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Preface

The Java Platform, Standard Edition Java Management Extensions Guide provides an
introduction to Java Management Extension technology.

Audience
This guide is intended for Java developers who use JMX technology to instrument Java code,
create smart Java agents, implement distributed management middleware and managers,
and smoothly integrate these solutions into existing management and monitoring systems.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
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terms is ongoing and will take time and external cooperation.

Related Documents
For more information, see the following:

• JMX home page: The page for news, downloads, blogs and other information about the
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• JSR 160: The JCP page for the JMX Remote API.
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ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/java/technologies/javase/javamanagement.html
https://jcp.org/en/jsr/detail?id=003
https://jcp.org/en/jsr/detail?id=160
https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/JMX_1_4_specification.pdf


• Java Platform, Standard Edition Monitoring and Management Guide

Conventions
The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
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Part I
Java Management Extensions Technology
User’s Guide

JMX Technology Overview

Java Management Extensions (JMX) technology was originally developed through the Java
Community Process (JCP) as Java Specification Request (JSR) 3, Java Management
Extensions, and JSR 160, JMX Remote API. The JMX API is a standard API for management
and monitoring of resources such as applications, devices, services, and the Java Virtual
Machine.

Typical uses of JMX technology include:

• Monitoring and changing application configuration

• Accumulating statistics about application behavior and making them available

• Sending notifications of state changes and erroneous conditions.

The JMX API includes remote access, so that a remote management application can interact
with a running application to perform these actions.



1
Introduction to JMX Technology

If you are already familiar with Java Management Extensions (JMX) technology, see JMX
Technology Versions for version information.

JMX technology provides a simple, standard way of managing resources such as
applications, devices, and services. Because JMX technology is dynamic, you can use it to
monitor and manage resources as they are created, installed and implemented. You can also
use JMX technology to monitor and manage the Java Virtual Machine (Java VM).

JMX technology was developed through the Java Community Process (JCP) as two closely
related Java Specification Requests (JSRs):

• JSR 3: Java Management Extensions (JMX) Specification

• JSR 160: Java Management Extensions (JMX) Remote API

The JSRs are defined by the API documentation that is generated by the JavaDoc tool, and
in the Java Management Extensions (JMX) Specification, version 1.4 (JMX Specification).

As its name indicates, the JMX Remote API adds remote capabilities to the JMX
Specification, enabling you to remotely monitor and manage applications, systems, and
networks. In this guide, the term JMX technology is used to describe both the JMX
Specification and the JMX Remote API.

This chapter introduces JMX technology in the following sections:

• What Is JMX Technology?

• Why Use JMX Technology?

What Is JMX Technology?
The JMX Specification defines in the Java programming language an architecture, the design
patterns, the APIs, and the services for application and network management and monitoring.
The Java Management Extensions (JMX) technology is a standard part of the Java Platform,
Standard Edition (Java SE platform).

When using JMX technology, one or more Java objects known as Managed Beans (MBeans)
will instrument a specified resource. These MBeans are registered in a core managed object
server, known as an MBean server. The MBean server acts as a management agent and can
run on most devices enabled for the Java programming language.

The specification defines JMX agents you can use to manage resources that are
instrumented in compliance with the specification. A JMX agent consists of an MBean server,
in which MBeans are registered, and a set of services for handling MBeans. JMX agents
directly control resources and make them available to remote management applications.

The way in which resources are instrumented is completely independent from the
management infrastructure. Resources can therefore be rendered manageable regardless of
how their management applications are implemented.

JMX technology defines standard connectors (JMX connectors) that enable you to access
JMX agents from remote management applications. JMX connectors use different protocols
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to provide the same management interface. A management application can manage
resources transparently, regardless of the communication protocol that is used. JMX
agents can be used by systems and applications that are not compliant with the JMX
Specification but which support JMX agents.

Why Use JMX Technology?
JMX technology provides Java developers with a flexible means to instrument Java
code, create smart Java agents, implement distributed management middleware and
managers, and smoothly integrate these solutions into existing management and
monitoring systems.

• JMX technology enables management of Java applications without heavy
investment: A JMX technology agent can run on most Java technology-enabled
devices, thus Java applications can become manageable with little impact on their
design. A Java application needs to embed a managed object server and make
some of its functionality available as one or several managed beans (MBeans)
registered in the object server; that is all it takes to benefit from the management
infrastructure.

• JMX technology provides a standard way to manage Java technology-based
applications, systems, and networks: For example, the Java Platform,
Enterprise Edition (Java EE) 5 Application Server conforms to the JMX
architecture and consequently can be managed using JMX technology.

• JMX technology can be used for out-of-the-box management of the JVM: The
JVM is highly instrumented using JMX technology. You can start a JMX agent to
access the built-in JVM instrumentation, and to monitor and manage the JVM
remotely.

• JMX technology provides a scalable, dynamic, management architecture:
Each JMX agent service is an independent module that can be plugged in to the
management agent. This component-based approach means that JMX solutions
can scale from small-footprint devices to large telecommunications switches and
beyond. The JMX Specification provides a set of core agent services. Additional
services can be developed and dynamically loaded, unloaded, or updated in the
management infrastructure.

• JMX technology takes advantage of existing standard Java technologies:
When needed, the JMX Specification references existing Java specifications, for
example, the Java Naming and Directory Interface (JNDI).

• JMX technology integrates with existing management solutions and
emerging technologies: For example, JMX agents can be managed through an
HTML browser. The JMX APIs provide open interfaces that any management
system vendor can use.

Chapter 1
Why Use JMX Technology?
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2
JMX Technology Architecture

Java Management Extensions (JMX) technology provides a standard API for the
management and monitoring of resources. The API includes remote access, so that a remote
management application can manage and monitor applications, systems, and networks.

This chapter outlines JMX architecture in the following sections:

• Architecture Outline

• Instrumenting Resources by Using MBeans

• Creating a JMX Agent

• Managing Resources Remotely

Architecture Outline
JMX technology was developed through the Java Community Process (JCP) as two closely
related Java Specification Requests (JSRs):

• JSR 3: Java Management Extensions (JMX) Specification- defines the instrumentation
and agent levels

• JSR 160: Java Management Extensions (JMX) Remote API - defines the remote
management level

The following table shows the levels in the management architecture.

Level Description

Instrumentation Resources, such as applications, devices, or
services, are instrumented using Java objects
called Managed Beans (MBeans). MBeans
expose their management interfaces, composed of
attributes and operations, through a JMX agent for
remote management and monitoring. 

Agent The main component of a JMX agent is the
MBean server. This is a core managed object
server in which MBeans are registered. A JMX
agent also includes a set of services for handling
MBeans. The JMX agent directly controls
resources and makes them available to remote
management agents. 

Remote management Protocol adaptors and standard connectors make
a JMX agent accessible from remote management
applications outside the agent’s Java Virtual
Machine (JVM).
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Instrumenting Resources by Using MBeans
To manage resources by using JMX technology, you must first instrument the
resources in the Java programming language. You can use Java objects known as
MBeans to implement access to the instrumentation of resources. MBeans must follow
the design patterns and interfaces defined in the JMX Specification to ensure that all
MBeans provide the instrumentation of managed resources in a standardized way.

After a resource is instrumented by MBeans, it can be managed through a JMX agent.
MBeans do not require knowledge of the JMX agent with which they operate.

MBeans are designed to be flexible, simple, and easy to implement. Developers of
applications, systems, and networks can make their products manageable in a
standard way without investing in complex management systems. Existing resources
can be made manageable with minimum effort.

In addition, the instrumentation level of JSR 3: Java Management Extensions (JMX)
Specification specifies a notification mechanism that enables MBeans to generate and
propagate notification events to components of the other levels.

Creating a JMX Agent
A JMX agent is a standard management agent that directly controls resources and
makes them available to remote management applications. A JMX agent is usually
located on the same system as the resources that it controls, but this is not a
requirement.

The core component of a JMX agent is the MBean server, a managed object server in
which MBeans are registered. A JMX agent also includes a set of services to manage
MBeans, and at least one communications adaptor or connector to enable access by a
management application.

When you implement a JMX agent, you do not need to know the semantics or
functions of the resources that the agent will be used to manage. In fact, a JMX agent
does not even need to know which resources it will serve, because any resource
instrumented in compliance with the JMX Specification can use any JMX agent
offering the services that it requires. In addition, the agent does not need to know the
functions of the management applications that will access it.

Managing Resources Remotely
JMX API instrumentation can be accessed either through existing management
protocols such as the Simple Network Management Protocol (SNMP), or through
proprietary protocols. The MBean server relies on protocol adaptors and connectors to
make a JMX agent accessible from management applications outside the agent’s
JVM.

Each adaptor provides a view through a specific protocol of all MBeans registered in
the MBean server. For example, an HTML adaptor could display an MBean in a
browser.

Connectors provide a manager-side interface that handles the communication
between the manager and the JMX agent. Each connector provides the same remote
management interface though a different protocol. When a remote management

Chapter 2
Instrumenting Resources by Using MBeans
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application uses this interface, it can connect to a JMX agent transparently through the
network, regardless of the protocol.

JMX technology provides a standard solution for exporting JMX API instrumentation to
remote applications, based on Remote Method Invocation (RMI). The JMX Remote API also
defines an optional protocol based directly on TCP sockets, called the JMX Messaging
Protocol (JMXMP). An implementation of the JMX Remote API does not have to support this
optional protocol. The Java SE platform does not include the optional protocol. See JMX
Technology Versions for further information.

The JMX Remote API section of the specification describes how you can advertise and find
JMX agents by using existing discovery and lookup infrastructures. For examples, see Java
Management Extensions (JMX) Technology Tutorial. The JMX Specification does not define
its own discovery and lookup service. The use of existing discovery and lookup services is
optional. Alternatively you can encode the addresses of your JMX agents in the form of
URLs, and then communicate these URLs to the manager.

Chapter 2
Managing Resources Remotely
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3
Instrumenting Your Resources for JMX
Technology

This chapter outlines the concepts behind instrumenting resources for management by using
JMX technology in the following sections:

• Manageable Resources

• Managed Beans (MBeans)

• JVM Instrumentation

Manageable Resources
Different types of resources can be managed using JMX technology, for example an
application, an implementation of a service, a device, or a user. For a given resource to be
managed by JMX technology, it must be developed in the Java language, or at least offer a
Java language wrapper. The resource must also be instrumented by one or more Java
objects known as managed beans (MBeans), in compliance with the JMX Specification.

Developers of applications and devices can choose the granularity of objects that are
instrumented as MBeans. An MBean might represent the smallest object in an application, or
it could represent the entire application. Application components designed with their
management interface in mind can typically be written as MBeans. MBeans can be used as
wrappers for legacy code without a management interface or as proxies for code with a
legacy management interface.

Managed Beans (MBeans)
The Java objects that implement resources and their instrumentation are called managed
beans (MBeans). MBeans must follow the design patterns and interfaces defined in Java
Management Extensions (JMX) Specification, version 1.4 to ensure that all MBeans provide
the instrumentation of managed resources in a standardized way.

The instrumentation of a given resource is provided by one or more MBeans that are either
standard or dynamic. Standard MBeans are Java objects that conform to certain design
patterns derived from the JavaBeans component model. Dynamic MBeans conform to a
specific interface that offers more flexibility at runtime. MXBeans reference only a predefined
set of types.

The instrumentation of a resource allows it to be manageable through the agent level
described in Using JMX Agents. MBeans do not require knowledge of the JMX agent with
which they operate.

MBeans are designed to be flexible, simple, and easy to implement. Developers of
applications, services, or devices can make their products manageable in a standard way
without having to understand or invest in complex management systems. Existing objects can
easily be evolved to produce standard MBeans or wrapped as dynamic MBeans, thus making
existing resources manageable with minimum effort.
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The instrumentation level specifies a notification mechanism which enables MBeans to
generate and propagate notification events to components of the other levels.

The management interface of an MBean consists of:

• Named and typed attributes that can be read and/or written

• Named and typed operations that can be invoked

• Typed notifications that can be emitted by the MBean

The Java class of a standard MBean exposes the resource to be managed directly
through its attributes and operations. Attributes are internal entities that are exposed
through getter and setter methods. Operations are the other methods of the class that
are available to managers. All these methods are defined statically in the MBean
interface and are visible to a JMX agent through introspection. This is the most
straightforward way of making a new resource manageable.

A dynamic MBean defines its management interface at runtime. For example, a
configuration MBean could determine the names and types of the attributes it exposes
by parsing an XML file.

An MXBean is a type of MBean that provides a simple way to code an MBean that
only references a pre-defined set of types. In this way, you can be sure that your
MBean will be usable by any client, including remote clients, without any requirement
that the client have access to model-specific classes representing the types of your
MBeans.

JVM Instrumentation
The JVM is highly instrumented using JMX technology. You can easily start a JMX
agent to access the built-in JVM instrumentation, and thereby monitor and manage the
JVM remotely by JMX technology.

To find out more about using JMX technology to monitor and manage the JVM, see the
Java Platform, Standard Edition Monitoring and Management Guide.

Chapter 3
JVM Instrumentation
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4
Using JMX Agents

A JMX agent is a management entity that runs in a JVM and acts as the liaison between the
managed beans (MBeans) and the management application. The various components of a
JMX agent are outlined in the following sections:

• MBean Server

• Agent Services

• Protocol Adaptors and Connectors

MBean Server
The MBean server is the core component of a JMX agent. It’s a registry for objects in a JMX
agent that are exposed to management operations. An object that is registered with the
MBean server is visible to management applications. The MBean server exposes only the
management interface of an MBean, never its direct object reference.

Any resource that you want to manage from outside the agent’s JVM must be registered as
an MBean with the server. The MBean server provides a standardized interface for accessing
MBeans within the same JVM, giving local objects all the benefits of manipulating
manageable resources. MBeans can be instantiated and registered by:

• Another MBean

• The agent itself

• A remote management application

When you register an MBean, you must assign it a unique object name. A management
application uses the object name to identify the object on which it is to perform a
management operation. The operations available on MBeans include:

• Discovering the management interface of MBeans

• Reading and writing their attribute values

• Performing operations defined by the MBeans

• Getting notifications emitted by MBeans

• Querying MBeans by using their object name or their attribute values

Agent Services
Agent services are objects that can perform management operations on the MBeans that are
registered with the MBean server. By including management intelligence within the agent,
JMX enables you to build more powerful management solutions. Agent services can be
provides by MBeans as well, allowing them and their functionality to be controlled through the
MBean server. Java Management Extensions (JMX) Specification, version 1.4 defines the
following agent services:
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• Dynamic Class loader: Dynamic class loading through the management applet
(m-let) service retrieves and instantiates new classes and native libraries that are
dynamically downloaded from the network.

• Monitors: Monitors the numerical or string value of MBean attributes and can
notify other objects of several types of changes.

• Timers: Timers provide a scheduling mechanism and can send notifications at
predetermined intervals.

• Relation service: The relation service defines associations between MBeans and
maintains the consistency of the relation.

Protocol Adaptors and Connectors
Protocol adaptors and connectors make agents accessible from remote management
applications. They provide a view through a specific protocol of the MBeans that are
instantiated and registered with the MBean server. They enable a management
application outside the JVM to:

• Get or set attributes of existing MBeans

• Perform operations on existing MBeans

• Instantiate and register new MBeans

• Register for and receive notifications emitted by MBeans

Consequently, for a JMX agent to be manageable, it must include at least one protocol
adaptor or connector. The Java SE platform includes the standard Remote Method
Invocation (RMI) connector. An agent can include one or more protocol adaptors and
connectors, allowing it to be managed and monitored remotely through different
protocols simultaneously.

Protocol Adaptors
Protocol adaptors provide a management view of the JMX agent through a given
protocol. They adapt the operations of MBeans and the MBean server into a
representation in the given protocol, and possibly into a different information model, for
example SNMP. The Java SE platform does not include any protocol adaptors as
standard.

Management applications that connect to a protocol adaptor are usually specific to the
given protocol. This is typically the case for legacy management solutions that rely on
a specific management protocol. They access the JMX agent not through a remote
representation of the MBean server, but through operations that are mapped to those
of the MBean server.

Connectors
Connectors are used to connect an agent with a remote management application
enabled for JMX technology, namely, a management application developed using the
distributed services of the JMX specification. This kind of communication involves a
connector server in the agent and a connector client in the manager.

These components convey management operations transparently point-to-point over a
specific protocol. The JMX Remote API provides a remote interface to the MBean
server through which the management application can perform operations. A
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connector is specific to a given protocol, but the management application can use any
connector indifferently because the remote interface is the same.

See Using JMX Connectors to Manage Resources Remotely for more information on
standard JMX connectors.
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5
Using JMX Connectors to Manage Resources
Remotely

The Java Management Extensions Instrument Specification and the Agent Specification
sections of Java Management Extensions (JMX) Specification, version 1.4 define the concept
of connectors. A connector makes a JMX technology MBean server accessible to remote
Java technology-based clients. The client end of a connector exports essentially the same
interface as the MBean server.

A connector consists of a connector client and a connector server. The connector server is
attached to an MBean server and listens for connection requests from clients. The connector
client establishes a connection with the connector server. A connector client is usually in a
different JVM from the connector server, and often runs on a different machine.

Many connector implementations are possible. In particular, there are many possibilities for
the protocol used to communicate over a connection between client and server.

A connector server usually has an address, used to establish connections between connector
clients and the connector server. Alternatively, some connectors can provide connection
stubs to establish connections. The way in which connections are established depends on
the discovery and lookup technology that you use. See Discovery and Lookup Services.

This chapter outlines the different types of connector defined by the JMX Remote API
Specification section of Java Management Extensions (JMX) Specification, version 1.4 and
the protocols that they use, in the following sections:

• RMI Connector: The standard Remote Method Invocation (RMI) protocol must be
supported by every implementation that conforms to the JMX Remote API Specification.

• Generic Connector: The JMX Remote API Specification section also defines an optional
protocol based directly on TCP sockets, called the JMX Messaging Protocol (JMXMP).
An implementation of the specification can omit the JMXMP connector, but must not omit
the RMI connector. The Java SE platform does not include the optional JMXMP
connector.

• User-Defined Protocols: A connector can also implement a protocol that is not defined in
the JMX Specification.

RMI Connector
The JMX Remote API defines a standard protocol based on RMI. The RMI connector must
be present in every implementation of the JMX Remote API.

The RMI connector supports the Java Remote Method Protocol (JRMP) transport.

The RMI connector over JRMP provides a simple mechanism for securing and authenticating
the connection between a client and a server. This mechanism provides a basic level of
security for environments using the RMI connector. Note that the generic JMXMP connector
provides a more advanced level of security.
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You can improve the security of the RMI connector over JRMP by using an RMI socket
factory so that the connection between the client and the server uses the Secure
Socket Layer (SSL).

Generic Connector
The JMX Remote API defines an optional, generic connector, which is not included in
the Java SE platform. This connector can be configured by adding pluggable modules
to define the following:

• The transport protocol used to send requests from the client to the server, and to
send responses and notifications from the server to the clients

• The object wrapping for objects that are sent from the client to the server and
whose class loader can depend on the target MBean

The JMX Messaging Protocol (JMXMP) connector is a configuration of the generic
connector where the transport protocol is based on TCP and the object wrapping is
native Java serialization. Security is more advanced than for the RMI connector.
Security is based on the Java Secure Socket Extension (JSSE), the Java
Authentication and Authorization Service (JAAS), and the Simple Authentication and
Security Layer (SASL).

The generic connector and its JMXMP configuration are optional, which means that
they are not always included in an implementation of the JMX Remote API. The Java
SE platform does not include the optional generic connector.

User-Defined Protocols
The JMX Remote API does not define a connector for every protocol. You can
implement a connector based on a protocol that is not defined in the JMX Remote API.
For example, you can implement connector based on a protocol that uses HTTP/S.
The JMX Specification describes how to implement a connector based on a user-
defined protocol.
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6
Discovery and Lookup Services

The Java Management Extensions (JMX) Specification, version 1.4 describes how you can
advertise and find JMX API agents by using existing discovery and lookup infrastructures.
The specification does not define any discovery and lookup APIs specific to JMX technology.

This chapter provides a brief outline of existing discovery and lookup infrastructures that you
can use with JMX technology.

Getting Started with Lookup Services
JMX agents and JMX clients can use lookup services. A single JVM can contain many JMX
agents and/or JMX clients.

A JMX agent is a logical server application composed of the following features:

• One managed bean (MBean) server

• One or more JMX connector servers that allow remote clients to access the MBeans
contained in that MBean server

A JMX client is a logical client application that opens a client connection with a JMX agent.

The Java Management Extensions (JMX) Technology Tutorial demonstrates how to use
lookup services to advertise and find JMX agents.

Note:

The use of existing discovery and lookup services is optional. Alternatively, you can
encode the addresses of your JMX API agents in the form of URLs, and
communicate these URLs to the manager.

Using the Service Location Protocol (SLP)

The Service Location Protocol (SLP) provides a framework that allows networking
applications to discover the existence, location, and configuration of networked services in
enterprise networks.

The following steps summarize the procedure defined in the JMX Specification for using the
SLP lookup service to advertise and find JMX agents:

• The JMX agent creates one or more JMX connector servers.

• For each exposed connector, the JMX agent registers the address with the SLP lookup
service, possibly giving additional attributes that qualify the agent and/or the connector,
and can be used as filters.

• The JMX client queries the SLP lookup service, and retrieves one or more addresses that
match the query.
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• Finally, the JMX client obtains a connector that is connected with the server that is
identified by a retrieved address.

In the JMX Specification, the JMX Remote API Specification section defines URL
schemes which are compliant with the SLP protocol. The specification also defines
mandatory and optional SLP lookup attributes that are provided at registration time.

Using the Java Naming and Directory Interface (JNDI) API With an LDAP
Backend

The Java Naming and Directory Interface (JNDI) API is a standard extension to the
Java platform. It provides Java technology-enabled applications with a unified interface
to multiple naming and directory services.

The JMX Specification describes how an LDAP server is used to store and retrieve
information about JMX connectors that are exposed by JMX agents.

The following steps summarize the procedure defined in the JMX Specification for
using the JNDI lookup service:

• The JMX agent creates one or more JMX connector servers.

• For each connector to expose, the JMX agent registers the address with the JNDI
lookup service, possibly giving additional attributes that qualify the agent and/or
the connector, and can be used as filters.

• The JMX client queries the JNDI lookup service, and retrieves one or more
addresses that match the query.

• Finally, the JMX client obtains a connector that is connected to the server that is
identified by a retrieved address.

In the JMX Specification, the JMX Remote API Specification section defines an LDAP
schema for registering addresses and explains how a client can discover a registered
agent. The specification also defines a lease mechanism.
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7
JMX Technology Versions

Java Management Extensions Technology (JMX) became a standard part of the Java
platform in the Java Platform Standard Edition (Java SE) 5.0. The JMX technology was
developed through the Java Community Process (JCP) as two closely related Java
Specification Requests (JSRs). The versions of the JSRs implemented in Java SE 5.0 are
detailed in the following sections.

JMX Instrumentation and Agent Specification (JSR 3)
The Java SE 9 and later platform implements version 1.4 of the JMX Specification
(Maintenance Release, October 2006). It incorporates the modifications that are listed in the
errata that is provided with the download.

JMX Remote API Specification (JSR 160)
The Java SE 9 and later platform implements version 1.4 of the JMX Remote API
Specification (Maintenance Release, October 2006).

In addition to standard RMI connectors, JSR 160 defines optional JMX Messaging Protocol
(JMXMP) connectors based on TCP sockets. The Java SE platform does not include these
optional connectors. You might want to use JMXMP connectors if you require a more
advanced level of security.

If you want to use a JMXMP connector:

1. Download the Java Management Extensions (JMX) Remote API Reference
Implementation 1.0.1_03 from the Java Platform Technology Downloads page.

2. Add the jmxremote_optional.jar file to your classpath.

You will find examples of the use of JMXMP connectors in the JMX Remote API Tutorial
included with the JSR 160 Reference Implementation.
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8
Java Management Extensions (JMX) API

The Java Management Extensions (JMX) API is a standard API for management and
monitoring.

The following packages of documentation generated by the JavaDoc tool are provided for the
JMX API:

• javax.management
• javax.management.loading
• javax.management.modelmbean
• javax.management.monitor
• javax.management.openmbean
• javax.management.relation
• javax.management.remote
• javax.management.timer
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Part II
Java Management Extensions (JMX)
Technology Tutorial

JMX Technology Tutorial Overview

This tutorial provides examples of how to use the main features of the JMX technology.

This tutorial is intended to be read in order, from beginning to end, working through the
examples as you go. Actions you perform at the beginning of the tutorial might be required in
later parts of the tutorial. Consequently, starting mid-way through the tutorial might cause you
to skip actions that are required by certain examples.

Where you must perform a task, the instructions are marked with an action number and sub-
tasks are marked with a lower-case letter.

Before You Use This Tutorial

This tutorial demonstrates the concepts and technology introduced in the Java Management
Extensions Technology User’s Guide. You should, therefore, read the overview before you
attempt to work through this tutorial. To make full use of the information in this tutorial, you
should also be familiar with the following protocols and specifications:

• Remote Method Invocation (RMI)

• Lightweight Directory Access Protocol (LDAP)

• Service Location Protocol (SLP)

• Java Naming and Directory Interface (JNDI) API

• Java Secure Socket Extension (JSSE)

• Java Authentication and Authorization Service (JAAS)

• Java Management Extensions (JMX) Specification, version 1.4

How This Tutorial Is Organized

This tutorial provides examples in the broad categories presented in the following chapters.

• Getting Started gives you some initial configuration information.

• Essentials of the JMX API introduces the core concepts of the JMX Specification.

• JMX Connectors provides examples of how to implement the standard and dynamic
types of MBean, and perform operations on them both locally and remotely.

• Lookup Services demonstrates the lookup services that can be used in conjunction with
the JMX technology.

• Security shows some examples of security configurations.



9
Getting Started

This chapter explains what you need to do to get started with the Java Management
Extensions (JMX) examples. It provides instructions that apply to all examples described in
the following chapters.

Platform Information
All variable assignments and commands in the examples in this tutorial are defined using
UNIX Korn shell syntax. If you are running a shell other than the Korn shell on a Linux or
macOS platform, you must adapt these commands to your preferred shell environment.

If you are running a Microsoft Windows operating environment, in most cases, adapting
commands will simply involve replacing forward slashes (/) with backward slashes (\) and
replacing colons (:) with semi-colons (;) in the paths. A specific Microsoft Windows
command is given only when it differs significantly from the Linux or macOS command
provided.
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10
Essentials of the JMX API

This chapter introduces managed beans (MBeans) which are a core component of the Java
Management Extensions (JMX) API.

An MBean is a managed Java object, similar to a JavaBean, that follows the design patterns
set forth in the instrumentation level of the JMX Specification. An MBean can represent a
device, an application, or any resource that is managed. MBeans expose a management
interface, which is a set of readable and/or writable attributes and a set of invokable
operations, along with a self-description. The management interface does not change
throughout the life of an MBean instance. MBeans can also emit notifications when certain
defined events occur.

The JMX Specification defines four types of MBean: standard MBeans, dynamic MBeans,
open MBeans and model MBeans. The examples in this tutorial demonstrate the simplest
type of MBean, namely standard MBeans.

Standard MBeans
You can define a standard MBean by writing a Java interface called SomethingMBean and a
Java class called Something that implements that interface. Every method in the interface
defines either an attribute or an operation in the MBean. By default every method defines an
operation. Attributes and operations are simply methods which follow certain design patterns.
A standard MBean is composed of the MBean interface which lists the methods for all
exposed attributes and operations, and the class which implements this interface and
provides the functionality of the instrumented resource.

The following sections describe an example standard MBean, and a simple JMX agent that
manages the MBean. The code samples are provided in JMX Essentials. You can run the
examples from the directory work_dir/jmx_examples/Essential/com/example/mbeans.

MBean Interface
An example of a basic MBean interface, named HelloMBean, is shown in the following code
example.

CODE EXAMPLE 10-1 MBean Interface, HelloMBean

 
package com.example.mbeans; 
 
public interface HelloMBean { 
 
    public void sayHello(); 
    public int add(int x, int y); 
 
    public String getName(); 
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    public int getCacheSize(); 
    public void setCacheSize(int size); 
} 
 

An MBean interface takes the name of the Java class that implements it, with the suffix
MBean added. The interface is called HelloMBean. The Hello class that implements
this interface is described in MBean Implementation.

According to the JMX Specification, an MBean interface consists of named and typed
attributes that are readable and possibly writable, and named and typed operations
that can be invoked by the applications that are managed by the MBean. The
HelloMBean interface shown in CODE EXAMPLE 10-1 MBean Interface,
HelloMBean, declares two operations: the Java methods add() and sayHello().

Of the two attributes that are declared by HelloMbean, Name is a read-only string, and
CacheSize is an integer that can be both read and written. Getter and setter methods
are declared, to allow the managed application to access and possibly change the
attribute values. As defined by the JMX Specification, a getter is any public method
whose name begins with get and which does not return void. A getter enables a
manager to read the value of the attribute, whose type is that of the returned object. A
setter is any public method whose name begins with set and which takes a single
parameter. A setter enables a manager to write a new value in the attribute, whose
type is the same as that of the parameter.

The implementation of these operations and attributes is shown in the following
section.

MBean Implementation
The Hello class shown in the following code example implements HelloMBean.

CODE EXAMPLE 10-2 MBean Implementation Class, Hello

 
package com.example.mbeans; 
 
public class Hello implements HelloMBean { 
    public void sayHello() { 
        System.out.println("hello, world"); 
    } 
 
    public int add(int x, int y) { 
        return x + y; 
    } 
 
    public String getName() { 
        return this.name; 
    } 
 
 
    public int getCacheSize() { 
        return this.cacheSize; 
    } 
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    public synchronized void setCacheSize(int size) { 
        this.cacheSize = size; 
 
        System.out.println("Cache size now " + this.cacheSize); 
    } 
 
    private final String name = "Reginald"; 
    private int cacheSize = DEFAULT_CACHE_SIZE; 
    private static final int DEFAULT_CACHE_SIZE = 200; 
} 
 

In Example 10-2, the Java class Hello provides the definitions of the operations and
attributes declared by HelloMBean. As you can see, the example sayHello() and add()
operations are extremely simple, but real-life operations can be as simple or as sophisticated
as you like.

Methods to get the Name attribute and to get and set the cacheSize attribute are also defined.
In this example, the Name attribute value never changes, but in a real scenario it might change
as the managed resource runs. For example, the attribute might represent statistics such as
uptime or memory usage. Here, it is merely the name “Reginald”.

Calling the setCacheSize method allows you to alter the cacheSize attribute from its declared
default value of 200. In reality, changing the cacheSize attribute could require other
operations to be performed, such as discarding entries or allocating new ones. This example
merely prints a message to confirm that the cache size is changed, but you can define more
sophisticated operations in the place of the call to println().

With the Hello MBean and its interface defined, they can be used to manage the resource
they represent, as shown in the following section.

Managing a Resource
As described in the Java Management Extensions Technology User’s Guide, after a resource
is instrumented by MBeans, the management of that resource is performed by a JMX agent.

The core component of a JMX agent is the MBean server, a managed object server in which
MBeans are registered. See the API documentation for the MBeanServer interface for details
of the MBean server implementation. A JMX agent also includes a set of services to manage
MBeans. The following code example presents a basic JMX agent, named Main.

CODE EXAMPLE 10-3 Creating a JMX Agent

 
package com.example.mbeans; 
 
import java.lang.management.*; 
import javax.management.*; 
 
public class Main { 
 
   public static void main(String[] args) throws Exception { 
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      MBeanServer mbs = ManagementFactory.getPlatformMBeanServer(); 
 
      ObjectName name = new 
ObjectName("com.example.mbeans:type=Hello"); 
 
      Hello mbean = new Hello(); 
 
      mbs.registerMBean(mbean, name); 
 
      System.out.println("Waiting forever..."); 
      Thread.sleep(Long.MAX_VALUE); 
   } 
} 
 

In Example 10-3, the JMX agent Main begins by obtaining any MBean server that is
running on the platform, by calling the getPlatformMBeanServer() method of the
java.lang.management.ManagementFactory class. If no MBean server is already
running on the platform, then getPlatformMBeanServer() creates one automatically
by calling the JMX method MBeanServerFactory.createMBeanServer(). The
MBeanServer instance obtained by Main is named mbs.

Next, Main defines an object name for the MBean instance it will create. Every JMX
MBean must have an object name. The object name is an instance of the JMX class
ObjectName, and must conform to the syntax defined by the JMX Specification, namely
it must comprise a domain, and a list of key-properties. See the API documentation for
the ObjectName class for details of this syntax. In the object name defined by Main,
name, the domain is com.example.mbeans (the package in which the example MBeans
are contained) and the key-property declares that this object is of the type Hello.

An instance of a Hello object is created, named mbean. This Hello object is an
instance of the MBean Hello that was defined in MBean Implementation.

The Hello object named mbean is registered as an MBean in the MBean server mbs
with the object name name, by passing the object and the object name into a call to the
JMX method MBeanServer.registerMBean().

With the Hello MBean registered in the MBean server, Main will simply wait for
management operations to be performed on Hello. In the scope of this example, these
management operations are invoking sayHello(), and add(), and getting and setting
the attribute values.

Running the Standard MBean Example
Having examined the example classes, you can run the example. The Java Platform,
Standard Edition includes a management and monitoring console, named JConsole,
that is used to interact with the MBean in this example. JConsole is located in
JavaSE_HOME/bin/jconsole, in which JavaSE_HOME is the installation directory of the
Java Platform, Standard Edition (Java SE platform).

To run the example:

1. Copy the source code contained in the JMX Essentials section and create
corresponding files in the work_dir/jmx_examples/Essential directory.
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2. Compile the example Java classes.
$ javac com/example/mbeans/*.java

3. Start the Main application.
$ java com.example.mbeans.Main
You will see a confirmation that Main is waiting for something to happen.

4. Start JConsole in a different terminal window on the same machine.
$ jconsole
You will see the JConsole tool open, presenting a list of running JMX agents that you can
connect to.

5. Select com.example.mbeans.Main from the list in the “New Connection” window, and click
on Connect.
You will see a summary of your platform’s current activity.

6. Click on the MBeans tab.
This panel shows you all the MBeans currently registered in the MBean server.

7. In the left-hand frame, expand the com.example.mbeans node in the MBean tree.
You will see the example MBean Hello, that was created and registered by Main. If you
click Hello, you will see its associated Attributes and Operations nodes in the MBean
tree.

8. Click on the Hello MBean node in the MBean tree to display the Hello MBean’s
metadata and its associated Descriptor.

9. Click the Attributes node of the Hello MBean in the MBean tree.
This displays the MBean attributes that were defined by the Hello class.

10. Change the value of the CacheSize attribute to 150.
In the terminal window in which you started Main, you will see confirmation of this change
of attribute.

11. Click the Operations node of the Hello MBean in the MBean tree.
Here you will see the two operations declared by the Hello MBean, sayHello() and
add().

12. Invoke the sayHello() operation, by clicking on the sayHello button.
A JConsole dialogue box will inform you that the method was invoked successfully, and
you will see the message “hello, world” in the terminal window in which Main is running.

13. Provide two integers for the add() operation to add , and click the add button.
You will be informed of the answer in a JConsole dialogue box.

14. Click Connection and then Exit, to exit JConsole.

Sending Notifications
MBeans can generate notifications, for example to signal a state change, a detected event, or
a problem.

For an MBean to generate notifications, it must implement the interface
NotificationBroadcaster, or its subinterface NotificationEmitter. All you need to do to
send a notification is to construct an instance of the class javax.management.Notification
or a subclass (such as AttributeChangedNotification), and pass it to
NotificationBroadcasterSupport.sendNotification.
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Every notification has a source. The source is the object name of the MBean that
emitted the notification.

Every notification has a sequence number. This number can be used to order
notifications coming from the same source when order matters and there is a danger
of the notifications being handled in the wrong order. It is all right for the sequence
number to be zero, but it is better for it to increment for each notification from a given
MBean.

There is an example of a standard MBean that emits notifications in the directory
work_dir/jmx_examples/Notification/com/example/mbeans. This example is
essentially the same as the example in Standard MBeans, except that the Hello
MBean implements the NotificationBroadcaster interface.

NotificationBroadcaster Interface
As previously stated, the only difference between this example and the one presented
in Standard MBeans is that the MBean implementation allows sending notifications.
Notifications are activated by implementing the NotificationBroadcaster interface,
as shown in the following code example.

CODE EXAMPLE 10-4 Implementing MBean Notifications

 
package com.example.mbeans; 
 
import javax.management.*; 
 
public class Hello 
        extends NotificationBroadcasterSupport implements HelloMBean { 
 
    public void sayHello() { 
        System.out.println("hello, world"); 
    } 
 
    public int add(int x, int y) { 
        return x + y; 
    } 
 
    public String getName() { 
        return this.name; 
    } 
 
    public int getCacheSize() { 
        return this.cacheSize; 
    } 
 
    public synchronized void setCacheSize(int size) { 
        int oldSize = this.cacheSize; 
        this.cacheSize = size; 
 
        System.out.println("Cache size now " + this.cacheSize); 
 
        Notification n = 
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            new AttributeChangeNotification(this, 
                                            sequenceNumber++, 
                                            System.currentTimeMillis(), 
                                            "CacheSize changed", 
                                            "CacheSize", 
                                            "int", 
                                            oldSize, 
                                            this.cacheSize); 
 
        sendNotification(n); 
    } 
 
    @Override 
    public MBeanNotificationInfo[] getNotificationInfo() { 
        String[] types = new String[] { 
            AttributeChangeNotification.ATTRIBUTE_CHANGE 
        }; 
        String name = AttributeChangeNotification.class.getName(); 
        String description = "An attribute of this MBean has changed"; 
        MBeanNotificationInfo info = 
            new MBeanNotificationInfo(types, name, description); 
        return new MBeanNotificationInfo[] {info}; 
    } 
 
    private final String name = "Reginald"; 
    private int cacheSize = DEFAULT_CACHE_SIZE; 
    private static final int DEFAULT_CACHE_SIZE = 200; 
 
    private long sequenceNumber = 1; 
} 
 

As you can see in CODE EXAMPLE 10-4 Implementing MBean Notifications, this Hello
MBean implementation extends the NotificationBroadcasterSupport class, that itself
implements the NotificationEmitter interface.

The operations and attributes are set in the same way as before, with the only exception that
the cacheSize attribute’s setter method now defines a new value oldSize, which records the
cacheSize attribute’s value prior to the set operation.

The notification is constructed from an instance, n, of the JMX class
AttributeChangeNotification, which extends javax.management.Notification. The
notification is constructed within the definition of the setCacheSize() method, from the
following information, that is passed to AttributeChangeNotification as parameters:

• The object name of the source of the notification, namely the Hello MBean, represented
simply by this

• A sequence number, which in this example is a long named sequenceNumber, that is set
at 1 and that increases incrementally

• A timestamp

• The content of the notification message

• The name of the attribute that has changed, in this case cacheSize
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• The type of attribute that has changed

• The old attribute value, in this case oldSize
• The new attribute value, in this case this.cacheSize
The notification n is then passed to the
NotificationBroadcasterSupport.sendNotification() method.

Finally, the MBeanNotification is defined to describe the characteristics of the
different notification instances emitted by the MBean for a given Java class of
notification, which in this case is AttributeChangeNotification notifications.

The MBean interface, HelloMBean, and the JMX agent Main are identical to those used
in the previous example.

Running the MBean Notification Example
Having examined the example classes, you can now run the example. This example
uses JConsole to interact with the Hello MBean.To run the example:

1. Copy the source code examples contained in the JMX MBean Notifications section
to work_dir/jmx_examples/Notification.

2. Compile the example Java classes.

$ javac com/example/mbeans/*.java

3. Start the Main application.

$ java com.example.mbeans.Main

You will see confirmation that Main is waiting for something to happen.

4. Start JConsole in a different terminal window on the same machine.

$ jconsole

You will see the JConsole tool open, presenting a list of running JMX agents that
you can connect to.

5. Select com.example.mbeans.Main from the list in the New Connection window, and
click on Connect.

You will see a summary of your platform’s current activity.

6. Click on the MBeans tab.

This panel shows you all the MBeans currently registered in the MBean server.

7. In the left-hand frame, expand the com.example.mbeans node in the MBean tree.

You will see the example MBean Hello, that was created and registered by Main.
If you click on Hello, you will see its associated Attributes, Operations and
Notifications nodes in the MBean tree.

8. Click on the Hello MBean node in the MBean tree.

This displays the MBean’s metadata and its associated Descriptor.
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9. Click on the Notifications node of the Hello MBean in the MBean tree.

You will see that the panel is blank.

10. Click on the “Subscribe” button.

The current number of notifications received (0), will be displayed in the Notifications
node label.

11. Click on the Attributes node of the Hello MBean in the MBean tree, and change the
value of the CacheSize attribute to 150.

In the terminal window in which you started Main, you will see confirmation of this change
of attribute. You will also see that the number of notifications received displayed in the
Notifications node has changed to 1.

12. Click on the Notifications node of the Hello MBean in the MBean tree again.

You will see the details of the notification that was sent.

13. Click on Connection and then Exit, to exit JConsole.

Introducing MXBeans
An MXBean is a type of MBean that provides a simple way to code an MBean that only
references a pre-defined set of types. In this way, you can be sure that your MBean will be
usable by any client, including remote clients, without any requirement that the client have
access to model-specific classes representing the types of your MBeans. MXBeans provide a
convenient way to bundle related values together without requiring clients to be specially
configured to handle the bundles.

In the same way as for standard MBeans, an MXBean is defined by writing a Java interface
called SomethingMXBean and a Java class that implements that interface. However, unlike
standard MBeans, MXBeans do not require the Java class to be called Something. Every
method in the interface defines either an attribute or an operation in the MXBean. The
annotation @MXBean can be also used to annotate the Java interface instead of requiring the
interface’s name to be followed by the MXBean suffix.

MXBeans provide a convenient way to bundle related values together in an MBean without
requiring clients to be specially configured to handle the bundles when interacting with that
MBean. MXBeans exist in the Java 2 Platform, Standard Edition (J2SE) 5.0, in the package
java.lang.management. With the Java SE 6 platform, users can now define their own
MXBeans, in addition to the standard set defined in java.lang.management.

The key idea behind MXBeans is that types such as java.lang.management.MemoryUsage
that are referenced in the MXBean interface, java.lang.management.MemoryMXBean in this
case, are mapped into a standard set of types, the so-called Open Types that are defined in
the package javax.management.openmbean. The exact mapping rules appear in the MXBean
specification, but to oversimplify we could say that simple types like int or String are
unchanged, while complex types like MemoryUsage get mapped to the standard type
CompositeDataSupport.

The operation of MXBeans is demonstrated by example programs in MXBeans. The MXBean
example contains the following files:

• QueueSamplerMXBean interface.

• QueueSampler class that implements the MXBean interface.
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• QueueSample Java type returned by the getQueueSample() method in the MXBean
interface.

• Main, the program that sets up and runs the example.

The MXBean example performs the following actions.

• Defines a simple MXBean that manages a resource of type Queue<String>.

• Declares a getter, getQueueSample, in the MXBean that takes a snapshot of the
queue when invoked and returns a Java class QueueSample that bundles the
following values together:

– The time the snapshot was taken.

– The queue size.

– The head of the queue at that given time.

• Registers the MXBean in an MBean server.

QueueSamplerMXBean Interface
The following code example shows the source code for the sample
QueueSamplerMXBean interface.

CODE EXAMPLE 10-5 QueueSamplerMXBean interface

 
package com.example.mxbeans; 
 
public interface QueueSamplerMXBean { 
    public QueueSample getQueueSample(); 
    public void clearQueue(); 
} 
 

As you can see, you declare an MXBean interface in exactly the same way as you
declare a standard MBean. The QueueSamplerMXBean interface declares two
operations, getQueueSample and clearQueue.

QueueSampler Class
The QueueSampler class implements the QueueSamplerMXBean interface shown in the
following code example.

CODE EXAMPLE 10-6 QueueSampler Class

package com.example.mxbeans; 
 
import java.util.Date; 
import java.util.Queue; 
 
public class QueueSampler implements QueueSamplerMXBean { 

Chapter 10
Introducing MXBeans

10-10



     
    private Queue<String> queue; 
     
    public QueueSampler(Queue<String> queue) { 
       this.queue = queue; 
    } 
     
    public QueueSample getQueueSample() { 
        synchronized (queue) { 
            return new QueueSample(new Date(), queue.size(), queue.peek()); 
        } 
    } 
     
    public void clearQueue() { 
        synchronized (queue) { 
            queue.clear(); 
        } 
    } 
} 
 

The MXBean operations getQueueSample() and clearQueue() declared by the MXBean
interface are defined in QueueSampler. The getQueueSample() operation simply returns an
instance of the QueueSample Java type, created with the values returned by the
java.util.Queue methods peek() and size() and an instance of java.util.Date.

QueueSample Class
The QueueSample instance returned by QueueSampler is defined in the QueueSample class
shown in the following code example.

CODE EXAMPLE 10-7 QueueSample Class

package com.example.mxbeans; 
 
import java.beans.ConstructorProperties; 
import java.util.Date; 
 
public class QueueSample { 
     
    private final Date date; 
    private final int size; 
    private final String head; 
     
    @ConstructorProperties({"date", "size", "head"}) 
    public QueueSample(Date date, int size, String head) { 
        this.date = date; 
        this.size = size; 
        this.head = head; 
    } 
     
    public Date getDate() { 
        return date; 
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    } 
     
    public int getSize() { 
        return size; 
    } 
     
    public String getHead() { 
        return head; 
    } 
} 
 

In QueueSample class, the MXBean framework calls all the getters in QueueSample to
convert the given instance into a CompositeData and uses the
@ConstructorProperties annotation to reconstruct a QueueSample instance from a
CompositeData.

Creating and Registering the MXBean in the MBean Server
Having defined an MXBean interface and the class that implements it, as well as the
Java type that is returned, the MXBean must now be created and registered in an
MBean server. These actions are performed by the following code example class Main.

CODE EXAMPLE 10-8 MXBean example Main class

package com.example.mxbeans; 
 
import java.lang.management.ManagementFactory; 
import java.util.Queue; 
import java.util.concurrent.ArrayBlockingQueue; 
import javax.management.MBeanServer; 
import javax.management.ObjectName; 
 
public class Main { 
 
    public static void main(String[] args) throws Exception { 
        MBeanServer mbs = ManagementFactory.getPlatformMBeanServer(); 
         
        ObjectName name = 
                new 
ObjectName("com.example.mxbeans:type=QueueSampler"); 
         
        Queue<String> queue = new ArrayBlockingQueue<String>(10); 
        queue.add("Request-1"); 
        queue.add("Request-2"); 
        queue.add("Request-3"); 
        QueueSampler mxbean = new QueueSampler(queue); 
         
        mbs.registerMBean(mxbean, name); 
         
        System.out.println("Waiting..."); 
        Thread.sleep(Long.MAX_VALUE); 
    } 
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} 
 

The Main class gets the platform MBean server, creates an object name for the MXBean
QueueSampler, creates a Queue instance for the QueueSampler MXBean to process, and feeds
this Queue instance to a newly created QueueSampler MXBean. The MXBean is then
registered in the MBean server in exactly the same way as a standard MBean.

Running the MXBean Example
To run the MXBean example:

1. Copy the source code contained in the MXBeans section to work_dir/jmx_examples/
MXBean.

2. Compile the example Java classes.

$ javac com/example/mxbeans/*.java

3. Start the Main application.

$ java com.example.mxbeans.Main

You will see confirmation that Main is waiting for something to happen.

4. Start JConsole in a different terminal window on the same machine.

$ jconsole

You will see the JConsole tool open, presenting a list of running JMX agents that you can
connect to.

5. Select com.example.mxbeans.Main from the list in the New Connection window, and click
on Connect.

You will see a summary of your platform’s current activity.

6. Click on the MBeans tab.

This panel shows you all the MBeans currently registered in the MBean server.

7. In the left-hand frame, expand the com.example.mxbeans node in the MBean tree.

You will see the example MBean QueueSampler, that was created and registered by Main.
If you click on QueueSampler, then you will see its associated Attributes and Operations
nodes in the MBean tree.

8. Select the Attributes node.

You will see the QueueSample attribute appear in the right-hand pane, with its value of
javax.management.openmbean.CompositeDataSupport.

9. Double-click on the CompositeDataSupport value.

You can see the QueueSample values date, head and size because the MXBean
framework has converted the QueueSample instance into CompositeData. If you had
defined QueueSampler as a Standard MBean rather than as an MXBean, JConsole would
not have found the QueueSample class because it would not be in its class path. If
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QueueSampler had been a standard MBean, you would have received a
ClassNotFoundException when retrieving the QueueSample attribute value. This
demonstrates the usefulness of using MXBeans when connecting to JMX agents
through generic JMX clients, like JConsole.

10. Select the Operations node.

You will see a button to invoke the clearQueue operation.

11. Click on the clearQueue button.

You will be informed that the method was invoked successfully.

12. Select the Attributes node again and double click on the CompositeDataSupport
value.

The queue has been reset now.

13. Click on Connection and then Exit, to exit JConsole.

In this example JConsole has been used as the JMX client but if you were to access
your MXBean programmatically in a JMX client you write yourself, then you could do
so in one of two ways:

• Generically, using the following code:

MBeanServer mbs = ...whatever...; 
ObjectName name = new 
ObjectName("com.example.mxbeans:type=QueueSampler"); 
CompositeData queueSample = (CompositeData) mbs.getAttribute(name,  
                             "QueueSample"); 
int size = (Integer) queueSample.get("size"); 

• Via a proxy, using the following code:

MBeanServer mbs = ...whatever...; 
ObjectName name = new 
ObjectName("com.example.mxbeans:type=QueueSampler"); 
QueueSamplerMXBean proxy = JMX.newMXBeanProxy(mbs, name,  
                                              
QueueSamplerMXBean.class); 
QueueSample queueSample = proxy.getQueueSample(); 
int size = queueSample.getSize(); 

This code uses the newMXBeanProxy method to create the MXBean proxy. An
equivalent method, newMBeanProxy, exists to create proxies for other types of
MBeans. The newMBeanProxy and newMXBeanProxy methods are used in exactly
the same way.

MBean Descriptors
Descriptors allow you to give additional information about MBeans to management
clients. For example, a Descriptor on an MBean attribute might say what units it is
measured in, or what its minimum and maximum possible values are. As of Java SE 6,
Descriptors are an integrated part of the JMX API and are available in all types of
MBeans.
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Descriptors give you a convenient way to attach arbitrary extra metadata to your MBeans.
Descriptors have always existed in the JMX API, but until Java SE 6 they were only available
in conjunction with Model MBeans.

For most constructors in the classes MBean*Info (MBeanInfo, MBeanAttributeInfo, and so
on), a parallel constructor exists with the same parameters plus an additional
javax.management.Descriptor parameter. The same is true for OpenMBean*InfoSupport.
The MBean*Info and OpenMBean*InfoSupport classes contain a getDescriptor() method.

Open MBeans return information about default and legal values from the getDefaultValue(),
getLegalValues(), getMaxValue(), getMinValue() methods of OpenMBeanParameterInfo
and OpenMBeanAttributeInfo. This information is now also present in the corresponding
Descriptors, and other types of MBean can also return the information in their Descriptors.

MBean Descriptors are demonstrated in the example classes you will find in the directory
work_dir/jmx_examples/Descriptors/com/example/mxbeans after you have downloaded and
unzipped the jmx_examples.zip file. The MBean Descriptor example contains the following
files.

• Author, an annotation the supplies the name of the author of the MBean interface.

• DisplayName, an annotation that supplies a display name for methods in the MBean
interface.

• Main, the program that sets up and runs the example.

• QueueSamplerMXBean interface.

• QueueSampler class that implements the MXBean interface.

• QueueSample Java type returned by the getQueueSample() method in the MXBean
interface.

• Version, an annotation that supplies the current version of the MBean interface.

The QueueSampler MXBean in this example basically performs the same actions as the
MXBean example presented in Introducing MXBeans , except with the addition of MBean
Descriptors. This example shows how the DescriptorKey meta-annotation can be used to
add new descriptor items to the Descriptors for a standard MBean (or an MXBean) via
annotations in the standard MBean (or MXBean) interface.

DescriptorKey Annotations
The DescriptorKey annotation can be used to add information to the Descriptors for a
standard MBean or a MXBean through annotations in the Standard MBean or MXBean
interface. This makes it possible for a tool that generates standard MBeans from an existing
management model to include information from the model in the generated MBean
interfaces, rather than in separate files. The following code example demonstrates the
definition of the annotation Author.

CODE EXAMPLE 10-9 Author Annotation

 
package com.example.mxbeans; 
 
import java.lang.annotation.Documented; 
import java.lang.annotation.ElementType; 
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import java.lang.annotation.Retention; 
import java.lang.annotation.RetentionPolicy; 
import java.lang.annotation.Target; 
import javax.management.DescriptorKey; 
 
@Documented 
@Target(ElementType.TYPE) 
@Retention(RetentionPolicy.RUNTIME) 
public @interface Author { 
    @DescriptorKey("author") 
    String value(); 
} 

This annotation supplies the name of the creator of the MBean interface. A new field
author will be added to the MBeanInfo Descriptor with the value defined by the
@Author annotation. The files Version and DisplayName define annotations of those
names in exactly the same way as for Author above. In each of Version and
DisplayName, the @DescriptorKey value is “version” and “displayname”
respectively.

In the case of Version, a new field version will be added to the MBeanInfo Descriptor
with the value defined by the @Version annotation.

For DisplayName, new field displayName will be added to the MBeanAttributeInfo
Descriptor or the MBeanOperationInfo Descriptor with the value defined by the
@DisplayName annotation depending on whether the annotated method is a getter/
setter or an operation, respectively.

Using MBean Descriptors
The QueueSamplerMXBean interface used in the following code example is slightly
different from the one used in the MXBeans example. It implements MBean
Descriptors to publish some of its information.

CODE EXAMPLE 10-10 QueueSamplerMXBean with Descriptors

 
package com.example.mxbeans; 
 
@Author("Mr Bean") 
@Version("1.0") 
public interface QueueSamplerMXBean { 
    @DisplayName("GETTER: QueueSample") 
    public QueueSample getQueueSample(); 
    @DisplayName("OPERATION: clearQueue") 
    public void clearQueue(); 
} 
 

Here, the @Author annotation is set to Mr. Bean, the @Version annotation is set to 1.0,
and the @DisplayName is set to the names either of the attribute QueueSample or the
operation clearQueue.
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Running the MBean Descriptors Example
To run the example:

1. Copy the source code contained in the MBean Descriptors section to work_dir/
jmx_examples/Descriptors.

2. Compile the example Java classes.

$ javac com/example/mxbeans/*.java

3. Start the Main application.

$ java com.example.mxbeans.Main

You will see confirmation that Main is waiting for something to happen.

4. Start JConsole in a different terminal window on the same machine.

$ jconsole

You will see the JConsole tool open, presenting a list of running JMX agents that you can
connect to.

5. Select com.example.mxbeans.Main from the list in the New Connection window, and click
on Connect.

You will see a summary of your platform’s current activity.

6. Click on the MBeans tab.

This panel shows you all the MBeans currently registered in the MBean server.

7. In the left-hand frame, expand the com.example.mxbeans node in the MBean tree.

You will see the example MBean QueueSampler, that was created and registered by Main.
If you click on QueueSampler, you will see its associated Attributes and Operations nodes
in the MBean tree. You will also see the fields author and version in the MBeanInfo
Descriptor table.

8. Expand the Attributes and Operations nodes under the QueueSampler MBean node.

You will see the individual Attributes and Operations.

9. Select the QueueSample node.

You will see the field displayName in the MBeanAttributeInfo Descriptor table.

10. Select the clearQueue node.

You will see the field displayName in the MBeanOperationInfo Descriptor table.

11. Click on Connection and then Exit , to exit JConsole.
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11
JMX Connectors

This chapter introduces the concepts of standard and dynamic management beans (MBeans)
and shows how to use JMX technology to perform operations on MBeans, locally and
remotely.

Accessing Standard and Dynamic MBeans By Using the RMI
Connector

This example demonstrates standard and dynamic MBeans .

As seen in Essentials of the JMX API, a standard MBean statically defines its management
interface through the names of the methods it contains. A dynamic MBean implements a
specific Java interface and reveals its attributes and operations at run time.

The JMX technology defines a connector based on Remote Method Invocation (RMI). The
RMI connector supports the Java Remote Method Protocol (JRMP) transport. This connector
allows you to connect to an MBean in an MBean server from a remote location, and perform
operations on it, exactly as if the operations were performed locally.

The purpose of this example is to demonstrate the implementation of a standard MBean and
a dynamic MBean. It shows how to perform operations on them, both locally, and remotely
through an RMI connection between a server and a remote client.

When you run this example:

• The server:

– Creates an MBean server

– Registers a SimpleStandard and a SimpleDynamic MBean in the local MBean server

– Performs local operations on the MBeans

– Creates an RMI connector server

• The client:

– Creates an RMI connector

– Registers a SimpleStandard and a SimpleDynamic MBean on the remote MBean
server

– Performs remote operations on both MBeans

Analyzing the Classes Used in the Basic MBean Example

1. Copy the source code contained in the JMX Connectors section and create
corresponding files in the work_dir/jmx_examples/Basic directory. The files inside this
directory should then include the following:

• Server.java
• SimpleStandardMBean.java
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• SimpleStandard.java
• SimpleDynamic.java
• ClientListener.java
• Client.java
• README

2. Open each *.java file in your IDE or a text editor.

The following sections analyze each of the classes used in the basic MBean example,
and explain how the classes perform the operations described in the preceding
section.

Server.java in the MBean Example
Due to its size, the Server.java class is analyzed in the following series of code
excerpts:

• CODE EXAMPLE 11-1 MBean Example Class Server.java (Excerpt 1)

• CODE EXAMPLE 11-2 MBean Example Class Server.java (Excerpt 2)

• CODE EXAMPLE 11-3 MBean Example Class Server.java (Excerpt 3)

• CODE EXAMPLE 11-4 MBean Example Class Server.java (Excerpt 4)

• CODE EXAMPLE 11-5 MBean Example Class Server.java (Excerpt 5)

CODE EXAMPLE 11-1 MBean Example Class Server.java (Excerpt 1)

 
public class Server { 
 
 public static void main(String[] args) { 
     try { 
          
         MBeanServer mbs = MBeanServerFactory.createMBeanServer(); 
         waitForEnterPressed(); 
 
         String domain = mbs.getDefaultDomain(); 
         waitForEnterPressed(); 
 
         String mbeanClassName = "SimpleStandard"; 
         String mbeanObjectNameStr = 
             domain + ":type=" + mbeanClassName + ",name=1"; 
         ObjectName mbeanObjectName = 
             createSimpleMBean(mbs, mbeanClassName, 
mbeanObjectNameStr); 
         waitForEnterPressed(); 
 
         printMBeanInfo(mbs, mbeanObjectName, mbeanClassName); 
         waitForEnterPressed(); 
 
         manageSimpleMBean(mbs, mbeanObjectName, mbeanClassName); 
         waitForEnterPressed(); 
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         mbeanClassName = "SimpleDynamic"; 
         mbeanObjectNameStr = 
             domain + ":type=" + mbeanClassName + ",name=1"; 
         mbeanObjectName = 
             createSimpleMBean(mbs, mbeanClassName, mbeanObjectNameStr); 
         waitForEnterPressed(); 
 
         printMBeanInfo(mbs, mbeanObjectName, mbeanClassName); 
         waitForEnterPressed(); 
 
         manageSimpleMBean(mbs, mbeanObjectName, mbeanClassName); 
         waitForEnterPressed(); 
 
         [...] 
 

Examining this class, you can see that the following occurs:

First, the Server.java class creates a new MBean server called mbs by calling the
createMBeanServer() method of the MBeanServerFactory class.

Then, the default domain in which the MBean server is registered is obtained with a call to
the getDefaultDomain() method of the MBeanServer interface. The domain is identified by
the string domain.

The MBean class named SimpleStandard is also identified by a variable, in this case the
string mbeanClassName. SimpleStandard is the name of the Java class for the Java object of
which this MBean is an instance. The SimpleStandard.java object is examined in 
SimpleStandard.java in the Fine-Grained Security Example.

Another variable, the string mbeanObjectNameStr, is defined as the combination of the
domain, plus the following key=value pairs:

• The type, which in this case is the mbeanClassName.

• A name, to differentiate this MBean from other MBeans of the same type that might be
created subsequently. In this case the name number is 1.

The purpose of mbeanObjectNameStr is to give the MBean a human-readable identifier.

A call to createSimpleMBean() creates and registers the SimpleStandard MBean in the local
MBean server, with the given object name.

The operations printMBeanInfo(), and manageSimpleMBean() are then performed on the
SimpleStandard MBean. Like createSimpleMBean(), these methods are defined later in the
Server.java code, and are shown in CODE EXAMPLE 11-4 MBean Example Class
Server.java (Excerpt 4) and CODE EXAMPLE 11-5 MBean Example Class Server.java
(Excerpt 5).

In code that is not shown here, a second MBean of the type SimpleDynamic is created and
registered in the MBean server in exactly the same way as the SimpleStandard MBean. As
the name suggests, this MBean is an instance of the SimpleDynamic Java object, which is
examined in SimpleDynamic.java in the MBean Example.
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CODE EXAMPLE 11-2 MBean Example Class Server.java (Excerpt 2)

 
[...] 
 
JMXServiceURL url = 
  new JMXServiceURL("service:jmx:rmi:///jndi/rmi://localhost:9999/
server"); 
JMXConnectorServer cs = 
  JMXConnectorServerFactory.newJMXConnectorServer(url, null, mbs); 
cs.start(); 
waitForEnterPressed(); 
cs.stop(); 
 
[...] 
 

In CODE EXAMPLE 11-2 MBean Example Class Server.java (Excerpt 2), an RMI
connector server is created so that operations can be performed on the MBeans
remotely. A call to the class JMXServiceURL creates a new service URL called url,
which serves as an address for the connector server. In this example, the service URL
is given in JNDI form, rather than in encoded form (see the API documentation for the
javax.management.remote.rmi package for an explanation of JNDI form). This service
URL defines the following:

• The connector will use the default RMI transport, denoted by rmi.

• The RMI registry in which the RMI connector stub are stored will be running on
port 9999 on the local host, and the server address will be registered under the
name server. The port 9999 specified in the example is arbitrary; you can use any
available port.

An RMI connector server named cs is created by calling the constructor
JMXConnectorServerFactory, with the service URL url, a null environment map, and
the MBean server mbs as parameters. The connector server cs is launched by calling
the start() method of JMXConnectorServer, whereupon RMIConnectorServer exports
the RMI object server to the RMI registry. The connection will remain open until the
Enter key is pressed, as instructed by the simple method waitForEnterPressed, that is
defined later in the Server code.

CODE EXAMPLE 11-3 MBean Example Class Server.java (Excerpt 3)

 
[...] 
 
private static ObjectName createSimpleMBean(MBeanServer mbs, 
                                              String mbeanClassName, 
                                              String 
mbeanObjectNameStr) { 
     echo("\n>>> Create the " + mbeanClassName + 
          " MBean within the MBeanServer"); 
     echo("ObjectName = " + mbeanObjectNameStr); 
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     try { 
          ObjectName mbeanObjectName = 
             ObjectName.getInstance(mbeanObjectNameStr); 
          mbs.createMBean(mbeanClassName, mbeanObjectName); 
             return mbeanObjectName; 
          } catch (Exception e) { 
            echo(       "!!! Could not create the " +  
                  mbeanClassName + " MBean !!!"); 
            e.printStackTrace(); 
            echo("\nEXITING...\n"); 
            System.exit(1); 
        } 
        return null; 
     } 
 
[...] 
 

CODE EXAMPLE 11-3 MBean Example Class Server.java (Excerpt 3) shows the definition
of the createSimpleMBean() method. In this method, the MBean instance with the object
name mbeanObjectNameStr is passed to the getInstance() method of the ObjectName
interface to create a new object name for registering the MBean inside the MBean server.
The resulting object name instance is named mbeanObjectName. A call to the MBeanServer
method createMBean() then instantiates an MBean defined by the combination of the Java
object identified by mbeanClassName and the MBean instance mbeanObjectName and registers
this MBean in the MBean server mbs.

CODE EXAMPLE 11-4 MBean Example Class Server.java (Excerpt 4)

[...] 
 
private static void printMBeanInfo(MBeanServer mbs, 
                                     ObjectName mbeanObjectName, 
                                     String mbeanClassName) { 
     MBeanInfo info = null; 
     try { 
         info = mbs.getMBeanInfo(mbeanObjectName); 
     } catch (Exception e) { 
         echo(  "!!! Could not get MBeanInfo object for " + 
         mbeanClassName +" !!!"); 
         e.printStackTrace(); 
         return; 
     } 
 
     MBeanAttributeInfo[] attrInfo = info.getAttributes(); 
     if (attrInfo.length > 0) { 
         for (int i = 0; i < attrInfo.length; i++) { 
        echo(" ** NAME:    " + attrInfo[i].getName()); 
        echo("    DESCR:   " + attrInfo[i].getDescription()); 
        echo("    TYPE:    " + attrInfo[i].getType() + 
                "READ: "+ attrInfo[i].isReadable() + 
                "WRITE: "+ attrInfo[i].isWritable()); 
        } 
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     } else echo(" ** No attributes **"); 
 
[...] 

In CODE EXAMPLE 11-4 MBean Example Class Server.java (Excerpt 4) , we see
the definition of the method printMBeanInfo(). The printMBeanInfo() method calls
the MBeanServer method getMBeanInfo() to obtain details of the attributes and
operations that are exposed by the MBean mbeanObjectName. MBeanAttributeInfo
defines the following methods, each of which is called in turn to obtain information
about the mbeanObjectName MBean’s attributes:

• getName: Obtains the attribute’s name.

• getDescription: Obtains the human readable description of the attribute.

• getType: Obtains the class name of the attribute.

• isReadable: Determines whether or not the attribute is readable.

• isWritable: Determines whether or not the attribute is writable.

In code that is not shown here, calls are made to obtain information about the
mbeanObjectName MBean’s constructors, operations and notifications:

• MBeanConstructorInfo: Obtains information about the MBean’s Java class.

• MBeanOperationInfo: Learns what operations the MBean performs, and what
parameters the MBean takes.

• MBeanNotificationInfo: Finds out what notifications the MBean sends when its
operations are performed.

CODE EXAMPLE 11-5 MBean Example Class Server.java (Excerpt 5)

[...] 
 
private static void manageSimpleMBean(MBeanServer mbs, 
                                        ObjectName mbeanObjectName, 
                                        String mbeanClassName) { 
        try { 
            printSimpleAttributes(mbs, mbeanObjectName); 
 
            Attribute stateAttribute = new Attribute("State", 
                                                     "new state"); 
            mbs.setAttribute(mbeanObjectName, stateAttribute); 
 
            printSimpleAttributes(mbs, mbeanObjectName); 
             
            echo("\n    Invoking reset operation..."); 
            mbs.invoke(mbeanObjectName, "reset", null, null); 
 
            printSimpleAttributes(mbs, mbeanObjectName); 
        } catch (Exception e) { 
            e.printStackTrace(); 
        } 
    } 
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    private static void printSimpleAttributes( 
                                        MBeanServer mbs, 
                                        ObjectName mbeanObjectName) { 
        try { 
            String State =  
               (String) mbs.getAttribute(mbeanObjectName, "State"); 
            Integer NbChanges = 
               (Integer) mbs.getAttribute(mbeanObjectName, 
                                          "NbChanges"); 
        } catch (Exception e) { 
            echo(       "!!! Could not read attributes !!!"); 
            e.printStackTrace(); 
        } 
   } 
 
[...]  

CODE EXAMPLE 11-5 MBean Example Class Server.java (Excerpt 5) demonstrates a
method for managing a simple MBean.

The manageSimpleMBean() method first of all calls the printSimpleAttributes() method that
is also defined by Server. The printSimpleAttributes() method obtains an MBean attribute
called state from the MBean mbeanObjectName, as well as another MBean attribute called
NbChanges. Both of these attributes are defined in the SimpleStandard class, shown in 
SimpleStandard.java in the Fine-Grained Security Example.

The manageSimpleMBean() method then defines an attribute called stateAttribute, which is
an instance of the Attribute class. The stateAttribute attribute associates a value of new
state with the existing attribute state, defined by SimpleStandard. A call to the MBeanServer
method setAttribute() then sets the mbeanObjectName MBean’s state to the new state
defined by stateAttribute.

Finally, a call to the MBeanServer method invoke() invokes the mbeanObjectName MBean’s
reset operation. The reset operation is defined in the SimpleStandard class.

SimpleStandardMBean.java in the MBean Example
The SimpleStandardMBean.java class is shown in the following code example.

CODE EXAMPLE 11-6 MBean Example Class SimpleStandardMBean.java

 
public interface SimpleStandardMBean { 
 
       public String getState(); 
       public void setState(String s); 
       public int getNbChanges(); 
       public void reset(); 
 
} 
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The SimpleStandardMBean.java class is a straightforward JMX Specification
management interface for the MBean SimpleStandard. This interface exposes the four
operations defined by SimpleStandard for management through a JMX agent.

SimpleStandard.java in the MBean Example
The SimpleStandard.java class is shown in the following code example.

CODE EXAMPLE 11-7 MBean Example Class SimpleStandard.java

 
public class SimpleStandard 
    extends NotificationBroadcasterSupport 
    implements SimpleStandardMBean { 
    public String getState() { 
       return state; 
    } 
    public void setState(String s) { 
       state = s; 
       nbChanges++; 
    } 
     
    public int getNbChanges() { 
        return nbChanges; 
    } 
     
    public void reset() { 
       AttributeChangeNotification acn =  
           new AttributeChangeNotification(this, 
                                          0, 
                                          0, 
                                          "NbChanges reset", 
                                          "NbChanges", 
                                          "Integer", 
                                          new Integer(nbChanges), 
                                          new Integer(0)); 
       state = "initial state"; 
       nbChanges = 0; 
       nbResets++; 
       sendNotification(acn); 
    } 
     
    public int getNbResets() { 
       return nbResets; 
    } 
 
    public MBeanNotificationInfo[] getNotificationInfo() { 
        return new MBeanNotificationInfo[] { 
          new MBeanNotificationInfo( 
          new String[] { 
            AttributeChangeNotification.ATTRIBUTE_CHANGE }, 
            AttributeChangeNotification.class.getName(), 
            "This notification is emitted when the reset()  
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             method is called.") 
        }; 
    } 
     
    private String state = "initial state"; 
    private int nbChanges = 0; 
    private int nbResets = 0; 
 
}         
 

The SimpleStandard class defines a straightforward JMX Specification standard MBean. The
SimpleStandard MBean exposes operations and attributes for management by implementing
the corresponding SimpleStandardMBean interface, shown in SimpleStandardMBean.java in
the Subject Delegation Example.

The simple operations exposed by this MBean are to:

• Define a state

• Update this state

• Count the number of times the state is updated

• Reset the values of the state and the number of changes to their original value of zero

• Send a notification whenever the reset operation is invoked

The notification emitted by the reset operation is an instance of the class
AttributeChangeNotification, which collects information about the number of changes
carried out on the State attribute before calling reset. The content of the notification sent is
defined by the MBeanNotificationInfo instance.

SimpleDynamic.java in the MBean Example
The SimpleDynamic class is shown in the following code example.

CODE EXAMPLE 11-8 MBean Example Class SimpleDynamic.java

 
public class SimpleDynamic 
    extends NotificationBroadcasterSupport 
    implements DynamicMBean { 
 
    public SimpleDynamic() { 
        buildDynamicMBeanInfo(); 
    } 
 
[...] 

The SimpleDynamic dynamic MBean shows how to expose attributes and operations for
management at runtime, by implementing the DynamicMBean interface. It starts by defining a
method, buildDynamicMBeanInfo(), for obtaining information for the MBean dynamically. The
buildDynamicMBeanInfo() method builds the MBeanInfo for the dynamic MBean.
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The rest of the code of SimpleDynamic corresponds to the implementation of the
DynamicMBean interface. The attributes, operations and notifications exposed are
identical to those exposed by the SimpleStandard MBean.

ClientListener.java in the MBean Example
The ClientListener.java class is shown in the following code example.

CODE EXAMPLE 11-9 MBean Example Class ClientListener.java

 
 
public class ClientListener implements NotificationListener {  
 public void handleNotification(Notification notification, Object 
handback)  
     {  
         System.out.println("\nReceived notification: " + 
notification);  
     }  
} 
 

The ClientListener class implements a straightforward JMX Specification notification
listener. The handleNotification() method of the NotificationListener interface is
called upon reception of a notification, and prints out a message to confirm that a
notification has been received.

Client.java in the MBean Example
The Client.java class is shown in the following code example.

CODE EXAMPLE 11-10 MBean Example Class Client.java

 
public class Client { 
 
  public static void main(String[] args) { 
    try { 
      // Create an RMI connector client 
      // 
      JMXServiceURL url = new JMXServiceURL( 
         "service:jmx:rmi:///jndi/rmi://localhost:9999/server"); 
      JMXConnector jmxc = JMXConnectorFactory.connect(url, null); 
      ClientListener listener = new ClientListener(); 
      MBeanServerConnection mbsc = jmxc.getMBeanServerConnection(); 
      waitForEnterPressed();       
       
      // Get domains from MBeanServer 
      // 
      String domains[] = mbsc.getDomains(); 
      for (int i = 0; i < domains.length; i++) { 
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          System.out.println("Domain[" + i + "] = " + domains[i]); 
      } 
      waitForEnterPressed();       
 
      String domain = mbsc.getDefaultDomain();       
   
      // Create SimpleStandard MBean  
      ObjectName mbeanName =  
             new ObjectName(domain +":type=SimpleStandard,name=2"); 
      mbsc.createMBean("SimpleStandard", stdMBeanName, null, null); 
      waitForEnterPressed();       
             
      // Create SimpleDynamic MBean 
      ObjectName dynMBeanName = 
          new ObjectName(domain +":type=SimpleDynamic,name=2"); 
      echo("\nCreate SimpleDynamic MBean..."); 
      mbsc.createMBean("SimpleDynamic", dynMBeanName, null, null); 
      waitForEnterPressed(); 
       
      // Get MBean count 
      echo("\nMBean count = " + mbsc.getMBeanCount()); 
 
      // Query MBean names 
      echo("\nQuery MBeanServer MBeans:"); 
      Set names = mbsc.queryNames(null, null); 
      for (Iterator i = names.iterator(); i.hasNext(); ) { 
      echo(     "ObjectName = " + (ObjectName) i.next()); 
      } 
      waitForEnterPressed(); 
       
      mbsc.setAttribute(stdMBeanName, 
                        new Attribute("State", "changed state")); 
 
      SimpleStandardMBean proxy = JMX.newMBeanProxy( 
          mbsc, stdMBeanName, SimpleStandardMBean.class, true); 
      echo("\nState = " + proxy.getState()); 
 
      ClientListener listener = new ClientListener(); 
      mbsc.addNotificationListener(stdMBeanName, listener, null, null); 
 
      mbsc.invoke(stdMBeanName, "reset", null, null); 
 
      mbsc.removeNotificationListener(stdMBeanName, listener); 
      mbsc.unregisterMBean(stdMBeanName); 
       
      [...] 
       
      jmxc.close(); 
    } catch (Exception e) { 
      e.printStackTrace(); 
    } 
  } 
} 
[...] 
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The Client.java class creates an RMI connector client that is configured to connect
to the RMI connector server created by Server.java. Client.java defines the same
service URL url as that defined by Server.java. This allows the connector client to
retrieve the RMI connector server stub named server from the RMI registry running on
port 9999 of the local host, and to connect to the RMI connector server.

With the RMI registry identified, the connector client can be created. The connector
client, jmxc, is an instance of the interface JMXConnector, created by the connect()
method of JMXConnectorFactory. The connect() method is passed the parameters
url and a null environment map when it is called.

The Client also creates an instance of ClientListener, to listen for notifications, as
shown in ClientListener.java in the MBean Example.

An instance of a JMX Specification MBeanServerConnection, named mbsc, is then
created by calling the getMBeanServerConnection() method of the JMXConnector
instance jmxc.

The connector client is now connected to the MBean server created by Server.java,
and can register MBeans and perform operations on them with the connection
remaining completely transparent to both ends.

The client creates and registers the SimpleStandard MBean and the SimpleDynamic
MBean in the MBean server with a call to the createMBean() method of
MBeanServerConnection, and performs the operations defined by SimpleStandard and
SimpleDynamic as if they were local JMX Specification MBean operations.

MBean proxies allow you to access an MBean through a Java interface, allowing you
to make calls on the proxy rather than having to write lengthy code to access a remote
MBean. An MBean proxy for SimpleStandardMBean is created here by calling the
method newMBeanProxy() in the javax.management.JMX class, passing it the MBean’s
MBeanServerConnection, object name, the class name of the MBean interface and
true, to signify that the proxy must behave as a NotificationBroadcaster. You can
make proxies for MXBeans in exactly the same way as for standard MBeans, by
simply calling newMXBeanProxy() instead of newMBeanProxy().

The code for the different operations performed on SimpleDynamic is not shown here,
because the operations are the same as those performed on SimpleStandard.

Finally, the client unregisters the SimpleStandard MBean and closes the connection.
The final removeNotificationListener is optional, as listeners registered by a remote
client are removed when that client is closed.

Running the MBean Example
Having examined the example classes, you can run the example. To run the example:

1. Compile the Java classes.

$ javac *.java

2. Start an RMI registry on port 9999 of the local host.
The RMI registry is used by the Server class to register the RMI connector stub.

$ rmiregistry 9999 &
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3. Start the Server class.

$ java -classpath . Server

You will see confirmation of the creation of the MBean server and the creation of the
SimpleStandard MBean in the MBean server. You will then be prompted to press the
Enter key to obtain information about, and then to perform operations on, the
SimpleStandard MBean.

After the operations on the SimpleStandard are completed, the process is repeated for
the SimpleDynamic MBean.

After both the MBeans are created and their operations performed, you see the creation
of an RMI connector server, to allow operations to be performed on the MBeans from the
remote Client.

4. Start the Client class in another terminal window.

$ java -classpath . Client

You will see confirmation of the creation of the RMI connector client and of the connection
with the connector server. You will also be informed of the domain name, and the creation
and registration of SimpleStandard and SimpleDynamic MBeans. The client will perform
operations on SimpleStandard and SimpleDynamic MBeans, before unregistering them.
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12
Lookup Services

The lookup services allow JMX technology clients to find and connect to connector servers
that have registered with the lookup services.

The JMX Specification defines three bindings to lookup services, using existing lookup
technologies, as described in the following sections:

• Initial Configuration provides configuration information that applies to all three types of
lookup service.

• Service Location Protocol (SLP) Lookup Service presents the SLP lookup example.

• Java Naming and Directory Interface (JNDI) / LDAP Lookup Service presents a JNDI/
LDAP lookup example.

Initial Configuration
As shown in Accessing Standard and Dynamic MBeans By Using the RMI Connector, if you
are using remote method invocation (RMI) connectors, you can use an external directory to
register the connector server stubs you want to look up. The following cases are presented in
the lookup service examples relating to RMI connectors:

• RMI connectors that use one of the following external directories:

– An RMI registry, for RMI connectors that implement the default Java Remote Method
Protocol (JRMP) transport

– Lightweight Directory Access Protocol (LDAP), for JRMP transports

• RMI connectors that do not use an external directory

If you register the RMI connector stubs in an external directory, some initial configuration is
required. You must set up your RMI registry or LDAP server. If you do not use an external
directory, the RMI connector stub is encoded into the JMX service URL.

The following sections describe the external directories that you can use in conjunction with
the lookup service examples that use RMI connectors. These external directories are referred
to when running the three examples of lookup services that are given in the subsequent
sections in this chapter.

External RMI Registry
To register the RMI connector server stubs in an external RMI registry, for use by connectors
implementing the JRMP transport, perform the following actions:

1. Start the RMI registry on port 9999 of the local host.

As in JMX Connectors, the RMI registry is used to store the RMI connector stubs for RMI
connectors implementing the JRMP transport.

$ rmiregistry 9999 &
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2. For your convenience when typing commands, create an environment variable for
the address of the RMI registry.

To shorten the commands that you will type when you run the examples, set the
service URL for the RMI registry as an environment variable, jndirmi. In these
examples, the service URL is given in JNDI form. See the API documentation for
the javax.management.remote.rmi package for an explanation of JNDI form. If
you want to run the external directories on a machine other than the local
machine, you must specify that machine’s host name instead of localhost.

$ jndirmi="rmi://localhost:9999"

External LDAP Registry
To register the RMI connector server stubs in an external LDAP registry, for use by
connectors implementing the JRMP transport:

1. Start an LDAP Server.

The LDAP server you use is your choice, although the schema for representing
Java objects in an LDAP directory must be known to the server. See the relevant
Request For Comments (RFC) document for details:

http://www.ietf.org/rfc/rfc2713.txt

2. Create a domain component suffix.

These examples require that you create the following domain component suffix:

dc=Test

See the documentation accompanying your LDAP server for details of how to
configure the server and create this suffix.

3. For your convenience, set the following LDAP parameters as environment
variables.

These variables are used to shorten the commands you type when starting the
Server and Client classes in the lookup service examples that register RMI
connector stubs in the external LDAP server.

• The name of the machine running your LDAP server (ldap_host)

$ ldaphost=ldap_host

• The port the LDAP server is running on (ldap_port)

$ ldapport=ldap_port

• The LDAP common name attribute, which in these examples is “Directory
Manager”

$ principal=”cn=Directory Manager”
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• The password required by your LDAP server . Supply the password for your LDAP
server.

$ credentials=your_ldap_password

• The address of the LDAP server. In this example, the service URL for the LDAP
server is given in JNDI form and is identified by the variable jndildap.

$ jndildap="ldap://$ldaphost:$ldapport"

You are now ready to run the different lookup service examples.

Service Location Protocol (SLP) Lookup Service
The JMX technology specifies how to register RMI connectors with the SLP lookup service.

This example demonstrates how a JMX Remote API connector client can find and connect to
a connector server that has registered with the SLP lookup service. This example performs
the following operations:

• The agent:

– Creates an MBean server

– Gets a pointer to the SLP lookup service

– Creates a connector server

– Registers the connector address with the SLP lookup service

• The client:

– Gets a pointer to the SLP lookup service

– Looks for any connector servers registered in the SLP lookup service

– Creates a JMX Remote API connector

– Retrieves information about the MBeans in the MBean server

This example assumes that you are already familiar with SLP technology. The code provided
for this example conforms to Oracle’s implementation of SLP, as defined by RFC 2614 (see 
http://www.ietf.org/rfc/rfc2614.txt). You must obtain a version of SLP that is compliant with
RFC 2614, section 5. You can download the OpenSLP Java implementation from http://
www.openslp.org/.

Analyzing the SLP Lookup Example Classes

1. Copy the source code contained in the Service Location Protocol (SLP) Lookup Service
section and create corresponding files in the work_dir/jmx_examples/Lookup/slp
directory. The files inside this directory should then include the following:

• README
• Server.java
• Client.java

2. Open the *.java files, in your IDE or text editor.

The following sections analyze each of these classes and explain how they perform the
operations described in the example.
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Server.java in the SLP Lookup Example
Due to its size, the SLP lookup service Server.java class is analyzed in the following
series of code excerpts:

• CODE EXAMPLE 12-1 SLP Lookup Service Example Class Server.java (Excerpt
1)

• CODE EXAMPLE 12-2 SLP Lookup Service Example Class Server.java (Excerpt
2)

• CODE EXAMPLE 12-3 SLP Lookup Service Example Class Server.java (Excerpt
3)

• CODE EXAMPLE 12-4 SLP Lookup Service Example Class Server.java (Excerpt
4)

For explanations of the SLP code used in this example, see RFC 2614 and the API
documentation for SLP.

CODE EXAMPLE 12-1 SLP Lookup Service Example Class Server.java (Excerpt
1)

 
public class Server { 
   public final static int JMX_DEFAULT_LEASE = 300; 
   public final static String JMX_SCOPE = "DEFAULT"; 
 
   private final MBeanServer mbs; 
   public Server() { 
       mbs = MBeanServerFactory.createMBeanServer(); 
   } 
    
[...] 
 

CODE EXAMPLE 12-1 sets the default SLP lease JMX_DEFAULT_LEASE to a default
lease of 300 seconds, corresponding to the length of time the URL is registered, and
shows the initial creation of the MBean server mbs.

In code that is not shown in the example, you then define an SLP advertiser
slpAdvertiser, and an SLP service URL url. The slpAdvertiser is used to register
the service URL in the SLP lookup service. The SCOPE and the agentName are
registered in SLP as lookup attributes.

CODE EXAMPLE 12-2 SLP Lookup Service Example Class Server.java (Excerpt
2)

 
[...] 
 
   public static void register(JMXServiceURL jmxUrl, String name) 
     throws ServiceLocationException { 
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     ServiceURL serviceURL = 
          new ServiceURL(jmxUrl.toString(), 
                         JMX_DEFAULT_LEASE); 
     debug("ServiceType is: " + serviceURL.getServiceType()); 
     Vector attributes = new Vector(); 
     Vector attrValues = new Vector(); 
     attrValues.add(JMX_SCOPE); 
     ServiceLocationAttribute attr1 = 
          new ServiceLocationAttribute("SCOPE", attrValues); 
     attributes.add(attr1); 
     attrValues.removeAllElements(); 
     attrValues.add(name); 
     ServiceLocationAttribute attr2 = 
          new ServiceLocationAttribute("AgentName", attrValues); 
     attributes.add(attr2); 
     final Advertiser slpAdvertiser = 
          ServiceLocationManager.getAdvertiser(Locale.US); 
     slpAdvertiser.register(serviceURL, attributes); 
      
   }  
 
[...] 
 

CODE EXAMPLE 12-2 shows the registration of the JMX connector server’s URL with the
SLP lookup service.

The JMX service URL jmxUrl is the address of the connector server, and is obtained by a call
to the getAddress() method of JMXConnectorServer when the connector server is started.

The SLP lookup attributes, namely the scope and the agent name under which the connector
server address is to be registered (name), are then specified by the SLP class
ServiceLocationAttribute. The AgentName attribute is mandatory, but other optional
attributes, such as ProtocolType, AgentHost, and Property can also be registered in the
SLP lookup service.

Finally, the JMX connector server address is registered in the SLP service with a call to the
register() method of the Advertiser interface, with the serviceURL and the attributes
passed in as parameters.

CODE EXAMPLE 12-3 SLP Lookup Service Example Class Server.java (Excerpt 3)

 
[...] 
 
   public JMXConnectorServer rmi(String url) throws 
     IOException, 
     JMException, 
     NamingException, 
     ClassNotFoundException, 
     ServiceLocationException { 
     JMXServiceURL jurl = new JMXServiceURL(url); 
     final HashMap env = new HashMap(); 
     // Environment map attributes 
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     [...] 
 
  
     JMXConnectorServer rmis = 
        JMXConnectorServerFactory.newJMXConnectorServer(jurl, env, 
mbs); 
     final String agentName = System.getProperty("agent.name", 
                                                 "DefaultAgent"); 
     start(rmis, agentName); 
 
     return rmis; 
  } 
[...] 
 

CODE EXAMPLE 12-3 shows the creation of an RMI connector server. The JMX
service URL jurl is constructed from the string url that is included in the command
used to launch the Server at the command line. An RMI connector server named rmis
is then created with the system properties defined by the environment map and the
address jurl.

The connector server is then started, and the RMI connector server address is
registered in the SLP lookup service under the name agentName.

CODE EXAMPLE 12-4 SLP Lookup Service Example Class Server.java (Excerpt
4)

 
[...] 
 
   public void start(JMXConnectorServer server, String agentName) 
      throws IOException, ServiceLocationException { 
      server.start(); 
      final JMXServiceURL address = server.getAddress(); 
      register(address,agentName); 
   } 
    
[...] 
 

CODE EXAMPLE 12-4 shows the launching of the connector server server and the
registration of server in the SLP lookup service with the given address address.

Client.java in the SLP Lookup Example
Due to its size, the SLP lookup service Client.java class is analyzed in the following
series of code excerpts:

• CODE EXAMPLE 12-5 SLP Lookup Service Example Class Client.java (Excerpt 1)

• CODE EXAMPLE 12-6 SLP Lookup Service Example Class Client.java (Excerpt 2)

• CODE EXAMPLE 12-7 SLP Lookup Service Example Class Client.java (Excerpt 3)
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CODE EXAMPLE 12-5 SLP Lookup Service Example Class Client.java (Excerpt 1)

 
public class Client { 
 
    public final static String JMX_SCOPE = "DEFAULT"; 
 
    public static Locator getLocator() throws ServiceLocationException { 
      final Locator slpLocator = 
          ServiceLocationManager.getLocator(Locale.US); 
      return slpLocator; 
    } 
     
      public static List lookup(Locator slpLocator, String name) 
          throws IOException, ServiceLocationException { 
 
   
          final ArrayList list = new ArrayList(); 
          Vector scopes = new Vector(); 
 
          scopes.add(JMX_SCOPE); 
          String query =  
              "(&(AgentName=" + ((name!=null)?name:"*") + "))"; 
 
          ServiceLocationEnumeration result = 
              slpLocator.findServices(new ServiceType("service:jmx"), 
                                      scopes, query); 
 
          while(result.hasMoreElements()) { 
                final ServiceURL surl = (ServiceURL) result.next(); 
                 
 
             JMXServiceURL jmxUrl = new JMXServiceURL(surl.toString()); 
             try { 
                  JMXConnector client = 
                     JMXConnectorFactory.newJMXConnector(jmxUrl,null); 
                  if (client != null) list.add(client); 
             } catch (IOException x ) {  
             [...] 
             } 
          } 
      } 
      return list; 
    } 
 

CODE EXAMPLE 12-5 obtains the SLP service ,Locator by calling the getLocator method
of the SLP class ServiceLocationManager. The Client then retrieves all the connector
servers registered in the SLP service under a given agent name, or under agent names that
match a certain pattern. If no agent name is specified when Client is started, all agent
names will be considered.
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A JMX technology service URL, jmxUrl, is generated for each of the agents retrieved
by SLP, with each agent’s SLP service URL, surl, passed as a parameter into the
JMXServiceURL instance. The URL ,jmxUrl, is then passed to the newJMXConnector()
method of JMXConnectorFactory, to create a new connector client named client for
each agent that is registered in the SLP service.

The connector clients that are retrieved are stored in an array list called list.

CODE EXAMPLE 12-6 SLP Lookup Service Example Class Client.java (Excerpt 2)

 
public static void listMBeans(MBeanServerConnection server) 
     throws IOException { 
 
     final Set names = server.queryNames(null,null); 
     for (final Iterator i=names.iterator(); i.hasNext(); ) { 
          ObjectName name = (ObjectName)i.next(); 
          System.out.println("Got MBean: "+name); 
          try { 
               MBeanInfo info = 
                  server.getMBeanInfo((ObjectName)name); 
               MBeanAttributeInfo[] attrs = info.getAttributes(); 
               if (attrs == null) continue; 
               for (int j=0; j<attrs.length; j++) { 
                    try { 
                         Object o = 
                         server.getAttribute(name,attrs[j].getName()); 
                         System.out.println("\t\t" + 
attrs[j].getName() + 
                         " = "+o); 
                    } catch (Exception x) { 
                         System.err.println("JmxClient failed to get " 
+ 
                                             attrs[j].getName() + x); 
                         x.printStackTrace(System.err); 
                    } 
     } 
} 
 

In CODE EXAMPLE 12-6, a reference to the MBeanServerConnection is retrieved for
every connector client that is created from the connector server address stored in the
SLP service. A list of all the MBeans and their attributes is retrieved.

CODE EXAMPLE 12-7 SLP Lookup Service Example Class Client.java (Excerpt 3)

 
public static void main(String[] args) { 
      try { 
           final String agentName = System.getProperty("agent.name"); 
           final Locator slpLocator = getLocator(); 
           List l = lookup(slpLocator,agentName); 
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           int j = 1; 
           for (Iterator i=l.iterator();i.hasNext();j++) { 
                JMXConnector c1 = (JMXConnector) i.next(); 
                if (c1 != null) { 
                    try { 
                         c1.connect(env); 
                    } catch (IOException x) { 
                         System.err.println ("Connection failed: " + x); 
                         x.printStackTrace(System.err); 
                         continue; 
                    } 
 
                    MBeanServerConnection conn = 
                         c1.getMBeanServerConnection(); 
 
                    try { 
                         listMBeans(conn); 
                    } catch (IOException x) { 
                         x.printStackTrace(System.err); 
                    } 
                    try { 
                         c1.close(); 
                    } catch (IOException x) { 
                         x.printStackTrace(System.err); 
                    } 
                } 
           } 
      } catch (Exception x) { 
           x.printStackTrace(System.err); 
      } 
} 
 

In CODE EXAMPLE 12-7, the agent.name property is retrieved by calling the getProperty()
method of the System class, and the SLP lookup service is found by calling the getLocator()
method of Locator.

All the agents named agentName are then looked up, and connections are made to the agents
that are discovered. If no agent is specified, then all agents are looked up. Connections are
made to the MBean server created by Server, and all the MBeans in it are listed, before the
connection is closed down.

Running the SLP Lookup Service Example
This example demonstrates the use of the SLP lookup service to look up RMI connector
servers that use RMI’s default transport, JRMP. As described in Initial Configuration, different
external directories are used to register the RMI connector stubs.

The following combinations of transports and external directories are demonstrated:

• RMI connector over the JRMP transport, with:

– No external directory

– An RMI registry
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– An LDAP registry

In addition to the actions you performed in Initial Configuration, you must perform
additional actions specific to this example before you can run the examples that use
the SLP. You can then start looking up connectors using SLP in conjunction with the
two connectors supported by the JMX technology.

Note:

When you run the examples, to help you keep track of which agent has been
created with which transport, the agent names include a letter suffix that is
the same as the lettering of the corresponding section. For example, the
agent from Starting the Server, substep a, RMI connector over JRMP,
without an external directory, is called example-server-a.

To run the example, perform the sequence of steps described in:

• Setting up the SLP Lookup Service Example

• Starting the Server

• Starting the Client

Setting up the SLP Lookup Service Example

The following steps are required by all the different transports you can run in this
example.

1. For convenience when compiling and running the classes, define an additional
environment variable. In addition to the common environment variables that were
set in Initial Configuration, you need to add the path to the SLP service.

Set SLPLIB appropriately for the platform that you are using.

2. Define and export the classp environment variable. This example requires a
classpath that includes the Java archive (JAR) files for SLP:

$ classp=$SLPLIB/slp.jar

3. Compile the example Client and Server classes by typing the following
command:

$ javac -d . -classpath $classp Server.java Client.java

4. Start the SLP daemon according to the implementation of SLP that you are using.

Starting the Server

The command you use to start the Server varies according to which external directory
you are using. Before starting the Client, start one or more of the following instances
of the Server . You can start instances of the Server with different transports and
external registries.
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• RMI connector over JRMP, that does not use an external directory: Start the Server
by typing the following command.

$ java -classpath .:$classp -Ddebug=true \ 
  -Dagent.name=example-server-a \ 
  -Durl ="service:jmx:rmi://" \ 
  slp.Server & 

In this command:

– The value for debug is set to true to provide more complete screen output when the
Server runs.

– The name of the agent is example-server-a.

– The service URL specifies that the selected connector is an RMI connector, running
over the RMI default transport JRMP.

When the Server is launched, you will see confirmation of the creation of the RMI
connector, and the registration of its URL in the SLP service.

• RMI connector over JRMP, using an RMI registry as an external directory: Start the
Server by typing the following command.

 $ java -classpath .:$classp -Ddebug=true \ 
  -Dagent.name=example-server-b \ 
  -Durl="service:jmx:rmi:///jndi/${jndirmi}/server" \ 
  slp.Server & 

In this command:

– The name of the agent that is created is example-server-b.

– The service URL specifies the selected connector as RMI over JRMP, and the
external directory in which the RMI connector stub, server, is stored is the RMI
registry you identified as jndirmi in Initial Configuration.

When the Server is launched, you will see confirmation of the creation of the RMI
connector, and the registration of its URL in the SLP service.

• RMI connector over JRMP, using LDAP as the external directory: Start the Server by
typing the following command.

 $ java -classpath .:$classp -Ddebug=true \ 
  -Dagent.name=example-server-c \ 
  -Durl="service:jmx:rmi:///jndi/${jndildap}/cn=x,dc=Test" \ 
  -Djava.naming.security.principal="$principal" \ 
  -Djava.naming.security.credentials="$credentials" \ 
  slp.Server & 

In this command:

– The name of the agent created is example-server-c.

– The service URL specifies the selected connector as RMI over JRMP, and the
external directory in which the RMI connector stub is stored is the LDAP server you
identified as jndildap in Initial Configuration.
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– The stub is registered in the Test domain component in the LDAP server.

– The common name attribute, principal, and password credentials, are
given to gain access to the LDAP server.

When the Server is launched, you will see confirmation of the creation of the RMI
connector, and the registration of its URL in the SLP service under the agent name
example-server-c.

Starting the Client

After you start the Server by using the transport and external directory of your choice,
start the Client.

$ java -classpath .:$classp -Ddebug=true \ 
     -Djava.naming.security.principal="$principal" \ 
     -Djava.naming.security.credentials="$credentials" \ 
     slp.Client 

You will see output confirming the detection of the agents created by the Server and
registered in the lookup service. You will also see the identification and confirmation of
the connection made to the agents.

To look up a specific agent, type the following command:

$ java -classpath .:$classp -Ddebug=true \  
     -Djava.naming.security.principal="$principal" \ 
     -Djava.naming.security.credentials="$credentials" \ 
     -Dagent.name="agentName" \ 
    slp.Client 

In this command shown above, agentName is the name of the agent you want to look
up. You can specify a partial agent name by using *; for example, x* for all agent
names beginning with the letter x.

Java Naming and Directory Interface (JNDI) / LDAP Lookup
Service

JMX technology allows you to register RMI connectors with a JNDI lookup service
using an LDAP registry as a back end. This example performs the following
operations:

• The agent:

– Creates an MBean server

– Creates a connector server

– Registers the connector address with the LDAP server

• The client:

– Gets a pointer to the JNDI/LDAP lookup Service

– Looks for any connector servers registered in the JNDI/LDAP lookup service

– Creates a JMX Remote API connector
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– Retrieves information about the MBeans in the MBean server

Analyzing the Example Classes

1. Copy the source code contained in the Java Naming and Directory Interface (JNDI)/
LDAP Lookup Service section and create corresponding files in the work_dir/
jmx_examples/Lookup/ldap directory. The files inside this directory should then include
the following:

• README
• Server.java
• Client.java
• jmx-schema.txt
• 60jmx-schema.ldif

2. Open the *.java files, in your IDE or text editor.

The following sections analyze each of the classes used in the JNDI/LDAP lookup service
example, and explain how they perform the operations described above.

Server.java in the JNDI/LDAP Lookup Service Example
Due to its size, the JNDI/LDAP lookup service Server.java class is analyzed in the following
series of code excerpts:

• CODE EXAMPLE 12-12 JNDI/LDAP Lookup Service Example Server.java (Excerpt 1)

• CODE EXAMPLE 12-13 JNDI/LDAP Lookup Service Example Class Server.java (Excerpt
2)

•  EXAMPLE 12-14 JNDI/LDAP Lookup Service Example Class Server.java (Excerpt 3)

•  EXAMPLE 12-15 JNDI/LDAP Lookup Service Example Class Server.java (Excerpt 4)

CODE EXAMPLE 12-12 JNDI/LDAP Lookup Service Example Server.java (Excerpt 1)

[...]

public class Server {
   public final static int JMX_DEFAULT_LEASE = 60;
   private static boolean debug = false;
   private final MBeanServer mbs;
   public Server() {
      mbs = MBeanServerFactory.createMBeanServer();
   }

  public static DirContext getRootContext() throws NamingException {
      final Hashtable env = new Hashtable();

      final String factory =
        System.getProperty(Context.INITIAL_CONTEXT_FACTORY,
                           "com.sun.jndi.ldap.LdapCtxFactory");
      final String ldapServerUrl =
        System.getProperty(Context.PROVIDER_URL);
      final String ldapUser =
        System.getProperty(Context.SECURITY_PRINCIPAL,
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                           "cn=Directory Manager");
      final String ldapPasswd =
        System.getProperty(Context.SECURITY_CREDENTIALS);
      debug(Context.PROVIDER_URL + "=" + ldapServerUrl);
      debug(Context.SECURITY_PRINCIPAL + "=" + ldapUser);
      if (debug) {
                  System.out.print(Context.SECURITY_CREDENTIALS + "=");
                  final int len = (ldapPasswd==null)?
0:ldapPasswd.length();
                  for (int i=0;i<len;i++) System.out.print("*");
                  System.out.println();
      }
      env.put(Context.INITIAL_CONTEXT_FACTORY,factory);
      env.put(Context.SECURITY_PRINCIPAL, ldapUser);
      if (ldapServerUrl != null)
           env.put(Context.PROVIDER_URL, ldapServerUrl);
      if (ldapPasswd != null)
           env.put(Context.SECURITY_CREDENTIALS, ldapPasswd);
      InitialContext root = new InitialLdapContext(env,null);
      return (DirContext)(root.lookup(""));
  }
[...]

CODE EXAMPLE 12-12 shows the initial creation of an MBean server, mbs , and
obtains a pointer to the root context of the LDAP directory tree in which the connector
server address is registered. All the relevant LDAP access variables, such as the
provider URL, the LDAP user name, and the security credentials, are given here and
passed into the environment map, env. The environment map, env, is then passed as
a parameter into a call to the InitialLdapContext, from which the initial LDAP context
is obtained.

CODE EXAMPLE 12-13 JNDI/LDAP Lookup Service Example Class Server.java
(Excerpt 2)

[...]

public static void register(DirContext root,
                           JMXServiceURL jmxUrl,
                           String name)
   throws NamingException, IOException {

   final String mydn = System.getProperty("dn","cn="+name);

   debug("dn: " + mydn );

   Object o = null;
   try {
       o = root.lookup(mydn);
   } catch (NameNotFoundException n) {
       Attributes attrs = new BasicAttributes();
       Attribute objclass = new BasicAttribute("objectClass");
       objclass.add("top");
       objclass.add("javaContainer");
       objclass.add("jmxConnector");
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       attrs.put(objclass);
       attrs.put("jmxAgentName", name);
       o = root.createSubcontext(mydn,attrs);
   }
   if (o == null) throw new NameNotFoundException();
   final Attributes attrs = root.getAttributes(mydn);
   final Attribute oc = attrs.get("objectClass");
   if (!oc.contains("jmxConnector")) {
       final String msg = "The supplied node [" + mydn + 
         "] does not contain the jmxConnector objectclass";
       throw new NamingException(msg);
   }
   final Attributes newattrs = new BasicAttributes();
   newattrs.put("jmxAgentName",name);
   newattrs.put("jmxServiceURL",jmxUrl.toString());
   newattrs.put("jmxAgentHost",InetAddress.getLocalHost().getHostName());
   newattrs.put("jmxProtocolType",jmxUrl.getProtocol());
   newattrs.put("jmxExpirationDate",
                getExpirationDate(JMX_DEFAULT_LEASE));
   root.modifyAttributes(mydn,DirContext.REPLACE_ATTRIBUTE,newattrs);
}

[...]

CODE EXAMPLE 12-13 shows the registration of the JMX connector server service URL in
the LDAP directory. You can specify the DN where the URL will be registered can be passed
on the command line through the dn System property, that is, -Ddn=mydn . See the commands
used start the server for a description. If the dn System property is not specified, then you can
use theDN: cn=name where name is the agentName. However, this is not mandatory. The
location where the URL is registered does not matter, because the client code never uses
that DN directly, but instead performs an LDAP search to find the nodes which have an
auxiliary jmxConnector ObjectClass . What is important is that each URL is registered in its
own LDAP node. How to name these nodes is left to the LDAP administrator, who in this case
is you. In this example, it is assumed that you have configured your LDAP server by creating
a root context under which the node cn=name can be created, and that this root context has
been passed to the LDAP initial context through the Context.PROVIDER_URL property. See 
CODE EXAMPLE 12-12 JNDI/LDAP Lookup Service Example Server.java (Excerpt 1)).

The code in CODE EXAMPLE 12-13 checks whether the node in which you will register the
server URL already exists. If it does not, you try to create it. This will fail if the parent node
does not exist. The jmxConnector ObjectClass is a simple auxiliary class, you will use the
javaContainer ObjectClass as structural class if you need to create a new context. This is
completely optional. Any structural class to which the jmxConnector auxiliary class can be
added is acceptable. It then checks whether the node in which you will register the server
already has the jmxConnector auxiliary class. If not, an exception is thrown.

At this point, you are sure that the node in which you will register the URL exists and has the
appropriate jmxConnector auxiliary class. You only need to replace the values of the
attributes defined by JMX Remote API for LDAP lookup. See jmx-schema.txt.

• jmxServiceUrl: Contains the String form of the server URL, as obtained from
server.getAddress() after the server was started

• jmxAgentName: Contains the JMX agent name
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• jmxProtocolType: Contains the JMX protocol type, as returned by
jmxUrl.getProtocolType()

• jmxAgentHost: Contains the name of the agent host

• jmxExpirationDate: Contains the date at which the URL will be considered
obsolete

 EXAMPLE 12-14 JNDI/LDAP Lookup Service Example Class Server.java
(Excerpt 3)

 [...]

   public JMXConnectorServer rmi(String url)
     throws IOException, JMException,
        NamingException, ClassNotFoundException {

     JMXServiceURL jurl = new JMXServiceURL(url);
     final HashMap env = new HashMap();
     // Prepare the environment Map
[...]

     JMXConnectorServer rmis =
JMXConnectorServerFactory.newJMXConnectorServer(jurl, env, mbs)

     final String agentName = System.getProperty("agent.name",
                                                 "DefaultAgent");
     start(rmis,env,agentName);
     return rmis;
   }
[...]

CODE EXAMPLE 12-14 creates a new RMI connector server named rmis with the
JMX service URL jurl and the appropriate LDAP properties passed to its environment
map env. The connector server rmis is launched by calling
JMXConnectorServer.start() and is registered in the LDAP server..

 EXAMPLE 12-15 JNDI/LDAP Lookup Service Example Class Server.java
(Excerpt 4)

[...]

    public void start(JMXConnectorServer server, Map env, String 
agentName)
       throws IOException, NamingException {server.start()
       final DirContext root=getRootContext();
       final JMXServiceURL address = 
server.getAddress();register(root,address,agentName)
    }
[...]

CODE EXAMPLE 12-15 creates a JMX connector server server, obtains a pointer to
the LDAP server root directory root, and creates a URL for the server named address.
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The root directory, the URL, and an agent name are passed as parameters to register()
and are registered in the LDAP server.

Client.java in the JNDI/LDAP Lookup Service Example
The JNDI/LDAP lookup service example class, Client.java, is shown in the following code
example.

CODE EXAMPLE 12-16 JNDI/LDAP Lookup Service Example Class Client.java

[...]

public class Client {

   private static boolean debug = false;

   public static void listAttributes(DirContext root, String dn)
     throws NamingException {
     final Attributes attrs = root.getAttributes(dn);
     System.out.println("dn: " + dn);
     System.out.println("attributes: " + attrs);
   }
   public static DirContext getRootContext() throws NamingException {
      final Hashtable env = new Hashtable();
      // Prepare environment map
      [...]
      InitialContext root = new InitialLdapContext(env,null);
      return (DirContext)(root.lookup(""));
   }
   // Confirm URL has not expired 
  [...] 

   public static List lookup(DirContext root, String protocolType,
                             String name)
      throws IOException, NamingException {
      final ArrayList list = new ArrayList();
      String queryProtocol =
         (protocolType==null)?"":"(jmxProtocolType="+protocolType+")";
      String query =
          "(&" + "(objectClass=jmxConnector) " +
          "(jmxServiceURL=*) " +
          queryProtocol +
          "(jmxAgentName=" + ((name!=null)?name:"*") + "))";

      SearchControls ctrls = new SearchControls();
      ctrls.setSearchScope(SearchControls.SUBTREE_SCOPE);
      final NamingEnumeration results = root.search("", query, ctrls);
      while (results.hasMore()) { 
           final SearchResult r = (SearchResult) results.nextElement();
           debug("Found node: " + r.getName());
           final Attributes attrs = r.getAttributes();
           final Attribute attr = attrs.get("jmxServiceURL");
           if (attr == null) continue;
           final Attribute exp = attrs.get("jmxExpirationDate");
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           if ((exp != null) && hasExpired((String)exp.get())) {
               System.out.print(r.getName() + ": ");
               System.out.println("URL expired since: " + exp.get());
               continue;}
           final String urlStr = (String)attr.get();
           if (urlStr.length() == 0) continue;

           debug("Found URL: "+ urlStr);

           final JMXServiceURL url = new JMXServiceURL(urlStr);
           final JMXConnector conn =
               JMXConnectorFactory.newJMXConnector(url,null);
           list.add(conn);
           if (debug) listAttributes(root,r.getName());
      }

      return list;
}
}

In this code example, the Client first returns a pointer, root, to the LDAP directory
DirContext, and then it searches through the directory for object classes of the type
jmxConnector. The service URL and expiry date attributes, attr and exp respectively,
for the jmxConnector object classes are obtained, exp is checked to make sure that
the URL has not expired and a call is made to JMXConnectorFactory to create a new
connector conn. The connector conn is added to the list of connectors and is used to
access the MBeans in the MBean server created by the Server.

jmx-schema.txt
The jmx-schema.txt file is the LDAP schema file for the JMX Remote API.

60jmx-schema.ldif
The 60jmx-schema.ldif file is an ldif file that corresponds to the LDAP schema file,
jmx-schema.txt, for JMX technology.

Running the JNDI/LDAP Lookup Service Example
This example demonstrates the use of the JNDI/LDAP lookup service to look up RMI
connector servers that implement the default JRMP transport as well as the IIOP
transport. In addition, as described in Initial Configuration, different external directories
are used to register the RMI connector stubs.

The combinations of transports and external directories are demonstrated here are:

• RMI connector over the JRMP transport, with:

– No external directory

– An RMI registry

– An LDAP registry
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Before you can run the examples that use the JNDI/LDAP lookup service, you must complete
the actions in the Initial Configuration, section and the actions that are specific to this
example. You can then start looking up connectors using the JNDI/LDAP network technology,
in conjunction with the two connectors supported by the JMX technology

Note:

When you run the examples, to help you keep track of which agent is created with
which transport, the agent names include a letter suffix that is the same as the
lettering of the corresponding section. For example, the agent in Starting the
Server, RMI connector over JRMP, without an external directory, is named
example-server-a.

To run the example, perform the sequence of steps described in:

• Setting up the JNDI/LDAP Lookup Service Example

• Starting the Server

• Starting the Client

Setting up the JNDI/LDAP Lookup Service Example

The following steps are required by all the different connector/transport combinations you can
run in this example.

Note:

Complete the following steps according to the type of LDAP server that you are
using.

1. Stop the LDAP server you started in the Initial Configuration.

2. Copy the JMX technology schema into your LDAP server’s schema directory.

3. Restart the LDAP server

4. Define the root under which the Server will register its service URL. You must provide the
Server with the path to the domain component suffix dc=Test that you created in Initial
Configuration.

$ provider="ldap://$ldaphost:$ldapport/dc=Test"

5. Compile the example Client and Server classes by typing the following command:

$ javac -d . -classpath $classp Server.java Client.java

Starting the Server

The command you use to start the Server varies according to which external directory you
are using. You can start one or more of the following instances of Server with different
transports and external registries before starting the Client.
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The combinations of transports and external directories are demonstrated here:

• RMI connector over JRMP, without an external directory: Start the Server by
typing the following command.

$ java -classpath . -Ddebug=true \
  -Dagent.name=example-server-a \
  -Durl="service:jmx:rmi://" \
  -Djava.naming.provider.url="$provider" \
  -Djava.naming.security.principal="$principal" \
  -Djava.naming.security.credentials="$credentials" \
  jndi.Server &

In this command:

– The
debug, is set to true to provide more complete screen output when the Server
runs.

– The name of the agent to be created is example-server-a.

– The URL, provider, that points to the domain component suffix in which the
agent will be registered, is given.

– The common name attribute, principal, and password, credentials, are
given to gain access to the LDAP server.

– The service URL specifies that the chosen connector is an RMI connector,
running over the RMI default JRMP transport.

When the Server is launched, you will see confirmation of the creation of the RMI
connector, and the registration of its URL in the JNDI/LDAP lookup service.

• RMI connector over JRMP, that uses an RMI registry as an external directory:
Start the Server by typing the following command.

$ java -classpath . -Ddebug=true \ 
  -Dagent.name=example-server-b \ 
  -Durl="service:jmx:rmi:///jndi/${jndirmi}/server" \ 
  -Djava.naming.provider.url="$provider" \ 
  -Djava.naming.security.principal="$principal" \ 
  -Djava.naming.security.credentials="$credentials" \ 
  jndi.Server &

In this command:

– The name of the agent that is created is example-server-b.

– The URL, provider, that points to the domain component suffix in which the
agent will be registered, is given.

– The common name attribute, principal, and password, credentials, are
given to gain access to the LDAP server.

– The service URL specifies the selected connector as RMI over JRMP, and the
external directory in which the RMI connector stub, server, is stored is the RMI
registry you identified as jndirmi in Initial Configuration.
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When the Server is launched, you will see the confirmation of the creation of the RMI
connector and the registration of its URL in the JNDI/LDAP lookup service.

• RMI connector over JRMP, that uses LDAP as the external directory: Start the
Server by typing the following command.

$ java -classpath . -Ddebug=true \ 
  -Dagent.name=example-server-c \ 
  -Durl="service:jmx:rmi:///jndi/${jndildap}/cn=x,dc=Test" \ 
  -Djava.naming.provider.url="$provider" \ 
  -Djava.naming.security.principal="$principal" \ 
  -Djava.naming.security.credentials="$credentials" \ 
  jndi.Server &

In this command:

– The name of the agent, created is example-server-c.

– The URL, provider, that points to the domain component suffix in which the agent
will be registered, is given.

– The common name attribute, principal, and password, credentials, are given to
gain access to the LDAP server.

– The service URL specifies the chosen connector as RMI over JRMP, and the external
directory in which the RMI connector stub, server, is stored is the RMI registry that
you identified as jndildap in the Initial Configuration.

When the Server is launched, you will see the confirmation of the creation of the RMI
connector and the registration of its URL in the JNDI/LDAP lookup service under the
agent name example-server-c.

Starting the Client

After you start the Server that is using the transport and external directory of your choice,
start the Client by typing the following command:

$ java -classpath . -Ddebug=true \ 
  -Djava.naming.provider.url="$provider" \ 
  -Djava.naming.security.principal="$principal" \ 
  -Djava.naming.security.credentials="$credentials" \ 
  jndi.Client

You will see the output that confirms the detection of the agents that are created by the
Server and registered in the lookup service. You will also see the identification and
confirmation of the connection made to the agents.

To look up a specific agent, type the following command:

$ java -classpath . -Ddebug=true \ 
  -Djava.naming.provider.url="$provider" \ 
  -Djava.naming.security.principal="$principal" \ 
  -Djava.naming.security.credentials="$credentials" \ 
  -Dagent.name=agentName \ 
  jndi.Client 
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In the command shown above, agentName is the name of the agent you want to look
up. You can also specify a partial agent name by using *; for example, x* for all agent
names beginning with the letter x.
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13
Security

This chapter gives examples of how to set up the JMX technology security features, as
described in the following sections:

• Simple Security presents examples of connectors that implement straightforward security
that is based on password authentication and file access control.

• Subject Delegation presents examples of connectors that use the subject delegation
model to perform operations on a given authenticated connection on behalf of several
different identities.

• Fine-Grained Security presents examples of connectors that implement more
sophisticated security mechanisms, in which permission to perform individual operations
is controlled.

Caution:

• Applications should prompt the user to enter passwords rather than expecting the user to
provide them at the command line.

• Use secure authentication mechanisms in production systems. In particular, use both
SSL client certificates to authenticate the client host, and password authentication for
user management. See Using SSL and Using LDAP Authentication in the Java Platform,
Standard Edition Monitoring and Management Guide.

Simple Security
The simplest type of security you can use with the JMX technology is based upon encryption,
user name and password authentication, and file access control.

Analyzing the RMI Connectors with Simple Security Example Classes

1. Copy the source code contained in the Simple Security section and create the following
work_dir/jmx_examples/Security/simple subdirectories and corresponding files:

• /server/Server.java
• /config/access.properties
• /config/keystore
• /config/password.properties
• /config/truststore
• /mbeans/SimpleStandardMBean.java
• /mbeans/SimpleStandard.java
• /client/Client.java
• /client/ClientListener.java

2. Open the *.java and *.properties files, in your IDE or text editor.
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The following sections analyze these files and explain how they perform the security
operations described above.

Server.java in the Simple Security Example
The Server.java class is shown in the following code example.

CODE EXAMPLE 13-1 RMI Connector Example (Simple Security) Class
Server.java

public class Server { 
 
  public static void main(String[] args) { 
  try { 
       MBeanServer mbs = MBeanServerFactory.createMBeanServer(); 
 
       HashMap env = new HashMap(); 
 
       SslRMIClientSocketFactory csf =  
                  new SslRMIClientSocketFactory(); 
       SslRMIServerSocketFactory ssf =  
                  new SslRMIServerSocketFactory(); 
       env.put(RMIConnectorServer. 
                  RMI_CLIENT_SOCKET_FACTORY_ATTRIBUTE,csf); 
       env.put(RMIConnectorServer. 
                  RMI_SERVER_SOCKET_FACTORY_ATTRIBUTE,ssf); 
 
       env.put("jmx.remote.x.password.file", 
                 "config" + File.separator + "password.properties"); 
       env.put("jmx.remote.x.access.file", 
                 "config" + File.separator + "access.properties"); 
 
       JMXServiceURL url = new JMXServiceURL( 
        "service:jmx:rmi:///jndi/rmi://localhost:9999/server"); 
         JMXConnectorServer cs = 
            JMXConnectorServerFactory.newJMXConnectorServer(url,  
                                                            env,  
                                                            mbs); 
       cs.start(); 
     } catch (Exception e) { 
       e.printStackTrace(); 
     } 
  } 
}

The Server class shown in this code example creates an MBean server mbs, and
populates an environment map env with a secure RMI client socket factory csf, a
secure RMI server socket factory ssf, and the properties files password.properties
and access.properties.

The properties file password.properties contains a username and password and is
accessed using the JMX Remote API interface JMXAuthenticator. Using the property
jmx.remote.x.password.file is the same as creating a password-based
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JMXAuthenticator and passing it into the environment map through the
jmx.remote.authenticator property.

The properties file access.properties contains a username and a level of access permission
that can be either readwrite or readonly. This represents the level of access this user can
have to MBean server operations. This file-based access control is implemented using the
JMX technology interface MBeanServerForwarder, which wraps the real MBean server inside
an access controller MBean server. The access controller MBean server only forwards
requests to the real MBean server after performing the appropriate checks.

Server creates a JMX service URL, named url, for an RMI connector that will operate over
the default JRMP transport, and register an RMI connector stub in an RMI registry on port
9999 of the local host.

The MBean server mbs, the environment map env and the service URL url are all passed to
JMXConnectorServer to create a new, secure JMX connector server named cs.

SimpleStandardMBean.java in the Simple Security Example
The SimpleStandardMBean class defines the same straightforward MBean interface used in 
SimpleStandardMBean.java in the MBean Example.

SimpleStandard.java in the Simple Security Example
The SimpleStandard class defines the same straightforward MBean used in 
SimpleStandard.java in the MBean Example.

ClientListener.java in the Simple Security Example
The ClientListener class defines the same straightforward notification listener used in 
ClientListener.java in the MBean Example.

Client.java in the Simple Security Example
The Client.java class is shown in the following code example.

CODE EXAMPLE 13-2 RMI Connector Example (Simple Security) Class Client.java

public class Client { 
 
  public static void main(String[] args) { 
  try { 
      HashMap env = new HashMap(); 
 
      String[] credentials = new String[] { "username" , "password" }; 
      env.put("jmx.remote.credentials", credentials); 
      JMXServiceURL url = new JMXServiceURL( 
         "service:jmx:rmi:///jndi/rmi://localhost:9999/server");       
      JMXConnector jmxc = JMXConnectorFactory.connect(url, env); 
      MBeanServerConnection mbsc = jmxc.getMBeanServerConnection(); 
      String domains[] = mbsc.getDomains(); 
      for (int i = 0; i < domains.length; i++) { 
         System.out.println("Domain[" + i + "] = " + domains[i]); 
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      } 
       
      ObjectName mbeanName =  
          new ObjectName("MBeans:type=SimpleStandard"); 
      mbsc.createMBean("SimpleStandard", mbeanName, null, null); 
      // Perform MBean operations 
      [...] 
      
      mbsc.removeNotificationListener(mbeanName, listener); 
      mbsc.unregisterMBean(mbeanName); 
      jmxc.close(); 
    }  catch (Exception e) { 
      e.printStackTrace(); 
    } 
  } 
} 

The Client class shown in this code example populates an environment map env with
a set of credentials, namely the username and password expected by the Server.
These credentials are then given to an instance of JMXConnector named jmxc when
the service URL of the connector stub and the environment map are passed to
JMXConnectorFactory.connect(). Through jmxc, the Client connects to the MBean
server started by Server, and performs MBean operations.

When the connection is established, the credentials supplied in the environment map
env are sent to the server. The server then calls the authenticate() method of the
JMXAuthenticator interface, passing the client credentials as parameters. The
authenticate() method authenticates the client and returns a subject that contains
the set of principals upon which the access control checks will be performed.

Running the RMI Connector Example With Simple Security
To run the RMI connector example with simple security, perform the following steps:

1. Run the RMI connector example:

$ javac 
      mbeans/SimpleStandard.java \ 
      mbeans/SimpleStandardMBean.java \ 
      server/Server.java \ 
      client/Client.java \ 
      client/ClientListener.java 

2. Start an RMI registry on port 9999 of the local host.

$ export CLASSPATH=server ; rmiregistry 9999 & 

3. Start the Server.

$ java -classpath server:mbeans \ 
     -Djavax.net.ssl.keyStore=config/keystore \ 
     -Djavax.net.ssl.keyStorePassword=password \ 
     Server & 
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You will see confirmation of the creation of the MBean server and of the RMI connector.

4. Start the Client.

$java -classpath client:server:mbeans \ 
     -Djavax.net.ssl.trustStore=config/truststore \ 
     -Djavax.net.ssl.trustStorePassword=trustword \ 
     Client 

You will see confirmation of the creation of the connector client, the various MBean
operations followed by the closure of the connection.

As you can see, all the above appears to proceed in exactly the same manner as the basic
RMI connector example described in JMX Connectors. However, if you were to open
password.properties and change the password, you would see a
java.lang.SecurityException when you launched the Client, and the connection would
fail.

Subject Delegation
If your implementation requires the client end of the connection to perform different
operations on behalf of multiple users or applications, and if you use the security
mechanisms demonstrated in Simple Security , then each different user would requires one
secure connection for every operation it performs. If you expect your connector clients to
interact with numerous users, then you can reduce the load on your system by implementing
subject delegation. Subject delegation establishes a single secure connection for a user. This
connection can be used to perform related operations on behalf of any number of users. The
connection itself is made by an authenticated user. If the authenticated user granted a
SubjectDelegationPermission that allows it to act on behalf of other users, then operations
can be performed over the connection on behalf of that user.

Analyzing the Secure RMI Connectors With Subject Delegation Example Classes

1. Copy the source code contained in the Security with Subject Delegation section and
create the following work_dir/jmx_examples/Security/subject_delegation
subdirectories and corresponding files:

• /server/Server.java:

• /config/access.properties
• /config/java.policy
• /config/password.properties
• /mbeans/SimpleStandardMBean.java
• /mbeans/SimpleStandard.java
• /client/Client.java
• /client/ClientListener.java

2. Open all the *.java and *.properties files in your IDE or text editor.

The following sections contain the analysis of these files.
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Server.java in the Subject Delegation Example
The Server.java class is shown in the following code example.

CODE EXAMPLE 13-3 Secure RMI Connector (Subject Delegation) Example
Class Server.java

public class Server { 
 
   public static void main(String[] args) { 
     try { 
          MBeanServer mbs = MBeanServerFactory.createMBeanServer(); 
          HashMap env = new HashMap(); 
          env.put("jmx.remote.x.password.file", 
                  "config" + File.separator + "password.properties"); 
          env.put("jmx.remote.x.access.file", 
                  "config" + File.separator + "access.properties"); 
 
          JMXServiceURL url = new JMXServiceURL( 
             "service:jmx:rmi:///jndi/rmi://localhost:9999/server"); 
          JMXConnectorServer cs = 
              JMXConnectorServerFactory.newJMXConnectorServer(url, 
env, mbs); 
          cs.start(); 
     } catch (Exception e) { 
          e.printStackTrace(); 
     } 
   } 
} 

This code example begins with the creation of an MBean server mbs, and the
population of an environment map env with a password file and an access file, called
password.properties and access.properties respectively:

• The password file contains a username and password combination that is used to
authenticate users that try to make connections.

• The access file contains a user name and access level combination that is used to
authorize access to the MBeans in the MBean server. The access level is either
readwrite or readonly.

The Server then creates a connector server named cs, and starts it in exactly the
same way as in the previous RMI connector examples.

java.policy in the Subject Delegation Example
The java.policy file grants to username a SubjectDelegationPermission so it can
perform operations on behalf of the user delegate, an instance of JMXPrincipal
created by the Client class. The java.policy file is required when launching the
Server class.
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SimpleStandardMBean.java in the Subject Delegation Example
The SimpleStandardMBean class defines the same straightforward MBean interface used in
previous examples.

SimpleStandard.java in the Subject Delegation Example
The SimpleStandard class defines the same, straightforward MBean used in previous
examples.

ClientListener.java in the Subject Delegation Example
The ClientListener class defines the same, straightforward notification listener used in
previous examples.

Client.java in the Subject Delegation Example
The Client.java class is shown in the following code example.

CODE EXAMPLE 13-4 Secure RMI Connector (Subject Delegation) Example Class
Client.java

public class Client { 
 
  public static void main(String[] args) { 
    try { 
         HashMap env = new HashMap(); 
         String[] credentials = new String[] { "username" , "password" }; 
         env.put("jmx.remote.credentials", credentials); 
         JMXServiceURL url = new JMXServiceURL( 
            "service:jmx:rmi:///jndi/rmi://localhost:9999/server"); 
         JMXConnector jmxc = JMXConnectorFactory.connect(url, env); 
         Subject delegationSubject = 
            new Subject(true, 
                Collections.singleton(new JMXPrincipal("delegate")), 
                Collections.EMPTY_SET, 
                Collections.EMPTY_SET); 
 
         MBeanServerConnection mbsc = 
            jmxc.getMBeanServerConnection(delegationSubject); 
         String domains[] = mbsc.getDomains(); 
         ObjectName mbeanName = 
            new ObjectName("MBeans:type=SimpleStandard"); 
         mbsc.createMBean("SimpleStandard", mbeanName, null, null); 
         // Perform MBean operations 
         // 
 
[...] 
         mbsc.removeNotificationListener(mbeanName, listener); 
         mbsc.unregisterMBean(mbeanName); 
         jmxc.close(); 
     } catch (Exception e) { 
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         e.printStackTrace(); 
     } 
  } 
} 
 

This code example begins with the creation of an environment map env that is
populated with a user name username and a password password. These strings match
the user name and password stored in the password.properties file that is held by
the Server to authenticate users accessing the connector server.

A JMX technology connector client jmxc is created in the same way as in the previous
RMI connector examples, with the user name and password passed into the
environment map env.

The Client then creates an instance of Subject, called delegationSubject, with a
Principal that is an instance of JMXPrincipal, named delegate.

An MBean server connection, named mbsc, is created by calling the
getMBeanServerConnection() method of JMXConnector, with delegationSubject
passed in as a parameter. This MBean server connection therefore allows operations
to be performed on the remote MBean server on behalf of the principals stored in the
delegationSubject, which in this example is the JMXPrincipal named delegate.

The code example continues by creating and registering the SimpleStandard MBean
in the MBean server, and performing operations on it, in exactly the same way as in
the previous examples.

Running the Secure RMI Connector Example With Subject Delegation
To run the secure RMI connector example with subject delegation, perform the
following steps:

1. Run the secure RMI connector example:

$ javac  mbeans/SimpleStandard.java \ 
  mbeans/SimpleStandardMBean.java \ 
  server/Server.java \ 
  client/Client.java \ 
  client/ClientListener.java 
 

2. Start an RMI registry on port 9999 of the local host.

$ export CLASSPATH=server ; rmiregistry 9999 &

3. Start the Server.

$ java -classpath server:mbeans \ 
  -Djava.security.policy=config/java.policy Server & 
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You will see confirmation of the creation of the MBean server, the initialization of the
environment map, the creation of the RMI connector, and the registration of the connector
in the MBean server.

4. Start the Client.

$java -classpath client:server:mbeans Client

You will see confirmation of the creation of the connector client, the creation of the
delegation subject, the connection to the MBean server and the various MBean
operations followed by the closure of the connection.

Fine-Grained Security
You can implement a more fine-grained level of security in your connectors by managing user
access through the Java Authentication and Authorization Service (JAAS) and Java platform
Standard Edition (Java SE) Security Architecture. JAAS and Java SE security is based on the
use of security managers and policy files to allocate different levels of access to different
users. You can specify which users are allowed to perform which operations.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager.
See JEP 411 for discussion and alternatives.

The two examples in this section are very similar to those shown in Simple Security, with the
difference that policy-based access control replaces the simple, file-based access control.

Analyzing the Secure RMI Connectors With Fine-Grained Security Example Classes

1. Copy the source code contained in the Fine-Grained Security section and create the
following work_dir/jmx_examples/Security/fine_grained subdirectories and
corresponding files:

• /server/Server.java
• /config/java.policy
• /config/keystore
• /config/password.properties
• /config/truststore
• /mbeans/SimpleStandard.java
• /mbeans/SimpleStandardMBean.java
• /client/ClientListener.java
• /client/Client.java

2. Open all of the *.java and *.properties files in your IDE or text editor.

The following sections contain the analysis of these files.
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Server.java in the Fine-Grained Security Example
The Server.java class in this example is very similar to the one used in Server.java in
the Subject Delegation Example. The only difference is that there is no
access.properties file to map into the environment map in the fine-grained example.
Otherwise, the two classes are identical.

java.policy in the Fine-Grained Security Example
The java.policy file grants the following permissions:

• All permissions to the server code base, so that the connector server can create
the connectors, and then perform the operations requested by remote user calls

• MBeanTrustPermission to the mbeans code base, allowing trusted MBeans to
register in the MBean server

• Permission to perform the various MBean and MBean server operations for the
user represented by a JMXPrincipal named username.

SimpleStandardMBean.java in the Fine-Grained Security Example
The SimpleStandardMBean class defines the same straightforward MBean interface
used in previous examples.

SimpleStandard.java in the Fine-Grained Security Example
The SimpleStandard class defines the same straightforward MBean used in previous
examples.

ClientListener.java in the Fine-Grained Security Example
The ClientListener class defines the same straightforward notification listener used
in previous examples.

Client.java in the Fine-Grained Security Example
The Client.java class is exactly the same as the one used in Client.java in the
Subject Delegation Example .

Running the RMI Connector Example With Fine-Grained Security
To run the RMI connector example with fine-grained security, perform the following
steps:

1. Run the RMI connector example:

$ javac 
      mbeans/SimpleStandard.java \ 
      mbeans/SimpleStandardMBean.java \ 
      server/Server.java \ 
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      client/Client.java \ 
      client/ClientListener.java 
 

2. Start an RMI registry on port 9999 of the local host.

$ export CLASSPATH=server ; rmiregistry 9999 &

3. Start the Server.

$ java -classpath server:mbeans \ 
     -Djavax.net.ssl.keyStore=config/keystore \ 
     -Djavax.net.ssl.keyStorePassword=password \ 
     -Djava.security.manager \ 
     -Djava.security.policy=config/java.policy \ 
     Server & 
 

You will see confirmation of the initialization of the environment map, the creation of the
MBean server and of the RMI connector.

4. Start the Client.

 
$ java -classpath client:server:mbeans \ 
     -Djavax.net.ssl.trustStore=config/truststore \ 
     -Djavax.net.ssl.trustStorePassword=trustword \ 
     Client 
 

You will see confirmation of the creation of the connector client, the connection to the RMI
server and the various MBean operations followed by the closure of the connection.
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Part III
Java Management Extensions Examples

The files in this section are code examples demonstrating some of the main features of JMX
technology. You can use these examples to develop more complex MBeans and full-featured
JMX agents to fit your management solution.

Each example consists of Java source files and a README file. The README file explains
the topics covered by the example and instructions for compiling and running the classes.
See Java Management Extensions (JMX) Technology Tutorial for more complete descriptions
of how to run the examples.

JMX Essentials: Introduces the fundamental notion of the JMX API, namely managed
beans, or MBeans.

JMX MBean Notifications: Implements MBean notifications.

MXBeans: Demonstrates the use of MXBeans.

MBean Descriptors: Demonstrates the use of MBean Descriptors.

JMX Connectors: Provides a sample implementation of how to connect to MBeans and
perform operations on them remotely.

Lookup Services: The JMX API defines three bindings to lookup services, using existing
lookup technologies.

• Service Location Protocol (SLP) Lookup Service

• Java Naming and Directory Interface (JNDI)/LDAP Lookup Service

Security: The JMX API implements existing security protocols to secure your connections.

• Simple Security

• Security with Subject Delegation

• Fine-Grained Security



14
JMX Essentials

This example introduces the fundamental notion of the JMX API, namely managed beans
(MBeans). The source code contained in this section is used to create corresponding files in
the examples/ directory specified in the appropriate setup procedure and includes:

• README file

• Main

• Hello

• HelloMBean

examples/Essential/README

# 
=============================================================================
=
#
#  JMX Tutorial Introductory Example : Instrumenting Your Own Applications.
#
#  The aim of this introductory example is to show the basic features of
#  the JMX technology first by instrumenting a simple resource and second
#  by performing operations on it using the jconsole tool. This example
#  shows the implementation of a standard MBean, how to register it in the
#  platform's MBean Server and how to perform remote operations on it by
#  connecting to the RMI connector server using the jconsole tool. Besides
#  monitoring the application, jconsole will also allow you to observe the
#  built-in JVM instrumentation as the JVM's MBeans are also registered in
#  the platform's MBean Server. This examples also shows how the existing
#  platform's MBean Server can be shared between the JVM and the application
#  itself to register the application MBeans, thus avoiding the creation of
#  multiple MBean Server instances on the same JVM.
#
# 
=============================================================================
=
#
# In order to compile and run the example, make a copy of this README file, 
and
# then simply cut and paste all the commands as needed into a terminal 
window.
#
# This README makes the assumption that you are running under Java SE 6 on 
Unix,
# you are familiar with the JMX technology, and with the bourne shell or korn
# shell syntax.
#
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# All the commands below are defined using Unix korn shell syntax.
#
# If you are not running Unix and korn shell you are expected to be 
able to
# adapt these commands to your favorite OS and shell environment.
#

# Compile Java classes
#
# The Java classes used in this example are contained in the 
com.example.mbeans
# Java package.
#
# * Main.java: gets the Platform MBean Server, and creates
#              and registers the Hello World MBean on it.
#
# * Hello.java: implements the Hello World standard MBean.
#
# * HelloMBean.java: the management interface exposed by
#                    the Hello World standard MBean.
#

javac com/example/mbeans/*.java

# Start the Main application
#

java com.example.mbeans.Main

# Start jconsole on a different shell window on the same machine
#
# JConsole is located in $(J2SE_HOME)/bin/jconsole
#

jconsole

# 
=======================================================================
=======

examples/Essential/com/example/mbeans/Main.java

/* Main.java - main class for Hello World example.  Create the
   HelloWorld MBean, register it, then wait forever (or until the
   program is interrupted).  */

package com.example.mbeans;

import java.lang.management.*;
import javax.management.*;

public class Main {
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    /* For simplicity, we declare "throws Exception".  Real programs
       will usually want finer-grained exception handling.  */
    public static void main(String[] args) throws Exception {
        // Get the Platform MBean Server
        MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();

        // Construct the ObjectName for the MBean we will register
        ObjectName name = new ObjectName("com.example.mbeans:type=Hello");

        // Create the Hello World MBean
        Hello mbean = new Hello();

        // Register the Hello World MBean
        mbs.registerMBean(mbean, name);

        // Wait forever
        System.out.println("Waiting forever...");
        Thread.sleep(Long.MAX_VALUE);
    }
}

examples/Essential/com/example/mbeans/Hello.java

/* Hello.java - MBean implementation for the Hello World MBean.
   This class must implement all the Java methods declared in the
   HelloMBean interface, with the appropriate behavior for each one.  */

package com.example.mbeans;

public class Hello implements HelloMBean {
    public void sayHello() {
        System.out.println("hello, world");
    }

    public int add(int x, int y) {
        return x + y;
    }

    /* Getter for the Name attribute.  The pattern shown here is
       frequent: the getter returns a private field representing the
       attribute value.  In our case, the attribute value never
       changes, but for other attributes it might change as the
       application runs.  Consider an attribute representing
       statistics such as uptime or memory usage, for example.  Being
       read-only just means that it can't be changed through the
       management interface.  */
    public String getName() {
        return this.name;
    }

    /* Getter for the CacheSize attribute.  The pattern shown here is
       frequent: the getter returns a private field representing the
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       attribute value, and the setter changes that field.  */
    public int getCacheSize() {
        return this.cacheSize;
    }

    /* Setter for the CacheSize attribute.  To avoid problems with
       stale values in multithreaded situations, it is a good idea
       for setters to be synchronized.  */
    public synchronized void setCacheSize(int size) {
        this.cacheSize = size;

        /* In a real application, changing the attribute would
           typically have effects beyond just modifying the cacheSize
           field.  For example, resizing the cache might mean
           discarding entries or allocating new ones.  The logic for
           these effects would be here.  */
        System.out.println("Cache size now " + this.cacheSize);
    }

    private final String name = "Reginald";
    private int cacheSize = DEFAULT_CACHE_SIZE;
    private static final int DEFAULT_CACHE_SIZE = 200;
}

examples/Essential/com/example/mbeans/HelloMBean.java

/* HelloMBean.java - MBean interface describing the management
   operations and attributes for the Hello World MBean.  In this case
   there are two operations, "sayHello" and "add", and two attributes,
   "Name" and "CacheSize". */

package com.example.mbeans;

public interface HelloMBean {
    // operations

    public void sayHello();
    public int add(int x, int y);

    // attributes

    // a read-only attribute called Name of type String
    public String getName();

    // a read-write attribute called CacheSize of type int
    public int getCacheSize();
    public void setCacheSize(int size);
}
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15
JMX MBean Notifications

This example implements MBean notifications. The source code contained in this section is
used to create corresponding files in the examples/ directory specified in the appropriate
setup procedure and includes:

• README file

• Main

• Hello

• HelloMBean

examples/Notification/README

# 
=============================================================================
=
#
#  JMX Tutorial Introductory Example : Instrumenting Your Own Applications.
#                                      Using Notifications.
#
#  This example is the same as the previous essential example with the
#  only difference that the Hello World MBean has been modified to send
#  notifications.
#
#  The Hello World MBean implements the NotificationBroadcaster interface
#  by extending the NotificationBroadcasterSupport class and emits
#  AttributeChangeNotifications every time the CacheSize attribute
#  is changed.
#
# 
=============================================================================
=
#
# In order to compile and run the example, make a copy of this README file, 
and
# then simply cut and paste all the commands as needed into a terminal 
window.
#
# This README makes the assumption that you are running under Java SE 6 on 
Unix,
# you are familiar with the JMX technology, and with the bourne shell or korn
# shell syntax.
#
# All the commands below are defined using Unix korn shell syntax.
#
# If you are not running Unix and korn shell you are expected to be able to
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# adapt these commands to your favorite OS and shell environment.
#

# Compile Java classes
#
# The Java classes used in this example are contained in the 
com.example.mbeans
# Java package.
#
# * Main.java: gets the Platform MBean Server, and creates
#              and registers the Hello World MBean on it.
#
# * Hello.java: implements the Hello World standard MBean.
#               This MBean emits notifications every time
#               the CacheSize attribute is changed.
#
# * HelloMBean.java: the management interface exposed by
#                    the Hello World standard MBean.
#

javac com/example/mbeans/*.java

# Start the Main application
#

java com.example.mbeans.Main

# Start jconsole on a different shell window on the same machine
#
# JConsole is located in $(J2SE_HOME)/bin/jconsole
#

jconsole

# 
=======================================================================
=======

examples/Notification/com/example/mbeans/Main.java

/* Main.java - main class for Hello World example.  Create the
   HelloWorld MBean, register it, then wait forever (or until the
   program is interrupted).  */

package com.example.mbeans;

import java.lang.management.*;
import javax.management.*;

public class Main {
    /* For simplicity, we declare "throws Exception".  Real programs
       will usually want finer-grained exception handling.  */
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    public static void main(String[] args) throws Exception {
        // Get the Platform MBean Server
        MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();

        // Construct the ObjectName for the MBean we will register
        ObjectName name = new ObjectName("com.example.mbeans:type=Hello");

        // Create the Hello World MBean
        Hello mbean = new Hello();

        // Register the Hello World MBean
        mbs.registerMBean(mbean, name);

        // Wait forever
        System.out.println("Waiting forever...");
        Thread.sleep(Long.MAX_VALUE);
    }
}

examples/Notification/com/example/mbeans/Hello.java

/* Hello.java - MBean implementation for the Hello World MBean.
   This class must implement all the Java methods declared in the
   HelloMBean interface, with the appropriate behavior for each one.  */

package com.example.mbeans;

import javax.management.*;

public class Hello
        extends NotificationBroadcasterSupport implements HelloMBean {

    public void sayHello() {
        System.out.println("hello, world");
    }

    public int add(int x, int y) {
        return x + y;
    }

    /* Getter for the Name attribute.  The pattern shown here is
       frequent: the getter returns a private field representing the
       attribute value.  In our case, the attribute value never
       changes, but for other attributes it might change as the
       application runs.  Consider an attribute representing
       statistics such as uptime or memory usage, for example.  Being
       read-only just means that it can't be changed through the
       management interface.  */
    public String getName() {
        return this.name;
    }
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    /* Getter for the CacheSize attribute.  The pattern shown here is
       frequent: the getter returns a private field representing the
       attribute value, and the setter changes that field.  */
    public int getCacheSize() {
        return this.cacheSize;
    }

    /* Setter for the CacheSize attribute.  To avoid problems with
       stale values in multithreaded situations, it is a good idea
       for setters to be synchronized.  */
    public synchronized void setCacheSize(int size) {
        int oldSize = this.cacheSize;
        this.cacheSize = size;

        /* In a real application, changing the attribute would
           typically have effects beyond just modifying the cacheSize
           field.  For example, resizing the cache might mean
           discarding entries or allocating new ones.  The logic for
           these effects would be here.  */
        System.out.println("Cache size now " + this.cacheSize);

        /* Construct a notification that describes the change.  The
           "source" of a notification is the ObjectName of the MBean
           that emitted it.  But an MBean can put a reference to
           itself ("this") in the source, and the MBean server will
           replace this with the ObjectName before sending the
           notification on to its clients.

           For good measure, we maintain a sequence number for each
           notification emitted by this MBean.

           The oldValue and newValue parameters to the constructor are
           of type Object, so we are relying on Tiger's autoboxing
           here.  */
        Notification n =
            new AttributeChangeNotification(this,
                                            sequenceNumber++,
                                            System.currentTimeMillis(),
                                            "CacheSize changed",
                                            "CacheSize",
                                            "int",
                                            oldSize,
                                            this.cacheSize);

        /* Now send the notification using the sendNotification method
           inherited from the parent class
           NotificationBroadcasterSupport.  */
        sendNotification(n);
    }

    @Override
    public MBeanNotificationInfo[] getNotificationInfo() {
        String[] types = new String[] {
            AttributeChangeNotification.ATTRIBUTE_CHANGE
        };

Chapter 15
examples/Notification/com/example/mbeans/Hello.java

15-4



        String name = AttributeChangeNotification.class.getName();
        String description = "An attribute of this MBean has changed";
        MBeanNotificationInfo info =
            new MBeanNotificationInfo(types, name, description);
        return new MBeanNotificationInfo[] {info};
    }

    private final String name = "Reginald";
    private int cacheSize = DEFAULT_CACHE_SIZE;
    private static final int DEFAULT_CACHE_SIZE = 200;

    private long sequenceNumber = 1;
}

examples/Notification/com/example/mbeans/HelloMBean.java

/* HelloMBean.java - MBean interface describing the management
   operations and attributes for the Hello World MBean.  In this case
   there are two operations, "sayHello" and "add", and two attributes,
   "Name" and "CacheSize". */

package com.example.mbeans;

public interface HelloMBean {
    // operations

    public void sayHello();
    public int add(int x, int y);

    // attributes

    // a read-only attribute called Name of type String
    public String getName();

    // a read-write attribute called CacheSize of type int
    public int getCacheSize();
    public void setCacheSize(int size);
}
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16
MXBeans

This example demonstrates the use of MXBeans. The source code contained in this section
is used to create corresponding files in the examples/ directory specified in the appropriate
setup procedure and includes:

• README file

• Main

• QueueSample

• QueueSampler

• QueueSamplerMXBean

examples/MXBean/README

# 
=============================================================================
=
#
#  JMX Tutorial Introductory Example : Instrumenting Your Own Applications.
#                                      Using MXBeans.
#
#  The aim of this introductory example is to show the basic features of
#  the JMX technology first by instrumenting a simple resource using the new
#  type of MBean, i.e. MXBeans, and second by performing operations on it 
using
#  the jconsole tool. This example shows the implementation of an MXBean, 
how to
#  register it in the Platform MBean Server and how to perform remote 
operations
#  on it by connecting to the RMI connector server using the jconsole tool. 
The
#  goal of this example is to show a simple MXBean that manages a resource of
#  type Queue<String>. The MXBean declares a getter getQueueSample that takes
#  a snapshot of the queue when invoked and returns a Java class QueueSample
#  that bundles the following values together: the time the snapshot was 
taken,
#  the queue size and the head of the queue at that given time. The MXBean 
also
#  declares an operation clearQueue that clears all the elements in the queue
#  being managed. The example also shows how to register this MXBean in the
#  Platform MBean Server alongside the MBeans you can already see in 
jconsole.
#  This examples also shows how the existing Platform MBean Server can be
#  shared between the JVM and the application itself to register the 
application
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#  MBeans, thus avoiding the creation of multiple MBean Server 
instances on the
#  same JVM.
#
# 
=======================================================================
=======
#
# In order to compile and run the example, make a copy of this README 
file, and
# then simply cut and paste all the commands as needed into a terminal 
window.
#
# This README makes the assumption that you are running under Java SE 
6 on Unix,
# you are familiar with the JMX technology, and with the bourne shell 
or korn
# shell syntax.
#
# All the commands below are defined using Unix korn shell syntax.
#
# If you are not running Unix and korn shell you are expected to be 
able to
# adapt these commands to your favorite OS and shell environment.
#

# Compile Java classes
#
# The Java classes used in this example are contained in the 
com.example.mxbeans
# Java package.
#
# * Main.java: gets the Platform MBean Server, and creates
#              and registers the QueueSampler MXBean on it.
#
# * QueueSampler.java: implements the QueueSampler MXBean.
#
# * QueueSamplerMXBean.java: the management interface exposed
#                            by the QueueSampler MXBean.
#
# * QueueSample.java: the Java type returned by the getQueueSample()
#                     method in the QueueSampler MXBean interface.
#

javac com/example/mxbeans/*.java

# Start the Main application
#

java com.example.mxbeans.Main

# Start jconsole on a different shell window on the same machine
#
# JConsole is located in $(J2SE_HOME)/bin/jconsole
#
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jconsole

# 
=============================================================================
=

examples/MXBean/com/example/mxbeans/Main.java

/**
 * Main.java - main class for QueueSampler example. Create the Queue Sampler
 * MXBean, register it, then wait forever (or until the program is 
interrupted).
 */

package com.example.mxbeans;

import java.lang.management.ManagementFactory;
import java.util.Queue;
import java.util.concurrent.ArrayBlockingQueue;
import javax.management.MBeanServer;
import javax.management.ObjectName;

public class Main {
    /* For simplicity, we declare "throws Exception".  Real programs
       will usually want finer-grained exception handling.  */
    public static void main(String[] args) throws Exception {
        // Get the Platform MBean Server
        MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();

        // Construct the ObjectName for the MBean we will register
        ObjectName name =
                new ObjectName("com.example.mxbeans:type=QueueSampler");

        // Create the Queue Sampler MXBean
        Queue<String> queue = new ArrayBlockingQueue<String>(10);
        queue.add("Request-1");
        queue.add("Request-2");
        queue.add("Request-3");
        QueueSampler mxbean = new QueueSampler(queue);

        // Register the Queue Sampler MXBean
        mbs.registerMBean(mxbean, name);

        // Wait forever
        System.out.println("Waiting...");
        Thread.sleep(Long.MAX_VALUE);
    }
}
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examples/MXBean/com/example/mxbeans/
QueueSamplerMXBean.java

/**
 * QueueSamplerMXBean.java - MXBean interface describing the management
 * operations and attributes for the QueueSampler MXBean. In this case
 * there is a read-only attribute "QueueSample" and an operation 
"clearQueue".
 */

package com.example.mxbeans;

public interface QueueSamplerMXBean {
    public QueueSample getQueueSample();
    public void clearQueue();
}

examples/MXBean/com/example/mxbeans/
QueueSampler.java

/**
 * QueueSampler.java - MXBean implementation for the QueueSampler 
MXBean.
 * This class must implement all the Java methods declared in the
 * QueueSamplerMXBean interface, with the appropriate behavior for 
each one.
 */

package com.example.mxbeans;

import java.util.Date;
import java.util.Queue;

public class QueueSampler implements QueueSamplerMXBean {

    private Queue<String> queue;

    public QueueSampler(Queue<String> queue) {
        this.queue = queue;
    }

    public QueueSample getQueueSample() {
        synchronized (queue) {
            return new QueueSample(new Date(), queue.size(), 
queue.peek());
        }
    }
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    public void clearQueue() {
        synchronized (queue) {
            queue.clear();
        }
    }
}

examples/MXBean/com/example/mxbeans/QueueSample.java

/**
 * QueueSample.java - Java type representing a snapshot of a given queue.
 * It bundles together the instant time the snapshot was taken, the queue
 * size and the queue head.
 */

package com.example.mxbeans;

import java.beans.ConstructorProperties;
import java.util.Date;

public class QueueSample {

    private final Date date;
    private final int size;
    private final String head;

    @ConstructorProperties({"date", "size", "head"})
    public QueueSample(Date date, int size, String head) {
        this.date = date;
        this.size = size;
        this.head = head;
    }

    public Date getDate() {
        return date;
    }

    public int getSize() {
        return size;
    }

    public String getHead() {
        return head;
    }
}

Chapter 16
examples/MXBean/com/example/mxbeans/QueueSample.java

16-5



17
MBean Descriptors

This example demonstrates the use of MBean Descriptors. The source code contained in this
section is used to create corresponding files in the examples/ directory specified in the
appropriate setup procedure and includes:

• README file

• Author

• DisplayName

• Main

• QueueSample

• QueueSampler

• QueueSamplerMXBean

• Version

examples/Descriptors/README

# 
=============================================================================
=
#
#  JMX Tutorial Introductory Example : Instrumenting Your Own Applications.
#                                      Using Descriptors and the 
DescriptorKey
#                                      meta-annotation.
#
#  The aim of this example is to show how the new DescriptorKey meta-
annotation
#  can be used in order to add new descriptor items to the Descriptors for a
#  Standard MBean (or MXBean) via annotations in the Standard MBean (or 
MXBean)
#  interface. The MXBeans example will be the starting point for this 
example.
#
# 
=============================================================================
=
#
# In order to compile and run the example, make a copy of this README file, 
and
# then simply cut and paste all the commands as needed into a terminal 
window.
#
# This README makes the assumption that you are running under Java SE 6 on 
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Unix,
# you are familiar with the JMX technology, and with the bourne shell 
or korn
# shell syntax.
#
# All the commands below are defined using Unix korn shell syntax.
#
# If you are not running Unix and korn shell you are expected to be 
able to
# adapt these commands to your favorite OS and shell environment.
#

# Compile Java classes
#
# The Java classes used in this example are contained in the 
com.example.mxbeans
# Java package.
#
# * Main.java: gets the Platform MBean Server, and creates
#              and registers the QueueSampler MXBean on it.
#
# * QueueSampler.java: implements the QueueSampler MXBean.
#
# * QueueSamplerMXBean.java: the management interface exposed
#                            by the QueueSampler MXBean.
#
# * QueueSample.java: the Java type returned by the getQueueSample()
#                     method in the QueueSampler MXBean interface.
#
# * DisplayName.java: This annotation is used in QueueSamplerMXBean to 
supply
#                     a display name for a method in the MBean 
interface.
#
# * Author.java: This annotation is used in QueueSamplerMXBean to 
supply
#                the name of the creator of the MBean interface.
#
# * Version.java: This annotation is used in QueueSamplerMXBean to 
supply
#                 the current version of the MBean interface.
#

javac com/example/mxbeans/*.java

# Start the Main application
#

java com.example.mxbeans.Main

# Start jconsole on a different shell window on the same machine
#
# JConsole is located in $(J2SE_HOME)/bin/jconsole
#
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jconsole

# 
=============================================================================
=

examples/Descriptors/com/example/mxbeans/Author.java

/**
 * Author.java - This annotation allows to supply
 * the name of the creator of the MBean interface.
 */

package com.example.mxbeans;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import javax.management.DescriptorKey;

@Documented
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Author {
    @DescriptorKey("author")
    String value();
}

examples/Descriptors/com/example/mxbeans/DisplayName.java

/**
 * DisplayName.java - This annotation allows to supply
 * a display name for a method in the MBean interface.
 */

package com.example.mxbeans;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import javax.management.DescriptorKey;

@Documented
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
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public @interface DisplayName {
    @DescriptorKey("displayName")
    String value();
}

examples/Descriptors/com/example/mxbeans/Main.java

/**
 * Main.java - main class for QueueSampler example. Create the Queue 
Sampler
 * MXBean, register it, then wait forever (or until the program is 
interrupted).
 */

package com.example.mxbeans;

import java.lang.management.ManagementFactory;
import java.util.Queue;
import java.util.concurrent.ArrayBlockingQueue;
import javax.management.MBeanServer;
import javax.management.ObjectName;

public class Main {
    /* For simplicity, we declare "throws Exception".  Real programs
       will usually want finer-grained exception handling.  */
    public static void main(String[] args) throws Exception {
        // Get the Platform MBean Server
        MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();

        // Construct the ObjectName for the MBean we will register
        ObjectName name =
                new 
ObjectName("com.example.mxbeans:type=QueueSampler");

        // Create the Queue Sampler MXBean
        Queue<String> queue = new ArrayBlockingQueue<String>(10);
        queue.add("Request-1");
        queue.add("Request-2");
        queue.add("Request-3");
        QueueSampler mxbean = new QueueSampler(queue);

        // Register the Queue Sampler MXBean
        mbs.registerMBean(mxbean, name);

        // Wait forever
        System.out.println("Waiting...");
        Thread.sleep(Long.MAX_VALUE);
    }
}
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examples/Descriptors/com/example/mxbeans/
QueueSample.java

/**
 * QueueSample.java - Java type representing a snapshot of a given queue.
 * It bundles together the instant time the snapshot was taken, the queue
 * size and the queue head.
 */

package com.example.mxbeans;

import java.beans.ConstructorProperties;
import java.util.Date;

public class QueueSample {

    private final Date date;
    private final int size;
    private final String head;

    @ConstructorProperties({"date", "size", "head"})
    public QueueSample(Date date, int size, String head) {
        this.date = date;
        this.size = size;
        this.head = head;
    }

    public Date getDate() {
        return date;
    }

    public int getSize() {
        return size;
    }

    public String getHead() {
        return head;
    }
}

examples/Descriptors/com/example/mxbeans/
QueueSampler.java

/**
 * QueueSampler.java - MXBean implementation for the QueueSampler MXBean.
 * This class must implement all the Java methods declared in the
 * QueueSamplerMXBean interface, with the appropriate behavior for each one.
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 */

package com.example.mxbeans;

import java.util.Date;
import java.util.Queue;

public class QueueSampler implements QueueSamplerMXBean {

    private Queue<String> queue;

    public QueueSampler(Queue<String> queue) {
        this.queue = queue;
    }

    public QueueSample getQueueSample() {
        synchronized (queue) {
            return new QueueSample(new Date(), queue.size(), 
queue.peek());
        }
    }

    public void clearQueue() {
        synchronized (queue) {
            queue.clear();
        }
    }
}

examples/Descriptors/com/example/mxbeans/
QueueSamplerMXBean.java

/**
 * QueueSamplerMXBean.java - MXBean interface describing the management
 * operations and attributes for the QueueSampler MXBean. In this case
 * there is a read-only attribute "QueueSample" and an operation 
"clearQueue".
 */

package com.example.mxbeans;

@Author("Mr Bean")
@Version("1.0")
public interface QueueSamplerMXBean {
    @DisplayName("GETTER: QueueSample")
    public QueueSample getQueueSample();
    @DisplayName("OPERATION: clearQueue")
    public void clearQueue();
}
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examples/Descriptors/com/example/mxbeans/Version.java

/**
 * Version.java - This annotation allows to supply
 * the current version of the MBean interface.
 */

package com.example.mxbeans;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import javax.management.DescriptorKey;

@Documented
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Version {
    @DescriptorKey("version")
    String value();
}
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18
JMX Connectors

This example provides a sample implementation of how to connect to MBeans and perform
operations on them remotely. The source code contained in this section is used to create
corresponding files in the examples/ directory specified in the appropriate setup procedure
and includes:

• README file

• Server

• SimpleStandardMBean

• SimpleStandard

• SimpleDynamic

• ClientListener

• Client

examples/Basic/README
#
# Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
# ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
#

# 
=============================================================================
=
# 
#  JMX Tutorial Example
#
#  The aim of this example is to show the basic use of the JMX technology. It
#  shows the use of standard and dynamic MBeans, and how to perform 
operations
#  locally and remotely, through the RMI connector. In this example both the
#  SimpleStandard MBean and the SimpleDynamic MBean expose the same 
management
#  interface.
#
# 
=============================================================================
=
#
# In order to compile and run the example, make a copy of this README file, 
and
# then simply cut and paste all the commands as needed into a terminal 
window.
#

18-1



# This README makes the assumption that you are running under Java SE 
6 on Unix,
# you are familiar with the JMX technology, and with the bourne shell 
or korn
# shell syntax.
#
# All the commands below are defined using Unix korn shell syntax.
#
# If you are not running Unix and korn shell you are expected to be 
able to
# adapt these commands to your favorite OS and shell environment.
#

# Compile Java classes
#
# * Server.java: creates an MBeanServer,
#                registers a SimpleStandard MBean on the local 
MBeanServer,
#                registers a SimpleDynamic MBean on the local 
MBeanServer,
#                performs local operations on both MBeans,
#                creates and starts an RMI connector server (JRMP).
#
# * Client.java: creates an RMI connector (JRMP),
#                registers a SimpleStandard MBean on the remote 
MBeanServer,
#                registers a SimpleDynamic MBean on the remote 
MBeanServer,
#                performs remote operations on both MBeans,
#                closes the RMI connector.
#
# * ClientListener.java: implements a generic notification listener.
#
# * SimpleStandard.java: implements the Simple standard MBean.
#
# * SimpleStandardMBean.java: the management interface exposed
#                             by the Simple standard MBean.
#
# * SimpleDynamic.java: implements the Simple dynamic MBean.
#

javac *.java

# Start the RMI registry:
#

rmiregistry 9999 &

# Start the Server (follow the server's execution steps
#                   until it prompts you to start the
#                   client on a different shell window)
#

java -classpath . Server
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# Start the Client (on a different shell window)
#

java -classpath . Client

# 
=============================================================================
=

examples/Basic/Server.java
/*
 * Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   - Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   - Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *
 *   - Neither the name of Oracle or the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */ 

import java.io.IOException;
import javax.management.Attribute;
import javax.management.MBeanAttributeInfo;
import javax.management.MBeanConstructorInfo;
import javax.management.MBeanInfo;
import javax.management.MBeanNotificationInfo;
import javax.management.MBeanOperationInfo;
import javax.management.MBeanServer;
import javax.management.MBeanServerFactory;
import javax.management.ObjectName;
import javax.management.remote.JMXConnectorServer;
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import javax.management.remote.JMXConnectorServerFactory;
import javax.management.remote.JMXServiceURL;

public class Server {

    public static void main(String[] args) {
        try {
            // Instantiate the MBean server
            //
            echo("\n>>> Create the MBean server");
            MBeanServer mbs = MBeanServerFactory.createMBeanServer();
            waitForEnterPressed();

            // Get default domain
            //
            echo("\n>>> Get the MBean server's default domain");
            String domain = mbs.getDefaultDomain();
            echo("\tDefault Domain = " + domain);
            waitForEnterPressed();

            // Create and register the SimpleStandard MBean
            //
            String mbeanClassName = "SimpleStandard";
            String mbeanObjectNameStr =
                domain + ":type=" + mbeanClassName + ",name=1";
            ObjectName mbeanObjectName =
                createSimpleMBean(mbs, mbeanClassName, 
mbeanObjectNameStr);
            waitForEnterPressed();

            // Get and display the management information exposed by 
the
            // SimpleStandard MBean
            //
            printMBeanInfo(mbs, mbeanObjectName, mbeanClassName);
            waitForEnterPressed();

            // Manage the SimpleStandard MBean
            //
            manageSimpleMBean(mbs, mbeanObjectName, mbeanClassName);
            waitForEnterPressed();

            // Create and register the SimpleDynamic MBean
            //
            mbeanClassName = "SimpleDynamic";
            mbeanObjectNameStr =
                domain + ":type=" + mbeanClassName + ",name=1";
            mbeanObjectName =
                createSimpleMBean(mbs, mbeanClassName, 
mbeanObjectNameStr);
            waitForEnterPressed();

            // Get and display the management information exposed by 
the
            // SimpleDynamic MBean
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            //
            printMBeanInfo(mbs, mbeanObjectName, mbeanClassName);
            waitForEnterPressed();

            // Manage the SimpleDynamic MBean
            //
            manageSimpleMBean(mbs, mbeanObjectName, mbeanClassName);
            waitForEnterPressed();

            // Create an RMI connector server
            //
            echo("\nCreate an RMI connector server");
            JMXServiceURL url = new JMXServiceURL(
                      "service:jmx:rmi:///jndi/rmi://localhost:9999/server");
            JMXConnectorServer cs =
                JMXConnectorServerFactory.newJMXConnectorServer(url, null, 
mbs);

            // Start the RMI connector server
            //
            echo("\nStart the RMI connector server");
            cs.start();
            echo("\nThe RMI connector server successfully started");
            echo("and is ready to handle incoming connections");
            echo("\nStart the client on a different window and");
            echo("press <Enter> once the client has finished");
            waitForEnterPressed();

            // Stop the RMI connector server
            //
            echo("\nStop the RMI connector server");
            cs.stop();
            System.out.println("\nBye! Bye!");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    private static ObjectName createSimpleMBean(MBeanServer mbs,
                                                String mbeanClassName,
                                                String mbeanObjectNameStr) {
        echo("\n>>> Create the " + mbeanClassName +
             " MBean within the MBeanServer");
        echo("\tObjectName = " + mbeanObjectNameStr);
        try {
            ObjectName mbeanObjectName =
                ObjectName.getInstance(mbeanObjectNameStr);
            mbs.createMBean(mbeanClassName, mbeanObjectName);
            return mbeanObjectName;
        } catch (Exception e) {
            echo("\t!!! Could not create the " + mbeanClassName + " 
MBean !!!");
            e.printStackTrace();
            echo("\nEXITING...\n");
            System.exit(1);

Chapter 18
examples/Basic/Server.java

18-5



        }
        return null;
    }

    private static void printMBeanInfo(MBeanServer mbs,
                                       ObjectName mbeanObjectName,
                                       String mbeanClassName) {
        echo("\n>>> Retrieve the management information for the " +
             mbeanClassName);
        echo("    MBean using the getMBeanInfo() method of the 
MBeanServer");
        MBeanInfo info = null;
        try {
            info = mbs.getMBeanInfo(mbeanObjectName);
        } catch (Exception e) {
            echo("\t!!! Could not get MBeanInfo object for " +
                 mbeanClassName +" !!!");
            e.printStackTrace();
            return;
        }
        echo("\nCLASSNAME: \t" + info.getClassName());
        echo("\nDESCRIPTION: \t" + info.getDescription());
        echo("\nATTRIBUTES");
        MBeanAttributeInfo[] attrInfo = info.getAttributes();
        if (attrInfo.length > 0) {
            for (int i = 0; i < attrInfo.length; i++) {
                echo(" ** NAME: \t" + attrInfo[i].getName());
                echo("    DESCR: \t" + attrInfo[i].getDescription());
                echo("    TYPE: \t" + attrInfo[i].getType() +
                     "\tREAD: "+ attrInfo[i].isReadable() +
                     "\tWRITE: "+ attrInfo[i].isWritable());
            }
        } else echo(" ** No attributes **");
        echo("\nCONSTRUCTORS");
        MBeanConstructorInfo[] constrInfo = info.getConstructors();
        for (int i=0; i<constrInfo.length; i++) {
            echo(" ** NAME: \t" + constrInfo[i].getName());
            echo("    DESCR: \t" + constrInfo[i].getDescription());
            echo("    PARAM: \t" + constrInfo[i].getSignature().length 
+
                 " parameter(s)");
        }
        echo("\nOPERATIONS");
        MBeanOperationInfo[] opInfo = info.getOperations();
        if (opInfo.length > 0) {
            for (int i = 0; i < opInfo.length; i++) {
                echo(" ** NAME: \t" + opInfo[i].getName());
                echo("    DESCR: \t" + opInfo[i].getDescription());
                echo("    PARAM: \t" + opInfo[i].getSignature().length 
+
                     " parameter(s)");
            }
        } else echo(" ** No operations ** ");
        echo("\nNOTIFICATIONS");
        MBeanNotificationInfo[] notifInfo = info.getNotifications();
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        if (notifInfo.length > 0) {
            for (int i = 0; i < notifInfo.length; i++) {
                echo(" ** NAME: \t" + notifInfo[i].getName());
                echo("    DESCR: \t" + notifInfo[i].getDescription());
                String notifTypes[] = notifInfo[i].getNotifTypes();
                for (int j = 0; j < notifTypes.length; j++) {
                    echo("    TYPE: \t" + notifTypes[j]);
                }
            }
        } else echo(" ** No notifications **");
    }

    private static void manageSimpleMBean(MBeanServer mbs,
                                          ObjectName mbeanObjectName,
                                          String mbeanClassName) {

        echo("\n>>> Manage the " + mbeanClassName +
             " MBean using its attributes ");
        echo("    and operations exposed for management");

        try {
            // Get attribute values
            printSimpleAttributes(mbs, mbeanObjectName);

            // Change State attribute
            echo("\n    Setting State attribute to value \"new state\"...");
            Attribute stateAttribute = new Attribute("State","new state");
            mbs.setAttribute(mbeanObjectName, stateAttribute);

            // Get attribute values
            printSimpleAttributes(mbs, mbeanObjectName);

            // Invoking reset operation
            echo("\n    Invoking reset operation...");
            mbs.invoke(mbeanObjectName, "reset", null, null);

            // Get attribute values
            printSimpleAttributes(mbs, mbeanObjectName);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    private static void printSimpleAttributes(MBeanServer mbs,
                                              ObjectName mbeanObjectName) {
        try {
            echo("\n    Getting attribute values:");
            String State = (String) mbs.getAttribute(mbeanObjectName, 
"State");
            Integer NbChanges =
                (Integer) mbs.getAttribute(mbeanObjectName,"NbChanges");
            echo("\tState     = \"" + State + "\"");
            echo("\tNbChanges = " + NbChanges);
        } catch (Exception e) {
            echo("\t!!! Could not read attributes !!!");
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            e.printStackTrace();
        }
    }

    private static void echo(String msg) {
        System.out.println(msg);
    }

    private static void sleep(int millis) {
        try {
            Thread.sleep(millis);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    private static void waitForEnterPressed() {
        try {
            echo("\nPress <Enter> to continue...");
            System.in.read();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

examples/Basic/SimpleStandardMBean.java
/*
 * Copyright (c) 2004, Oracle and/or its affiliates. All rights 
reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   - Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   - Redistributions in binary form must reproduce the above 
copyright
 *     notice, this list of conditions and the following disclaimer in 
the
 *     documentation and/or other materials provided with the 
distribution.
 *
 *   - Neither the name of Oracle or the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
"AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
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LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */ 

/**
 * This is the management interface explicitly defined for the
 * "SimpleStandard" standard MBean.
 *
 * The "SimpleStandard" standard MBean implements this interface
 * in order to be manageable through a JMX agent.
 *
 * The "SimpleStandardMBean" interface shows how to expose for management:
 * - a read/write attribute (named "State") through its getter and setter
 *   methods,
 * - a read-only attribute (named "NbChanges") through its getter method,
 * - an operation (named "reset").
 */
public interface SimpleStandardMBean {

    /**
     * Getter: set the "State" attribute of the "SimpleStandard" standard
     * MBean.
     *
     * @return the current value of the "State" attribute.
     */
    public String getState();

    /**
     * Setter: set the "State" attribute of the "SimpleStandard" standard
     * MBean.
     *
     * @param <VAR>s</VAR> the new value of the "State" attribute.
     */
    public void setState(String s);

    /**
     * Getter: get the "NbChanges" attribute of the "SimpleStandard" standard
     * MBean.
     *
     * @return the current value of the "NbChanges" attribute.
     */
    public int getNbChanges();

    /**
     * Operation: reset to their initial values the "State" and "NbChanges"
     * attributes of the "SimpleStandard" standard MBean.
     */
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    public void reset();
}

examples/Basic/SimpleStandard.java
/*
 * Copyright (c) 2004, Oracle and/or its affiliates. All rights 
reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   - Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   - Redistributions in binary form must reproduce the above 
copyright
 *     notice, this list of conditions and the following disclaimer in 
the
 *     documentation and/or other materials provided with the 
distribution.
 *
 *   - Neither the name of Oracle or the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
"AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */ 

/**
 * Simple definition of a standard MBean, named "SimpleStandard".
 *
 * The "SimpleStandard" standard MBean shows how to expose attributes
 * and operations for management by implementing its corresponding
 * "SimpleStandardMBean" management interface.
 *
 * This MBean has two attributes and one operation exposed
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 * for management by a JMX agent:
 *      - the read/write "State" attribute,
 *      - the read only "NbChanges" attribute,
 *      - the "reset()" operation.
 *
 * This object also has one property and one method not exposed
 * for management by a JMX agent:
 *      - the "NbResets" property,
 *      - the "getNbResets()" method.
 */

import javax.management.AttributeChangeNotification;
import javax.management.MBeanNotificationInfo;
import javax.management.NotificationBroadcasterSupport;

public class SimpleStandard
    extends NotificationBroadcasterSupport
    implements SimpleStandardMBean {

    /*
     * -----------------------------------------------------
     * CONSTRUCTORS
     * -----------------------------------------------------
     */

    /* "SimpleStandard" does not provide any specific constructors.
     * However, "SimpleStandard" is JMX compliant with regards to
     * contructors because the default contructor SimpleStandard()
     * provided by the Java compiler is public.
     */

    /*
     * -----------------------------------------------------
     * IMPLEMENTATION OF THE SimpleStandardMBean INTERFACE
     * -----------------------------------------------------
     */

    /**
     * Getter: get the "State" attribute of the "SimpleStandard" standard 
MBean.
     *
     * @return the current value of the "State" attribute.
     */
    public String getState() {
        return state;
    }

    /**
     * Setter: set the "State" attribute of the "SimpleStandard" standard 
MBean.
     *
     * @param <VAR>s</VAR> the new value of the "State" attribute.
     */
    public void setState(String s) {
        state = s;
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        nbChanges++;
    }

    /**
     * Getter: get the "NbChanges" attribute of the "SimpleStandard" 
standard
     * MBean.
     *
     * @return the current value of the "NbChanges" attribute.
     */
    public int getNbChanges() {
        return nbChanges;
    }

    /**
     * Operation: reset to their initial values the "State" and 
"NbChanges"
     * attributes of the "SimpleStandard" standard MBean.
     */
    public void reset() {
        AttributeChangeNotification acn =
            new AttributeChangeNotification(this,
                                            0,
                                            0,
                                            "NbChanges reset",
                                            "NbChanges",
                                            "Integer",
                                            new Integer(nbChanges),
                                            new Integer(0));
        state = "initial state";
        nbChanges = 0;
        nbResets++;
        sendNotification(acn);
    }

    /*
     * -----------------------------------------------------
     * METHOD NOT EXPOSED FOR MANAGEMENT BY A JMX AGENT
     * -----------------------------------------------------
     */

    /**
     * Return the "NbResets" property.
     * This method is not a Getter in the JMX sense because it
     * is not exposed in the "SimpleStandardMBean" interface.
     *
     * @return the current value of the "NbResets" property.
     */
    public int getNbResets() {
        return nbResets;
    }

    /**
     * Returns an array indicating, for each notification this MBean
     * may send, the name of the Java class of the notification and
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     * the notification type.</p>
     *
     * @return the array of possible notifications.
     */
    public MBeanNotificationInfo[] getNotificationInfo() {
        return new MBeanNotificationInfo[] {
            new MBeanNotificationInfo(
            new String[] { AttributeChangeNotification.ATTRIBUTE_CHANGE },
            AttributeChangeNotification.class.getName(),
            "This notification is emitted when the reset() method is 
called.")
        };
    }

    /*
     * -----------------------------------------------------
     * ATTRIBUTES ACCESSIBLE FOR MANAGEMENT BY A JMX AGENT
     * -----------------------------------------------------
     */

    private String state = "initial state";
    private int nbChanges = 0;

    /*
     * -----------------------------------------------------
     * PROPERTY NOT ACCESSIBLE FOR MANAGEMENT BY A JMX AGENT
     * -----------------------------------------------------
     */

    private int nbResets = 0;
}

examples/Basic/SimpleDynamic.java
/*
 * Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   - Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   - Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *
 *   - Neither the name of Oracle or the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
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 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */ 

/**
 * Simple definition of a dynamic MBean, named "SimpleDynamic".
 *
 * The "SimpleDynamic" dynamic MBean shows how to expose for management
 * attributes and operations, at runtime,  by implementing the
 * "javax.management.DynamicMBean" interface.
 *
 * This MBean exposes for management two attributes and one operation:
 *      - the read/write "State" attribute,
 *      - the read only "NbChanges" attribute,
 *      - the "reset()" operation.
 * It does so by putting this information in an MBeanInfo object that
 * is returned by the getMBeanInfo() method of the DynamicMBean 
interface.
 *
 * It implements the access to its attributes through the 
getAttribute(),
 * getAttributes(), setAttribute(), and setAttributes() methods of the
 * DynamicMBean interface.
 *
 * It implements the invocation of its reset() operation through the
 * invoke() method of the DynamicMBean interface.
 *
 * Note that as "SimpleDynamic" explicitly defines one constructor,
 * this constructor must be public and exposed for management through
 * the MBeanInfo object.
 */

import java.lang.reflect.Constructor;
import java.util.Iterator;
import javax.management.*;

public class SimpleDynamic
    extends NotificationBroadcasterSupport
    implements DynamicMBean {

    /*
     * -----------------------------------------------------
     * CONSTRUCTORS

Chapter 18
examples/Basic/SimpleDynamic.java

18-14



     * -----------------------------------------------------
     */

    public SimpleDynamic() {
        // Build the management information to be exposed by the dynamic 
MBean
        //
        buildDynamicMBeanInfo();
    }

    /*
     * -----------------------------------------------------
     * IMPLEMENTATION OF THE DynamicMBean INTERFACE
     * -----------------------------------------------------
     */

    /**
     * Allows the value of the specified attribute of the Dynamic MBean to be
     * obtained.
     */
    public Object getAttribute(String attribute_name)
        throws AttributeNotFoundException,
               MBeanException,
               ReflectionException {

        // Check attribute_name is not null to avoid NullPointerException
        // later on
        //
        if (attribute_name == null) {
            throw new RuntimeOperationsException(
                  new IllegalArgumentException("Attribute name cannot be 
null"),
                  "Cannot invoke a getter of " + dClassName +
                  " with null attribute name");
        }
        // Check for a recognized attribute_name and call the corresponding
        // getter
        //
        if (attribute_name.equals("State")) {
            return getState();
        }
        if (attribute_name.equals("NbChanges")) {
            return getNbChanges();
        }
        // If attribute_name has not been recognized throw an
        // AttributeNotFoundException
        //
        throw new AttributeNotFoundException("Cannot find " +
                                             attribute_name +
                                             " attribute in " +
                                             dClassName);
    }

    /**
     * Sets the value of the specified attribute of the Dynamic MBean.
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     */
    public void setAttribute(Attribute attribute)
        throws AttributeNotFoundException,
               InvalidAttributeValueException,
               MBeanException,
               ReflectionException {

        // Check attribute is not null to avoid NullPointerException 
later on
        //
        if (attribute == null) {
            throw new RuntimeOperationsException(
                  new IllegalArgumentException("Attribute cannot be 
null"),
                  "Cannot invoke a setter of " + dClassName +
                  " with null attribute");
        }
        String name = attribute.getName();
        Object value = attribute.getValue();
        if (name == null) {
            throw new RuntimeOperationsException(
                  new IllegalArgumentException("Attribute name cannot 
be null"),
                  "Cannot invoke the setter of " + dClassName +
                  " with null attribute name");
        }
        // Check for a recognized attribute name and call the 
corresponding
        // setter
        //
        if (name.equals("State")) {
            // if null value, try and see if the setter returns any 
exception
            if (value == null) {
                try {
                    setState( null );
                } catch (Exception e) {
                    throw new InvalidAttributeValueException(
                              "Cannot set attribute " + name + " to 
null");
                }
            }
            // if non null value, make sure it is assignable to the 
attribute
            else {
                try {
                    if 
(Class.forName("java.lang.String").isAssignableFrom(
                                                          
value.getClass())) {
                        setState((String) value);
                    } else {
                        throw new InvalidAttributeValueException(
                                  "Cannot set attribute " + name + " 
to a " +

Chapter 18
examples/Basic/SimpleDynamic.java

18-16



                                  value.getClass().getName() +
                                  " object, String expected");
                    }
                } catch (ClassNotFoundException e) {
                    e.printStackTrace();
                }
            }
        }
        // recognize an attempt to set "NbChanges" attribute (read-only):
        else if (name.equals("NbChanges")) {
            throw new AttributeNotFoundException(
                  "Cannot set attribute " + name + " because it is read-
only");
        }
        // unrecognized attribute name:
        else {
            throw new AttributeNotFoundException("Attribute " + name +
                                                 " not found in " +
                                                 this.getClass().getName());
        }
    }

    /**
     * Enables the to get the values of several attributes of the Dynamic 
MBean.
     */
    public AttributeList getAttributes(String[] attributeNames) {

        // Check attributeNames is not null to avoid NullPointerException
        // later on
        //
        if (attributeNames == null) {
            throw new RuntimeOperationsException(
                new IllegalArgumentException("attributeNames[] cannot be 
null"),
                "Cannot invoke a getter of " + dClassName);
        }
        AttributeList resultList = new AttributeList();

        // If attributeNames is empty, return an empty result list
        //
        if (attributeNames.length == 0)
            return resultList;

        // Build the result attribute list
        //
        for (int i = 0 ; i < attributeNames.length ; i++) {
            try {
                Object value = getAttribute((String) attributeNames[i]);
                resultList.add(new Attribute(attributeNames[i],value));
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
        return resultList;

Chapter 18
examples/Basic/SimpleDynamic.java

18-17



    }

    /**
     * Sets the values of several attributes of the Dynamic MBean, and 
returns
     * the list of attributes that have been set.
     */
    public AttributeList setAttributes(AttributeList attributes) {

        // Check attributes is not null to avoid NullPointerException 
later on
        //
        if (attributes == null) {
            throw new RuntimeOperationsException(
                      new IllegalArgumentException(
                                 "AttributeList attributes cannot be 
null"),
                      "Cannot invoke a setter of " + dClassName);
        }
        AttributeList resultList = new AttributeList();

        // If attributeNames is empty, nothing more to do
        //
        if (attributes.isEmpty())
            return resultList;

        // For each attribute, try to set it and add to the result 
list if
        // successfull
        //
        for (Iterator i = attributes.iterator(); i.hasNext();) {
            Attribute attr = (Attribute) i.next();
            try {
                setAttribute(attr);
                String name = attr.getName();
                Object value = getAttribute(name);
                resultList.add(new Attribute(name,value));
            } catch(Exception e) {
                e.printStackTrace();
            }
        }
        return resultList;
    }

    /**
     * Allows an operation to be invoked on the Dynamic MBean.
     */
    public Object invoke(String operationName,
                         Object params[],
                         String signature[])
        throws MBeanException, ReflectionException {

        // Check operationName is not null to avoid 
NullPointerException
        // later on
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        //
        if (operationName == null) {
            throw new RuntimeOperationsException(
                 new IllegalArgumentException("Operation name cannot be 
null"),
                 "Cannot invoke a null operation in " + dClassName);
        }
        // Check for a recognized operation name and call the corresponding
        // operation
        //
        if (operationName.equals("reset")) {
            reset();
            return null;
        } else {
            // Unrecognized operation name
            //
            throw new ReflectionException(
                                new NoSuchMethodException(operationName),
                                "Cannot find the operation " + operationName 
+
                                " in " + dClassName);
        }
    }

    /**
     * This method provides the exposed attributes and operations of the
     * Dynamic MBean. It provides this information using an MBeanInfo object.
     */
    public MBeanInfo getMBeanInfo() {

        // Return the information we want to expose for management:
        // the dMBeanInfo private field has been built at instanciation time
        //
        return dMBeanInfo;
    }

    /*
     * -----------------------------------------------------
     * OTHER PUBLIC METHODS
     * -----------------------------------------------------
     */

    /**
     * Getter: get the "State" attribute of the "SimpleDynamic" dynamic 
MBean.
     */
    public String getState() {
        return state;
    }

    /**
     * Setter: set the "State" attribute of the "SimpleDynamic" dynamic 
MBean.
     */
    public void setState(String s) {
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        state = s;
        nbChanges++;
    }

    /**
     * Getter: get the "NbChanges" attribute of the "SimpleDynamic" 
dynamic
     * MBean.
     */
    public Integer getNbChanges() {
        return new Integer(nbChanges);
    }

    /**
     * Operation: reset to their initial values the "State" and 
"NbChanges"
     * attributes of the "SimpleDynamic" dynamic MBean.
     */
    public void reset() {
        AttributeChangeNotification acn =
            new AttributeChangeNotification(this,
                                            0,
                                            0,
                                            "NbChanges reset",
                                            "NbChanges",
                                            "Integer",
                                            new Integer(nbChanges),
                                            new Integer(0));
        state = "initial state";
        nbChanges = 0;
        nbResets++;
        sendNotification(acn);
    }

    /**
     * Return the "NbResets" property.
     * This method is not a Getter in the JMX sense because
     * it is not returned by the getMBeanInfo() method.
     */
    public Integer getNbResets() {
        return new Integer(nbResets);
    }

    /*
     * -----------------------------------------------------
     * PRIVATE METHODS
     * -----------------------------------------------------
     */

    /**
     * Build the private dMBeanInfo field,
     * which represents the management interface exposed by the MBean,
     * that is, the set of attributes, constructors, operations and
     * notifications which are available for management.
     *
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     * A reference to the dMBeanInfo object is returned by the getMBeanInfo()
     * method of the DynamicMBean interface. Note that, once constructed, an
     * MBeanInfo object is immutable.
     */
    private void buildDynamicMBeanInfo() {

        dAttributes[0] =
            new MBeanAttributeInfo("State",
                                   "java.lang.String",
                                   "State string.",
                                   true,
                                   true,
                                   false);
        dAttributes[1] =
            new MBeanAttributeInfo("NbChanges",
                                   "java.lang.Integer",
                                   "Number of times the " +
                                   "State string has been changed.",
                                   true,
                                   false,
                                   false);

        Constructor[] constructors = this.getClass().getConstructors();
        dConstructors[0] =
            new MBeanConstructorInfo("Constructs a " +
                                     "SimpleDynamic object",
                                     constructors[0]);

        MBeanParameterInfo[] params = null;
        dOperations[0] =
            new MBeanOperationInfo("reset",
                                   "reset State and NbChanges " +
                                   "attributes to their initial values",
                                   params ,
                                   "void",
                                   MBeanOperationInfo.ACTION);

        dNotifications[0] =
            new MBeanNotificationInfo(
            new String[] { AttributeChangeNotification.ATTRIBUTE_CHANGE },
            AttributeChangeNotification.class.getName(),
            "This notification is emitted when the reset() method is 
called.");

        dMBeanInfo = new MBeanInfo(dClassName,
                                   dDescription,
                                   dAttributes,
                                   dConstructors,
                                   dOperations,
                                   dNotifications);
    }

    /*
     * -----------------------------------------------------
     * PRIVATE VARIABLES
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     * -----------------------------------------------------
     */

    private String state = "initial state";
    private int nbChanges = 0;
    private int nbResets = 0;

    private String dClassName = this.getClass().getName();
    private String dDescription = "Simple implementation of a dynamic 
MBean.";

    private MBeanAttributeInfo[] dAttributes =
        new MBeanAttributeInfo[2];
    private MBeanConstructorInfo[] dConstructors =
        new MBeanConstructorInfo[1];
    private MBeanNotificationInfo[] dNotifications =
        new MBeanNotificationInfo[1];
    private MBeanOperationInfo[] dOperations =
        new MBeanOperationInfo[1];
    private MBeanInfo dMBeanInfo = null;
}

examples/Basic/ClientListener.java
/*
 * Copyright (c) 2004, Oracle and/or its affiliates. All rights 
reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   - Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   - Redistributions in binary form must reproduce the above 
copyright
 *     notice, this list of conditions and the following disclaimer in 
the
 *     documentation and/or other materials provided with the 
distribution.
 *
 *   - Neither the name of Oracle or the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
"AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
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 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */ 

import javax.management.Notification;
import javax.management.NotificationListener;

public class ClientListener implements NotificationListener {
    public void handleNotification(Notification notification, Object 
handback) {
        System.out.println("\nReceived notification: " + notification);
    }
}

examples/Basic/Client.java
/*
 * Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   - Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   - Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *
 *   - Neither the name of Oracle or the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */ 

import java.io.IOException;
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import java.util.Iterator;
import java.util.Set;
import javax.management.Attribute;
import javax.management.JMX;
import javax.management.MBeanServerConnection;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;

public class Client {

    public static void main(String[] args) {
        try {
            // Create an RMI connector client and
            // connect it to the RMI connector server
            //
            echo("\nCreate an RMI connector client and " +
                 "connect it to the RMI connector server");
            JMXServiceURL url = new JMXServiceURL(
                      "service:jmx:rmi:///jndi/rmi://localhost:9999/
server");
            JMXConnector jmxc = JMXConnectorFactory.connect(url, null);

            // Create listener
            //
            ClientListener listener = new ClientListener();

            // Get an MBeanServerConnection
            //
            echo("\nGet an MBeanServerConnection");
            MBeanServerConnection mbsc = 
jmxc.getMBeanServerConnection();
            waitForEnterPressed();

            // Get domains from MBeanServer
            //
            echo("\nDomains:");
            String domains[] = mbsc.getDomains();
            for (int i = 0; i < domains.length; i++) {
                echo("\tDomain[" + i + "] = " + domains[i]);
            }
            waitForEnterPressed();

            // Get MBeanServer's default domain
            //
            String domain = mbsc.getDefaultDomain();

            // Create SimpleStandard MBean
            //
            ObjectName stdMBeanName =
                new ObjectName(domain +":type=SimpleStandard,name=2");
            echo("\nCreate SimpleStandard MBean...");
            mbsc.createMBean("SimpleStandard", stdMBeanName, null, 
null);
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            waitForEnterPressed();

            // Create SimpleDynamic MBean
            //
            ObjectName dynMBeanName =
                new ObjectName(domain +":type=SimpleDynamic,name=2");
            echo("\nCreate SimpleDynamic MBean...");
            mbsc.createMBean("SimpleDynamic", dynMBeanName, null, null);
            waitForEnterPressed();

            // Get MBean count
            //
            echo("\nMBean count = " + mbsc.getMBeanCount());

            // Query MBean names
            //
            echo("\nQuery MBeanServer MBeans:");
            Set names = mbsc.queryNames(null, null);
            for (Iterator i = names.iterator(); i.hasNext(); ) {
                echo("\tObjectName = " + (ObjectName) i.next());
            }
            waitForEnterPressed();

            // -------------------------------
            // Manage the SimpleStandard MBean
            // -------------------------------
            echo("\n>>> Perform operations on SimpleStandard MBean <<<");

            // Get State attribute in SimpleStandard MBean
            //
            echo("\nState = " + mbsc.getAttribute(stdMBeanName, "State"));

            // Set State attribute in SimpleStandard MBean
            //
            mbsc.setAttribute(stdMBeanName,
                              new Attribute("State", "changed state"));

            // Get State attribute in SimpleStandard MBean
            //
            // Another way of interacting with a given MBean is through a
            // dedicated proxy instead of going directly through the MBean
            // server connection
            //
            SimpleStandardMBean proxy = JMX.newMBeanProxy(
                    mbsc, stdMBeanName, SimpleStandardMBean.class, true);
            echo("\nState = " + proxy.getState());

            // Add notification listener on SimpleStandard MBean
            //
            echo("\nAdd notification listener...");
            mbsc.addNotificationListener(stdMBeanName, listener, null, null);

            // Invoke "reset" in SimpleStandard MBean
            //
            // Calling "reset" makes the SimpleStandard MBean emit a
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            // notification that will be received by the registered
            // ClientListener.
            //
            echo("\nInvoke reset() in SimpleStandard MBean...");
            mbsc.invoke(stdMBeanName, "reset", null, null);

            // Sleep for 2 seconds in order to have time to receive the
            // notification before removing the notification listener.
            //
            echo("\nWaiting for notification...");
            sleep(2000);

            // Remove notification listener on SimpleStandard MBean
            //
            echo("\nRemove notification listener...");
            mbsc.removeNotificationListener(stdMBeanName, listener);

            // Unregister SimpleStandard MBean
            //
            echo("\nUnregister SimpleStandard MBean...");
            mbsc.unregisterMBean(stdMBeanName);
            waitForEnterPressed();

            // ------------------------------
            // Manage the SimpleDynamic MBean
            // ------------------------------
            echo("\n>>> Perform operations on SimpleDynamic MBean 
<<<");

            // Get State attribute in SimpleDynamic MBean
            //
            echo("\nState = " + mbsc.getAttribute(dynMBeanName, 
"State"));

            // Set State attribute in SimpleDynamic MBean
            //
            mbsc.setAttribute(dynMBeanName,
                              new Attribute("State", "changed state"));

            // Get State attribute in SimpleDynamic MBean
            //
            echo("\nState = " +
                               mbsc.getAttribute(dynMBeanName, 
"State"));

            // Add notification listener on SimpleDynamic MBean
            //
            echo("\nAdd notification listener...");
            mbsc.addNotificationListener(dynMBeanName, listener, null, 
null);

            // Invoke "reset" in SimpleDynamic MBean
            //
            // Calling "reset" makes the SimpleDynamic MBean emit a
            // notification that will be received by the registered
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            // ClientListener.
            //
            echo("\nInvoke reset() in SimpleDynamic MBean...");
            mbsc.invoke(dynMBeanName, "reset", null, null);

            // Sleep for 2 seconds in order to have time to receive the
            // notification before removing the notification listener.
            //
            echo("\nWaiting for notification...");
            sleep(2000);

            // Remove notification listener on SimpleDynamic MBean
            //
            echo("\nRemove notification listener...");
            mbsc.removeNotificationListener(dynMBeanName, listener);

            // Unregister SimpleDynamic MBean
            //
            echo("\nUnregister SimpleDynamic MBean...");
            mbsc.unregisterMBean(dynMBeanName);
            waitForEnterPressed();

            // Close MBeanServer connection
            //
            echo("\nClose the connection to the server");
            jmxc.close();
            echo("\nBye! Bye!");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    private static void echo(String msg) {
        System.out.println(msg);
    }

    private static void sleep(int millis) {
        try {
            Thread.sleep(millis);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    private static void waitForEnterPressed() {
        try {
            echo("\nPress <Enter> to continue...");
            System.in.read();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}
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19
Service Location Protocol (SLP) Lookup
Service

The JMX API defines three bindings to lookup services, using existing lookup technologies
This examples provide a sample implementation of the Service Location Protocol (SLP)
Lookup Service. The source code contained in this section is used to create corresponding
files in the examples/ directory specified in the appropriate setup procedure and includes:

• README file

• Server

• Client

examples/Lookup/slp/README
#
# Copyright (c) 2004, 2019 Oracle and/or its affiliates. All rights reserved.
# ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
#

# 
=============================================================================
=
#
# Example of using SLP as Lookup service - registering and looking up
# an RMI Connector (IIOP/JRMP)
#
# 
=============================================================================
=
#
# Requirements:
#
# The code provided in this example is build against the Java
# implementation of SLP - compliant with RFC 2614 see
# [http://www.ietf.org/rfc/rfc2614.txt].
#
#
# Before running this example you will have to:
#     get a Java implementation of SLP compliant with
#     RFC 2614, section 5. You can download the OpenSLP Java implementation
#     from http://www.openslp.org/. Then you may have to modify Client.java
#     and Server.java in order to use <my-slp-impl>.slp instead of
#     com.sun.slp. If your SLP implementation is RFC 2614 compliant
#     the changes should be limited to replacing 'com.sun.slp' in the
#     import clauses by '<my-slp-impl>.slp'.
#
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# If you wish to use an external directory for the RMI JMX Connectors
# (URLs of the form jmx:service:[rmi|iiop]:/host:port/jndi/jndi-url)
# then:
#
#   o If you wish to use rmiregistry in conjunction with the RMI/JRMP
#     JMX Connector you will have to start a rmiregistry (see below).
#
#   o If you wish to use CORBA Naming Service in conjunction with the 
RMI/IIOP
#     JMX Connector you will have to start an ORB daemon (see below).
#
#   o If you wish to use LDAP in conjunction with the RMI JMX 
Connectors
#     you will have to install/setup a directory server
#
# In order to compile and run the example, make a copy of this README 
file, and
# then simply cut and paste all the commands as needed into a terminal 
window.
#
# This README makes the assumption that you are running under Java SE 
6 on Unix,
# you are familiar with SLP, the JMX technology, with LDAP and JNDI, 
and with
# the bourne shell or korn shell syntax.
#
# All the commands below are defined using Unix korn shell syntax.
#
# If you are not running Unix and korn shell you are expected to be 
able to
# adapt these commands to your favorite OS and shell environment.
#

# Define the following variables:
#
SLPLIB=$SLP_HOME

classp=$SLPLIB/slp.jar

#----------------------------------------------------------------------
---------
# The SLP daemon needs to be launched with root privilege on each
# host who uses the SLP API. To launch the SLP daemon, simply type
# the following command line:
#
su root -c "java -cp $SLPLIB/slpd.jar com.sun.slp.slpd &"

#----------------------------------------------------------------------
---------
# Start an rmiregistry
#
rmiregistry 9999 &

#----------------------------------------------------------------------
---------
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# Start an ORB daemon:
#
rm -rf ./orb.db
orbd -ORBInitialPort 7777 &

#----------------------------------------------------------------------------
---
# Start an LDAP Server, and create a new dc=Test suffix inside.
#
# (only needed if you wish to register the RMI or IIOP stubs in
# LDAP, instead of using CORBA Naming Service or RMI registry)
#
#       You will have
#       to make sure the Java Schema (RFC 2713:
#       http://www.ietf.org/rfc/rfc2713.txt) is known by that server

#----------------------------------------------------------------------------
---
# Compile Server.java and Client.java
#
# * Server.java: creates an MBeanServer, creates and starts an
#                RMI connector (JRMP/IIOP)
# * Client.java: lookup a connector in SLP
#                list all MBeans.
#
javac -d . -classpath $classp Server.java Client.java

#----------------------------------------------------------------------------
---
# LDAP Parameters

# Supply the appropriate hostname below, and define this variable:
#
ldaphost=gigondas

# Supply the appropriate port number below, and define this variable:
#
ldapport=6666

# Supply the appropriate principal below, and define this variable:
#
principal="cn=Directory Manager"

# Supply the appropriate credentials below, and define this variable:
#
credentials=

#----------------------------------------------------------------------------
---
# JNDI URLs
#
jndirmi="rmi://localhost:9999"
jndiiiop="iiop://localhost:7777"
jndildap="ldap://$ldaphost:$ldapport"
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#----------------------------------------------------------------------
---------
# JMX Service URLs
#
jmxiiopurl="service:jmx:iiop:///jndi/${jndiiiop}/server"
jmxrmiurl="service:jmx:rmi:///jndi/${jndirmi}/server"
jmxiiopldapurl="service:jmx:iiop:///jndi/${jndildap}/cn=x,dc=Test"
jmxrmildapurl="service:jmx:rmi:///jndi/${jndildap}/cn=x,dc=Test"
jmxstuburl="service:jmx:rmi://"
jmxiorurl="service:jmx:iiop://"

#----------------------------------------------------------------------
---------
# Below we illustrate the different JMX Connector Servers
# which you have the choice to start. 
# There are seven cases labelled (a) to (f):
#
#   * RMI Connectors
#       + over JRMP
#           - without any external directory (a)
#           - using rmiregistry as external directory (b)
#           - using LDAP as external directory (c)
#       + over IIOP
#           - without any external directory (d)
#           - using CORBA Naming Service as external directory (e)
#           - using LDAP as external directory (f)

# NOTE-1: As defined in section 6.1 "Terminology" of the "JMX Remote 
API 1.0
# Specification" document, an agent is composed of one MBean Server 
and of
# one or more Connector Servers. There can be several agents running 
in one JVM.
# For flexibility of this example, the slp.Server class creates an 
agent which
# is composed of one MBean Server and of only one Connector Server. 
The class
# slp.Server decides which type of Connector Server to create 
depending on the
# value given to the "url" system property when you start the example.

# NOTE-2: The value of the "agent.name" system property is the value 
that the
# slp.Server class will give to the "AgentName" lookup attribute when 
it
# registers the connector's URL in the lookup service. As defined in 
Table 6.1
# "Lookup attributes for connectors" of the "JMX Remote API 1.0 
Specification"
# document: the "AgentName" lookup attribute is a simple name used to 
identify
# the *AGENT* to which the connector is attached. It makes it possible 
to
# search, with a query to the lookup service, for all the connectors 
registered
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# by a given agent.

# (a) You can start an agent with an RMI Connector Server over JRMP
#     without using any external directory
#
java -classpath .:$classp -Ddebug=true \
     -Dagent.name=test-server-a \
     -Durl="service:jmx:rmi://" \
     slp.Server &

# (b) Or you can start an agent with an RMI Connector Server over JRMP
#     using rmiregistry as external directory
#     (Start rmiregistry first, if not yet started)
#
java -classpath .:$classp -Ddebug=true \
     -Dagent.name=test-server-b \
     -Durl="service:jmx:rmi:///jndi/${jndirmi}/server" \
     slp.Server &

# (c) Or you can start an agent with an RMI Connector Server over JRMP
#     using LDAP as external directory
#     (First start an LDAP server and create the dc=Test suffix)
#
java -classpath .:$classp -Ddebug=true \
     -Dagent.name=test-server-c \
     -Durl="service:jmx:rmi:///jndi/${jndildap}/cn=x,dc=Test" \
     -Djava.naming.security.principal="$principal" \
     -Djava.naming.security.credentials="$credentials" \
     slp.Server &

# (d) Or you can start an agent with an RMI Connector Server over IIOP
#     without using any external directory
#
java -classpath .:$classp -Ddebug=true \
     -Dagent.name=test-server-d \
     -Durl="service:jmx:iiop://" \
     slp.Server &

# (e) Or you can start an agent with an RMI Connector Server over IIOP
#     using CORBA Naming Service as external directory
#     (Start ORBD first if not yet started).
#
java -classpath .:$classp -Ddebug=true \
     -Dagent.name=test-server-e \
     -Durl="service:jmx:iiop:///jndi/${jndiiiop}/server" \
     slp.Server &

# (f) Or you can start an agent with an RMI Connector Server over IIOP
#     using LDAP as external directory
#     (First start an LDAP server and create the dc=Test suffix) 
#
java -classpath .:$classp -Ddebug=true \
     -Dagent.name=test-server-f \
     -Durl="service:jmx:iiop:///jndi/${jndildap}/cn=x,dc=Test" \
     -Djava.naming.security.principal="$principal" \
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     -Djava.naming.security.credentials="$credentials" \
     slp.Server &

# Once you have started one or more agents, you can start the Client.
# Note that for the client to look up through SLP an agent you have 
just
# started, you must start the client before your agent's SLP lease has
# expired. You can update the Server.java file and recompile it to 
change
# the lease period.
#
java -classpath .:$classp -Ddebug=true \
     -Djava.naming.security.principal="$principal" \
     -Djava.naming.security.credentials="$credentials" \
     slp.Client

#----------------------------------------------------------------------
---------

examples/Lookup/slp/Server.java
/*
 * Copyright (c) 2004,2021, Oracle and/or its affiliates. All rights 
reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   - Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   - Redistributions in binary form must reproduce the above 
copyright
 *     notice, this list of conditions and the following disclaimer in 
the
 *     documentation and/or other materials provided with the 
distribution.
 *
 *   - Neither the name of Oracle or the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
"AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
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 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */ 

package slp;

import com.sun.slp.ServiceLocationManager;
import com.sun.slp.ServiceLocationException;
import com.sun.slp.Advertiser;
import com.sun.slp.ServiceURL;
import com.sun.slp.ServiceLocationAttribute;

import javax.management.*;
import javax.management.remote.*;
import javax.management.remote.rmi.*;

import java.util.Map;
import java.util.List;
import java.util.HashMap;
import java.util.ArrayList;
import java.util.Locale;
import java.util.Vector;
import java.io.IOException;
import java.io.Serializable;
import java.net.MalformedURLException;

import javax.naming.Context;
import javax.naming.NamingException;

/**
 * This class demonstrates how to use SLP as a lookup service for
 * JSR 160 connectors. It shows how to register a JMXConnectorServer
 * with the Service Location Protocol.
 * <p>
 * See README file and {@link #main(String[])} for more details.
 * <p>
 * Make sure to read the section "Binding with Lookup Services" of
 * the JMX Remote API 1.0 Specification before looking at this example.
 */
public class Server {

    // The Service URL will remain registered for 300 secs.
    // This is an intentionally long time for the purpose of this example.
    // In practice, a shorter lease, periodically refreshed, is preferable.
    //
    public final static int JMX_DEFAULT_LEASE = 300;

    // Default scope.
    //
    public final static String JMX_SCOPE = "DEFAULT";

    // The local MBeanServer.
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    //
    private final MBeanServer mbs;

    private static boolean debug = false;

    /**
     * Constructs a Server object. Creates a new MBeanServer.
     */
    public Server() {
        mbs = MBeanServerFactory.createMBeanServer();
    }

    /**
     * Registers a JMX Connector URL with the SLP Lookup Service.
     *
     * @param jmxUrl A JMX Connector Server URL obtained from
     *               {@link JMXConnectorServer#getAddress()
     *               JMXConnectorServer.getAddress()}
     * @param name   The AgentName with which the URL will be
     *               registered in the SLP Lookup Service.
     */
    public static void register(JMXServiceURL jmxUrl, String name)
        throws ServiceLocationException {

        // Create the SLP service URL
        //
        // Note: It is recommended that the JMX Agents make use of the
        // leasing feature of SLP, and periodically renew their lease
        //
        ServiceURL serviceURL = new ServiceURL(jmxUrl.toString(),
                                               JMX_DEFAULT_LEASE);

        System.out.println("\nRegistering URL for " +  name + ": " + 
jmxUrl);
        debug("ServiceType is: " + serviceURL.getServiceType());

        // Prepare Lookup Attributes
        //
        Vector attributes = new Vector();
        Vector attrValues = new Vector();

        // Specify default SLP scope
        //
        attrValues.add(JMX_SCOPE);
        ServiceLocationAttribute attr1 =
            new ServiceLocationAttribute("SCOPE", attrValues);
        attributes.add(attr1);

        // Specify AgentName attribute (mandatory)
        //
        attrValues.removeAllElements();
        attrValues.add(name);
        ServiceLocationAttribute attr2 =
            new ServiceLocationAttribute("AgentName", attrValues);
        attributes.add(attr2);
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        // Register with SLP
        // -----------------

        // Get SLP Advertiser
        //
        final Advertiser slpAdvertiser =
            ServiceLocationManager.getAdvertiser(Locale.US);

        // Register the service: URL
        //
        slpAdvertiser.register(serviceURL, attributes);
        System.out.println("\nRegistered URL: " + jmxUrl);
    }

    /**
     * Creates an RMI Connector Server, starts it, and registers it
     * with the SLP Lookup Service.
     * <p>
     * This method will transfer a fixed set of System Properties to
     * the Map given to the RMIConnectorServer constructor. Some
     * JNDI properties, if defined, are transfered to the Map so
     * that they may be used when LDAP is used as external directory
     * to register the RMI Stub (see {@link javax.management.remote.rmi}
     * JavaDoc). Note that even if LDAP is used as external directory
     * the {@link Context#INITIAL_CONTEXT_FACTORY
     *            Context.INITIAL_CONTEXT_FACTORY} and
     * {@link Context#PROVIDER_URL Context.PROVIDER_URL} properties
     * usually don't need to be passed.
     * <p>
     * The following System properties, if defined, are transfered to
     * the Map given to the RMIConnectorServer constructor.
     * <ul><li>{@link Context#INITIAL_CONTEXT_FACTORY
     *           Context.INITIAL_CONTEXT_FACTORY}</li>
     *     <li>{@link Context#PROVIDER_URL
     *           Context.PROVIDER_URL}</li>
     *     <li>{@link Context#SECURITY_PRINCIPAL
     *           Context.SECURITY_PRINCIPAL}</li>
     *     <li>{@link Context#SECURITY_CREDENTIALS
     *           Context.SECURITY_CREDENTIALS}</li>
     *     <li>{@link RMIConnectorServer#JNDI_REBIND_ATTRIBUTE
     *           RMIConnectorServer.JNDI_REBIND_ATTRIBUTE} - default
     *           is <code>true</code>.</li>
     * </ul>
     *
     * @param url A string representation of the JMXServiceURL.
     *
     * @return the created RMIConnectorServer.
     */
    public JMXConnectorServer rmi(String url) throws
        IOException,
        JMException,
        NamingException,
        ClassNotFoundException,
        ServiceLocationException {
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        // Make a JMXServiceURL from the url string.
        //
        JMXServiceURL jurl = new JMXServiceURL(url);

        // Prepare the environment Map
        //
        final HashMap env = new HashMap();
        final String rprop = RMIConnectorServer.JNDI_REBIND_ATTRIBUTE;
        final String rebind = System.getProperty(rprop,"true");
        final String factory =
            System.getProperty(Context.INITIAL_CONTEXT_FACTORY);
        final String ldapServerUrl =
            System.getProperty(Context.PROVIDER_URL);
        final String ldapUser =
            System.getProperty(Context.SECURITY_PRINCIPAL);
        final String ldapPasswd =
            System.getProperty(Context.SECURITY_CREDENTIALS);

        // Transfer some system properties to the Map
        //
        if (factory!= null) // this should not be needed
            env.put(Context.INITIAL_CONTEXT_FACTORY,factory);
        if (ldapServerUrl!=null) // this should not be needed
            env.put(Context.PROVIDER_URL, ldapServerUrl);
        if (ldapUser!=null) // this is needed when LDAP is used
            env.put(Context.SECURITY_PRINCIPAL, ldapUser);
        if (ldapPasswd != null) // this is needed when LDAP is used
            env.put(Context.SECURITY_CREDENTIALS, ldapPasswd);
        env.put(rprop,rebind); // default is true.

        // Create an RMIConnectorServer
        //
        System.out.println("Creating RMI Connector: " + jurl);
        JMXConnectorServer rmis =
            JMXConnectorServerFactory.newJMXConnectorServer(jurl, env, 
mbs);

        // Get the AgentName for registering the Connector in the 
Lookup Service
        //
        final String agentName = System.getProperty("agent.name",
                                                    "DefaultAgent");

        // Start the connector and register it with SLP Lookup Service
        //
        start(rmis, agentName);

        return rmis;
    }

    /**
     * Start a JMXConnectorServer and register it with SLP Lookup 
Service.
     *
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     * @param server the JMXConnectorServer to start and register.
     * @param agentName the AgentName with which the URL must be registered
     *                  in the SLP Lookup Service.
     */
    public void start(JMXConnectorServer server, String agentName)
        throws IOException, ServiceLocationException {

        // Start the JMXConnectorServer
        //
        server.start();

        // Create a JMX Service URL to register with SLP
        //
        final JMXServiceURL address = server.getAddress();

        // Register the URL with the SLP Lookup Service.
        //
        register(address, agentName);
    }

    /**
     * Trace a debug message.
     */
    private static void debug(String msg) {
        if (debug) System.out.println(msg);
    }

    /**
     * Program Main
     * <p>
     * Creates a server object, gets the JMX Service URL, and calls
     * the method that will create and register the appropriate JMX
     * Connector Server for that URL.
     * <p>
     * You may wish to use the following properties on the Java command line:
     * <ul>
     * <li><code>-Durl=&lt;jmxServiceURL&gt;</code>: specifies the URL of
     *     the JMX Connector Server you wish to use. See README file for more
     *     details.</li>
     * <li><code>-Dagent.name=&lt;AgentName&gt;</code>: specifies the
     *     AgentName to register with.</li>
     * <li><code>-Ddebug="true|false"</code>: switch the Server debug flag
     *     on/off (default is "false").</li>
     * </ul>
     */
    public static void main(String[] args) {
        try {
            // Get the value of the debug flag.
            //
            debug = (Boolean.valueOf(System.getProperty("debug","false"))).
                booleanValue();

            // Create a new Server object.
            //
            final Server s = new Server();
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            // Get the JMXConnector URL
            //
            final String url = System.getProperty("url", 
"service:jmx:rmi://");

            // Build a JMXServiceURL
            //
            final JMXServiceURL jurl = new JMXServiceURL(url);

            // Creates a JMX Connector Server
            //
            debug("Creating Connector: " + jurl);
            final String p = jurl.getProtocol();
            if (p.equals("rmi"))         // Create an RMI Connector
                s.rmi(url);
            else if (p.equals("iiop"))   // Create an RMI/IIOP 
Connector
                s.rmi(url);
            else                         // Unsupported protocol
                throw new MalformedURLException("Unsupported protocol: 
" + p);

            System.out.println("\nService URL successfully registered 
" +
                               "in the SLP Lookup Service");

        } catch (Exception x) {
            System.err.println("Unexpected exception caught in main: " 
+ x);
            x.printStackTrace(System.err);
        }
    }
}

examples/Lookup/slp/Client.java
/*
 * Copyright (c) 2004, Oracle and/or its affiliates. All rights 
reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   - Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   - Redistributions in binary form must reproduce the above 
copyright
 *     notice, this list of conditions and the following disclaimer in 
the
 *     documentation and/or other materials provided with the 
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distribution.
 *
 *   - Neither the name of Oracle or the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */ 

package slp;

import com.sun.slp.ServiceLocationManager;
import com.sun.slp.ServiceLocationException;
import com.sun.slp.Locator;
import com.sun.slp.ServiceURL;
import com.sun.slp.ServiceLocationAttribute;
import com.sun.slp.ServiceType;
import com.sun.slp.ServiceLocationEnumeration;

import javax.management.*;
import javax.management.remote.*;

import javax.naming.Context;

import java.util.List;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.Iterator;
import java.util.Locale;
import java.util.Vector;

import java.io.IOException;
import java.io.Serializable;

/**
 * This class demonstrates how to use SLP as a lookup service for
 * JSR 160 connectors. It shows how to lookup a JMXServiceURL
 * from the SLP lookup service.
 * <p>
 * See README file and {@link #main(String[])} for more details.
 * <p>
 * Make sure to read the section "Binding with Lookup Services" of
 * the JMX Remote API 1.0 Specification before looking at this example.

Chapter 19
examples/Lookup/slp/Client.java

19-13



 */
public class Client {

    // Default scope.
    //
    public final static String JMX_SCOPE = "DEFAULT";

    private static boolean debug = false;

    /**
     * Get a pointer to the SLP Lookup Service.
     * (See RFC 2614 for more info).
     * @return a pointer to the SLP Lookup Service.
     */
    public static Locator getLocator() throws ServiceLocationException 
{
        // Getting the Locator (for lookup purposes)
        //
        final Locator slpLocator = 
ServiceLocationManager.getLocator(Locale.US);
        return slpLocator;
    }

    /**
     * Lookup JMXConnectors in the SLP Lookup Service.
     *
     * @param slpLocator A pointer to the SLP Lookup Service,
     *        returned by {@link #getLocator()}.
     * @param name the AgentName of the JMXConnectors that should
     *        be returned. If <var>name</var> is null, then
     *        the JMXConnectors for all agents are returned
     *        (null is an equivalent for a wildcard).
     * @return The list of matching JMXConnectors retrieved from
     *         the SLP Lookup Service.
     */
    public static List lookup(Locator slpLocator, String name)
        throws IOException, ServiceLocationException {

        final ArrayList list = new ArrayList();

        // Set the lookup SCOPE.
        //
        Vector scopes = new Vector();
        scopes.add(JMX_SCOPE);

        // Set the LDAPv3 query string
        //
        // Will return only those services for which the AgentName
        // attribute was registered. Since JSR 160 specifies that
        // the AgentName attribute is mandatory, this makes it possible
        // to filter out all the services that do not conform
        // to the spec.
        // If <name> is null, it is replaced by "*", so that all
        // services for which the AgentName attribute was specified 
match,
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        // regardless of the value of that attribute.
        // Otherwise, only those services for which AgentName matches the
        // name or pattern specified by <name> will be returned.
        //
        String query = "(&(AgentName=" + ((name!=null)?name:"*") + "))";

        debug("Looking up JMX Agents with filter: " + query );

        // Lookup the JMX agents....
        //
        ServiceLocationEnumeration result =
            slpLocator.findServices(new ServiceType("service:jmx"),
                                    scopes, query);

        debug("... Got service enumeration.");

        // Build the JMXConnector list
        //
        while (result.hasMoreElements()) {
            final ServiceURL surl = (ServiceURL) result.next();
            debug("\nFound Service URL: " + surl);

            // Some debug info:
            //
            if (debug) {
                // Retrieve the Lookup Attributes that were registered
                // with this URL
                //
                debug("Getting attributes...");
                final ServiceLocationEnumeration slpAttributes =
                    slpLocator.findAttributes(surl, scopes, new Vector());
                debug("... Got attribute enumeration.");
                while (slpAttributes.hasMoreElements()) {
                    final ServiceLocationAttribute slpAttribute =
                        (ServiceLocationAttribute) 
slpAttributes.nextElement();
                    debug("\tAttribute: " + slpAttribute);
                }
            }

            // Create a JMXConnector
            // ---------------------

            // Create a JMX Service URL
            //
            JMXServiceURL jmxUrl = new JMXServiceURL(surl.toString());
            debug("JMX Service URL: " + jmxUrl);

            // Obtain a JMXConnector from the factory
            //
            try {
                JMXConnector client =
                    JMXConnectorFactory.newJMXConnector(jmxUrl,null);
                debug("JMX Connector: " + client);
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                // Add the connector to the result list.
                //
                if (client != null) list.add(client);
            } catch (IOException x ) {
                System.err.println("Failed to create JMXConnector for 
" +
                                   jmxUrl);
                System.err.println("Error is: " + x);
                System.err.println("Skipping...");
            }
        }

        return list;
    }

    /**
     * List all MBeans and their attributes.
     */
    public static void listMBeans(MBeanServerConnection server)
        throws IOException {

        final Set names = server.queryNames(null,null);
        for (final Iterator i=names.iterator(); i.hasNext(); ) {
            ObjectName name = (ObjectName)i.next();
            System.out.println("Got MBean: "+name);
            try {
                MBeanInfo info =
                    server.getMBeanInfo((ObjectName)name);
                MBeanAttributeInfo[] attrs = info.getAttributes();
                if (attrs == null) continue;
                for (int j=0; j<attrs.length; j++) {
                    if (attrs[j].isReadable()) {
                        try {
                            Object o =
                                
server.getAttribute(name,attrs[j].getName());
                            System.out.println("\t\t" + 
attrs[j].getName() +
                                               " = "+o);
                        } catch (Exception x) {
                            System.err.println("JmxClient failed to 
get " +
                                               attrs[j].getName());
                            x.printStackTrace(System.err);
                        }
                    }
                }
            } catch (Exception x) {
                System.err.println("JmxClient failed to get MBeanInfo: 
"  + x);
                x.printStackTrace(System.err);
            }
        }
    }
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    /**
     * Trace a debug message.
     */
    private static void debug(String msg) {
        if (debug) System.out.println(msg);
    }

    /**
     * Program Main.
     * <p>
     * Lookup all JMX agents in the SLP Lookup Service and list
     * their MBeans and attributes.
     * <p>
     * You may wish to use the following properties on the Java command line:
     * <ul>
     * <li><code>-Dagent.name=&lt;AgentName&gt;</code>: specifies an
     *     AgentName to lookup (default is null, meaning any agent).</li>
     * <li><code>-Ddebug="true|false"</code>: switch the Client debug flag
     *     on/off (default is "false").</li>
     * </ul>
     */
    public static void main(String[] args) {
        try {
            // Get the value of the debug flag.
            //
            debug = (Boolean.valueOf(System.getProperty("debug","false"))).
                booleanValue();

            // Get AgentName to lookup.
            // If not defined, all agents are taken into account.
            //
            final String agentName = System.getProperty("agent.name");

            // Get a pointer to the SLP Lookup Service.
            //
            final Locator slpLocator = getLocator();
            debug("slpLocator is: " + slpLocator);

            // Lookup all matching agents in the SLP Lookup Service.
            //
            List l = lookup(slpLocator,agentName);

            // Attempt to connect to retrieved agents
            //
            System.out.println("\nNumber of agents found : " + l.size());
            int j = 1;
            for (Iterator i=l.iterator();i.hasNext();j++) {
                JMXConnector c1 = (JMXConnector) i.next();
                if (c1 != null) {

                    // Connect
                    //
                    System.out.println(
                      
"\n----------------------------------------------------");
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                    System.out.println("\tConnecting to agent number 
"+j);
                    System.out.println(
                      
"----------------------------------------------------");
                    debug("JMXConnector is: " + c1);

                    // Prepare the environment Map
                    //
                    final HashMap env = new HashMap();
                    final String factory =
                        
System.getProperty(Context.INITIAL_CONTEXT_FACTORY);
                    final String ldapServerUrl =
                        System.getProperty(Context.PROVIDER_URL);
                    final String ldapUser =
                        System.getProperty(Context.SECURITY_PRINCIPAL);
                    final String ldapPasswd =
                        
System.getProperty(Context.SECURITY_CREDENTIALS);

                    // Transfer some system properties to the Map
                    //
                    if (factory!= null) // this should not be needed
                        
env.put(Context.INITIAL_CONTEXT_FACTORY,factory);
                    if (ldapServerUrl!=null) // this should not be 
needed
                        env.put(Context.PROVIDER_URL, ldapServerUrl);
                    if (ldapUser!=null) // this is needed when LDAP is 
used
                        env.put(Context.SECURITY_PRINCIPAL, ldapUser);
                    if (ldapPasswd != null) // this is needed when 
LDAP is used
                        env.put(Context.SECURITY_CREDENTIALS, 
ldapPasswd);

                    try {
                        c1.connect(env);
                    } catch (IOException x) {
                        System.err.println("Connection failed: " + x);
                        x.printStackTrace(System.err);
                        continue;
                    }

                    // Get MBeanServerConnection
                    //
                    MBeanServerConnection conn =
                        c1.getMBeanServerConnection();
                    debug("Connection is:" + conn);
                    System.out.println("Server domain is: " +
                                       conn.getDefaultDomain());

                    // List all MBeans
                    //
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                    try {
                        listMBeans(conn);
                    } catch (IOException x) {
                        System.err.println("Failed to list MBeans: " + x);
                        x.printStackTrace(System.err);
                    }

                    // Close connector
                    //
                    try {
                        c1.close();
                    } catch (IOException x) {
                        System.err.println("Failed to close connection: " + 
x);
                        x.printStackTrace(System.err);
                    }
                }
            }
        } catch (Exception x) {
            System.err.println("Unexpected exception caught in main: " + x);
            x.printStackTrace(System.err);
        }
    }
}
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20
Java Naming and Directory Interface (JNDI)/
LDAP Lookup Service

The JMX API defines three bindings to lookup services, using existing lookup technologies
This examples provide a sample implementation of the JNDI/LDAP Lookup Service. The
source code contained in this section is used to create corresponding files in the examples/
directory specified in the appropriate setup procedure and includes:

• README file

• Server

• Client

• jmx-schema.txt

• 60jmx-schema.ldif

examples/Lookup/ldap/README

# 
=============================================================================
=
#
# Example of using JNDI/LDAP as Lookup service - registering and looking up
# an RMI Connector (IIOP/JRMP)
#
# 
=============================================================================
=
#
# Requirements:
#
# Before running this example you will have to:
# ---------------------------------------------
#
# * Get access (or install & start) an LDAP directory server that
#   will implement the lookup service.
# * Make sure the Java Schema (RFC 2713: http://www.ietf.org/rfc/rfc2713.txt)
#   is known by that server
# * Update the directory server with JSR 160 LDAP Schema
#   - 60jmx-schema.ldif file provided
#   This ldif file corresponds to the schema described in jmx-schema.txt
#   and can be copied as is in the config/schema directory of
#   the Sun ONE Directory Server.
# * Make sure you have write access to the server so that you can
#   create contexts in which the server will register its URL.
#

20-1



# The names used in this example make the assumption that you
# have created a new suffix, a database, and a root node (e.g. dc=Test)
# for the purpose of the example. You may however use any names / 
location
# you want - just make sure to provide the correct names & URLs
# when starting the Server and Client examples.
#
# In addition, if you wish to use an external directory for the  RMI 
JMX
# Connectors (URLs of the form jmx:service:[rmi|iiop]:/host:port/jndi/
jndi-url)
# then:
#
#   o If you wish to use rmiregistry in conjunction with the RMI/JRMP
#     JMX Connector you will have to start a rmiregistry (see below).
#
#   o If you wish to use CORBA Naming Service in conjunction with the 
RMI/IIOP
#     JMX Connector you will have to start an ORB daemon (see below).
#
#   o If you wish to use LDAP in conjunction with the RMI JMX 
Connectors
#     you will have to install/setup a directory server (you can use 
the
#     same server than that used for Lookup, or another one)
#
# In order to compile and run the example, make a copy of this README 
file, and
# then simply cut and paste all the commands as needed into a terminal 
window.
#
# This README makes the assumption that you are running under Java SE 
6 on Unix,
# you are familiar with the JMX technology, with LDAP and JNDI, and 
with
# the bourne shell or korn shell syntax.
#
# All the commands below are defined using Unix korn shell syntax.
#
# If you are not running Unix and korn shell you are expected to be 
able to
# adapt these commands to your favorite OS and shell environment.
#

#----------------------------------------------------------------------
---------
# The directory server must be started first.
#       You will have
#       to make sure the Java Schema (RFC 2713: 
#       http://www.ietf.org/rfc/rfc2713.txt) is known by that server

#----------------------------------------------------------------------
---------
# Start an rmiregistry
#
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rmiregistry 9999 &

#----------------------------------------------------------------------------
---
# Start an ORB daemon:
#
rm -rf ./orb.db
orbd -ORBInitialPort 7777 &

#----------------------------------------------------------------------------
---
# Compile Server.java and Client.java
#
# * Server.java: creates an MBeanServer, creates and starts an
#                RMI connector (JRMP/IIOP)
# * Client.java: lookup a connector in JNDI
#                list all MBeans.

javac -d . Server.java Client.java

#----------------------------------------------------------------------------
---
# LDAP parameters:
#

# Supply the appropriate hostname below, and define this variable:
#
ldaphost=gigondas

# Supply the appropriate port number below, and define this variable:
#
ldapport=6666

# Supply the appropriate principal below, and define this variable:
#
principal="cn=Directory Manager"

# Supply the appropriate credentials below, and define this variable:
#
credentials=

# Supply the appropriate root under which the Server will try
# to register its URL...
#
provider="ldap://$ldaphost:$ldapport/dc=Test"

#----------------------------------------------------------------------------
---
# JNDI URLs
#
jndirmi="rmi://localhost:9999"
jndiiiop="iiop://localhost:7777"
jndildap="ldap://$ldaphost:$ldapport"

#----------------------------------------------------------------------------
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---
# JMX Service URLs
#
jmxiiopurl="service:jmx:iiop:///jndi/${jndiiiop}/server"
jmxrmiurl="service:jmx:rmi:///jndi/${jndirmi}/server"
jmxiiopldapurl="service:jmx:iiop:///jndi/${jndildap}/cn=x,dc=Test"
jmxrmildapurl="service:jmx:rmi:///jndi/${jndildap}/cn=x,dc=Test"
jmxstuburl="service:jmx:rmi://"
jmxiorurl="service:jmx:iiop://"

#----------------------------------------------------------------------
---------
# Below we illustrate the different JMX Connector Servers
# which you have the choice to start. 
# There are seven cases labelled (a) to (f):
#
#   * RMI Connectors
#       + over JRMP
#           - without any external directory (a)
#           - using rmiregistry as external directory (b)
#           - using LDAP as external directory (c)
#       + over IIOP
#           - without any external directory (d)
#           - using CORBA Naming Service as external directory (e)
#           - using LDAP as external directory (f)

# NOTE-1: As defined in section 6.1 "Terminology" of the "JMX Remote 
API 1.0
# Specification" document, an agent is composed of one MBean Server 
and of
# one or more Connector Servers. There can be several agents running 
in one JVM.
# For flexibility of this example, the jndi.Server class creates an 
agent which
# is composed of one MBean Server and of only one Connector Server. 
The class
# jndi.Server decides which type of Connector Server to create 
depending on the
# value given to the "url" system property when you start the example.

# NOTE-2: The value of the "agent.name" system property is the value 
that the
# jndi.Server class will give to the "AgentName" lookup attribute when 
it
# registers the connector's URL in the lookup service. As defined in 
Table 6.1
# "Lookup attributes for connectors" of the "JMX Remote API 1.0 
Specification"
# document: the "AgentName" lookup attribute is a simple name used to 
identify
# the *AGENT* to which the connector is attached. It makes it possible 
to
# search, with a query to the lookup service, for all the connectors 
registered
# by a given agent.
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# (a) You can start an agent with an RMI Connector Server over JRMP
#     without using any external directory
#
java -classpath . -Ddebug=true \
     -Dagent.name=test-server-a \
     -Durl="service:jmx:rmi://" \
     -Djava.naming.provider.url="$provider" \
     -Djava.naming.security.principal="$principal" \
     -Djava.naming.security.credentials="$credentials" \
     jndi.Server &

# (b) Or you can start an agent with an RMI Connector Server over JRMP
#     using rmiregistry as external directory
#     (Start rmiregistry first, if not yet started)
#
java -classpath . -Ddebug=true \
     -Dagent.name=test-server-b \
     -Durl="service:jmx:rmi:///jndi/${jndirmi}/server" \
     -Djava.naming.provider.url="$provider" \
     -Djava.naming.security.principal="$principal" \
     -Djava.naming.security.credentials="$credentials" \
     jndi.Server &

# (c) Or you can start an agent with an RMI Connector Server over JRMP
#     using LDAP as external directory
#     (First start an LDAP server and create the dc=Test suffix)
#
java -classpath . -Ddebug=true \
     -Dagent.name=test-server-c \
     -Durl="service:jmx:rmi:///jndi/${jndildap}/cn=x,dc=Test" \
     -Djava.naming.provider.url="$provider" \
     -Djava.naming.security.principal="$principal" \
     -Djava.naming.security.credentials="$credentials" \
     jndi.Server &

# (d) Or you can start an agent with an RMI Connector Server over IIOP
#     without using any external directory
#
java -classpath . -Ddebug=true \
     -Dagent.name=test-server-d \
     -Durl="service:jmx:iiop://" \
     -Djava.naming.provider.url="$provider" \
     -Djava.naming.security.principal="$principal" \
     -Djava.naming.security.credentials="$credentials" \
     jndi.Server &

# (e) Or you can start an agent with an RMI Connector Server over IIOP
#     using CORBA Naming Service as external directory
#     (Start ORBD first if not yet started).
#
java -classpath . -Ddebug=true \
     -Dagent.name=test-server-e \
     -Durl="service:jmx:iiop:///jndi/${jndiiiop}/server" \
     -Djava.naming.provider.url="$provider" \
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     -Djava.naming.security.principal="$principal" \
     -Djava.naming.security.credentials="$credentials" \
     jndi.Server &

# (f) Or you can start an agent with an RMI Connector Server over IIOP
#     using LDAP as external directory
#     (First start an LDAP server and create the dc=Test suffix)
#
java -classpath . -Ddebug=true \
     -Dagent.name=test-server-f \
     -Durl="service:jmx:iiop:///jndi/${jndildap}/cn=x,dc=Test" \
     -Djava.naming.provider.url="$provider" \
     -Djava.naming.security.principal="$principal" \
     -Djava.naming.security.credentials="$credentials" \
     jndi.Server &

# Once you have started one or more agents, you can start the Client.
#
java -classpath . -Ddebug=true \
     -Djava.naming.provider.url="$provider" \
     -Djava.naming.security.principal="$principal" \
     -Djava.naming.security.credentials="$credentials" \
     jndi.Client

#----------------------------------------------------------------------
---------

examples/Lookup/ldap/Server.java

package jndi;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingEnumeration;
import javax.naming.NameNotFoundException;
import javax.naming.NamingException;

import javax.naming.directory.DirContext;
import javax.naming.directory.Attribute;
import javax.naming.directory.BasicAttribute;
import javax.naming.directory.Attributes;
import javax.naming.directory.BasicAttributes;
import javax.naming.directory.DirContext;
import javax.naming.directory.Attribute;
import javax.naming.directory.Attributes;
import javax.naming.directory.SearchResult;
import javax.naming.directory.SearchControls;

import javax.naming.ldap.InitialLdapContext;

import javax.management.*;
import javax.management.remote.*;
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import javax.management.remote.rmi.*;

import java.text.SimpleDateFormat;

import java.util.Date;
import java.util.Map;
import java.util.HashMap;
import java.util.Hashtable;
import java.util.List;
import java.util.ArrayList;
import java.util.Locale;
import java.util.Vector;
import java.io.IOException;
import java.io.Serializable;
import java.net.InetAddress;
import java.net.MalformedURLException;

/**
 * This class demonstrates how to use an LDAP directory as a lookup
 * service for JSR 160 connectors. It shows how to register a
 * JMXConnectorServer with the LDAP directory through JNDI.
 * <p>
 * See README file and {@link #main(String[])} for more details.
 * <p>
 * Make sure to read the section "Binding with Lookup Services" of
 * the JMX Remote API 1.0 Specification before looking at this example.
 */
public class Server {

    // The URL will remain registered for 60 secs.
    //
    public final static int JMX_DEFAULT_LEASE = 60;

    private static boolean debug = false;

    /**
     * The local MBeanServer.
     */
    private final MBeanServer mbs;

    /**
     * Constructs a Server object. Creates a new MBeanServer.
     */
    public Server() {
        mbs = MBeanServerFactory.createMBeanServer();
    }

    /**
     * Get a pointer to the root context of the directory tree
     * under which this server is supposed to register itself.
     * All LDAP DNs will be considered to be relative to that root.
     * <p>
     * Note that this root is not part of the JSR 160 specification,
     * since the actual location where a JMX Agent will register
     * its connectors is left completely open by the specification.
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     * The specification only discuss what the JMX Agent must/may
     * put in the directory - but not where.
     * <p>
     * This method assumes that the root of the directory is
     * will be passed in a the {@link Context#PROVIDER_URL
     * Context.PROVIDER_URL} System property.
     * <p>
     * This method will transfer a fixed set of System Properties to
     * the Hashtable given to the JNDI InitialContext:
     * <ul><li>{@link Context#INITIAL_CONTEXT_FACTORY
     *           Context.INITIAL_CONTEXT_FACTORY} - default is
     *         <code>"com.sun.jndi.ldap.LdapCtxFactory"</code></li>
     *     <li>{@link Context#PROVIDER_URL
     *           Context.PROVIDER_URL}</li>
     *     <li>{@link Context#SECURITY_PRINCIPAL
     *           Context.SECURITY_PRINCIPAL} - default is
     *         <code>"cn=Directory Manager"</code></li>
     *     <li>{@link Context#SECURITY_CREDENTIALS
     *           Context.SECURITY_CREDENTIALS}</li>
     * </ul>
     *
     * @return a pointer to the LDAP Directory.
     */
    public static DirContext getRootContext() throws NamingException {
        // Prepare environment
        //
        final Hashtable env = new Hashtable();

        // The Initial Context Factory must be provided, and
        // must point to an LDAP Context Factory
        //
        final String factory =
            System.getProperty(Context.INITIAL_CONTEXT_FACTORY,
                               "com.sun.jndi.ldap.LdapCtxFactory");

        // The LDAP Provider URL must be provided, and
        // must point to a running LDAP directory server
        //
        final String ldapServerUrl =
            System.getProperty(Context.PROVIDER_URL);

        // The LDAP user must be provided, and
        // must have write access to the subpart of the directory
        // where the agent will be registered.
        //
        final String ldapUser =
            System.getProperty(Context.SECURITY_PRINCIPAL,
                               "cn=Directory Manager");

        // Credentials must be provided, so that the user may
        // write to the directory.
        //
        final String ldapPasswd =
            System.getProperty(Context.SECURITY_CREDENTIALS);
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        // Debug info: print provided values:
        //
        debug(Context.PROVIDER_URL + "=" + ldapServerUrl);
        debug(Context.SECURITY_PRINCIPAL + "=" + ldapUser);
        if (debug) {
            System.out.print(Context.SECURITY_CREDENTIALS + "=");
            final int len = (ldapPasswd==null)?0:ldapPasswd.length();
            for (int i=0;i<len;i++) System.out.print("*");
            System.out.println();
        }

        // Put provided value in the environment table.
        //
        env.put(Context.INITIAL_CONTEXT_FACTORY,factory);
        env.put(Context.SECURITY_PRINCIPAL, ldapUser);
        if (ldapServerUrl != null)
            env.put(Context.PROVIDER_URL, ldapServerUrl);
        if (ldapPasswd != null)
            env.put(Context.SECURITY_CREDENTIALS, ldapPasswd);

        // Create initial context
        //
        InitialContext root = new InitialLdapContext(env,null);

        // Now return the root directory context.
        //
        return (DirContext)(root.lookup(""));
    }

    /**
     * Registers a JMX Connector URL with the LDAP directory.
     * <p>
     * This method expects to find the LDAP DN where it will register
     * the JMX Connector URL in the "dn" System property. If that
     * property is not set, then "cn=<var>name</var>" is assumed.
     * <p>
     * If the given DN does not point to an existing node in the
     * directory, then this method will attempt to create it. Yet,
     * the parent node must already exist in that case.
     * <p>
     * If the DN points to a node that is already of the <var>jmxConnector</
var>
     * class, then this method will simply override its <var>jmxServiceURL</
var>
     * ,<var>jmxAgentName</var>, <var>jmxProtocolType</var>,
     * <var>jmxAgentHost</var> and <var>jmxExpirationDate</var> attributes.
     *
     * @param root      A pointer to the root context we are using,
     *                  as returned by {@link #getRootContext()}.
     * @param jmxUrl    A JMX Connector Server URL, that should have
     *                  been obtained from
     *                  {@link JMXConnectorServer#getAddress()
     *                  JMXConnectorServer.getAddress()};
     * @param name      The AgentName with which the URL must be registered
     *                  in the LDAP directory.
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     */
    public static void register(DirContext root,
                                JMXServiceURL jmxUrl,
                                String name)
        throws NamingException, IOException {

        // Get the LDAP DN where to register
        //
        final String mydn = System.getProperty("dn","cn="+name);

        debug("dn: " + mydn );

        // First check whether <mydn> already exists
        //
        Object o = null;
        try {
            o = root.lookup(mydn);
            // There is already a node at <mydn>
            //
        } catch (NameNotFoundException n) {
            // <mydn> does not exist! attempt to create it.
            //

            // Prepare attributes for creating a javaContainer
            // with the auxiliary class jmxConnector.
            //
            Attributes attrs = new BasicAttributes();

            // Prepare objectClass attribute: we're going to create
            // a javaContainer with the jmxConnector auxiliary class.
            //
            Attribute objclass = new BasicAttribute("objectClass");
            objclass.add("top");
            objclass.add("javaContainer");
            objclass.add("jmxConnector");
            attrs.put(objclass);
            attrs.put("jmxAgentName", name);
            o = root.createSubcontext(mydn,attrs);
        }

        // That's not supposed to happen but who knows...
        //
        if (o == null) throw new NameNotFoundException();

        // Check that the entry contains the jmxConnector objectClass
        // before modifying the attributes.
        //
        final Attributes attrs = root.getAttributes(mydn);
        final Attribute oc = attrs.get("objectClass");
        if (!oc.contains("jmxConnector")) {
            // The node does not have the jmxConnector class.
            //
            final String msg = "The supplied node [" + mydn + "] does 
not " +
                "contain the jmxConnector objectclass";
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            throw new NamingException(msg);
        }

        // Now need to replace jmxConnector attributes.
        //
        final Attributes newattrs = new BasicAttributes();
        newattrs.put("jmxAgentName",name);
        newattrs.put("jmxServiceURL",jmxUrl.toString());
        
newattrs.put("jmxAgentHost",InetAddress.getLocalHost().getHostName());
        newattrs.put("jmxProtocolType",jmxUrl.getProtocol());
        newattrs.put("jmxExpirationDate",
                     getExpirationDate(JMX_DEFAULT_LEASE));
        root.modifyAttributes(mydn,DirContext.REPLACE_ATTRIBUTE,newattrs);
    }

    /**
     * Creates an RMI Connector Server, starts it, and registers it
     * with the LDAP directory.
     * <p>
     * This method will transfer a fixed set of System Properties to
     * the Map given to the RMIConnectorServer constructor. Some
     * JNDI properties, if defined, are transfered to the Map so
     * that they may be used when LDAP is used as external directory
     * to register the RMI Stub (see {@link javax.management.remote.rmi}
     * JavaDoc). Note that even if LDAP is used as external directory
     * the {@link Context#INITIAL_CONTEXT_FACTORY
     *            Context.INITIAL_CONTEXT_FACTORY} and
     * {@link Context#PROVIDER_URL Context.PROVIDER_URL} properties
     * usually don't need to be passed.
     * <p>
     * The following System properties, if defined, are transferred to
     * the Map given to the RMIConnectorServer constructor.
     * <ul><li>{@link Context#INITIAL_CONTEXT_FACTORY
     *           Context.INITIAL_CONTEXT_FACTORY}</li>
     *     <li>{@link Context#PROVIDER_URL
     *           Context.PROVIDER_URL}</li>
     *     <li>{@link Context#SECURITY_PRINCIPAL
     *           Context.SECURITY_PRINCIPAL}</li>
     *     <li>{@link Context#SECURITY_CREDENTIALS
     *           Context.SECURITY_CREDENTIALS}</li>
     *     <li>{@link RMIConnectorServer#JNDI_REBIND_ATTRIBUTE
     *           RMIConnectorServer.JNDI_REBIND_ATTRIBUTE} - default
     *           is <code>true</code>.</li>
     * </ul>
     *
     * @param url A string representation of the JMXServiceURL.
     * @return the created RMIConnectorServer.
     */
    public JMXConnectorServer rmi(String url)
        throws IOException, JMException,
               NamingException, ClassNotFoundException {

        // Make a JMXServiceURL from the url string.
        //
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        JMXServiceURL jurl = new JMXServiceURL(url);

        // Prepare the environment Map
        //
        final HashMap env = new HashMap();
        final String rprop = RMIConnectorServer.JNDI_REBIND_ATTRIBUTE;
        final String rebind=System.getProperty(rprop,"true");
        final String factory =
            System.getProperty(Context.INITIAL_CONTEXT_FACTORY);
        final String ldapServerUrl =
            System.getProperty(Context.PROVIDER_URL);
        final String ldapUser =
            System.getProperty(Context.SECURITY_PRINCIPAL);
        final String ldapPasswd =
            System.getProperty(Context.SECURITY_CREDENTIALS);

        // Transfer some system properties to the Map
        //
        if (factory!= null) // this should not be needed
            env.put(Context.INITIAL_CONTEXT_FACTORY,factory);
        if (ldapServerUrl!=null) // this should not be needed
            env.put(Context.PROVIDER_URL, ldapServerUrl);
        if (ldapUser!=null) // this is needed when LDAP is used
            env.put(Context.SECURITY_PRINCIPAL, ldapUser);
        if (ldapPasswd != null) // this is needed when LDAP is used
            env.put(Context.SECURITY_CREDENTIALS, ldapPasswd);
        env.put(rprop,rebind); // default is true.

        // Create an RMIConnectorServer
        //
        System.out.println("Creating RMI Connector: " + jurl);
        JMXConnectorServer rmis =
            JMXConnectorServerFactory.newJMXConnectorServer(jurl, env, 
mbs);

        // Get the AgentName for registering the Connector in the 
Lookup Service
        //
        final String agentName = System.getProperty("agent.name",
                                                    "DefaultAgent");

        // Start the connector and register it in the LDAP directory.
        //
        start(rmis,env,agentName);

        return rmis;
    }

    /**
     * Start a JMXConnectorServer and register it with the LDAP 
directory.
     *
     * @param server the JMXConnectorServer to start and register.
     * @param env   the environment Map.
     * @param agentName the AgentName with which the URL must be 
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registered
     *                  in the LDAP Directory. This is not a LDAP DN, but
     *                  the value of the jmxAgentName attribute.
     */
    public void start(JMXConnectorServer server, Map env, String agentName)
        throws IOException, NamingException {

        // Start the JMXConnectorServer
        //
        server.start();

        // Get a pointer to the LDAP directory.
        //
        final DirContext root = getRootContext();

        // Create a JMX Service URL to register in the LDAP directory
        //
        final JMXServiceURL address = server.getAddress();

        // Register the URL in the LDAP directory
        //
        register(root,address,agentName);
    }

    /**
     * Returns a X.208 string representing the GMT date at now + sec.
     *
     * @param sec Number of seconds from now.
     * @return an X.208 GMT GeneralizedTime (ending with Z).
     */
    public static String getExpirationDate(long sec) {
        final SimpleDateFormat fmt =  new 
SimpleDateFormat("yyyyMMddHHmmss.S");
        final Date date = new Date();
        final Date gmtDate;
        if (fmt.getCalendar().getTimeZone().inDaylightTime(date))
            gmtDate = new Date(System.currentTimeMillis() -
                               
fmt.getCalendar().getTimeZone().getRawOffset() -
                               
fmt.getCalendar().getTimeZone().getDSTSavings() +
                               1000*sec);
        else
            gmtDate =
                new Date(System.currentTimeMillis() -
                         fmt.getCalendar().getTimeZone().getRawOffset() +
                         1000*sec);
        return ((fmt.format(gmtDate))+"Z");
    }

    /**
     * Trace a debug message.
     */
    private static void debug(String msg) {
        if (debug) System.out.println(msg);
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    }

    /**
     * Program Main
     * <p>
     * Creates a server object, gets the JMX Service URL, and calls
     * the method that will create and register the appropriate
     * JMX Connector Server for that URL.
     * <p>
     * You may wish to use the following properties on the Java 
command line:
     * <ul>
     * <li><code>-Durl=&lt;jmxServiceURL&gt;</code>: specifies the URL 
of
     *     the JMX Connector Server you wish to use. See README file 
for more
     *     details.</li>
     * <li><code>-Dagent.name=&lt;AgentName&gt;</code>: specifies an
     *     AgentName to register with.</li>
     * <li><code>-Djava.naming.factory.initial=&lt;initial-context-
factory&gt;
     *     </code>: The initial context factory to use for accessing 
the
     *     LDAP directory (see {@link Context#INITIAL_CONTEXT_FACTORY
     *     Context.INITIAL_CONTEXT_FACTORY}) - default is
     *     <code>"com.sun.jndi.ldap.LdapCtxFactory"</code>.</li>
     * <li><code>-Djava.naming.provider.url=&lt;provider-url&gt;</
code>:
     *     The LDAP Provider URL (see {@link Context#PROVIDER_URL
     *     Context.PROVIDER_URL}).</li>
     * <li><code>-Djava.naming.security.principal=&lt;ldap-
principal&gt;
     *     </code>: The security principal (login) to use to connect 
with
     *     the LDAP directory (see {@link Context#SECURITY_PRINCIPAL
     *     Context.SECURITY_PRINCIPAL} - default is
     *     <code>"cn=Directory Manager"</code>.</li>
     * <li><code>-Djava.naming.security.credentials=&lt;ldap-
credentials&gt;
     *     </code>: The security credentials (password) to use to
     *     connect with the LDAP directory (see
     *     {@link Context#SECURITY_CREDENTIALS
     *     Context.SECURITY_CREDENTIALS}).</li>
     * <li><code>-Ddebug="true|false"</code>: switch the Server debug 
flag
     *     on/off (default is "false")</li>
     * </ul>
     */
    public static void main(String[] args) {
        try {
            // Get the value of the debug flag.
            //
            debug = 
(Boolean.valueOf(System.getProperty("debug","false"))).
                booleanValue();
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            // Create a new Server object.
            //
            final Server s = new Server();

            // Get the JMXConnector URL
            //
            final String url =
                System.getProperty("url", "service:jmx:rmi://");

            // Build a JMXServiceURL
            //
            final JMXServiceURL jurl = new JMXServiceURL(url);

            // Creates a JMX Connector Server
            //
            final JMXConnectorServer server;
            debug("Creating Connector: " + jurl);

            final String p = jurl.getProtocol();
            if (p.equals("rmi"))        // Create an RMI Connector
                s.rmi(url);
            else if (p.equals("iiop"))  // Create an RMI/IIOP Connector
                s.rmi(url);
            else                        // Unsupported protocol
                throw new MalformedURLException("Unsupported protocol: " + 
p);

            System.out.println("\nService URL successfully registered " +
                               "in the LDAP Lookup Service");

        } catch (Exception x) {
            System.err.println("Unexpected exception caught in main: " + x);
            x.printStackTrace(System.err);
        }
    }
}

examples/Lookup/ldap/Client.java

package jndi;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingEnumeration;
import javax.naming.NameNotFoundException;
import javax.naming.NamingException;

import javax.naming.directory.DirContext;
import javax.naming.directory.Attribute;
import javax.naming.directory.BasicAttribute;
import javax.naming.directory.Attributes;
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import javax.naming.directory.BasicAttributes;
import javax.naming.directory.DirContext;
import javax.naming.directory.Attribute;
import javax.naming.directory.Attributes;
import javax.naming.directory.SearchResult;
import javax.naming.directory.SearchControls;

import javax.naming.ldap.InitialLdapContext;

import javax.management.remote.*;
import javax.management.*;

import java.text.SimpleDateFormat;

import java.util.Date;
import java.util.Map;
import java.util.List;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Hashtable;
import java.util.Set;
import java.util.Iterator;
import java.util.Locale;
import java.util.Vector;

import java.io.IOException;
import java.io.Serializable;

/**
 * This class demonstrates how to use an LDAP directory as a lookup 
service
 * for JSR 160 connectors. It shows how to lookup a JMXServiceURL
 * from the LDAP directory.
 * <p>
 * See README file and {@link #main(String[])} for more details.
 * <p>
 * Make sure to read the section "Binding with Lookup Services" of
 * the JMX Remote API 1.0 Specification before looking at this example.
 */
public class Client {

    private static boolean debug = false;

    /**
     * List all the attributes of an LDAP node.
     *
     * @param root The root DirContext.
     * @param dn   The DN of the node, relative to the root DirContext.
     */
    public static void listAttributes(DirContext root, String dn)
        throws NamingException {
        final Attributes attrs = root.getAttributes(dn);
        System.out.println("dn: " + dn);
        System.out.println("attributes: " + attrs);
    }
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    /**
     * Get a pointer to the root context of the directory tree
     * under which this server is supposed to register itself.
     * All LDAP DNs will be considered to be relative to that root.
     * <p>
     * Note that this root is not part of the JSR 160 specification,
     * since the actual location where a JMX Agent will register
     * its connectors is left completely open by the specification.
     * The specification only discuss what the JMX Agent must/may
     * put in the directory - but not where.
     * <p>
     * This method assumes that the root of the directory is
     * will be passed in a the {@link Context#PROVIDER_URL
     * Context.PROVIDER_URL} System property.
     * <p>
     * This method will transfer a fixed set of System Properties to
     * the Hashtable given to the JNDI InitialContext:
     * <ul><li>{@link Context#INITIAL_CONTEXT_FACTORY
     *           Context.INITIAL_CONTEXT_FACTORY} - default is
     *         <code>"com.sun.jndi.ldap.LdapCtxFactory"</code></li>
     *     <li>{@link Context#PROVIDER_URL
     *           Context.PROVIDER_URL}</li>
     *     <li>{@link Context#SECURITY_PRINCIPAL
     *           Context.SECURITY_PRINCIPAL} - default is
     *         <code>"cn=Directory Manager"</code></li>
     *     <li>{@link Context#SECURITY_CREDENTIALS
     *           Context.SECURITY_CREDENTIALS}</li>
     * </ul>
     *
     * @return a pointer to the LDAP Directory.
     */
    public static DirContext getRootContext() throws NamingException {
        // Prepare environment
        //
        final Hashtable env = new Hashtable();

        // The Initial Context Factory must be provided, and
        // must point to an LDAP Context Factory
        //
        final String factory =
            System.getProperty(Context.INITIAL_CONTEXT_FACTORY,
                               "com.sun.jndi.ldap.LdapCtxFactory");

        // The LDAP Provider URL must be provided, and
        // must point to a running LDAP directory server
        //
        final String ldapServerUrl =
            System.getProperty(Context.PROVIDER_URL);

        // The LDAP user must be provided, and
        // must have write access to the subpart of the directory
        // where the agent will be registered.
        //
        final String ldapUser =
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            System.getProperty(Context.SECURITY_PRINCIPAL,
                               "cn=Directory Manager");

        // Credentials must be provided, so that the user may
        // write to the directory.
        //
        final String ldapPasswd =
            System.getProperty(Context.SECURITY_CREDENTIALS);

        // Debug info: print provided values:
        //
        debug(Context.PROVIDER_URL + "=" + ldapServerUrl);
        debug(Context.SECURITY_PRINCIPAL + "=" + ldapUser);
        if (debug) {
            System.out.print(Context.SECURITY_CREDENTIALS + "=");
            final int len = (ldapPasswd==null)?0:ldapPasswd.length();
            for (int i=0;i<len;i++) System.out.print("*");
            System.out.println();
        }

        // Put provided value in the environment table.
        //
        env.put(Context.INITIAL_CONTEXT_FACTORY,factory);
        env.put(Context.SECURITY_PRINCIPAL, ldapUser);
        if (ldapServerUrl != null)
            env.put(Context.PROVIDER_URL, ldapServerUrl);
        if (ldapPasswd != null)
            env.put(Context.SECURITY_CREDENTIALS, ldapPasswd);

        // Create initial context
        //
        InitialContext root = new InitialLdapContext(env,null);

        // Now return the root directory context.
        //
        return (DirContext)(root.lookup(""));
    }

    /**
     * Parses the expirationDate in order to determined whether
     * the associated URL has expired.
     *
     * @param expirationDate an X.208 GeneralizedTime, local or GMT.
     *        Only yyyyMMddHHmmss.S (local time) and  yyyyMMddHHmmss.SZ
     *        (GMT time) formats are recognized.
     * @return true if the expirationDate could be parsed and is past,
     *         false otherwise.
     */
    public static boolean hasExpired(String expirationDate) {
        if (expirationDate == null) return false;
        try {
            final Date localExpDate = getLocalDate(expirationDate);
            final Date now = new Date();
            if (localExpDate.before(now)) return true;
        } catch (java.text.ParseException x) {
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            x.printStackTrace(System.out);
        }
        return false;
    }

    /**
     * Returns a date in the local time zone parsed from an X.208
     * formatted date. Only yyyyMMddHHmmss.S (local time) and
     * yyyyMMddHHmmss.SZ (GMT time) formats are recognized.
     *
     * @param expirationDate an X.208 GeneralizedTime, local or GMT.
     * @return the corresponding Date in the local time zone.
     */
    public static Date getLocalDate(String expirationDate)
        throws java.text.ParseException {
        final SimpleDateFormat fmt = new 
SimpleDateFormat("yyyyMMddHHmmss.S");
        Date localDate = fmt.parse(expirationDate);
        if (expirationDate.endsWith("Z")) {
            final Date date = new Date();
            if (fmt.getCalendar().getTimeZone().inDaylightTime(date))
                localDate =
                    new Date(localDate.getTime() +
                             fmt.getCalendar().getTimeZone().getRawOffset() +
                             
fmt.getCalendar().getTimeZone().getDSTSavings());
            else
                localDate =
                    new Date(localDate.getTime() +
                             fmt.getCalendar().getTimeZone().getRawOffset());
        }
        return localDate;
    }

    /**
     * Lookup JMXConnectors in the LDAP directory.
     *
     * @param root A pointer to the LDAP directory,
     *        returned by {@link #getRootContext()}.
     * @param protocolType The protocol type of the JMX Connectors
     *        we want to retrieve. If <var>protocolType</var> is null,
     *        then the jmxProtocolType attribute is ignored. Otherwise,
     *        only those agents that have registered a matching
     *        jmxProtocolType attribute will be returned.
     * @param name the AgentName of the JMXConnectors that should
     *        be returned. If <var>name</var> is null, then
     *        the JMXConnectors for all agents are returned
     *        (null is an equivalent for a wildcard).
     * @return The list of matching JMXConnectors retrieved from
     *         the LDAP directory.
     */
    public static List lookup(DirContext root, String protocolType, String 
name)
        throws IOException, NamingException {
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        final ArrayList list = new ArrayList();

        // If protocolType is not null, include it in the filter.
        //
        String queryProtocol =
            
(protocolType==null)?"":"(jmxProtocolType="+protocolType+")";

        // Set the LDAPv3 query string
        //
        // Only those node that have the jmxConnector object class are
        // of interest to us, so we specify (objectClass=jmxConnector)
        // in the filter.
        //
        // We specify the jmxAgentName attribute in the filter so that 
the
        // query will return only those services for which the 
AgentName
        // attribute was registered. Since JSR 160 specifies that
        // the AgentName attribute is mandatory, this makes it possible
        // to filter out all the services that do not conform
        // to the spec.
        // If <name> is null, it is replaced by "*", so that all
        // services for which the AgentName attribute was specified 
match,
        // regardless of the value of that attribute.
        // Otherwise, only those services for which AgentName matches 
the
        // name or pattern specified by <name> will be returned.
        //
        // We also specify (jmxServiceURL=*) so that only those node
        // for which the jmxServiceURL attribute is present will be
        // returned. Thus, we filter out all those node corresponding
        // to agents that are not currently available.
        //
        String query =
            "(&" + "(objectClass=jmxConnector) " +
            "(jmxServiceURL=*) " +
            queryProtocol +
            "(jmxAgentName=" + ((name!=null)?name:"*") + "))";

        System.out.println("Looking up JMX Agents with filter: " + 
query );

        SearchControls ctrls = new SearchControls();

        // Want to get all jmxConnector objects, wherever they've been
        // registered.
        //
        ctrls.setSearchScope(SearchControls.SUBTREE_SCOPE);

        // Want to get only the jmxServiceUrl and jmxExpirationDate
        // (comment these lines and all attributes will be returned).
        //
        // ctrls.setReturningAttributes(new String[] {
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        //           "jmxServiceURL",
        //           "jmxExpirationDate"
        //           });

        // Search...
        //
        final NamingEnumeration results = root.search("", query, ctrls);

        // Get the URL...
        //
        while (results.hasMore()) {

            // Get node...
            //
            final SearchResult r = (SearchResult) results.nextElement();
            debug("Found node: " + r.getName());

            // Get attributes
            //
            final Attributes attrs = r.getAttributes();

            // Get jmxServiceURL attribute
            //
            final Attribute  attr = attrs.get("jmxServiceURL");
            if (attr == null) continue;

            // Get jmxExpirationDate
            //
            final Attribute  exp = attrs.get("jmxExpirationDate");

            // Check that URL has not expired.
            //
            if ((exp != null) && hasExpired((String)exp.get())) {
                System.out.print(r.getName() + ": ");
                System.out.println("URL expired since: " + exp.get());
                continue;
            }

            // Get the URL string
            //
            final String urlStr = (String)attr.get();
            if (urlStr.length() == 0) continue;

            debug("Found URL: " + urlStr);

            // Create a JMXServiceURL
            //
            final JMXServiceURL url  = new JMXServiceURL(urlStr);

            // Create a JMXConnector
            //
            final JMXConnector conn =
                JMXConnectorFactory.newJMXConnector(url,null);

            // Add the connector to the result list
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            //
            list.add(conn);
            if (debug) listAttributes(root,r.getName());
        }

        return list;
    }

    /**
     * List all MBeans and their attributes.
     */
    public static void listMBeans(MBeanServerConnection server)
        throws IOException {
        final Set names = server.queryNames(null,null);
        for (final Iterator i=names.iterator(); i.hasNext(); ) {
            ObjectName name = (ObjectName)i.next();
            System.out.println("Got MBean: "+name);
            try {
                MBeanInfo info =
                    server.getMBeanInfo((ObjectName)name);
                MBeanAttributeInfo[] attrs = info.getAttributes();
                if (attrs == null) continue;
                for (int j=0; j<attrs.length; j++) {
                    if (attrs[j].isReadable()) {
                        try {
                            Object o =
                                
server.getAttribute(name,attrs[j].getName());
                            System.out.println("\t\t" + 
attrs[j].getName() +
                                               " = "+o);
                        } catch (Exception x) {
                            System.err.println("JmxClient failed to 
get " +
                                               attrs[j].getName());
                            x.printStackTrace(System.err);
                        }
                    }
                }
            } catch (Exception x) {
                System.err.println("JmxClient failed to get MBeanInfo: 
"  + x);
                x.printStackTrace(System.err);
            }
        }
    }

    /**
     * Trace a debug message.
     */
    private static void debug(String msg) {
        if (debug) System.out.println(msg);
    }

    /**
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     * Program Main.
     * <p>
     * Lookup all JMX agents in the LDAP Directory and list
     * their MBeans and attributes.
     * <p>
     * You may wish to use the following properties on the Java command line:
     * <ul>
     * <li><code>-Dagent.name=&lt;AgentName&gt;</code>: specifies an
     *     AgentName to lookup (default is null, meaning any agent).</li>
     * <li><code>-Dprotocol=&lt;ProtocolType&gt;</code>: restrains the client
     *     to lookup for a specific protocol type (default is null,
     *     meaning any type).</li>
     * <li><code>-Djava.naming.factory.initial=&lt;initial-context-
factory&gt;
     *     </code>: The initial context factory to use for accessing the
     *     LDAP directory (see {@link Context#INITIAL_CONTEXT_FACTORY
     *     Context.INITIAL_CONTEXT_FACTORY}) - default is
     *     <code>"com.sun.jndi.ldap.LdapCtxFactory"</code>.</li>
     * <li><code>-Djava.naming.provider.url=&lt;provider-url&gt;</code>:
     *     The LDAP Provider URL (see {@link Context#PROVIDER_URL
     *     Context.PROVIDER_URL}).</li>
     * <li><code>-Djava.naming.security.principal=&lt;ldap-principal&gt;
     *     </code>: The security principal (login) to use to connect with
     *     the LDAP directory (see {@link Context#SECURITY_PRINCIPAL
     *     Context.SECURITY_PRINCIPAL} - default is
     *     <code>"cn=Directory Manager"</code>.</li>
     * <li><code>-Djava.naming.security.credentials=&lt;ldap-credentials&gt;
     *     </code>: The security credentials (password) to use to
     *     connect with the LDAP directory (see
     *     {@link Context#SECURITY_CREDENTIALS
     *     Context.SECURITY_CREDENTIALS}).</li>
     * <li><code>-Ddebug="true|false"</code>: switch the Server debug flag
     *     on/off (default is "false")</li>
     * </ul>
     */
    public static void main(String[] args) {
        try {
            // Get the value of the debug flag.
            //
            debug = (Boolean.valueOf(System.getProperty("debug","false"))).
                booleanValue();

            // Get a pointer to the LDAP Directory.
            //
            final DirContext root = getRootContext();
            debug("root is: " + root.getNameInNamespace());

            final String protocolType=System.getProperty("protocol");
            final String agentName=System.getProperty("agent.name");

            // Lookup all matching agents in the LDAP Directory.
            //
            List l = lookup(root,protocolType,agentName);

            // Attempt to connect to retrieved agents
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            //
            System.out.println("Number of agents found : " + l.size());
            int j = 1;
            for (Iterator i=l.iterator();i.hasNext();j++) {
                JMXConnector c1 = (JMXConnector) i.next();
                if (c1 != null) {

                    // Connect
                    //
                    System.out.println(
                      
"----------------------------------------------------");
                    System.out.println("\tConnecting to agent number 
"+j);
                    System.out.println(
                      
"----------------------------------------------------");
                    debug("JMXConnector is: " + c1);

                    // Prepare the environment Map
                    //
                    final HashMap env = new HashMap();
                    final String factory =
                        
System.getProperty(Context.INITIAL_CONTEXT_FACTORY);
                    final String ldapServerUrl =
                        System.getProperty(Context.PROVIDER_URL);
                    final String ldapUser =
                        System.getProperty(Context.SECURITY_PRINCIPAL);
                    final String ldapPasswd =
                        
System.getProperty(Context.SECURITY_CREDENTIALS);

                    // Transfer some system properties to the Map
                    //
                    if (factory!= null) // this should not be needed
                        
env.put(Context.INITIAL_CONTEXT_FACTORY,factory);
                    if (ldapServerUrl!=null) // this should not be 
needed
                        env.put(Context.PROVIDER_URL, ldapServerUrl);
                    if (ldapUser!=null) // this is needed when LDAP is 
used
                        env.put(Context.SECURITY_PRINCIPAL, ldapUser);
                    if (ldapPasswd != null) // this is needed when 
LDAP is used
                        env.put(Context.SECURITY_CREDENTIALS, 
ldapPasswd);

                    try {
                        c1.connect(env);
                    } catch (IOException x) {
                        System.err.println("Connection failed: " + x);
                        x.printStackTrace(System.err);
                        continue;

Chapter 20
examples/Lookup/ldap/Client.java

20-24



                    }

                    // Get MBeanServerConnection
                    //
                    MBeanServerConnection conn =
                        c1.getMBeanServerConnection();
                    debug("Connection is:" + conn);
                    System.out.println("Server domain is: " +
                                       conn.getDefaultDomain());

                    // List all MBeans
                    //
                    try {
                        listMBeans(conn);
                    } catch (IOException x) {
                        System.err.println("Failed to list MBeans: " + x);
                        x.printStackTrace(System.err);
                    }

                    // Close connector
                    //
                    try {
                        c1.close();
                    } catch (IOException x) {
                        System.err.println("Failed to close connection: " + 
x);
                        x.printStackTrace(System.err);
                    }
                }
            }
        } catch (Exception x) {
            System.err.println("Unexpected exception caught in main: " + x);
            x.printStackTrace(System.err);
        }
    }
}

examples/Lookup/ldap/jmx-schema.txt
--                    LDAP Schema for JSR 160 Lookup
--                    ------------------------------

-- AttributeTypes:
-----------------

-- jmxServiceURL attribute is an IA5 String

( 1.3.6.1.4.1.42.2.27.11.1.1 NAME 'jmxServiceURL' 
  DESC 'String representation of a JMX Service URL' 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 
  SINGLE-VALUE )

-- jmxAgentName attribute is an IA5 String
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( 1.3.6.1.4.1.42.2.27.11.1.2 NAME 'jmxAgentName' 
  DESC 'Name of the JMX Agent' 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 
  SINGLE-VALUE )

-- jmxProtocolType attribute is an IA5 String

( 1.3.6.1.4.1.42.2.27.11.1.3 NAME 'jmxProtocolType' 
  DESC 'Protocol used by the registered connector' 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 
  SINGLE-VALUE )

-- jmxAgentHost attribute is an IA5 String

( 1.3.6.1.4.1.42.2.27.11.1.4 NAME 'jmxAgentHost' 
  DESC 'Names or IP Addresses of the host on which the agent is 
running. 
        When multiple values are given, they should be aliases to the 
        same host.'
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.26  )

-- jmxProperty attribute is an IA5 String

( 1.3.6.1.4.1.42.2.27.11.1.5 NAME 'jmxProperty' 
  DESC 'Java-like property characterizing the registered object. 
        The form of each value should be: "<property-name>=<value>". 
        For instance: "com.sun.jmx.remote.tcp.timeout=200"' 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 )

-- jmxExpirationDate attribute is a Generalized Time
-- see [RFC 2252] - or X.208 for a description of
-- Generalized Time

( 1.3.6.1.4.1.42.2.27.11.1.6 NAME 'jmxExpirationDate' 
  DESC 'Date at which the JMX Service URL will be considered obsolete 
        and may be removed from the directory tree' 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 
  SINGLE-VALUE )

-- ObjectClasses:
-----------------

-- jmxConnector class - represents a JMX Connector.
-- must contain the JMX Service URL
-- and the JMX Agent Name

( 1.3.6.1.4.1.42.2.27.11.2.1 NAME 'jmxConnector' 
  DESC  'A class representing a JMX Connector, and containing a 
         JMX Service URL. The jmxServiceURL is not present if the 
server 
         is not accepting connections' 
  AUXILIARY 
  MUST  ( jmxAgentName  ) 
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  MAY   ( jmxServiceURL $ jmxAgentHost $ jmxProtocolType $ jmxProperty $ 
          jmxExpirationDate $ description ) )

examples/Lookup/ldap/60jmx-schema.ldif
dn: cn=schema
attributeTypes: ( 1.3.6.1.4.1.42.2.27.11.1.1 NAME 'jmxServiceURL' 
     DESC 'String representation of a JMX Service URL'
     SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 
     SINGLE-VALUE )
attributeTypes: ( 1.3.6.1.4.1.42.2.27.11.1.2 NAME 'jmxAgentName' 
     DESC 'Name of the JMX Agent' 
     SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 
     SINGLE-VALUE )
attributeTypes: ( 1.3.6.1.4.1.42.2.27.11.1.3 NAME 'jmxProtocolType' 
     DESC 'Protocol used by the registered connector'
     SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 
     SINGLE-VALUE )
attributeTypes: ( 1.3.6.1.4.1.42.2.27.11.1.4 NAME 'jmxAgentHost' 
     DESC 'Names or IP Addresses of the host on which the agent is running. 
  When multiple values are given, they should be aliases to the same host.'
     SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 )
attributeTypes: ( 1.3.6.1.4.1.42.2.27.11.1.5 NAME 'jmxProperty' 
     DESC 'Java-like property characterizing the registered object. 
  The form of each value should be: "<property-name>=<value>". 
  For instance: "com.sun.jmx.remote.tcp.timeout=200"'
     SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 )
attributeTypes: ( 1.3.6.1.4.1.42.2.27.11.1.6 NAME 'jmxExpirationDate' 
     DESC 'Date at which the JMX Service URL will be considered 
  obsolete and may be removed from the directory tree'
     SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 
     SINGLE-VALUE )
objectClasses: ( 1.3.6.1.4.1.42.2.27.11.2.1 NAME 'jmxConnector'
     DESC  'A class representing a JMX Connector, and containing a 
  JMX Service URL. The jmxServiceURL is not present if the server is 
  not accepting connections'
     AUXILIARY
     MUST  ( jmxAgentName  ) 
     MAY   ( jmxServiceURL $ jmxAgentHost $ jmxProtocolType $ 
             jmxProperty $ jmxExpirationDate $ description ) )
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21
Simple Security

The JMX API uses existing security protocols to secure your connections. This example
provides a simple security implementation. The source code contained in this section is used
to create corresponding files in the examples/ directory specified in the appropriate setup
procedure and includes:

• README file

• Server

• Client

• ClientListener

• access.properties

• keystore

• password.properties

• truststore

• SimpleStandard

• SimpleStandardMBean

examples/Security/simple/README

# 
=============================================================================
=
#
#  Example of a secure RMI connector.
#
#  This example uses:
#
#  - the RMI SSL socket factories for encryption,
#  - the password authenticator based on the JMXAuthenticator interface for
#    user authentication,
#  - the file access controller based on the MBeanServerForwarder interface
#    for user access level authorization.
#
# 
=============================================================================
=
#
# In order to compile and run the example, make a copy of this README file, 
and
# then simply cut and paste all the commands as needed into a terminal 
window.
#
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# This README makes the assumption that you are running under Java SE 
6 on Unix,
# you are familiar with the JMX technology, and with the bourne shell 
or korn
# shell syntax.
#
# All the commands below are defined using Unix korn shell syntax.
#
# If you are not running Unix and korn shell you are expected to be 
able to
# adapt these commands to your favorite OS and shell environment.
#

# Compile Java classes
#
# * Server.java: creates an MBeanServer and creates and starts a 
secure RMI
#                connector server (JRMP).
#
# * Client.java: creates a secure RMI connector (JRMP), creates and 
registers
#                a Simple standard MBean and performs operations on it.
#
# * ClientListener.java: implements a generic notification listener.
#
# * SimpleStandard.java: implements the Simple standard MBean.
#
# * SimpleStandardMBean.java: the management interface exposed by the 
Simple
#                             standard MBean.
#

javac mbeans/SimpleStandard.java \
      mbeans/SimpleStandardMBean.java \
      server/Server.java \
      client/Client.java \
      client/ClientListener.java

# Start the RMI registry:
#

export CLASSPATH=server ; rmiregistry 9999 &

# Start the Server:
#

java -classpath server:mbeans \
     -Djavax.net.ssl.keyStore=config/keystore \
     -Djavax.net.ssl.keyStorePassword=password \
     Server &

# Start the Client:
#

java -classpath client:server:mbeans \
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     -Djavax.net.ssl.trustStore=config/truststore \
     -Djavax.net.ssl.trustStorePassword=trustword \
     Client

# 
=============================================================================
=

examples/Security/simple/server/Server.java

import java.io.File;
import java.util.HashMap;
import javax.management.MBeanServer;
import javax.management.MBeanServerFactory;
import javax.management.remote.JMXConnectorServer;
import javax.management.remote.JMXConnectorServerFactory;
import javax.management.remote.JMXServiceURL;
import javax.management.remote.rmi.RMIConnectorServer;
import javax.rmi.ssl.SslRMIClientSocketFactory;
import javax.rmi.ssl.SslRMIServerSocketFactory;

public class Server {

    public static void main(String[] args) {
        try {
            // Instantiate the MBean server
            //
            System.out.println("\nCreate the MBean server");
            MBeanServer mbs = MBeanServerFactory.createMBeanServer();

            // Environment map
            //
            System.out.println("\nInitialize the environment map");
            HashMap env = new HashMap();

            // Provide SSL-based RMI socket factories.
            //
            SslRMIClientSocketFactory csf = new SslRMIClientSocketFactory();
            SslRMIServerSocketFactory ssf = new SslRMIServerSocketFactory();
            
env.put(RMIConnectorServer.RMI_CLIENT_SOCKET_FACTORY_ATTRIBUTE,csf);
            
env.put(RMIConnectorServer.RMI_SERVER_SOCKET_FACTORY_ATTRIBUTE,ssf);

            // Provide the password file used by the connector server to
            // perform user authentication. The password file is a properties
            // based text file specifying username/password pairs. This
            // properties based password authenticator has been implemented
            // using the JMXAuthenticator interface and is passed to the
            // connector through the "jmx.remote.authenticator" property
            // in the map.
            //
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            // This property is implementation-dependent and might not 
be
            // supported by all implementations of the JMX Remote API.
            //
            env.put("jmx.remote.x.password.file",
                    "config" + File.separator + "password.properties");

            // Provide the access level file used by the connector 
server to
            // perform user authorization. The access level file is a 
properties
            // based text file specifying username/access level pairs 
where
            // access level is either "readonly" or "readwrite" access 
to the
            // MBeanServer operations. This properties based access 
control
            // checker has been implemented using the 
MBeanServerForwarder
            // interface which wraps the real MBean server inside an 
access
            // controller MBean server which performs the access 
control checks
            // before forwarding the requests to the real MBean server.
            //
            // This property is implementation-dependent and might not 
be
            // supported by all implementations of the JMX Remote API.
            //
            env.put("jmx.remote.x.access.file",
                    "config" + File.separator + "access.properties");

            // Create an RMI connector server
            //
            System.out.println("\nCreate an RMI connector server");
            JMXServiceURL url = new JMXServiceURL(
              "service:jmx:rmi:///jndi/rmi://localhost:9999/server");
            JMXConnectorServer cs =
                JMXConnectorServerFactory.newJMXConnectorServer(url, 
env, mbs);

            // Start the RMI connector server
            //
            System.out.println("\nStart the RMI connector server");
            cs.start();
            System.out.println("\nRMI connector server successfully 
started");
            System.out.println("\nWaiting for incoming 
connections...");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}
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examples/Security/simple/client/Client.java

import java.util.HashMap;
import javax.management.Attribute;
import javax.management.JMX;
import javax.management.MBeanServerConnection;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;

public class Client {

    public static void main(String[] args) {
        try {
            // Environment map
            //
            System.out.println("\nInitialize the environment map");
            HashMap env = new HashMap();

            // Provide the credentials required by the server to successfully
            // perform user authentication
            //
            String[] credentials = new String[] { "username" , "password" };
            env.put("jmx.remote.credentials", credentials);

            // Create an RMI connector client and
            // connect it to the RMI connector server
            //
            System.out.println("\nCreate an RMI connector client and " +
                               "connect it to the RMI connector server");
            JMXServiceURL url = new JMXServiceURL(
              "service:jmx:rmi:///jndi/rmi://localhost:9999/server");
            JMXConnector jmxc = JMXConnectorFactory.connect(url, env);

            // Get an MBeanServerConnection
            //
            System.out.println("\nGet an MBeanServerConnection");
            MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

            // Get domains from MBeanServer
            //
            System.out.println("\nDomains:");
            String domains[] = mbsc.getDomains();
            for (int i = 0; i < domains.length; i++) {
                System.out.println("\tDomain[" + i + "] = " + domains[i]);
            }

            // Create SimpleStandard MBean
            //
            ObjectName mbeanName = new 
ObjectName("MBeans:type=SimpleStandard");
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            System.out.println("\nCreate SimpleStandard MBean...");
            mbsc.createMBean("SimpleStandard", mbeanName, null, null);

            // Get MBean count
            //
            System.out.println("\nMBean count = " + 
mbsc.getMBeanCount());

            // Get State attribute
            //
            System.out.println("\nState = " +
                               mbsc.getAttribute(mbeanName, "State"));

            // Set State attribute
            //
            mbsc.setAttribute(mbeanName,
                              new Attribute("State", "changed state"));

            // Get State attribute
            //
            // Another way of interacting with a given MBean is 
through a
            // dedicated proxy instead of going directly through the 
MBean
            // server connection
            //
            SimpleStandardMBean proxy = JMX.newMBeanProxy(
                    mbsc, mbeanName, SimpleStandardMBean.class);
            System.out.println("\nState = " + proxy.getState());

            // Add notification listener on SimpleStandard MBean
            //
            ClientListener listener = new ClientListener();
            System.out.println("\nAdd notification listener...");
            mbsc.addNotificationListener(mbeanName, listener, null, 
null);

            // Invoke "reset" in SimpleStandard MBean
            //
            // Calling "reset" makes the SimpleStandard MBean emit a
            // notification that will be received by the registered
            // ClientListener.
            //
            System.out.println("\nInvoke reset() in SimpleStandard 
MBean...");
            mbsc.invoke(mbeanName, "reset", null, null);

            // Sleep for 2 seconds in order to have time to receive the
            // notification before removing the notification listener.
            //
            System.out.println("\nWaiting for notification...");
            Thread.sleep(2000);

            // Remove notification listener on SimpleStandard MBean
            //
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            System.out.println("\nRemove notification listener...");
            mbsc.removeNotificationListener(mbeanName, listener);

            // Unregister SimpleStandard MBean
            //
            System.out.println("\nUnregister SimpleStandard MBean...");
            mbsc.unregisterMBean(mbeanName);

            // Close MBeanServer connection
            //
            System.out.println("\nClose the connection to the server");
            jmxc.close();
            System.out.println("\nBye! Bye!");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

examples/Security/simple/client/ClientListener.java

import javax.management.Notification;
import javax.management.NotificationListener;

public class ClientListener implements NotificationListener {
    public void handleNotification(Notification notification, Object 
handback) {
        System.out.println("\nReceived notification: " + notification);
    }
}

examples/Security/simple/config/access.properties

# access.properties

# Access control file for Remote JMX API access to MBeanServer resources.
# This file defines the allowed access for different roles.

# The file format for the access file is syntactically the same as the
# Properties file format.  The syntax is described in the JavaDoc page for
# java.util.Properties.load.

# A typical access file has multiple lines, where each line is blank,
# a comment (like this one), or an access control entry.

# An access control entry consists of a role name, and an associated access
# level. The role name is any string that does not itself contain spaces or
# tabs. It corresponds to an entry in the password file. The access level
# is one of the following:
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#
#       "readonly"  grants access to read attributes of MBeans.
#                   For monitoring, this means that a remote client in 
this
#                   role can read measurements but cannot perform any 
action
#                   that changes the environment of the running 
program.
#
#       "readwrite" grants access to read and write attributes of 
MBeans, to
#                   invoke operations on them, and to create or remove 
them.
#                   This access should be only granted to trusted 
clients,
#                   since they can potentially interfere with the 
smooth
#                   operation of a running program.

# The "readwrite" access level can optionally be followed by the 
"create"
# and/or "unregister" keywords.  The "unregister" keyword grants 
access to 
# unregister (delete) MBeans.  The "create" keyword grants access to 
create 
# MBeans of a particular class or of any class matching a particular 
pattern.  
# Access should only be granted to create MBeans of known and trusted 
classes.

# A given role should have at most one entry in this file. If a role 
has no
# entry, it has no access.
# If multiple entries are found for the same role name, then the last 
access
# entry is used.

# Access rights granted to the authenticated identity by the RMI 
connector
# in this example.
#
username readwrite \
  create SimpleStandard \
  unregister

examples/Security/simple/config/password.properties

# password.properties

# Password file for Remote JMX API authentication. This file defines
# the different roles and their passwords.
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# The file format for the password file is syntactically the same as
# the Properties file format. The syntax is described in the JavaDoc page
# for java.util.Properties.load.

# A typical password file has multiple lines, where each line is blank,
# a comment (like this one), or a password entry.

# A password entry consists of a role name and an associated password.
# The role name is any string that does not itself contain spaces or
# tabs. The password is again any string that does not contain spaces
# or tabs. Note that passwords appear in the clear in this file, so it
# is a good idea not to use valuable passwords.

# A given role should have at most one entry in this file. If a role
# has no entry, it has no access.
# If multiple entries are found for the same role name, then the last
# one is used.

# In a typical installation, this file can be read by anybody on the
# local machine, and possibly by people on other machines.
# For security, you should either restrict the access to this file,
# or specify another, less accessible file in the management config
# file as described above.

# Role and password used for authentication by the RMI connector in
# this example.
#
username password

examples/Security/simple/mbeans/SimpleStandard.java

/**
 * Simple definition of a standard MBean, named "SimpleStandard".
 *
 * The "SimpleStandard" standard MBean shows how to expose attributes
 * and operations for management by implementing its corresponding
 * "SimpleStandardMBean" management interface.
 *
 * This MBean has two attributes and one operation exposed
 * for management by a JMX agent:
 *      - the read/write "State" attribute,
 *      - the read only "NbChanges" attribute,
 *      - the "reset()" operation.
 *
 * This object also has one property and one method not exposed
 * for management by a JMX agent:
 *      - the "NbResets" property,
 *      - the "getNbResets()" method.
 */

import javax.management.AttributeChangeNotification;
import javax.management.MBeanNotificationInfo;
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import javax.management.NotificationBroadcasterSupport;

public class SimpleStandard
    extends NotificationBroadcasterSupport
    implements SimpleStandardMBean {

    /*
     * -----------------------------------------------------
     * CONSTRUCTORS
     * -----------------------------------------------------
     */

    /* "SimpleStandard" does not provide any specific constructors.
     * However, "SimpleStandard" is JMX compliant with regards to
     * contructors because the default contructor SimpleStandard()
     * provided by the Java compiler is public.
     */

    /*
     * -----------------------------------------------------
     * IMPLEMENTATION OF THE SimpleStandardMBean INTERFACE
     * -----------------------------------------------------
     */

    /**
     * Getter: get the "State" attribute of the "SimpleStandard" 
standard MBean.
     *
     * @return the current value of the "State" attribute.
     */
    public String getState() {
        return state;
    }

    /**
     * Setter: set the "State" attribute of the "SimpleStandard" 
standard MBean.
     *
     * @param <VAR>s</VAR> the new value of the "State" attribute.
     */
    public void setState(String s) {
        state = s;
        nbChanges++;
    }

    /**
     * Getter: get the "NbChanges" attribute of the "SimpleStandard" 
standard
     * MBean.
     *
     * @return the current value of the "NbChanges" attribute.
     */
    public int getNbChanges() {
        return nbChanges;
    }
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    /**
     * Operation: reset to their initial values the "State" and "NbChanges"
     * attributes of the "SimpleStandard" standard MBean.
     */
    public void reset() {
        AttributeChangeNotification acn =
            new AttributeChangeNotification(this,
                                            0,
                                            0,
                                            "NbChanges reset",
                                            "NbChanges",
                                            "Integer",
                                            new Integer(nbChanges),
                                            new Integer(0));
        state = "initial state";
        nbChanges = 0;
        nbResets++;
        sendNotification(acn);
    }

    /*
     * -----------------------------------------------------
     * METHOD NOT EXPOSED FOR MANAGEMENT BY A JMX AGENT
     * -----------------------------------------------------
     */

    /**
     * Return the "NbResets" property.
     * This method is not a Getter in the JMX sense because it
     * is not exposed in the "SimpleStandardMBean" interface.
     *
     * @return the current value of the "NbResets" property.
     */
    public int getNbResets() {
        return nbResets;
    }

    /**
     * Returns an array indicating, for each notification this MBean
     * may send, the name of the Java class of the notification and
     * the notification type.</p>
     *
     * @return the array of possible notifications.
     */
    public MBeanNotificationInfo[] getNotificationInfo() {
        return new MBeanNotificationInfo[] {
            new MBeanNotificationInfo(
            new String[] { AttributeChangeNotification.ATTRIBUTE_CHANGE },
            AttributeChangeNotification.class.getName(),
            "This notification is emitted when the reset() method is 
called.")
        };
    }
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    /*
     * -----------------------------------------------------
     * ATTRIBUTES ACCESSIBLE FOR MANAGEMENT BY A JMX AGENT
     * -----------------------------------------------------
     */

    private String state = "initial state";
    private int nbChanges = 0;

    /*
     * -----------------------------------------------------
     * PROPERTY NOT ACCESSIBLE FOR MANAGEMENT BY A JMX AGENT
     * -----------------------------------------------------
     */

    private int nbResets = 0;
}

examples/Security/simple/mbeans/
SimpleStandardMBean.java

/**
 * This is the management interface explicitly defined for the
 * "SimpleStandard" standard MBean.
 *
 * The "SimpleStandard" standard MBean implements this interface
 * in order to be manageable through a JMX agent.
 *
 * The "SimpleStandardMBean" interface shows how to expose for 
management:
 * - a read/write attribute (named "State") through its getter and 
setter
 *   methods,
 * - a read-only attribute (named "NbChanges") through its getter 
method,
 * - an operation (named "reset").
 */
public interface SimpleStandardMBean {

    /**
     * Getter: set the "State" attribute of the "SimpleStandard" 
standard
     * MBean.
     *
     * @return the current value of the "State" attribute.
     */
    public String getState();

    /**
     * Setter: set the "State" attribute of the "SimpleStandard" 
standard
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     * MBean.
     *
     * @param <VAR>s</VAR> the new value of the "State" attribute.
     */
    public void setState(String s);

    /**
     * Getter: get the "NbChanges" attribute of the "SimpleStandard" standard
     * MBean.
     *
     * @return the current value of the "NbChanges" attribute.
     */
    public int getNbChanges();

    /**
     * Operation: reset to their initial values the "State" and "NbChanges"
     * attributes of the "SimpleStandard" standard MBean.
     */
    public void reset();
}
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22
Security with Subject Delegation

The JMX API uses existing security protocols to secure your connections. This example
provides a security with subject delegation implementation. The source code contained in this
section is used to create corresponding files in the examples/ directory specified in the
appropriate setup procedure and includes:

• README file

• Server

• Client

• ClientListener

• access.properties

• keystore

• password.properties

• java.policy

• SimpleStandard

• SimpleStandardMBean

examples/Security/subject_delegation/README

# 
=============================================================================
=
#
#  Example of a secure RMI connector (subject delegation).
#
#  This example uses:
#
#  - the password authenticator based on the JMXAuthenticator interface for
#    user authentication,
#  - the file access controller based on the MBeanServerForwarder interface
#    for user access level authorization,
#  - the subject delegation feature: the connection is authenticated using
#    "username" as principal but the operations and hence the authorization
#    checks are performed on behalf of the "delegate" principal. The policy
#    file grants permission to the principal "username" to perform operations
#    on behalf of the principal "delegate".
#
# 
=============================================================================
=
#
# In order to compile and run the example, make a copy of this README file, 
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and
# then simply cut and paste all the commands as needed into a terminal 
window.
#
# This README makes the assumption that you are running under Java SE 
6 on Unix,
# you are familiar with the JMX technology, and with the bourne shell 
or korn
# shell syntax.
#
# All the commands below are defined using Unix korn shell syntax.
#
# If you are not running Unix and korn shell you are expected to be 
able to
# adapt these commands to your favorite OS and shell environment.
#

# Compile Java classes
#
# * Server.java: creates an MBeanServer and creates and starts a 
secure RMI
#                connector server (JRMP).
#
# * Client.java: creates a secure RMI connector (JRMP), creates and 
registers
#                a Simple standard MBean and performs operations on it
#                using a delegation subject.
#
# * ClientListener.java: implements a generic notification listener.
#
# * SimpleStandard.java: implements the Simple standard MBean.
#
# * SimpleStandardMBean.java: the management interface exposed by the 
Simple
#                             standard MBean.
#

javac mbeans/SimpleStandard.java \
      mbeans/SimpleStandardMBean.java \
      server/Server.java \
      client/Client.java \
      client/ClientListener.java

# Start the RMI registry:
#

export CLASSPATH=server ; rmiregistry 9999 &

# Start the Server:
#

java -classpath server:mbeans \
     -Djava.security.policy=config/java.policy \
     Server &
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# Start the Client:
#

java -classpath client:server:mbeans Client

# 
=============================================================================
=

examples/Security/subject_delegation/server/Server.java

import java.io.File;
import java.util.HashMap;
import javax.management.MBeanServer;
import javax.management.MBeanServerFactory;
import javax.management.remote.JMXConnectorServer;
import javax.management.remote.JMXConnectorServerFactory;
import javax.management.remote.JMXServiceURL;

public class Server {

    public static void main(String[] args) {
        try {
            // Instantiate the MBean server
            //
            System.out.println("\nCreate the MBean server");
            MBeanServer mbs = MBeanServerFactory.createMBeanServer();

            // Environment map
            //
            System.out.println("\nInitialize the environment map");
            HashMap env = new HashMap();

            // Provide the password file used by the connector server to
            // perform user authentication. The password file is a properties
            // based text file specifying username/password pairs. This
            // properties based password authenticator has been implemented
            // using the JMXAuthenticator interface and is passed to the
            // connector through the "jmx.remote.authenticator" property
            // in the map.
            //
            // This property is implementation-dependent and might not be
            // supported by all implementations of the JMX Remote API.
            //
            env.put("jmx.remote.x.password.file",
                    "config" + File.separator + "password.properties");

            // Provide the access level file used by the connector server to
            // perform user authorization. The access level file is a 
properties
            // based text file specifying username/access level pairs where
            // access level is either "readonly" or "readwrite" access to the

Chapter 22
examples/Security/subject_delegation/server/Server.java

22-3



            // MBeanServer operations. This properties based access 
control
            // checker has been implemented using the 
MBeanServerForwarder
            // interface which wraps the real MBean server inside an 
access
            // controller MBean server which performs the access 
control checks
            // before forwarding the requests to the real MBean server.
            //
            // This property is implementation-dependent and might not 
be
            // supported by all implementations of the JMX Remote API.
            //
            env.put("jmx.remote.x.access.file",
                    "config" + File.separator + "access.properties");

            // Create an RMI connector server
            //
            System.out.println("\nCreate an RMI connector server");
            JMXServiceURL url = new JMXServiceURL(
              "service:jmx:rmi:///jndi/rmi://localhost:9999/server");
            JMXConnectorServer cs =
                JMXConnectorServerFactory.newJMXConnectorServer(url, 
env, mbs);

            // Start the RMI connector server
            //
            System.out.println("\nStart the RMI connector server");
            cs.start();
            System.out.println("\nRMI connector server successfully 
started");
            System.out.println("\nWaiting for incoming 
connections...");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

examples/Security/subject_delegation/client/Client.java

import java.util.Collections;
import java.util.HashMap;
import javax.management.Attribute;
import javax.management.JMX;
import javax.management.MBeanServerConnection;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXPrincipal;
import javax.management.remote.JMXServiceURL;
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import javax.security.auth.Subject;

public class Client {

    public static void main(String[] args) {
        try {
            // Environment map
            //
            System.out.println("\nInitialize the environment map");
            HashMap env = new HashMap();

            // Provide the credentials required by the server to successfully
            // perform user authentication
            //
            String[] credentials = new String[] { "username" , "password" };
            env.put("jmx.remote.credentials", credentials);

            // Create an RMI connector client and
            // connect it to the RMI connector server
            //
            System.out.println("\nCreate an RMI connector client and " +
                               "connect it to the RMI connector server");
            JMXServiceURL url = new JMXServiceURL(
              "service:jmx:rmi:///jndi/rmi://localhost:9999/server");
            JMXConnector jmxc = JMXConnectorFactory.connect(url, env);

            // Create the delegation subject and retrieve an
            // MBeanServerConnection that uses that subject
            // when performing the operations on the remote
            // MBean server
            //
            // The connector server will check that the authentication 
identity
            // "username" has the right to execute operations on behalf of 
the
            // given authorization identity "delegate", i.e. the policy file
            // must contain the following grant clause:
            //
            // grant principal javax.management.remote.JMXPrincipal 
"username" {
            //   permission 
javax.management.remote.SubjectDelegationPermission
            //                  
"javax.management.remote.JMXPrincipal.delegate";
            // };
            //
            System.out.println("\nCreate the delegation subject");
            Subject delegationSubject =
                new Subject(true,
                            Collections.singleton(new 
JMXPrincipal("delegate")),
                            Collections.EMPTY_SET,
                            Collections.EMPTY_SET);

            // Get an MBeanServerConnection for the given delegation subject
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            //
            System.out.println("\nGet an MBeanServerConnection " +
                               "for the given delegation subject");
            MBeanServerConnection mbsc =
                jmxc.getMBeanServerConnection(delegationSubject);

            // Get domains from MBeanServer
            //
            System.out.println("\nDomains:");
            String domains[] = mbsc.getDomains();
            for (int i = 0; i < domains.length; i++) {
                System.out.println("\tDomain[" + i + "] = " + 
domains[i]);
            }

            // Create SimpleStandard MBean
            //
            ObjectName mbeanName = new 
ObjectName("MBeans:type=SimpleStandard");
            System.out.println("\nCreate SimpleStandard MBean...");
            mbsc.createMBean("SimpleStandard", mbeanName, null, null);

            // Get MBean count
            //
            System.out.println("\nMBean count = " + 
mbsc.getMBeanCount());

            // Get State attribute
            //
            System.out.println("\nState = " +
                               mbsc.getAttribute(mbeanName, "State"));

            // Set State attribute
            //
            mbsc.setAttribute(mbeanName,
                              new Attribute("State", "changed state"));

            // Get State attribute
            //
            // Another way of interacting with a given MBean is 
through a
            // dedicated proxy instead of going directly through the 
MBean
            // server connection
            //
            SimpleStandardMBean proxy = JMX.newMBeanProxy(
                    mbsc, mbeanName, SimpleStandardMBean.class);
            System.out.println("\nState = " + proxy.getState());

            // Add notification listener on SimpleStandard MBean
            //
            ClientListener listener = new ClientListener();
            System.out.println("\nAdd notification listener...");
            mbsc.addNotificationListener(mbeanName, listener, null, 
null);
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            // Invoke "reset" in SimpleStandard MBean
            //
            // Calling "reset" makes the SimpleStandard MBean emit a
            // notification that will be received by the registered
            // ClientListener.
            //
            System.out.println("\nInvoke reset() in SimpleStandard 
MBean...");
            mbsc.invoke(mbeanName, "reset", null, null);

            // Sleep for 2 seconds in order to have time to receive the
            // notification before removing the notification listener.
            //
            System.out.println("\nWaiting for notification...");
            Thread.sleep(2000);

            // Remove notification listener on SimpleStandard MBean
            //
            System.out.println("\nRemove notification listener...");
            mbsc.removeNotificationListener(mbeanName, listener);

            // Unregister SimpleStandard MBean
            //
            System.out.println("\nUnregister SimpleStandard MBean...");
            mbsc.unregisterMBean(mbeanName);

            // Close MBeanServer connection
            //
            System.out.println("\nClose the connection to the server");
            jmxc.close();
            System.out.println("\nBye! Bye!");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

examples/Security/subject_delegation/client/ClientListener.java

import javax.management.Notification;
import javax.management.NotificationListener;

public class ClientListener implements NotificationListener {
    public void handleNotification(Notification notification, Object 
handback) {
        System.out.println("\nReceived notification: " + notification);
    }
}
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examples/Security/subject_delegation/config/
access.properties

# access.properties

# Access control file for Remote JMX API access to MBeanServer 
resources.
# This file defines the allowed access for different roles.

# The file format for the access file is syntactically the same as the
# Properties file format.  The syntax is described in the JavaDoc page 
for
# java.util.Properties.load.

# A typical access file has multiple lines, where each line is blank,
# a comment (like this one), or an access control entry.

# An access control entry consists of a role name, and an associated 
access
# level. The role name is any string that does not itself contain 
spaces or
# tabs. It corresponds to an entry in the password file. The access 
level
# is one of the following:
#
#       "readonly"  grants access to read attributes of MBeans.
#                   For monitoring, this means that a remote client in 
this
#                   role can read measurements but cannot perform any 
action
#                   that changes the environment of the running 
program.
#
#       "readwrite" grants access to read and write attributes of 
MBeans, to
#                   invoke operations on them, and to create or remove 
them.
#                   This access should be only granted to trusted 
clients,
#                   since they can potentially interfere with the 
smooth
#                   operation of a running program.

# A given role should have at most one entry in this file. If a role 
has no
# entry, it has no access.
# If multiple entries are found for the same role name, then the last 
access
# entry is used.

# Access rights granted to the authenticated identity and the delegated
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# identity by the RMI connector in this example.
#
username readwrite
delegate readwrite

examples/Security/subject_delegation/config/
password.properties

# password.properties

# Password file for Remote JMX API authentication. This file defines
# the different roles and their passwords.

# The file format for the password file is syntactically the same as
# the Properties file format. The syntax is described in the JavaDoc page
# for java.util.Properties.load.

# A typical password file has multiple lines, where each line is blank,
# a comment (like this one), or a password entry.

# A password entry consists of a role name and an associated password.
# The role name is any string that does not itself contain spaces or
# tabs. The password is again any string that does not contain spaces
# or tabs. Note that passwords appear in the clear in this file, so it
# is a good idea not to use valuable passwords.

# A given role should have at most one entry in this file. If a role
# has no entry, it has no access.
# If multiple entries are found for the same role name, then the last
# one is used.

# In a typical installation, this file can be read by anybody on the
# local machine, and possibly by people on other machines.
# For security, you should either restrict the access to this file,
# or specify another, less accessible file in the management config
# file as described above.

# Role and password used for authentication by the RMI connector in
# this example.
#
username password

examples/Security/subject_delegation/config/java.policy
grant codeBase "file:server" {
    permission javax.management.remote.SubjectDelegationPermission 
"javax.management.remote.JMXPrincipal.delegate";
};
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grant principal javax.management.remote.JMXPrincipal "username" {
    //
    // Grant the JMXPrincipal "username" the right to act on behalf of 
a JMXPrincipal "delegate".
    //
    permission javax.management.remote.SubjectDelegationPermission 
"javax.management.remote.JMXPrincipal.delegate";
};

examples/Security/subject_delegation/mbeans/
SimpleStandard.java

/**
 * Simple definition of a standard MBean, named "SimpleStandard".
 *
 * The "SimpleStandard" standard MBean shows how to expose attributes
 * and operations for management by implementing its corresponding
 * "SimpleStandardMBean" management interface.
 *
 * This MBean has two attributes and one operation exposed
 * for management by a JMX agent:
 *      - the read/write "State" attribute,
 *      - the read only "NbChanges" attribute,
 *      - the "reset()" operation.
 *
 * This object also has one property and one method not exposed
 * for management by a JMX agent:
 *      - the "NbResets" property,
 *      - the "getNbResets()" method.
 */

import javax.management.AttributeChangeNotification;
import javax.management.MBeanNotificationInfo;
import javax.management.NotificationBroadcasterSupport;

public class SimpleStandard
    extends NotificationBroadcasterSupport
    implements SimpleStandardMBean {

    /*
     * -----------------------------------------------------
     * CONSTRUCTORS
     * -----------------------------------------------------
     */

    /* "SimpleStandard" does not provide any specific constructors.
     * However, "SimpleStandard" is JMX compliant with regards to
     * contructors because the default contructor SimpleStandard()
     * provided by the Java compiler is public.
     */
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    /*
     * -----------------------------------------------------
     * IMPLEMENTATION OF THE SimpleStandardMBean INTERFACE
     * -----------------------------------------------------
     */

    /**
     * Getter: get the "State" attribute of the "SimpleStandard" standard 
MBean.
     *
     * @return the current value of the "State" attribute.
     */
    public String getState() {
        return state;
    }

    /**
     * Setter: set the "State" attribute of the "SimpleStandard" standard 
MBean.
     *
     * @param <VAR>s</VAR> the new value of the "State" attribute.
     */
    public void setState(String s) {
        state = s;
        nbChanges++;
    }

    /**
     * Getter: get the "NbChanges" attribute of the "SimpleStandard" standard
     * MBean.
     *
     * @return the current value of the "NbChanges" attribute.
     */
    public int getNbChanges() {
        return nbChanges;
    }

    /**
     * Operation: reset to their initial values the "State" and "NbChanges"
     * attributes of the "SimpleStandard" standard MBean.
     */
    public void reset() {
        AttributeChangeNotification acn =
            new AttributeChangeNotification(this,
                                            0,
                                            0,
                                            "NbChanges reset",
                                            "NbChanges",
                                            "Integer",
                                            new Integer(nbChanges),
                                            new Integer(0));
        state = "initial state";
        nbChanges = 0;
        nbResets++;
        sendNotification(acn);
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    }

    /*
     * -----------------------------------------------------
     * METHOD NOT EXPOSED FOR MANAGEMENT BY A JMX AGENT
     * -----------------------------------------------------
     */

    /**
     * Return the "NbResets" property.
     * This method is not a Getter in the JMX sense because it
     * is not exposed in the "SimpleStandardMBean" interface.
     *
     * @return the current value of the "NbResets" property.
     */
    public int getNbResets() {
        return nbResets;
    }

    /**
     * Returns an array indicating, for each notification this MBean
     * may send, the name of the Java class of the notification and
     * the notification type.</p>
     *
     * @return the array of possible notifications.
     */
    public MBeanNotificationInfo[] getNotificationInfo() {
        return new MBeanNotificationInfo[] {
            new MBeanNotificationInfo(
            new String[] 
{ AttributeChangeNotification.ATTRIBUTE_CHANGE },
            AttributeChangeNotification.class.getName(),
            "This notification is emitted when the reset() method is 
called.")
        };
    }

    /*
     * -----------------------------------------------------
     * ATTRIBUTES ACCESSIBLE FOR MANAGEMENT BY A JMX AGENT
     * -----------------------------------------------------
     */

    private String state = "initial state";
    private int nbChanges = 0;

    /*
     * -----------------------------------------------------
     * PROPERTY NOT ACCESSIBLE FOR MANAGEMENT BY A JMX AGENT
     * -----------------------------------------------------
     */

    private int nbResets = 0;
}
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examples/Security/subject_delegation/mbeans/
SimpleStandardMBean.java

/**
 * This is the management interface explicitly defined for the
 * "SimpleStandard" standard MBean.
 *
 * The "SimpleStandard" standard MBean implements this interface
 * in order to be manageable through a JMX agent.
 *
 * The "SimpleStandardMBean" interface shows how to expose for management:
 * - a read/write attribute (named "State") through its getter and setter
 *   methods,
 * - a read-only attribute (named "NbChanges") through its getter method,
 * - an operation (named "reset").
 */
public interface SimpleStandardMBean {

    /**
     * Getter: set the "State" attribute of the "SimpleStandard" standard
     * MBean.
     *
     * @return the current value of the "State" attribute.
     */
    public String getState();

    /**
     * Setter: set the "State" attribute of the "SimpleStandard" standard
     * MBean.
     *
     * @param <VAR>s</VAR> the new value of the "State" attribute.
     */
    public void setState(String s);

    /**
     * Getter: get the "NbChanges" attribute of the "SimpleStandard" standard
     * MBean.
     *
     * @return the current value of the "NbChanges" attribute.
     */
    public int getNbChanges();

    /**
     * Operation: reset to their initial values the "State" and "NbChanges"
     * attributes of the "SimpleStandard" standard MBean.
     */
    public void reset();
}
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23
Fine-Grained Security

The JMX API uses existing security protocols to secure your connections. This example
provides a fine-grained security implementation. The source code contained in this section is
used to create corresponding files in the examples/ directory specified in the appropriate
setup procedure and includes:

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager.
See JEP 411 for discussion and alternatives.

• README file

• Server

• Client

• ClientListener

• keystore

• password.properties

• truststore

• java.policy

• SimpleStandard

• SimpleStandardMBean

examples/Security/fine_grained/README

# 
=============================================================================
=
#
#  Example of a secure RMI connector (using Security Manager and Policy 
File).
#
#  This example uses:
#
#  - the RMI SSL socket factories for encryption,
#  - the password authenticator based on the JMXAuthenticator interface for
#    user authentication,
#  - the JAAS and the J2SE Security Architecture based on the use of security
#    managers and policy files for user access level authorization.
#
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# 
=======================================================================
=======
#
# In order to compile and run the example, make a copy of this README 
file, and
# then simply cut and paste all the commands as needed into a terminal 
window.
#
# This README makes the assumption that you are running under Java SE 
6 on Unix,
# you are familiar with the JMX technology, and with the bourne shell 
or korn
# shell syntax.
#
# All the commands below are defined using Unix korn shell syntax.
#
# If you are not running Unix and korn shell you are expected to be 
able to
# adapt these commands to your favorite OS and shell environment.
#

# Compile Java classes
#
# * Server.java: creates an MBeanServer and creates and starts a 
secure RMI
#                connector server (JRMP).
#
# * Client.java: creates a secure RMI connector (JRMP), creates and 
registers
#                a Simple standard MBean and performs operations on it.
#
# * ClientListener.java: implements a generic notification listener.
#
# * SimpleStandard.java: implements the Simple standard MBean.
#
# * SimpleStandardMBean.java: the management interface exposed by the 
Simple
#                             standard MBean.
#

javac mbeans/SimpleStandard.java \
      mbeans/SimpleStandardMBean.java \
      server/Server.java \
      client/Client.java \
      client/ClientListener.java

# Start the RMI registry:
#

export CLASSPATH=server ; rmiregistry 9999 &

# Start the Server:
#
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java -classpath server:mbeans \
     -Djavax.net.ssl.keyStore=config/keystore \
     -Djavax.net.ssl.keyStorePassword=password \
     -Djava.security.manager \
     -Djava.security.policy=config/java.policy \
     Server &

# Start the Client:
#

java -classpath client:server:mbeans \
     -Djavax.net.ssl.trustStore=config/truststore \
     -Djavax.net.ssl.trustStorePassword=trustword \
     Client

# 
=============================================================================
=

examples/Security/fine_grained/server/Server.java

import java.io.File;
import java.util.HashMap;
import javax.management.MBeanServer;
import javax.management.MBeanServerFactory;
import javax.management.remote.JMXConnectorServer;
import javax.management.remote.JMXConnectorServerFactory;
import javax.management.remote.JMXServiceURL;
import javax.management.remote.rmi.RMIConnectorServer;
import javax.rmi.ssl.SslRMIClientSocketFactory;
import javax.rmi.ssl.SslRMIServerSocketFactory;

public class Server {

    public static void main(String[] args) {
        try {
            // Instantiate the MBean server
            //
            System.out.println("\nCreate the MBean server");
            MBeanServer mbs = MBeanServerFactory.createMBeanServer();

            // Environment map
            //
            System.out.println("\nInitialize the environment map");
            HashMap env = new HashMap();

            // Provide SSL-based RMI socket factories.
            //
            SslRMIClientSocketFactory csf = new SslRMIClientSocketFactory();
            SslRMIServerSocketFactory ssf = new SslRMIServerSocketFactory();
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env.put(RMIConnectorServer.RMI_CLIENT_SOCKET_FACTORY_ATTRIBUTE,csf);
            
env.put(RMIConnectorServer.RMI_SERVER_SOCKET_FACTORY_ATTRIBUTE,ssf);

            // Provide the password file used by the connector server 
to
            // perform user authentication. The password file is a 
properties
            // based text file specifying username/password pairs. This
            // properties based password authenticator has been 
implemented
            // using the JMXAuthenticator interface and is passed to 
the
            // connector through the "jmx.remote.authenticator" 
property
            // in the map.
            //
            // This property is implementation-dependent and might not 
be
            // supported by all implementations of the JMX Remote API.
            //
            env.put("jmx.remote.x.password.file",
                    "config" + File.separator + "password.properties");

            // Create an RMI connector server
            //
            System.out.println("\nCreate an RMI connector server");
            JMXServiceURL url = new JMXServiceURL(
              "service:jmx:rmi:///jndi/rmi://localhost:9999/server");
            JMXConnectorServer cs =
                JMXConnectorServerFactory.newJMXConnectorServer(url, 
env, mbs);

            // Start the RMI connector server
            //
            System.out.println("\nStart the RMI connector server");
            cs.start();
            System.out.println("\nRMI connector server successfully 
started");
            System.out.println("\nWaiting for incoming 
connections...");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

examples/Security/fine_grained/client/Client.java

import java.util.HashMap;
import javax.management.Attribute;
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import javax.management.JMX;
import javax.management.MBeanServerConnection;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;

public class Client {

    public static void main(String[] args) {
        try {
            // Environment map
            //
            System.out.println("\nInitialize the environment map");
            HashMap env = new HashMap();

            // Provide the credentials required by the server to successfully
            // perform user authentication
            //
            String[] credentials = new String[] { "username" , "password" };
            env.put("jmx.remote.credentials", credentials);

            // Create an RMI connector client and
            // connect it to the RMI connector server
            //
            System.out.println("\nCreate an RMI connector client and " +
                               "connect it to the RMI connector server");
            JMXServiceURL url = new JMXServiceURL(
              "service:jmx:rmi:///jndi/rmi://localhost:9999/server");
            JMXConnector jmxc = JMXConnectorFactory.connect(url, env);

            // Get an MBeanServerConnection
            //
            System.out.println("\nGet an MBeanServerConnection");
            MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

            // Get domains from MBeanServer
            //
            System.out.println("\nDomains:");
            String domains[] = mbsc.getDomains();
            for (int i = 0; i < domains.length; i++) {
                System.out.println("\tDomain[" + i + "] = " + domains[i]);
            }

            // Create SimpleStandard MBean
            //
            ObjectName mbeanName = new 
ObjectName("MBeans:type=SimpleStandard");
            System.out.println("\nCreate SimpleStandard MBean...");
            mbsc.createMBean("SimpleStandard", mbeanName, null, null);

            // Get MBean count
            //
            System.out.println("\nMBean count = " + mbsc.getMBeanCount());
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            // Get State attribute
            //
            System.out.println("\nState = " +
                               mbsc.getAttribute(mbeanName, "State"));

            // Set State attribute
            //
            mbsc.setAttribute(mbeanName,
                              new Attribute("State", "changed state"));

            // Get State attribute
            //
            // Another way of interacting with a given MBean is 
through a
            // dedicated proxy instead of going directly through the 
MBean
            // server connection
            //
            SimpleStandardMBean proxy = JMX.newMBeanProxy(
                    mbsc, mbeanName, SimpleStandardMBean.class);
            System.out.println("\nState = " + proxy.getState());

            // Add notification listener on SimpleStandard MBean
            //
            ClientListener listener = new ClientListener();
            System.out.println("\nAdd notification listener...");
            mbsc.addNotificationListener(mbeanName, listener, null, 
null);

            // Invoke "reset" in SimpleStandard MBean
            //
            // Calling "reset" makes the SimpleStandard MBean emit a
            // notification that will be received by the registered
            // ClientListener.
            //
            System.out.println("\nInvoke reset() in SimpleStandard 
MBean...");
            mbsc.invoke(mbeanName, "reset", null, null);

            // Sleep for 2 seconds in order to have time to receive the
            // notification before removing the notification listener.
            //
            System.out.println("\nWaiting for notification...");
            Thread.sleep(2000);

            // Remove notification listener on SimpleStandard MBean
            //
            System.out.println("\nRemove notification listener...");
            mbsc.removeNotificationListener(mbeanName, listener);

            // Unregister SimpleStandard MBean
            //
            System.out.println("\nUnregister SimpleStandard MBean...");
            mbsc.unregisterMBean(mbeanName);
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            // Close MBeanServer connection
            //
            System.out.println("\nClose the connection to the server");
            jmxc.close();
            System.out.println("\nBye! Bye!");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

examples/Security/fine_grained/client/ClientListener.java

import javax.management.Notification;
import javax.management.NotificationListener;

public class ClientListener implements NotificationListener {
    public void handleNotification(Notification notification, Object 
handback) {
        System.out.println("\nReceived notification: " + notification);
    }
}

examples/Security/fine_grained/config/password.properties

# password.properties

# Password file for Remote JMX API authentication. This file defines
# the different roles and their passwords.

# The file format for the password file is syntactically the same as
# the Properties file format. The syntax is described in the JavaDoc page
# for java.util.Properties.load.

# A typical password file has multiple lines, where each line is blank,
# a comment (like this one), or a password entry.

# A password entry consists of a role name and an associated password.
# The role name is any string that does not itself contain spaces or
# tabs. The password is again any string that does not contain spaces
# or tabs. Note that passwords appear in the clear in this file, so it
# is a good idea not to use valuable passwords.

# A given role should have at most one entry in this file. If a role
# has no entry, it has no access.
# If multiple entries are found for the same role name, then the last
# one is used.
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# In a typical installation, this file can be read by anybody on the
# local machine, and possibly by people on other machines.
# For security, you should either restrict the access to this file,
# or specify another, less accessible file in the management config
# file as described above.

# Role and password used for authentication by the RMI connector in
# this example.
#
username password

examples/Security/fine_grained/config/java.policy
grant codeBase "file:server" {
    //
    // The server requires the permissions to create and register the 
connector
    // and all the permissions required by the operations performed by 
remote
    // user calls. Here AllPermission is granted for simplicity.
    //
    permission java.security.AllPermission;
};

grant codeBase "file:mbeans" {
    permission javax.management.MBeanTrustPermission "register";
};

grant principal javax.management.remote.JMXPrincipal "username" {
    permission javax.management.MBeanPermission "*", "getDomains";
    permission javax.management.MBeanPermission "SimpleStandard#-[-]", 
"instantiate";
    permission javax.management.MBeanPermission "SimpleStandard#-
[MBeans:type=SimpleStandard]", "registerMBean";
    permission javax.management.MBeanPermission 
"SimpleStandard#State[MBeans:type=SimpleStandard]", "getAttribute";
    permission javax.management.MBeanPermission 
"SimpleStandard#State[MBeans:type=SimpleStandard]", "setAttribute";
    permission javax.management.MBeanPermission "SimpleStandard#-
[MBeans:type=SimpleStandard]", "addNotificationListener";
    permission javax.management.MBeanPermission 
"SimpleStandard#reset[MBeans:type=SimpleStandard]", "invoke";
    permission javax.management.MBeanPermission "SimpleStandard#-
[MBeans:type=SimpleStandard]", "removeNotificationListener";
    permission javax.management.MBeanPermission "SimpleStandard#-
[MBeans:type=SimpleStandard]", "unregisterMBean";
    //
    // This permission is only required for the authenticated user and 
not for the delegated users.
    //
    // The RMI connector client registers a listener on the 
MBeanServerDelegate to control the MBean
    // creation/deletion. The listener is removed when the connection 
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to the server is closed.
    //
    permission javax.management.MBeanPermission 
"javax.management.MBeanServerDelegate#-
[JMImplementation:type=MBeanServerDelegate]", "addNotificationListener";
    permission javax.management.MBeanPermission 
"javax.management.MBeanServerDelegate#-
[JMImplementation:type=MBeanServerDelegate]", "removeNotificationListener";
};

examples/Security/fine_grained/mbeans/SimpleStandard.java

/**
 * Simple definition of a standard MBean, named "SimpleStandard".
 *
 * The "SimpleStandard" standard MBean shows how to expose attributes
 * and operations for management by implementing its corresponding
 * "SimpleStandardMBean" management interface.
 *
 * This MBean has two attributes and one operation exposed
 * for management by a JMX agent:
 *      - the read/write "State" attribute,
 *      - the read only "NbChanges" attribute,
 *      - the "reset()" operation.
 *
 * This object also has one property and one method not exposed
 * for management by a JMX agent:
 *      - the "NbResets" property,
 *      - the "getNbResets()" method.
 */

import javax.management.AttributeChangeNotification;
import javax.management.MBeanNotificationInfo;
import javax.management.NotificationBroadcasterSupport;

public class SimpleStandard
    extends NotificationBroadcasterSupport
    implements SimpleStandardMBean {

    /*
     * -----------------------------------------------------
     * CONSTRUCTORS
     * -----------------------------------------------------
     */

    /* "SimpleStandard" does not provide any specific constructors.
     * However, "SimpleStandard" is JMX compliant with regards to
     * contructors because the default contructor SimpleStandard()
     * provided by the Java compiler is public.
     */

    /*
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     * -----------------------------------------------------
     * IMPLEMENTATION OF THE SimpleStandardMBean INTERFACE
     * -----------------------------------------------------
     */

    /**
     * Getter: get the "State" attribute of the "SimpleStandard" 
standard MBean.
     *
     * @return the current value of the "State" attribute.
     */
    public String getState() {
        return state;
    }

    /**
     * Setter: set the "State" attribute of the "SimpleStandard" 
standard MBean.
     *
     * @param <VAR>s</VAR> the new value of the "State" attribute.
     */
    public void setState(String s) {
        state = s;
        nbChanges++;
    }

    /**
     * Getter: get the "NbChanges" attribute of the "SimpleStandard" 
standard
     * MBean.
     *
     * @return the current value of the "NbChanges" attribute.
     */
    public int getNbChanges() {
        return nbChanges;
    }

    /**
     * Operation: reset to their initial values the "State" and 
"NbChanges"
     * attributes of the "SimpleStandard" standard MBean.
     */
    public void reset() {
        AttributeChangeNotification acn =
            new AttributeChangeNotification(this,
                                            0,
                                            0,
                                            "NbChanges reset",
                                            "NbChanges",
                                            "Integer",
                                            new Integer(nbChanges),
                                            new Integer(0));
        state = "initial state";
        nbChanges = 0;
        nbResets++;
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        sendNotification(acn);
    }

    /*
     * -----------------------------------------------------
     * METHOD NOT EXPOSED FOR MANAGEMENT BY A JMX AGENT
     * -----------------------------------------------------
     */

    /**
     * Return the "NbResets" property.
     * This method is not a Getter in the JMX sense because it
     * is not exposed in the "SimpleStandardMBean" interface.
     *
     * @return the current value of the "NbResets" property.
     */
    public int getNbResets() {
        return nbResets;
    }

    /**
     * Returns an array indicating, for each notification this MBean
     * may send, the name of the Java class of the notification and
     * the notification type.</p>
     *
     * @return the array of possible notifications.
     */
    public MBeanNotificationInfo[] getNotificationInfo() {
        return new MBeanNotificationInfo[] {
            new MBeanNotificationInfo(
            new String[] { AttributeChangeNotification.ATTRIBUTE_CHANGE },
            AttributeChangeNotification.class.getName(),
            "This notification is emitted when the reset() method is 
called.")
        };
    }

    /*
     * -----------------------------------------------------
     * ATTRIBUTES ACCESSIBLE FOR MANAGEMENT BY A JMX AGENT
     * -----------------------------------------------------
     */

    private String state = "initial state";
    private int nbChanges = 0;

    /*
     * -----------------------------------------------------
     * PROPERTY NOT ACCESSIBLE FOR MANAGEMENT BY A JMX AGENT
     * -----------------------------------------------------
     */

    private int nbResets = 0;
}
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examples/Security/fine_grained/mbeans/
SimpleStandardMBean.java

/**
 * This is the management interface explicitly defined for the
 * "SimpleStandard" standard MBean.
 *
 * The "SimpleStandard" standard MBean implements this interface
 * in order to be manageable through a JMX agent.
 *
 * The "SimpleStandardMBean" interface shows how to expose for 
management:
 * - a read/write attribute (named "State") through its getter and 
setter
 *   methods,
 * - a read-only attribute (named "NbChanges") through its getter 
method,
 * - an operation (named "reset").
 */
public interface SimpleStandardMBean {

    /**
     * Getter: set the "State" attribute of the "SimpleStandard" 
standard
     * MBean.
     *
     * @return the current value of the "State" attribute.
     */
    public String getState();

    /**
     * Setter: set the "State" attribute of the "SimpleStandard" 
standard
     * MBean.
     *
     * @param <VAR>s</VAR> the new value of the "State" attribute.
     */
    public void setState(String s);

    /**
     * Getter: get the "NbChanges" attribute of the "SimpleStandard" 
standard
     * MBean.
     *
     * @return the current value of the "NbChanges" attribute.
     */
    public int getNbChanges();

    /**
     * Operation: reset to their initial values the "State" and 
"NbChanges"
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     * attributes of the "SimpleStandard" standard MBean.
     */
    public void reset();
}
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