing windows, handling
focus, enumerating multiple screens, using modality, interacting with the notification area
(system tray), and viewing splash screens.

• Drag-and-drop problems are related to AWT.

• Printing problems could be related either to Java 2D or AWT depending on the API that is
used.

• Text-rendering issues in AWT applications might be a problem in font properties or in
internationalization.

However, if your application is purely AWT, text rendering problems might also be caused
by Java 2D. On Oracle Solaris or Linux, text rendering is performed by Java 2D.

Text rendering in Swing is performed by Java 2D. Therefore, if your application uses Swing
and you have text rendering problems (such as missing glyphs, incorrect rendering of
glyphs, incorrect spacing between lines or characters, bad quality of font rendering), then
the problem is likely to be in Java 2D.

• Painting problems are most likely a Swing issue.

• Full-screen issues are related to the Java 2D API.

• Encoding and locales issues (for example, no locale-specific characters displayed)
indicate internalization problems.

Chapter 9
Identify the Type of Issue

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 7

Basic Tools
List of basic tools that can help troubleshoot certain types of issues.

This section lists a few tools that can help you troubleshoot certain types of issues.

• Performance: Benchmarks, profilers, DTrace, Java probe.

• FootPrint: jmap, profilers

• Crashes: Native debuggers

• Hangs: JConsole, jstack, Control+Break

• Font-rendering: Font2DTest (delivered with the JDK 8 demos and samples bundle in the
demo/jfc/Font2DTest directory)

Java Debug Wire Protocol
The Java Debug Wire Protocol (JDWP) is very useful for debugging applications.

To debug an application using JDWP:

1. Open the command line, and set the PATH environment variable to jdk/bin where jdk is
the installation directory of the JDK.

2. Use the following command to run the application (called Test in this example) that you
want to debug:

• On Windows:

java -Xdebug -
Xrunjdwp:transport=dt_shmem,address=debug,server=y,suspend=y Test

• On Oracle Solaris and Linux operating systems:

java -Xdebug -
Xrunjdwp:transport=dt_socket,address=8888,server=y,suspend=y Test

The Test class will start in the debugging mode and wait for a debugger to attach to it at
address debug (on Windows) or 8888 (on Oracle Solaris and Linux operating systems).

3. Open another command line, and use the following command to run jdb and attach it to
the running debug server:

• On Windows:

jdb -attach 'debug'

• On Oracle Solaris and Linux operating systems:

jdb -attach 8888

After jdb initializes and attaches to Test, you can perform Java-level debugging.

Chapter 9
Basic Tools

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 6 of 7

4. Set your breakpoints and run the application. For example, to set the breakpoint at the
beginning of the main method in Test, run the following command:

stop in Test.main run

When the jdb utility hits the breakpoint, you will be able to inspect the environment in
which the application is running and see if it is functioning as expected.

5. (Optional) To perform native-level debugging along with Java-level debugging, use native
debuggers to attach to the Java process running with JDWP.

• On Oracle Solaris, you can use the dbx utility and on Linux, you can use the gdb utility.

• On Windows, you can use Visual Studio for native-level debugging as follows:

a. Open Visual Studio.

b. On the Debug menu, select Attach to Process. Select the Java process that is
running with JDWP.

c. On the Project menu, select Settings, and open the Debug tab. In the Category
drop-down list, select Additional DLLs and add the native DLL that you want to
debug (for example, Test.dll).

d. Open the source file (one or more) of Test.dll and set your breakpoints.

e. Enter cont in the jdb window. The process will hit the breakpoint in Visual Studio.

Chapter 9
Java Debug Wire Protocol

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 7 of 7

10
AWT

This chapter provides information and guidance about some specific procedures for
troubleshooting common issues that might occur in the Java SE Abstract Window Toolkit
(AWT).
This chapter contains the following sections:

• Debug Tips for AWT

• Layout Manager Issues

• Key Events

• Modality Issues

• AWT Crashes

• Focus Events

• Data Transfer

• Other Issues

• Heavyweight or Lightweight Components Mix

Debug Tips for AWT
Helpful tips to debug issues related to AWT.

To dump the AWT component hierarchy, press Control+Shift+F1.

If the application hangs, get a stack trace by pressing Control+Break on Windows (which
sends the SIGBREAK signal) or Control+\ on the Oracle Solaris and Linux operating systems
(which sends the SIGQUIT signal).

To trace X11 errors on the Oracle Solaris and Linux operating systems, set the
sun.awt.noisyerrorhandler system property to true. In Java SE 6 and earlier releases, the
NOISY_AWT environment variable was used for this purpose.

Before Java SE 8, exceptions thrown in the AWT Event Dispatch Thread (EDT) could be
caught by setting the system property sun.awt.exception.handler to the name of the class
that implements the public void handle(Throwable) method. This mechanism was updated
in Java SE 8 to use the standard Thread.UncaughtExceptionHandler interface.

Loggers can produce helpful output when debugging AWT problems. See java.util.logging
package description.

The following loggers are available:

java.awt

java.awt.focus

java.awt.event

java.awt.mixing

sun.awt

sun.awt.windows

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 15

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.UncaughtExceptionHandler.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/package-summary.html

sun.awt.X11

Layout Manager Issues
This section describes possible problems with layout managers and provides workarounds
when available.

The following problems occur with layout managers and workarounds:

1. Call to invalidate() and validate() increases component size

Cause: Due to some specifics of the GridBagLayout layout manager, if ipadx or ipady is
set, and invalidate() and validate() are called, then the size of the component
increases to the value of ipadx or ipady. This happens because the GridBagLayout layout
manager iteratively calculates the amount of space needed to store the component within
the container.

Workaround: The JDK does not provide a reliable and simple way to detect if the layout
manager should rearrange components or not in such a case, but there is a simple
workaround. Use components with the overridden method getPreferredSize(), which
returns the current size needed, as shown in the following example.

public Dimension getPreferredSize(){
 return new Dimension(size+xpad*2+1, size+ypad*2+1);
}

2. Infinite recursion with validate() from any Container.doLayout() method

Cause: Invoking validate() from any Container.doLayout() method can lead to
infinite recursion because AWT itself invokes doLayout() from validate().

Key Events
Issues related to handling key events that do not have a solution in the current release.

The following keyboard issues are currently unresolved:

• On some non-English keyboards, certain accented keys are engraved on the key and
therefore are primary layer characters. Nevertheless, they cannot be used for mnemonics
because there is no corresponding Java keycode.

• Changing the default locale at runtime does not change the text that is displayed for the
menu accelerator keys.

• On a standard 109-key Japanese keyboard, the yen key and the backslash key both
generate a backslash, because they have the same character code for the WM_CHAR
message. AWT should distinguish them.

The following keyboard issues concern the Oracle Solaris 10 and Linux x86 systems.

• Keyboard input in these systems is usually based on the X keyboard extension (XKB) of
the X Window System. Users can configure one keyboard layout (for instance, Danish: dk)
or several layouts to switch between (for example, us and dk).

• With some keyboard layouts, for instance sk, hu, and cz, pressing the decimal separator
on the numeric keypad not only enters a delimiter but also deletes the previous character.
This is due to a native bug. A workaround is to use two layouts, for example, us and sk. In
this case, the numeric keypad works correctly in both layouts.

Chapter 10
Layout Manager Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 15

• On UNIX systems that support dynamic keyboard changes, a running Java application
does not recognize such a change. For instance, changing the keyboard from US to
German does not change the keyboard mapping. Although the X server detects the
change and sends out a MappingNotify event to interested clients AWT does not refresh
its notion of the keycode-keysym mapping.

Modality Issues
Information about issues related to using modality.

With the Java SE 6 release, many problems were fixed and many improvements were
implemented in the area of AWT modality. If you see a modality problem with Java SE 1.5 or
an earlier release, first upgrade to the latest Java SE release to see if the problem was already
fixed.

Some of the problems that were fixed in Java SE 6 are the following:

• A modal dialog box goes behind a blocked frame.

• Two modal dialog boxes with the same parent window opened at the same time.

The section addresses the following issues.

• UNIX window managers:

Many of the modality improvements are unavailable in some Oracle Solaris or Linux
environments, for example, when using Common Desktop Environment (CDE) window
managers. With Java SE 6 and later releases, to see if a modality type or modal exclusion
type is supported in a particular configuration, use the following methods:

– Toolkit.isModalityTypeSupported()

– Toolkit.isModalExclusionTypeSupported()

When a modal dialog box appears on the screen, the window manager might hide some of
the Java top-level windows in the same application from the taskbar. This can confuse end
users, but it does not affect their work much, because all the hidden windows are modal
blocked and cannot be operated.

• Other modality problems:

For more information about modality-related features and how to use them, see the AWT
Modality specification.

One of the sections in that specification describes some AWT features that might be
related to or affected by modal dialog boxes: always-on-top property, focus handling,
window states, and so on. Application behavior in such cases is usually unspecified or
depends on the platform; therefore, do not rely on any particular behavior.

AWT Crashes
This section shows you how to identify and troubleshoot crashes related to AWT.

• Distinguish an AWT crash:

When a crash occurs, an error log is created with information and the state obtained at the
time of the crash. See Fatal Error Log.

Chapter 10
Modality Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 15

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/doc-files/Modality.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/doc-files/Modality.html

A line near the top of the file indicates the library where the error occurred. The following
example shows part of the error log file in the case when the crash was related to the AWT
library.

...
Java VM: Java HotSpot(TM) Client VM (1.6.0-beta2-b76 mixed mode, sharing)
Problematic frame:
C [awt.dll+0x123456]
...

However, the crash can happen somewhere deep in the system libraries, although still
caused by AWT. In such cases, the indication awt.dll does not appear as a problematic
frame, and you need to look further in the file, in the section Stack: Native frames: Java
frames as shown in the following example.

Stack: [0x0aeb0000,0x0aef0000), sp=0x0aeefa44, free space=254k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native
code)
C 0x00abc751
C [USER32.dll+0x3a5f]
C [USER32.dll+0x3b2e]
C [USER32.dll+0x5874]
C [USER32.dll+0x58a4]
C [ntdll.dll+0x108f]
C [USER32.dll+0x5e7e]
C [awt.dll+0xec889]
C [awt.dll+0xf877d]
j sun.awt.windows.WToolkit.eventLoop()V+0
j sun.awt.windows.WToolkit.run()V+69
j java.lang.Thread.run()V+11
v ~StubRoutines::call_stub
V [jvm.dll+0x83c86]
V [jvm.dll+0xd870f]
V [jvm.dll+0x83b48]
V [jvm.dll+0x838a5]
V [jvm.dll+0x9ebc8]
V [jvm.dll+0x108ba1]
V [jvm.dll+0x108b6f]
C [MSVCRT.dll+0x27fb8]
C [kernel32.dll+0x202ed]

Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)
j sun.awt.windows.WToolkit.eventLoop()V+0
j sun.awt.windows.WToolkit.run()V+69
j java.lang.Thread.run()V+11
v ~StubRoutines::call_stub

If the text awt.dll appears somewhere in the native frames, then the crash might be
related to AWT.

• Troubleshoot an AWT crash:

One of the possible causes of crashes is that many AWT operations are asynchronous.
For example, if you show a frame with a call to frame.setVisible(true), then you
cannot be sure that it will be the active window after the return from this call.

Chapter 10
AWT Crashes

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 15

Another example concerns native file dialogs. It takes some time for the operating system
to initialize and show these dialogs, and if you dispose of them immediately after the call to
setVisible(true), then a crash might occur. Therefore, if your application contains
some AWT calls running simultaneously or immediately one after another, it is a good idea
to insert some delays between them or add some synchronization.

Focus Events
The following sections discuss the troubleshooting issues related to focus events:

• How to Trace Focus Events

• Native Focus System

• Focus Models Supported by X Window Managers

• Miscellaneous Problems with Focus

How to Trace Focus Events

You can trace focus events by adding a focus listener to the toolkit, as shown in the following
example.

Toolkit.getDefaultToolkit().addAWTEventListener(new AWTEventListener(
 public void eventDispatched(AWTEvent e) {
 System.err.println(e);
 }
), FocusEvent.FOCUS_EVENT_MASK | WindowEvent.WINDOW_FOCUS_EVENT_MASK |
 WindowEvent.WINDOW_EVENT_MASK);

The System.err stream is used here because it does not buffer the output.

Chapter 10
Focus Events

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 15

NOT_SUPPORTED

The correct order of focus events is the following:

• FOCUS_LOST on component losing focus

• WINDOW_LOST_FOCUS on top-level losing focus

• WINDOW_DEACTIVATED on top-level losing activation

• WINDOW_ACTIVATED on top-level becoming active widow

• WINDOW_GAINED_FOCUS on top-level becoming focused window

• FOCUS_GAINED on component gaining focus

When focus is transferred between components inside the focused window, only
FOCUS_LOST and FOCUS_GAINED events should be generated. When focus is transferred
between owned windows of the same owner or between an owned window and its
owner, then the following events should be generated:

• FOCUS_LOST

• WINDOW_LOST_FOCUS

• WINDOW_GAINED_FOCUS

• FOCUS_GAINED

Note

The events losing focus or activation should come first.

Native Focus System
Sometimes, a problem can be caused by the native platform. To check this, investigate the
native events that are related to focus.

Ensure that the window you want to be focused gets activated and that the component you
want to focus receives the native focus event.

On the Windows platform, the native focus events are the following:

• WM_ACTIVATE for a top-level. WPARAM is WA_ACTIVE when activating and WA_INACTIVE when
deactivating.

• WM_SETFOCUS and WM_KILLFOCUS for a component.

On the Windows platform, a concept of synthetic focus was implemented. It means that a
focus owner component only emulates its focusable state, whereas real native focus is set to a
focus proxy component. This component receives key and input method native messages
and dispatches them to a focus owner. Before JDK7, a focus proxy component was a
dedicated hidden child component inside a frame or dialog box. In the latest JDK releases a
frame or dialog box serves as a focus proxy. Now, it proxies focus not only for components in
an owned window but for all child components as well. A simple window never receives native
focus and relies on the focus proxy of its owner. This mechanism is transparent for a user but
should be taken into account when debugging.

Chapter 10
Focus Events

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 6 of 15

On Oracle Solaris and Linux operating systems, XToolkit uses a focus model that allows AWT
to manage focus itself. With this model the window manager does not directly set input focus
on a top-level window, but instead it sends only the WM_TAKE_FOCUS client message to indicate
that focus should be set. AWT then explicitly sets focus on the top-level window if it is allowed.

Note

The X server and some window managers may send focus events to a window.
However, these events are discarded by AWT.

AWT does not generate the hierarchical chains of focus events when a component inside a
top-level gains focus. Moreover, the native window mapped to the component does not get a
native focus event. On the Oracle Solaris and Linux platforms, as well as on the Windows
platform, AWT uses the focus proxy mechanism. Therefore, focus on the component is set by
synthesizing a focus event, whereas the invisible focus proxy has native focus.

A native window that is mapped to a Window object (not a Frame or Dialog object) has the
override-redirect flag set. Thus, the window manager does not notify the window about the
focus change. Focus is requested on the window only in response to a mouse click. This
window will not receive native focus events at all. Therefore, you can trace only FocusIn or
FocusOut events on a frame or dialog box. Because the major processing of focus occurs at
the Java level, debugging focus with XToolkit is simpler than with WToolkit.

Focus Models Supported by X Window Managers

The following focus models are supported by X window managers:

• Click-to-focus is a commonly used focus model. (For example, Microsoft Windows uses
this model.)

• Focus-follows-mouse is a focus model in which focus goes to the window that the mouse
hovers over.

Miscellaneous Problems with Focus
This section discusses issues related to focus in AWT that can occur and suggested solutions.

1. Linux + KDE, XToolkit cannot be switched between two frames when a frame's title
is clicked.

Clicking a component inside a frame causes the focus to change.

Solution: Check the version of your window manager and upgrade it to 3.0 or greater.

2. You want to manage focus using KeyListener to transfer the focus in response to
Tab/Shift+Tab, but the key event doesn’t appear.

Solution: To catch traversal key events, you must enable them by calling
Component.setFocusTraversalKeysEnabled(true).

3. A window is set to modal excluded with
Window.setModalExclusionType(ModalExclusionType).

The frame, its owner, is modal blocked. In this case, the window will also remain modal
blocked.

Solution: A window cannot become the focused window when its owner is not allowed to
get focus. The solution is to exclude the owner from modality.

Chapter 10
Focus Events

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 7 of 15

4. On Windows, a component requests focus and is concurrently removed from its
container.

Sometimes java.lang.NullPointerException: null pData is thrown.

Solution: The easiest way to avoid throwing the exception is to do the removal along with
requesting focus on EDT. Another, more complicated approach is to synchronize the
requesting focus and removal if you need to perform these actions on different threads.

5. When focus is requested on a component and the focus owner is immediately
removed, focus goes to the component after the removed component.

For example, Component A is the focus owner. Focus is requested on Component B, and
immediately after this Component A is removed from its container. Eventually, focus goes
to Component C, which is located after Component A in the container, but not to
Component B.

Solution: In this case, ensure that the requesting focus is executed after Component A is
removed, not before.

6. On Windows, when a window is set to alwaysOnTop in an inactive frame, the window
cannot receive key events.

For example, a frame is displayed with a window that it owns. The frame is inactive, so the
window is not focused. Then, the window is set to alwaysOnTop. The window gains focus,
but its owner remains inactive. Therefore, the window cannot receive key events.

Solution: Bring the frame to the front (the Frame.toFront() method) before setting the
window to alwaysOnTop.

7. When a splash screen is shown and a frame is shown after the splash screen
window closes, the frame does not get activated.

Solution: Bring the frame to the front (the Frame.toFront() method) after showing it
(the Frame.setVisible(true) method).

8. The WindowFocusListener.windowGainedFocus(WindowEvent) method does
not return the frame's most-recent focus owner.

For example, a frame is the focused window, and one of its components is the focus
owner. Another window is clicked, and then the frame is clicked again.
WINDOW_GAINED_FOCUS comes to the frame and the
WindowFocusListener.windowGainedFocus(WindowEvent) method is called.
However, inside of this callback, you cannot determine the frame's most-recent focus
owner, because Frame.getMostRecentFocusOwner() returns null.

Solution: You can get the frame's most recent focus owner inside the
WindowListener.windowActivated(WindowEvent) callback. However, by this time,
the frame will have become the focused window only if it does not have owned windows.

Note

This approach does not work for the window, only for the frame or dialog box.

9. A window is disabled with Component.setEnabled(false), but is not get
completely unfocusable.

Solution: Do not assume that the condition set by calling
Component.setEnabled(false) or Component.setFocusable(false) will be
maintained unfocusable along with all its content. Instead, use the
Window.setFocusableWindowState(boolean) method.

Chapter 10
Focus Events

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 8 of 15

Data Transfer
The following sections discuss possible problems with data transfer features, which allow you
to add drag-and-drop (DnD) and cut, copy, and paste (CCP) operations to the application.

• Debug Drag-and-Drop Applications

• Frequent Issues with Data Transfer

Debug Drag-and-Drop Applications

It is difficult to use a debugger to troubleshoot DnD features, because during the drag-and-drop
operation all input is grabbed. Therefore, if you place a breakpoint during DnD, you might need
to restart your X server. Try to use remote debugging instead.

Two simple methods can be used to troubleshoot most issues with DnD:

• Printing all DataFlavor instances

• Printing received data

An alternative to remote debugging is the System.err.println() function, which prints
output without delay.

Frequent Issues with Data Transfer
This section describes issues that frequently occur with data transfer operations in AWT and
suggests troubleshooting solutions.

1. Pasting a large amount of data from the clipboard takes too much time.

Using the Clipboard.getContents() function for a paste operation sometimes causes
the application to hang for a while, especially if a rich application provides the data to
paste.

The Clipboard.getContents() function fetches clipboard data in all available types
(for example, some text and image types), and this can be expensive and unnecessary.

Solution: Use the Clipboard.getData() method to get only specific data from the
clipboard. If data in only one or a few types are needed, then use one of the following
Clipboard methods instead of getContents():

• DataFlavor[] getAvailableDataFlavors()

• boolean isDataFlavorAvailable(DataFlavor flavor)

• Object getData(DataFlavor flavor)

2. When a Java application uses Transferable.getTransferData() for DnD
operations, the drag seems to take a long time.

In order to initialize transferred data only if it is needed, the initialization code was put in
Transferable.getTransferData().

Transferable data is expensive to generate, and during a DnD operation
Transferable.getTransferData() is invoked more than once, causing a slowdown.

Solution: Cache the Transferable data so that it is generated only once.

3. Files cannot be transferred between a Java application and the GNOME/KDE
desktop and file browser.

Chapter 10
Data Transfer

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 9 of 15

On Windows and some window managers, transferred file lists can be represented as the
DataFlavor.javaFileListFlavor data type. But, not all window managers represent lists
of files in this format. For example, the GNOME window manager represents a file list as a
list of URIs.

Workaround: To get files, request data of type String, and then translate the string to a
list of files according to the text/uri-list format described in RFC 2483. To enable dropping
files from a Java application to GNOME/KDE desktop and file browser, export data in the
text/uri-list format. For an example, see the Work Around section from the RFE.

4. An image is passed to one of the startDrag() methods of DragGestureEvent or
DragSource, but the image is not displayed during the subsequent DnD operation.

Solution: Move a window with an image rendered on it as the mouse cursor moves during
a DnD operation. See the code example in the Work Around section from the RFE.

5. There is no way to transfer an array using DnD.

The DataFlavor class has no constructor that handles arrays. The mime type for an array
contains characters that escapes. The code in the following example throws an
IllegalArgumentException.

new DataFlavor(DataFlavor.javaJVMLocalObjectMimeType +
"; class=" +
(new String[0]).getClass().getName())

Solution: “Quote” the value of the representation class parameter, as shown in the
following example, where the quotation marks escape:

new DataFlavor(DataFlavor.javaJVMLocalObjectMimeType +
"; class=" +
"\"" +
(new String[0]).getClass().getName() +
"\"")

See bug report.

6. There are problems using AWT DnD support with Swing components.

Various problems can happen, for example, odd events are fired during a DnD operation,
multiple items cannot be dragged and dropped, an InvalidDnDOperationException is
thrown.

Solution: Use Swing's DnD support with Swing components. Although the Swing DnD
implementation is based on the AWT DnD implementation, you cannot mix Swing and
AWT DnD. See Lesson: Drag and Drop and Data Transfer in the Java Tutorials.

7. There is no way to change the state of the source to depend on the target.

In order to change the state of the source to depend on the target, you must have
references to the source and target components in the same area of code, but this is not
currently implemented in the DnD API.

Workaround: One workaround is to add flags to the transferable object that allow you to
determine the context of the event.

For the transfer of data within one Java VM, the following workaround is proposed:

• Implement your target component as DragSourceListener.

Chapter 10
Data Transfer

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 10 of 15

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4899516
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4899516
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4276926
http://docs.oracle.com/javase/tutorial/uiswing/dnd/

• In DragGestureRecognizer.dragGestureRecognized(), add the target at the
drag source listener, as shown in the following example.

public void dragGestureRecognized(DragGestureEvent dge) {
 dge.startDrag(null, new
StringSelection("SomeTransferedText"));

dge.getDragSource().addDragSourceListener(target);
 }

• Now you can get the target and the source in the dragEnter(), dragOver(),
dropActionChanged(), and dragDropEnd() methods of
DragSourceListener().

8. Transferring objects in an application takes a long time.

The transferring of a big bundle of data or the creation of transferred objects takes too
long. The user must wait a long time for the data transfer to complete.

This expensive operation makes transferring too long because you must wait until
Transferable.getTransferData() finishes.

Solution: This solution is valid only for transferring data within one Java VM. Create or get
expensive resources before the drag operation. For example, get the file content when you
create a transferable data, so that Transferable.getTransferData() will not be too
long.

Other Issues
The following subsections discuss troubleshooting tips for other issues:

• Splash Screen Issues

• Tray Icon Issues

• Pop-up Menu Issues

• Background or Foreground Color Inheritance

• AWT Panel Size Restriction

• Hangs During Debugging of Pop-up Menus and Similar Components on X11

• Window.toFront()/toBack() Behavior on X11

Splash Screen Issues
Issues that can happen with splash screen AWT and solutions.

This section describes some issues that can happen with the splash screen in AWT:

1. The user specified a JAR file with an appropriate MANIFEST.MF in -classpath, but the
splash screen does not work.

Solution: See the solution for the next issue.

2. It is not clear which of several JAR files in an application should contain the splash
screen image.

Solution: The splash screen image will be picked from a JAR file only if the file is used
with the -jar command-line option. This JAR file should contain both the "SplashScreen-

Chapter 10
Other Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 11 of 15

Image" manifest option and the image file. JAR files in -classpath will never be checked
for splash screens in MANIFEST.MF. If you do not use -jar, you can still use -splash to
specify the splash screen image in the command line.

3. Translucent PNG splash screens do not work on the Oracle Solaris and Linux
operating systems.

Solution: This is a native limitation of X11. On the Oracle Solaris and Linux operating
systems, the alpha channel of a translucent image will be compared with the 50%
threshold. Alpha values above 0.5 will make opaque pixels, and pixels with alpha values
below 0.5 will be completely transparent.

Tray Icon Issues

If a SecurityManager is installed, then the value of AWTPermission must be set to
accessSystemTray in order to create a TrayIcon object.

Pop-up Menu Issues

In the JPopupMenu.setInvoker() method, the invoker is the component in which the pop-
up menu is to be displayed. If this property is set to null, then the pop-up menu does not
function correctly.

The solution is to set the pop-up menu's invoker to itself.

Background or Foreground Color Inheritance
To ensure the consistency of your application on every platform, use explicit color assignment
(both foreground and background) for every component or container.

Many AWT components use their own defaults for background and foreground colors instead
of using parent colors.

This behavior is platform-dependent; the same component can behave differently on different
platforms. In addition, some components use the default value for one of the background or
foreground colors, but take the value from the parent for another color.

AWT Panel Size Restriction
The AWT container has a size limitation. On most platforms, this limit is 32,767 pixels.

This means that, for example, if the canvas objects are 25 pixels high, then a Java AWT panel
cannot display more than 1310 objects.

Unfortunately, there is no way to change this limit, neither with Java code nor with native code.
The limit depends on what data type the operating system uses to store the widget size. For
example, the Linux X windows system use the integer type, and are therefore limited to the
maximum size of an integer. Other operating systems might use different types, such as long,
and in this case, the limit could be higher.

See the documentation for your platform.

The following are examples of workarounds for this limit that might be helpful:

• Display components, page by page.

• Use tabs to display a few components at a time.

Chapter 10
Other Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 12 of 15

Hangs During Debugging of Pop-up Menus and Similar Components on X11
Set the -Dsun.awt.disablegrab=true system property during the debugging of certain
graphical user interface (GUI) components.

Certain graphical user interface (GUI) actions require grabbing all the input events in order to
determine when the action should terminate (for example, navigating pop-up menus). While
the grab is active, no other applications receive input events. If a Java application is being
debugged, and a breakpoint is reached while the grab is active, then the operating system
appears to hang. This happens because the Java application holding the grab is stopped by
the debugger and cannot process any input events, and other applications do not receive the
events due to the installed grab. In order to allow debugging such applications, the following
system property should be set when running the application from the debugger:

-Dsun.awt.disablegrab=true

This property effectively turns off setting the grab, and does not hang the system. However,
with this option set, in some cases, this can lead to the inability to terminate a GUI actions that
would normally be terminated. For example, pop-up menus may not be dismissed when
clicking a window's title bar.

Window.toFront()/toBack() Behavior on X11
Due to restrictions enforced by third-party software (in particular, by window managers such as
the Metacity), the toFront()/toBack() methods may not work as expected and cause the
window to not change its stacking order in relation to other top-level windows.

More details are available in the CR 6472274.

If an application wants to bring a window to the top, it can try to workaround the issue by
calling Window.setAlwaysOnTop(true) to temporarily make the window always stay on
top and then calling setAlwaysOnTop(false) to reset the "always on top" state.

Note

This workaround is not guaranteed to work because window managers can enforce
more restrictions. Also, setting a window to "always on top" is available to trusted
applications only.

However, native applications experience similar issues, and this peculiarity makes
Java applications behave similar to native applications.

Heavyweight or Lightweight Components Mix
The following issues are addressed in the heavyweight or lightweight (HW/LW) component
mixing feature:

• Validate the component hierarchy:

Changing any layout-related properties of a component, such as its size, location, or font,
invalidates the component as well as its ancestors. In order for the HW/LW Mixing feature
to function correctly, the component hierarchy must be validated after making such

Chapter 10
Heavyweight or Lightweight Components Mix

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 13 of 15

changes. By default, invalidation stops on the top-most container of the hierarchy (for
example, a Frame object). Therefore, to restore the validity of the hierarchy, the application
should call the Frame.validate() method. For example:

component.setFont(myFont);
frame.validate();

frame refers to a frame that contains component.

Note

Swing applications and the Swing library often use the following pattern:

component.setFont(myFont);
component.revalidate();

The revalidate() call is not sufficient because it validates the hierarchy starting
from the nearest validate root of the component only, thus leaving the upper
containers invalid. In that case, the HW/LW feature may not calculate correct
shapes for the HW components, and visual artifacts may be seen on the screen.

To verify the validity of the whole component hierarchy, a user can use the key
combination Control+Shift+F1, as described in Debug Tips for AWT. A component
marked invalid may indicate a missing validate() call somewhere.

• Validate roots:

The concept of validate roots mentioned in Validate the component hierarchy was
introduced in Swing in order to speed up the process of validating component hierarchies
because it may take a significant amount of time. While such optimization leaves upper
parts of hierarchies invalid, this did not create any issues because the layout of
components inside a validate root does not affect the layout of the outside component
hierarchy (that is, the siblings of the validate root). However, when HW and LW
components are mixed together in a hierarchy, this statement is no longer true. That is why
the feature requires the whole component hierarchy to be valid.

Calling frame.validate() may be inefficient, and AWT supports an alternative,
optimized way of handling invalidation/validation of component hierarchies. This feature is
enabled with a system property:

-Djava.awt.smartInvalidate=true

Once this property is specified, the invalidate() method will stop invalidation of the
hierarchy when it reaches the nearest validate root of a component on which the
invalidate() method has been invoked. Afterward, to restore the validity of the
component hierarchy, the application should simply call:

component.revalidate();

Chapter 10
Heavyweight or Lightweight Components Mix

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 14 of 15

Note

In this case, calling frame.validate() would be effectively a no-op (a
statement that does nothing) because frame is still valid. Since some applications
rely on calling validate() directly on a component upper than the validate root
of the hierarchy (for example, a frame), this new optimized behavior may cause
incompatibility issues, and hence it is available only when specifying the system
property.

If an application experiences any difficulties running in this new optimized mode, a user
can use the key combination Control+Shift+F1 as described in Debug Tips for AWT to
investigate what parts of the component hierarchy are left invalid, and thus possibly cause
the problems.

• Swing painting optimization:

By default, the Swing library assumes that there are no HW components in the component
hierarchy, and therefore uses optimized drawing techniques to boost performance of the
Swing GUI. If a component hierarchy contains HW components, the optimizations must be
turned off. This is relevant for Swing JScrollPanes in the first place. You can change the
scrolling mode by using the JViewPort.setScrollMode(int) method.

• Non-opaque LW components:

Non-opaque LW components are not supported by the HW/LW mixing feature
implementation by default. In order to enable mixing non-rectangular LW components with
HW components, the application must use the
com.sun.awt.AWTUtilities.setComponentMixingCutoutShape() non-public
API.

Note

The non-rectangular LW components should still paint themselves using either
opaque (alpha = 1.0) or transparent (alpha = 0.0) colors. Using translucent colors
(with 0.0 < alpha < 1.0) is not supported.

• Disable the default HW/LW mix feature:

In the past, some developers have implemented their own support for cases when HW and
LW components must be mixed together. In order to disable the built-in feature the
application must be started with the following system property:

-Dsun.awt.disableMixing=true

Chapter 10
Heavyweight or Lightweight Components Mix

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 15 of 15

11
Java 2D Pipeline Rendering and Properties

This chapter provides information and guidance for troubleshooting some of the most common
issues that might be found in the Java 2D API when changing pipeline rendering and
properties.
For a summary of Java 2D properties, see Java 2D Properties.

By choosing a different pipeline, or manipulating the properties of a pipeline, you might be able
to determine the cause of the problem, and often find a workaround.

In general, you can troubleshoot Java 2D pipeline issues by determining the default pipeline
used in your configuration. Then, either change the pipeline to another one, or modify the
properties of the default pipeline.

If the problem disappears, then you found a workaround. If the problem persists, then try
changing another property or pipeline.

Java 2D uses a set of pipelines, which can be roughly defined as different ways of rendering
the primitives. These pipelines are as follows:

• Oracle Solaris and Linux: X11 Pipelineis the default for the Oracle Solaris and Linux
operating systems.

• Windows OS: DirectDraw/GDI Pipeline is the default on Windows

• Windows OS: Direct3D Pipeline in Full-Screen Mode is an alternative on Windows.

• OpenGL Pipeline in Oracle Solaris, Linux, and Windowsis an alternative on the Oracle
Solaris and Linux operating systems, as well as Windows.

Oracle Solaris and Linux: X11 Pipeline
On UNIX platforms, the default pipeline is the X11 pipeline. This pipeline uses the X protocol
for rendering to the screen or to certain types of offscreen images, such as VolatileImages, or
"compatible" images (images that are created with the
GraphicsConfiguration.createCompatibleImage() method).

These types of images can be put into X11 pixmaps for improved performance, especially in
the case of the Remote X server.

In addition, in certain cases, Java 2D uses X server extensions, for example, the MIT X shared
memory extension, or Direct Graphics Access extension, Double-buffer extension for double-
buffering when using the BufferStrategy API.

An additional pipeline, the OpenGL pipeline, might offer greater performance in some
configurations.

The following are X11 pipeline properties to troubleshoot.

• X11 Pipeline Pixmaps Properties

• X11 Pipeline MIT Shared Memory Extension

• Oracle Solaris on SPARC: DGA Support

• Oracle Solaris on SPARC - Change Java 2D Default Visual

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 9

X11 Pipeline Pixmaps Properties
Java 2D by default uses X11 pixmaps for storing or caching certain types of offscreen images.

Only the following types of images can be stored in pixmaps:

• Opaque images, in which case ColorModel.getTransparency() returns
Transparency.OPAQUE

• 1-bit transparent images (also known as sprites, Transparency.BITMASK)

The advantage of using pixmaps for storing images is that they can be put into the
framebuffer's video memory at the driver's discretion, which improves the speed at which these
pixmaps can be copied to the screen or another pixmap.

The use of pixmaps typically results in better performance. However, in certain cases, the
opposite is true. These cases typically involve the use of operations that cannot be performed
using the X protocol, such as antialiasing, alpha compositing, and transforms that are more
complex than simple translation transforms.

For these operations, the X11 pipeline must do the rendering using the built-in software
renderer. In most cases, this includes reading the contents of the pixmap to system memory
(over the network in the case of remote X server), performing the rendering, and then sending
the pixels back to the pixmap. These operations could result in extremely poor performance,
especially if the X server is remote.

The following are two cases to disable the use of X11 pipeline:

• Disable X11 pipeline pixmaps:

To disable the use of pixmaps by Java2D, pass the following property to the Java VM: -
Dsun.java2d.pmoffscreen=false.

• Disable X11 pipeline shared memory pixmaps:

To minimize the effect of operations that require reading pixels from a pixmap on overall
performance, the X11 pipeline uses shared memory pixmaps for storing images that are
often read from.

Note

The shared memory pixmaps can only be used in the case of a local X server.

The advantage of using shared memory pixmaps is that the pipeline can get direct access
to the pixels in the pipeline, bypassing the X11 protocol, which results in better
performance.

By default, an image is stored in a normal X server pixmap, but it can be later moved to a
shared memory pixmap if the pipeline detects excessive reading from such an image. The
image can be moved back to a server pixmap if it is copied from often enough.

The pipeline allows two ways of controlling the use of shared memory pixmaps: either
disabling them or forcing all images to be stored in shared memory pixmaps.

First, try forcing the shared memory pixmaps because it often improves performance.
However, with certain video board/driver configurations, it may be necessary to disable the
shared memory pixmaps to avoid rendering artifacts or crashes.

Chapter 11
Oracle Solaris and Linux: X11 Pipeline

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 9

– To disable shared memory pixmaps, set the J2D_PIXMAPS environment variable to
server. This is the default in remote X server case.

– To force all pixmaps to be created in shared memory, set J2D_PIXMAPS to shared.

X11 Pipeline MIT Shared Memory Extension
The Java 2D X11 pipeline uses the MIT Shared Memory Extension (MIT SHM), which allows a
faster exchange of data between the client and the X server. This can significantly improve the
performance of Java applications.

The following are two ways to improve the performance of the Java application.

• Increase X Server and Java 2D shared memory:

On the Oracle Solaris operating system releases 8 and earlier, it was sometimes
necessary to increase the amount of shared memory available to the system (and to X
server in particular) because the default was too low, resulting in poor rendering
performance. Increasing the amount of shared memory and shared memory segments can
result in better performance.

To change the default settings on the Oracle Solaris operating system, edit the /etc/
system file and change the shmsys:shminfo_* settings, as shown in the following example.
Note that this is not needed on Oracle Solaris 9 and later.

set shmsys:shminfo_shmmax=10000000
set shmsys:shminfo_shmni=200
set shmsys:shminfo_shminfo=150

On Linux, this setting can be configured by editing the /proc/sys/kernel/shm* files.

• Disable X11 pipeline shared memory extension:

In case of problems (such as crashes, or rendering artifacts) with older X servers and the
Shared Memory Extension, it is useful to be able to disable the extension. To disable the
use of MIT SHM, set the J2D_USE_MITSHM environment variable to false.

Oracle Solaris on SPARC: DGA Support
On SPARC hardware, if the framebuffer supports Sun's Direct Graphics Access (DGA) X
server extension, and Java 2D has a corresponding module for accessing the framebuffer, then
DGA will be used for rendering to the screen.

All offscreen images will reside in Java heap memory, and Java 2D's software-only rendering
pipeline is used for rendering to them. This is different from a typical UNIX configuration, where
X11 pixmaps are used for offscreen images.

The following are use cases that describe how to detect DGA extension support and disable or
enable DGA:

• DGA extension for rending

To detect if the DGA extension is used for rendering to the screen, run any Java
application that does some rendering or displays a GUI, and check if a /tmp/wg* file was
created when the application started. Exit the application and verify that the file was
deleted. If this is the case, then on this system, Java 2D is using DGA.

• Typical DGA Issues:

Chapter 11
Oracle Solaris and Linux: X11 Pipeline

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 9

Because DGA allows direct access to the framebuffer's video memory, the typical
problems include corruption outside of window bounds, complete system, and X server
lock-ups.

• Enable or Disable DGA:

If you determine that DGA is being used, the first thing to try is to disable it. This can be
done by setting the NO_J2D_DGA environment variable to true. This forces the default UNIX
path to use only X11 for rendering to the screen, and pixmaps for accelerating offscreen
images.

Sometimes, it could be beneficial to enable the use of pixmaps, while also using DGA for
rendering to the screen. To force the use of pixmaps for accelerating offscreen images, set
the following property when starting the application: -
Dsun.java2d.pmoffscreen=true.

Oracle Solaris on SPARC - Change Java 2D Default Visual
On certain video boards on the SPARC platform, more than one visual can be available from
the X server.

By default, Java 2D tries to select the best visual, where "best" is typically a higher-bit depth
visual. For example, on some Oracle Solaris operating system releases, the default X11 visual
is 8-bit PseudoColor, although 24-bit visual is also available. In these cases, Java 2D selects a
24-bit TrueColor visual as the default for Java windows.

While it is possible to create a Java top-level window with a GraphicsConfiguration object
corresponding to a different visual, in some cases, it is necessary to make Java use a different
default visual instead. This can be done by setting the FORCEDEFVIS environment variable. It
can be set to true to force the use of the default X server visual (even if it is not the best one),
or it can be set to a hexadecimal number corresponding to the visual ID as reported by tools
like xdpyinfo.

To determine your X server default visual, execute the xdpyinfo command and look at the
default visual id field.

Windows OS: DirectDraw/GDI Pipeline
The default pipeline on the Windows platform is a mixture of the DirectDraw pipeline and the
GDI pipeline, where some operations are performed with the DirectDraw pipeline and others
with the GDI pipeline. DirectDraw and GDI APIs are used for rendering to accelerated
offscreen and onscreen surfaces.

The possible issues with the Direct3D pipeline include rendering artifacts, crashes, and
performance related problems.

An additional pipeline, the OpenGL pipeline, might offer greater performance in some
configurations.

The following are three cases to troubleshoot issues with the Direct3D pipeline such as
rendering artifacts, crashes, and performance related problems:

• Disable the DirectDraw pipeline:

When DirectDraw is disabled, all operations are performed with GDI. Provide the following
flag to disable the use of DirectDraw: -Dsun.java2d.noddraw=true. In this case, all
offscreen images will be created in the Java heap, and rendered with the default software
pipeline. All onscreen rendering, as well as copies of offscreen images to the screen, will
be performed using GDI.

Chapter 11
Windows OS: DirectDraw/GDI Pipeline

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 9

• Enable the DirectDraw pipeline:

If the pipeline was disabled by default for some reason, then it can be enabled by providing
the -Dsun.java2d.noddraw=false flag to the VM.

However, typically there was a reason why it was disabled in the first place, so it is better
not to force it.

• Disable the built-in punting mechanism:

In general, the DirectDraw pipeline attempts to place the offscreen surfaces in the
framebuffer's video memory, which provides the fast copies from these surfaces to the
screen or other accelerated surfaces, as well as hardware accelerated rendering of certain
graphics operations.

To limit the effect of unaccelerated rendering to VRAM-based surfaces, there exists a
punting mechanism, which moves the surface that is detected to be often read from to the
system memory. If the surface is found to be copied from often enough, it may be
promoted back to video memory.

However, if the pipeline cannot perform an operation using the DirectDraw API (operations
using, for example, alpha compositing, or transforms, or antialiasing), then rendering is
performed using the software pipeline. In some cases, this means that the pixels of the
destination surface, which resides in VRAM, must be read into system memory, which is a
very expensive operation.

On certain video boards/drivers combinations, the system-memory-based DirectDraw
surfaces are known to cause rendering artifacts and other issues. The DirectDraw pipeline
provides a way to disable the punting mechanism so that the system memory surfaces are
not used.

To defeat the built-in surface punting mechanism, provide the following flag to the Java
VM: -Dsun.java2d.ddforcevram=true.

Note

This mechanism can result in performance degradation because the software
loops may be reading pixels from VRAM on each operation. In this case, consider
disabling the DirectDraw pipeline.

• Disable the DirectDraw BILT operations:

In a Bit Block Transfer (BILT) operation, two bitmap patterns are combined. This operation
corresponds to a call to the Graphics.drawImage() API.

In some cases, it is possible to avoid rendering problems by disabling the DirectDraw BLIT
operations. GDI BLITs will be used instead.

Note

This operation might result in bad performance. Consider disabling the DirectDraw
pipeline instead.

To disable the use of DirectDraw BLIT operations, pass the parameter -
Dsun.java2d.ddblit=false to the Java VM.

Chapter 11
Windows OS: DirectDraw/GDI Pipeline

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 9

Windows OS: Direct3D Pipeline in Full-Screen Mode
This pipeline is enabled in full-screen mode by default, if the drivers support the required
features and the level of rendering quality.

It is possible to enable the Direct3D pipeline or to force its use, as described in the following
sections.

Consider enabling the Direct3D pipeline for your application if it heavily uses rendering
operations such as alpha compositing, antialiasing, and transforms.

However, use caution when deciding to enable this pipeline in your application. For example,
some built-in video chipsets (which are used in most notebooks) do not perform well using
Direct3D, even if they satisfy the quality requirements for Java 2D pipelines.

The following are three cases to troubleshoot problems with Direct3D API.

1. Disable the Direct3D pipeline:

Some older video boards/drivers combinations are known to cause issues (both rendering
and performance) with the Direct3D pipeline. To disable the pipeline in these cases, pass
the parameter -Dsun.java2d.d3d=false to the Java VM, or set the J2D_D3D
environment variable to false.

2. Enable the Direct3D pipeline:

To enable the Direct3D pipeline in both windowed and full-screen mode, use the parameter
-Dsun.java2d.d3d=true, or set the J2D_D3D environment variable to true.

Note

The pipeline is enabled only if the drivers support the minimum required features.

3. Diagnose the Direct3D pipeline rendering problems:

Some rendering issues (like missing pixels, garbled rendering) can be diagnosed by
forcing different Direct3D rasterizers. Set the J2D_D3D_RASTERIZER environment variable to
one of the following: ref, rgb, hal, or tnl.

See the Direct3D documentation for a description of these rasterizers. By default, the best
rasterizer is chosen based on its advertised capabilities. In particular, the ref rasterizer
forces the use of the reference Direct3D rasterizer from Microsoft. If a rendering problem is
not reproducible with this rasterizer, then it is likely to be a video driver bug.

The rgb rasterizer is available only if the Direct3D SDK is installed. The Software
Rasterizer for the Microsoft DirectX 9.0 Software Development Kit (SDK) is compatible with
Microsoft Direct 3D. This can be obtained from Software Rasterizer for the Microsoft
DirectX 9.0 Software Development Kit (SDK). Alternatively, download the Microsoft
DirectX® End-User Runtime. For more information about the Direct3D SDK, see Enabling
Support for the Direct3D Version 11 DDI.

For performance or quality problems with text rendering with the Direct3D pipeline, you can
force the use of the ARGB texture instead of the default Alpha texture for the Direct3D
pipeline's glyph cache. To do this, set the J2D_D3D_NOALPHATEXTURE environment variable
to true.

Chapter 11
Windows OS: Direct3D Pipeline in Full-Screen Mode

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 6 of 9

https://download.cnet.com/Software-Rasterizer-for-the-Microsoft-DirectX-9-0-Software-Development-Kit-SDK/3000-2070_4-10725516.html
https://download.cnet.com/Software-Rasterizer-for-the-Microsoft-DirectX-9-0-Software-Development-Kit-SDK/3000-2070_4-10725516.html
https://www.microsoft.com/en-us/download/details.aspx?id=35
https://www.microsoft.com/en-us/download/details.aspx?id=35
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/enabling-support-for-the-direct3d-version-11-ddi
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/enabling-support-for-the-direct3d-version-11-ddi

OpenGL Pipeline in Oracle Solaris, Linux, and Windows
The OpenGL pipeline is available on Oracle Solaris, Linux, and Windows.

This alternate pipeline uses the hardware-accelerated, cross-platform OpenGL API when
rendering to VolatileImages, to backbuffers created with BufferStrategy API, and to the
screen.

This pipeline can offer great performance advantages over the default (X11 or GDI/DirectDraw)
pipelines for certain applications. Consider enabling the pipeline for your application if it heavily
uses of rendering operations like alpha compositing, antialiasing, and transforms.

The following are use cases for troubleshooting problems in OpenGL pipeline

• Enable OpenGL Pipeline

• Minimum Requirements

• Diagnose Startup Issues

• Diagnose Rendering and Performance Issues

• Latest OpenGL Drivers

Enable OpenGL Pipeline
The OpenGL pipeline is disabled by default.

To attempt to enable the OpenGL pipeline, provide the following option to the JVM:

-Dsun.java2d.opengl=True

To receive verbose console output about whether the OpenGL pipeline is initialized
successfully for a particular screen, set the option to True (note the uppercase T).

Minimum Requirements
The OpenGL pipeline will not be enabled if the hardware or drivers do not meet the minimum
requirements.

If one of the following requirements is not met, Java 2D will fall back and use the default
pipeline (X11 on Oracle Solaris/Linux or GDI/DirectDraw on Windows), which means your
application will continue to work correctly, but without the OpenGL acceleration.

The minimum requirements for the Oracle Solaris and Linux operating systems are the
following:

• Hardware accelerated OpenGL/GLX libraries installed and configured properly

• OpenGL version 1.2 or higher

• GLX version 1.3 or higher

• At least one TrueColor visual with an available depth buffer

The minimum requirements for Windows OS are the following:

• Hardware accelerated drivers supporting the extensions WGL_ARB_pbuffer,
WGL_ARB_render_texture, and WGL_ARB_pixel_format

• OpenGL version 1.2 or higher

Chapter 11
OpenGL Pipeline in Oracle Solaris, Linux, and Windows

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 7 of 9

• At least one pixel format with an available depth buffer

Diagnose Startup Issues
You can get detailed information about the startup procedures of the OpenGL-based Java 2D
pipeline by using the J2D_TRACE_LEVEL environment variable.

As previously mentioned, the OpenGL pipeline might not be enabled on certain machines for
various reasons. For example, the drivers might not be properly installed and might report an
insufficient version number. Alternatively, your machine might have an older graphics card that
does not support the appropriate OpenGL version or extensions.

In the Java SE 6 and later releases, you can get detailed information about the startup
procedures of the OpenGL-based Java 2D pipeline by using the J2D_TRACE_LEVEL environment
variable, as shown in the following examples.

Set the J2D_TRACE_LEVEL environment variable on Windows.

set J2D_TRACE_LEVEL=4
java -Dsun.java2d.opengl=True YourApp

Set the J2D_TRACE_LEVEL environment variable on Solaris and Linux.

export J2D_TRACE_LEVEL=4
java -Dsun.java2d.opengl=True YourApp

The output will be different depending on your platform and the installed graphics hardware,
but it can give you some insight into the reasons why the OpenGL pipeline is not being
successfully enabled for your configuration.

Note

This output is especially useful when filing bug reports intended for the Java 2D team
at Sun.

Diagnose Rendering and Performance Issues
Diagnose if rendering or performance issues are being caused by Java 2D or by the OpenGL
drivers.

Because the OpenGL pipeline relies so heavily on the underlying graphics hardware and
drivers, it might sometimes be difficult to determine whether rendering or performance issues
are being caused by Java 2D or by the OpenGL drivers.

One feature new to the OpenGL pipeline in the Java SE 6 release is the use of the
GL_EXT_framebuffer_object extension, which provides better performance for rendering and
reduced VRAM consumption when using VolatileImages. This "FBO" codepath is enabled by
default when the OpenGL pipeline is enabled, but only if your graphics hardware and driver
support this OpenGL extension. This extension is generally available on Nvidia GeForce/
Quadro FX series and later, and on ATI Radeon 9500 and later. If you suspect that the "FBO"
codepath is causing problems in your application, then you can disable it by setting the
following system property:

Chapter 11
OpenGL Pipeline in Oracle Solaris, Linux, and Windows

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 8 of 9

-Dsun.java2d.opengl.fbobject=false

Setting this property will cause Java 2D to fall back on the older pbuffer-based codepath.

If you find that a certain Java 2D operation causes different visual results with the OpenGL
pipeline enabled than without, then it probably indicates a graphics driver bug. Similarly, if the
performance of Java 2D rendering is significantly worse with the OpenGL pipeline enabled
than without, then it is most likely caused by a driver or hardware problem.

In either case, file a detailed bug report through the normal bug reporting channels. See
Submit a Bug Report. When filing bug reports, be as detailed as possible, and include the
following information:

• Operating system (for example, Ubuntu Linux 6.06, Windows XP SP2)

• Name of graphics hardware manufacturer and device (for example, Nvidia GeForce 2 MX
440)

• Exact driver version (for example, ATI Catalyst 6.8, Nvidia 91.33)

• Output when J2D_TRACE_LEVEL=4 is specified on the command line (as described in the
previous section)

• The output of the glxinfo command if you are on Oracle Solaris or Linux

Latest OpenGL Drivers
Because the OpenGL pipeline relies heavily on the OpenGL API and the underlying graphics
hardware and drivers, it is very important to ensure that you have the latest graphics drivers
installed on your computer. The following table lists graphics card manufacturers with their
corresponding supported platforms and some examples of cards that are known to support
OpenGL.

Manufacturer Platforms Cards Known to Work

AMD Linux, Windows Radeon 8500 and later, FireGL series

Nvidia Oracle Solaris on x64, Linux, Windows GeForce 2 series and later, Quadro FX
series and later

Oracle Oracle Solaris on SPARC Expert3D series, XVR-500, XVR-600,
XVR-1200, XVR-2500

Xi Graphics Oracle Solaris on x86, Linux Various (check with Xi Graphics)

Chapter 11
Latest OpenGL Drivers

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 9 of 9

12
Java 2D

This chapter provides information and guidance for troubleshooting some of the most common
issues that might be found in the Java 2D API.

This chapter contains the following sections:

• Generic Performance Issues

• Text-Related Issues

• Java 2D Printing

For a summary of Java 2D properties, see Java 2D Properties.

Generic Performance Issues
There could be many causes for poor rendering performance. The following topics identify the
cause for your applications poor rendering performance and suggests some approaches to
improve performance of software-only rendering.

This topic contains the following subsections:

• Hardware-Accelerated Rendering Primitives

• Primitive Tracing to Detect and Avoid Non-Accelerated Rendering

• Causes of Poor Rendering Performance

• Improve Performance of Software-only Rendering

Hardware-Accelerated Rendering Primitives
In order to better understand what could be causing performance problems, take a look at what
hardware acceleration means.

In general, hardware-accelerated rendering could be divided into two categories.

• Hardware-accelerated rendering to an "accelerated" destination. Examples of rendering
destinations that can be hardware-accelerated are VolatileImage, screen and
BufferStrategy. If a destination is accelerated, then rendering goes to a surface may be
performed by video hardware. So, if you issue a drawRect call, Java 2D redirects this call
to the underlying native API (such as GDI, DirectDraw, Direct3D or OpenGL, or X11),
which performs the operation using hardware.

• Caching images in accelerated memory (video memory or pixmaps) so that they can be
copied very fast to another accelerated surface. These images are known as managed
images.

Ideally, all operations performed on an accelerated surface are hardware-accelerated. In this
case, the application takes full advantage of what is offered by the platform.

Unfortunately in many cases the default pipelines are not able to use the hardware for
rendering. This can happen due to the pipeline limitations, or the underlying native API. For
example, most X servers do not support rendering antialiased primitives, or alpha compositing.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 10

One cause of performance issues is when operations performed are not hardware-accelerated.
Even in cases when a destination surface is accelerated, some primitives may not be.

It is important to know how to detect the cases when hardware acceleration is not being used.
Knowing this may help in improving performance.

Primitive Tracing to Detect and Avoid Non-Accelerated Rendering
To detect a non-accelerated rendering, you can use Java 2D primitive tracing.

Run your application with -Dsun.java2d.trace=count. When the application exits, a list of
primitives and their counts is printed to the console.

Any time you see a MaskBlit or any of the General* primitives, it typically means that some of
your rendering is going through software loops. Here is the output from performing drawImage
on a translucent BufferedImage to a VolatileImage on Linux:

sun.java2d.loops.Blit$GeneralMaskBlit::Blit(IntArgb, SrcOverNoEa, "Integer
BGR Pixmap")sun.java2d.loops.MaskBlit::MaskBlit(IntArgb, SrcOver, IntBgr)

Here are some of the common non-accelerated primitives in the default pipelines, and their
signatures in the tracing output.

Note

Most of this tracing was taken on Linux; you may see some differences depending on
your platform and configuration.

• Translucent images (images with ColorModel.getTranslucency()
returnTranslucency.TRANSLUCENT), or images with AlphaCompositing. Sample primitive
tracing output:

sun.java2d.loops.Blit$GeneralMaskBlit::Blit(IntArgb,SrcOverNoEa, "Integer
BGR Pixmap")sun.java2d.loops.MaskBlit::MaskBlit(IntArgb, SrcOver, IntBgr)

• Use of antialiasing (by setting the antialiasing hint). Sample primitive tracing output:

sun.java2d.loops.MaskFill::MaskFill(AnyColor, Src, IntBgr)

• Rendering antialiased text (setting the text antialising hint). Sample output can be one of
the following:

– sun.java2d.loops.DrawGlyphListAA::DrawGlyphListAA(OpaqueColor, SrcNoEa,
AnyInt)

– sun.java2d.loops.DrawGlyphListLCD::DrawGlyphListLCD(AnyColor, SrcNoEa,
IntBgr)

Chapter 12
Generic Performance Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 10

• Alpha compositing, either by rendering with translucent color (a color with an alpha value
that is not 0xff) or by setting a non-default AlphaCompositing mode with
Graphics2D.setComposite():

sun.java2d.loops.Blit$GeneralMaskBlit::Blit(IntArgb, SrcOver,
IntRgb)sun.java2d.loops.MaskBlit::MaskBlit(IntArgb, SrcOver, IntRgb)
]

• Non-trivial transforms (if the transform is more than only translation). Rendering a
transformed opaque image to a VolatileImage:

sun.java2d.loops.TransformHelper::TransformHelper(IntBgr, SrcNoEa,
IntArgbPre)

• Rendering a rotated line:

sun.java2d.loops.DrawPath::DrawPath(AnyColor, SrcNoEa, AnyInt)

Run your application with tracing and ensure that you do not use unaccelerated primitives
unless they are needed.

Causes of Poor Rendering Performance
List of causes of poor rendering performance and possible alternatives.

Some of the possible causes of poor rendering performance and possible alternatives are
described as follows:

• Mixing accelerated and non-accelerated rendering:

A situation when only part of the primitives rendered by an application could be
accelerated by the particular pipeline when rendering to an accelerated surface can cause
thrashing, because the pipelines will be constantly trying to adjust for better rendering
performance but with possibly little success.

If it is known beforehand that most of the rendering primitives will not be accelerated, then
it could be better to either render to a BufferedImage and then copy it to the back buffer or
the screen, or switch to a non-hardware accelerated pipeline using one of the flags
discussed.

Note

This approach may limit your application's ability to take advantage of future
improvements in Java 2D's use of hardware acceleration.

For example, if your application is often used in remote X server cases, but it heavily uses
antialiasing, alpha compositing, and so forth, then the performance can be severely
degraded. To avoid this, disable the use of pixmaps by setting the -
Dsun.java2d.pmoffscreen=false property either by passing it to the Java runtime, or
by setting it programmatically using the System.setProperty() API.

Chapter 12
Generic Performance Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 10

Note

This property must be set before any GUI-related operations because it is read
only once.

• Non-optimal rendering primitives:

It is preferable to use the simplest primitive possible to achieve the desired visual effect.

For example, use Graphics.drawLine() instead of new Line2D().draw(). The
result looks the same. However, the second operation is much more computationally
intensive because it is rendered as a generic shape, which is typically much more
expensive to render. Shapes show up in different ways in the primitive tracing, depending
on antialiasing settings and the specific pipeline, but most likely they will show up as many
*FillSpans or DrawPath primitives.

Another example of complicated attributes is GradientPaint. Although it may be hardware
accelerated by some of the non-default pipelines (such as OpenGL), it is not hardware
accelerated by the default pipelines. Therefore, you can restrict the use of GradientPaint
if it causes performance problems.

• Heap-based destination surface BufferedImage:

Rendering to a BufferedImage almost always uses software loops.

An exception on some SPARC systems is that the VIS instruction set can be used for
accelerating certain imaging operations. See VIS Instruction Set.

To ensure that the rendering has the opportunity of being hardware accelerated, choose a
BufferStrategy or a VolatileImage object as the rendering destination.

• Defeat built-in acceleration mechanism:

Java 2D attempts to accelerate certain types of images. The contents of images can be
cached in video memory for faster copying to accelerated destinations such as
VolatileImages. These mechanisms can be unknowingly defeated by the application.

• Get direct access to pixels with getDataBuffer():

If an application gets access to BufferedImage pixels by using the
getRaster().getDataBuffer() API, then Java 2D will not be able to guarantee that
the data in the cache is up to date, so it will disable any acceleration attempts of this type
of image.

To avoid this, do not call getDataBuffer(). Instead, work with WriteableRaster, which
can be obtained with the BufferedImage.getRaster() method.

If you need to modify the pixels directly, then you can manually cache your image in video
memory by maintaining the cached copy of your image in a VolatileImage, and updating
the cached data when the original image is touched.

• Render to a sprite before every copy:

If an application renders to an image before copying it to an accelerated surface
(VolatileImage, BufferStrategy), then the image cannot take advantage of being cached
in accelerated memory. This is because the cached copy must be updated every time the
original image is updated, and therefore only the default system-memory-based surface is
used, and this means no acceleration.

• Exhausted accelerated memory resources:

Chapter 12
Generic Performance Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 10

http://docs.oracle.com/cd/E19120-01/open.solaris/816-1681/sparcv9-tbl-26/

If the application uses many images, then it can exhaust the available accelerated
memory. If this is the cause of performance issues for your application, then you might
need to handle the resources.

The following API can be used to request the amount of available accelerated memory:
GraphicsDevice.getAvailableAcceleratedMemory().

In addition, the following API can be used to determine if your image is being accelerated:
Image.getCapabilities().

If you determined that your application is exhausting the resources, you can handle the
problem by not holding images you no longer need. For example, if your game advanced
to the next level, release all images from the previous levels. You can also release
accelerated resources associated with an image by using the Image.flush() API.

You can also use the acceleration priority API Image.getAccelerationPriority()
and setAccelerationPriority() to specify the acceleration priority for your images.
It is a good idea to make sure that at least your back-buffer is accelerated, so create it first,
and with acceleration priority of 1 (default). You can also prohibit certain images from being
accelerated if needed by setting the acceleration priority to 0.0.

Improve Performance of Software-only Rendering

If your application relies on software-only rendering (by only rendering to a BufferedImage, or
changing the default pipeline to an unaccelerated one), or even if it does mixed rendering, then
the following are certain approaches to improving performance:

1. Image types or operations with optimized support:

Due to overall platform size constraints, Java 2D has a limited number of optimized
routines for converting from one image format to another. In situations where an optimized
direct loop can not be found, Java 2D will do the conversion through an intermediate image
format (IntArgb). This results in performance degradation.

Java 2D primitive tracing can be used for detecting such situations.

For each drawImage call there will be two primitives: the first one converting the image from
the source format to an intermediate IntArgb format and the second one converting from
intermediate IntArgb to the destination format.

Here are two ways to avoid such situations:

• Use a different image format if possible.

• Convert your image to an intermediate image of one of the better-supported formats,
such as INT_RGB or INT_ARGB. In this way the conversion from the custom image
format will happen only once instead of on every copy.

2. Transparency vs translucency:

Consider using 1-bit transparent (BITMASK) images for your sprites as opposed to images
with full translucency (such as INT_ARGB) if possible.

Processing images with full alpha is more CPU-intensive.

You can get a 1-bit transparent image using a call to
GraphicsConfiguration.createCompatibleImage(w,h,
Transparency.BITMASK).

Chapter 12
Generic Performance Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 10

Text-Related Issues
This section describes possible issues and crashes that are related to text rendering and
describes tips to overcome such issues.

This section contains the following subsections:

• Application Crash During Text Rendering

• Differences in Text Appearance

• Metrics

Application Crash During Text Rendering
If an application crashes during text rendering, first check the fatal error log file.

See Fatal Error Log for detailed information about this error log file. If the crash occurred in
fontmanager.dll or if fontmanager is present in the stack, then the crash occurred in the
font processing code. The following example shows typical native stack frames (excerpt from
the full log file).

Stack: [0x008a0000,0x008f0000), sp=0x008ef52c, free space=317k
Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native
code)
C [ntdll.dll+0x1888f]
C [ntdll.dll+0x18238]
C [ntdll.dll+0x11c76]
C [MSVCR71.dll+0x16b3]
C [MSVCR71.dll+0x16db]
C [fontmanager.dll+0x21f9a]
C [fontmanager.dll+0x22876]
C [fontmanager.dll+0x1de40]
C [fontmanager.dll+0x1da94]
C [fontmanager.dll+0x48abb]
j sun.font.FileFont.getGlyphImage(JI)J+0
j sun.font.FileFontStrike.getGlyphImagePtrs([I[JI)V+92
j sun.font.GlyphList.mapChars(Lsun/java2d/loops/FontInfo;I)Z+37
j sun.font.GlyphList.setFromString(Lsun/java2d/loops/FontInfo;Ljava/lang/
String;FF)Z+71
j sun.java2d.pipe.GlyphListPipe.drawString(Lsun/java2d/SunGraphics2D;Ljava/
lang/String;DD)V+148
j sun.java2d.SunGraphics2D.drawString(Ljava/lang/String;II)V+60
j FontCrasher.tryFont(Ljava/lang/String;)V+138
j FontCrasher.main([Ljava/lang/String;)V+20
v ~StubRoutines::call_stub

In this case, a particular font is probably the problem. If so, then removing this font from the
system will likely resolve the problem.

Chapter 12
Text-Related Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 6 of 10

To identify the font file, execute the application with -Dsun.java2d.debugfonts=true. The
font that is mentioned last is usually the one that is causing problems, as shown in the
following example.

INFO: Registered file C:\WINDOWS\Fonts\WINGDING.TTF as font ** TrueType Font:
Family=Wingdings
 Name=Wingdings style=0 fileName=C:\WINDOWS\Fonts\WINGDING.TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file SYMBOL.TTF
Aug 16, 2006 10:59:06 PM sun.font.FontManager addToFontList
INFO: Add to Family Symbol, Font Symbol rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager registerFontFile
INFO: Registered file C:\WINDOWS\Fonts\SYMBOL.TTF as font ** TrueType Font:
Family=Symbol
 Name=Symbol style=0 fileName=C:\WINDOWS\Fonts\SYMBOL.TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager findFont2D
INFO: Search for font: Dialog
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file ARIALBD.TTF
Aug 16, 2006 10:59:06 PM sun.font.FontManager addToFontList
INFO: Add to Family Arial, Font Arial Bold rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager registerFontFile
INFO: Registered file C:\WINDOWS\Fonts\ARIALBD.TTF as font ** TrueType Font:
Family=Arial
 Name=Arial Bold style=1 fileName=C:\WINDOWS\Fonts\ARIALBD.TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file WINGDING.TTF
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file SYMBOL.TTF
Aug 16, 2006 10:59:06 PM sun.font.FontManager findFont2D
INFO: Search for font: Dialog
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file ARIAL.TTF
Aug 16, 2006 10:59:06 PM sun.font.FontManager addToFontList
INFO: Add to Family Arial, Font Arial rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager registerFontFile
INFO: Registered file C:\WINDOWS\Fonts\ARIAL.TTF as font ** TrueType Font:
Family=Arial
 Name=Arial style=0 fileName=C:\WINDOWS\Fonts\ARIAL.TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file WINGDING.TTF
Aug 16, 2006 10:59:06 PM sun.font.FontManager initialiseDeferredFont
INFO: Opening deferred font file SYMBOL.TTF

Note

In some cases, the font that is last mentioned might not be the problem. Font names
are printed when they are first used and subsequent uses are not shown.

To verify that this particular font is causing the problem, you can temporarily remove it from
your system. You can easily find the file name associated with this particular family name from
the output.

Chapter 12
Text-Related Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 7 of 10

Another verification approach is to use the Font2DTest tool to test fonts that you suspect. You
can specify a particular font size, style, and rasterization mode. If the process of viewing a
particular font with Font2DTest causes the JDK to crash, then it is very likely that it is the font
that is causing the problems.

If you found a font causing the JDK to crash, it is very important to report this problem,
including the particular font and the operating system in the Bugs Database. See Submit a Bug
Report.

Differences in Text Appearance
Java has its own font rasterizer, and you can expect some small differences between the
appearance of text in a Java application and in a native application.

One of the typical sources of these differences is that the antialiasing settings can be different.
In particular, a Swing application sometimes ignores the Linux desktop font antialiasing
settings.

There are several likely reasons for this behavior:

• Over the remote X11 antialiasing is not enabled by default for performance reasons. See
Font and Test questions in the Java 2D FAQ.

• CJK fonts that use embedded bitmaps may render using the bitmaps instead of subpixel
text.

• Some variants of unsupported desktops do not report their font smoothing settings
properly. For example, KDE is unsupported but should generally work; however, some
problem seems to prevent JDK from picking up the setting.

The best way to ensure that the configuration is what you expect is to run Font2DTest,
explicitly select the font used by the native application, and set other parameters as
appropriate. Figure 12-1 is a sample screen from the Font2DTest tool.

Figure 12-1 Sample Screen from Font2DTest Tool

Chapter 12
Text-Related Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 8 of 10

http://bugs.java.com
http://www.oracle.com/technetwork/java/index-137037.html#Font_and_Text_questions

Tip

You can input your own string by choosing User Text in the drop-down list labeled
Text to use.

The size of the font in the Java language is always expressed with 72 dpi. A native OS can use
a different screen dpi, and therefore an adjustment must be made. Matching Java font size can
be calculated as Toolkit.getScreenResolution() divided by 72 multiplied by the size of the
native font.

In all native Swing look and feel, such as the Windows look and feel or the GTK look and feel
(for Oracle Solaris and Linux operating systems), Swing components perform this adjustment
automatically, but if you are running Font2DTest, the text display area will always use 72 dpi.

On operating systems other than Windows, the general recommendation is to use TrueType
fonts instead of Type1 fonts. The easiest way to figure out the type of font is to look at the file
extension: extensions pfa and pfb indicate Type1 fonts, and ttf, ttc, and tte represent TrueType
fonts.

Metrics
If you find that text bounds are different from what you expect, then ensure that you are using
the appropriate way to calculate them. For example, the height obtained from a FontMetrics is
not specific to a particular piece of text, and the stringWidth indicates logical advance, which
is not the same thing as wide. For more details, see the Font and Text questions in the Java
2D FAQ.

Java 2D Printing
List of issues that can happen with Java 2D printing.

This section describes some issues that can happen with Java 2D printing and suggests
causes and solutions.

Also, see the Printing questions in the Java 2D FAQ.

1. JRE crashes during printing on Windows.

Cause: The JRE uses Windows printer drivers, and they might have problems.

Solution: Upgrade the Windows printer driver for the printer that is being used.

2. The printing seems to be successful, but the job does not print on Windows.

Cause: Some jobs fail to properly spool to the printer.

Solution: In the printer driver properties, disable Advanced Printing Options.

3. The print dialog box takes a long time to appear on Windows.

Cause: Applications might cause the JRE to probe all printers, including those that are
disconnected.

Solution: Look for disconnected or unreachable network printers and remove them from
the list of printers.

4. PrintJob.printDialog() shows no service found error on Oracle Solaris and Linux.

Cause: The cause is one of the following:

Chapter 12
Java 2D Printing

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 9 of 10

http://www.oracle.com/technetwork/java/index-137037.html#Font_and_Text_questions
http://www.oracle.com/technetwork/java/index-137037.html#Font_and_Text_questions
http://www.oracle.com/technetwork/java/index-137037.html#Printing_questions

• The lpc utility is not in the /usr/sbin directory.

• The lpstat utility is not in the /usr/sbin directory.

Solution: Install lpc and lpstat in the standard location, as previously mentioned.

Chapter 12
Java 2D Printing

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 10 of 10

13
Swing

This chapter provides information and guidance on some specific procedures for
troubleshooting some of the most common issues that might be found in the Java SE Swing
API.

This chapter contains the following sections:

• General Debug Tips for Swing

• Specific Debug Tips for Swing

General Debug Tips for Swing
Swing's painting infrastructure changed quite extensively in Java SE 6. If you notice painting
artifacts specific in Java SE 6 or later releases, you can try turning off the new functionality.
This can be done with the property swing.bufferPerWindow.

When you are debugging the Swing code which is executed while any menu is popped up, it is
recommended to use the debugger remotely. Otherwise, the debugging process and the
application execution block each other, and this prevents further work with the system. If that
happens, the only action that can be taken is to kill the X server for Oracle Solaris and Linux.
See Bug Database.

The following are some common Swing problems:

• Painting.

• Renderers.

• Updating models from wrong thread.

• Hangs.

• Responsiveness.

• Repainting issues.

• isOpaque usage.

• Startup: could be caused by small heap, loading unnecessary classes.

The following are some things to consider:

• Buffer-per-window feature.

• Native look-and-feel fidelity: Gnome vs Windows

• Footprint of Swing applications.

• JTable, JTree, and JList all use renderers.

• Make sure that custom renderers do as little as possible.

• Update models only from event dispatch thread. Otherwise the display will not reflect the
state of the model.

The following identify bad renderers:

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 8

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6517045

• Sluggish application, especially when scrolling.

• Use an optimizer to watch painting calls, look for calls to
getTableCellTRendererComponent.

Specific Debug Tips for Swing
The following topics describe problems in Swing and troubleshooting techniques:

• Incorrect Threading

• JComponent Children Overlap

• Display Update

• Model Change

• Add or Remove Components

• Opaque Override

• Permanent Changes to Graphics

• Custom Painting and Double Buffering

• Opaque Content Pane

• Renderer Call for Each Cell Performance

• Possible Leaks

• Mix Heavyweight and Lightweight Components

• Use Synth

• Track Activity on Event Dispatch Thread

• Specify Default Layout Manager

• Listener Object Dispatched to Incorrect Component

• Add a Component to Content Pane

• Drag and Drop Support

• One Parent for a Component

• JFileChooser Issues with Windows Shortcuts

Incorrect Threading
Random exceptions and painting problems are usually the result of incorrect threading usage
by Swing.

All access to Swing components, unless specifically noted in the javadoc, must be done on the
event dispatch thread. This includes any models (TableModel, ListModel, and others) that are
attached to Swing components.

The best way to check for bad usage of Swing is by using instrumented RepaintManager, as
illustrated in the following example.

public class CheckThreadViolationRepaintManager extends RepaintManager {
 // it is recommended to pass the complete check
 private boolean completeCheck = true;

Chapter 13
Specific Debug Tips for Swing

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 8

 public boolean isCompleteCheck() {
 return completeCheck;
 }

 public void setCompleteCheck(boolean completeCheck) {
 this.completeCheck = completeCheck;
 }

 public synchronized void addInvalidComponent(JComponent component) {
 checkThreadViolations(component);
 super.addInvalidComponent(component);
 }

 public void addDirtyRegion(JComponent component, int x, int y, int w,
int
h) {
 checkThreadViolations(component);
 super.addDirtyRegion(component, x, y, w, h);
 }

 private void checkThreadViolations(JComponent c) {
 if (!SwingUtilities.isEventDispatchThread() && (completeCheck ||
c.isShowing())) {
 Exception exception = new Exception();
 boolean repaint = false;
 boolean fromSwing = false;
 StackTraceElement[] stackTrace = exception.getStackTrace();
 for (StackTraceElement st : stackTrace) {
 if (repaint && st.getClassName().startsWith("javax.swing."))
{
 fromSwing = true;
 }
 if ("repaint".equals(st.getMethodName())) {
 repaint = true;
 }
 }
 if (repaint && !fromSwing) {
 //no problems here, since repaint() is thread safe
 return;
 }
 exception.printStackTrace();
 }
 }
}

JComponent Children Overlap
Another possible source of painting problems can occur if you allow children of a JComponent
to overlap.

In this case, the parent must override isOptimizedDrawingEnabled to return false. If you do
not override isOptimizedDrawingEnabled, then components can randomly appear on top of
others, depending upon which component repaint was invoked on.

Chapter 13
Specific Debug Tips for Swing

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 8

Display Update
Another source of painting problems can occur if you do not invoke repaint correctly when you
need to update the display.

Changing a visible property of a Swing component, such as the font, will trigger a repaint or
revalidate. If you are writing a custom component, then you must invoke repaint and possibly
revalidate whenever the display or sizing information is updated. If you do not, the display will
only update the next time someone triggers a repaint.

A good way to diagnose this is to resize the window. If the content appears after a resize, then
that implies that the component did not invoke repaint or revalidate correctly.

Model Change
Invoke repaint when you change a visible property of a Swing component, but you need not
invoke repaint when your model changes.

If your model sends out the correct change notification, the JComponent will invoke repaint or
revalidate as appropriate.

However, if you change your model but do not send out a notification, then a repaint event may
not even work. In particular this will not work with JTree. The correct thing to do is to send the
appropriate model notification. This can usually be diagnosed by resizing the window and
noticing that the display did not update correctly.

Add or Remove Components
When you add or remove components, you must manually invoke repaint or revalidate Swing
and AWT.

Opaque Override
Another possible area of painting problems is if a component does not override opaque.

Further, if you do not invoke implementation you must honor the opaque property, that is, if this
component is opaque, you must completely fill in the background with a non-opaque color. If
you do not honor the opaque property, then you will likely see visual artifacts.

The only way to check for this is to look for consistent visual artifacts when the component
invokes repaint.

Permanent Changes to Graphics
Do not make any permanent changes to a Graphics object that is passed to paint,
paintComponent, or paintChildren.

Chapter 13
Specific Debug Tips for Swing

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 8

Note

If you override the graphics in a subclass, then you should not make permanent
changes to the paint, paintComponent, or paintChildren passed in the Graphics
object. For example, you should not alter the clip Rectangle or modify the transform. If
you need to do these operations you may find it easier to create a new Graphics
object from the passed in Graphics object and manipulate it instead.

If you ignore this restriction, then the result will be clipping or other weird visual artifacts.

Custom Painting and Double Buffering
Although you can override paint and do custom painting in the override, you should instead
override paintComponent.

The JComponent.paint method ensures that painting happens to the double buffer. If you
override paint directly, then you may lose double buffering.

Opaque Content Pane
Swing's painting architecture requires an opaque content pane.

The painting architecture of Swing requires an opaque JComponent to exist in the containment
hierarchy above all other components. This is typically provided by using the content pane. If
you replace the content pane, it is recommended that you make the content pane opaque by
using setOpaque(true). Additionally, if the content pane overrides paintComponent, then it
will need to completely fill in the background in an opaque color in paintComponent.

Renderer Call for Each Cell Performance
Renderers are painted for each cell, so ensure that the renderer does as little as possible.

Any slowdown in the renderer is magnified across all cells. For example, if you repaint the
visible region of a table with 50x20 visible cells, then there will be 1000 calls to the renderer.

Possible Leaks
If the life cycle of your model is longer than that of a window with a component using the
model, you must explicitly set the model of the Swing component to null.

If you do not set the model to null, your model will retain a reference to the Component, which
will keep all components in the window from being garbage collected. Take a look at the
following example.

TableModel myModel = ...;
JFrame frame = new JFrame();
frame.setContentPane(new JScrollPane(new JTable(myModel)));
frame.dispose();

If your application still holds a reference to myModel, then frame and all its children will still be
reachable by way of the listener JTable installations on myModel. The solution is to invoke
table.setModel(new DefaultTableModel()).

Chapter 13
Specific Debug Tips for Swing

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 8

Mix Heavyweight and Lightweight Components
Mixing heavyweight and lightweight components can work in certain scenarios, as long as the
heavyweight component does not overlap with any existing Swing components.

For example, a heavyweight will not work in an internal frame, because when the user drags
around the internal frame it will overlap with other internal frames. If you use heavyweights,
then invoke the following methods:

• JPopupMenu.setDefaultLightWeightPopupEnabled(false)

• ToolTipManager.sharedInstance().setLightWeightPopupEnabled(false)

Use Synth
Synth is an empty canvas.

To use Synth, you must either provide a complete XML file that configures the look and feel, or
extend SynthLookAndFeel and provide your own SynthStyleFactory.

Track Activity on Event Dispatch Thread
If a Swing application tries to do too much on the event dispatch thread, then the application
will appear sluggish and unresponsive.

One way to detect this situation is to push a new EventQueue that can output logging
information if an event takes too long to process. This approach is not perfect in that it has
problems with focus events and modality, but it is good for ad-hoc testing.

Specify Default Layout Manager
Problems can be caused by differing default layout manager classes on a Swing component.

For example, the default for the JPanel class is FlowLayout, but the default for the JFrame
class is BorderLayout. This situation is easily fixed by specifying a LayoutManager.

Listener Object Dispatched to Incorrect Component
MouseListener objects are dispatched to the deepest component that has MouseListener
objects (or has enabled MouseEvent objects).

A ramification of this is if you attach a MouseListener to a component whose descendants
have MouseListener objects, your MouseListener object will never get called.

This is easily reproduced with a composite component, like an editable JComboBox. Because a
JComboBox has child components that have a MouseListener, a MouseListener attached to an
editable JComboBox will never get notified.

If your MouseListener suddenly stops getting events, then it could be the result of a change in
the application whereby a descendant component now has a MouseListener. A good way to
check for this is to iterate over the descendants asking if they have any mouse listeners.

A similar scenario occurs with the KeyListener class. A KeyListener object is dispatched only
to the focused component.

Chapter 13
Specific Debug Tips for Swing

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 6 of 8

The JComboBox case is another example of this situation. In the editable JComboBox case the
editor gets focus, not the JComboBox. As a result, a KeyListener attached to an editable
JComboBox will never get notified.

Add a Component to Content Pane
You must add a JFrame, JWindow, or JDialog component to the content pane.

A component added to a top-level Swing component must go to the content pane, but the add
method (and a couple of other methods) on the JFrame, JWindow, and JDialog classes redirect
to the content pane. In other words, frame.getContentPane().add(component) is the
same as frame.add(component).

The following methods redirect to the content pane for you: add (and its variants), remove
(and its variants), and setLayout.

This is purely a convenience, but can cause confusion. In particular, getChildren, getLayout,
and various others do not redirect to the content pane.

This change affects LayoutManagers that only work with one component, such as GroupLayout
and BoxLayout. For example, new GroupLayout(frame) will not work; instead, you must
use GroupLayout(frame.getContentPane()).

Drag and Drop Support
When using Swing you should use Swing's drag-and-drop support as provided by
TransferHandler.

One Parent for a Component
Remember that a component can only exist in one parent at a time.

Problems occur when you share menu items between menus. For example, JMenuItem is a
component, and therefore can exist in only one menu at a time.

JFileChooser Issues with Windows Shortcuts
The JFileChooser class does not support shortcuts on Windows OS (.lnk files).

Unlike the standard Windows file choosers, JFileChooser does not allow the user to follow
Windows shortcuts when browsing the file system, because it does not show the correct path
to the file.

To reproduce the problem, follow these steps:

1. Create a text file on the Desktop called, for example, MyFile.txt. Open the text file and
type some text, for example: This is the contents of MyFile.txt.

2. Create a shortcut to the new text file in the following way: Drag the file with the right mouse
button to another location on the Desktop and choose Create Shortcut(s) here.

3. Run the JfileChooser test application, browse the Desktop, select Shortcut to
MyFile.txt and click Open.

4. The result file is PathToDesktop\Shortcut to MyFile.txt.lnk, but it should be
PathToDesktop\MyFile.txt.

Chapter 13
Specific Debug Tips for Swing

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 7 of 8

5. In addition, the contents of the result file in the text area shows the contents of the file
shortcut to MyFile.txt.lnk, but the contents should be This is the contents of
MyFile.txt, which was typed in step 1.

Chapter 13
Specific Debug Tips for Swing

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 8 of 8

14
Internationalization

Information and guidance about troubleshooting issues that might be found in the area of
internationalization support.

For detailed information, visit the Internationalization Overview.

This chapter describes troubleshooting techniques for internationalization and localization.

• Troubleshoot Internationalization and Localization

Troubleshoot Internationalization and Localization
Before troubleshooting, ensure that you understand the difference between internationalization
and localization:

• Internationalization is the process of designing software so that it can be adapted
(localized) to various languages and regions easily, in a cost-effective way, and without
changes to the software. This process generally involves isolating the parts of a program
that are dependent on language and culture. For example, the text of error messages are
kept separate from the program source code because the messages must be translated
during localization.

• Localization is the process of adapting a program for use in a specific locale. A locale is a
geographic or political region that shares the same language and customs. Localization
includes the translation of text such as user interface labels, error messages, and online
help. It also includes the culture-specific formatting of data items such as monetary values,
times, dates, and numbers.

The user interface libraries in the Java SE platform enable the development of rich interactive
applications. The internationalization aspects include text input, text display, and user interface
layout. The following descriptions show the relationship between internationalization and the
functionality provided by the AWT, Java 2D, and Swing APIs:

• Text input is the process of entering new text into a document, whether by typing on a
keyboard or through front-end software such as input methods, handwriting recognition, or
speech input.

• Text display is a multistep process that includes selecting a font, arranging text into
paragraphs and lines, selecting glyphs for characters or character sequences, and
rendering these glyphs. Some writing systems require bidirectional text layout or complex
character-to-glyph mappings. Text display is handled by the Java 2D graphics system and
the Swing toolkit for lightweight user interface components and by AWT for peered user
interface components.

• User interface layout needs to accommodate text expansion or shrinkage caused by
localization, and match the direction of the user's writing system.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 1

https://docs.oracle.com/en/java/javase/16/intl/internationalization-overview.html

15
Java Sound

This chapter describes some issues that can arise with the Java sound technology and
suggests causes and workarounds.

The following topic describes scenarios to troubleshoot Java sound problems.

• Troubleshoot Java Sound Issues

Troubleshoot Java Sound Issues
Troubleshoot Java sound issues such as system sound configuration, audio file format, audio
format, and overrun and underrun conditions.

• System sound configuration:

Ensure that your audio system is correctly configured (sound card driver/DirectSound for
Windows, ALSA for Linux, Audio Mixer for Oracle Solaris). In addition, ensure that your
speakers are connected and that your sound card volume and mute state are adjusted to
the appropriate value. To test your sound configuration, run any native sound application
and play some sound through it.

On the Oracle Solaris and Linux operating systems, you might be unable to play sounds
because an application (or sound daemon, such as esd or artsd) opens the audio device
exclusively, thereby denying Java Sound access to the device.

• Audio file formats:

Java Sound supports a set of audio file formats, for example AU, AIF, and WAV. Most of
the file formats are only containers and can contain audio data in various compressed
audio formats. Java Sound file readers support some formats (uncompressed PCM, a-law,
mu-law), but do not support ADPCM, MP3, and others.

Java Sound also supports plug-ins for file readers and writers through the service provider
interface (SPI). You can use Sun, third-party, or your own plug-ins to read various audio
files. In any case, you must handle the presence of the plug-in, for example, by distributing
the required plug-ins with your application or by requiring plug-ins to be installed in the
client Java environment.

• Audio formats:

Java Sound supports various audio formats, but their availability depends on the operating
system. To use some audio format for recording or playing, the format must be supported
by your system (sound card drivers). Use supported formats as much as possible: PCM; 8
or 16 bits; 8000, 11025, 22050, 44100 Hz. The formats are supported by most sound
cards. Most sound cards support only PCM formats, and even if the driver supports mu-
law, then it requires some modification to the software. If you need to play or record mu-
law data, then the preferred way is to convert it to PCM format through a format converter.

See AudioSystem.getAudioInputStream documentation for details about format
conversion.

• Overrun and underrun conditions:

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 2

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/sound/sampled/AudioSystem.html

Recorded data is kept in a DataLine buffer. If you did not read from the line for a long time,
then an overrun condition will occur, and older data will be replaced with new data. This will
produce artifacts in the recorded audio data.

A similar situation occurs with playing. If all data from the buffer has been played and no
new data is written to the line, then an underrun condition will occur, and silence will be
played until you write a new portion of audio data to the line.

The preferred way to record is to read data in a separate thread to prevent the possible
influence of other tasks (for example, UI handling). If you use SourceDataLine for playing,
then a separate thread for writing data into the line is also the preferred method to use. If
you use Clip for playing, then the Clip implementation creates this type of thread itself.

Chapter 15
Troubleshoot Java Sound Issues

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 2

Part V
Submit Bug Reports

The chapter Submit a Bug Report shows you how to submit a bug report. It includes
suggestions about what to try before submitting a report and which data to collect for the
report.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 1

16
Submit a Bug Report

This chapter shows you how to submit a bug report. It includes suggestions about what to try
before submitting a report and which data to collect for the report.

This chapter contains the following sections:

• Check for Fixes in Update Releases

• Prepare to Submit a Bug Report

• Collect Data for a Bug Report

• Report a Bug

• Collect Core Dumps

Check for Fixes in Update Releases
Regularly scheduled updates to each release contain fixes for a set of critical bugs identified
since the initial release of the platform.

When an update release becomes available, it becomes the default download at the Java SE
Downloads page.

The download site includes a link to the release notes that list the bug fixes in the release.
Each bug in the list is linked to the bug description in the bug database. The release notes also
includes the list of fixes in previous update releases. If you encounter an issue, or suspect a
bug, then, as an early step in the diagnosis, check the list of fixes that are available in the most
recent update release.

Sometimes, it is not obvious if an issue is a duplicate of a bug that was already fixed.

Prepare to Submit a Bug Report
The following is the recommended procedure to submit a bug report.

Before submitting a bug report, consider the following recommendations:

• Collect as much relevant data as possible. For example, generate a thread dump in the
case of a deadlock, or locate the core file (where applicable) and hs_err file in the case of
a crash. In every case, it is important to document the environment and the actions
performed just before the problem happened. See Collect Data for a Bug Report.

• Where applicable, try to restore the original state and reproduce the problem using the
documented steps. This helps to determine if the problem is reproducible or an intermittent
issue.

• If the issue is reproducible, try to narrow down the problem. In some cases, a bug can be
demonstrated with a small standalone test case. Bugs that are demonstrated by small test
cases will typically be easy to diagnose as compared to test cases that consist of a large
complex application.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 1 of 10

https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html

• Search the Java Bug Database to see if this issue or a similar issue was reported. If the
issue has already been reported, then the bug report might have further information, such
as the following:

– If the issue was already fixed, then the release in which it was fixed is given.

– A workaround for the issue.

– Comments in the evaluation that explain, in further detail, the circumstances that
cause the issue to happen.

• If you conclude that the issue was not already reported, then report it at Report a Bug or
Request a Feature.

Before reporting an issue, verify that the environment where the problem happens is a
supported configuration. See Oracle JDK 11 Certified System Configurations.

In addition to the system configurations, check the list of supported locales. See JDK 11
Supported Locales.

In the case of Oracle Solaris, check the recommended patch cluster for the operating system
release to ensure that the recommended patches are installed.

Collect Data for a Bug Report
The following sections list the commands or recommend a general procedure to obtain the
data:

• Detailed Description of the Problem

• Hardware Details

• Operating System Details

• Java SE Version

• Command-Line Options

• Environment Variables

• Fatal Error Log

• Core and Crash Dump

• Logs and Traces

Detailed Description of the Problem
When creating a problem description, try to include as much relevant information as possible.

Describe the application, the environment, and the most important events leading up to the
time when the problem happened.

Report all troubleshooting steps and results that have already occurred.

Sometimes, the problem can be reproduced only in a complex application environment. In this
case, the description, coupled with logs, core file, and other relevant information, might be the
only way to diagnose the issue. In these situations, the description should indicate if the
submitter is willing to run further diagnostics or run test binaries on the system where the issue
occurs.

• If the problem is reproducible at will, then list the steps that are required to demonstrate the
problem.

Chapter 16
Collect Data for a Bug Report

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 2 of 10

https://bugs.java.com/bugdatabase/index.jsp
https://bugreport.java.com/bugreport/
https://bugreport.java.com/bugreport/
https://www.oracle.com/java/technologies/javase/products-doc-jdk11certconfig.html
https://www.oracle.com/java/technologies/javase/jdk11-suported-locales.html
https://www.oracle.com/java/technologies/javase/jdk11-suported-locales.html

• If the problem can be demonstrated with a small test case, then include the test case and
the commands to compile and execute the test case.

• If the test case or problem requires third-party code, such as a commercial or open source
library or package, then provide then details about where and how to obtain the library.

Hardware Details
The hardware details are stored in the error logs when a fatal error occurs.

Sometimes, a bug happens or can be reproduced only on certain hardware configurations. If a
fatal error occurs, then the error log might contain the hardware details. If an error log is not
available, then document in the bug report the number and the type of processors in the
machine, the clock speed, and, where applicable and if known, some details on the features of
that processor. For example, in the case of Intel processors, it might be relevant that hyper-
threading is available.

Operating System Details
The commands that you can use to get the operating system details.

On the Oracle Solaris operating system, the showrev -a command prints the operating system
version and patch information.

On Linux, it is important to know which distribution and version is used. Sometimes the /etc/
*release file indicates the release information, but because components and packages can
be upgraded independently, it is not always a reliable indication of the configuration. Therefore,
in addition to the information from the *release file, collect the following information:

• The kernel version. This can be obtained using the uname -a command.

• The glibc version. The rpm -q glibc command indicates the patch level of glibc.

• The thread library. There are two thread libraries for Linux, namely LinuxThreads and
NPTL. The LinuxThreads library is used on 2.4, and earlier kernels and has fixed stack and
floating stack variants. The Native POSIX Thread Library (NPTL) is used on the 2.6 kernel.
Some Linux releases (such as RHEL3) include backports of NPTL to the 2.4 kernel. Use the
command getconf GNU_LIBPTHREAD_VERSION to determine which thread library is used. If
the getconf command returns an error to say that the variable does not exist, then it is
likely that you are using an old kernel with the LinuxThreads library.

Java SE Version
Obtain the Java SE version string with the java -version command.

Multiple versions of Java SE may be installed on the same machine. Therefore, ensure that
you use the version of the java command used by the failing application. It is very likely to be
different from the default java command included in a user's PATH environment variable.

Command-Line Options
If the bug report does not include a fatal error log then, it is important to document the full
command line and all its options. This includes any options that specify heap settings, for
example, the -Xmx option, or any -XX options that specify HotSpot specific options.

If you can reproduce the issue at will, and you're able to read standard output (stdout) for the
JVM, then you can add the -XX:+PrintCommandLineFlags option to obtain the full list of

Chapter 16
Collect Data for a Bug Report

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 3 of 10

command-line options used by the application. This option will be active the next time the JVM
is restarted.

You can also run the jcmd command as follows to obtain the command-line options of a
running VM:

jcmd <process ID for the Java process> VM.command_line

In addition, you can change the flags of a running JVM through jcmd. See the VM.set_flag
command.

Environment Variables
Sometimes problems arise due to environment variable settings. When creating the bug report,
indicate the values of the following Java environment variables (if set).

• JAVA_TOOL_OPTIONS

• _JAVA_OPTIONS

• CLASSPATH

• JAVA_COMPILER

• PATH

• USERNAME

Note

You should obtain the values of environment variables from the context of the failing
application. In addition, one or more configuration files may set the values of these
environment variables for that failing application.

In addition, collect the following operating-system-specific environment variables.

• On Oracle Solaris and Linux operating systems, collect the values of the following
environment variables:

– LD_LIBRARY_PATH

– LD_PRELOAD

• On Windows, collect the values of the following environment variables:

– OS

– PROCESSOR_IDENTIFIER

– _ALT_JAVA_HOME_DIR

Fatal Error Log

When a fatal error occurs, an error log is created. See Fatal Error Log.

The error log contains information obtained at the time of the fatal error, such as version and
environment information, details about the threads that provoked the crash, and so forth.

Chapter 16
Collect Data for a Bug Report

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 4 of 10

If the fatal error log is generated, then be sure to include it in the bug report or report it during a
support call.

Core and Crash Dump

If a core file or crash dump has been created because of the reported issue, include it with the
bug, size permitting.

A Linux core file or a Windows crash dump contains the memory state of either an application
or the operating system at the time the core or dump was created. Depending on a system's
configuration, a core or crash dump may be created automatically when a crash happens.
Consult with the system administrator to determine if a core file will be generate automatically
and where.

In the case of a hung process, the procedure for generating a dump is described in Collect
Core Dumps.

Logs and Traces
Log or trace output can help to quickly determine the cause of a problem.

For example, in the case of a performance issue, the output of the -verbose:gc option can
help in diagnosing the problem. This option enables output from the garbage collector.

In other cases, you can use Java Flight Recorder and JDK Mission Control to capture
statistical information over the time period leading up to the problem.

In the case of a deadlock or a hung VM, the thread stacks can help diagnose the problem.
Obtain thread stacks by pressing Control+\ on Oracle Solaris and Linux or Control+Break
on Windows. Alternatively, use the Thread.dump_to_file option in the jcmd command.

In general, provide all relevant logs, traces, and other output in the bug report or during the
support call.

Report a Bug
Once you have concluded that your issue was not already reported and collected data about it,
report it at Report a Bug or Request a Feature.

Collect Core Dumps
A core dump or a crash dump is a memory snapshot of a process.

A core dump can be automatically created by the operating system when a fatal or unhandled
error occurs. Alternatively, a core dump can be forced by using system-provided command-line
utilities. Sometimes, a core dump is useful when diagnosing a process that appears to be
hung; the core dump may reveal information about the cause of the hang.

The following sections describe scenarios for collecting core dumps.

• Collect Core Dumps on Oracle Solaris

• Collect Core Dumps on Linux

• Reasons for Not Getting a Core File

• Collect Crash Dumps on Windows

Chapter 16
Report a Bug

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 5 of 10

https://docs.oracle.com/en/java/java-components/jdk-mission-control/
https://bugreport.java.com/bugreport/

Collect Core Dumps on Oracle Solaris

By default, the core dump is created in the current working directory of the process. The name
of the core dump file is core. The user can configure the location and name of the core dump
using the core file administration utility, coreadm. This procedure is fully described in the man
page for the coreadm utility.

The ulimit utility is used to get or set the limitations on the system resources available to the
current shell and its descendants. Use the ulimit -c command to check or set the core file
size limit. Ensure that the limit is set to unlimited; otherwise, the core file could be truncated.

Note

ulimit is a Bash shell built-in command; on a C shell, use the limit command.

Ensure that any scripts that are used to launch the VM or your application do not disable core
dump creation.

The gcore utility can be used to get a core image of running processes. This utility accepts a
process ID (pid) of the process for which you want to force a core dump.

To get the list of Java processes running on the machine, you can use any of the following
commands:

• ps -ef | grep java

• pgrep java

• jps

Note

The jps command-line utility does not perform name matching (that is, looking for
"java" in the process command name) and so it can list Java VM embedded
processes as well as the Java processes.

The following are two methods to collect core dumps on Oracle Solaris.

• ShowMessageBoxOnError option on Oracle Solaris:

A Java process can be started with the -XX:+ShowMessageBoxOnError command-line
option. When a fatal error occurs, the process prints a message to standard error and
waits for a yes or no response from standard input.

• Suspend a process with the truss utility:

In situations where it is not possible to specify the -XX:+ShowMessageBoxOnError option,
you might be able to use the truss utility. This Oracle Solaris operating system utility is
used to trace system calls and signals. You can use this utility to suspend the process
when it reaches a specific function or system call.

Chapter 16
Collect Core Dumps

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 6 of 10

The command in the following example shows how to use the truss utility to suspend a
process when the exit system call is executed (in other words, the process is about to
exit).

$ truss -t \!all -s \!all -T exit -p pid

When the process calls exit, it will be suspended. At this point, you can attach the
debugger to the process or call gcore to force a core dump.

Collect Core Dumps on Linux

By default, the core dump is created in the current working directory of the process. The name
of the core dump file is core.pid, where pid is the process ID of the crashed Java process.

Not all systems are configured to allow the creation of core files. The ulimit utility is used to
get or set the limitations on the system resources available to the current shell and its
descendants. Use the ulimit -c command to check or set the core file size limit. Ensure that
the limit is set to unlimited; otherwise, the core file could be truncated or not produced.

Note

ulimit is a Bash shell built-in command; on a C shell, use the limit command.

Ensure that any scripts that are used to launch the VM or your application do not disable core
dump creation.

You can use the gcore command in the gdb (GNU debugger) interface to get a core image of a
running process. This utility accepts the pid of the process for which you want to force the core
dump.

To get the list of Java processes running on the machine, you can use any of the following
commands:

• jcmd

• ps -ef | grep java

• pgrep java

You can use the ShowMessageBoxOnError option to collect core dumps on Linux. Start a Java
process with the -XX:+ShowMessageBoxOnError command-line option. When a fatal error
occurs, the process prints a message to standard error and waits for a yes or no response from
standard input.

Reasons for Not Getting a Core File
The following is a list of reasons why a core file might not be generated on Linux:

• The application user does not have permission to write in the current working directory of
the process.

• The application user has write permission on the current working directory, but there is
already a file named core that has read-only permission.

• The current directory does not have enough space.

Chapter 16
Collect Core Dumps

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 7 of 10

• The current directory has a subdirectory named core.

• The current working directory is remote. It might be mapped to a Network File System
(NFS), and NFS failed at the time the core dump was about to be created.

• Oracle Solaris operating system only: The coreadm tool has been used to configure the
directory and name of the core file, but one or more of the previous reasons apply to the
configured directory.

• The process is running a setuid program, and therefore the operating system will not
dump the core unless it is configured explicitly.

• Java specific: If the process received SIGSEGV or SIGILL but did not produce a core file, it
is possible that the process handled it. For example, HotSpot VM uses the SIGSEGV signal
for legitimate purposes, such as throwing NullPointerException, deoptimization, and so
forth. The signal is unhandled by the Java VM only if the current instruction (PC) falls
outside the Java VM generated code. These are the only cases in which HotSpot dumps
the core.

• Java specific: The JNI Invocation API was used to create the VM. The standard Java
launcher was not used. The custom Java launcher program handled the signal by
consuming it and produced the log entry silently. This situation has occurred with certain
application servers and web servers. These Java VM embedding programs transparently
attempt to restart (fail over) the system after an abnormal termination. In this case, the fact
that a core dump is not produced is a feature and not a bug.

Collect Crash Dumps on Windows
In the Windows operating system, there are three types of crash dumps: Dr. Watson log file,
user minidump, and Dr. Watson full dump.

• Dr. Watson log file, which is a text error log file that includes faulting stack trace and a few
other details.

• User minidump, which is considered a partial core dump. It is not a complete core dump,
because it does not contain all the useful memory pages of the process.

• Dr. Watson full dump, which is equivalent to a UNIX core dump. This dump contains most
memory pages of the process except for code pages.

When an unexpected exception occurs on Windows, the action taken depends on two values
in the following registry key:

\\HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\AeDebug

The two values are named Debugger and Auto. The Auto value indicates if the debugger
specified in the value of the Debugger entry starts automatically when an application error
occurs.

• A value of 0 for Auto means that the system displays a message box notifying the user
when an application error occurs.

• A value of 1 for Auto means that the debugger starts automatically.

The value of Debugger is the debugger command that is to be used to debug program errors.

When a program error occurs, Windows examines the Auto value, and if the value is 0, then it
executes the command in the Debugger value. If the value for Debugger is a valid command,
then a message box is created with two buttons: OK and Cancel. If the user clicks OK, then
the program is terminated. If the user clicks Cancel, then the specified debugger is started. If
the value for the Auto entry is set to 1 and the value for the Debugger entry specifies the

Chapter 16
Collect Core Dumps

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 8 of 10

command for a valid debugger, then the system automatically starts the debugger and does
not generate a message box.

The following are two ways to collect crash dump on Windows.

• Configure Dr.Watson:

The Dr. Watson debugger is used to create crash dump files. By default, the Dr. Watson
debugger (drwtsn32.exe) is installed in the Windows system folder (%SystemRoot%
\System32).

To install Dr. Watson as the postmortem debugger, run the following command:

drwtsn32 -i

To configure the name and location of crash dump files, run drwtsn32 without any options.

In the Dr. Watson GUI window, ensure that the Create Crash Dump File check box is
selected and that the crash dump file path and log file path are configured in their
respective text fields.

Dr. Watson can be configured to create a full dump using the registry. The registry key is
shown in the following example.

System Key: [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\DrWatson]
Entry Name: CreateCrashDump
Value: (0 = disabled, 1 = enabled)

Note

If the application handles the exception, then the registry-configured debugger is
not invoked. In that case, it might be appropriate to use the -
XX:+ShowMessageBoxOnError command-line option to force the process to wait for
user intervention on fatal error conditions.

• Force a crash dump:

The userdump command-line utility can be used to force a Dr. Watson dump of a running
process. The userdump utility does not ship with Windows. It is released as a component of
the OEM Support Tools package.

An alternative way to force a crash dump is to use the windbg debugger. The main
advantage of using windbg is that it can attach to a process in a non-invasive manner (that
is, read-only). Usually, Windows terminates a process after a crash dump is obtained, but
with the noninvasive attach, it is possible to obtain a crash dump and let the process
continue. To attach the debugger check box requires selecting the Attach to Process
option and the Noninvasive check box.

When the debugger is attached, a crash dump can be obtained using the command shown
in the following example.

.dump /f crash.dmp

The windbg debugger is included in the Debugging Tools for Windows download.

An additional utility in this download is the dumpchk.exe utility, which can verify that a
memory dump file was created correctly.

Chapter 16
Collect Core Dumps

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 9 of 10

Both userdump.exe and windbg require the pid of the process. The userdump -p command
lists the process and program for all processes. This is useful if you know that the
application is started with the java.exe launcher. However, if a custom launcher is used
(embedded VM), then it might be difficult to recognize the process. In that case, you can
use the jps command-line utility because it lists the PIDs of the Java processes only.

You can also use the -XX:+ShowMessageBoxOnError command-line option on Windows.
When a fatal error occurs, the process shows a message box and waits for a yes or no
response from the user.

Before clicking Yes or No, you can use the userdump.exe utility to generate the Dr. Watson
dump for the Java process. This utility can also be used in cases when the process
appears to be hung.

Chapter 16
Collect Core Dumps

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Page 10 of 10

Part VI
Appendices

This part contains the following topics.

• Fatal Error Log

Describes fatal error log contents and location

• Java 2D Properties

Describes properties that are useful in troubleshooting issues with Java 2D

• Environment Variables and System Properties

Describes environment variables and system properties that are useful when
troubleshooting issues with Java HotSpot Server VM

• Command-Line Options

Describes command-line options that are useful when diagnosing issues with Java
HotSpot Server VM

• Summary of Tools in This Release

Provides a summary of the tools available in the current and previous releases of the JDK.

A
Fatal Error Log

The fatal error log is created when a fatal error occurs. It contains information and the state
obtained at the time of the fatal error.

Note

The format of this file can change slightly in update releases.

This appendix contains the following sections:

• Location of Fatal Error Log

• Description of Fatal Error Log

• Header Format

• Thread Section Format

• Process Section Format

• System Section Format

Location of Fatal Error Log
To specify where the log file will be created, use the product flag -XX:ErrorFile=file,
where file represents the full path for the log file location.

The substring %% in the file variable is converted to %, and the substring %p is converted to the
PID of the process.

In the following example, the error log file will be written to the directory /var/log/java and
will be named java_errorpid.log:

java -XX:ErrorFile=/var/log/java/java_error%p.log

If the -XX:ErrorFile=file flag is not specified, then the default log file name is
hs_err_pid.log, where pid is the PID of the process.

In addition, if the -XX:ErrorFile=file flag is not specified, the system attempts to create
the file in the working directory of the process. In the event that the file cannot be created in the
working directory (insufficient space, permission problem, or other issue), the file is created in
the temporary directory for the operating system. On the Oracle Solaris and Linux operating
systems, the temporary directory is /tmp. On the Windows, the temporary directory is
specified by the value of the TMP environment variable. If that environment variable is not
defined, then the value of the TEMP environment variable is used.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-1 of A-18

Description of Fatal Error Log
The error log contains information obtained at the time of the fatal error, including the following
information, where possible:

• The operating exception or signal that provoked the fatal error

• Version and configuration information

• Details about the thread that provoked the fatal error and the thread's stack trace

• List of running threads and their states

• Summary information about the heap

• List of native libraries loaded

• Command-line arguments

• Environment variables

• Details about the operating system and CPU

Note

In some cases only a subset of this information is output to the error log. This can
happen when a fatal error is of such severity that the error handler is unable to recover
and report all the details.

The error log is a text file consisting of the following sections:

• A header that provides a brief description of the crash. See Header Format.

• A section with thread information. See Thread Section Format.

• A section with process information. See Process Section Format.

• A section with system information. See System Section Format.

Note

The format of the fatal error log described here is based on Java SE 6. The format
might be different with other releases.

Header Format
The header section at the beginning of every fatal error log file contains a brief description of
the problem.

The header is also printed to standard output and may show up in the application's output log.

Appendix A
Description of Fatal Error Log

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-2 of A-18

The header includes a link to the HotSpot Virtual Machine Error Reporting Page, where the
user can submit a bug report.

#
A fatal error has been detected by the Java Runtime Environment:
#
SIGSEGV (0xb) at pc=0x00007f0f159f857d, pid=18240, tid=18245
#
JRE version: Java(TM) SE Runtime Environment (9.0+167) (build 9-ea+167)
Java VM: Java HotSpot(TM) 64-Bit Server VM (9-ea+167, mixed mode, tiered,
compressed oops, g1 gc, linux-amd64)
Problematic frame:
C [libMyApp.so+0x57d] Java_MyApp_readData+0x11
#
Core dump will be written. Default location: /cores/core.18240)
#
If you would like to submit a bug report, please visit:
http://bugreport.java.com/bugreport/crash.jsp
The crash happened outside the Java Virtual Machine in native code.
See problematic frame for where to report the bug.
#

The example shows that the VM crashed on an unexpected signal.

The next line describes the signal type, program counter (pc) that caused the signal, process
ID, and thread ID, as shown in the following example.

The following line and table describes the signal type, program counter (pc) that caused the
signal, process ID, and thread ID.

SIGSEGV (0xb) at pc=0x00007f0f159f857d, pid=18240, tid=18245

Table A-1 Line Description

Line Component Description

SIGSEGV Signal name

(0xb) Signal number

pc=0x00007f0f159f857d Program counter (instruction pointer)

pid=18240 Process ID

tid=18245 Thread ID

The next line contains the VM version (client VM or server VM), an indication of whether the
application was run in mixed or interpreted mode, and an indication of whether class file
sharing was enabled, as shown in the following line.

Java VM: Java HotSpot(TM) 64-Bit Server VM (9-ea+167, mixed mode, tiered,
compressed oops, g1 gc, linux-amd64)

Appendix A
Header Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-3 of A-18

The next information is the function frame that caused the crash, as shown in the following
example.

Problematic frame:
C [libMyApp.so+0x57d] Java_MyApp_readData+0x11

Table A-2 Line Description

Line Component Description

C Frame type

[libMyApp.so+0x57d]
Java_MyApp_readData+0x11

Same as program counter, but represented as
library name and offset. For position-independent
libraries (JVM and most shared libraries), it is
possible to inspect the instructions that caused the
crash without a debugger or core file by using a
disassembler to dump instructions near the offset.

In this example, the "C" frame type indicates a native C frame. Table A-3 shows the possible
frame types.

Table A-3 Frame Types

Frame
Type

Description

C Native C frame

j Interpreted Java frame

V VM frame

v VM-generated stub frame

J Other frame types, including compiled Java frames

Internal errors will cause the VM error handler to generate a similar error dump. However, the
header format is different. Examples of internal errors are guarantee() failure, assertion
failure, ShouldNotReachHere(), and so forth. The following example shows the header format
for an internal error.

#
An unexpected error has been detected by HotSpot Virtual Machine:
#
Internal Error (4F533F4C494E55583F491418160E43505000F5), pid=10226,
tid=16384
#
Java VM: Java HotSpot(TM) Client VM (1.6.0-rc-b63 mixed mode)

In the above header, there is no signal name or signal number. Instead the second line now
contains Internal Error and a long hexadecimal string. This hexadecimal string encodes the
source module and line number where the error was detected. In general this "error string" is
useful only to engineers working on the HotSpot Virtual Machine.

The error string encodes a line number and therefore it changes with each code change and
release. A crash with a given error string in one release (for example, 1.6.0) might not

Appendix A
Header Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-4 of A-18

correspond to the same crash in an update release (for example, 1.6.0_01), even if the strings
match.

Note

Do not assume that a workaround or solution that worked in one situation associated
with a given error string will work in another situation associated with that same error
string. Note the following facts:

• Errors with the same root cause might have different error strings.

• Errors with the same error string might have completely different root causes.

Therefore, the error string should not be used as the sole criterion when
troubleshooting bugs.

Thread Section Format
Information about the thread that crashed.

If multiple threads crash at the same time, then only one thread is printed.

Thread Information

The first part of the thread section shows the thread that caused the fatal error, as shown in the
following example.

Current thread (0x00007f102c013000): JavaThread "main" [_thread_in_native,
id=18245, stack(0x00007f10345c0000,0x00007f10346c0000)]

Table A-4 Thread Information

Thread Component Description

0x00007f102c013000 Thread Pointer

JavaThread Thread Type

main Thread Name

_thread_in_native Thread State

id=18245 Thread ID

stack(0x00007f10345c0000,0x00007f10346c0000) Stack

The thread pointer is the pointer to the Java VM internal thread structure. It is generally of no
interest unless you are debugging a live Java VM or core file.

The following list shows possible thread types.

• JavaThread

• VMThread

• CompilerThread

• GCTaskThread

• WatcherThread

• ConcurrentMarkSweepThread

Appendix A
Thread Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-5 of A-18

Table A-5 shows the important thread states.

Table A-5 Thread States

Thread State Description

_thread_uninitialized Thread is not created. This occurs only in the case of memory
corruption.

_thread_new Thread was created, but it has not yet started.

_thread_in_native Thread is running native code. The error is probably a bug in the native
code.

_thread_in_vm Thread is running VM code.

_thread_in_Java Thread is running either interpreted or compiled Java code.

_thread_blocked Thread is blocked.

..._trans If any of the previous states is followed by the string _trans, then that
means that the thread is changing to a different state.

The thread ID in the output is the native thread identifier.

If a Java thread is a daemon thread, then the string daemon is printed before the thread state.

Signal Information

The next information in the error log describes the unexpected signal that caused the VM to
terminate. On a Windows system the output appears as shown in the following example.

siginfo: ExceptionCode=0xc0000005, reading address 0xd8ffecf1

In the above example, the exception code is 0xc0000005 (ACCESS_VIOLATION), and the
exception occurred when the thread attempted to read address 0xd8ffecf1.

On Oracle Solaris and Linux operating systems the signal number (si_signo) and signal code
(si_code) are used to identify the exception, as follows:

siginfo: si_signo: 11 (SIGSEGV), si_code: 1 (SEGV_MAPERR), si_addr:
0x0000000000000000

Register Context

The next information in the error log shows the register context at the time of the fatal error.
The exact format of this output is processor-dependent. The following example shows output
for the Intel(R) Xeon(R) processor.

Registers:
RAX=0x0000000000000000, RBX=0x00007f0f17aff3b0, RCX=0x0000000000000001,
RDX=0x00007f1033880358
RSP=0x00007f10346be930, RBP=0x00007f10346be930, RSI=0x00007f10346be9a0,
RDI=0x00007f102c013218
R8 =0x00007f0f17aff3b0, R9 =0x0000000000000008, R10=0x00007f1011bb1de9,
R11=0x0000000101cfc5e0
R12=0x0000000000000000, R13=0x00007f0f17aff3b0, R14=0x00007f10346be9a8,
R15=0x00007f102c013000

Appendix A
Thread Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-6 of A-18

RIP=0x00007f0f159f857d, EFLAGS=0x0000000000010283, CSGSFS=0x0000000000000033,
ERR=0x0000000000000004

The register values might be useful when combined with instructions, as described below.

Machine Instructions

After the register values, the following example shows the error log that contains the top of
stack followed by 32 bytes of instructions (opcodes) near the program counter (PC) when the
system crashed. These opcodes can be decoded with a disassembler to produce the
instructions around the location of the crash. Note: IA32 and AMD64 instructions are variable
in length, and so it is not always possible to reliably decode instructions before the crash PC.

Top of Stack: (sp=0x00007f10346be930)
0x00007f10346be930: 00007f10346be990 00007f1011bb1e15
0x00007f10346be940: 00007f1011bb1b33 00007f10346be948
0x00007f10346be950: 00007f0f17aff3b0 00007f10346be9a8
0x00007f10346be960: 00007f0f17aff5a0 0000000000000000

Instructions: (pc=0x00007f0f159f857d)
0x00007f0f159f855d: 3d e6 08 20 00 ff e0 0f 1f 40 00 5d c3 90 90 55
0x00007f0f159f856d: 48 89 e5 48 89 7d f8 48 89 75 f0 b8 00 00 00 00
0x00007f0f159f857d: 8b 00 5d c3 90 90 90 90 90 90 90 90 90 90 90 90
0x00007f0f159f858d: 90 90 90 55 48 89 e5 53 48 83 ec 08 48 8b 05 88

Thread Stack

Where possible, the next output in the error log is the thread stack, as shown in the following
example. This includes the addresses of the base and the top of the stack, the current stack
pointer, and the amount of unused stack available to the thread. This is followed, where
possible, by the stack frames, and up to 100 frames are printed. For C/C++ frames, the library
name may also be printed. Note: In some fatal error conditions, the stack may be corrupt, and
this detail may not be available.

Stack: [0x00007f10345c0000,0x00007f10346c0000], sp=0x00007f10346be930, free
space=1018k
Native frames: (J=compiled Java code, A=aot compiled Java code,
j=interpreted, Vv=VM code, C=native code)
C [libMyApp.so+0x57d] Java_MyApp_readData+0x11
j MyApp.readData()I+0
j MyApp.main([Ljava/lang/String;)V+15
v ~StubRoutines::call_stub
V [libjvm.so+0x839eea] JavaCalls::call_helper(JavaValue*, methodHandle
const&, JavaCallArguments*, Thread*)+0x47a
V [libjvm.so+0x896fcf] jni_invoke_static(JNIEnv_*, JavaValue*, _jobject*,
JNICallType, _jmethodID*, JNI_ArgumentPusher*, Thread*) [clone .isra.90]+0x21f
V [libjvm.so+0x8a7f1e] jni_CallStaticVoidMethod+0x14e
C [libjli.so+0x4142] JavaMain+0x812
C [libpthread.so.0+0x7e9a] start_thread+0xda

Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)
j MyApp.readData()I+0
j MyApp.main([Ljava/lang/String;)V+15
v ~StubRoutines::call_stub

Appendix A
Thread Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-7 of A-18

The log contains two thread stacks.

• The first thread stack is Native frames, which prints the native thread showing all function
calls. However, this thread stack does not take into account the Java methods that are
inlined by the runtime compiler; if methods are inlined, then they appear to be part of the
parent's stack frame.

The information in the thread stack for native frames provides important information about
the cause of the crash. By analyzing the libraries in the list from the top down, you can
generally determine which library might have caused the problem and report it to the
appropriate organization responsible for that library.

• The second thread stack is Java frames, which prints the Java frames including the inlined
methods, skipping the native frames. Depending on the crash, it might not be possible to
print the native thread stack, but it might be possible to print the Java frames.

Further Details

If the error occurred in the VM thread or in a compiler thread, then further details may be seen
from the following example. For example, in the case of the VM thread, the VM operation is
printed if the VM thread is executing a VM operation at the time of the fatal error. In the
following output example, the compiler thread caused the fatal error. The task is a compiler
task, and the HotSpot Client VM is the compiling method hs101t004Thread.ackermann.

Current CompileTask:
HotSpot Client Compiler:754 b
nsk.jvmti.scenarios.hotswap.HS101.hs101t004Thread.ackermann(IJ)J (42 bytes)

For the HotSpot Server VM, the output for the compiler task is slightly different but will also
include the full class name and method.

Process Section Format
The process section is printed after the thread section.

It contains information about the whole process, including the thread list and memory usage of
the process.

Thread List

The thread list includes the threads that the VM is aware of, as shown in the following
example.

=>0x0805ac88 JavaThread "main" [_thread_in_native, id=21139,
stack(0x00007f10345c0000,0x00007f10346c0000)]

Table A-6 Thread List Description

Thread Component Description

=> Current Thread

0x0805ac88 Thread Pointer

JavaThread Thread Type

main Thread Name

_thread_in_native Thread State

Appendix A
Process Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-8 of A-18

Table A-6 (Cont.) Thread List Description

Thread Component Description

id=21139 Thread ID

stack(0x00007f10345c0000,0x00007f10346c0000) Stack

This includes all Java threads and some VM internal threads, but does not include any native
threads created by the user application that have not attached to the VM, as shown in the
following example.

Java Threads: (=> current thread)
 0x00007f102c469800 JavaThread "C2 CompilerThread0" daemon [_thread_blocked,
id=18302, stack(0x00007f0f16f31000,0x00007f0f17032000)]
 0x00007f102c468000 JavaThread "Signal Dispatcher" daemon [_thread_blocked,
id=18301, stack(0x00007f0f17032000,0x00007f0f17133000)]
 0x00007f102c450800 JavaThread "Finalizer" daemon [_thread_blocked,
id=18298, stack(0x00007f0f173fc000,0x00007f0f174fd000)]
 0x00007f102c448800 JavaThread "Reference Handler" daemon [_thread_blocked,
id=18297, stack(0x00007f0f174fd000,0x00007f0f175fe000)]
=>0x00007f102c013000 JavaThread "main" [_thread_in_native, id=18245,
stack(0x00007f10345c0000,0x00007f10346c0000)]

Other Threads:
 0x00007f102c43f000 VMThread "VM Thread" [stack:
0x00007f0f175ff000,0x00007f0f176ff000] [id=18296]
 0x00007f102c54b000 WatcherThread [stack:
0x00007f0f15bfb000,0x00007f0f15cfb000] [id=18338]

The thread type and thread state are described in Thread Section Format.

VM State

The next information is the VM state, which indicates the overall state of the virtual machine.
Table A-7 describes the general states.

Table A-7 VM States

General VM State Description

not at a safepoint Normal execution.

at safepoint All threads are blocked in the VM waiting for a special VM operation to
complete.

synchronizing A special VM operation is required, and the VM is waiting for all threads
in the VM to block.

The VM state output is a single line in the error log, as follows:

VM state:not at safepoint (normal execution)

Mutexes and Monitors

The next information in the error log is a list of mutexes and monitors that are currently owned
by a thread, as shown in the following example. These mutexes are VM internal locks rather

Appendix A
Process Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-9 of A-18

than monitors associated with Java objects. The following is an example to show how the
output might look when a crash happens when VM locks are held. For each lock, the log
contains the name of the lock, its owner, and the addresses of a VM internal mutex structure
and its OS lock. In general, this information is useful only to those who are very familiar with
the HotSpot VM. The owner thread can be cross-referenced to the thread list.

VM Mutex/Monitor currently owned by a thread:
([mutex/lock_event])[0x007357b0/0x0000031c] Threads_lock - owner thread:
0x00996318
[0x00735978/0x000002e0] Heap_lock - owner thread: 0x00736218

Heap Summary

The next information is a summary of the heap, as shown in the following example. The output
depends on the garbage collection (GC) configuration. In this example, the serial collector is
used, class data sharing is disabled, and the tenured generation is empty. This probably
indicates that the fatal error occurred early or during startup, and a GC has not yet promoted
any objects into the tenured generation.

Heap
def new generation total 576K, used 161K [0x46570000, 0x46610000,
0x46a50000)
 eden space 512K, 31% used [0x46570000, 0x46598768, 0x465f0000)
 from space 64K, 0% used [0x465f0000, 0x465f0000, 0x46600000)
 to space 64K, 0% used [0x46600000, 0x46600000, 0x46610000)
 tenured generation total 1408K, used 0K [0x46a50000, 0x46bb0000,
0x4a570000)
 the space 1408K, 0% used [0x46a50000, 0x46a50000, 0x46a50200, 0x46bb0000)
 compacting perm gen total 8192K, used 1319K [0x4a570000, 0x4ad70000,
0x4e570000)
 the space 8192K, 16% used [0x4a570000, 0x4a6b9d48, 0x4a6b9e00, 0x4ad70000)
No shared spaces configured.

Memory Map

The next information in the log is a list of virtual memory regions at the time of the crash. This
list can be long if the application is large. The memory map can be very useful when
debugging some crashes, because it can tell you which libraries are actually being used, their
location in memory, as well as the location of the heap, stack, and guard pages.

The format of the memory map is operating system-specific. On the Oracle Solaris operating
system, the base address and library name are printed. On the Linux system, the process
memory map (/proc/pid/maps) is printed. On the Windows system, the base and end
addresses of each library are printed. The following example shows the output generated on
Linux/x86.

Note

Most of the lines were omitted from the example for the sake of brevity.

Dynamic libraries:
00400000-00401000 r-xp 00000000 00:47 1374716350 /
export/java_re/jdk/9/ea/167/binaries/linux-x64/bin/java
00601000-00602000 rw-p 00001000 00:47 1374716350 /

Appendix A
Process Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-10 of A-18

export/java_re/jdk/9/ea/167/binaries/linux-x64/bin/java
016c6000-016e7000 rw-p 00000000 00:00 0
[heap]
82000000-102000000 rw-p 00000000 00:00 0
102000000-800000000 ---p 00000000 00:00 0
40014000-40015000 r--p 00000000 00:00 0
Lines omitted.
7f0f159f8000-7f0f159f9000 r-xp 00000000 08:11 116808980 /
export/users/dh198349/tests/hs-err/libMyApp.so
7f0f159f9000-7f0f15bf8000 ---p 00001000 08:11 116808980 /
export/users/dh198349/tests/hs-err/libMyApp.so
7f0f15bf8000-7f0f15bf9000 r--p 00000000 08:11 116808980 /
export/users/dh198349/tests/hs-err/libMyApp.so
7f0f15bf9000-7f0f15bfa000 rw-p 00001000 08:11 116808980 /
export/users/dh198349/tests/hs-err/libMyApp.so
Lines omitted.
7f0f15dfc000-7f0f15e00000 ---p 00000000 00:00 0
7f0f15e00000-7f0f15efd000 rw-p 00000000 00:00 0
7f0f15efd000-7f0f15f13000 r-xp 00000000 00:47 1374714565 /
export/java_re/jdk/9/ea/167/binaries/linux-x64/lib/libnet.so
7f0f15f13000-7f0f16113000 ---p 00016000 00:47 1374714565 /
export/java_re/jdk/9/ea/167/binaries/linux-x64/lib/libnet.so
7f0f16113000-7f0f16114000 rw-p 00016000 00:47 1374714565 /
export/java_re/jdk/9/ea/167/binaries/linux-x64/lib/libnet.so
7f0f16114000-7f0f16124000 r-xp 00000000 00:47 1374714619 /
export/java_re/jdk/9/ea/167/binaries/linux-x64/lib/libnio.so
Lines omitted.
7f0f17032000-7f0f17036000 ---p 00000000 00:00 0
7f0f17036000-7f0f17133000 rw-p 00000000 00:00 0
7f0f17133000-7f0f173fc000 r--p 00000000 08:02
2102853 /usr/lib/locale/locale-archive
7f0f173fc000-7f0f17400000 ---p 00000000 00:00 0
Lines omtted.

The following is a format of memory map in the error log.

40049000-4035c000 r-xp 00000000 03:05 824473 /jdk1.5/jre/lib/i386/client/
libjvm.so

Table A-8 Memory Map Format Description

Memory Map Component Description

40049000-4035c000 Memory region

r-xp Permission:
• read
• write
• execute
• private
• share

00000000 File offset

03:05 Major ID and minor ID of the device
where the file is located (that is /dev/
hda5)

Appendix A
Process Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-11 of A-18

Table A-8 (Cont.) Memory Map Format Description

Memory Map Component Description

824473 An inode number

/jdk1.5/jre/lib/i386/client/libjvm.so File name

The example shows the memory map output and each library has two virtual memory regions:
one for code and one for data. The permission for the code segment is marked with r-xp
(readable, executable, private), and the permission for the data segment is rw-p (readable,
writable, private).

The Java heap is already included in the heap summary earlier in the output, but it can be
useful to verify that the actual memory regions reserved for the heap match the values in the
heap summary and that the attributes are set to rwxp.

Thread stacks usually show up in the memory map as two back-to-back regions, one with
permission ---p (guard page) and one with permission rwxp (actual stack space). In addition, it
is useful to know the guard page size or stack size. For example, in this memory map, the
stack is located from 4127b000 to 412fb000.

On a Windows system, the memory map output is the load and end address of each loaded
module, as shown in the following example.

Dynamic libraries:
0x00400000 - 0x0040c000 c:\jdk6\bin\java.exe
0x77f50000 - 0x77ff7000 C:\WINDOWS\System32\ntdll.dll
0x77e60000 - 0x77f46000 C:\WINDOWS\system32\kernel32.dll
0x77dd0000 - 0x77e5d000 C:\WINDOWS\system32\ADVAPI32.dll
0x78000000 - 0x78087000 C:\WINDOWS\system32\RPCRT4.dll
0x77c10000 - 0x77c63000 C:\WINDOWS\system32\MSVCRT.dll
0x08000000 - 0x08183000 c:\jdk6\jre\bin\client\jvm.dll
0x77d40000 - 0x77dcc000 C:\WINDOWS\system32\USER32.dll
0x7e090000 - 0x7e0d1000 C:\WINDOWS\system32\GDI32.dll
0x76b40000 - 0x76b6c000 C:\WINDOWS\System32\WINMM.dll
0x6d2f0000 - 0x6d2f8000 c:\jdk6\jre\bin\hpi.dll
0x76bf0000 - 0x76bfb000 C:\WINDOWS\System32\PSAPI.DLL
0x6d680000 - 0x6d68c000 c:\jdk6\jre\bin\verify.dll
0x6d370000 - 0x6d38d000 c:\jdk6\jre\bin\java.dll
0x6d6a0000 - 0x6d6af000 c:\jdk6\jre\bin\zip.dll
0x10000000 - 0x10032000 C:\bugs\crash2\App.dll

VM Arguments and Environment Variables

The next information in the error log is a list of VM arguments, followed by a list of environment
variables, as shown in the following example.

VM Arguments:
jvm_args:
java_command: MyApp
java_class_path (initial): .
Launcher Type: SUN_STANDARD

Logging:
Log output configuration:

Appendix A
Process Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-12 of A-18

#0: stdout all=warning uptime,level,tags
#1: stderr all=off uptime,level,tags

Environment Variables:
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
SHELL=/bin/bash
DISPLAY=localhost:10.0
ARCH=i386

Note

The list of environment variables is not the full list but rather a subset of the
environment variables that are applicable to the Java VM.

Signal Handlers

On the Oracle Solaris and Linux operating systems, the next information in the error log is the
list of signal handlers, as shown in the following example.

Signal Handlers:
SIGSEGV: [libjvm.so+0xd48840], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGBUS: [libjvm.so+0xd48840], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGFPE: [libjvm.so+0xd48840], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGPIPE: [libjvm.so+0xb60080], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGXFSZ: [libjvm.so+0xb60080], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGILL: [libjvm.so+0xd48840], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGUSR2: [libjvm.so+0xb5ff40], sa_mask[0]=00000000000000000000000000000000,
sa_flags=SA_RESTART|SA_SIGINFO
SIGHUP: [libjvm.so+0xb60150], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGINT: [libjvm.so+0xb60150], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGTERM: [libjvm.so+0xb60150], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO
SIGQUIT: [libjvm.so+0xb60150], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART|SA_SIGINFO

Appendix A
Process Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-13 of A-18

System Section Format
The final section in the error log is the system information. The output is operating-system-
specific but in general includes the operating system version, CPU information, and summary
information about the memory configuration.

The following example shows output on a Linux operating system.

--------------- S Y S T E M ---------------

OS:DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=12.04
DISTRIB_CODENAME=precise
DISTRIB_DESCRIPTION="Ubuntu 12.04 LTS"
uname:Linux 3.2.0-24-generic #39-Ubuntu SMP Mon May 21 16:52:17 UTC 2012
x86_64
libc:glibc 2.15 NPTL 2.15
rlimit: STACK 8192k, CORE infinity, NPROC 1160369, NOFILE 4096, AS infinity
load average:0.46 0.33 0.27

/proc/meminfo:
MemTotal: 148545440 kB
MemFree: 1020964 kB
Buffers: 29600728 kB
Cached: 86607768 kB
SwapCached: 16112 kB
Active: 52272944 kB
Inactive: 64862992 kB
Active(anon): 314080 kB
Inactive(anon): 616296 kB
Active(file): 51958864 kB
Inactive(file): 64246696 kB
Unevictable: 16 kB
Mlocked: 16 kB
SwapTotal: 1051644 kB
SwapFree: 976092 kB
Dirty: 40 kB
Writeback: 0 kB
AnonPages: 912404 kB
Mapped: 95804 kB
Shmem: 2936 kB
Slab: 28625980 kB
SReclaimable: 28337400 kB
SUnreclaim: 288580 kB
KernelStack: 6040 kB
PageTables: 42524 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 75324364 kB
Committed_AS: 6172612 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 681668 kB
VmallocChunk: 34282379392 kB

Appendix A
System Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-14 of A-18

HardwareCorrupted: 0 kB
AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 171520 kB
DirectMap2M: 8208384 kB
DirectMap1G: 142606336 kB

CPU:total 24 (initial active 24) (6 cores per cpu, 2 threads per core) family
6 model 44 stepping 2, cmov, cx8, fxsr, mmx, sse, sse2, sse3, ssse3, sse4.1,
sse4.2, popcnt, aes, clmul, ht, tsc, tscinvbit, tscinv
CPU Model and flags from /proc/cpuinfo:
model name : Intel(R) Xeon(R) CPU X5675 @ 3.07GHz
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb
rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2
ssse3 cx16 xtpr pdcm pcid dca sse4_1 sse4_2 popcnt aes lahf_lm ida arat epb
dts tpr_shadow vnmi flexpriority ept vpid

Memory: 4k page, physical 148545440k(1020964k free), swap 1051644k(976092k
free)

vm_info: Java HotSpot(TM) 64-Bit Server VM (9-ea+167) for linux-amd64 JRE (9-
ea+167), built on Apr 27 2017 00:28:45 by "javare" with gcc 4.9.2

On the Oracle Solaris and Linux, the operating system, information is in the file /etc/
*release. This file describes the kind of system the application is running on, and in some
cases, the information string might include the patch level. Some system upgrades are not
reflected in the /etc/*release file. This is especially true on the Linux system, where the
user can rebuild any part of the system.

On Oracle Solaris operating system the uname system call is used to get the name for the
kernel. The thread library (T1 or T2) is also printed.

On the Linux system, the uname system call is also used to get the kernel name. The libc
version and the thread library type are also printed, as shown in the following example.

uname:Linux 3.2.0-24-generic #39-Ubuntu SMP Mon May 21 16:52:17 UTC 2012
x86_64
libc:glibc 2.15 NPTL 2.15

On Linux, there are three possible thread types, namely linuxthreads (fixed stack),
linuxthreads (floating stack), and NPTL. They are normally installed in /lib, /lib/i686,
and /lib/tls.

It is useful to know the thread type. For example, if the crash appears to be related to pthread,
then you might be able to work around the issue by selecting a different pthread library. A
different pthread library (and libc) can be selected by setting LD_LIBRARY_PATH or
LD_ASSUME_KERNEL.

The glibc version usually does not include the patch level. The command rpm -q glibc might
provide more detailed version information.

Appendix A
System Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-15 of A-18

On the Oracle Solaris and Linux operating systems, the next information is the rlimit
information.

Note

The default stack size of the VM is usually smaller than the system limit, as shown in
the following examples:

rlimit: STACK 8192k, CORE infinity, NPROC 1160369, NOFILE 4096, AS infinity
load average:0.04 0.05 0.02

Table A-9 rlimit Description

rlimit Component Description

STACK 8192k Stack size (ulimit -s)

CORE infinity Core dump size (ulimit -c)

NPROC 1160369 Max user processes (ulimit -u)

NOFILE 4096 Max open files (ulimit -n)

AS infinity Virtual memory (-v)

rlimit: STACK 8192k, CORE 0k, NPROC 4092, NOFILE 1024, AS infinity
load average:0.04 0.05 0.02

Table A-10 rlimit Description

rlimit Component Description

STACK 8192k Stack size (ulimit -s)

CORE 0k Core dump size (ulimit -c)

NPROC 4092 Max user processes (ulimit -u)

NOFILE 1024 Max open files (ulimit -n)

AS infinity Virtual memory (-v)

The next information specifies the CPU architecture and capabilities identified by the VM at
startup, as shown in the following example.

CPU:total 24 (initial active 24) (6 cores per cpu, 2 threads per core) family
6 model 44 stepping 2, cmov, cx8, fxsr, mmx,sse, sse2, sse3, ssse3, sse4.1,
sse4.2, popcnt, aes, clmul, ht, tsc, tscinvbit, tscinv

Table A-11 CPU Architecture Description

CPU Architecture Attribute Description

CPU:total 24 (initial active 24) (6 cores per cpu, 2
threads per core)

Total number of CPUs

Appendix A
System Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-16 of A-18

Table A-11 (Cont.) CPU Architecture Description

CPU Architecture Attribute Description

family 6 model 44 stepping 2 processor family (IA32 only):
• 3 - i386
• 4 - i486
• 5 - Pentium
• 6 - PentiumPro, PII, PIII
• 15 - Pentium 4

cmov, cx8, fxsr, mmx... CPU features

Table A-12 shows the possible CPU features on a SPARC system.

Table A-12 SPARC Features

SPARC Feature Description

has_v8 Supports v8 instructions.

has_v9 Supports v9 instructions.

has_vis1 Supports visualization instructions.

has_vis2 Supports visualization instructions.

is_ultra3 UltraSparc III.

no-muldiv No hardware integer multiply and divide.

no-fsmuld No multiply-add and multiply-subtract instructions.

Table A-13 shows the possible CPU features on an Intel/IA32 system.

Table A-13 Intel/IA32 Features

Intel/IA32 Feature Description

cmov Supports cmov instruction.

cx8 Supports cmpxchg8b instruction.

fxsr Supports fxsave and fxrstor.

mmx Supports MMX.

sse Supports SSE extensions.

sse2 Supports SSE2 extensions.

ht Supports Hyper-Threading Technology.

Table A-14 shows the possible CPU features on an AMD64/EM64T system.

Table A-14 AMD64/EM64T Features

AMD64/EM64T
Feature

Description

amd64 AMD Opteron, Athlon64, and so forth.

em64t Intel EM64T processor.

Appendix A
System Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-17 of A-18

Table A-14 (Cont.) AMD64/EM64T Features

AMD64/EM64T
Feature

Description

3dnow Supports 3DNow extension.

ht Supports Hyper-Threading Technology.

The next information in the error log is memory information, as shown in the following example.

Memory: 4k page, physical 513604k(11228k free), swap 530104k(497504k free)

Table A-15 Memory Configuration Description

Memory Configuration Description

4k page Page size

physical 513604k Total amount of physical memory

(11228k free) Unused physical memory

swap 530104k Total amount of swap space

(497504k free) Unused swap space

Some systems require swap space to be at lease twice the size of real physical memory,
whereas other systems do not have any requirements. As a general rule, if both physical
memory and swap space are almost full, then there is good reason to suspect that the crash
was due to insufficient memory.

On Linux system, the kernel may convert most of unused physical memory to file cache. When
there is a need for more memory, the Linux kernel will give the cache memory back to the
application. This is handled transparently by the kernel, but it means that the amount of unused
physical memory reported by the fatal error handler could be close to zero when there is still
sufficient physical memory available.

The final information in the SYSTEM section of the error log is vm_info, which is a version
string embedded in libjvm.so/jvm.dll. Every Java VM has its own unique vm_info string.
If you are in doubt about whether the fatal error log was generated by a particular Java VM,
check the version string.

Appendix A
System Section Format

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix A-18 of A-18

B
Java 2D Properties

This appendix presents properties that can be useful in troubleshooting Java 2D.

This appendix contains the following sections:

• Properties on Oracle Solaris and Linux

• Properties on Windows

Properties on Oracle Solaris and Linux
List of Java 2D properties on Oracle Solaris and Linux.

Table B-1 describes the default values of some useful properties on Oracle Solaris and Linux
platforms.

Table B-1 Default Java 2D Properties on Oracle Solaris and Linux

Setup DGA SHM Pixmap
s

OnScreen OffScreen

Oracle Solaris SPARC with
DGA support

On On Off DGA/Software Software

Oracle Solaris SPARC with no
DGA, Oracle Solaris x86,
Linux, SunRay, VNC

Off On On X11/MITSHM Shared/Server
Pixmaps

J2SE 1.4 or greater: Remote
X server, ssh

Off Off On X11 Server Pixmaps

J2SE 1.3.1 or less: Remote X
server, ssh

Off Off Off X11 Software

The following list explains how to change the defaults.

• The X11 pipeline is the default pipeline for Oracle Solaris and Linux. Change this default as
follows:

– -Dsun.java2d.opengl=true — Attempt to enable the OpenGL pipeline.

• The use of DGA is controlled as follows:

– NO_J2D_DGA unset — Use DGA, if available.

– NO_J2D_DGA set — Disable the use of DGA.

• MIT Shared Memory Extension (SHM) is controlled as follows:

– To use SHM, if available, specify either one of the following properties:

NO_J2D_MITSHM unset

J2D_USE_MITSHM=true

– To not use SHM, specify either one of the following properties:

NO_J2D_MITSHM set

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix B-1 of B-2

J2D_USE_MITSHM=false

• The general use of pixmaps is controlled as follows:

– -Dsun.java2d.pmoffscreen unset — Use pixmaps if DGA is not available.

– -Dsun.java2d.pmoffscreen=true — Force the use of pixmaps.

– -Dsun.java2d.pmoffscreen=false — Disable the use of pixmaps.

• The use of Shared and Server pixmaps is controlled as follows:

– J2D_PIXMAPS unset — Use both types.

– J2D_PIXMAPS=shared — Use only shared memory pixmaps.

– J2D_PIXMAPS=sserver — Use only server-side pixmaps.

• The choice of default visual is controlled as follows:

– FORCEDEFVIS unset (default) — Use the best visual available.

– FORCEDEFVIS set to a hexadecimal value — Use the visual whose ID is the
hexadecimal value.

– FORCEDEFVIS set to any other value — Use the default visual.

Properties on Windows
The following list describes some useful properties on Windows platforms.

• The DirectDraw/GDI pipeline is the default pipeline for Windows. Change this default as
follows:

– -Dsun.java2d.noddraw=true — Disable the use of the DirectDraw pipeline. GDI will
be used instead.

– -Dsun.java2d.noddraw=false — Enable the use of the DirectDraw pipeline.

– -Dsun.java2d.d3d=false — Disable the use of the Direct3D pipeline.

– J2D_D3D=false — Disable the use of the Direct3D pipeline.

– -Dsun.java2d.d3d=true — Enable the use of the Direct3D pipeline.

– J2D_D3D=true — Enable the use of the Direct3D pipeline.

• Control the use of the built-in surface punting mechanism as follows:

– -Dsun.java2d.ddforcedram=true — Keep volatile images in VRAM.

• Control the use of DirectDraw blit operations as follows:

– -Dsun.java2d.ddblit=false — Disable the use of DirectDraw blit operations. GDI
blits will be used instead.

Appendix B
Properties on Windows

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix B-2 of B-2

C
Environment Variables and System Properties

This appendix describes environment variables and system properties that can be useful for
troubleshooting problems with the Java HotSpot VM.

Submit a Bug Report contains information on collecting environment variables in Environment
Variables.

This appendix contains the following sections:

• The JAVA_TOOL_OPTIONS Environment Variable

• The java.security.debug System Property

The JAVA_TOOL_OPTIONS Environment Variable
In many environments, the command line is not readily accessible to start the application with
the necessary command-line options.

This often happens with applications that use embedded VMs (meaning they use the Java
Native Interface (JNI) Invocation API to start the VM), or where the startup is deeply nested in
scripts. In these environments the JAVA_TOOL_OPTIONS environment variable can be useful to
augment a command line.

Note

In some cases, this option is disabled for security reasons. For example, on the Oracle
Solaris operating system, this option is disabled when the effective user or group ID
differs from the real ID.

This environment variable allows you to specify the initialization of tools, specifically the
launching of native or Java programming language agents using the -agentlib or -javaagent
options.

This variable can also be used to augment the command line with other options for diagnostic
purposes. For example, you can supply the -XX:OnError option to specify a script or command
to be executed when a fatal error occurs.

Because this environment variable is examined at the time, that the JNI_CreateJavaVM function
is called, it cannot be used to augment the command line with options that would normally be
handled by the launcher, for example, VM selection using the -client option or the -server
option.

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix C-1 of C-3

The java.security.debug System Property
This system property controls whether the security system of the Java Runtime Environment
(JRE) prints trace messages during execution.

This option can be useful when diagnosing an issue involving a security manager when a
SecurityException is thrown.

The java.security.debug property can have the following values:

• access

Print all checkPermission results.

The following additional options can be specified with the access option:

– stack

Include stack trace.

– domain

Dump all domains in context.

– failure

Before throwing an exception, dump the stack and domain that did not have
permission.

• jar

Print the JAR verification information.

• policy

Print the permissions that SecureClassLoader assigns.

• scl

For example, to print all checkPermission results and trace all domains in context, set the
java.security.debug property to access,stack. To trace access failures, set the property
to access,failure.

The following example shows the output of a checkPermission failure.

$ java -Djava.security.debug="access,failure" MyApp
access denied (java.net.SocketPermission server.foobar.com resolve
)
java.lang.Exception: Stack trace
 at java.lang.Thread.dumpStack(Thread.java:1158)
 at java.security.AccessControlContext.checkPermission
 (AccessControlContext.java:253)
 at
java.security.AccessController.checkPermission(AccessController.java:427)
 at java.lang.SecurityManager.checkPermission(SecurityManager.java:532)
 at java.lang.SecurityManager.checkConnect(SecurityManager.java:1031)
 at java.net.InetAddress.getAllByName0(InetAddress.java:1117)
 at java.net.InetAddress.getAllByName0(InetAddress.java:1098)
 at java.net.InetAddress.getAllByName(InetAddress.java:1061)
 at java.net.InetAddress.getByName(InetAddress.java:958)
 at java.net.InetSocketAddress.<init>(InetSocketAddress.java:124)

Appendix C
The java.security.debug System Property

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix C-2 of C-3

 at java.net.Socket.<init>(Socket.java:178)
 at MyApp.main(MyApp.java:7)

To know more about the java.security.debug system property, see the Troubleshooting
Security in the Java Platform, Standard Edition Security Developer's Guide.

Appendix C
The java.security.debug System Property

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix C-3 of C-3

D
Command-Line Options

This appendix describes some command-line options that can be useful when diagnosing
problems with the Java HotSpot VM.

This appendix contains the following sections:

• Java HotSpot VM Command-Line Options

• Other Command-Line Options

Java HotSpot VM Command-Line Options
Command-line options that are prefixed with -XX are specific to the Java HotSpot Virtual
Machine. Many of these options are important for performance tuning and diagnostic purposes,
and are therefore described in this appendix.

To know more about all possible -XX options, see the Java HotSpot VM Options.

You can dynamically set, unset, or change the value of certain Java VM flags for a specified
Java process using the jinfo -flag command. See The jinfo Utility and the JConsole utility.

For a complete list of these flags, use the MBeans tab of the JConsole utility. See the list of
values for the DiagnosticOptions attribute of the HotSpotDiagnostic MBean, which is in the
com.sun.management domain. The following are the flags:

• HeapDumpOnOutOfMemoryError

• HeapDumpPath

• PrintGC

• PrintGCDetails

• PrintGCTimeStamps

• PrintClassHistogram

• PrintConcurrentLocks

The -XX:HeapDumpOnOutOfMemoryError Option

This option tells the Java HotSpot VM to generate a heap dump when an allocation from the
Java heap or the permanent generation cannot be satisfied. There is no overhead in running
with this option, so it can be useful for production systems where the OutOfMemoryError
exception takes a long time to appear.

You can also specify this option at runtime with the MBeans tab in the JConsole utility.

The following example shows the result of running out of memory with this flag set.

$ java -XX:+HeapDumpOnOutOfMemoryError -mn256m -mx512m ConsumeHeap
java.lang.OutOfMemoryError: Java heap space
Dumping heap to java_pid2262.hprof ...
Heap dump file created [531535128 bytes in 14.691 secs]
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix D-1 of D-7

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

 at ConsumeHeap$BigObject.(ConsumeHeap.java:22)
 at ConsumeHeap.main(ConsumeHeap.java:32)

The ConsumeHeap fills the Java heap and runs out of memory. When the
java.lang.OutOfMemoryError exception is thrown, a heap dump file is created. In this case
the file is 507 MB and is created with the name java_pid2262.hprof in the current directory.

By default, the heap dump is created in a file called java_pidpid.hprof in the working
directory of the VM, as in the example above. You can specify an alternative file name or
directory with the -XX:HeapDumpPath= option. For example -XX:HeapDumpPath=/disk2/dumps
will cause the heap dump to be generated in the /disk2/dumps directory.

The -XX:OnError Option

When a fatal error occurs, the Java HotSpot VM can optionally execute a user-supplied script
or command. The script or command is specified using the -XX:OnError=string command-line
option, where string is a single command, or a list of commands separated by semicolons.
Within this string, all occurrences of %p are replaced with the current PID, and all occurrences
of %% are replaced by a single %. The following examples demonstrate how this option can be
used when launching a Java application named MyApp with the java launcher.

• java -XX:OnError="pmap %p" MyApp

On the Oracle Solaris operating system the pmap command displays information about the
address space of a process. In the example, if a fatal error occurs, then the pmap command
is executed and displays the address space of the current process.

• java -XX:OnError="cat hs_err_pid%p.log | mail support@example.com" MyApp

In the example above, the contents of the fatal error log file are mailed to a support alias
when a fatal error occurs.

• java -XX:OnError="gcore %p; dbx - %p" MyApp

On the Oracle Solaris operating system the gcore command creates a core image of the
specified process, and the dbx command launches the debugger. In the example above,
the gcore command is executed to create the core image of the current process, and the
debugger is started to attach to the process when an unexpected error occurs.

• java -XX:OnError="gdb - %p" MyApp

On Linux, the gdb command launches the debugger. In the example above, the gdb
debugger is launched and attached to the current process when an unexpected error is
encountered.

• java -XX:OnError="userdump.exe %p" MyApp

On Windows, the userdump.exe utility creates a crash dump of the specified process. The
utility does not ship with Windows and should be downloaded from the Microsoft website
as a part of the Microsoft OEM Support Tools package.

In the example, the userdump.exe utility is executed to create a core dump of the current
process in case of a fatal error.

Note

The example assumes that the path to the userdump.exe utility is defined in the
PATH variable.

Appendix D
Java HotSpot VM Command-Line Options

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix D-2 of D-7

To know more about creating crash dumps on Windows, see Collect Crash Dumps on
Windows.

The -XX:ShowMessageBoxOnError Option

When this option is set and a fatal error occurs, the HotSpot VM will display information about
the fatal error and prompt the user to specify whether the native debugger is to be launched. In
the case of the Oracle Solaris and Linux operating systems, the output and prompt are sent to
the application console (standard input and standard output). In the case of Windows, a
Windows message box pops up.

The following example shows a fatal error on a Linux system.

==
Unexpected Error
--
SIGSEGV (0xb) at pc=0x2000000001164db1, pid=10791, tid=1026

Do you want to debug the problem?

To debug, run 'gdb /proc/10791/exe 10791'; then switch to thread 1026
Enter 'yes' to launch gdb automatically (PATH must include gdb)
Otherwise, press RETURN to abort...
==

In this case, a SIGSEGV error occurred, and the user is prompted to specify whether the gdb
debugger is to be launched to attach to the process. If the user enters y or yes, thengdb will be
launched (assuming it is set in the PATH variable).

On the Oracle Solaris operating system, the message is similar to the Linux example, except
that the user is prompted to start the dbx debugger.

On Windows a message box is displayed. If the user clicks Yes, the VM will attempt to start the
default debugger. This debugger is configured by a registry setting which is described in
Collect Crash Dumps on Windows. If Microsoft Visual Studio is installed, the default debugger
is typically configured to be msdev.exe.

In the above example, the output includes the PID (pid=10791) and also the thread ID
(tid=1026). If the debugger is launched, one of the initial steps in the debugger might be to
select the thread and get its stack trace.

When the process is waiting for a response, it is possible to use other tools to get a crash
dump or query the state of the process. On the Oracle Solaris operating system, for example, a
core dump can be obtained using the gcore utility.

On Windows, a Dr. Watson crash dump can be obtained using the userdump or windbg
programs. The windbg utility is included in Microsoft's Debugging Tools for Windows and is
described in Collect Crash Dumps on Windows. In windbg, select the Attach to a Process
menu option, which displays the list of processes and prompts for the PID. The HotSpot VM
displays a message box, which includes the PID. After you selected the PID, the .dump /f
command can be used to force a crash dump. Figure D-1 is an example crash dump created in
a file named crash.dump.

Appendix D
Java HotSpot VM Command-Line Options

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix D-3 of D-7

Figure D-1 Example of a Crash Dump Created by windbg

In general, the -XX:+ShowMessageBoxOnError option is more useful in a development
environment where the debugger tools are available. The -XX:OnError option is more suitable
for production environments where a fixed sequence of commands or scripts are executed
when a fatal error occurs.

Other -XX Options

Several other -XX command-line options can be useful when troubleshooting:

• -XX:OnOutOfMemoryError=string

This option can be used to specify a command or script to execute when an
OutOfMemoryError exception is thrown.

• -XX:ErrorFile=filename

This option can be used to specify a location for the fatal error log file. See Location of
Fatal Error Log.

• -xx:HeapDumpPath=path

This option can be used to specify a location for the heap dump. See The -
XX:HeapDumpOnOutOfMemoryError Option.

• -XX:MaxPermSize=size

This option can be used to specify the size of the permanent generation memory. See
Understand the OutOfMemoryError Exception.

• -XX:+PrintCommandLineFlags

Appendix D
Java HotSpot VM Command-Line Options

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix D-4 of D-7

This option can be used to print all the VM command-line flags. See Collect Data for a Bug
Report.

• -XX:+PrintConcurrentLocks

This option can be used to cause the Control+Break handler to print a list of concurrent
locks owned by each thread.

• -XX:+PrintClassHistogram

This option can be used to cause the Control+Break handler to print a heap histogram.

• -XX:+PrintGCDetails and-XX:+PrintGCTimeStamps

These options can be used to print detailed information about garbage collection. See The
-verbose:gc Option.

• -XX:+UseAltSigs

On Oracle Solaris 8 and 9 operating system, this option can be used to instruct the
HotSpot VM to use alternate signals to SIGUSR1 and SIGUSR2. See Handle Signals on
Oracle Solaris, Linux, and macOS.

• -XX:+UseConcMarkSweepGC , -XX:+UseSerialGC and -XX:+UseParallelGC

These options can be used to specify the garbage collection policy to be used. See
Working Around Crashes During Garbage Collection.

Other Command-Line Options
In addition to the -XX options, many other command-line options can provide troubleshooting
information.

This section describes a few of these options.

The -Xcheck:jni Option

This option is useful when diagnosing problems with applications that use the Java Native
Interface (JNI). Sometimes, bugs in the native code can cause the HotSpot VM to crash or
behave incorrectly.

The -Xcheck:jni option is added to the command line that starts the application, as in the
following example:

java -Xcheck:jni MyApp

The -Xcheck:jni option causes the VM to do additional validation of the use of JNI
functions. This includes argument validation and other usage constraints as described below.

Note

The option is not guaranteed to find all invalid arguments or diagnose logic bugs in the
application code, but it can help diagnose a large number of such problems.

When a significant usage error is detected, the VM prints a message to the application console
or to standard output, prints the stack trace of the offending thread, and stops the VM.

Appendix D
Other Command-Line Options

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix D-5 of D-7

The following example shows a null value was incorrectly passed to a JNI function that does
not allow a null value.

FATAL ERROR in native method: Null object passed to JNI
 at java.net.PlainSocketImpl.socketAccept(Native Method)
 at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:343)
 - locked <0x450b9f70> (a java.net.PlainSocketImpl)
 at java.net.ServerSocket.implAccept(ServerSocket.java:439)
 at java.net.ServerSocket.accept(ServerSocket.java:410)
 at org.apache.tomcat.service.PoolTcpEndpoint.acceptSocket
 (PoolTcpEndpoint.java:286)
 at org.apache.tomcat.service.TcpWorkerThread.runIt
 (PoolTcpEndpoint.java:402)
 at org.apache.tomcat.util.ThreadPool$ControlRunnable.run
 (ThreadPool.java:498)
 at java.lang.Thread.run(Thread.java:536)

The following example shows an incorrect argument that was provided to a JNI function that
expects a jfieldID argument.

FATAL ERROR in native method: Instance field not found in JNI get/set
 field operations
 at java.net.PlainSocketImpl.socketBind(Native Method)
 at java.net.PlainSocketImpl.bind(PlainSocketImpl.java:359)
 - locked <0xf082f290> (a java.net.PlainSocketImpl)
 at java.net.ServerSocket.bind(ServerSocket.java:318)
 at java.net.ServerSocket.<init>(ServerSocket.java:185)
 at jvm003a.<init>(jvm003.java:190)
 at jvm003a.<init>(jvm003.java:151)
 at jvm003.run(jvm003.java:51)
 at jvm003.main(jvm003.java:30)

The following checks are considered indicative of significant problems with the native code:

• The thread doing the call is not attached to the JVM

• The thread doing the call is using the JNIEnv belonging to another thread

• A parameter validation check fails:

– A jfieldID, or jmethodID, is detected as being invalid. For example:

* Of the wrong type

* Associated with the wrong class

– A parameter of the wrong type is detected

– An invalid parameter value is detected. For example:

* NULL where not permitted

* An out-of-bounds array index, or frame capacity

* A non-UTF-8 string

* An invalid JNI reference

* An attempt to use a ReleaseXXX function on a parameter not produced by the
corresponding GetXXX function

Appendix D
Other Command-Line Options

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix D-6 of D-7

The following checks only result in warnings being printed:

• A JNI call was made without checking for a pending exception from a previous JNI call,
and the current call is not safe when an exception may be pending

• The number of JNI local references existing when a JNI function terminates exceeds the
number guaranteed to be available. See the EnsureLocalcapacity function

• A class descriptor is in decorated format (Lname;) when it should not be

• A NULL parameter is allowed, but its use is questionable

• Calling other JNI functions in the scope of Get/ReleasePrimitiveArrayCritical or Get/
ReleaseStringCritical

This non-fatal warning message is shown in the following example.

Warning: Calling other JNI functions in the scope of
Get/ReleasePrimitiveArrayCritical or Get/ReleaseStringCritical

A JNI critical region is created when native code uses the JNI functions
GetPrimitiveArrayCritical or GetStringCritical to obtain a reference to an array or string
in the Java heap. The reference is held until the native code calls the corresponding release
function. The code between the get and release is called a JNI critical section, and during that
time, the HotSpot VM cannot bring the VM to a state that allows garbage collection to occur.
The general recommendation is not to use other JNI functions within a JNI critical section, and
in particular any JNI function that could potentially cause a deadlock. The warning printed
above by the -Xcheck:jni option is thus an indication of a potential issue; it does not always
indicate an application bug.

The -verbose:class Option

This option enables logging of class loading and unloading.

The -verbose:gc Option

This option enables logging of garbage collection (GC) information. It can be combined with
other HotSpot VM-specific options such as -XX:+PrintGCDetails and -
XX:+PrintGCTimeStamps to get further information about GC. The information output
includes the size of the generations before and after each GC, total size of the heap, the size
of objects promoted, and the time taken.

The -verbose:gc option can be dynamically enabled at runtime using the management API
or JVM TI. See Custom Diagnostic Tools.

The JConsole monitoring and management tool can also enable or disable the option when the
tool is attached to a management VM. See JConsole.

The -verbose:jni Option

This option enables the logging of JNI. When a JNI or native method is resolved, the HotSpot
VM prints a trace message to the application console (standard output). It also prints a trace
message when a native method is registered using the JNI RegisterNative function. The -
verbose:jni option can be useful when diagnosing issues with applications that use native
libraries.

Appendix D
Other Command-Line Options

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix D-7 of D-7

E
Summary of Tools in This Release

This appendix prvoides a summary of tools available in the current release of the JDK, as well
as the changes since the previous release.

All the JDK troubleshooting tools that are described in this document are available in JDK 9 on
both Oracle Solaris and Linux.

The following JDK troubleshooting tools are also available in JDK 9 on Windows:

• Java Mission Control

• Java Flight Recordings

• How to Produce a Flight Recording

• Inspect a Flight Recording

• jcmd

• JConsole

• Java Virtual Machine

• jdb

• jinfo

• jmap

• jps (not currently available on Windows 98 or Windows ME)

• jrunscript

• jstack

• jstat (not currently available on Windows 98 or Windows ME)

• jstatd (not currently available on Windows 98 or Windows ME)

• visualgc (not currently available on Windows 98 or Windows ME)

Troubleshooting Guide
E94880-09
Copyright © 1995, 2025, Oracle and/or its affiliates.

October 20, 2025
Appendix E-1 of E-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I General Java Troubleshooting
	1 Prepare Java for Troubleshooting
	Set Up Java for Troubleshooting
	Enable Options and Flags for JVM Troubleshooting
	Gather Relevant Data
	Make a Java Application Easier to Debug

	2 Diagnostic Tools
	Diagnostic Tools Overview
	JDK Mission Control
	Troubleshoot with JDK Mission Control

	Flight Recorder
	Produce a Flight Recording
	Start a Flight Recording
	Use Triggers for Automatic Flight Recordings
	Use Startup Flags at the Command Line to Produce a Flight Recording

	Analyze a Flight Recording
	Analyze a Flight Recording Using JMC
	View Automated Analysis Results Page
	Analyze the Java Application
	Threads
	Memory
	Method Profiling

	JVM Internals
	Environment

	Analyze a Flight Recording Using the jfr tool or JFR APIs

	The jcmd Utility
	Useful Commands for the jcmd Utility
	Troubleshoot with the jcmd Utility

	Native Memory Tracking
	Use NMT to Detect a Memory Leak
	How to Monitor VM Internal Memory
	NMT Memory Categories

	JConsole
	Troubleshoot with the JConsole Tool
	Monitor Local and Remote Applications with JConsole

	The jdb Utility
	Troubleshoot with the jdb Utility

	The jinfo Utility
	Troubleshooting with the jinfo Utility

	The jmap Utility
	Heap Configuration and Usage
	Heap Histogram
	Class Loader Statistics

	The jps Utility
	The jstack Utility
	Troubleshoot with the jstack Utility
	Stack Trace from a Core Dump
	Mixed Stack

	The jstat Utility
	The visualgc Tool
	Control+Break Handler
	Thread Dump
	Thread States for a Thread Dump
	Detect Deadlocks
	Heap Summary

	Native Operating System Tools
	DTrace Tool
	Probe Providers in Java HotSpot VM
	Improvements to the pmap Utility
	Improvements to the pstack Utility

	Custom Diagnostic Tools
	Java Platform Debugger Architecture

	Postmortem Diagnostic Tools
	Hung Processes Tools
	Monitoring Tools
	Other Tools, Options, Variables, and Properties
	The java.lang.management Package
	The java.lang.instrument Package
	The java.lang.Thread Class
	JVM Tool Interface
	The jrunscript Utility
	The jstatd Daemon
	Troubleshooting Tools Based on the Operating System

	3 Troubleshoot Memory Leaks
	Use JDK Mission Control to Debug Memory Leak
	Detect Memory Leak
	Find the Leaking Class

	The jfr tool
	Understand the OutOfMemoryError Exception
	Troubleshoot a Crash Instead of OutOfMemoryError
	Diagnose Leaks in Java Language Code
	Get a Heap Histogram
	Monitor the Objects Pending Finalization

	Diagnose Leaks in Native Code
	Track All Memory Allocation and Free Calls
	Track All Memory Allocations in the JNI Library
	Track Memory Allocation with Operating System Support
	Find Leaks with the dbx Debugger
	Find Leaks with the libumem Tool

	4 Troubleshoot Performance Issues Using Flight Recorder
	Flight Recorder Overhead
	Use JDK Mission Control to Find Bottlenecks
	Use JDK Mission Control to Debug Garbage Collection Issues
	Use JDK Mission Control to Debug Synchronization Issues
	Use JDK Mission Control to Debug I/O Issues
	Use JDK Mission Control to Monitor Code Execution Performance

	Part II Debug JVM Issues
	5 Troubleshoot System Crashes
	Determine Where the Crash Occurred
	Crash the Native Code
	Crash in the Compiled Code
	Crash in the HotSpot Compiler Thread
	Crash in the VM Thread
	Crash Due to Stack Overflow
	Crash Due to Exceeded Memory Map Area Limit

	Find a Workaround
	Working Around Crashes in the HotSpot Compiler Thread or Compiled Code
	Working Around Crashes During Garbage Collection
	Working Around Crashes Caused by Class Data Sharing

	Microsoft Visual C++ Version Considerations

	6 Troubleshoot Process Hangs and Loops
	Diagnose a Loop Process
	Diagnose a Hung Process
	Deadlock Detected
	Deadlock Not Detected
	No Thread Dump

	Oracle Solaris 8 Thread Library

	7 Handle Signals and Exceptions
	Handle Signals on Oracle Solaris, Linux, and macOS
	Handle Exceptions on Windows
	Signal Chaining
	Handle Exceptions Using the Java HotSpot VM
	Console Handlers
	Signals Used in Oracle Solaris, Linux, and macOS

	Part III Debug Core Library Issues
	8 Time Zone Settings in the JRE
	Native Time Zone Information and the JRE
	Determine the Time Zone Data Version in Use
	Troubleshoot Problems with TZupdater

	Determine the Default Time Zone on Windows
	Check the Default Time Zone Java Runtime Reports
	Determine the Setting in the Control Panel
	Check for Automatic Daylight Saving Time Adjustment
	Set the Default Time Zone in Windows Settings
	Check -Duser.timezone System Property
	Special Tool in Windows
	Internal Representation of Time Zone Mappings

	Part IV Debug Client Issues
	9 Introduction to Client Issues
	Java SE Desktop Technologies
	General Steps to Troubleshoot an Issue
	Identify the Type of Issue
	Java Client Crashes
	Performance Problems
	Behavior Problems

	Basic Tools
	Java Debug Wire Protocol

	10 AWT
	Debug Tips for AWT
	Layout Manager Issues
	Key Events
	Modality Issues
	AWT Crashes
	Focus Events
	How to Trace Focus Events
	Native Focus System
	Focus Models Supported by X Window Managers
	Miscellaneous Problems with Focus

	Data Transfer
	Debug Drag-and-Drop Applications
	Frequent Issues with Data Transfer

	Other Issues
	Splash Screen Issues
	Tray Icon Issues
	Pop-up Menu Issues
	Background or Foreground Color Inheritance
	AWT Panel Size Restriction
	Hangs During Debugging of Pop-up Menus and Similar Components on X11
	Window.toFront()/toBack() Behavior on X11

	Heavyweight or Lightweight Components Mix

	11 Java 2D Pipeline Rendering and Properties
	Oracle Solaris and Linux: X11 Pipeline
	X11 Pipeline Pixmaps Properties
	X11 Pipeline MIT Shared Memory Extension
	Oracle Solaris on SPARC: DGA Support
	Oracle Solaris on SPARC - Change Java 2D Default Visual

	Windows OS: DirectDraw/GDI Pipeline
	Windows OS: Direct3D Pipeline in Full-Screen Mode
	OpenGL Pipeline in Oracle Solaris, Linux, and Windows
	Enable OpenGL Pipeline
	Minimum Requirements
	Diagnose Startup Issues
	Diagnose Rendering and Performance Issues

	Latest OpenGL Drivers

	12 Java 2D
	Generic Performance Issues
	Hardware-Accelerated Rendering Primitives
	Primitive Tracing to Detect and Avoid Non-Accelerated Rendering
	Causes of Poor Rendering Performance
	Improve Performance of Software-only Rendering

	Text-Related Issues
	Application Crash During Text Rendering
	Differences in Text Appearance
	Metrics

	Java 2D Printing

	13 Swing
	General Debug Tips for Swing
	Specific Debug Tips for Swing
	Incorrect Threading
	JComponent Children Overlap
	Display Update
	Model Change
	Add or Remove Components
	Opaque Override
	Permanent Changes to Graphics
	Custom Painting and Double Buffering
	Opaque Content Pane
	Renderer Call for Each Cell Performance
	Possible Leaks
	Mix Heavyweight and Lightweight Components
	Use Synth
	Track Activity on Event Dispatch Thread
	Specify Default Layout Manager
	Listener Object Dispatched to Incorrect Component
	Add a Component to Content Pane
	Drag and Drop Support
	One Parent for a Component
	JFileChooser Issues with Windows Shortcuts

	14 Internationalization
	Troubleshoot Internationalization and Localization

	15 Java Sound
	Troubleshoot Java Sound Issues

	Part V Submit Bug Reports
	16 Submit a Bug Report
	Check for Fixes in Update Releases
	Prepare to Submit a Bug Report
	Collect Data for a Bug Report
	Detailed Description of the Problem
	Hardware Details
	Operating System Details
	Java SE Version
	Command-Line Options
	Environment Variables
	Fatal Error Log
	Core and Crash Dump
	Logs and Traces

	Report a Bug
	Collect Core Dumps
	Collect Core Dumps on Oracle Solaris
	Collect Core Dumps on Linux
	Reasons for Not Getting a Core File
	Collect Crash Dumps on Windows

	Part VI Appendices
	A Fatal Error Log
	Location of Fatal Error Log
	Description of Fatal Error Log
	Header Format
	Thread Section Format
	Process Section Format
	System Section Format

	B Java 2D Properties
	Properties on Oracle Solaris and Linux
	Properties on Windows

	C Environment Variables and System Properties
	The JAVA_TOOL_OPTIONS Environment Variable
	The java.security.debug System Property

	D Command-Line Options
	Java HotSpot VM Command-Line Options
	Other Command-Line Options

	E Summary of Tools in This Release

