
Java Platform, Standard Edition
Packaging Tool User's Guide

Release 17
F41930-03
April 2025

Java Platform, Standard Edition Packaging Tool User's Guide, Release 17

F41930-03

Copyright © 2020, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

Related Documents v

Conventions v

1 Packaging Overview

Packaging Pre-Reqs 1-1

Application Preparation 1-2

Generated Application Image 1-2

Java Runtime Requirements 1-3

2 Basic Packaging

Defaults for Options Not Specified 2-1

Package a Non-Modular Application 2-2

Package a Modular Application 2-3

Identify Your Application with Package Metadata 2-4

3 Support Application Requirements

Set Default Command-Line Arguments 3-1

Set JVM Options 3-2

Set Class and Module Paths 3-3

Set File Associations 3-3

Add Launchers 3-4

Sign the Application Package (macOS) 3-6

4 Manage the Installation of Your Application

Include a License 4-1

Create a Shortcut 4-1

iii

Set the Installation Directory 4-2

Add the Application to a Menu 4-2

Launch in Console 4-3

5 Image and Runtime Modifications

Application Image Modifications 5-1

Java Runtime Modifications 5-2

6 Override jpackage Resources

Resources Used in Packaging 6-1

View Resources 6-3

iv

Preface

This guide provides information about using jpackage, the packaging tool provided with the
JDK for generating installable packages for self-contained Java applications.

Audience
This guide is intended for developers interested in creating self-contained Java applications
that provide native packaging formats, which give the end user a natural installation
experience.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
See JDK 17 Documentation.

Conventions
The following conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/pls/topic/lookup?ctx=javase17&id=homepage

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vi

1
Packaging Overview

The packaging tool jpackage enables you to generate installable packages for modular and
non-modular Java applications. Platform-specific packages for Linux, macOS and Windows
provide your users with a familiar way to install and launch your applications.

The simplest form of packaging takes a pre-built Java application as input and generates an
installable package in a platform-dependent default format. The packaging tool generates a
runtime for your application using the jlink command.

For applications that require more advanced capabilities, command line options are available
for features such as the following:

• Provide a custom icon

• Install the application in a specific location

• Specify JVM options and application arguments to be used when launching the application

• Set file associations to launch the application when an associated file type is opened

• Launch the application from a platform-specific menu group

• Set up multiple launchers for the application

• Sign the bundle (macOS only)

For a description of jpackage and its options, see The jpackage Command in Java
Development Kit Tool Specifications.

Topics:

• Packaging Pre-Reqs

• Application Preparation

• Java Runtime Requirements

Packaging Pre-Reqs
Application packages must be built on the target platform. The system used for packaging
must contain the application, a JDK, and software needed by the packaging tool.

To package your application for multiple platforms, you must run the packaging tool on each
platform. If you want more than one format for a platform, you must run the tool once for each
format.

The following platforms and formats are supported with the required software:

• Linux: deb, rpm:

– For Red Hat Linux, the rpm-build package is required.

– For Ubuntu Linux, the fakeroot package is required.

• macOS: pkg, app in a dmg

1-1

Xcode command line tools are required when the --mac-sign option is used to request
that the package be signed, and when the --icon option is used to customize the DMG
image.

• Windows: exe, msi
WiX 3.0 or later is required.

Application Preparation
To package your application, you must first build it and create the necessary JAR or module
files. Resources needed by your application must also be available on the system used for
packaging.

The following application-related information and resources are used for packaging:

• JAR or module files for the application

• Application metadata, for example, name, version, description, copyright, license file

• Installation options, for example, shortcut, menu group, additional launchers, file
associations

• Launch options, for example, application arguments, JVM options

As part of the packaging process, an application image based on the files in the input directory
is created. This image is described in Generated Application Image. To test your application
before creating an installable package, use the --type app-image option to create only the
application image.

Generated Application Image
The packaging tool creates an application image based on the input to the tool.

The following example shows the application image created for a simple Hello World
application for each platform. Files that are considered implementation details are subject to
change and are not shown.

• Linux:

myapp/
 bin/ // Application launchers
 HelloWorld
 lib/
 app/
 HelloWorld.cfg // Configuration info, created by jpackage
 HelloWorld.jar // JAR file, copied from the --input directory
 runtime/ // Java runtime image

• macOS:

HelloWorld.app/
 Contents/
 Info.plist
 MacOS/ // Application launchers
 HelloWorld
 Resources/ // Icons, etc.
 app/
 HelloWorld.cfg // Configuration info, created by jpackage

Chapter 1
Application Preparation

1-2

 HelloWorld.jar // JAR file, copied from the --input directory
 runtime/ // Java runtime image

• Windows:

HelloWorld/
 HelloWorld.exe // Application launchers
 app/
 HelloWorld.cfg // Configuration info, created by jpackage
 HelloWorld.jar // JAR file, copied from the --input directory
 runtime/ // Java runtime image

The application image generated by the tool works for most applications. However, you can
make changes before packaging the image for distribution, if needed.

Java Runtime Requirements
To eliminate the need for users to install a Java runtime, one is packaged with your
applications. The packaging tool generates a runtime image based on the packages or
modules that your application needs.

If no Java runtime image is passed to the packaging tool, then jpackage uses the jlink tool to
create a runtime for the application. Runtime images created by the packaging tool do not
contain debug symbols, the usual JDK commands, man pages, or the src.zip file.

• For non-modular applications composed of JAR files, the generated runtime image
contains the same set of JDK modules that is provided to class-path applications in the
unnamed module by the regular java launcher. It doesn't include the available service
providers, but you can add them with the --jlink-options option and passing it the --
bind-services jlink option:

jpackage --name DynamicTreeDemo \
 --input . --main-jar DynamicTreeDemo.jar \
 --jlink-options --bind-services

To add additional modules, use the --add-modules option:

jpackage --name DynamicTreeDemo \
 --input . --main-jar DynamicTreeDemo.jar \
 --module-path $JAVA_HOME/jmods \
 --add-modules java.logging

• For modular applications composed of modular JAR files and JMOD files, the generated
runtime image contains the application's main module and the transitive closure of all of its
dependencies. It doesn't include the available service providers, but you can add them with
the --jlink-options option and passing it the --bind-services jlink option:

jpackage --name Hello --module-path mods \
 --module com.greetings/com.greetings.Main \
 --jlink-options --bind-services

Chapter 1
Java Runtime Requirements

1-3

To add additional modules, use the --add-modules option:

jpackage --name Hello --module-path "mods:$JAVA_HOME/jmods" \
 --add-modules java.logging \
 --module com.greetings/com.greetings.Main

Note:

If you don't specify the --jlink-options option, then, by default, the jpackager tool
adds these jlink options: --strip-native-commands, --strip-debug, --no-man-
pages, and --no-header-files.

The runtime image generated by the tool works for most applications. However, you can create
a custom runtime to package with your application, if needed.

Chapter 1
Java Runtime Requirements

1-4

2
Basic Packaging

If your application doesn't require customizations or support for features such as multiple
launchers or file associations, then only a couple of options are needed for packaging.

The simplest form of packaging requires the location of the application to package and the
name of the JAR or module that contains the main class.

• The following example packages a non-modular application:

jpackage --input app-directory --main-jar jar-file [--main-class main-
class]

app-directory is the name of the directory that contains the files for your application. The
path can be absolute or relative to the current directory. jar-file is the name of the JAR file
that contains the main class for the application. main-class is the name of the main class
and is only required if the main class is not identified in the MANIFEST.MF file. Tool and
platform defaults are used as needed to complete the package.

• The following example packages a modular application:

jpackage --module-path module-path --module main-module[/class]

module-path is the path to either a directory of modules or to a modular JAR file. The path
can be absolute or relative to the current directory. For more than one path, separate the
paths with a colon (:) on Linux and macOS or a semi-colon (;) on Windows, or use multiple
instances of the --module-path option. main-module/class is the name of the module that
contains the main class and the name of the main class for the application. The name of
the main class is only required if the main module does not identify the main class. Tool
and platform defaults are used as needed to complete the package.

Topics:

• Defaults for Options Not Specified

• Package a Non-Modular Application

• Package a Modular Application

• Identify Your Application with Package Metadata

Defaults for Options Not Specified
Options are available to control the name of the application, type of package created,
installation location, and other characteristics of the package. If an option is not provided, a
default values is used.

The following defaults apply to options that are not specified when running jpackage:

• The package type is platform-dependent:

– On Linux, the default is deb for Debian Linux and rpm for other versions of Linux.

2-1

– On macOS, the default is dmg.

– On Windows, the default is exe.

To generate a different type of package, use the --type option.

• The generated package is written to the current working directory. To write the package to
a different location, use the --dest option.

• The name of the package is generated from the name of the application and the
application version. If no application name is provided, the name of the main JAR or
module is used, followed by the version, which defaults to 1.0, for example
HelloWorld-1.0.exe. To change the name of the application, use the --name option. To
change the version, use the --app-version option.

• The Java runtime is generated during the packaging process using the jlink command.
The --add-modules and --jlink-options options can be used to add items to the runtime
as part of the packaging process. To package a custom runtime, use the --runtime-image
option.

• The installation directory is platform-specific:

– On Linux, the default is /opt/application-name
– On macOS, the default is /Applications/application-name
– On Windows, the default is c:\Program Files\application-name; if the --win-

per-user-install option is used, the default is C:\Users\user-
name\AppData\Local\application-name

The name of the application directory defaults to the name of the application. To give the
directory a different name, use the --install-dir option.

• The name of the application launcher defaults to the name of the application. If your
application has more than one launcher, use the --add-launcher option to identify them.

• No default command line arguments or Java runtime options are passed to the application
when it is started. The user can pass application arguments from the command line when
launching the application, but not Java runtime options.

• A default icon for the application is used. For a different icon, use the --icon option.

• For Linux, the name of the package defaults to the application name. To give the package
a different name, use the --linux-package-name option.

• For macOS:

– The application identifier defaults to the main class name. To use a different identifier,
use the --mac-package-identifier option.

– The name of the application shown in the menu bar defaults to the main class name of
the application. To use a different name, use the --mac-package-name option.

Package a Non-Modular Application
A non-modular application package can be packaged by providing just the location of the files
to package and the name of the main JAR file. Defaults are used for other options that
describe the package and the application.

Chapter 2
Package a Non-Modular Application

2-2

The following command when run on a Windows system packages the non-modular
application in the mySamples\hwapp directory with the main class in the HelloWorld.jar file.

jpackage --input mySamples\hwapp --main-jar HelloWorld.jar

Because no other options are used, the following defaults are applied:

• The default type of package generated is exe.

• The name of the package generated is HelloWorld-1.0.exe.

• The package is written to the current directory.

• The runtime packaged with the application is generated as part of the packaging process.

• The application is installed in the c:\Program Files\HelloWorld directory.

• The name of the launcher is HelloWorld.exe.

• The default icon is used for the application.

• No shortcut is created, and the application is not added to any menu. The user must go to
the directory in which the application is installed to run it.

• No default arguments or Java runtime options are passed to the application when it is
started.

Package a Modular Application
A modular application package can be packaged by providing just the location of the modules
to package and the name of the main module. Defaults are used for other options that describe
the package and the application.

The following command when run on a Debian Linux system packages the modular application
in the myModApps directory with the main class in the modhw/modhw.HelloWorldMod module

jpackage --module-path myModApps --module modhw/modhw.HelloWorldMod

Because no other options are used, the following defaults are applied:

• The default type of package generated is deb for Debian systems

• The name of the package generated is HelloWorldMod-1.0.deb.

• The package is written to the current directory.

• The runtime packaged with the application is generated as part of the packaging process.

• The application is installed the /opt/HelloWorldMod directory.

• The name of the launcher is HelloWorldMod.

• The default icon is used for the application.

• No shortcut is created, and the application is not added to any menu. The user must go to
the directory in which the application is installed to run it.

• No default arguments or Java runtime options are passed to the application when it is
started.

Chapter 2
Package a Modular Application

2-3

Identify Your Application with Package Metadata
As you create the package, you might want to provide information about the application, such
as a description, the vendor name, or perhaps a copyright statement.

To add information about your application to the package, use the relevant jpackage options to
set the package metadata. The following examples are for a Windows system.

• Set the name of the application.

Use the --name option to give the application the name that you want users to see. If no
name is provided, it defaults to the name of the main JAR file or module.

The following command creates a package for the Dynamic Tree application named
DynamicTreeDemo-1.0.exe:

jpackage --name DynamicTreeDemo --input myApps \
 --main-jar DynamicTree.jar

• Set the application version.

Use the --app-version option to identify the version of your application. If no application
version is specified, the version defaults to 1.0.

The following command customizes the version part of the package name and creates the
package DynamicTreeDemo-2.0.exe:

jpackage --name DynamicTreeDemo --app-version 2.0 \
 --input myApps --main-jar DynamicTree.jar

• Describe the application.

Use the --description option to include a brief description of your application. No default
description is provided.

The following command describes the Dynamic Tree application to users; note that quotes
are required if the description includes spaces:

jpackage --dest packages --name DynamicTreeDemo \
 --app-version 2.0 --input myApps --main-jar DynamicTree.jar \
 --description "Demo application for testing functionality"

• Set the vendor for the application.

Use the --vendor option to identify yourself or your company as the creator of your
application. No default vendor is provided.

The following command identifies the vendor of the Dynamic Tree application as Small,
Inc; note that quotes are required if the vendor name includes spaces:

jpackage --dest packages --name DynamicTreeDemo \
 --app-version 2.0 --input myApps --main-jar DynamicTree.jar \
 --description "Demo application for testing functionality" \
 --vendor "Small, Inc"

• Set the copyright for the application.

Chapter 2
Identify Your Application with Package Metadata

2-4

Use the --copyright option to provide a copyright for your application. No default
copyright is provided.

The following command provides an example of a copyright statement for the Dynamic
Tree application; note that quotes are required if the copyright includes spaces:

jpackage --dest packages --name DynamicTreeDemo \
 --app-version 2.0 --input myApps --main-jar DynamicTree.jar \
 --description "Demo application for testing functionality" \
 --vendor "Small, Inc" --copyright "Copyright 2020, All rights reserved"

Chapter 2
Identify Your Application with Package Metadata

2-5

3
Support Application Requirements

The packaging tool provides support for application requirements such as default arguments,
JVM options, file associations, multiple launchers, and signing.

Topics:

• Set Default Command-Line Arguments

• Set JVM Options

• Set File Associations

• Add Launchers

• Sign the Application Package (macOS)

Set Default Command-Line Arguments
If your application accepts command-line arguments, use the --arguments option to define
default values. Users can override these values when they start the application.

If you package your application with default command-line arguments, these values are
passed to the main class when the user starts your application without providing arguments.
The [ArgOptions] section of the app-name.cfg file in the /app directory of the application
image generated by jpackage shows any default arguments that are defined. You can check
this file to ensure that the values are defined correctly.

The following examples show some of the ways to set up default arguments:

• Set the default value for a single argument.

The following command defines the value for a single argument for the MyApp application.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments arg1

• Set the default value for more than one argument.

Use a space to separate arguments and enclose the entire string in quotes, or use multiple
instances of the --arguments option. The following commands show alternative ways to
define three default command-line arguments for the MyApp application.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments "arg1 arg2 arg3"

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments arg1 --arguments "arg2 arg3"

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments arg1 --arguments arg2 --arguments arg3

• Set a default value that contains spaces.

3-1

If an argument contains a space, two sets of quotes are needed to ensure that jpackage
treats the spaces as part of the value and not as delimiters between values. Enclose the
argument in single quotes, or double quotes preceded by the escape character, then
enclose the quoted string in quotes. The following commands show alternative ways to
define two arguments that contain spaces.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments "\"String 1\" \"String 2\""

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments "\"String 1\"" --arguments "\"String 2\""

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments "'String 1'" --arguments "'String 2'"

Set JVM Options
If you want options passed to the JVM when your application is started, use the --java-
options option when you package your application. Users can't provide JVM options to the
application.

To set up the JVM as needed to run your application, define the JVM options to pass when a
user starts your application. Use the $APPDIR macro to reference resources included with the
application. The resource file must be in the input directory when the application is packaged.

The [JavaOptions] section of the app-name.cfg file in the /app directory of the application
image generated by jpackage shows any default arguments that are defined. You can check
this file to ensure that the values are defined correctly.

The following examples show some of the ways to pass JVM options to your application:

• Set a single JVM option.

The following command sets the initial size of the heap for the MyApp application to 2
megabytes.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options Xms2m

• Set more than one JVM option.

To provide more than one JVM option, use a space to separate arguments and enclose the
entire string in quotes, or use multiple instances of the --jvm-options option. The
following commands show alternate ways to set the initial size and the maximum size for
the heap.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options "Xms2m Xmx10m"

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options Xms2m --java-options Xmx10m

• Set a JVM option that contains a space.

If a JVM option contains a space, two sets of quotes are needed to ensure that jpackage
treats the spaces as part of the option and not as delimiters between options. Enclose the
argument in single quotes, or double quotes preceded by the escape character, then

Chapter 3
Set JVM Options

3-2

enclose the quoted string in quotes. The following commands show alternate ways to
define an option that contain spaces.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options "\"-DAppOption=text string\""

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options "'-DAppOption=text string'"

• Set a JVM option that contains quotes.

If a JVM option contains quotes, escape characters must be used for the quotes. The
following command passes the JVM option -XX:OnError="userdump.exe %p" to jpackage.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options "-XX:OnError=\"\\\"userdump.exe %p\\\"\""

• Use the $APPDIR macro with a JVM option.

To use the image myAppSplash.jpg from the application directory as the splash screen
for your application, use the $APPDIR macro as shown in the following example. The image
file must be in the input directory when the application is packaged. Note that in some
shells the dollar sign needs to be escaped, for example, \$APPDIR.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options "-splash:\$APPDIR/myAppSplash.jpg"

Set Class and Module Paths
By default, the jpackage tool generates a default class path that contains the path to each JAR
file that's specified in the --input option. However, a class path that you specify with the -cp, -
classpath, or -Djava.class.path option through the --java-options option overrides the
default class path.

If you're using --java-options to specify the class path, then ensure that you include the path
to each of your input JAR files in it. For example, if your application contains only one JAR file,
myapp.jar but you want to include the classes in the classes subdirectory in the class path,
then add the following to the jpackage command:

--java-options "-cp \$APPDIR/myapp.jar:\$APPDIR/classes"

For a modular application, the default module path that jpackage generates is $APPDIR/mods.
However, if you specify a module path with the --module-path option through --java-
options , then your module path is appended after the default module path; it doesn't replace
the default one.

Set File Associations
If you want your application to be started when a user opens a specific type of file, use the --
file-associations option when you package your application.

To have your application started when a user opens a file that your application can handle,
define the file associations that you want created when the application is installed.
Associations are defined in properties files that are passed to jpackage. For each association,

Chapter 3
Set File Associations

3-3

a separate file and a separate instance of the --file-associations option is required. The
following properties define an association, which must include either mime-type or extension:

• mime-type - MIME type for files that your application can process.

• extension - File extension for files that your application can process.

• icon - Icon to use for the type of files that your application can process. The icon must be
in the input directory when the application is packaged. If no icon is specified, the default
icon is used.

• description - Short description of the association.

To set up file associations, first create the properties files. The following two files set up an
association for JavaScript files and for Groovy files.

FAjavascript.properties:

mime-type=text/javascript
extension=js
description=JavaScript Source

FAgroovy.properties:

mime-type=text/x-groovy
extension=groovy
description=Groovy Source

The following command packages the application FADemo and sets up file associations using
the properties files just created. When a user opens a .js or .groovy file, FADemo is started.

jpackage --name FADemo --input FADemo \
 --main-jar ScriptRunnerApplication.jar \
 --file-associations FAjavascript.properties \
 --file-associations FAgroovy.properties

Add Launchers
If you have more than one way start your application, use the --add-launcher option to
describe the additional launchers that you want created.

You might want an additional launcher if your application has different default values for
arguments or can run with or without the Windows console, or if you package multiple apps
together to share a runtime. The format for the option is --add-launcher launcher-
name=properties-file, where launcher-name is the named used for the additional launcher.
Use quotes if the name contains spaces.

The launchers are defined in properties files that are passed to jpackage. For each launcher, a
separate file and a separate instance of the --add-launcher option is required. The following
properties define a launcher, at least one option must be set:

• module - Name of the module that contains the main class for the launcher. If the main
module does not identify the main class, include it in the format module=main-module/
class.

• main-jar - Name of the JAR file that contains the main class for the launcher.

Chapter 3
Add Launchers

3-4

• main-class - Name of the main class.

• arguments - Default arguments, separated by spaces. If an argument contains spaces,
enclose the argument in quotes, for example, arguments=arg1 "arg 2" arg3

• app-version - Version number.

• java-options - Options to pass to the JVM, separated by spaces. If an argument contains
spaces, enclose the argument in quotes.

• icon - Icon used for the additional launcher

• win-console - Set to true to start the console with the application.

To define additional launchers, first create the properties files. The following examples show
some of the ways to set up a launcher:

• Add a launcher with different application arguments.

Create the following properties files that define different default arguments to use when the
application is launched. The first file defines 3 arguments to pass. The second file defines
two arguments to pass.

MLAppArgs1.properties:

arguments=arg1 arg2 arg3

MLAppArgs2.properties:

arguments="String 1" "String 2"

The following command packages the application MyApp with two additional launchers
using the properties files just created.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --add-launcher MyApp1=MLAppArgs1.properties \
 --add-launcher MyApp2=MLAppArgs2.properties

• Add a launcher to start the Windows console.

To provide the user with the option of running your application with or without the console,
create the following properties file that defines a launcher that uses the Windows console.

MLConsole.properties:

win-console=true

The following command packages the HelloWorld application with an additional launcher
that runs the application with the Windows console.

jpackage --name HelloWorld --input helloworld \
 --main-jar HelloWorld.jar \
 --add-launcher HWConsole=MLConsole.properties

• Add a launcher for a second entry point.

When more than one application is included in the same package, each application can be
started independently by adding additional launchers. If the FADemo and the Dynamic
Tree applications are packaged together and the main launcher is for the FADemo

Chapter 3
Add Launchers

3-5

application, create the following properties file to define an additional launcher for the
Dynamic Tree application.

MLDynamicTree.properties

main-jar=DynamicTree.jar
main-class=webstartComponentArch.DynamicTreePanel
icon=DTDemo.ico

The following command packages the two applications together and sets up the additional
launcher using the properties file just created.

jpackage --name MLDemo --input MLDemo \
 --main-jar ScriptRunnerApplication.jar \
 --add-launcher "Dynamic Tree"=MLDynamicTree.properties

Sign the Application Package (macOS)
For an application that runs on macOS, use the --mac-sign and supporting options when you
package your application. A disk image (.dmg) or package (.pkg) that contains a signed
application image (.app) can be notarized.

The required jpackage options depend on whether or not you want to distribute your
application though the Mac App Store.

Required Certificates

If you want to distribute your application outside the Mac App Store, then you'll need the
certificates "Developer ID Application: <user or team name>" and "Developer ID Installer:
<user or team name>".

If you want to deploy your application through the Mac App Store, then you'll need the
certificates "3rd Party Mac Developer Application: <user or team name>" and "3rd Party Mac
Developer Installer: <user or team name>".

Options for Signing macOS Application Package

To sign a macOS application package, include the following jpackage options:

• --mac-sign: Requests that the bundle be signed for macOS.

• --mac-signing-key-user-name user_or_team_name: The key user or team name, which is
the name portion in Apple signing identities' names.

In addition, you may require the following options

• --mac-package-signing-prefix prefix: When signing the application bundle, this value
is prefixed to all components that need to be signed that don't have an existing bundle
identifier. If you don't specify this option, then the prefix is the (unqualified) main class
name followed by a period (.).

• --mac-signing-keychain keychain_name: If a keychain other than the standard keychain
is used, then specify the name of the keychain as show in the Keychain Access app. The
name should end in .keychain.

Chapter 3
Sign the Application Package (macOS)

3-6

• --type type: If you want to create an application image (.app), specify app-image; if you
want to create a package (.pkg), specify pkg. If you don't specify this option, then this
option creates a disk image (.dmg).

• --mac-entitlements path: Path to the file containing entitlements to use when signing
executables and libraries in the bundle.

If you don't specify the --mac-entitlements option nor the --mac-app-store option, then
jpackage uses the entitlements file default.plist, which is a built-in resource (see
Resources Used in Packaging). It contains entitlements that enable your signed application
to run the JDK.

The following command generates a disk image (.dmg) containing an application image signed
with the "Developer ID Application: developer.example.com" certificate. The disk image is
generated with the prefix com.example.developer.OurApp. and the team name
developer.example.com.

jpackage --name DynamicTreeDemo --input myApps --main-jar DynamicTree.jar \
 --mac-sign --mac-package-signing-prefix com.example.developer.OurApp. \
 --mac-signing-key-user-name "developer.example.com"

The following command generates a package (.pkg) containing an application image signed
with the "Developer ID Installer: developer.example.com" certificate. The package is generated
with the prefix com.example.developer.OurApp. and the team name developer.example.com.

jpackage --type pkg --name DynamicTreeDemo --input myApps \
 --main-jar DynamicTree.jar --mac-sign --mac-package-signing-prefix
com.example.developer.OurApp. \
 --mac-signing-key-user-name "developer.example.com"

Options for Signing Application Package for Mac App Store

To sign an application package for the Mac App Store, also include the following jpackage
options:

• --mac-app-store: Indicates that the jpackage output is intended for the Mac App Store.

• --mac-entitlements path: Path to file containing entitlements to use when signing
executables and libraries in the bundle. This file should enable the App Sandbox
Entitlement, which restricts your application to system resources and user data. It's
required for applications distributed through the Mac App Store.

If you don't specify the --mac-entitlements option but specify the --mac-app-store
option, then jpackage uses the entitlements file sandbox.plist, which is a built-in resource
(see Resources Used in Packaging). It contains <key>com.apple.security.app-
sandbox</key><true/>, which enables the App Sandbox Entitlement.

• --mac-app-category category: Specifies the category that best describes your
application package for the Mac App Store. The jpackage tool sets the value of
LSApplicationCategoryType to the value of this option in your application's .plist file. The
default value of this option is utilities. See LSApplicationCategoryType in Apple
Developer Documentation for a list of valid categories.

Chapter 3
Sign the Application Package (macOS)

3-7

https://developer.apple.com/documentation/bundleresources/information_property_list/lsapplicationcategorytype

4
Manage the Installation of Your Application

You have some control over how your application is installed and launched on the user's
system. Using options provided by the packaging tool, you can specify such things as the
license to be accepted, where to install the application, and if a console is needed.

Topics:

• Include a License

• Set the Installation Directory

• Create a Shortcut

• Add the Application to a Menu

• Launch in Console

Include a License
If you have terms and conditions that you want users to accept to install your application on
Windows or macOS, use the --license-file option when you package your application.

If the directory that contains your application also includes a license file, that file is installed on
the user's machine with the application. If you want to require the user to accept the license
before installing on Windows or macOS, use the --license-file option. Be aware that if you
provide a license file that is not in the application directory, the user is shown the license when
installing, but the file is not installed with the application. Also, for silent and other types of
installs, the license file is not shown.

The following command adds the license file myApps/myLicense.txt to the package for the
Dynamic Tree application.

jpackage --type exe --name DynamicTreeDemo --input myApps \
 --main-jar DynamicTree.jar --license-file myApps/myLicense.txt

Create a Shortcut
To have a shortcut created when users install your application, use the --linux-shortcut or
--win-shortcut option when you package your application. To show a custom icon for your
application, use the --icon option.

Shortcuts are supported for Linux and Windows platforms. If you don't provide an icon, a
default icon is used. If you provide a custom icon on Linux, a shortcut is automatically created
and the --linux-shortcut option is not needed. Custom icons must be in a format that meets
the requirements of the platform.

4-1

The following command creates a shortcut with the default icon for the Dynamic Tree
application when it is installed on Linux.

jpackage --name DynamicTreeDemo --input myApps --main-jar DynamicTree.jar \
 --linux-shortcut

The following command creates a desktop shortcut with a custom icon for the Dynamic Tree
application when it is installed on Windows.

jpackage --name DynamicTreeDemo --input myApps --main-jar DynamicTree.jar \
 --icon DTDemo.ico --win-shortcut

Set the Installation Directory
If you want the name of the installation directory to be different than the name of the package,
use the --install-dir option. On Windows you can let the user choose where to install your
application by using the --win-dir-chooser option.

Your application is installed in the default platform-specific installation directory described in
Defaults for Options Not Specified. The directory name for the application defaults to the
package name, but this can be changed with the --install-dir option when you package the
application.

On Windows, you also have the option to enable the user to choose the installation location.
The dialog shown defaults to a directory with the package name.

The following command installs the Dynamic Tree application in c:\Program
Files\DTDemo instead of c:\Program Files\DynamicTreeDemo.

jpackage --type exe --name DynamicTreeDemo --input myApps \
 --main-jar DynamicTree.jar --install-dir DTDemo

The following command lets the user choose the directory where the application is installed.

jpackage --type exe --name DynamicTreeDemo --input myApps \
 --main-jar DynamicTree.jar --win-dir-chooser

Add the Application to a Menu
To let users access your application from a menu, use the --linux-menu-group option, or the
--win-menu and --win-menu-group options when you package your application.

On the Linux platform, if the --linux-menu-group option is not used, your application is added
to the Unknown group in a menu specific to the window manager being used.

On the Windows platform, you can have your application added to the Start menu in the group
of your choosing. If the group doesn't exist, it is created. If you don't provide a group name, the
application is added to the Unknown group. The --win-menu-group option is only meaningful if
the --win-menu option is used.

Chapter 4
Set the Installation Directory

4-2

The following command adds the Dynamic Tree application to the Windows Start menu in the
"Small, Inc" group. Quotes are needed only if the name includes spaces.

jpackage --type exe --name DynamicTreeDemo --input myApps \
 --main-jar DynamicTree.jar --win-menu --win-menu-group "Small, Inc"

On macOS, the application is shown in the menu bar. The name shown defaults to the name of
the package. The following command uses the --mac-package-name option to show DTDemo
in the menu bar.

jpackage --name DynamicTreeDemo --input myApps --main-jar DynamicTree.jar \
 --mac-package-name DTDemo

Launch in Console
If your application runs from the command line or requires console interaction, use the --win-
console option to let Windows know to start the application in a console window.

The following command tells Windows to start the Hello World application with a console
window.

jpackage --input mySamples\hwapp --main-jar HelloWorld.jar --win-console

Chapter 4
Launch in Console

4-3

5
Image and Runtime Modifications

The application image and Java runtime generated by the packaging tool work well for most
applications. However, you can make changes to the image and runtime for any custom
requirements that you might have, and then use the modified version when packaging your
application.

Topics:

• Application Image Modifications

• Java Runtime Modifications

Application Image Modifications
If needed, you can modify the application image that the packaging tool creates and then
package the modified image for distribution.

Possible reasons for modifying the image include: adding removing files, adding resources, or
changing the runtime. If you need to modify the image, run the packaging tool twice as follows:

1. Create only the application image with the --type app-image option. For example:

jpackage --type app-image --name HelloWorld --module-path myModApps \
 --module modhw/modhw.HelloWorldMod

In this example, a directory named HelloWorld is created in the current directory. The
HelloWorld directory contains the application image, which contains the modular
application in the myModApps directory whose main class is in the modhw/
modhw.HelloWorldMod module. An installable bundle is not created.

2. After you make the necessary changes to the application image, run the packaging tool
again to create an installable bundle with the modified image. For example:

jpackage --type msi --app-image HelloWorld --name HelloWorld

5-1

Note:

• The --name option is required when packaging an application image.

• The --runtime-image option is not allowed with --app-image. You will get the
following error:

Error: Mutually exclusive options [--runtime-image] and [--app-
image]

If you want to use a different runtime, then specify it when you first run jpackage
to create the application image. For example:

jpackage --type app-image --name HelloWorld \
 --runtime-image myCustomJRE --module-path myModApps \
 --module modhw/modhw.HelloWorldMod

Java Runtime Modifications
When you want more control over the Java runtime that is packaged with your application, you
can create a custom runtime.

To create a custom Java runtime image for your application, run jlink before you package
your application. Then pass the image produced to the packaging tool using the --runtime-
image option. Reasons you might want to use a custom runtime image:

• Have more control over the options that are used to create the runtime

• Package your application with a different version of Java than the version used to run
jpackage

• Use the same runtime for more than one application.

For example, the following commands create a JDK 14 runtime that includes JavaFX 13
modules, and then package that runtime with an application:

jlink --output jdk-14+fx --module path javafx-jmods-13 \
 --add modules javafx.web,javafx.media,javafx.fxml,java.logging

jpackage --name myapp --input lib --main-jar myApp.jar \
 --runtime-image jdk-14+fx

If you are packaging an application that requires an earlier version of the Java runtime, use the
--runtime-image option The following command packages the JDK 11 runtime with your
application:

jpackage --name myapp --input lib --main-jar myApp.jar \
 --runtime-image jdk-11.0.5

If your application requires a custom runtime based on an earlier version of the JDK, use the
earlier version to run jlink and create the runtime image. Then use current JDK to run

Chapter 5
Java Runtime Modifications

5-2

jpackage and pass it the custom runtime. The following commands create a custom runtime
using JDK 11.0.5 and package it using JDK 14:

c:\Program Files\Java\jdk-11.0.5\bin\jlink output my-jdk11 \
 --add-modules java.desktop,java.datatransfer

c:\Program Files\Java\jdk-14\bin\jpackage --name myapp --input lib \
 --main-jar myApp.jar --runtime-image my-jdk11

Chapter 5
Java Runtime Modifications

5-3

6
Override jpackage Resources

Advanced customization of the package generated is possible by overriding resources used by
jpackage, such as background images and template files for properties and scripts. The --
resource-dir option is used to provide the overrides to the tool.

If the default resources that jpackage uses when packaging an application don't meet your
needs, create a directory and add your customized files to it. If you override a file, your custom
file must contain all of the properties that the default contains. Pass the path to the directory to
jpackage using the --resource-dir option. The path can be absolute or relative to the current
directory.

Note:

Resources such as icons, application version, application description, copyright, and
others can be overridden from the command line. Use of the command line options is
recommended when available.

The topics that follow describe the resources that you can override and explain how you can
find out what the defaults are.

Topics:

• Resources Used in Packaging

• View Resources

Resources Used in Packaging
The packaging tool has default templates and other resources that it uses when it generates
the package for your application.

The resources vary by platform and are described in the following sections. In most cases,
resources overridden with command line options take precedence over resources in the
resource directory. To override resources that can't be overridden from the command line, add
your customized files to the resource directory that you pass to jpackage. Use the --verbose
option described in View Resources to verify the name of the override file for each resource.

Linux (all versions)

• Icon file, launcher.png, for the main launcher and any additional launchers. Each
launcher can have a separate icon. The file name must match the name of the application
or the name of a launcher. If an icon file is not provided for a launcher, the default icon is
used.

• Desktop shortcut file, launcher.desktop, for the main launcher and any additional
launchers The file name must match the name of the application or the name of a
launcher.

6-1

Linux DEB

• Control template, control. File that contains information about the application.

• Pre-installation script, preinst. Script that is run before the application is installed.

• Pre-removal script, prerm. Script that is run before the application is uninstalled.

• Post-installation script, postinst. Script that is run after installation completes.

• Post-removal script, postrm. Script that is run after the application is uninstalled.

• Copyright file, copyright. File that contains copyright and license information.

Linux RPM

• Specification for packaging, package-name.spec. Instructions for packaging the
application.

macOS (all formats)

• Icon file, launcher.icns, for the main launcher and any additional launchers. More than
one file can be provided. The file name must match the name of the application or the
name of a launcher. If an icon file is not provided for a launcher, the default icon is used.

• Runtime properties list, Runtime-Info.plist.

• Information properties list, Info.plist.

• Default entitlements file, application-name.entitlements.

• Post-image script, application-name-post-image.sh. Custom script that is executed
after the application image is created and before the DMG or PKG installer is built. No
default script is provided.

macOS DMG

• DMG setup script, application-name-dmg-setup.scpt.

• Applications license properties list, application-name-license.plist.

• Background file, application-name-background.tiff.

• Drive icon, application-name-volume.icns.

macOS PKG

• Pre-installation script, preinstall. Script that is run before the application is installed.

• Post-installation script, postinstall. Script that is run after installation completes.

• Background image for Light Mode, application-name-background.png.

• Background image for Dark Mode, application-name-background-darkAqua.png.

Windows

• Post-image script, application-name-post-image.wsf. Custom script that is
executed after the application image is created and before the MSI installer is built for
both .msi and .exe packages. No default script is provided.

• Main WiX source file, main.wxs.

Chapter 6
Resources Used in Packaging

6-2

• WiX source file with WiX variables overrides, overrides.wxi. Values in this file override
values in the main WiX file.

• Icon file, launcher.ico, for the main launcher and any additional launchers. More than
one file can be provided. The file name must match the name of the application or the
name of a launcher. If an icon file is not provided for a launcher, the default icon is used.

• Launcher properties file, launcher.properties.

View Resources
You can use the --verbose and --temp options for jpackage to get information about the
resources used to package your application.

To decide if you need to override the jpackage resources, review the current defaults:

• Use the --verbose option to see what is currently used.

The --verbose option provides detailed information about the process of creating the
package. The information also includes instructions for customizing the resource, such as
the name of the file to add to the resource directory.

The following example shows the jpackage command run on Windows to package the
Dynamic Tree application, followed by snippets of the output from the --verbose option
that show the default resources used. Note that to override the WinLauncher.template
resource, a file named DynamicTree.properties is needed; to override the main.wxs
resource, a file named main.wxs is needed

jpackage --input DynamicTree --main-jar DynamicTree.jar --verbose
WARNING: Using incubator modules: jdk.incubator.jpackage
Running [candle.exe, /?]
Running [C:\Program Files (x86)\WiX Toolset v3.11\bin\candle.exe, /?]
Windows Installer XML Toolset Compiler version 3.11.1.2318

 ...

Using default package resource java48.ico [icon] (add DynamicTree.ico to
the resource-dir to customize).
Using default package resource WinLauncher.template [Template for creating
executable properties file]
(add DynamicTree.properties to the resource-dir to customize).

 ...

Using default package resource main.wxs [Main WiX project file] (add
main.wxs to the resource-dir to
customize).
Using default package resource overrides.wxi [Overrides WiX project file]
(add overrides.wxi to the
resource-dir to customize).

 ...

• Use the --temp option to keep temporary files for review.

The --temp option provides jpackage with the name of a new or empty directory where
temporary files are written during the packaging process. The path passed to jpackage can

Chapter 6
View Resources

6-3

be absolute or relative to the current directory. When this option is used, the directory is not
deleted at the end of the process.

Review this directory to see the resources that were used to package your application.
Review each file to identify the properties and values that you might want to override. If
you override a file, your custom file must contain all of the properties that the default
contains.

The following example shows the directory created on Windows. The config directory
contains resources that you can override.

jpackage --input DynamicTree --main-jar DynamicTree.jar \
 --temp DTtempfiles

\DTtempfiles
 \config
 DynamicTree.ico
 DynamicTree.properties
 main.wxs
 MsiInstallerStrings_en.wxl
 MsiInstallerStrings_ja.wxl
 MsiInstallerStrings_zh.wxl
 overrides.wxi
 \images
 \wixobj

Chapter 6
View Resources

6-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Packaging Overview
	Packaging Pre-Reqs
	Application Preparation
	Generated Application Image

	Java Runtime Requirements

	2 Basic Packaging
	Defaults for Options Not Specified
	Package a Non-Modular Application
	Package a Modular Application
	Identify Your Application with Package Metadata

	3 Support Application Requirements
	Set Default Command-Line Arguments
	Set JVM Options
	Set Class and Module Paths

	Set File Associations
	Add Launchers
	Sign the Application Package (macOS)

	4 Manage the Installation of Your Application
	Include a License
	Create a Shortcut
	Set the Installation Directory
	Add the Application to a Menu
	Launch in Console

	5 Image and Runtime Modifications
	Application Image Modifications
	Java Runtime Modifications

	6 Override jpackage Resources
	Resources Used in Packaging
	View Resources

